xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision d6c01755805d346a1382d2d81c214b2ca557487a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/prefetch.h>
6 #include <linux/sctp.h>
7 #include <net/mpls.h>
8 #include <net/xdp.h>
9 #include "i40e_txrx_common.h"
10 #include "i40e_trace.h"
11 #include "i40e_xsk.h"
12 
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
16  * @tx_ring: Tx ring to send buffer on
17  * @fdata: Flow director filter data
18  * @add: Indicate if we are adding a rule or deleting one
19  *
20  **/
21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 		      struct i40e_fdir_filter *fdata, bool add)
23 {
24 	struct i40e_filter_program_desc *fdir_desc;
25 	struct i40e_pf *pf = tx_ring->vsi->back;
26 	u32 flex_ptype, dtype_cmd;
27 	u16 i;
28 
29 	/* grab the next descriptor */
30 	i = tx_ring->next_to_use;
31 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32 
33 	i++;
34 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35 
36 	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
37 
38 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
39 				 fdata->flex_off);
40 
41 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
42 
43 	/* Use LAN VSI Id if not programmed by user */
44 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK,
45 				 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id);
46 
47 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
48 
49 	dtype_cmd |= add ?
50 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
51 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
52 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
53 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
54 
55 	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
56 
57 	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
58 				fdata->fd_status);
59 
60 	if (fdata->cnt_index) {
61 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
62 		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
63 					fdata->cnt_index);
64 	}
65 
66 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
67 	fdir_desc->rsvd = cpu_to_le32(0);
68 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
69 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
70 }
71 
72 #define I40E_FD_CLEAN_DELAY 10
73 /**
74  * i40e_program_fdir_filter - Program a Flow Director filter
75  * @fdir_data: Packet data that will be filter parameters
76  * @raw_packet: the pre-allocated packet buffer for FDir
77  * @pf: The PF pointer
78  * @add: True for add/update, False for remove
79  **/
80 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
81 				    u8 *raw_packet, struct i40e_pf *pf,
82 				    bool add)
83 {
84 	struct i40e_tx_buffer *tx_buf, *first;
85 	struct i40e_tx_desc *tx_desc;
86 	struct i40e_ring *tx_ring;
87 	struct i40e_vsi *vsi;
88 	struct device *dev;
89 	dma_addr_t dma;
90 	u32 td_cmd = 0;
91 	u16 i;
92 
93 	/* find existing FDIR VSI */
94 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
95 	if (!vsi)
96 		return -ENOENT;
97 
98 	tx_ring = vsi->tx_rings[0];
99 	dev = tx_ring->dev;
100 
101 	/* we need two descriptors to add/del a filter and we can wait */
102 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
103 		if (!i)
104 			return -EAGAIN;
105 		msleep_interruptible(1);
106 	}
107 
108 	dma = dma_map_single(dev, raw_packet,
109 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
110 	if (dma_mapping_error(dev, dma))
111 		goto dma_fail;
112 
113 	/* grab the next descriptor */
114 	i = tx_ring->next_to_use;
115 	first = &tx_ring->tx_bi[i];
116 	i40e_fdir(tx_ring, fdir_data, add);
117 
118 	/* Now program a dummy descriptor */
119 	i = tx_ring->next_to_use;
120 	tx_desc = I40E_TX_DESC(tx_ring, i);
121 	tx_buf = &tx_ring->tx_bi[i];
122 
123 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
124 
125 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
126 
127 	/* record length, and DMA address */
128 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
129 	dma_unmap_addr_set(tx_buf, dma, dma);
130 
131 	tx_desc->buffer_addr = cpu_to_le64(dma);
132 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
133 
134 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
135 	tx_buf->raw_buf = (void *)raw_packet;
136 
137 	tx_desc->cmd_type_offset_bsz =
138 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
139 
140 	/* Force memory writes to complete before letting h/w
141 	 * know there are new descriptors to fetch.
142 	 */
143 	wmb();
144 
145 	/* Mark the data descriptor to be watched */
146 	first->next_to_watch = tx_desc;
147 
148 	writel(tx_ring->next_to_use, tx_ring->tail);
149 	return 0;
150 
151 dma_fail:
152 	return -1;
153 }
154 
155 /**
156  * i40e_create_dummy_packet - Constructs dummy packet for HW
157  * @dummy_packet: preallocated space for dummy packet
158  * @ipv4: is layer 3 packet of version 4 or 6
159  * @l4proto: next level protocol used in data portion of l3
160  * @data: filter data
161  *
162  * Returns address of layer 4 protocol dummy packet.
163  **/
164 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
165 				      struct i40e_fdir_filter *data)
166 {
167 	bool is_vlan = !!data->vlan_tag;
168 	struct vlan_hdr vlan = {};
169 	struct ipv6hdr ipv6 = {};
170 	struct ethhdr eth = {};
171 	struct iphdr ip = {};
172 	u8 *tmp;
173 
174 	if (ipv4) {
175 		eth.h_proto = cpu_to_be16(ETH_P_IP);
176 		ip.protocol = l4proto;
177 		ip.version = 0x4;
178 		ip.ihl = 0x5;
179 
180 		ip.daddr = data->dst_ip;
181 		ip.saddr = data->src_ip;
182 	} else {
183 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
184 		ipv6.nexthdr = l4proto;
185 		ipv6.version = 0x6;
186 
187 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
188 		       sizeof(__be32) * 4);
189 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
190 		       sizeof(__be32) * 4);
191 	}
192 
193 	if (is_vlan) {
194 		vlan.h_vlan_TCI = data->vlan_tag;
195 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
196 		eth.h_proto = data->vlan_etype;
197 	}
198 
199 	tmp = dummy_packet;
200 	memcpy(tmp, &eth, sizeof(eth));
201 	tmp += sizeof(eth);
202 
203 	if (is_vlan) {
204 		memcpy(tmp, &vlan, sizeof(vlan));
205 		tmp += sizeof(vlan);
206 	}
207 
208 	if (ipv4) {
209 		memcpy(tmp, &ip, sizeof(ip));
210 		tmp += sizeof(ip);
211 	} else {
212 		memcpy(tmp, &ipv6, sizeof(ipv6));
213 		tmp += sizeof(ipv6);
214 	}
215 
216 	return tmp;
217 }
218 
219 /**
220  * i40e_create_dummy_udp_packet - helper function to create UDP packet
221  * @raw_packet: preallocated space for dummy packet
222  * @ipv4: is layer 3 packet of version 4 or 6
223  * @l4proto: next level protocol used in data portion of l3
224  * @data: filter data
225  *
226  * Helper function to populate udp fields.
227  **/
228 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
229 					 struct i40e_fdir_filter *data)
230 {
231 	struct udphdr *udp;
232 	u8 *tmp;
233 
234 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
235 	udp = (struct udphdr *)(tmp);
236 	udp->dest = data->dst_port;
237 	udp->source = data->src_port;
238 }
239 
240 /**
241  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
242  * @raw_packet: preallocated space for dummy packet
243  * @ipv4: is layer 3 packet of version 4 or 6
244  * @l4proto: next level protocol used in data portion of l3
245  * @data: filter data
246  *
247  * Helper function to populate tcp fields.
248  **/
249 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
250 					 struct i40e_fdir_filter *data)
251 {
252 	struct tcphdr *tcp;
253 	u8 *tmp;
254 	/* Dummy tcp packet */
255 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
256 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
257 
258 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
259 
260 	tcp = (struct tcphdr *)tmp;
261 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
262 	tcp->dest = data->dst_port;
263 	tcp->source = data->src_port;
264 }
265 
266 /**
267  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
268  * @raw_packet: preallocated space for dummy packet
269  * @ipv4: is layer 3 packet of version 4 or 6
270  * @l4proto: next level protocol used in data portion of l3
271  * @data: filter data
272  *
273  * Helper function to populate sctp fields.
274  **/
275 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
276 					  u8 l4proto,
277 					  struct i40e_fdir_filter *data)
278 {
279 	struct sctphdr *sctp;
280 	u8 *tmp;
281 
282 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
283 
284 	sctp = (struct sctphdr *)tmp;
285 	sctp->dest = data->dst_port;
286 	sctp->source = data->src_port;
287 }
288 
289 /**
290  * i40e_prepare_fdir_filter - Prepare and program fdir filter
291  * @pf: physical function to attach filter to
292  * @fd_data: filter data
293  * @add: add or delete filter
294  * @packet_addr: address of dummy packet, used in filtering
295  * @payload_offset: offset from dummy packet address to user defined data
296  * @pctype: Packet type for which filter is used
297  *
298  * Helper function to offset data of dummy packet, program it and
299  * handle errors.
300  **/
301 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
302 				    struct i40e_fdir_filter *fd_data,
303 				    bool add, char *packet_addr,
304 				    int payload_offset, u8 pctype)
305 {
306 	int ret;
307 
308 	if (fd_data->flex_filter) {
309 		u8 *payload;
310 		__be16 pattern = fd_data->flex_word;
311 		u16 off = fd_data->flex_offset;
312 
313 		payload = packet_addr + payload_offset;
314 
315 		/* If user provided vlan, offset payload by vlan header length */
316 		if (!!fd_data->vlan_tag)
317 			payload += VLAN_HLEN;
318 
319 		*((__force __be16 *)(payload + off)) = pattern;
320 	}
321 
322 	fd_data->pctype = pctype;
323 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
324 	if (ret) {
325 		dev_info(&pf->pdev->dev,
326 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
327 			 fd_data->pctype, fd_data->fd_id, ret);
328 		/* Free the packet buffer since it wasn't added to the ring */
329 		return -EOPNOTSUPP;
330 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
331 		if (add)
332 			dev_info(&pf->pdev->dev,
333 				 "Filter OK for PCTYPE %d loc = %d\n",
334 				 fd_data->pctype, fd_data->fd_id);
335 		else
336 			dev_info(&pf->pdev->dev,
337 				 "Filter deleted for PCTYPE %d loc = %d\n",
338 				 fd_data->pctype, fd_data->fd_id);
339 	}
340 
341 	return ret;
342 }
343 
344 /**
345  * i40e_change_filter_num - Prepare and program fdir filter
346  * @ipv4: is layer 3 packet of version 4 or 6
347  * @add: add or delete filter
348  * @ipv4_filter_num: field to update
349  * @ipv6_filter_num: field to update
350  *
351  * Update filter number field for pf.
352  **/
353 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
354 				   u16 *ipv6_filter_num)
355 {
356 	if (add) {
357 		if (ipv4)
358 			(*ipv4_filter_num)++;
359 		else
360 			(*ipv6_filter_num)++;
361 	} else {
362 		if (ipv4)
363 			(*ipv4_filter_num)--;
364 		else
365 			(*ipv6_filter_num)--;
366 	}
367 }
368 
369 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
370 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
371 /**
372  * i40e_add_del_fdir_udp - Add/Remove UDP filters
373  * @vsi: pointer to the targeted VSI
374  * @fd_data: the flow director data required for the FDir descriptor
375  * @add: true adds a filter, false removes it
376  * @ipv4: true is v4, false is v6
377  *
378  * Returns 0 if the filters were successfully added or removed
379  **/
380 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
381 				 struct i40e_fdir_filter *fd_data,
382 				 bool add,
383 				 bool ipv4)
384 {
385 	struct i40e_pf *pf = vsi->back;
386 	u8 *raw_packet;
387 	int ret;
388 
389 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
390 	if (!raw_packet)
391 		return -ENOMEM;
392 
393 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
394 
395 	if (ipv4)
396 		ret = i40e_prepare_fdir_filter
397 			(pf, fd_data, add, raw_packet,
398 			 I40E_UDPIP_DUMMY_PACKET_LEN,
399 			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
400 	else
401 		ret = i40e_prepare_fdir_filter
402 			(pf, fd_data, add, raw_packet,
403 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
404 			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
405 
406 	if (ret) {
407 		kfree(raw_packet);
408 		return ret;
409 	}
410 
411 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
412 			       &pf->fd_udp6_filter_cnt);
413 
414 	return 0;
415 }
416 
417 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
418 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
419 /**
420  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
421  * @vsi: pointer to the targeted VSI
422  * @fd_data: the flow director data required for the FDir descriptor
423  * @add: true adds a filter, false removes it
424  * @ipv4: true is v4, false is v6
425  *
426  * Returns 0 if the filters were successfully added or removed
427  **/
428 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
429 				 struct i40e_fdir_filter *fd_data,
430 				 bool add,
431 				 bool ipv4)
432 {
433 	struct i40e_pf *pf = vsi->back;
434 	u8 *raw_packet;
435 	int ret;
436 
437 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
438 	if (!raw_packet)
439 		return -ENOMEM;
440 
441 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
442 	if (ipv4)
443 		ret = i40e_prepare_fdir_filter
444 			(pf, fd_data, add, raw_packet,
445 			 I40E_TCPIP_DUMMY_PACKET_LEN,
446 			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
447 	else
448 		ret = i40e_prepare_fdir_filter
449 			(pf, fd_data, add, raw_packet,
450 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
451 			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
452 
453 	if (ret) {
454 		kfree(raw_packet);
455 		return ret;
456 	}
457 
458 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
459 			       &pf->fd_tcp6_filter_cnt);
460 
461 	if (add) {
462 		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
463 		    I40E_DEBUG_FD & pf->hw.debug_mask)
464 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
465 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
466 	}
467 	return 0;
468 }
469 
470 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
471 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
472 /**
473  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
474  * a specific flow spec
475  * @vsi: pointer to the targeted VSI
476  * @fd_data: the flow director data required for the FDir descriptor
477  * @add: true adds a filter, false removes it
478  * @ipv4: true is v4, false is v6
479  *
480  * Returns 0 if the filters were successfully added or removed
481  **/
482 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
483 				  struct i40e_fdir_filter *fd_data,
484 				  bool add,
485 				  bool ipv4)
486 {
487 	struct i40e_pf *pf = vsi->back;
488 	u8 *raw_packet;
489 	int ret;
490 
491 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
492 	if (!raw_packet)
493 		return -ENOMEM;
494 
495 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
496 
497 	if (ipv4)
498 		ret = i40e_prepare_fdir_filter
499 			(pf, fd_data, add, raw_packet,
500 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
501 			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
502 	else
503 		ret = i40e_prepare_fdir_filter
504 			(pf, fd_data, add, raw_packet,
505 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
506 			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
507 
508 	if (ret) {
509 		kfree(raw_packet);
510 		return ret;
511 	}
512 
513 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
514 			       &pf->fd_sctp6_filter_cnt);
515 
516 	return 0;
517 }
518 
519 #define I40E_IP_DUMMY_PACKET_LEN	34
520 #define I40E_IP6_DUMMY_PACKET_LEN	54
521 /**
522  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
523  * a specific flow spec
524  * @vsi: pointer to the targeted VSI
525  * @fd_data: the flow director data required for the FDir descriptor
526  * @add: true adds a filter, false removes it
527  * @ipv4: true is v4, false is v6
528  *
529  * Returns 0 if the filters were successfully added or removed
530  **/
531 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
532 				struct i40e_fdir_filter *fd_data,
533 				bool add,
534 				bool ipv4)
535 {
536 	struct i40e_pf *pf = vsi->back;
537 	int payload_offset;
538 	u8 *raw_packet;
539 	int iter_start;
540 	int iter_end;
541 	int ret;
542 	int i;
543 
544 	if (ipv4) {
545 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
546 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
547 	} else {
548 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
549 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
550 	}
551 
552 	for (i = iter_start; i <= iter_end; i++) {
553 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
554 		if (!raw_packet)
555 			return -ENOMEM;
556 
557 		/* IPv6 no header option differs from IPv4 */
558 		(void)i40e_create_dummy_packet
559 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
560 			 fd_data);
561 
562 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
563 			I40E_IP6_DUMMY_PACKET_LEN;
564 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
565 					       payload_offset, i);
566 		if (ret)
567 			goto err;
568 	}
569 
570 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
571 			       &pf->fd_ip6_filter_cnt);
572 
573 	return 0;
574 err:
575 	kfree(raw_packet);
576 	return ret;
577 }
578 
579 /**
580  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
581  * @vsi: pointer to the targeted VSI
582  * @input: filter to add or delete
583  * @add: true adds a filter, false removes it
584  *
585  **/
586 int i40e_add_del_fdir(struct i40e_vsi *vsi,
587 		      struct i40e_fdir_filter *input, bool add)
588 {
589 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
590 	struct i40e_pf *pf = vsi->back;
591 	int ret;
592 
593 	switch (input->flow_type & ~FLOW_EXT) {
594 	case TCP_V4_FLOW:
595 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
596 		break;
597 	case UDP_V4_FLOW:
598 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
599 		break;
600 	case SCTP_V4_FLOW:
601 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
602 		break;
603 	case TCP_V6_FLOW:
604 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
605 		break;
606 	case UDP_V6_FLOW:
607 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
608 		break;
609 	case SCTP_V6_FLOW:
610 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
611 		break;
612 	case IP_USER_FLOW:
613 		switch (input->ipl4_proto) {
614 		case IPPROTO_TCP:
615 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
616 			break;
617 		case IPPROTO_UDP:
618 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
619 			break;
620 		case IPPROTO_SCTP:
621 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
622 			break;
623 		case IPPROTO_IP:
624 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
625 			break;
626 		default:
627 			/* We cannot support masking based on protocol */
628 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
629 				 input->ipl4_proto);
630 			return -EINVAL;
631 		}
632 		break;
633 	case IPV6_USER_FLOW:
634 		switch (input->ipl4_proto) {
635 		case IPPROTO_TCP:
636 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
637 			break;
638 		case IPPROTO_UDP:
639 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
640 			break;
641 		case IPPROTO_SCTP:
642 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
643 			break;
644 		case IPPROTO_IP:
645 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
646 			break;
647 		default:
648 			/* We cannot support masking based on protocol */
649 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
650 				 input->ipl4_proto);
651 			return -EINVAL;
652 		}
653 		break;
654 	default:
655 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
656 			 input->flow_type);
657 		return -EINVAL;
658 	}
659 
660 	/* The buffer allocated here will be normally be freed by
661 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
662 	 * completion. In the event of an error adding the buffer to the FDIR
663 	 * ring, it will immediately be freed. It may also be freed by
664 	 * i40e_clean_tx_ring() when closing the VSI.
