1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #ifndef _I40E_TXRX_H_ 5 #define _I40E_TXRX_H_ 6 7 #include <linux/net/intel/libie/pctype.h> 8 #include <net/xdp.h> 9 #include "i40e_type.h" 10 11 /* Interrupt Throttling and Rate Limiting Goodies */ 12 #define I40E_DEFAULT_IRQ_WORK 256 13 14 /* The datasheet for the X710 and XL710 indicate that the maximum value for 15 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec 16 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing 17 * the register value which is divided by 2 lets use the actual values and 18 * avoid an excessive amount of translation. 19 */ 20 #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ 21 #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */ 22 #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */ 23 #define I40E_ITR_20K 50 24 #define I40E_ITR_8K 122 25 #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */ 26 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC) 27 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK) 28 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC)) 29 30 #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 31 #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 32 33 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if 34 * the value of the rate limit is non-zero 35 */ 36 #define INTRL_ENA BIT(6) 37 #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ 38 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) 39 40 /** 41 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register 42 * @intrl: interrupt rate limit to convert 43 * 44 * This function converts a decimal interrupt rate limit to the appropriate 45 * register format expected by the firmware when setting interrupt rate limit. 46 */ 47 static inline u16 i40e_intrl_usec_to_reg(int intrl) 48 { 49 if (intrl >> 2) 50 return ((intrl >> 2) | INTRL_ENA); 51 else 52 return 0; 53 } 54 55 #define I40E_QUEUE_END_OF_LIST 0x7FF 56 57 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 58 * registers and QINT registers or more generally anywhere in the manual 59 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 60 * register but instead is a special value meaning "don't update" ITR0/1/2. 61 */ 62 enum i40e_dyn_idx { 63 I40E_IDX_ITR0 = 0, 64 I40E_IDX_ITR1 = 1, 65 I40E_IDX_ITR2 = 2, 66 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 67 }; 68 69 /* these are indexes into ITRN registers */ 70 #define I40E_RX_ITR I40E_IDX_ITR0 71 #define I40E_TX_ITR I40E_IDX_ITR1 72 #define I40E_SW_ITR I40E_IDX_ITR2 73 74 /* Supported RSS offloads */ 75 #define I40E_DEFAULT_RSS_HASHCFG ( \ 76 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP) | \ 77 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ 78 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP) | \ 79 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ 80 BIT_ULL(LIBIE_FILTER_PCTYPE_FRAG_IPV4) | \ 81 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP) | \ 82 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP) | \ 83 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ 84 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ 85 BIT_ULL(LIBIE_FILTER_PCTYPE_FRAG_IPV6) | \ 86 BIT_ULL(LIBIE_FILTER_PCTYPE_L2_PAYLOAD)) 87 88 #define I40E_DEFAULT_RSS_HASHCFG_EXPANDED (I40E_DEFAULT_RSS_HASHCFG | \ 89 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ 90 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ 91 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ 92 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ 93 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ 94 BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) 95 96 #define i40e_pf_get_default_rss_hashcfg(pf) \ 97 (test_bit(I40E_HW_CAP_MULTI_TCP_UDP_RSS_PCTYPE, (pf)->hw.caps) ? \ 98 I40E_DEFAULT_RSS_HASHCFG_EXPANDED : I40E_DEFAULT_RSS_HASHCFG) 99 100 /* Supported Rx Buffer Sizes (a multiple of 128) */ 101 #define I40E_RXBUFFER_256 256 102 #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ 103 #define I40E_RXBUFFER_2048 2048 104 #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ 105 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ 106 107 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we 108 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, 109 * this adds up to 512 bytes of extra data meaning the smallest allocation 110 * we could have is 1K. 111 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) 112 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) 113 */ 114 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256 115 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 116 #define i40e_rx_desc i40e_16byte_rx_desc 117 118 #define I40E_RX_DMA_ATTR \ 119 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 120 121 /* Attempt to maximize the headroom available for incoming frames. We 122 * use a 2K buffer for receives and need 1536/1534 to store the data for 123 * the frame. This leaves us with 512 bytes of room. From that we need 124 * to deduct the space needed for the shared info and the padding needed 125 * to IP align the frame. 