xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.h (revision ea518afc992032f7570c0a89ac9240b387dc0faf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #ifndef _I40E_TXRX_H_
5 #define _I40E_TXRX_H_
6 
7 #include <net/xdp.h>
8 #include "i40e_type.h"
9 
10 /* Interrupt Throttling and Rate Limiting Goodies */
11 #define I40E_DEFAULT_IRQ_WORK      256
12 
13 /* The datasheet for the X710 and XL710 indicate that the maximum value for
14  * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
15  * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
16  * the register value which is divided by 2 lets use the actual values and
17  * avoid an excessive amount of translation.
18  */
19 #define I40E_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
20 #define I40E_ITR_MASK		0x1FFE	/* mask for ITR register value */
21 #define I40E_MIN_ITR		     2	/* reg uses 2 usec resolution */
22 #define I40E_ITR_20K		    50
23 #define I40E_ITR_8K		   122
24 #define I40E_MAX_ITR		  8160	/* maximum value as per datasheet */
25 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
26 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
27 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
28 
29 #define I40E_ITR_RX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
30 #define I40E_ITR_TX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
31 
32 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
33  * the value of the rate limit is non-zero
34  */
35 #define INTRL_ENA                  BIT(6)
36 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
37 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
38 
39 /**
40  * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
41  * @intrl: interrupt rate limit to convert
42  *
43  * This function converts a decimal interrupt rate limit to the appropriate
44  * register format expected by the firmware when setting interrupt rate limit.
45  */
46 static inline u16 i40e_intrl_usec_to_reg(int intrl)
47 {
48 	if (intrl >> 2)
49 		return ((intrl >> 2) | INTRL_ENA);
50 	else
51 		return 0;
52 }
53 
54 #define I40E_QUEUE_END_OF_LIST 0x7FF
55 
56 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
57  * registers and QINT registers or more generally anywhere in the manual
58  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
59  * register but instead is a special value meaning "don't update" ITR0/1/2.
60  */
61 enum i40e_dyn_idx {
62 	I40E_IDX_ITR0 = 0,
63 	I40E_IDX_ITR1 = 1,
64 	I40E_IDX_ITR2 = 2,
65 	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
66 };
67 
68 /* these are indexes into ITRN registers */
69 #define I40E_RX_ITR    I40E_IDX_ITR0
70 #define I40E_TX_ITR    I40E_IDX_ITR1
71 
72 /* Supported RSS offloads */
73 #define I40E_DEFAULT_RSS_HENA ( \
74 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
75 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
76 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
77 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
78 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
79 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
80 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
81 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
82 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
83 	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
84 	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
85 
86 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
87 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
88 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
89 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
90 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
91 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
92 	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
93 
94 #define i40e_pf_get_default_rss_hena(pf) \
95 	(test_bit(I40E_HW_CAP_MULTI_TCP_UDP_RSS_PCTYPE, (pf)->hw.caps) ? \
96 	 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
97 
98 /* Supported Rx Buffer Sizes (a multiple of 128) */
99 #define I40E_RXBUFFER_256   256
100 #define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
101 #define I40E_RXBUFFER_2048  2048
102 #define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
103 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
104 
105 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
106  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
107  * this adds up to 512 bytes of extra data meaning the smallest allocation
108  * we could have is 1K.
109  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
110  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
111  */
112 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
113 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
114 #define i40e_rx_desc i40e_16byte_rx_desc
115 
116 #define I40E_RX_DMA_ATTR \
117 	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
118 
119 /* Attempt to maximize the headroom available for incoming frames.  We
120  * use a 2K buffer for receives and need 1536/1534 to store the data for
121  * the frame.  This leaves us with 512 bytes of room.  From that we need
122  * to deduct the space needed for the shared info and the padding needed
123  * to IP align the frame.
124  *
125  * Note: For cache line sizes 256 or larger this value is going to end
126  *	 up negative.  In these cases we should fall back to the legacy
127  *	 receive path.
128  */
129 #if (PAGE_SIZE < 8192)
130 #define I40E_2K_TOO_SMALL_WITH_PADDING \
131 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
132 
133 static inline int i40e_compute_pad(int rx_buf_len)
134 {
135 	int page_size, pad_size;
136 
137 	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
138 	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
139 
140 	return pad_size;
141 }
142 
143 static inline int i40e_skb_pad(void)
144 {
145 	int rx_buf_len;
146 
147 	/* If a 2K buffer cannot handle a standard Ethernet frame then
148 	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
149 	 *
150 	 * For a 3K buffer we need to add enough padding to allow for
151 	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
152 	 * cache-line alignment.
