xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision d103f26a5c8599385acb2d2e01dfbaedb00fdc0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/net/intel/libie/pctype.h>
6 #include <linux/net/intel/libie/rx.h>
7 #include <linux/prefetch.h>
8 #include <linux/sctp.h>
9 #include <net/mpls.h>
10 #include <net/xdp.h>
11 #include "i40e_txrx_common.h"
12 #include "i40e_trace.h"
13 #include "i40e_xsk.h"
14 
15 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
16 /**
17  * i40e_fdir - Generate a Flow Director descriptor based on fdata
18  * @tx_ring: Tx ring to send buffer on
19  * @fdata: Flow director filter data
20  * @add: Indicate if we are adding a rule or deleting one
21  *
22  **/
23 static void i40e_fdir(struct i40e_ring *tx_ring,
24 		      struct i40e_fdir_filter *fdata, bool add)
25 {
26 	struct i40e_filter_program_desc *fdir_desc;
27 	struct i40e_pf *pf = tx_ring->vsi->back;
28 	u32 flex_ptype, dtype_cmd, vsi_id;
29 	u16 i;
30 
31 	/* grab the next descriptor */
32 	i = tx_ring->next_to_use;
33 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
34 
35 	i++;
36 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
37 
38 	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
39 
40 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
41 				 fdata->flex_off);
42 
43 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
44 
45 	/* Use LAN VSI Id if not programmed by user */
46 	vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
47 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
48 
49 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
50 
51 	dtype_cmd |= add ?
52 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
53 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
54 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
55 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
56 
57 	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
58 
59 	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
60 				fdata->fd_status);
61 
62 	if (fdata->cnt_index) {
63 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
64 		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
65 					fdata->cnt_index);
66 	}
67 
68 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
69 	fdir_desc->rsvd = cpu_to_le32(0);
70 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
71 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
72 }
73 
74 #define I40E_FD_CLEAN_DELAY 10
75 /**
76  * i40e_program_fdir_filter - Program a Flow Director filter
77  * @fdir_data: Packet data that will be filter parameters
78  * @raw_packet: the pre-allocated packet buffer for FDir
79  * @pf: The PF pointer
80  * @add: True for add/update, False for remove
81  **/
82 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
83 				    u8 *raw_packet, struct i40e_pf *pf,
84 				    bool add)
85 {
86 	struct i40e_tx_buffer *tx_buf, *first;
87 	struct i40e_tx_desc *tx_desc;
88 	struct i40e_ring *tx_ring;
89 	struct i40e_vsi *vsi;
90 	struct device *dev;
91 	dma_addr_t dma;
92 	u32 td_cmd = 0;
93 	u16 i;
94 
95 	/* find existing FDIR VSI */
96 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
97 	if (!vsi)
98 		return -ENOENT;
99 
100 	tx_ring = vsi->tx_rings[0];
101 	dev = tx_ring->dev;
102 
103 	/* we need two descriptors to add/del a filter and we can wait */
104 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
105 		if (!i)
106 			return -EAGAIN;
107 		msleep_interruptible(1);
108 	}
109 
110 	dma = dma_map_single(dev, raw_packet,
111 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
112 	if (dma_mapping_error(dev, dma))
113 		goto dma_fail;
114 
115 	/* grab the next descriptor */
116 	i = tx_ring->next_to_use;
117 	first = &tx_ring->tx_bi[i];
118 	i40e_fdir(tx_ring, fdir_data, add);
119 
120 	/* Now program a dummy descriptor */
121 	i = tx_ring->next_to_use;
122 	tx_desc = I40E_TX_DESC(tx_ring, i);
123 	tx_buf = &tx_ring->tx_bi[i];
124 
125 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
126 
127 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
128 
129 	/* record length, and DMA address */
130 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
131 	dma_unmap_addr_set(tx_buf, dma, dma);
132 
133 	tx_desc->buffer_addr = cpu_to_le64(dma);
134 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
135 
136 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
137 	tx_buf->raw_buf = (void *)raw_packet;
138 
139 	tx_desc->cmd_type_offset_bsz =
140 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
141 
142 	/* Force memory writes to complete before letting h/w
143 	 * know there are new descriptors to fetch.
144 	 */
145 	wmb();
146 
147 	/* Mark the data descriptor to be watched */
148 	first->next_to_watch = tx_desc;
149 
150 	writel(tx_ring->next_to_use, tx_ring->tail);
151 	return 0;
152 
153 dma_fail:
154 	return -1;
155 }
156 
157 /**
158  * i40e_create_dummy_packet - Constructs dummy packet for HW
159  * @dummy_packet: preallocated space for dummy packet
160  * @ipv4: is layer 3 packet of version 4 or 6
161  * @l4proto: next level protocol used in data portion of l3
162  * @data: filter data
163  *
164  * Returns address of layer 4 protocol dummy packet.
165  **/
166 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
167 				      struct i40e_fdir_filter *data)
168 {
169 	bool is_vlan = !!data->vlan_tag;
170 	struct vlan_hdr vlan = {};
171 	struct ipv6hdr ipv6 = {};
172 	struct ethhdr eth = {};
173 	struct iphdr ip = {};
174 	u8 *tmp;
175 
176 	if (ipv4) {
177 		eth.h_proto = cpu_to_be16(ETH_P_IP);
178 		ip.protocol = l4proto;
179 		ip.version = 0x4;
180 		ip.ihl = 0x5;
181 
182 		ip.daddr = data->dst_ip;
183 		ip.saddr = data->src_ip;
184 	} else {
185 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
186 		ipv6.nexthdr = l4proto;
187 		ipv6.version = 0x6;
188 
189 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
190 		       sizeof(__be32) * 4);
191 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
192 		       sizeof(__be32) * 4);
193 	}
194 
195 	if (is_vlan) {
196 		vlan.h_vlan_TCI = data->vlan_tag;
197 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
198 		eth.h_proto = data->vlan_etype;
199 	}
200 
201 	tmp = dummy_packet;
202 	memcpy(tmp, &eth, sizeof(eth));
203 	tmp += sizeof(eth);
204 
205 	if (is_vlan) {
206 		memcpy(tmp, &vlan, sizeof(vlan));
207 		tmp += sizeof(vlan);
208 	}
209 
210 	if (ipv4) {
211 		memcpy(tmp, &ip, sizeof(ip));
212 		tmp += sizeof(ip);
213 	} else {
214 		memcpy(tmp, &ipv6, sizeof(ipv6));
215 		tmp += sizeof(ipv6);
216 	}
217 
218 	return tmp;
219 }
220 
221 /**
222  * i40e_create_dummy_udp_packet - helper function to create UDP packet
223  * @raw_packet: preallocated space for dummy packet
224  * @ipv4: is layer 3 packet of version 4 or 6
225  * @l4proto: next level protocol used in data portion of l3
226  * @data: filter data
227  *
228  * Helper function to populate udp fields.
229  **/
230 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
231 					 struct i40e_fdir_filter *data)
232 {
233 	struct udphdr *udp;
234 	u8 *tmp;
235 
236 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
237 	udp = (struct udphdr *)(tmp);
238 	udp->dest = data->dst_port;
239 	udp->source = data->src_port;
240 }
241 
242 /**
243  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
244  * @raw_packet: preallocated space for dummy packet
245  * @ipv4: is layer 3 packet of version 4 or 6
246  * @l4proto: next level protocol used in data portion of l3
247  * @data: filter data
248  *
249  * Helper function to populate tcp fields.
250  **/
251 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
252 					 struct i40e_fdir_filter *data)
253 {
254 	struct tcphdr *tcp;
255 	u8 *tmp;
256 	/* Dummy tcp packet */
257 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
258 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
259 
260 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
261 
262 	tcp = (struct tcphdr *)tmp;
263 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
264 	tcp->dest = data->dst_port;
265 	tcp->source = data->src_port;
266 }
267 
268 /**
269  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
270  * @raw_packet: preallocated space for dummy packet
271  * @ipv4: is layer 3 packet of version 4 or 6
272  * @l4proto: next level protocol used in data portion of l3
273  * @data: filter data
274  *
275  * Helper function to populate sctp fields.
276  **/
277 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
278 					  u8 l4proto,
279 					  struct i40e_fdir_filter *data)
280 {
281 	struct sctphdr *sctp;
282 	u8 *tmp;
283 
284 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
285 
286 	sctp = (struct sctphdr *)tmp;
287 	sctp->dest = data->dst_port;
288 	sctp->source = data->src_port;
289 }
290 
291 /**
292  * i40e_prepare_fdir_filter - Prepare and program fdir filter
293  * @pf: physical function to attach filter to
294  * @fd_data: filter data
295  * @add: add or delete filter
296  * @packet_addr: address of dummy packet, used in filtering
297  * @payload_offset: offset from dummy packet address to user defined data
298  * @pctype: Packet type for which filter is used
299  *
300  * Helper function to offset data of dummy packet, program it and
301  * handle errors.
302  **/
303 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
304 				    struct i40e_fdir_filter *fd_data,
305 				    bool add, char *packet_addr,
306 				    int payload_offset, u8 pctype)
307 {
308 	int ret;
309 
310 	if (fd_data->flex_filter) {
311 		u8 *payload;
312 		__be16 pattern = fd_data->flex_word;
313 		u16 off = fd_data->flex_offset;
314 
315 		payload = packet_addr + payload_offset;
316 
317 		/* If user provided vlan, offset payload by vlan header length */
318 		if (!!fd_data->vlan_tag)
319 			payload += VLAN_HLEN;
320 
321 		*((__force __be16 *)(payload + off)) = pattern;
322 	}
323 
324 	fd_data->pctype = pctype;
325 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
326 	if (ret) {
327 		dev_info(&pf->pdev->dev,
328 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
329 			 fd_data->pctype, fd_data->fd_id, ret);
330 		/* Free the packet buffer since it wasn't added to the ring */
331 		return -EOPNOTSUPP;
332 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
333 		if (add)
334 			dev_info(&pf->pdev->dev,
335 				 "Filter OK for PCTYPE %d loc = %d\n",
336 				 fd_data->pctype, fd_data->fd_id);
337 		else
338 			dev_info(&pf->pdev->dev,
339 				 "Filter deleted for PCTYPE %d loc = %d\n",
340 				 fd_data->pctype, fd_data->fd_id);
341 	}
342 
343 	return ret;
344 }
345 
346 /**
347  * i40e_change_filter_num - Prepare and program fdir filter
348  * @ipv4: is layer 3 packet of version 4 or 6
349  * @add: add or delete filter
350  * @ipv4_filter_num: field to update
351  * @ipv6_filter_num: field to update
352  *
353  * Update filter number field for pf.
354  **/
355 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
356 				   u16 *ipv6_filter_num)
357 {
358 	if (add) {
359 		if (ipv4)
360 			(*ipv4_filter_num)++;
361 		else
362 			(*ipv6_filter_num)++;
363 	} else {
364 		if (ipv4)
365 			(*ipv4_filter_num)--;
366 		else
367 			(*ipv6_filter_num)--;
368 	}
369 }
370 
371 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
372 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
373 /**
374  * i40e_add_del_fdir_udp - Add/Remove UDP filters
375  * @vsi: pointer to the targeted VSI
376  * @fd_data: the flow director data required for the FDir descriptor
377  * @add: true adds a filter, false removes it
378  * @ipv4: true is v4, false is v6
379  *
380  * Returns 0 if the filters were successfully added or removed
381  **/
382 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
383 				 struct i40e_fdir_filter *fd_data,
384 				 bool add,
385 				 bool ipv4)
386 {
387 	struct i40e_pf *pf = vsi->back;
388 	u8 *raw_packet;
389 	int ret;
390 
391 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
392 	if (!raw_packet)
393 		return -ENOMEM;
394 
395 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
396 
397 	if (ipv4)
398 		ret = i40e_prepare_fdir_filter
399 			(pf, fd_data, add, raw_packet,
400 			 I40E_UDPIP_DUMMY_PACKET_LEN,
401 			 LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP);
402 	else
403 		ret = i40e_prepare_fdir_filter
404 			(pf, fd_data, add, raw_packet,
405 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
406 			 LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP);
407 
408 	if (ret) {
409 		kfree(raw_packet);
410 		return ret;
411 	}
412 
413 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
414 			       &pf->fd_udp6_filter_cnt);
415 
416 	return 0;
417 }
418 
419 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
420 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
421 /**
422  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
423  * @vsi: pointer to the targeted VSI
424  * @fd_data: the flow director data required for the FDir descriptor
425  * @add: true adds a filter, false removes it
426  * @ipv4: true is v4, false is v6
427  *
428  * Returns 0 if the filters were successfully added or removed
429  **/
430 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
431 				 struct i40e_fdir_filter *fd_data,
432 				 bool add,
433 				 bool ipv4)
434 {
435 	struct i40e_pf *pf = vsi->back;
436 	u8 *raw_packet;
437 	int ret;
438 
439 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
440 	if (!raw_packet)
441 		return -ENOMEM;
442 
443 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
444 	if (ipv4)
445 		ret = i40e_prepare_fdir_filter
446 			(pf, fd_data, add, raw_packet,
447 			 I40E_TCPIP_DUMMY_PACKET_LEN,
448 			 LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP);
449 	else
450 		ret = i40e_prepare_fdir_filter
451 			(pf, fd_data, add, raw_packet,
452 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
453 			 LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP);
454 
455 	if (ret) {
456 		kfree(raw_packet);
457 		return ret;
458 	}
459 
460 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
461 			       &pf->fd_tcp6_filter_cnt);
462 
463 	if (add) {
464 		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
465 		    I40E_DEBUG_FD & pf->hw.debug_mask)
466 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
467 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
468 	}
469 	return 0;
470 }
471 
472 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
473 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
474 /**
475  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
476  * a specific flow spec
477  * @vsi: pointer to the targeted VSI
478  * @fd_data: the flow director data required for the FDir descriptor
479  * @add: true adds a filter, false removes it
480  * @ipv4: true is v4, false is v6
481  *
482  * Returns 0 if the filters were successfully added or removed
483  **/
484 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
485 				  struct i40e_fdir_filter *fd_data,
486 				  bool add,
487 				  bool ipv4)
488 {
489 	struct i40e_pf *pf = vsi->back;
490 	u8 *raw_packet;
491 	int ret;
492 
493 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
494 	if (!raw_packet)
495 		return -ENOMEM;
496 
497 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
498 
499 	if (ipv4)
500 		ret = i40e_prepare_fdir_filter
501 			(pf, fd_data, add, raw_packet,
502 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
503 			 LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP);
504 	else
505 		ret = i40e_prepare_fdir_filter
506 			(pf, fd_data, add, raw_packet,
507 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
508 			 LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP);
509 
510 	if (ret) {
511 		kfree(raw_packet);
512 		return ret;
513 	}
514 
515 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
516 			       &pf->fd_sctp6_filter_cnt);
517 
518 	return 0;
519 }
520 
521 #define I40E_IP_DUMMY_PACKET_LEN	34
522 #define I40E_IP6_DUMMY_PACKET_LEN	54
523 /**
524  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
525  * a specific flow spec
526  * @vsi: pointer to the targeted VSI
527  * @fd_data: the flow director data required for the FDir descriptor
528  * @add: true adds a filter, false removes it
529  * @ipv4: true is v4, false is v6
530  *
531  * Returns 0 if the filters were successfully added or removed
532  **/
533 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
534 				struct i40e_fdir_filter *fd_data,
535 				bool add,
536 				bool ipv4)
537 {
538 	struct i40e_pf *pf = vsi->back;
539 	int payload_offset;
540 	u8 *raw_packet;
541 	int iter_start;
542 	int iter_end;
543 	int ret;
544 	int i;
545 
546 	if (ipv4) {
547 		iter_start = LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER;
548 		iter_end = LIBIE_FILTER_PCTYPE_FRAG_IPV4;
549 	} else {
550 		iter_start = LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER;
551 		iter_end = LIBIE_FILTER_PCTYPE_FRAG_IPV6;
552 	}
553 
554 	for (i = iter_start; i <= iter_end; i++) {
555 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
556 		if (!raw_packet)
557 			return -ENOMEM;
558 
559 		/* IPv6 no header option differs from IPv4 */
560 		(void)i40e_create_dummy_packet
561 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
562 			 fd_data);
563 
564 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
565 			I40E_IP6_DUMMY_PACKET_LEN;
566 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
567 					       payload_offset, i);
568 		if (ret)
569 			goto err;
570 	}
571 
572 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
573 			       &pf->fd_ip6_filter_cnt);
574 
575 	return 0;
576 err:
577 	kfree(raw_packet);
578 	return ret;
579 }
580 
581 /**
582  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
583  * @vsi: pointer to the targeted VSI
584  * @input: filter to add or delete
585  * @add: true adds a filter, false removes it
586  *
587  **/
588 int i40e_add_del_fdir(struct i40e_vsi *vsi,
589 		      struct i40e_fdir_filter *input, bool add)
590 {
591 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
592 	struct i40e_pf *pf = vsi->back;
593 	int ret;
594 
595 	switch (input->flow_type & ~FLOW_EXT) {
596 	case TCP_V4_FLOW:
597 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
598 		break;
599 	case UDP_V4_FLOW:
600 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
601 		break;
602 	case SCTP_V4_FLOW:
603 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
604 		break;
605 	case TCP_V6_FLOW:
606 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
607 		break;
608 	case UDP_V6_FLOW:
609 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
610 		break;
611 	case SCTP_V6_FLOW:
612 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
613 		break;
614 	case IP_USER_FLOW:
615 		switch (input->ipl4_proto) {
616 		case IPPROTO_TCP:
617 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
618 			break;
619 		case IPPROTO_UDP:
620 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
621 			break;
622 		case IPPROTO_SCTP:
623 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
624 			break;
625 		case IPPROTO_IP:
626 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
627 			break;
628 		default:
629 			/* We cannot support masking based on protocol */
630 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
631 				 input->ipl4_proto);
632 			return -EINVAL;
633 		}
634 		break;
635 	case IPV6_USER_FLOW:
636 		switch (input->ipl4_proto) {
637 		case IPPROTO_TCP:
638 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
639 			break;
640 		case IPPROTO_UDP:
641 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
642 			break;
643 		case IPPROTO_SCTP:
644 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
645 			break;
646 		case IPPROTO_IP:
647 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
648 			break;
649 		default:
650 			/* We cannot support masking based on protocol */
651 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
652 				 input->ipl4_proto);
653 			return -EINVAL;
654 		}
655 		break;
656 	default:
657 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
658 			 input->flow_type);
659 		return -EINVAL;
660 	}
661 
662 	/* The buffer allocated here will be normally be freed by
663 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
664 	 * completion. In the event of an error adding the buffer to the FDIR
665 	 * ring, it will immediately be freed. It may also be freed by
666 	 * i40e_clean_tx_ring() when closing the VSI.
