xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision 83a37b3292f4aca799b355179ad6fbdd78a08e10)
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include <linux/bpf_trace.h>
30 #include "i40e.h"
31 #include "i40e_trace.h"
32 #include "i40e_prototype.h"
33 
34 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
35 				u32 td_tag)
36 {
37 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
38 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
39 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
40 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
41 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
42 }
43 
44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45 /**
46  * i40e_fdir - Generate a Flow Director descriptor based on fdata
47  * @tx_ring: Tx ring to send buffer on
48  * @fdata: Flow director filter data
49  * @add: Indicate if we are adding a rule or deleting one
50  *
51  **/
52 static void i40e_fdir(struct i40e_ring *tx_ring,
53 		      struct i40e_fdir_filter *fdata, bool add)
54 {
55 	struct i40e_filter_program_desc *fdir_desc;
56 	struct i40e_pf *pf = tx_ring->vsi->back;
57 	u32 flex_ptype, dtype_cmd;
58 	u16 i;
59 
60 	/* grab the next descriptor */
61 	i = tx_ring->next_to_use;
62 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
63 
64 	i++;
65 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
66 
67 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
68 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
69 
70 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
71 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
72 
73 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
74 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
75 
76 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
77 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
78 
79 	/* Use LAN VSI Id if not programmed by user */
80 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
81 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
82 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
83 
84 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
85 
86 	dtype_cmd |= add ?
87 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
88 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
89 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
90 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
91 
92 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
93 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
94 
95 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
96 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
97 
98 	if (fdata->cnt_index) {
99 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
100 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
101 			     ((u32)fdata->cnt_index <<
102 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
103 	}
104 
105 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
106 	fdir_desc->rsvd = cpu_to_le32(0);
107 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
108 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
109 }
110 
111 #define I40E_FD_CLEAN_DELAY 10
112 /**
113  * i40e_program_fdir_filter - Program a Flow Director filter
114  * @fdir_data: Packet data that will be filter parameters
115  * @raw_packet: the pre-allocated packet buffer for FDir
116  * @pf: The PF pointer
117  * @add: True for add/update, False for remove
118  **/
119 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
120 				    u8 *raw_packet, struct i40e_pf *pf,
121 				    bool add)
122 {
123 	struct i40e_tx_buffer *tx_buf, *first;
124 	struct i40e_tx_desc *tx_desc;
125 	struct i40e_ring *tx_ring;
126 	struct i40e_vsi *vsi;
127 	struct device *dev;
128 	dma_addr_t dma;
129 	u32 td_cmd = 0;
130 	u16 i;
131 
132 	/* find existing FDIR VSI */
133 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
134 	if (!vsi)
135 		return -ENOENT;
136 
137 	tx_ring = vsi->tx_rings[0];
138 	dev = tx_ring->dev;
139 
140 	/* we need two descriptors to add/del a filter and we can wait */
141 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
142 		if (!i)
143 			return -EAGAIN;
144 		msleep_interruptible(1);
145 	}
146 
147 	dma = dma_map_single(dev, raw_packet,
148 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
149 	if (dma_mapping_error(dev, dma))
150 		goto dma_fail;
151 
152 	/* grab the next descriptor */
153 	i = tx_ring->next_to_use;
154 	first = &tx_ring->tx_bi[i];
155 	i40e_fdir(tx_ring, fdir_data, add);
156 
157 	/* Now program a dummy descriptor */
158 	i = tx_ring->next_to_use;
159 	tx_desc = I40E_TX_DESC(tx_ring, i);
160 	tx_buf = &tx_ring->tx_bi[i];
161 
162 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
163 
164 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
165 
166 	/* record length, and DMA address */
167 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
168 	dma_unmap_addr_set(tx_buf, dma, dma);
169 
170 	tx_desc->buffer_addr = cpu_to_le64(dma);
171 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
172 
173 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
174 	tx_buf->raw_buf = (void *)raw_packet;
175 
176 	tx_desc->cmd_type_offset_bsz =
177 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
178 
179 	/* Force memory writes to complete before letting h/w
180 	 * know there are new descriptors to fetch.
181 	 */
182 	wmb();
183 
184 	/* Mark the data descriptor to be watched */
185 	first->next_to_watch = tx_desc;
186 
187 	writel(tx_ring->next_to_use, tx_ring->tail);
188 	return 0;
189 
190 dma_fail:
191 	return -1;
192 }
193 
194 #define IP_HEADER_OFFSET 14
195 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
196 /**
197  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
198  * @vsi: pointer to the targeted VSI
199  * @fd_data: the flow director data required for the FDir descriptor
200  * @add: true adds a filter, false removes it
201  *
202  * Returns 0 if the filters were successfully added or removed
203  **/
204 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
205 				   struct i40e_fdir_filter *fd_data,
206 				   bool add)
207 {
208 	struct i40e_pf *pf = vsi->back;
209 	struct udphdr *udp;
210 	struct iphdr *ip;
211 	u8 *raw_packet;
212 	int ret;
213 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
214 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
215 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
216 
217 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
218 	if (!raw_packet)
219 		return -ENOMEM;
220 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
221 
222 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
223 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
224 	      + sizeof(struct iphdr));
225 
226 	ip->daddr = fd_data->dst_ip;
227 	udp->dest = fd_data->dst_port;
228 	ip->saddr = fd_data->src_ip;
229 	udp->source = fd_data->src_port;
230 
231 	if (fd_data->flex_filter) {
232 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
233 		__be16 pattern = fd_data->flex_word;
234 		u16 off = fd_data->flex_offset;
235 
236 		*((__force __be16 *)(payload + off)) = pattern;
237 	}
238 
239 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
240 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
241 	if (ret) {
242 		dev_info(&pf->pdev->dev,
243 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
244 			 fd_data->pctype, fd_data->fd_id, ret);
245 		/* Free the packet buffer since it wasn't added to the ring */
246 		kfree(raw_packet);
247 		return -EOPNOTSUPP;
248 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
249 		if (add)
250 			dev_info(&pf->pdev->dev,
251 				 "Filter OK for PCTYPE %d loc = %d\n",
252 				 fd_data->pctype, fd_data->fd_id);
253 		else
254 			dev_info(&pf->pdev->dev,
255 				 "Filter deleted for PCTYPE %d loc = %d\n",
256 				 fd_data->pctype, fd_data->fd_id);
257 	}
258 
259 	if (add)
260 		pf->fd_udp4_filter_cnt++;
261 	else
262 		pf->fd_udp4_filter_cnt--;
263 
264 	return 0;
265 }
266 
267 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
268 /**
269  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
270  * @vsi: pointer to the targeted VSI
271  * @fd_data: the flow director data required for the FDir descriptor
272  * @add: true adds a filter, false removes it
273  *
274  * Returns 0 if the filters were successfully added or removed
275  **/
276 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
277 				   struct i40e_fdir_filter *fd_data,
278 				   bool add)
279 {
280 	struct i40e_pf *pf = vsi->back;
281 	struct tcphdr *tcp;
282 	struct iphdr *ip;
283 	u8 *raw_packet;
284 	int ret;
285 	/* Dummy packet */
286 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
287 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
288 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
289 		0x0, 0x72, 0, 0, 0, 0};
290 
291 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
292 	if (!raw_packet)
293 		return -ENOMEM;
294 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
295 
296 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
297 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
298 	      + sizeof(struct iphdr));
299 
300 	ip->daddr = fd_data->dst_ip;
301 	tcp->dest = fd_data->dst_port;
302 	ip->saddr = fd_data->src_ip;
303 	tcp->source = fd_data->src_port;
304 
305 	if (fd_data->flex_filter) {
306 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
307 		__be16 pattern = fd_data->flex_word;
308 		u16 off = fd_data->flex_offset;
309 
310 		*((__force __be16 *)(payload + off)) = pattern;
311 	}
312 
313 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
314 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
315 	if (ret) {
316 		dev_info(&pf->pdev->dev,
317 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
318 			 fd_data->pctype, fd_data->fd_id, ret);
319 		/* Free the packet buffer since it wasn't added to the ring */
320 		kfree(raw_packet);
321 		return -EOPNOTSUPP;
322 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
323 		if (add)
324 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
325 				 fd_data->pctype, fd_data->fd_id);
326 		else
327 			dev_info(&pf->pdev->dev,
328 				 "Filter deleted for PCTYPE %d loc = %d\n",
329 				 fd_data->pctype, fd_data->fd_id);
330 	}
331 
332 	if (add) {
333 		pf->fd_tcp4_filter_cnt++;
334 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
335 		    I40E_DEBUG_FD & pf->hw.debug_mask)
336 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
337 		pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
338 	} else {
339 		pf->fd_tcp4_filter_cnt--;
340 	}
341 
342 	return 0;
343 }
344 
345 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
346 /**
347  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
348  * a specific flow spec
349  * @vsi: pointer to the targeted VSI
350  * @fd_data: the flow director data required for the FDir descriptor
351  * @add: true adds a filter, false removes it
352  *
353  * Returns 0 if the filters were successfully added or removed
354  **/
355 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
356 				    struct i40e_fdir_filter *fd_data,
357 				    bool add)
358 {
359 	struct i40e_pf *pf = vsi->back;
360 	struct sctphdr *sctp;
361 	struct iphdr *ip;
362 	u8 *raw_packet;
363 	int ret;
364 	/* Dummy packet */
365 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
366 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
367 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
368 
369 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
370 	if (!raw_packet)
371 		return -ENOMEM;
372 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
373 
374 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
375 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
376 	      + sizeof(struct iphdr));
377 
378 	ip->daddr = fd_data->dst_ip;
379 	sctp->dest = fd_data->dst_port;
380 	ip->saddr = fd_data->src_ip;
381 	sctp->source = fd_data->src_port;
382 
383 	if (fd_data->flex_filter) {
384 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
385 		__be16 pattern = fd_data->flex_word;
386 		u16 off = fd_data->flex_offset;
387 
388 		*((__force __be16 *)(payload + off)) = pattern;
389 	}
390 
391 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
392 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
393 	if (ret) {
394 		dev_info(&pf->pdev->dev,
395 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
396 			 fd_data->pctype, fd_data->fd_id, ret);
397 		/* Free the packet buffer since it wasn't added to the ring */
398 		kfree(raw_packet);
399 		return -EOPNOTSUPP;
400 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
401 		if (add)
402 			dev_info(&pf->pdev->dev,
403 				 "Filter OK for PCTYPE %d loc = %d\n",
404 				 fd_data->pctype, fd_data->fd_id);
405 		else
406 			dev_info(&pf->pdev->dev,
407 				 "Filter deleted for PCTYPE %d loc = %d\n",
408 				 fd_data->pctype, fd_data->fd_id);
409 	}
410 
411 	if (add)
412 		pf->fd_sctp4_filter_cnt++;
413 	else
414 		pf->fd_sctp4_filter_cnt--;
415 
416 	return 0;
417 }
418 
419 #define I40E_IP_DUMMY_PACKET_LEN 34
420 /**
421  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
422  * a specific flow spec
423  * @vsi: pointer to the targeted VSI
424  * @fd_data: the flow director data required for the FDir descriptor
425  * @add: true adds a filter, false removes it
426  *
427  * Returns 0 if the filters were successfully added or removed
428  **/
429 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
430 				  struct i40e_fdir_filter *fd_data,
431 				  bool add)
432 {
433 	struct i40e_pf *pf = vsi->back;
434 	struct iphdr *ip;
435 	u8 *raw_packet;
436 	int ret;
437 	int i;
438 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
439 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
440 		0, 0, 0, 0};
441 
442 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
443 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
444 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
445 		if (!raw_packet)
446 			return -ENOMEM;
447 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
448 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
449 
450 		ip->saddr = fd_data->src_ip;
451 		ip->daddr = fd_data->dst_ip;
452 		ip->protocol = 0;
453 
454 		if (fd_data->flex_filter) {
455 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
456 			__be16 pattern = fd_data->flex_word;
457 			u16 off = fd_data->flex_offset;
458 
459 			*((__force __be16 *)(payload + off)) = pattern;
460 		}
461 
462 		fd_data->pctype = i;
463 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
464 		if (ret) {
465 			dev_info(&pf->pdev->dev,
466 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
467 				 fd_data->pctype, fd_data->fd_id, ret);
468 			/* The packet buffer wasn't added to the ring so we
469 			 * need to free it now.
