1 // SPDX-License-Identifier: GPL-2.0 2 /******************************************************************************* 3 * 4 * Intel Ethernet Controller XL710 Family Linux Driver 5 * Copyright(c) 2013 - 2016 Intel Corporation. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along 17 * with this program. If not, see <http://www.gnu.org/licenses/>. 18 * 19 * The full GNU General Public License is included in this distribution in 20 * the file called "COPYING". 21 * 22 * Contact Information: 23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 * 26 ******************************************************************************/ 27 28 #include <linux/prefetch.h> 29 #include <net/busy_poll.h> 30 #include <linux/bpf_trace.h> 31 #include <net/xdp.h> 32 #include "i40e.h" 33 #include "i40e_trace.h" 34 #include "i40e_prototype.h" 35 36 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 37 u32 td_tag) 38 { 39 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA | 40 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) | 41 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) | 42 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) | 43 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT)); 44 } 45 46 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 47 /** 48 * i40e_fdir - Generate a Flow Director descriptor based on fdata 49 * @tx_ring: Tx ring to send buffer on 50 * @fdata: Flow director filter data 51 * @add: Indicate if we are adding a rule or deleting one 52 * 53 **/ 54 static void i40e_fdir(struct i40e_ring *tx_ring, 55 struct i40e_fdir_filter *fdata, bool add) 56 { 57 struct i40e_filter_program_desc *fdir_desc; 58 struct i40e_pf *pf = tx_ring->vsi->back; 59 u32 flex_ptype, dtype_cmd; 60 u16 i; 61 62 /* grab the next descriptor */ 63 i = tx_ring->next_to_use; 64 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 65 66 i++; 67 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 68 69 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 70 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 71 72 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 73 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 74 75 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 76 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 77 78 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 79 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 80 81 /* Use LAN VSI Id if not programmed by user */ 82 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 83 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 84 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 85 86 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 87 88 dtype_cmd |= add ? 89 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 90 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 91 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 92 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 93 94 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 95 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 96 97 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 98 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 99 100 if (fdata->cnt_index) { 101 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 102 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 103 ((u32)fdata->cnt_index << 104 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 105 } 106 107 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 108 fdir_desc->rsvd = cpu_to_le32(0); 109 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 110 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 111 } 112 113 #define I40E_FD_CLEAN_DELAY 10 114 /** 115 * i40e_program_fdir_filter - Program a Flow Director filter 116 * @fdir_data: Packet data that will be filter parameters 117 * @raw_packet: the pre-allocated packet buffer for FDir 118 * @pf: The PF pointer 119 * @add: True for add/update, False for remove 120 **/ 121 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 122 u8 *raw_packet, struct i40e_pf *pf, 123 bool add) 124 { 125 struct i40e_tx_buffer *tx_buf, *first; 126 struct i40e_tx_desc *tx_desc; 127 struct i40e_ring *tx_ring; 128 struct i40e_vsi *vsi; 129 struct device *dev; 130 dma_addr_t dma; 131 u32 td_cmd = 0; 132 u16 i; 133 134 /* find existing FDIR VSI */ 135 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 136 if (!vsi) 137 return -ENOENT; 138 139 tx_ring = vsi->tx_rings[0]; 140 dev = tx_ring->dev; 141 142 /* we need two descriptors to add/del a filter and we can wait */ 143 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 144 if (!i) 145 return -EAGAIN; 146 msleep_interruptible(1); 147 } 148 149 dma = dma_map_single(dev, raw_packet, 150 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 151 if (dma_mapping_error(dev, dma)) 152 goto dma_fail; 153 154 /* grab the next descriptor */ 155 i = tx_ring->next_to_use; 156 first = &tx_ring->tx_bi[i]; 157 i40e_fdir(tx_ring, fdir_data, add); 158 159 /* Now program a dummy descriptor */ 160 i = tx_ring->next_to_use; 161 tx_desc = I40E_TX_DESC(tx_ring, i); 162 tx_buf = &tx_ring->tx_bi[i]; 163 164 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 165 166 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 167 168 /* record length, and DMA address */ 169 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 170 dma_unmap_addr_set(tx_buf, dma, dma); 171 172 tx_desc->buffer_addr = cpu_to_le64(dma); 173 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 174 175 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 176 tx_buf->raw_buf = (void *)raw_packet; 177 178 tx_desc->cmd_type_offset_bsz = 179 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 180 181 /* Force memory writes to complete before letting h/w 182 * know there are new descriptors to fetch. 183 */ 184 wmb(); 185 186 /* Mark the data descriptor to be watched */ 187 first->next_to_watch = tx_desc; 188 189 writel(tx_ring->next_to_use, tx_ring->tail); 190 return 0; 191 192 dma_fail: 193 return -1; 194 } 195 196 #define IP_HEADER_OFFSET 14 197 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 198 /** 199 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 200 * @vsi: pointer to the targeted VSI 201 * @fd_data: the flow director data required for the FDir descriptor 202 * @add: true adds a filter, false removes it 203 * 204 * Returns 0 if the filters were successfully added or removed 205 **/ 206 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 207 struct i40e_fdir_filter *fd_data, 208 bool add) 209 { 210 struct i40e_pf *pf = vsi->back; 211 struct udphdr *udp; 212 struct iphdr *ip; 213 u8 *raw_packet; 214 int ret; 215 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 216 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 217 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 218 219 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 220 if (!raw_packet) 221 return -ENOMEM; 222 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 223 224 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 225 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 226 + sizeof(struct iphdr)); 227 228 ip->daddr = fd_data->dst_ip; 229 udp->dest = fd_data->dst_port; 230 ip->saddr = fd_data->src_ip; 231 udp->source = fd_data->src_port; 232 233 if (fd_data->flex_filter) { 234 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN; 235 __be16 pattern = fd_data->flex_word; 236 u16 off = fd_data->flex_offset; 237 238 *((__force __be16 *)(payload + off)) = pattern; 239 } 240 241 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 242 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 243 if (ret) { 244 dev_info(&pf->pdev->dev, 245 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 246 fd_data->pctype, fd_data->fd_id, ret); 247 /* Free the packet buffer since it wasn't added to the ring */ 248 kfree(raw_packet); 249 return -EOPNOTSUPP; 250 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 251 if (add) 252 dev_info(&pf->pdev->dev, 253 "Filter OK for PCTYPE %d loc = %d\n", 254 fd_data->pctype, fd_data->fd_id); 255 else 256 dev_info(&pf->pdev->dev, 257 "Filter deleted for PCTYPE %d loc = %d\n", 258 fd_data->pctype, fd_data->fd_id); 259 } 260 261 if (add) 262 pf->fd_udp4_filter_cnt++; 263 else 264 pf->fd_udp4_filter_cnt--; 265 266 return 0; 267 } 268 269 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 270 /** 271 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 272 * @vsi: pointer to the targeted VSI 273 * @fd_data: the flow director data required for the FDir descriptor 274 * @add: true adds a filter, false removes it 275 * 276 * Returns 0 if the filters were successfully added or removed 277 **/ 278 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 279 struct i40e_fdir_filter *fd_data, 280 bool add) 281 { 282 struct i40e_pf *pf = vsi->back; 283 struct tcphdr *tcp; 284 struct iphdr *ip; 285 u8 *raw_packet; 286 int ret; 287 /* Dummy packet */ 288 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 289 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 290 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 291 0x0, 0x72, 0, 0, 0, 0}; 292 293 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 294 if (!raw_packet) 295 return -ENOMEM; 296 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 297 298 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 299 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 300 + sizeof(struct iphdr)); 301 302 ip->daddr = fd_data->dst_ip; 303 tcp->dest = fd_data->dst_port; 304 ip->saddr = fd_data->src_ip; 305 tcp->source = fd_data->src_port; 306 307 if (fd_data->flex_filter) { 308 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN; 309 __be16 pattern = fd_data->flex_word; 310 u16 off = fd_data->flex_offset; 311 312 *((__force __be16 *)(payload + off)) = pattern; 313 } 314 315 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 316 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 317 if (ret) { 318 dev_info(&pf->pdev->dev, 319 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 320 fd_data->pctype, fd_data->fd_id, ret); 321 /* Free the packet buffer since it wasn't added to the ring */ 322 kfree(raw_packet); 323 return -EOPNOTSUPP; 324 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 325 if (add) 326 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 327 fd_data->pctype, fd_data->fd_id); 328 else 329 dev_info(&pf->pdev->dev, 330 "Filter deleted for PCTYPE %d loc = %d\n", 331 fd_data->pctype, fd_data->fd_id); 332 } 333 334 if (add) { 335 pf->fd_tcp4_filter_cnt++; 336 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 337 I40E_DEBUG_FD & pf->hw.debug_mask) 338 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 339 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 340 } else { 341 pf->fd_tcp4_filter_cnt--; 342 } 343 344 return 0; 345 } 346 347 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 348 /** 349 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 350 * a specific flow spec 351 * @vsi: pointer to the targeted VSI 352 * @fd_data: the flow director data required for the FDir descriptor 353 * @add: true adds a filter, false removes it 354 * 355 * Returns 0 if the filters were successfully added or removed 356 **/ 357 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 358 struct i40e_fdir_filter *fd_data, 359 bool add) 360 { 361 struct i40e_pf *pf = vsi->back; 362 struct sctphdr *sctp; 363 struct iphdr *ip; 364 u8 *raw_packet; 365 int ret; 366 /* Dummy packet */ 367 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 368 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0, 369 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 370 371 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 372 if (!raw_packet) 373 return -ENOMEM; 374 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN); 375 376 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 377 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET 378 + sizeof(struct iphdr)); 379 380 ip->daddr = fd_data->dst_ip; 381 sctp->dest = fd_data->dst_port; 382 ip->saddr = fd_data->src_ip; 383 sctp->source = fd_data->src_port; 384 385 if (fd_data->flex_filter) { 386 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN; 387 __be16 pattern = fd_data->flex_word; 388 u16 off = fd_data->flex_offset; 389 390 *((__force __be16 *)(payload + off)) = pattern; 391 } 392 393 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP; 394 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 395 if (ret) { 396 dev_info(&pf->pdev->dev, 397 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 398 fd_data->pctype, fd_data->fd_id, ret); 399 /* Free the packet buffer since it wasn't added to the ring */ 400 kfree(raw_packet); 401 return -EOPNOTSUPP; 402 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 403 if (add) 404 dev_info(&pf->pdev->dev, 405 "Filter OK for PCTYPE %d loc = %d\n", 406 fd_data->pctype, fd_data->fd_id); 407 else 408 dev_info(&pf->pdev->dev, 409 "Filter deleted for PCTYPE %d loc = %d\n", 410 fd_data->pctype, fd_data->fd_id); 411 } 412 413 if (add) 414 pf->fd_sctp4_filter_cnt++; 415 else 416 pf->fd_sctp4_filter_cnt--; 417 418 return 0; 419 } 420 421 #define I40E_IP_DUMMY_PACKET_LEN 34 422 /** 423 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 424 * a specific flow spec 425 * @vsi: pointer to the targeted VSI 426 * @fd_data: the flow director data required for the FDir descriptor 427 * @add: true adds a filter, false removes it 428 * 429 * Returns 0 if the filters were successfully added or removed 430 **/ 431 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 432 struct i40e_fdir_filter *fd_data, 433 bool add) 434 { 435 struct i40e_pf *pf = vsi->back; 436 struct iphdr *ip; 437 u8 *raw_packet; 438 int ret; 439 int i; 440 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 441 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 442 0, 0, 0, 0}; 443 444 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 445 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 446 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 447 if (!raw_packet) 448 return -ENOMEM; 449 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 450 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 451 452 ip->saddr = fd_data->src_ip; 453 ip->daddr = fd_data->dst_ip; 454 ip->protocol = 0; 455 456 if (fd_data->flex_filter) { 457 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN; 458 __be16 pattern = fd_data->flex_word; 459 u16 off = fd_data->flex_offset; 460 461 *((__force __be16 *)(payload + off)) = pattern; 462 } 463 464 fd_data->pctype = i; 465 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 466 if (ret) { 467 dev_info(&pf->pdev->dev, 468 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 