1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #ifndef _I40E_TXRX_H_ 5 #define _I40E_TXRX_H_ 6 7 #include <net/xdp.h> 8 #include "i40e_type.h" 9 10 /* Interrupt Throttling and Rate Limiting Goodies */ 11 #define I40E_DEFAULT_IRQ_WORK 256 12 13 /* The datasheet for the X710 and XL710 indicate that the maximum value for 14 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec 15 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing 16 * the register value which is divided by 2 lets use the actual values and 17 * avoid an excessive amount of translation. 18 */ 19 #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ 20 #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */ 21 #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */ 22 #define I40E_ITR_20K 50 23 #define I40E_ITR_8K 122 24 #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */ 25 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC) 26 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK) 27 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC)) 28 29 #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 30 #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 31 32 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if 33 * the value of the rate limit is non-zero 34 */ 35 #define INTRL_ENA BIT(6) 36 #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ 37 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) 38 39 /** 40 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register 41 * @intrl: interrupt rate limit to convert 42 * 43 * This function converts a decimal interrupt rate limit to the appropriate 44 * register format expected by the firmware when setting interrupt rate limit. 45 */ 46 static inline u16 i40e_intrl_usec_to_reg(int intrl) 47 { 48 if (intrl >> 2) 49 return ((intrl >> 2) | INTRL_ENA); 50 else 51 return 0; 52 } 53 54 #define I40E_QUEUE_END_OF_LIST 0x7FF 55 56 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 57 * registers and QINT registers or more generally anywhere in the manual 58 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 59 * register but instead is a special value meaning "don't update" ITR0/1/2. 60 */ 61 enum i40e_dyn_idx_t { 62 I40E_IDX_ITR0 = 0, 63 I40E_IDX_ITR1 = 1, 64 I40E_IDX_ITR2 = 2, 65 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 66 }; 67 68 /* these are indexes into ITRN registers */ 69 #define I40E_RX_ITR I40E_IDX_ITR0 70 #define I40E_TX_ITR I40E_IDX_ITR1 71 72 /* Supported RSS offloads */ 73 #define I40E_DEFAULT_RSS_HENA ( \ 74 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ 75 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ 76 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ 77 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ 78 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ 79 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ 80 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ 81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ 82 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ 83 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ 84 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) 85 86 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ 87 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ 88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ 89 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ 90 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ 91 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ 92 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) 93 94 #define i40e_pf_get_default_rss_hena(pf) \ 95 (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \ 96 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA) 97 98 /* Supported Rx Buffer Sizes (a multiple of 128) */ 99 #define I40E_RXBUFFER_256 256 100 #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ 101 #define I40E_RXBUFFER_2048 2048 102 #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ 103 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ 104 105 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we 106 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, 107 * this adds up to 512 bytes of extra data meaning the smallest allocation 108 * we could have is 1K. 109 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) 110 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) 111 */ 112 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256 113 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 114 #define i40e_rx_desc i40e_16byte_rx_desc 115 116 #define I40E_RX_DMA_ATTR \ 117 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 118 119 /* Attempt to maximize the headroom available for incoming frames. We 120 * use a 2K buffer for receives and need 1536/1534 to store the data for 121 * the frame. This leaves us with 512 bytes of room. From that we need 122 * to deduct the space needed for the shared info and the padding needed 123 * to IP align the frame. 