xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision 995231c820e3bd3633cb38bf4ea6f2541e1da331)
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include <linux/bpf_trace.h>
30 #include "i40e.h"
31 #include "i40e_trace.h"
32 #include "i40e_prototype.h"
33 
34 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
35 				u32 td_tag)
36 {
37 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
38 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
39 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
40 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
41 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
42 }
43 
44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45 /**
46  * i40e_fdir - Generate a Flow Director descriptor based on fdata
47  * @tx_ring: Tx ring to send buffer on
48  * @fdata: Flow director filter data
49  * @add: Indicate if we are adding a rule or deleting one
50  *
51  **/
52 static void i40e_fdir(struct i40e_ring *tx_ring,
53 		      struct i40e_fdir_filter *fdata, bool add)
54 {
55 	struct i40e_filter_program_desc *fdir_desc;
56 	struct i40e_pf *pf = tx_ring->vsi->back;
57 	u32 flex_ptype, dtype_cmd;
58 	u16 i;
59 
60 	/* grab the next descriptor */
61 	i = tx_ring->next_to_use;
62 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
63 
64 	i++;
65 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
66 
67 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
68 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
69 
70 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
71 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
72 
73 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
74 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
75 
76 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
77 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
78 
79 	/* Use LAN VSI Id if not programmed by user */
80 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
81 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
82 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
83 
84 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
85 
86 	dtype_cmd |= add ?
87 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
88 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
89 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
90 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
91 
92 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
93 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
94 
95 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
96 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
97 
98 	if (fdata->cnt_index) {
99 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
100 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
101 			     ((u32)fdata->cnt_index <<
102 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
103 	}
104 
105 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
106 	fdir_desc->rsvd = cpu_to_le32(0);
107 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
108 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
109 }
110 
111 #define I40E_FD_CLEAN_DELAY 10
112 /**
113  * i40e_program_fdir_filter - Program a Flow Director filter
114  * @fdir_data: Packet data that will be filter parameters
115  * @raw_packet: the pre-allocated packet buffer for FDir
116  * @pf: The PF pointer
117  * @add: True for add/update, False for remove
118  **/
119 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
120 				    u8 *raw_packet, struct i40e_pf *pf,
121 				    bool add)
122 {
123 	struct i40e_tx_buffer *tx_buf, *first;
124 	struct i40e_tx_desc *tx_desc;
125 	struct i40e_ring *tx_ring;
126 	struct i40e_vsi *vsi;
127 	struct device *dev;
128 	dma_addr_t dma;
129 	u32 td_cmd = 0;
130 	u16 i;
131 
132 	/* find existing FDIR VSI */
133 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
134 	if (!vsi)
135 		return -ENOENT;
136 
137 	tx_ring = vsi->tx_rings[0];
138 	dev = tx_ring->dev;
139 
140 	/* we need two descriptors to add/del a filter and we can wait */
141 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
142 		if (!i)
143 			return -EAGAIN;
144 		msleep_interruptible(1);
145 	}
146 
147 	dma = dma_map_single(dev, raw_packet,
148 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
149 	if (dma_mapping_error(dev, dma))
150 		goto dma_fail;
151 
152 	/* grab the next descriptor */
153 	i = tx_ring->next_to_use;
154 	first = &tx_ring->tx_bi[i];
155 	i40e_fdir(tx_ring, fdir_data, add);
156 
157 	/* Now program a dummy descriptor */
158 	i = tx_ring->next_to_use;
159 	tx_desc = I40E_TX_DESC(tx_ring, i);
160 	tx_buf = &tx_ring->tx_bi[i];
161 
162 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
163 
164 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
165 
166 	/* record length, and DMA address */
167 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
168 	dma_unmap_addr_set(tx_buf, dma, dma);
169 
170 	tx_desc->buffer_addr = cpu_to_le64(dma);
171 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
172 
173 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
174 	tx_buf->raw_buf = (void *)raw_packet;
175 
176 	tx_desc->cmd_type_offset_bsz =
177 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
178 
179 	/* Force memory writes to complete before letting h/w
180 	 * know there are new descriptors to fetch.
181 	 */
182 	wmb();
183 
184 	/* Mark the data descriptor to be watched */
185 	first->next_to_watch = tx_desc;
186 
187 	writel(tx_ring->next_to_use, tx_ring->tail);
188 	return 0;
189 
190 dma_fail:
191 	return -1;
192 }
193 
194 #define IP_HEADER_OFFSET 14
195 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
196 /**
197  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
198  * @vsi: pointer to the targeted VSI
199  * @fd_data: the flow director data required for the FDir descriptor
200  * @add: true adds a filter, false removes it
201  *
202  * Returns 0 if the filters were successfully added or removed
203  **/
204 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
205 				   struct i40e_fdir_filter *fd_data,
206 				   bool add)
207 {
208 	struct i40e_pf *pf = vsi->back;
209 	struct udphdr *udp;
210 	struct iphdr *ip;
211 	u8 *raw_packet;
212 	int ret;
213 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
214 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
215 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
216 
217 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
218 	if (!raw_packet)
219 		return -ENOMEM;
220 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
221 
222 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
223 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
224 	      + sizeof(struct iphdr));
225 
226 	ip->daddr = fd_data->dst_ip;
227 	udp->dest = fd_data->dst_port;
228 	ip->saddr = fd_data->src_ip;
229 	udp->source = fd_data->src_port;
230 
231 	if (fd_data->flex_filter) {
232 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
233 		__be16 pattern = fd_data->flex_word;
234 		u16 off = fd_data->flex_offset;
235 
236 		*((__force __be16 *)(payload + off)) = pattern;
237 	}
238 
239 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
240 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
241 	if (ret) {
242 		dev_info(&pf->pdev->dev,
243 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
244 			 fd_data->pctype, fd_data->fd_id, ret);
245 		/* Free the packet buffer since it wasn't added to the ring */
246 		kfree(raw_packet);
247 		return -EOPNOTSUPP;
248 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
249 		if (add)
250 			dev_info(&pf->pdev->dev,
251 				 "Filter OK for PCTYPE %d loc = %d\n",
252 				 fd_data->pctype, fd_data->fd_id);
253 		else
254 			dev_info(&pf->pdev->dev,
255 				 "Filter deleted for PCTYPE %d loc = %d\n",
256 				 fd_data->pctype, fd_data->fd_id);
257 	}
258 
259 	if (add)
260 		pf->fd_udp4_filter_cnt++;
261 	else
262 		pf->fd_udp4_filter_cnt--;
263 
264 	return 0;
265 }
266 
267 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
268 /**
269  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
270  * @vsi: pointer to the targeted VSI
271  * @fd_data: the flow director data required for the FDir descriptor
272  * @add: true adds a filter, false removes it
273  *
274  * Returns 0 if the filters were successfully added or removed
275  **/
276 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
277 				   struct i40e_fdir_filter *fd_data,
278 				   bool add)
279 {
280 	struct i40e_pf *pf = vsi->back;
281 	struct tcphdr *tcp;
282 	struct iphdr *ip;
283 	u8 *raw_packet;
284 	int ret;
285 	/* Dummy packet */
286 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
287 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
288 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
289 		0x0, 0x72, 0, 0, 0, 0};
290 
291 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
292 	if (!raw_packet)
293 		return -ENOMEM;
294 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
295 
296 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
297 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
298 	      + sizeof(struct iphdr));
299 
300 	ip->daddr = fd_data->dst_ip;
301 	tcp->dest = fd_data->dst_port;
302 	ip->saddr = fd_data->src_ip;
303 	tcp->source = fd_data->src_port;
304 
305 	if (fd_data->flex_filter) {
306 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
307 		__be16 pattern = fd_data->flex_word;
308 		u16 off = fd_data->flex_offset;
309 
310 		*((__force __be16 *)(payload + off)) = pattern;
311 	}
312 
313 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
314 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
315 	if (ret) {
316 		dev_info(&pf->pdev->dev,
317 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
318 			 fd_data->pctype, fd_data->fd_id, ret);
319 		/* Free the packet buffer since it wasn't added to the ring */
320 		kfree(raw_packet);
321 		return -EOPNOTSUPP;
322 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
323 		if (add)
324 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
325 				 fd_data->pctype, fd_data->fd_id);
326 		else
327 			dev_info(&pf->pdev->dev,
328 				 "Filter deleted for PCTYPE %d loc = %d\n",
329 				 fd_data->pctype, fd_data->fd_id);
330 	}
331 
332 	if (add) {
333 		pf->fd_tcp4_filter_cnt++;
334 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
335 		    I40E_DEBUG_FD & pf->hw.debug_mask)
336 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
337 		pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
338 	} else {
339 		pf->fd_tcp4_filter_cnt--;
340 	}
341 
342 	return 0;
343 }
344 
345 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
346 /**
347  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
348  * a specific flow spec
349  * @vsi: pointer to the targeted VSI
350  * @fd_data: the flow director data required for the FDir descriptor
351  * @add: true adds a filter, false removes it
352  *
353  * Returns 0 if the filters were successfully added or removed
354  **/
355 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
356 				    struct i40e_fdir_filter *fd_data,
357 				    bool add)
358 {
359 	struct i40e_pf *pf = vsi->back;
360 	struct sctphdr *sctp;
361 	struct iphdr *ip;
362 	u8 *raw_packet;
363 	int ret;
364 	/* Dummy packet */
365 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
366 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
367 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
368 
369 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
370 	if (!raw_packet)
371 		return -ENOMEM;
372 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
373 
374 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
375 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
376 	      + sizeof(struct iphdr));
377 
378 	ip->daddr = fd_data->dst_ip;
379 	sctp->dest = fd_data->dst_port;
380 	ip->saddr = fd_data->src_ip;
381 	sctp->source = fd_data->src_port;
382 
383 	if (fd_data->flex_filter) {
384 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
385 		__be16 pattern = fd_data->flex_word;
386 		u16 off = fd_data->flex_offset;
387 
388 		*((__force __be16 *)(payload + off)) = pattern;
389 	}
390 
391 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
392 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
393 	if (ret) {
394 		dev_info(&pf->pdev->dev,
395 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
396 			 fd_data->pctype, fd_data->fd_id, ret);
397 		/* Free the packet buffer since it wasn't added to the ring */
398 		kfree(raw_packet);
399 		return -EOPNOTSUPP;
400 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
401 		if (add)
402 			dev_info(&pf->pdev->dev,
403 				 "Filter OK for PCTYPE %d loc = %d\n",
404 				 fd_data->pctype, fd_data->fd_id);
405 		else
406 			dev_info(&pf->pdev->dev,
407 				 "Filter deleted for PCTYPE %d loc = %d\n",
408 				 fd_data->pctype, fd_data->fd_id);
409 	}
410 
411 	if (add)
412 		pf->fd_sctp4_filter_cnt++;
413 	else
414 		pf->fd_sctp4_filter_cnt--;
415 
416 	return 0;
417 }
418 
419 #define I40E_IP_DUMMY_PACKET_LEN 34
420 /**
421  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
422  * a specific flow spec
423  * @vsi: pointer to the targeted VSI
424  * @fd_data: the flow director data required for the FDir descriptor
425  * @add: true adds a filter, false removes it
426  *
427  * Returns 0 if the filters were successfully added or removed
428  **/
429 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
430 				  struct i40e_fdir_filter *fd_data,
431 				  bool add)
432 {
433 	struct i40e_pf *pf = vsi->back;
434 	struct iphdr *ip;
435 	u8 *raw_packet;
436 	int ret;
437 	int i;
438 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
439 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
440 		0, 0, 0, 0};
441 
442 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
443 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
444 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
445 		if (!raw_packet)
446 			return -ENOMEM;
447 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
448 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
449 
450 		ip->saddr = fd_data->src_ip;
451 		ip->daddr = fd_data->dst_ip;
452 		ip->protocol = 0;
453 
454 		if (fd_data->flex_filter) {
455 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
456 			__be16 pattern = fd_data->flex_word;
457 			u16 off = fd_data->flex_offset;
458 
459 			*((__force __be16 *)(payload + off)) = pattern;
460 		}
461 
462 		fd_data->pctype = i;
463 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
464 		if (ret) {
465 			dev_info(&pf->pdev->dev,
466 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
467 				 fd_data->pctype, fd_data->fd_id, ret);
468 			/* The packet buffer wasn't added to the ring so we
469 			 * need to free it now.