469 fd_data->pctype, fd_data->fd_id, ret); 470 /* The packet buffer wasn't added to the ring so we 471 * need to free it now. 472 */ 473 kfree(raw_packet); 474 return -EOPNOTSUPP; 475 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 476 if (add) 477 dev_info(&pf->pdev->dev, 478 "Filter OK for PCTYPE %d loc = %d\n", 479 fd_data->pctype, fd_data->fd_id); 480 else 481 dev_info(&pf->pdev->dev, 482 "Filter deleted for PCTYPE %d loc = %d\n", 483 fd_data->pctype, fd_data->fd_id); 484 } 485 } 486 487 if (add) 488 pf->fd_ip4_filter_cnt++; 489 else 490 pf->fd_ip4_filter_cnt--; 491 492 return 0; 493 } 494 495 /** 496 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 497 * @vsi: pointer to the targeted VSI 498 * @cmd: command to get or set RX flow classification rules 499 * @add: true adds a filter, false removes it 500 * 501 **/ 502 int i40e_add_del_fdir(struct i40e_vsi *vsi, 503 struct i40e_fdir_filter *input, bool add) 504 { 505 struct i40e_pf *pf = vsi->back; 506 int ret; 507 508 switch (input->flow_type & ~FLOW_EXT) { 509 case TCP_V4_FLOW: 510 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 511 break; 512 case UDP_V4_FLOW: 513 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 514 break; 515 case SCTP_V4_FLOW: 516 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 517 break; 518 case IP_USER_FLOW: 519 switch (input->ip4_proto) { 520 case IPPROTO_TCP: 521 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 522 break; 523 case IPPROTO_UDP: 524 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 525 break; 526 case IPPROTO_SCTP: 527 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 528 break; 529 case IPPROTO_IP: 530 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 531 break; 532 default: 533 /* We cannot support masking based on protocol */ 534 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 535 input->ip4_proto); 536 return -EINVAL; 537 } 538 break; 539 default: 540 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 541 input->flow_type); 542 return -EINVAL; 543 } 544 545 /* The buffer allocated here will be normally be freed by 546 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 547 * completion. In the event of an error adding the buffer to the FDIR 548 * ring, it will immediately be freed. It may also be freed by 549 * i40e_clean_tx_ring() when closing the VSI. 550 */ 551 return ret; 552 } 553 554 /** 555 * i40e_fd_handle_status - check the Programming Status for FD 556 * @rx_ring: the Rx ring for this descriptor 557 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor. 558 * @prog_id: the id originally used for programming 559 * 560 * This is used to verify if the FD programming or invalidation 561 * requested by SW to the HW is successful or not and take actions accordingly. 562 **/ 563 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, 564 union i40e_rx_desc *rx_desc, u8 prog_id) 565 { 566 struct i40e_pf *pf = rx_ring->vsi->back; 567 struct pci_dev *pdev = pf->pdev; 568 u32 fcnt_prog, fcnt_avail; 569 u32 error; 570 u64 qw; 571 572 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 573 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 574 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 575 576 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 577 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id); 578 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) || 579 (I40E_DEBUG_FD & pf->hw.debug_mask)) 580 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 581 pf->fd_inv); 582 583 /* Check if the programming error is for ATR. 584 * If so, auto disable ATR and set a state for 585 * flush in progress. Next time we come here if flush is in 586 * progress do nothing, once flush is complete the state will 587 * be cleared. 588 */ 589 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 590 return; 591 592 pf->fd_add_err++; 593 /* store the current atr filter count */ 594 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 595 596 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) && 597 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { 598 /* These set_bit() calls aren't atomic with the 599 * test_bit() here, but worse case we potentially 600 * disable ATR and queue a flush right after SB 601 * support is re-enabled. That shouldn't cause an 602 * issue in practice 603 */ 604 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 605 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 606 } 607 608 /* filter programming failed most likely due to table full */ 609 fcnt_prog = i40e_get_global_fd_count(pf); 610 fcnt_avail = pf->fdir_pf_filter_count; 611 /* If ATR is running fcnt_prog can quickly change, 612 * if we are very close to full, it makes sense to disable 613 * FD ATR/SB and then re-enable it when there is room. 614 */ 615 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 616 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 617 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, 618 pf->state)) 619 if (I40E_DEBUG_FD & pf->hw.debug_mask) 620 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 621 } 622 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 623 if (I40E_DEBUG_FD & pf->hw.debug_mask) 624 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 625 rx_desc->wb.qword0.hi_dword.fd_id); 626 } 627 } 628 629 /** 630 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 631 * @ring: the ring that owns the buffer 632 * @tx_buffer: the buffer to free 633 **/ 634 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 635 struct i40e_tx_buffer *tx_buffer) 636 { 637 if (tx_buffer->skb) { 638 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 639 kfree(tx_buffer->raw_buf); 640 else if (ring_is_xdp(ring)) 641 page_frag_free(tx_buffer->raw_buf); 642 else 643 dev_kfree_skb_any(tx_buffer->skb); 644 if (dma_unmap_len(tx_buffer, len)) 645 dma_unmap_single(ring->dev, 646 dma_unmap_addr(tx_buffer, dma), 647 dma_unmap_len(tx_buffer, len), 648 DMA_TO_DEVICE); 649 } else if (dma_unmap_len(tx_buffer, len)) { 650 dma_unmap_page(ring->dev, 651 dma_unmap_addr(tx_buffer, dma), 652 dma_unmap_len(tx_buffer, len), 653 DMA_TO_DEVICE); 654 } 655 656 tx_buffer->next_to_watch = NULL; 657 tx_buffer->skb = NULL; 658 dma_unmap_len_set(tx_buffer, len, 0); 659 /* tx_buffer must be completely set up in the transmit path */ 660 } 661 662 /** 663 * i40e_clean_tx_ring - Free any empty Tx buffers 664 * @tx_ring: ring to be cleaned 665 **/ 666 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 667 { 668 unsigned long bi_size; 669 u16 i; 670 671 /* ring already cleared, nothing to do */ 672 if (!tx_ring->tx_bi) 673 return; 674 675 /* Free all the Tx ring sk_buffs */ 676 for (i = 0; i < tx_ring->count; i++) 677 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 678 679 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 680 memset(tx_ring->tx_bi, 0, bi_size); 681 682 /* Zero out the descriptor ring */ 683 memset(tx_ring->desc, 0, tx_ring->size); 684 685 tx_ring->next_to_use = 0; 686 tx_ring->next_to_clean = 0; 687 688 if (!tx_ring->netdev) 689 return; 690 691 /* cleanup Tx queue statistics */ 692 netdev_tx_reset_queue(txring_txq(tx_ring)); 693 } 694 695 /** 696 * i40e_free_tx_resources - Free Tx resources per queue 697 * @tx_ring: Tx descriptor ring for a specific queue 698 * 699 * Free all transmit software resources 700 **/ 701 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 702 { 703 i40e_clean_tx_ring(tx_ring); 704 kfree(tx_ring->tx_bi); 705 tx_ring->tx_bi = NULL; 706 707 if (tx_ring->desc) { 708 dma_free_coherent(tx_ring->dev, tx_ring->size, 709 tx_ring->desc, tx_ring->dma); 710 tx_ring->desc = NULL; 711 } 712 } 713 714 /** 715 * i40e_get_tx_pending - how many tx descriptors not processed 716 * @tx_ring: the ring of descriptors 717 * @in_sw: use SW variables 718 * 719 * Since there is no access to the ring head register 720 * in XL710, we need to use our local copies 721 **/ 722 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 723 { 724 u32 head, tail; 725 726 if (!in_sw) { 727 head = i40e_get_head(ring); 728 tail = readl(ring->tail); 729 } else { 730 head = ring->next_to_clean; 731 tail = ring->next_to_use; 732 } 733 734 if (head != tail) 735 return (head < tail) ? 736 tail - head : (tail + ring->count - head); 737 738 return 0; 739 } 740 741 /** 742 * i40e_detect_recover_hung - Function to detect and recover hung_queues 743 * @vsi: pointer to vsi struct with tx queues 744 * 745 * VSI has netdev and netdev has TX queues. This function is to check each of 746 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 747 **/ 748 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 749 { 750 struct i40e_ring *tx_ring = NULL; 751 struct net_device *netdev; 752 unsigned int i; 753 int packets; 754 755 if (!vsi) 756 return; 757 758 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 759 return; 760 761 netdev = vsi->netdev; 762 if (!netdev) 763 return; 764 765 if (!netif_carrier_ok(netdev)) 766 return; 767 768 for (i = 0; i < vsi->num_queue_pairs; i++) { 769 tx_ring = vsi->tx_rings[i]; 770 if (tx_ring && tx_ring->desc) { 771 /* If packet counter has not changed the queue is 772 * likely stalled, so force an interrupt for this 773 * queue. 774 * 775 * prev_pkt_ctr would be negative if there was no 776 * pending work. 777 */ 778 packets = tx_ring->stats.packets & INT_MAX; 779 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 780 i40e_force_wb(vsi, tx_ring->q_vector); 781 continue; 782 } 783 784 /* Memory barrier between read of packet count and call 785 * to i40e_get_tx_pending() 786 */ 787 smp_rmb(); 788 tx_ring->tx_stats.prev_pkt_ctr = 789 i40e_get_tx_pending(tx_ring, true) ? packets : -1; 790 } 791 } 792 } 793 794 #define WB_STRIDE 4 795 796 /** 797 * i40e_clean_tx_irq - Reclaim resources after transmit completes 798 * @vsi: the VSI we care about 799 * @tx_ring: Tx ring to clean 800 * @napi_budget: Used to determine if we are in netpoll 801 * 802 * Returns true if there's any budget left (e.g. the clean is finished) 803 **/ 804 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 805 struct i40e_ring *tx_ring, int napi_budget) 806 { 807 u16 i = tx_ring->next_to_clean; 808 struct i40e_tx_buffer *tx_buf; 809 struct i40e_tx_desc *tx_head; 810 struct i40e_tx_desc *tx_desc; 811 unsigned int total_bytes = 0, total_packets = 0; 812 unsigned int budget = vsi->work_limit; 813 814 tx_buf = &tx_ring->tx_bi[i]; 815 tx_desc = I40E_TX_DESC(tx_ring, i); 816 i -= tx_ring->count; 817 818 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 819 820 do { 821 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 822 823 /* if next_to_watch is not set then there is no work pending */ 824 if (!eop_desc) 825 break; 826 827 /* prevent any other reads prior to eop_desc */ 828 smp_rmb(); 829 830 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 831 /* we have caught up to head, no work left to do */ 832 if (tx_head == tx_desc) 833 break; 834 835 /* clear next_to_watch to prevent false hangs */ 836 tx_buf->next_to_watch = NULL; 837 838 /* update the statistics for this packet */ 839 total_bytes += tx_buf->bytecount; 840 total_packets += tx_buf->gso_segs; 841 842 /* free the skb/XDP data */ 843 if (ring_is_xdp(tx_ring)) 844 page_frag_free(tx_buf->raw_buf); 845 else 846 napi_consume_skb(tx_buf->skb, napi_budget); 847 848 /* unmap skb header data */ 849 dma_unmap_single(tx_ring->dev, 850 dma_unmap_addr(tx_buf, dma), 851 dma_unmap_len(tx_buf, len), 852 DMA_TO_DEVICE); 853 854 /* clear tx_buffer data */ 855 tx_buf->skb = NULL; 856 dma_unmap_len_set(tx_buf, len, 0); 857 858 /* unmap remaining buffers */ 859 while (tx_desc != eop_desc) { 860 i40e_trace(clean_tx_irq_unmap, 861 tx_ring, tx_desc, tx_buf); 862 863 tx_buf++; 864 tx_desc++; 865 i++; 866 if (unlikely(!i)) { 867 i -= tx_ring->count; 868 tx_buf = tx_ring->tx_bi; 869 tx_desc = I40E_TX_DESC(tx_ring, 0); 870 } 871 872 /* unmap any remaining paged data */ 873 if (dma_unmap_len(tx_buf, len)) { 874 dma_unmap_page(tx_ring->dev, 875 dma_unmap_addr(tx_buf, dma), 876 dma_unmap_len(tx_buf, len), 877 DMA_TO_DEVICE); 878 dma_unmap_len_set(tx_buf, len, 0); 879 } 880 } 881 882 /* move us one more past the eop_desc for start of next pkt */ 883 tx_buf++; 884 tx_desc++; 885 i++; 886 if (unlikely(!i)) { 887 i -= tx_ring->count; 888 tx_buf = tx_ring->tx_bi; 889 tx_desc = I40E_TX_DESC(tx_ring, 0); 890 } 891 892 prefetch(tx_desc); 893 894 /* update budget accounting */ 895 budget--; 896 } while (likely(budget)); 897 898 i += tx_ring->count; 899 tx_ring->next_to_clean = i; 900 u64_stats_update_begin(&tx_ring->syncp); 901 tx_ring->stats.bytes += total_bytes; 902 tx_ring->stats.packets += total_packets; 903 u64_stats_update_end(&tx_ring->syncp); 904 tx_ring->q_vector->tx.total_bytes += total_bytes; 905 tx_ring->q_vector->tx.total_packets += total_packets; 906 907 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) { 908 /* check to see if there are < 4 descriptors 909 * waiting to be written back, then kick the hardware to force 910 * them to be written back in case we stay in NAPI. 911 * In this mode on X722 we do not enable Interrupt. 912 */ 913 unsigned int j = i40e_get_tx_pending(tx_ring, false); 914 915 if (budget && 916 ((j / WB_STRIDE) == 0) && (j > 0) && 917 !test_bit(__I40E_VSI_DOWN, vsi->state) && 918 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count)) 919 tx_ring->arm_wb = true; 920 } 921 922 if (ring_is_xdp(tx_ring)) 923 return !!budget; 924 925 /* notify netdev of completed buffers */ 926 netdev_tx_completed_queue(txring_txq(tx_ring), 927 total_packets, total_bytes); 928 929 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 930 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 931 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 932 /* Make sure that anybody stopping the queue after this 933 * sees the new next_to_clean. 