667 	 */
668 	return ret;
669 }
670 
671 /**
672  * i40e_fd_handle_status - check the Programming Status for FD
673  * @rx_ring: the Rx ring for this descriptor
674  * @qword0_raw: qword0
675  * @qword1: qword1 after le_to_cpu
676  * @prog_id: the id originally used for programming
677  *
678  * This is used to verify if the FD programming or invalidation
679  * requested by SW to the HW is successful or not and take actions accordingly.
680  **/
681 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
682 				  u64 qword1, u8 prog_id)
683 {
684 	struct i40e_pf *pf = rx_ring->vsi->back;
685 	struct pci_dev *pdev = pf->pdev;
686 	struct i40e_16b_rx_wb_qw0 *qw0;
687 	u32 fcnt_prog, fcnt_avail;
688 	u32 error;
689 
690 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
691 	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
692 
693 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
694 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
695 		if (qw0->hi_dword.fd_id != 0 ||
696 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
697 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
698 				 pf->fd_inv);
699 
700 		/* Check if the programming error is for ATR.
701 		 * If so, auto disable ATR and set a state for
702 		 * flush in progress. Next time we come here if flush is in
703 		 * progress do nothing, once flush is complete the state will
704 		 * be cleared.
705 		 */
706 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
707 			return;
708 
709 		pf->fd_add_err++;
710 		/* store the current atr filter count */
711 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
712 
713 		if (qw0->hi_dword.fd_id == 0 &&
714 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
715 			/* These set_bit() calls aren't atomic with the
716 			 * test_bit() here, but worse case we potentially
717 			 * disable ATR and queue a flush right after SB
718 			 * support is re-enabled. That shouldn't cause an
719 			 * issue in practice
720 			 */
721 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
722 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
723 		}
724 
725 		/* filter programming failed most likely due to table full */
726 		fcnt_prog = i40e_get_global_fd_count(pf);
727 		fcnt_avail = pf->fdir_pf_filter_count;
728 		/* If ATR is running fcnt_prog can quickly change,
729 		 * if we are very close to full, it makes sense to disable
730 		 * FD ATR/SB and then re-enable it when there is room.
731 		 */
732 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
733 			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
734 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
735 					      pf->state))
736 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
737 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
738 		}
739 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
740 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
741 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
742 				 qw0->hi_dword.fd_id);
743 	}
744 }
745 
746 /**
747  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
748  * @ring:      the ring that owns the buffer
749  * @tx_buffer: the buffer to free
750  **/
751 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
752 					    struct i40e_tx_buffer *tx_buffer)
753 {
754 	if (tx_buffer->skb) {
755 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
756 			kfree(tx_buffer->raw_buf);
757 		else if (ring_is_xdp(ring))
758 			xdp_return_frame(tx_buffer->xdpf);
759 		else
760 			dev_kfree_skb_any(tx_buffer->skb);
761 		if (dma_unmap_len(tx_buffer, len))
762 			dma_unmap_single(ring->dev,
763 					 dma_unmap_addr(tx_buffer, dma),
764 					 dma_unmap_len(tx_buffer, len),
765 					 DMA_TO_DEVICE);
766 	} else if (dma_unmap_len(tx_buffer, len)) {
767 		dma_unmap_page(ring->dev,
768 			       dma_unmap_addr(tx_buffer, dma),
769 			       dma_unmap_len(tx_buffer, len),
770 			       DMA_TO_DEVICE);
771 	}
772 
773 	tx_buffer->next_to_watch = NULL;
774 	tx_buffer->skb = NULL;
775 	dma_unmap_len_set(tx_buffer, len, 0);
776 	/* tx_buffer must be completely set up in the transmit path */
777 }
778 
779 /**
780  * i40e_clean_tx_ring - Free any empty Tx buffers
781  * @tx_ring: ring to be cleaned
782  **/
783 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
784 {
785 	unsigned long bi_size;
786 	u16 i;
787 
788 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
789 		i40e_xsk_clean_tx_ring(tx_ring);
790 	} else {
791 		/* ring already cleared, nothing to do */
792 		if (!tx_ring->tx_bi)
793 			return;
794 
795 		/* Free all the Tx ring sk_buffs */
796 		for (i = 0; i < tx_ring->count; i++)
797 			i40e_unmap_and_free_tx_resource(tx_ring,
798 							&tx_ring->tx_bi[i]);
799 	}
800 
801 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
802 	memset(tx_ring->tx_bi, 0, bi_size);
803 
804 	/* Zero out the descriptor ring */
805 	memset(tx_ring->desc, 0, tx_ring->size);
806 
807 	tx_ring->next_to_use = 0;
808 	tx_ring->next_to_clean = 0;
809 
810 	if (!tx_ring->netdev)
811 		return;
812 
813 	/* cleanup Tx queue statistics */
814 	netdev_tx_reset_queue(txring_txq(tx_ring));
815 }
816 
817 /**
818  * i40e_free_tx_resources - Free Tx resources per queue
819  * @tx_ring: Tx descriptor ring for a specific queue
820  *
821  * Free all transmit software resources
822  **/
823 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
824 {
825 	i40e_clean_tx_ring(tx_ring);
826 	kfree(tx_ring->tx_bi);
827 	tx_ring->tx_bi = NULL;
828 
829 	if (tx_ring->desc) {
830 		dma_free_coherent(tx_ring->dev, tx_ring->size,
831 				  tx_ring->desc, tx_ring->dma);
832 		tx_ring->desc = NULL;
833 	}
834 }
835 
836 /**
837  * i40e_get_tx_pending - how many tx descriptors not processed
838  * @ring: the ring of descriptors
839  * @in_sw: use SW variables
840  *
841  * Since there is no access to the ring head register
842  * in XL710, we need to use our local copies
843  **/
844 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
845 {
846 	u32 head, tail;
847 
848 	if (!in_sw) {
849 		head = i40e_get_head(ring);
850 		tail = readl(ring->tail);
851 	} else {
852 		head = ring->next_to_clean;
853 		tail = ring->next_to_use;
854 	}
855 
856 	if (head != tail)
857 		return (head < tail) ?
858 			tail - head : (tail + ring->count - head);
859 
860 	return 0;
861 }
862 
863 /**
864  * i40e_detect_recover_hung - Function to detect and recover hung_queues
865  * @pf: pointer to PF struct
866  *
867  * LAN VSI has netdev and netdev has TX queues. This function is to check
868  * each of those TX queues if they are hung, trigger recovery by issuing
869  * SW interrupt.
870  **/
871 void i40e_detect_recover_hung(struct i40e_pf *pf)
872 {
873 	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
874 	struct i40e_ring *tx_ring = NULL;
875 	struct net_device *netdev;
876 	unsigned int i;
877 	int packets;
878 
879 	if (!vsi)
880 		return;
881 
882 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
883 		return;
884 
885 	netdev = vsi->netdev;
886 	if (!netdev)
887 		return;
888 
889 	if (!netif_carrier_ok(netdev))
890 		return;
891 
892 	for (i = 0; i < vsi->num_queue_pairs; i++) {
893 		tx_ring = vsi->tx_rings[i];
894 		if (tx_ring && tx_ring->desc) {
895 			/* If packet counter has not changed the queue is
896 			 * likely stalled, so force an interrupt for this
897 			 * queue.
898 			 *
899 			 * prev_pkt_ctr would be negative if there was no
900 			 * pending work.
901 			 */
902 			packets = tx_ring->stats.packets & INT_MAX;
903 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
904 				i40e_force_wb(vsi, tx_ring->q_vector);
905 				continue;
906 			}
907 
908 			/* Memory barrier between read of packet count and call
909 			 * to i40e_get_tx_pending()
910 			 */
911 			smp_rmb();
912 			tx_ring->tx_stats.prev_pkt_ctr =
913 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
914 		}
915 	}
916 }
917 
918 /**
919  * i40e_clean_tx_irq - Reclaim resources after transmit completes
920  * @vsi: the VSI we care about
921  * @tx_ring: Tx ring to clean
922  * @napi_budget: Used to determine if we are in netpoll
923  * @tx_cleaned: Out parameter set to the number of TXes cleaned
924  *
925  * Returns true if there's any budget left (e.g. the clean is finished)
926  **/
927 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
928 			      struct i40e_ring *tx_ring, int napi_budget,
929 			      unsigned int *tx_cleaned)
930 {
931 	int i = tx_ring->next_to_clean;
932 	struct i40e_tx_buffer *tx_buf;
933 	struct i40e_tx_desc *tx_head;
934 	struct i40e_tx_desc *tx_desc;
935 	unsigned int total_bytes = 0, total_packets = 0;
936 	unsigned int budget = vsi->work_limit;
937 
938 	tx_buf = &tx_ring->tx_bi[i];
939 	tx_desc = I40E_TX_DESC(tx_ring, i);
940 	i -= tx_ring->count;
941 
942 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
943 
944 	do {
945 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
946 
947 		/* if next_to_watch is not set then there is no work pending */
948 		if (!eop_desc)
949 			break;
950 
951 		/* prevent any other reads prior to eop_desc */
952 		smp_rmb();
953 
954 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
955 		/* we have caught up to head, no work left to do */
956 		if (tx_head == tx_desc)
957 			break;
958 
959 		/* clear next_to_watch to prevent false hangs */
960 		tx_buf->next_to_watch = NULL;
961 
962 		/* update the statistics for this packet */
963 		total_bytes += tx_buf->bytecount;
964 		total_packets += tx_buf->gso_segs;
965 
966 		/* free the skb/XDP data */
967 		if (ring_is_xdp(tx_ring))
968 			xdp_return_frame(tx_buf->xdpf);
969 		else
970 			napi_consume_skb(tx_buf->skb, napi_budget);
971 
972 		/* unmap skb header data */
973 		dma_unmap_single(tx_ring->dev,
974 				 dma_unmap_addr(tx_buf, dma),
975 				 dma_unmap_len(tx_buf, len),
976 				 DMA_TO_DEVICE);
977 
978 		/* clear tx_buffer data */
979 		tx_buf->skb = NULL;
980 		dma_unmap_len_set(tx_buf, len, 0);
981 
982 		/* unmap remaining buffers */
983 		while (tx_desc != eop_desc) {
984 			i40e_trace(clean_tx_irq_unmap,
985 				   tx_ring, tx_desc, tx_buf);
986 
987 			tx_buf++;
988 			tx_desc++;
989 			i++;
990 			if (unlikely(!i)) {
991 				i -= tx_ring->count;
992 				tx_buf = tx_ring->tx_bi;
993 				tx_desc = I40E_TX_DESC(tx_ring, 0);
994 			}
995 
996 			/* unmap any remaining paged data */
997 			if (dma_unmap_len(tx_buf, len)) {
998 				dma_unmap_page(tx_ring->dev,
999 					       dma_unmap_addr(tx_buf, dma),
1000 					       dma_unmap_len(tx_buf, len),
1001 					       DMA_TO_DEVICE);
1002 				dma_unmap_len_set(tx_buf, len, 0);
1003 			}
1004 		}
1005 
1006 		/* move us one more past the eop_desc for start of next pkt */
1007 		tx_buf++;
1008 		tx_desc++;
1009 		i++;
1010 		if (unlikely(!i)) {
1011 			i -= tx_ring->count;
1012 			tx_buf = tx_ring->tx_bi;
1013 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1014 		}
1015 
1016 		prefetch(tx_desc);
1017 
1018 		/* update budget accounting */
1019 		budget--;
1020 	} while (likely(budget));
1021 
1022 	i += tx_ring->count;
1023 	tx_ring->next_to_clean = i;
1024 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1025 	i40e_arm_wb(tx_ring, vsi, budget);
1026 
1027 	if (ring_is_xdp(tx_ring))
1028 		return !!budget;
1029 
1030 	/* notify netdev of completed buffers */
1031 	netdev_tx_completed_queue(txring_txq(tx_ring),
1032 				  total_packets, total_bytes);
1033 
1034 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1035 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1036 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1037 		/* Make sure that anybody stopping the queue after this
1038 		 * sees the new next_to_clean.
