1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2018 Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock.h> 6 #include <net/xdp.h> 7 8 #include "i40e.h" 9 #include "i40e_txrx_common.h" 10 #include "i40e_xsk.h" 11 12 /** 13 * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev 14 * @vsi: Current VSI 15 * @umem: UMEM to DMA map 16 * 17 * Returns 0 on success, <0 on failure 18 **/ 19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem) 20 { 21 struct i40e_pf *pf = vsi->back; 22 struct device *dev; 23 unsigned int i, j; 24 dma_addr_t dma; 25 26 dev = &pf->pdev->dev; 27 for (i = 0; i < umem->npgs; i++) { 28 dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE, 29 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); 30 if (dma_mapping_error(dev, dma)) 31 goto out_unmap; 32 33 umem->pages[i].dma = dma; 34 } 35 36 return 0; 37 38 out_unmap: 39 for (j = 0; j < i; j++) { 40 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, 41 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); 42 umem->pages[i].dma = 0; 43 } 44 45 return -1; 46 } 47 48 /** 49 * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev 50 * @vsi: Current VSI 51 * @umem: UMEM to DMA map 52 **/ 53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem) 54 { 55 struct i40e_pf *pf = vsi->back; 56 struct device *dev; 57 unsigned int i; 58 59 dev = &pf->pdev->dev; 60 61 for (i = 0; i < umem->npgs; i++) { 62 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, 63 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); 64 65 umem->pages[i].dma = 0; 66 } 67 } 68 69 /** 70 * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid 71 * @vsi: Current VSI 72 * @umem: UMEM 73 * @qid: Rx ring to associate UMEM to 74 * 75 * Returns 0 on success, <0 on failure 76 **/ 77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem, 78 u16 qid) 79 { 80 struct net_device *netdev = vsi->netdev; 81 struct xdp_umem_fq_reuse *reuseq; 82 bool if_running; 83 int err; 84 85 if (vsi->type != I40E_VSI_MAIN) 86 return -EINVAL; 87 88 if (qid >= vsi->num_queue_pairs) 89 return -EINVAL; 90 91 if (qid >= netdev->real_num_rx_queues || 92 qid >= netdev->real_num_tx_queues) 93 return -EINVAL; 94 95 reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count); 96 if (!reuseq) 97 return -ENOMEM; 98 99 xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq)); 100 101 err = i40e_xsk_umem_dma_map(vsi, umem); 102 if (err) 103 return err; 104 105 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 106 107 if (if_running) { 108 err = i40e_queue_pair_disable(vsi, qid); 109 if (err) 110 return err; 111 112 err = i40e_queue_pair_enable(vsi, qid); 113 if (err) 114 return err; 115 116 /* Kick start the NAPI context so that receiving will start */ 117 err = i40e_xsk_async_xmit(vsi->netdev, qid); 118 if (err) 119 return err; 120 } 121 122 return 0; 123 } 124 125 /** 126 * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid 127 * @vsi: Current VSI 128 * @qid: Rx ring to associate UMEM to 129 * 130 * Returns 0 on success, <0 on failure 131 **/ 132 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid) 133 { 134 struct net_device *netdev = vsi->netdev; 135 struct xdp_umem *umem; 136 bool if_running; 137 int err; 138 139 umem = xdp_get_umem_from_qid(netdev, qid); 140 if (!umem) 141 return -EINVAL; 142 143 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); 144 145 if (if_running) { 146 err = i40e_queue_pair_disable(vsi, qid); 147 if (err) 148 return err; 149 } 150 151 i40e_xsk_umem_dma_unmap(vsi, umem); 152 153 if (if_running) { 154 err = i40e_queue_pair_enable(vsi, qid); 155 if (err) 156 return err; 157 } 158 159 return 0; 160 } 161 162 /** 163 * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid 164 * @vsi: Current VSI 165 * @umem: UMEM to enable/associate to a ring, or NULL