470 			 */
471 			kfree(raw_packet);
472 			return -EOPNOTSUPP;
473 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
474 			if (add)
475 				dev_info(&pf->pdev->dev,
476 					 "Filter OK for PCTYPE %d loc = %d\n",
477 					 fd_data->pctype, fd_data->fd_id);
478 			else
479 				dev_info(&pf->pdev->dev,
480 					 "Filter deleted for PCTYPE %d loc = %d\n",
481 					 fd_data->pctype, fd_data->fd_id);
482 		}
483 	}
484 
485 	if (add)
486 		pf->fd_ip4_filter_cnt++;
487 	else
488 		pf->fd_ip4_filter_cnt--;
489 
490 	return 0;
491 }
492 
493 /**
494  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
495  * @vsi: pointer to the targeted VSI
496  * @cmd: command to get or set RX flow classification rules
497  * @add: true adds a filter, false removes it
498  *
499  **/
500 int i40e_add_del_fdir(struct i40e_vsi *vsi,
501 		      struct i40e_fdir_filter *input, bool add)
502 {
503 	struct i40e_pf *pf = vsi->back;
504 	int ret;
505 
506 	switch (input->flow_type & ~FLOW_EXT) {
507 	case TCP_V4_FLOW:
508 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
509 		break;
510 	case UDP_V4_FLOW:
511 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
512 		break;
513 	case SCTP_V4_FLOW:
514 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
515 		break;
516 	case IP_USER_FLOW:
517 		switch (input->ip4_proto) {
518 		case IPPROTO_TCP:
519 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
520 			break;
521 		case IPPROTO_UDP:
522 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
523 			break;
524 		case IPPROTO_SCTP:
525 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
526 			break;
527 		case IPPROTO_IP:
528 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
529 			break;
530 		default:
531 			/* We cannot support masking based on protocol */
532 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
533 				 input->ip4_proto);
534 			return -EINVAL;
535 		}
536 		break;
537 	default:
538 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
539 			 input->flow_type);
540 		return -EINVAL;
541 	}
542 
543 	/* The buffer allocated here will be normally be freed by
544 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
545 	 * completion. In the event of an error adding the buffer to the FDIR
546 	 * ring, it will immediately be freed. It may also be freed by
547 	 * i40e_clean_tx_ring() when closing the VSI.
548 	 */
549 	return ret;
550 }
551 
552 /**
553  * i40e_fd_handle_status - check the Programming Status for FD
554  * @rx_ring: the Rx ring for this descriptor
555  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
556  * @prog_id: the id originally used for programming
557  *
558  * This is used to verify if the FD programming or invalidation
559  * requested by SW to the HW is successful or not and take actions accordingly.
560  **/
561 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
562 				  union i40e_rx_desc *rx_desc, u8 prog_id)
563 {
564 	struct i40e_pf *pf = rx_ring->vsi->back;
565 	struct pci_dev *pdev = pf->pdev;
566 	u32 fcnt_prog, fcnt_avail;
567 	u32 error;
568 	u64 qw;
569 
570 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
571 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
572 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
573 
574 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
575 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
576 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
577 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
578 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
579 				 pf->fd_inv);
580 
581 		/* Check if the programming error is for ATR.
582 		 * If so, auto disable ATR and set a state for
583 		 * flush in progress. Next time we come here if flush is in
584 		 * progress do nothing, once flush is complete the state will
585 		 * be cleared.
586 		 */
587 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
588 			return;
589 
590 		pf->fd_add_err++;
591 		/* store the current atr filter count */
592 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
593 
594 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
595 		    pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
596 			pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
597 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
598 		}
599 
600 		/* filter programming failed most likely due to table full */
601 		fcnt_prog = i40e_get_global_fd_count(pf);
602 		fcnt_avail = pf->fdir_pf_filter_count;
603 		/* If ATR is running fcnt_prog can quickly change,
604 		 * if we are very close to full, it makes sense to disable
605 		 * FD ATR/SB and then re-enable it when there is room.
606 		 */
607 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
608 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
609 			    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
610 				pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
611 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
612 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
613 			}
614 		}
615 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
616 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
617 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
618 				 rx_desc->wb.qword0.hi_dword.fd_id);
619 	}
620 }
621 
622 /**
623  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
624  * @ring:      the ring that owns the buffer
625  * @tx_buffer: the buffer to free
626  **/
627 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
628 					    struct i40e_tx_buffer *tx_buffer)
629 {
630 	if (tx_buffer->skb) {
631 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
632 			kfree(tx_buffer->raw_buf);
633 		else if (ring_is_xdp(ring))
634 			page_frag_free(tx_buffer->raw_buf);
635 		else
636 			dev_kfree_skb_any(tx_buffer->skb);
637 		if (dma_unmap_len(tx_buffer, len))
638 			dma_unmap_single(ring->dev,
639 					 dma_unmap_addr(tx_buffer, dma),
640 					 dma_unmap_len(tx_buffer, len),
641 					 DMA_TO_DEVICE);
642 	} else if (dma_unmap_len(tx_buffer, len)) {
643 		dma_unmap_page(ring->dev,
644 			       dma_unmap_addr(tx_buffer, dma),
645 			       dma_unmap_len(tx_buffer, len),
646 			       DMA_TO_DEVICE);
647 	}
648 
649 	tx_buffer->next_to_watch = NULL;
650 	tx_buffer->skb = NULL;
651 	dma_unmap_len_set(tx_buffer, len, 0);
652 	/* tx_buffer must be completely set up in the transmit path */
653 }
654 
655 /**
656  * i40e_clean_tx_ring - Free any empty Tx buffers
657  * @tx_ring: ring to be cleaned
658  **/
659 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
660 {
661 	unsigned long bi_size;
662 	u16 i;
663 
664 	/* ring already cleared, nothing to do */
665 	if (!tx_ring->tx_bi)
666 		return;
667 
668 	/* Free all the Tx ring sk_buffs */
669 	for (i = 0; i < tx_ring->count; i++)
670 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
671 
672 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
673 	memset(tx_ring->tx_bi, 0, bi_size);
674 
675 	/* Zero out the descriptor ring */
676 	memset(tx_ring->desc, 0, tx_ring->size);
677 
678 	tx_ring->next_to_use = 0;
679 	tx_ring->next_to_clean = 0;
680 
681 	if (!tx_ring->netdev)
682 		return;
683 
684 	/* cleanup Tx queue statistics */
685 	netdev_tx_reset_queue(txring_txq(tx_ring));
686 }
687 
688 /**
689  * i40e_free_tx_resources - Free Tx resources per queue
690  * @tx_ring: Tx descriptor ring for a specific queue
691  *
692  * Free all transmit software resources
693  **/
694 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
695 {
696 	i40e_clean_tx_ring(tx_ring);
697 	kfree(tx_ring->tx_bi);
698 	tx_ring->tx_bi = NULL;
699 
700 	if (tx_ring->desc) {
701 		dma_free_coherent(tx_ring->dev, tx_ring->size,
702 				  tx_ring->desc, tx_ring->dma);
703 		tx_ring->desc = NULL;
704 	}
705 }
706 
707 /**
708  * i40e_get_tx_pending - how many tx descriptors not processed
709  * @tx_ring: the ring of descriptors
710  *
711  * Since there is no access to the ring head register
712  * in XL710, we need to use our local copies
713  **/
714 u32 i40e_get_tx_pending(struct i40e_ring *ring)
715 {
716 	u32 head, tail;
717 
718 	head = i40e_get_head(ring);
719 	tail = readl(ring->tail);
720 
721 	if (head != tail)
722 		return (head < tail) ?
723 			tail - head : (tail + ring->count - head);
724 
725 	return 0;
726 }
727 
728 #define WB_STRIDE 4
729 
730 /**
731  * i40e_clean_tx_irq - Reclaim resources after transmit completes
732  * @vsi: the VSI we care about
733  * @tx_ring: Tx ring to clean
734  * @napi_budget: Used to determine if we are in netpoll
735  *
736  * Returns true if there's any budget left (e.g. the clean is finished)
737  **/
738 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
739 			      struct i40e_ring *tx_ring, int napi_budget)
740 {
741 	u16 i = tx_ring->next_to_clean;
742 	struct i40e_tx_buffer *tx_buf;
743 	struct i40e_tx_desc *tx_head;
744 	struct i40e_tx_desc *tx_desc;
745 	unsigned int total_bytes = 0, total_packets = 0;
746 	unsigned int budget = vsi->work_limit;
747 
748 	tx_buf = &tx_ring->tx_bi[i];
749 	tx_desc = I40E_TX_DESC(tx_ring, i);
750 	i -= tx_ring->count;
751 
752 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
753 
754 	do {
755 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
756 
757 		/* if next_to_watch is not set then there is no work pending */
758 		if (!eop_desc)
759 			break;
760 
761 		/* prevent any other reads prior to eop_desc */
762 		read_barrier_depends();
763 
764 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
765 		/* we have caught up to head, no work left to do */
766 		if (tx_head == tx_desc)
767 			break;
768 
769 		/* clear next_to_watch to prevent false hangs */
770 		tx_buf->next_to_watch = NULL;
771 
772 		/* update the statistics for this packet */
773 		total_bytes += tx_buf->bytecount;
774 		total_packets += tx_buf->gso_segs;
775 
776 		/* free the skb/XDP data */
777 		if (ring_is_xdp(tx_ring))
778 			page_frag_free(tx_buf->raw_buf);
779 		else
780 			napi_consume_skb(tx_buf->skb, napi_budget);
781 
782 		/* unmap skb header data */
783 		dma_unmap_single(tx_ring->dev,
784 				 dma_unmap_addr(tx_buf, dma),
785 				 dma_unmap_len(tx_buf, len),
786 				 DMA_TO_DEVICE);
787 
788 		/* clear tx_buffer data */
789 		tx_buf->skb = NULL;
790 		dma_unmap_len_set(tx_buf, len, 0);
791 
792 		/* unmap remaining buffers */
793 		while (tx_desc != eop_desc) {
794 			i40e_trace(clean_tx_irq_unmap,
795 				   tx_ring, tx_desc, tx_buf);
796 
797 			tx_buf++;
798 			tx_desc++;
799 			i++;
800 			if (unlikely(!i)) {
801 				i -= tx_ring->count;
802 				tx_buf = tx_ring->tx_bi;
803 				tx_desc = I40E_TX_DESC(tx_ring, 0);
804 			}
805 
806 			/* unmap any remaining paged data */
807 			if (dma_unmap_len(tx_buf, len)) {
808 				dma_unmap_page(tx_ring->dev,
809 					       dma_unmap_addr(tx_buf, dma),
810 					       dma_unmap_len(tx_buf, len),
811 					       DMA_TO_DEVICE);
812 				dma_unmap_len_set(tx_buf, len, 0);
813 			}
814 		}
815 
816 		/* move us one more past the eop_desc for start of next pkt */
817 		tx_buf++;
818 		tx_desc++;
819 		i++;
820 		if (unlikely(!i)) {
821 			i -= tx_ring->count;
822 			tx_buf = tx_ring->tx_bi;
823 			tx_desc = I40E_TX_DESC(tx_ring, 0);
824 		}
825 
826 		prefetch(tx_desc);
827 
828 		/* update budget accounting */
829 		budget--;
830 	} while (likely(budget));
831 
832 	i += tx_ring->count;
833 	tx_ring->next_to_clean = i;
834 	u64_stats_update_begin(&tx_ring->syncp);
835 	tx_ring->stats.bytes += total_bytes;
836 	tx_ring->stats.packets += total_packets;
837 	u64_stats_update_end(&tx_ring->syncp);
838 	tx_ring->q_vector->tx.total_bytes += total_bytes;
839 	tx_ring->q_vector->tx.total_packets += total_packets;
840 
841 	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
842 		/* check to see if there are < 4 descriptors
843 		 * waiting to be written back, then kick the hardware to force
844 		 * them to be written back in case we stay in NAPI.
845 		 * In this mode on X722 we do not enable Interrupt.
846 		 */
847 		unsigned int j = i40e_get_tx_pending(tx_ring);
848 
849 		if (budget &&
850 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
851 		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
852 		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
853 			tx_ring->arm_wb = true;
854 	}
855 
856 	if (ring_is_xdp(tx_ring))
857 		return !!budget;
858 
859 	/* notify netdev of completed buffers */
860 	netdev_tx_completed_queue(txring_txq(tx_ring),
861 				  total_packets, total_bytes);
862 
863 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
864 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
865 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
866 		/* Make sure that anybody stopping the queue after this
867 		 * sees the new next_to_clean.
868 		 */
869 		smp_mb();
870 		if (__netif_subqueue_stopped(tx_ring->netdev,
871 					     tx_ring->queue_index) &&
872 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
873 			netif_wake_subqueue(tx_ring->netdev,
874 					    tx_ring->queue_index);
875 			++tx_ring->tx_stats.restart_queue;
876 		}
877 	}
878 
879 	return !!budget;
880 }
881 
882 /**
883  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
884  * @vsi: the VSI we care about
885  * @q_vector: the vector on which to enable writeback
886  *
887  **/
888 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
889 				  struct i40e_q_vector *q_vector)
890 {
891 	u16 flags = q_vector->tx.ring[0].flags;
892 	u32 val;
893 
894 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
895 		return;
896 
897 	if (q_vector->arm_wb_state)
898 		return;
899 
900 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
901 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
902 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
903 
904 		wr32(&vsi->back->hw,
905 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
906 		     val);
907 	} else {
908 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
909 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
910 
911 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
912 	}
913 	q_vector->arm_wb_state = true;
914 }
915 
916 /**
917  * i40e_force_wb - Issue SW Interrupt so HW does a wb
918  * @vsi: the VSI we care about
919  * @q_vector: the vector  on which to force writeback
920  *
921  **/
922 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
923 {
924 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
925 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
926 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
927 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
928 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
929 			  /* allow 00 to be written to the index */
930 
931 		wr32(&vsi->back->hw,
932 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
933 					 vsi->base_vector - 1), val);
934 	} else {
935 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
936 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
937 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
938 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
939 			/* allow 00 to be written to the index */
940 
941 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
942 	}
943 }
944 
945 /**
946  * i40e_set_new_dynamic_itr - Find new ITR level
947  * @rc: structure containing ring performance data
948  *
949  * Returns true if ITR changed, false if not
950  *
951  * Stores a new ITR value based on packets and byte counts during
952  * the last interrupt.  The advantage of per interrupt computation
953  * is faster updates and more accurate ITR for the current traffic
954  * pattern.  Constants in this function were computed based on
955  * theoretical maximum wire speed and thresholds were set based on
956  * testing data as well as attempting to minimize response time
957  * while increasing bulk throughput.