124 * 125 * Note: For cache line sizes 256 or larger this value is going to end 126 * up negative. In these cases we should fall back to the legacy 127 * receive path. 128 */ 129 #if (PAGE_SIZE < 8192) 130 #define I40E_2K_TOO_SMALL_WITH_PADDING \ 131 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048)) 132 133 static inline int i40e_compute_pad(int rx_buf_len) 134 { 135 int page_size, pad_size; 136 137 page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 138 pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; 139 140 return pad_size; 141 } 142 143 static inline int i40e_skb_pad(void) 144 { 145 int rx_buf_len; 146 147 /* If a 2K buffer cannot handle a standard Ethernet frame then 148 * optimize padding for a 3K buffer instead of a 1.5K buffer. 149 * 150 * For a 3K buffer we need to add enough padding to allow for 151 * tailroom due to NET_IP_ALIGN possibly shifting us out of 152 * cache-line alignment. 153 */ 154 if (I40E_2K_TOO_SMALL_WITH_PADDING) 155 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 156 else 157 rx_buf_len = I40E_RXBUFFER_1536; 158 159 /* if needed make room for NET_IP_ALIGN */ 160 rx_buf_len -= NET_IP_ALIGN; 161 162 return i40e_compute_pad(rx_buf_len); 163 } 164 165 #define I40E_SKB_PAD i40e_skb_pad() 166 #else 167 #define I40E_2K_TOO_SMALL_WITH_PADDING false 168 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 169 #endif 170 171 /** 172 * i40e_test_staterr - tests bits in Rx descriptor status and error fields 173 * @rx_desc: pointer to receive descriptor (in le64 format) 174 * @stat_err_bits: value to mask 175 * 176 * This function does some fast chicanery in order to return the 177 * value of the mask which is really only used for boolean tests. 178 * The status_error_len doesn't need to be shifted because it begins 179 * at offset zero. 180 */ 181 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc, 182 const u64 stat_err_bits) 183 { 184 return !!(rx_desc->wb.qword1.status_error_len & 185 cpu_to_le64(stat_err_bits)); 186 } 187 188 /* How many Rx Buffers do we bundle into one write to the hardware ? */ 189 #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */ 190 191 #define I40E_RX_NEXT_DESC(r, i, n) \ 192 do { \ 193 (i)++; \ 194 if ((i) == (r)->count) \ 195 i = 0; \ 196 (n) = I40E_RX_DESC((r), (i)); \ 197 } while (0) 198 199 200 #define I40E_MAX_BUFFER_TXD 8 201 #define I40E_MIN_TX_LEN 17 202 203 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 204 * In order to align with the read requests we will align the value to 205 * the nearest 4K which represents our maximum read request size. 206 */ 207 #define I40E_MAX_READ_REQ_SIZE 4096 208 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) 209 #define I40E_MAX_DATA_PER_TXD_ALIGNED \ 210 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) 211 212 /** 213 * i40e_txd_use_count - estimate the number of descriptors needed for Tx 214 * @size: transmit request size in bytes 215 * 216 * Due to hardware alignment restrictions (4K alignment), we need to 217 * assume that we can have no more than 12K of data per descriptor, even 218 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 219 * Thus, we need to divide by 12K. But division is slow! Instead, 220 * we decompose the operation into shifts and one relatively cheap 221 * multiply operation. 222 * 223 * To divide by 12K, we first divide by 4K, then divide by 3: 224 * To divide by 4K, shift right by 12 bits 225 * To divide by 3, multiply by 85, then divide by 256 226 * (Divide by 256 is done by shifting right by 8 bits) 227 * Finally, we add one to round up. Because 256 isn't an exact multiple of 228 * 3, we'll underestimate near each multiple of 12K. This is actually more 229 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 230 * segment. For our purposes this is accurate out to 1M which is orders of 231 * magnitude greater than our largest possible GSO size. 232 * 233 * This would then be implemented as: 234 * return (((size >> 12) * 85) >> 8) + 1; 235 * 236 * Since multiplication and division are commutative, we can reorder 237 * operations into: 238 * return ((size * 85) >> 20) + 1; 239 */ 240 static inline unsigned int i40e_txd_use_count(unsigned int size) 241 { 242 return ((size * 85) >> 20) + 1; 243 } 244 245 /* Tx Descriptors needed, worst case */ 246 #define DESC_NEEDED (MAX_SKB_FRAGS + 6) 247 248 #define I40E_TX_FLAGS_HW_VLAN BIT(1) 249 #define I40E_TX_FLAGS_SW_VLAN BIT(2) 250 #define I40E_TX_FLAGS_TSO BIT(3) 251 #define I40E_TX_FLAGS_IPV4 BIT(4) 252 #define I40E_TX_FLAGS_IPV6 BIT(5) 253 #define I40E_TX_FLAGS_TSYN BIT(8) 254 #define I40E_TX_FLAGS_FD_SB BIT(9) 255 #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10) 256 #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 