934 */ 935 smp_mb(); 936 if (__netif_subqueue_stopped(tx_ring->netdev, 937 tx_ring->queue_index) && 938 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 939 netif_wake_subqueue(tx_ring->netdev, 940 tx_ring->queue_index); 941 ++tx_ring->tx_stats.restart_queue; 942 } 943 } 944 945 return !!budget; 946 } 947 948 /** 949 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 950 * @vsi: the VSI we care about 951 * @q_vector: the vector on which to enable writeback 952 * 953 **/ 954 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 955 struct i40e_q_vector *q_vector) 956 { 957 u16 flags = q_vector->tx.ring[0].flags; 958 u32 val; 959 960 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 961 return; 962 963 if (q_vector->arm_wb_state) 964 return; 965 966 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 967 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 968 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 969 970 wr32(&vsi->back->hw, 971 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 972 val); 973 } else { 974 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 975 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 976 977 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 978 } 979 q_vector->arm_wb_state = true; 980 } 981 982 /** 983 * i40e_force_wb - Issue SW Interrupt so HW does a wb 984 * @vsi: the VSI we care about 985 * @q_vector: the vector on which to force writeback 986 * 987 **/ 988 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 989 { 990 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 991 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 992 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 993 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 994 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 995 /* allow 00 to be written to the index */ 996 997 wr32(&vsi->back->hw, 998 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 999 } else { 1000 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 1001 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 1002 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 1003 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 1004 /* allow 00 to be written to the index */ 1005 1006 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 1007 } 1008 } 1009 1010 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 1011 struct i40e_ring_container *rc) 1012 { 1013 return &q_vector->rx == rc; 1014 } 1015 1016 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 1017 { 1018 unsigned int divisor; 1019 1020 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 1021 case I40E_LINK_SPEED_40GB: 1022 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 1023 break; 1024 case I40E_LINK_SPEED_25GB: 1025 case I40E_LINK_SPEED_20GB: 1026 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 1027 break; 1028 default: 1029 case I40E_LINK_SPEED_10GB: 1030 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 1031 break; 1032 case I40E_LINK_SPEED_1GB: 1033 case I40E_LINK_SPEED_100MB: 1034 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 1035 break; 1036 } 1037 1038 return divisor; 1039 } 1040 1041 /** 1042 * i40e_update_itr - update the dynamic ITR value based on statistics 1043 * @q_vector: structure containing interrupt and ring information 1044 * @rc: structure containing ring performance data 1045 * 1046 * Stores a new ITR value based on packets and byte 1047 * counts during the last interrupt. The advantage of per interrupt 1048 * computation is faster updates and more accurate ITR for the current 1049 * traffic pattern. Constants in this function were computed 1050 * based on theoretical maximum wire speed and thresholds were set based 1051 * on testing data as well as attempting to minimize response time 1052 * while increasing bulk throughput. 1053 **/ 1054 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1055 struct i40e_ring_container *rc) 1056 { 1057 unsigned int avg_wire_size, packets, bytes, itr; 1058 unsigned long next_update = jiffies; 1059 1060 /* If we don't have any rings just leave ourselves set for maximum 1061 * possible latency so we take ourselves out of the equation. 1062 */ 1063 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1064 return; 1065 1066 /* For Rx we want to push the delay up and default to low latency. 1067 * for Tx we want to pull the delay down and default to high latency. 1068 */ 1069 itr = i40e_container_is_rx(q_vector, rc) ? 1070 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1071 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1072 1073 /* If we didn't update within up to 1 - 2 jiffies we can assume 1074 * that either packets are coming in so slow there hasn't been 1075 * any work, or that there is so much work that NAPI is dealing 1076 * with interrupt moderation and we don't need to do anything. 1077 */ 1078 if (time_after(next_update, rc->next_update)) 1079 goto clear_counts; 1080 1081 /* If itr_countdown is set it means we programmed an ITR within 1082 * the last 4 interrupt cycles. This has a side effect of us 1083 * potentially firing an early interrupt. In order to work around 1084 * this we need to throw out any data received for a few 1085 * interrupts following the update. 1086 */ 1087 if (q_vector->itr_countdown) { 1088 itr = rc->target_itr; 1089 goto clear_counts; 1090 } 1091 1092 packets = rc->total_packets; 1093 bytes = rc->total_bytes; 1094 1095 if (i40e_container_is_rx(q_vector, rc)) { 1096 /* If Rx there are 1 to 4 packets and bytes are less than 1097 * 9000 assume insufficient data to use bulk rate limiting 1098 * approach unless Tx is already in bulk rate limiting. We 1099 * are likely latency driven. 1100 */ 1101 if (packets && packets < 4 && bytes < 9000 && 1102 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1103 itr = I40E_ITR_ADAPTIVE_LATENCY; 1104 goto adjust_by_size; 1105 } 1106 } else if (packets < 4) { 1107 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1108 * bulk mode and we are receiving 4 or fewer packets just 1109 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1110 * that the Rx can relax. 1111 */ 1112 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1113 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1114 I40E_ITR_ADAPTIVE_MAX_USECS) 1115 goto clear_counts; 1116 } else if (packets > 32) { 1117 /* If we have processed over 32 packets in a single interrupt 1118 * for Tx assume we need to switch over to "bulk" mode. 1119 */ 1120 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1121 } 1122 1123 /* We have no packets to actually measure against. This means 1124 * either one of the other queues on this vector is active or 1125 * we are a Tx queue doing TSO with too high of an interrupt rate. 1126 * 1127 * Between 4 and 56 we can assume that our current interrupt delay 1128 * is only slightly too low. As such we should increase it by a small 1129 * fixed amount. 1130 */ 1131 if (packets < 56) { 1132 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1133 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1134 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1135 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1136 } 1137 goto clear_counts; 1138 } 1139 1140 if (packets <= 256) { 1141 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1142 itr &= I40E_ITR_MASK; 1143 1144 /* Between 56 and 112 is our "goldilocks" zone where we are 1145 * working out "just right". Just report that our current 1146 * ITR is good for us. 1147 */ 1148 if (packets <= 112) 1149 goto clear_counts; 1150 1151 /* If packet count is 128 or greater we are likely looking 1152 * at a slight overrun of the delay we want. Try halving 1153 * our delay to see if that will cut the number of packets 1154 * in half per interrupt. 1155 */ 1156 itr /= 2; 1157 itr &= I40E_ITR_MASK; 1158 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1159 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1160 1161 goto clear_counts; 1162 } 1163 1164 /* The paths below assume we are dealing with a bulk ITR since 1165 * number of packets is greater than 256. We are just going to have 1166 * to compute a value and try to bring the count under control, 1167 * though for smaller packet sizes there isn't much we can do as 1168 * NAPI polling will likely be kicking in sooner rather than later. 1169 */ 1170 itr = I40E_ITR_ADAPTIVE_BULK; 1171 1172 adjust_by_size: 1173 /* If packet counts are 256 or greater we can assume we have a gross 1174 * overestimation of what the rate should be. Instead of trying to fine 1175 * tune it just use the formula below to try and dial in an exact value 1176 * give the current packet size of the frame. 1177 */ 1178 avg_wire_size = bytes / packets; 1179 1180 /* The following is a crude approximation of: 1181 * wmem_default / (size + overhead) = desired_pkts_per_int 1182 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1183 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1184 * 1185 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1186 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1187 * formula down to 1188 * 1189 * (170 * (size + 24)) / (size + 640) = ITR 1190 * 1191 * We first do some math on the packet size and then finally bitshift 1192 * by 8 after rounding up. We also have to account for PCIe link speed 1193 * difference as ITR scales based on this. 1194 */ 1195 if (avg_wire_size <= 60) { 1196 /* Start at 250k ints/sec */ 1197 avg_wire_size = 4096; 1198 } else if (avg_wire_size <= 380) { 1199 /* 250K ints/sec to 60K ints/sec */ 1200 avg_wire_size *= 40; 1201 avg_wire_size += 1696; 1202 } else if (avg_wire_size <= 1084) { 1203 /* 60K ints/sec to 36K ints/sec */ 1204 avg_wire_size *= 15; 1205 avg_wire_size += 11452; 1206 } else if (avg_wire_size <= 1980) { 1207 /* 36K ints/sec to 30K ints/sec */ 1208 avg_wire_size *= 5; 1209 avg_wire_size += 22420; 1210 } else { 1211 /* plateau at a limit of 30K ints/sec */ 1212 avg_wire_size = 32256; 1213 } 1214 1215 /* If we are in low latency mode halve our delay which doubles the 1216 * rate to somewhere between 100K to 16K ints/sec 1217 */ 1218 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1219 avg_wire_size /= 2; 1220 1221 /* Resultant value is 256 times larger than it needs to be. This 1222 * gives us room to adjust the value as needed to either increase 1223 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1224 * 1225 * Use addition as we have already recorded the new latency flag 1226 * for the ITR value. 1227 */ 1228 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1229 I40E_ITR_ADAPTIVE_MIN_INC; 1230 1231 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1232 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1233 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1234 } 1235 1236 clear_counts: 1237 /* write back value */ 1238 rc->target_itr = itr; 1239 1240 /* next update should occur within next jiffy */ 1241 rc->next_update = next_update + 1; 1242 1243 rc->total_bytes = 0; 1244 rc->total_packets = 0; 1245 } 1246 1247 /** 1248 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1249 * @rx_ring: rx descriptor ring to store buffers on 1250 * @old_buff: donor buffer to have page reused 1251 * 1252 * Synchronizes page for reuse by the adapter 1253 **/ 1254 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1255 struct i40e_rx_buffer *old_buff) 1256 { 1257 struct i40e_rx_buffer *new_buff; 1258 u16 nta = rx_ring->next_to_alloc; 1259 1260 new_buff = &rx_ring->rx_bi[nta]; 1261 1262 /* update, and store next to alloc */ 1263 nta++; 1264 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1265 1266 /* transfer page from old buffer to new buffer */ 1267 new_buff->dma = old_buff->dma; 1268 new_buff->page = old_buff->page; 1269 new_buff->page_offset = old_buff->page_offset; 1270 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1271 } 1272 1273 /** 1274 * i40e_rx_is_programming_status - check for programming status descriptor 1275 * @qw: qword representing status_error_len in CPU ordering 1276 * 1277 * The value of in the descriptor length field indicate if this 1278 * is a programming status descriptor for flow director or FCoE 1279 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise 1280 * it is a packet descriptor. 1281 **/ 1282 static inline bool i40e_rx_is_programming_status(u64 qw) 1283 { 1284 /* The Rx filter programming status and SPH bit occupy the same 1285 * spot in the descriptor. Since we don't support packet split we 1286 * can just reuse the bit as an indication that this is a 1287 * programming status descriptor. 1288 */ 1289 return qw & I40E_RXD_QW1_LENGTH_SPH_MASK; 1290 } 1291 1292 /** 1293 * i40e_clean_programming_status - clean the programming status descriptor 1294 * @rx_ring: the rx ring that has this descriptor 1295 * @rx_desc: the rx descriptor written back by HW 1296 * @qw: qword representing status_error_len in CPU ordering 1297 * 1298 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1299 * status being successful or not and take actions accordingly. FCoE should 1300 * handle its context/filter programming/invalidation status and take actions. 1301 * 1302 **/ 1303 static void i40e_clean_programming_status(struct i40e_ring *rx_ring, 1304 union i40e_rx_desc *rx_desc, 1305 u64 qw) 1306 { 1307 struct i40e_rx_buffer *rx_buffer; 1308 u32 ntc = rx_ring->next_to_clean; 1309 u8 id; 1310 1311 /* fetch, update, and store next to clean */ 1312 rx_buffer = &rx_ring->rx_bi[ntc++]; 1313 ntc = (ntc < rx_ring->count) ? ntc : 0; 1314 rx_ring->next_to_clean = ntc; 1315 1316 prefetch(I40E_RX_DESC(rx_ring, ntc)); 1317 1318 /* place unused page back on the ring */ 1319 i40e_reuse_rx_page(rx_ring, rx_buffer); 1320 rx_ring->rx_stats.page_reuse_count++; 1321 1322 /* clear contents of buffer_info */ 1323 rx_buffer->page = NULL; 1324 1325 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1326 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1327 1328 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1329 i40e_fd_handle_status(rx_ring, rx_desc, id); 1330 } 1331 1332 /** 1333 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1334 * @tx_ring: the tx ring to set up 1335 * 1336 * Return 0 on success, negative on error 1337 **/ 1338 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1339 { 1340 struct device *dev = tx_ring->dev; 1341 int bi_size; 1342 1343 if (!dev) 1344 return -ENOMEM; 1345 1346 /* warn if we are about to overwrite the pointer */ 1347 WARN_ON(tx_ring->tx_bi); 1348 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1349 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1350 if (!tx_ring->tx_bi) 1351 goto err; 1352 1353 u64_stats_init(&tx_ring->syncp); 1354 1355 /* round up to nearest 4K */ 1356 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1357 /* add u32 for head writeback, align after this takes care of 1358 * guaranteeing this is at least one cache line in size 1359 */ 1360 tx_ring->size += sizeof(u32); 1361 tx_ring->size = ALIGN(tx_ring->size, 4096); 1362 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1363 &tx_ring->dma, GFP_KERNEL); 1364 if (!tx_ring->desc) { 1365 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1366 tx_ring->size); 1367 goto err; 1368 } 1369 1370 tx_ring->next_to_use = 0; 1371 tx_ring->next_to_clean = 0; 1372 tx_ring->tx_stats.prev_pkt_ctr = -1; 1373 return 0; 1374 1375 err: 1376 kfree(tx_ring->tx_bi); 1377 tx_ring->tx_bi = NULL; 1378 return -ENOMEM; 1379 } 1380 1381 /** 1382 * i40e_clean_rx_ring - Free Rx buffers 1383 * @rx_ring: ring to be cleaned 1384 **/ 1385 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1386 { 1387 unsigned long bi_size; 1388 u16 i; 1389 1390 /* ring already cleared, nothing to do */ 1391 if (!rx_ring->rx_bi) 1392 return; 1393 1394 if (rx_ring->skb) { 1395 dev_kfree_skb(rx_ring->skb); 1396 rx_ring->skb = NULL; 1397 } 1398 1399 /* Free all the Rx ring sk_buffs */ 1400 for (i = 0; i < rx_ring->count; i++) { 1401 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 1402 1403 if (!rx_bi->page) 1404 continue; 1405 1406 /* Invalidate cache lines that may have been written to by 1407 * device so that we avoid corrupting memory. 