665 	 */
666 	return ret;
667 }
668 
669 /**
670  * i40e_fd_handle_status - check the Programming Status for FD
671  * @rx_ring: the Rx ring for this descriptor
672  * @qword0_raw: qword0
673  * @qword1: qword1 after le_to_cpu
674  * @prog_id: the id originally used for programming
675  *
676  * This is used to verify if the FD programming or invalidation
677  * requested by SW to the HW is successful or not and take actions accordingly.
678  **/
679 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
680 				  u64 qword1, u8 prog_id)
681 {
682 	struct i40e_pf *pf = rx_ring->vsi->back;
683 	struct pci_dev *pdev = pf->pdev;
684 	struct i40e_16b_rx_wb_qw0 *qw0;
685 	u32 fcnt_prog, fcnt_avail;
686 	u32 error;
687 
688 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
689 	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
690 
691 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
692 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
693 		if (qw0->hi_dword.fd_id != 0 ||
694 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
695 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
696 				 pf->fd_inv);
697 
698 		/* Check if the programming error is for ATR.
699 		 * If so, auto disable ATR and set a state for
700 		 * flush in progress. Next time we come here if flush is in
701 		 * progress do nothing, once flush is complete the state will
702 		 * be cleared.
703 		 */
704 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
705 			return;
706 
707 		pf->fd_add_err++;
708 		/* store the current atr filter count */
709 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
710 
711 		if (qw0->hi_dword.fd_id == 0 &&
712 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
713 			/* These set_bit() calls aren't atomic with the
714 			 * test_bit() here, but worse case we potentially
715 			 * disable ATR and queue a flush right after SB
716 			 * support is re-enabled. That shouldn't cause an
717 			 * issue in practice
718 			 */
719 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
720 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
721 		}
722 
723 		/* filter programming failed most likely due to table full */
724 		fcnt_prog = i40e_get_global_fd_count(pf);
725 		fcnt_avail = pf->fdir_pf_filter_count;
726 		/* If ATR is running fcnt_prog can quickly change,
727 		 * if we are very close to full, it makes sense to disable
728 		 * FD ATR/SB and then re-enable it when there is room.
729 		 */
730 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
731 			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
732 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
733 					      pf->state))
734 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
735 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
736 		}
737 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
738 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
739 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
740 				 qw0->hi_dword.fd_id);
741 	}
742 }
743 
744 /**
745  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
746  * @ring:      the ring that owns the buffer
747  * @tx_buffer: the buffer to free
748  **/
749 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
750 					    struct i40e_tx_buffer *tx_buffer)
751 {
752 	if (tx_buffer->skb) {
753 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
754 			kfree(tx_buffer->raw_buf);
755 		else if (ring_is_xdp(ring))
756 			xdp_return_frame(tx_buffer->xdpf);
757 		else
758 			dev_kfree_skb_any(tx_buffer->skb);
759 		if (dma_unmap_len(tx_buffer, len))
760 			dma_unmap_single(ring->dev,
761 					 dma_unmap_addr(tx_buffer, dma),
762 					 dma_unmap_len(tx_buffer, len),
763 					 DMA_TO_DEVICE);
764 	} else if (dma_unmap_len(tx_buffer, len)) {
765 		dma_unmap_page(ring->dev,
766 			       dma_unmap_addr(tx_buffer, dma),
767 			       dma_unmap_len(tx_buffer, len),
768 			       DMA_TO_DEVICE);
769 	}
770 
771 	tx_buffer->next_to_watch = NULL;
772 	tx_buffer->skb = NULL;
773 	dma_unmap_len_set(tx_buffer, len, 0);
774 	/* tx_buffer must be completely set up in the transmit path */
775 }
776 
777 /**
778  * i40e_clean_tx_ring - Free any empty Tx buffers
779  * @tx_ring: ring to be cleaned
780  **/
781 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
782 {
783 	unsigned long bi_size;
784 	u16 i;
785 
786 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
787 		i40e_xsk_clean_tx_ring(tx_ring);
788 	} else {
789 		/* ring already cleared, nothing to do */
790 		if (!tx_ring->tx_bi)
791 			return;
792 
793 		/* Free all the Tx ring sk_buffs */
794 		for (i = 0; i < tx_ring->count; i++)
795 			i40e_unmap_and_free_tx_resource(tx_ring,
796 							&tx_ring->tx_bi[i]);
797 	}
798 
799 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
800 	memset(tx_ring->tx_bi, 0, bi_size);
801 
802 	/* Zero out the descriptor ring */
803 	memset(tx_ring->desc, 0, tx_ring->size);
804 
805 	tx_ring->next_to_use = 0;
806 	tx_ring->next_to_clean = 0;
807 
808 	if (!tx_ring->netdev)
809 		return;
810 
811 	/* cleanup Tx queue statistics */
812 	netdev_tx_reset_queue(txring_txq(tx_ring));
813 }
814 
815 /**
816  * i40e_free_tx_resources - Free Tx resources per queue
817  * @tx_ring: Tx descriptor ring for a specific queue
818  *
819  * Free all transmit software resources
820  **/
821 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
822 {
823 	i40e_clean_tx_ring(tx_ring);
824 	kfree(tx_ring->tx_bi);
825 	tx_ring->tx_bi = NULL;
826 
827 	if (tx_ring->desc) {
828 		dma_free_coherent(tx_ring->dev, tx_ring->size,
829 				  tx_ring->desc, tx_ring->dma);
830 		tx_ring->desc = NULL;
831 	}
832 }
833 
834 /**
835  * i40e_get_tx_pending - how many tx descriptors not processed
836  * @ring: the ring of descriptors
837  * @in_sw: use SW variables
838  *
839  * Since there is no access to the ring head register
840  * in XL710, we need to use our local copies
841  **/
842 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
843 {
844 	u32 head, tail;
845 
846 	if (!in_sw) {
847 		head = i40e_get_head(ring);
848 		tail = readl(ring->tail);
849 	} else {
850 		head = ring->next_to_clean;
851 		tail = ring->next_to_use;
852 	}
853 
854 	if (head != tail)
855 		return (head < tail) ?
856 			tail - head : (tail + ring->count - head);
857 
858 	return 0;
859 }
860 
861 /**
862  * i40e_detect_recover_hung - Function to detect and recover hung_queues
863  * @vsi:  pointer to vsi struct with tx queues
864  *
865  * VSI has netdev and netdev has TX queues. This function is to check each of
866  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
867  **/
868 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
869 {
870 	struct i40e_ring *tx_ring = NULL;
871 	struct net_device *netdev;
872 	unsigned int i;
873 	int packets;
874 
875 	if (!vsi)
876 		return;
877 
878 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
879 		return;
880 
881 	netdev = vsi->netdev;
882 	if (!netdev)
883 		return;
884 
885 	if (!netif_carrier_ok(netdev))
886 		return;
887 
888 	for (i = 0; i < vsi->num_queue_pairs; i++) {
889 		tx_ring = vsi->tx_rings[i];
890 		if (tx_ring && tx_ring->desc) {
891 			/* If packet counter has not changed the queue is
892 			 * likely stalled, so force an interrupt for this
893 			 * queue.
894 			 *
895 			 * prev_pkt_ctr would be negative if there was no
896 			 * pending work.
897 			 */
898 			packets = tx_ring->stats.packets & INT_MAX;
899 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
900 				i40e_force_wb(vsi, tx_ring->q_vector);
901 				continue;
902 			}
903 
904 			/* Memory barrier between read of packet count and call
905 			 * to i40e_get_tx_pending()
906 			 */
907 			smp_rmb();
908 			tx_ring->tx_stats.prev_pkt_ctr =
909 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
910 		}
911 	}
912 }
913 
914 /**
915  * i40e_clean_tx_irq - Reclaim resources after transmit completes
916  * @vsi: the VSI we care about
917  * @tx_ring: Tx ring to clean
918  * @napi_budget: Used to determine if we are in netpoll
919  * @tx_cleaned: Out parameter set to the number of TXes cleaned
920  *
921  * Returns true if there's any budget left (e.g. the clean is finished)
922  **/
923 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
924 			      struct i40e_ring *tx_ring, int napi_budget,
925 			      unsigned int *tx_cleaned)
926 {
927 	int i = tx_ring->next_to_clean;
928 	struct i40e_tx_buffer *tx_buf;
929 	struct i40e_tx_desc *tx_head;
930 	struct i40e_tx_desc *tx_desc;
931 	unsigned int total_bytes = 0, total_packets = 0;
932 	unsigned int budget = vsi->work_limit;
933 
934 	tx_buf = &tx_ring->tx_bi[i];
935 	tx_desc = I40E_TX_DESC(tx_ring, i);
936 	i -= tx_ring->count;
937 
938 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
939 
940 	do {
941 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
942 
943 		/* if next_to_watch is not set then there is no work pending */
944 		if (!eop_desc)
945 			break;
946 
947 		/* prevent any other reads prior to eop_desc */
948 		smp_rmb();
949 
950 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
951 		/* we have caught up to head, no work left to do */
952 		if (tx_head == tx_desc)
953 			break;
954 
955 		/* clear next_to_watch to prevent false hangs */
956 		tx_buf->next_to_watch = NULL;
957 
958 		/* update the statistics for this packet */
959 		total_bytes += tx_buf->bytecount;
960 		total_packets += tx_buf->gso_segs;
961 
962 		/* free the skb/XDP data */
963 		if (ring_is_xdp(tx_ring))
964 			xdp_return_frame(tx_buf->xdpf);
965 		else
966 			napi_consume_skb(tx_buf->skb, napi_budget);
967 
968 		/* unmap skb header data */
969 		dma_unmap_single(tx_ring->dev,
970 				 dma_unmap_addr(tx_buf, dma),
971 				 dma_unmap_len(tx_buf, len),
972 				 DMA_TO_DEVICE);
973 
974 		/* clear tx_buffer data */
975 		tx_buf->skb = NULL;
976 		dma_unmap_len_set(tx_buf, len, 0);
977 
978 		/* unmap remaining buffers */
979 		while (tx_desc != eop_desc) {
980 			i40e_trace(clean_tx_irq_unmap,
981 				   tx_ring, tx_desc, tx_buf);
982 
983 			tx_buf++;
984 			tx_desc++;
985 			i++;
986 			if (unlikely(!i)) {
987 				i -= tx_ring->count;
988 				tx_buf = tx_ring->tx_bi;
989 				tx_desc = I40E_TX_DESC(tx_ring, 0);
990 			}
991 
992 			/* unmap any remaining paged data */
993 			if (dma_unmap_len(tx_buf, len)) {
994 				dma_unmap_page(tx_ring->dev,
995 					       dma_unmap_addr(tx_buf, dma),
996 					       dma_unmap_len(tx_buf, len),
997 					       DMA_TO_DEVICE);
998 				dma_unmap_len_set(tx_buf, len, 0);
999 			}
1000 		}
1001 
1002 		/* move us one more past the eop_desc for start of next pkt */
1003 		tx_buf++;
1004 		tx_desc++;
1005 		i++;
1006 		if (unlikely(!i)) {
1007 			i -= tx_ring->count;
1008 			tx_buf = tx_ring->tx_bi;
1009 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1010 		}
1011 
1012 		prefetch(tx_desc);
1013 
1014 		/* update budget accounting */
1015 		budget--;
1016 	} while (likely(budget));
1017 
1018 	i += tx_ring->count;
1019 	tx_ring->next_to_clean = i;
1020 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1021 	i40e_arm_wb(tx_ring, vsi, budget);
1022 
1023 	if (ring_is_xdp(tx_ring))
1024 		return !!budget;
1025 
1026 	/* notify netdev of completed buffers */
1027 	netdev_tx_completed_queue(txring_txq(tx_ring),
1028 				  total_packets, total_bytes);
1029 
1030 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1031 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1032 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1033 		/* Make sure that anybody stopping the queue after this
1034 		 * sees the new next_to_clean.