257 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 258 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 259 #define I40E_TX_FLAGS_VLAN_SHIFT 16 260 261 struct i40e_tx_buffer { 262 struct i40e_tx_desc *next_to_watch; 263 union { 264 struct xdp_frame *xdpf; 265 struct sk_buff *skb; 266 void *raw_buf; 267 }; 268 unsigned int bytecount; 269 unsigned short gso_segs; 270 271 DEFINE_DMA_UNMAP_ADDR(dma); 272 DEFINE_DMA_UNMAP_LEN(len); 273 u32 tx_flags; 274 }; 275 276 struct i40e_rx_buffer { 277 dma_addr_t dma; 278 struct page *page; 279 __u32 page_offset; 280 __u16 pagecnt_bias; 281 __u32 page_count; 282 }; 283 284 struct i40e_queue_stats { 285 u64 packets; 286 u64 bytes; 287 }; 288 289 struct i40e_tx_queue_stats { 290 u64 restart_queue; 291 u64 tx_busy; 292 u64 tx_done_old; 293 u64 tx_linearize; 294 u64 tx_force_wb; 295 u64 tx_stopped; 296 int prev_pkt_ctr; 297 }; 298 299 struct i40e_rx_queue_stats { 300 u64 non_eop_descs; 301 u64 alloc_page_failed; 302 u64 alloc_buff_failed; 303 u64 page_reuse_count; 304 u64 page_alloc_count; 305 u64 page_waive_count; 306 u64 page_busy_count; 307 }; 308 309 enum i40e_ring_state_t { 310 __I40E_TX_FDIR_INIT_DONE, 311 __I40E_TX_XPS_INIT_DONE, 312 __I40E_RING_STATE_NBITS /* must be last */ 313 }; 314 315 /* some useful defines for virtchannel interface, which 316 * is the only remaining user of header split 317 */ 318 #define I40E_RX_DTYPE_HEADER_SPLIT 1 319 #define I40E_RX_SPLIT_L2 0x1 320 #define I40E_RX_SPLIT_IP 0x2 321 #define I40E_RX_SPLIT_TCP_UDP 0x4 322 #define I40E_RX_SPLIT_SCTP 0x8 323 324 /* struct that defines a descriptor ring, associated with a VSI */ 325 struct i40e_ring { 326 struct i40e_ring *next; /* pointer to next ring in q_vector */ 327 void *desc; /* Descriptor ring memory */ 328 struct device *dev; /* Used for DMA mapping */ 329 struct net_device *netdev; /* netdev ring maps to */ 330 struct bpf_prog *xdp_prog; 331 union { 332 struct i40e_tx_buffer *tx_bi; 333 struct i40e_rx_buffer *rx_bi; 334 struct xdp_buff **rx_bi_zc; 335 }; 336 DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS); 337 u16 queue_index; /* Queue number of ring */ 338 u8 dcb_tc; /* Traffic class of ring */ 339 u8 __iomem *tail; 340 341 /* Storing xdp_buff on ring helps in saving the state of partially built 342 * packet when i40e_clean_rx_ring_irq() must return before it sees EOP 343 * and to resume packet building for this ring in the next call to 344 * i40e_clean_rx_ring_irq(). 345 */ 346 struct xdp_buff xdp; 347 348 /* Next descriptor to be processed; next_to_clean is updated only on 349 * processing EOP descriptor 350 */ 351 u16 next_to_process; 352 /* high bit set means dynamic, use accessor routines to read/write. 353 * hardware only supports 2us resolution for the ITR registers. 354 * these values always store the USER setting, and must be converted 355 * before programming to a register. 356 */ 357 u16 itr_setting; 358 359 u16 count; /* Number of descriptors */ 360 u16 reg_idx; /* HW register index of the ring */ 361 u16 rx_buf_len; 362 363 /* used in interrupt processing */ 364 u16 next_to_use; 365 u16 next_to_clean; 366 u16 xdp_tx_active; 367 368 u8 atr_sample_rate; 369 u8 atr_count; 370 371 bool ring_active; /* is ring online or not */ 372 bool arm_wb; /* do something to arm write back */ 373 u8 packet_stride; 374 375 u16 flags; 376 #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) 377 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) 378 #define I40E_TXR_FLAGS_XDP BIT(2) 379 380 /* stats structs */ 381 struct i40e_queue_stats stats; 382 struct u64_stats_sync syncp; 383 union { 384 struct i40e_tx_queue_stats tx_stats; 385 struct i40e_rx_queue_stats rx_stats; 386 }; 387 388 unsigned int size; /* length of descriptor ring in bytes */ 389 dma_addr_t dma; /* physical address of ring */ 390 391 struct i40e_vsi *vsi; /* Backreference to associated VSI */ 392 struct i40e_q_vector *q_vector; /* Backreference to associated vector */ 393 394 struct rcu_head rcu; /* to avoid race on free */ 395 u16 next_to_alloc; 396 397 struct i40e_channel *ch; 398 u16 rx_offset; 399 struct xdp_rxq_info xdp_rxq; 400 struct xsk_buff_pool *xsk_pool; 401 } ____cacheline_internodealigned_in_smp; 402 403 static inline bool ring_uses_build_skb(struct i40e_ring *ring) 404 { 405 return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED); 406 } 407 408 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring) 409 { 410 ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 411 } 412 413 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring) 414 { 415 ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 416 } 417 418 static inline bool ring_is_xdp(struct i40e_ring *ring) 419 { 420 return !!