1408 */ 1409 dma_sync_single_range_for_cpu(rx_ring->dev, 1410 rx_bi->dma, 1411 rx_bi->page_offset, 1412 rx_ring->rx_buf_len, 1413 DMA_FROM_DEVICE); 1414 1415 /* free resources associated with mapping */ 1416 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1417 i40e_rx_pg_size(rx_ring), 1418 DMA_FROM_DEVICE, 1419 I40E_RX_DMA_ATTR); 1420 1421 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1422 1423 rx_bi->page = NULL; 1424 rx_bi->page_offset = 0; 1425 } 1426 1427 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1428 memset(rx_ring->rx_bi, 0, bi_size); 1429 1430 /* Zero out the descriptor ring */ 1431 memset(rx_ring->desc, 0, rx_ring->size); 1432 1433 rx_ring->next_to_alloc = 0; 1434 rx_ring->next_to_clean = 0; 1435 rx_ring->next_to_use = 0; 1436 } 1437 1438 /** 1439 * i40e_free_rx_resources - Free Rx resources 1440 * @rx_ring: ring to clean the resources from 1441 * 1442 * Free all receive software resources 1443 **/ 1444 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1445 { 1446 i40e_clean_rx_ring(rx_ring); 1447 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1448 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1449 rx_ring->xdp_prog = NULL; 1450 kfree(rx_ring->rx_bi); 1451 rx_ring->rx_bi = NULL; 1452 1453 if (rx_ring->desc) { 1454 dma_free_coherent(rx_ring->dev, rx_ring->size, 1455 rx_ring->desc, rx_ring->dma); 1456 rx_ring->desc = NULL; 1457 } 1458 } 1459 1460 /** 1461 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1462 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1463 * 1464 * Returns 0 on success, negative on failure 1465 **/ 1466 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1467 { 1468 struct device *dev = rx_ring->dev; 1469 int err = -ENOMEM; 1470 int bi_size; 1471 1472 /* warn if we are about to overwrite the pointer */ 1473 WARN_ON(rx_ring->rx_bi); 1474 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1475 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 1476 if (!rx_ring->rx_bi) 1477 goto err; 1478 1479 u64_stats_init(&rx_ring->syncp); 1480 1481 /* Round up to nearest 4K */ 1482 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc); 1483 rx_ring->size = ALIGN(rx_ring->size, 4096); 1484 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1485 &rx_ring->dma, GFP_KERNEL); 1486 1487 if (!rx_ring->desc) { 1488 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1489 rx_ring->size); 1490 goto err; 1491 } 1492 1493 rx_ring->next_to_alloc = 0; 1494 rx_ring->next_to_clean = 0; 1495 rx_ring->next_to_use = 0; 1496 1497 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 1498 if (rx_ring->vsi->type == I40E_VSI_MAIN) { 1499 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 1500 rx_ring->queue_index); 1501 if (err < 0) 1502 goto err; 1503 } 1504 1505 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1506 1507 return 0; 1508 err: 1509 kfree(rx_ring->rx_bi); 1510 rx_ring->rx_bi = NULL; 1511 return err; 1512 } 1513 1514 /** 1515 * i40e_release_rx_desc - Store the new tail and head values 1516 * @rx_ring: ring to bump 1517 * @val: new head index 1518 **/ 1519 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1520 { 1521 rx_ring->next_to_use = val; 1522 1523 /* update next to alloc since we have filled the ring */ 1524 rx_ring->next_to_alloc = val; 1525 1526 /* Force memory writes to complete before letting h/w 1527 * know there are new descriptors to fetch. (Only 1528 * applicable for weak-ordered memory model archs, 1529 * such as IA-64). 1530 */ 1531 wmb(); 1532 writel(val, rx_ring->tail); 1533 } 1534 1535 /** 1536 * i40e_rx_offset - Return expected offset into page to access data 1537 * @rx_ring: Ring we are requesting offset of 1538 * 1539 * Returns the offset value for ring into the data buffer. 1540 */ 1541 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 1542 { 1543 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 1544 } 1545 1546 /** 1547 * i40e_alloc_mapped_page - recycle or make a new page 1548 * @rx_ring: ring to use 1549 * @bi: rx_buffer struct to modify 1550 * 1551 * Returns true if the page was successfully allocated or 1552 * reused. 1553 **/ 1554 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1555 struct i40e_rx_buffer *bi) 1556 { 1557 struct page *page = bi->page; 1558 dma_addr_t dma; 1559 1560 /* since we are recycling buffers we should seldom need to alloc */ 1561 if (likely(page)) { 1562 rx_ring->rx_stats.page_reuse_count++; 1563 return true; 1564 } 1565 1566 /* alloc new page for storage */ 1567 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1568 if (unlikely(!page)) { 1569 rx_ring->rx_stats.alloc_page_failed++; 1570 return false; 1571 } 1572 1573 /* map page for use */ 1574 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1575 i40e_rx_pg_size(rx_ring), 1576 DMA_FROM_DEVICE, 1577 I40E_RX_DMA_ATTR); 1578 1579 /* if mapping failed free memory back to system since 1580 * there isn't much point in holding memory we can't use 1581 */ 1582 if (dma_mapping_error(rx_ring->dev, dma)) { 1583 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1584 rx_ring->rx_stats.alloc_page_failed++; 1585 return false; 1586 } 1587 1588 bi->dma = dma; 1589 bi->page = page; 1590 bi->page_offset = i40e_rx_offset(rx_ring); 1591 page_ref_add(page, USHRT_MAX - 1); 1592 bi->pagecnt_bias = USHRT_MAX; 1593 1594 return true; 1595 } 1596 1597 /** 1598 * i40e_receive_skb - Send a completed packet up the stack 1599 * @rx_ring: rx ring in play 1600 * @skb: packet to send up 1601 * @vlan_tag: vlan tag for packet 1602 **/ 1603 static void i40e_receive_skb(struct i40e_ring *rx_ring, 1604 struct sk_buff *skb, u16 vlan_tag) 1605 { 1606 struct i40e_q_vector *q_vector = rx_ring->q_vector; 1607 1608 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1609 (vlan_tag & VLAN_VID_MASK)) 1610 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 1611 1612 napi_gro_receive(&q_vector->napi, skb); 1613 } 1614 1615 /** 1616 * i40e_alloc_rx_buffers - Replace used receive buffers 1617 * @rx_ring: ring to place buffers on 1618 * @cleaned_count: number of buffers to replace 1619 * 1620 * Returns false if all allocations were successful, true if any fail 1621 **/ 1622 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1623 { 1624 u16 ntu = rx_ring->next_to_use; 1625 union i40e_rx_desc *rx_desc; 1626 struct i40e_rx_buffer *bi; 1627 1628 /* do nothing if no valid netdev defined */ 1629 if (!rx_ring->netdev || !cleaned_count) 1630 return false; 1631 1632 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1633 bi = &rx_ring->rx_bi[ntu]; 1634 1635 do { 1636 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1637 goto no_buffers; 1638 1639 /* sync the buffer for use by the device */ 1640 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1641 bi->page_offset, 1642 rx_ring->rx_buf_len, 1643 DMA_FROM_DEVICE); 1644 1645 /* Refresh the desc even if buffer_addrs didn't change 1646 * because each write-back erases this info. 1647 */ 1648 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1649 1650 rx_desc++; 1651 bi++; 1652 ntu++; 1653 if (unlikely(ntu == rx_ring->count)) { 1654 rx_desc = I40E_RX_DESC(rx_ring, 0); 1655 bi = rx_ring->rx_bi; 1656 ntu = 0; 1657 } 1658 1659 /* clear the status bits for the next_to_use descriptor */ 1660 rx_desc->wb.qword1.status_error_len = 0; 1661 1662 cleaned_count--; 1663 } while (cleaned_count); 1664 1665 if (rx_ring->next_to_use != ntu) 1666 i40e_release_rx_desc(rx_ring, ntu); 1667 1668 return false; 1669 1670 no_buffers: 1671 if (rx_ring->next_to_use != ntu) 1672 i40e_release_rx_desc(rx_ring, ntu); 1673 1674 /* make sure to come back via polling to try again after 1675 * allocation failure 1676 */ 1677 return true; 1678 } 1679 1680 /** 1681 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1682 * @vsi: the VSI we care about 1683 * @skb: skb currently being received and modified 1684 * @rx_desc: the receive descriptor 1685 **/ 1686 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1687 struct sk_buff *skb, 1688 union i40e_rx_desc *rx_desc) 1689 { 1690 struct i40e_rx_ptype_decoded decoded; 1691 u32 rx_error, rx_status; 1692 bool ipv4, ipv6; 1693 u8 ptype; 1694 u64 qword; 1695 1696 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1697 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1698 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1699 I40E_RXD_QW1_ERROR_SHIFT; 1700 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1701 I40E_RXD_QW1_STATUS_SHIFT; 1702 decoded = decode_rx_desc_ptype(ptype); 1703 1704 skb->ip_summed = CHECKSUM_NONE; 1705 1706 skb_checksum_none_assert(skb); 1707 1708 /* Rx csum enabled and ip headers found? */ 1709 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1710 return; 1711 1712 /* did the hardware decode the packet and checksum? */ 1713 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1714 return; 1715 1716 /* both known and outer_ip must be set for the below code to work */ 1717 if (!(decoded.known && decoded.outer_ip)) 1718 return; 1719 1720 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1721 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1722 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1723 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1724 1725 if (ipv4 && 1726 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1727 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1728 goto checksum_fail; 1729 1730 /* likely incorrect csum if alternate IP extension headers found */ 1731 if (ipv6 && 1732 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1733 /* don't increment checksum err here, non-fatal err */ 1734 return; 1735 1736 /* there was some L4 error, count error and punt packet to the stack */ 1737 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1738 goto checksum_fail; 1739 1740 /* handle packets that were not able to be checksummed due 1741 * to arrival speed, in this case the stack can compute 1742 * the csum. 1743 */ 1744 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1745 return; 1746 1747 /* If there is an outer header present that might contain a checksum 1748 * we need to bump the checksum level by 1 to reflect the fact that 1749 * we are indicating we validated the inner checksum. 1750 */ 1751 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1752 skb->csum_level = 1; 1753 1754 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1755 switch (decoded.inner_prot) { 1756 case I40E_RX_PTYPE_INNER_PROT_TCP: 1757 case I40E_RX_PTYPE_INNER_PROT_UDP: 1758 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1759 skb->ip_summed = CHECKSUM_UNNECESSARY; 1760 /* fall though */ 1761 default: 1762 break; 1763 } 1764 1765 return; 1766 1767 checksum_fail: 1768 vsi->back->hw_csum_rx_error++; 1769 } 1770 1771 /** 1772 * i40e_ptype_to_htype - get a hash type 1773 * @ptype: the ptype value from the descriptor 1774 * 1775 * Returns a hash type to be used by skb_set_hash 1776 **/ 1777 static inline int i40e_ptype_to_htype(u8 ptype) 1778 { 1779 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1780 1781 if (!decoded.known) 1782 return PKT_HASH_TYPE_NONE; 1783 1784 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1785 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1786 return PKT_HASH_TYPE_L4; 1787 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1788 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1789 return PKT_HASH_TYPE_L3; 1790 else 1791 return PKT_HASH_TYPE_L2; 1792 } 1793 1794 /** 1795 * i40e_rx_hash - set the hash value in the skb 1796 * @ring: descriptor ring 1797 * @rx_desc: specific descriptor 1798 **/ 1799 static inline void i40e_rx_hash(struct i40e_ring *ring, 1800 union i40e_rx_desc *rx_desc, 1801 struct sk_buff *skb, 1802 u8 rx_ptype) 1803 { 1804 u32 hash; 1805 const __le64 rss_mask = 1806 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1807 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1808 1809 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1810 return; 1811 1812 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1813 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1814 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1815 } 1816 } 1817 1818 /** 1819 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1820 * @rx_ring: rx descriptor ring packet is being transacted on 1821 * @rx_desc: pointer to the EOP Rx descriptor 1822 * @skb: pointer to current skb being populated 1823 * @rx_ptype: the packet type decoded by hardware 1824 * 1825 * This function checks the ring, descriptor, and packet information in 1826 * order to populate the hash, checksum, VLAN, protocol, and 1827 * other fields within the skb. 1828 **/ 1829 static inline 1830 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1831 union i40e_rx_desc *rx_desc, struct sk_buff *skb, 1832 u8 rx_ptype) 1833 { 1834 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1835 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1836 I40E_RXD_QW1_STATUS_SHIFT; 1837 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1838 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1839 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1840 1841 if (unlikely(tsynvalid)) 1842 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1843 1844 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1845 1846 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1847 1848 skb_record_rx_queue(skb, rx_ring->queue_index); 1849 1850 /* modifies the skb - consumes the enet header */ 1851 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1852 } 1853 1854 /** 1855 * i40e_cleanup_headers - Correct empty headers 1856 * @rx_ring: rx descriptor ring packet is being transacted on 1857 * @skb: pointer to current skb being fixed 1858 * @rx_desc: pointer to the EOP Rx descriptor 1859 * 1860 * Also address the case where we are pulling data in on pages only 1861 * and as such no data is present in the skb header. 1862 * 1863 * In addition if skb is not at least 60 bytes we need to pad it so that 1864 * it is large enough to qualify as a valid Ethernet frame. 1865 * 1866 * Returns true if an error was encountered and skb was freed. 