1035 		 */
1036 		smp_mb();
1037 		if (__netif_subqueue_stopped(tx_ring->netdev,
1038 					     tx_ring->queue_index) &&
1039 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1040 			netif_wake_subqueue(tx_ring->netdev,
1041 					    tx_ring->queue_index);
1042 			++tx_ring->tx_stats.restart_queue;
1043 		}
1044 	}
1045 
1046 	*tx_cleaned = total_packets;
1047 	return !!budget;
1048 }
1049 
1050 /**
1051  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1052  * @vsi: the VSI we care about
1053  * @q_vector: the vector on which to enable writeback
1054  *
1055  **/
1056 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1057 				  struct i40e_q_vector *q_vector)
1058 {
1059 	u16 flags = q_vector->tx.ring[0].flags;
1060 	u32 val;
1061 
1062 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1063 		return;
1064 
1065 	if (q_vector->arm_wb_state)
1066 		return;
1067 
1068 	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1069 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1070 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1071 
1072 		wr32(&vsi->back->hw,
1073 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1074 		     val);
1075 	} else {
1076 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1077 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1078 
1079 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1080 	}
1081 	q_vector->arm_wb_state = true;
1082 }
1083 
1084 /**
1085  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1086  * @vsi: the VSI we care about
1087  * @q_vector: the vector  on which to force writeback
1088  *
1089  **/
1090 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1091 {
1092 	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1093 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1094 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1095 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1096 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1097 			  /* allow 00 to be written to the index */
1098 
1099 		wr32(&vsi->back->hw,
1100 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1101 	} else {
1102 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1103 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1104 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1105 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1106 			/* allow 00 to be written to the index */
1107 
1108 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1109 	}
1110 }
1111 
1112 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1113 					struct i40e_ring_container *rc)
1114 {
1115 	return &q_vector->rx == rc;
1116 }
1117 
1118 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1119 {
1120 	unsigned int divisor;
1121 
1122 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1123 	case I40E_LINK_SPEED_40GB:
1124 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1125 		break;
1126 	case I40E_LINK_SPEED_25GB:
1127 	case I40E_LINK_SPEED_20GB:
1128 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1129 		break;
1130 	default:
1131 	case I40E_LINK_SPEED_10GB:
1132 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1133 		break;
1134 	case I40E_LINK_SPEED_1GB:
1135 	case I40E_LINK_SPEED_100MB:
1136 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1137 		break;
1138 	}
1139 
1140 	return divisor;
1141 }
1142 
1143 /**
1144  * i40e_update_itr - update the dynamic ITR value based on statistics
1145  * @q_vector: structure containing interrupt and ring information
1146  * @rc: structure containing ring performance data
1147  *
1148  * Stores a new ITR value based on packets and byte
1149  * counts during the last interrupt.  The advantage of per interrupt
1150  * computation is faster updates and more accurate ITR for the current
1151  * traffic pattern.  Constants in this function were computed
1152  * based on theoretical maximum wire speed and thresholds were set based
1153  * on testing data as well as attempting to minimize response time
1154  * while increasing bulk throughput.
1155  **/
1156 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1157 			    struct i40e_ring_container *rc)
1158 {
1159 	unsigned int avg_wire_size, packets, bytes, itr;
1160 	unsigned long next_update = jiffies;
1161 
1162 	/* If we don't have any rings just leave ourselves set for maximum
1163 	 * possible latency so we take ourselves out of the equation.
1164 	 */
1165 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1166 		return;
1167 
1168 	/* For Rx we want to push the delay up and default to low latency.
1169 	 * for Tx we want to pull the delay down and default to high latency.
1170 	 */
1171 	itr = i40e_container_is_rx(q_vector, rc) ?
1172 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1173 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1174 
1175 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1176 	 * that either packets are coming in so slow there hasn't been
1177 	 * any work, or that there is so much work that NAPI is dealing
1178 	 * with interrupt moderation and we don't need to do anything.
1179 	 */
1180 	if (time_after(next_update, rc->next_update))
1181 		goto clear_counts;
1182 
1183 	/* If itr_countdown is set it means we programmed an ITR within
1184 	 * the last 4 interrupt cycles. This has a side effect of us
1185 	 * potentially firing an early interrupt. In order to work around
1186 	 * this we need to throw out any data received for a few
1187 	 * interrupts following the update.
1188 	 */
1189 	if (q_vector->itr_countdown) {
1190 		itr = rc->target_itr;
1191 		goto clear_counts;
1192 	}
1193 
1194 	packets = rc->total_packets;
1195 	bytes = rc->total_bytes;
1196 
1197 	if (i40e_container_is_rx(q_vector, rc)) {
1198 		/* If Rx there are 1 to 4 packets and bytes are less than
1199 		 * 9000 assume insufficient data to use bulk rate limiting
1200 		 * approach unless Tx is already in bulk rate limiting. We
1201 		 * are likely latency driven.
1202 		 */
1203 		if (packets && packets < 4 && bytes < 9000 &&
1204 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1205 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1206 			goto adjust_by_size;
1207 		}
1208 	} else if (packets < 4) {
1209 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1210 		 * bulk mode and we are receiving 4 or fewer packets just
1211 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1212 		 * that the Rx can relax.
1213 		 */
1214 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1215 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1216 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1217 			goto clear_counts;
1218 	} else if (packets > 32) {
1219 		/* If we have processed over 32 packets in a single interrupt
1220 		 * for Tx assume we need to switch over to "bulk" mode.
1221 		 */
1222 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1223 	}
1224 
1225 	/* We have no packets to actually measure against. This means
1226 	 * either one of the other queues on this vector is active or
1227 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1228 	 *
1229 	 * Between 4 and 56 we can assume that our current interrupt delay
1230 	 * is only slightly too low. As such we should increase it by a small
1231 	 * fixed amount.
1232 	 */
1233 	if (packets < 56) {
1234 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1235 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1236 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1237 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1238 		}
1239 		goto clear_counts;
1240 	}
1241 
1242 	if (packets <= 256) {
1243 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1244 		itr &= I40E_ITR_MASK;
1245 
1246 		/* Between 56 and 112 is our "goldilocks" zone where we are
1247 		 * working out "just right". Just report that our current
1248 		 * ITR is good for us.
1249 		 */
1250 		if (packets <= 112)
1251 			goto clear_counts;
1252 
1253 		/* If packet count is 128 or greater we are likely looking
1254 		 * at a slight overrun of the delay we want. Try halving
1255 		 * our delay to see if that will cut the number of packets
1256 		 * in half per interrupt.
1257 		 */
1258 		itr /= 2;
1259 		itr &= I40E_ITR_MASK;
1260 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1261 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1262 
1263 		goto clear_counts;
1264 	}
1265 
1266 	/* The paths below assume we are dealing with a bulk ITR since
1267 	 * number of packets is greater than 256. We are just going to have
1268 	 * to compute a value and try to bring the count under control,
1269 	 * though for smaller packet sizes there isn't much we can do as
1270 	 * NAPI polling will likely be kicking in sooner rather than later.
1271 	 */
1272 	itr = I40E_ITR_ADAPTIVE_BULK;
1273 
1274 adjust_by_size:
1275 	/* If packet counts are 256 or greater we can assume we have a gross
1276 	 * overestimation of what the rate should be. Instead of trying to fine
1277 	 * tune it just use the formula below to try and dial in an exact value
1278 	 * give the current packet size of the frame.
1279 	 */
1280 	avg_wire_size = bytes / packets;
1281 
1282 	/* The following is a crude approximation of:
1283 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1284 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1285 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1286 	 *
1287 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1288 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1289 	 * formula down to
1290 	 *
1291 	 *  (170 * (size + 24)) / (size + 640) = ITR
1292 	 *
1293 	 * We first do some math on the packet size and then finally bitshift
1294 	 * by 8 after rounding up. We also have to account for PCIe link speed
1295 	 * difference as ITR scales based on this.
1296 	 */
1297 	if (avg_wire_size <= 60) {
1298 		/* Start at 250k ints/sec */
1299 		avg_wire_size = 4096;
1300 	} else if (avg_wire_size <= 380) {
1301 		/* 250K ints/sec to 60K ints/sec */
1302 		avg_wire_size *= 40;
1303 		avg_wire_size += 1696;
1304 	} else if (avg_wire_size <= 1084) {
1305 		/* 60K ints/sec to 36K ints/sec */
1306 		avg_wire_size *= 15;
1307 		avg_wire_size += 11452;
1308 	} else if (avg_wire_size <= 1980) {
1309 		/* 36K ints/sec to 30K ints/sec */
1310 		avg_wire_size *= 5;
1311 		avg_wire_size += 22420;
1312 	} else {
1313 		/* plateau at a limit of 30K ints/sec */
1314 		avg_wire_size = 32256;
1315 	}
1316 
1317 	/* If we are in low latency mode halve our delay which doubles the
1318 	 * rate to somewhere between 100K to 16K ints/sec
1319 	 */
1320 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1321 		avg_wire_size /= 2;
1322 
1323 	/* Resultant value is 256 times larger than it needs to be. This
1324 	 * gives us room to adjust the value as needed to either increase
1325 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1326 	 *
1327 	 * Use addition as we have already recorded the new latency flag
1328 	 * for the ITR value.
1329 	 */
1330 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1331 	       I40E_ITR_ADAPTIVE_MIN_INC;
1332 
1333 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1334 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1335 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1336 	}
1337 
1338 clear_counts:
1339 	/* write back value */
1340 	rc->target_itr = itr;
1341 
1342 	/* next update should occur within next jiffy */
1343 	rc->next_update = next_update + 1;
1344 
1345 	rc->total_bytes = 0;
1346 	rc->total_packets = 0;
1347 }
1348 
1349 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1350 {
1351 	return &rx_ring->rx_bi[idx];
1352 }
1353 
1354 /**
1355  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1356  * @rx_ring: rx descriptor ring to store buffers on
1357  * @old_buff: donor buffer to have page reused
1358  *
1359  * Synchronizes page for reuse by the adapter
1360  **/
1361 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1362 			       struct i40e_rx_buffer *old_buff)
1363 {
1364 	struct i40e_rx_buffer *new_buff;
1365 	u16 nta = rx_ring->next_to_alloc;
1366 
1367 	new_buff = i40e_rx_bi(rx_ring, nta);
1368 
1369 	/* update, and store next to alloc */
1370 	nta++;
1371 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1372 
1373 	/* transfer page from old buffer to new buffer */
1374 	new_buff->dma		= old_buff->dma;
1375 	new_buff->page		= old_buff->page;
1376 	new_buff->page_offset	= old_buff->page_offset;
1377 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1378 
1379 	/* clear contents of buffer_info */
1380 	old_buff->page = NULL;
1381 }
1382 
1383 /**
1384  * i40e_clean_programming_status - clean the programming status descriptor
1385  * @rx_ring: the rx ring that has this descriptor
1386  * @qword0_raw: qword0
1387  * @qword1: qword1 representing status_error_len in CPU ordering
1388  *
1389  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1390  * status being successful or not and take actions accordingly. FCoE should
1391  * handle its context/filter programming/invalidation status and take actions.
1392  *
1393  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1394  **/
1395 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1396 				   u64 qword1)
1397 {
1398 	u8 id;
1399 
1400 	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1401 
1402 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1403 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1404 }
1405 
1406 /**
1407  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1408  * @tx_ring: the tx ring to set up
1409  *
1410  * Return 0 on success, negative on error
1411  **/
1412 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1413 {
1414 	struct device *dev = tx_ring->dev;
1415 	int bi_size;
1416 
1417 	if (!dev)
1418 		return -ENOMEM;
1419 
1420 	/* warn if we are about to overwrite the pointer */
1421 	WARN_ON(tx_ring->tx_bi);
1422 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1423 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1424 	if (!tx_ring->tx_bi)
1425 		goto err;
1426 
1427 	u64_stats_init(&tx_ring->syncp);
1428 
1429 	/* round up to nearest 4K */
1430 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1431 	/* add u32 for head writeback, align after this takes care of
1432 	 * guaranteeing this is at least one cache line in size
1433 	 */
1434 	tx_ring->size += sizeof(u32);
1435 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1436 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1437 					   &tx_ring->dma, GFP_KERNEL);
1438 	if (!tx_ring->desc) {
1439 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1440 			 tx_ring->size);
1441 		goto err;
1442 	}
1443 
1444 	tx_ring->next_to_use = 0;
1445 	tx_ring->next_to_clean = 0;
1446 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1447 	return 0;
1448 
1449 err:
1450 	kfree(tx_ring->tx_bi);
1451 	tx_ring->tx_bi = NULL;
1452 	return -ENOMEM;
1453 }
1454 
1455 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1456 {
1457 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1458 }
1459 
1460 /**
1461  * i40e_clean_rx_ring - Free Rx buffers
1462  * @rx_ring: ring to be cleaned
1463  **/
1464 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1465 {
1466 	u16 i;
1467 
1468 	/* ring already cleared, nothing to do */
1469 	if (!rx_ring->rx_bi)
1470 		return;
1471 
1472 	if (rx_ring->xsk_pool) {
1473 		i40e_xsk_clean_rx_ring(rx_ring);
1474 		goto skip_free;
1475 	}
1476 
1477 	/* Free all the Rx ring sk_buffs */
1478 	for (i = 0; i < rx_ring->count; i++) {
1479 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1480 
1481 		if (!rx_bi->page)
1482 			continue;
1483 
1484 		/* Invalidate cache lines that may have been written to by
1485 		 * device so that we avoid corrupting memory.
1486 		 */
1487 		dma_sync_single_range_for_cpu(rx_ring->dev,
1488 					      rx_bi->dma,
1489 					      rx_bi->page_offset,
1490 					      rx_ring->rx_buf_len,
1491 					      DMA_FROM_DEVICE);
1492 
1493 		/* free resources associated with mapping */
1494 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1495 				     i40e_rx_pg_size(rx_ring),
1496 				     DMA_FROM_DEVICE,
1497 				     I40E_RX_DMA_ATTR);
1498 
1499 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1500 
1501 		rx_bi->page = NULL;
1502 		rx_bi->page_offset = 0;
1503 	}
1504 
1505 skip_free:
1506 	if (rx_ring->xsk_pool)
1507 		i40e_clear_rx_bi_zc(rx_ring);
1508 	else
1509 		i40e_clear_rx_bi(rx_ring);
1510 
1511 	/* Zero out the descriptor ring */
1512 	memset(rx_ring->desc, 0, rx_ring->size);
1513 
1514 	rx_ring->next_to_alloc = 0;
1515 	rx_ring->next_to_clean = 0;
1516 	rx_ring->next_to_process = 0;
1517 	rx_ring->next_to_use = 0;
1518 }
1519 
1520 /**
1521  * i40e_free_rx_resources - Free Rx resources
1522  * @rx_ring: ring to clean the resources from
1523  *
1524  * Free all receive software resources
1525  **/
1526 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1527 {
1528 	i40e_clean_rx_ring(rx_ring);
1529 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1530 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1531 	rx_ring->xdp_prog = NULL;
1532 	kfree(rx_ring->rx_bi);
1533 	rx_ring->rx_bi = NULL;
1534 
1535 	if (rx_ring->desc) {
1536 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1537 				  rx_ring->desc, rx_ring->dma);
1538 		rx_ring->desc = NULL;
1539 	}
1540 }
1541 
1542 /**
1543  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1544  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1545  *
1546  * Returns 0 on success, negative on failure
1547  **/
1548 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1549 {
1550 	struct device *dev = rx_ring->dev;
1551 
1552 	u64_stats_init(&rx_ring->syncp);
1553 
1554 	/* Round up to nearest 4K */
1555 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1556 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1557 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1558 					   &rx_ring->dma, GFP_KERNEL);
1559 
1560 	if (!rx_ring->desc) {
1561 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1562 			 rx_ring->size);
1563 		return -ENOMEM;
1564 	}
1565 
1566 	rx_ring->next_to_alloc = 0;
1567 	rx_ring->next_to_clean = 0;
1568 	rx_ring->next_to_process = 0;
1569 	rx_ring->next_to_use = 0;
1570 
1571 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1572 
1573 	rx_ring->rx_bi =
1574 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1575 	if (!rx_ring->rx_bi)
1576 		return -ENOMEM;
1577 
1578 	return 0;
1579 }
1580 
1581 /**
1582  * i40e_release_rx_desc - Store the new tail and head values
1583  * @rx_ring: ring to bump
1584  * @val: new head index
1585  **/
1586 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1587 {
1588 	rx_ring->next_to_use = val;
1589 
1590 	/* update next to alloc since we have filled the ring */
1591 	rx_ring->next_to_alloc = val;
1592 
1593 	/* Force memory writes to complete before letting h/w
1594 	 * know there are new descriptors to fetch.  (Only
1595 	 * applicable for weak-ordered memory model archs,
1596 	 * such as IA-64).
