xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/net/intel/libie/rx.h>
6 #include <linux/prefetch.h>
7 #include <linux/sctp.h>
8 #include <net/mpls.h>
9 #include <net/xdp.h>
10 #include "i40e_txrx_common.h"
11 #include "i40e_trace.h"
12 #include "i40e_xsk.h"
13 
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16  * i40e_fdir - Generate a Flow Director descriptor based on fdata
17  * @tx_ring: Tx ring to send buffer on
18  * @fdata: Flow director filter data
19  * @add: Indicate if we are adding a rule or deleting one
20  *
21  **/
22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 		      struct i40e_fdir_filter *fdata, bool add)
24 {
25 	struct i40e_filter_program_desc *fdir_desc;
26 	struct i40e_pf *pf = tx_ring->vsi->back;
27 	u32 flex_ptype, dtype_cmd, vsi_id;
28 	u16 i;
29 
30 	/* grab the next descriptor */
31 	i = tx_ring->next_to_use;
32 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33 
34 	i++;
35 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36 
37 	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
38 
39 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
40 				 fdata->flex_off);
41 
42 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
43 
44 	/* Use LAN VSI Id if not programmed by user */
45 	vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
46 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
47 
48 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
49 
50 	dtype_cmd |= add ?
51 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
52 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
53 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
54 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
55 
56 	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
57 
58 	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
59 				fdata->fd_status);
60 
61 	if (fdata->cnt_index) {
62 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
63 		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
64 					fdata->cnt_index);
65 	}
66 
67 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
68 	fdir_desc->rsvd = cpu_to_le32(0);
69 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
70 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
71 }
72 
73 #define I40E_FD_CLEAN_DELAY 10
74 /**
75  * i40e_program_fdir_filter - Program a Flow Director filter
76  * @fdir_data: Packet data that will be filter parameters
77  * @raw_packet: the pre-allocated packet buffer for FDir
78  * @pf: The PF pointer
79  * @add: True for add/update, False for remove
80  **/
81 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
82 				    u8 *raw_packet, struct i40e_pf *pf,
83 				    bool add)
84 {
85 	struct i40e_tx_buffer *tx_buf, *first;
86 	struct i40e_tx_desc *tx_desc;
87 	struct i40e_ring *tx_ring;
88 	struct i40e_vsi *vsi;
89 	struct device *dev;
90 	dma_addr_t dma;
91 	u32 td_cmd = 0;
92 	u16 i;
93 
94 	/* find existing FDIR VSI */
95 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
96 	if (!vsi)
97 		return -ENOENT;
98 
99 	tx_ring = vsi->tx_rings[0];
100 	dev = tx_ring->dev;
101 
102 	/* we need two descriptors to add/del a filter and we can wait */
103 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
104 		if (!i)
105 			return -EAGAIN;
106 		msleep_interruptible(1);
107 	}
108 
109 	dma = dma_map_single(dev, raw_packet,
110 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
111 	if (dma_mapping_error(dev, dma))
112 		goto dma_fail;
113 
114 	/* grab the next descriptor */
115 	i = tx_ring->next_to_use;
116 	first = &tx_ring->tx_bi[i];
117 	i40e_fdir(tx_ring, fdir_data, add);
118 
119 	/* Now program a dummy descriptor */
120 	i = tx_ring->next_to_use;
121 	tx_desc = I40E_TX_DESC(tx_ring, i);
122 	tx_buf = &tx_ring->tx_bi[i];
123 
124 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
125 
126 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
127 
128 	/* record length, and DMA address */
129 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
130 	dma_unmap_addr_set(tx_buf, dma, dma);
131 
132 	tx_desc->buffer_addr = cpu_to_le64(dma);
133 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
134 
135 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
136 	tx_buf->raw_buf = (void *)raw_packet;
137 
138 	tx_desc->cmd_type_offset_bsz =
139 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
140 
141 	/* Force memory writes to complete before letting h/w
142 	 * know there are new descriptors to fetch.
143 	 */
144 	wmb();
145 
146 	/* Mark the data descriptor to be watched */
147 	first->next_to_watch = tx_desc;
148 
149 	writel(tx_ring->next_to_use, tx_ring->tail);
150 	return 0;
151 
152 dma_fail:
153 	return -1;
154 }
155 
156 /**
157  * i40e_create_dummy_packet - Constructs dummy packet for HW
158  * @dummy_packet: preallocated space for dummy packet
159  * @ipv4: is layer 3 packet of version 4 or 6
160  * @l4proto: next level protocol used in data portion of l3
161  * @data: filter data
162  *
163  * Returns address of layer 4 protocol dummy packet.
164  **/
165 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
166 				      struct i40e_fdir_filter *data)
167 {
168 	bool is_vlan = !!data->vlan_tag;
169 	struct vlan_hdr vlan = {};
170 	struct ipv6hdr ipv6 = {};
171 	struct ethhdr eth = {};
172 	struct iphdr ip = {};
173 	u8 *tmp;
174 
175 	if (ipv4) {
176 		eth.h_proto = cpu_to_be16(ETH_P_IP);
177 		ip.protocol = l4proto;
178 		ip.version = 0x4;
179 		ip.ihl = 0x5;
180 
181 		ip.daddr = data->dst_ip;
182 		ip.saddr = data->src_ip;
183 	} else {
184 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
185 		ipv6.nexthdr = l4proto;
186 		ipv6.version = 0x6;
187 
188 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
189 		       sizeof(__be32) * 4);
190 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
191 		       sizeof(__be32) * 4);
192 	}
193 
194 	if (is_vlan) {
195 		vlan.h_vlan_TCI = data->vlan_tag;
196 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
197 		eth.h_proto = data->vlan_etype;
198 	}
199 
200 	tmp = dummy_packet;
201 	memcpy(tmp, &eth, sizeof(eth));
202 	tmp += sizeof(eth);
203 
204 	if (is_vlan) {
205 		memcpy(tmp, &vlan, sizeof(vlan));
206 		tmp += sizeof(vlan);
207 	}
208 
209 	if (ipv4) {
210 		memcpy(tmp, &ip, sizeof(ip));
211 		tmp += sizeof(ip);
212 	} else {
213 		memcpy(tmp, &ipv6, sizeof(ipv6));
214 		tmp += sizeof(ipv6);
215 	}
216 
217 	return tmp;
218 }
219 
220 /**
221  * i40e_create_dummy_udp_packet - helper function to create UDP packet
222  * @raw_packet: preallocated space for dummy packet
223  * @ipv4: is layer 3 packet of version 4 or 6
224  * @l4proto: next level protocol used in data portion of l3
225  * @data: filter data
226  *
227  * Helper function to populate udp fields.
228  **/
229 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
230 					 struct i40e_fdir_filter *data)
231 {
232 	struct udphdr *udp;
233 	u8 *tmp;
234 
235 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
236 	udp = (struct udphdr *)(tmp);
237 	udp->dest = data->dst_port;
238 	udp->source = data->src_port;
239 }
240 
241 /**
242  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
243  * @raw_packet: preallocated space for dummy packet
244  * @ipv4: is layer 3 packet of version 4 or 6
245  * @l4proto: next level protocol used in data portion of l3
246  * @data: filter data
247  *
248  * Helper function to populate tcp fields.
249  **/
250 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
251 					 struct i40e_fdir_filter *data)
252 {
253 	struct tcphdr *tcp;
254 	u8 *tmp;
255 	/* Dummy tcp packet */
256 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
257 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
258 
259 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
260 
261 	tcp = (struct tcphdr *)tmp;
262 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
263 	tcp->dest = data->dst_port;
264 	tcp->source = data->src_port;
265 }
266 
267 /**
268  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
269  * @raw_packet: preallocated space for dummy packet
270  * @ipv4: is layer 3 packet of version 4 or 6
271  * @l4proto: next level protocol used in data portion of l3
272  * @data: filter data
273  *
274  * Helper function to populate sctp fields.
275  **/
276 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
277 					  u8 l4proto,
278 					  struct i40e_fdir_filter *data)
279 {
280 	struct sctphdr *sctp;
281 	u8 *tmp;
282 
283 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
284 
285 	sctp = (struct sctphdr *)tmp;
286 	sctp->dest = data->dst_port;
287 	sctp->source = data->src_port;
288 }
289 
290 /**
291  * i40e_prepare_fdir_filter - Prepare and program fdir filter
292  * @pf: physical function to attach filter to
293  * @fd_data: filter data
294  * @add: add or delete filter
295  * @packet_addr: address of dummy packet, used in filtering
296  * @payload_offset: offset from dummy packet address to user defined data
297  * @pctype: Packet type for which filter is used
298  *
299  * Helper function to offset data of dummy packet, program it and
300  * handle errors.
301  **/
302 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
303 				    struct i40e_fdir_filter *fd_data,
304 				    bool add, char *packet_addr,
305 				    int payload_offset, u8 pctype)
306 {
307 	int ret;
308 
309 	if (fd_data->flex_filter) {
310 		u8 *payload;
311 		__be16 pattern = fd_data->flex_word;
312 		u16 off = fd_data->flex_offset;
313 
314 		payload = packet_addr + payload_offset;
315 
316 		/* If user provided vlan, offset payload by vlan header length */
317 		if (!!fd_data->vlan_tag)
318 			payload += VLAN_HLEN;
319 
320 		*((__force __be16 *)(payload + off)) = pattern;
321 	}
322 
323 	fd_data->pctype = pctype;
324 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
325 	if (ret) {
326 		dev_info(&pf->pdev->dev,
327 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
328 			 fd_data->pctype, fd_data->fd_id, ret);
329 		/* Free the packet buffer since it wasn't added to the ring */
330 		return -EOPNOTSUPP;
331 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
332 		if (add)
333 			dev_info(&pf->pdev->dev,
334 				 "Filter OK for PCTYPE %d loc = %d\n",
335 				 fd_data->pctype, fd_data->fd_id);
336 		else
337 			dev_info(&pf->pdev->dev,
338 				 "Filter deleted for PCTYPE %d loc = %d\n",
339 				 fd_data->pctype, fd_data->fd_id);
340 	}
341 
342 	return ret;
343 }
344 
345 /**
346  * i40e_change_filter_num - Prepare and program fdir filter
347  * @ipv4: is layer 3 packet of version 4 or 6
348  * @add: add or delete filter
349  * @ipv4_filter_num: field to update
350  * @ipv6_filter_num: field to update
351  *
352  * Update filter number field for pf.
353  **/
354 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
355 				   u16 *ipv6_filter_num)
356 {
357 	if (add) {
358 		if (ipv4)
359 			(*ipv4_filter_num)++;
360 		else
361 			(*ipv6_filter_num)++;
362 	} else {
363 		if (ipv4)
364 			(*ipv4_filter_num)--;
365 		else
366 			(*ipv6_filter_num)--;
367 	}
368 }
369 
370 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
371 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
372 /**
373  * i40e_add_del_fdir_udp - Add/Remove UDP filters
374  * @vsi: pointer to the targeted VSI
375  * @fd_data: the flow director data required for the FDir descriptor
376  * @add: true adds a filter, false removes it
377  * @ipv4: true is v4, false is v6
378  *
379  * Returns 0 if the filters were successfully added or removed
380  **/
381 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
382 				 struct i40e_fdir_filter *fd_data,
383 				 bool add,
384 				 bool ipv4)
385 {
386 	struct i40e_pf *pf = vsi->back;
387 	u8 *raw_packet;
388 	int ret;
389 
390 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
391 	if (!raw_packet)
392 		return -ENOMEM;
393 
394 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
395 
396 	if (ipv4)
397 		ret = i40e_prepare_fdir_filter
398 			(pf, fd_data, add, raw_packet,
399 			 I40E_UDPIP_DUMMY_PACKET_LEN,
400 			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
401 	else
402 		ret = i40e_prepare_fdir_filter
403 			(pf, fd_data, add, raw_packet,
404 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
405 			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
406 
407 	if (ret) {
408 		kfree(raw_packet);
409 		return ret;
410 	}
411 
412 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
413 			       &pf->fd_udp6_filter_cnt);
414 
415 	return 0;
416 }
417 
418 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
419 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
420 /**
421  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
422  * @vsi: pointer to the targeted VSI
423  * @fd_data: the flow director data required for the FDir descriptor
424  * @add: true adds a filter, false removes it
425  * @ipv4: true is v4, false is v6
426  *
427  * Returns 0 if the filters were successfully added or removed
428  **/
429 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
430 				 struct i40e_fdir_filter *fd_data,
431 				 bool add,
432 				 bool ipv4)
433 {
434 	struct i40e_pf *pf = vsi->back;
435 	u8 *raw_packet;
436 	int ret;
437 
438 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
439 	if (!raw_packet)
440 		return -ENOMEM;
441 
442 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
443 	if (ipv4)
444 		ret = i40e_prepare_fdir_filter
445 			(pf, fd_data, add, raw_packet,
446 			 I40E_TCPIP_DUMMY_PACKET_LEN,
447 			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
448 	else
449 		ret = i40e_prepare_fdir_filter
450 			(pf, fd_data, add, raw_packet,
451 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
452 			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
453 
454 	if (ret) {
455 		kfree(raw_packet);
456 		return ret;
457 	}
458 
459 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
460 			       &pf->fd_tcp6_filter_cnt);
461 
462 	if (add) {
463 		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
464 		    I40E_DEBUG_FD & pf->hw.debug_mask)
465 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
466 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
467 	}
468 	return 0;
469 }
470 
471 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
472 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
473 /**
474  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
475  * a specific flow spec
476  * @vsi: pointer to the targeted VSI
477  * @fd_data: the flow director data required for the FDir descriptor
478  * @add: true adds a filter, false removes it
479  * @ipv4: true is v4, false is v6
480  *
481  * Returns 0 if the filters were successfully added or removed
482  **/
483 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
484 				  struct i40e_fdir_filter *fd_data,
485 				  bool add,
486 				  bool ipv4)
487 {
488 	struct i40e_pf *pf = vsi->back;
489 	u8 *raw_packet;
490 	int ret;
491 
492 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
493 	if (!raw_packet)
494 		return -ENOMEM;
495 
496 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
497 
498 	if (ipv4)
499 		ret = i40e_prepare_fdir_filter
500 			(pf, fd_data, add, raw_packet,
501 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
502 			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
503 	else
504 		ret = i40e_prepare_fdir_filter
505 			(pf, fd_data, add, raw_packet,
506 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
507 			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
508 
509 	if (ret) {
510 		kfree(raw_packet);
511 		return ret;
512 	}
513 
514 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
515 			       &pf->fd_sctp6_filter_cnt);
516 
517 	return 0;
518 }
519 
520 #define I40E_IP_DUMMY_PACKET_LEN	34
521 #define I40E_IP6_DUMMY_PACKET_LEN	54
522 /**
523  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
524  * a specific flow spec
525  * @vsi: pointer to the targeted VSI
526  * @fd_data: the flow director data required for the FDir descriptor
527  * @add: true adds a filter, false removes it
528  * @ipv4: true is v4, false is v6
529  *
530  * Returns 0 if the filters were successfully added or removed
531  **/
532 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
533 				struct i40e_fdir_filter *fd_data,
534 				bool add,
535 				bool ipv4)
536 {
537 	struct i40e_pf *pf = vsi->back;
538 	int payload_offset;
539 	u8 *raw_packet;
540 	int iter_start;
541 	int iter_end;
542 	int ret;
543 	int i;
544 
545 	if (ipv4) {
546 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
547 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
548 	} else {
549 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
550 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
551 	}
552 
553 	for (i = iter_start; i <= iter_end; i++) {
554 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
555 		if (!raw_packet)
556 			return -ENOMEM;
557 
558 		/* IPv6 no header option differs from IPv4 */
559 		(void)i40e_create_dummy_packet
560 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
561 			 fd_data);
562 
563 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
564 			I40E_IP6_DUMMY_PACKET_LEN;
565 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
566 					       payload_offset, i);
567 		if (ret)
568 			goto err;
569 	}
570 
571 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
572 			       &pf->fd_ip6_filter_cnt);
573 
574 	return 0;
575 err:
576 	kfree(raw_packet);
577 	return ret;
578 }
579 
580 /**
581  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
582  * @vsi: pointer to the targeted VSI
583  * @input: filter to add or delete
584  * @add: true adds a filter, false removes it
585  *
586  **/
587 int i40e_add_del_fdir(struct i40e_vsi *vsi,
588 		      struct i40e_fdir_filter *input, bool add)
589 {
590 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
591 	struct i40e_pf *pf = vsi->back;
592 	int ret;
593 
594 	switch (input->flow_type & ~FLOW_EXT) {
595 	case TCP_V4_FLOW:
596 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
597 		break;
598 	case UDP_V4_FLOW:
599 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
600 		break;
601 	case SCTP_V4_FLOW:
602 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
603 		break;
604 	case TCP_V6_FLOW:
605 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
606 		break;
607 	case UDP_V6_FLOW:
608 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
609 		break;
610 	case SCTP_V6_FLOW:
611 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
612 		break;
613 	case IP_USER_FLOW:
614 		switch (input->ipl4_proto) {
615 		case IPPROTO_TCP:
616 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
617 			break;
618 		case IPPROTO_UDP:
619 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
620 			break;
621 		case IPPROTO_SCTP:
622 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
623 			break;
624 		case IPPROTO_IP:
625 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
626 			break;
627 		default:
628 			/* We cannot support masking based on protocol */
629 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
630 				 input->ipl4_proto);
631 			return -EINVAL;
632 		}
633 		break;
634 	case IPV6_USER_FLOW:
635 		switch (input->ipl4_proto) {
636 		case IPPROTO_TCP:
637 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
638 			break;
639 		case IPPROTO_UDP:
640 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
641 			break;
642 		case IPPROTO_SCTP:
643 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
644 			break;
645 		case IPPROTO_IP:
646 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
647 			break;
648 		default:
649 			/* We cannot support masking based on protocol */
650 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
651 				 input->ipl4_proto);
652 			return -EINVAL;
653 		}
654 		break;
655 	default:
656 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
657 			 input->flow_type);
658 		return -EINVAL;
659 	}
660 
661 	/* The buffer allocated here will be normally be freed by
662 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
663 	 * completion. In the event of an error adding the buffer to the FDIR
664 	 * ring, it will immediately be freed. It may also be freed by
665 	 * i40e_clean_tx_ring() when closing the VSI.