to disable 166 * @qid: Rx ring to (dis)associate UMEM (from)to 167 * 168 * This function enables or disables a UMEM to a certain ring. 169 * 170 * Returns 0 on success, <0 on failure 171 **/ 172 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem, 173 u16 qid) 174 { 175 return umem ? i40e_xsk_umem_enable(vsi, umem, qid) : 176 i40e_xsk_umem_disable(vsi, qid); 177 } 178 179 /** 180 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff 181 * @rx_ring: Rx ring 182 * @xdp: xdp_buff used as input to the XDP program 183 * 184 * This function enables or disables a UMEM to a certain ring. 185 * 186 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR} 187 **/ 188 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) 189 { 190 int err, result = I40E_XDP_PASS; 191 struct i40e_ring *xdp_ring; 192 struct bpf_prog *xdp_prog; 193 u32 act; 194 195 rcu_read_lock(); 196 /* NB! xdp_prog will always be !NULL, due to the fact that 197 * this path is enabled by setting an XDP program. 198 */ 199 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 200 act = bpf_prog_run_xdp(xdp_prog, xdp); 201 xdp->handle += xdp->data - xdp->data_hard_start; 202 switch (act) { 203 case XDP_PASS: 204 break; 205 case XDP_TX: 206 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 207 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 208 break; 209 case XDP_REDIRECT: 210 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 211 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 212 break; 213 default: 214 bpf_warn_invalid_xdp_action(act); 215 case XDP_ABORTED: 216 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 217 /* fallthrough -- handle aborts by dropping packet */ 218 case XDP_DROP: 219 result = I40E_XDP_CONSUMED; 220 break; 221 } 222 rcu_read_unlock(); 223 return result; 224 } 225 226 /** 227 * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer 228 * @rx_ring: Rx ring 229 * @bi: Rx buffer to populate 230 * 231 * This function allocates an Rx buffer. The buffer can come from fill 232 * queue, or via the recycle queue (next_to_alloc). 233 * 234 * Returns true for a successful allocation, false otherwise 235 **/ 236 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring, 237 struct i40e_rx_buffer *bi) 238 { 239 struct xdp_umem *umem = rx_ring->xsk_umem; 240 void *addr = bi->addr; 241 u64 handle, hr; 242 243 if (addr) { 244 rx_ring->rx_stats.page_reuse_count++; 245 return true; 246 } 247 248 if (!xsk_umem_peek_addr(umem, &handle)) { 249 rx_ring->rx_stats.alloc_page_failed++; 250 return false; 251 } 252 253 hr = umem->headroom + XDP_PACKET_HEADROOM; 254 255 bi->dma = xdp_umem_get_dma(umem, handle); 256 bi->dma += hr; 257 258 bi->addr = xdp_umem_get_data(umem, handle); 259 bi->addr += hr; 260 261 bi->handle = handle + umem->headroom; 262 263 xsk_umem_discard_addr(umem); 264 return true; 265 } 266 267 /** 268 * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer 269 * @rx_ring: Rx ring 270 * @bi: Rx buffer to populate 271 * 272 * This function allocates an Rx buffer. The buffer can come from fill 273 * queue, or via the reuse queue. 274 * 275 * Returns true for a successful allocation, false otherwise 276 **/ 277 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring, 278 struct i40e_rx_buffer *bi) 279 { 280 struct xdp_umem *umem = rx_ring->xsk_umem; 281 u64 handle, hr; 282 283 if (!xsk_umem_peek_addr_rq(umem, &handle)) { 284 rx_ring->rx_stats.alloc_page_failed++; 285 return false; 286 } 287 288 handle &= rx_ring->xsk_umem->chunk_mask; 289 290 hr = umem->headroom + XDP_PACKET_HEADROOM; 291 292 bi->dma = xdp_umem_get_dma(umem, handle); 293 bi->dma += hr; 294 295 bi->addr = xdp_umem_get_data(umem, handle); 296 bi->addr += hr; 297 298 bi->handle = handle + umem->headroom; 299 300 xsk_umem_discard_addr_rq(umem); 301 return true; 