1039 		 */
1040 		smp_mb();
1041 		if (__netif_subqueue_stopped(tx_ring->netdev,
1042 					     tx_ring->queue_index) &&
1043 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1044 			netif_wake_subqueue(tx_ring->netdev,
1045 					    tx_ring->queue_index);
1046 			++tx_ring->tx_stats.restart_queue;
1047 		}
1048 	}
1049 
1050 	*tx_cleaned = total_packets;
1051 	return !!budget;
1052 }
1053 
1054 /**
1055  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1056  * @vsi: the VSI we care about
1057  * @q_vector: the vector on which to enable writeback
1058  *
1059  **/
1060 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1061 				  struct i40e_q_vector *q_vector)
1062 {
1063 	u16 flags = q_vector->tx.ring[0].flags;
1064 	u32 val;
1065 
1066 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1067 		return;
1068 
1069 	if (q_vector->arm_wb_state)
1070 		return;
1071 
1072 	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1073 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1074 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1075 
1076 		wr32(&vsi->back->hw,
1077 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1078 		     val);
1079 	} else {
1080 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1081 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1082 
1083 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1084 	}
1085 	q_vector->arm_wb_state = true;
1086 }
1087 
1088 /**
1089  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1090  * @vsi: the VSI we care about
1091  * @q_vector: the vector  on which to force writeback
1092  *
1093  **/
1094 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1095 {
1096 	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1097 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1098 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1099 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1100 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1101 			  /* allow 00 to be written to the index */
1102 
1103 		wr32(&vsi->back->hw,
1104 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1105 	} else {
1106 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1107 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1108 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1109 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1110 			/* allow 00 to be written to the index */
1111 
1112 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1113 	}
1114 }
1115 
1116 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1117 					struct i40e_ring_container *rc)
1118 {
1119 	return &q_vector->rx == rc;
1120 }
1121 
1122 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1123 {
1124 	unsigned int divisor;
1125 
1126 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1127 	case I40E_LINK_SPEED_40GB:
1128 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1129 		break;
1130 	case I40E_LINK_SPEED_25GB:
1131 	case I40E_LINK_SPEED_20GB:
1132 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1133 		break;
1134 	default:
1135 	case I40E_LINK_SPEED_10GB:
1136 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1137 		break;
1138 	case I40E_LINK_SPEED_1GB:
1139 	case I40E_LINK_SPEED_100MB:
1140 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1141 		break;
1142 	}
1143 
1144 	return divisor;
1145 }
1146 
1147 /**
1148  * i40e_update_itr - update the dynamic ITR value based on statistics
1149  * @q_vector: structure containing interrupt and ring information
1150  * @rc: structure containing ring performance data
1151  *
1152  * Stores a new ITR value based on packets and byte
1153  * counts during the last interrupt.  The advantage of per interrupt
1154  * computation is faster updates and more accurate ITR for the current
1155  * traffic pattern.  Constants in this function were computed
1156  * based on theoretical maximum wire speed and thresholds were set based
1157  * on testing data as well as attempting to minimize response time
1158  * while increasing bulk throughput.
1159  **/
1160 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1161 			    struct i40e_ring_container *rc)
1162 {
1163 	unsigned int avg_wire_size, packets, bytes, itr;
1164 	unsigned long next_update = jiffies;
1165 
1166 	/* If we don't have any rings just leave ourselves set for maximum
1167 	 * possible latency so we take ourselves out of the equation.
1168 	 */
1169 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1170 		return;
1171 
1172 	/* For Rx we want to push the delay up and default to low latency.
1173 	 * for Tx we want to pull the delay down and default to high latency.
1174 	 */
1175 	itr = i40e_container_is_rx(q_vector, rc) ?
1176 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1177 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1178 
1179 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1180 	 * that either packets are coming in so slow there hasn't been
1181 	 * any work, or that there is so much work that NAPI is dealing
1182 	 * with interrupt moderation and we don't need to do anything.
1183 	 */
1184 	if (time_after(next_update, rc->next_update))
1185 		goto clear_counts;
1186 
1187 	/* If itr_countdown is set it means we programmed an ITR within
1188 	 * the last 4 interrupt cycles. This has a side effect of us
1189 	 * potentially firing an early interrupt. In order to work around
1190 	 * this we need to throw out any data received for a few
1191 	 * interrupts following the update.
1192 	 */
1193 	if (q_vector->itr_countdown) {
1194 		itr = rc->target_itr;
1195 		goto clear_counts;
1196 	}
1197 
1198 	packets = rc->total_packets;
1199 	bytes = rc->total_bytes;
1200 
1201 	if (i40e_container_is_rx(q_vector, rc)) {
1202 		/* If Rx there are 1 to 4 packets and bytes are less than
1203 		 * 9000 assume insufficient data to use bulk rate limiting
1204 		 * approach unless Tx is already in bulk rate limiting. We
1205 		 * are likely latency driven.
1206 		 */
1207 		if (packets && packets < 4 && bytes < 9000 &&
1208 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1209 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1210 			goto adjust_by_size;
1211 		}
1212 	} else if (packets < 4) {
1213 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1214 		 * bulk mode and we are receiving 4 or fewer packets just
1215 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1216 		 * that the Rx can relax.
1217 		 */
1218 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1219 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1220 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1221 			goto clear_counts;
1222 	} else if (packets > 32) {
1223 		/* If we have processed over 32 packets in a single interrupt
1224 		 * for Tx assume we need to switch over to "bulk" mode.
1225 		 */
1226 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1227 	}
1228 
1229 	/* We have no packets to actually measure against. This means
1230 	 * either one of the other queues on this vector is active or
1231 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1232 	 *
1233 	 * Between 4 and 56 we can assume that our current interrupt delay
1234 	 * is only slightly too low. As such we should increase it by a small
1235 	 * fixed amount.
1236 	 */
1237 	if (packets < 56) {
1238 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1239 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1240 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1241 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1242 		}
1243 		goto clear_counts;
1244 	}
1245 
1246 	if (packets <= 256) {
1247 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1248 		itr &= I40E_ITR_MASK;
1249 
1250 		/* Between 56 and 112 is our "goldilocks" zone where we are
1251 		 * working out "just right". Just report that our current
1252 		 * ITR is good for us.
1253 		 */
1254 		if (packets <= 112)
1255 			goto clear_counts;
1256 
1257 		/* If packet count is 128 or greater we are likely looking
1258 		 * at a slight overrun of the delay we want. Try halving
1259 		 * our delay to see if that will cut the number of packets
1260 		 * in half per interrupt.
1261 		 */
1262 		itr /= 2;
1263 		itr &= I40E_ITR_MASK;
1264 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1265 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1266 
1267 		goto clear_counts;
1268 	}
1269 
1270 	/* The paths below assume we are dealing with a bulk ITR since
1271 	 * number of packets is greater than 256. We are just going to have
1272 	 * to compute a value and try to bring the count under control,
1273 	 * though for smaller packet sizes there isn't much we can do as
1274 	 * NAPI polling will likely be kicking in sooner rather than later.
1275 	 */
1276 	itr = I40E_ITR_ADAPTIVE_BULK;
1277 
1278 adjust_by_size:
1279 	/* If packet counts are 256 or greater we can assume we have a gross
1280 	 * overestimation of what the rate should be. Instead of trying to fine
1281 	 * tune it just use the formula below to try and dial in an exact value
1282 	 * give the current packet size of the frame.
1283 	 */
1284 	avg_wire_size = bytes / packets;
1285 
1286 	/* The following is a crude approximation of:
1287 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1288 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1289 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1290 	 *
1291 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1292 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1293 	 * formula down to
1294 	 *
1295 	 *  (170 * (size + 24)) / (size + 640) = ITR
1296 	 *
1297 	 * We first do some math on the packet size and then finally bitshift
1298 	 * by 8 after rounding up. We also have to account for PCIe link speed
1299 	 * difference as ITR scales based on this.
1300 	 */
1301 	if (avg_wire_size <= 60) {
1302 		/* Start at 250k ints/sec */
1303 		avg_wire_size = 4096;
1304 	} else if (avg_wire_size <= 380) {
1305 		/* 250K ints/sec to 60K ints/sec */
1306 		avg_wire_size *= 40;
1307 		avg_wire_size += 1696;
1308 	} else if (avg_wire_size <= 1084) {
1309 		/* 60K ints/sec to 36K ints/sec */
1310 		avg_wire_size *= 15;
1311 		avg_wire_size += 11452;
1312 	} else if (avg_wire_size <= 1980) {
1313 		/* 36K ints/sec to 30K ints/sec */
1314 		avg_wire_size *= 5;
1315 		avg_wire_size += 22420;
1316 	} else {
1317 		/* plateau at a limit of 30K ints/sec */
1318 		avg_wire_size = 32256;
1319 	}
1320 
1321 	/* If we are in low latency mode halve our delay which doubles the
1322 	 * rate to somewhere between 100K to 16K ints/sec
1323 	 */
1324 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1325 		avg_wire_size /= 2;
1326 
1327 	/* Resultant value is 256 times larger than it needs to be. This
1328 	 * gives us room to adjust the value as needed to either increase
1329 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1330 	 *
1331 	 * Use addition as we have already recorded the new latency flag
1332 	 * for the ITR value.
1333 	 */
1334 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1335 	       I40E_ITR_ADAPTIVE_MIN_INC;
1336 
1337 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1338 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1339 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1340 	}
1341 
1342 clear_counts:
1343 	/* write back value */
1344 	rc->target_itr = itr;
1345 
1346 	/* next update should occur within next jiffy */
1347 	rc->next_update = next_update + 1;
1348 
1349 	rc->total_bytes = 0;
1350 	rc->total_packets = 0;
1351 }
1352 
1353 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1354 {
1355 	return &rx_ring->rx_bi[idx];
1356 }
1357 
1358 /**
1359  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1360  * @rx_ring: rx descriptor ring to store buffers on
1361  * @old_buff: donor buffer to have page reused
1362  *
1363  * Synchronizes page for reuse by the adapter
1364  **/
1365 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1366 			       struct i40e_rx_buffer *old_buff)
1367 {
1368 	struct i40e_rx_buffer *new_buff;
1369 	u16 nta = rx_ring->next_to_alloc;
1370 
1371 	new_buff = i40e_rx_bi(rx_ring, nta);
1372 
1373 	/* update, and store next to alloc */
1374 	nta++;
1375 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1376 
1377 	/* transfer page from old buffer to new buffer */
1378 	new_buff->dma		= old_buff->dma;
1379 	new_buff->page		= old_buff->page;
1380 	new_buff->page_offset	= old_buff->page_offset;
1381 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1382 
1383 	/* clear contents of buffer_info */
1384 	old_buff->page = NULL;
1385 }
1386 
1387 /**
1388  * i40e_clean_programming_status - clean the programming status descriptor
1389  * @rx_ring: the rx ring that has this descriptor
1390  * @qword0_raw: qword0
1391  * @qword1: qword1 representing status_error_len in CPU ordering
1392  *
1393  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1394  * status being successful or not and take actions accordingly. FCoE should
1395  * handle its context/filter programming/invalidation status and take actions.
1396  *
1397  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1398  **/
1399 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1400 				   u64 qword1)
1401 {
1402 	u8 id;
1403 
1404 	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1405 
1406 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1407 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1408 }
1409 
1410 /**
1411  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1412  * @tx_ring: the tx ring to set up
1413  *
1414  * Return 0 on success, negative on error
1415  **/
1416 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1417 {
1418 	struct device *dev = tx_ring->dev;
1419 	int bi_size;
1420 
1421 	if (!dev)
1422 		return -ENOMEM;
1423 
1424 	/* warn if we are about to overwrite the pointer */
1425 	WARN_ON(tx_ring->tx_bi);
1426 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1427 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1428 	if (!tx_ring->tx_bi)
1429 		goto err;
1430 
1431 	u64_stats_init(&tx_ring->syncp);
1432 
1433 	/* round up to nearest 4K */
1434 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1435 	/* add u32 for head writeback, align after this takes care of
1436 	 * guaranteeing this is at least one cache line in size
1437 	 */
1438 	tx_ring->size += sizeof(u32);
1439 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1440 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1441 					   &tx_ring->dma, GFP_KERNEL);
1442 	if (!tx_ring->desc) {
1443 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1444 			 tx_ring->size);
1445 		goto err;
1446 	}
1447 
1448 	tx_ring->next_to_use = 0;
1449 	tx_ring->next_to_clean = 0;
1450 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1451 	return 0;
1452 
1453 err:
1454 	kfree(tx_ring->tx_bi);
1455 	tx_ring->tx_bi = NULL;
1456 	return -ENOMEM;
1457 }
1458 
1459 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1460 {
1461 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1462 }
1463 
1464 /**
1465  * i40e_clean_rx_ring - Free Rx buffers
1466  * @rx_ring: ring to be cleaned
1467  **/
1468 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1469 {
1470 	u16 i;
1471 
1472 	/* ring already cleared, nothing to do */
1473 	if (!rx_ring->rx_bi)
1474 		return;
1475 
1476 	if (rx_ring->xsk_pool) {
1477 		i40e_xsk_clean_rx_ring(rx_ring);
1478 		goto skip_free;
1479 	}
1480 
1481 	/* Free all the Rx ring sk_buffs */
1482 	for (i = 0; i < rx_ring->count; i++) {
1483 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1484 
1485 		if (!rx_bi->page)
1486 			continue;
1487 
1488 		/* Invalidate cache lines that may have been written to by
1489 		 * device so that we avoid corrupting memory.