1867 **/ 1868 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1869 union i40e_rx_desc *rx_desc) 1870 1871 { 1872 /* XDP packets use error pointer so abort at this point */ 1873 if (IS_ERR(skb)) 1874 return true; 1875 1876 /* ERR_MASK will only have valid bits if EOP set, and 1877 * what we are doing here is actually checking 1878 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1879 * the error field 1880 */ 1881 if (unlikely(i40e_test_staterr(rx_desc, 1882 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1883 dev_kfree_skb_any(skb); 1884 return true; 1885 } 1886 1887 /* if eth_skb_pad returns an error the skb was freed */ 1888 if (eth_skb_pad(skb)) 1889 return true; 1890 1891 return false; 1892 } 1893 1894 /** 1895 * i40e_page_is_reusable - check if any reuse is possible 1896 * @page: page struct to check 1897 * 1898 * A page is not reusable if it was allocated under low memory 1899 * conditions, or it's not in the same NUMA node as this CPU. 1900 */ 1901 static inline bool i40e_page_is_reusable(struct page *page) 1902 { 1903 return (page_to_nid(page) == numa_mem_id()) && 1904 !page_is_pfmemalloc(page); 1905 } 1906 1907 /** 1908 * i40e_can_reuse_rx_page - Determine if this page can be reused by 1909 * the adapter for another receive 1910 * 1911 * @rx_buffer: buffer containing the page 1912 * 1913 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1914 * an unused region in the page. 1915 * 1916 * For small pages, @truesize will be a constant value, half the size 1917 * of the memory at page. We'll attempt to alternate between high and 1918 * low halves of the page, with one half ready for use by the hardware 1919 * and the other half being consumed by the stack. We use the page 1920 * ref count to determine whether the stack has finished consuming the 1921 * portion of this page that was passed up with a previous packet. If 1922 * the page ref count is >1, we'll assume the "other" half page is 1923 * still busy, and this page cannot be reused. 1924 * 1925 * For larger pages, @truesize will be the actual space used by the 1926 * received packet (adjusted upward to an even multiple of the cache 1927 * line size). This will advance through the page by the amount 1928 * actually consumed by the received packets while there is still 1929 * space for a buffer. Each region of larger pages will be used at 1930 * most once, after which the page will not be reused. 1931 * 1932 * In either case, if the page is reusable its refcount is increased. 1933 **/ 1934 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer) 1935 { 1936 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1937 struct page *page = rx_buffer->page; 1938 1939 /* Is any reuse possible? */ 1940 if (unlikely(!i40e_page_is_reusable(page))) 1941 return false; 1942 1943 #if (PAGE_SIZE < 8192) 1944 /* if we are only owner of page we can reuse it */ 1945 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1946 return false; 1947 #else 1948 #define I40E_LAST_OFFSET \ 1949 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1950 if (rx_buffer->page_offset > I40E_LAST_OFFSET) 1951 return false; 1952 #endif 1953 1954 /* If we have drained the page fragment pool we need to update 1955 * the pagecnt_bias and page count so that we fully restock the 1956 * number of references the driver holds. 1957 */ 1958 if (unlikely(pagecnt_bias == 1)) { 1959 page_ref_add(page, USHRT_MAX - 1); 1960 rx_buffer->pagecnt_bias = USHRT_MAX; 1961 } 1962 1963 return true; 1964 } 1965 1966 /** 1967 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff 1968 * @rx_ring: rx descriptor ring to transact packets on 1969 * @rx_buffer: buffer containing page to add 1970 * @skb: sk_buff to place the data into 1971 * @size: packet length from rx_desc 1972 * 1973 * This function will add the data contained in rx_buffer->page to the skb. 1974 * It will just attach the page as a frag to the skb. 1975 * 1976 * The function will then update the page offset. 1977 **/ 1978 static void i40e_add_rx_frag(struct i40e_ring *rx_ring, 1979 struct i40e_rx_buffer *rx_buffer, 1980 struct sk_buff *skb, 1981 unsigned int size) 1982 { 1983 #if (PAGE_SIZE < 8192) 1984 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1985 #else 1986 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)); 1987 #endif 1988 1989 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1990 rx_buffer->page_offset, size, truesize); 1991 1992 /* page is being used so we must update the page offset */ 1993 #if (PAGE_SIZE < 8192) 1994 rx_buffer->page_offset ^= truesize; 1995 #else 1996 rx_buffer->page_offset += truesize; 1997 #endif 1998 } 1999 2000 /** 2001 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 2002 * @rx_ring: rx descriptor ring to transact packets on 2003 * @size: size of buffer to add to skb 2004 * 2005 * This function will pull an Rx buffer from the ring and synchronize it 2006 * for use by the CPU. 2007 */ 2008 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 2009 const unsigned int size) 2010 { 2011 struct i40e_rx_buffer *rx_buffer; 2012 2013 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 2014 prefetchw(rx_buffer->page); 2015 2016 /* we are reusing so sync this buffer for CPU use */ 2017 dma_sync_single_range_for_cpu(rx_ring->dev, 2018 rx_buffer->dma, 2019 rx_buffer->page_offset, 2020 size, 2021 DMA_FROM_DEVICE); 2022 2023 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 2024 rx_buffer->pagecnt_bias--; 2025 2026 return rx_buffer; 2027 } 2028 2029 /** 2030 * i40e_construct_skb - Allocate skb and populate it 2031 * @rx_ring: rx descriptor ring to transact packets on 2032 * @rx_buffer: rx buffer to pull data from 2033 * @xdp: xdp_buff pointing to the data 2034 * 2035 * This function allocates an skb. It then populates it with the page 2036 * data from the current receive descriptor, taking care to set up the 2037 * skb correctly. 2038 */ 2039 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 2040 struct i40e_rx_buffer *rx_buffer, 2041 struct xdp_buff *xdp) 2042 { 2043 unsigned int size = xdp->data_end - xdp->data; 2044 #if (PAGE_SIZE < 8192) 2045 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2046 #else 2047 unsigned int truesize = SKB_DATA_ALIGN(size); 2048 #endif 2049 unsigned int headlen; 2050 struct sk_buff *skb; 2051 2052 /* prefetch first cache line of first page */ 2053 prefetch(xdp->data); 2054 #if L1_CACHE_BYTES < 128 2055 prefetch(xdp->data + L1_CACHE_BYTES); 2056 #endif 2057 2058 /* allocate a skb to store the frags */ 2059 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2060 I40E_RX_HDR_SIZE, 2061 GFP_ATOMIC | __GFP_NOWARN); 2062 if (unlikely(!skb)) 2063 return NULL; 2064 2065 /* Determine available headroom for copy */ 2066 headlen = size; 2067 if (headlen > I40E_RX_HDR_SIZE) 2068 headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE); 2069 2070 /* align pull length to size of long to optimize memcpy performance */ 2071 memcpy(__skb_put(skb, headlen), xdp->data, 2072 ALIGN(headlen, sizeof(long))); 2073 2074 /* update all of the pointers */ 2075 size -= headlen; 2076 if (size) { 2077 skb_add_rx_frag(skb, 0, rx_buffer->page, 2078 rx_buffer->page_offset + headlen, 2079 size, truesize); 2080 2081 /* buffer is used by skb, update page_offset */ 2082 #if (PAGE_SIZE < 8192) 2083 rx_buffer->page_offset ^= truesize; 2084 #else 2085 rx_buffer->page_offset += truesize; 2086 #endif 2087 } else { 2088 /* buffer is unused, reset bias back to rx_buffer */ 2089 rx_buffer->pagecnt_bias++; 2090 } 2091 2092 return skb; 2093 } 2094 2095 /** 2096 * i40e_build_skb - Build skb around an existing buffer 2097 * @rx_ring: Rx descriptor ring to transact packets on 2098 * @rx_buffer: Rx buffer to pull data from 2099 * @xdp: xdp_buff pointing to the data 2100 * 2101 * This function builds an skb around an existing Rx buffer, taking care 2102 * to set up the skb correctly and avoid any memcpy overhead. 2103 */ 2104 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2105 struct i40e_rx_buffer *rx_buffer, 2106 struct xdp_buff *xdp) 2107 { 2108 unsigned int size = xdp->data_end - xdp->data; 2109 #if (PAGE_SIZE < 8192) 2110 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2111 #else 2112 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 2113 SKB_DATA_ALIGN(I40E_SKB_PAD + size); 2114 #endif 2115 struct sk_buff *skb; 2116 2117 /* prefetch first cache line of first page */ 2118 prefetch(xdp->data); 2119 #if L1_CACHE_BYTES < 128 2120 prefetch(xdp->data + L1_CACHE_BYTES); 2121 #endif 2122 /* build an skb around the page buffer */ 2123 skb = build_skb(xdp->data_hard_start, truesize); 2124 if (unlikely(!skb)) 2125 return NULL; 2126 2127 /* update pointers within the skb to store the data */ 2128 skb_reserve(skb, I40E_SKB_PAD); 2129 __skb_put(skb, size); 2130 2131 /* buffer is used by skb, update page_offset */ 2132 #if (PAGE_SIZE < 8192) 2133 rx_buffer->page_offset ^= truesize; 2134 #else 2135 rx_buffer->page_offset += truesize; 2136 #endif 2137 2138 return skb; 2139 } 2140 2141 /** 2142 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2143 * @rx_ring: rx descriptor ring to transact packets on 2144 * @rx_buffer: rx buffer to pull data from 2145 * 2146 * This function will clean up the contents of the rx_buffer. It will 2147 * either recycle the buffer or unmap it and free the associated resources. 2148 */ 2149 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2150 struct i40e_rx_buffer *rx_buffer) 2151 { 2152 if (i40e_can_reuse_rx_page(rx_buffer)) { 2153 /* hand second half of page back to the ring */ 2154 i40e_reuse_rx_page(rx_ring, rx_buffer); 2155 rx_ring->rx_stats.page_reuse_count++; 2156 } else { 2157 /* we are not reusing the buffer so unmap it */ 2158 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2159 i40e_rx_pg_size(rx_ring), 2160 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2161 __page_frag_cache_drain(rx_buffer->page, 2162 rx_buffer->pagecnt_bias); 2163 } 2164 2165 /* clear contents of buffer_info */ 2166 rx_buffer->page = NULL; 2167 } 2168 2169 /** 2170 * i40e_is_non_eop - process handling of non-EOP buffers 2171 * @rx_ring: Rx ring being processed 2172 * @rx_desc: Rx descriptor for current buffer 2173 * @skb: Current socket buffer containing buffer in progress 2174 * 2175 * This function updates next to clean. If the buffer is an EOP buffer 2176 * this function exits returning false, otherwise it will place the 2177 * sk_buff in the next buffer to be chained and return true indicating 2178 * that this is in fact a non-EOP buffer. 2179 **/ 2180 static bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2181 union i40e_rx_desc *rx_desc, 2182 struct sk_buff *skb) 2183 { 2184 u32 ntc = rx_ring->next_to_clean + 1; 2185 2186 /* fetch, update, and store next to clean */ 2187 ntc = (ntc < rx_ring->count) ? ntc : 0; 2188 rx_ring->next_to_clean = ntc; 2189 2190 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2191 2192 /* if we are the last buffer then there is nothing else to do */ 2193 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2194 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2195 return false; 2196 2197 rx_ring->rx_stats.non_eop_descs++; 2198 2199 return true; 2200 } 2201 2202 #define I40E_XDP_PASS 0 2203 #define I40E_XDP_CONSUMED 1 2204 #define I40E_XDP_TX 2 2205 2206 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp, 2207 struct i40e_ring *xdp_ring); 2208 2209 /** 2210 * i40e_run_xdp - run an XDP program 2211 * @rx_ring: Rx ring being processed 2212 * @xdp: XDP buffer containing the frame 2213 **/ 2214 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring, 2215 struct xdp_buff *xdp) 2216 { 2217 int err, result = I40E_XDP_PASS; 2218 struct i40e_ring *xdp_ring; 2219 struct bpf_prog *xdp_prog; 2220 u32 act; 2221 2222 rcu_read_lock(); 2223 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2224 2225 if (!xdp_prog) 2226 goto xdp_out; 2227 2228 act = bpf_prog_run_xdp(xdp_prog, xdp); 2229 switch (act) { 2230 case XDP_PASS: 2231 break; 2232 case XDP_TX: 2233 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2234 result = i40e_xmit_xdp_ring(xdp, xdp_ring); 2235 break; 2236 case XDP_REDIRECT: 2237 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 2238 result = !err ? I40E_XDP_TX : I40E_XDP_CONSUMED; 2239 break; 2240 default: 2241 bpf_warn_invalid_xdp_action(act); 2242 case XDP_ABORTED: 2243 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2244 /* fallthrough -- handle aborts by dropping packet */ 2245 case XDP_DROP: 2246 result = I40E_XDP_CONSUMED; 2247 break; 2248 } 2249 xdp_out: 2250 rcu_read_unlock(); 2251 return ERR_PTR(-result); 2252 } 2253 2254 /** 2255 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2256 * @rx_ring: Rx ring 2257 * @rx_buffer: Rx buffer to adjust 2258 * @size: Size of adjustment 2259 **/ 2260 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring, 2261 struct i40e_rx_buffer *rx_buffer, 2262 unsigned int size) 2263 { 2264 #if (PAGE_SIZE < 8192) 2265 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2266 2267 rx_buffer->page_offset ^= truesize; 2268 #else 2269 unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size); 2270 2271 rx_buffer->page_offset += truesize; 2272 #endif 2273 } 2274 2275 static inline void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) 2276 { 2277 /* Force memory writes to complete before letting h/w 2278 * know there are new descriptors to fetch. 2279 */ 2280 wmb(); 2281 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); 2282 } 2283 2284 /** 2285 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2286 * @rx_ring: rx descriptor ring to transact packets on 2287 * @budget: Total limit on number of packets to process 2288 * 2289 * This function provides a "bounce buffer" approach to Rx interrupt 2290 * processing. The advantage to this is that on systems that have 2291 * expensive overhead for IOMMU access this provides a means of avoiding 2292 * it by maintaining the mapping of the page to the system. 