958  **/
959 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
960 {
961 	enum i40e_latency_range new_latency_range = rc->latency_range;
962 	u32 new_itr = rc->itr;
963 	int bytes_per_usec;
964 	unsigned int usecs, estimated_usecs;
965 
966 	if (rc->total_packets == 0 || !rc->itr)
967 		return false;
968 
969 	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
970 	bytes_per_usec = rc->total_bytes / usecs;
971 
972 	/* The calculations in this algorithm depend on interrupts actually
973 	 * firing at the ITR rate. This may not happen if the packet rate is
974 	 * really low, or if we've been napi polling. Check to make sure
975 	 * that's not the case before we continue.
976 	 */
977 	estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
978 	if (estimated_usecs > usecs) {
979 		new_latency_range = I40E_LOW_LATENCY;
980 		goto reset_latency;
981 	}
982 
983 	/* simple throttlerate management
984 	 *   0-10MB/s   lowest (50000 ints/s)
985 	 *  10-20MB/s   low    (20000 ints/s)
986 	 *  20-1249MB/s bulk   (18000 ints/s)
987 	 *
988 	 * The math works out because the divisor is in 10^(-6) which
989 	 * turns the bytes/us input value into MB/s values, but
990 	 * make sure to use usecs, as the register values written
991 	 * are in 2 usec increments in the ITR registers, and make sure
992 	 * to use the smoothed values that the countdown timer gives us.
993 	 */
994 	switch (new_latency_range) {
995 	case I40E_LOWEST_LATENCY:
996 		if (bytes_per_usec > 10)
997 			new_latency_range = I40E_LOW_LATENCY;
998 		break;
999 	case I40E_LOW_LATENCY:
1000 		if (bytes_per_usec > 20)
1001 			new_latency_range = I40E_BULK_LATENCY;
1002 		else if (bytes_per_usec <= 10)
1003 			new_latency_range = I40E_LOWEST_LATENCY;
1004 		break;
1005 	case I40E_BULK_LATENCY:
1006 	default:
1007 		if (bytes_per_usec <= 20)
1008 			new_latency_range = I40E_LOW_LATENCY;
1009 		break;
1010 	}
1011 
1012 reset_latency:
1013 	rc->latency_range = new_latency_range;
1014 
1015 	switch (new_latency_range) {
1016 	case I40E_LOWEST_LATENCY:
1017 		new_itr = I40E_ITR_50K;
1018 		break;
1019 	case I40E_LOW_LATENCY:
1020 		new_itr = I40E_ITR_20K;
1021 		break;
1022 	case I40E_BULK_LATENCY:
1023 		new_itr = I40E_ITR_18K;
1024 		break;
1025 	default:
1026 		break;
1027 	}
1028 
1029 	rc->total_bytes = 0;
1030 	rc->total_packets = 0;
1031 	rc->last_itr_update = jiffies;
1032 
1033 	if (new_itr != rc->itr) {
1034 		rc->itr = new_itr;
1035 		return true;
1036 	}
1037 	return false;
1038 }
1039 
1040 /**
1041  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1042  * @rx_ring: rx descriptor ring to store buffers on
1043  * @old_buff: donor buffer to have page reused
1044  *
1045  * Synchronizes page for reuse by the adapter
1046  **/
1047 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1048 			       struct i40e_rx_buffer *old_buff)
1049 {
1050 	struct i40e_rx_buffer *new_buff;
1051 	u16 nta = rx_ring->next_to_alloc;
1052 
1053 	new_buff = &rx_ring->rx_bi[nta];
1054 
1055 	/* update, and store next to alloc */
1056 	nta++;
1057 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1058 
1059 	/* transfer page from old buffer to new buffer */
1060 	new_buff->dma		= old_buff->dma;
1061 	new_buff->page		= old_buff->page;
1062 	new_buff->page_offset	= old_buff->page_offset;
1063 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1064 }
1065 
1066 /**
1067  * i40e_rx_is_programming_status - check for programming status descriptor
1068  * @qw: qword representing status_error_len in CPU ordering
1069  *
1070  * The value of in the descriptor length field indicate if this
1071  * is a programming status descriptor for flow director or FCoE
1072  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1073  * it is a packet descriptor.
1074  **/
1075 static inline bool i40e_rx_is_programming_status(u64 qw)
1076 {
1077 	/* The Rx filter programming status and SPH bit occupy the same
1078 	 * spot in the descriptor. Since we don't support packet split we
1079 	 * can just reuse the bit as an indication that this is a
1080 	 * programming status descriptor.
1081 	 */
1082 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1083 }
1084 
1085 /**
1086  * i40e_clean_programming_status - clean the programming status descriptor
1087  * @rx_ring: the rx ring that has this descriptor
1088  * @rx_desc: the rx descriptor written back by HW
1089  * @qw: qword representing status_error_len in CPU ordering
1090  *
1091  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1092  * status being successful or not and take actions accordingly. FCoE should
1093  * handle its context/filter programming/invalidation status and take actions.
1094  *
1095  **/
1096 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1097 					  union i40e_rx_desc *rx_desc,
1098 					  u64 qw)
1099 {
1100 	struct i40e_rx_buffer *rx_buffer;
1101 	u32 ntc = rx_ring->next_to_clean;
1102 	u8 id;
1103 
1104 	/* fetch, update, and store next to clean */
1105 	rx_buffer = &rx_ring->rx_bi[ntc++];
1106 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1107 	rx_ring->next_to_clean = ntc;
1108 
1109 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1110 
1111 	/* place unused page back on the ring */
1112 	i40e_reuse_rx_page(rx_ring, rx_buffer);
1113 	rx_ring->rx_stats.page_reuse_count++;
1114 
1115 	/* clear contents of buffer_info */
1116 	rx_buffer->page = NULL;
1117 
1118 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1119 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1120 
1121 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1122 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1123 }
1124 
1125 /**
1126  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1127  * @tx_ring: the tx ring to set up
1128  *
1129  * Return 0 on success, negative on error
1130  **/
1131 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1132 {
1133 	struct device *dev = tx_ring->dev;
1134 	int bi_size;
1135 
1136 	if (!dev)
1137 		return -ENOMEM;
1138 
1139 	/* warn if we are about to overwrite the pointer */
1140 	WARN_ON(tx_ring->tx_bi);
1141 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1142 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1143 	if (!tx_ring->tx_bi)
1144 		goto err;
1145 
1146 	u64_stats_init(&tx_ring->syncp);
1147 
1148 	/* round up to nearest 4K */
1149 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1150 	/* add u32 for head writeback, align after this takes care of
1151 	 * guaranteeing this is at least one cache line in size
1152 	 */
1153 	tx_ring->size += sizeof(u32);
1154 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1155 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1156 					   &tx_ring->dma, GFP_KERNEL);
1157 	if (!tx_ring->desc) {
1158 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1159 			 tx_ring->size);
1160 		goto err;
1161 	}
1162 
1163 	tx_ring->next_to_use = 0;
1164 	tx_ring->next_to_clean = 0;
1165 	return 0;
1166 
1167 err:
1168 	kfree(tx_ring->tx_bi);
1169 	tx_ring->tx_bi = NULL;
1170 	return -ENOMEM;
1171 }
1172 
1173 /**
1174  * i40e_clean_rx_ring - Free Rx buffers
1175  * @rx_ring: ring to be cleaned
1176  **/
1177 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1178 {
1179 	unsigned long bi_size;
1180 	u16 i;
1181 
1182 	/* ring already cleared, nothing to do */
1183 	if (!rx_ring->rx_bi)
1184 		return;
1185 
1186 	if (rx_ring->skb) {
1187 		dev_kfree_skb(rx_ring->skb);
1188 		rx_ring->skb = NULL;
1189 	}
1190 
1191 	/* Free all the Rx ring sk_buffs */
1192 	for (i = 0; i < rx_ring->count; i++) {
1193 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1194 
1195 		if (!rx_bi->page)
1196 			continue;
1197 
1198 		/* Invalidate cache lines that may have been written to by
1199 		 * device so that we avoid corrupting memory.
1200 		 */
1201 		dma_sync_single_range_for_cpu(rx_ring->dev,
1202 					      rx_bi->dma,
1203 					      rx_bi->page_offset,
1204 					      rx_ring->rx_buf_len,
1205 					      DMA_FROM_DEVICE);
1206 
1207 		/* free resources associated with mapping */
1208 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1209 				     i40e_rx_pg_size(rx_ring),
1210 				     DMA_FROM_DEVICE,
1211 				     I40E_RX_DMA_ATTR);
1212 
1213 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1214 
1215 		rx_bi->page = NULL;
1216 		rx_bi->page_offset = 0;
1217 	}
1218 
1219 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1220 	memset(rx_ring->rx_bi, 0, bi_size);
1221 
1222 	/* Zero out the descriptor ring */
1223 	memset(rx_ring->desc, 0, rx_ring->size);
1224 
1225 	rx_ring->next_to_alloc = 0;
1226 	rx_ring->next_to_clean = 0;
1227 	rx_ring->next_to_use = 0;
1228 }
1229 
1230 /**
1231  * i40e_free_rx_resources - Free Rx resources
1232  * @rx_ring: ring to clean the resources from
1233  *
1234  * Free all receive software resources
1235  **/
1236 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1237 {
1238 	i40e_clean_rx_ring(rx_ring);
1239 	rx_ring->xdp_prog = NULL;
1240 	kfree(rx_ring->rx_bi);
1241 	rx_ring->rx_bi = NULL;
1242 
1243 	if (rx_ring->desc) {
1244 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1245 				  rx_ring->desc, rx_ring->dma);
1246 		rx_ring->desc = NULL;
1247 	}
1248 }
1249 
1250 /**
1251  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1252  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1253  *
1254  * Returns 0 on success, negative on failure
1255  **/
1256 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1257 {
1258 	struct device *dev = rx_ring->dev;
1259 	int bi_size;
1260 
1261 	/* warn if we are about to overwrite the pointer */
1262 	WARN_ON(rx_ring->rx_bi);
1263 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1264 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1265 	if (!rx_ring->rx_bi)
1266 		goto err;
1267 
1268 	u64_stats_init(&rx_ring->syncp);
1269 
1270 	/* Round up to nearest 4K */
1271 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1272 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1273 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1274 					   &rx_ring->dma, GFP_KERNEL);
1275 
1276 	if (!rx_ring->desc) {
1277 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1278 			 rx_ring->size);
1279 		goto err;
1280 	}
1281 
1282 	rx_ring->next_to_alloc = 0;
1283 	rx_ring->next_to_clean = 0;
1284 	rx_ring->next_to_use = 0;
1285 
1286 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1287 
1288 	return 0;
1289 err:
1290 	kfree(rx_ring->rx_bi);
1291 	rx_ring->rx_bi = NULL;
1292 	return -ENOMEM;
1293 }
1294 
1295 /**
1296  * i40e_release_rx_desc - Store the new tail and head values
1297  * @rx_ring: ring to bump
1298  * @val: new head index
1299  **/
1300 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1301 {
1302 	rx_ring->next_to_use = val;
1303 
1304 	/* update next to alloc since we have filled the ring */
1305 	rx_ring->next_to_alloc = val;
1306 
1307 	/* Force memory writes to complete before letting h/w
1308 	 * know there are new descriptors to fetch.  (Only
1309 	 * applicable for weak-ordered memory model archs,
1310 	 * such as IA-64).
1311 	 */
1312 	wmb();
1313 	writel(val, rx_ring->tail);
1314 }
1315 
1316 /**
1317  * i40e_rx_offset - Return expected offset into page to access data
1318  * @rx_ring: Ring we are requesting offset of
1319  *
1320  * Returns the offset value for ring into the data buffer.
1321  */
1322 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1323 {
1324 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1325 }
1326 
1327 /**
1328  * i40e_alloc_mapped_page - recycle or make a new page
1329  * @rx_ring: ring to use
1330  * @bi: rx_buffer struct to modify
1331  *
1332  * Returns true if the page was successfully allocated or
1333  * reused.