1490 		 */
1491 		dma_sync_single_range_for_cpu(rx_ring->dev,
1492 					      rx_bi->dma,
1493 					      rx_bi->page_offset,
1494 					      rx_ring->rx_buf_len,
1495 					      DMA_FROM_DEVICE);
1496 
1497 		/* free resources associated with mapping */
1498 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1499 				     i40e_rx_pg_size(rx_ring),
1500 				     DMA_FROM_DEVICE,
1501 				     I40E_RX_DMA_ATTR);
1502 
1503 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1504 
1505 		rx_bi->page = NULL;
1506 		rx_bi->page_offset = 0;
1507 	}
1508 
1509 skip_free:
1510 	if (rx_ring->xsk_pool)
1511 		i40e_clear_rx_bi_zc(rx_ring);
1512 	else
1513 		i40e_clear_rx_bi(rx_ring);
1514 
1515 	/* Zero out the descriptor ring */
1516 	memset(rx_ring->desc, 0, rx_ring->size);
1517 
1518 	rx_ring->next_to_alloc = 0;
1519 	rx_ring->next_to_clean = 0;
1520 	rx_ring->next_to_process = 0;
1521 	rx_ring->next_to_use = 0;
1522 }
1523 
1524 /**
1525  * i40e_free_rx_resources - Free Rx resources
1526  * @rx_ring: ring to clean the resources from
1527  *
1528  * Free all receive software resources
1529  **/
1530 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1531 {
1532 	i40e_clean_rx_ring(rx_ring);
1533 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1534 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1535 	rx_ring->xdp_prog = NULL;
1536 	kfree(rx_ring->rx_bi);
1537 	rx_ring->rx_bi = NULL;
1538 
1539 	if (rx_ring->desc) {
1540 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1541 				  rx_ring->desc, rx_ring->dma);
1542 		rx_ring->desc = NULL;
1543 	}
1544 }
1545 
1546 /**
1547  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1548  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1549  *
1550  * Returns 0 on success, negative on failure
1551  **/
1552 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1553 {
1554 	struct device *dev = rx_ring->dev;
1555 
1556 	u64_stats_init(&rx_ring->syncp);
1557 
1558 	/* Round up to nearest 4K */
1559 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1560 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1561 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1562 					   &rx_ring->dma, GFP_KERNEL);
1563 
1564 	if (!rx_ring->desc) {
1565 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1566 			 rx_ring->size);
1567 		return -ENOMEM;
1568 	}
1569 
1570 	rx_ring->next_to_alloc = 0;
1571 	rx_ring->next_to_clean = 0;
1572 	rx_ring->next_to_process = 0;
1573 	rx_ring->next_to_use = 0;
1574 
1575 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1576 
1577 	rx_ring->rx_bi =
1578 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1579 	if (!rx_ring->rx_bi)
1580 		return -ENOMEM;
1581 
1582 	return 0;
1583 }
1584 
1585 /**
1586  * i40e_release_rx_desc - Store the new tail and head values
1587  * @rx_ring: ring to bump
1588  * @val: new head index
1589  **/
1590 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1591 {
1592 	rx_ring->next_to_use = val;
1593 
1594 	/* update next to alloc since we have filled the ring */
1595 	rx_ring->next_to_alloc = val;
1596 
1597 	/* Force memory writes to complete before letting h/w
1598 	 * know there are new descriptors to fetch.  (Only
1599 	 * applicable for weak-ordered memory model archs,
1600 	 * such as IA-64).
1601 	 */
1602 	wmb();
1603 	writel(val, rx_ring->tail);
1604 }
1605 
1606 #if (PAGE_SIZE >= 8192)
1607 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1608 					   unsigned int size)
1609 {
1610 	unsigned int truesize;
1611 
1612 	truesize = rx_ring->rx_offset ?
1613 		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1614 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1615 		SKB_DATA_ALIGN(size);
1616 	return truesize;
1617 }
1618 #endif
1619 
1620 /**
1621  * i40e_alloc_mapped_page - recycle or make a new page
1622  * @rx_ring: ring to use
1623  * @bi: rx_buffer struct to modify
1624  *
1625  * Returns true if the page was successfully allocated or
1626  * reused.
1627  **/
1628 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1629 				   struct i40e_rx_buffer *bi)
1630 {
1631 	struct page *page = bi->page;
1632 	dma_addr_t dma;
1633 
1634 	/* since we are recycling buffers we should seldom need to alloc */
1635 	if (likely(page)) {
1636 		rx_ring->rx_stats.page_reuse_count++;
1637 		return true;
1638 	}
1639 
1640 	/* alloc new page for storage */
1641 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1642 	if (unlikely(!page)) {
1643 		rx_ring->rx_stats.alloc_page_failed++;
1644 		return false;
1645 	}
1646 
1647 	rx_ring->rx_stats.page_alloc_count++;
1648 
1649 	/* map page for use */
1650 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1651 				 i40e_rx_pg_size(rx_ring),
1652 				 DMA_FROM_DEVICE,
1653 				 I40E_RX_DMA_ATTR);
1654 
1655 	/* if mapping failed free memory back to system since
1656 	 * there isn't much point in holding memory we can't use
1657 	 */
1658 	if (dma_mapping_error(rx_ring->dev, dma)) {
1659 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1660 		rx_ring->rx_stats.alloc_page_failed++;
1661 		return false;
1662 	}
1663 
1664 	bi->dma = dma;
1665 	bi->page = page;
1666 	bi->page_offset = rx_ring->rx_offset;
1667 	page_ref_add(page, USHRT_MAX - 1);
1668 	bi->pagecnt_bias = USHRT_MAX;
1669 
1670 	return true;
1671 }
1672 
1673 /**
1674  * i40e_alloc_rx_buffers - Replace used receive buffers
1675  * @rx_ring: ring to place buffers on
1676  * @cleaned_count: number of buffers to replace
1677  *
1678  * Returns false if all allocations were successful, true if any fail
1679  **/
1680 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1681 {
1682 	u16 ntu = rx_ring->next_to_use;
1683 	union i40e_rx_desc *rx_desc;
1684 	struct i40e_rx_buffer *bi;
1685 
1686 	/* do nothing if no valid netdev defined */
1687 	if (!rx_ring->netdev || !cleaned_count)
1688 		return false;
1689 
1690 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1691 	bi = i40e_rx_bi(rx_ring, ntu);
1692 
1693 	do {
1694 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1695 			goto no_buffers;
1696 
1697 		/* sync the buffer for use by the device */
1698 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1699 						 bi->page_offset,
1700 						 rx_ring->rx_buf_len,
1701 						 DMA_FROM_DEVICE);
1702 
1703 		/* Refresh the desc even if buffer_addrs didn't change
1704 		 * because each write-back erases this info.
1705 		 */
1706 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1707 
1708 		rx_desc++;
1709 		bi++;
1710 		ntu++;
1711 		if (unlikely(ntu == rx_ring->count)) {
1712 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1713 			bi = i40e_rx_bi(rx_ring, 0);
1714 			ntu = 0;
1715 		}
1716 
1717 		/* clear the status bits for the next_to_use descriptor */
1718 		rx_desc->wb.qword1.status_error_len = 0;
1719 
1720 		cleaned_count--;
1721 	} while (cleaned_count);
1722 
1723 	if (rx_ring->next_to_use != ntu)
1724 		i40e_release_rx_desc(rx_ring, ntu);
1725 
1726 	return false;
1727 
1728 no_buffers:
1729 	if (rx_ring->next_to_use != ntu)
1730 		i40e_release_rx_desc(rx_ring, ntu);
1731 
1732 	/* make sure to come back via polling to try again after
1733 	 * allocation failure
1734 	 */
1735 	return true;
1736 }
1737 
1738 /**
1739  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1740  * @vsi: the VSI we care about
1741  * @skb: skb currently being received and modified
1742  * @rx_desc: the receive descriptor
1743  **/
1744 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1745 				    struct sk_buff *skb,
1746 				    union i40e_rx_desc *rx_desc)
1747 {
1748 	struct libeth_rx_pt decoded;
1749 	u32 rx_error, rx_status;
1750 	bool ipv4, ipv6;
1751 	u8 ptype;
1752 	u64 qword;
1753 
1754 	skb->ip_summed = CHECKSUM_NONE;
1755 
1756 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1757 	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1758 
1759 	decoded = libie_rx_pt_parse(ptype);
1760 	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1761 		return;
1762 
1763 	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1764 	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1765 
1766 	/* did the hardware decode the packet and checksum? */
1767 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1768 		return;
1769 
1770 	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1771 	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
1772 
1773 	if (ipv4 &&
1774 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1775 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1776 		goto checksum_fail;
1777 
1778 	/* likely incorrect csum if alternate IP extension headers found */
1779 	if (ipv6 &&
1780 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1781 		/* don't increment checksum err here, non-fatal err */
1782 		return;
1783 
1784 	/* there was some L4 error, count error and punt packet to the stack */
1785 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1786 		goto checksum_fail;
1787 
1788 	/* handle packets that were not able to be checksummed due
1789 	 * to arrival speed, in this case the stack can compute
1790 	 * the csum.
1791 	 */
1792 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1793 		return;
1794 
1795 	/* If there is an outer header present that might contain a checksum
1796 	 * we need to bump the checksum level by 1 to reflect the fact that
1797 	 * we are indicating we validated the inner checksum.
1798 	 */
1799 	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1800 		skb->csum_level = 1;
1801 
1802 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1803 	return;
1804 
1805 checksum_fail:
1806 	vsi->back->hw_csum_rx_error++;
1807 }
1808 
1809 /**
1810  * i40e_rx_hash - set the hash value in the skb
1811  * @ring: descriptor ring
1812  * @rx_desc: specific descriptor
1813  * @skb: skb currently being received and modified
1814  * @rx_ptype: Rx packet type
1815  **/
1816 static inline void i40e_rx_hash(struct i40e_ring *ring,
1817 				union i40e_rx_desc *rx_desc,
1818 				struct sk_buff *skb,
1819 				u8 rx_ptype)
1820 {
1821 	struct libeth_rx_pt decoded;
1822 	u32 hash;
1823 	const __le64 rss_mask =
1824 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1825 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1826 
1827 	decoded = libie_rx_pt_parse(rx_ptype);
1828 	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1829 		return;
1830 
1831 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1832 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1833 		libeth_rx_pt_set_hash(skb, hash, decoded);
1834 	}
1835 }
1836 
1837 /**
1838  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1839  * @rx_ring: rx descriptor ring packet is being transacted on
1840  * @rx_desc: pointer to the EOP Rx descriptor
1841  * @skb: pointer to current skb being populated
1842  *
1843  * This function checks the ring, descriptor, and packet information in
1844  * order to populate the hash, checksum, VLAN, protocol, and
1845  * other fields within the skb.
1846  **/
1847 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1848 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1849 {
1850 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1851 	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1852 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1853 	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1854 	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1855 
1856 	if (unlikely(tsynvalid))
1857 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1858 
1859 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1860 
1861 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1862 
1863 	skb_record_rx_queue(skb, rx_ring->queue_index);
1864 
1865 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1866 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1867 
1868 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1869 				       le16_to_cpu(vlan_tag));
1870 	}
1871 
1872 	/* modifies the skb - consumes the enet header */
1873 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1874 }
1875 
1876 /**
1877  * i40e_cleanup_headers - Correct empty headers
1878  * @rx_ring: rx descriptor ring packet is being transacted on
1879  * @skb: pointer to current skb being fixed
1880  * @rx_desc: pointer to the EOP Rx descriptor
1881  *
1882  * In addition if skb is not at least 60 bytes we need to pad it so that
1883  * it is large enough to qualify as a valid Ethernet frame.
1884  *
1885  * Returns true if an error was encountered and skb was freed.
1886  **/
1887 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1888 				 union i40e_rx_desc *rx_desc)
1889 
1890 {
1891 	/* ERR_MASK will only have valid bits if EOP set, and
1892 	 * what we are doing here is actually checking
1893 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1894 	 * the error field
1895 	 */
1896 	if (unlikely(i40e_test_staterr(rx_desc,
1897 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1898 		dev_kfree_skb_any(skb);
1899 		return true;
1900 	}
1901 
1902 	/* if eth_skb_pad returns an error the skb was freed */
1903 	if (eth_skb_pad(skb))
1904 		return true;
1905 
1906 	return false;
1907 }
1908 
1909 /**
1910  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1911  * @rx_buffer: buffer containing the page
1912  * @rx_stats: rx stats structure for the rx ring
1913  *
1914  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1915  * which will assign the current buffer to the buffer that next_to_alloc is
1916  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1917  * page freed.
1918  *
1919  * rx_stats will be updated to indicate whether the page was waived
1920  * or busy if it could not be reused.
1921  */
1922 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1923 				   struct i40e_rx_queue_stats *rx_stats)
1924 {
1925 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1926 	struct page *page = rx_buffer->page;
1927 
1928 	/* Is any reuse possible? */
1929 	if (!dev_page_is_reusable(page)) {
1930 		rx_stats->page_waive_count++;
1931 		return false;
1932 	}
1933 
1934 #if (PAGE_SIZE < 8192)
1935 	/* if we are only owner of page we can reuse it */
1936 	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1937 		rx_stats->page_busy_count++;
1938 		return false;
1939 	}
1940 #else
1941 #define I40E_LAST_OFFSET \
1942 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1943 	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1944 		rx_stats->page_busy_count++;
1945 		return false;
1946 	}
1947 #endif
1948 
1949 	/* If we have drained the page fragment pool we need to update
1950 	 * the pagecnt_bias and page count so that we fully restock the
1951 	 * number of references the driver holds.
1952 	 */
1953 	if (unlikely(pagecnt_bias == 1)) {
1954 		page_ref_add(page, USHRT_MAX - 1);
1955 		rx_buffer->pagecnt_bias = USHRT_MAX;
1956 	}
1957 
1958 	return true;
1959 }
1960 
1961 /**
1962  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1963  * @rx_buffer: Rx buffer to adjust
1964  * @truesize: Size of adjustment
1965  **/
1966 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1967 				unsigned int truesize)
1968 {
1969 #if (PAGE_SIZE < 8192)
1970 	rx_buffer->page_offset ^= truesize;
1971 #else
1972 	rx_buffer->page_offset += truesize;
1973 #endif
1974 }
1975 
1976 /**
1977  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1978  * @rx_ring: rx descriptor ring to transact packets on
1979  * @size: size of buffer to add to skb
1980  *
1981  * This function will pull an Rx buffer from the ring and synchronize it
1982  * for use by the CPU.
1983  */
1984 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1985 						 const unsigned int size)
1986 {
1987 	struct i40e_rx_buffer *rx_buffer;
1988 
1989 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1990 	rx_buffer->page_count =
1991 #if (PAGE_SIZE < 8192)
1992 		page_count(rx_buffer->page);
1993 #else
1994 		0;
1995 #endif
1996 	prefetch_page_address(rx_buffer->page);
1997 
1998 	/* we are reusing so sync this buffer for CPU use */
1999 	dma_sync_single_range_for_cpu(rx_ring->dev,
2000 				      rx_buffer->dma,
2001 				      rx_buffer->page_offset,
2002 				      size,
2003 				      DMA_FROM_DEVICE);
2004 
2005 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2006 	rx_buffer->pagecnt_bias--;
2007 
2008 	return rx_buffer;
2009 }
2010 
2011 /**
2012  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2013  * @rx_ring: rx descriptor ring to transact packets on
2014  * @rx_buffer: rx buffer to pull data from
2015  *
2016  * This function will clean up the contents of the rx_buffer.  It will
2017  * either recycle the buffer or unmap it and free the associated resources.