126 * 127 * Note: For cache line sizes 256 or larger this value is going to end 128 * up negative. In these cases we should fall back to the legacy 129 * receive path. 130 */ 131 #if (PAGE_SIZE < 8192) 132 #define I40E_2K_TOO_SMALL_WITH_PADDING \ 133 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048)) 134 135 static inline int i40e_compute_pad(int rx_buf_len) 136 { 137 int page_size, pad_size; 138 139 page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 140 pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; 141 142 return pad_size; 143 } 144 145 static inline int i40e_skb_pad(void) 146 { 147 int rx_buf_len; 148 149 /* If a 2K buffer cannot handle a standard Ethernet frame then 150 * optimize padding for a 3K buffer instead of a 1.5K buffer. 151 * 152 * For a 3K buffer we need to add enough padding to allow for 153 * tailroom due to NET_IP_ALIGN possibly shifting us out of 154 * cache-line alignment. 155 */ 156 if (I40E_2K_TOO_SMALL_WITH_PADDING) 157 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 158 else 159 rx_buf_len = I40E_RXBUFFER_1536; 160 161 /* if needed make room for NET_IP_ALIGN */ 162 rx_buf_len -= NET_IP_ALIGN; 163 164 return i40e_compute_pad(rx_buf_len); 165 } 166 167 #define I40E_SKB_PAD i40e_skb_pad() 168 #else 169 #define I40E_2K_TOO_SMALL_WITH_PADDING false 170 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 171 #endif 172 173 /** 174 * i40e_test_staterr - tests bits in Rx descriptor status and error fields 175 * @rx_desc: pointer to receive descriptor (in le64 format) 176 * @stat_err_bits: value to mask 177 * 178 * This function does some fast chicanery in order to return the 179 * value of the mask which is really only used for boolean tests. 180 * The status_error_len doesn't need to be shifted because it begins 181 * at offset zero. 182 */ 183 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc, 184 const u64 stat_err_bits) 185 { 186 return !!(rx_desc->wb.qword1.status_error_len & 187 cpu_to_le64(stat_err_bits)); 188 } 189 190 /* How many Rx Buffers do we bundle into one write to the hardware ? */ 191 #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */ 192 193 #define I40E_RX_NEXT_DESC(r, i, n) \ 194 do { \ 195 (i)++; \ 196 if ((i) == (r)->count) \ 197 i = 0; \ 198 (n) = I40E_RX_DESC((r), (i)); \ 199 } while (0) 200 201 202 #define I40E_MAX_BUFFER_TXD 8 203 #define I40E_MIN_TX_LEN 17 204 205 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 206 * In order to align with the read requests we will align the value to 207 * the nearest 4K which represents our maximum read request size. 208 */ 209 #define I40E_MAX_READ_REQ_SIZE 4096 210 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) 211 #define I40E_MAX_DATA_PER_TXD_ALIGNED \ 212 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) 213 214 /** 215 * i40e_txd_use_count - estimate the number of descriptors needed for Tx 216 * @size: transmit request size in bytes 217 * 218 * Due to hardware alignment restrictions (4K alignment), we need to 219 * assume that we can have no more than 12K of data per descriptor, even 220 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 221 * Thus, we need to divide by 12K. But division is slow! Instead, 222 * we decompose the operation into shifts and one relatively cheap 223 * multiply operation. 224 * 225 * To divide by 12K, we first divide by 4K, then divide by 3: 226 * To divide by 4K, shift right by 12 bits 227 * To divide by 3, multiply by 85, then divide by 256 228 * (Divide by 256 is done by shifting right by 8 bits) 229 * Finally, we add one to round up. Because 256 isn't an exact multiple of 230 * 3, we'll underestimate near each multiple of 12K. This is actually more 231 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 232 * segment. For our purposes this is accurate out to 1M which is orders of 233 * magnitude greater than our largest possible GSO size. 234 * 235 * This would then be implemented as: 236 * return (((size >> 12) * 85) >> 8) + 1; 237 * 238 * Since multiplication and division are commutative, we can reorder 239 * operations into: 240 * return ((size * 85) >> 20) + 1; 241 */ 242 static inline unsigned int i40e_txd_use_count(unsigned int size) 243 { 244 return ((size * 85) >> 20) + 1; 245 } 246 247 /* Tx Descriptors needed, worst case */ 248 #define DESC_NEEDED (MAX_SKB_FRAGS + 6) 249 250 #define I40E_TX_FLAGS_HW_VLAN BIT(1) 251 #define I40E_TX_FLAGS_SW_VLAN BIT(2) 252 #define I40E_TX_FLAGS_TSO BIT(3) 253 #define I40E_TX_FLAGS_IPV4 BIT(4) 254 #define I40E_TX_FLAGS_IPV6 BIT(5) 255 #define I40E_TX_FLAGS_TSYN BIT(8) 256 #define I40E_TX_FLAGS_FD_SB BIT(9) 257 #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10) 