302 } 303 304 static __always_inline bool 305 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count, 306 bool alloc(struct i40e_ring *rx_ring, 307 struct i40e_rx_buffer *bi)) 308 { 309 u16 ntu = rx_ring->next_to_use; 310 union i40e_rx_desc *rx_desc; 311 struct i40e_rx_buffer *bi; 312 bool ok = true; 313 314 rx_desc = I40E_RX_DESC(rx_ring, ntu); 315 bi = &rx_ring->rx_bi[ntu]; 316 do { 317 if (!alloc(rx_ring, bi)) { 318 ok = false; 319 goto no_buffers; 320 } 321 322 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0, 323 rx_ring->rx_buf_len, 324 DMA_BIDIRECTIONAL); 325 326 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); 327 328 rx_desc++; 329 bi++; 330 ntu++; 331 332 if (unlikely(ntu == rx_ring->count)) { 333 rx_desc = I40E_RX_DESC(rx_ring, 0); 334 bi = rx_ring->rx_bi; 335 ntu = 0; 336 } 337 338 rx_desc->wb.qword1.status_error_len = 0; 339 count--; 340 } while (count); 341 342 no_buffers: 343 if (rx_ring->next_to_use != ntu) 344 i40e_release_rx_desc(rx_ring, ntu); 345 346 return ok; 347 } 348 349 /** 350 * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers 351 * @rx_ring: Rx ring 352 * @count: The number of buffers to allocate 353 * 354 * This function allocates a number of Rx buffers from the reuse queue 355 * or fill ring and places them on the Rx ring. 356 * 357 * Returns true for a successful allocation, false otherwise 358 **/ 359 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count) 360 { 361 return __i40e_alloc_rx_buffers_zc(rx_ring, count, 362 i40e_alloc_buffer_slow_zc); 363 } 364 365 /** 366 * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers 367 * @rx_ring: Rx ring 368 * @count: The number of buffers to allocate 369 * 370 * This function allocates a number of Rx buffers from the fill ring 371 * or the internal recycle mechanism and places them on the Rx ring. 372 * 373 * Returns true for a successful allocation, false otherwise 374 **/ 375 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count) 376 { 377 return __i40e_alloc_rx_buffers_zc(rx_ring, count, 378 i40e_alloc_buffer_zc); 379 } 380 381 /** 382 * i40e_get_rx_buffer_zc - Return the current Rx buffer 383 * @rx_ring: Rx ring 384 * @size: The size of the rx buffer (read from descriptor) 385 * 386 * This function returns the current, received Rx buffer, and also 387 * does DMA synchronization. the Rx ring. 388 * 389 * Returns the received Rx buffer 390 **/ 391 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring, 392 const unsigned int size) 393 { 394 struct i40e_rx_buffer *bi; 395 396 bi = &rx_ring->rx_bi[rx_ring->next_to_clean]; 397 398 /* we are reusing so sync this buffer for CPU use */ 399 dma_sync_single_range_for_cpu(rx_ring->dev, 400 bi->dma, 0, 401 size, 402 DMA_BIDIRECTIONAL); 403 404 return bi; 405 } 406 407 /** 408 * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer 409 * @rx_ring: Rx ring 410 * @old_bi: The Rx buffer to recycle 411 * 412 * This function recycles a finished Rx buffer, and places it on the 413 * recycle queue (next_to_alloc). 414 **/ 415 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring, 416 struct i40e_rx_buffer *old_bi) 417 { 418 struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc]; 419 unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask; 420 u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM; 421 u16 nta = rx_ring->next_to_alloc; 422 423 /* update, and store next to alloc */ 424 nta++; 425 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 426 427 /* transfer page from old buffer to new buffer */ 428 new_bi->dma = old_bi->dma & mask; 429 new_bi->dma += hr; 430 431 new_bi->addr = (void *)((unsigned long)old_bi->addr & mask); 432 new_bi->addr += hr; 433 434 new_bi->handle = old_bi->handle & mask; 435 new_bi->handle += rx_ring->xsk_umem->headroom; 436 437 