2018  */
2019 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2020 			       struct i40e_rx_buffer *rx_buffer)
2021 {
2022 	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2023 		/* hand second half of page back to the ring */
2024 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2025 	} else {
2026 		/* we are not reusing the buffer so unmap it */
2027 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2028 				     i40e_rx_pg_size(rx_ring),
2029 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2030 		__page_frag_cache_drain(rx_buffer->page,
2031 					rx_buffer->pagecnt_bias);
2032 		/* clear contents of buffer_info */
2033 		rx_buffer->page = NULL;
2034 	}
2035 }
2036 
2037 /**
2038  * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2039  * @rx_ring: Rx descriptor ring to transact packets on
2040  * @xdp_res: Result of the XDP program
2041  * @xdp: xdp_buff pointing to the data
2042  **/
2043 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2044 				  struct xdp_buff *xdp)
2045 {
2046 	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2047 	u32 next = rx_ring->next_to_clean, i = 0;
2048 	struct i40e_rx_buffer *rx_buffer;
2049 
2050 	xdp->flags = 0;
2051 
2052 	while (1) {
2053 		rx_buffer = i40e_rx_bi(rx_ring, next);
2054 		if (++next == rx_ring->count)
2055 			next = 0;
2056 
2057 		if (!rx_buffer->page)
2058 			continue;
2059 
2060 		if (xdp_res != I40E_XDP_CONSUMED)
2061 			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2062 		else if (i++ <= nr_frags)
2063 			rx_buffer->pagecnt_bias++;
2064 
2065 		/* EOP buffer will be put in i40e_clean_rx_irq() */
2066 		if (next == rx_ring->next_to_process)
2067 			return;
2068 
2069 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2070 	}
2071 }
2072 
2073 /**
2074  * i40e_construct_skb - Allocate skb and populate it
2075  * @rx_ring: rx descriptor ring to transact packets on
2076  * @xdp: xdp_buff pointing to the data
2077  *
2078  * This function allocates an skb.  It then populates it with the page
2079  * data from the current receive descriptor, taking care to set up the
2080  * skb correctly.
2081  */
2082 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2083 					  struct xdp_buff *xdp)
2084 {
2085 	unsigned int size = xdp->data_end - xdp->data;
2086 	struct i40e_rx_buffer *rx_buffer;
2087 	struct skb_shared_info *sinfo;
2088 	unsigned int headlen;
2089 	struct sk_buff *skb;
2090 	u32 nr_frags = 0;
2091 
2092 	/* prefetch first cache line of first page */
2093 	net_prefetch(xdp->data);
2094 
2095 	/* Note, we get here by enabling legacy-rx via:
2096 	 *
2097 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2098 	 *
2099 	 * In this mode, we currently get 0 extra XDP headroom as
2100 	 * opposed to having legacy-rx off, where we process XDP
2101 	 * packets going to stack via i40e_build_skb(). The latter
2102 	 * provides us currently with 192 bytes of headroom.
2103 	 *
2104 	 * For i40e_construct_skb() mode it means that the
2105 	 * xdp->data_meta will always point to xdp->data, since
2106 	 * the helper cannot expand the head. Should this ever
2107 	 * change in future for legacy-rx mode on, then lets also
2108 	 * add xdp->data_meta handling here.
2109 	 */
2110 
2111 	/* allocate a skb to store the frags */
2112 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2113 	if (unlikely(!skb))
2114 		return NULL;
2115 
2116 	/* Determine available headroom for copy */
2117 	headlen = size;
2118 	if (headlen > I40E_RX_HDR_SIZE)
2119 		headlen = eth_get_headlen(skb->dev, xdp->data,
2120 					  I40E_RX_HDR_SIZE);
2121 
2122 	/* align pull length to size of long to optimize memcpy performance */
2123 	memcpy(__skb_put(skb, headlen), xdp->data,
2124 	       ALIGN(headlen, sizeof(long)));
2125 
2126 	if (unlikely(xdp_buff_has_frags(xdp))) {
2127 		sinfo = xdp_get_shared_info_from_buff(xdp);
2128 		nr_frags = sinfo->nr_frags;
2129 	}
2130 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2131 	/* update all of the pointers */
2132 	size -= headlen;
2133 	if (size) {
2134 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2135 			dev_kfree_skb(skb);
2136 			return NULL;
2137 		}
2138 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2139 				rx_buffer->page_offset + headlen,
2140 				size, xdp->frame_sz);
2141 		/* buffer is used by skb, update page_offset */
2142 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2143 	} else {
2144 		/* buffer is unused, reset bias back to rx_buffer */
2145 		rx_buffer->pagecnt_bias++;
2146 	}
2147 
2148 	if (unlikely(xdp_buff_has_frags(xdp))) {
2149 		struct skb_shared_info *skinfo = skb_shinfo(skb);
2150 
2151 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2152 		       sizeof(skb_frag_t) * nr_frags);
2153 
2154 		xdp_update_skb_frags_info(skb, skinfo->nr_frags + nr_frags,
2155 					  sinfo->xdp_frags_size,
2156 					  nr_frags * xdp->frame_sz,
2157 					  xdp_buff_get_skb_flags(xdp));
2158 
2159 		/* First buffer has already been processed, so bump ntc */
2160 		if (++rx_ring->next_to_clean == rx_ring->count)
2161 			rx_ring->next_to_clean = 0;
2162 
2163 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2164 	}
2165 
2166 	return skb;
2167 }
2168 
2169 /**
2170  * i40e_build_skb - Build skb around an existing buffer
2171  * @rx_ring: Rx descriptor ring to transact packets on
2172  * @xdp: xdp_buff pointing to the data
2173  *
2174  * This function builds an skb around an existing Rx buffer, taking care
2175  * to set up the skb correctly and avoid any memcpy overhead.
2176  */
2177 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2178 				      struct xdp_buff *xdp)
2179 {
2180 	unsigned int metasize = xdp->data - xdp->data_meta;
2181 	struct skb_shared_info *sinfo;
2182 	struct sk_buff *skb;
2183 	u32 nr_frags;
2184 
2185 	/* Prefetch first cache line of first page. If xdp->data_meta
2186 	 * is unused, this points exactly as xdp->data, otherwise we
2187 	 * likely have a consumer accessing first few bytes of meta
2188 	 * data, and then actual data.
2189 	 */
2190 	net_prefetch(xdp->data_meta);
2191 
2192 	if (unlikely(xdp_buff_has_frags(xdp))) {
2193 		sinfo = xdp_get_shared_info_from_buff(xdp);
2194 		nr_frags = sinfo->nr_frags;
2195 	}
2196 
2197 	/* build an skb around the page buffer */
2198 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2199 	if (unlikely(!skb))
2200 		return NULL;
2201 
2202 	/* update pointers within the skb to store the data */
2203 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2204 	__skb_put(skb, xdp->data_end - xdp->data);
2205 	if (metasize)
2206 		skb_metadata_set(skb, metasize);
2207 
2208 	if (unlikely(xdp_buff_has_frags(xdp))) {
2209 		xdp_update_skb_frags_info(skb, nr_frags, sinfo->xdp_frags_size,
2210 					  nr_frags * xdp->frame_sz,
2211 					  xdp_buff_get_skb_flags(xdp));
2212 
2213 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214 	} else {
2215 		struct i40e_rx_buffer *rx_buffer;
2216 
2217 		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218 		/* buffer is used by skb, update page_offset */
2219 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2220 	}
2221 
2222 	return skb;
2223 }
2224 
2225 /**
2226  * i40e_is_non_eop - process handling of non-EOP buffers
2227  * @rx_ring: Rx ring being processed
2228  * @rx_desc: Rx descriptor for current buffer
2229  *
2230  * If the buffer is an EOP buffer, this function exits returning false,
2231  * otherwise return true indicating that this is in fact a non-EOP buffer.
2232  */
2233 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234 		     union i40e_rx_desc *rx_desc)
2235 {
2236 	/* if we are the last buffer then there is nothing else to do */
2237 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239 		return false;
2240 
2241 	rx_ring->rx_stats.non_eop_descs++;
2242 
2243 	return true;
2244 }
2245 
2246 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247 			      struct i40e_ring *xdp_ring);
2248 
2249 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250 {
2251 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252 
2253 	if (unlikely(!xdpf))
2254 		return I40E_XDP_CONSUMED;
2255 
2256 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257 }
2258 
2259 /**
2260  * i40e_run_xdp - run an XDP program
2261  * @rx_ring: Rx ring being processed
2262  * @xdp: XDP buffer containing the frame
2263  * @xdp_prog: XDP program to run
2264  **/
2265 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2266 {
2267 	int err, result = I40E_XDP_PASS;
2268 	struct i40e_ring *xdp_ring;
2269 	u32 act;
2270 
2271 	if (!xdp_prog)
2272 		goto xdp_out;
2273 
2274 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275 
2276 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2277 	switch (act) {
2278 	case XDP_PASS:
2279 		break;
2280 	case XDP_TX:
2281 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283 		if (result == I40E_XDP_CONSUMED)
2284 			goto out_failure;
2285 		break;
2286 	case XDP_REDIRECT:
2287 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288 		if (err)
2289 			goto out_failure;
2290 		result = I40E_XDP_REDIR;
2291 		break;
2292 	default:
2293 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294 		fallthrough;
2295 	case XDP_ABORTED:
2296 out_failure:
2297 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298 		fallthrough; /* handle aborts by dropping packet */
2299 	case XDP_DROP:
2300 		result = I40E_XDP_CONSUMED;
2301 		break;
2302 	}
2303 xdp_out:
2304 	return result;
2305 }
2306 
2307 /**
2308  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309  * @xdp_ring: XDP Tx ring
2310  *
2311  * This function updates the XDP Tx ring tail register.
2312  **/
2313 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314 {
2315 	/* Force memory writes to complete before letting h/w
2316 	 * know there are new descriptors to fetch.
2317 	 */
2318 	wmb();
2319 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320 }
2321 
2322 /**
2323  * i40e_update_rx_stats - Update Rx ring statistics
2324  * @rx_ring: rx descriptor ring
2325  * @total_rx_bytes: number of bytes received
2326  * @total_rx_packets: number of packets received
2327  *
2328  * This function updates the Rx ring statistics.
2329  **/
2330 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331 			  unsigned int total_rx_bytes,
2332 			  unsigned int total_rx_packets)
2333 {
2334 	u64_stats_update_begin(&rx_ring->syncp);
2335 	rx_ring->stats.packets += total_rx_packets;
2336 	rx_ring->stats.bytes += total_rx_bytes;
2337 	u64_stats_update_end(&rx_ring->syncp);
2338 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340 }
2341 
2342 /**
2343  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344  * @rx_ring: Rx ring
2345  * @xdp_res: Result of the receive batch
2346  *
2347  * This function bumps XDP Tx tail and/or flush redirect map, and
2348  * should be called when a batch of packets has been processed in the
2349  * napi loop.
2350  **/
2351 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2352 {
2353 	if (xdp_res & I40E_XDP_REDIR)
2354 		xdp_do_flush();
2355 
2356 	if (xdp_res & I40E_XDP_TX) {
2357 		struct i40e_ring *xdp_ring =
2358 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359 
2360 		i40e_xdp_ring_update_tail(xdp_ring);
2361 	}
2362 }
2363 
2364 /**
2365  * i40e_inc_ntp: Advance the next_to_process index
2366  * @rx_ring: Rx ring
2367  **/
2368 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369 {
2370 	u32 ntp = rx_ring->next_to_process + 1;
2371 
2372 	ntp = (ntp < rx_ring->count) ? ntp : 0;
2373 	rx_ring->next_to_process = ntp;
2374 	prefetch(I40E_RX_DESC(rx_ring, ntp));
2375 }
2376 
2377 /**
2378  * i40e_add_xdp_frag: Add a frag to xdp_buff
2379  * @xdp: xdp_buff pointing to the data
2380  * @nr_frags: return number of buffers for the packet
2381  * @rx_buffer: rx_buffer holding data of the current frag
2382  * @size: size of data of current frag
2383  */
2384 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385 			     struct i40e_rx_buffer *rx_buffer, u32 size)
2386 {
2387 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388 
2389 	if (!xdp_buff_has_frags(xdp)) {
2390 		sinfo->nr_frags = 0;
2391 		sinfo->xdp_frags_size = 0;
2392 		xdp_buff_set_frags_flag(xdp);
2393 	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394 		/* Overflowing packet: All frags need to be dropped */
2395 		return -ENOMEM;
2396 	}
2397 
2398 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399 				   rx_buffer->page_offset, size);
2400 
2401 	sinfo->xdp_frags_size += size;
2402 
2403 	if (page_is_pfmemalloc(rx_buffer->page))
2404 		xdp_buff_set_frag_pfmemalloc(xdp);
2405 	*nr_frags = sinfo->nr_frags;
2406 
2407 	return 0;
2408 }
2409 
2410 /**
2411  * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412  * @rx_ring: rx descriptor ring to transact packets on
2413  * @xdp: xdp_buff pointing to the data
2414  * @rx_buffer: rx_buffer of eop desc
2415  */
2416 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417 				  struct xdp_buff *xdp,
2418 				  struct i40e_rx_buffer *rx_buffer)
2419 {
2420 	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421 	i40e_put_rx_buffer(rx_ring, rx_buffer);
2422 	rx_ring->next_to_clean = rx_ring->next_to_process;
2423 	xdp->data = NULL;
2424 }
2425 
2426 /**
2427  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428  * @rx_ring: rx descriptor ring to transact packets on
2429  * @budget: Total limit on number of packets to process
2430  * @rx_cleaned: Out parameter of the number of packets processed
2431  *
2432  * This function provides a "bounce buffer" approach to Rx interrupt
2433  * processing.  The advantage to this is that on systems that have
2434  * expensive overhead for IOMMU access this provides a means of avoiding
2435  * it by maintaining the mapping of the page to the system.
2436  *
2437  * Returns amount of work completed
2438  **/
2439 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440 			     unsigned int *rx_cleaned)
2441 {
2442 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2443 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444 	u16 clean_threshold = rx_ring->count / 2;
2445 	unsigned int offset = rx_ring->rx_offset;
2446 	struct xdp_buff *xdp = &rx_ring->xdp;
2447 	unsigned int xdp_xmit = 0;
2448 	struct bpf_prog *xdp_prog;
2449 	bool failure = false;
2450 	int xdp_res = 0;
2451 
2452 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2453 
2454 	while (likely(total_rx_packets < (unsigned int)budget)) {
2455 		u16 ntp = rx_ring->next_to_process;
2456 		struct i40e_rx_buffer *rx_buffer;
2457 		union i40e_rx_desc *rx_desc;
2458 		struct sk_buff *skb;
2459 		unsigned int size;
2460 		u32 nfrags = 0;
2461 		bool neop;
2462 		u64 qword;
2463 
2464 		/* return some buffers to hardware, one at a time is too slow */
2465 		if (cleaned_count >= clean_threshold) {
2466 			failure = failure ||
2467 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468 			cleaned_count = 0;
2469 		}
2470 
2471 		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472 
2473 		/* status_error_len will always be zero for unused descriptors
2474 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2475 		 * which is always zero because packet split isn't used, if the
2476 		 * hardware wrote DD then the length will be non-zero
2477 		 */
2478 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479 
2480 		/* This memory barrier is needed to keep us from reading
2481 		 * any other fields out of the rx_desc until we have
2482 		 * verified the descriptor has been written back.
2483 		 */
2484 		dma_rmb();
2485 
2486 		if (i40e_rx_is_programming_status(qword)) {
2487 			i40e_clean_programming_status(rx_ring,
2488 						      rx_desc->raw.qword[0],
2489 						      qword);
2490 			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491 			i40e_inc_ntp(rx_ring);
2492 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2493 			/* Update ntc and bump cleaned count if not in the
2494 			 * middle of mb packet.