2293 * 2294 * Returns amount of work completed 2295 **/ 2296 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) 2297 { 2298 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2299 struct sk_buff *skb = rx_ring->skb; 2300 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2301 bool failure = false, xdp_xmit = false; 2302 struct xdp_buff xdp; 2303 2304 xdp.rxq = &rx_ring->xdp_rxq; 2305 2306 while (likely(total_rx_packets < (unsigned int)budget)) { 2307 struct i40e_rx_buffer *rx_buffer; 2308 union i40e_rx_desc *rx_desc; 2309 unsigned int size; 2310 u16 vlan_tag; 2311 u8 rx_ptype; 2312 u64 qword; 2313 2314 /* return some buffers to hardware, one at a time is too slow */ 2315 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 2316 failure = failure || 2317 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2318 cleaned_count = 0; 2319 } 2320 2321 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 2322 2323 /* status_error_len will always be zero for unused descriptors 2324 * because it's cleared in cleanup, and overlaps with hdr_addr 2325 * which is always zero because packet split isn't used, if the 2326 * hardware wrote DD then the length will be non-zero 2327 */ 2328 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2329 2330 /* This memory barrier is needed to keep us from reading 2331 * any other fields out of the rx_desc until we have 2332 * verified the descriptor has been written back. 2333 */ 2334 dma_rmb(); 2335 2336 if (unlikely(i40e_rx_is_programming_status(qword))) { 2337 i40e_clean_programming_status(rx_ring, rx_desc, qword); 2338 cleaned_count++; 2339 continue; 2340 } 2341 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2342 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2343 if (!size) 2344 break; 2345 2346 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb); 2347 rx_buffer = i40e_get_rx_buffer(rx_ring, size); 2348 2349 /* retrieve a buffer from the ring */ 2350 if (!skb) { 2351 xdp.data = page_address(rx_buffer->page) + 2352 rx_buffer->page_offset; 2353 xdp_set_data_meta_invalid(&xdp); 2354 xdp.data_hard_start = xdp.data - 2355 i40e_rx_offset(rx_ring); 2356 xdp.data_end = xdp.data + size; 2357 2358 skb = i40e_run_xdp(rx_ring, &xdp); 2359 } 2360 2361 if (IS_ERR(skb)) { 2362 if (PTR_ERR(skb) == -I40E_XDP_TX) { 2363 xdp_xmit = true; 2364 i40e_rx_buffer_flip(rx_ring, rx_buffer, size); 2365 } else { 2366 rx_buffer->pagecnt_bias++; 2367 } 2368 total_rx_bytes += size; 2369 total_rx_packets++; 2370 } else if (skb) { 2371 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size); 2372 } else if (ring_uses_build_skb(rx_ring)) { 2373 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp); 2374 } else { 2375 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp); 2376 } 2377 2378 /* exit if we failed to retrieve a buffer */ 2379 if (!skb) { 2380 rx_ring->rx_stats.alloc_buff_failed++; 2381 rx_buffer->pagecnt_bias++; 2382 break; 2383 } 2384 2385 i40e_put_rx_buffer(rx_ring, rx_buffer); 2386 cleaned_count++; 2387 2388 if (i40e_is_non_eop(rx_ring, rx_desc, skb)) 2389 continue; 2390 2391 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) { 2392 skb = NULL; 2393 continue; 2394 } 2395 2396 /* probably a little skewed due to removing CRC */ 2397 total_rx_bytes += skb->len; 2398 2399 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2400 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 2401 I40E_RXD_QW1_PTYPE_SHIFT; 2402 2403 /* populate checksum, VLAN, and protocol */ 2404 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 2405 2406 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ? 2407 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0; 2408 2409 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 2410 i40e_receive_skb(rx_ring, skb, vlan_tag); 2411 skb = NULL; 2412 2413 /* update budget accounting */ 2414 total_rx_packets++; 2415 } 2416 2417 if (xdp_xmit) { 2418 struct i40e_ring *xdp_ring = 2419 rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2420 2421 i40e_xdp_ring_update_tail(xdp_ring); 2422 xdp_do_flush_map(); 2423 } 2424 2425 rx_ring->skb = skb; 2426 2427 u64_stats_update_begin(&rx_ring->syncp); 2428 rx_ring->stats.packets += total_rx_packets; 2429 rx_ring->stats.bytes += total_rx_bytes; 2430 u64_stats_update_end(&rx_ring->syncp); 2431 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2432 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2433 2434 /* guarantee a trip back through this routine if there was a failure */ 2435 return failure ? budget : (int)total_rx_packets; 2436 } 2437 2438 static inline u32 i40e_buildreg_itr(const int type, u16 itr) 2439 { 2440 u32 val; 2441 2442 /* We don't bother with setting the CLEARPBA bit as the data sheet 2443 * points out doing so is "meaningless since it was already 2444 * auto-cleared". The auto-clearing happens when the interrupt is 2445 * asserted. 2446 * 2447 * Hardware errata 28 for also indicates that writing to a 2448 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2449 * an event in the PBA anyway so we need to rely on the automask 2450 * to hold pending events for us until the interrupt is re-enabled 2451 * 2452 * The itr value is reported in microseconds, and the register 2453 * value is recorded in 2 microsecond units. For this reason we 2454 * only need to shift by the interval shift - 1 instead of the 2455 * full value. 2456 */ 2457 itr &= I40E_ITR_MASK; 2458 2459 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2460 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 2461 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1)); 2462 2463 return val; 2464 } 2465 2466 /* a small macro to shorten up some long lines */ 2467 #define INTREG I40E_PFINT_DYN_CTLN 2468 2469 /* The act of updating the ITR will cause it to immediately trigger. In order 2470 * to prevent this from throwing off adaptive update statistics we defer the 2471 * update so that it can only happen so often. So after either Tx or Rx are 2472 * updated we make the adaptive scheme wait until either the ITR completely 2473 * expires via the next_update expiration or we have been through at least 2474 * 3 interrupts. 2475 */ 2476 #define ITR_COUNTDOWN_START 3 2477 2478 /** 2479 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2480 * @vsi: the VSI we care about 2481 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2482 * 2483 **/ 2484 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2485 struct i40e_q_vector *q_vector) 2486 { 2487 struct i40e_hw *hw = &vsi->back->hw; 2488 u32 intval; 2489 2490 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2491 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2492 i40e_irq_dynamic_enable_icr0(vsi->back); 2493 return; 2494 } 2495 2496 /* These will do nothing if dynamic updates are not enabled */ 2497 i40e_update_itr(q_vector, &q_vector->tx); 2498 i40e_update_itr(q_vector, &q_vector->rx); 2499 2500 /* This block of logic allows us to get away with only updating 2501 * one ITR value with each interrupt. The idea is to perform a 2502 * pseudo-lazy update with the following criteria. 2503 * 2504 * 1. Rx is given higher priority than Tx if both are in same state 2505 * 2. If we must reduce an ITR that is given highest priority. 2506 * 3. We then give priority to increasing ITR based on amount. 2507 */ 2508 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2509 /* Rx ITR needs to be reduced, this is highest priority */ 2510 intval = i40e_buildreg_itr(I40E_RX_ITR, 2511 q_vector->rx.target_itr); 2512 q_vector->rx.current_itr = q_vector->rx.target_itr; 2513 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2514 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2515 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2516 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2517 /* Tx ITR needs to be reduced, this is second priority 2518 * Tx ITR needs to be increased more than Rx, fourth priority 2519 */ 2520 intval = i40e_buildreg_itr(I40E_TX_ITR, 2521 q_vector->tx.target_itr); 2522 q_vector->tx.current_itr = q_vector->tx.target_itr; 2523 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2524 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2525 /* Rx ITR needs to be increased, third priority */ 2526 intval = i40e_buildreg_itr(I40E_RX_ITR, 2527 q_vector->rx.target_itr); 2528 q_vector->rx.current_itr = q_vector->rx.target_itr; 2529 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2530 } else { 2531 /* No ITR update, lowest priority */ 2532 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 2533 if (q_vector->itr_countdown) 2534 q_vector->itr_countdown--; 2535 } 2536 2537 if (!test_bit(__I40E_VSI_DOWN, vsi->state)) 2538 wr32(hw, INTREG(q_vector->reg_idx), intval); 2539 } 2540 2541 /** 2542 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2543 * @napi: napi struct with our devices info in it 2544 * @budget: amount of work driver is allowed to do this pass, in packets 2545 * 2546 * This function will clean all queues associated with a q_vector. 2547 * 2548 * Returns the amount of work done 2549 **/ 2550 int i40e_napi_poll(struct napi_struct *napi, int budget) 2551 { 2552 struct i40e_q_vector *q_vector = 2553 container_of(napi, struct i40e_q_vector, napi); 2554 struct i40e_vsi *vsi = q_vector->vsi; 2555 struct i40e_ring *ring; 2556 bool clean_complete = true; 2557 bool arm_wb = false; 2558 int budget_per_ring; 2559 int work_done = 0; 2560 2561 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2562 napi_complete(napi); 2563 return 0; 2564 } 2565 2566 /* Since the actual Tx work is minimal, we can give the Tx a larger 2567 * budget and be more aggressive about cleaning up the Tx descriptors. 2568 */ 2569 i40e_for_each_ring(ring, q_vector->tx) { 2570 if (!i40e_clean_tx_irq(vsi, ring, budget)) { 2571 clean_complete = false; 2572 continue; 2573 } 2574 arm_wb |= ring->arm_wb; 2575 ring->arm_wb = false; 2576 } 2577 2578 /* Handle case where we are called by netpoll with a budget of 0 */ 2579 if (budget <= 0) 2580 goto tx_only; 2581 2582 /* We attempt to distribute budget to each Rx queue fairly, but don't 2583 * allow the budget to go below 1 because that would exit polling early. 2584 */ 2585 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 2586 2587 i40e_for_each_ring(ring, q_vector->rx) { 2588 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring); 2589 2590 work_done += cleaned; 2591 /* if we clean as many as budgeted, we must not be done */ 2592 if (cleaned >= budget_per_ring) 2593 clean_complete = false; 2594 } 2595 2596 /* If work not completed, return budget and polling will return */ 2597 if (!clean_complete) { 2598 int cpu_id = smp_processor_id(); 2599 2600 /* It is possible that the interrupt affinity has changed but, 2601 * if the cpu is pegged at 100%, polling will never exit while 2602 * traffic continues and the interrupt will be stuck on this 2603 * cpu. We check to make sure affinity is correct before we 2604 * continue to poll, otherwise we must stop polling so the 2605 * interrupt can move to the correct cpu. 2606 */ 2607 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2608 /* Tell napi that we are done polling */ 2609 napi_complete_done(napi, work_done); 2610 2611 /* Force an interrupt */ 2612 i40e_force_wb(vsi, q_vector); 2613 2614 /* Return budget-1 so that polling stops */ 2615 return budget - 1; 2616 } 2617 tx_only: 2618 if (arm_wb) { 2619 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2620 i40e_enable_wb_on_itr(vsi, q_vector); 2621 } 2622 return budget; 2623 } 2624 2625 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2626 q_vector->arm_wb_state = false; 2627 2628 /* Work is done so exit the polling mode and re-enable the interrupt */ 2629 napi_complete_done(napi, work_done); 2630 2631 i40e_update_enable_itr(vsi, q_vector); 2632 2633 return min(work_done, budget - 1); 2634 } 2635 2636 /** 2637 * i40e_atr - Add a Flow Director ATR filter 2638 * @tx_ring: ring to add programming descriptor to 2639 * @skb: send buffer 2640 * @tx_flags: send tx flags 2641 **/ 2642 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2643 u32 tx_flags) 2644 { 2645 struct i40e_filter_program_desc *fdir_desc; 2646 struct i40e_pf *pf = tx_ring->vsi->back; 2647 union { 2648 unsigned char *network; 2649 struct iphdr *ipv4; 2650 struct ipv6hdr *ipv6; 2651 } hdr; 2652 struct tcphdr *th; 2653 unsigned int hlen; 2654 u32 flex_ptype, dtype_cmd; 2655 int l4_proto; 2656 u16 i; 2657 2658 /* make sure ATR is enabled */ 2659 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2660 return; 2661 2662 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2663 return; 2664 2665 /* if sampling is disabled do nothing */ 2666 if (!tx_ring->atr_sample_rate) 2667 return; 2668 2669 /* Currently only IPv4/IPv6 with TCP is supported */ 2670 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2671 return; 2672 2673 /* snag network header to get L4 type and address */ 2674 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2675 skb_inner_network_header(skb) : skb_network_header(skb); 2676 2677 /* Note: tx_flags gets modified to reflect inner protocols in 2678 * tx_enable_csum function if encap is enabled. 2679 */ 2680 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2681 /* access ihl as u8 to avoid unaligned access on ia64 */ 2682 hlen = (hdr.network[0] & 0x0F) << 2; 2683 l4_proto = hdr.ipv4->protocol; 2684 } else { 2685 /* find the start of the innermost ipv6 header */ 2686 unsigned int inner_hlen = hdr.network - skb->data; 2687 unsigned int h_offset = inner_hlen; 2688 2689 /* this function updates h_offset to the end of the header */ 2690 l4_proto = 2691 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2692 /* hlen will contain our best estimate of the tcp header */ 2693 hlen = h_offset - inner_hlen; 2694 } 2695 2696 if (l4_proto != IPPROTO_TCP) 2697 return; 2698 2699 th = (struct tcphdr *)(hdr.network + hlen); 2700 2701 /* Due to lack of space, no more new filters can be programmed */ 2702 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2703 return; 2704 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2705 /* HW ATR eviction will take care of removing filters on FIN 2706 * and RST packets. 2707 */ 2708 if (th->fin || th->rst) 2709 return; 2710 } 2711 2712 tx_ring->atr_count++; 2713 2714 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2715 if (!th->fin && 2716 !th->syn && 2717 !th->rst && 2718 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2719 return; 2720 2721 tx_ring->atr_count = 0; 2722 2723 /* grab the next descriptor */ 2724 i = tx_ring->next_to_use; 2725 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2726 2727 i++; 2728 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2729 2730 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2731 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2732 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2733 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2734 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2735 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2736 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2737 2738 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2739 2740 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2741 2742 dtype_cmd |= (th->fin || th->rst) ? 