470 			 */
471 			kfree(raw_packet);
472 			return -EOPNOTSUPP;
473 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
474 			if (add)
475 				dev_info(&pf->pdev->dev,
476 					 "Filter OK for PCTYPE %d loc = %d\n",
477 					 fd_data->pctype, fd_data->fd_id);
478 			else
479 				dev_info(&pf->pdev->dev,
480 					 "Filter deleted for PCTYPE %d loc = %d\n",
481 					 fd_data->pctype, fd_data->fd_id);
482 		}
483 	}
484 
485 	if (add)
486 		pf->fd_ip4_filter_cnt++;
487 	else
488 		pf->fd_ip4_filter_cnt--;
489 
490 	return 0;
491 }
492 
493 /**
494  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
495  * @vsi: pointer to the targeted VSI
496  * @cmd: command to get or set RX flow classification rules
497  * @add: true adds a filter, false removes it
498  *
499  **/
500 int i40e_add_del_fdir(struct i40e_vsi *vsi,
501 		      struct i40e_fdir_filter *input, bool add)
502 {
503 	struct i40e_pf *pf = vsi->back;
504 	int ret;
505 
506 	switch (input->flow_type & ~FLOW_EXT) {
507 	case TCP_V4_FLOW:
508 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
509 		break;
510 	case UDP_V4_FLOW:
511 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
512 		break;
513 	case SCTP_V4_FLOW:
514 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
515 		break;
516 	case IP_USER_FLOW:
517 		switch (input->ip4_proto) {
518 		case IPPROTO_TCP:
519 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
520 			break;
521 		case IPPROTO_UDP:
522 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
523 			break;
524 		case IPPROTO_SCTP:
525 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
526 			break;
527 		case IPPROTO_IP:
528 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
529 			break;
530 		default:
531 			/* We cannot support masking based on protocol */
532 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
533 				 input->ip4_proto);
534 			return -EINVAL;
535 		}
536 		break;
537 	default:
538 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
539 			 input->flow_type);
540 		return -EINVAL;
541 	}
542 
543 	/* The buffer allocated here will be normally be freed by
544 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
545 	 * completion. In the event of an error adding the buffer to the FDIR
546 	 * ring, it will immediately be freed. It may also be freed by
547 	 * i40e_clean_tx_ring() when closing the VSI.
548 	 */
549 	return ret;
550 }
551 
552 /**
553  * i40e_fd_handle_status - check the Programming Status for FD
554  * @rx_ring: the Rx ring for this descriptor
555  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
556  * @prog_id: the id originally used for programming
557  *
558  * This is used to verify if the FD programming or invalidation
559  * requested by SW to the HW is successful or not and take actions accordingly.
560  **/
561 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
562 				  union i40e_rx_desc *rx_desc, u8 prog_id)
563 {
564 	struct i40e_pf *pf = rx_ring->vsi->back;
565 	struct pci_dev *pdev = pf->pdev;
566 	u32 fcnt_prog, fcnt_avail;
567 	u32 error;
568 	u64 qw;
569 
570 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
571 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
572 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
573 
574 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
575 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
576 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
577 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
578 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
579 				 pf->fd_inv);
580 
581 		/* Check if the programming error is for ATR.
582 		 * If so, auto disable ATR and set a state for
583 		 * flush in progress. Next time we come here if flush is in
584 		 * progress do nothing, once flush is complete the state will
585 		 * be cleared.
586 		 */
587 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
588 			return;
589 
590 		pf->fd_add_err++;
591 		/* store the current atr filter count */
592 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
593 
594 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
595 		    pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
596 			pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
597 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
598 		}
599 
600 		/* filter programming failed most likely due to table full */
601 		fcnt_prog = i40e_get_global_fd_count(pf);
602 		fcnt_avail = pf->fdir_pf_filter_count;
603 		/* If ATR is running fcnt_prog can quickly change,
604 		 * if we are very close to full, it makes sense to disable
605 		 * FD ATR/SB and then re-enable it when there is room.
606 		 */
607 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
608 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
609 			    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
610 				pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
611 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
612 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
613 			}
614 		}
615 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
616 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
617 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
618 				 rx_desc->wb.qword0.hi_dword.fd_id);
619 	}
620 }
621 
622 /**
623  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
624  * @ring:      the ring that owns the buffer
625  * @tx_buffer: the buffer to free
626  **/
627 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
628 					    struct i40e_tx_buffer *tx_buffer)
629 {
630 	if (tx_buffer->skb) {
631 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
632 			kfree(tx_buffer->raw_buf);
633 		else if (ring_is_xdp(ring))
634 			page_frag_free(tx_buffer->raw_buf);
635 		else
636 			dev_kfree_skb_any(tx_buffer->skb);
637 		if (dma_unmap_len(tx_buffer, len))
638 			dma_unmap_single(ring->dev,
639 					 dma_unmap_addr(tx_buffer, dma),
640 					 dma_unmap_len(tx_buffer, len),
641 					 DMA_TO_DEVICE);
642 	} else if (dma_unmap_len(tx_buffer, len)) {
643 		dma_unmap_page(ring->dev,
644 			       dma_unmap_addr(tx_buffer, dma),
645 			       dma_unmap_len(tx_buffer, len),
646 			       DMA_TO_DEVICE);
647 	}
648 
649 	tx_buffer->next_to_watch = NULL;
650 	tx_buffer->skb = NULL;
651 	dma_unmap_len_set(tx_buffer, len, 0);
652 	/* tx_buffer must be completely set up in the transmit path */
653 }
654 
655 /**
656  * i40e_clean_tx_ring - Free any empty Tx buffers
657  * @tx_ring: ring to be cleaned
658  **/
659 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
660 {
661 	unsigned long bi_size;
662 	u16 i;
663 
664 	/* ring already cleared, nothing to do */
665 	if (!tx_ring->tx_bi)
666 		return;
667 
668 	/* Free all the Tx ring sk_buffs */
669 	for (i = 0; i < tx_ring->count; i++)
670 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
671 
672 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
673 	memset(tx_ring->tx_bi, 0, bi_size);
674 
675 	/* Zero out the descriptor ring */
676 	memset(tx_ring->desc, 0, tx_ring->size);
677 
678 	tx_ring->next_to_use = 0;
679 	tx_ring->next_to_clean = 0;
680 
681 	if (!tx_ring->netdev)
682 		return;
683 
684 	/* cleanup Tx queue statistics */
685 	netdev_tx_reset_queue(txring_txq(tx_ring));
686 }
687 
688 /**
689  * i40e_free_tx_resources - Free Tx resources per queue
690  * @tx_ring: Tx descriptor ring for a specific queue
691  *
692  * Free all transmit software resources
693  **/
694 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
695 {
696 	i40e_clean_tx_ring(tx_ring);
697 	kfree(tx_ring->tx_bi);
698 	tx_ring->tx_bi = NULL;
699 
700 	if (tx_ring->desc) {
701 		dma_free_coherent(tx_ring->dev, tx_ring->size,
702 				  tx_ring->desc, tx_ring->dma);
703 		tx_ring->desc = NULL;
704 	}
705 }
706 
707 /**
708  * i40e_get_tx_pending - how many tx descriptors not processed
709  * @tx_ring: the ring of descriptors
710  *
711  * Since there is no access to the ring head register
712  * in XL710, we need to use our local copies
713  **/
714 u32 i40e_get_tx_pending(struct i40e_ring *ring)
715 {
716 	u32 head, tail;
717 
718 	head = i40e_get_head(ring);
719 	tail = readl(ring->tail);
720 
721 	if (head != tail)
722 		return (head < tail) ?
723 			tail - head : (tail + ring->count - head);
724 
725 	return 0;
726 }
727 
728 #define WB_STRIDE 4
729 
730 /**
731  * i40e_clean_tx_irq - Reclaim resources after transmit completes
732  * @vsi: the VSI we care about
733  * @tx_ring: Tx ring to clean
734  * @napi_budget: Used to determine if we are in netpoll
735  *
736  * Returns true if there's any budget left (e.g. the clean is finished)
737  **/
738 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
739 			      struct i40e_ring *tx_ring, int napi_budget)
740 {
741 	u16 i = tx_ring->next_to_clean;
742 	struct i40e_tx_buffer *tx_buf;
743 	struct i40e_tx_desc *tx_head;
744 	struct i40e_tx_desc *tx_desc;
745 	unsigned int total_bytes = 0, total_packets = 0;
746 	unsigned int budget = vsi->work_limit;
747 
748 	tx_buf = &tx_ring->tx_bi[i];
749 	tx_desc = I40E_TX_DESC(tx_ring, i);
750 	i -= tx_ring->count;
751 
752 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
753 
754 	do {
755 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
756 
757 		/* if next_to_watch is not set then there is no work pending */
758 		if (!eop_desc)
759 			break;
760 
761 		/* prevent any other reads prior to eop_desc */
762 		read_barrier_depends();
763 
764 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
765 		/* we have caught up to head, no work left to do */
766 		if (tx_head == tx_desc)
767 			break;
768 
769 		/* clear next_to_watch to prevent false hangs */
770 		tx_buf->next_to_watch = NULL;
771 
772 		/* update the statistics for this packet */
773 		total_bytes += tx_buf->bytecount;
774 		total_packets += tx_buf->gso_segs;
775 
776 		/* free the skb/XDP data */
777 		if (ring_is_xdp(tx_ring))
778 			page_frag_free(tx_buf->raw_buf);
779 		else
780 			napi_consume_skb(tx_buf->skb, napi_budget);
781 
782 		/* unmap skb header data */
783 		dma_unmap_single(tx_ring->dev,
784 				 dma_unmap_addr(tx_buf, dma),
785 				 dma_unmap_len(tx_buf, len),
786 				 DMA_TO_DEVICE);
787 
788 		/* clear tx_buffer data */
789 		tx_buf->skb = NULL;
790 		dma_unmap_len_set(tx_buf, len, 0);
791 
792 		/* unmap remaining buffers */
793 		while (tx_desc != eop_desc) {
794 			i40e_trace(clean_tx_irq_unmap,
795 				   tx_ring, tx_desc, tx_buf);
796 
797 			tx_buf++;
798 			tx_desc++;
799 			i++;
800 			if (unlikely(!i)) {
801 				i -= tx_ring->count;
802 				tx_buf = tx_ring->tx_bi;
803 				tx_desc = I40E_TX_DESC(tx_ring, 0);
804 			}
805 
806 			/* unmap any remaining paged data */
807 			if (dma_unmap_len(tx_buf, len)) {
808 				dma_unmap_page(tx_ring->dev,
809 					       dma_unmap_addr(tx_buf, dma),
810 					       dma_unmap_len(tx_buf, len),
811 					       DMA_TO_DEVICE);
812 				dma_unmap_len_set(tx_buf, len, 0);
813 			}
814 		}
815 
816 		/* move us one more past the eop_desc for start of next pkt */
817 		tx_buf++;
818 		tx_desc++;
819 		i++;
820 		if (unlikely(!i)) {
821 			i -= tx_ring->count;
822 			tx_buf = tx_ring->tx_bi;
823 			tx_desc = I40E_TX_DESC(tx_ring, 0);
824 		}
825 
826 		prefetch(tx_desc);
827 
828 		/* update budget accounting */
829 		budget--;
830 	} while (likely(budget));
831 
832 	i += tx_ring->count;
833 	tx_ring->next_to_clean = i;
834 	u64_stats_update_begin(&tx_ring->syncp);
835 	tx_ring->stats.bytes += total_bytes;
836 	tx_ring->stats.packets += total_packets;
837 	u64_stats_update_end(&tx_ring->syncp);
838 	tx_ring->q_vector->tx.total_bytes += total_bytes;
839 	tx_ring->q_vector->tx.total_packets += total_packets;
840 
841 	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
842 		/* check to see if there are < 4 descriptors
843 		 * waiting to be written back, then kick the hardware to force
844 		 * them to be written back in case we stay in NAPI.
845 		 * In this mode on X722 we do not enable Interrupt.
846 		 */
847 		unsigned int j = i40e_get_tx_pending(tx_ring);
848 
849 		if (budget &&
850 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
851 		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
852 		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
853 			tx_ring->arm_wb = true;
854 	}
855 
856 	if (ring_is_xdp(tx_ring))
857 		return !!budget;
858 
859 	/* notify netdev of completed buffers */
860 	netdev_tx_completed_queue(txring_txq(tx_ring),
861 				  total_packets, total_bytes);
862 
863 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
864 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
865 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
866 		/* Make sure that anybody stopping the queue after this
867 		 * sees the new next_to_clean.