old_bi->addr = NULL; 438 } 439 440 /** 441 * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations 442 * @alloc: Zero-copy allocator 443 * @handle: Buffer handle 444 **/ 445 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle) 446 { 447 struct i40e_rx_buffer *bi; 448 struct i40e_ring *rx_ring; 449 u64 hr, mask; 450 u16 nta; 451 452 rx_ring = container_of(alloc, struct i40e_ring, zca); 453 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM; 454 mask = rx_ring->xsk_umem->chunk_mask; 455 456 nta = rx_ring->next_to_alloc; 457 bi = &rx_ring->rx_bi[nta]; 458 459 nta++; 460 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 461 462 handle &= mask; 463 464 bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle); 465 bi->dma += hr; 466 467 bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle); 468 bi->addr += hr; 469 470 bi->handle = (u64)handle + rx_ring->xsk_umem->headroom; 471 } 472 473 /** 474 * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer 475 * @rx_ring: Rx ring 476 * @bi: Rx buffer 477 * @xdp: xdp_buff 478 * 479 * This functions allocates a new skb from a zero-copy Rx buffer. 480 * 481 * Returns the skb, or NULL on failure. 482 **/ 483 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, 484 struct i40e_rx_buffer *bi, 485 struct xdp_buff *xdp) 486 { 487 unsigned int metasize = xdp->data - xdp->data_meta; 488 unsigned int datasize = xdp->data_end - xdp->data; 489 struct sk_buff *skb; 490 491 /* allocate a skb to store the frags */ 492 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 493 xdp->data_end - xdp->data_hard_start, 494 GFP_ATOMIC | __GFP_NOWARN); 495 if (unlikely(!skb)) 496 return NULL; 497 498 skb_reserve(skb, xdp->data - xdp->data_hard_start); 499 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 500 if (metasize) 501 skb_metadata_set(skb, metasize); 502 503 i40e_reuse_rx_buffer_zc(rx_ring, bi); 504 return skb; 505 } 506 507 /** 508 * i40e_inc_ntc: Advance the next_to_clean index 509 * @rx_ring: Rx ring 510 **/ 511 static void i40e_inc_ntc(struct i40e_ring *rx_ring) 512 { 513 u32 ntc = rx_ring->next_to_clean + 1; 514 515 ntc = (ntc < rx_ring->count) ? ntc : 0; 516 rx_ring->next_to_clean = ntc; 517 prefetch(I40E_RX_DESC(rx_ring, ntc)); 518 } 519 520 /** 521 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring 522 * @rx_ring: Rx ring 523 * @budget: NAPI budget 524 * 525 * Returns amount of work completed 526 **/ 527 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) 528 { 529 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 530 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 531 unsigned int xdp_res, xdp_xmit = 0; 532 bool failure = false; 533 struct sk_buff *skb; 534 struct xdp_buff xdp; 535 536 xdp.rxq = &rx_ring->xdp_rxq; 537 538 while (likely(total_rx_packets < (unsigned int)budget)) { 539 struct i40e_rx_buffer *bi; 540 union i40e_rx_desc *rx_desc; 541 unsigned int size; 542 u64 qword; 543 544 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 545 failure = failure || 546 !i40e_alloc_rx_buffers_fast_zc(rx_ring, 547 cleaned_count); 548 cleaned_count = 0; 549 } 550 551 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 552 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 553 554 /* This memory barrier is needed to keep us from reading 555 * any other fields out of the rx_desc until we have 556 * verified the descriptor has been written back. 557 */ 558 dma_rmb(); 559 560 bi = i40e_clean_programming_status(rx_ring, rx_desc, 561 qword); 562 if (unlikely(bi)) { 563 i40e_reuse_rx_buffer_zc(rx_ring, bi); 564 cleaned_count++; 565 continue; 566 } 567 568 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 569 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 570 if (!size) 571 break; 572 573 bi = i40e_get_rx_buffer_zc(rx_ring, size); 574 