666 	 */
667 	return ret;
668 }
669 
670 /**
671  * i40e_fd_handle_status - check the Programming Status for FD
672  * @rx_ring: the Rx ring for this descriptor
673  * @qword0_raw: qword0
674  * @qword1: qword1 after le_to_cpu
675  * @prog_id: the id originally used for programming
676  *
677  * This is used to verify if the FD programming or invalidation
678  * requested by SW to the HW is successful or not and take actions accordingly.
679  **/
680 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
681 				  u64 qword1, u8 prog_id)
682 {
683 	struct i40e_pf *pf = rx_ring->vsi->back;
684 	struct pci_dev *pdev = pf->pdev;
685 	struct i40e_16b_rx_wb_qw0 *qw0;
686 	u32 fcnt_prog, fcnt_avail;
687 	u32 error;
688 
689 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
690 	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
691 
692 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
693 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
694 		if (qw0->hi_dword.fd_id != 0 ||
695 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
696 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
697 				 pf->fd_inv);
698 
699 		/* Check if the programming error is for ATR.
700 		 * If so, auto disable ATR and set a state for
701 		 * flush in progress. Next time we come here if flush is in
702 		 * progress do nothing, once flush is complete the state will
703 		 * be cleared.
704 		 */
705 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
706 			return;
707 
708 		pf->fd_add_err++;
709 		/* store the current atr filter count */
710 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
711 
712 		if (qw0->hi_dword.fd_id == 0 &&
713 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
714 			/* These set_bit() calls aren't atomic with the
715 			 * test_bit() here, but worse case we potentially
716 			 * disable ATR and queue a flush right after SB
717 			 * support is re-enabled. That shouldn't cause an
718 			 * issue in practice
719 			 */
720 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
721 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
722 		}
723 
724 		/* filter programming failed most likely due to table full */
725 		fcnt_prog = i40e_get_global_fd_count(pf);
726 		fcnt_avail = pf->fdir_pf_filter_count;
727 		/* If ATR is running fcnt_prog can quickly change,
728 		 * if we are very close to full, it makes sense to disable
729 		 * FD ATR/SB and then re-enable it when there is room.
730 		 */
731 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
732 			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
733 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
734 					      pf->state))
735 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
736 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
737 		}
738 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
739 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
740 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
741 				 qw0->hi_dword.fd_id);
742 	}
743 }
744 
745 /**
746  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
747  * @ring:      the ring that owns the buffer
748  * @tx_buffer: the buffer to free
749  **/
750 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
751 					    struct i40e_tx_buffer *tx_buffer)
752 {
753 	if (tx_buffer->skb) {
754 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
755 			kfree(tx_buffer->raw_buf);
756 		else if (ring_is_xdp(ring))
757 			xdp_return_frame(tx_buffer->xdpf);
758 		else
759 			dev_kfree_skb_any(tx_buffer->skb);
760 		if (dma_unmap_len(tx_buffer, len))
761 			dma_unmap_single(ring->dev,
762 					 dma_unmap_addr(tx_buffer, dma),
763 					 dma_unmap_len(tx_buffer, len),
764 					 DMA_TO_DEVICE);
765 	} else if (dma_unmap_len(tx_buffer, len)) {
766 		dma_unmap_page(ring->dev,
767 			       dma_unmap_addr(tx_buffer, dma),
768 			       dma_unmap_len(tx_buffer, len),
769 			       DMA_TO_DEVICE);
770 	}
771 
772 	tx_buffer->next_to_watch = NULL;
773 	tx_buffer->skb = NULL;
774 	dma_unmap_len_set(tx_buffer, len, 0);
775 	/* tx_buffer must be completely set up in the transmit path */
776 }
777 
778 /**
779  * i40e_clean_tx_ring - Free any empty Tx buffers
780  * @tx_ring: ring to be cleaned
781  **/
782 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
783 {
784 	unsigned long bi_size;
785 	u16 i;
786 
787 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
788 		i40e_xsk_clean_tx_ring(tx_ring);
789 	} else {
790 		/* ring already cleared, nothing to do */
791 		if (!tx_ring->tx_bi)
792 			return;
793 
794 		/* Free all the Tx ring sk_buffs */
795 		for (i = 0; i < tx_ring->count; i++)
796 			i40e_unmap_and_free_tx_resource(tx_ring,
797 							&tx_ring->tx_bi[i]);
798 	}
799 
800 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
801 	memset(tx_ring->tx_bi, 0, bi_size);
802 
803 	/* Zero out the descriptor ring */
804 	memset(tx_ring->desc, 0, tx_ring->size);
805 
806 	tx_ring->next_to_use = 0;
807 	tx_ring->next_to_clean = 0;
808 
809 	if (!tx_ring->netdev)
810 		return;
811 
812 	/* cleanup Tx queue statistics */
813 	netdev_tx_reset_queue(txring_txq(tx_ring));
814 }
815 
816 /**
817  * i40e_free_tx_resources - Free Tx resources per queue
818  * @tx_ring: Tx descriptor ring for a specific queue
819  *
820  * Free all transmit software resources
821  **/
822 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
823 {
824 	i40e_clean_tx_ring(tx_ring);
825 	kfree(tx_ring->tx_bi);
826 	tx_ring->tx_bi = NULL;
827 
828 	if (tx_ring->desc) {
829 		dma_free_coherent(tx_ring->dev, tx_ring->size,
830 				  tx_ring->desc, tx_ring->dma);
831 		tx_ring->desc = NULL;
832 	}
833 }
834 
835 /**
836  * i40e_get_tx_pending - how many tx descriptors not processed
837  * @ring: the ring of descriptors
838  * @in_sw: use SW variables
839  *
840  * Since there is no access to the ring head register
841  * in XL710, we need to use our local copies
842  **/
843 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
844 {
845 	u32 head, tail;
846 
847 	if (!in_sw) {
848 		head = i40e_get_head(ring);
849 		tail = readl(ring->tail);
850 	} else {
851 		head = ring->next_to_clean;
852 		tail = ring->next_to_use;
853 	}
854 
855 	if (head != tail)
856 		return (head < tail) ?
857 			tail - head : (tail + ring->count - head);
858 
859 	return 0;
860 }
861 
862 /**
863  * i40e_detect_recover_hung - Function to detect and recover hung_queues
864  * @pf: pointer to PF struct
865  *
866  * LAN VSI has netdev and netdev has TX queues. This function is to check
867  * each of those TX queues if they are hung, trigger recovery by issuing
868  * SW interrupt.
869  **/
870 void i40e_detect_recover_hung(struct i40e_pf *pf)
871 {
872 	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
873 	struct i40e_ring *tx_ring = NULL;
874 	struct net_device *netdev;
875 	unsigned int i;
876 	int packets;
877 
878 	if (!vsi)
879 		return;
880 
881 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
882 		return;
883 
884 	netdev = vsi->netdev;
885 	if (!netdev)
886 		return;
887 
888 	if (!netif_carrier_ok(netdev))
889 		return;
890 
891 	for (i = 0; i < vsi->num_queue_pairs; i++) {
892 		tx_ring = vsi->tx_rings[i];
893 		if (tx_ring && tx_ring->desc) {
894 			/* If packet counter has not changed the queue is
895 			 * likely stalled, so force an interrupt for this
896 			 * queue.
897 			 *
898 			 * prev_pkt_ctr would be negative if there was no
899 			 * pending work.
900 			 */
901 			packets = tx_ring->stats.packets & INT_MAX;
902 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
903 				i40e_force_wb(vsi, tx_ring->q_vector);
904 				continue;
905 			}
906 
907 			/* Memory barrier between read of packet count and call
908 			 * to i40e_get_tx_pending()
909 			 */
910 			smp_rmb();
911 			tx_ring->tx_stats.prev_pkt_ctr =
912 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
913 		}
914 	}
915 }
916 
917 /**
918  * i40e_clean_tx_irq - Reclaim resources after transmit completes
919  * @vsi: the VSI we care about
920  * @tx_ring: Tx ring to clean
921  * @napi_budget: Used to determine if we are in netpoll
922  * @tx_cleaned: Out parameter set to the number of TXes cleaned
923  *
924  * Returns true if there's any budget left (e.g. the clean is finished)
925  **/
926 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
927 			      struct i40e_ring *tx_ring, int napi_budget,
928 			      unsigned int *tx_cleaned)
929 {
930 	int i = tx_ring->next_to_clean;
931 	struct i40e_tx_buffer *tx_buf;
932 	struct i40e_tx_desc *tx_head;
933 	struct i40e_tx_desc *tx_desc;
934 	unsigned int total_bytes = 0, total_packets = 0;
935 	unsigned int budget = vsi->work_limit;
936 
937 	tx_buf = &tx_ring->tx_bi[i];
938 	tx_desc = I40E_TX_DESC(tx_ring, i);
939 	i -= tx_ring->count;
940 
941 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
942 
943 	do {
944 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
945 
946 		/* if next_to_watch is not set then there is no work pending */
947 		if (!eop_desc)
948 			break;
949 
950 		/* prevent any other reads prior to eop_desc */
951 		smp_rmb();
952 
953 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
954 		/* we have caught up to head, no work left to do */
955 		if (tx_head == tx_desc)
956 			break;
957 
958 		/* clear next_to_watch to prevent false hangs */
959 		tx_buf->next_to_watch = NULL;
960 
961 		/* update the statistics for this packet */
962 		total_bytes += tx_buf->bytecount;
963 		total_packets += tx_buf->gso_segs;
964 
965 		/* free the skb/XDP data */
966 		if (ring_is_xdp(tx_ring))
967 			xdp_return_frame(tx_buf->xdpf);
968 		else
969 			napi_consume_skb(tx_buf->skb, napi_budget);
970 
971 		/* unmap skb header data */
972 		dma_unmap_single(tx_ring->dev,
973 				 dma_unmap_addr(tx_buf, dma),
974 				 dma_unmap_len(tx_buf, len),
975 				 DMA_TO_DEVICE);
976 
977 		/* clear tx_buffer data */
978 		tx_buf->skb = NULL;
979 		dma_unmap_len_set(tx_buf, len, 0);
980 
981 		/* unmap remaining buffers */
982 		while (tx_desc != eop_desc) {
983 			i40e_trace(clean_tx_irq_unmap,
984 				   tx_ring, tx_desc, tx_buf);
985 
986 			tx_buf++;
987 			tx_desc++;
988 			i++;
989 			if (unlikely(!i)) {
990 				i -= tx_ring->count;
991 				tx_buf = tx_ring->tx_bi;
992 				tx_desc = I40E_TX_DESC(tx_ring, 0);
993 			}
994 
995 			/* unmap any remaining paged data */
996 			if (dma_unmap_len(tx_buf, len)) {
997 				dma_unmap_page(tx_ring->dev,
998 					       dma_unmap_addr(tx_buf, dma),
999 					       dma_unmap_len(tx_buf, len),
1000 					       DMA_TO_DEVICE);
1001 				dma_unmap_len_set(tx_buf, len, 0);
1002 			}
1003 		}
1004 
1005 		/* move us one more past the eop_desc for start of next pkt */
1006 		tx_buf++;
1007 		tx_desc++;
1008 		i++;
1009 		if (unlikely(!i)) {
1010 			i -= tx_ring->count;
1011 			tx_buf = tx_ring->tx_bi;
1012 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1013 		}
1014 
1015 		prefetch(tx_desc);
1016 
1017 		/* update budget accounting */
1018 		budget--;
1019 	} while (likely(budget));
1020 
1021 	i += tx_ring->count;
1022 	tx_ring->next_to_clean = i;
1023 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1024 	i40e_arm_wb(tx_ring, vsi, budget);
1025 
1026 	if (ring_is_xdp(tx_ring))
1027 		return !!budget;
1028 
1029 	/* notify netdev of completed buffers */
1030 	netdev_tx_completed_queue(txring_txq(tx_ring),
1031 				  total_packets, total_bytes);
1032 
1033 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1035 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1036 		/* Make sure that anybody stopping the queue after this
1037 		 * sees the new next_to_clean.
