xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision 335bbdf01d25517ae832ac1807fd8323c1f4f3b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/prefetch.h>
6 #include <linux/sctp.h>
7 #include <net/mpls.h>
8 #include <net/xdp.h>
9 #include "i40e_txrx_common.h"
10 #include "i40e_trace.h"
11 #include "i40e_xsk.h"
12 
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
16  * @tx_ring: Tx ring to send buffer on
17  * @fdata: Flow director filter data
18  * @add: Indicate if we are adding a rule or deleting one
19  *
20  **/
21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 		      struct i40e_fdir_filter *fdata, bool add)
23 {
24 	struct i40e_filter_program_desc *fdir_desc;
25 	struct i40e_pf *pf = tx_ring->vsi->back;
26 	u32 flex_ptype, dtype_cmd;
27 	u16 i;
28 
29 	/* grab the next descriptor */
30 	i = tx_ring->next_to_use;
31 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32 
33 	i++;
34 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35 
36 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38 
39 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41 
42 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44 
45 	/* Use LAN VSI Id if not programmed by user */
46 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
47 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
48 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
49 
50 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
51 
52 	dtype_cmd |= add ?
53 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
54 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
55 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
56 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
57 
58 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
59 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
60 
61 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
62 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
63 
64 	if (fdata->cnt_index) {
65 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
66 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
67 			     ((u32)fdata->cnt_index <<
68 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
69 	}
70 
71 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
72 	fdir_desc->rsvd = cpu_to_le32(0);
73 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
74 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
75 }
76 
77 #define I40E_FD_CLEAN_DELAY 10
78 /**
79  * i40e_program_fdir_filter - Program a Flow Director filter
80  * @fdir_data: Packet data that will be filter parameters
81  * @raw_packet: the pre-allocated packet buffer for FDir
82  * @pf: The PF pointer
83  * @add: True for add/update, False for remove
84  **/
85 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
86 				    u8 *raw_packet, struct i40e_pf *pf,
87 				    bool add)
88 {
89 	struct i40e_tx_buffer *tx_buf, *first;
90 	struct i40e_tx_desc *tx_desc;
91 	struct i40e_ring *tx_ring;
92 	struct i40e_vsi *vsi;
93 	struct device *dev;
94 	dma_addr_t dma;
95 	u32 td_cmd = 0;
96 	u16 i;
97 
98 	/* find existing FDIR VSI */
99 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
100 	if (!vsi)
101 		return -ENOENT;
102 
103 	tx_ring = vsi->tx_rings[0];
104 	dev = tx_ring->dev;
105 
106 	/* we need two descriptors to add/del a filter and we can wait */
107 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
108 		if (!i)
109 			return -EAGAIN;
110 		msleep_interruptible(1);
111 	}
112 
113 	dma = dma_map_single(dev, raw_packet,
114 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
115 	if (dma_mapping_error(dev, dma))
116 		goto dma_fail;
117 
118 	/* grab the next descriptor */
119 	i = tx_ring->next_to_use;
120 	first = &tx_ring->tx_bi[i];
121 	i40e_fdir(tx_ring, fdir_data, add);
122 
123 	/* Now program a dummy descriptor */
124 	i = tx_ring->next_to_use;
125 	tx_desc = I40E_TX_DESC(tx_ring, i);
126 	tx_buf = &tx_ring->tx_bi[i];
127 
128 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
129 
130 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
131 
132 	/* record length, and DMA address */
133 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
134 	dma_unmap_addr_set(tx_buf, dma, dma);
135 
136 	tx_desc->buffer_addr = cpu_to_le64(dma);
137 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
138 
139 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
140 	tx_buf->raw_buf = (void *)raw_packet;
141 
142 	tx_desc->cmd_type_offset_bsz =
143 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
144 
145 	/* Force memory writes to complete before letting h/w
146 	 * know there are new descriptors to fetch.
147 	 */
148 	wmb();
149 
150 	/* Mark the data descriptor to be watched */
151 	first->next_to_watch = tx_desc;
152 
153 	writel(tx_ring->next_to_use, tx_ring->tail);
154 	return 0;
155 
156 dma_fail:
157 	return -1;
158 }
159 
160 /**
161  * i40e_create_dummy_packet - Constructs dummy packet for HW
162  * @dummy_packet: preallocated space for dummy packet
163  * @ipv4: is layer 3 packet of version 4 or 6
164  * @l4proto: next level protocol used in data portion of l3
165  * @data: filter data
166  *
167  * Returns address of layer 4 protocol dummy packet.
168  **/
169 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
170 				      struct i40e_fdir_filter *data)
171 {
172 	bool is_vlan = !!data->vlan_tag;
173 	struct vlan_hdr vlan = {};
174 	struct ipv6hdr ipv6 = {};
175 	struct ethhdr eth = {};
176 	struct iphdr ip = {};
177 	u8 *tmp;
178 
179 	if (ipv4) {
180 		eth.h_proto = cpu_to_be16(ETH_P_IP);
181 		ip.protocol = l4proto;
182 		ip.version = 0x4;
183 		ip.ihl = 0x5;
184 
185 		ip.daddr = data->dst_ip;
186 		ip.saddr = data->src_ip;
187 	} else {
188 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
189 		ipv6.nexthdr = l4proto;
190 		ipv6.version = 0x6;
191 
192 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
193 		       sizeof(__be32) * 4);
194 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
195 		       sizeof(__be32) * 4);
196 	}
197 
198 	if (is_vlan) {
199 		vlan.h_vlan_TCI = data->vlan_tag;
200 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
201 		eth.h_proto = data->vlan_etype;
202 	}
203 
204 	tmp = dummy_packet;
205 	memcpy(tmp, &eth, sizeof(eth));
206 	tmp += sizeof(eth);
207 
208 	if (is_vlan) {
209 		memcpy(tmp, &vlan, sizeof(vlan));
210 		tmp += sizeof(vlan);
211 	}
212 
213 	if (ipv4) {
214 		memcpy(tmp, &ip, sizeof(ip));
215 		tmp += sizeof(ip);
216 	} else {
217 		memcpy(tmp, &ipv6, sizeof(ipv6));
218 		tmp += sizeof(ipv6);
219 	}
220 
221 	return tmp;
222 }
223 
224 /**
225  * i40e_create_dummy_udp_packet - helper function to create UDP packet
226  * @raw_packet: preallocated space for dummy packet
227  * @ipv4: is layer 3 packet of version 4 or 6
228  * @l4proto: next level protocol used in data portion of l3
229  * @data: filter data
230  *
231  * Helper function to populate udp fields.
232  **/
233 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
234 					 struct i40e_fdir_filter *data)
235 {
236 	struct udphdr *udp;
237 	u8 *tmp;
238 
239 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
240 	udp = (struct udphdr *)(tmp);
241 	udp->dest = data->dst_port;
242 	udp->source = data->src_port;
243 }
244 
245 /**
246  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
247  * @raw_packet: preallocated space for dummy packet
248  * @ipv4: is layer 3 packet of version 4 or 6
249  * @l4proto: next level protocol used in data portion of l3
250  * @data: filter data
251  *
252  * Helper function to populate tcp fields.
253  **/
254 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
255 					 struct i40e_fdir_filter *data)
256 {
257 	struct tcphdr *tcp;
258 	u8 *tmp;
259 	/* Dummy tcp packet */
260 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
261 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
262 
263 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
264 
265 	tcp = (struct tcphdr *)tmp;
266 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
267 	tcp->dest = data->dst_port;
268 	tcp->source = data->src_port;
269 }
270 
271 /**
272  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
273  * @raw_packet: preallocated space for dummy packet
274  * @ipv4: is layer 3 packet of version 4 or 6
275  * @l4proto: next level protocol used in data portion of l3
276  * @data: filter data
277  *
278  * Helper function to populate sctp fields.
279  **/
280 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
281 					  u8 l4proto,
282 					  struct i40e_fdir_filter *data)
283 {
284 	struct sctphdr *sctp;
285 	u8 *tmp;
286 
287 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
288 
289 	sctp = (struct sctphdr *)tmp;
290 	sctp->dest = data->dst_port;
291 	sctp->source = data->src_port;
292 }
293 
294 /**
295  * i40e_prepare_fdir_filter - Prepare and program fdir filter
296  * @pf: physical function to attach filter to
297  * @fd_data: filter data
298  * @add: add or delete filter
299  * @packet_addr: address of dummy packet, used in filtering
300  * @payload_offset: offset from dummy packet address to user defined data
301  * @pctype: Packet type for which filter is used
302  *
303  * Helper function to offset data of dummy packet, program it and
304  * handle errors.