1334  **/
1335 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1336 				   struct i40e_rx_buffer *bi)
1337 {
1338 	struct page *page = bi->page;
1339 	dma_addr_t dma;
1340 
1341 	/* since we are recycling buffers we should seldom need to alloc */
1342 	if (likely(page)) {
1343 		rx_ring->rx_stats.page_reuse_count++;
1344 		return true;
1345 	}
1346 
1347 	/* alloc new page for storage */
1348 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1349 	if (unlikely(!page)) {
1350 		rx_ring->rx_stats.alloc_page_failed++;
1351 		return false;
1352 	}
1353 
1354 	/* map page for use */
1355 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1356 				 i40e_rx_pg_size(rx_ring),
1357 				 DMA_FROM_DEVICE,
1358 				 I40E_RX_DMA_ATTR);
1359 
1360 	/* if mapping failed free memory back to system since
1361 	 * there isn't much point in holding memory we can't use
1362 	 */
1363 	if (dma_mapping_error(rx_ring->dev, dma)) {
1364 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1365 		rx_ring->rx_stats.alloc_page_failed++;
1366 		return false;
1367 	}
1368 
1369 	bi->dma = dma;
1370 	bi->page = page;
1371 	bi->page_offset = i40e_rx_offset(rx_ring);
1372 
1373 	/* initialize pagecnt_bias to 1 representing we fully own page */
1374 	bi->pagecnt_bias = 1;
1375 
1376 	return true;
1377 }
1378 
1379 /**
1380  * i40e_receive_skb - Send a completed packet up the stack
1381  * @rx_ring:  rx ring in play
1382  * @skb: packet to send up
1383  * @vlan_tag: vlan tag for packet
1384  **/
1385 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1386 			     struct sk_buff *skb, u16 vlan_tag)
1387 {
1388 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1389 
1390 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1391 	    (vlan_tag & VLAN_VID_MASK))
1392 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1393 
1394 	napi_gro_receive(&q_vector->napi, skb);
1395 }
1396 
1397 /**
1398  * i40e_alloc_rx_buffers - Replace used receive buffers
1399  * @rx_ring: ring to place buffers on
1400  * @cleaned_count: number of buffers to replace
1401  *
1402  * Returns false if all allocations were successful, true if any fail
1403  **/
1404 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1405 {
1406 	u16 ntu = rx_ring->next_to_use;
1407 	union i40e_rx_desc *rx_desc;
1408 	struct i40e_rx_buffer *bi;
1409 
1410 	/* Hardware only fetches new descriptors in cache lines of 8,
1411 	 * essentially ignoring the lower 3 bits of the tail register. We want
1412 	 * to ensure our tail writes are aligned to avoid unnecessary work. We
1413 	 * can't simply round down the cleaned count, since we might fail to
1414 	 * allocate some buffers. What we really want is to ensure that
1415 	 * next_to_used + cleaned_count produces an aligned value.
1416 	 */
1417 	cleaned_count -= (ntu + cleaned_count) & 0x7;
1418 
1419 	/* do nothing if no valid netdev defined */
1420 	if (!rx_ring->netdev || !cleaned_count)
1421 		return false;
1422 
1423 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1424 	bi = &rx_ring->rx_bi[ntu];
1425 
1426 	do {
1427 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1428 			goto no_buffers;
1429 
1430 		/* sync the buffer for use by the device */
1431 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1432 						 bi->page_offset,
1433 						 rx_ring->rx_buf_len,
1434 						 DMA_FROM_DEVICE);
1435 
1436 		/* Refresh the desc even if buffer_addrs didn't change
1437 		 * because each write-back erases this info.
1438 		 */
1439 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1440 
1441 		rx_desc++;
1442 		bi++;
1443 		ntu++;
1444 		if (unlikely(ntu == rx_ring->count)) {
1445 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1446 			bi = rx_ring->rx_bi;
1447 			ntu = 0;
1448 		}
1449 
1450 		/* clear the status bits for the next_to_use descriptor */
1451 		rx_desc->wb.qword1.status_error_len = 0;
1452 
1453 		cleaned_count--;
1454 	} while (cleaned_count);
1455 
1456 	if (rx_ring->next_to_use != ntu)
1457 		i40e_release_rx_desc(rx_ring, ntu);
1458 
1459 	return false;
1460 
1461 no_buffers:
1462 	if (rx_ring->next_to_use != ntu)
1463 		i40e_release_rx_desc(rx_ring, ntu);
1464 
1465 	/* make sure to come back via polling to try again after
1466 	 * allocation failure
1467 	 */
1468 	return true;
1469 }
1470 
1471 /**
1472  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1473  * @vsi: the VSI we care about
1474  * @skb: skb currently being received and modified
1475  * @rx_desc: the receive descriptor
1476  **/
1477 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1478 				    struct sk_buff *skb,
1479 				    union i40e_rx_desc *rx_desc)
1480 {
1481 	struct i40e_rx_ptype_decoded decoded;
1482 	u32 rx_error, rx_status;
1483 	bool ipv4, ipv6;
1484 	u8 ptype;
1485 	u64 qword;
1486 
1487 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1488 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1489 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1490 		   I40E_RXD_QW1_ERROR_SHIFT;
1491 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1492 		    I40E_RXD_QW1_STATUS_SHIFT;
1493 	decoded = decode_rx_desc_ptype(ptype);
1494 
1495 	skb->ip_summed = CHECKSUM_NONE;
1496 
1497 	skb_checksum_none_assert(skb);
1498 
1499 	/* Rx csum enabled and ip headers found? */
1500 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1501 		return;
1502 
1503 	/* did the hardware decode the packet and checksum? */
1504 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1505 		return;
1506 
1507 	/* both known and outer_ip must be set for the below code to work */
1508 	if (!(decoded.known && decoded.outer_ip))
1509 		return;
1510 
1511 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1512 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1513 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1514 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1515 
1516 	if (ipv4 &&
1517 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1518 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1519 		goto checksum_fail;
1520 
1521 	/* likely incorrect csum if alternate IP extension headers found */
1522 	if (ipv6 &&
1523 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1524 		/* don't increment checksum err here, non-fatal err */
1525 		return;
1526 
1527 	/* there was some L4 error, count error and punt packet to the stack */
1528 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1529 		goto checksum_fail;
1530 
1531 	/* handle packets that were not able to be checksummed due
1532 	 * to arrival speed, in this case the stack can compute
1533 	 * the csum.
1534 	 */
1535 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1536 		return;
1537 
1538 	/* If there is an outer header present that might contain a checksum
1539 	 * we need to bump the checksum level by 1 to reflect the fact that
1540 	 * we are indicating we validated the inner checksum.
1541 	 */
1542 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1543 		skb->csum_level = 1;
1544 
1545 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1546 	switch (decoded.inner_prot) {
1547 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1548 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1549 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1550 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1551 		/* fall though */
1552 	default:
1553 		break;
1554 	}
1555 
1556 	return;
1557 
1558 checksum_fail:
1559 	vsi->back->hw_csum_rx_error++;
1560 }
1561 
1562 /**
1563  * i40e_ptype_to_htype - get a hash type
1564  * @ptype: the ptype value from the descriptor
1565  *
1566  * Returns a hash type to be used by skb_set_hash
1567  **/
1568 static inline int i40e_ptype_to_htype(u8 ptype)
1569 {
1570 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1571 
1572 	if (!decoded.known)
1573 		return PKT_HASH_TYPE_NONE;
1574 
1575 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1576 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1577 		return PKT_HASH_TYPE_L4;
1578 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1579 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1580 		return PKT_HASH_TYPE_L3;
1581 	else
1582 		return PKT_HASH_TYPE_L2;
1583 }
1584 
1585 /**
1586  * i40e_rx_hash - set the hash value in the skb
1587  * @ring: descriptor ring
1588  * @rx_desc: specific descriptor
1589  **/
1590 static inline void i40e_rx_hash(struct i40e_ring *ring,
1591 				union i40e_rx_desc *rx_desc,
1592 				struct sk_buff *skb,
1593 				u8 rx_ptype)
1594 {
1595 	u32 hash;
1596 	const __le64 rss_mask =
1597 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1598 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1599 
1600 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1601 		return;
1602 
1603 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1604 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1605 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1606 	}
1607 }
1608 
1609 /**
1610  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1611  * @rx_ring: rx descriptor ring packet is being transacted on
1612  * @rx_desc: pointer to the EOP Rx descriptor
1613  * @skb: pointer to current skb being populated
1614  * @rx_ptype: the packet type decoded by hardware
1615  *
1616  * This function checks the ring, descriptor, and packet information in
1617  * order to populate the hash, checksum, VLAN, protocol, and
1618  * other fields within the skb.
1619  **/
1620 static inline
1621 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1622 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1623 			     u8 rx_ptype)
1624 {
1625 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1626 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1627 			I40E_RXD_QW1_STATUS_SHIFT;
1628 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1629 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1630 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1631 
1632 	if (unlikely(tsynvalid))
1633 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1634 
1635 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1636 
1637 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1638 
1639 	skb_record_rx_queue(skb, rx_ring->queue_index);
1640 
1641 	/* modifies the skb - consumes the enet header */
1642 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1643 }
1644 
1645 /**
1646  * i40e_cleanup_headers - Correct empty headers
1647  * @rx_ring: rx descriptor ring packet is being transacted on
1648  * @skb: pointer to current skb being fixed
1649  * @rx_desc: pointer to the EOP Rx descriptor
1650  *
1651  * Also address the case where we are pulling data in on pages only
1652  * and as such no data is present in the skb header.
1653  *
1654  * In addition if skb is not at least 60 bytes we need to pad it so that
1655  * it is large enough to qualify as a valid Ethernet frame.
1656  *
1657  * Returns true if an error was encountered and skb was freed.
1658  **/
1659 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1660 				 union i40e_rx_desc *rx_desc)
1661 
1662 {
1663 	/* XDP packets use error pointer so abort at this point */
1664 	if (IS_ERR(skb))
1665 		return true;
1666 
1667 	/* ERR_MASK will only have valid bits if EOP set, and
1668 	 * what we are doing here is actually checking
1669 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1670 	 * the error field
1671 	 */
1672 	if (unlikely(i40e_test_staterr(rx_desc,
1673 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1674 		dev_kfree_skb_any(skb);
1675 		return true;
1676 	}
1677 
1678 	/* if eth_skb_pad returns an error the skb was freed */
1679 	if (eth_skb_pad(skb))
1680 		return true;
1681 
1682 	return false;
1683 }
1684 
1685 /**
1686  * i40e_page_is_reusable - check if any reuse is possible
1687  * @page: page struct to check
1688  *
1689  * A page is not reusable if it was allocated under low memory
1690  * conditions, or it's not in the same NUMA node as this CPU.
1691  */
1692 static inline bool i40e_page_is_reusable(struct page *page)
1693 {
1694 	return (page_to_nid(page) == numa_mem_id()) &&
1695 		!page_is_pfmemalloc(page);
1696 }
1697 
1698 /**
1699  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1700  * the adapter for another receive
1701  *
1702  * @rx_buffer: buffer containing the page
1703  *
1704  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1705  * an unused region in the page.
1706  *
1707  * For small pages, @truesize will be a constant value, half the size
1708  * of the memory at page.  We'll attempt to alternate between high and
1709  * low halves of the page, with one half ready for use by the hardware
1710  * and the other half being consumed by the stack.  We use the page
1711  * ref count to determine whether the stack has finished consuming the
1712  * portion of this page that was passed up with a previous packet.  If
1713  * the page ref count is >1, we'll assume the "other" half page is
1714  * still busy, and this page cannot be reused.
1715  *
1716  * For larger pages, @truesize will be the actual space used by the
1717  * received packet (adjusted upward to an even multiple of the cache
1718  * line size).  This will advance through the page by the amount
1719  * actually consumed by the received packets while there is still
1720  * space for a buffer.  Each region of larger pages will be used at
1721  * most once, after which the page will not be reused.
1722  *
1723  * In either case, if the page is reusable its refcount is increased.
1724  **/
1725 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1726 {
1727 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1728 	struct page *page = rx_buffer->page;
1729 
1730 	/* Is any reuse possible? */
1731 	if (unlikely(!i40e_page_is_reusable(page)))
1732 		return false;
1733 
1734 #if (PAGE_SIZE < 8192)
1735 	/* if we are only owner of page we can reuse it */
1736 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1737 		return false;
1738 #else
1739 #define I40E_LAST_OFFSET \
1740 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1741 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1742 		return false;
1743 #endif
1744 
1745 	/* If we have drained the page fragment pool we need to update
1746 	 * the pagecnt_bias and page count so that we fully restock the
1747 	 * number of references the driver holds.