1038 		 */
1039 		smp_mb();
1040 		if (__netif_subqueue_stopped(tx_ring->netdev,
1041 					     tx_ring->queue_index) &&
1042 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1043 			netif_wake_subqueue(tx_ring->netdev,
1044 					    tx_ring->queue_index);
1045 			++tx_ring->tx_stats.restart_queue;
1046 		}
1047 	}
1048 
1049 	*tx_cleaned = total_packets;
1050 	return !!budget;
1051 }
1052 
1053 /**
1054  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055  * @vsi: the VSI we care about
1056  * @q_vector: the vector on which to enable writeback
1057  *
1058  **/
1059 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1060 				  struct i40e_q_vector *q_vector)
1061 {
1062 	u16 flags = q_vector->tx.ring[0].flags;
1063 	u32 val;
1064 
1065 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1066 		return;
1067 
1068 	if (q_vector->arm_wb_state)
1069 		return;
1070 
1071 	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1072 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1073 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1074 
1075 		wr32(&vsi->back->hw,
1076 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1077 		     val);
1078 	} else {
1079 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1080 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1081 
1082 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1083 	}
1084 	q_vector->arm_wb_state = true;
1085 }
1086 
1087 /**
1088  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089  * @vsi: the VSI we care about
1090  * @q_vector: the vector  on which to force writeback
1091  *
1092  **/
1093 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1094 {
1095 	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1096 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1097 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1098 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1099 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1100 			  /* allow 00 to be written to the index */
1101 
1102 		wr32(&vsi->back->hw,
1103 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1104 	} else {
1105 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1106 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1107 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1108 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1109 			/* allow 00 to be written to the index */
1110 
1111 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1112 	}
1113 }
1114 
1115 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1116 					struct i40e_ring_container *rc)
1117 {
1118 	return &q_vector->rx == rc;
1119 }
1120 
1121 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1122 {
1123 	unsigned int divisor;
1124 
1125 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1126 	case I40E_LINK_SPEED_40GB:
1127 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1128 		break;
1129 	case I40E_LINK_SPEED_25GB:
1130 	case I40E_LINK_SPEED_20GB:
1131 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1132 		break;
1133 	default:
1134 	case I40E_LINK_SPEED_10GB:
1135 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1136 		break;
1137 	case I40E_LINK_SPEED_1GB:
1138 	case I40E_LINK_SPEED_100MB:
1139 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1140 		break;
1141 	}
1142 
1143 	return divisor;
1144 }
1145 
1146 /**
1147  * i40e_update_itr - update the dynamic ITR value based on statistics
1148  * @q_vector: structure containing interrupt and ring information
1149  * @rc: structure containing ring performance data
1150  *
1151  * Stores a new ITR value based on packets and byte
1152  * counts during the last interrupt.  The advantage of per interrupt
1153  * computation is faster updates and more accurate ITR for the current
1154  * traffic pattern.  Constants in this function were computed
1155  * based on theoretical maximum wire speed and thresholds were set based
1156  * on testing data as well as attempting to minimize response time
1157  * while increasing bulk throughput.
1158  **/
1159 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1160 			    struct i40e_ring_container *rc)
1161 {
1162 	unsigned int avg_wire_size, packets, bytes, itr;
1163 	unsigned long next_update = jiffies;
1164 
1165 	/* If we don't have any rings just leave ourselves set for maximum
1166 	 * possible latency so we take ourselves out of the equation.
1167 	 */
1168 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1169 		return;
1170 
1171 	/* For Rx we want to push the delay up and default to low latency.
1172 	 * for Tx we want to pull the delay down and default to high latency.
1173 	 */
1174 	itr = i40e_container_is_rx(q_vector, rc) ?
1175 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1176 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1177 
1178 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1179 	 * that either packets are coming in so slow there hasn't been
1180 	 * any work, or that there is so much work that NAPI is dealing
1181 	 * with interrupt moderation and we don't need to do anything.
1182 	 */
1183 	if (time_after(next_update, rc->next_update))
1184 		goto clear_counts;
1185 
1186 	/* If itr_countdown is set it means we programmed an ITR within
1187 	 * the last 4 interrupt cycles. This has a side effect of us
1188 	 * potentially firing an early interrupt. In order to work around
1189 	 * this we need to throw out any data received for a few
1190 	 * interrupts following the update.
1191 	 */
1192 	if (q_vector->itr_countdown) {
1193 		itr = rc->target_itr;
1194 		goto clear_counts;
1195 	}
1196 
1197 	packets = rc->total_packets;
1198 	bytes = rc->total_bytes;
1199 
1200 	if (i40e_container_is_rx(q_vector, rc)) {
1201 		/* If Rx there are 1 to 4 packets and bytes are less than
1202 		 * 9000 assume insufficient data to use bulk rate limiting
1203 		 * approach unless Tx is already in bulk rate limiting. We
1204 		 * are likely latency driven.
1205 		 */
1206 		if (packets && packets < 4 && bytes < 9000 &&
1207 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1208 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1209 			goto adjust_by_size;
1210 		}
1211 	} else if (packets < 4) {
1212 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213 		 * bulk mode and we are receiving 4 or fewer packets just
1214 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215 		 * that the Rx can relax.
1216 		 */
1217 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1218 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1219 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1220 			goto clear_counts;
1221 	} else if (packets > 32) {
1222 		/* If we have processed over 32 packets in a single interrupt
1223 		 * for Tx assume we need to switch over to "bulk" mode.
1224 		 */
1225 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1226 	}
1227 
1228 	/* We have no packets to actually measure against. This means
1229 	 * either one of the other queues on this vector is active or
1230 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1231 	 *
1232 	 * Between 4 and 56 we can assume that our current interrupt delay
1233 	 * is only slightly too low. As such we should increase it by a small
1234 	 * fixed amount.
1235 	 */
1236 	if (packets < 56) {
1237 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1238 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1239 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1240 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1241 		}
1242 		goto clear_counts;
1243 	}
1244 
1245 	if (packets <= 256) {
1246 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1247 		itr &= I40E_ITR_MASK;
1248 
1249 		/* Between 56 and 112 is our "goldilocks" zone where we are
1250 		 * working out "just right". Just report that our current
1251 		 * ITR is good for us.
1252 		 */
1253 		if (packets <= 112)
1254 			goto clear_counts;
1255 
1256 		/* If packet count is 128 or greater we are likely looking
1257 		 * at a slight overrun of the delay we want. Try halving
1258 		 * our delay to see if that will cut the number of packets
1259 		 * in half per interrupt.
1260 		 */
1261 		itr /= 2;
1262 		itr &= I40E_ITR_MASK;
1263 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1264 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1265 
1266 		goto clear_counts;
1267 	}
1268 
1269 	/* The paths below assume we are dealing with a bulk ITR since
1270 	 * number of packets is greater than 256. We are just going to have
1271 	 * to compute a value and try to bring the count under control,
1272 	 * though for smaller packet sizes there isn't much we can do as
1273 	 * NAPI polling will likely be kicking in sooner rather than later.
1274 	 */
1275 	itr = I40E_ITR_ADAPTIVE_BULK;
1276 
1277 adjust_by_size:
1278 	/* If packet counts are 256 or greater we can assume we have a gross
1279 	 * overestimation of what the rate should be. Instead of trying to fine
1280 	 * tune it just use the formula below to try and dial in an exact value
1281 	 * give the current packet size of the frame.
1282 	 */
1283 	avg_wire_size = bytes / packets;
1284 
1285 	/* The following is a crude approximation of:
1286 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1287 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1289 	 *
1290 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1292 	 * formula down to
1293 	 *
1294 	 *  (170 * (size + 24)) / (size + 640) = ITR
1295 	 *
1296 	 * We first do some math on the packet size and then finally bitshift
1297 	 * by 8 after rounding up. We also have to account for PCIe link speed
1298 	 * difference as ITR scales based on this.
1299 	 */
1300 	if (avg_wire_size <= 60) {
1301 		/* Start at 250k ints/sec */
1302 		avg_wire_size = 4096;
1303 	} else if (avg_wire_size <= 380) {
1304 		/* 250K ints/sec to 60K ints/sec */
1305 		avg_wire_size *= 40;
1306 		avg_wire_size += 1696;
1307 	} else if (avg_wire_size <= 1084) {
1308 		/* 60K ints/sec to 36K ints/sec */
1309 		avg_wire_size *= 15;
1310 		avg_wire_size += 11452;
1311 	} else if (avg_wire_size <= 1980) {
1312 		/* 36K ints/sec to 30K ints/sec */
1313 		avg_wire_size *= 5;
1314 		avg_wire_size += 22420;
1315 	} else {
1316 		/* plateau at a limit of 30K ints/sec */
1317 		avg_wire_size = 32256;
1318 	}
1319 
1320 	/* If we are in low latency mode halve our delay which doubles the
1321 	 * rate to somewhere between 100K to 16K ints/sec
1322 	 */
1323 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1324 		avg_wire_size /= 2;
1325 
1326 	/* Resultant value is 256 times larger than it needs to be. This
1327 	 * gives us room to adjust the value as needed to either increase
1328 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1329 	 *
1330 	 * Use addition as we have already recorded the new latency flag
1331 	 * for the ITR value.
1332 	 */
1333 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1334 	       I40E_ITR_ADAPTIVE_MIN_INC;
1335 
1336 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1337 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1338 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1339 	}
1340 
1341 clear_counts:
1342 	/* write back value */
1343 	rc->target_itr = itr;
1344 
1345 	/* next update should occur within next jiffy */
1346 	rc->next_update = next_update + 1;
1347 
1348 	rc->total_bytes = 0;
1349 	rc->total_packets = 0;
1350 }
1351 
1352 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1353 {
1354 	return &rx_ring->rx_bi[idx];
1355 }
1356 
1357 /**
1358  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359  * @rx_ring: rx descriptor ring to store buffers on
1360  * @old_buff: donor buffer to have page reused
1361  *
1362  * Synchronizes page for reuse by the adapter
1363  **/
1364 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1365 			       struct i40e_rx_buffer *old_buff)
1366 {
1367 	struct i40e_rx_buffer *new_buff;
1368 	u16 nta = rx_ring->next_to_alloc;
1369 
1370 	new_buff = i40e_rx_bi(rx_ring, nta);
1371 
1372 	/* update, and store next to alloc */
1373 	nta++;
1374 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1375 
1376 	/* transfer page from old buffer to new buffer */
1377 	new_buff->dma		= old_buff->dma;
1378 	new_buff->page		= old_buff->page;
1379 	new_buff->page_offset	= old_buff->page_offset;
1380 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1381 
1382 	/* clear contents of buffer_info */
1383 	old_buff->page = NULL;
1384 }
1385 
1386 /**
1387  * i40e_clean_programming_status - clean the programming status descriptor
1388  * @rx_ring: the rx ring that has this descriptor
1389  * @qword0_raw: qword0
1390  * @qword1: qword1 representing status_error_len in CPU ordering
1391  *
1392  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393  * status being successful or not and take actions accordingly. FCoE should
1394  * handle its context/filter programming/invalidation status and take actions.
1395  *
1396  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1397  **/
1398 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1399 				   u64 qword1)
1400 {
1401 	u8 id;
1402 
1403 	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1404 
1405 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1406 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1407 }
1408 
1409 /**
1410  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411  * @tx_ring: the tx ring to set up
1412  *
1413  * Return 0 on success, negative on error
1414  **/
1415 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1416 {
1417 	struct device *dev = tx_ring->dev;
1418 	int bi_size;
1419 
1420 	if (!dev)
1421 		return -ENOMEM;
1422 
1423 	/* warn if we are about to overwrite the pointer */
1424 	WARN_ON(tx_ring->tx_bi);
1425 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1426 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1427 	if (!tx_ring->tx_bi)
1428 		goto err;
1429 
1430 	u64_stats_init(&tx_ring->syncp);
1431 
1432 	/* round up to nearest 4K */
1433 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1434 	/* add u32 for head writeback, align after this takes care of
1435 	 * guaranteeing this is at least one cache line in size
1436 	 */
1437 	tx_ring->size += sizeof(u32);
1438 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1439 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1440 					   &tx_ring->dma, GFP_KERNEL);
1441 	if (!tx_ring->desc) {
1442 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1443 			 tx_ring->size);
1444 		goto err;
1445 	}
1446 
1447 	tx_ring->next_to_use = 0;
1448 	tx_ring->next_to_clean = 0;
1449 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1450 	return 0;
1451 
1452 err:
1453 	kfree(tx_ring->tx_bi);
1454 	tx_ring->tx_bi = NULL;
1455 	return -ENOMEM;
1456 }
1457 
1458 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1459 {
1460 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1461 }
1462 
1463 /**
1464  * i40e_clean_rx_ring - Free Rx buffers
1465  * @rx_ring: ring to be cleaned
1466  **/
1467 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1468 {
1469 	u16 i;
1470 
1471 	/* ring already cleared, nothing to do */
1472 	if (!rx_ring->rx_bi)
1473 		return;
1474 
1475 	if (rx_ring->xsk_pool) {
1476 		i40e_xsk_clean_rx_ring(rx_ring);
1477 		goto skip_free;
1478 	}
1479 
1480 	/* Free all the Rx ring sk_buffs */
1481 	for (i = 0; i < rx_ring->count; i++) {
1482 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1483 
1484 		if (!rx_bi->page)
1485 			continue;
1486 
1487 		/* Invalidate cache lines that may have been written to by
1488 		 * device so that we avoid corrupting memory.