305  **/
306 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
307 				    struct i40e_fdir_filter *fd_data,
308 				    bool add, char *packet_addr,
309 				    int payload_offset, u8 pctype)
310 {
311 	int ret;
312 
313 	if (fd_data->flex_filter) {
314 		u8 *payload;
315 		__be16 pattern = fd_data->flex_word;
316 		u16 off = fd_data->flex_offset;
317 
318 		payload = packet_addr + payload_offset;
319 
320 		/* If user provided vlan, offset payload by vlan header length */
321 		if (!!fd_data->vlan_tag)
322 			payload += VLAN_HLEN;
323 
324 		*((__force __be16 *)(payload + off)) = pattern;
325 	}
326 
327 	fd_data->pctype = pctype;
328 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
329 	if (ret) {
330 		dev_info(&pf->pdev->dev,
331 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
332 			 fd_data->pctype, fd_data->fd_id, ret);
333 		/* Free the packet buffer since it wasn't added to the ring */
334 		return -EOPNOTSUPP;
335 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
336 		if (add)
337 			dev_info(&pf->pdev->dev,
338 				 "Filter OK for PCTYPE %d loc = %d\n",
339 				 fd_data->pctype, fd_data->fd_id);
340 		else
341 			dev_info(&pf->pdev->dev,
342 				 "Filter deleted for PCTYPE %d loc = %d\n",
343 				 fd_data->pctype, fd_data->fd_id);
344 	}
345 
346 	return ret;
347 }
348 
349 /**
350  * i40e_change_filter_num - Prepare and program fdir filter
351  * @ipv4: is layer 3 packet of version 4 or 6
352  * @add: add or delete filter
353  * @ipv4_filter_num: field to update
354  * @ipv6_filter_num: field to update
355  *
356  * Update filter number field for pf.
357  **/
358 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
359 				   u16 *ipv6_filter_num)
360 {
361 	if (add) {
362 		if (ipv4)
363 			(*ipv4_filter_num)++;
364 		else
365 			(*ipv6_filter_num)++;
366 	} else {
367 		if (ipv4)
368 			(*ipv4_filter_num)--;
369 		else
370 			(*ipv6_filter_num)--;
371 	}
372 }
373 
374 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
375 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
376 /**
377  * i40e_add_del_fdir_udp - Add/Remove UDP filters
378  * @vsi: pointer to the targeted VSI
379  * @fd_data: the flow director data required for the FDir descriptor
380  * @add: true adds a filter, false removes it
381  * @ipv4: true is v4, false is v6
382  *
383  * Returns 0 if the filters were successfully added or removed
384  **/
385 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
386 				 struct i40e_fdir_filter *fd_data,
387 				 bool add,
388 				 bool ipv4)
389 {
390 	struct i40e_pf *pf = vsi->back;
391 	u8 *raw_packet;
392 	int ret;
393 
394 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
395 	if (!raw_packet)
396 		return -ENOMEM;
397 
398 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
399 
400 	if (ipv4)
401 		ret = i40e_prepare_fdir_filter
402 			(pf, fd_data, add, raw_packet,
403 			 I40E_UDPIP_DUMMY_PACKET_LEN,
404 			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
405 	else
406 		ret = i40e_prepare_fdir_filter
407 			(pf, fd_data, add, raw_packet,
408 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
409 			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
410 
411 	if (ret) {
412 		kfree(raw_packet);
413 		return ret;
414 	}
415 
416 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
417 			       &pf->fd_udp6_filter_cnt);
418 
419 	return 0;
420 }
421 
422 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
423 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
424 /**
425  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
426  * @vsi: pointer to the targeted VSI
427  * @fd_data: the flow director data required for the FDir descriptor
428  * @add: true adds a filter, false removes it
429  * @ipv4: true is v4, false is v6
430  *
431  * Returns 0 if the filters were successfully added or removed
432  **/
433 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
434 				 struct i40e_fdir_filter *fd_data,
435 				 bool add,
436 				 bool ipv4)
437 {
438 	struct i40e_pf *pf = vsi->back;
439 	u8 *raw_packet;
440 	int ret;
441 
442 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
443 	if (!raw_packet)
444 		return -ENOMEM;
445 
446 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
447 	if (ipv4)
448 		ret = i40e_prepare_fdir_filter
449 			(pf, fd_data, add, raw_packet,
450 			 I40E_TCPIP_DUMMY_PACKET_LEN,
451 			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
452 	else
453 		ret = i40e_prepare_fdir_filter
454 			(pf, fd_data, add, raw_packet,
455 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
456 			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
457 
458 	if (ret) {
459 		kfree(raw_packet);
460 		return ret;
461 	}
462 
463 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
464 			       &pf->fd_tcp6_filter_cnt);
465 
466 	if (add) {
467 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
468 		    I40E_DEBUG_FD & pf->hw.debug_mask)
469 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
470 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
471 	}
472 	return 0;
473 }
474 
475 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
476 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
477 /**
478  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
479  * a specific flow spec
480  * @vsi: pointer to the targeted VSI
481  * @fd_data: the flow director data required for the FDir descriptor
482  * @add: true adds a filter, false removes it
483  * @ipv4: true is v4, false is v6
484  *
485  * Returns 0 if the filters were successfully added or removed
486  **/
487 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
488 				  struct i40e_fdir_filter *fd_data,
489 				  bool add,
490 				  bool ipv4)
491 {
492 	struct i40e_pf *pf = vsi->back;
493 	u8 *raw_packet;
494 	int ret;
495 
496 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
497 	if (!raw_packet)
498 		return -ENOMEM;
499 
500 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
501 
502 	if (ipv4)
503 		ret = i40e_prepare_fdir_filter
504 			(pf, fd_data, add, raw_packet,
505 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
506 			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
507 	else
508 		ret = i40e_prepare_fdir_filter
509 			(pf, fd_data, add, raw_packet,
510 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
511 			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
512 
513 	if (ret) {
514 		kfree(raw_packet);
515 		return ret;
516 	}
517 
518 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
519 			       &pf->fd_sctp6_filter_cnt);
520 
521 	return 0;
522 }
523 
524 #define I40E_IP_DUMMY_PACKET_LEN	34
525 #define I40E_IP6_DUMMY_PACKET_LEN	54
526 /**
527  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
528  * a specific flow spec
529  * @vsi: pointer to the targeted VSI
530  * @fd_data: the flow director data required for the FDir descriptor
531  * @add: true adds a filter, false removes it
532  * @ipv4: true is v4, false is v6
533  *
534  * Returns 0 if the filters were successfully added or removed
535  **/
536 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
537 				struct i40e_fdir_filter *fd_data,
538 				bool add,
539 				bool ipv4)
540 {
541 	struct i40e_pf *pf = vsi->back;
542 	int payload_offset;
543 	u8 *raw_packet;
544 	int iter_start;
545 	int iter_end;
546 	int ret;
547 	int i;
548 
549 	if (ipv4) {
550 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
551 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
552 	} else {
553 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
554 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
555 	}
556 
557 	for (i = iter_start; i <= iter_end; i++) {
558 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
559 		if (!raw_packet)
560 			return -ENOMEM;
561 
562 		/* IPv6 no header option differs from IPv4 */
563 		(void)i40e_create_dummy_packet
564 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
565 			 fd_data);
566 
567 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
568 			I40E_IP6_DUMMY_PACKET_LEN;
569 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
570 					       payload_offset, i);
571 		if (ret)
572 			goto err;
573 	}
574 
575 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
576 			       &pf->fd_ip6_filter_cnt);
577 
578 	return 0;
579 err:
580 	kfree(raw_packet);
581 	return ret;
582 }
583 
584 /**
585  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
586  * @vsi: pointer to the targeted VSI
587  * @input: filter to add or delete
588  * @add: true adds a filter, false removes it
589  *
590  **/
591 int i40e_add_del_fdir(struct i40e_vsi *vsi,
592 		      struct i40e_fdir_filter *input, bool add)
593 {
594 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
595 	struct i40e_pf *pf = vsi->back;
596 	int ret;
597 
598 	switch (input->flow_type & ~FLOW_EXT) {
599 	case TCP_V4_FLOW:
600 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
601 		break;
602 	case UDP_V4_FLOW:
603 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
604 		break;
605 	case SCTP_V4_FLOW:
606 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
607 		break;
608 	case TCP_V6_FLOW:
609 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
610 		break;
611 	case UDP_V6_FLOW:
612 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
613 		break;
614 	case SCTP_V6_FLOW:
615 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
616 		break;
617 	case IP_USER_FLOW:
618 		switch (input->ipl4_proto) {
619 		case IPPROTO_TCP:
620 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
621 			break;
622 		case IPPROTO_UDP:
623 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
624 			break;
625 		case IPPROTO_SCTP:
626 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
627 			break;
628 		case IPPROTO_IP:
629 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
630 			break;
631 		default:
632 			/* We cannot support masking based on protocol */
633 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
634 				 input->ipl4_proto);
635 			return -EINVAL;
636 		}
637 		break;
638 	case IPV6_USER_FLOW:
639 		switch (input->ipl4_proto) {
640 		case IPPROTO_TCP:
641 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
642 			break;
643 		case IPPROTO_UDP:
644 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
645 			break;
646 		case IPPROTO_SCTP:
647 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
648 			break;
649 		case IPPROTO_IP:
650 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
651 			break;
652 		default:
653 			/* We cannot support masking based on protocol */
654 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
655 				 input->ipl4_proto);
656 			return -EINVAL;
657 		}
658 		break;
659 	default:
660 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
661 			 input->flow_type);
662 		return -EINVAL;
663 	}
664 
665 	/* The buffer allocated here will be normally be freed by
666 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
667 	 * completion. In the event of an error adding the buffer to the FDIR
668 	 * ring, it will immediately be freed. It may also be freed by
669 	 * i40e_clean_tx_ring() when closing the VSI.