xdp.data = bi->addr; 575 xdp.data_meta = xdp.data; 576 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 577 xdp.data_end = xdp.data + size; 578 xdp.handle = bi->handle; 579 580 xdp_res = i40e_run_xdp_zc(rx_ring, &xdp); 581 if (xdp_res) { 582 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 583 xdp_xmit |= xdp_res; 584 bi->addr = NULL; 585 } else { 586 i40e_reuse_rx_buffer_zc(rx_ring, bi); 587 } 588 589 total_rx_bytes += size; 590 total_rx_packets++; 591 592 cleaned_count++; 593 i40e_inc_ntc(rx_ring); 594 continue; 595 } 596 597 /* XDP_PASS path */ 598 599 /* NB! We are not checking for errors using 600 * i40e_test_staterr with 601 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that 602 * SBP is *not* set in PRT_SBPVSI (default not set). 603 */ 604 skb = i40e_construct_skb_zc(rx_ring, bi, &xdp); 605 if (!skb) { 606 rx_ring->rx_stats.alloc_buff_failed++; 607 break; 608 } 609 610 cleaned_count++; 611 i40e_inc_ntc(rx_ring); 612 613 if (eth_skb_pad(skb)) 614 continue; 615 616 total_rx_bytes += skb->len; 617 total_rx_packets++; 618 619 i40e_process_skb_fields(rx_ring, rx_desc, skb); 620 napi_gro_receive(&rx_ring->q_vector->napi, skb); 621 } 622 623 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 624 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 625 return failure ? budget : (int)total_rx_packets; 626 } 627 628 /** 629 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP 630 * @xdp_ring: XDP Tx ring 631 * @budget: NAPI budget 632 * 633 * Returns true if the work is finished. 634 **/ 635 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) 636 { 637 struct i40e_tx_desc *tx_desc = NULL; 638 struct i40e_tx_buffer *tx_bi; 639 bool work_done = true; 640 dma_addr_t dma; 641 u32 len; 642 643 while (budget-- > 0) { 644 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 645 xdp_ring->tx_stats.tx_busy++; 646 work_done = false; 647 break; 648 } 649 650 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len)) 651 break; 652 653 dma_sync_single_for_device(xdp_ring->dev, dma, len, 654 DMA_BIDIRECTIONAL); 655 656 tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use]; 657 tx_bi->bytecount = len; 658 659 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use); 660 tx_desc->buffer_addr = cpu_to_le64(dma); 661 tx_desc->cmd_type_offset_bsz = 662 build_ctob(I40E_TX_DESC_CMD_ICRC 663 | I40E_TX_DESC_CMD_EOP, 664 0, len, 0); 665 666 xdp_ring->next_to_use++; 667 if (xdp_ring->next_to_use == xdp_ring->count) 668 xdp_ring->next_to_use = 0; 669 } 670 671 if (tx_desc) { 672 /* Request an interrupt for the last frame and bump tail ptr. */ 673 tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS << 674 I40E_TXD_QW1_CMD_SHIFT); 675 i40e_xdp_ring_update_tail(xdp_ring); 676 677 xsk_umem_consume_tx_done(xdp_ring->xsk_umem); 678 } 679 680 return !!budget && work_done; 681 } 682 683 /** 684 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry 685 * @tx_ring: XDP Tx ring 686 * @tx_bi: Tx buffer info to clean 687 **/ 688 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring, 689 struct i40e_tx_buffer *tx_bi) 690 { 691 xdp_return_frame(tx_bi->xdpf); 692 dma_unmap_single(tx_ring->dev, 693 dma_unmap_addr(tx_bi, dma), 694 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); 695 dma_unmap_len_set(tx_bi, len, 0); 696 } 697 698 /** 699 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries 700 * @tx_ring: XDP Tx ring 701 * @tx_bi: Tx buffer info to clean 702 * 703 * Returns true if cleanup/tranmission is done. 704 **/ 705 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, 706 struct i40e_ring *tx_ring, int napi_budget) 707 { 708 unsigned int ntc, total_bytes = 0, budget = vsi->work_limit; 709 u32 i, completed_frames, frames_ready, xsk_frames = 0; 710 struct xdp_umem *umem = tx_ring->xsk_umem; 711 u32 head_idx = i40e_get_head(tx_ring); 712 bool work_done = true, xmit_done; 713 struct i40e_tx_buffer *tx_bi; 714 715 if (head_idx < tx_ring->next_to_clean) 716 head_idx += tx_ring->count; 717 frames_ready = head_idx - tx_ring->next_to_clean; 718 719 if (frames_ready == 0) { 720 goto out_xmit; 721 } else if (frames_ready > budget) { 722 completed_frames = budget; 723 work_done = false; 724 } else { 725 completed_frames = frames_ready; 726 } 727 728 ntc = tx_ring->next_to_clean; 729 730 for (i = 0; i < completed_frames; i++) { 731 tx_bi = &tx_ring->tx_bi[ntc]; 732 733 if (tx_bi->xdpf) 734 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 735 else 736 xsk_frames++; 737 738 tx_bi->xdpf = NULL; 739 total_bytes += tx_bi->bytecount; 740 741 if (++ntc >= tx_ring->count) 742 ntc = 0; 743 } 744 745 tx_ring->next_to_clean += completed_frames; 746 if (unlikely(tx_ring->next_to_clean >= tx_ring->count)) 747 tx_ring->next_to_clean -= tx_ring->count; 748 749 if (xsk_frames) 750 xsk_umem_complete_tx(umem, xsk_frames); 751 752 i40e_arm_wb(tx_ring, vsi, budget); 753 i40e_update_tx_stats(tx_ring, completed_frames, total_bytes); 754 755 out_xmit: 756 xmit_done = i40e_xmit_zc(tx_ring, budget); 757 758 return work_done && xmit_done; 759 } 760 761 /** 762 * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit 763 * @dev: the netdevice 764 * @queue_id: queue id to wake up 765 * 766 * Returns <0 for errors, 0 otherwise. 767 **/ 768 int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id) 769 { 770 struct i40e_netdev_priv *np = netdev_priv(dev); 771 struct i40e_vsi *vsi = np->vsi; 772 struct i40e_ring *ring; 773 774 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 775 return -ENETDOWN; 776 777 if (!i40e_enabled_xdp_vsi(vsi)) 778 return -ENXIO; 779 780 if (queue_id >= vsi->num_queue_pairs) 781 return -ENXIO; 782 783 if (!vsi->xdp_rings[queue_id]->xsk_umem) 784 return -ENXIO; 785 786 ring = vsi->xdp_rings[queue_id]; 787 788 /* The idea here is that if NAPI is running, mark a miss, so 789 * it will run again. If not, trigger an interrupt and 790 * schedule the NAPI from interrupt context. If NAPI would be 791 * scheduled here, the interrupt affinity would not be 792 * honored. 793 */ 794 if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) 795 i40e_force_wb(vsi, ring->q_vector); 796 797 return 0; 798 } 799 800 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) 801 { 802 u16 i; 803 804 for (i = 0; i < rx_ring->count; i++) { 805 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 806 807 if (!rx_bi->addr) 808 continue; 809 810 xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle); 811 rx_bi->addr = NULL; 812 } 813 } 814 815 /** 816 * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown 817 * @xdp_ring: XDP Tx ring 818 **/ 819 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring) 820 { 821 u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use; 822 struct xdp_umem *umem = tx_ring->xsk_umem; 823 struct i40e_tx_buffer *tx_bi; 824 u32 xsk_frames = 0; 825 826 while (ntc != ntu) { 827 tx_bi = &tx_ring->tx_bi[ntc]; 828 829 if (tx_bi->xdpf) 830 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); 831 else 832 xsk_frames++; 833 834 tx_bi->xdpf = NULL; 835 836 ntc++; 837 if (ntc >= tx_ring->count) 838 ntc = 0; 839 } 840 841 if (xsk_frames) 842 xsk_umem_complete_tx(umem, xsk_frames); 843 } 844 845 /** 846 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached 847 * @vsi: vsi 848 * 849 * Returns true if any of the Rx rings has an AF_XDP UMEM attached 850 **/ 851 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi) 852 { 853 struct net_device *netdev = vsi->netdev; 854 int i; 855 856 for (i = 0; i < vsi->num_queue_pairs; i++) { 857 if (xdp_get_umem_from_qid(netdev, i)) 858 return true; 859 } 860 861 return false; 862 } 863