153 	 */
154 	if (I40E_2K_TOO_SMALL_WITH_PADDING)
155 		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
156 	else
157 		rx_buf_len = I40E_RXBUFFER_1536;
158 
159 	/* if needed make room for NET_IP_ALIGN */
160 	rx_buf_len -= NET_IP_ALIGN;
161 
162 	return i40e_compute_pad(rx_buf_len);
163 }
164 
165 #define I40E_SKB_PAD i40e_skb_pad()
166 #else
167 #define I40E_2K_TOO_SMALL_WITH_PADDING false
168 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
169 #endif
170 
171 /**
172  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
173  * @rx_desc: pointer to receive descriptor (in le64 format)
174  * @stat_err_bits: value to mask
175  *
176  * This function does some fast chicanery in order to return the
177  * value of the mask which is really only used for boolean tests.
178  * The status_error_len doesn't need to be shifted because it begins
179  * at offset zero.
180  */
181 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
182 				     const u64 stat_err_bits)
183 {
184 	return !!(rx_desc->wb.qword1.status_error_len &
185 		  cpu_to_le64(stat_err_bits));
186 }
187 
188 /* How many Rx Buffers do we bundle into one write to the hardware ? */
189 #define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
190 
191 #define I40E_RX_NEXT_DESC(r, i, n)		\
192 	do {					\
193 		(i)++;				\
194 		if ((i) == (r)->count)		\
195 			i = 0;			\
196 		(n) = I40E_RX_DESC((r), (i));	\
197 	} while (0)
198 
199 
200 #define I40E_MAX_BUFFER_TXD	8
201 #define I40E_MIN_TX_LEN		17
202 
203 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
204  * In order to align with the read requests we will align the value to
205  * the nearest 4K which represents our maximum read request size.
206  */
207 #define I40E_MAX_READ_REQ_SIZE		4096
208 #define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
209 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
210 	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
211 
212 /**
213  * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
214  * @size: transmit request size in bytes
215  *
216  * Due to hardware alignment restrictions (4K alignment), we need to
217  * assume that we can have no more than 12K of data per descriptor, even
218  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
219  * Thus, we need to divide by 12K. But division is slow! Instead,
220  * we decompose the operation into shifts and one relatively cheap
221  * multiply operation.
222  *
223  * To divide by 12K, we first divide by 4K, then divide by 3:
224  *     To divide by 4K, shift right by 12 bits
225  *     To divide by 3, multiply by 85, then divide by 256
226  *     (Divide by 256 is done by shifting right by 8 bits)
227  * Finally, we add one to round up. Because 256 isn't an exact multiple of
228  * 3, we'll underestimate near each multiple of 12K. This is actually more
229  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
230  * segment.  For our purposes this is accurate out to 1M which is orders of
231  * magnitude greater than our largest possible GSO size.
232  *
233  * This would then be implemented as:
234  *     return (((size >> 12) * 85) >> 8) + 1;
235  *
236  * Since multiplication and division are commutative, we can reorder
237  * operations into:
238  *     return ((size * 85) >> 20) + 1;
239  */
240 static inline unsigned int i40e_txd_use_count(unsigned int size)
241 {
242 	return ((size * 85) >> 20) + 1;
243 }
244 
245 /* Tx Descriptors needed, worst case */
246 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
247 
248 #define I40E_TX_FLAGS_HW_VLAN		BIT(1)
249 #define I40E_TX_FLAGS_SW_VLAN		BIT(2)
250 #define I40E_TX_FLAGS_TSO		BIT(3)
251 #define I40E_TX_FLAGS_IPV4		BIT(4)
252 #define I40E_TX_FLAGS_IPV6		BIT(5)
253 #define I40E_TX_FLAGS_TSYN		BIT(8)
254 #define I40E_TX_FLAGS_FD_SB		BIT(9)
255 #define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
256 #define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
257 #define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
258 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
259 #define I40E_TX_FLAGS_VLAN_SHIFT	16
260 
261 struct i40e_tx_buffer {
262 	struct i40e_tx_desc *next_to_watch;
263 	union {
264 		struct xdp_frame *xdpf;
265 		struct sk_buff *skb;
266 		void *raw_buf;
267 	};
268 	unsigned int bytecount;
269 	unsigned short gso_segs;
270 
271 	DEFINE_DMA_UNMAP_ADDR(dma);
272 	DEFINE_DMA_UNMAP_LEN(len);
273 	u32 tx_flags;
274 };
275 
276 struct i40e_rx_buffer {
277 	dma_addr_t dma;
278 	struct page *page;
279 	__u32 page_offset;
280 	__u16 pagecnt_bias;