670 	 */
671 	return ret;
672 }
673 
674 /**
675  * i40e_fd_handle_status - check the Programming Status for FD
676  * @rx_ring: the Rx ring for this descriptor
677  * @qword0_raw: qword0
678  * @qword1: qword1 after le_to_cpu
679  * @prog_id: the id originally used for programming
680  *
681  * This is used to verify if the FD programming or invalidation
682  * requested by SW to the HW is successful or not and take actions accordingly.
683  **/
684 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
685 				  u64 qword1, u8 prog_id)
686 {
687 	struct i40e_pf *pf = rx_ring->vsi->back;
688 	struct pci_dev *pdev = pf->pdev;
689 	struct i40e_16b_rx_wb_qw0 *qw0;
690 	u32 fcnt_prog, fcnt_avail;
691 	u32 error;
692 
693 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
694 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
695 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
696 
697 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
698 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
699 		if (qw0->hi_dword.fd_id != 0 ||
700 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
701 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
702 				 pf->fd_inv);
703 
704 		/* Check if the programming error is for ATR.
705 		 * If so, auto disable ATR and set a state for
706 		 * flush in progress. Next time we come here if flush is in
707 		 * progress do nothing, once flush is complete the state will
708 		 * be cleared.
709 		 */
710 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
711 			return;
712 
713 		pf->fd_add_err++;
714 		/* store the current atr filter count */
715 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
716 
717 		if (qw0->hi_dword.fd_id == 0 &&
718 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
719 			/* These set_bit() calls aren't atomic with the
720 			 * test_bit() here, but worse case we potentially
721 			 * disable ATR and queue a flush right after SB
722 			 * support is re-enabled. That shouldn't cause an
723 			 * issue in practice
724 			 */
725 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
726 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
727 		}
728 
729 		/* filter programming failed most likely due to table full */
730 		fcnt_prog = i40e_get_global_fd_count(pf);
731 		fcnt_avail = pf->fdir_pf_filter_count;
732 		/* If ATR is running fcnt_prog can quickly change,
733 		 * if we are very close to full, it makes sense to disable
734 		 * FD ATR/SB and then re-enable it when there is room.
735 		 */
736 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
737 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
738 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
739 					      pf->state))
740 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
741 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
742 		}
743 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
744 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
745 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
746 				 qw0->hi_dword.fd_id);
747 	}
748 }
749 
750 /**
751  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
752  * @ring:      the ring that owns the buffer
753  * @tx_buffer: the buffer to free
754  **/
755 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
756 					    struct i40e_tx_buffer *tx_buffer)
757 {
758 	if (tx_buffer->skb) {
759 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
760 			kfree(tx_buffer->raw_buf);
761 		else if (ring_is_xdp(ring))
762 			xdp_return_frame(tx_buffer->xdpf);
763 		else
764 			dev_kfree_skb_any(tx_buffer->skb);
765 		if (dma_unmap_len(tx_buffer, len))
766 			dma_unmap_single(ring->dev,
767 					 dma_unmap_addr(tx_buffer, dma),
768 					 dma_unmap_len(tx_buffer, len),
769 					 DMA_TO_DEVICE);
770 	} else if (dma_unmap_len(tx_buffer, len)) {
771 		dma_unmap_page(ring->dev,
772 			       dma_unmap_addr(tx_buffer, dma),
773 			       dma_unmap_len(tx_buffer, len),
774 			       DMA_TO_DEVICE);
775 	}
776 
777 	tx_buffer->next_to_watch = NULL;
778 	tx_buffer->skb = NULL;
779 	dma_unmap_len_set(tx_buffer, len, 0);
780 	/* tx_buffer must be completely set up in the transmit path */
781 }
782 
783 /**
784  * i40e_clean_tx_ring - Free any empty Tx buffers
785  * @tx_ring: ring to be cleaned
786  **/
787 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
788 {
789 	unsigned long bi_size;
790 	u16 i;
791 
792 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
793 		i40e_xsk_clean_tx_ring(tx_ring);
794 	} else {
795 		/* ring already cleared, nothing to do */
796 		if (!tx_ring->tx_bi)
797 			return;
798 
799 		/* Free all the Tx ring sk_buffs */
800 		for (i = 0; i < tx_ring->count; i++)
801 			i40e_unmap_and_free_tx_resource(tx_ring,
802 							&tx_ring->tx_bi[i]);
803 	}
804 
805 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
806 	memset(tx_ring->tx_bi, 0, bi_size);
807 
808 	/* Zero out the descriptor ring */
809 	memset(tx_ring->desc, 0, tx_ring->size);
810 
811 	tx_ring->next_to_use = 0;
812 	tx_ring->next_to_clean = 0;
813 
814 	if (!tx_ring->netdev)
815 		return;
816 
817 	/* cleanup Tx queue statistics */
818 	netdev_tx_reset_queue(txring_txq(tx_ring));
819 }
820 
821 /**
822  * i40e_free_tx_resources - Free Tx resources per queue
823  * @tx_ring: Tx descriptor ring for a specific queue
824  *
825  * Free all transmit software resources
826  **/
827 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
828 {
829 	i40e_clean_tx_ring(tx_ring);
830 	kfree(tx_ring->tx_bi);
831 	tx_ring->tx_bi = NULL;
832 
833 	if (tx_ring->desc) {
834 		dma_free_coherent(tx_ring->dev, tx_ring->size,
835 				  tx_ring->desc, tx_ring->dma);
836 		tx_ring->desc = NULL;
837 	}
838 }
839 
840 /**
841  * i40e_get_tx_pending - how many tx descriptors not processed
842  * @ring: the ring of descriptors
843  * @in_sw: use SW variables
844  *
845  * Since there is no access to the ring head register
846  * in XL710, we need to use our local copies
847  **/
848 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
849 {
850 	u32 head, tail;
851 
852 	if (!in_sw) {
853 		head = i40e_get_head(ring);
854 		tail = readl(ring->tail);
855 	} else {
856 		head = ring->next_to_clean;
857 		tail = ring->next_to_use;
858 	}
859 
860 	if (head != tail)
861 		return (head < tail) ?
862 			tail - head : (tail + ring->count - head);
863 
864 	return 0;
865 }
866 
867 /**
868  * i40e_detect_recover_hung - Function to detect and recover hung_queues
869  * @vsi:  pointer to vsi struct with tx queues
870  *
871  * VSI has netdev and netdev has TX queues. This function is to check each of
872  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
873  **/
874 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
875 {
876 	struct i40e_ring *tx_ring = NULL;
877 	struct net_device *netdev;
878 	unsigned int i;
879 	int packets;
880 
881 	if (!vsi)
882 		return;
883 
884 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
885 		return;
886 
887 	netdev = vsi->netdev;
888 	if (!netdev)
889 		return;
890 
891 	if (!netif_carrier_ok(netdev))
892 		return;
893 
894 	for (i = 0; i < vsi->num_queue_pairs; i++) {
895 		tx_ring = vsi->tx_rings[i];
896 		if (tx_ring && tx_ring->desc) {
897 			/* If packet counter has not changed the queue is
898 			 * likely stalled, so force an interrupt for this
899 			 * queue.
900 			 *
901 			 * prev_pkt_ctr would be negative if there was no
902 			 * pending work.