868 		 */
869 		smp_mb();
870 		if (__netif_subqueue_stopped(tx_ring->netdev,
871 					     tx_ring->queue_index) &&
872 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
873 			netif_wake_subqueue(tx_ring->netdev,
874 					    tx_ring->queue_index);
875 			++tx_ring->tx_stats.restart_queue;
876 		}
877 	}
878 
879 	return !!budget;
880 }
881 
882 /**
883  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
884  * @vsi: the VSI we care about
885  * @q_vector: the vector on which to enable writeback
886  *
887  **/
888 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
889 				  struct i40e_q_vector *q_vector)
890 {
891 	u16 flags = q_vector->tx.ring[0].flags;
892 	u32 val;
893 
894 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
895 		return;
896 
897 	if (q_vector->arm_wb_state)
898 		return;
899 
900 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
901 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
902 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
903 
904 		wr32(&vsi->back->hw,
905 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
906 		     val);
907 	} else {
908 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
909 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
910 
911 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
912 	}
913 	q_vector->arm_wb_state = true;
914 }
915 
916 /**
917  * i40e_force_wb - Issue SW Interrupt so HW does a wb
918  * @vsi: the VSI we care about
919  * @q_vector: the vector  on which to force writeback
920  *
921  **/
922 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
923 {
924 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
925 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
926 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
927 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
928 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
929 			  /* allow 00 to be written to the index */
930 
931 		wr32(&vsi->back->hw,
932 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
933 					 vsi->base_vector - 1), val);
934 	} else {
935 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
936 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
937 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
938 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
939 			/* allow 00 to be written to the index */
940 
941 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
942 	}
943 }
944 
945 /**
946  * i40e_set_new_dynamic_itr - Find new ITR level
947  * @rc: structure containing ring performance data
948  *
949  * Returns true if ITR changed, false if not
950  *
951  * Stores a new ITR value based on packets and byte counts during
952  * the last interrupt.  The advantage of per interrupt computation
953  * is faster updates and more accurate ITR for the current traffic
954  * pattern.  Constants in this function were computed based on
955  * theoretical maximum wire speed and thresholds were set based on
956  * testing data as well as attempting to minimize response time
957  * while increasing bulk throughput.
958  **/
959 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
960 {
961 	enum i40e_latency_range new_latency_range = rc->latency_range;
962 	u32 new_itr = rc->itr;
963 	int bytes_per_usec;
964 	unsigned int usecs, estimated_usecs;
965 
966 	if (rc->total_packets == 0 || !rc->itr)
967 		return false;
968 
969 	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
970 	bytes_per_usec = rc->total_bytes / usecs;
971 
972 	/* The calculations in this algorithm depend on interrupts actually
973 	 * firing at the ITR rate. This may not happen if the packet rate is
974 	 * really low, or if we've been napi polling. Check to make sure
975 	 * that's not the case before we continue.
976 	 */
977 	estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
978 	if (estimated_usecs > usecs) {
979 		new_latency_range = I40E_LOW_LATENCY;
980 		goto reset_latency;
981 	}
982 
983 	/* simple throttlerate management
984 	 *   0-10MB/s   lowest (50000 ints/s)
985 	 *  10-20MB/s   low    (20000 ints/s)
986 	 *  20-1249MB/s bulk   (18000 ints/s)
987 	 *
988 	 * The math works out because the divisor is in 10^(-6) which
989 	 * turns the bytes/us input value into MB/s values, but
990 	 * make sure to use usecs, as the register values written
991 	 * are in 2 usec increments in the ITR registers, and make sure
992 	 * to use the smoothed values that the countdown timer gives us.
993 	 */
994 	switch (new_latency_range) {
995 	case I40E_LOWEST_LATENCY:
996 		if (bytes_per_usec > 10)
997 			new_latency_range = I40E_LOW_LATENCY;
998 		break;
999 	case I40E_LOW_LATENCY:
1000 		if (bytes_per_usec > 20)
1001 			new_latency_range = I40E_BULK_LATENCY;
1002 		else if (bytes_per_usec <= 10)
1003 			new_latency_range = I40E_LOWEST_LATENCY;
1004 		break;
1005 	case I40E_BULK_LATENCY:
1006 	default:
1007 		if (bytes_per_usec <= 20)
1008 			new_latency_range = I40E_LOW_LATENCY;
1009 		break;
1010 	}
1011 
1012 reset_latency:
1013 	rc->latency_range = new_latency_range;
1014 
1015 	switch (new_latency_range) {
1016 	case I40E_LOWEST_LATENCY:
1017 		new_itr = I40E_ITR_50K;
1018 		break;
1019 	case I40E_LOW_LATENCY:
1020 		new_itr = I40E_ITR_20K;
1021 		break;
1022 	case I40E_BULK_LATENCY:
1023 		new_itr = I40E_ITR_18K;
1024 		break;
1025 	default:
1026 		break;
1027 	}
1028 
1029 	rc->total_bytes = 0;
1030 	rc->total_packets = 0;
1031 	rc->last_itr_update = jiffies;
1032 
1033 	if (new_itr != rc->itr) {
1034 		rc->itr = new_itr;
1035 		return true;
1036 	}
1037 	return false;
1038 }
1039 
1040 /**
1041  * i40e_rx_is_programming_status - check for programming status descriptor
1042  * @qw: qword representing status_error_len in CPU ordering
1043  *
1044  * The value of in the descriptor length field indicate if this
1045  * is a programming status descriptor for flow director or FCoE
1046  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1047  * it is a packet descriptor.
1048  **/
1049 static inline bool i40e_rx_is_programming_status(u64 qw)
1050 {
1051 	/* The Rx filter programming status and SPH bit occupy the same
1052 	 * spot in the descriptor. Since we don't support packet split we
1053 	 * can just reuse the bit as an indication that this is a
1054 	 * programming status descriptor.
1055 	 */
1056 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1057 }
1058 
1059 /**
1060  * i40e_clean_programming_status - clean the programming status descriptor
1061  * @rx_ring: the rx ring that has this descriptor
1062  * @rx_desc: the rx descriptor written back by HW
1063  * @qw: qword representing status_error_len in CPU ordering
1064  *
1065  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1066  * status being successful or not and take actions accordingly. FCoE should
1067  * handle its context/filter programming/invalidation status and take actions.
1068  *
1069  **/
1070 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1071 					  union i40e_rx_desc *rx_desc,
1072 					  u64 qw)
1073 {
1074 	u32 ntc = rx_ring->next_to_clean + 1;
1075 	u8 id;
1076 
1077 	/* fetch, update, and store next to clean */
1078 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1079 	rx_ring->next_to_clean = ntc;
1080 
1081 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1082 
1083 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1084 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1085 
1086 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1087 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1088 }
1089 
1090 /**
1091  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1092  * @tx_ring: the tx ring to set up
1093  *
1094  * Return 0 on success, negative on error
1095  **/
1096 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1097 {
1098 	struct device *dev = tx_ring->dev;
1099 	int bi_size;
1100 
1101 	if (!dev)
1102 		return -ENOMEM;
1103 
1104 	/* warn if we are about to overwrite the pointer */
1105 	WARN_ON(tx_ring->tx_bi);
1106 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1107 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1108 	if (!tx_ring->tx_bi)
1109 		goto err;
1110 
1111 	u64_stats_init(&tx_ring->syncp);
1112 
1113 	/* round up to nearest 4K */
1114 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1115 	/* add u32 for head writeback, align after this takes care of
1116 	 * guaranteeing this is at least one cache line in size
1117 	 */
1118 	tx_ring->size += sizeof(u32);
1119 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1120 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1121 					   &tx_ring->dma, GFP_KERNEL);
1122 	if (!tx_ring->desc) {
1123 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1124 			 tx_ring->size);
1125 		goto err;
1126 	}
1127 
1128 	tx_ring->next_to_use = 0;
1129 	tx_ring->next_to_clean = 0;
1130 	return 0;
1131 
1132 err:
1133 	kfree(tx_ring->tx_bi);
1134 	tx_ring->tx_bi = NULL;
1135 	return -ENOMEM;
1136 }
1137 
1138 /**
1139  * i40e_clean_rx_ring - Free Rx buffers
1140  * @rx_ring: ring to be cleaned
1141  **/
1142 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1143 {
1144 	unsigned long bi_size;
1145 	u16 i;
1146 
1147 	/* ring already cleared, nothing to do */
1148 	if (!rx_ring->rx_bi)
1149 		return;
1150 
1151 	if (rx_ring->skb) {
1152 		dev_kfree_skb(rx_ring->skb);
1153 		rx_ring->skb = NULL;
1154 	}
1155 
1156 	/* Free all the Rx ring sk_buffs */
1157 	for (i = 0; i < rx_ring->count; i++) {
1158 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1159 
1160 		if (!rx_bi->page)
1161 			continue;
1162 
1163 		/* Invalidate cache lines that may have been written to by
1164 		 * device so that we avoid corrupting memory.
1165 		 */
1166 		dma_sync_single_range_for_cpu(rx_ring->dev,
1167 					      rx_bi->dma,
1168 					      rx_bi->page_offset,
1169 					      rx_ring->rx_buf_len,
1170 					      DMA_FROM_DEVICE);
1171 
1172 		/* free resources associated with mapping */
1173 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1174 				     i40e_rx_pg_size(rx_ring),
1175 				     DMA_FROM_DEVICE,
1176 				     I40E_RX_DMA_ATTR);
1177 
1178 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1179 
1180 		rx_bi->page = NULL;
1181 		rx_bi->page_offset = 0;
1182 	}
1183 
1184 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1185 	memset(rx_ring->rx_bi, 0, bi_size);
1186 
1187 	/* Zero out the descriptor ring */
1188 	memset(rx_ring->desc, 0, rx_ring->size);
1189 
1190 	rx_ring->next_to_alloc = 0;
1191 	rx_ring->next_to_clean = 0;
1192 	rx_ring->next_to_use = 0;
1193 }
1194 
1195 /**
1196  * i40e_free_rx_resources - Free Rx resources
1197  * @rx_ring: ring to clean the resources from
1198  *
1199  * Free all receive software resources
1200  **/
1201 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1202 {
1203 	i40e_clean_rx_ring(rx_ring);
1204 	rx_ring->xdp_prog = NULL;
1205 	kfree(rx_ring->rx_bi);
1206 	rx_ring->rx_bi = NULL;
1207 
1208 	if (rx_ring->desc) {
1209 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1210 				  rx_ring->desc, rx_ring->dma);
1211 		rx_ring->desc = NULL;
1212 	}
1213 }
1214 
1215 /**
1216  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1217  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1218  *
1219  * Returns 0 on success, negative on failure
1220  **/
1221 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1222 {
1223 	struct device *dev = rx_ring->dev;
1224 	int bi_size;
1225 
1226 	/* warn if we are about to overwrite the pointer */
1227 	WARN_ON(rx_ring->rx_bi);
1228 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1229 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1230 	if (!rx_ring->rx_bi)
1231 		goto err;
1232 
1233 	u64_stats_init(&rx_ring->syncp);
1234 
1235 	/* Round up to nearest 4K */
1236 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1237 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1238 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1239 					   &rx_ring->dma, GFP_KERNEL);
1240 
1241 	if (!rx_ring->desc) {
1242 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1243 			 rx_ring->size);
1244 		goto err;
1245 	}
1246 
1247 	rx_ring->next_to_alloc = 0;
1248 	rx_ring->next_to_clean = 0;
1249 	rx_ring->next_to_use = 0;
1250 
1251 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1252 
1253 	return 0;
1254 err:
1255 	kfree(rx_ring->rx_bi);
1256 	rx_ring->rx_bi = NULL;
1257 	return -ENOMEM;
1258 }
1259 
1260 /**
1261  * i40e_release_rx_desc - Store the new tail and head values
1262  * @rx_ring: ring to bump
1263  * @val: new head index
1264  **/
1265 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1266 {
1267 	rx_ring->next_to_use = val;
1268 
1269 	/* update next to alloc since we have filled the ring */
1270 	rx_ring->next_to_alloc = val;
1271 
1272 	/* Force memory writes to complete before letting h/w
1273 	 * know there are new descriptors to fetch.  (Only
1274 	 * applicable for weak-ordered memory model archs,
1275 	 * such as IA-64).
1276 	 */
1277 	wmb();
1278 	writel(val, rx_ring->tail);
1279 }
1280 
1281 /**
1282  * i40e_rx_offset - Return expected offset into page to access data
1283  * @rx_ring: Ring we are requesting offset of
1284  *
1285  * Returns the offset value for ring into the data buffer.
1286  */
1287 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1288 {
1289 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1290 }
1291 
1292 /**
1293  * i40e_alloc_mapped_page - recycle or make a new page
1294  * @rx_ring: ring to use
1295  * @bi: rx_buffer struct to modify
1296  *
1297  * Returns true if the page was successfully allocated or
1298  * reused.