1489 		 */
1490 		dma_sync_single_range_for_cpu(rx_ring->dev,
1491 					      rx_bi->dma,
1492 					      rx_bi->page_offset,
1493 					      rx_ring->rx_buf_len,
1494 					      DMA_FROM_DEVICE);
1495 
1496 		/* free resources associated with mapping */
1497 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1498 				     i40e_rx_pg_size(rx_ring),
1499 				     DMA_FROM_DEVICE,
1500 				     I40E_RX_DMA_ATTR);
1501 
1502 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1503 
1504 		rx_bi->page = NULL;
1505 		rx_bi->page_offset = 0;
1506 	}
1507 
1508 skip_free:
1509 	if (rx_ring->xsk_pool)
1510 		i40e_clear_rx_bi_zc(rx_ring);
1511 	else
1512 		i40e_clear_rx_bi(rx_ring);
1513 
1514 	/* Zero out the descriptor ring */
1515 	memset(rx_ring->desc, 0, rx_ring->size);
1516 
1517 	rx_ring->next_to_alloc = 0;
1518 	rx_ring->next_to_clean = 0;
1519 	rx_ring->next_to_process = 0;
1520 	rx_ring->next_to_use = 0;
1521 }
1522 
1523 /**
1524  * i40e_free_rx_resources - Free Rx resources
1525  * @rx_ring: ring to clean the resources from
1526  *
1527  * Free all receive software resources
1528  **/
1529 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1530 {
1531 	i40e_clean_rx_ring(rx_ring);
1532 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1533 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1534 	rx_ring->xdp_prog = NULL;
1535 	kfree(rx_ring->rx_bi);
1536 	rx_ring->rx_bi = NULL;
1537 
1538 	if (rx_ring->desc) {
1539 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1540 				  rx_ring->desc, rx_ring->dma);
1541 		rx_ring->desc = NULL;
1542 	}
1543 }
1544 
1545 /**
1546  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1548  *
1549  * Returns 0 on success, negative on failure
1550  **/
1551 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1552 {
1553 	struct device *dev = rx_ring->dev;
1554 
1555 	u64_stats_init(&rx_ring->syncp);
1556 
1557 	/* Round up to nearest 4K */
1558 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1559 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1560 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1561 					   &rx_ring->dma, GFP_KERNEL);
1562 
1563 	if (!rx_ring->desc) {
1564 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1565 			 rx_ring->size);
1566 		return -ENOMEM;
1567 	}
1568 
1569 	rx_ring->next_to_alloc = 0;
1570 	rx_ring->next_to_clean = 0;
1571 	rx_ring->next_to_process = 0;
1572 	rx_ring->next_to_use = 0;
1573 
1574 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1575 
1576 	rx_ring->rx_bi =
1577 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1578 	if (!rx_ring->rx_bi)
1579 		return -ENOMEM;
1580 
1581 	return 0;
1582 }
1583 
1584 /**
1585  * i40e_release_rx_desc - Store the new tail and head values
1586  * @rx_ring: ring to bump
1587  * @val: new head index
1588  **/
1589 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1590 {
1591 	rx_ring->next_to_use = val;
1592 
1593 	/* update next to alloc since we have filled the ring */
1594 	rx_ring->next_to_alloc = val;
1595 
1596 	/* Force memory writes to complete before letting h/w
1597 	 * know there are new descriptors to fetch.  (Only
1598 	 * applicable for weak-ordered memory model archs,
1599 	 * such as IA-64).
1600 	 */
1601 	wmb();
1602 	writel(val, rx_ring->tail);
1603 }
1604 
1605 #if (PAGE_SIZE >= 8192)
1606 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1607 					   unsigned int size)
1608 {
1609 	unsigned int truesize;
1610 
1611 	truesize = rx_ring->rx_offset ?
1612 		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1613 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1614 		SKB_DATA_ALIGN(size);
1615 	return truesize;
1616 }
1617 #endif
1618 
1619 /**
1620  * i40e_alloc_mapped_page - recycle or make a new page
1621  * @rx_ring: ring to use
1622  * @bi: rx_buffer struct to modify
1623  *
1624  * Returns true if the page was successfully allocated or
1625  * reused.
1626  **/
1627 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1628 				   struct i40e_rx_buffer *bi)
1629 {
1630 	struct page *page = bi->page;
1631 	dma_addr_t dma;
1632 
1633 	/* since we are recycling buffers we should seldom need to alloc */
1634 	if (likely(page)) {
1635 		rx_ring->rx_stats.page_reuse_count++;
1636 		return true;
1637 	}
1638 
1639 	/* alloc new page for storage */
1640 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1641 	if (unlikely(!page)) {
1642 		rx_ring->rx_stats.alloc_page_failed++;
1643 		return false;
1644 	}
1645 
1646 	rx_ring->rx_stats.page_alloc_count++;
1647 
1648 	/* map page for use */
1649 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1650 				 i40e_rx_pg_size(rx_ring),
1651 				 DMA_FROM_DEVICE,
1652 				 I40E_RX_DMA_ATTR);
1653 
1654 	/* if mapping failed free memory back to system since
1655 	 * there isn't much point in holding memory we can't use
1656 	 */
1657 	if (dma_mapping_error(rx_ring->dev, dma)) {
1658 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1659 		rx_ring->rx_stats.alloc_page_failed++;
1660 		return false;
1661 	}
1662 
1663 	bi->dma = dma;
1664 	bi->page = page;
1665 	bi->page_offset = rx_ring->rx_offset;
1666 	page_ref_add(page, USHRT_MAX - 1);
1667 	bi->pagecnt_bias = USHRT_MAX;
1668 
1669 	return true;
1670 }
1671 
1672 /**
1673  * i40e_alloc_rx_buffers - Replace used receive buffers
1674  * @rx_ring: ring to place buffers on
1675  * @cleaned_count: number of buffers to replace
1676  *
1677  * Returns false if all allocations were successful, true if any fail
1678  **/
1679 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1680 {
1681 	u16 ntu = rx_ring->next_to_use;
1682 	union i40e_rx_desc *rx_desc;
1683 	struct i40e_rx_buffer *bi;
1684 
1685 	/* do nothing if no valid netdev defined */
1686 	if (!rx_ring->netdev || !cleaned_count)
1687 		return false;
1688 
1689 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1690 	bi = i40e_rx_bi(rx_ring, ntu);
1691 
1692 	do {
1693 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1694 			goto no_buffers;
1695 
1696 		/* sync the buffer for use by the device */
1697 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1698 						 bi->page_offset,
1699 						 rx_ring->rx_buf_len,
1700 						 DMA_FROM_DEVICE);
1701 
1702 		/* Refresh the desc even if buffer_addrs didn't change
1703 		 * because each write-back erases this info.
1704 		 */
1705 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1706 
1707 		rx_desc++;
1708 		bi++;
1709 		ntu++;
1710 		if (unlikely(ntu == rx_ring->count)) {
1711 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1712 			bi = i40e_rx_bi(rx_ring, 0);
1713 			ntu = 0;
1714 		}
1715 
1716 		/* clear the status bits for the next_to_use descriptor */
1717 		rx_desc->wb.qword1.status_error_len = 0;
1718 
1719 		cleaned_count--;
1720 	} while (cleaned_count);
1721 
1722 	if (rx_ring->next_to_use != ntu)
1723 		i40e_release_rx_desc(rx_ring, ntu);
1724 
1725 	return false;
1726 
1727 no_buffers:
1728 	if (rx_ring->next_to_use != ntu)
1729 		i40e_release_rx_desc(rx_ring, ntu);
1730 
1731 	/* make sure to come back via polling to try again after
1732 	 * allocation failure
1733 	 */
1734 	return true;
1735 }
1736 
1737 /**
1738  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739  * @vsi: the VSI we care about
1740  * @skb: skb currently being received and modified
1741  * @rx_desc: the receive descriptor
1742  **/
1743 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1744 				    struct sk_buff *skb,
1745 				    union i40e_rx_desc *rx_desc)
1746 {
1747 	struct libeth_rx_pt decoded;
1748 	u32 rx_error, rx_status;
1749 	bool ipv4, ipv6;
1750 	u8 ptype;
1751 	u64 qword;
1752 
1753 	skb->ip_summed = CHECKSUM_NONE;
1754 
1755 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1756 	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1757 
1758 	decoded = libie_rx_pt_parse(ptype);
1759 	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1760 		return;
1761 
1762 	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1763 	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1764 
1765 	/* did the hardware decode the packet and checksum? */
1766 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1767 		return;
1768 
1769 	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1770 	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
1771 
1772 	if (ipv4 &&
1773 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1774 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1775 		goto checksum_fail;
1776 
1777 	/* likely incorrect csum if alternate IP extension headers found */
1778 	if (ipv6 &&
1779 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1780 		/* don't increment checksum err here, non-fatal err */
1781 		return;
1782 
1783 	/* there was some L4 error, count error and punt packet to the stack */
1784 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1785 		goto checksum_fail;
1786 
1787 	/* handle packets that were not able to be checksummed due
1788 	 * to arrival speed, in this case the stack can compute
1789 	 * the csum.
1790 	 */
1791 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1792 		return;
1793 
1794 	/* If there is an outer header present that might contain a checksum
1795 	 * we need to bump the checksum level by 1 to reflect the fact that
1796 	 * we are indicating we validated the inner checksum.
1797 	 */
1798 	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1799 		skb->csum_level = 1;
1800 
1801 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1802 	return;
1803 
1804 checksum_fail:
1805 	vsi->back->hw_csum_rx_error++;
1806 }
1807 
1808 /**
1809  * i40e_rx_hash - set the hash value in the skb
1810  * @ring: descriptor ring
1811  * @rx_desc: specific descriptor
1812  * @skb: skb currently being received and modified
1813  * @rx_ptype: Rx packet type
1814  **/
1815 static inline void i40e_rx_hash(struct i40e_ring *ring,
1816 				union i40e_rx_desc *rx_desc,
1817 				struct sk_buff *skb,
1818 				u8 rx_ptype)
1819 {
1820 	struct libeth_rx_pt decoded;
1821 	u32 hash;
1822 	const __le64 rss_mask =
1823 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1824 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1825 
1826 	decoded = libie_rx_pt_parse(rx_ptype);
1827 	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1828 		return;
1829 
1830 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1831 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1832 		libeth_rx_pt_set_hash(skb, hash, decoded);
1833 	}
1834 }
1835 
1836 /**
1837  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838  * @rx_ring: rx descriptor ring packet is being transacted on
1839  * @rx_desc: pointer to the EOP Rx descriptor
1840  * @skb: pointer to current skb being populated
1841  *
1842  * This function checks the ring, descriptor, and packet information in
1843  * order to populate the hash, checksum, VLAN, protocol, and
1844  * other fields within the skb.
1845  **/
1846 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1847 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1848 {
1849 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1850 	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1851 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1852 	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1853 	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1854 
1855 	if (unlikely(tsynvalid))
1856 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1857 
1858 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1859 
1860 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1861 
1862 	skb_record_rx_queue(skb, rx_ring->queue_index);
1863 
1864 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1865 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1866 
1867 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1868 				       le16_to_cpu(vlan_tag));
1869 	}
1870 
1871 	/* modifies the skb - consumes the enet header */
1872 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1873 }
1874 
1875 /**
1876  * i40e_cleanup_headers - Correct empty headers
1877  * @rx_ring: rx descriptor ring packet is being transacted on
1878  * @skb: pointer to current skb being fixed
1879  * @rx_desc: pointer to the EOP Rx descriptor
1880  *
1881  * In addition if skb is not at least 60 bytes we need to pad it so that
1882  * it is large enough to qualify as a valid Ethernet frame.
1883  *
1884  * Returns true if an error was encountered and skb was freed.
1885  **/
1886 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1887 				 union i40e_rx_desc *rx_desc)
1888 
1889 {
1890 	/* ERR_MASK will only have valid bits if EOP set, and
1891 	 * what we are doing here is actually checking
1892 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1893 	 * the error field
1894 	 */
1895 	if (unlikely(i40e_test_staterr(rx_desc,
1896 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1897 		dev_kfree_skb_any(skb);
1898 		return true;
1899 	}
1900 
1901 	/* if eth_skb_pad returns an error the skb was freed */
1902 	if (eth_skb_pad(skb))
1903 		return true;
1904 
1905 	return false;
1906 }
1907 
1908 /**
1909  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1910  * @rx_buffer: buffer containing the page
1911  * @rx_stats: rx stats structure for the rx ring
1912  *
1913  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914  * which will assign the current buffer to the buffer that next_to_alloc is
1915  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1916  * page freed.
1917  *
1918  * rx_stats will be updated to indicate whether the page was waived
1919  * or busy if it could not be reused.
1920  */
1921 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1922 				   struct i40e_rx_queue_stats *rx_stats)
1923 {
1924 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1925 	struct page *page = rx_buffer->page;
1926 
1927 	/* Is any reuse possible? */
1928 	if (!dev_page_is_reusable(page)) {
1929 		rx_stats->page_waive_count++;
1930 		return false;
1931 	}
1932 
1933 #if (PAGE_SIZE < 8192)
1934 	/* if we are only owner of page we can reuse it */
1935 	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1936 		rx_stats->page_busy_count++;
1937 		return false;
1938 	}
1939 #else
1940 #define I40E_LAST_OFFSET \
1941 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942 	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1943 		rx_stats->page_busy_count++;
1944 		return false;
1945 	}
1946 #endif
1947 
1948 	/* If we have drained the page fragment pool we need to update
1949 	 * the pagecnt_bias and page count so that we fully restock the
1950 	 * number of references the driver holds.
1951 	 */
1952 	if (unlikely(pagecnt_bias == 1)) {
1953 		page_ref_add(page, USHRT_MAX - 1);
1954 		rx_buffer->pagecnt_bias = USHRT_MAX;
1955 	}
1956 
1957 	return true;
1958 }
1959 
1960 /**
1961  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962  * @rx_buffer: Rx buffer to adjust
1963  * @truesize: Size of adjustment
1964  **/
1965 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1966 				unsigned int truesize)
1967 {
1968 #if (PAGE_SIZE < 8192)
1969 	rx_buffer->page_offset ^= truesize;
1970 #else
1971 	rx_buffer->page_offset += truesize;
1972 #endif
1973 }
1974 
1975 /**
1976  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977  * @rx_ring: rx descriptor ring to transact packets on
1978  * @size: size of buffer to add to skb
1979  *
1980  * This function will pull an Rx buffer from the ring and synchronize it
1981  * for use by the CPU.
1982  */
1983 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1984 						 const unsigned int size)
1985 {
1986 	struct i40e_rx_buffer *rx_buffer;
1987 
1988 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1989 	rx_buffer->page_count =
1990 #if (PAGE_SIZE < 8192)
1991 		page_count(rx_buffer->page);
1992 #else
1993 		0;
1994 #endif
1995 	prefetch_page_address(rx_buffer->page);
1996 
1997 	/* we are reusing so sync this buffer for CPU use */
1998 	dma_sync_single_range_for_cpu(rx_ring->dev,
1999 				      rx_buffer->dma,
2000 				      rx_buffer->page_offset,
2001 				      size,
2002 				      DMA_FROM_DEVICE);
2003 
2004 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2005 	rx_buffer->pagecnt_bias--;
2006 
2007 	return rx_buffer;
2008 }
2009 
2010 /**
2011  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012  * @rx_ring: rx descriptor ring to transact packets on
2013  * @rx_buffer: rx buffer to pull data from
2014  *
2015  * This function will clean up the contents of the rx_buffer.  It will
2016  * either recycle the buffer or unmap it and free the associated resources.
2017  */
2018 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2019 			       struct i40e_rx_buffer *rx_buffer)
2020 {
2021 	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2022 		/* hand second half of page back to the ring */
2023 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2024 	} else {
2025 		/* we are not reusing the buffer so unmap it */
2026 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2027 				     i40e_rx_pg_size(rx_ring),
2028 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2029 		__page_frag_cache_drain(rx_buffer->page,
2030 					rx_buffer->pagecnt_bias);
2031 		/* clear contents of buffer_info */
2032 		rx_buffer->page = NULL;
2033 	}
2034 }
2035 
2036 /**
2037  * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038  * @rx_ring: Rx descriptor ring to transact packets on
2039  * @xdp_res: Result of the XDP program
2040  * @xdp: xdp_buff pointing to the data
2041  **/
2042 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2043 				  struct xdp_buff *xdp)
2044 {
2045 	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2046 	u32 next = rx_ring->next_to_clean, i = 0;
2047 	struct i40e_rx_buffer *rx_buffer;
2048 
2049 	xdp->flags = 0;
2050 
2051 	while (1) {
2052 		rx_buffer = i40e_rx_bi(rx_ring, next);
2053 		if (++next == rx_ring->count)
2054 			next = 0;
2055 
2056 		if (!rx_buffer->page)
2057 			continue;
2058 
2059 		if (xdp_res != I40E_XDP_CONSUMED)
2060 			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2061 		else if (i++ <= nr_frags)
2062 			rx_buffer->pagecnt_bias++;
2063 
2064 		/* EOP buffer will be put in i40e_clean_rx_irq() */
2065 		if (next == rx_ring->next_to_process)
2066 			return;
2067 
2068 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2069 	}
2070 }
2071 
2072 /**
2073  * i40e_construct_skb - Allocate skb and populate it
2074  * @rx_ring: rx descriptor ring to transact packets on
2075  * @xdp: xdp_buff pointing to the data
2076  *
2077  * This function allocates an skb.  It then populates it with the page
2078  * data from the current receive descriptor, taking care to set up the
2079  * skb correctly.