903 			 */
904 			packets = tx_ring->stats.packets & INT_MAX;
905 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
906 				i40e_force_wb(vsi, tx_ring->q_vector);
907 				continue;
908 			}
909 
910 			/* Memory barrier between read of packet count and call
911 			 * to i40e_get_tx_pending()
912 			 */
913 			smp_rmb();
914 			tx_ring->tx_stats.prev_pkt_ctr =
915 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
916 		}
917 	}
918 }
919 
920 /**
921  * i40e_clean_tx_irq - Reclaim resources after transmit completes
922  * @vsi: the VSI we care about
923  * @tx_ring: Tx ring to clean
924  * @napi_budget: Used to determine if we are in netpoll
925  * @tx_cleaned: Out parameter set to the number of TXes cleaned
926  *
927  * Returns true if there's any budget left (e.g. the clean is finished)
928  **/
929 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
930 			      struct i40e_ring *tx_ring, int napi_budget,
931 			      unsigned int *tx_cleaned)
932 {
933 	int i = tx_ring->next_to_clean;
934 	struct i40e_tx_buffer *tx_buf;
935 	struct i40e_tx_desc *tx_head;
936 	struct i40e_tx_desc *tx_desc;
937 	unsigned int total_bytes = 0, total_packets = 0;
938 	unsigned int budget = vsi->work_limit;
939 
940 	tx_buf = &tx_ring->tx_bi[i];
941 	tx_desc = I40E_TX_DESC(tx_ring, i);
942 	i -= tx_ring->count;
943 
944 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
945 
946 	do {
947 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
948 
949 		/* if next_to_watch is not set then there is no work pending */
950 		if (!eop_desc)
951 			break;
952 
953 		/* prevent any other reads prior to eop_desc */
954 		smp_rmb();
955 
956 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
957 		/* we have caught up to head, no work left to do */
958 		if (tx_head == tx_desc)
959 			break;
960 
961 		/* clear next_to_watch to prevent false hangs */
962 		tx_buf->next_to_watch = NULL;
963 
964 		/* update the statistics for this packet */
965 		total_bytes += tx_buf->bytecount;
966 		total_packets += tx_buf->gso_segs;
967 
968 		/* free the skb/XDP data */
969 		if (ring_is_xdp(tx_ring))
970 			xdp_return_frame(tx_buf->xdpf);
971 		else
972 			napi_consume_skb(tx_buf->skb, napi_budget);
973 
974 		/* unmap skb header data */
975 		dma_unmap_single(tx_ring->dev,
976 				 dma_unmap_addr(tx_buf, dma),
977 				 dma_unmap_len(tx_buf, len),
978 				 DMA_TO_DEVICE);
979 
980 		/* clear tx_buffer data */
981 		tx_buf->skb = NULL;
982 		dma_unmap_len_set(tx_buf, len, 0);
983 
984 		/* unmap remaining buffers */
985 		while (tx_desc != eop_desc) {
986 			i40e_trace(clean_tx_irq_unmap,
987 				   tx_ring, tx_desc, tx_buf);
988 
989 			tx_buf++;
990 			tx_desc++;
991 			i++;
992 			if (unlikely(!i)) {
993 				i -= tx_ring->count;
994 				tx_buf = tx_ring->tx_bi;
995 				tx_desc = I40E_TX_DESC(tx_ring, 0);
996 			}
997 
998 			/* unmap any remaining paged data */
999 			if (dma_unmap_len(tx_buf, len)) {
1000 				dma_unmap_page(tx_ring->dev,
1001 					       dma_unmap_addr(tx_buf, dma),
1002 					       dma_unmap_len(tx_buf, len),
1003 					       DMA_TO_DEVICE);
1004 				dma_unmap_len_set(tx_buf, len, 0);
1005 			}
1006 		}
1007 
1008 		/* move us one more past the eop_desc for start of next pkt */
1009 		tx_buf++;
1010 		tx_desc++;
1011 		i++;
1012 		if (unlikely(!i)) {
1013 			i -= tx_ring->count;
1014 			tx_buf = tx_ring->tx_bi;
1015 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1016 		}
1017 
1018 		prefetch(tx_desc);
1019 
1020 		/* update budget accounting */
1021 		budget--;
1022 	} while (likely(budget));
1023 
1024 	i += tx_ring->count;
1025 	tx_ring->next_to_clean = i;
1026 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1027 	i40e_arm_wb(tx_ring, vsi, budget);
1028 
1029 	if (ring_is_xdp(tx_ring))
1030 		return !!budget;
1031 
1032 	/* notify netdev of completed buffers */
1033 	netdev_tx_completed_queue(txring_txq(tx_ring),
1034 				  total_packets, total_bytes);
1035 
1036 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1037 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1038 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1039 		/* Make sure that anybody stopping the queue after this
1040 		 * sees the new next_to_clean.
1041 		 */
1042 		smp_mb();
1043 		if (__netif_subqueue_stopped(tx_ring->netdev,
1044 					     tx_ring->queue_index) &&
1045 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1046 			netif_wake_subqueue(tx_ring->netdev,
1047 					    tx_ring->queue_index);
1048 			++tx_ring->tx_stats.restart_queue;
1049 		}
1050 	}
1051 
1052 	*tx_cleaned = total_packets;
1053 	return !!budget;
1054 }
1055 
1056 /**
1057  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1058  * @vsi: the VSI we care about
1059  * @q_vector: the vector on which to enable writeback
1060  *
1061  **/
1062 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1063 				  struct i40e_q_vector *q_vector)
1064 {
1065 	u16 flags = q_vector->tx.ring[0].flags;
1066 	u32 val;
1067 
1068 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1069 		return;
1070 
1071 	if (q_vector->arm_wb_state)
1072 		return;
1073 
1074 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1075 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1076 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1077 
1078 		wr32(&vsi->back->hw,
1079 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1080 		     val);
1081 	} else {
1082 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1083 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1084 
1085 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1086 	}
1087 	q_vector->arm_wb_state = true;
1088 }
1089 
1090 /**
1091  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1092  * @vsi: the VSI we care about
1093  * @q_vector: the vector  on which to force writeback
1094  *
1095  **/
1096 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1097 {
1098 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1099 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1100 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1101 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1102 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1103 			  /* allow 00 to be written to the index */
1104 
1105 		wr32(&vsi->back->hw,
1106 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1107 	} else {
1108 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1109 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1110 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1111 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1112 			/* allow 00 to be written to the index */
1113 
1114 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1115 	}
1116 }
1117 
1118 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1119 					struct i40e_ring_container *rc)
1120 {
1121 	return &q_vector->rx == rc;
1122 }
1123 
1124 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1125 {
1126 	unsigned int divisor;
1127 
1128 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1129 	case I40E_LINK_SPEED_40GB:
1130 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1131 		break;
1132 	case I40E_LINK_SPEED_25GB:
1133 	case I40E_LINK_SPEED_20GB:
1134 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1135 		break;
1136 	default:
1137 	case I40E_LINK_SPEED_10GB:
1138 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1139 		break;
1140 	case I40E_LINK_SPEED_1GB:
1141 	case I40E_LINK_SPEED_100MB:
1142 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1143 		break;
1144 	}
1145 
1146 	return divisor;
1147 }
1148 
1149 /**
1150  * i40e_update_itr - update the dynamic ITR value based on statistics
1151  * @q_vector: structure containing interrupt and ring information
1152  * @rc: structure containing ring performance data
1153  *
1154  * Stores a new ITR value based on packets and byte
1155  * counts during the last interrupt.  The advantage of per interrupt
1156  * computation is faster updates and more accurate ITR for the current
1157  * traffic pattern.  Constants in this function were computed
1158  * based on theoretical maximum wire speed and thresholds were set based
1159  * on testing data as well as attempting to minimize response time
1160  * while increasing bulk throughput.
1161  **/
1162 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1163 			    struct i40e_ring_container *rc)
1164 {
1165 	unsigned int avg_wire_size, packets, bytes, itr;
1166 	unsigned long next_update = jiffies;
1167 
1168 	/* If we don't have any rings just leave ourselves set for maximum
1169 	 * possible latency so we take ourselves out of the equation.
1170 	 */
1171 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1172 		return;
1173 
1174 	/* For Rx we want to push the delay up and default to low latency.
1175 	 * for Tx we want to pull the delay down and default to high latency.
1176 	 */
1177 	itr = i40e_container_is_rx(q_vector, rc) ?
1178 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1179 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1180 
1181 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1182 	 * that either packets are coming in so slow there hasn't been
1183 	 * any work, or that there is so much work that NAPI is dealing
1184 	 * with interrupt moderation and we don't need to do anything.
1185 	 */
1186 	if (time_after(next_update, rc->next_update))
1187 		goto clear_counts;
1188 
1189 	/* If itr_countdown is set it means we programmed an ITR within
1190 	 * the last 4 interrupt cycles. This has a side effect of us
1191 	 * potentially firing an early interrupt. In order to work around
1192 	 * this we need to throw out any data received for a few
1193 	 * interrupts following the update.
1194 	 */
1195 	if (q_vector->itr_countdown) {
1196 		itr = rc->target_itr;
1197 		goto clear_counts;
1198 	}
1199 
1200 	packets = rc->total_packets;
1201 	bytes = rc->total_bytes;
1202 
1203 	if (i40e_container_is_rx(q_vector, rc)) {
1204 		/* If Rx there are 1 to 4 packets and bytes are less than
1205 		 * 9000 assume insufficient data to use bulk rate limiting
1206 		 * approach unless Tx is already in bulk rate limiting. We
1207 		 * are likely latency driven.
1208 		 */
1209 		if (packets && packets < 4 && bytes < 9000 &&
1210 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1211 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1212 			goto adjust_by_size;
1213 		}
1214 	} else if (packets < 4) {
1215 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1216 		 * bulk mode and we are receiving 4 or fewer packets just
1217 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1218 		 * that the Rx can relax.
1219 		 */
1220 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1221 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1222 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1223 			goto clear_counts;
1224 	} else if (packets > 32) {
1225 		/* If we have processed over 32 packets in a single interrupt
1226 		 * for Tx assume we need to switch over to "bulk" mode.
1227 		 */
1228 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1229 	}
1230 
1231 	/* We have no packets to actually measure against. This means
1232 	 * either one of the other queues on this vector is active or
1233 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1234 	 *
1235 	 * Between 4 and 56 we can assume that our current interrupt delay
1236 	 * is only slightly too low. As such we should increase it by a small
1237 	 * fixed amount.