1748 	 */
1749 	if (unlikely(!pagecnt_bias)) {
1750 		page_ref_add(page, USHRT_MAX);
1751 		rx_buffer->pagecnt_bias = USHRT_MAX;
1752 	}
1753 
1754 	return true;
1755 }
1756 
1757 /**
1758  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1759  * @rx_ring: rx descriptor ring to transact packets on
1760  * @rx_buffer: buffer containing page to add
1761  * @skb: sk_buff to place the data into
1762  * @size: packet length from rx_desc
1763  *
1764  * This function will add the data contained in rx_buffer->page to the skb.
1765  * It will just attach the page as a frag to the skb.
1766  *
1767  * The function will then update the page offset.
1768  **/
1769 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1770 			     struct i40e_rx_buffer *rx_buffer,
1771 			     struct sk_buff *skb,
1772 			     unsigned int size)
1773 {
1774 #if (PAGE_SIZE < 8192)
1775 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1776 #else
1777 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1778 #endif
1779 
1780 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1781 			rx_buffer->page_offset, size, truesize);
1782 
1783 	/* page is being used so we must update the page offset */
1784 #if (PAGE_SIZE < 8192)
1785 	rx_buffer->page_offset ^= truesize;
1786 #else
1787 	rx_buffer->page_offset += truesize;
1788 #endif
1789 }
1790 
1791 /**
1792  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1793  * @rx_ring: rx descriptor ring to transact packets on
1794  * @size: size of buffer to add to skb
1795  *
1796  * This function will pull an Rx buffer from the ring and synchronize it
1797  * for use by the CPU.
1798  */
1799 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1800 						 const unsigned int size)
1801 {
1802 	struct i40e_rx_buffer *rx_buffer;
1803 
1804 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1805 	prefetchw(rx_buffer->page);
1806 
1807 	/* we are reusing so sync this buffer for CPU use */
1808 	dma_sync_single_range_for_cpu(rx_ring->dev,
1809 				      rx_buffer->dma,
1810 				      rx_buffer->page_offset,
1811 				      size,
1812 				      DMA_FROM_DEVICE);
1813 
1814 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1815 	rx_buffer->pagecnt_bias--;
1816 
1817 	return rx_buffer;
1818 }
1819 
1820 /**
1821  * i40e_construct_skb - Allocate skb and populate it
1822  * @rx_ring: rx descriptor ring to transact packets on
1823  * @rx_buffer: rx buffer to pull data from
1824  * @xdp: xdp_buff pointing to the data
1825  *
1826  * This function allocates an skb.  It then populates it with the page
1827  * data from the current receive descriptor, taking care to set up the
1828  * skb correctly.
1829  */
1830 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1831 					  struct i40e_rx_buffer *rx_buffer,
1832 					  struct xdp_buff *xdp)
1833 {
1834 	unsigned int size = xdp->data_end - xdp->data;
1835 #if (PAGE_SIZE < 8192)
1836 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1837 #else
1838 	unsigned int truesize = SKB_DATA_ALIGN(size);
1839 #endif
1840 	unsigned int headlen;
1841 	struct sk_buff *skb;
1842 
1843 	/* prefetch first cache line of first page */
1844 	prefetch(xdp->data);
1845 #if L1_CACHE_BYTES < 128
1846 	prefetch(xdp->data + L1_CACHE_BYTES);
1847 #endif
1848 
1849 	/* allocate a skb to store the frags */
1850 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1851 			       I40E_RX_HDR_SIZE,
1852 			       GFP_ATOMIC | __GFP_NOWARN);
1853 	if (unlikely(!skb))
1854 		return NULL;
1855 
1856 	/* Determine available headroom for copy */
1857 	headlen = size;
1858 	if (headlen > I40E_RX_HDR_SIZE)
1859 		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
1860 
1861 	/* align pull length to size of long to optimize memcpy performance */
1862 	memcpy(__skb_put(skb, headlen), xdp->data,
1863 	       ALIGN(headlen, sizeof(long)));
1864 
1865 	/* update all of the pointers */
1866 	size -= headlen;
1867 	if (size) {
1868 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1869 				rx_buffer->page_offset + headlen,
1870 				size, truesize);
1871 
1872 		/* buffer is used by skb, update page_offset */
1873 #if (PAGE_SIZE < 8192)
1874 		rx_buffer->page_offset ^= truesize;
1875 #else
1876 		rx_buffer->page_offset += truesize;
1877 #endif
1878 	} else {
1879 		/* buffer is unused, reset bias back to rx_buffer */
1880 		rx_buffer->pagecnt_bias++;
1881 	}
1882 
1883 	return skb;
1884 }
1885 
1886 /**
1887  * i40e_build_skb - Build skb around an existing buffer
1888  * @rx_ring: Rx descriptor ring to transact packets on
1889  * @rx_buffer: Rx buffer to pull data from
1890  * @xdp: xdp_buff pointing to the data
1891  *
1892  * This function builds an skb around an existing Rx buffer, taking care
1893  * to set up the skb correctly and avoid any memcpy overhead.
1894  */
1895 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1896 				      struct i40e_rx_buffer *rx_buffer,
1897 				      struct xdp_buff *xdp)
1898 {
1899 	unsigned int size = xdp->data_end - xdp->data;
1900 #if (PAGE_SIZE < 8192)
1901 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1902 #else
1903 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1904 				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1905 #endif
1906 	struct sk_buff *skb;
1907 
1908 	/* prefetch first cache line of first page */
1909 	prefetch(xdp->data);
1910 #if L1_CACHE_BYTES < 128
1911 	prefetch(xdp->data + L1_CACHE_BYTES);
1912 #endif
1913 	/* build an skb around the page buffer */
1914 	skb = build_skb(xdp->data_hard_start, truesize);
1915 	if (unlikely(!skb))
1916 		return NULL;
1917 
1918 	/* update pointers within the skb to store the data */
1919 	skb_reserve(skb, I40E_SKB_PAD);
1920 	__skb_put(skb, size);
1921 
1922 	/* buffer is used by skb, update page_offset */
1923 #if (PAGE_SIZE < 8192)
1924 	rx_buffer->page_offset ^= truesize;
1925 #else
1926 	rx_buffer->page_offset += truesize;
1927 #endif
1928 
1929 	return skb;
1930 }
1931 
1932 /**
1933  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1934  * @rx_ring: rx descriptor ring to transact packets on
1935  * @rx_buffer: rx buffer to pull data from
1936  *
1937  * This function will clean up the contents of the rx_buffer.  It will
1938  * either recycle the bufer or unmap it and free the associated resources.
1939  */
1940 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1941 			       struct i40e_rx_buffer *rx_buffer)
1942 {
1943 	if (i40e_can_reuse_rx_page(rx_buffer)) {
1944 		/* hand second half of page back to the ring */
1945 		i40e_reuse_rx_page(rx_ring, rx_buffer);
1946 		rx_ring->rx_stats.page_reuse_count++;
1947 	} else {
1948 		/* we are not reusing the buffer so unmap it */
1949 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1950 				     i40e_rx_pg_size(rx_ring),
1951 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1952 		__page_frag_cache_drain(rx_buffer->page,
1953 					rx_buffer->pagecnt_bias);
1954 	}
1955 
1956 	/* clear contents of buffer_info */
1957 	rx_buffer->page = NULL;
1958 }
1959 
1960 /**
1961  * i40e_is_non_eop - process handling of non-EOP buffers
1962  * @rx_ring: Rx ring being processed
1963  * @rx_desc: Rx descriptor for current buffer
1964  * @skb: Current socket buffer containing buffer in progress
1965  *
1966  * This function updates next to clean.  If the buffer is an EOP buffer
1967  * this function exits returning false, otherwise it will place the
1968  * sk_buff in the next buffer to be chained and return true indicating
1969  * that this is in fact a non-EOP buffer.
1970  **/
1971 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1972 			    union i40e_rx_desc *rx_desc,
1973 			    struct sk_buff *skb)
1974 {
1975 	u32 ntc = rx_ring->next_to_clean + 1;
1976 
1977 	/* fetch, update, and store next to clean */
1978 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1979 	rx_ring->next_to_clean = ntc;
1980 
1981 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1982 
1983 	/* if we are the last buffer then there is nothing else to do */
1984 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1985 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1986 		return false;
1987 
1988 	rx_ring->rx_stats.non_eop_descs++;
1989 
1990 	return true;
1991 }
1992 
1993 #define I40E_XDP_PASS 0
1994 #define I40E_XDP_CONSUMED 1
1995 #define I40E_XDP_TX 2
1996 
1997 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
1998 			      struct i40e_ring *xdp_ring);
1999 
2000 /**
2001  * i40e_run_xdp - run an XDP program
2002  * @rx_ring: Rx ring being processed
2003  * @xdp: XDP buffer containing the frame
2004  **/
2005 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2006 				    struct xdp_buff *xdp)
2007 {
2008 	int result = I40E_XDP_PASS;
2009 	struct i40e_ring *xdp_ring;
2010 	struct bpf_prog *xdp_prog;
2011 	u32 act;
2012 
2013 	rcu_read_lock();
2014 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2015 
2016 	if (!xdp_prog)
2017 		goto xdp_out;
2018 
2019 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2020 	switch (act) {
2021 	case XDP_PASS:
2022 		break;
2023 	case XDP_TX:
2024 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2025 		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
2026 		break;
2027 	default:
2028 		bpf_warn_invalid_xdp_action(act);
2029 	case XDP_ABORTED:
2030 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2031 		/* fallthrough -- handle aborts by dropping packet */
2032 	case XDP_DROP:
2033 		result = I40E_XDP_CONSUMED;
2034 		break;
2035 	}
2036 xdp_out:
2037 	rcu_read_unlock();
2038 	return ERR_PTR(-result);
2039 }
2040 
2041 /**
2042  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2043  * @rx_ring: Rx ring
2044  * @rx_buffer: Rx buffer to adjust
2045  * @size: Size of adjustment
2046  **/
2047 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2048 				struct i40e_rx_buffer *rx_buffer,
2049 				unsigned int size)
2050 {
2051 #if (PAGE_SIZE < 8192)
2052 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2053 
2054 	rx_buffer->page_offset ^= truesize;
2055 #else
2056 	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2057 
2058 	rx_buffer->page_offset += truesize;
2059 #endif
2060 }
2061 
2062 /**
2063  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2064  * @rx_ring: rx descriptor ring to transact packets on
2065  * @budget: Total limit on number of packets to process
2066  *
2067  * This function provides a "bounce buffer" approach to Rx interrupt
2068  * processing.  The advantage to this is that on systems that have
2069  * expensive overhead for IOMMU access this provides a means of avoiding
2070  * it by maintaining the mapping of the page to the system.
2071  *
2072  * Returns amount of work completed
2073  **/
2074 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2075 {
2076 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2077 	struct sk_buff *skb = rx_ring->skb;
2078 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2079 	bool failure = false, xdp_xmit = false;
2080 
2081 	while (likely(total_rx_packets < (unsigned int)budget)) {
2082 		struct i40e_rx_buffer *rx_buffer;
2083 		union i40e_rx_desc *rx_desc;
2084 		struct xdp_buff xdp;
2085 		unsigned int size;
2086 		u16 vlan_tag;
2087 		u8 rx_ptype;
2088 		u64 qword;
2089 
2090 		/* return some buffers to hardware, one at a time is too slow */
2091 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2092 			failure = failure ||
2093 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2094 			cleaned_count = 0;
2095 		}
2096 
2097 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2098 
2099 		/* status_error_len will always be zero for unused descriptors
2100 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2101 		 * which is always zero because packet split isn't used, if the
2102 		 * hardware wrote DD then the length will be non-zero
2103 		 */
2104 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2105 
2106 		/* This memory barrier is needed to keep us from reading
2107 		 * any other fields out of the rx_desc until we have
2108 		 * verified the descriptor has been written back.
2109 		 */
2110 		dma_rmb();
2111 
2112 		if (unlikely(i40e_rx_is_programming_status(qword))) {
2113 			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2114 			continue;
2115 		}
2116 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2117 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2118 		if (!size)
2119 			break;
2120 
2121 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2122 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2123 
2124 		/* retrieve a buffer from the ring */
2125 		if (!skb) {
2126 			xdp.data = page_address(rx_buffer->page) +
2127 				   rx_buffer->page_offset;
2128 			xdp_set_data_meta_invalid(&xdp);
2129 			xdp.data_hard_start = xdp.data -
2130 					      i40e_rx_offset(rx_ring);
2131 			xdp.data_end = xdp.data + size;
2132 
2133 			skb = i40e_run_xdp(rx_ring, &xdp);
2134 		}
2135 
2136 		if (IS_ERR(skb)) {
2137 			if (PTR_ERR(skb) == -I40E_XDP_TX) {
2138 				xdp_xmit = true;
2139 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2140 			} else {
2141 				rx_buffer->pagecnt_bias++;
2142 			}
2143 			total_rx_bytes += size;
2144 			total_rx_packets++;
2145 		} else if (skb) {
2146 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2147 		} else if (ring_uses_build_skb(rx_ring)) {
2148 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2149 		} else {
2150 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2151 		}
2152 
2153 		/* exit if we failed to retrieve a buffer */
2154 		if (!skb) {
2155 			rx_ring->rx_stats.alloc_buff_failed++;
2156 			rx_buffer->pagecnt_bias++;
2157 			break;
2158 		}
2159 
2160 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2161 		cleaned_count++;
2162 
2163 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2164 			continue;
2165 
2166 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2167 			skb = NULL;
2168 			continue;
2169 		}
2170 
2171 		/* probably a little skewed due to removing CRC */
2172 		total_rx_bytes += skb->len;
2173 
2174 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2175 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2176 			   I40E_RXD_QW1_PTYPE_SHIFT;
2177 
2178 		/* populate checksum, VLAN, and protocol */
2179 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2180 
2181 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2182 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2183 
2184 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2185 		i40e_receive_skb(rx_ring, skb, vlan_tag);
2186 		skb = NULL;
2187 
2188 		/* update budget accounting */
2189 		total_rx_packets++;
2190 	}
2191 
2192 	if (xdp_xmit) {
2193 		struct i40e_ring *xdp_ring;
2194 
2195 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2196 
2197 		/* Force memory writes to complete before letting h/w
2198 		 * know there are new descriptors to fetch.