2080  */
2081 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2082 					  struct xdp_buff *xdp)
2083 {
2084 	unsigned int size = xdp->data_end - xdp->data;
2085 	struct i40e_rx_buffer *rx_buffer;
2086 	struct skb_shared_info *sinfo;
2087 	unsigned int headlen;
2088 	struct sk_buff *skb;
2089 	u32 nr_frags = 0;
2090 
2091 	/* prefetch first cache line of first page */
2092 	net_prefetch(xdp->data);
2093 
2094 	/* Note, we get here by enabling legacy-rx via:
2095 	 *
2096 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2097 	 *
2098 	 * In this mode, we currently get 0 extra XDP headroom as
2099 	 * opposed to having legacy-rx off, where we process XDP
2100 	 * packets going to stack via i40e_build_skb(). The latter
2101 	 * provides us currently with 192 bytes of headroom.
2102 	 *
2103 	 * For i40e_construct_skb() mode it means that the
2104 	 * xdp->data_meta will always point to xdp->data, since
2105 	 * the helper cannot expand the head. Should this ever
2106 	 * change in future for legacy-rx mode on, then lets also
2107 	 * add xdp->data_meta handling here.
2108 	 */
2109 
2110 	/* allocate a skb to store the frags */
2111 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2112 	if (unlikely(!skb))
2113 		return NULL;
2114 
2115 	/* Determine available headroom for copy */
2116 	headlen = size;
2117 	if (headlen > I40E_RX_HDR_SIZE)
2118 		headlen = eth_get_headlen(skb->dev, xdp->data,
2119 					  I40E_RX_HDR_SIZE);
2120 
2121 	/* align pull length to size of long to optimize memcpy performance */
2122 	memcpy(__skb_put(skb, headlen), xdp->data,
2123 	       ALIGN(headlen, sizeof(long)));
2124 
2125 	if (unlikely(xdp_buff_has_frags(xdp))) {
2126 		sinfo = xdp_get_shared_info_from_buff(xdp);
2127 		nr_frags = sinfo->nr_frags;
2128 	}
2129 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2130 	/* update all of the pointers */
2131 	size -= headlen;
2132 	if (size) {
2133 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2134 			dev_kfree_skb(skb);
2135 			return NULL;
2136 		}
2137 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2138 				rx_buffer->page_offset + headlen,
2139 				size, xdp->frame_sz);
2140 		/* buffer is used by skb, update page_offset */
2141 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2142 	} else {
2143 		/* buffer is unused, reset bias back to rx_buffer */
2144 		rx_buffer->pagecnt_bias++;
2145 	}
2146 
2147 	if (unlikely(xdp_buff_has_frags(xdp))) {
2148 		struct skb_shared_info *skinfo = skb_shinfo(skb);
2149 
2150 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2151 		       sizeof(skb_frag_t) * nr_frags);
2152 
2153 		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2154 					   sinfo->xdp_frags_size,
2155 					   nr_frags * xdp->frame_sz,
2156 					   xdp_buff_is_frag_pfmemalloc(xdp));
2157 
2158 		/* First buffer has already been processed, so bump ntc */
2159 		if (++rx_ring->next_to_clean == rx_ring->count)
2160 			rx_ring->next_to_clean = 0;
2161 
2162 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2163 	}
2164 
2165 	return skb;
2166 }
2167 
2168 /**
2169  * i40e_build_skb - Build skb around an existing buffer
2170  * @rx_ring: Rx descriptor ring to transact packets on
2171  * @xdp: xdp_buff pointing to the data
2172  *
2173  * This function builds an skb around an existing Rx buffer, taking care
2174  * to set up the skb correctly and avoid any memcpy overhead.
2175  */
2176 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2177 				      struct xdp_buff *xdp)
2178 {
2179 	unsigned int metasize = xdp->data - xdp->data_meta;
2180 	struct skb_shared_info *sinfo;
2181 	struct sk_buff *skb;
2182 	u32 nr_frags;
2183 
2184 	/* Prefetch first cache line of first page. If xdp->data_meta
2185 	 * is unused, this points exactly as xdp->data, otherwise we
2186 	 * likely have a consumer accessing first few bytes of meta
2187 	 * data, and then actual data.
2188 	 */
2189 	net_prefetch(xdp->data_meta);
2190 
2191 	if (unlikely(xdp_buff_has_frags(xdp))) {
2192 		sinfo = xdp_get_shared_info_from_buff(xdp);
2193 		nr_frags = sinfo->nr_frags;
2194 	}
2195 
2196 	/* build an skb around the page buffer */
2197 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2198 	if (unlikely(!skb))
2199 		return NULL;
2200 
2201 	/* update pointers within the skb to store the data */
2202 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2203 	__skb_put(skb, xdp->data_end - xdp->data);
2204 	if (metasize)
2205 		skb_metadata_set(skb, metasize);
2206 
2207 	if (unlikely(xdp_buff_has_frags(xdp))) {
2208 		xdp_update_skb_shared_info(skb, nr_frags,
2209 					   sinfo->xdp_frags_size,
2210 					   nr_frags * xdp->frame_sz,
2211 					   xdp_buff_is_frag_pfmemalloc(xdp));
2212 
2213 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214 	} else {
2215 		struct i40e_rx_buffer *rx_buffer;
2216 
2217 		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218 		/* buffer is used by skb, update page_offset */
2219 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2220 	}
2221 
2222 	return skb;
2223 }
2224 
2225 /**
2226  * i40e_is_non_eop - process handling of non-EOP buffers
2227  * @rx_ring: Rx ring being processed
2228  * @rx_desc: Rx descriptor for current buffer
2229  *
2230  * If the buffer is an EOP buffer, this function exits returning false,
2231  * otherwise return true indicating that this is in fact a non-EOP buffer.
2232  */
2233 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234 		     union i40e_rx_desc *rx_desc)
2235 {
2236 	/* if we are the last buffer then there is nothing else to do */
2237 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239 		return false;
2240 
2241 	rx_ring->rx_stats.non_eop_descs++;
2242 
2243 	return true;
2244 }
2245 
2246 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247 			      struct i40e_ring *xdp_ring);
2248 
2249 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250 {
2251 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252 
2253 	if (unlikely(!xdpf))
2254 		return I40E_XDP_CONSUMED;
2255 
2256 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257 }
2258 
2259 /**
2260  * i40e_run_xdp - run an XDP program
2261  * @rx_ring: Rx ring being processed
2262  * @xdp: XDP buffer containing the frame
2263  * @xdp_prog: XDP program to run
2264  **/
2265 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2266 {
2267 	int err, result = I40E_XDP_PASS;
2268 	struct i40e_ring *xdp_ring;
2269 	u32 act;
2270 
2271 	if (!xdp_prog)
2272 		goto xdp_out;
2273 
2274 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275 
2276 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2277 	switch (act) {
2278 	case XDP_PASS:
2279 		break;
2280 	case XDP_TX:
2281 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283 		if (result == I40E_XDP_CONSUMED)
2284 			goto out_failure;
2285 		break;
2286 	case XDP_REDIRECT:
2287 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288 		if (err)
2289 			goto out_failure;
2290 		result = I40E_XDP_REDIR;
2291 		break;
2292 	default:
2293 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294 		fallthrough;
2295 	case XDP_ABORTED:
2296 out_failure:
2297 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298 		fallthrough; /* handle aborts by dropping packet */
2299 	case XDP_DROP:
2300 		result = I40E_XDP_CONSUMED;
2301 		break;
2302 	}
2303 xdp_out:
2304 	return result;
2305 }
2306 
2307 /**
2308  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309  * @xdp_ring: XDP Tx ring
2310  *
2311  * This function updates the XDP Tx ring tail register.
2312  **/
2313 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314 {
2315 	/* Force memory writes to complete before letting h/w
2316 	 * know there are new descriptors to fetch.
2317 	 */
2318 	wmb();
2319 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320 }
2321 
2322 /**
2323  * i40e_update_rx_stats - Update Rx ring statistics
2324  * @rx_ring: rx descriptor ring
2325  * @total_rx_bytes: number of bytes received
2326  * @total_rx_packets: number of packets received
2327  *
2328  * This function updates the Rx ring statistics.
2329  **/
2330 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331 			  unsigned int total_rx_bytes,
2332 			  unsigned int total_rx_packets)
2333 {
2334 	u64_stats_update_begin(&rx_ring->syncp);
2335 	rx_ring->stats.packets += total_rx_packets;
2336 	rx_ring->stats.bytes += total_rx_bytes;
2337 	u64_stats_update_end(&rx_ring->syncp);
2338 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340 }
2341 
2342 /**
2343  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344  * @rx_ring: Rx ring
2345  * @xdp_res: Result of the receive batch
2346  *
2347  * This function bumps XDP Tx tail and/or flush redirect map, and
2348  * should be called when a batch of packets has been processed in the
2349  * napi loop.
2350  **/
2351 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2352 {
2353 	if (xdp_res & I40E_XDP_REDIR)
2354 		xdp_do_flush();
2355 
2356 	if (xdp_res & I40E_XDP_TX) {
2357 		struct i40e_ring *xdp_ring =
2358 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359 
2360 		i40e_xdp_ring_update_tail(xdp_ring);
2361 	}
2362 }
2363 
2364 /**
2365  * i40e_inc_ntp: Advance the next_to_process index
2366  * @rx_ring: Rx ring
2367  **/
2368 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369 {
2370 	u32 ntp = rx_ring->next_to_process + 1;
2371 
2372 	ntp = (ntp < rx_ring->count) ? ntp : 0;
2373 	rx_ring->next_to_process = ntp;
2374 	prefetch(I40E_RX_DESC(rx_ring, ntp));
2375 }
2376 
2377 /**
2378  * i40e_add_xdp_frag: Add a frag to xdp_buff
2379  * @xdp: xdp_buff pointing to the data
2380  * @nr_frags: return number of buffers for the packet
2381  * @rx_buffer: rx_buffer holding data of the current frag
2382  * @size: size of data of current frag
2383  */
2384 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385 			     struct i40e_rx_buffer *rx_buffer, u32 size)
2386 {
2387 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388 
2389 	if (!xdp_buff_has_frags(xdp)) {
2390 		sinfo->nr_frags = 0;
2391 		sinfo->xdp_frags_size = 0;
2392 		xdp_buff_set_frags_flag(xdp);
2393 	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394 		/* Overflowing packet: All frags need to be dropped */
2395 		return -ENOMEM;
2396 	}
2397 
2398 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399 				   rx_buffer->page_offset, size);
2400 
2401 	sinfo->xdp_frags_size += size;
2402 
2403 	if (page_is_pfmemalloc(rx_buffer->page))
2404 		xdp_buff_set_frag_pfmemalloc(xdp);
2405 	*nr_frags = sinfo->nr_frags;
2406 
2407 	return 0;
2408 }
2409 
2410 /**
2411  * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412  * @rx_ring: rx descriptor ring to transact packets on
2413  * @xdp: xdp_buff pointing to the data
2414  * @rx_buffer: rx_buffer of eop desc
2415  */
2416 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417 				  struct xdp_buff *xdp,
2418 				  struct i40e_rx_buffer *rx_buffer)
2419 {
2420 	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421 	i40e_put_rx_buffer(rx_ring, rx_buffer);
2422 	rx_ring->next_to_clean = rx_ring->next_to_process;
2423 	xdp->data = NULL;
2424 }
2425 
2426 /**
2427  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428  * @rx_ring: rx descriptor ring to transact packets on
2429  * @budget: Total limit on number of packets to process
2430  * @rx_cleaned: Out parameter of the number of packets processed
2431  *
2432  * This function provides a "bounce buffer" approach to Rx interrupt
2433  * processing.  The advantage to this is that on systems that have
2434  * expensive overhead for IOMMU access this provides a means of avoiding
2435  * it by maintaining the mapping of the page to the system.
2436  *
2437  * Returns amount of work completed
2438  **/
2439 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440 			     unsigned int *rx_cleaned)
2441 {
2442 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2443 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444 	u16 clean_threshold = rx_ring->count / 2;
2445 	unsigned int offset = rx_ring->rx_offset;
2446 	struct xdp_buff *xdp = &rx_ring->xdp;
2447 	unsigned int xdp_xmit = 0;
2448 	struct bpf_prog *xdp_prog;
2449 	bool failure = false;
2450 	int xdp_res = 0;
2451 
2452 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2453 
2454 	while (likely(total_rx_packets < (unsigned int)budget)) {
2455 		u16 ntp = rx_ring->next_to_process;
2456 		struct i40e_rx_buffer *rx_buffer;
2457 		union i40e_rx_desc *rx_desc;
2458 		struct sk_buff *skb;
2459 		unsigned int size;
2460 		u32 nfrags = 0;
2461 		bool neop;
2462 		u64 qword;
2463 
2464 		/* return some buffers to hardware, one at a time is too slow */
2465 		if (cleaned_count >= clean_threshold) {
2466 			failure = failure ||
2467 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468 			cleaned_count = 0;
2469 		}
2470 
2471 		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472 
2473 		/* status_error_len will always be zero for unused descriptors
2474 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2475 		 * which is always zero because packet split isn't used, if the
2476 		 * hardware wrote DD then the length will be non-zero
2477 		 */
2478 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479 
2480 		/* This memory barrier is needed to keep us from reading
2481 		 * any other fields out of the rx_desc until we have
2482 		 * verified the descriptor has been written back.
2483 		 */
2484 		dma_rmb();
2485 
2486 		if (i40e_rx_is_programming_status(qword)) {
2487 			i40e_clean_programming_status(rx_ring,
2488 						      rx_desc->raw.qword[0],
2489 						      qword);
2490 			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491 			i40e_inc_ntp(rx_ring);
2492 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2493 			/* Update ntc and bump cleaned count if not in the
2494 			 * middle of mb packet.