(ring->flags & I40E_TXR_FLAGS_XDP); 421 } 422 423 static inline void set_ring_xdp(struct i40e_ring *ring) 424 { 425 ring->flags |= I40E_TXR_FLAGS_XDP; 426 } 427 428 #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002 429 #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002 430 #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e 431 #define I40E_ITR_ADAPTIVE_LATENCY 0x8000 432 #define I40E_ITR_ADAPTIVE_BULK 0x0000 433 434 struct i40e_ring_container { 435 struct i40e_ring *ring; /* pointer to linked list of ring(s) */ 436 unsigned long next_update; /* jiffies value of next update */ 437 unsigned int total_bytes; /* total bytes processed this int */ 438 unsigned int total_packets; /* total packets processed this int */ 439 u16 count; 440 u16 target_itr; /* target ITR setting for ring(s) */ 441 u16 current_itr; /* current ITR setting for ring(s) */ 442 }; 443 444 /* iterator for handling rings in ring container */ 445 #define i40e_for_each_ring(pos, head) \ 446 for (pos = (head).ring; pos != NULL; pos = pos->next) 447 448 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring) 449 { 450 #if (PAGE_SIZE < 8192) 451 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 452 return 1; 453 #endif 454 return 0; 455 } 456 457 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring)) 458 459 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count); 460 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev); 461 u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb, 462 struct net_device *sb_dev); 463 void i40e_clean_tx_ring(struct i40e_ring *tx_ring); 464 void i40e_clean_rx_ring(struct i40e_ring *rx_ring); 465 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring); 466 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring); 467 void i40e_free_tx_resources(struct i40e_ring *tx_ring); 468 void i40e_free_rx_resources(struct i40e_ring *rx_ring); 469 int i40e_napi_poll(struct napi_struct *napi, int budget); 470 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); 471 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw); 472 void i40e_detect_recover_hung(struct i40e_vsi *vsi); 473 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size); 474 bool __i40e_chk_linearize(struct sk_buff *skb); 475 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 476 u32 flags); 477 bool i40e_is_non_eop(struct i40e_ring *rx_ring, 478 union i40e_rx_desc *rx_desc); 479 480 /** 481 * i40e_get_head - Retrieve head from head writeback 482 * @tx_ring: tx ring to fetch head of 483 * 484 * Returns value of Tx ring head based on value stored 485 * in head write-back location 486 **/ 487 static inline u32 i40e_get_head(struct i40e_ring *tx_ring) 488 { 489 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; 490 491 return le32_to_cpu(*(volatile __le32 *)head); 492 } 493 494 /** 495 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed 496 * @skb: send buffer 497 * 498 * Returns number of data descriptors needed for this skb. Returns 0 to indicate 499 * there is not enough descriptors available in this ring since we need at least 500 * one descriptor. 501 **/ 502 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) 503 { 504 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 505 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 506 int count = 0, size = skb_headlen(skb); 507 508 for (;;) { 509 count += i40e_txd_use_count(size); 510 511 if (!nr_frags--) 512 break; 513 514 size = skb_frag_size(frag++); 515 } 516 517 return count; 518 } 519 520 /** 521 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions 522 * @tx_ring: the ring to be checked 523 * @size: the size buffer we want to assure is available 524 * 525 * Returns 0 if stop is not needed 526 **/ 527 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 528 { 529 if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) 530 return 0; 531 return __i40e_maybe_stop_tx(tx_ring, size); 532 } 533 534 /** 535 * i40e_chk_linearize - Check if there are more than 8 fragments per packet 536 * @skb: send buffer 537 * @count: number of buffers used 538 * 539 * Note: Our HW can't scatter-gather more than 8 fragments to build 540 * a packet on the wire and so we need to figure out the cases where we 541 * need to linearize the skb. 542 **/ 543 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) 544 { 545 /* Both TSO and single send will work if count is less than 8 */ 546 if (likely(count < I40E_MAX_BUFFER_TXD)) 547 return false; 548 549 if (skb_is_gso(skb)) 550 return __i40e_chk_linearize(skb); 551 552 /* we can support up to 8 data buffers for a single send */ 553 return count != I40E_MAX_BUFFER_TXD; 554 } 555 556 /** 557 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring 558 * @ring: Tx ring to find the netdev equivalent of 559 **/ 560 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring) 561 { 562 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 563 } 564 #endif /* _I40E_TXRX_H_ */ 565