258 #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 259 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 260 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 261 #define I40E_TX_FLAGS_VLAN_SHIFT 16 262 263 struct i40e_tx_buffer { 264 struct i40e_tx_desc *next_to_watch; 265 union { 266 struct xdp_frame *xdpf; 267 struct sk_buff *skb; 268 void *raw_buf; 269 }; 270 unsigned int bytecount; 271 unsigned short gso_segs; 272 273 DEFINE_DMA_UNMAP_ADDR(dma); 274 DEFINE_DMA_UNMAP_LEN(len); 275 u32 tx_flags; 276 }; 277 278 struct i40e_rx_buffer { 279 dma_addr_t dma; 280 struct page *page; 281 __u32 page_offset; 282 __u16 pagecnt_bias; 283 __u32 page_count; 284 }; 285 286 struct i40e_queue_stats { 287 u64 packets; 288 u64 bytes; 289 }; 290 291 struct i40e_tx_queue_stats { 292 u64 restart_queue; 293 u64 tx_busy; 294 u64 tx_done_old; 295 u64 tx_linearize; 296 u64 tx_force_wb; 297 u64 tx_stopped; 298 int prev_pkt_ctr; 299 }; 300 301 struct i40e_rx_queue_stats { 302 u64 non_eop_descs; 303 u64 alloc_page_failed; 304 u64 alloc_buff_failed; 305 u64 page_reuse_count; 306 u64 page_alloc_count; 307 u64 page_waive_count; 308 u64 page_busy_count; 309 }; 310 311 enum i40e_ring_state { 312 __I40E_TX_FDIR_INIT_DONE, 313 __I40E_TX_XPS_INIT_DONE, 314 __I40E_RING_STATE_NBITS /* must be last */ 315 }; 316 317 /* some useful defines for virtchannel interface, which 318 * is the only remaining user of header split 319 */ 320 #define I40E_RX_DTYPE_HEADER_SPLIT 1 321 #define I40E_RX_SPLIT_L2 0x1 322 #define I40E_RX_SPLIT_IP 0x2 323 #define I40E_RX_SPLIT_TCP_UDP 0x4 324 #define I40E_RX_SPLIT_SCTP 0x8 325 326 /* struct that defines a descriptor ring, associated with a VSI */ 327 struct i40e_ring { 328 struct i40e_ring *next; /* pointer to next ring in q_vector */ 329 void *desc; /* Descriptor ring memory */ 330 struct device *dev; /* Used for DMA mapping */ 331 struct net_device *netdev; /* netdev ring maps to */ 332 struct bpf_prog *xdp_prog; 333 union { 334 struct i40e_tx_buffer *tx_bi; 335 struct i40e_rx_buffer *rx_bi; 336 struct xdp_buff **rx_bi_zc; 337 }; 338 DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS); 339 u16 queue_index; /* Queue number of ring */ 340 u8 dcb_tc; /* Traffic class of ring */ 341 u8 __iomem *tail; 342 343 /* Storing xdp_buff on ring helps in saving the state of partially built 344 * packet when i40e_clean_rx_ring_irq() must return before it sees EOP 345 * and to resume packet building for this ring in the next call to 346 * i40e_clean_rx_ring_irq(). 347 */ 348 struct xdp_buff xdp; 349 350 /* Next descriptor to be processed; next_to_clean is updated only on 351 * processing EOP descriptor 352 */ 353 u16 next_to_process; 354 /* high bit set means dynamic, use accessor routines to read/write. 355 * hardware only supports 2us resolution for the ITR registers. 356 * these values always store the USER setting, and must be converted 357 * before programming to a register. 358 */ 359 u16 itr_setting; 360 361 u16 count; /* Number of descriptors */ 362 u16 reg_idx; /* HW register index of the ring */ 363 u16 rx_buf_len; 364 365 /* used in interrupt processing */ 366 u16 next_to_use; 367 u16 next_to_clean; 368 u16 xdp_tx_active; 369 370 u8 atr_sample_rate; 371 u8 atr_count; 372 373 bool ring_active; /* is ring online or not */ 374 bool arm_wb; /* do something to arm write back */ 375 u8 packet_stride; 376 377 u16 flags; 378 #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) 379 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) 380 #define I40E_TXR_FLAGS_XDP BIT(2) 381 382 /* stats structs */ 383 struct i40e_queue_stats stats; 384 struct u64_stats_sync syncp; 385 union { 386 struct i40e_tx_queue_stats tx_stats; 387 struct i40e_rx_queue_stats rx_stats; 388 }; 389 390 unsigned int size; /* length of descriptor ring in bytes */ 391 dma_addr_t dma; /* physical address of ring */ 392 393 struct i40e_vsi *vsi; /* Backreference to associated VSI */ 394 struct i40e_q_vector *q_vector; /* Backreference to associated vector */ 395 396 struct rcu_head rcu; /* to avoid race on free */ 397 u16 next_to_alloc; 398 399 struct i40e_channel *ch; 400 u16 rx_offset; 401 struct xdp_rxq_info xdp_rxq; 402 struct xsk_buff_pool *xsk_pool; 403 } ____cacheline_internodealigned_in_smp; 404 405 static inline bool ring_uses_build_skb(struct i40e_ring *ring) 406 { 407 return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED); 408 } 409 410 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring) 411 { 412 ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 413 } 414 415 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring) 416 { 417 ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 418 } 419 420 static inline bool ring_is_xdp(struct i40e_ring *ring) 421 { 422 return !!