1597 	 */
1598 	wmb();
1599 	writel(val, rx_ring->tail);
1600 }
1601 
1602 #if (PAGE_SIZE >= 8192)
1603 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1604 					   unsigned int size)
1605 {
1606 	unsigned int truesize;
1607 
1608 	truesize = rx_ring->rx_offset ?
1609 		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1610 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1611 		SKB_DATA_ALIGN(size);
1612 	return truesize;
1613 }
1614 #endif
1615 
1616 /**
1617  * i40e_alloc_mapped_page - recycle or make a new page
1618  * @rx_ring: ring to use
1619  * @bi: rx_buffer struct to modify
1620  *
1621  * Returns true if the page was successfully allocated or
1622  * reused.
1623  **/
1624 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1625 				   struct i40e_rx_buffer *bi)
1626 {
1627 	struct page *page = bi->page;
1628 	dma_addr_t dma;
1629 
1630 	/* since we are recycling buffers we should seldom need to alloc */
1631 	if (likely(page)) {
1632 		rx_ring->rx_stats.page_reuse_count++;
1633 		return true;
1634 	}
1635 
1636 	/* alloc new page for storage */
1637 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1638 	if (unlikely(!page)) {
1639 		rx_ring->rx_stats.alloc_page_failed++;
1640 		return false;
1641 	}
1642 
1643 	rx_ring->rx_stats.page_alloc_count++;
1644 
1645 	/* map page for use */
1646 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1647 				 i40e_rx_pg_size(rx_ring),
1648 				 DMA_FROM_DEVICE,
1649 				 I40E_RX_DMA_ATTR);
1650 
1651 	/* if mapping failed free memory back to system since
1652 	 * there isn't much point in holding memory we can't use
1653 	 */
1654 	if (dma_mapping_error(rx_ring->dev, dma)) {
1655 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1656 		rx_ring->rx_stats.alloc_page_failed++;
1657 		return false;
1658 	}
1659 
1660 	bi->dma = dma;
1661 	bi->page = page;
1662 	bi->page_offset = rx_ring->rx_offset;
1663 	page_ref_add(page, USHRT_MAX - 1);
1664 	bi->pagecnt_bias = USHRT_MAX;
1665 
1666 	return true;
1667 }
1668 
1669 /**
1670  * i40e_alloc_rx_buffers - Replace used receive buffers
1671  * @rx_ring: ring to place buffers on
1672  * @cleaned_count: number of buffers to replace
1673  *
1674  * Returns false if all allocations were successful, true if any fail
1675  **/
1676 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1677 {
1678 	u16 ntu = rx_ring->next_to_use;
1679 	union i40e_rx_desc *rx_desc;
1680 	struct i40e_rx_buffer *bi;
1681 
1682 	/* do nothing if no valid netdev defined */
1683 	if (!rx_ring->netdev || !cleaned_count)
1684 		return false;
1685 
1686 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1687 	bi = i40e_rx_bi(rx_ring, ntu);
1688 
1689 	do {
1690 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1691 			goto no_buffers;
1692 
1693 		/* sync the buffer for use by the device */
1694 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1695 						 bi->page_offset,
1696 						 rx_ring->rx_buf_len,
1697 						 DMA_FROM_DEVICE);
1698 
1699 		/* Refresh the desc even if buffer_addrs didn't change
1700 		 * because each write-back erases this info.
1701 		 */
1702 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1703 
1704 		rx_desc++;
1705 		bi++;
1706 		ntu++;
1707 		if (unlikely(ntu == rx_ring->count)) {
1708 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1709 			bi = i40e_rx_bi(rx_ring, 0);
1710 			ntu = 0;
1711 		}
1712 
1713 		/* clear the status bits for the next_to_use descriptor */
1714 		rx_desc->wb.qword1.status_error_len = 0;
1715 
1716 		cleaned_count--;
1717 	} while (cleaned_count);
1718 
1719 	if (rx_ring->next_to_use != ntu)
1720 		i40e_release_rx_desc(rx_ring, ntu);
1721 
1722 	return false;
1723 
1724 no_buffers:
1725 	if (rx_ring->next_to_use != ntu)
1726 		i40e_release_rx_desc(rx_ring, ntu);
1727 
1728 	/* make sure to come back via polling to try again after
1729 	 * allocation failure
1730 	 */
1731 	return true;
1732 }
1733 
1734 /**
1735  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1736  * @vsi: the VSI we care about
1737  * @skb: skb currently being received and modified
1738  * @rx_desc: the receive descriptor
1739  **/
1740 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1741 				    struct sk_buff *skb,
1742 				    union i40e_rx_desc *rx_desc)
1743 {
1744 	struct i40e_rx_ptype_decoded decoded;
1745 	u32 rx_error, rx_status;
1746 	bool ipv4, ipv6;
1747 	u8 ptype;
1748 	u64 qword;
1749 
1750 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1751 	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1752 	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1753 	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1754 	decoded = decode_rx_desc_ptype(ptype);
1755 
1756 	skb->ip_summed = CHECKSUM_NONE;
1757 
1758 	skb_checksum_none_assert(skb);
1759 
1760 	/* Rx csum enabled and ip headers found? */
1761 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1762 		return;
1763 
1764 	/* did the hardware decode the packet and checksum? */
1765 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1766 		return;
1767 
1768 	/* both known and outer_ip must be set for the below code to work */
1769 	if (!(decoded.known && decoded.outer_ip))
1770 		return;
1771 
1772 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1773 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1774 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1775 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1776 
1777 	if (ipv4 &&
1778 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1779 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1780 		goto checksum_fail;
1781 
1782 	/* likely incorrect csum if alternate IP extension headers found */
1783 	if (ipv6 &&
1784 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1785 		/* don't increment checksum err here, non-fatal err */
1786 		return;
1787 
1788 	/* there was some L4 error, count error and punt packet to the stack */
1789 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1790 		goto checksum_fail;
1791 
1792 	/* handle packets that were not able to be checksummed due
1793 	 * to arrival speed, in this case the stack can compute
1794 	 * the csum.
1795 	 */
1796 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1797 		return;
1798 
1799 	/* If there is an outer header present that might contain a checksum
1800 	 * we need to bump the checksum level by 1 to reflect the fact that
1801 	 * we are indicating we validated the inner checksum.
1802 	 */
1803 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1804 		skb->csum_level = 1;
1805 
1806 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1807 	switch (decoded.inner_prot) {
1808 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1809 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1810 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1811 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1812 		fallthrough;
1813 	default:
1814 		break;
1815 	}
1816 
1817 	return;
1818 
1819 checksum_fail:
1820 	vsi->back->hw_csum_rx_error++;
1821 }
1822 
1823 /**
1824  * i40e_ptype_to_htype - get a hash type
1825  * @ptype: the ptype value from the descriptor
1826  *
1827  * Returns a hash type to be used by skb_set_hash
1828  **/
1829 static inline int i40e_ptype_to_htype(u8 ptype)
1830 {
1831 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1832 
1833 	if (!decoded.known)
1834 		return PKT_HASH_TYPE_NONE;
1835 
1836 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1837 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1838 		return PKT_HASH_TYPE_L4;
1839 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1840 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1841 		return PKT_HASH_TYPE_L3;
1842 	else
1843 		return PKT_HASH_TYPE_L2;
1844 }
1845 
1846 /**
1847  * i40e_rx_hash - set the hash value in the skb
1848  * @ring: descriptor ring
1849  * @rx_desc: specific descriptor
1850  * @skb: skb currently being received and modified
1851  * @rx_ptype: Rx packet type
1852  **/
1853 static inline void i40e_rx_hash(struct i40e_ring *ring,
1854 				union i40e_rx_desc *rx_desc,
1855 				struct sk_buff *skb,
1856 				u8 rx_ptype)
1857 {
1858 	u32 hash;
1859 	const __le64 rss_mask =
1860 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1861 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1862 
1863 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1864 		return;
1865 
1866 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1867 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1868 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1869 	}
1870 }
1871 
1872 /**
1873  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1874  * @rx_ring: rx descriptor ring packet is being transacted on
1875  * @rx_desc: pointer to the EOP Rx descriptor
1876  * @skb: pointer to current skb being populated
1877  *
1878  * This function checks the ring, descriptor, and packet information in
1879  * order to populate the hash, checksum, VLAN, protocol, and
1880  * other fields within the skb.
1881  **/
1882 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1883 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1884 {
1885 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1886 	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1887 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1888 	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1889 	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1890 
1891 	if (unlikely(tsynvalid))
1892 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1893 
1894 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1895 
1896 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1897 
1898 	skb_record_rx_queue(skb, rx_ring->queue_index);
1899 
1900 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1901 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1902 
1903 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1904 				       le16_to_cpu(vlan_tag));
1905 	}
1906 
1907 	/* modifies the skb - consumes the enet header */
1908 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1909 }
1910 
1911 /**
1912  * i40e_cleanup_headers - Correct empty headers
1913  * @rx_ring: rx descriptor ring packet is being transacted on
1914  * @skb: pointer to current skb being fixed
1915  * @rx_desc: pointer to the EOP Rx descriptor
1916  *
1917  * In addition if skb is not at least 60 bytes we need to pad it so that
1918  * it is large enough to qualify as a valid Ethernet frame.
1919  *
1920  * Returns true if an error was encountered and skb was freed.
1921  **/
1922 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1923 				 union i40e_rx_desc *rx_desc)
1924 
1925 {
1926 	/* ERR_MASK will only have valid bits if EOP set, and
1927 	 * what we are doing here is actually checking
1928 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929 	 * the error field
1930 	 */
1931 	if (unlikely(i40e_test_staterr(rx_desc,
1932 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1933 		dev_kfree_skb_any(skb);
1934 		return true;
1935 	}
1936 
1937 	/* if eth_skb_pad returns an error the skb was freed */
1938 	if (eth_skb_pad(skb))
1939 		return true;
1940 
1941 	return false;
1942 }
1943 
1944 /**
1945  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1946  * @rx_buffer: buffer containing the page
1947  * @rx_stats: rx stats structure for the rx ring
1948  *
1949  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1950  * which will assign the current buffer to the buffer that next_to_alloc is
1951  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1952  * page freed.
1953  *
1954  * rx_stats will be updated to indicate whether the page was waived
1955  * or busy if it could not be reused.
1956  */
1957 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1958 				   struct i40e_rx_queue_stats *rx_stats)
1959 {
1960 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1961 	struct page *page = rx_buffer->page;
1962 
1963 	/* Is any reuse possible? */
1964 	if (!dev_page_is_reusable(page)) {
1965 		rx_stats->page_waive_count++;
1966 		return false;
1967 	}
1968 
1969 #if (PAGE_SIZE < 8192)
1970 	/* if we are only owner of page we can reuse it */
1971 	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1972 		rx_stats->page_busy_count++;
1973 		return false;
1974 	}
1975 #else
1976 #define I40E_LAST_OFFSET \
1977 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1978 	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1979 		rx_stats->page_busy_count++;
1980 		return false;
1981 	}
1982 #endif
1983 
1984 	/* If we have drained the page fragment pool we need to update
1985 	 * the pagecnt_bias and page count so that we fully restock the
1986 	 * number of references the driver holds.
1987 	 */
1988 	if (unlikely(pagecnt_bias == 1)) {
1989 		page_ref_add(page, USHRT_MAX - 1);
1990 		rx_buffer->pagecnt_bias = USHRT_MAX;
1991 	}
1992 
1993 	return true;
1994 }
1995 
1996 /**
1997  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1998  * @rx_buffer: Rx buffer to adjust
1999  * @truesize: Size of adjustment
2000  **/
2001 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2002 				unsigned int truesize)
2003 {
2004 #if (PAGE_SIZE < 8192)
2005 	rx_buffer->page_offset ^= truesize;
2006 #else
2007 	rx_buffer->page_offset += truesize;
2008 #endif
2009 }
2010 
2011 /**
2012  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2013  * @rx_ring: rx descriptor ring to transact packets on
2014  * @size: size of buffer to add to skb
2015  *
2016  * This function will pull an Rx buffer from the ring and synchronize it
2017  * for use by the CPU.
2018  */
2019 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2020 						 const unsigned int size)
2021 {
2022 	struct i40e_rx_buffer *rx_buffer;
2023 
2024 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2025 	rx_buffer->page_count =
2026 #if (PAGE_SIZE < 8192)
2027 		page_count(rx_buffer->page);
2028 #else
2029 		0;
2030 #endif
2031 	prefetch_page_address(rx_buffer->page);
2032 
2033 	/* we are reusing so sync this buffer for CPU use */
2034 	dma_sync_single_range_for_cpu(rx_ring->dev,
2035 				      rx_buffer->dma,
2036 				      rx_buffer->page_offset,
2037 				      size,
2038 				      DMA_FROM_DEVICE);
2039 
2040 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2041 	rx_buffer->pagecnt_bias--;
2042 
2043 	return rx_buffer;
2044 }
2045 
2046 /**
2047  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2048  * @rx_ring: rx descriptor ring to transact packets on
2049  * @rx_buffer: rx buffer to pull data from
2050  *
2051  * This function will clean up the contents of the rx_buffer.  It will
2052  * either recycle the buffer or unmap it and free the associated resources.