281 	__u32 page_count;
282 };
283 
284 struct i40e_queue_stats {
285 	u64 packets;
286 	u64 bytes;
287 };
288 
289 struct i40e_tx_queue_stats {
290 	u64 restart_queue;
291 	u64 tx_busy;
292 	u64 tx_done_old;
293 	u64 tx_linearize;
294 	u64 tx_force_wb;
295 	u64 tx_stopped;
296 	int prev_pkt_ctr;
297 };
298 
299 struct i40e_rx_queue_stats {
300 	u64 non_eop_descs;
301 	u64 alloc_page_failed;
302 	u64 alloc_buff_failed;
303 	u64 page_reuse_count;
304 	u64 page_alloc_count;
305 	u64 page_waive_count;
306 	u64 page_busy_count;
307 };
308 
309 enum i40e_ring_state {
310 	__I40E_TX_FDIR_INIT_DONE,
311 	__I40E_TX_XPS_INIT_DONE,
312 	__I40E_RING_STATE_NBITS /* must be last */
313 };
314 
315 /* some useful defines for virtchannel interface, which
316  * is the only remaining user of header split
317  */
318 #define I40E_RX_DTYPE_HEADER_SPLIT  1
319 #define I40E_RX_SPLIT_L2      0x1
320 #define I40E_RX_SPLIT_IP      0x2
321 #define I40E_RX_SPLIT_TCP_UDP 0x4
322 #define I40E_RX_SPLIT_SCTP    0x8
323 
324 /* struct that defines a descriptor ring, associated with a VSI */
325 struct i40e_ring {
326 	struct i40e_ring *next;		/* pointer to next ring in q_vector */
327 	void *desc;			/* Descriptor ring memory */
328 	struct device *dev;		/* Used for DMA mapping */
329 	struct net_device *netdev;	/* netdev ring maps to */
330 	struct bpf_prog *xdp_prog;
331 	union {
332 		struct i40e_tx_buffer *tx_bi;
333 		struct i40e_rx_buffer *rx_bi;
334 		struct xdp_buff **rx_bi_zc;
335 	};
336 	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
337 	u16 queue_index;		/* Queue number of ring */
338 	u8 dcb_tc;			/* Traffic class of ring */
339 	u8 __iomem *tail;
340 
341 	/* Storing xdp_buff on ring helps in saving the state of partially built
342 	 * packet when i40e_clean_rx_ring_irq() must return before it sees EOP
343 	 * and to resume packet building for this ring in the next call to
344 	 * i40e_clean_rx_ring_irq().
345 	 */
346 	struct xdp_buff xdp;
347 
348 	/* Next descriptor to be processed; next_to_clean is updated only on
349 	 * processing EOP descriptor
350 	 */
351 	u16 next_to_process;
352 	/* high bit set means dynamic, use accessor routines to read/write.
353 	 * hardware only supports 2us resolution for the ITR registers.
354 	 * these values always store the USER setting, and must be converted
355 	 * before programming to a register.
356 	 */
357 	u16 itr_setting;
358 
359 	u16 count;			/* Number of descriptors */
360 	u16 reg_idx;			/* HW register index of the ring */
361 	u16 rx_buf_len;
362 
363 	/* used in interrupt processing */
364 	u16 next_to_use;
365 	u16 next_to_clean;
366 	u16 xdp_tx_active;
367 
368 	u8 atr_sample_rate;
369 	u8 atr_count;
370 
371 	bool ring_active;		/* is ring online or not */
372 	bool arm_wb;		/* do something to arm write back */
373 	u8 packet_stride;
374 
375 	u16 flags;
376 #define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
377 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
378 #define I40E_TXR_FLAGS_XDP			BIT(2)
379 
380 	/* stats structs */
381 	struct i40e_queue_stats	stats;
382 	struct u64_stats_sync syncp;
383 	union {
384 		struct i40e_tx_queue_stats tx_stats;
385 		struct i40e_rx_queue_stats rx_stats;
386 	};
387 
388 	unsigned int size;		/* length of descriptor ring in bytes */
389 	dma_addr_t dma;			/* physical address of ring */
390 
391 	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
392 	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
393 
394 	struct rcu_head rcu;		/* to avoid race on free */
395 	u16 next_to_alloc;
396 
397 	struct i40e_channel *ch;
398 	u16 rx_offset;
399 	struct xdp_rxq_info xdp_rxq;
400 	struct xsk_buff_pool *xsk_pool;
401 } ____cacheline_internodealigned_in_smp;
402 
403 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
404 {
405 	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
406 }
407 
408 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
409 {
410 	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
411 }
412 
413 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
414 {
415 	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
416 }
417 
418 static inline bool ring_is_xdp(struct i40e_ring *ring)
419 {
420 	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
421 }
422 
423 static inline void set_ring_xdp(struct i40e_ring *ring)
424 {
425 	ring->flags |= I40E_TXR_FLAGS_XDP;
426 }
427 
428 #define I40E_ITR_ADAPTIVE_MIN_INC	0x0002
429 #define I40E_ITR_ADAPTIVE_MIN_USECS	0x0002
430 #define I40E_ITR_ADAPTIVE_MAX_USECS	0x007e
431 #define I40E_ITR_ADAPTIVE_LATENCY	0x8000