(ring->flags & I40E_TXR_FLAGS_XDP); 423 } 424 425 static inline void set_ring_xdp(struct i40e_ring *ring) 426 { 427 ring->flags |= I40E_TXR_FLAGS_XDP; 428 } 429 430 #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002 431 #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002 432 #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e 433 #define I40E_ITR_ADAPTIVE_LATENCY 0x8000 434 #define I40E_ITR_ADAPTIVE_BULK 0x0000 435 436 struct i40e_ring_container { 437 struct i40e_ring *ring; /* pointer to linked list of ring(s) */ 438 unsigned long next_update; /* jiffies value of next update */ 439 unsigned int total_bytes; /* total bytes processed this int */ 440 unsigned int total_packets; /* total packets processed this int */ 441 u16 count; 442 u16 target_itr; /* target ITR setting for ring(s) */ 443 u16 current_itr; /* current ITR setting for ring(s) */ 444 }; 445 446 /* iterator for handling rings in ring container */ 447 #define i40e_for_each_ring(pos, head) \ 448 for (pos = (head).ring; pos != NULL; pos = pos->next) 449 450 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring) 451 { 452 #if (PAGE_SIZE < 8192) 453 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 454 return 1; 455 #endif 456 return 0; 457 } 458 459 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring)) 460 461 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count); 462 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev); 463 u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb, 464 struct net_device *sb_dev); 465 void i40e_clean_tx_ring(struct i40e_ring *tx_ring); 466 void i40e_clean_rx_ring(struct i40e_ring *rx_ring); 467 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring); 468 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring); 469 void i40e_free_tx_resources(struct i40e_ring *tx_ring); 470 void i40e_free_rx_resources(struct i40e_ring *rx_ring); 471 int i40e_napi_poll(struct napi_struct *napi, int budget); 472 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); 473 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw); 474 void i40e_detect_recover_hung(struct i40e_pf *pf); 475 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size); 476 bool __i40e_chk_linearize(struct sk_buff *skb); 477 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 478 u32 flags); 479 bool i40e_is_non_eop(struct i40e_ring *rx_ring, 480 union i40e_rx_desc *rx_desc); 481 482 /** 483 * i40e_get_head - Retrieve head from head writeback 484 * @tx_ring: tx ring to fetch head of 485 * 486 * Returns value of Tx ring head based on value stored 487 * in head write-back location 488 **/ 489 static inline u32 i40e_get_head(struct i40e_ring *tx_ring) 490 { 491 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; 492 493 return le32_to_cpu(*(volatile __le32 *)head); 494 } 495 496 /** 497 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed 498 * @skb: send buffer 499 * 500 * Returns number of data descriptors needed for this skb. Returns 0 to indicate 501 * there is not enough descriptors available in this ring since we need at least 502 * one descriptor. 503 **/ 504 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) 505 { 506 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 507 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 508 int count = 0, size = skb_headlen(skb); 509 510 for (;;) { 511 count += i40e_txd_use_count(size); 512 513 if (!nr_frags--) 514 break; 515 516 size = skb_frag_size(frag++); 517 } 518 519 return count; 520 } 521 522 /** 523 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions 524 * @tx_ring: the ring to be checked 525 * @size: the size buffer we want to assure is available 526 * 527 * Returns 0 if stop is not needed 528 **/ 529 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 530 { 531 if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) 532 return 0; 533 return __i40e_maybe_stop_tx(tx_ring, size); 534 } 535 536 /** 537 * i40e_chk_linearize - Check if there are more than 8 fragments per packet 538 * @skb: send buffer 539 * @count: number of buffers used 540 * 541 * Note: Our HW can't scatter-gather more than 8 fragments to build 542 * a packet on the wire and so we need to figure out the cases where we 543 * need to linearize the skb. 544 **/ 545 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) 546 { 547 /* Both TSO and single send will work if count is less than 8 */ 548 if (likely(count < I40E_MAX_BUFFER_TXD)) 549 return false; 550 551 if (skb_is_gso(skb)) 552 return __i40e_chk_linearize(skb); 553 554 /* we can support up to 8 data buffers for a single send */ 555 return count != I40E_MAX_BUFFER_TXD; 556 } 557 558 /** 559 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring 560 * @ring: Tx ring to find the netdev equivalent of 561 **/ 562 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring) 563 { 564 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 565 } 566 #endif /* _I40E_TXRX_H_ */ 567