1299  **/
1300 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1301 				   struct i40e_rx_buffer *bi)
1302 {
1303 	struct page *page = bi->page;
1304 	dma_addr_t dma;
1305 
1306 	/* since we are recycling buffers we should seldom need to alloc */
1307 	if (likely(page)) {
1308 		rx_ring->rx_stats.page_reuse_count++;
1309 		return true;
1310 	}
1311 
1312 	/* alloc new page for storage */
1313 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1314 	if (unlikely(!page)) {
1315 		rx_ring->rx_stats.alloc_page_failed++;
1316 		return false;
1317 	}
1318 
1319 	/* map page for use */
1320 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1321 				 i40e_rx_pg_size(rx_ring),
1322 				 DMA_FROM_DEVICE,
1323 				 I40E_RX_DMA_ATTR);
1324 
1325 	/* if mapping failed free memory back to system since
1326 	 * there isn't much point in holding memory we can't use
1327 	 */
1328 	if (dma_mapping_error(rx_ring->dev, dma)) {
1329 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1330 		rx_ring->rx_stats.alloc_page_failed++;
1331 		return false;
1332 	}
1333 
1334 	bi->dma = dma;
1335 	bi->page = page;
1336 	bi->page_offset = i40e_rx_offset(rx_ring);
1337 
1338 	/* initialize pagecnt_bias to 1 representing we fully own page */
1339 	bi->pagecnt_bias = 1;
1340 
1341 	return true;
1342 }
1343 
1344 /**
1345  * i40e_receive_skb - Send a completed packet up the stack
1346  * @rx_ring:  rx ring in play
1347  * @skb: packet to send up
1348  * @vlan_tag: vlan tag for packet
1349  **/
1350 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1351 			     struct sk_buff *skb, u16 vlan_tag)
1352 {
1353 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1354 
1355 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1356 	    (vlan_tag & VLAN_VID_MASK))
1357 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1358 
1359 	napi_gro_receive(&q_vector->napi, skb);
1360 }
1361 
1362 /**
1363  * i40e_alloc_rx_buffers - Replace used receive buffers
1364  * @rx_ring: ring to place buffers on
1365  * @cleaned_count: number of buffers to replace
1366  *
1367  * Returns false if all allocations were successful, true if any fail
1368  **/
1369 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1370 {
1371 	u16 ntu = rx_ring->next_to_use;
1372 	union i40e_rx_desc *rx_desc;
1373 	struct i40e_rx_buffer *bi;
1374 
1375 	/* Hardware only fetches new descriptors in cache lines of 8,
1376 	 * essentially ignoring the lower 3 bits of the tail register. We want
1377 	 * to ensure our tail writes are aligned to avoid unnecessary work. We
1378 	 * can't simply round down the cleaned count, since we might fail to
1379 	 * allocate some buffers. What we really want is to ensure that
1380 	 * next_to_used + cleaned_count produces an aligned value.
1381 	 */
1382 	cleaned_count -= (ntu + cleaned_count) & 0x7;
1383 
1384 	/* do nothing if no valid netdev defined */
1385 	if (!rx_ring->netdev || !cleaned_count)
1386 		return false;
1387 
1388 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1389 	bi = &rx_ring->rx_bi[ntu];
1390 
1391 	do {
1392 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1393 			goto no_buffers;
1394 
1395 		/* sync the buffer for use by the device */
1396 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1397 						 bi->page_offset,
1398 						 rx_ring->rx_buf_len,
1399 						 DMA_FROM_DEVICE);
1400 
1401 		/* Refresh the desc even if buffer_addrs didn't change
1402 		 * because each write-back erases this info.
1403 		 */
1404 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1405 
1406 		rx_desc++;
1407 		bi++;
1408 		ntu++;
1409 		if (unlikely(ntu == rx_ring->count)) {
1410 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1411 			bi = rx_ring->rx_bi;
1412 			ntu = 0;
1413 		}
1414 
1415 		/* clear the status bits for the next_to_use descriptor */
1416 		rx_desc->wb.qword1.status_error_len = 0;
1417 
1418 		cleaned_count--;
1419 	} while (cleaned_count);
1420 
1421 	if (rx_ring->next_to_use != ntu)
1422 		i40e_release_rx_desc(rx_ring, ntu);
1423 
1424 	return false;
1425 
1426 no_buffers:
1427 	if (rx_ring->next_to_use != ntu)
1428 		i40e_release_rx_desc(rx_ring, ntu);
1429 
1430 	/* make sure to come back via polling to try again after
1431 	 * allocation failure
1432 	 */
1433 	return true;
1434 }
1435 
1436 /**
1437  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1438  * @vsi: the VSI we care about
1439  * @skb: skb currently being received and modified
1440  * @rx_desc: the receive descriptor
1441  **/
1442 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1443 				    struct sk_buff *skb,
1444 				    union i40e_rx_desc *rx_desc)
1445 {
1446 	struct i40e_rx_ptype_decoded decoded;
1447 	u32 rx_error, rx_status;
1448 	bool ipv4, ipv6;
1449 	u8 ptype;
1450 	u64 qword;
1451 
1452 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1453 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1454 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1455 		   I40E_RXD_QW1_ERROR_SHIFT;
1456 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1457 		    I40E_RXD_QW1_STATUS_SHIFT;
1458 	decoded = decode_rx_desc_ptype(ptype);
1459 
1460 	skb->ip_summed = CHECKSUM_NONE;
1461 
1462 	skb_checksum_none_assert(skb);
1463 
1464 	/* Rx csum enabled and ip headers found? */
1465 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1466 		return;
1467 
1468 	/* did the hardware decode the packet and checksum? */
1469 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1470 		return;
1471 
1472 	/* both known and outer_ip must be set for the below code to work */
1473 	if (!(decoded.known && decoded.outer_ip))
1474 		return;
1475 
1476 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1477 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1478 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1479 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1480 
1481 	if (ipv4 &&
1482 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1483 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1484 		goto checksum_fail;
1485 
1486 	/* likely incorrect csum if alternate IP extension headers found */
1487 	if (ipv6 &&
1488 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1489 		/* don't increment checksum err here, non-fatal err */
1490 		return;
1491 
1492 	/* there was some L4 error, count error and punt packet to the stack */
1493 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1494 		goto checksum_fail;
1495 
1496 	/* handle packets that were not able to be checksummed due
1497 	 * to arrival speed, in this case the stack can compute
1498 	 * the csum.
1499 	 */
1500 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1501 		return;
1502 
1503 	/* If there is an outer header present that might contain a checksum
1504 	 * we need to bump the checksum level by 1 to reflect the fact that
1505 	 * we are indicating we validated the inner checksum.
1506 	 */
1507 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1508 		skb->csum_level = 1;
1509 
1510 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1511 	switch (decoded.inner_prot) {
1512 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1513 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1514 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1515 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1516 		/* fall though */
1517 	default:
1518 		break;
1519 	}
1520 
1521 	return;
1522 
1523 checksum_fail:
1524 	vsi->back->hw_csum_rx_error++;
1525 }
1526 
1527 /**
1528  * i40e_ptype_to_htype - get a hash type
1529  * @ptype: the ptype value from the descriptor
1530  *
1531  * Returns a hash type to be used by skb_set_hash
1532  **/
1533 static inline int i40e_ptype_to_htype(u8 ptype)
1534 {
1535 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1536 
1537 	if (!decoded.known)
1538 		return PKT_HASH_TYPE_NONE;
1539 
1540 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1541 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1542 		return PKT_HASH_TYPE_L4;
1543 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1544 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1545 		return PKT_HASH_TYPE_L3;
1546 	else
1547 		return PKT_HASH_TYPE_L2;
1548 }
1549 
1550 /**
1551  * i40e_rx_hash - set the hash value in the skb
1552  * @ring: descriptor ring
1553  * @rx_desc: specific descriptor
1554  **/
1555 static inline void i40e_rx_hash(struct i40e_ring *ring,
1556 				union i40e_rx_desc *rx_desc,
1557 				struct sk_buff *skb,
1558 				u8 rx_ptype)
1559 {
1560 	u32 hash;
1561 	const __le64 rss_mask =
1562 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1563 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1564 
1565 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1566 		return;
1567 
1568 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1569 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1570 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1571 	}
1572 }
1573 
1574 /**
1575  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1576  * @rx_ring: rx descriptor ring packet is being transacted on
1577  * @rx_desc: pointer to the EOP Rx descriptor
1578  * @skb: pointer to current skb being populated
1579  * @rx_ptype: the packet type decoded by hardware
1580  *
1581  * This function checks the ring, descriptor, and packet information in
1582  * order to populate the hash, checksum, VLAN, protocol, and
1583  * other fields within the skb.
1584  **/
1585 static inline
1586 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1587 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1588 			     u8 rx_ptype)
1589 {
1590 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1591 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1592 			I40E_RXD_QW1_STATUS_SHIFT;
1593 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1594 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1595 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1596 
1597 	if (unlikely(tsynvalid))
1598 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1599 
1600 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1601 
1602 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1603 
1604 	skb_record_rx_queue(skb, rx_ring->queue_index);
1605 
1606 	/* modifies the skb - consumes the enet header */
1607 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1608 }
1609 
1610 /**
1611  * i40e_cleanup_headers - Correct empty headers
1612  * @rx_ring: rx descriptor ring packet is being transacted on
1613  * @skb: pointer to current skb being fixed
1614  * @rx_desc: pointer to the EOP Rx descriptor
1615  *
1616  * Also address the case where we are pulling data in on pages only
1617  * and as such no data is present in the skb header.
1618  *
1619  * In addition if skb is not at least 60 bytes we need to pad it so that
1620  * it is large enough to qualify as a valid Ethernet frame.
1621  *
1622  * Returns true if an error was encountered and skb was freed.
1623  **/
1624 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1625 				 union i40e_rx_desc *rx_desc)
1626 
1627 {
1628 	/* XDP packets use error pointer so abort at this point */
1629 	if (IS_ERR(skb))
1630 		return true;
1631 
1632 	/* ERR_MASK will only have valid bits if EOP set, and
1633 	 * what we are doing here is actually checking
1634 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1635 	 * the error field
1636 	 */
1637 	if (unlikely(i40e_test_staterr(rx_desc,
1638 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1639 		dev_kfree_skb_any(skb);
1640 		return true;
1641 	}
1642 
1643 	/* if eth_skb_pad returns an error the skb was freed */
1644 	if (eth_skb_pad(skb))
1645 		return true;
1646 
1647 	return false;
1648 }
1649 
1650 /**
1651  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1652  * @rx_ring: rx descriptor ring to store buffers on
1653  * @old_buff: donor buffer to have page reused
1654  *
1655  * Synchronizes page for reuse by the adapter
1656  **/
1657 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1658 			       struct i40e_rx_buffer *old_buff)
1659 {
1660 	struct i40e_rx_buffer *new_buff;
1661 	u16 nta = rx_ring->next_to_alloc;
1662 
1663 	new_buff = &rx_ring->rx_bi[nta];
1664 
1665 	/* update, and store next to alloc */
1666 	nta++;
1667 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1668 
1669 	/* transfer page from old buffer to new buffer */
1670 	new_buff->dma		= old_buff->dma;
1671 	new_buff->page		= old_buff->page;
1672 	new_buff->page_offset	= old_buff->page_offset;
1673 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1674 }
1675 
1676 /**
1677  * i40e_page_is_reusable - check if any reuse is possible
1678  * @page: page struct to check
1679  *
1680  * A page is not reusable if it was allocated under low memory
1681  * conditions, or it's not in the same NUMA node as this CPU.
1682  */
1683 static inline bool i40e_page_is_reusable(struct page *page)
1684 {
1685 	return (page_to_nid(page) == numa_mem_id()) &&
1686 		!page_is_pfmemalloc(page);
1687 }
1688 
1689 /**
1690  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1691  * the adapter for another receive
1692  *
1693  * @rx_buffer: buffer containing the page
1694  *
1695  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1696  * an unused region in the page.
1697  *
1698  * For small pages, @truesize will be a constant value, half the size
1699  * of the memory at page.  We'll attempt to alternate between high and
1700  * low halves of the page, with one half ready for use by the hardware
1701  * and the other half being consumed by the stack.  We use the page
1702  * ref count to determine whether the stack has finished consuming the
1703  * portion of this page that was passed up with a previous packet.  If
1704  * the page ref count is >1, we'll assume the "other" half page is
1705  * still busy, and this page cannot be reused.
1706  *
1707  * For larger pages, @truesize will be the actual space used by the
1708  * received packet (adjusted upward to an even multiple of the cache
1709  * line size).  This will advance through the page by the amount
1710  * actually consumed by the received packets while there is still
1711  * space for a buffer.  Each region of larger pages will be used at
1712  * most once, after which the page will not be reused.
1713  *
1714  * In either case, if the page is reusable its refcount is increased.
1715  **/
1716 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1717 {
1718 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1719 	struct page *page = rx_buffer->page;
1720 
1721 	/* Is any reuse possible? */
1722 	if (unlikely(!i40e_page_is_reusable(page)))
1723 		return false;
1724 
1725 #if (PAGE_SIZE < 8192)
1726 	/* if we are only owner of page we can reuse it */
1727 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1728 		return false;
1729 #else
1730 #define I40E_LAST_OFFSET \
1731 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1732 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1733 		return false;
1734 #endif
1735 
1736 	/* If we have drained the page fragment pool we need to update
1737 	 * the pagecnt_bias and page count so that we fully restock the
1738 	 * number of references the driver holds.
1739 	 */
1740 	if (unlikely(!pagecnt_bias)) {
1741 		page_ref_add(page, USHRT_MAX);
1742 		rx_buffer->pagecnt_bias = USHRT_MAX;
1743 	}
1744 
1745 	return true;
1746 }
1747 
1748 /**
1749  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1750  * @rx_ring: rx descriptor ring to transact packets on
1751  * @rx_buffer: buffer containing page to add
1752  * @skb: sk_buff to place the data into
1753  * @size: packet length from rx_desc
1754  *
1755  * This function will add the data contained in rx_buffer->page to the skb.