2053  */
2054 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2055 			       struct i40e_rx_buffer *rx_buffer)
2056 {
2057 	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2058 		/* hand second half of page back to the ring */
2059 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2060 	} else {
2061 		/* we are not reusing the buffer so unmap it */
2062 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2063 				     i40e_rx_pg_size(rx_ring),
2064 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2065 		__page_frag_cache_drain(rx_buffer->page,
2066 					rx_buffer->pagecnt_bias);
2067 		/* clear contents of buffer_info */
2068 		rx_buffer->page = NULL;
2069 	}
2070 }
2071 
2072 /**
2073  * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2074  * @rx_ring: Rx descriptor ring to transact packets on
2075  * @xdp_res: Result of the XDP program
2076  * @xdp: xdp_buff pointing to the data
2077  **/
2078 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2079 				  struct xdp_buff *xdp)
2080 {
2081 	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2082 	u32 next = rx_ring->next_to_clean, i = 0;
2083 	struct i40e_rx_buffer *rx_buffer;
2084 
2085 	xdp->flags = 0;
2086 
2087 	while (1) {
2088 		rx_buffer = i40e_rx_bi(rx_ring, next);
2089 		if (++next == rx_ring->count)
2090 			next = 0;
2091 
2092 		if (!rx_buffer->page)
2093 			continue;
2094 
2095 		if (xdp_res != I40E_XDP_CONSUMED)
2096 			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2097 		else if (i++ <= nr_frags)
2098 			rx_buffer->pagecnt_bias++;
2099 
2100 		/* EOP buffer will be put in i40e_clean_rx_irq() */
2101 		if (next == rx_ring->next_to_process)
2102 			return;
2103 
2104 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2105 	}
2106 }
2107 
2108 /**
2109  * i40e_construct_skb - Allocate skb and populate it
2110  * @rx_ring: rx descriptor ring to transact packets on
2111  * @xdp: xdp_buff pointing to the data
2112  *
2113  * This function allocates an skb.  It then populates it with the page
2114  * data from the current receive descriptor, taking care to set up the
2115  * skb correctly.
2116  */
2117 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2118 					  struct xdp_buff *xdp)
2119 {
2120 	unsigned int size = xdp->data_end - xdp->data;
2121 	struct i40e_rx_buffer *rx_buffer;
2122 	struct skb_shared_info *sinfo;
2123 	unsigned int headlen;
2124 	struct sk_buff *skb;
2125 	u32 nr_frags = 0;
2126 
2127 	/* prefetch first cache line of first page */
2128 	net_prefetch(xdp->data);
2129 
2130 	/* Note, we get here by enabling legacy-rx via:
2131 	 *
2132 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2133 	 *
2134 	 * In this mode, we currently get 0 extra XDP headroom as
2135 	 * opposed to having legacy-rx off, where we process XDP
2136 	 * packets going to stack via i40e_build_skb(). The latter
2137 	 * provides us currently with 192 bytes of headroom.
2138 	 *
2139 	 * For i40e_construct_skb() mode it means that the
2140 	 * xdp->data_meta will always point to xdp->data, since
2141 	 * the helper cannot expand the head. Should this ever
2142 	 * change in future for legacy-rx mode on, then lets also
2143 	 * add xdp->data_meta handling here.
2144 	 */
2145 
2146 	/* allocate a skb to store the frags */
2147 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2148 			       I40E_RX_HDR_SIZE,
2149 			       GFP_ATOMIC | __GFP_NOWARN);
2150 	if (unlikely(!skb))
2151 		return NULL;
2152 
2153 	/* Determine available headroom for copy */
2154 	headlen = size;
2155 	if (headlen > I40E_RX_HDR_SIZE)
2156 		headlen = eth_get_headlen(skb->dev, xdp->data,
2157 					  I40E_RX_HDR_SIZE);
2158 
2159 	/* align pull length to size of long to optimize memcpy performance */
2160 	memcpy(__skb_put(skb, headlen), xdp->data,
2161 	       ALIGN(headlen, sizeof(long)));
2162 
2163 	if (unlikely(xdp_buff_has_frags(xdp))) {
2164 		sinfo = xdp_get_shared_info_from_buff(xdp);
2165 		nr_frags = sinfo->nr_frags;
2166 	}
2167 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2168 	/* update all of the pointers */
2169 	size -= headlen;
2170 	if (size) {
2171 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2172 			dev_kfree_skb(skb);
2173 			return NULL;
2174 		}
2175 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2176 				rx_buffer->page_offset + headlen,
2177 				size, xdp->frame_sz);
2178 		/* buffer is used by skb, update page_offset */
2179 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2180 	} else {
2181 		/* buffer is unused, reset bias back to rx_buffer */
2182 		rx_buffer->pagecnt_bias++;
2183 	}
2184 
2185 	if (unlikely(xdp_buff_has_frags(xdp))) {
2186 		struct skb_shared_info *skinfo = skb_shinfo(skb);
2187 
2188 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2189 		       sizeof(skb_frag_t) * nr_frags);
2190 
2191 		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2192 					   sinfo->xdp_frags_size,
2193 					   nr_frags * xdp->frame_sz,
2194 					   xdp_buff_is_frag_pfmemalloc(xdp));
2195 
2196 		/* First buffer has already been processed, so bump ntc */
2197 		if (++rx_ring->next_to_clean == rx_ring->count)
2198 			rx_ring->next_to_clean = 0;
2199 
2200 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2201 	}
2202 
2203 	return skb;
2204 }
2205 
2206 /**
2207  * i40e_build_skb - Build skb around an existing buffer
2208  * @rx_ring: Rx descriptor ring to transact packets on
2209  * @xdp: xdp_buff pointing to the data
2210  *
2211  * This function builds an skb around an existing Rx buffer, taking care
2212  * to set up the skb correctly and avoid any memcpy overhead.
2213  */
2214 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2215 				      struct xdp_buff *xdp)
2216 {
2217 	unsigned int metasize = xdp->data - xdp->data_meta;
2218 	struct skb_shared_info *sinfo;
2219 	struct sk_buff *skb;
2220 	u32 nr_frags;
2221 
2222 	/* Prefetch first cache line of first page. If xdp->data_meta
2223 	 * is unused, this points exactly as xdp->data, otherwise we
2224 	 * likely have a consumer accessing first few bytes of meta
2225 	 * data, and then actual data.
2226 	 */
2227 	net_prefetch(xdp->data_meta);
2228 
2229 	if (unlikely(xdp_buff_has_frags(xdp))) {
2230 		sinfo = xdp_get_shared_info_from_buff(xdp);
2231 		nr_frags = sinfo->nr_frags;
2232 	}
2233 
2234 	/* build an skb around the page buffer */
2235 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2236 	if (unlikely(!skb))
2237 		return NULL;
2238 
2239 	/* update pointers within the skb to store the data */
2240 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2241 	__skb_put(skb, xdp->data_end - xdp->data);
2242 	if (metasize)
2243 		skb_metadata_set(skb, metasize);
2244 
2245 	if (unlikely(xdp_buff_has_frags(xdp))) {
2246 		xdp_update_skb_shared_info(skb, nr_frags,
2247 					   sinfo->xdp_frags_size,
2248 					   nr_frags * xdp->frame_sz,
2249 					   xdp_buff_is_frag_pfmemalloc(xdp));
2250 
2251 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2252 	} else {
2253 		struct i40e_rx_buffer *rx_buffer;
2254 
2255 		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2256 		/* buffer is used by skb, update page_offset */
2257 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2258 	}
2259 
2260 	return skb;
2261 }
2262 
2263 /**
2264  * i40e_is_non_eop - process handling of non-EOP buffers
2265  * @rx_ring: Rx ring being processed
2266  * @rx_desc: Rx descriptor for current buffer
2267  *
2268  * If the buffer is an EOP buffer, this function exits returning false,
2269  * otherwise return true indicating that this is in fact a non-EOP buffer.
2270  */
2271 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2272 		     union i40e_rx_desc *rx_desc)
2273 {
2274 	/* if we are the last buffer then there is nothing else to do */
2275 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2276 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2277 		return false;
2278 
2279 	rx_ring->rx_stats.non_eop_descs++;
2280 
2281 	return true;
2282 }
2283 
2284 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2285 			      struct i40e_ring *xdp_ring);
2286 
2287 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2288 {
2289 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2290 
2291 	if (unlikely(!xdpf))
2292 		return I40E_XDP_CONSUMED;
2293 
2294 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2295 }
2296 
2297 /**
2298  * i40e_run_xdp - run an XDP program
2299  * @rx_ring: Rx ring being processed
2300  * @xdp: XDP buffer containing the frame
2301  * @xdp_prog: XDP program to run
2302  **/
2303 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2304 {
2305 	int err, result = I40E_XDP_PASS;
2306 	struct i40e_ring *xdp_ring;
2307 	u32 act;
2308 
2309 	if (!xdp_prog)
2310 		goto xdp_out;
2311 
2312 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2313 
2314 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2315 	switch (act) {
2316 	case XDP_PASS:
2317 		break;
2318 	case XDP_TX:
2319 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2320 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2321 		if (result == I40E_XDP_CONSUMED)
2322 			goto out_failure;
2323 		break;
2324 	case XDP_REDIRECT:
2325 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2326 		if (err)
2327 			goto out_failure;
2328 		result = I40E_XDP_REDIR;
2329 		break;
2330 	default:
2331 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2332 		fallthrough;
2333 	case XDP_ABORTED:
2334 out_failure:
2335 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2336 		fallthrough; /* handle aborts by dropping packet */
2337 	case XDP_DROP:
2338 		result = I40E_XDP_CONSUMED;
2339 		break;
2340 	}
2341 xdp_out:
2342 	return result;
2343 }
2344 
2345 /**
2346  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2347  * @xdp_ring: XDP Tx ring
2348  *
2349  * This function updates the XDP Tx ring tail register.
2350  **/
2351 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2352 {
2353 	/* Force memory writes to complete before letting h/w
2354 	 * know there are new descriptors to fetch.
2355 	 */
2356 	wmb();
2357 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2358 }
2359 
2360 /**
2361  * i40e_update_rx_stats - Update Rx ring statistics
2362  * @rx_ring: rx descriptor ring
2363  * @total_rx_bytes: number of bytes received
2364  * @total_rx_packets: number of packets received
2365  *
2366  * This function updates the Rx ring statistics.
2367  **/
2368 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2369 			  unsigned int total_rx_bytes,
2370 			  unsigned int total_rx_packets)
2371 {
2372 	u64_stats_update_begin(&rx_ring->syncp);
2373 	rx_ring->stats.packets += total_rx_packets;
2374 	rx_ring->stats.bytes += total_rx_bytes;
2375 	u64_stats_update_end(&rx_ring->syncp);
2376 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2377 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2378 }
2379 
2380 /**
2381  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2382  * @rx_ring: Rx ring
2383  * @xdp_res: Result of the receive batch
2384  *
2385  * This function bumps XDP Tx tail and/or flush redirect map, and
2386  * should be called when a batch of packets has been processed in the
2387  * napi loop.
2388  **/
2389 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2390 {
2391 	if (xdp_res & I40E_XDP_REDIR)
2392 		xdp_do_flush();
2393 
2394 	if (xdp_res & I40E_XDP_TX) {
2395 		struct i40e_ring *xdp_ring =
2396 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397 
2398 		i40e_xdp_ring_update_tail(xdp_ring);
2399 	}
2400 }
2401 
2402 /**
2403  * i40e_inc_ntp: Advance the next_to_process index
2404  * @rx_ring: Rx ring
2405  **/
2406 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2407 {
2408 	u32 ntp = rx_ring->next_to_process + 1;
2409 
2410 	ntp = (ntp < rx_ring->count) ? ntp : 0;
2411 	rx_ring->next_to_process = ntp;
2412 	prefetch(I40E_RX_DESC(rx_ring, ntp));
2413 }
2414 
2415 /**
2416  * i40e_add_xdp_frag: Add a frag to xdp_buff
2417  * @xdp: xdp_buff pointing to the data
2418  * @nr_frags: return number of buffers for the packet
2419  * @rx_buffer: rx_buffer holding data of the current frag
2420  * @size: size of data of current frag
2421  */
2422 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2423 			     struct i40e_rx_buffer *rx_buffer, u32 size)
2424 {
2425 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2426 
2427 	if (!xdp_buff_has_frags(xdp)) {
2428 		sinfo->nr_frags = 0;
2429 		sinfo->xdp_frags_size = 0;
2430 		xdp_buff_set_frags_flag(xdp);
2431 	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2432 		/* Overflowing packet: All frags need to be dropped */
2433 		return -ENOMEM;
2434 	}
2435 
2436 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2437 				   rx_buffer->page_offset, size);
2438 
2439 	sinfo->xdp_frags_size += size;
2440 
2441 	if (page_is_pfmemalloc(rx_buffer->page))
2442 		xdp_buff_set_frag_pfmemalloc(xdp);
2443 	*nr_frags = sinfo->nr_frags;
2444 
2445 	return 0;
2446 }
2447 
2448 /**
2449  * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2450  * @rx_ring: rx descriptor ring to transact packets on
2451  * @xdp: xdp_buff pointing to the data
2452  * @rx_buffer: rx_buffer of eop desc
2453  */
2454 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2455 				  struct xdp_buff *xdp,
2456 				  struct i40e_rx_buffer *rx_buffer)
2457 {
2458 	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2459 	i40e_put_rx_buffer(rx_ring, rx_buffer);
2460 	rx_ring->next_to_clean = rx_ring->next_to_process;
2461 	xdp->data = NULL;
2462 }
2463 
2464 /**
2465  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2466  * @rx_ring: rx descriptor ring to transact packets on
2467  * @budget: Total limit on number of packets to process
2468  * @rx_cleaned: Out parameter of the number of packets processed
2469  *
2470  * This function provides a "bounce buffer" approach to Rx interrupt
2471  * processing.  The advantage to this is that on systems that have
2472  * expensive overhead for IOMMU access this provides a means of avoiding
2473  * it by maintaining the mapping of the page to the system.
2474  *
2475  * Returns amount of work completed
2476  **/
2477 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2478 			     unsigned int *rx_cleaned)
2479 {
2480 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2481 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2482 	u16 clean_threshold = rx_ring->count / 2;
2483 	unsigned int offset = rx_ring->rx_offset;
2484 	struct xdp_buff *xdp = &rx_ring->xdp;
2485 	unsigned int xdp_xmit = 0;
2486 	struct bpf_prog *xdp_prog;
2487 	bool failure = false;
2488 	int xdp_res = 0;
2489 
2490 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2491 
2492 	while (likely(total_rx_packets < (unsigned int)budget)) {
2493 		u16 ntp = rx_ring->next_to_process;
2494 		struct i40e_rx_buffer *rx_buffer;
2495 		union i40e_rx_desc *rx_desc;
2496 		struct sk_buff *skb;
2497 		unsigned int size;
2498 		u32 nfrags = 0;
2499 		bool neop;
2500 		u64 qword;
2501 
2502 		/* return some buffers to hardware, one at a time is too slow */
2503 		if (cleaned_count >= clean_threshold) {
2504 			failure = failure ||
2505 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2506 			cleaned_count = 0;
2507 		}
2508 
2509 		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2510 
2511 		/* status_error_len will always be zero for unused descriptors
2512 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2513 		 * which is always zero because packet split isn't used, if the
2514 		 * hardware wrote DD then the length will be non-zero
2515 		 */
2516 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2517 
2518 		/* This memory barrier is needed to keep us from reading
2519 		 * any other fields out of the rx_desc until we have
2520 		 * verified the descriptor has been written back.