2495 			 */
2496 			if (rx_ring->next_to_clean == ntp) {
2497 				rx_ring->next_to_clean =
2498 					rx_ring->next_to_process;
2499 				cleaned_count++;
2500 			}
2501 			continue;
2502 		}
2503 
2504 		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2505 		if (!size)
2506 			break;
2507 
2508 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509 		/* retrieve a buffer from the ring */
2510 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511 
2512 		neop = i40e_is_non_eop(rx_ring, rx_desc);
2513 		i40e_inc_ntp(rx_ring);
2514 
2515 		if (!xdp->data) {
2516 			unsigned char *hard_start;
2517 
2518 			hard_start = page_address(rx_buffer->page) +
2519 				     rx_buffer->page_offset - offset;
2520 			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521 #if (PAGE_SIZE > 4096)
2522 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2523 			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524 #endif
2525 		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526 			   !neop) {
2527 			/* Overflowing packet: Drop all frags on EOP */
2528 			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529 			break;
2530 		}
2531 
2532 		if (neop)
2533 			continue;
2534 
2535 		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2536 
2537 		if (xdp_res) {
2538 			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539 
2540 			if (unlikely(xdp_buff_has_frags(xdp))) {
2541 				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542 				size = xdp_get_buff_len(xdp);
2543 			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544 				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545 			} else {
2546 				rx_buffer->pagecnt_bias++;
2547 			}
2548 			total_rx_bytes += size;
2549 		} else {
2550 			if (ring_uses_build_skb(rx_ring))
2551 				skb = i40e_build_skb(rx_ring, xdp);
2552 			else
2553 				skb = i40e_construct_skb(rx_ring, xdp);
2554 
2555 			/* drop if we failed to retrieve a buffer */
2556 			if (!skb) {
2557 				rx_ring->rx_stats.alloc_buff_failed++;
2558 				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559 				break;
2560 			}
2561 
2562 			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563 				goto process_next;
2564 
2565 			/* probably a little skewed due to removing CRC */
2566 			total_rx_bytes += skb->len;
2567 
2568 			/* populate checksum, VLAN, and protocol */
2569 			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2570 
2571 			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572 			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2573 		}
2574 
2575 		/* update budget accounting */
2576 		total_rx_packets++;
2577 process_next:
2578 		cleaned_count += nfrags + 1;
2579 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2580 		rx_ring->next_to_clean = rx_ring->next_to_process;
2581 
2582 		xdp->data = NULL;
2583 	}
2584 
2585 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2586 
2587 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2588 
2589 	*rx_cleaned = total_rx_packets;
2590 
2591 	/* guarantee a trip back through this routine if there was a failure */
2592 	return failure ? budget : (int)total_rx_packets;
2593 }
2594 
2595 /**
2596  * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597  * @itr_idx: interrupt throttling index
2598  * @interval: interrupt throttling interval value in usecs
2599  * @force_swint: force software interrupt
2600  *
2601  * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602  * is used to update interrupt throttling interval for specified ITR index
2603  * and optionally enforces a software interrupt. If the @itr_idx is equal
2604  * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605  * parameter is taken into account. If the interval change and enforced
2606  * software interrupt are not requested then the built value just enables
2607  * appropriate vector interrupt.
2608  **/
2609 static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610 			     bool force_swint)
2611 {
2612 	u32 val;
2613 
2614 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2615 	 * points out doing so is "meaningless since it was already
2616 	 * auto-cleared". The auto-clearing happens when the interrupt is
2617 	 * asserted.
2618 	 *
2619 	 * Hardware errata 28 for also indicates that writing to a
2620 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621 	 * an event in the PBA anyway so we need to rely on the automask
2622 	 * to hold pending events for us until the interrupt is re-enabled
2623 	 *
2624 	 * We have to shift the given value as it is reported in microseconds
2625 	 * and the register value is recorded in 2 microsecond units.
2626 	 */
2627 	interval >>= 1;
2628 
2629 	/* 1. Enable vector interrupt
2630 	 * 2. Update the interval for the specified ITR index
2631 	 *    (I40E_ITR_NONE in the register is used to indicate that
2632 	 *     no interval update is requested)
2633 	 */
2634 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635 	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636 	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637 
2638 	/* 3. Enforce software interrupt trigger if requested
2639 	 *    (These software interrupts rate is limited by ITR2 that is
2640 	 *     set to 20K interrupts per second)
2641 	 */
2642 	if (force_swint)
2643 		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644 		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645 		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646 				  I40E_SW_ITR);
2647 
2648 	return val;
2649 }
2650 
2651 /* The act of updating the ITR will cause it to immediately trigger. In order
2652  * to prevent this from throwing off adaptive update statistics we defer the
2653  * update so that it can only happen so often. So after either Tx or Rx are
2654  * updated we make the adaptive scheme wait until either the ITR completely
2655  * expires via the next_update expiration or we have been through at least
2656  * 3 interrupts.
2657  */
2658 #define ITR_COUNTDOWN_START 3
2659 
2660 /**
2661  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662  * @vsi: the VSI we care about
2663  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664  *
2665  **/
2666 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667 					  struct i40e_q_vector *q_vector)
2668 {
2669 	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670 	struct i40e_hw *hw = &vsi->back->hw;
2671 	u16 interval = 0;
2672 	u32 itr_val;
2673 
2674 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2675 	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676 		i40e_irq_dynamic_enable_icr0(vsi->back);
2677 		return;
2678 	}
2679 
2680 	/* These will do nothing if dynamic updates are not enabled */
2681 	i40e_update_itr(q_vector, &q_vector->tx);
2682 	i40e_update_itr(q_vector, &q_vector->rx);
2683 
2684 	/* This block of logic allows us to get away with only updating
2685 	 * one ITR value with each interrupt. The idea is to perform a
2686 	 * pseudo-lazy update with the following criteria.
2687 	 *
2688 	 * 1. Rx is given higher priority than Tx if both are in same state
2689 	 * 2. If we must reduce an ITR that is given highest priority.
2690 	 * 3. We then give priority to increasing ITR based on amount.
2691 	 */
2692 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693 		/* Rx ITR needs to be reduced, this is highest priority */
2694 		itr_idx = I40E_RX_ITR;
2695 		interval = q_vector->rx.target_itr;
2696 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2697 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701 		/* Tx ITR needs to be reduced, this is second priority
2702 		 * Tx ITR needs to be increased more than Rx, fourth priority
2703 		 */
2704 		itr_idx = I40E_TX_ITR;
2705 		interval = q_vector->tx.target_itr;
2706 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2707 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709 		/* Rx ITR needs to be increased, third priority */
2710 		itr_idx = I40E_RX_ITR;
2711 		interval = q_vector->rx.target_itr;
2712 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2713 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714 	} else {
2715 		/* No ITR update, lowest priority */
2716 		if (q_vector->itr_countdown)
2717 			q_vector->itr_countdown--;
2718 	}
2719 
2720 	/* Do not update interrupt control register if VSI is down */
2721 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722 		return;
2723 
2724 	/* Update ITR interval if necessary and enforce software interrupt
2725 	 * if we are exiting busy poll.
2726 	 */
2727 	if (q_vector->in_busy_poll) {
2728 		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729 		q_vector->in_busy_poll = false;
2730 	} else {
2731 		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2732 	}
2733 	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2734 }
2735 
2736 /**
2737  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738  * @napi: napi struct with our devices info in it
2739  * @budget: amount of work driver is allowed to do this pass, in packets
2740  *
2741  * This function will clean all queues associated with a q_vector.
2742  *
2743  * Returns the amount of work done
2744  **/
2745 int i40e_napi_poll(struct napi_struct *napi, int budget)
2746 {
2747 	struct i40e_q_vector *q_vector =
2748 			       container_of(napi, struct i40e_q_vector, napi);
2749 	struct i40e_vsi *vsi = q_vector->vsi;
2750 	struct i40e_ring *ring;
2751 	bool tx_clean_complete = true;
2752 	bool rx_clean_complete = true;
2753 	unsigned int tx_cleaned = 0;
2754 	unsigned int rx_cleaned = 0;
2755 	bool clean_complete = true;
2756 	bool arm_wb = false;
2757 	int budget_per_ring;
2758 	int work_done = 0;
2759 
2760 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761 		napi_complete(napi);
2762 		return 0;
2763 	}
2764 
2765 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767 	 */
2768 	i40e_for_each_ring(ring, q_vector->tx) {
2769 		bool wd = ring->xsk_pool ?
2770 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771 			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772 
2773 		if (!wd) {
2774 			clean_complete = tx_clean_complete = false;
2775 			continue;
2776 		}
2777 		arm_wb |= ring->arm_wb;
2778 		ring->arm_wb = false;
2779 	}
2780 
2781 	/* Handle case where we are called by netpoll with a budget of 0 */
2782 	if (budget <= 0)
2783 		goto tx_only;
2784 
2785 	/* normally we have 1 Rx ring per q_vector */
2786 	if (unlikely(q_vector->num_ringpairs > 1))
2787 		/* We attempt to distribute budget to each Rx queue fairly, but
2788 		 * don't allow the budget to go below 1 because that would exit
2789 		 * polling early.
2790 		 */
2791 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792 	else
2793 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794 		budget_per_ring = budget;
2795 
2796 	i40e_for_each_ring(ring, q_vector->rx) {
2797 		int cleaned = ring->xsk_pool ?
2798 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799 			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800 
2801 		work_done += cleaned;
2802 		/* if we clean as many as budgeted, we must not be done */
2803 		if (cleaned >= budget_per_ring)
2804 			clean_complete = rx_clean_complete = false;
2805 	}
2806 
2807 	if (!i40e_enabled_xdp_vsi(vsi))
2808 		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809 				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810 
2811 	/* If work not completed, return budget and polling will return */
2812 	if (!clean_complete) {
2813 		int cpu_id = smp_processor_id();
2814 
2815 		/* It is possible that the interrupt affinity has changed but,
2816 		 * if the cpu is pegged at 100%, polling will never exit while
2817 		 * traffic continues and the interrupt will be stuck on this
2818 		 * cpu.  We check to make sure affinity is correct before we
2819 		 * continue to poll, otherwise we must stop polling so the
2820 		 * interrupt can move to the correct cpu.
2821 		 */
2822 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823 			/* Tell napi that we are done polling */
2824 			napi_complete_done(napi, work_done);
2825 
2826 			/* Force an interrupt */
2827 			i40e_force_wb(vsi, q_vector);
2828 
2829 			/* Return budget-1 so that polling stops */
2830 			return budget - 1;
2831 		}
2832 tx_only:
2833 		if (arm_wb) {
2834 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835 			i40e_enable_wb_on_itr(vsi, q_vector);
2836 		}
2837 		return budget;
2838 	}
2839 
2840 	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841 		q_vector->arm_wb_state = false;
2842 
2843 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844 	 * poll us due to busy-polling
2845 	 */
2846 	if (likely(napi_complete_done(napi, work_done)))
2847 		i40e_update_enable_itr(vsi, q_vector);
2848 	else
2849 		q_vector->in_busy_poll = true;
2850 
2851 	return min(work_done, budget - 1);
2852 }
2853 
2854 /**
2855  * i40e_atr - Add a Flow Director ATR filter
2856  * @tx_ring:  ring to add programming descriptor to
2857  * @skb:      send buffer
2858  * @tx_flags: send tx flags
2859  **/
2860 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861 		     u32 tx_flags)
2862 {
2863 	struct i40e_filter_program_desc *fdir_desc;
2864 	struct i40e_pf *pf = tx_ring->vsi->back;
2865 	union {
2866 		unsigned char *network;
2867 		struct iphdr *ipv4;
2868 		struct ipv6hdr *ipv6;
2869 	} hdr;
2870 	struct tcphdr *th;
2871 	unsigned int hlen;
2872 	u32 flex_ptype, dtype_cmd;
2873 	int l4_proto;
2874 	u16 i;
2875 
2876 	/* make sure ATR is enabled */
2877 	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878 		return;
2879 
2880 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881 		return;
2882 
2883 	/* if sampling is disabled do nothing */
2884 	if (!tx_ring->atr_sample_rate)
2885 		return;
2886 
2887 	/* Currently only IPv4/IPv6 with TCP is supported */
2888 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889 		return;
2890 
2891 	/* snag network header to get L4 type and address */
2892 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893 		      skb_inner_network_header(skb) : skb_network_header(skb);
2894 
2895 	/* Note: tx_flags gets modified to reflect inner protocols in
2896 	 * tx_enable_csum function if encap is enabled.
2897 	 */
2898 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899 		/* access ihl as u8 to avoid unaligned access on ia64 */
2900 		hlen = (hdr.network[0] & 0x0F) << 2;
2901 		l4_proto = hdr.ipv4->protocol;
2902 	} else {
2903 		/* find the start of the innermost ipv6 header */
2904 		unsigned int inner_hlen = hdr.network - skb->data;
2905 		unsigned int h_offset = inner_hlen;
2906 
2907 		/* this function updates h_offset to the end of the header */
2908 		l4_proto =
2909 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910 		/* hlen will contain our best estimate of the tcp header */
2911 		hlen = h_offset - inner_hlen;
2912 	}
2913 
2914 	if (l4_proto != IPPROTO_TCP)
2915 		return;
2916 
2917 	th = (struct tcphdr *)(hdr.network + hlen);
2918 
2919 	/* Due to lack of space, no more new filters can be programmed */
2920 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921 		return;
2922 	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2923 		/* HW ATR eviction will take care of removing filters on FIN
2924 		 * and RST packets.
2925 		 */
2926 		if (th->fin || th->rst)
2927 			return;
2928 	}
2929 
2930 	tx_ring->atr_count++;
2931 
2932 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2933 	if (!th->fin &&
2934 	    !th->syn &&
2935 	    !th->rst &&
2936 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937 		return;
2938 
2939 	tx_ring->atr_count = 0;
2940 
2941 	/* grab the next descriptor */
2942 	i = tx_ring->next_to_use;
2943 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944 
2945 	i++;
2946 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947 
2948 	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949 				tx_ring->queue_index);
2950 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955 
2956 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957 
2958 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959 
2960 	dtype_cmd |= (th->fin || th->rst) ?
2961 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965 
2966 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968 
2969 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971 
2972 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974 		dtype_cmd |=
2975 			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976 				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2977 	else
2978 		dtype_cmd |=
2979 			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980 				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2981 
2982 	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2983 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984 
2985 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986 	fdir_desc->rsvd = cpu_to_le32(0);
2987 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988 	fdir_desc->fd_id = cpu_to_le32(0);
2989 }
2990 
2991 /**
2992  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993  * @skb:     send buffer
2994  * @tx_ring: ring to send buffer on
2995  * @flags:   the tx flags to be set
2996  *
2997  * Checks the skb and set up correspondingly several generic transmit flags
2998  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999  *
3000  * Returns error code indicate the frame should be dropped upon error and the
3001  * otherwise  returns 0 to indicate the flags has been set properly.
3002  **/
3003 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004 					     struct i40e_ring *tx_ring,
3005 					     u32 *flags)
3006 {
3007 	__be16 protocol = skb->protocol;
3008 	u32  tx_flags = 0;
3009 
3010 	if (protocol == htons(ETH_P_8021Q) &&
3011 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012 		/* When HW VLAN acceleration is turned off by the user the
3013 		 * stack sets the protocol to 8021q so that the driver
3014 		 * can take any steps required to support the SW only
3015 		 * VLAN handling.  In our case the driver doesn't need
3016 		 * to take any further steps so just set the protocol
3017 		 * to the encapsulated ethertype.