1756  * It will just attach the page as a frag to the skb.
1757  *
1758  * The function will then update the page offset.
1759  **/
1760 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1761 			     struct i40e_rx_buffer *rx_buffer,
1762 			     struct sk_buff *skb,
1763 			     unsigned int size)
1764 {
1765 #if (PAGE_SIZE < 8192)
1766 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1767 #else
1768 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1769 #endif
1770 
1771 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1772 			rx_buffer->page_offset, size, truesize);
1773 
1774 	/* page is being used so we must update the page offset */
1775 #if (PAGE_SIZE < 8192)
1776 	rx_buffer->page_offset ^= truesize;
1777 #else
1778 	rx_buffer->page_offset += truesize;
1779 #endif
1780 }
1781 
1782 /**
1783  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1784  * @rx_ring: rx descriptor ring to transact packets on
1785  * @size: size of buffer to add to skb
1786  *
1787  * This function will pull an Rx buffer from the ring and synchronize it
1788  * for use by the CPU.
1789  */
1790 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1791 						 const unsigned int size)
1792 {
1793 	struct i40e_rx_buffer *rx_buffer;
1794 
1795 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1796 	prefetchw(rx_buffer->page);
1797 
1798 	/* we are reusing so sync this buffer for CPU use */
1799 	dma_sync_single_range_for_cpu(rx_ring->dev,
1800 				      rx_buffer->dma,
1801 				      rx_buffer->page_offset,
1802 				      size,
1803 				      DMA_FROM_DEVICE);
1804 
1805 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1806 	rx_buffer->pagecnt_bias--;
1807 
1808 	return rx_buffer;
1809 }
1810 
1811 /**
1812  * i40e_construct_skb - Allocate skb and populate it
1813  * @rx_ring: rx descriptor ring to transact packets on
1814  * @rx_buffer: rx buffer to pull data from
1815  * @xdp: xdp_buff pointing to the data
1816  *
1817  * This function allocates an skb.  It then populates it with the page
1818  * data from the current receive descriptor, taking care to set up the
1819  * skb correctly.
1820  */
1821 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1822 					  struct i40e_rx_buffer *rx_buffer,
1823 					  struct xdp_buff *xdp)
1824 {
1825 	unsigned int size = xdp->data_end - xdp->data;
1826 #if (PAGE_SIZE < 8192)
1827 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1828 #else
1829 	unsigned int truesize = SKB_DATA_ALIGN(size);
1830 #endif
1831 	unsigned int headlen;
1832 	struct sk_buff *skb;
1833 
1834 	/* prefetch first cache line of first page */
1835 	prefetch(xdp->data);
1836 #if L1_CACHE_BYTES < 128
1837 	prefetch(xdp->data + L1_CACHE_BYTES);
1838 #endif
1839 
1840 	/* allocate a skb to store the frags */
1841 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1842 			       I40E_RX_HDR_SIZE,
1843 			       GFP_ATOMIC | __GFP_NOWARN);
1844 	if (unlikely(!skb))
1845 		return NULL;
1846 
1847 	/* Determine available headroom for copy */
1848 	headlen = size;
1849 	if (headlen > I40E_RX_HDR_SIZE)
1850 		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
1851 
1852 	/* align pull length to size of long to optimize memcpy performance */
1853 	memcpy(__skb_put(skb, headlen), xdp->data,
1854 	       ALIGN(headlen, sizeof(long)));
1855 
1856 	/* update all of the pointers */
1857 	size -= headlen;
1858 	if (size) {
1859 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1860 				rx_buffer->page_offset + headlen,
1861 				size, truesize);
1862 
1863 		/* buffer is used by skb, update page_offset */
1864 #if (PAGE_SIZE < 8192)
1865 		rx_buffer->page_offset ^= truesize;
1866 #else
1867 		rx_buffer->page_offset += truesize;
1868 #endif
1869 	} else {
1870 		/* buffer is unused, reset bias back to rx_buffer */
1871 		rx_buffer->pagecnt_bias++;
1872 	}
1873 
1874 	return skb;
1875 }
1876 
1877 /**
1878  * i40e_build_skb - Build skb around an existing buffer
1879  * @rx_ring: Rx descriptor ring to transact packets on
1880  * @rx_buffer: Rx buffer to pull data from
1881  * @xdp: xdp_buff pointing to the data
1882  *
1883  * This function builds an skb around an existing Rx buffer, taking care
1884  * to set up the skb correctly and avoid any memcpy overhead.
1885  */
1886 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1887 				      struct i40e_rx_buffer *rx_buffer,
1888 				      struct xdp_buff *xdp)
1889 {
1890 	unsigned int size = xdp->data_end - xdp->data;
1891 #if (PAGE_SIZE < 8192)
1892 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1893 #else
1894 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1895 				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1896 #endif
1897 	struct sk_buff *skb;
1898 
1899 	/* prefetch first cache line of first page */
1900 	prefetch(xdp->data);
1901 #if L1_CACHE_BYTES < 128
1902 	prefetch(xdp->data + L1_CACHE_BYTES);
1903 #endif
1904 	/* build an skb around the page buffer */
1905 	skb = build_skb(xdp->data_hard_start, truesize);
1906 	if (unlikely(!skb))
1907 		return NULL;
1908 
1909 	/* update pointers within the skb to store the data */
1910 	skb_reserve(skb, I40E_SKB_PAD);
1911 	__skb_put(skb, size);
1912 
1913 	/* buffer is used by skb, update page_offset */
1914 #if (PAGE_SIZE < 8192)
1915 	rx_buffer->page_offset ^= truesize;
1916 #else
1917 	rx_buffer->page_offset += truesize;
1918 #endif
1919 
1920 	return skb;
1921 }
1922 
1923 /**
1924  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1925  * @rx_ring: rx descriptor ring to transact packets on
1926  * @rx_buffer: rx buffer to pull data from
1927  *
1928  * This function will clean up the contents of the rx_buffer.  It will
1929  * either recycle the bufer or unmap it and free the associated resources.
1930  */
1931 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1932 			       struct i40e_rx_buffer *rx_buffer)
1933 {
1934 	if (i40e_can_reuse_rx_page(rx_buffer)) {
1935 		/* hand second half of page back to the ring */
1936 		i40e_reuse_rx_page(rx_ring, rx_buffer);
1937 		rx_ring->rx_stats.page_reuse_count++;
1938 	} else {
1939 		/* we are not reusing the buffer so unmap it */
1940 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1941 				     i40e_rx_pg_size(rx_ring),
1942 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1943 		__page_frag_cache_drain(rx_buffer->page,
1944 					rx_buffer->pagecnt_bias);
1945 	}
1946 
1947 	/* clear contents of buffer_info */
1948 	rx_buffer->page = NULL;
1949 }
1950 
1951 /**
1952  * i40e_is_non_eop - process handling of non-EOP buffers
1953  * @rx_ring: Rx ring being processed
1954  * @rx_desc: Rx descriptor for current buffer
1955  * @skb: Current socket buffer containing buffer in progress
1956  *
1957  * This function updates next to clean.  If the buffer is an EOP buffer
1958  * this function exits returning false, otherwise it will place the
1959  * sk_buff in the next buffer to be chained and return true indicating
1960  * that this is in fact a non-EOP buffer.
1961  **/
1962 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1963 			    union i40e_rx_desc *rx_desc,
1964 			    struct sk_buff *skb)
1965 {
1966 	u32 ntc = rx_ring->next_to_clean + 1;
1967 
1968 	/* fetch, update, and store next to clean */
1969 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1970 	rx_ring->next_to_clean = ntc;
1971 
1972 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1973 
1974 	/* if we are the last buffer then there is nothing else to do */
1975 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1976 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1977 		return false;
1978 
1979 	rx_ring->rx_stats.non_eop_descs++;
1980 
1981 	return true;
1982 }
1983 
1984 #define I40E_XDP_PASS 0
1985 #define I40E_XDP_CONSUMED 1
1986 #define I40E_XDP_TX 2
1987 
1988 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
1989 			      struct i40e_ring *xdp_ring);
1990 
1991 /**
1992  * i40e_run_xdp - run an XDP program
1993  * @rx_ring: Rx ring being processed
1994  * @xdp: XDP buffer containing the frame
1995  **/
1996 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
1997 				    struct xdp_buff *xdp)
1998 {
1999 	int result = I40E_XDP_PASS;
2000 	struct i40e_ring *xdp_ring;
2001 	struct bpf_prog *xdp_prog;
2002 	u32 act;
2003 
2004 	rcu_read_lock();
2005 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2006 
2007 	if (!xdp_prog)
2008 		goto xdp_out;
2009 
2010 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2011 	switch (act) {
2012 	case XDP_PASS:
2013 		break;
2014 	case XDP_TX:
2015 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2016 		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
2017 		break;
2018 	default:
2019 		bpf_warn_invalid_xdp_action(act);
2020 	case XDP_ABORTED:
2021 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2022 		/* fallthrough -- handle aborts by dropping packet */
2023 	case XDP_DROP:
2024 		result = I40E_XDP_CONSUMED;
2025 		break;
2026 	}
2027 xdp_out:
2028 	rcu_read_unlock();
2029 	return ERR_PTR(-result);
2030 }
2031 
2032 /**
2033  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2034  * @rx_ring: Rx ring
2035  * @rx_buffer: Rx buffer to adjust
2036  * @size: Size of adjustment
2037  **/
2038 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2039 				struct i40e_rx_buffer *rx_buffer,
2040 				unsigned int size)
2041 {
2042 #if (PAGE_SIZE < 8192)
2043 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2044 
2045 	rx_buffer->page_offset ^= truesize;
2046 #else
2047 	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2048 
2049 	rx_buffer->page_offset += truesize;
2050 #endif
2051 }
2052 
2053 /**
2054  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2055  * @rx_ring: rx descriptor ring to transact packets on
2056  * @budget: Total limit on number of packets to process
2057  *
2058  * This function provides a "bounce buffer" approach to Rx interrupt
2059  * processing.  The advantage to this is that on systems that have
2060  * expensive overhead for IOMMU access this provides a means of avoiding
2061  * it by maintaining the mapping of the page to the system.
2062  *
2063  * Returns amount of work completed
2064  **/
2065 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2066 {
2067 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2068 	struct sk_buff *skb = rx_ring->skb;
2069 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2070 	bool failure = false, xdp_xmit = false;
2071 
2072 	while (likely(total_rx_packets < (unsigned int)budget)) {
2073 		struct i40e_rx_buffer *rx_buffer;
2074 		union i40e_rx_desc *rx_desc;
2075 		struct xdp_buff xdp;
2076 		unsigned int size;
2077 		u16 vlan_tag;
2078 		u8 rx_ptype;
2079 		u64 qword;
2080 
2081 		/* return some buffers to hardware, one at a time is too slow */
2082 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2083 			failure = failure ||
2084 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2085 			cleaned_count = 0;
2086 		}
2087 
2088 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2089 
2090 		/* status_error_len will always be zero for unused descriptors
2091 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2092 		 * which is always zero because packet split isn't used, if the
2093 		 * hardware wrote DD then the length will be non-zero
2094 		 */
2095 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2096 
2097 		/* This memory barrier is needed to keep us from reading
2098 		 * any other fields out of the rx_desc until we have
2099 		 * verified the descriptor has been written back.
2100 		 */
2101 		dma_rmb();
2102 
2103 		if (unlikely(i40e_rx_is_programming_status(qword))) {
2104 			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2105 			continue;
2106 		}
2107 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2108 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2109 		if (!size)
2110 			break;
2111 
2112 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2113 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2114 
2115 		/* retrieve a buffer from the ring */
2116 		if (!skb) {
2117 			xdp.data = page_address(rx_buffer->page) +
2118 				   rx_buffer->page_offset;
2119 			xdp_set_data_meta_invalid(&xdp);
2120 			xdp.data_hard_start = xdp.data -
2121 					      i40e_rx_offset(rx_ring);
2122 			xdp.data_end = xdp.data + size;
2123 
2124 			skb = i40e_run_xdp(rx_ring, &xdp);
2125 		}
2126 
2127 		if (IS_ERR(skb)) {
2128 			if (PTR_ERR(skb) == -I40E_XDP_TX) {
2129 				xdp_xmit = true;
2130 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2131 			} else {
2132 				rx_buffer->pagecnt_bias++;
2133 			}
2134 			total_rx_bytes += size;
2135 			total_rx_packets++;
2136 		} else if (skb) {
2137 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2138 		} else if (ring_uses_build_skb(rx_ring)) {
2139 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2140 		} else {
2141 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2142 		}
2143 
2144 		/* exit if we failed to retrieve a buffer */
2145 		if (!skb) {
2146 			rx_ring->rx_stats.alloc_buff_failed++;
2147 			rx_buffer->pagecnt_bias++;
2148 			break;
2149 		}
2150 
2151 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2152 		cleaned_count++;
2153 
2154 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2155 			continue;
2156 
2157 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2158 			skb = NULL;
2159 			continue;
2160 		}
2161 
2162 		/* probably a little skewed due to removing CRC */
2163 		total_rx_bytes += skb->len;
2164 
2165 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2166 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2167 			   I40E_RXD_QW1_PTYPE_SHIFT;
2168 
2169 		/* populate checksum, VLAN, and protocol */
2170 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2171 
2172 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2173 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2174 
2175 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2176 		i40e_receive_skb(rx_ring, skb, vlan_tag);
2177 		skb = NULL;
2178 
2179 		/* update budget accounting */
2180 		total_rx_packets++;
2181 	}
2182 
2183 	if (xdp_xmit) {
2184 		struct i40e_ring *xdp_ring;
2185 
2186 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2187 
2188 		/* Force memory writes to complete before letting h/w
2189 		 * know there are new descriptors to fetch.