2199 		 */
2200 		wmb();
2201 
2202 		writel(xdp_ring->next_to_use, xdp_ring->tail);
2203 	}
2204 
2205 	rx_ring->skb = skb;
2206 
2207 	u64_stats_update_begin(&rx_ring->syncp);
2208 	rx_ring->stats.packets += total_rx_packets;
2209 	rx_ring->stats.bytes += total_rx_bytes;
2210 	u64_stats_update_end(&rx_ring->syncp);
2211 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2212 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2213 
2214 	/* guarantee a trip back through this routine if there was a failure */
2215 	return failure ? budget : (int)total_rx_packets;
2216 }
2217 
2218 static u32 i40e_buildreg_itr(const int type, const u16 itr)
2219 {
2220 	u32 val;
2221 
2222 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2223 	      I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
2224 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2225 	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
2226 
2227 	return val;
2228 }
2229 
2230 /* a small macro to shorten up some long lines */
2231 #define INTREG I40E_PFINT_DYN_CTLN
2232 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2233 {
2234 	return vsi->rx_rings[idx]->rx_itr_setting;
2235 }
2236 
2237 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2238 {
2239 	return vsi->tx_rings[idx]->tx_itr_setting;
2240 }
2241 
2242 /**
2243  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2244  * @vsi: the VSI we care about
2245  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2246  *
2247  **/
2248 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2249 					  struct i40e_q_vector *q_vector)
2250 {
2251 	struct i40e_hw *hw = &vsi->back->hw;
2252 	bool rx = false, tx = false;
2253 	u32 rxval, txval;
2254 	int vector;
2255 	int idx = q_vector->v_idx;
2256 	int rx_itr_setting, tx_itr_setting;
2257 
2258 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2259 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2260 		i40e_irq_dynamic_enable_icr0(vsi->back);
2261 		return;
2262 	}
2263 
2264 	vector = (q_vector->v_idx + vsi->base_vector);
2265 
2266 	/* avoid dynamic calculation if in countdown mode OR if
2267 	 * all dynamic is disabled
2268 	 */
2269 	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2270 
2271 	rx_itr_setting = get_rx_itr(vsi, idx);
2272 	tx_itr_setting = get_tx_itr(vsi, idx);
2273 
2274 	if (q_vector->itr_countdown > 0 ||
2275 	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
2276 	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2277 		goto enable_int;
2278 	}
2279 
2280 	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2281 		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
2282 		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2283 	}
2284 
2285 	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2286 		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
2287 		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2288 	}
2289 
2290 	if (rx || tx) {
2291 		/* get the higher of the two ITR adjustments and
2292 		 * use the same value for both ITR registers
2293 		 * when in adaptive mode (Rx and/or Tx)
2294 		 */
2295 		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
2296 
2297 		q_vector->tx.itr = q_vector->rx.itr = itr;
2298 		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
2299 		tx = true;
2300 		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
2301 		rx = true;
2302 	}
2303 
2304 	/* only need to enable the interrupt once, but need
2305 	 * to possibly update both ITR values
2306 	 */
2307 	if (rx) {
2308 		/* set the INTENA_MSK_MASK so that this first write
2309 		 * won't actually enable the interrupt, instead just
2310 		 * updating the ITR (it's bit 31 PF and VF)
2311 		 */
2312 		rxval |= BIT(31);
2313 		/* don't check _DOWN because interrupt isn't being enabled */
2314 		wr32(hw, INTREG(vector - 1), rxval);
2315 	}
2316 
2317 enable_int:
2318 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2319 		wr32(hw, INTREG(vector - 1), txval);
2320 
2321 	if (q_vector->itr_countdown)
2322 		q_vector->itr_countdown--;
2323 	else
2324 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2325 }
2326 
2327 /**
2328  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2329  * @napi: napi struct with our devices info in it
2330  * @budget: amount of work driver is allowed to do this pass, in packets
2331  *
2332  * This function will clean all queues associated with a q_vector.
2333  *
2334  * Returns the amount of work done
2335  **/
2336 int i40e_napi_poll(struct napi_struct *napi, int budget)
2337 {
2338 	struct i40e_q_vector *q_vector =
2339 			       container_of(napi, struct i40e_q_vector, napi);
2340 	struct i40e_vsi *vsi = q_vector->vsi;
2341 	struct i40e_ring *ring;
2342 	bool clean_complete = true;
2343 	bool arm_wb = false;
2344 	int budget_per_ring;
2345 	int work_done = 0;
2346 
2347 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2348 		napi_complete(napi);
2349 		return 0;
2350 	}
2351 
2352 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2353 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2354 	 */
2355 	i40e_for_each_ring(ring, q_vector->tx) {
2356 		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2357 			clean_complete = false;
2358 			continue;
2359 		}
2360 		arm_wb |= ring->arm_wb;
2361 		ring->arm_wb = false;
2362 	}
2363 
2364 	/* Handle case where we are called by netpoll with a budget of 0 */
2365 	if (budget <= 0)
2366 		goto tx_only;
2367 
2368 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2369 	 * allow the budget to go below 1 because that would exit polling early.
2370 	 */
2371 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2372 
2373 	i40e_for_each_ring(ring, q_vector->rx) {
2374 		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2375 
2376 		work_done += cleaned;
2377 		/* if we clean as many as budgeted, we must not be done */
2378 		if (cleaned >= budget_per_ring)
2379 			clean_complete = false;
2380 	}
2381 
2382 	/* If work not completed, return budget and polling will return */
2383 	if (!clean_complete) {
2384 		int cpu_id = smp_processor_id();
2385 
2386 		/* It is possible that the interrupt affinity has changed but,
2387 		 * if the cpu is pegged at 100%, polling will never exit while
2388 		 * traffic continues and the interrupt will be stuck on this
2389 		 * cpu.  We check to make sure affinity is correct before we
2390 		 * continue to poll, otherwise we must stop polling so the
2391 		 * interrupt can move to the correct cpu.
2392 		 */
2393 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2394 			/* Tell napi that we are done polling */
2395 			napi_complete_done(napi, work_done);
2396 
2397 			/* Force an interrupt */
2398 			i40e_force_wb(vsi, q_vector);
2399 
2400 			/* Return budget-1 so that polling stops */
2401 			return budget - 1;
2402 		}
2403 tx_only:
2404 		if (arm_wb) {
2405 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2406 			i40e_enable_wb_on_itr(vsi, q_vector);
2407 		}
2408 		return budget;
2409 	}
2410 
2411 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2412 		q_vector->arm_wb_state = false;
2413 
2414 	/* Work is done so exit the polling mode and re-enable the interrupt */
2415 	napi_complete_done(napi, work_done);
2416 
2417 	i40e_update_enable_itr(vsi, q_vector);
2418 
2419 	return min(work_done, budget - 1);
2420 }
2421 
2422 /**
2423  * i40e_atr - Add a Flow Director ATR filter
2424  * @tx_ring:  ring to add programming descriptor to
2425  * @skb:      send buffer
2426  * @tx_flags: send tx flags
2427  **/
2428 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2429 		     u32 tx_flags)
2430 {
2431 	struct i40e_filter_program_desc *fdir_desc;
2432 	struct i40e_pf *pf = tx_ring->vsi->back;
2433 	union {
2434 		unsigned char *network;
2435 		struct iphdr *ipv4;
2436 		struct ipv6hdr *ipv6;
2437 	} hdr;
2438 	struct tcphdr *th;
2439 	unsigned int hlen;
2440 	u32 flex_ptype, dtype_cmd;
2441 	int l4_proto;
2442 	u16 i;
2443 
2444 	/* make sure ATR is enabled */
2445 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2446 		return;
2447 
2448 	if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2449 		return;
2450 
2451 	/* if sampling is disabled do nothing */
2452 	if (!tx_ring->atr_sample_rate)
2453 		return;
2454 
2455 	/* Currently only IPv4/IPv6 with TCP is supported */
2456 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2457 		return;
2458 
2459 	/* snag network header to get L4 type and address */
2460 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2461 		      skb_inner_network_header(skb) : skb_network_header(skb);
2462 
2463 	/* Note: tx_flags gets modified to reflect inner protocols in
2464 	 * tx_enable_csum function if encap is enabled.
2465 	 */
2466 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2467 		/* access ihl as u8 to avoid unaligned access on ia64 */
2468 		hlen = (hdr.network[0] & 0x0F) << 2;
2469 		l4_proto = hdr.ipv4->protocol;
2470 	} else {
2471 		/* find the start of the innermost ipv6 header */
2472 		unsigned int inner_hlen = hdr.network - skb->data;
2473 		unsigned int h_offset = inner_hlen;
2474 
2475 		/* this function updates h_offset to the end of the header */
2476 		l4_proto =
2477 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2478 		/* hlen will contain our best estimate of the tcp header */
2479 		hlen = h_offset - inner_hlen;
2480 	}
2481 
2482 	if (l4_proto != IPPROTO_TCP)
2483 		return;
2484 
2485 	th = (struct tcphdr *)(hdr.network + hlen);
2486 
2487 	/* Due to lack of space, no more new filters can be programmed */
2488 	if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2489 		return;
2490 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2491 		/* HW ATR eviction will take care of removing filters on FIN
2492 		 * and RST packets.
2493 		 */
2494 		if (th->fin || th->rst)
2495 			return;
2496 	}
2497 
2498 	tx_ring->atr_count++;
2499 
2500 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2501 	if (!th->fin &&
2502 	    !th->syn &&
2503 	    !th->rst &&
2504 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2505 		return;
2506 
2507 	tx_ring->atr_count = 0;
2508 
2509 	/* grab the next descriptor */
2510 	i = tx_ring->next_to_use;
2511 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2512 
2513 	i++;
2514 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2515 
2516 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2517 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2518 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2519 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2520 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2521 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2522 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2523 
2524 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2525 
2526 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2527 
2528 	dtype_cmd |= (th->fin || th->rst) ?
2529 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2530 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2531 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2532 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2533 
2534 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2535 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2536 
2537 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2538 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2539 
2540 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2541 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2542 		dtype_cmd |=
2543 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2544 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2545 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2546 	else
2547 		dtype_cmd |=
2548 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2549 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2550 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2551 
2552 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2553 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2554 
2555 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2556 	fdir_desc->rsvd = cpu_to_le32(0);
2557 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2558 	fdir_desc->fd_id = cpu_to_le32(0);
2559 }
2560 
2561 /**
2562  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2563  * @skb:     send buffer
2564  * @tx_ring: ring to send buffer on
2565  * @flags:   the tx flags to be set
2566  *
2567  * Checks the skb and set up correspondingly several generic transmit flags
2568  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2569  *
2570  * Returns error code indicate the frame should be dropped upon error and the
2571  * otherwise  returns 0 to indicate the flags has been set properly.
2572  **/
2573 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2574 					     struct i40e_ring *tx_ring,
2575 					     u32 *flags)
2576 {
2577 	__be16 protocol = skb->protocol;
2578 	u32  tx_flags = 0;
2579 
2580 	if (protocol == htons(ETH_P_8021Q) &&
2581 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2582 		/* When HW VLAN acceleration is turned off by the user the
2583 		 * stack sets the protocol to 8021q so that the driver
2584 		 * can take any steps required to support the SW only
2585 		 * VLAN handling.  In our case the driver doesn't need
2586 		 * to take any further steps so just set the protocol
2587 		 * to the encapsulated ethertype.