2521 		 */
2522 		dma_rmb();
2523 
2524 		if (i40e_rx_is_programming_status(qword)) {
2525 			i40e_clean_programming_status(rx_ring,
2526 						      rx_desc->raw.qword[0],
2527 						      qword);
2528 			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2529 			i40e_inc_ntp(rx_ring);
2530 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2531 			/* Update ntc and bump cleaned count if not in the
2532 			 * middle of mb packet.
2533 			 */
2534 			if (rx_ring->next_to_clean == ntp) {
2535 				rx_ring->next_to_clean =
2536 					rx_ring->next_to_process;
2537 				cleaned_count++;
2538 			}
2539 			continue;
2540 		}
2541 
2542 		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2543 		if (!size)
2544 			break;
2545 
2546 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2547 		/* retrieve a buffer from the ring */
2548 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2549 
2550 		neop = i40e_is_non_eop(rx_ring, rx_desc);
2551 		i40e_inc_ntp(rx_ring);
2552 
2553 		if (!xdp->data) {
2554 			unsigned char *hard_start;
2555 
2556 			hard_start = page_address(rx_buffer->page) +
2557 				     rx_buffer->page_offset - offset;
2558 			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2559 #if (PAGE_SIZE > 4096)
2560 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2561 			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2562 #endif
2563 		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2564 			   !neop) {
2565 			/* Overflowing packet: Drop all frags on EOP */
2566 			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2567 			break;
2568 		}
2569 
2570 		if (neop)
2571 			continue;
2572 
2573 		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2574 
2575 		if (xdp_res) {
2576 			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2577 
2578 			if (unlikely(xdp_buff_has_frags(xdp))) {
2579 				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2580 				size = xdp_get_buff_len(xdp);
2581 			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2582 				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2583 			} else {
2584 				rx_buffer->pagecnt_bias++;
2585 			}
2586 			total_rx_bytes += size;
2587 		} else {
2588 			if (ring_uses_build_skb(rx_ring))
2589 				skb = i40e_build_skb(rx_ring, xdp);
2590 			else
2591 				skb = i40e_construct_skb(rx_ring, xdp);
2592 
2593 			/* drop if we failed to retrieve a buffer */
2594 			if (!skb) {
2595 				rx_ring->rx_stats.alloc_buff_failed++;
2596 				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2597 				break;
2598 			}
2599 
2600 			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2601 				goto process_next;
2602 
2603 			/* probably a little skewed due to removing CRC */
2604 			total_rx_bytes += skb->len;
2605 
2606 			/* populate checksum, VLAN, and protocol */
2607 			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2608 
2609 			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2610 			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2611 		}
2612 
2613 		/* update budget accounting */
2614 		total_rx_packets++;
2615 process_next:
2616 		cleaned_count += nfrags + 1;
2617 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2618 		rx_ring->next_to_clean = rx_ring->next_to_process;
2619 
2620 		xdp->data = NULL;
2621 	}
2622 
2623 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2624 
2625 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2626 
2627 	*rx_cleaned = total_rx_packets;
2628 
2629 	/* guarantee a trip back through this routine if there was a failure */
2630 	return failure ? budget : (int)total_rx_packets;
2631 }
2632 
2633 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2634 {
2635 	u32 val;
2636 
2637 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2638 	 * points out doing so is "meaningless since it was already
2639 	 * auto-cleared". The auto-clearing happens when the interrupt is
2640 	 * asserted.
2641 	 *
2642 	 * Hardware errata 28 for also indicates that writing to a
2643 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2644 	 * an event in the PBA anyway so we need to rely on the automask
2645 	 * to hold pending events for us until the interrupt is re-enabled
2646 	 *
2647 	 * The itr value is reported in microseconds, and the register
2648 	 * value is recorded in 2 microsecond units. For this reason we
2649 	 * only need to shift by the interval shift - 1 instead of the
2650 	 * full value.
2651 	 */
2652 	itr &= I40E_ITR_MASK;
2653 
2654 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2655 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2656 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2657 
2658 	return val;
2659 }
2660 
2661 /* a small macro to shorten up some long lines */
2662 #define INTREG I40E_PFINT_DYN_CTLN
2663 
2664 /* The act of updating the ITR will cause it to immediately trigger. In order
2665  * to prevent this from throwing off adaptive update statistics we defer the
2666  * update so that it can only happen so often. So after either Tx or Rx are
2667  * updated we make the adaptive scheme wait until either the ITR completely
2668  * expires via the next_update expiration or we have been through at least
2669  * 3 interrupts.
2670  */
2671 #define ITR_COUNTDOWN_START 3
2672 
2673 /**
2674  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2675  * @vsi: the VSI we care about
2676  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2677  *
2678  **/
2679 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2680 					  struct i40e_q_vector *q_vector)
2681 {
2682 	struct i40e_hw *hw = &vsi->back->hw;
2683 	u32 intval;
2684 
2685 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2686 	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2687 		i40e_irq_dynamic_enable_icr0(vsi->back);
2688 		return;
2689 	}
2690 
2691 	/* These will do nothing if dynamic updates are not enabled */
2692 	i40e_update_itr(q_vector, &q_vector->tx);
2693 	i40e_update_itr(q_vector, &q_vector->rx);
2694 
2695 	/* This block of logic allows us to get away with only updating
2696 	 * one ITR value with each interrupt. The idea is to perform a
2697 	 * pseudo-lazy update with the following criteria.
2698 	 *
2699 	 * 1. Rx is given higher priority than Tx if both are in same state
2700 	 * 2. If we must reduce an ITR that is given highest priority.
2701 	 * 3. We then give priority to increasing ITR based on amount.
2702 	 */
2703 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2704 		/* Rx ITR needs to be reduced, this is highest priority */
2705 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2706 					   q_vector->rx.target_itr);
2707 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2708 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2709 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2710 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2711 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2712 		/* Tx ITR needs to be reduced, this is second priority
2713 		 * Tx ITR needs to be increased more than Rx, fourth priority
2714 		 */
2715 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2716 					   q_vector->tx.target_itr);
2717 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2718 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2719 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2720 		/* Rx ITR needs to be increased, third priority */
2721 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2722 					   q_vector->rx.target_itr);
2723 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2724 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2725 	} else {
2726 		/* No ITR update, lowest priority */
2727 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2728 		if (q_vector->itr_countdown)
2729 			q_vector->itr_countdown--;
2730 	}
2731 
2732 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2733 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2734 }
2735 
2736 /**
2737  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738  * @napi: napi struct with our devices info in it
2739  * @budget: amount of work driver is allowed to do this pass, in packets
2740  *
2741  * This function will clean all queues associated with a q_vector.
2742  *
2743  * Returns the amount of work done
2744  **/
2745 int i40e_napi_poll(struct napi_struct *napi, int budget)
2746 {
2747 	struct i40e_q_vector *q_vector =
2748 			       container_of(napi, struct i40e_q_vector, napi);
2749 	struct i40e_vsi *vsi = q_vector->vsi;
2750 	struct i40e_ring *ring;
2751 	bool tx_clean_complete = true;
2752 	bool rx_clean_complete = true;
2753 	unsigned int tx_cleaned = 0;
2754 	unsigned int rx_cleaned = 0;
2755 	bool clean_complete = true;
2756 	bool arm_wb = false;
2757 	int budget_per_ring;
2758 	int work_done = 0;
2759 
2760 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761 		napi_complete(napi);
2762 		return 0;
2763 	}
2764 
2765 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767 	 */
2768 	i40e_for_each_ring(ring, q_vector->tx) {
2769 		bool wd = ring->xsk_pool ?
2770 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771 			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772 
2773 		if (!wd) {
2774 			clean_complete = tx_clean_complete = false;
2775 			continue;
2776 		}
2777 		arm_wb |= ring->arm_wb;
2778 		ring->arm_wb = false;
2779 	}
2780 
2781 	/* Handle case where we are called by netpoll with a budget of 0 */
2782 	if (budget <= 0)
2783 		goto tx_only;
2784 
2785 	/* normally we have 1 Rx ring per q_vector */
2786 	if (unlikely(q_vector->num_ringpairs > 1))
2787 		/* We attempt to distribute budget to each Rx queue fairly, but
2788 		 * don't allow the budget to go below 1 because that would exit
2789 		 * polling early.
2790 		 */
2791 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792 	else
2793 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794 		budget_per_ring = budget;
2795 
2796 	i40e_for_each_ring(ring, q_vector->rx) {
2797 		int cleaned = ring->xsk_pool ?
2798 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799 			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800 
2801 		work_done += cleaned;
2802 		/* if we clean as many as budgeted, we must not be done */
2803 		if (cleaned >= budget_per_ring)
2804 			clean_complete = rx_clean_complete = false;
2805 	}
2806 
2807 	if (!i40e_enabled_xdp_vsi(vsi))
2808 		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809 				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810 
2811 	/* If work not completed, return budget and polling will return */
2812 	if (!clean_complete) {
2813 		int cpu_id = smp_processor_id();
2814 
2815 		/* It is possible that the interrupt affinity has changed but,
2816 		 * if the cpu is pegged at 100%, polling will never exit while
2817 		 * traffic continues and the interrupt will be stuck on this
2818 		 * cpu.  We check to make sure affinity is correct before we
2819 		 * continue to poll, otherwise we must stop polling so the
2820 		 * interrupt can move to the correct cpu.
2821 		 */
2822 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823 			/* Tell napi that we are done polling */
2824 			napi_complete_done(napi, work_done);
2825 
2826 			/* Force an interrupt */
2827 			i40e_force_wb(vsi, q_vector);
2828 
2829 			/* Return budget-1 so that polling stops */
2830 			return budget - 1;
2831 		}
2832 tx_only:
2833 		if (arm_wb) {
2834 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835 			i40e_enable_wb_on_itr(vsi, q_vector);
2836 		}
2837 		return budget;
2838 	}
2839 
2840 	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841 		q_vector->arm_wb_state = false;
2842 
2843 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844 	 * poll us due to busy-polling
2845 	 */
2846 	if (likely(napi_complete_done(napi, work_done)))
2847 		i40e_update_enable_itr(vsi, q_vector);
2848 
2849 	return min(work_done, budget - 1);
2850 }
2851 
2852 /**
2853  * i40e_atr - Add a Flow Director ATR filter
2854  * @tx_ring:  ring to add programming descriptor to
2855  * @skb:      send buffer
2856  * @tx_flags: send tx flags
2857  **/
2858 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2859 		     u32 tx_flags)
2860 {
2861 	struct i40e_filter_program_desc *fdir_desc;
2862 	struct i40e_pf *pf = tx_ring->vsi->back;
2863 	union {
2864 		unsigned char *network;
2865 		struct iphdr *ipv4;
2866 		struct ipv6hdr *ipv6;
2867 	} hdr;
2868 	struct tcphdr *th;
2869 	unsigned int hlen;
2870 	u32 flex_ptype, dtype_cmd;
2871 	int l4_proto;
2872 	u16 i;
2873 
2874 	/* make sure ATR is enabled */
2875 	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2876 		return;
2877 
2878 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2879 		return;
2880 
2881 	/* if sampling is disabled do nothing */
2882 	if (!tx_ring->atr_sample_rate)
2883 		return;
2884 
2885 	/* Currently only IPv4/IPv6 with TCP is supported */
2886 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2887 		return;
2888 
2889 	/* snag network header to get L4 type and address */
2890 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2891 		      skb_inner_network_header(skb) : skb_network_header(skb);
2892 
2893 	/* Note: tx_flags gets modified to reflect inner protocols in
2894 	 * tx_enable_csum function if encap is enabled.
2895 	 */
2896 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2897 		/* access ihl as u8 to avoid unaligned access on ia64 */
2898 		hlen = (hdr.network[0] & 0x0F) << 2;
2899 		l4_proto = hdr.ipv4->protocol;
2900 	} else {
2901 		/* find the start of the innermost ipv6 header */
2902 		unsigned int inner_hlen = hdr.network - skb->data;
2903 		unsigned int h_offset = inner_hlen;
2904 
2905 		/* this function updates h_offset to the end of the header */
2906 		l4_proto =
2907 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2908 		/* hlen will contain our best estimate of the tcp header */
2909 		hlen = h_offset - inner_hlen;
2910 	}
2911 
2912 	if (l4_proto != IPPROTO_TCP)
2913 		return;
2914 
2915 	th = (struct tcphdr *)(hdr.network + hlen);
2916 
2917 	/* Due to lack of space, no more new filters can be programmed */
2918 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2919 		return;
2920 	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2921 		/* HW ATR eviction will take care of removing filters on FIN
2922 		 * and RST packets.
2923 		 */
2924 		if (th->fin || th->rst)
2925 			return;
2926 	}
2927 
2928 	tx_ring->atr_count++;
2929 
2930 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2931 	if (!th->fin &&
2932 	    !th->syn &&
2933 	    !th->rst &&
2934 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2935 		return;
2936 
2937 	tx_ring->atr_count = 0;
2938 
2939 	/* grab the next descriptor */
2940 	i = tx_ring->next_to_use;
2941 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2942 
2943 	i++;
2944 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2945 
2946 	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2947 				tx_ring->queue_index);
2948 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2949 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2950 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2951 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2952 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2953 
2954 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2955 
2956 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2957 
2958 	dtype_cmd |= (th->fin || th->rst) ?
2959 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2960 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2961 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2962 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2963 
2964 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2965 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2966 
2967 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2968 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2969 
2970 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2971 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2972 		dtype_cmd |=
2973 			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2974 				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2975 	else
2976 		dtype_cmd |=
2977 			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2978 				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2979 
2980 	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2981 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2982 
2983 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2984 	fdir_desc->rsvd = cpu_to_le32(0);
2985 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2986 	fdir_desc->fd_id = cpu_to_le32(0);
2987 }
2988 
2989 /**
2990  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2991  * @skb:     send buffer
2992  * @tx_ring: ring to send buffer on
2993  * @flags:   the tx flags to be set
2994  *
2995  * Checks the skb and set up correspondingly several generic transmit flags
2996  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2997  *
2998  * Returns error code indicate the frame should be dropped upon error and the
2999  * otherwise  returns 0 to indicate the flags has been set properly.
3000  **/
3001 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3002 					     struct i40e_ring *tx_ring,
3003 					     u32 *flags)
3004 {
3005 	__be16 protocol = skb->protocol;
3006 	u32  tx_flags = 0;
3007 
3008 	if (protocol == htons(ETH_P_8021Q) &&
3009 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3010 		/* When HW VLAN acceleration is turned off by the user the
3011 		 * stack sets the protocol to 8021q so that the driver
3012 		 * can take any steps required to support the SW only
3013 		 * VLAN handling.  In our case the driver doesn't need
3014 		 * to take any further steps so just set the protocol
3015 		 * to the encapsulated ethertype.