1238 	 */
1239 	if (packets < 56) {
1240 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1241 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1242 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1243 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1244 		}
1245 		goto clear_counts;
1246 	}
1247 
1248 	if (packets <= 256) {
1249 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1250 		itr &= I40E_ITR_MASK;
1251 
1252 		/* Between 56 and 112 is our "goldilocks" zone where we are
1253 		 * working out "just right". Just report that our current
1254 		 * ITR is good for us.
1255 		 */
1256 		if (packets <= 112)
1257 			goto clear_counts;
1258 
1259 		/* If packet count is 128 or greater we are likely looking
1260 		 * at a slight overrun of the delay we want. Try halving
1261 		 * our delay to see if that will cut the number of packets
1262 		 * in half per interrupt.
1263 		 */
1264 		itr /= 2;
1265 		itr &= I40E_ITR_MASK;
1266 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1267 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1268 
1269 		goto clear_counts;
1270 	}
1271 
1272 	/* The paths below assume we are dealing with a bulk ITR since
1273 	 * number of packets is greater than 256. We are just going to have
1274 	 * to compute a value and try to bring the count under control,
1275 	 * though for smaller packet sizes there isn't much we can do as
1276 	 * NAPI polling will likely be kicking in sooner rather than later.
1277 	 */
1278 	itr = I40E_ITR_ADAPTIVE_BULK;
1279 
1280 adjust_by_size:
1281 	/* If packet counts are 256 or greater we can assume we have a gross
1282 	 * overestimation of what the rate should be. Instead of trying to fine
1283 	 * tune it just use the formula below to try and dial in an exact value
1284 	 * give the current packet size of the frame.
1285 	 */
1286 	avg_wire_size = bytes / packets;
1287 
1288 	/* The following is a crude approximation of:
1289 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1290 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1291 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1292 	 *
1293 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1294 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1295 	 * formula down to
1296 	 *
1297 	 *  (170 * (size + 24)) / (size + 640) = ITR
1298 	 *
1299 	 * We first do some math on the packet size and then finally bitshift
1300 	 * by 8 after rounding up. We also have to account for PCIe link speed
1301 	 * difference as ITR scales based on this.
1302 	 */
1303 	if (avg_wire_size <= 60) {
1304 		/* Start at 250k ints/sec */
1305 		avg_wire_size = 4096;
1306 	} else if (avg_wire_size <= 380) {
1307 		/* 250K ints/sec to 60K ints/sec */
1308 		avg_wire_size *= 40;
1309 		avg_wire_size += 1696;
1310 	} else if (avg_wire_size <= 1084) {
1311 		/* 60K ints/sec to 36K ints/sec */
1312 		avg_wire_size *= 15;
1313 		avg_wire_size += 11452;
1314 	} else if (avg_wire_size <= 1980) {
1315 		/* 36K ints/sec to 30K ints/sec */
1316 		avg_wire_size *= 5;
1317 		avg_wire_size += 22420;
1318 	} else {
1319 		/* plateau at a limit of 30K ints/sec */
1320 		avg_wire_size = 32256;
1321 	}
1322 
1323 	/* If we are in low latency mode halve our delay which doubles the
1324 	 * rate to somewhere between 100K to 16K ints/sec
1325 	 */
1326 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1327 		avg_wire_size /= 2;
1328 
1329 	/* Resultant value is 256 times larger than it needs to be. This
1330 	 * gives us room to adjust the value as needed to either increase
1331 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1332 	 *
1333 	 * Use addition as we have already recorded the new latency flag
1334 	 * for the ITR value.
1335 	 */
1336 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1337 	       I40E_ITR_ADAPTIVE_MIN_INC;
1338 
1339 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1340 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1341 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1342 	}
1343 
1344 clear_counts:
1345 	/* write back value */
1346 	rc->target_itr = itr;
1347 
1348 	/* next update should occur within next jiffy */
1349 	rc->next_update = next_update + 1;
1350 
1351 	rc->total_bytes = 0;
1352 	rc->total_packets = 0;
1353 }
1354 
1355 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1356 {
1357 	return &rx_ring->rx_bi[idx];
1358 }
1359 
1360 /**
1361  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1362  * @rx_ring: rx descriptor ring to store buffers on
1363  * @old_buff: donor buffer to have page reused
1364  *
1365  * Synchronizes page for reuse by the adapter
1366  **/
1367 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1368 			       struct i40e_rx_buffer *old_buff)
1369 {
1370 	struct i40e_rx_buffer *new_buff;
1371 	u16 nta = rx_ring->next_to_alloc;
1372 
1373 	new_buff = i40e_rx_bi(rx_ring, nta);
1374 
1375 	/* update, and store next to alloc */
1376 	nta++;
1377 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1378 
1379 	/* transfer page from old buffer to new buffer */
1380 	new_buff->dma		= old_buff->dma;
1381 	new_buff->page		= old_buff->page;
1382 	new_buff->page_offset	= old_buff->page_offset;
1383 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1384 
1385 	/* clear contents of buffer_info */
1386 	old_buff->page = NULL;
1387 }
1388 
1389 /**
1390  * i40e_clean_programming_status - clean the programming status descriptor
1391  * @rx_ring: the rx ring that has this descriptor
1392  * @qword0_raw: qword0
1393  * @qword1: qword1 representing status_error_len in CPU ordering
1394  *
1395  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1396  * status being successful or not and take actions accordingly. FCoE should
1397  * handle its context/filter programming/invalidation status and take actions.
1398  *
1399  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1400  **/
1401 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1402 				   u64 qword1)
1403 {
1404 	u8 id;
1405 
1406 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1407 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1408 
1409 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1410 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1411 }
1412 
1413 /**
1414  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1415  * @tx_ring: the tx ring to set up
1416  *
1417  * Return 0 on success, negative on error
1418  **/
1419 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1420 {
1421 	struct device *dev = tx_ring->dev;
1422 	int bi_size;
1423 
1424 	if (!dev)
1425 		return -ENOMEM;
1426 
1427 	/* warn if we are about to overwrite the pointer */
1428 	WARN_ON(tx_ring->tx_bi);
1429 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1430 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1431 	if (!tx_ring->tx_bi)
1432 		goto err;
1433 
1434 	u64_stats_init(&tx_ring->syncp);
1435 
1436 	/* round up to nearest 4K */
1437 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1438 	/* add u32 for head writeback, align after this takes care of
1439 	 * guaranteeing this is at least one cache line in size
1440 	 */
1441 	tx_ring->size += sizeof(u32);
1442 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1443 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1444 					   &tx_ring->dma, GFP_KERNEL);
1445 	if (!tx_ring->desc) {
1446 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1447 			 tx_ring->size);
1448 		goto err;
1449 	}
1450 
1451 	tx_ring->next_to_use = 0;
1452 	tx_ring->next_to_clean = 0;
1453 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1454 	return 0;
1455 
1456 err:
1457 	kfree(tx_ring->tx_bi);
1458 	tx_ring->tx_bi = NULL;
1459 	return -ENOMEM;
1460 }
1461 
1462 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1463 {
1464 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1465 }
1466 
1467 /**
1468  * i40e_clean_rx_ring - Free Rx buffers
1469  * @rx_ring: ring to be cleaned
1470  **/
1471 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1472 {
1473 	u16 i;
1474 
1475 	/* ring already cleared, nothing to do */
1476 	if (!rx_ring->rx_bi)
1477 		return;
1478 
1479 	if (rx_ring->xsk_pool) {
1480 		i40e_xsk_clean_rx_ring(rx_ring);
1481 		goto skip_free;
1482 	}
1483 
1484 	/* Free all the Rx ring sk_buffs */
1485 	for (i = 0; i < rx_ring->count; i++) {
1486 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1487 
1488 		if (!rx_bi->page)
1489 			continue;
1490 
1491 		/* Invalidate cache lines that may have been written to by
1492 		 * device so that we avoid corrupting memory.