2743 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2744 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2745 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2746 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2747 2748 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2749 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2750 2751 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2752 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2753 2754 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2755 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2756 dtype_cmd |= 2757 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2758 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2759 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2760 else 2761 dtype_cmd |= 2762 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2763 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2764 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2765 2766 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 2767 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2768 2769 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2770 fdir_desc->rsvd = cpu_to_le32(0); 2771 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2772 fdir_desc->fd_id = cpu_to_le32(0); 2773 } 2774 2775 /** 2776 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2777 * @skb: send buffer 2778 * @tx_ring: ring to send buffer on 2779 * @flags: the tx flags to be set 2780 * 2781 * Checks the skb and set up correspondingly several generic transmit flags 2782 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2783 * 2784 * Returns error code indicate the frame should be dropped upon error and the 2785 * otherwise returns 0 to indicate the flags has been set properly. 2786 **/ 2787 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2788 struct i40e_ring *tx_ring, 2789 u32 *flags) 2790 { 2791 __be16 protocol = skb->protocol; 2792 u32 tx_flags = 0; 2793 2794 if (protocol == htons(ETH_P_8021Q) && 2795 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2796 /* When HW VLAN acceleration is turned off by the user the 2797 * stack sets the protocol to 8021q so that the driver 2798 * can take any steps required to support the SW only 2799 * VLAN handling. In our case the driver doesn't need 2800 * to take any further steps so just set the protocol 2801 * to the encapsulated ethertype. 2802 */ 2803 skb->protocol = vlan_get_protocol(skb); 2804 goto out; 2805 } 2806 2807 /* if we have a HW VLAN tag being added, default to the HW one */ 2808 if (skb_vlan_tag_present(skb)) { 2809 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2810 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2811 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2812 } else if (protocol == htons(ETH_P_8021Q)) { 2813 struct vlan_hdr *vhdr, _vhdr; 2814 2815 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2816 if (!vhdr) 2817 return -EINVAL; 2818 2819 protocol = vhdr->h_vlan_encapsulated_proto; 2820 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2821 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2822 } 2823 2824 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2825 goto out; 2826 2827 /* Insert 802.1p priority into VLAN header */ 2828 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2829 (skb->priority != TC_PRIO_CONTROL)) { 2830 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2831 tx_flags |= (skb->priority & 0x7) << 2832 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2833 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2834 struct vlan_ethhdr *vhdr; 2835 int rc; 2836 2837 rc = skb_cow_head(skb, 0); 2838 if (rc < 0) 2839 return rc; 2840 vhdr = (struct vlan_ethhdr *)skb->data; 2841 vhdr->h_vlan_TCI = htons(tx_flags >> 2842 I40E_TX_FLAGS_VLAN_SHIFT); 2843 } else { 2844 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2845 } 2846 } 2847 2848 out: 2849 *flags = tx_flags; 2850 return 0; 2851 } 2852 2853 /** 2854 * i40e_tso - set up the tso context descriptor 2855 * @first: pointer to first Tx buffer for xmit 2856 * @hdr_len: ptr to the size of the packet header 2857 * @cd_type_cmd_tso_mss: Quad Word 1 2858 * 2859 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2860 **/ 2861 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 2862 u64 *cd_type_cmd_tso_mss) 2863 { 2864 struct sk_buff *skb = first->skb; 2865 u64 cd_cmd, cd_tso_len, cd_mss; 2866 union { 2867 struct iphdr *v4; 2868 struct ipv6hdr *v6; 2869 unsigned char *hdr; 2870 } ip; 2871 union { 2872 struct tcphdr *tcp; 2873 struct udphdr *udp; 2874 unsigned char *hdr; 2875 } l4; 2876 u32 paylen, l4_offset; 2877 u16 gso_segs, gso_size; 2878 int err; 2879 2880 if (skb->ip_summed != CHECKSUM_PARTIAL) 2881 return 0; 2882 2883 if (!skb_is_gso(skb)) 2884 return 0; 2885 2886 err = skb_cow_head(skb, 0); 2887 if (err < 0) 2888 return err; 2889 2890 ip.hdr = skb_network_header(skb); 2891 l4.hdr = skb_transport_header(skb); 2892 2893 /* initialize outer IP header fields */ 2894 if (ip.v4->version == 4) { 2895 ip.v4->tot_len = 0; 2896 ip.v4->check = 0; 2897 } else { 2898 ip.v6->payload_len = 0; 2899 } 2900 2901 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2902 SKB_GSO_GRE_CSUM | 2903 SKB_GSO_IPXIP4 | 2904 SKB_GSO_IPXIP6 | 2905 SKB_GSO_UDP_TUNNEL | 2906 SKB_GSO_UDP_TUNNEL_CSUM)) { 2907 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2908 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2909 l4.udp->len = 0; 2910 2911 /* determine offset of outer transport header */ 2912 l4_offset = l4.hdr - skb->data; 2913 2914 /* remove payload length from outer checksum */ 2915 paylen = skb->len - l4_offset; 2916 csum_replace_by_diff(&l4.udp->check, 2917 (__force __wsum)htonl(paylen)); 2918 } 2919 2920 /* reset pointers to inner headers */ 2921 ip.hdr = skb_inner_network_header(skb); 2922 l4.hdr = skb_inner_transport_header(skb); 2923 2924 /* initialize inner IP header fields */ 2925 if (ip.v4->version == 4) { 2926 ip.v4->tot_len = 0; 2927 ip.v4->check = 0; 2928 } else { 2929 ip.v6->payload_len = 0; 2930 } 2931 } 2932 2933 /* determine offset of inner transport header */ 2934 l4_offset = l4.hdr - skb->data; 2935 2936 /* remove payload length from inner checksum */ 2937 paylen = skb->len - l4_offset; 2938 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 2939 2940 /* compute length of segmentation header */ 2941 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2942 2943 /* pull values out of skb_shinfo */ 2944 gso_size = skb_shinfo(skb)->gso_size; 2945 gso_segs = skb_shinfo(skb)->gso_segs; 2946 2947 /* update GSO size and bytecount with header size */ 2948 first->gso_segs = gso_segs; 2949 first->bytecount += (first->gso_segs - 1) * *hdr_len; 2950 2951 /* find the field values */ 2952 cd_cmd = I40E_TX_CTX_DESC_TSO; 2953 cd_tso_len = skb->len - *hdr_len; 2954 cd_mss = gso_size; 2955 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 2956 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 2957 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 2958 return 1; 2959 } 2960 2961 /** 2962 * i40e_tsyn - set up the tsyn context descriptor 2963 * @tx_ring: ptr to the ring to send 2964 * @skb: ptr to the skb we're sending 2965 * @tx_flags: the collected send information 2966 * @cd_type_cmd_tso_mss: Quad Word 1 2967 * 2968 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 2969 **/ 2970 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 2971 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 2972 { 2973 struct i40e_pf *pf; 2974 2975 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2976 return 0; 2977 2978 /* Tx timestamps cannot be sampled when doing TSO */ 2979 if (tx_flags & I40E_TX_FLAGS_TSO) 2980 return 0; 2981 2982 /* only timestamp the outbound packet if the user has requested it and 2983 * we are not already transmitting a packet to be timestamped 2984 */ 2985 pf = i40e_netdev_to_pf(tx_ring->netdev); 2986 if (!(pf->flags & I40E_FLAG_PTP)) 2987 return 0; 2988 2989 if (pf->ptp_tx && 2990 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 2991 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2992 pf->ptp_tx_start = jiffies; 2993 pf->ptp_tx_skb = skb_get(skb); 2994 } else { 2995 pf->tx_hwtstamp_skipped++; 2996 return 0; 2997 } 2998 2999 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 3000 I40E_TXD_CTX_QW1_CMD_SHIFT; 3001 3002 return 1; 3003 } 3004 3005 /** 3006 * i40e_tx_enable_csum - Enable Tx checksum offloads 3007 * @skb: send buffer 3008 * @tx_flags: pointer to Tx flags currently set 3009 * @td_cmd: Tx descriptor command bits to set 3010 * @td_offset: Tx descriptor header offsets to set 3011 * @tx_ring: Tx descriptor ring 3012 * @cd_tunneling: ptr to context desc bits 3013 **/ 3014 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 3015 u32 *td_cmd, u32 *td_offset, 3016 struct i40e_ring *tx_ring, 3017 u32 *cd_tunneling) 3018 { 3019 union { 3020 struct iphdr *v4; 3021 struct ipv6hdr *v6; 3022 unsigned char *hdr; 3023 } ip; 3024 union { 3025 struct tcphdr *tcp; 3026 struct udphdr *udp; 3027 unsigned char *hdr; 3028 } l4; 3029 unsigned char *exthdr; 3030 u32 offset, cmd = 0; 3031 __be16 frag_off; 3032 u8 l4_proto = 0; 3033 3034 if (skb->ip_summed != CHECKSUM_PARTIAL) 3035 return 0; 3036 3037 ip.hdr = skb_network_header(skb); 3038 l4.hdr = skb_transport_header(skb); 3039 3040 /* compute outer L2 header size */ 3041 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3042 3043 if (skb->encapsulation) { 3044 u32 tunnel = 0; 3045 /* define outer network header type */ 3046 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3047 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3048 I40E_TX_CTX_EXT_IP_IPV4 : 3049 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3050 3051 l4_proto = ip.v4->protocol; 3052 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3053 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3054 3055 exthdr = ip.hdr + sizeof(*ip.v6); 3056 l4_proto = ip.v6->nexthdr; 3057 if (l4.hdr != exthdr) 3058 ipv6_skip_exthdr(skb, exthdr - skb->data, 3059 &l4_proto, &frag_off); 3060 } 3061 3062 /* define outer transport */ 3063 switch (l4_proto) { 3064 case IPPROTO_UDP: 3065 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3066 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3067 break; 3068 case IPPROTO_GRE: 3069 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3070 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3071 break; 3072 case IPPROTO_IPIP: 3073 case IPPROTO_IPV6: 3074 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3075 l4.hdr = skb_inner_network_header(skb); 3076 break; 3077 default: 3078 if (*tx_flags & I40E_TX_FLAGS_TSO) 3079 return -1; 3080 3081 skb_checksum_help(skb); 3082 return 0; 3083 } 3084 3085 /* compute outer L3 header size */ 3086 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3087 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3088 3089 /* switch IP header pointer from outer to inner header */ 3090 ip.hdr = skb_inner_network_header(skb); 3091 3092 /* compute tunnel header size */ 3093 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3094 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3095 3096 /* indicate if we need to offload outer UDP header */ 3097 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3098 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3099 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3100 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3101 3102 /* record tunnel offload values */ 3103 *cd_tunneling |= tunnel; 3104 3105 /* switch L4 header pointer from outer to inner */ 3106 l4.hdr = skb_inner_transport_header(skb); 3107 l4_proto = 0; 3108 3109 /* reset type as we transition from outer to inner headers */ 3110 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3111 if (ip.v4->version == 4) 3112 *tx_flags |= I40E_TX_FLAGS_IPV4; 3113 if (ip.v6->version == 6) 3114 *tx_flags |= I40E_TX_FLAGS_IPV6; 3115 } 3116 3117 /* Enable IP checksum offloads */ 3118 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3119 l4_proto = ip.v4->protocol; 3120 /* the stack computes the IP header already, the only time we 3121 * need the hardware to recompute it is in the case of TSO. 3122 */ 3123 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3124 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3125 I40E_TX_DESC_CMD_IIPT_IPV4; 3126 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3127 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3128 3129 exthdr = ip.hdr + sizeof(*ip.v6); 3130 l4_proto = ip.v6->nexthdr; 3131 if (l4.hdr != exthdr) 3132 ipv6_skip_exthdr(skb, exthdr - skb->data, 3133 &l4_proto, &frag_off); 3134 } 3135 3136 /* compute inner L3 header size */ 3137 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3138 3139 /* Enable L4 checksum offloads */ 3140 switch (l4_proto) { 3141 case IPPROTO_TCP: 3142 /* enable checksum offloads */ 3143 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3144 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3145 break; 3146 case IPPROTO_SCTP: 3147 /* enable SCTP checksum offload */ 3148 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3149 offset |= (sizeof(struct sctphdr) >> 2) << 3150 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3151 break; 3152 case IPPROTO_UDP: 3153 /* enable UDP checksum offload */ 3154 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3155 offset |= (sizeof(struct udphdr) >> 2) << 3156 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3157 break; 3158 default: 3159 if (*tx_flags & I40E_TX_FLAGS_TSO) 3160 return -1; 3161 skb_checksum_help(skb); 3162 return 0; 3163 } 3164 3165 *td_cmd |= cmd; 3166 *td_offset |= offset; 3167 3168 return 1; 3169 } 3170 3171 /** 3172 * i40e_create_tx_ctx Build the Tx context descriptor 3173 * @tx_ring: ring to create the descriptor on 3174 * @cd_type_cmd_tso_mss: Quad Word 1 3175 * @cd_tunneling: Quad Word 0 - bits 0-31 3176 * @cd_l2tag2: Quad Word 0 - bits 32-63 3177 **/ 3178 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3179 const u64 cd_type_cmd_tso_mss, 3180 const u32 cd_tunneling, const u32 cd_l2tag2) 3181 { 3182 struct i40e_tx_context_desc *context_desc; 3183 int i = tx_ring->next_to_use; 3184 3185 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3186 !cd_tunneling && !cd_l2tag2) 3187 return; 3188 3189 /* grab the next descriptor */ 3190 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3191 3192 i++; 3193 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3194 3195 /* cpu_to_le32 and assign to struct fields */ 3196 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3197 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3198 context_desc->rsvd = cpu_to_le16(0); 3199 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3200 } 3201 3202 /** 3203 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3204 * @tx_ring: the ring to be checked 3205 * @size: the size buffer we want to assure is available 3206 * 3207 * Returns -EBUSY if a stop is needed, else 0 3208 **/ 3209 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3210 { 3211 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3212 /* Memory barrier before checking head and tail */ 3213 smp_mb(); 3214 3215 /* Check again in a case another CPU has just made room available. */ 3216 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3217 return -EBUSY; 3218 3219 /* A reprieve! - use start_queue because it doesn't call schedule */ 3220 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3221 ++tx_ring->tx_stats.restart_queue; 3222 return 0; 3223 } 3224 3225 /** 3226 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3227 * @skb: send buffer 3228 * 3229 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3230 * and so we need to figure out the cases where we need to linearize the skb. 3231 * 3232 * For TSO we need to count the TSO header and segment payload separately. 