3016 		 */
3017 		skb->protocol = vlan_get_protocol(skb);
3018 		goto out;
3019 	}
3020 
3021 	/* if we have a HW VLAN tag being added, default to the HW one */
3022 	if (skb_vlan_tag_present(skb)) {
3023 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3024 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3025 	/* else if it is a SW VLAN, check the next protocol and store the tag */
3026 	} else if (protocol == htons(ETH_P_8021Q)) {
3027 		struct vlan_hdr *vhdr, _vhdr;
3028 
3029 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3030 		if (!vhdr)
3031 			return -EINVAL;
3032 
3033 		protocol = vhdr->h_vlan_encapsulated_proto;
3034 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3035 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3036 	}
3037 
3038 	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3039 		goto out;
3040 
3041 	/* Insert 802.1p priority into VLAN header */
3042 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3043 	    (skb->priority != TC_PRIO_CONTROL)) {
3044 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3045 		tx_flags |= (skb->priority & 0x7) <<
3046 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3047 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3048 			struct vlan_ethhdr *vhdr;
3049 			int rc;
3050 
3051 			rc = skb_cow_head(skb, 0);
3052 			if (rc < 0)
3053 				return rc;
3054 			vhdr = skb_vlan_eth_hdr(skb);
3055 			vhdr->h_vlan_TCI = htons(tx_flags >>
3056 						 I40E_TX_FLAGS_VLAN_SHIFT);
3057 		} else {
3058 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3059 		}
3060 	}
3061 
3062 out:
3063 	*flags = tx_flags;
3064 	return 0;
3065 }
3066 
3067 /**
3068  * i40e_tso - set up the tso context descriptor
3069  * @first:    pointer to first Tx buffer for xmit
3070  * @hdr_len:  ptr to the size of the packet header
3071  * @cd_type_cmd_tso_mss: Quad Word 1
3072  *
3073  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3074  **/
3075 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3076 		    u64 *cd_type_cmd_tso_mss)
3077 {
3078 	struct sk_buff *skb = first->skb;
3079 	u64 cd_cmd, cd_tso_len, cd_mss;
3080 	__be16 protocol;
3081 	union {
3082 		struct iphdr *v4;
3083 		struct ipv6hdr *v6;
3084 		unsigned char *hdr;
3085 	} ip;
3086 	union {
3087 		struct tcphdr *tcp;
3088 		struct udphdr *udp;
3089 		unsigned char *hdr;
3090 	} l4;
3091 	u32 paylen, l4_offset;
3092 	u16 gso_size;
3093 	int err;
3094 
3095 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3096 		return 0;
3097 
3098 	if (!skb_is_gso(skb))
3099 		return 0;
3100 
3101 	err = skb_cow_head(skb, 0);
3102 	if (err < 0)
3103 		return err;
3104 
3105 	protocol = vlan_get_protocol(skb);
3106 
3107 	if (eth_p_mpls(protocol))
3108 		ip.hdr = skb_inner_network_header(skb);
3109 	else
3110 		ip.hdr = skb_network_header(skb);
3111 	l4.hdr = skb_checksum_start(skb);
3112 
3113 	/* initialize outer IP header fields */
3114 	if (ip.v4->version == 4) {
3115 		ip.v4->tot_len = 0;
3116 		ip.v4->check = 0;
3117 
3118 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3119 	} else {
3120 		ip.v6->payload_len = 0;
3121 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3122 	}
3123 
3124 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3125 					 SKB_GSO_GRE_CSUM |
3126 					 SKB_GSO_IPXIP4 |
3127 					 SKB_GSO_IPXIP6 |
3128 					 SKB_GSO_UDP_TUNNEL |
3129 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3130 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3131 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3132 			l4.udp->len = 0;
3133 
3134 			/* determine offset of outer transport header */
3135 			l4_offset = l4.hdr - skb->data;
3136 
3137 			/* remove payload length from outer checksum */
3138 			paylen = skb->len - l4_offset;
3139 			csum_replace_by_diff(&l4.udp->check,
3140 					     (__force __wsum)htonl(paylen));
3141 		}
3142 
3143 		/* reset pointers to inner headers */
3144 		ip.hdr = skb_inner_network_header(skb);
3145 		l4.hdr = skb_inner_transport_header(skb);
3146 
3147 		/* initialize inner IP header fields */
3148 		if (ip.v4->version == 4) {
3149 			ip.v4->tot_len = 0;
3150 			ip.v4->check = 0;
3151 		} else {
3152 			ip.v6->payload_len = 0;
3153 		}
3154 	}
3155 
3156 	/* determine offset of inner transport header */
3157 	l4_offset = l4.hdr - skb->data;
3158 
3159 	/* remove payload length from inner checksum */
3160 	paylen = skb->len - l4_offset;
3161 
3162 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3163 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3164 		/* compute length of segmentation header */
3165 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3166 	} else {
3167 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3168 		/* compute length of segmentation header */
3169 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3170 	}
3171 
3172 	/* pull values out of skb_shinfo */
3173 	gso_size = skb_shinfo(skb)->gso_size;
3174 
3175 	/* update GSO size and bytecount with header size */
3176 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3177 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3178 
3179 	/* find the field values */
3180 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3181 	cd_tso_len = skb->len - *hdr_len;
3182 	cd_mss = gso_size;
3183 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3184 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3185 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3186 	return 1;
3187 }
3188 
3189 /**
3190  * i40e_tsyn - set up the tsyn context descriptor
3191  * @tx_ring:  ptr to the ring to send
3192  * @skb:      ptr to the skb we're sending
3193  * @tx_flags: the collected send information
3194  * @cd_type_cmd_tso_mss: Quad Word 1
3195  *
3196  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3197  **/
3198 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3199 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3200 {
3201 	struct i40e_pf *pf;
3202 
3203 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3204 		return 0;
3205 
3206 	/* Tx timestamps cannot be sampled when doing TSO */
3207 	if (tx_flags & I40E_TX_FLAGS_TSO)
3208 		return 0;
3209 
3210 	/* only timestamp the outbound packet if the user has requested it and
3211 	 * we are not already transmitting a packet to be timestamped
3212 	 */
3213 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3214 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3215 		return 0;
3216 
3217 	if (pf->ptp_tx &&
3218 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3219 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3220 		pf->ptp_tx_start = jiffies;
3221 		pf->ptp_tx_skb = skb_get(skb);
3222 	} else {
3223 		pf->tx_hwtstamp_skipped++;
3224 		return 0;
3225 	}
3226 
3227 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3228 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3229 
3230 	return 1;
3231 }
3232 
3233 /**
3234  * i40e_tx_enable_csum - Enable Tx checksum offloads
3235  * @skb: send buffer
3236  * @tx_flags: pointer to Tx flags currently set
3237  * @td_cmd: Tx descriptor command bits to set
3238  * @td_offset: Tx descriptor header offsets to set
3239  * @tx_ring: Tx descriptor ring
3240  * @cd_tunneling: ptr to context desc bits
3241  **/
3242 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3243 			       u32 *td_cmd, u32 *td_offset,
3244 			       struct i40e_ring *tx_ring,
3245 			       u32 *cd_tunneling)
3246 {
3247 	union {
3248 		struct iphdr *v4;
3249 		struct ipv6hdr *v6;
3250 		unsigned char *hdr;
3251 	} ip;
3252 	union {
3253 		struct tcphdr *tcp;
3254 		struct udphdr *udp;
3255 		unsigned char *hdr;
3256 	} l4;
3257 	unsigned char *exthdr;
3258 	u32 offset, cmd = 0;
3259 	__be16 frag_off;
3260 	__be16 protocol;
3261 	u8 l4_proto = 0;
3262 
3263 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3264 		return 0;
3265 
3266 	protocol = vlan_get_protocol(skb);
3267 
3268 	if (eth_p_mpls(protocol)) {
3269 		ip.hdr = skb_inner_network_header(skb);
3270 		l4.hdr = skb_checksum_start(skb);
3271 	} else {
3272 		ip.hdr = skb_network_header(skb);
3273 		l4.hdr = skb_transport_header(skb);
3274 	}
3275 
3276 	/* set the tx_flags to indicate the IP protocol type. this is
3277 	 * required so that checksum header computation below is accurate.
3278 	 */
3279 	if (ip.v4->version == 4)
3280 		*tx_flags |= I40E_TX_FLAGS_IPV4;
3281 	else
3282 		*tx_flags |= I40E_TX_FLAGS_IPV6;
3283 
3284 	/* compute outer L2 header size */
3285 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3286 
3287 	if (skb->encapsulation) {
3288 		u32 tunnel = 0;
3289 		/* define outer network header type */
3290 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3291 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3292 				  I40E_TX_CTX_EXT_IP_IPV4 :
3293 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3294 
3295 			l4_proto = ip.v4->protocol;
3296 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3297 			int ret;
3298 
3299 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3300 
3301 			exthdr = ip.hdr + sizeof(*ip.v6);
3302 			l4_proto = ip.v6->nexthdr;
3303 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3304 					       &l4_proto, &frag_off);
3305 			if (ret < 0)
3306 				return -1;
3307 		}
3308 
3309 		/* define outer transport */
3310 		switch (l4_proto) {
3311 		case IPPROTO_UDP:
3312 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3313 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3314 			break;
3315 		case IPPROTO_GRE:
3316 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3317 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3318 			break;
3319 		case IPPROTO_IPIP:
3320 		case IPPROTO_IPV6:
3321 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3322 			l4.hdr = skb_inner_network_header(skb);
3323 			break;
3324 		default:
3325 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3326 				return -1;
3327 
3328 			skb_checksum_help(skb);
3329 			return 0;
3330 		}
3331 
3332 		/* compute outer L3 header size */
3333 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3334 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3335 
3336 		/* switch IP header pointer from outer to inner header */
3337 		ip.hdr = skb_inner_network_header(skb);
3338 
3339 		/* compute tunnel header size */
3340 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3341 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3342 
3343 		/* indicate if we need to offload outer UDP header */
3344 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3345 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3346 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3347 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3348 
3349 		/* record tunnel offload values */
3350 		*cd_tunneling |= tunnel;
3351 
3352 		/* switch L4 header pointer from outer to inner */
3353 		l4.hdr = skb_inner_transport_header(skb);
3354 		l4_proto = 0;
3355 
3356 		/* reset type as we transition from outer to inner headers */
3357 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3358 		if (ip.v4->version == 4)
3359 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3360 		if (ip.v6->version == 6)
3361 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3362 	}
3363 
3364 	/* Enable IP checksum offloads */
3365 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3366 		l4_proto = ip.v4->protocol;
3367 		/* the stack computes the IP header already, the only time we
3368 		 * need the hardware to recompute it is in the case of TSO.
3369 		 */
3370 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3371 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3372 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3373 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3374 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3375 
3376 		exthdr = ip.hdr + sizeof(*ip.v6);
3377 		l4_proto = ip.v6->nexthdr;
3378 		if (l4.hdr != exthdr)
3379 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3380 					 &l4_proto, &frag_off);
3381 	}
3382 
3383 	/* compute inner L3 header size */
3384 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3385 
3386 	/* Enable L4 checksum offloads */
3387 	switch (l4_proto) {
3388 	case IPPROTO_TCP:
3389 		/* enable checksum offloads */
3390 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3391 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3392 		break;
3393 	case IPPROTO_SCTP:
3394 		/* enable SCTP checksum offload */
3395 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3396 		offset |= (sizeof(struct sctphdr) >> 2) <<
3397 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3398 		break;
3399 	case IPPROTO_UDP:
3400 		/* enable UDP checksum offload */
3401 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3402 		offset |= (sizeof(struct udphdr) >> 2) <<
3403 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3404 		break;
3405 	default:
3406 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3407 			return -1;
3408 		skb_checksum_help(skb);
3409 		return 0;
3410 	}
3411 
3412 	*td_cmd |= cmd;
3413 	*td_offset |= offset;
3414 
3415 	return 1;
3416 }
3417 
3418 /**
3419  * i40e_create_tx_ctx - Build the Tx context descriptor
3420  * @tx_ring:  ring to create the descriptor on
3421  * @cd_type_cmd_tso_mss: Quad Word 1
3422  * @cd_tunneling: Quad Word 0 - bits 0-31
3423  * @cd_l2tag2: Quad Word 0 - bits 32-63
3424  **/
3425 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3426 			       const u64 cd_type_cmd_tso_mss,
3427 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3428 {
3429 	struct i40e_tx_context_desc *context_desc;
3430 	int i = tx_ring->next_to_use;
3431 
3432 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3433 	    !cd_tunneling && !cd_l2tag2)
3434 		return;
3435 
3436 	/* grab the next descriptor */
3437 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3438 
3439 	i++;
3440 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3441 
3442 	/* cpu_to_le32 and assign to struct fields */
3443 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3444 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3445 	context_desc->rsvd = cpu_to_le16(0);
3446 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3447 }
3448 
3449 /**
3450  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3451  * @tx_ring: the ring to be checked
3452  * @size:    the size buffer we want to assure is available
3453  *
3454  * Returns -EBUSY if a stop is needed, else 0
3455  **/
3456 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3457 {
3458 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3459 	/* Memory barrier before checking head and tail */
3460 	smp_mb();
3461 
3462 	++tx_ring->tx_stats.tx_stopped;
3463 
3464 	/* Check again in a case another CPU has just made room available. */
3465 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3466 		return -EBUSY;
3467 
3468 	/* A reprieve! - use start_queue because it doesn't call schedule */
3469 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3470 	++tx_ring->tx_stats.restart_queue;
3471 	return 0;
3472 }
3473 
3474 /**
3475  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3476  * @skb:      send buffer
3477  *
3478  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3479  * and so we need to figure out the cases where we need to linearize the skb.
3480  *
3481  * For TSO we need to count the TSO header and segment payload separately.
3482  * As such we need to check cases where we have 7 fragments or more as we
3483  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3484  * the segment payload in the first descriptor, and another 7 for the
3485  * fragments.
3486  **/
3487 bool __i40e_chk_linearize(struct sk_buff *skb)
3488 {
3489 	const skb_frag_t *frag, *stale;
3490 	int nr_frags, sum;
3491 
3492 	/* no need to check if number of frags is less than 7 */
3493 	nr_frags = skb_shinfo(skb)->nr_frags;
3494 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3495 		return false;
3496 
3497 	/* We need to walk through the list and validate that each group
3498 	 * of 6 fragments totals at least gso_size.
3499 	 */
3500 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3501 	frag = &skb_shinfo(skb)->frags[0];
3502 
3503 	/* Initialize size to the negative value of gso_size minus 1.  We
3504 	 * use this as the worst case scenerio in which the frag ahead
3505 	 * of us only provides one byte which is why we are limited to 6
3506 	 * descriptors for a single transmit as the header and previous
3507 	 * fragment are already consuming 2 descriptors.
3508 	 */
3509 	sum = 1 - skb_shinfo(skb)->gso_size;
3510 
3511 	/* Add size of frags 0 through 4 to create our initial sum */
3512 	sum += skb_frag_size(frag++);
3513 	sum += skb_frag_size(frag++);
3514 	sum += skb_frag_size(frag++);
3515 	sum += skb_frag_size(frag++);
3516 	sum += skb_frag_size(frag++);
3517 
3518 	/* Walk through fragments adding latest fragment, testing it, and
3519 	 * then removing stale fragments from the sum.
3520 	 */
3521 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3522 		int stale_size = skb_frag_size(stale);
3523 
3524 		sum += skb_frag_size(frag++);
3525 
3526 		/* The stale fragment may present us with a smaller
3527 		 * descriptor than the actual fragment size. To account
3528 		 * for that we need to remove all the data on the front and
3529 		 * figure out what the remainder would be in the last
3530 		 * descriptor associated with the fragment.