2495 			 */
2496 			if (rx_ring->next_to_clean == ntp) {
2497 				rx_ring->next_to_clean =
2498 					rx_ring->next_to_process;
2499 				cleaned_count++;
2500 			}
2501 			continue;
2502 		}
2503 
2504 		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2505 		if (!size)
2506 			break;
2507 
2508 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509 		/* retrieve a buffer from the ring */
2510 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511 
2512 		neop = i40e_is_non_eop(rx_ring, rx_desc);
2513 		i40e_inc_ntp(rx_ring);
2514 
2515 		if (!xdp->data) {
2516 			unsigned char *hard_start;
2517 
2518 			hard_start = page_address(rx_buffer->page) +
2519 				     rx_buffer->page_offset - offset;
2520 			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521 #if (PAGE_SIZE > 4096)
2522 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2523 			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524 #endif
2525 		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526 			   !neop) {
2527 			/* Overflowing packet: Drop all frags on EOP */
2528 			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529 			break;
2530 		}
2531 
2532 		if (neop)
2533 			continue;
2534 
2535 		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2536 
2537 		if (xdp_res) {
2538 			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539 
2540 			if (unlikely(xdp_buff_has_frags(xdp))) {
2541 				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542 				size = xdp_get_buff_len(xdp);
2543 			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544 				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545 			} else {
2546 				rx_buffer->pagecnt_bias++;
2547 			}
2548 			total_rx_bytes += size;
2549 		} else {
2550 			if (ring_uses_build_skb(rx_ring))
2551 				skb = i40e_build_skb(rx_ring, xdp);
2552 			else
2553 				skb = i40e_construct_skb(rx_ring, xdp);
2554 
2555 			/* drop if we failed to retrieve a buffer */
2556 			if (!skb) {
2557 				rx_ring->rx_stats.alloc_buff_failed++;
2558 				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559 				break;
2560 			}
2561 
2562 			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563 				goto process_next;
2564 
2565 			/* probably a little skewed due to removing CRC */
2566 			total_rx_bytes += skb->len;
2567 
2568 			/* populate checksum, VLAN, and protocol */
2569 			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2570 
2571 			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572 			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2573 		}
2574 
2575 		/* update budget accounting */
2576 		total_rx_packets++;
2577 process_next:
2578 		cleaned_count += nfrags + 1;
2579 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2580 		rx_ring->next_to_clean = rx_ring->next_to_process;
2581 
2582 		xdp->data = NULL;
2583 	}
2584 
2585 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2586 
2587 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2588 
2589 	*rx_cleaned = total_rx_packets;
2590 
2591 	/* guarantee a trip back through this routine if there was a failure */
2592 	return failure ? budget : (int)total_rx_packets;
2593 }
2594 
2595 /**
2596  * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597  * @itr_idx: interrupt throttling index
2598  * @interval: interrupt throttling interval value in usecs
2599  * @force_swint: force software interrupt
2600  *
2601  * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602  * is used to update interrupt throttling interval for specified ITR index
2603  * and optionally enforces a software interrupt. If the @itr_idx is equal
2604  * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605  * parameter is taken into account. If the interval change and enforced
2606  * software interrupt are not requested then the built value just enables
2607  * appropriate vector interrupt.
2608  **/
2609 static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610 			     bool force_swint)
2611 {
2612 	u32 val;
2613 
2614 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2615 	 * points out doing so is "meaningless since it was already
2616 	 * auto-cleared". The auto-clearing happens when the interrupt is
2617 	 * asserted.
2618 	 *
2619 	 * Hardware errata 28 for also indicates that writing to a
2620 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621 	 * an event in the PBA anyway so we need to rely on the automask
2622 	 * to hold pending events for us until the interrupt is re-enabled
2623 	 *
2624 	 * We have to shift the given value as it is reported in microseconds
2625 	 * and the register value is recorded in 2 microsecond units.
2626 	 */
2627 	interval >>= 1;
2628 
2629 	/* 1. Enable vector interrupt
2630 	 * 2. Update the interval for the specified ITR index
2631 	 *    (I40E_ITR_NONE in the register is used to indicate that
2632 	 *     no interval update is requested)
2633 	 */
2634 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635 	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636 	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637 
2638 	/* 3. Enforce software interrupt trigger if requested
2639 	 *    (These software interrupts rate is limited by ITR2 that is
2640 	 *     set to 20K interrupts per second)
2641 	 */
2642 	if (force_swint)
2643 		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644 		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645 		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646 				  I40E_SW_ITR);
2647 
2648 	return val;
2649 }
2650 
2651 /* The act of updating the ITR will cause it to immediately trigger. In order
2652  * to prevent this from throwing off adaptive update statistics we defer the
2653  * update so that it can only happen so often. So after either Tx or Rx are
2654  * updated we make the adaptive scheme wait until either the ITR completely
2655  * expires via the next_update expiration or we have been through at least
2656  * 3 interrupts.
2657  */
2658 #define ITR_COUNTDOWN_START 3
2659 
2660 /**
2661  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662  * @vsi: the VSI we care about
2663  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664  *
2665  **/
2666 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667 					  struct i40e_q_vector *q_vector)
2668 {
2669 	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670 	struct i40e_hw *hw = &vsi->back->hw;
2671 	u16 interval = 0;
2672 	u32 itr_val;
2673 
2674 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2675 	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676 		i40e_irq_dynamic_enable_icr0(vsi->back);
2677 		return;
2678 	}
2679 
2680 	/* These will do nothing if dynamic updates are not enabled */
2681 	i40e_update_itr(q_vector, &q_vector->tx);
2682 	i40e_update_itr(q_vector, &q_vector->rx);
2683 
2684 	/* This block of logic allows us to get away with only updating
2685 	 * one ITR value with each interrupt. The idea is to perform a
2686 	 * pseudo-lazy update with the following criteria.
2687 	 *
2688 	 * 1. Rx is given higher priority than Tx if both are in same state
2689 	 * 2. If we must reduce an ITR that is given highest priority.
2690 	 * 3. We then give priority to increasing ITR based on amount.
2691 	 */
2692 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693 		/* Rx ITR needs to be reduced, this is highest priority */
2694 		itr_idx = I40E_RX_ITR;
2695 		interval = q_vector->rx.target_itr;
2696 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2697 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701 		/* Tx ITR needs to be reduced, this is second priority
2702 		 * Tx ITR needs to be increased more than Rx, fourth priority
2703 		 */
2704 		itr_idx = I40E_TX_ITR;
2705 		interval = q_vector->tx.target_itr;
2706 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2707 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709 		/* Rx ITR needs to be increased, third priority */
2710 		itr_idx = I40E_RX_ITR;
2711 		interval = q_vector->rx.target_itr;
2712 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2713 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714 	} else {
2715 		/* No ITR update, lowest priority */
2716 		if (q_vector->itr_countdown)
2717 			q_vector->itr_countdown--;
2718 	}
2719 
2720 	/* Do not update interrupt control register if VSI is down */
2721 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722 		return;
2723 
2724 	/* Update ITR interval if necessary and enforce software interrupt
2725 	 * if we are exiting busy poll.
2726 	 */
2727 	if (q_vector->in_busy_poll) {
2728 		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729 		q_vector->in_busy_poll = false;
2730 	} else {
2731 		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2732 	}
2733 	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2734 }
2735 
2736 /**
2737  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738  * @napi: napi struct with our devices info in it
2739  * @budget: amount of work driver is allowed to do this pass, in packets
2740  *
2741  * This function will clean all queues associated with a q_vector.
2742  *
2743  * Returns the amount of work done
2744  **/
2745 int i40e_napi_poll(struct napi_struct *napi, int budget)
2746 {
2747 	struct i40e_q_vector *q_vector =
2748 			       container_of(napi, struct i40e_q_vector, napi);
2749 	struct i40e_vsi *vsi = q_vector->vsi;
2750 	struct i40e_ring *ring;
2751 	bool tx_clean_complete = true;
2752 	bool rx_clean_complete = true;
2753 	unsigned int tx_cleaned = 0;
2754 	unsigned int rx_cleaned = 0;
2755 	bool clean_complete = true;
2756 	bool arm_wb = false;
2757 	int budget_per_ring;
2758 	int work_done = 0;
2759 
2760 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761 		napi_complete(napi);
2762 		return 0;
2763 	}
2764 
2765 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767 	 */
2768 	i40e_for_each_ring(ring, q_vector->tx) {
2769 		bool wd = ring->xsk_pool ?
2770 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771 			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772 
2773 		if (!wd) {
2774 			clean_complete = tx_clean_complete = false;
2775 			continue;
2776 		}
2777 		arm_wb |= ring->arm_wb;
2778 		ring->arm_wb = false;
2779 	}
2780 
2781 	/* Handle case where we are called by netpoll with a budget of 0 */
2782 	if (budget <= 0)
2783 		goto tx_only;
2784 
2785 	/* normally we have 1 Rx ring per q_vector */
2786 	if (unlikely(q_vector->num_ringpairs > 1))
2787 		/* We attempt to distribute budget to each Rx queue fairly, but
2788 		 * don't allow the budget to go below 1 because that would exit
2789 		 * polling early.
2790 		 */
2791 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792 	else
2793 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794 		budget_per_ring = budget;
2795 
2796 	i40e_for_each_ring(ring, q_vector->rx) {
2797 		int cleaned = ring->xsk_pool ?
2798 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799 			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800 
2801 		work_done += cleaned;
2802 		/* if we clean as many as budgeted, we must not be done */
2803 		if (cleaned >= budget_per_ring)
2804 			clean_complete = rx_clean_complete = false;
2805 	}
2806 
2807 	if (!i40e_enabled_xdp_vsi(vsi))
2808 		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809 				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810 
2811 	/* If work not completed, return budget and polling will return */
2812 	if (!clean_complete) {
2813 		int cpu_id = smp_processor_id();
2814 
2815 		/* It is possible that the interrupt affinity has changed but,
2816 		 * if the cpu is pegged at 100%, polling will never exit while
2817 		 * traffic continues and the interrupt will be stuck on this
2818 		 * cpu.  We check to make sure affinity is correct before we
2819 		 * continue to poll, otherwise we must stop polling so the
2820 		 * interrupt can move to the correct cpu.
2821 		 */
2822 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823 			/* Tell napi that we are done polling */
2824 			napi_complete_done(napi, work_done);
2825 
2826 			/* Force an interrupt */
2827 			i40e_force_wb(vsi, q_vector);
2828 
2829 			/* Return budget-1 so that polling stops */
2830 			return budget - 1;
2831 		}
2832 tx_only:
2833 		if (arm_wb) {
2834 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835 			i40e_enable_wb_on_itr(vsi, q_vector);
2836 		}
2837 		return budget;
2838 	}
2839 
2840 	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841 		q_vector->arm_wb_state = false;
2842 
2843 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844 	 * poll us due to busy-polling
2845 	 */
2846 	if (likely(napi_complete_done(napi, work_done)))
2847 		i40e_update_enable_itr(vsi, q_vector);
2848 	else
2849 		q_vector->in_busy_poll = true;
2850 
2851 	return min(work_done, budget - 1);
2852 }
2853 
2854 /**
2855  * i40e_atr - Add a Flow Director ATR filter
2856  * @tx_ring:  ring to add programming descriptor to
2857  * @skb:      send buffer
2858  * @tx_flags: send tx flags
2859  **/
2860 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861 		     u32 tx_flags)
2862 {
2863 	struct i40e_filter_program_desc *fdir_desc;
2864 	struct i40e_pf *pf = tx_ring->vsi->back;
2865 	union {
2866 		unsigned char *network;
2867 		struct iphdr *ipv4;
2868 		struct ipv6hdr *ipv6;
2869 	} hdr;
2870 	struct tcphdr *th;
2871 	unsigned int hlen;
2872 	u32 flex_ptype, dtype_cmd;
2873 	int l4_proto;
2874 	u16 i;
2875 
2876 	/* make sure ATR is enabled */
2877 	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878 		return;
2879 
2880 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881 		return;
2882 
2883 	/* if sampling is disabled do nothing */
2884 	if (!tx_ring->atr_sample_rate)
2885 		return;
2886 
2887 	/* Currently only IPv4/IPv6 with TCP is supported */
2888 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889 		return;
2890 
2891 	/* snag network header to get L4 type and address */
2892 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893 		      skb_inner_network_header(skb) : skb_network_header(skb);
2894 
2895 	/* Note: tx_flags gets modified to reflect inner protocols in
2896 	 * tx_enable_csum function if encap is enabled.
2897 	 */
2898 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899 		/* access ihl as u8 to avoid unaligned access on ia64 */
2900 		hlen = (hdr.network[0] & 0x0F) << 2;
2901 		l4_proto = hdr.ipv4->protocol;
2902 	} else {
2903 		/* find the start of the innermost ipv6 header */
2904 		unsigned int inner_hlen = hdr.network - skb->data;
2905 		unsigned int h_offset = inner_hlen;
2906 
2907 		/* this function updates h_offset to the end of the header */
2908 		l4_proto =
2909 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910 		/* hlen will contain our best estimate of the tcp header */
2911 		hlen = h_offset - inner_hlen;
2912 	}
2913 
2914 	if (l4_proto != IPPROTO_TCP)
2915 		return;
2916 
2917 	th = (struct tcphdr *)(hdr.network + hlen);
2918 
2919 	/* Due to lack of space, no more new filters can be programmed */
2920 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921 		return;
2922 	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2923 		/* HW ATR eviction will take care of removing filters on FIN
2924 		 * and RST packets.
2925 		 */
2926 		if (th->fin || th->rst)
2927 			return;
2928 	}
2929 
2930 	tx_ring->atr_count++;
2931 
2932 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2933 	if (!th->fin &&
2934 	    !th->syn &&
2935 	    !th->rst &&
2936 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937 		return;
2938 
2939 	tx_ring->atr_count = 0;
2940 
2941 	/* grab the next descriptor */
2942 	i = tx_ring->next_to_use;
2943 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944 
2945 	i++;
2946 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947 
2948 	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949 				tx_ring->queue_index);
2950 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951 		      (LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953 		      (LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955 
2956 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957 
2958 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959 
2960 	dtype_cmd |= (th->fin || th->rst) ?
2961 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965 
2966 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968 
2969 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971 
2972 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974 		dtype_cmd |=
2975 			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976 				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2977 	else
2978 		dtype_cmd |=
2979 			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980 				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2981 
2982 	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2983 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984 
2985 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986 	fdir_desc->rsvd = cpu_to_le32(0);
2987 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988 	fdir_desc->fd_id = cpu_to_le32(0);
2989 }
2990 
2991 /**
2992  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993  * @skb:     send buffer
2994  * @tx_ring: ring to send buffer on
2995  * @flags:   the tx flags to be set
2996  *
2997  * Checks the skb and set up correspondingly several generic transmit flags
2998  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999  *
3000  * Returns error code indicate the frame should be dropped upon error and the
3001  * otherwise  returns 0 to indicate the flags has been set properly.
3002  **/
3003 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004 					     struct i40e_ring *tx_ring,
3005 					     u32 *flags)
3006 {
3007 	__be16 protocol = skb->protocol;
3008 	u32  tx_flags = 0;
3009 
3010 	if (protocol == htons(ETH_P_8021Q) &&
3011 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012 		/* When HW VLAN acceleration is turned off by the user the
3013 		 * stack sets the protocol to 8021q so that the driver
3014 		 * can take any steps required to support the SW only
3015 		 * VLAN handling.  In our case the driver doesn't need
3016 		 * to take any further steps so just set the protocol
3017 		 * to the encapsulated ethertype.