2190 		 */
2191 		wmb();
2192 
2193 		writel(xdp_ring->next_to_use, xdp_ring->tail);
2194 	}
2195 
2196 	rx_ring->skb = skb;
2197 
2198 	u64_stats_update_begin(&rx_ring->syncp);
2199 	rx_ring->stats.packets += total_rx_packets;
2200 	rx_ring->stats.bytes += total_rx_bytes;
2201 	u64_stats_update_end(&rx_ring->syncp);
2202 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2203 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2204 
2205 	/* guarantee a trip back through this routine if there was a failure */
2206 	return failure ? budget : (int)total_rx_packets;
2207 }
2208 
2209 static u32 i40e_buildreg_itr(const int type, const u16 itr)
2210 {
2211 	u32 val;
2212 
2213 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2214 	      I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
2215 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2216 	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
2217 
2218 	return val;
2219 }
2220 
2221 /* a small macro to shorten up some long lines */
2222 #define INTREG I40E_PFINT_DYN_CTLN
2223 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2224 {
2225 	return vsi->rx_rings[idx]->rx_itr_setting;
2226 }
2227 
2228 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2229 {
2230 	return vsi->tx_rings[idx]->tx_itr_setting;
2231 }
2232 
2233 /**
2234  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2235  * @vsi: the VSI we care about
2236  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2237  *
2238  **/
2239 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2240 					  struct i40e_q_vector *q_vector)
2241 {
2242 	struct i40e_hw *hw = &vsi->back->hw;
2243 	bool rx = false, tx = false;
2244 	u32 rxval, txval;
2245 	int vector;
2246 	int idx = q_vector->v_idx;
2247 	int rx_itr_setting, tx_itr_setting;
2248 
2249 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2250 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2251 		i40e_irq_dynamic_enable_icr0(vsi->back);
2252 		return;
2253 	}
2254 
2255 	vector = (q_vector->v_idx + vsi->base_vector);
2256 
2257 	/* avoid dynamic calculation if in countdown mode OR if
2258 	 * all dynamic is disabled
2259 	 */
2260 	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2261 
2262 	rx_itr_setting = get_rx_itr(vsi, idx);
2263 	tx_itr_setting = get_tx_itr(vsi, idx);
2264 
2265 	if (q_vector->itr_countdown > 0 ||
2266 	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
2267 	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2268 		goto enable_int;
2269 	}
2270 
2271 	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2272 		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
2273 		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2274 	}
2275 
2276 	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2277 		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
2278 		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2279 	}
2280 
2281 	if (rx || tx) {
2282 		/* get the higher of the two ITR adjustments and
2283 		 * use the same value for both ITR registers
2284 		 * when in adaptive mode (Rx and/or Tx)
2285 		 */
2286 		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
2287 
2288 		q_vector->tx.itr = q_vector->rx.itr = itr;
2289 		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
2290 		tx = true;
2291 		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
2292 		rx = true;
2293 	}
2294 
2295 	/* only need to enable the interrupt once, but need
2296 	 * to possibly update both ITR values
2297 	 */
2298 	if (rx) {
2299 		/* set the INTENA_MSK_MASK so that this first write
2300 		 * won't actually enable the interrupt, instead just
2301 		 * updating the ITR (it's bit 31 PF and VF)
2302 		 */
2303 		rxval |= BIT(31);
2304 		/* don't check _DOWN because interrupt isn't being enabled */
2305 		wr32(hw, INTREG(vector - 1), rxval);
2306 	}
2307 
2308 enable_int:
2309 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2310 		wr32(hw, INTREG(vector - 1), txval);
2311 
2312 	if (q_vector->itr_countdown)
2313 		q_vector->itr_countdown--;
2314 	else
2315 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2316 }
2317 
2318 /**
2319  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2320  * @napi: napi struct with our devices info in it
2321  * @budget: amount of work driver is allowed to do this pass, in packets
2322  *
2323  * This function will clean all queues associated with a q_vector.
2324  *
2325  * Returns the amount of work done
2326  **/
2327 int i40e_napi_poll(struct napi_struct *napi, int budget)
2328 {
2329 	struct i40e_q_vector *q_vector =
2330 			       container_of(napi, struct i40e_q_vector, napi);
2331 	struct i40e_vsi *vsi = q_vector->vsi;
2332 	struct i40e_ring *ring;
2333 	bool clean_complete = true;
2334 	bool arm_wb = false;
2335 	int budget_per_ring;
2336 	int work_done = 0;
2337 
2338 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2339 		napi_complete(napi);
2340 		return 0;
2341 	}
2342 
2343 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2344 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2345 	 */
2346 	i40e_for_each_ring(ring, q_vector->tx) {
2347 		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2348 			clean_complete = false;
2349 			continue;
2350 		}
2351 		arm_wb |= ring->arm_wb;
2352 		ring->arm_wb = false;
2353 	}
2354 
2355 	/* Handle case where we are called by netpoll with a budget of 0 */
2356 	if (budget <= 0)
2357 		goto tx_only;
2358 
2359 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2360 	 * allow the budget to go below 1 because that would exit polling early.
2361 	 */
2362 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2363 
2364 	i40e_for_each_ring(ring, q_vector->rx) {
2365 		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2366 
2367 		work_done += cleaned;
2368 		/* if we clean as many as budgeted, we must not be done */
2369 		if (cleaned >= budget_per_ring)
2370 			clean_complete = false;
2371 	}
2372 
2373 	/* If work not completed, return budget and polling will return */
2374 	if (!clean_complete) {
2375 		int cpu_id = smp_processor_id();
2376 
2377 		/* It is possible that the interrupt affinity has changed but,
2378 		 * if the cpu is pegged at 100%, polling will never exit while
2379 		 * traffic continues and the interrupt will be stuck on this
2380 		 * cpu.  We check to make sure affinity is correct before we
2381 		 * continue to poll, otherwise we must stop polling so the
2382 		 * interrupt can move to the correct cpu.
2383 		 */
2384 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2385 			/* Tell napi that we are done polling */
2386 			napi_complete_done(napi, work_done);
2387 
2388 			/* Force an interrupt */
2389 			i40e_force_wb(vsi, q_vector);
2390 
2391 			/* Return budget-1 so that polling stops */
2392 			return budget - 1;
2393 		}
2394 tx_only:
2395 		if (arm_wb) {
2396 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2397 			i40e_enable_wb_on_itr(vsi, q_vector);
2398 		}
2399 		return budget;
2400 	}
2401 
2402 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2403 		q_vector->arm_wb_state = false;
2404 
2405 	/* Work is done so exit the polling mode and re-enable the interrupt */
2406 	napi_complete_done(napi, work_done);
2407 
2408 	i40e_update_enable_itr(vsi, q_vector);
2409 
2410 	return min(work_done, budget - 1);
2411 }
2412 
2413 /**
2414  * i40e_atr - Add a Flow Director ATR filter
2415  * @tx_ring:  ring to add programming descriptor to
2416  * @skb:      send buffer
2417  * @tx_flags: send tx flags
2418  **/
2419 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2420 		     u32 tx_flags)
2421 {
2422 	struct i40e_filter_program_desc *fdir_desc;
2423 	struct i40e_pf *pf = tx_ring->vsi->back;
2424 	union {
2425 		unsigned char *network;
2426 		struct iphdr *ipv4;
2427 		struct ipv6hdr *ipv6;
2428 	} hdr;
2429 	struct tcphdr *th;
2430 	unsigned int hlen;
2431 	u32 flex_ptype, dtype_cmd;
2432 	int l4_proto;
2433 	u16 i;
2434 
2435 	/* make sure ATR is enabled */
2436 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2437 		return;
2438 
2439 	if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2440 		return;
2441 
2442 	/* if sampling is disabled do nothing */
2443 	if (!tx_ring->atr_sample_rate)
2444 		return;
2445 
2446 	/* Currently only IPv4/IPv6 with TCP is supported */
2447 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2448 		return;
2449 
2450 	/* snag network header to get L4 type and address */
2451 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2452 		      skb_inner_network_header(skb) : skb_network_header(skb);
2453 
2454 	/* Note: tx_flags gets modified to reflect inner protocols in
2455 	 * tx_enable_csum function if encap is enabled.
2456 	 */
2457 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2458 		/* access ihl as u8 to avoid unaligned access on ia64 */
2459 		hlen = (hdr.network[0] & 0x0F) << 2;
2460 		l4_proto = hdr.ipv4->protocol;
2461 	} else {
2462 		/* find the start of the innermost ipv6 header */
2463 		unsigned int inner_hlen = hdr.network - skb->data;
2464 		unsigned int h_offset = inner_hlen;
2465 
2466 		/* this function updates h_offset to the end of the header */
2467 		l4_proto =
2468 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2469 		/* hlen will contain our best estimate of the tcp header */
2470 		hlen = h_offset - inner_hlen;
2471 	}
2472 
2473 	if (l4_proto != IPPROTO_TCP)
2474 		return;
2475 
2476 	th = (struct tcphdr *)(hdr.network + hlen);
2477 
2478 	/* Due to lack of space, no more new filters can be programmed */
2479 	if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2480 		return;
2481 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2482 		/* HW ATR eviction will take care of removing filters on FIN
2483 		 * and RST packets.
2484 		 */
2485 		if (th->fin || th->rst)
2486 			return;
2487 	}
2488 
2489 	tx_ring->atr_count++;
2490 
2491 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2492 	if (!th->fin &&
2493 	    !th->syn &&
2494 	    !th->rst &&
2495 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2496 		return;
2497 
2498 	tx_ring->atr_count = 0;
2499 
2500 	/* grab the next descriptor */
2501 	i = tx_ring->next_to_use;
2502 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2503 
2504 	i++;
2505 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2506 
2507 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2508 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2509 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2510 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2511 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2512 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2513 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2514 
2515 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2516 
2517 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2518 
2519 	dtype_cmd |= (th->fin || th->rst) ?
2520 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2521 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2522 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2523 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2524 
2525 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2526 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2527 
2528 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2529 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2530 
2531 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2532 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2533 		dtype_cmd |=
2534 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2535 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2536 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2537 	else
2538 		dtype_cmd |=
2539 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2540 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2541 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2542 
2543 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2544 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2545 
2546 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2547 	fdir_desc->rsvd = cpu_to_le32(0);
2548 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2549 	fdir_desc->fd_id = cpu_to_le32(0);
2550 }
2551 
2552 /**
2553  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2554  * @skb:     send buffer
2555  * @tx_ring: ring to send buffer on
2556  * @flags:   the tx flags to be set
2557  *
2558  * Checks the skb and set up correspondingly several generic transmit flags
2559  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2560  *
2561  * Returns error code indicate the frame should be dropped upon error and the
2562  * otherwise  returns 0 to indicate the flags has been set properly.
2563  **/
2564 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2565 					     struct i40e_ring *tx_ring,
2566 					     u32 *flags)
2567 {
2568 	__be16 protocol = skb->protocol;
2569 	u32  tx_flags = 0;
2570 
2571 	if (protocol == htons(ETH_P_8021Q) &&
2572 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2573 		/* When HW VLAN acceleration is turned off by the user the
2574 		 * stack sets the protocol to 8021q so that the driver
2575 		 * can take any steps required to support the SW only
2576 		 * VLAN handling.  In our case the driver doesn't need
2577 		 * to take any further steps so just set the protocol
2578 		 * to the encapsulated ethertype.