3018 		 */
3019 		skb->protocol = vlan_get_protocol(skb);
3020 		goto out;
3021 	}
3022 
3023 	/* if we have a HW VLAN tag being added, default to the HW one */
3024 	if (skb_vlan_tag_present(skb)) {
3025 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027 	/* else if it is a SW VLAN, check the next protocol and store the tag */
3028 	} else if (protocol == htons(ETH_P_8021Q)) {
3029 		struct vlan_hdr *vhdr, _vhdr;
3030 
3031 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032 		if (!vhdr)
3033 			return -EINVAL;
3034 
3035 		protocol = vhdr->h_vlan_encapsulated_proto;
3036 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038 	}
3039 
3040 	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041 		goto out;
3042 
3043 	/* Insert 802.1p priority into VLAN header */
3044 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045 	    (skb->priority != TC_PRIO_CONTROL)) {
3046 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047 		tx_flags |= (skb->priority & 0x7) <<
3048 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050 			struct vlan_ethhdr *vhdr;
3051 			int rc;
3052 
3053 			rc = skb_cow_head(skb, 0);
3054 			if (rc < 0)
3055 				return rc;
3056 			vhdr = skb_vlan_eth_hdr(skb);
3057 			vhdr->h_vlan_TCI = htons(tx_flags >>
3058 						 I40E_TX_FLAGS_VLAN_SHIFT);
3059 		} else {
3060 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061 		}
3062 	}
3063 
3064 out:
3065 	*flags = tx_flags;
3066 	return 0;
3067 }
3068 
3069 /**
3070  * i40e_tso - set up the tso context descriptor
3071  * @first:    pointer to first Tx buffer for xmit
3072  * @hdr_len:  ptr to the size of the packet header
3073  * @cd_type_cmd_tso_mss: Quad Word 1
3074  *
3075  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076  **/
3077 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078 		    u64 *cd_type_cmd_tso_mss)
3079 {
3080 	struct sk_buff *skb = first->skb;
3081 	u64 cd_cmd, cd_tso_len, cd_mss;
3082 	__be16 protocol;
3083 	union {
3084 		struct iphdr *v4;
3085 		struct ipv6hdr *v6;
3086 		unsigned char *hdr;
3087 	} ip;
3088 	union {
3089 		struct tcphdr *tcp;
3090 		struct udphdr *udp;
3091 		unsigned char *hdr;
3092 	} l4;
3093 	u32 paylen, l4_offset;
3094 	u16 gso_size;
3095 	int err;
3096 
3097 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3098 		return 0;
3099 
3100 	if (!skb_is_gso(skb))
3101 		return 0;
3102 
3103 	err = skb_cow_head(skb, 0);
3104 	if (err < 0)
3105 		return err;
3106 
3107 	protocol = vlan_get_protocol(skb);
3108 
3109 	if (eth_p_mpls(protocol))
3110 		ip.hdr = skb_inner_network_header(skb);
3111 	else
3112 		ip.hdr = skb_network_header(skb);
3113 	l4.hdr = skb_checksum_start(skb);
3114 
3115 	/* initialize outer IP header fields */
3116 	if (ip.v4->version == 4) {
3117 		ip.v4->tot_len = 0;
3118 		ip.v4->check = 0;
3119 
3120 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3121 	} else {
3122 		ip.v6->payload_len = 0;
3123 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3124 	}
3125 
3126 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127 					 SKB_GSO_GRE_CSUM |
3128 					 SKB_GSO_IPXIP4 |
3129 					 SKB_GSO_IPXIP6 |
3130 					 SKB_GSO_UDP_TUNNEL |
3131 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134 			l4.udp->len = 0;
3135 
3136 			/* determine offset of outer transport header */
3137 			l4_offset = l4.hdr - skb->data;
3138 
3139 			/* remove payload length from outer checksum */
3140 			paylen = skb->len - l4_offset;
3141 			csum_replace_by_diff(&l4.udp->check,
3142 					     (__force __wsum)htonl(paylen));
3143 		}
3144 
3145 		/* reset pointers to inner headers */
3146 		ip.hdr = skb_inner_network_header(skb);
3147 		l4.hdr = skb_inner_transport_header(skb);
3148 
3149 		/* initialize inner IP header fields */
3150 		if (ip.v4->version == 4) {
3151 			ip.v4->tot_len = 0;
3152 			ip.v4->check = 0;
3153 		} else {
3154 			ip.v6->payload_len = 0;
3155 		}
3156 	}
3157 
3158 	/* determine offset of inner transport header */
3159 	l4_offset = l4.hdr - skb->data;
3160 
3161 	/* remove payload length from inner checksum */
3162 	paylen = skb->len - l4_offset;
3163 
3164 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166 		/* compute length of segmentation header */
3167 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3168 	} else {
3169 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170 		/* compute length of segmentation header */
3171 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172 	}
3173 
3174 	/* pull values out of skb_shinfo */
3175 	gso_size = skb_shinfo(skb)->gso_size;
3176 
3177 	/* update GSO size and bytecount with header size */
3178 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3179 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180 
3181 	/* find the field values */
3182 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3183 	cd_tso_len = skb->len - *hdr_len;
3184 	cd_mss = gso_size;
3185 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188 	return 1;
3189 }
3190 
3191 /**
3192  * i40e_tsyn - set up the tsyn context descriptor
3193  * @tx_ring:  ptr to the ring to send
3194  * @skb:      ptr to the skb we're sending
3195  * @tx_flags: the collected send information
3196  * @cd_type_cmd_tso_mss: Quad Word 1
3197  *
3198  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199  **/
3200 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202 {
3203 	struct i40e_pf *pf;
3204 
3205 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206 		return 0;
3207 
3208 	/* Tx timestamps cannot be sampled when doing TSO */
3209 	if (tx_flags & I40E_TX_FLAGS_TSO)
3210 		return 0;
3211 
3212 	/* only timestamp the outbound packet if the user has requested it and
3213 	 * we are not already transmitting a packet to be timestamped
3214 	 */
3215 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3216 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217 		return 0;
3218 
3219 	if (pf->ptp_tx &&
3220 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222 		pf->ptp_tx_start = jiffies;
3223 		pf->ptp_tx_skb = skb_get(skb);
3224 	} else {
3225 		pf->tx_hwtstamp_skipped++;
3226 		return 0;
3227 	}
3228 
3229 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3231 
3232 	return 1;
3233 }
3234 
3235 /**
3236  * i40e_tx_enable_csum - Enable Tx checksum offloads
3237  * @skb: send buffer
3238  * @tx_flags: pointer to Tx flags currently set
3239  * @td_cmd: Tx descriptor command bits to set
3240  * @td_offset: Tx descriptor header offsets to set
3241  * @tx_ring: Tx descriptor ring
3242  * @cd_tunneling: ptr to context desc bits
3243  **/
3244 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245 			       u32 *td_cmd, u32 *td_offset,
3246 			       struct i40e_ring *tx_ring,
3247 			       u32 *cd_tunneling)
3248 {
3249 	union {
3250 		struct iphdr *v4;
3251 		struct ipv6hdr *v6;
3252 		unsigned char *hdr;
3253 	} ip;
3254 	union {
3255 		struct tcphdr *tcp;
3256 		struct udphdr *udp;
3257 		unsigned char *hdr;
3258 	} l4;
3259 	unsigned char *exthdr;
3260 	u32 offset, cmd = 0;
3261 	__be16 frag_off;
3262 	__be16 protocol;
3263 	u8 l4_proto = 0;
3264 
3265 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 		return 0;
3267 
3268 	protocol = vlan_get_protocol(skb);
3269 
3270 	if (eth_p_mpls(protocol)) {
3271 		ip.hdr = skb_inner_network_header(skb);
3272 		l4.hdr = skb_checksum_start(skb);
3273 	} else {
3274 		ip.hdr = skb_network_header(skb);
3275 		l4.hdr = skb_transport_header(skb);
3276 	}
3277 
3278 	/* set the tx_flags to indicate the IP protocol type. this is
3279 	 * required so that checksum header computation below is accurate.
3280 	 */
3281 	if (ip.v4->version == 4)
3282 		*tx_flags |= I40E_TX_FLAGS_IPV4;
3283 	else
3284 		*tx_flags |= I40E_TX_FLAGS_IPV6;
3285 
3286 	/* compute outer L2 header size */
3287 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288 
3289 	if (skb->encapsulation) {
3290 		u32 tunnel = 0;
3291 		/* define outer network header type */
3292 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294 				  I40E_TX_CTX_EXT_IP_IPV4 :
3295 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296 
3297 			l4_proto = ip.v4->protocol;
3298 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299 			int ret;
3300 
3301 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302 
3303 			exthdr = ip.hdr + sizeof(*ip.v6);
3304 			l4_proto = ip.v6->nexthdr;
3305 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306 					       &l4_proto, &frag_off);
3307 			if (ret < 0)
3308 				return -1;
3309 		}
3310 
3311 		/* define outer transport */
3312 		switch (l4_proto) {
3313 		case IPPROTO_UDP:
3314 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316 			break;
3317 		case IPPROTO_GRE:
3318 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320 			break;
3321 		case IPPROTO_IPIP:
3322 		case IPPROTO_IPV6:
3323 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324 			l4.hdr = skb_inner_network_header(skb);
3325 			break;
3326 		default:
3327 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3328 				return -1;
3329 
3330 			skb_checksum_help(skb);
3331 			return 0;
3332 		}
3333 
3334 		/* compute outer L3 header size */
3335 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337 
3338 		/* switch IP header pointer from outer to inner header */
3339 		ip.hdr = skb_inner_network_header(skb);
3340 
3341 		/* compute tunnel header size */
3342 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344 
3345 		/* indicate if we need to offload outer UDP header */
3346 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350 
3351 		/* record tunnel offload values */
3352 		*cd_tunneling |= tunnel;
3353 
3354 		/* switch L4 header pointer from outer to inner */
3355 		l4.hdr = skb_inner_transport_header(skb);
3356 		l4_proto = 0;
3357 
3358 		/* reset type as we transition from outer to inner headers */
3359 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360 		if (ip.v4->version == 4)
3361 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3362 		if (ip.v6->version == 6)
3363 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3364 	}
3365 
3366 	/* Enable IP checksum offloads */
3367 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368 		l4_proto = ip.v4->protocol;
3369 		/* the stack computes the IP header already, the only time we
3370 		 * need the hardware to recompute it is in the case of TSO.
3371 		 */
3372 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3375 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377 
3378 		exthdr = ip.hdr + sizeof(*ip.v6);
3379 		l4_proto = ip.v6->nexthdr;
3380 		if (l4.hdr != exthdr)
3381 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3382 					 &l4_proto, &frag_off);
3383 	}
3384 
3385 	/* compute inner L3 header size */
3386 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387 
3388 	/* Enable L4 checksum offloads */
3389 	switch (l4_proto) {
3390 	case IPPROTO_TCP:
3391 		/* enable checksum offloads */
3392 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394 		break;
3395 	case IPPROTO_SCTP:
3396 		/* enable SCTP checksum offload */
3397 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398 		offset |= (sizeof(struct sctphdr) >> 2) <<
3399 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400 		break;
3401 	case IPPROTO_UDP:
3402 		/* enable UDP checksum offload */
3403 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404 		offset |= (sizeof(struct udphdr) >> 2) <<
3405 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406 		break;
3407 	default:
3408 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3409 			return -1;
3410 		skb_checksum_help(skb);
3411 		return 0;
3412 	}
3413 
3414 	*td_cmd |= cmd;
3415 	*td_offset |= offset;
3416 
3417 	return 1;
3418 }
3419 
3420 /**
3421  * i40e_create_tx_ctx - Build the Tx context descriptor
3422  * @tx_ring:  ring to create the descriptor on
3423  * @cd_type_cmd_tso_mss: Quad Word 1
3424  * @cd_tunneling: Quad Word 0 - bits 0-31
3425  * @cd_l2tag2: Quad Word 0 - bits 32-63
3426  **/
3427 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428 			       const u64 cd_type_cmd_tso_mss,
3429 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3430 {
3431 	struct i40e_tx_context_desc *context_desc;
3432 	int i = tx_ring->next_to_use;
3433 
3434 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435 	    !cd_tunneling && !cd_l2tag2)
3436 		return;
3437 
3438 	/* grab the next descriptor */
3439 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440 
3441 	i++;
3442 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443 
3444 	/* cpu_to_le32 and assign to struct fields */
3445 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447 	context_desc->rsvd = cpu_to_le16(0);
3448 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449 }
3450 
3451 /**
3452  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453  * @tx_ring: the ring to be checked
3454  * @size:    the size buffer we want to assure is available
3455  *
3456  * Returns -EBUSY if a stop is needed, else 0
3457  **/
3458 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459 {
3460 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461 	/* Memory barrier before checking head and tail */
3462 	smp_mb();
3463 
3464 	++tx_ring->tx_stats.tx_stopped;
3465 
3466 	/* Check again in a case another CPU has just made room available. */
3467 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468 		return -EBUSY;
3469 
3470 	/* A reprieve! - use start_queue because it doesn't call schedule */
3471 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472 	++tx_ring->tx_stats.restart_queue;
3473 	return 0;
3474 }
3475 
3476 /**
3477  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478  * @skb:      send buffer
3479  *
3480  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481  * and so we need to figure out the cases where we need to linearize the skb.
3482  *
3483  * For TSO we need to count the TSO header and segment payload separately.
3484  * As such we need to check cases where we have 7 fragments or more as we
3485  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486  * the segment payload in the first descriptor, and another 7 for the
3487  * fragments.
3488  **/
3489 bool __i40e_chk_linearize(struct sk_buff *skb)
3490 {
3491 	const skb_frag_t *frag, *stale;
3492 	int nr_frags, sum;
3493 
3494 	/* no need to check if number of frags is less than 7 */
3495 	nr_frags = skb_shinfo(skb)->nr_frags;
3496 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497 		return false;
3498 
3499 	/* We need to walk through the list and validate that each group
3500 	 * of 6 fragments totals at least gso_size.
3501 	 */
3502 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503 	frag = &skb_shinfo(skb)->frags[0];
3504 
3505 	/* Initialize size to the negative value of gso_size minus 1.  We
3506 	 * use this as the worst case scenerio in which the frag ahead
3507 	 * of us only provides one byte which is why we are limited to 6
3508 	 * descriptors for a single transmit as the header and previous
3509 	 * fragment are already consuming 2 descriptors.
3510 	 */
3511 	sum = 1 - skb_shinfo(skb)->gso_size;
3512 
3513 	/* Add size of frags 0 through 4 to create our initial sum */
3514 	sum += skb_frag_size(frag++);
3515 	sum += skb_frag_size(frag++);
3516 	sum += skb_frag_size(frag++);
3517 	sum += skb_frag_size(frag++);
3518 	sum += skb_frag_size(frag++);
3519 
3520 	/* Walk through fragments adding latest fragment, testing it, and
3521 	 * then removing stale fragments from the sum.
3522 	 */
3523 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524 		int stale_size = skb_frag_size(stale);
3525 
3526 		sum += skb_frag_size(frag++);
3527 
3528 		/* The stale fragment may present us with a smaller
3529 		 * descriptor than the actual fragment size. To account
3530 		 * for that we need to remove all the data on the front and
3531 		 * figure out what the remainder would be in the last
3532 		 * descriptor associated with the fragment.