432 #define I40E_ITR_ADAPTIVE_BULK		0x0000
433 
434 struct i40e_ring_container {
435 	struct i40e_ring *ring;		/* pointer to linked list of ring(s) */
436 	unsigned long next_update;	/* jiffies value of next update */
437 	unsigned int total_bytes;	/* total bytes processed this int */
438 	unsigned int total_packets;	/* total packets processed this int */
439 	u16 count;
440 	u16 target_itr;			/* target ITR setting for ring(s) */
441 	u16 current_itr;		/* current ITR setting for ring(s) */
442 };
443 
444 /* iterator for handling rings in ring container */
445 #define i40e_for_each_ring(pos, head) \
446 	for (pos = (head).ring; pos != NULL; pos = pos->next)
447 
448 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
449 {
450 #if (PAGE_SIZE < 8192)
451 	if (ring->rx_buf_len > (PAGE_SIZE / 2))
452 		return 1;
453 #endif
454 	return 0;
455 }
456 
457 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
458 
459 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
460 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
461 u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb,
462 			  struct net_device *sb_dev);
463 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
464 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
465 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
466 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
467 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
468 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
469 int i40e_napi_poll(struct napi_struct *napi, int budget);
470 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
471 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
472 void i40e_detect_recover_hung(struct i40e_vsi *vsi);
473 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
474 bool __i40e_chk_linearize(struct sk_buff *skb);
475 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
476 		  u32 flags);
477 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
478 		     union i40e_rx_desc *rx_desc);
479 
480 /**
481  * i40e_get_head - Retrieve head from head writeback
482  * @tx_ring:  tx ring to fetch head of
483  *
484  * Returns value of Tx ring head based on value stored
485  * in head write-back location
486  **/
487 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
488 {
489 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
490 
491 	return le32_to_cpu(*(volatile __le32 *)head);
492 }
493 
494 /**
495  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
496  * @skb:     send buffer
497  *
498  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
499  * there is not enough descriptors available in this ring since we need at least
500  * one descriptor.
501  **/
502 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
503 {
504 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
505 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
506 	int count = 0, size = skb_headlen(skb);
507 
508 	for (;;) {
509 		count += i40e_txd_use_count(size);
510 
511 		if (!nr_frags--)
512 			break;
513 
514 		size = skb_frag_size(frag++);
515 	}
516 
517 	return count;
518 }
519 
520 /**
521  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
522  * @tx_ring: the ring to be checked
523  * @size:    the size buffer we want to assure is available
524  *
525  * Returns 0 if stop is not needed
526  **/
527 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
528 {
529 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
530 		return 0;
531 	return __i40e_maybe_stop_tx(tx_ring, size);
532 }
533 
534 /**
535  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
536  * @skb:      send buffer
537  * @count:    number of buffers used
538  *
539  * Note: Our HW can't scatter-gather more than 8 fragments to build
540  * a packet on the wire and so we need to figure out the cases where we
541  * need to linearize the skb.
542  **/
543 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
544 {
545 	/* Both TSO and single send will work if count is less than 8 */
546 	if (likely(count < I40E_MAX_BUFFER_TXD))
547 		return false;
548 
549 	if (skb_is_gso(skb))
550 		return __i40e_chk_linearize(skb);
551 
552 	/* we can support up to 8 data buffers for a single send */
553 	return count != I40E_MAX_BUFFER_TXD;
554 }
555 
556 /**
557  * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
558  * @ring: Tx ring to find the netdev equivalent of
559  **/
560 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
561 {
562 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
563 }
564 #endif /* _I40E_TXRX_H_ */
565