2579 		 */
2580 		skb->protocol = vlan_get_protocol(skb);
2581 		goto out;
2582 	}
2583 
2584 	/* if we have a HW VLAN tag being added, default to the HW one */
2585 	if (skb_vlan_tag_present(skb)) {
2586 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2587 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2588 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2589 	} else if (protocol == htons(ETH_P_8021Q)) {
2590 		struct vlan_hdr *vhdr, _vhdr;
2591 
2592 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2593 		if (!vhdr)
2594 			return -EINVAL;
2595 
2596 		protocol = vhdr->h_vlan_encapsulated_proto;
2597 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2598 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2599 	}
2600 
2601 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2602 		goto out;
2603 
2604 	/* Insert 802.1p priority into VLAN header */
2605 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2606 	    (skb->priority != TC_PRIO_CONTROL)) {
2607 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2608 		tx_flags |= (skb->priority & 0x7) <<
2609 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2610 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2611 			struct vlan_ethhdr *vhdr;
2612 			int rc;
2613 
2614 			rc = skb_cow_head(skb, 0);
2615 			if (rc < 0)
2616 				return rc;
2617 			vhdr = (struct vlan_ethhdr *)skb->data;
2618 			vhdr->h_vlan_TCI = htons(tx_flags >>
2619 						 I40E_TX_FLAGS_VLAN_SHIFT);
2620 		} else {
2621 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2622 		}
2623 	}
2624 
2625 out:
2626 	*flags = tx_flags;
2627 	return 0;
2628 }
2629 
2630 /**
2631  * i40e_tso - set up the tso context descriptor
2632  * @first:    pointer to first Tx buffer for xmit
2633  * @hdr_len:  ptr to the size of the packet header
2634  * @cd_type_cmd_tso_mss: Quad Word 1
2635  *
2636  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2637  **/
2638 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2639 		    u64 *cd_type_cmd_tso_mss)
2640 {
2641 	struct sk_buff *skb = first->skb;
2642 	u64 cd_cmd, cd_tso_len, cd_mss;
2643 	union {
2644 		struct iphdr *v4;
2645 		struct ipv6hdr *v6;
2646 		unsigned char *hdr;
2647 	} ip;
2648 	union {
2649 		struct tcphdr *tcp;
2650 		struct udphdr *udp;
2651 		unsigned char *hdr;
2652 	} l4;
2653 	u32 paylen, l4_offset;
2654 	u16 gso_segs, gso_size;
2655 	int err;
2656 
2657 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2658 		return 0;
2659 
2660 	if (!skb_is_gso(skb))
2661 		return 0;
2662 
2663 	err = skb_cow_head(skb, 0);
2664 	if (err < 0)
2665 		return err;
2666 
2667 	ip.hdr = skb_network_header(skb);
2668 	l4.hdr = skb_transport_header(skb);
2669 
2670 	/* initialize outer IP header fields */
2671 	if (ip.v4->version == 4) {
2672 		ip.v4->tot_len = 0;
2673 		ip.v4->check = 0;
2674 	} else {
2675 		ip.v6->payload_len = 0;
2676 	}
2677 
2678 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2679 					 SKB_GSO_GRE_CSUM |
2680 					 SKB_GSO_IPXIP4 |
2681 					 SKB_GSO_IPXIP6 |
2682 					 SKB_GSO_UDP_TUNNEL |
2683 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2684 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2685 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2686 			l4.udp->len = 0;
2687 
2688 			/* determine offset of outer transport header */
2689 			l4_offset = l4.hdr - skb->data;
2690 
2691 			/* remove payload length from outer checksum */
2692 			paylen = skb->len - l4_offset;
2693 			csum_replace_by_diff(&l4.udp->check,
2694 					     (__force __wsum)htonl(paylen));
2695 		}
2696 
2697 		/* reset pointers to inner headers */
2698 		ip.hdr = skb_inner_network_header(skb);
2699 		l4.hdr = skb_inner_transport_header(skb);
2700 
2701 		/* initialize inner IP header fields */
2702 		if (ip.v4->version == 4) {
2703 			ip.v4->tot_len = 0;
2704 			ip.v4->check = 0;
2705 		} else {
2706 			ip.v6->payload_len = 0;
2707 		}
2708 	}
2709 
2710 	/* determine offset of inner transport header */
2711 	l4_offset = l4.hdr - skb->data;
2712 
2713 	/* remove payload length from inner checksum */
2714 	paylen = skb->len - l4_offset;
2715 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2716 
2717 	/* compute length of segmentation header */
2718 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2719 
2720 	/* pull values out of skb_shinfo */
2721 	gso_size = skb_shinfo(skb)->gso_size;
2722 	gso_segs = skb_shinfo(skb)->gso_segs;
2723 
2724 	/* update GSO size and bytecount with header size */
2725 	first->gso_segs = gso_segs;
2726 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2727 
2728 	/* find the field values */
2729 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2730 	cd_tso_len = skb->len - *hdr_len;
2731 	cd_mss = gso_size;
2732 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2733 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2734 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2735 	return 1;
2736 }
2737 
2738 /**
2739  * i40e_tsyn - set up the tsyn context descriptor
2740  * @tx_ring:  ptr to the ring to send
2741  * @skb:      ptr to the skb we're sending
2742  * @tx_flags: the collected send information
2743  * @cd_type_cmd_tso_mss: Quad Word 1
2744  *
2745  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2746  **/
2747 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2748 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2749 {
2750 	struct i40e_pf *pf;
2751 
2752 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2753 		return 0;
2754 
2755 	/* Tx timestamps cannot be sampled when doing TSO */
2756 	if (tx_flags & I40E_TX_FLAGS_TSO)
2757 		return 0;
2758 
2759 	/* only timestamp the outbound packet if the user has requested it and
2760 	 * we are not already transmitting a packet to be timestamped
2761 	 */
2762 	pf = i40e_netdev_to_pf(tx_ring->netdev);
2763 	if (!(pf->flags & I40E_FLAG_PTP))
2764 		return 0;
2765 
2766 	if (pf->ptp_tx &&
2767 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2768 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2769 		pf->ptp_tx_start = jiffies;
2770 		pf->ptp_tx_skb = skb_get(skb);
2771 	} else {
2772 		pf->tx_hwtstamp_skipped++;
2773 		return 0;
2774 	}
2775 
2776 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2777 				I40E_TXD_CTX_QW1_CMD_SHIFT;
2778 
2779 	return 1;
2780 }
2781 
2782 /**
2783  * i40e_tx_enable_csum - Enable Tx checksum offloads
2784  * @skb: send buffer
2785  * @tx_flags: pointer to Tx flags currently set
2786  * @td_cmd: Tx descriptor command bits to set
2787  * @td_offset: Tx descriptor header offsets to set
2788  * @tx_ring: Tx descriptor ring
2789  * @cd_tunneling: ptr to context desc bits
2790  **/
2791 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2792 			       u32 *td_cmd, u32 *td_offset,
2793 			       struct i40e_ring *tx_ring,
2794 			       u32 *cd_tunneling)
2795 {
2796 	union {
2797 		struct iphdr *v4;
2798 		struct ipv6hdr *v6;
2799 		unsigned char *hdr;
2800 	} ip;
2801 	union {
2802 		struct tcphdr *tcp;
2803 		struct udphdr *udp;
2804 		unsigned char *hdr;
2805 	} l4;
2806 	unsigned char *exthdr;
2807 	u32 offset, cmd = 0;
2808 	__be16 frag_off;
2809 	u8 l4_proto = 0;
2810 
2811 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2812 		return 0;
2813 
2814 	ip.hdr = skb_network_header(skb);
2815 	l4.hdr = skb_transport_header(skb);
2816 
2817 	/* compute outer L2 header size */
2818 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2819 
2820 	if (skb->encapsulation) {
2821 		u32 tunnel = 0;
2822 		/* define outer network header type */
2823 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2824 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2825 				  I40E_TX_CTX_EXT_IP_IPV4 :
2826 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2827 
2828 			l4_proto = ip.v4->protocol;
2829 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2830 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2831 
2832 			exthdr = ip.hdr + sizeof(*ip.v6);
2833 			l4_proto = ip.v6->nexthdr;
2834 			if (l4.hdr != exthdr)
2835 				ipv6_skip_exthdr(skb, exthdr - skb->data,
2836 						 &l4_proto, &frag_off);
2837 		}
2838 
2839 		/* define outer transport */
2840 		switch (l4_proto) {
2841 		case IPPROTO_UDP:
2842 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2843 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2844 			break;
2845 		case IPPROTO_GRE:
2846 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2847 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2848 			break;
2849 		case IPPROTO_IPIP:
2850 		case IPPROTO_IPV6:
2851 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2852 			l4.hdr = skb_inner_network_header(skb);
2853 			break;
2854 		default:
2855 			if (*tx_flags & I40E_TX_FLAGS_TSO)
2856 				return -1;
2857 
2858 			skb_checksum_help(skb);
2859 			return 0;
2860 		}
2861 
2862 		/* compute outer L3 header size */
2863 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2864 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2865 
2866 		/* switch IP header pointer from outer to inner header */
2867 		ip.hdr = skb_inner_network_header(skb);
2868 
2869 		/* compute tunnel header size */
2870 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2871 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2872 
2873 		/* indicate if we need to offload outer UDP header */
2874 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2875 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2876 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2877 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2878 
2879 		/* record tunnel offload values */
2880 		*cd_tunneling |= tunnel;
2881 
2882 		/* switch L4 header pointer from outer to inner */
2883 		l4.hdr = skb_inner_transport_header(skb);
2884 		l4_proto = 0;
2885 
2886 		/* reset type as we transition from outer to inner headers */
2887 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2888 		if (ip.v4->version == 4)
2889 			*tx_flags |= I40E_TX_FLAGS_IPV4;
2890 		if (ip.v6->version == 6)
2891 			*tx_flags |= I40E_TX_FLAGS_IPV6;
2892 	}
2893 
2894 	/* Enable IP checksum offloads */
2895 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2896 		l4_proto = ip.v4->protocol;
2897 		/* the stack computes the IP header already, the only time we
2898 		 * need the hardware to recompute it is in the case of TSO.
2899 		 */
2900 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2901 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2902 		       I40E_TX_DESC_CMD_IIPT_IPV4;
2903 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2904 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2905 
2906 		exthdr = ip.hdr + sizeof(*ip.v6);
2907 		l4_proto = ip.v6->nexthdr;
2908 		if (l4.hdr != exthdr)
2909 			ipv6_skip_exthdr(skb, exthdr - skb->data,
2910 					 &l4_proto, &frag_off);
2911 	}
2912 
2913 	/* compute inner L3 header size */
2914 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2915 
2916 	/* Enable L4 checksum offloads */
2917 	switch (l4_proto) {
2918 	case IPPROTO_TCP:
2919 		/* enable checksum offloads */
2920 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2921 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2922 		break;
2923 	case IPPROTO_SCTP:
2924 		/* enable SCTP checksum offload */
2925 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2926 		offset |= (sizeof(struct sctphdr) >> 2) <<
2927 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2928 		break;
2929 	case IPPROTO_UDP:
2930 		/* enable UDP checksum offload */
2931 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2932 		offset |= (sizeof(struct udphdr) >> 2) <<
2933 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2934 		break;
2935 	default:
2936 		if (*tx_flags & I40E_TX_FLAGS_TSO)
2937 			return -1;
2938 		skb_checksum_help(skb);
2939 		return 0;
2940 	}
2941 
2942 	*td_cmd |= cmd;
2943 	*td_offset |= offset;
2944 
2945 	return 1;
2946 }
2947 
2948 /**
2949  * i40e_create_tx_ctx Build the Tx context descriptor
2950  * @tx_ring:  ring to create the descriptor on
2951  * @cd_type_cmd_tso_mss: Quad Word 1
2952  * @cd_tunneling: Quad Word 0 - bits 0-31
2953  * @cd_l2tag2: Quad Word 0 - bits 32-63
2954  **/
2955 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2956 			       const u64 cd_type_cmd_tso_mss,
2957 			       const u32 cd_tunneling, const u32 cd_l2tag2)
2958 {
2959 	struct i40e_tx_context_desc *context_desc;
2960 	int i = tx_ring->next_to_use;
2961 
2962 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2963 	    !cd_tunneling && !cd_l2tag2)
2964 		return;
2965 
2966 	/* grab the next descriptor */
2967 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2968 
2969 	i++;
2970 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2971 
2972 	/* cpu_to_le32 and assign to struct fields */
2973 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2974 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2975 	context_desc->rsvd = cpu_to_le16(0);
2976 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2977 }
2978 
2979 /**
2980  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2981  * @tx_ring: the ring to be checked
2982  * @size:    the size buffer we want to assure is available
2983  *
2984  * Returns -EBUSY if a stop is needed, else 0
2985  **/
2986 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2987 {
2988 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2989 	/* Memory barrier before checking head and tail */
2990 	smp_mb();
2991 
2992 	/* Check again in a case another CPU has just made room available. */
2993 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2994 		return -EBUSY;
2995 
2996 	/* A reprieve! - use start_queue because it doesn't call schedule */
2997 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2998 	++tx_ring->tx_stats.restart_queue;
2999 	return 0;
3000 }
3001 
3002 /**
3003  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3004  * @skb:      send buffer
3005  *
3006  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3007  * and so we need to figure out the cases where we need to linearize the skb.
3008  *
3009  * For TSO we need to count the TSO header and segment payload separately.
3010  * As such we need to check cases where we have 7 fragments or more as we
3011  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3012  * the segment payload in the first descriptor, and another 7 for the
3013  * fragments.