3533 		 */
3534 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535 			int align_pad = -(skb_frag_off(stale)) &
3536 					(I40E_MAX_READ_REQ_SIZE - 1);
3537 
3538 			sum -= align_pad;
3539 			stale_size -= align_pad;
3540 
3541 			do {
3542 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3545 		}
3546 
3547 		/* if sum is negative we failed to make sufficient progress */
3548 		if (sum < 0)
3549 			return true;
3550 
3551 		if (!nr_frags--)
3552 			break;
3553 
3554 		sum -= stale_size;
3555 	}
3556 
3557 	return false;
3558 }
3559 
3560 /**
3561  * i40e_tx_map - Build the Tx descriptor
3562  * @tx_ring:  ring to send buffer on
3563  * @skb:      send buffer
3564  * @first:    first buffer info buffer to use
3565  * @tx_flags: collected send information
3566  * @hdr_len:  size of the packet header
3567  * @td_cmd:   the command field in the descriptor
3568  * @td_offset: offset for checksum or crc
3569  *
3570  * Returns 0 on success, -1 on failure to DMA
3571  **/
3572 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573 			      struct i40e_tx_buffer *first, u32 tx_flags,
3574 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3575 {
3576 	unsigned int data_len = skb->data_len;
3577 	unsigned int size = skb_headlen(skb);
3578 	skb_frag_t *frag;
3579 	struct i40e_tx_buffer *tx_bi;
3580 	struct i40e_tx_desc *tx_desc;
3581 	u16 i = tx_ring->next_to_use;
3582 	u32 td_tag = 0;
3583 	dma_addr_t dma;
3584 	u16 desc_count = 1;
3585 
3586 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588 		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3589 	}
3590 
3591 	first->tx_flags = tx_flags;
3592 
3593 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594 
3595 	tx_desc = I40E_TX_DESC(tx_ring, i);
3596 	tx_bi = first;
3597 
3598 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600 
3601 		if (dma_mapping_error(tx_ring->dev, dma))
3602 			goto dma_error;
3603 
3604 		/* record length, and DMA address */
3605 		dma_unmap_len_set(tx_bi, len, size);
3606 		dma_unmap_addr_set(tx_bi, dma, dma);
3607 
3608 		/* align size to end of page */
3609 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610 		tx_desc->buffer_addr = cpu_to_le64(dma);
3611 
3612 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613 			tx_desc->cmd_type_offset_bsz =
3614 				build_ctob(td_cmd, td_offset,
3615 					   max_data, td_tag);
3616 
3617 			tx_desc++;
3618 			i++;
3619 			desc_count++;
3620 
3621 			if (i == tx_ring->count) {
3622 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3623 				i = 0;
3624 			}
3625 
3626 			dma += max_data;
3627 			size -= max_data;
3628 
3629 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630 			tx_desc->buffer_addr = cpu_to_le64(dma);
3631 		}
3632 
3633 		if (likely(!data_len))
3634 			break;
3635 
3636 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637 							  size, td_tag);
3638 
3639 		tx_desc++;
3640 		i++;
3641 		desc_count++;
3642 
3643 		if (i == tx_ring->count) {
3644 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3645 			i = 0;
3646 		}
3647 
3648 		size = skb_frag_size(frag);
3649 		data_len -= size;
3650 
3651 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652 				       DMA_TO_DEVICE);
3653 
3654 		tx_bi = &tx_ring->tx_bi[i];
3655 	}
3656 
3657 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658 
3659 	i++;
3660 	if (i == tx_ring->count)
3661 		i = 0;
3662 
3663 	tx_ring->next_to_use = i;
3664 
3665 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666 
3667 	/* write last descriptor with EOP bit */
3668 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3669 
3670 	/* We OR these values together to check both against 4 (WB_STRIDE)
3671 	 * below. This is safe since we don't re-use desc_count afterwards.
3672 	 */
3673 	desc_count |= ++tx_ring->packet_stride;
3674 
3675 	if (desc_count >= WB_STRIDE) {
3676 		/* write last descriptor with RS bit set */
3677 		td_cmd |= I40E_TX_DESC_CMD_RS;
3678 		tx_ring->packet_stride = 0;
3679 	}
3680 
3681 	tx_desc->cmd_type_offset_bsz =
3682 			build_ctob(td_cmd, td_offset, size, td_tag);
3683 
3684 	skb_tx_timestamp(skb);
3685 
3686 	/* Force memory writes to complete before letting h/w know there
3687 	 * are new descriptors to fetch.
3688 	 *
3689 	 * We also use this memory barrier to make certain all of the
3690 	 * status bits have been updated before next_to_watch is written.
3691 	 */
3692 	wmb();
3693 
3694 	/* set next_to_watch value indicating a packet is present */
3695 	first->next_to_watch = tx_desc;
3696 
3697 	/* notify HW of packet */
3698 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699 		writel(i, tx_ring->tail);
3700 	}
3701 
3702 	return 0;
3703 
3704 dma_error:
3705 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3706 
3707 	/* clear dma mappings for failed tx_bi map */
3708 	for (;;) {
3709 		tx_bi = &tx_ring->tx_bi[i];
3710 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711 		if (tx_bi == first)
3712 			break;
3713 		if (i == 0)
3714 			i = tx_ring->count;
3715 		i--;
3716 	}
3717 
3718 	tx_ring->next_to_use = i;
3719 
3720 	return -1;
3721 }
3722 
3723 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724 				  const struct sk_buff *skb,
3725 				  u16 num_tx_queues)
3726 {
3727 	u32 jhash_initval_salt = 0xd631614b;
3728 	u32 hash;
3729 
3730 	if (skb->sk && skb->sk->sk_hash)
3731 		hash = skb->sk->sk_hash;
3732 	else
3733 		hash = (__force u16)skb->protocol ^ skb->hash;
3734 
3735 	hash = jhash_1word(hash, jhash_initval_salt);
3736 
3737 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3738 }
3739 
3740 u16 i40e_lan_select_queue(struct net_device *netdev,
3741 			  struct sk_buff *skb,
3742 			  struct net_device __always_unused *sb_dev)
3743 {
3744 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3745 	struct i40e_vsi *vsi = np->vsi;
3746 	struct i40e_hw *hw;
3747 	u16 qoffset;
3748 	u16 qcount;
3749 	u8 tclass;
3750 	u16 hash;
3751 	u8 prio;
3752 
3753 	/* is DCB enabled at all? */
3754 	if (vsi->tc_config.numtc == 1 ||
3755 	    i40e_is_tc_mqprio_enabled(vsi->back))
3756 		return netdev_pick_tx(netdev, skb, sb_dev);
3757 
3758 	prio = skb->priority;
3759 	hw = &vsi->back->hw;
3760 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761 	/* sanity check */
3762 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763 		tclass = 0;
3764 
3765 	/* select a queue assigned for the given TC */
3766 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3767 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768 
3769 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770 	return qoffset + hash;
3771 }
3772 
3773 /**
3774  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775  * @xdpf: data to transmit
3776  * @xdp_ring: XDP Tx ring
3777  **/
3778 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779 			      struct i40e_ring *xdp_ring)
3780 {
3781 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783 	u16 i = 0, index = xdp_ring->next_to_use;
3784 	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785 	struct i40e_tx_buffer *tx_bi = tx_head;
3786 	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787 	void *data = xdpf->data;
3788 	u32 size = xdpf->len;
3789 
3790 	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791 		xdp_ring->tx_stats.tx_busy++;
3792 		return I40E_XDP_CONSUMED;
3793 	}
3794 
3795 	tx_head->bytecount = xdp_get_frame_len(xdpf);
3796 	tx_head->gso_segs = 1;
3797 	tx_head->xdpf = xdpf;
3798 
3799 	for (;;) {
3800 		dma_addr_t dma;
3801 
3802 		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803 		if (dma_mapping_error(xdp_ring->dev, dma))
3804 			goto unmap;
3805 
3806 		/* record length, and DMA address */
3807 		dma_unmap_len_set(tx_bi, len, size);
3808 		dma_unmap_addr_set(tx_bi, dma, dma);
3809 
3810 		tx_desc->buffer_addr = cpu_to_le64(dma);
3811 		tx_desc->cmd_type_offset_bsz =
3812 			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813 
3814 		if (++index == xdp_ring->count)
3815 			index = 0;
3816 
3817 		if (i == nr_frags)
3818 			break;
3819 
3820 		tx_bi = &xdp_ring->tx_bi[index];
3821 		tx_desc = I40E_TX_DESC(xdp_ring, index);
3822 
3823 		data = skb_frag_address(&sinfo->frags[i]);
3824 		size = skb_frag_size(&sinfo->frags[i]);
3825 		i++;
3826 	}
3827 
3828 	tx_desc->cmd_type_offset_bsz |=
3829 		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3830 
3831 	/* Make certain all of the status bits have been updated
3832 	 * before next_to_watch is written.
3833 	 */
3834 	smp_wmb();
3835 
3836 	xdp_ring->xdp_tx_active++;
3837 
3838 	tx_head->next_to_watch = tx_desc;
3839 	xdp_ring->next_to_use = index;
3840 
3841 	return I40E_XDP_TX;
3842 
3843 unmap:
3844 	for (;;) {
3845 		tx_bi = &xdp_ring->tx_bi[index];
3846 		if (dma_unmap_len(tx_bi, len))
3847 			dma_unmap_page(xdp_ring->dev,
3848 				       dma_unmap_addr(tx_bi, dma),
3849 				       dma_unmap_len(tx_bi, len),
3850 				       DMA_TO_DEVICE);
3851 		dma_unmap_len_set(tx_bi, len, 0);
3852 		if (tx_bi == tx_head)
3853 			break;
3854 
3855 		if (!index)
3856 			index += xdp_ring->count;
3857 		index--;
3858 	}
3859 
3860 	return I40E_XDP_CONSUMED;
3861 }
3862 
3863 /**
3864  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865  * @skb:     send buffer
3866  * @tx_ring: ring to send buffer on
3867  *
3868  * Returns NETDEV_TX_OK if sent, else an error code
3869  **/
3870 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871 					struct i40e_ring *tx_ring)
3872 {
3873 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875 	struct i40e_tx_buffer *first;
3876 	u32 td_offset = 0;
3877 	u32 tx_flags = 0;
3878 	u32 td_cmd = 0;
3879 	u8 hdr_len = 0;
3880 	int tso, count;
3881 	int tsyn;
3882 
3883 	/* prefetch the data, we'll need it later */
3884 	prefetch(skb->data);
3885 
3886 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3887 
3888 	count = i40e_xmit_descriptor_count(skb);
3889 	if (i40e_chk_linearize(skb, count)) {
3890 		if (__skb_linearize(skb)) {
3891 			dev_kfree_skb_any(skb);
3892 			return NETDEV_TX_OK;
3893 		}
3894 		count = i40e_txd_use_count(skb->len);
3895 		tx_ring->tx_stats.tx_linearize++;
3896 	}
3897 
3898 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900 	 *       + 4 desc gap to avoid the cache line where head is,
3901 	 *       + 1 desc for context descriptor,
3902 	 * otherwise try next time
3903 	 */
3904 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905 		tx_ring->tx_stats.tx_busy++;
3906 		return NETDEV_TX_BUSY;
3907 	}
3908 
3909 	/* record the location of the first descriptor for this packet */
3910 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911 	first->skb = skb;
3912 	first->bytecount = skb->len;
3913 	first->gso_segs = 1;
3914 
3915 	/* prepare the xmit flags */
3916 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917 		goto out_drop;
3918 
3919 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3920 
3921 	if (tso < 0)
3922 		goto out_drop;
3923 	else if (tso)
3924 		tx_flags |= I40E_TX_FLAGS_TSO;
3925 
3926 	/* Always offload the checksum, since it's in the data descriptor */
3927 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928 				  tx_ring, &cd_tunneling);
3929 	if (tso < 0)
3930 		goto out_drop;
3931 
3932 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933 
3934 	if (tsyn)
3935 		tx_flags |= I40E_TX_FLAGS_TSYN;
3936 
3937 	/* always enable CRC insertion offload */
3938 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939 
3940 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941 			   cd_tunneling, cd_l2tag2);
3942 
3943 	/* Add Flow Director ATR if it's enabled.
3944 	 *
3945 	 * NOTE: this must always be directly before the data descriptor.
3946 	 */
3947 	i40e_atr(tx_ring, skb, tx_flags);
3948 
3949 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950 			td_cmd, td_offset))
3951 		goto cleanup_tx_tstamp;
3952 
3953 	return NETDEV_TX_OK;
3954 
3955 out_drop:
3956 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957 	dev_kfree_skb_any(first->skb);
3958 	first->skb = NULL;
3959 cleanup_tx_tstamp:
3960 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962 
3963 		dev_kfree_skb_any(pf->ptp_tx_skb);
3964 		pf->ptp_tx_skb = NULL;
3965 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966 	}
3967 
3968 	return NETDEV_TX_OK;
3969 }
3970 
3971 /**
3972  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973  * @skb:    send buffer
3974  * @netdev: network interface device structure
3975  *
3976  * Returns NETDEV_TX_OK if sent, else an error code
3977  **/
3978 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979 {
3980 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3981 	struct i40e_vsi *vsi = np->vsi;
3982 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983 
3984 	/* hardware can't handle really short frames, hardware padding works
3985 	 * beyond this point
3986 	 */
3987 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988 		return NETDEV_TX_OK;
3989 
3990 	return i40e_xmit_frame_ring(skb, tx_ring);
3991 }
3992 
3993 /**
3994  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995  * @dev: netdev
3996  * @n: number of frames
3997  * @frames: array of XDP buffer pointers
3998  * @flags: XDP extra info
3999  *
4000  * Returns number of frames successfully sent. Failed frames
4001  * will be free'ed by XDP core.
4002  *
4003  * For error cases, a negative errno code is returned and no-frames
4004  * are transmitted (caller must handle freeing frames).
4005  **/
4006 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007 		  u32 flags)
4008 {
4009 	struct i40e_netdev_priv *np = netdev_priv(dev);
4010 	unsigned int queue_index = smp_processor_id();
4011 	struct i40e_vsi *vsi = np->vsi;
4012 	struct i40e_pf *pf = vsi->back;
4013 	struct i40e_ring *xdp_ring;
4014 	int nxmit = 0;
4015 	int i;
4016 
4017 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018 		return -ENETDOWN;
4019 
4020 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4022 		return -ENXIO;
4023 
4024 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025 		return -EINVAL;
4026 
4027 	xdp_ring = vsi->xdp_rings[queue_index];
4028 
4029 	for (i = 0; i < n; i++) {
4030 		struct xdp_frame *xdpf = frames[i];
4031 		int err;
4032 
4033 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034 		if (err != I40E_XDP_TX)
4035 			break;
4036 		nxmit++;
4037 	}
4038 
4039 	if (unlikely(flags & XDP_XMIT_FLUSH))
4040 		i40e_xdp_ring_update_tail(xdp_ring);
4041 
4042 	return nxmit;
4043 }
4044