1493 		 */
1494 		dma_sync_single_range_for_cpu(rx_ring->dev,
1495 					      rx_bi->dma,
1496 					      rx_bi->page_offset,
1497 					      rx_ring->rx_buf_len,
1498 					      DMA_FROM_DEVICE);
1499 
1500 		/* free resources associated with mapping */
1501 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1502 				     i40e_rx_pg_size(rx_ring),
1503 				     DMA_FROM_DEVICE,
1504 				     I40E_RX_DMA_ATTR);
1505 
1506 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1507 
1508 		rx_bi->page = NULL;
1509 		rx_bi->page_offset = 0;
1510 	}
1511 
1512 skip_free:
1513 	if (rx_ring->xsk_pool)
1514 		i40e_clear_rx_bi_zc(rx_ring);
1515 	else
1516 		i40e_clear_rx_bi(rx_ring);
1517 
1518 	/* Zero out the descriptor ring */
1519 	memset(rx_ring->desc, 0, rx_ring->size);
1520 
1521 	rx_ring->next_to_alloc = 0;
1522 	rx_ring->next_to_clean = 0;
1523 	rx_ring->next_to_process = 0;
1524 	rx_ring->next_to_use = 0;
1525 }
1526 
1527 /**
1528  * i40e_free_rx_resources - Free Rx resources
1529  * @rx_ring: ring to clean the resources from
1530  *
1531  * Free all receive software resources
1532  **/
1533 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1534 {
1535 	i40e_clean_rx_ring(rx_ring);
1536 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1537 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1538 	rx_ring->xdp_prog = NULL;
1539 	kfree(rx_ring->rx_bi);
1540 	rx_ring->rx_bi = NULL;
1541 
1542 	if (rx_ring->desc) {
1543 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1544 				  rx_ring->desc, rx_ring->dma);
1545 		rx_ring->desc = NULL;
1546 	}
1547 }
1548 
1549 /**
1550  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1551  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1552  *
1553  * Returns 0 on success, negative on failure
1554  **/
1555 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1556 {
1557 	struct device *dev = rx_ring->dev;
1558 	int err;
1559 
1560 	u64_stats_init(&rx_ring->syncp);
1561 
1562 	/* Round up to nearest 4K */
1563 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1564 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1565 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1566 					   &rx_ring->dma, GFP_KERNEL);
1567 
1568 	if (!rx_ring->desc) {
1569 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1570 			 rx_ring->size);
1571 		return -ENOMEM;
1572 	}
1573 
1574 	rx_ring->next_to_alloc = 0;
1575 	rx_ring->next_to_clean = 0;
1576 	rx_ring->next_to_process = 0;
1577 	rx_ring->next_to_use = 0;
1578 
1579 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1580 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1581 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1582 				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1583 		if (err < 0)
1584 			return err;
1585 	}
1586 
1587 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1588 
1589 	rx_ring->rx_bi =
1590 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1591 	if (!rx_ring->rx_bi)
1592 		return -ENOMEM;
1593 
1594 	return 0;
1595 }
1596 
1597 /**
1598  * i40e_release_rx_desc - Store the new tail and head values
1599  * @rx_ring: ring to bump
1600  * @val: new head index
1601  **/
1602 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1603 {
1604 	rx_ring->next_to_use = val;
1605 
1606 	/* update next to alloc since we have filled the ring */
1607 	rx_ring->next_to_alloc = val;
1608 
1609 	/* Force memory writes to complete before letting h/w
1610 	 * know there are new descriptors to fetch.  (Only
1611 	 * applicable for weak-ordered memory model archs,
1612 	 * such as IA-64).
1613 	 */
1614 	wmb();
1615 	writel(val, rx_ring->tail);
1616 }
1617 
1618 #if (PAGE_SIZE >= 8192)
1619 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1620 					   unsigned int size)
1621 {
1622 	unsigned int truesize;
1623 
1624 	truesize = rx_ring->rx_offset ?
1625 		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1626 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1627 		SKB_DATA_ALIGN(size);
1628 	return truesize;
1629 }
1630 #endif
1631 
1632 /**
1633  * i40e_alloc_mapped_page - recycle or make a new page
1634  * @rx_ring: ring to use
1635  * @bi: rx_buffer struct to modify
1636  *
1637  * Returns true if the page was successfully allocated or
1638  * reused.
1639  **/
1640 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1641 				   struct i40e_rx_buffer *bi)
1642 {
1643 	struct page *page = bi->page;
1644 	dma_addr_t dma;
1645 
1646 	/* since we are recycling buffers we should seldom need to alloc */
1647 	if (likely(page)) {
1648 		rx_ring->rx_stats.page_reuse_count++;
1649 		return true;
1650 	}
1651 
1652 	/* alloc new page for storage */
1653 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1654 	if (unlikely(!page)) {
1655 		rx_ring->rx_stats.alloc_page_failed++;
1656 		return false;
1657 	}
1658 
1659 	rx_ring->rx_stats.page_alloc_count++;
1660 
1661 	/* map page for use */
1662 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1663 				 i40e_rx_pg_size(rx_ring),
1664 				 DMA_FROM_DEVICE,
1665 				 I40E_RX_DMA_ATTR);
1666 
1667 	/* if mapping failed free memory back to system since
1668 	 * there isn't much point in holding memory we can't use
1669 	 */
1670 	if (dma_mapping_error(rx_ring->dev, dma)) {
1671 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1672 		rx_ring->rx_stats.alloc_page_failed++;
1673 		return false;
1674 	}
1675 
1676 	bi->dma = dma;
1677 	bi->page = page;
1678 	bi->page_offset = rx_ring->rx_offset;
1679 	page_ref_add(page, USHRT_MAX - 1);
1680 	bi->pagecnt_bias = USHRT_MAX;
1681 
1682 	return true;
1683 }
1684 
1685 /**
1686  * i40e_alloc_rx_buffers - Replace used receive buffers
1687  * @rx_ring: ring to place buffers on
1688  * @cleaned_count: number of buffers to replace
1689  *
1690  * Returns false if all allocations were successful, true if any fail
1691  **/
1692 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1693 {
1694 	u16 ntu = rx_ring->next_to_use;
1695 	union i40e_rx_desc *rx_desc;
1696 	struct i40e_rx_buffer *bi;
1697 
1698 	/* do nothing if no valid netdev defined */
1699 	if (!rx_ring->netdev || !cleaned_count)
1700 		return false;
1701 
1702 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1703 	bi = i40e_rx_bi(rx_ring, ntu);
1704 
1705 	do {
1706 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1707 			goto no_buffers;
1708 
1709 		/* sync the buffer for use by the device */
1710 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1711 						 bi->page_offset,
1712 						 rx_ring->rx_buf_len,
1713 						 DMA_FROM_DEVICE);
1714 
1715 		/* Refresh the desc even if buffer_addrs didn't change
1716 		 * because each write-back erases this info.
1717 		 */
1718 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1719 
1720 		rx_desc++;
1721 		bi++;
1722 		ntu++;
1723 		if (unlikely(ntu == rx_ring->count)) {
1724 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1725 			bi = i40e_rx_bi(rx_ring, 0);
1726 			ntu = 0;
1727 		}
1728 
1729 		/* clear the status bits for the next_to_use descriptor */
1730 		rx_desc->wb.qword1.status_error_len = 0;
1731 
1732 		cleaned_count--;
1733 	} while (cleaned_count);
1734 
1735 	if (rx_ring->next_to_use != ntu)
1736 		i40e_release_rx_desc(rx_ring, ntu);
1737 
1738 	return false;
1739 
1740 no_buffers:
1741 	if (rx_ring->next_to_use != ntu)
1742 		i40e_release_rx_desc(rx_ring, ntu);
1743 
1744 	/* make sure to come back via polling to try again after
1745 	 * allocation failure
1746 	 */
1747 	return true;
1748 }
1749 
1750 /**
1751  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1752  * @vsi: the VSI we care about
1753  * @skb: skb currently being received and modified
1754  * @rx_desc: the receive descriptor
1755  **/
1756 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1757 				    struct sk_buff *skb,
1758 				    union i40e_rx_desc *rx_desc)
1759 {
1760 	struct i40e_rx_ptype_decoded decoded;
1761 	u32 rx_error, rx_status;
1762 	bool ipv4, ipv6;
1763 	u8 ptype;
1764 	u64 qword;
1765 
1766 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1767 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1768 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1769 		   I40E_RXD_QW1_ERROR_SHIFT;
1770 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1771 		    I40E_RXD_QW1_STATUS_SHIFT;
1772 	decoded = decode_rx_desc_ptype(ptype);
1773 
1774 	skb->ip_summed = CHECKSUM_NONE;
1775 
1776 	skb_checksum_none_assert(skb);
1777 
1778 	/* Rx csum enabled and ip headers found? */
1779 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1780 		return;
1781 
1782 	/* did the hardware decode the packet and checksum? */
1783 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1784 		return;
1785 
1786 	/* both known and outer_ip must be set for the below code to work */
1787 	if (!(decoded.known && decoded.outer_ip))
1788 		return;
1789 
1790 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1791 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1792 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1793 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1794 
1795 	if (ipv4 &&
1796 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1797 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1798 		goto checksum_fail;
1799 
1800 	/* likely incorrect csum if alternate IP extension headers found */
1801 	if (ipv6 &&
1802 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1803 		/* don't increment checksum err here, non-fatal err */
1804 		return;
1805 
1806 	/* there was some L4 error, count error and punt packet to the stack */
1807 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1808 		goto checksum_fail;
1809 
1810 	/* handle packets that were not able to be checksummed due
1811 	 * to arrival speed, in this case the stack can compute
1812 	 * the csum.
1813 	 */
1814 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1815 		return;
1816 
1817 	/* If there is an outer header present that might contain a checksum
1818 	 * we need to bump the checksum level by 1 to reflect the fact that
1819 	 * we are indicating we validated the inner checksum.