2588 		 */
2589 		skb->protocol = vlan_get_protocol(skb);
2590 		goto out;
2591 	}
2592 
2593 	/* if we have a HW VLAN tag being added, default to the HW one */
2594 	if (skb_vlan_tag_present(skb)) {
2595 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2596 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2597 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2598 	} else if (protocol == htons(ETH_P_8021Q)) {
2599 		struct vlan_hdr *vhdr, _vhdr;
2600 
2601 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2602 		if (!vhdr)
2603 			return -EINVAL;
2604 
2605 		protocol = vhdr->h_vlan_encapsulated_proto;
2606 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2607 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2608 	}
2609 
2610 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2611 		goto out;
2612 
2613 	/* Insert 802.1p priority into VLAN header */
2614 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2615 	    (skb->priority != TC_PRIO_CONTROL)) {
2616 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2617 		tx_flags |= (skb->priority & 0x7) <<
2618 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2619 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2620 			struct vlan_ethhdr *vhdr;
2621 			int rc;
2622 
2623 			rc = skb_cow_head(skb, 0);
2624 			if (rc < 0)
2625 				return rc;
2626 			vhdr = (struct vlan_ethhdr *)skb->data;
2627 			vhdr->h_vlan_TCI = htons(tx_flags >>
2628 						 I40E_TX_FLAGS_VLAN_SHIFT);
2629 		} else {
2630 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2631 		}
2632 	}
2633 
2634 out:
2635 	*flags = tx_flags;
2636 	return 0;
2637 }
2638 
2639 /**
2640  * i40e_tso - set up the tso context descriptor
2641  * @first:    pointer to first Tx buffer for xmit
2642  * @hdr_len:  ptr to the size of the packet header
2643  * @cd_type_cmd_tso_mss: Quad Word 1
2644  *
2645  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2646  **/
2647 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2648 		    u64 *cd_type_cmd_tso_mss)
2649 {
2650 	struct sk_buff *skb = first->skb;
2651 	u64 cd_cmd, cd_tso_len, cd_mss;
2652 	union {
2653 		struct iphdr *v4;
2654 		struct ipv6hdr *v6;
2655 		unsigned char *hdr;
2656 	} ip;
2657 	union {
2658 		struct tcphdr *tcp;
2659 		struct udphdr *udp;
2660 		unsigned char *hdr;
2661 	} l4;
2662 	u32 paylen, l4_offset;
2663 	u16 gso_segs, gso_size;
2664 	int err;
2665 
2666 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2667 		return 0;
2668 
2669 	if (!skb_is_gso(skb))
2670 		return 0;
2671 
2672 	err = skb_cow_head(skb, 0);
2673 	if (err < 0)
2674 		return err;
2675 
2676 	ip.hdr = skb_network_header(skb);
2677 	l4.hdr = skb_transport_header(skb);
2678 
2679 	/* initialize outer IP header fields */
2680 	if (ip.v4->version == 4) {
2681 		ip.v4->tot_len = 0;
2682 		ip.v4->check = 0;
2683 	} else {
2684 		ip.v6->payload_len = 0;
2685 	}
2686 
2687 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2688 					 SKB_GSO_GRE_CSUM |
2689 					 SKB_GSO_IPXIP4 |
2690 					 SKB_GSO_IPXIP6 |
2691 					 SKB_GSO_UDP_TUNNEL |
2692 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2693 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2694 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2695 			l4.udp->len = 0;
2696 
2697 			/* determine offset of outer transport header */
2698 			l4_offset = l4.hdr - skb->data;
2699 
2700 			/* remove payload length from outer checksum */
2701 			paylen = skb->len - l4_offset;
2702 			csum_replace_by_diff(&l4.udp->check,
2703 					     (__force __wsum)htonl(paylen));
2704 		}
2705 
2706 		/* reset pointers to inner headers */
2707 		ip.hdr = skb_inner_network_header(skb);
2708 		l4.hdr = skb_inner_transport_header(skb);
2709 
2710 		/* initialize inner IP header fields */
2711 		if (ip.v4->version == 4) {
2712 			ip.v4->tot_len = 0;
2713 			ip.v4->check = 0;
2714 		} else {
2715 			ip.v6->payload_len = 0;
2716 		}
2717 	}
2718 
2719 	/* determine offset of inner transport header */
2720 	l4_offset = l4.hdr - skb->data;
2721 
2722 	/* remove payload length from inner checksum */
2723 	paylen = skb->len - l4_offset;
2724 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2725 
2726 	/* compute length of segmentation header */
2727 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2728 
2729 	/* pull values out of skb_shinfo */
2730 	gso_size = skb_shinfo(skb)->gso_size;
2731 	gso_segs = skb_shinfo(skb)->gso_segs;
2732 
2733 	/* update GSO size and bytecount with header size */
2734 	first->gso_segs = gso_segs;
2735 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2736 
2737 	/* find the field values */
2738 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2739 	cd_tso_len = skb->len - *hdr_len;
2740 	cd_mss = gso_size;
2741 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2742 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2743 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2744 	return 1;
2745 }
2746 
2747 /**
2748  * i40e_tsyn - set up the tsyn context descriptor
2749  * @tx_ring:  ptr to the ring to send
2750  * @skb:      ptr to the skb we're sending
2751  * @tx_flags: the collected send information
2752  * @cd_type_cmd_tso_mss: Quad Word 1
2753  *
2754  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2755  **/
2756 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2757 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2758 {
2759 	struct i40e_pf *pf;
2760 
2761 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2762 		return 0;
2763 
2764 	/* Tx timestamps cannot be sampled when doing TSO */
2765 	if (tx_flags & I40E_TX_FLAGS_TSO)
2766 		return 0;
2767 
2768 	/* only timestamp the outbound packet if the user has requested it and
2769 	 * we are not already transmitting a packet to be timestamped
2770 	 */
2771 	pf = i40e_netdev_to_pf(tx_ring->netdev);
2772 	if (!(pf->flags & I40E_FLAG_PTP))
2773 		return 0;
2774 
2775 	if (pf->ptp_tx &&
2776 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2777 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2778 		pf->ptp_tx_start = jiffies;
2779 		pf->ptp_tx_skb = skb_get(skb);
2780 	} else {
2781 		pf->tx_hwtstamp_skipped++;
2782 		return 0;
2783 	}
2784 
2785 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2786 				I40E_TXD_CTX_QW1_CMD_SHIFT;
2787 
2788 	return 1;
2789 }
2790 
2791 /**
2792  * i40e_tx_enable_csum - Enable Tx checksum offloads
2793  * @skb: send buffer
2794  * @tx_flags: pointer to Tx flags currently set
2795  * @td_cmd: Tx descriptor command bits to set
2796  * @td_offset: Tx descriptor header offsets to set
2797  * @tx_ring: Tx descriptor ring
2798  * @cd_tunneling: ptr to context desc bits
2799  **/
2800 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2801 			       u32 *td_cmd, u32 *td_offset,
2802 			       struct i40e_ring *tx_ring,
2803 			       u32 *cd_tunneling)
2804 {
2805 	union {
2806 		struct iphdr *v4;
2807 		struct ipv6hdr *v6;
2808 		unsigned char *hdr;
2809 	} ip;
2810 	union {
2811 		struct tcphdr *tcp;
2812 		struct udphdr *udp;
2813 		unsigned char *hdr;
2814 	} l4;
2815 	unsigned char *exthdr;
2816 	u32 offset, cmd = 0;
2817 	__be16 frag_off;
2818 	u8 l4_proto = 0;
2819 
2820 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2821 		return 0;
2822 
2823 	ip.hdr = skb_network_header(skb);
2824 	l4.hdr = skb_transport_header(skb);
2825 
2826 	/* compute outer L2 header size */
2827 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2828 
2829 	if (skb->encapsulation) {
2830 		u32 tunnel = 0;
2831 		/* define outer network header type */
2832 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2833 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2834 				  I40E_TX_CTX_EXT_IP_IPV4 :
2835 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2836 
2837 			l4_proto = ip.v4->protocol;
2838 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2839 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2840 
2841 			exthdr = ip.hdr + sizeof(*ip.v6);
2842 			l4_proto = ip.v6->nexthdr;
2843 			if (l4.hdr != exthdr)
2844 				ipv6_skip_exthdr(skb, exthdr - skb->data,
2845 						 &l4_proto, &frag_off);
2846 		}
2847 
2848 		/* define outer transport */
2849 		switch (l4_proto) {
2850 		case IPPROTO_UDP:
2851 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2852 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2853 			break;
2854 		case IPPROTO_GRE:
2855 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2856 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2857 			break;
2858 		case IPPROTO_IPIP:
2859 		case IPPROTO_IPV6:
2860 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2861 			l4.hdr = skb_inner_network_header(skb);
2862 			break;
2863 		default:
2864 			if (*tx_flags & I40E_TX_FLAGS_TSO)
2865 				return -1;
2866 
2867 			skb_checksum_help(skb);
2868 			return 0;
2869 		}
2870 
2871 		/* compute outer L3 header size */
2872 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2873 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2874 
2875 		/* switch IP header pointer from outer to inner header */
2876 		ip.hdr = skb_inner_network_header(skb);
2877 
2878 		/* compute tunnel header size */
2879 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2880 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2881 
2882 		/* indicate if we need to offload outer UDP header */
2883 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2884 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2885 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2886 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2887 
2888 		/* record tunnel offload values */
2889 		*cd_tunneling |= tunnel;
2890 
2891 		/* switch L4 header pointer from outer to inner */
2892 		l4.hdr = skb_inner_transport_header(skb);
2893 		l4_proto = 0;
2894 
2895 		/* reset type as we transition from outer to inner headers */
2896 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2897 		if (ip.v4->version == 4)
2898 			*tx_flags |= I40E_TX_FLAGS_IPV4;
2899 		if (ip.v6->version == 6)
2900 			*tx_flags |= I40E_TX_FLAGS_IPV6;
2901 	}
2902 
2903 	/* Enable IP checksum offloads */
2904 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2905 		l4_proto = ip.v4->protocol;
2906 		/* the stack computes the IP header already, the only time we
2907 		 * need the hardware to recompute it is in the case of TSO.
2908 		 */
2909 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2910 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2911 		       I40E_TX_DESC_CMD_IIPT_IPV4;
2912 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2913 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2914 
2915 		exthdr = ip.hdr + sizeof(*ip.v6);
2916 		l4_proto = ip.v6->nexthdr;
2917 		if (l4.hdr != exthdr)
2918 			ipv6_skip_exthdr(skb, exthdr - skb->data,
2919 					 &l4_proto, &frag_off);
2920 	}
2921 
2922 	/* compute inner L3 header size */
2923 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2924 
2925 	/* Enable L4 checksum offloads */
2926 	switch (l4_proto) {
2927 	case IPPROTO_TCP:
2928 		/* enable checksum offloads */
2929 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2930 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2931 		break;
2932 	case IPPROTO_SCTP:
2933 		/* enable SCTP checksum offload */
2934 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2935 		offset |= (sizeof(struct sctphdr) >> 2) <<
2936 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2937 		break;
2938 	case IPPROTO_UDP:
2939 		/* enable UDP checksum offload */
2940 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2941 		offset |= (sizeof(struct udphdr) >> 2) <<
2942 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2943 		break;
2944 	default:
2945 		if (*tx_flags & I40E_TX_FLAGS_TSO)
2946 			return -1;
2947 		skb_checksum_help(skb);
2948 		return 0;
2949 	}
2950 
2951 	*td_cmd |= cmd;
2952 	*td_offset |= offset;
2953 
2954 	return 1;
2955 }
2956 
2957 /**
2958  * i40e_create_tx_ctx Build the Tx context descriptor
2959  * @tx_ring:  ring to create the descriptor on
2960  * @cd_type_cmd_tso_mss: Quad Word 1
2961  * @cd_tunneling: Quad Word 0 - bits 0-31
2962  * @cd_l2tag2: Quad Word 0 - bits 32-63
2963  **/
2964 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2965 			       const u64 cd_type_cmd_tso_mss,
2966 			       const u32 cd_tunneling, const u32 cd_l2tag2)
2967 {
2968 	struct i40e_tx_context_desc *context_desc;
2969 	int i = tx_ring->next_to_use;
2970 
2971 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2972 	    !cd_tunneling && !cd_l2tag2)
2973 		return;
2974 
2975 	/* grab the next descriptor */
2976 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2977 
2978 	i++;
2979 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2980 
2981 	/* cpu_to_le32 and assign to struct fields */
2982 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2983 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2984 	context_desc->rsvd = cpu_to_le16(0);
2985 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2986 }
2987 
2988 /**
2989  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2990  * @tx_ring: the ring to be checked
2991  * @size:    the size buffer we want to assure is available
2992  *
2993  * Returns -EBUSY if a stop is needed, else 0
2994  **/
2995 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2996 {
2997 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2998 	/* Memory barrier before checking head and tail */
2999 	smp_mb();
3000 
3001 	/* Check again in a case another CPU has just made room available. */
3002 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3003 		return -EBUSY;
3004 
3005 	/* A reprieve! - use start_queue because it doesn't call schedule */
3006 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3007 	++tx_ring->tx_stats.restart_queue;
3008 	return 0;
3009 }
3010 
3011 /**
3012  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3013  * @skb:      send buffer
3014  *
3015  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3016  * and so we need to figure out the cases where we need to linearize the skb.
3017  *
3018  * For TSO we need to count the TSO header and segment payload separately.
3019  * As such we need to check cases where we have 7 fragments or more as we
3020  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3021  * the segment payload in the first descriptor, and another 7 for the
3022  * fragments.