3531 		 */
3532 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3533 			int align_pad = -(skb_frag_off(stale)) &
3534 					(I40E_MAX_READ_REQ_SIZE - 1);
3535 
3536 			sum -= align_pad;
3537 			stale_size -= align_pad;
3538 
3539 			do {
3540 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3541 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3542 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3543 		}
3544 
3545 		/* if sum is negative we failed to make sufficient progress */
3546 		if (sum < 0)
3547 			return true;
3548 
3549 		if (!nr_frags--)
3550 			break;
3551 
3552 		sum -= stale_size;
3553 	}
3554 
3555 	return false;
3556 }
3557 
3558 /**
3559  * i40e_tx_map - Build the Tx descriptor
3560  * @tx_ring:  ring to send buffer on
3561  * @skb:      send buffer
3562  * @first:    first buffer info buffer to use
3563  * @tx_flags: collected send information
3564  * @hdr_len:  size of the packet header
3565  * @td_cmd:   the command field in the descriptor
3566  * @td_offset: offset for checksum or crc
3567  *
3568  * Returns 0 on success, -1 on failure to DMA
3569  **/
3570 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3571 			      struct i40e_tx_buffer *first, u32 tx_flags,
3572 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3573 {
3574 	unsigned int data_len = skb->data_len;
3575 	unsigned int size = skb_headlen(skb);
3576 	skb_frag_t *frag;
3577 	struct i40e_tx_buffer *tx_bi;
3578 	struct i40e_tx_desc *tx_desc;
3579 	u16 i = tx_ring->next_to_use;
3580 	u32 td_tag = 0;
3581 	dma_addr_t dma;
3582 	u16 desc_count = 1;
3583 
3584 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3585 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3586 		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3587 	}
3588 
3589 	first->tx_flags = tx_flags;
3590 
3591 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3592 
3593 	tx_desc = I40E_TX_DESC(tx_ring, i);
3594 	tx_bi = first;
3595 
3596 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3597 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3598 
3599 		if (dma_mapping_error(tx_ring->dev, dma))
3600 			goto dma_error;
3601 
3602 		/* record length, and DMA address */
3603 		dma_unmap_len_set(tx_bi, len, size);
3604 		dma_unmap_addr_set(tx_bi, dma, dma);
3605 
3606 		/* align size to end of page */
3607 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3608 		tx_desc->buffer_addr = cpu_to_le64(dma);
3609 
3610 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3611 			tx_desc->cmd_type_offset_bsz =
3612 				build_ctob(td_cmd, td_offset,
3613 					   max_data, td_tag);
3614 
3615 			tx_desc++;
3616 			i++;
3617 			desc_count++;
3618 
3619 			if (i == tx_ring->count) {
3620 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3621 				i = 0;
3622 			}
3623 
3624 			dma += max_data;
3625 			size -= max_data;
3626 
3627 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3628 			tx_desc->buffer_addr = cpu_to_le64(dma);
3629 		}
3630 
3631 		if (likely(!data_len))
3632 			break;
3633 
3634 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3635 							  size, td_tag);
3636 
3637 		tx_desc++;
3638 		i++;
3639 		desc_count++;
3640 
3641 		if (i == tx_ring->count) {
3642 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3643 			i = 0;
3644 		}
3645 
3646 		size = skb_frag_size(frag);
3647 		data_len -= size;
3648 
3649 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3650 				       DMA_TO_DEVICE);
3651 
3652 		tx_bi = &tx_ring->tx_bi[i];
3653 	}
3654 
3655 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3656 
3657 	i++;
3658 	if (i == tx_ring->count)
3659 		i = 0;
3660 
3661 	tx_ring->next_to_use = i;
3662 
3663 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3664 
3665 	/* write last descriptor with EOP bit */
3666 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3667 
3668 	/* We OR these values together to check both against 4 (WB_STRIDE)
3669 	 * below. This is safe since we don't re-use desc_count afterwards.
3670 	 */
3671 	desc_count |= ++tx_ring->packet_stride;
3672 
3673 	if (desc_count >= WB_STRIDE) {
3674 		/* write last descriptor with RS bit set */
3675 		td_cmd |= I40E_TX_DESC_CMD_RS;
3676 		tx_ring->packet_stride = 0;
3677 	}
3678 
3679 	tx_desc->cmd_type_offset_bsz =
3680 			build_ctob(td_cmd, td_offset, size, td_tag);
3681 
3682 	skb_tx_timestamp(skb);
3683 
3684 	/* Force memory writes to complete before letting h/w know there
3685 	 * are new descriptors to fetch.
3686 	 *
3687 	 * We also use this memory barrier to make certain all of the
3688 	 * status bits have been updated before next_to_watch is written.
3689 	 */
3690 	wmb();
3691 
3692 	/* set next_to_watch value indicating a packet is present */
3693 	first->next_to_watch = tx_desc;
3694 
3695 	/* notify HW of packet */
3696 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3697 		writel(i, tx_ring->tail);
3698 	}
3699 
3700 	return 0;
3701 
3702 dma_error:
3703 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3704 
3705 	/* clear dma mappings for failed tx_bi map */
3706 	for (;;) {
3707 		tx_bi = &tx_ring->tx_bi[i];
3708 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3709 		if (tx_bi == first)
3710 			break;
3711 		if (i == 0)
3712 			i = tx_ring->count;
3713 		i--;
3714 	}
3715 
3716 	tx_ring->next_to_use = i;
3717 
3718 	return -1;
3719 }
3720 
3721 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3722 				  const struct sk_buff *skb,
3723 				  u16 num_tx_queues)
3724 {
3725 	u32 jhash_initval_salt = 0xd631614b;
3726 	u32 hash;
3727 
3728 	if (skb->sk && skb->sk->sk_hash)
3729 		hash = skb->sk->sk_hash;
3730 	else
3731 		hash = (__force u16)skb->protocol ^ skb->hash;
3732 
3733 	hash = jhash_1word(hash, jhash_initval_salt);
3734 
3735 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3736 }
3737 
3738 u16 i40e_lan_select_queue(struct net_device *netdev,
3739 			  struct sk_buff *skb,
3740 			  struct net_device __always_unused *sb_dev)
3741 {
3742 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3743 	struct i40e_vsi *vsi = np->vsi;
3744 	struct i40e_hw *hw;
3745 	u16 qoffset;
3746 	u16 qcount;
3747 	u8 tclass;
3748 	u16 hash;
3749 	u8 prio;
3750 
3751 	/* is DCB enabled at all? */
3752 	if (vsi->tc_config.numtc == 1 ||
3753 	    i40e_is_tc_mqprio_enabled(vsi->back))
3754 		return netdev_pick_tx(netdev, skb, sb_dev);
3755 
3756 	prio = skb->priority;
3757 	hw = &vsi->back->hw;
3758 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3759 	/* sanity check */
3760 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3761 		tclass = 0;
3762 
3763 	/* select a queue assigned for the given TC */
3764 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3765 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3766 
3767 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3768 	return qoffset + hash;
3769 }
3770 
3771 /**
3772  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3773  * @xdpf: data to transmit
3774  * @xdp_ring: XDP Tx ring
3775  **/
3776 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3777 			      struct i40e_ring *xdp_ring)
3778 {
3779 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3780 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3781 	u16 i = 0, index = xdp_ring->next_to_use;
3782 	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3783 	struct i40e_tx_buffer *tx_bi = tx_head;
3784 	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3785 	void *data = xdpf->data;
3786 	u32 size = xdpf->len;
3787 
3788 	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3789 		xdp_ring->tx_stats.tx_busy++;
3790 		return I40E_XDP_CONSUMED;
3791 	}
3792 
3793 	tx_head->bytecount = xdp_get_frame_len(xdpf);
3794 	tx_head->gso_segs = 1;
3795 	tx_head->xdpf = xdpf;
3796 
3797 	for (;;) {
3798 		dma_addr_t dma;
3799 
3800 		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3801 		if (dma_mapping_error(xdp_ring->dev, dma))
3802 			goto unmap;
3803 
3804 		/* record length, and DMA address */
3805 		dma_unmap_len_set(tx_bi, len, size);
3806 		dma_unmap_addr_set(tx_bi, dma, dma);
3807 
3808 		tx_desc->buffer_addr = cpu_to_le64(dma);
3809 		tx_desc->cmd_type_offset_bsz =
3810 			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3811 
3812 		if (++index == xdp_ring->count)
3813 			index = 0;
3814 
3815 		if (i == nr_frags)
3816 			break;
3817 
3818 		tx_bi = &xdp_ring->tx_bi[index];
3819 		tx_desc = I40E_TX_DESC(xdp_ring, index);
3820 
3821 		data = skb_frag_address(&sinfo->frags[i]);
3822 		size = skb_frag_size(&sinfo->frags[i]);
3823 		i++;
3824 	}
3825 
3826 	tx_desc->cmd_type_offset_bsz |=
3827 		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3828 
3829 	/* Make certain all of the status bits have been updated
3830 	 * before next_to_watch is written.
3831 	 */
3832 	smp_wmb();
3833 
3834 	xdp_ring->xdp_tx_active++;
3835 
3836 	tx_head->next_to_watch = tx_desc;
3837 	xdp_ring->next_to_use = index;
3838 
3839 	return I40E_XDP_TX;
3840 
3841 unmap:
3842 	for (;;) {
3843 		tx_bi = &xdp_ring->tx_bi[index];
3844 		if (dma_unmap_len(tx_bi, len))
3845 			dma_unmap_page(xdp_ring->dev,
3846 				       dma_unmap_addr(tx_bi, dma),
3847 				       dma_unmap_len(tx_bi, len),
3848 				       DMA_TO_DEVICE);
3849 		dma_unmap_len_set(tx_bi, len, 0);
3850 		if (tx_bi == tx_head)
3851 			break;
3852 
3853 		if (!index)
3854 			index += xdp_ring->count;
3855 		index--;
3856 	}
3857 
3858 	return I40E_XDP_CONSUMED;
3859 }
3860 
3861 /**
3862  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3863  * @skb:     send buffer
3864  * @tx_ring: ring to send buffer on
3865  *
3866  * Returns NETDEV_TX_OK if sent, else an error code
3867  **/
3868 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3869 					struct i40e_ring *tx_ring)
3870 {
3871 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3872 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3873 	struct i40e_tx_buffer *first;
3874 	u32 td_offset = 0;
3875 	u32 tx_flags = 0;
3876 	u32 td_cmd = 0;
3877 	u8 hdr_len = 0;
3878 	int tso, count;
3879 	int tsyn;
3880 
3881 	/* prefetch the data, we'll need it later */
3882 	prefetch(skb->data);
3883 
3884 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3885 
3886 	count = i40e_xmit_descriptor_count(skb);
3887 	if (i40e_chk_linearize(skb, count)) {
3888 		if (__skb_linearize(skb)) {
3889 			dev_kfree_skb_any(skb);
3890 			return NETDEV_TX_OK;
3891 		}
3892 		count = i40e_txd_use_count(skb->len);
3893 		tx_ring->tx_stats.tx_linearize++;
3894 	}
3895 
3896 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3897 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3898 	 *       + 4 desc gap to avoid the cache line where head is,
3899 	 *       + 1 desc for context descriptor,
3900 	 * otherwise try next time
3901 	 */
3902 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3903 		tx_ring->tx_stats.tx_busy++;
3904 		return NETDEV_TX_BUSY;
3905 	}
3906 
3907 	/* record the location of the first descriptor for this packet */
3908 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3909 	first->skb = skb;
3910 	first->bytecount = skb->len;
3911 	first->gso_segs = 1;
3912 
3913 	/* prepare the xmit flags */
3914 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3915 		goto out_drop;
3916 
3917 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3918 
3919 	if (tso < 0)
3920 		goto out_drop;
3921 	else if (tso)
3922 		tx_flags |= I40E_TX_FLAGS_TSO;
3923 
3924 	/* Always offload the checksum, since it's in the data descriptor */
3925 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3926 				  tx_ring, &cd_tunneling);
3927 	if (tso < 0)
3928 		goto out_drop;
3929 
3930 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3931 
3932 	if (tsyn)
3933 		tx_flags |= I40E_TX_FLAGS_TSYN;
3934 
3935 	/* always enable CRC insertion offload */
3936 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3937 
3938 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3939 			   cd_tunneling, cd_l2tag2);
3940 
3941 	/* Add Flow Director ATR if it's enabled.
3942 	 *
3943 	 * NOTE: this must always be directly before the data descriptor.
3944 	 */
3945 	i40e_atr(tx_ring, skb, tx_flags);
3946 
3947 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3948 			td_cmd, td_offset))
3949 		goto cleanup_tx_tstamp;
3950 
3951 	return NETDEV_TX_OK;
3952 
3953 out_drop:
3954 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3955 	dev_kfree_skb_any(first->skb);
3956 	first->skb = NULL;
3957 cleanup_tx_tstamp:
3958 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3959 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3960 
3961 		dev_kfree_skb_any(pf->ptp_tx_skb);
3962 		pf->ptp_tx_skb = NULL;
3963 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3964 	}
3965 
3966 	return NETDEV_TX_OK;
3967 }
3968 
3969 /**
3970  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3971  * @skb:    send buffer
3972  * @netdev: network interface device structure
3973  *
3974  * Returns NETDEV_TX_OK if sent, else an error code
3975  **/
3976 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3977 {
3978 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3979 	struct i40e_vsi *vsi = np->vsi;
3980 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3981 
3982 	/* hardware can't handle really short frames, hardware padding works
3983 	 * beyond this point
3984 	 */
3985 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3986 		return NETDEV_TX_OK;
3987 
3988 	return i40e_xmit_frame_ring(skb, tx_ring);
3989 }
3990 
3991 /**
3992  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3993  * @dev: netdev
3994  * @n: number of frames
3995  * @frames: array of XDP buffer pointers
3996  * @flags: XDP extra info
3997  *
3998  * Returns number of frames successfully sent. Failed frames
3999  * will be free'ed by XDP core.
4000  *
4001  * For error cases, a negative errno code is returned and no-frames
4002  * are transmitted (caller must handle freeing frames).
4003  **/
4004 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4005 		  u32 flags)
4006 {
4007 	struct i40e_netdev_priv *np = netdev_priv(dev);
4008 	unsigned int queue_index = smp_processor_id();
4009 	struct i40e_vsi *vsi = np->vsi;
4010 	struct i40e_pf *pf = vsi->back;
4011 	struct i40e_ring *xdp_ring;
4012 	int nxmit = 0;
4013 	int i;
4014 
4015 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4016 		return -ENETDOWN;
4017 
4018 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4019 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4020 		return -ENXIO;
4021 
4022 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4023 		return -EINVAL;
4024 
4025 	xdp_ring = vsi->xdp_rings[queue_index];
4026 
4027 	for (i = 0; i < n; i++) {
4028 		struct xdp_frame *xdpf = frames[i];
4029 		int err;
4030 
4031 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4032 		if (err != I40E_XDP_TX)
4033 			break;
4034 		nxmit++;
4035 	}
4036 
4037 	if (unlikely(flags & XDP_XMIT_FLUSH))
4038 		i40e_xdp_ring_update_tail(xdp_ring);
4039 
4040 	return nxmit;
4041 }
4042