1820 	 */
1821 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1822 		skb->csum_level = 1;
1823 
1824 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1825 	switch (decoded.inner_prot) {
1826 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1827 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1828 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1829 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1830 		fallthrough;
1831 	default:
1832 		break;
1833 	}
1834 
1835 	return;
1836 
1837 checksum_fail:
1838 	vsi->back->hw_csum_rx_error++;
1839 }
1840 
1841 /**
1842  * i40e_ptype_to_htype - get a hash type
1843  * @ptype: the ptype value from the descriptor
1844  *
1845  * Returns a hash type to be used by skb_set_hash
1846  **/
1847 static inline int i40e_ptype_to_htype(u8 ptype)
1848 {
1849 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1850 
1851 	if (!decoded.known)
1852 		return PKT_HASH_TYPE_NONE;
1853 
1854 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1855 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1856 		return PKT_HASH_TYPE_L4;
1857 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1858 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1859 		return PKT_HASH_TYPE_L3;
1860 	else
1861 		return PKT_HASH_TYPE_L2;
1862 }
1863 
1864 /**
1865  * i40e_rx_hash - set the hash value in the skb
1866  * @ring: descriptor ring
1867  * @rx_desc: specific descriptor
1868  * @skb: skb currently being received and modified
1869  * @rx_ptype: Rx packet type
1870  **/
1871 static inline void i40e_rx_hash(struct i40e_ring *ring,
1872 				union i40e_rx_desc *rx_desc,
1873 				struct sk_buff *skb,
1874 				u8 rx_ptype)
1875 {
1876 	u32 hash;
1877 	const __le64 rss_mask =
1878 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1879 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1880 
1881 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1882 		return;
1883 
1884 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1885 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1886 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1887 	}
1888 }
1889 
1890 /**
1891  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1892  * @rx_ring: rx descriptor ring packet is being transacted on
1893  * @rx_desc: pointer to the EOP Rx descriptor
1894  * @skb: pointer to current skb being populated
1895  *
1896  * This function checks the ring, descriptor, and packet information in
1897  * order to populate the hash, checksum, VLAN, protocol, and
1898  * other fields within the skb.
1899  **/
1900 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1901 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1902 {
1903 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1904 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1905 			I40E_RXD_QW1_STATUS_SHIFT;
1906 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1907 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1908 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1909 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1910 		      I40E_RXD_QW1_PTYPE_SHIFT;
1911 
1912 	if (unlikely(tsynvalid))
1913 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1914 
1915 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1916 
1917 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1918 
1919 	skb_record_rx_queue(skb, rx_ring->queue_index);
1920 
1921 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1922 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1923 
1924 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1925 				       le16_to_cpu(vlan_tag));
1926 	}
1927 
1928 	/* modifies the skb - consumes the enet header */
1929 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1930 }
1931 
1932 /**
1933  * i40e_cleanup_headers - Correct empty headers
1934  * @rx_ring: rx descriptor ring packet is being transacted on
1935  * @skb: pointer to current skb being fixed
1936  * @rx_desc: pointer to the EOP Rx descriptor
1937  *
1938  * In addition if skb is not at least 60 bytes we need to pad it so that
1939  * it is large enough to qualify as a valid Ethernet frame.
1940  *
1941  * Returns true if an error was encountered and skb was freed.
1942  **/
1943 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1944 				 union i40e_rx_desc *rx_desc)
1945 
1946 {
1947 	/* ERR_MASK will only have valid bits if EOP set, and
1948 	 * what we are doing here is actually checking
1949 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1950 	 * the error field
1951 	 */
1952 	if (unlikely(i40e_test_staterr(rx_desc,
1953 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1954 		dev_kfree_skb_any(skb);
1955 		return true;
1956 	}
1957 
1958 	/* if eth_skb_pad returns an error the skb was freed */
1959 	if (eth_skb_pad(skb))
1960 		return true;
1961 
1962 	return false;
1963 }
1964 
1965 /**
1966  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1967  * @rx_buffer: buffer containing the page
1968  * @rx_stats: rx stats structure for the rx ring
1969  *
1970  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1971  * which will assign the current buffer to the buffer that next_to_alloc is
1972  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1973  * page freed.
1974  *
1975  * rx_stats will be updated to indicate whether the page was waived
1976  * or busy if it could not be reused.
1977  */
1978 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1979 				   struct i40e_rx_queue_stats *rx_stats)
1980 {
1981 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1982 	struct page *page = rx_buffer->page;
1983 
1984 	/* Is any reuse possible? */
1985 	if (!dev_page_is_reusable(page)) {
1986 		rx_stats->page_waive_count++;
1987 		return false;
1988 	}
1989 
1990 #if (PAGE_SIZE < 8192)
1991 	/* if we are only owner of page we can reuse it */
1992 	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1993 		rx_stats->page_busy_count++;
1994 		return false;
1995 	}
1996 #else
1997 #define I40E_LAST_OFFSET \
1998 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1999 	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2000 		rx_stats->page_busy_count++;
2001 		return false;
2002 	}
2003 #endif
2004 
2005 	/* If we have drained the page fragment pool we need to update
2006 	 * the pagecnt_bias and page count so that we fully restock the
2007 	 * number of references the driver holds.
2008 	 */
2009 	if (unlikely(pagecnt_bias == 1)) {
2010 		page_ref_add(page, USHRT_MAX - 1);
2011 		rx_buffer->pagecnt_bias = USHRT_MAX;
2012 	}
2013 
2014 	return true;
2015 }
2016 
2017 /**
2018  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2019  * @rx_buffer: Rx buffer to adjust
2020  * @truesize: Size of adjustment
2021  **/
2022 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2023 				unsigned int truesize)
2024 {
2025 #if (PAGE_SIZE < 8192)
2026 	rx_buffer->page_offset ^= truesize;
2027 #else
2028 	rx_buffer->page_offset += truesize;
2029 #endif
2030 }
2031 
2032 /**
2033  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2034  * @rx_ring: rx descriptor ring to transact packets on
2035  * @size: size of buffer to add to skb
2036  *
2037  * This function will pull an Rx buffer from the ring and synchronize it
2038  * for use by the CPU.
2039  */
2040 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2041 						 const unsigned int size)
2042 {
2043 	struct i40e_rx_buffer *rx_buffer;
2044 
2045 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2046 	rx_buffer->page_count =
2047 #if (PAGE_SIZE < 8192)
2048 		page_count(rx_buffer->page);
2049 #else
2050 		0;
2051 #endif
2052 	prefetch_page_address(rx_buffer->page);
2053 
2054 	/* we are reusing so sync this buffer for CPU use */
2055 	dma_sync_single_range_for_cpu(rx_ring->dev,
2056 				      rx_buffer->dma,
2057 				      rx_buffer->page_offset,
2058 				      size,
2059 				      DMA_FROM_DEVICE);
2060 
2061 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2062 	rx_buffer->pagecnt_bias--;
2063 
2064 	return rx_buffer;
2065 }
2066 
2067 /**
2068  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2069  * @rx_ring: rx descriptor ring to transact packets on
2070  * @rx_buffer: rx buffer to pull data from
2071  *
2072  * This function will clean up the contents of the rx_buffer.  It will
2073  * either recycle the buffer or unmap it and free the associated resources.
2074  */
2075 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2076 			       struct i40e_rx_buffer *rx_buffer)
2077 {
2078 	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2079 		/* hand second half of page back to the ring */
2080 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2081 	} else {
2082 		/* we are not reusing the buffer so unmap it */
2083 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2084 				     i40e_rx_pg_size(rx_ring),
2085 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2086 		__page_frag_cache_drain(rx_buffer->page,
2087 					rx_buffer->pagecnt_bias);
2088 		/* clear contents of buffer_info */
2089 		rx_buffer->page = NULL;
2090 	}
2091 }
2092 
2093 /**
2094  * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2095  * @rx_ring: Rx descriptor ring to transact packets on
2096  * @xdp_res: Result of the XDP program
2097  * @xdp: xdp_buff pointing to the data
2098  **/
2099 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2100 				  struct xdp_buff *xdp)
2101 {
2102 	u32 next = rx_ring->next_to_clean;
2103 	struct i40e_rx_buffer *rx_buffer;
2104 
2105 	xdp->flags = 0;
2106 
2107 	while (1) {
2108 		rx_buffer = i40e_rx_bi(rx_ring, next);
2109 		if (++next == rx_ring->count)
2110 			next = 0;
2111 
2112 		if (!rx_buffer->page)
2113 			continue;
2114 
2115 		if (xdp_res == I40E_XDP_CONSUMED)
2116 			rx_buffer->pagecnt_bias++;
2117 		else
2118 			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2119 
2120 		/* EOP buffer will be put in i40e_clean_rx_irq() */
2121 		if (next == rx_ring->next_to_process)
2122 			return;
2123 
2124 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2125 	}
2126 }
2127 
2128 /**
2129  * i40e_construct_skb - Allocate skb and populate it
2130  * @rx_ring: rx descriptor ring to transact packets on
2131  * @xdp: xdp_buff pointing to the data
2132  * @nr_frags: number of buffers for the packet
2133  *
2134  * This function allocates an skb.  It then populates it with the page
2135  * data from the current receive descriptor, taking care to set up the
2136  * skb correctly.