3014  **/
3015 bool __i40e_chk_linearize(struct sk_buff *skb)
3016 {
3017 	const struct skb_frag_struct *frag, *stale;
3018 	int nr_frags, sum;
3019 
3020 	/* no need to check if number of frags is less than 7 */
3021 	nr_frags = skb_shinfo(skb)->nr_frags;
3022 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3023 		return false;
3024 
3025 	/* We need to walk through the list and validate that each group
3026 	 * of 6 fragments totals at least gso_size.
3027 	 */
3028 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3029 	frag = &skb_shinfo(skb)->frags[0];
3030 
3031 	/* Initialize size to the negative value of gso_size minus 1.  We
3032 	 * use this as the worst case scenerio in which the frag ahead
3033 	 * of us only provides one byte which is why we are limited to 6
3034 	 * descriptors for a single transmit as the header and previous
3035 	 * fragment are already consuming 2 descriptors.
3036 	 */
3037 	sum = 1 - skb_shinfo(skb)->gso_size;
3038 
3039 	/* Add size of frags 0 through 4 to create our initial sum */
3040 	sum += skb_frag_size(frag++);
3041 	sum += skb_frag_size(frag++);
3042 	sum += skb_frag_size(frag++);
3043 	sum += skb_frag_size(frag++);
3044 	sum += skb_frag_size(frag++);
3045 
3046 	/* Walk through fragments adding latest fragment, testing it, and
3047 	 * then removing stale fragments from the sum.
3048 	 */
3049 	stale = &skb_shinfo(skb)->frags[0];
3050 	for (;;) {
3051 		sum += skb_frag_size(frag++);
3052 
3053 		/* if sum is negative we failed to make sufficient progress */
3054 		if (sum < 0)
3055 			return true;
3056 
3057 		if (!nr_frags--)
3058 			break;
3059 
3060 		sum -= skb_frag_size(stale++);
3061 	}
3062 
3063 	return false;
3064 }
3065 
3066 /**
3067  * i40e_tx_map - Build the Tx descriptor
3068  * @tx_ring:  ring to send buffer on
3069  * @skb:      send buffer
3070  * @first:    first buffer info buffer to use
3071  * @tx_flags: collected send information
3072  * @hdr_len:  size of the packet header
3073  * @td_cmd:   the command field in the descriptor
3074  * @td_offset: offset for checksum or crc
3075  *
3076  * Returns 0 on success, -1 on failure to DMA
3077  **/
3078 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3079 			      struct i40e_tx_buffer *first, u32 tx_flags,
3080 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3081 {
3082 	unsigned int data_len = skb->data_len;
3083 	unsigned int size = skb_headlen(skb);
3084 	struct skb_frag_struct *frag;
3085 	struct i40e_tx_buffer *tx_bi;
3086 	struct i40e_tx_desc *tx_desc;
3087 	u16 i = tx_ring->next_to_use;
3088 	u32 td_tag = 0;
3089 	dma_addr_t dma;
3090 	u16 desc_count = 1;
3091 
3092 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3093 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3094 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3095 			 I40E_TX_FLAGS_VLAN_SHIFT;
3096 	}
3097 
3098 	first->tx_flags = tx_flags;
3099 
3100 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3101 
3102 	tx_desc = I40E_TX_DESC(tx_ring, i);
3103 	tx_bi = first;
3104 
3105 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3106 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3107 
3108 		if (dma_mapping_error(tx_ring->dev, dma))
3109 			goto dma_error;
3110 
3111 		/* record length, and DMA address */
3112 		dma_unmap_len_set(tx_bi, len, size);
3113 		dma_unmap_addr_set(tx_bi, dma, dma);
3114 
3115 		/* align size to end of page */
3116 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3117 		tx_desc->buffer_addr = cpu_to_le64(dma);
3118 
3119 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3120 			tx_desc->cmd_type_offset_bsz =
3121 				build_ctob(td_cmd, td_offset,
3122 					   max_data, td_tag);
3123 
3124 			tx_desc++;
3125 			i++;
3126 			desc_count++;
3127 
3128 			if (i == tx_ring->count) {
3129 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3130 				i = 0;
3131 			}
3132 
3133 			dma += max_data;
3134 			size -= max_data;
3135 
3136 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3137 			tx_desc->buffer_addr = cpu_to_le64(dma);
3138 		}
3139 
3140 		if (likely(!data_len))
3141 			break;
3142 
3143 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3144 							  size, td_tag);
3145 
3146 		tx_desc++;
3147 		i++;
3148 		desc_count++;
3149 
3150 		if (i == tx_ring->count) {
3151 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3152 			i = 0;
3153 		}
3154 
3155 		size = skb_frag_size(frag);
3156 		data_len -= size;
3157 
3158 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3159 				       DMA_TO_DEVICE);
3160 
3161 		tx_bi = &tx_ring->tx_bi[i];
3162 	}
3163 
3164 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3165 
3166 	i++;
3167 	if (i == tx_ring->count)
3168 		i = 0;
3169 
3170 	tx_ring->next_to_use = i;
3171 
3172 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3173 
3174 	/* write last descriptor with EOP bit */
3175 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3176 
3177 	/* We OR these values together to check both against 4 (WB_STRIDE)
3178 	 * below. This is safe since we don't re-use desc_count afterwards.
3179 	 */
3180 	desc_count |= ++tx_ring->packet_stride;
3181 
3182 	if (desc_count >= WB_STRIDE) {
3183 		/* write last descriptor with RS bit set */
3184 		td_cmd |= I40E_TX_DESC_CMD_RS;
3185 		tx_ring->packet_stride = 0;
3186 	}
3187 
3188 	tx_desc->cmd_type_offset_bsz =
3189 			build_ctob(td_cmd, td_offset, size, td_tag);
3190 
3191 	/* Force memory writes to complete before letting h/w know there
3192 	 * are new descriptors to fetch.
3193 	 *
3194 	 * We also use this memory barrier to make certain all of the
3195 	 * status bits have been updated before next_to_watch is written.
3196 	 */
3197 	wmb();
3198 
3199 	/* set next_to_watch value indicating a packet is present */
3200 	first->next_to_watch = tx_desc;
3201 
3202 	/* notify HW of packet */
3203 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3204 		writel(i, tx_ring->tail);
3205 
3206 		/* we need this if more than one processor can write to our tail
3207 		 * at a time, it synchronizes IO on IA64/Altix systems
3208 		 */
3209 		mmiowb();
3210 	}
3211 
3212 	return 0;
3213 
3214 dma_error:
3215 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3216 
3217 	/* clear dma mappings for failed tx_bi map */
3218 	for (;;) {
3219 		tx_bi = &tx_ring->tx_bi[i];
3220 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3221 		if (tx_bi == first)
3222 			break;
3223 		if (i == 0)
3224 			i = tx_ring->count;
3225 		i--;
3226 	}
3227 
3228 	tx_ring->next_to_use = i;
3229 
3230 	return -1;
3231 }
3232 
3233 /**
3234  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3235  * @xdp: data to transmit
3236  * @xdp_ring: XDP Tx ring
3237  **/
3238 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3239 			      struct i40e_ring *xdp_ring)
3240 {
3241 	u32 size = xdp->data_end - xdp->data;
3242 	u16 i = xdp_ring->next_to_use;
3243 	struct i40e_tx_buffer *tx_bi;
3244 	struct i40e_tx_desc *tx_desc;
3245 	dma_addr_t dma;
3246 
3247 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3248 		xdp_ring->tx_stats.tx_busy++;
3249 		return I40E_XDP_CONSUMED;
3250 	}
3251 
3252 	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3253 	if (dma_mapping_error(xdp_ring->dev, dma))
3254 		return I40E_XDP_CONSUMED;
3255 
3256 	tx_bi = &xdp_ring->tx_bi[i];
3257 	tx_bi->bytecount = size;
3258 	tx_bi->gso_segs = 1;
3259 	tx_bi->raw_buf = xdp->data;
3260 
3261 	/* record length, and DMA address */
3262 	dma_unmap_len_set(tx_bi, len, size);
3263 	dma_unmap_addr_set(tx_bi, dma, dma);
3264 
3265 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3266 	tx_desc->buffer_addr = cpu_to_le64(dma);
3267 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3268 						  | I40E_TXD_CMD,
3269 						  0, size, 0);
3270 
3271 	/* Make certain all of the status bits have been updated
3272 	 * before next_to_watch is written.
3273 	 */
3274 	smp_wmb();
3275 
3276 	i++;
3277 	if (i == xdp_ring->count)
3278 		i = 0;
3279 
3280 	tx_bi->next_to_watch = tx_desc;
3281 	xdp_ring->next_to_use = i;
3282 
3283 	return I40E_XDP_TX;
3284 }
3285 
3286 /**
3287  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3288  * @skb:     send buffer
3289  * @tx_ring: ring to send buffer on
3290  *
3291  * Returns NETDEV_TX_OK if sent, else an error code
3292  **/
3293 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3294 					struct i40e_ring *tx_ring)
3295 {
3296 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3297 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3298 	struct i40e_tx_buffer *first;
3299 	u32 td_offset = 0;
3300 	u32 tx_flags = 0;
3301 	__be16 protocol;
3302 	u32 td_cmd = 0;
3303 	u8 hdr_len = 0;
3304 	int tso, count;
3305 	int tsyn;
3306 
3307 	/* prefetch the data, we'll need it later */
3308 	prefetch(skb->data);
3309 
3310 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3311 
3312 	count = i40e_xmit_descriptor_count(skb);
3313 	if (i40e_chk_linearize(skb, count)) {
3314 		if (__skb_linearize(skb)) {
3315 			dev_kfree_skb_any(skb);
3316 			return NETDEV_TX_OK;
3317 		}
3318 		count = i40e_txd_use_count(skb->len);
3319 		tx_ring->tx_stats.tx_linearize++;
3320 	}
3321 
3322 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3323 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3324 	 *       + 4 desc gap to avoid the cache line where head is,
3325 	 *       + 1 desc for context descriptor,
3326 	 * otherwise try next time
3327 	 */
3328 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3329 		tx_ring->tx_stats.tx_busy++;
3330 		return NETDEV_TX_BUSY;
3331 	}
3332 
3333 	/* record the location of the first descriptor for this packet */
3334 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3335 	first->skb = skb;
3336 	first->bytecount = skb->len;
3337 	first->gso_segs = 1;
3338 
3339 	/* prepare the xmit flags */
3340 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3341 		goto out_drop;
3342 
3343 	/* obtain protocol of skb */
3344 	protocol = vlan_get_protocol(skb);
3345 
3346 	/* setup IPv4/IPv6 offloads */
3347 	if (protocol == htons(ETH_P_IP))
3348 		tx_flags |= I40E_TX_FLAGS_IPV4;
3349 	else if (protocol == htons(ETH_P_IPV6))
3350 		tx_flags |= I40E_TX_FLAGS_IPV6;
3351 
3352 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3353 
3354 	if (tso < 0)
3355 		goto out_drop;
3356 	else if (tso)
3357 		tx_flags |= I40E_TX_FLAGS_TSO;
3358 
3359 	/* Always offload the checksum, since it's in the data descriptor */
3360 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3361 				  tx_ring, &cd_tunneling);
3362 	if (tso < 0)
3363 		goto out_drop;
3364 
3365 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3366 
3367 	if (tsyn)
3368 		tx_flags |= I40E_TX_FLAGS_TSYN;
3369 
3370 	skb_tx_timestamp(skb);
3371 
3372 	/* always enable CRC insertion offload */
3373 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3374 
3375 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3376 			   cd_tunneling, cd_l2tag2);
3377 
3378 	/* Add Flow Director ATR if it's enabled.
3379 	 *
3380 	 * NOTE: this must always be directly before the data descriptor.
3381 	 */
3382 	i40e_atr(tx_ring, skb, tx_flags);
3383 
3384 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3385 			td_cmd, td_offset))
3386 		goto cleanup_tx_tstamp;
3387 
3388 	return NETDEV_TX_OK;
3389 
3390 out_drop:
3391 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3392 	dev_kfree_skb_any(first->skb);
3393 	first->skb = NULL;
3394 cleanup_tx_tstamp:
3395 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3396 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3397 
3398 		dev_kfree_skb_any(pf->ptp_tx_skb);
3399 		pf->ptp_tx_skb = NULL;
3400 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3401 	}
3402 
3403 	return NETDEV_TX_OK;
3404 }
3405 
3406 /**
3407  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3408  * @skb:    send buffer
3409  * @netdev: network interface device structure
3410  *
3411  * Returns NETDEV_TX_OK if sent, else an error code
3412  **/
3413 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3414 {
3415 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3416 	struct i40e_vsi *vsi = np->vsi;
3417 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3418 
3419 	/* hardware can't handle really short frames, hardware padding works
3420 	 * beyond this point
3421 	 */
3422 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3423 		return NETDEV_TX_OK;
3424 
3425 	return i40e_xmit_frame_ring(skb, tx_ring);
3426 }
3427