3023  **/
3024 bool __i40e_chk_linearize(struct sk_buff *skb)
3025 {
3026 	const struct skb_frag_struct *frag, *stale;
3027 	int nr_frags, sum;
3028 
3029 	/* no need to check if number of frags is less than 7 */
3030 	nr_frags = skb_shinfo(skb)->nr_frags;
3031 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3032 		return false;
3033 
3034 	/* We need to walk through the list and validate that each group
3035 	 * of 6 fragments totals at least gso_size.
3036 	 */
3037 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3038 	frag = &skb_shinfo(skb)->frags[0];
3039 
3040 	/* Initialize size to the negative value of gso_size minus 1.  We
3041 	 * use this as the worst case scenerio in which the frag ahead
3042 	 * of us only provides one byte which is why we are limited to 6
3043 	 * descriptors for a single transmit as the header and previous
3044 	 * fragment are already consuming 2 descriptors.
3045 	 */
3046 	sum = 1 - skb_shinfo(skb)->gso_size;
3047 
3048 	/* Add size of frags 0 through 4 to create our initial sum */
3049 	sum += skb_frag_size(frag++);
3050 	sum += skb_frag_size(frag++);
3051 	sum += skb_frag_size(frag++);
3052 	sum += skb_frag_size(frag++);
3053 	sum += skb_frag_size(frag++);
3054 
3055 	/* Walk through fragments adding latest fragment, testing it, and
3056 	 * then removing stale fragments from the sum.
3057 	 */
3058 	stale = &skb_shinfo(skb)->frags[0];
3059 	for (;;) {
3060 		sum += skb_frag_size(frag++);
3061 
3062 		/* if sum is negative we failed to make sufficient progress */
3063 		if (sum < 0)
3064 			return true;
3065 
3066 		if (!nr_frags--)
3067 			break;
3068 
3069 		sum -= skb_frag_size(stale++);
3070 	}
3071 
3072 	return false;
3073 }
3074 
3075 /**
3076  * i40e_tx_map - Build the Tx descriptor
3077  * @tx_ring:  ring to send buffer on
3078  * @skb:      send buffer
3079  * @first:    first buffer info buffer to use
3080  * @tx_flags: collected send information
3081  * @hdr_len:  size of the packet header
3082  * @td_cmd:   the command field in the descriptor
3083  * @td_offset: offset for checksum or crc
3084  *
3085  * Returns 0 on success, -1 on failure to DMA
3086  **/
3087 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3088 			      struct i40e_tx_buffer *first, u32 tx_flags,
3089 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3090 {
3091 	unsigned int data_len = skb->data_len;
3092 	unsigned int size = skb_headlen(skb);
3093 	struct skb_frag_struct *frag;
3094 	struct i40e_tx_buffer *tx_bi;
3095 	struct i40e_tx_desc *tx_desc;
3096 	u16 i = tx_ring->next_to_use;
3097 	u32 td_tag = 0;
3098 	dma_addr_t dma;
3099 	u16 desc_count = 1;
3100 
3101 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3102 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3103 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3104 			 I40E_TX_FLAGS_VLAN_SHIFT;
3105 	}
3106 
3107 	first->tx_flags = tx_flags;
3108 
3109 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3110 
3111 	tx_desc = I40E_TX_DESC(tx_ring, i);
3112 	tx_bi = first;
3113 
3114 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3115 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3116 
3117 		if (dma_mapping_error(tx_ring->dev, dma))
3118 			goto dma_error;
3119 
3120 		/* record length, and DMA address */
3121 		dma_unmap_len_set(tx_bi, len, size);
3122 		dma_unmap_addr_set(tx_bi, dma, dma);
3123 
3124 		/* align size to end of page */
3125 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3126 		tx_desc->buffer_addr = cpu_to_le64(dma);
3127 
3128 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3129 			tx_desc->cmd_type_offset_bsz =
3130 				build_ctob(td_cmd, td_offset,
3131 					   max_data, td_tag);
3132 
3133 			tx_desc++;
3134 			i++;
3135 			desc_count++;
3136 
3137 			if (i == tx_ring->count) {
3138 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3139 				i = 0;
3140 			}
3141 
3142 			dma += max_data;
3143 			size -= max_data;
3144 
3145 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3146 			tx_desc->buffer_addr = cpu_to_le64(dma);
3147 		}
3148 
3149 		if (likely(!data_len))
3150 			break;
3151 
3152 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3153 							  size, td_tag);
3154 
3155 		tx_desc++;
3156 		i++;
3157 		desc_count++;
3158 
3159 		if (i == tx_ring->count) {
3160 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3161 			i = 0;
3162 		}
3163 
3164 		size = skb_frag_size(frag);
3165 		data_len -= size;
3166 
3167 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3168 				       DMA_TO_DEVICE);
3169 
3170 		tx_bi = &tx_ring->tx_bi[i];
3171 	}
3172 
3173 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3174 
3175 	i++;
3176 	if (i == tx_ring->count)
3177 		i = 0;
3178 
3179 	tx_ring->next_to_use = i;
3180 
3181 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3182 
3183 	/* write last descriptor with EOP bit */
3184 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3185 
3186 	/* We OR these values together to check both against 4 (WB_STRIDE)
3187 	 * below. This is safe since we don't re-use desc_count afterwards.
3188 	 */
3189 	desc_count |= ++tx_ring->packet_stride;
3190 
3191 	if (desc_count >= WB_STRIDE) {
3192 		/* write last descriptor with RS bit set */
3193 		td_cmd |= I40E_TX_DESC_CMD_RS;
3194 		tx_ring->packet_stride = 0;
3195 	}
3196 
3197 	tx_desc->cmd_type_offset_bsz =
3198 			build_ctob(td_cmd, td_offset, size, td_tag);
3199 
3200 	/* Force memory writes to complete before letting h/w know there
3201 	 * are new descriptors to fetch.
3202 	 *
3203 	 * We also use this memory barrier to make certain all of the
3204 	 * status bits have been updated before next_to_watch is written.
3205 	 */
3206 	wmb();
3207 
3208 	/* set next_to_watch value indicating a packet is present */
3209 	first->next_to_watch = tx_desc;
3210 
3211 	/* notify HW of packet */
3212 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3213 		writel(i, tx_ring->tail);
3214 
3215 		/* we need this if more than one processor can write to our tail
3216 		 * at a time, it synchronizes IO on IA64/Altix systems
3217 		 */
3218 		mmiowb();
3219 	}
3220 
3221 	return 0;
3222 
3223 dma_error:
3224 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3225 
3226 	/* clear dma mappings for failed tx_bi map */
3227 	for (;;) {
3228 		tx_bi = &tx_ring->tx_bi[i];
3229 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3230 		if (tx_bi == first)
3231 			break;
3232 		if (i == 0)
3233 			i = tx_ring->count;
3234 		i--;
3235 	}
3236 
3237 	tx_ring->next_to_use = i;
3238 
3239 	return -1;
3240 }
3241 
3242 /**
3243  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3244  * @xdp: data to transmit
3245  * @xdp_ring: XDP Tx ring
3246  **/
3247 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3248 			      struct i40e_ring *xdp_ring)
3249 {
3250 	u32 size = xdp->data_end - xdp->data;
3251 	u16 i = xdp_ring->next_to_use;
3252 	struct i40e_tx_buffer *tx_bi;
3253 	struct i40e_tx_desc *tx_desc;
3254 	dma_addr_t dma;
3255 
3256 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3257 		xdp_ring->tx_stats.tx_busy++;
3258 		return I40E_XDP_CONSUMED;
3259 	}
3260 
3261 	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3262 	if (dma_mapping_error(xdp_ring->dev, dma))
3263 		return I40E_XDP_CONSUMED;
3264 
3265 	tx_bi = &xdp_ring->tx_bi[i];
3266 	tx_bi->bytecount = size;
3267 	tx_bi->gso_segs = 1;
3268 	tx_bi->raw_buf = xdp->data;
3269 
3270 	/* record length, and DMA address */
3271 	dma_unmap_len_set(tx_bi, len, size);
3272 	dma_unmap_addr_set(tx_bi, dma, dma);
3273 
3274 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3275 	tx_desc->buffer_addr = cpu_to_le64(dma);
3276 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3277 						  | I40E_TXD_CMD,
3278 						  0, size, 0);
3279 
3280 	/* Make certain all of the status bits have been updated
3281 	 * before next_to_watch is written.
3282 	 */
3283 	smp_wmb();
3284 
3285 	i++;
3286 	if (i == xdp_ring->count)
3287 		i = 0;
3288 
3289 	tx_bi->next_to_watch = tx_desc;
3290 	xdp_ring->next_to_use = i;
3291 
3292 	return I40E_XDP_TX;
3293 }
3294 
3295 /**
3296  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3297  * @skb:     send buffer
3298  * @tx_ring: ring to send buffer on
3299  *
3300  * Returns NETDEV_TX_OK if sent, else an error code
3301  **/
3302 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3303 					struct i40e_ring *tx_ring)
3304 {
3305 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3306 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3307 	struct i40e_tx_buffer *first;
3308 	u32 td_offset = 0;
3309 	u32 tx_flags = 0;
3310 	__be16 protocol;
3311 	u32 td_cmd = 0;
3312 	u8 hdr_len = 0;
3313 	int tso, count;
3314 	int tsyn;
3315 
3316 	/* prefetch the data, we'll need it later */
3317 	prefetch(skb->data);
3318 
3319 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3320 
3321 	count = i40e_xmit_descriptor_count(skb);
3322 	if (i40e_chk_linearize(skb, count)) {
3323 		if (__skb_linearize(skb)) {
3324 			dev_kfree_skb_any(skb);
3325 			return NETDEV_TX_OK;
3326 		}
3327 		count = i40e_txd_use_count(skb->len);
3328 		tx_ring->tx_stats.tx_linearize++;
3329 	}
3330 
3331 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3332 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3333 	 *       + 4 desc gap to avoid the cache line where head is,
3334 	 *       + 1 desc for context descriptor,
3335 	 * otherwise try next time
3336 	 */
3337 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3338 		tx_ring->tx_stats.tx_busy++;
3339 		return NETDEV_TX_BUSY;
3340 	}
3341 
3342 	/* record the location of the first descriptor for this packet */
3343 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3344 	first->skb = skb;
3345 	first->bytecount = skb->len;
3346 	first->gso_segs = 1;
3347 
3348 	/* prepare the xmit flags */
3349 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3350 		goto out_drop;
3351 
3352 	/* obtain protocol of skb */
3353 	protocol = vlan_get_protocol(skb);
3354 
3355 	/* setup IPv4/IPv6 offloads */
3356 	if (protocol == htons(ETH_P_IP))
3357 		tx_flags |= I40E_TX_FLAGS_IPV4;
3358 	else if (protocol == htons(ETH_P_IPV6))
3359 		tx_flags |= I40E_TX_FLAGS_IPV6;
3360 
3361 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3362 
3363 	if (tso < 0)
3364 		goto out_drop;
3365 	else if (tso)
3366 		tx_flags |= I40E_TX_FLAGS_TSO;
3367 
3368 	/* Always offload the checksum, since it's in the data descriptor */
3369 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3370 				  tx_ring, &cd_tunneling);
3371 	if (tso < 0)
3372 		goto out_drop;
3373 
3374 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3375 
3376 	if (tsyn)
3377 		tx_flags |= I40E_TX_FLAGS_TSYN;
3378 
3379 	skb_tx_timestamp(skb);
3380 
3381 	/* always enable CRC insertion offload */
3382 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3383 
3384 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3385 			   cd_tunneling, cd_l2tag2);
3386 
3387 	/* Add Flow Director ATR if it's enabled.
3388 	 *
3389 	 * NOTE: this must always be directly before the data descriptor.
3390 	 */
3391 	i40e_atr(tx_ring, skb, tx_flags);
3392 
3393 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3394 			td_cmd, td_offset))
3395 		goto cleanup_tx_tstamp;
3396 
3397 	return NETDEV_TX_OK;
3398 
3399 out_drop:
3400 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3401 	dev_kfree_skb_any(first->skb);
3402 	first->skb = NULL;
3403 cleanup_tx_tstamp:
3404 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3405 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3406 
3407 		dev_kfree_skb_any(pf->ptp_tx_skb);
3408 		pf->ptp_tx_skb = NULL;
3409 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3410 	}
3411 
3412 	return NETDEV_TX_OK;
3413 }
3414 
3415 /**
3416  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3417  * @skb:    send buffer
3418  * @netdev: network interface device structure
3419  *
3420  * Returns NETDEV_TX_OK if sent, else an error code
3421  **/
3422 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3423 {
3424 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3425 	struct i40e_vsi *vsi = np->vsi;
3426 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3427 
3428 	/* hardware can't handle really short frames, hardware padding works
3429 	 * beyond this point
3430 	 */
3431 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3432 		return NETDEV_TX_OK;
3433 
3434 	return i40e_xmit_frame_ring(skb, tx_ring);
3435 }
3436