3233 * As such we need to check cases where we have 7 fragments or more as we 3234 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3235 * the segment payload in the first descriptor, and another 7 for the 3236 * fragments. 3237 **/ 3238 bool __i40e_chk_linearize(struct sk_buff *skb) 3239 { 3240 const struct skb_frag_struct *frag, *stale; 3241 int nr_frags, sum; 3242 3243 /* no need to check if number of frags is less than 7 */ 3244 nr_frags = skb_shinfo(skb)->nr_frags; 3245 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3246 return false; 3247 3248 /* We need to walk through the list and validate that each group 3249 * of 6 fragments totals at least gso_size. 3250 */ 3251 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3252 frag = &skb_shinfo(skb)->frags[0]; 3253 3254 /* Initialize size to the negative value of gso_size minus 1. We 3255 * use this as the worst case scenerio in which the frag ahead 3256 * of us only provides one byte which is why we are limited to 6 3257 * descriptors for a single transmit as the header and previous 3258 * fragment are already consuming 2 descriptors. 3259 */ 3260 sum = 1 - skb_shinfo(skb)->gso_size; 3261 3262 /* Add size of frags 0 through 4 to create our initial sum */ 3263 sum += skb_frag_size(frag++); 3264 sum += skb_frag_size(frag++); 3265 sum += skb_frag_size(frag++); 3266 sum += skb_frag_size(frag++); 3267 sum += skb_frag_size(frag++); 3268 3269 /* Walk through fragments adding latest fragment, testing it, and 3270 * then removing stale fragments from the sum. 3271 */ 3272 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3273 int stale_size = skb_frag_size(stale); 3274 3275 sum += skb_frag_size(frag++); 3276 3277 /* The stale fragment may present us with a smaller 3278 * descriptor than the actual fragment size. To account 3279 * for that we need to remove all the data on the front and 3280 * figure out what the remainder would be in the last 3281 * descriptor associated with the fragment. 3282 */ 3283 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3284 int align_pad = -(stale->page_offset) & 3285 (I40E_MAX_READ_REQ_SIZE - 1); 3286 3287 sum -= align_pad; 3288 stale_size -= align_pad; 3289 3290 do { 3291 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3292 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3293 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3294 } 3295 3296 /* if sum is negative we failed to make sufficient progress */ 3297 if (sum < 0) 3298 return true; 3299 3300 if (!nr_frags--) 3301 break; 3302 3303 sum -= stale_size; 3304 } 3305 3306 return false; 3307 } 3308 3309 /** 3310 * i40e_tx_map - Build the Tx descriptor 3311 * @tx_ring: ring to send buffer on 3312 * @skb: send buffer 3313 * @first: first buffer info buffer to use 3314 * @tx_flags: collected send information 3315 * @hdr_len: size of the packet header 3316 * @td_cmd: the command field in the descriptor 3317 * @td_offset: offset for checksum or crc 3318 * 3319 * Returns 0 on success, -1 on failure to DMA 3320 **/ 3321 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3322 struct i40e_tx_buffer *first, u32 tx_flags, 3323 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3324 { 3325 unsigned int data_len = skb->data_len; 3326 unsigned int size = skb_headlen(skb); 3327 struct skb_frag_struct *frag; 3328 struct i40e_tx_buffer *tx_bi; 3329 struct i40e_tx_desc *tx_desc; 3330 u16 i = tx_ring->next_to_use; 3331 u32 td_tag = 0; 3332 dma_addr_t dma; 3333 u16 desc_count = 1; 3334 3335 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3336 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3337 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3338 I40E_TX_FLAGS_VLAN_SHIFT; 3339 } 3340 3341 first->tx_flags = tx_flags; 3342 3343 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3344 3345 tx_desc = I40E_TX_DESC(tx_ring, i); 3346 tx_bi = first; 3347 3348 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3349 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3350 3351 if (dma_mapping_error(tx_ring->dev, dma)) 3352 goto dma_error; 3353 3354 /* record length, and DMA address */ 3355 dma_unmap_len_set(tx_bi, len, size); 3356 dma_unmap_addr_set(tx_bi, dma, dma); 3357 3358 /* align size to end of page */ 3359 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3360 tx_desc->buffer_addr = cpu_to_le64(dma); 3361 3362 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3363 tx_desc->cmd_type_offset_bsz = 3364 build_ctob(td_cmd, td_offset, 3365 max_data, td_tag); 3366 3367 tx_desc++; 3368 i++; 3369 desc_count++; 3370 3371 if (i == tx_ring->count) { 3372 tx_desc = I40E_TX_DESC(tx_ring, 0); 3373 i = 0; 3374 } 3375 3376 dma += max_data; 3377 size -= max_data; 3378 3379 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3380 tx_desc->buffer_addr = cpu_to_le64(dma); 3381 } 3382 3383 if (likely(!data_len)) 3384 break; 3385 3386 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3387 size, td_tag); 3388 3389 tx_desc++; 3390 i++; 3391 desc_count++; 3392 3393 if (i == tx_ring->count) { 3394 tx_desc = I40E_TX_DESC(tx_ring, 0); 3395 i = 0; 3396 } 3397 3398 size = skb_frag_size(frag); 3399 data_len -= size; 3400 3401 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3402 DMA_TO_DEVICE); 3403 3404 tx_bi = &tx_ring->tx_bi[i]; 3405 } 3406 3407 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3408 3409 i++; 3410 if (i == tx_ring->count) 3411 i = 0; 3412 3413 tx_ring->next_to_use = i; 3414 3415 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3416 3417 /* write last descriptor with EOP bit */ 3418 td_cmd |= I40E_TX_DESC_CMD_EOP; 3419 3420 /* We OR these values together to check both against 4 (WB_STRIDE) 3421 * below. This is safe since we don't re-use desc_count afterwards. 3422 */ 3423 desc_count |= ++tx_ring->packet_stride; 3424 3425 if (desc_count >= WB_STRIDE) { 3426 /* write last descriptor with RS bit set */ 3427 td_cmd |= I40E_TX_DESC_CMD_RS; 3428 tx_ring->packet_stride = 0; 3429 } 3430 3431 tx_desc->cmd_type_offset_bsz = 3432 build_ctob(td_cmd, td_offset, size, td_tag); 3433 3434 /* Force memory writes to complete before letting h/w know there 3435 * are new descriptors to fetch. 3436 * 3437 * We also use this memory barrier to make certain all of the 3438 * status bits have been updated before next_to_watch is written. 3439 */ 3440 wmb(); 3441 3442 /* set next_to_watch value indicating a packet is present */ 3443 first->next_to_watch = tx_desc; 3444 3445 /* notify HW of packet */ 3446 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 3447 writel(i, tx_ring->tail); 3448 3449 /* we need this if more than one processor can write to our tail 3450 * at a time, it synchronizes IO on IA64/Altix systems 3451 */ 3452 mmiowb(); 3453 } 3454 3455 return 0; 3456 3457 dma_error: 3458 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3459 3460 /* clear dma mappings for failed tx_bi map */ 3461 for (;;) { 3462 tx_bi = &tx_ring->tx_bi[i]; 3463 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3464 if (tx_bi == first) 3465 break; 3466 if (i == 0) 3467 i = tx_ring->count; 3468 i--; 3469 } 3470 3471 tx_ring->next_to_use = i; 3472 3473 return -1; 3474 } 3475 3476 /** 3477 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3478 * @xdp: data to transmit 3479 * @xdp_ring: XDP Tx ring 3480 **/ 3481 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp, 3482 struct i40e_ring *xdp_ring) 3483 { 3484 u32 size = xdp->data_end - xdp->data; 3485 u16 i = xdp_ring->next_to_use; 3486 struct i40e_tx_buffer *tx_bi; 3487 struct i40e_tx_desc *tx_desc; 3488 dma_addr_t dma; 3489 3490 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 3491 xdp_ring->tx_stats.tx_busy++; 3492 return I40E_XDP_CONSUMED; 3493 } 3494 3495 dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE); 3496 if (dma_mapping_error(xdp_ring->dev, dma)) 3497 return I40E_XDP_CONSUMED; 3498 3499 tx_bi = &xdp_ring->tx_bi[i]; 3500 tx_bi->bytecount = size; 3501 tx_bi->gso_segs = 1; 3502 tx_bi->raw_buf = xdp->data; 3503 3504 /* record length, and DMA address */ 3505 dma_unmap_len_set(tx_bi, len, size); 3506 dma_unmap_addr_set(tx_bi, dma, dma); 3507 3508 tx_desc = I40E_TX_DESC(xdp_ring, i); 3509 tx_desc->buffer_addr = cpu_to_le64(dma); 3510 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC 3511 | I40E_TXD_CMD, 3512 0, size, 0); 3513 3514 /* Make certain all of the status bits have been updated 3515 * before next_to_watch is written. 3516 */ 3517 smp_wmb(); 3518 3519 i++; 3520 if (i == xdp_ring->count) 3521 i = 0; 3522 3523 tx_bi->next_to_watch = tx_desc; 3524 xdp_ring->next_to_use = i; 3525 3526 return I40E_XDP_TX; 3527 } 3528 3529 /** 3530 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3531 * @skb: send buffer 3532 * @tx_ring: ring to send buffer on 3533 * 3534 * Returns NETDEV_TX_OK if sent, else an error code 3535 **/ 3536 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3537 struct i40e_ring *tx_ring) 3538 { 3539 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3540 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3541 struct i40e_tx_buffer *first; 3542 u32 td_offset = 0; 3543 u32 tx_flags = 0; 3544 __be16 protocol; 3545 u32 td_cmd = 0; 3546 u8 hdr_len = 0; 3547 int tso, count; 3548 int tsyn; 3549 3550 /* prefetch the data, we'll need it later */ 3551 prefetch(skb->data); 3552 3553 i40e_trace(xmit_frame_ring, skb, tx_ring); 3554 3555 count = i40e_xmit_descriptor_count(skb); 3556 if (i40e_chk_linearize(skb, count)) { 3557 if (__skb_linearize(skb)) { 3558 dev_kfree_skb_any(skb); 3559 return NETDEV_TX_OK; 3560 } 3561 count = i40e_txd_use_count(skb->len); 3562 tx_ring->tx_stats.tx_linearize++; 3563 } 3564 3565 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3566 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3567 * + 4 desc gap to avoid the cache line where head is, 3568 * + 1 desc for context descriptor, 3569 * otherwise try next time 3570 */ 3571 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3572 tx_ring->tx_stats.tx_busy++; 3573 return NETDEV_TX_BUSY; 3574 } 3575 3576 /* record the location of the first descriptor for this packet */ 3577 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3578 first->skb = skb; 3579 first->bytecount = skb->len; 3580 first->gso_segs = 1; 3581 3582 /* prepare the xmit flags */ 3583 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3584 goto out_drop; 3585 3586 /* obtain protocol of skb */ 3587 protocol = vlan_get_protocol(skb); 3588 3589 /* setup IPv4/IPv6 offloads */ 3590 if (protocol == htons(ETH_P_IP)) 3591 tx_flags |= I40E_TX_FLAGS_IPV4; 3592 else if (protocol == htons(ETH_P_IPV6)) 3593 tx_flags |= I40E_TX_FLAGS_IPV6; 3594 3595 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3596 3597 if (tso < 0) 3598 goto out_drop; 3599 else if (tso) 3600 tx_flags |= I40E_TX_FLAGS_TSO; 3601 3602 /* Always offload the checksum, since it's in the data descriptor */ 3603 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3604 tx_ring, &cd_tunneling); 3605 if (tso < 0) 3606 goto out_drop; 3607 3608 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3609 3610 if (tsyn) 3611 tx_flags |= I40E_TX_FLAGS_TSYN; 3612 3613 skb_tx_timestamp(skb); 3614 3615 /* always enable CRC insertion offload */ 3616 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3617 3618 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3619 cd_tunneling, cd_l2tag2); 3620 3621 /* Add Flow Director ATR if it's enabled. 3622 * 3623 * NOTE: this must always be directly before the data descriptor. 3624 */ 3625 i40e_atr(tx_ring, skb, tx_flags); 3626 3627 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3628 td_cmd, td_offset)) 3629 goto cleanup_tx_tstamp; 3630 3631 return NETDEV_TX_OK; 3632 3633 out_drop: 3634 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3635 dev_kfree_skb_any(first->skb); 3636 first->skb = NULL; 3637 cleanup_tx_tstamp: 3638 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3639 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 3640 3641 dev_kfree_skb_any(pf->ptp_tx_skb); 3642 pf->ptp_tx_skb = NULL; 3643 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 3644 } 3645 3646 return NETDEV_TX_OK; 3647 } 3648 3649 /** 3650 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 3651 * @skb: send buffer 3652 * @netdev: network interface device structure 3653 * 3654 * Returns NETDEV_TX_OK if sent, else an error code 3655 **/ 3656 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3657 { 3658 struct i40e_netdev_priv *np = netdev_priv(netdev); 3659 struct i40e_vsi *vsi = np->vsi; 3660 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 3661 3662 /* hardware can't handle really short frames, hardware padding works 3663 * beyond this point 3664 */ 3665 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 3666 return NETDEV_TX_OK; 3667 3668 return i40e_xmit_frame_ring(skb, tx_ring); 3669 } 3670 3671 /** 3672 * i40e_xdp_xmit - Implements ndo_xdp_xmit 3673 * @dev: netdev 3674 * @xdp: XDP buffer 3675 * 3676 * Returns Zero if sent, else an error code 3677 **/ 3678 int i40e_xdp_xmit(struct net_device *dev, struct xdp_buff *xdp) 3679 { 3680 struct i40e_netdev_priv *np = netdev_priv(dev); 3681 unsigned int queue_index = smp_processor_id(); 3682 struct i40e_vsi *vsi = np->vsi; 3683 int err; 3684 3685 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 3686 return -ENETDOWN; 3687 3688 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs) 3689 return -ENXIO; 3690 3691 err = i40e_xmit_xdp_ring(xdp, vsi->xdp_rings[queue_index]); 3692 if (err != I40E_XDP_TX) 3693 return -ENOSPC; 3694 3695 return 0; 3696 } 3697 3698 /** 3699 * i40e_xdp_flush - Implements ndo_xdp_flush 3700 * @dev: netdev 3701 **/ 3702 void i40e_xdp_flush(struct net_device *dev) 3703 { 3704 struct i40e_netdev_priv *np = netdev_priv(dev); 3705 unsigned int queue_index = smp_processor_id(); 3706 struct i40e_vsi *vsi = np->vsi; 3707 3708 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 3709 return; 3710 3711 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs) 3712 return; 3713 3714 i40e_xdp_ring_update_tail(vsi->xdp_rings[queue_index]); 3715 } 3716