3018 		 */
3019 		skb->protocol = vlan_get_protocol(skb);
3020 		goto out;
3021 	}
3022 
3023 	/* if we have a HW VLAN tag being added, default to the HW one */
3024 	if (skb_vlan_tag_present(skb)) {
3025 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027 	/* else if it is a SW VLAN, check the next protocol and store the tag */
3028 	} else if (protocol == htons(ETH_P_8021Q)) {
3029 		struct vlan_hdr *vhdr, _vhdr;
3030 
3031 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032 		if (!vhdr)
3033 			return -EINVAL;
3034 
3035 		protocol = vhdr->h_vlan_encapsulated_proto;
3036 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038 	}
3039 
3040 	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041 		goto out;
3042 
3043 	/* Insert 802.1p priority into VLAN header */
3044 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045 	    (skb->priority != TC_PRIO_CONTROL)) {
3046 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047 		tx_flags |= (skb->priority & 0x7) <<
3048 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050 			struct vlan_ethhdr *vhdr;
3051 			int rc;
3052 
3053 			rc = skb_cow_head(skb, 0);
3054 			if (rc < 0)
3055 				return rc;
3056 			vhdr = skb_vlan_eth_hdr(skb);
3057 			vhdr->h_vlan_TCI = htons(tx_flags >>
3058 						 I40E_TX_FLAGS_VLAN_SHIFT);
3059 		} else {
3060 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061 		}
3062 	}
3063 
3064 out:
3065 	*flags = tx_flags;
3066 	return 0;
3067 }
3068 
3069 /**
3070  * i40e_tso - set up the tso context descriptor
3071  * @first:    pointer to first Tx buffer for xmit
3072  * @hdr_len:  ptr to the size of the packet header
3073  * @cd_type_cmd_tso_mss: Quad Word 1
3074  *
3075  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076  **/
3077 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078 		    u64 *cd_type_cmd_tso_mss)
3079 {
3080 	struct sk_buff *skb = first->skb;
3081 	u64 cd_cmd, cd_tso_len, cd_mss;
3082 	__be16 protocol;
3083 	union {
3084 		struct iphdr *v4;
3085 		struct ipv6hdr *v6;
3086 		unsigned char *hdr;
3087 	} ip;
3088 	union {
3089 		struct tcphdr *tcp;
3090 		struct udphdr *udp;
3091 		unsigned char *hdr;
3092 	} l4;
3093 	u32 paylen, l4_offset;
3094 	u16 gso_size;
3095 	int err;
3096 
3097 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3098 		return 0;
3099 
3100 	if (!skb_is_gso(skb))
3101 		return 0;
3102 
3103 	err = skb_cow_head(skb, 0);
3104 	if (err < 0)
3105 		return err;
3106 
3107 	protocol = vlan_get_protocol(skb);
3108 
3109 	if (eth_p_mpls(protocol))
3110 		ip.hdr = skb_inner_network_header(skb);
3111 	else
3112 		ip.hdr = skb_network_header(skb);
3113 	l4.hdr = skb_checksum_start(skb);
3114 
3115 	/* initialize outer IP header fields */
3116 	if (ip.v4->version == 4) {
3117 		ip.v4->tot_len = 0;
3118 		ip.v4->check = 0;
3119 
3120 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3121 	} else {
3122 		ip.v6->payload_len = 0;
3123 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3124 	}
3125 
3126 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127 					 SKB_GSO_GRE_CSUM |
3128 					 SKB_GSO_IPXIP4 |
3129 					 SKB_GSO_IPXIP6 |
3130 					 SKB_GSO_UDP_TUNNEL |
3131 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134 			l4.udp->len = 0;
3135 
3136 			/* determine offset of outer transport header */
3137 			l4_offset = l4.hdr - skb->data;
3138 
3139 			/* remove payload length from outer checksum */
3140 			paylen = skb->len - l4_offset;
3141 			csum_replace_by_diff(&l4.udp->check,
3142 					     (__force __wsum)htonl(paylen));
3143 		}
3144 
3145 		/* reset pointers to inner headers */
3146 		ip.hdr = skb_inner_network_header(skb);
3147 		l4.hdr = skb_inner_transport_header(skb);
3148 
3149 		/* initialize inner IP header fields */
3150 		if (ip.v4->version == 4) {
3151 			ip.v4->tot_len = 0;
3152 			ip.v4->check = 0;
3153 		} else {
3154 			ip.v6->payload_len = 0;
3155 		}
3156 	}
3157 
3158 	/* determine offset of inner transport header */
3159 	l4_offset = l4.hdr - skb->data;
3160 
3161 	/* remove payload length from inner checksum */
3162 	paylen = skb->len - l4_offset;
3163 
3164 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166 		/* compute length of segmentation header */
3167 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3168 	} else {
3169 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170 		/* compute length of segmentation header */
3171 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172 	}
3173 
3174 	/* pull values out of skb_shinfo */
3175 	gso_size = skb_shinfo(skb)->gso_size;
3176 
3177 	/* update GSO size and bytecount with header size */
3178 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3179 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180 
3181 	/* find the field values */
3182 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3183 	cd_tso_len = skb->len - *hdr_len;
3184 	cd_mss = gso_size;
3185 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188 	return 1;
3189 }
3190 
3191 /**
3192  * i40e_tsyn - set up the tsyn context descriptor
3193  * @tx_ring:  ptr to the ring to send
3194  * @skb:      ptr to the skb we're sending
3195  * @tx_flags: the collected send information
3196  * @cd_type_cmd_tso_mss: Quad Word 1
3197  *
3198  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199  **/
3200 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202 {
3203 	struct i40e_pf *pf;
3204 
3205 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206 		return 0;
3207 
3208 	/* Tx timestamps cannot be sampled when doing TSO */
3209 	if (tx_flags & I40E_TX_FLAGS_TSO)
3210 		return 0;
3211 
3212 	/* only timestamp the outbound packet if the user has requested it and
3213 	 * we are not already transmitting a packet to be timestamped
3214 	 */
3215 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3216 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217 		return 0;
3218 
3219 	if (pf->ptp_tx &&
3220 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222 		pf->ptp_tx_start = jiffies;
3223 		pf->ptp_tx_skb = skb_get(skb);
3224 	} else {
3225 		pf->tx_hwtstamp_skipped++;
3226 		return 0;
3227 	}
3228 
3229 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3231 
3232 	return 1;
3233 }
3234 
3235 /**
3236  * i40e_tx_enable_csum - Enable Tx checksum offloads
3237  * @skb: send buffer
3238  * @tx_flags: pointer to Tx flags currently set
3239  * @td_cmd: Tx descriptor command bits to set
3240  * @td_offset: Tx descriptor header offsets to set
3241  * @tx_ring: Tx descriptor ring
3242  * @cd_tunneling: ptr to context desc bits
3243  **/
3244 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245 			       u32 *td_cmd, u32 *td_offset,
3246 			       struct i40e_ring *tx_ring,
3247 			       u32 *cd_tunneling)
3248 {
3249 	union {
3250 		struct iphdr *v4;
3251 		struct ipv6hdr *v6;
3252 		unsigned char *hdr;
3253 	} ip;
3254 	union {
3255 		struct tcphdr *tcp;
3256 		struct udphdr *udp;
3257 		unsigned char *hdr;
3258 	} l4;
3259 	unsigned char *exthdr;
3260 	u32 offset, cmd = 0;
3261 	__be16 frag_off;
3262 	__be16 protocol;
3263 	u8 l4_proto = 0;
3264 
3265 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 		return 0;
3267 
3268 	protocol = vlan_get_protocol(skb);
3269 
3270 	if (eth_p_mpls(protocol)) {
3271 		ip.hdr = skb_inner_network_header(skb);
3272 		l4.hdr = skb_checksum_start(skb);
3273 	} else {
3274 		ip.hdr = skb_network_header(skb);
3275 		l4.hdr = skb_transport_header(skb);
3276 	}
3277 
3278 	/* set the tx_flags to indicate the IP protocol type. this is
3279 	 * required so that checksum header computation below is accurate.
3280 	 */
3281 	if (ip.v4->version == 4)
3282 		*tx_flags |= I40E_TX_FLAGS_IPV4;
3283 	else
3284 		*tx_flags |= I40E_TX_FLAGS_IPV6;
3285 
3286 	/* compute outer L2 header size */
3287 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288 
3289 	if (skb->encapsulation) {
3290 		u32 tunnel = 0;
3291 		/* define outer network header type */
3292 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294 				  I40E_TX_CTX_EXT_IP_IPV4 :
3295 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296 
3297 			l4_proto = ip.v4->protocol;
3298 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299 			int ret;
3300 
3301 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302 
3303 			exthdr = ip.hdr + sizeof(*ip.v6);
3304 			l4_proto = ip.v6->nexthdr;
3305 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306 					       &l4_proto, &frag_off);
3307 			if (ret < 0)
3308 				return -1;
3309 		}
3310 
3311 		/* define outer transport */
3312 		switch (l4_proto) {
3313 		case IPPROTO_UDP:
3314 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316 			break;
3317 		case IPPROTO_GRE:
3318 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320 			break;
3321 		case IPPROTO_IPIP:
3322 		case IPPROTO_IPV6:
3323 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324 			l4.hdr = skb_inner_network_header(skb);
3325 			break;
3326 		default:
3327 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3328 				return -1;
3329 
3330 			skb_checksum_help(skb);
3331 			return 0;
3332 		}
3333 
3334 		/* compute outer L3 header size */
3335 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337 
3338 		/* switch IP header pointer from outer to inner header */
3339 		ip.hdr = skb_inner_network_header(skb);
3340 
3341 		/* compute tunnel header size */
3342 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344 
3345 		/* indicate if we need to offload outer UDP header */
3346 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350 
3351 		/* record tunnel offload values */
3352 		*cd_tunneling |= tunnel;
3353 
3354 		/* switch L4 header pointer from outer to inner */
3355 		l4.hdr = skb_inner_transport_header(skb);
3356 		l4_proto = 0;
3357 
3358 		/* reset type as we transition from outer to inner headers */
3359 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360 		if (ip.v4->version == 4)
3361 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3362 		if (ip.v6->version == 6)
3363 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3364 	}
3365 
3366 	/* Enable IP checksum offloads */
3367 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368 		l4_proto = ip.v4->protocol;
3369 		/* the stack computes the IP header already, the only time we
3370 		 * need the hardware to recompute it is in the case of TSO.
3371 		 */
3372 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3375 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377 
3378 		exthdr = ip.hdr + sizeof(*ip.v6);
3379 		l4_proto = ip.v6->nexthdr;
3380 		if (l4.hdr != exthdr)
3381 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3382 					 &l4_proto, &frag_off);
3383 	}
3384 
3385 	/* compute inner L3 header size */
3386 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387 
3388 	/* Enable L4 checksum offloads */
3389 	switch (l4_proto) {
3390 	case IPPROTO_TCP:
3391 		/* enable checksum offloads */
3392 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394 		break;
3395 	case IPPROTO_SCTP:
3396 		/* enable SCTP checksum offload */
3397 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398 		offset |= (sizeof(struct sctphdr) >> 2) <<
3399 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400 		break;
3401 	case IPPROTO_UDP:
3402 		/* enable UDP checksum offload */
3403 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404 		offset |= (sizeof(struct udphdr) >> 2) <<
3405 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406 		break;
3407 	default:
3408 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3409 			return -1;
3410 		skb_checksum_help(skb);
3411 		return 0;
3412 	}
3413 
3414 	*td_cmd |= cmd;
3415 	*td_offset |= offset;
3416 
3417 	return 1;
3418 }
3419 
3420 /**
3421  * i40e_create_tx_ctx - Build the Tx context descriptor
3422  * @tx_ring:  ring to create the descriptor on
3423  * @cd_type_cmd_tso_mss: Quad Word 1
3424  * @cd_tunneling: Quad Word 0 - bits 0-31
3425  * @cd_l2tag2: Quad Word 0 - bits 32-63
3426  **/
3427 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428 			       const u64 cd_type_cmd_tso_mss,
3429 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3430 {
3431 	struct i40e_tx_context_desc *context_desc;
3432 	int i = tx_ring->next_to_use;
3433 
3434 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435 	    !cd_tunneling && !cd_l2tag2)
3436 		return;
3437 
3438 	/* grab the next descriptor */
3439 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440 
3441 	i++;
3442 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443 
3444 	/* cpu_to_le32 and assign to struct fields */
3445 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447 	context_desc->rsvd = cpu_to_le16(0);
3448 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449 }
3450 
3451 /**
3452  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453  * @tx_ring: the ring to be checked
3454  * @size:    the size buffer we want to assure is available
3455  *
3456  * Returns -EBUSY if a stop is needed, else 0
3457  **/
3458 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459 {
3460 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461 	/* Memory barrier before checking head and tail */
3462 	smp_mb();
3463 
3464 	++tx_ring->tx_stats.tx_stopped;
3465 
3466 	/* Check again in a case another CPU has just made room available. */
3467 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468 		return -EBUSY;
3469 
3470 	/* A reprieve! - use start_queue because it doesn't call schedule */
3471 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472 	++tx_ring->tx_stats.restart_queue;
3473 	return 0;
3474 }
3475 
3476 /**
3477  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478  * @skb:      send buffer
3479  *
3480  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481  * and so we need to figure out the cases where we need to linearize the skb.
3482  *
3483  * For TSO we need to count the TSO header and segment payload separately.
3484  * As such we need to check cases where we have 7 fragments or more as we
3485  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486  * the segment payload in the first descriptor, and another 7 for the
3487  * fragments.
3488  **/
3489 bool __i40e_chk_linearize(struct sk_buff *skb)
3490 {
3491 	const skb_frag_t *frag, *stale;
3492 	int nr_frags, sum;
3493 
3494 	/* no need to check if number of frags is less than 7 */
3495 	nr_frags = skb_shinfo(skb)->nr_frags;
3496 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497 		return false;
3498 
3499 	/* We need to walk through the list and validate that each group
3500 	 * of 6 fragments totals at least gso_size.
3501 	 */
3502 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503 	frag = &skb_shinfo(skb)->frags[0];
3504 
3505 	/* Initialize size to the negative value of gso_size minus 1.  We
3506 	 * use this as the worst case scenerio in which the frag ahead
3507 	 * of us only provides one byte which is why we are limited to 6
3508 	 * descriptors for a single transmit as the header and previous
3509 	 * fragment are already consuming 2 descriptors.
3510 	 */
3511 	sum = 1 - skb_shinfo(skb)->gso_size;
3512 
3513 	/* Add size of frags 0 through 4 to create our initial sum */
3514 	sum += skb_frag_size(frag++);
3515 	sum += skb_frag_size(frag++);
3516 	sum += skb_frag_size(frag++);
3517 	sum += skb_frag_size(frag++);
3518 	sum += skb_frag_size(frag++);
3519 
3520 	/* Walk through fragments adding latest fragment, testing it, and
3521 	 * then removing stale fragments from the sum.
3522 	 */
3523 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524 		int stale_size = skb_frag_size(stale);
3525 
3526 		sum += skb_frag_size(frag++);
3527 
3528 		/* The stale fragment may present us with a smaller
3529 		 * descriptor than the actual fragment size. To account
3530 		 * for that we need to remove all the data on the front and
3531 		 * figure out what the remainder would be in the last
3532 		 * descriptor associated with the fragment.
3533 		 */
3534 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535 			int align_pad = -(skb_frag_off(stale)) &
3536 					(I40E_MAX_READ_REQ_SIZE - 1);
3537 
3538 			sum -= align_pad;
3539 			stale_size -= align_pad;
3540 
3541 			do {
3542 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3545 		}
3546 
3547 		/* if sum is negative we failed to make sufficient progress */
3548 		if (sum < 0)
3549 			return true;
3550 
3551 		if (!nr_frags--)
3552 			break;
3553 
3554 		sum -= stale_size;
3555 	}
3556 
3557 	return false;
3558 }
3559 
3560 /**
3561  * i40e_tx_map - Build the Tx descriptor
3562  * @tx_ring:  ring to send buffer on
3563  * @skb:      send buffer
3564  * @first:    first buffer info buffer to use
3565  * @tx_flags: collected send information
3566  * @hdr_len:  size of the packet header
3567  * @td_cmd:   the command field in the descriptor
3568  * @td_offset: offset for checksum or crc
3569  *
3570  * Returns 0 on success, -1 on failure to DMA
3571  **/
3572 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573 			      struct i40e_tx_buffer *first, u32 tx_flags,
3574 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3575 {
3576 	unsigned int data_len = skb->data_len;
3577 	unsigned int size = skb_headlen(skb);
3578 	skb_frag_t *frag;
3579 	struct i40e_tx_buffer *tx_bi;
3580 	struct i40e_tx_desc *tx_desc;
3581 	u16 i = tx_ring->next_to_use;
3582 	u32 td_tag = 0;
3583 	dma_addr_t dma;
3584 	u16 desc_count = 1;
3585 
3586 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588 		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3589 	}
3590 
3591 	first->tx_flags = tx_flags;
3592 
3593 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594 
3595 	tx_desc = I40E_TX_DESC(tx_ring, i);
3596 	tx_bi = first;
3597 
3598 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600 
3601 		if (dma_mapping_error(tx_ring->dev, dma))
3602 			goto dma_error;
3603 
3604 		/* record length, and DMA address */
3605 		dma_unmap_len_set(tx_bi, len, size);
3606 		dma_unmap_addr_set(tx_bi, dma, dma);
3607 
3608 		/* align size to end of page */
3609 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610 		tx_desc->buffer_addr = cpu_to_le64(dma);
3611 
3612 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613 			tx_desc->cmd_type_offset_bsz =
3614 				build_ctob(td_cmd, td_offset,
3615 					   max_data, td_tag);
3616 
3617 			tx_desc++;
3618 			i++;
3619 			desc_count++;
3620 
3621 			if (i == tx_ring->count) {
3622 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3623 				i = 0;
3624 			}
3625 
3626 			dma += max_data;
3627 			size -= max_data;
3628 
3629 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630 			tx_desc->buffer_addr = cpu_to_le64(dma);
3631 		}
3632 
3633 		if (likely(!data_len))
3634 			break;
3635 
3636 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637 							  size, td_tag);
3638 
3639 		tx_desc++;
3640 		i++;
3641 		desc_count++;
3642 
3643 		if (i == tx_ring->count) {
3644 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3645 			i = 0;
3646 		}
3647 
3648 		size = skb_frag_size(frag);
3649 		data_len -= size;
3650 
3651 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652 				       DMA_TO_DEVICE);
3653 
3654 		tx_bi = &tx_ring->tx_bi[i];
3655 	}
3656 
3657 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658 
3659 	i++;
3660 	if (i == tx_ring->count)
3661 		i = 0;
3662 
3663 	tx_ring->next_to_use = i;
3664 
3665 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666 
3667 	/* write last descriptor with EOP bit */
3668 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3669 
3670 	/* We OR these values together to check both against 4 (WB_STRIDE)
3671 	 * below. This is safe since we don't re-use desc_count afterwards.
3672 	 */
3673 	desc_count |= ++tx_ring->packet_stride;
3674 
3675 	if (desc_count >= WB_STRIDE) {
3676 		/* write last descriptor with RS bit set */
3677 		td_cmd |= I40E_TX_DESC_CMD_RS;
3678 		tx_ring->packet_stride = 0;
3679 	}
3680 
3681 	tx_desc->cmd_type_offset_bsz =
3682 			build_ctob(td_cmd, td_offset, size, td_tag);
3683 
3684 	skb_tx_timestamp(skb);
3685 
3686 	/* Force memory writes to complete before letting h/w know there
3687 	 * are new descriptors to fetch.
3688 	 *
3689 	 * We also use this memory barrier to make certain all of the
3690 	 * status bits have been updated before next_to_watch is written.
3691 	 */
3692 	wmb();
3693 
3694 	/* set next_to_watch value indicating a packet is present */
3695 	first->next_to_watch = tx_desc;
3696 
3697 	/* notify HW of packet */
3698 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699 		writel(i, tx_ring->tail);
3700 	}
3701 
3702 	return 0;
3703 
3704 dma_error:
3705 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3706 
3707 	/* clear dma mappings for failed tx_bi map */
3708 	for (;;) {
3709 		tx_bi = &tx_ring->tx_bi[i];
3710 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711 		if (tx_bi == first)
3712 			break;
3713 		if (i == 0)
3714 			i = tx_ring->count;
3715 		i--;
3716 	}
3717 
3718 	tx_ring->next_to_use = i;
3719 
3720 	return -1;
3721 }
3722 
3723 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724 				  const struct sk_buff *skb,
3725 				  u16 num_tx_queues)
3726 {
3727 	u32 jhash_initval_salt = 0xd631614b;
3728 	u32 hash;
3729 
3730 	if (skb->sk && skb->sk->sk_hash)
3731 		hash = skb->sk->sk_hash;
3732 	else
3733 		hash = (__force u16)skb->protocol ^ skb->hash;
3734 
3735 	hash = jhash_1word(hash, jhash_initval_salt);
3736 
3737 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3738 }
3739 
3740 u16 i40e_lan_select_queue(struct net_device *netdev,
3741 			  struct sk_buff *skb,
3742 			  struct net_device __always_unused *sb_dev)
3743 {
3744 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3745 	struct i40e_vsi *vsi = np->vsi;
3746 	struct i40e_hw *hw;
3747 	u16 qoffset;
3748 	u16 qcount;
3749 	u8 tclass;
3750 	u16 hash;
3751 	u8 prio;
3752 
3753 	/* is DCB enabled at all? */
3754 	if (vsi->tc_config.numtc == 1 ||
3755 	    i40e_is_tc_mqprio_enabled(vsi->back))
3756 		return netdev_pick_tx(netdev, skb, sb_dev);
3757 
3758 	prio = skb->priority;
3759 	hw = &vsi->back->hw;
3760 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761 	/* sanity check */
3762 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763 		tclass = 0;
3764 
3765 	/* select a queue assigned for the given TC */
3766 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3767 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768 
3769 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770 	return qoffset + hash;
3771 }
3772 
3773 /**
3774  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775  * @xdpf: data to transmit
3776  * @xdp_ring: XDP Tx ring
3777  **/
3778 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779 			      struct i40e_ring *xdp_ring)
3780 {
3781 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783 	u16 i = 0, index = xdp_ring->next_to_use;
3784 	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785 	struct i40e_tx_buffer *tx_bi = tx_head;
3786 	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787 	void *data = xdpf->data;
3788 	u32 size = xdpf->len;
3789 
3790 	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791 		xdp_ring->tx_stats.tx_busy++;
3792 		return I40E_XDP_CONSUMED;
3793 	}
3794 
3795 	tx_head->bytecount = xdp_get_frame_len(xdpf);
3796 	tx_head->gso_segs = 1;
3797 	tx_head->xdpf = xdpf;
3798 
3799 	for (;;) {
3800 		dma_addr_t dma;
3801 
3802 		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803 		if (dma_mapping_error(xdp_ring->dev, dma))
3804 			goto unmap;
3805 
3806 		/* record length, and DMA address */
3807 		dma_unmap_len_set(tx_bi, len, size);
3808 		dma_unmap_addr_set(tx_bi, dma, dma);
3809 
3810 		tx_desc->buffer_addr = cpu_to_le64(dma);
3811 		tx_desc->cmd_type_offset_bsz =
3812 			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813 
3814 		if (++index == xdp_ring->count)
3815 			index = 0;
3816 
3817 		if (i == nr_frags)
3818 			break;
3819 
3820 		tx_bi = &xdp_ring->tx_bi[index];
3821 		tx_desc = I40E_TX_DESC(xdp_ring, index);
3822 
3823 		data = skb_frag_address(&sinfo->frags[i]);
3824 		size = skb_frag_size(&sinfo->frags[i]);
3825 		i++;
3826 	}
3827 
3828 	tx_desc->cmd_type_offset_bsz |=
3829 		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3830 
3831 	/* Make certain all of the status bits have been updated
3832 	 * before next_to_watch is written.
3833 	 */
3834 	smp_wmb();
3835 
3836 	xdp_ring->xdp_tx_active++;
3837 
3838 	tx_head->next_to_watch = tx_desc;
3839 	xdp_ring->next_to_use = index;
3840 
3841 	return I40E_XDP_TX;
3842 
3843 unmap:
3844 	for (;;) {
3845 		tx_bi = &xdp_ring->tx_bi[index];
3846 		if (dma_unmap_len(tx_bi, len))
3847 			dma_unmap_page(xdp_ring->dev,
3848 				       dma_unmap_addr(tx_bi, dma),
3849 				       dma_unmap_len(tx_bi, len),
3850 				       DMA_TO_DEVICE);
3851 		dma_unmap_len_set(tx_bi, len, 0);
3852 		if (tx_bi == tx_head)
3853 			break;
3854 
3855 		if (!index)
3856 			index += xdp_ring->count;
3857 		index--;
3858 	}
3859 
3860 	return I40E_XDP_CONSUMED;
3861 }
3862 
3863 /**
3864  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865  * @skb:     send buffer
3866  * @tx_ring: ring to send buffer on
3867  *
3868  * Returns NETDEV_TX_OK if sent, else an error code
3869  **/
3870 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871 					struct i40e_ring *tx_ring)
3872 {
3873 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875 	struct i40e_tx_buffer *first;
3876 	u32 td_offset = 0;
3877 	u32 tx_flags = 0;
3878 	u32 td_cmd = 0;
3879 	u8 hdr_len = 0;
3880 	int tso, count;
3881 	int tsyn;
3882 
3883 	/* prefetch the data, we'll need it later */
3884 	prefetch(skb->data);
3885 
3886 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3887 
3888 	count = i40e_xmit_descriptor_count(skb);
3889 	if (i40e_chk_linearize(skb, count)) {
3890 		if (__skb_linearize(skb)) {
3891 			dev_kfree_skb_any(skb);
3892 			return NETDEV_TX_OK;
3893 		}
3894 		count = i40e_txd_use_count(skb->len);
3895 		tx_ring->tx_stats.tx_linearize++;
3896 	}
3897 
3898 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900 	 *       + 4 desc gap to avoid the cache line where head is,
3901 	 *       + 1 desc for context descriptor,
3902 	 * otherwise try next time
3903 	 */
3904 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905 		tx_ring->tx_stats.tx_busy++;
3906 		return NETDEV_TX_BUSY;
3907 	}
3908 
3909 	/* record the location of the first descriptor for this packet */
3910 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911 	first->skb = skb;
3912 	first->bytecount = skb->len;
3913 	first->gso_segs = 1;
3914 
3915 	/* prepare the xmit flags */
3916 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917 		goto out_drop;
3918 
3919 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3920 
3921 	if (tso < 0)
3922 		goto out_drop;
3923 	else if (tso)
3924 		tx_flags |= I40E_TX_FLAGS_TSO;
3925 
3926 	/* Always offload the checksum, since it's in the data descriptor */
3927 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928 				  tx_ring, &cd_tunneling);
3929 	if (tso < 0)
3930 		goto out_drop;
3931 
3932 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933 
3934 	if (tsyn)
3935 		tx_flags |= I40E_TX_FLAGS_TSYN;
3936 
3937 	/* always enable CRC insertion offload */
3938 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939 
3940 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941 			   cd_tunneling, cd_l2tag2);
3942 
3943 	/* Add Flow Director ATR if it's enabled.
3944 	 *
3945 	 * NOTE: this must always be directly before the data descriptor.
3946 	 */
3947 	i40e_atr(tx_ring, skb, tx_flags);
3948 
3949 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950 			td_cmd, td_offset))
3951 		goto cleanup_tx_tstamp;
3952 
3953 	return NETDEV_TX_OK;
3954 
3955 out_drop:
3956 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957 	dev_kfree_skb_any(first->skb);
3958 	first->skb = NULL;
3959 cleanup_tx_tstamp:
3960 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962 
3963 		dev_kfree_skb_any(pf->ptp_tx_skb);
3964 		pf->ptp_tx_skb = NULL;
3965 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966 	}
3967 
3968 	return NETDEV_TX_OK;
3969 }
3970 
3971 /**
3972  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973  * @skb:    send buffer
3974  * @netdev: network interface device structure
3975  *
3976  * Returns NETDEV_TX_OK if sent, else an error code
3977  **/
3978 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979 {
3980 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3981 	struct i40e_vsi *vsi = np->vsi;
3982 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983 
3984 	/* hardware can't handle really short frames, hardware padding works
3985 	 * beyond this point
3986 	 */
3987 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988 		return NETDEV_TX_OK;
3989 
3990 	return i40e_xmit_frame_ring(skb, tx_ring);
3991 }
3992 
3993 /**
3994  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995  * @dev: netdev
3996  * @n: number of frames
3997  * @frames: array of XDP buffer pointers
3998  * @flags: XDP extra info
3999  *
4000  * Returns number of frames successfully sent. Failed frames
4001  * will be free'ed by XDP core.
4002  *
4003  * For error cases, a negative errno code is returned and no-frames
4004  * are transmitted (caller must handle freeing frames).
4005  **/
4006 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007 		  u32 flags)
4008 {
4009 	struct i40e_netdev_priv *np = netdev_priv(dev);
4010 	unsigned int queue_index = smp_processor_id();
4011 	struct i40e_vsi *vsi = np->vsi;
4012 	struct i40e_pf *pf = vsi->back;
4013 	struct i40e_ring *xdp_ring;
4014 	int nxmit = 0;
4015 	int i;
4016 
4017 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018 		return -ENETDOWN;
4019 
4020 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4022 		return -ENXIO;
4023 
4024 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025 		return -EINVAL;
4026 
4027 	xdp_ring = vsi->xdp_rings[queue_index];
4028 
4029 	for (i = 0; i < n; i++) {
4030 		struct xdp_frame *xdpf = frames[i];
4031 		int err;
4032 
4033 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034 		if (err != I40E_XDP_TX)
4035 			break;
4036 		nxmit++;
4037 	}
4038 
4039 	if (unlikely(flags & XDP_XMIT_FLUSH))
4040 		i40e_xdp_ring_update_tail(xdp_ring);
4041 
4042 	return nxmit;
4043 }
4044