2137  */
2138 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2139 					  struct xdp_buff *xdp,
2140 					  u32 nr_frags)
2141 {
2142 	unsigned int size = xdp->data_end - xdp->data;
2143 	struct i40e_rx_buffer *rx_buffer;
2144 	unsigned int headlen;
2145 	struct sk_buff *skb;
2146 
2147 	/* prefetch first cache line of first page */
2148 	net_prefetch(xdp->data);
2149 
2150 	/* Note, we get here by enabling legacy-rx via:
2151 	 *
2152 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2153 	 *
2154 	 * In this mode, we currently get 0 extra XDP headroom as
2155 	 * opposed to having legacy-rx off, where we process XDP
2156 	 * packets going to stack via i40e_build_skb(). The latter
2157 	 * provides us currently with 192 bytes of headroom.
2158 	 *
2159 	 * For i40e_construct_skb() mode it means that the
2160 	 * xdp->data_meta will always point to xdp->data, since
2161 	 * the helper cannot expand the head. Should this ever
2162 	 * change in future for legacy-rx mode on, then lets also
2163 	 * add xdp->data_meta handling here.
2164 	 */
2165 
2166 	/* allocate a skb to store the frags */
2167 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2168 			       I40E_RX_HDR_SIZE,
2169 			       GFP_ATOMIC | __GFP_NOWARN);
2170 	if (unlikely(!skb))
2171 		return NULL;
2172 
2173 	/* Determine available headroom for copy */
2174 	headlen = size;
2175 	if (headlen > I40E_RX_HDR_SIZE)
2176 		headlen = eth_get_headlen(skb->dev, xdp->data,
2177 					  I40E_RX_HDR_SIZE);
2178 
2179 	/* align pull length to size of long to optimize memcpy performance */
2180 	memcpy(__skb_put(skb, headlen), xdp->data,
2181 	       ALIGN(headlen, sizeof(long)));
2182 
2183 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2184 	/* update all of the pointers */
2185 	size -= headlen;
2186 	if (size) {
2187 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2188 			dev_kfree_skb(skb);
2189 			return NULL;
2190 		}
2191 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2192 				rx_buffer->page_offset + headlen,
2193 				size, xdp->frame_sz);
2194 		/* buffer is used by skb, update page_offset */
2195 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2196 	} else {
2197 		/* buffer is unused, reset bias back to rx_buffer */
2198 		rx_buffer->pagecnt_bias++;
2199 	}
2200 
2201 	if (unlikely(xdp_buff_has_frags(xdp))) {
2202 		struct skb_shared_info *sinfo, *skinfo = skb_shinfo(skb);
2203 
2204 		sinfo = xdp_get_shared_info_from_buff(xdp);
2205 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2206 		       sizeof(skb_frag_t) * nr_frags);
2207 
2208 		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2209 					   sinfo->xdp_frags_size,
2210 					   nr_frags * xdp->frame_sz,
2211 					   xdp_buff_is_frag_pfmemalloc(xdp));
2212 
2213 		/* First buffer has already been processed, so bump ntc */
2214 		if (++rx_ring->next_to_clean == rx_ring->count)
2215 			rx_ring->next_to_clean = 0;
2216 
2217 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2218 	}
2219 
2220 	return skb;
2221 }
2222 
2223 /**
2224  * i40e_build_skb - Build skb around an existing buffer
2225  * @rx_ring: Rx descriptor ring to transact packets on
2226  * @xdp: xdp_buff pointing to the data
2227  * @nr_frags: number of buffers for the packet
2228  *
2229  * This function builds an skb around an existing Rx buffer, taking care
2230  * to set up the skb correctly and avoid any memcpy overhead.
2231  */
2232 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2233 				      struct xdp_buff *xdp,
2234 				      u32 nr_frags)
2235 {
2236 	unsigned int metasize = xdp->data - xdp->data_meta;
2237 	struct sk_buff *skb;
2238 
2239 	/* Prefetch first cache line of first page. If xdp->data_meta
2240 	 * is unused, this points exactly as xdp->data, otherwise we
2241 	 * likely have a consumer accessing first few bytes of meta
2242 	 * data, and then actual data.
2243 	 */
2244 	net_prefetch(xdp->data_meta);
2245 
2246 	/* build an skb around the page buffer */
2247 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2248 	if (unlikely(!skb))
2249 		return NULL;
2250 
2251 	/* update pointers within the skb to store the data */
2252 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2253 	__skb_put(skb, xdp->data_end - xdp->data);
2254 	if (metasize)
2255 		skb_metadata_set(skb, metasize);
2256 
2257 	if (unlikely(xdp_buff_has_frags(xdp))) {
2258 		struct skb_shared_info *sinfo;
2259 
2260 		sinfo = xdp_get_shared_info_from_buff(xdp);
2261 		xdp_update_skb_shared_info(skb, nr_frags,
2262 					   sinfo->xdp_frags_size,
2263 					   nr_frags * xdp->frame_sz,
2264 					   xdp_buff_is_frag_pfmemalloc(xdp));
2265 
2266 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2267 	} else {
2268 		struct i40e_rx_buffer *rx_buffer;
2269 
2270 		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2271 		/* buffer is used by skb, update page_offset */
2272 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2273 	}
2274 
2275 	return skb;
2276 }
2277 
2278 /**
2279  * i40e_is_non_eop - process handling of non-EOP buffers
2280  * @rx_ring: Rx ring being processed
2281  * @rx_desc: Rx descriptor for current buffer
2282  *
2283  * If the buffer is an EOP buffer, this function exits returning false,
2284  * otherwise return true indicating that this is in fact a non-EOP buffer.
2285  */
2286 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2287 		     union i40e_rx_desc *rx_desc)
2288 {
2289 	/* if we are the last buffer then there is nothing else to do */
2290 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2291 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2292 		return false;
2293 
2294 	rx_ring->rx_stats.non_eop_descs++;
2295 
2296 	return true;
2297 }
2298 
2299 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2300 			      struct i40e_ring *xdp_ring);
2301 
2302 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2303 {
2304 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2305 
2306 	if (unlikely(!xdpf))
2307 		return I40E_XDP_CONSUMED;
2308 
2309 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2310 }
2311 
2312 /**
2313  * i40e_run_xdp - run an XDP program
2314  * @rx_ring: Rx ring being processed
2315  * @xdp: XDP buffer containing the frame
2316  * @xdp_prog: XDP program to run
2317  **/
2318 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2319 {
2320 	int err, result = I40E_XDP_PASS;
2321 	struct i40e_ring *xdp_ring;
2322 	u32 act;
2323 
2324 	if (!xdp_prog)
2325 		goto xdp_out;
2326 
2327 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2328 
2329 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2330 	switch (act) {
2331 	case XDP_PASS:
2332 		break;
2333 	case XDP_TX:
2334 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2335 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2336 		if (result == I40E_XDP_CONSUMED)
2337 			goto out_failure;
2338 		break;
2339 	case XDP_REDIRECT:
2340 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2341 		if (err)
2342 			goto out_failure;
2343 		result = I40E_XDP_REDIR;
2344 		break;
2345 	default:
2346 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2347 		fallthrough;
2348 	case XDP_ABORTED:
2349 out_failure:
2350 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2351 		fallthrough; /* handle aborts by dropping packet */
2352 	case XDP_DROP:
2353 		result = I40E_XDP_CONSUMED;
2354 		break;
2355 	}
2356 xdp_out:
2357 	return result;
2358 }
2359 
2360 /**
2361  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2362  * @xdp_ring: XDP Tx ring
2363  *
2364  * This function updates the XDP Tx ring tail register.
2365  **/
2366 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2367 {
2368 	/* Force memory writes to complete before letting h/w
2369 	 * know there are new descriptors to fetch.
2370 	 */
2371 	wmb();
2372 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2373 }
2374 
2375 /**
2376  * i40e_update_rx_stats - Update Rx ring statistics
2377  * @rx_ring: rx descriptor ring
2378  * @total_rx_bytes: number of bytes received
2379  * @total_rx_packets: number of packets received
2380  *
2381  * This function updates the Rx ring statistics.
2382  **/
2383 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2384 			  unsigned int total_rx_bytes,
2385 			  unsigned int total_rx_packets)
2386 {
2387 	u64_stats_update_begin(&rx_ring->syncp);
2388 	rx_ring->stats.packets += total_rx_packets;
2389 	rx_ring->stats.bytes += total_rx_bytes;
2390 	u64_stats_update_end(&rx_ring->syncp);
2391 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2392 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2393 }
2394 
2395 /**
2396  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2397  * @rx_ring: Rx ring
2398  * @xdp_res: Result of the receive batch
2399  *
2400  * This function bumps XDP Tx tail and/or flush redirect map, and
2401  * should be called when a batch of packets has been processed in the
2402  * napi loop.
2403  **/
2404 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2405 {
2406 	if (xdp_res & I40E_XDP_REDIR)
2407 		xdp_do_flush();
2408 
2409 	if (xdp_res & I40E_XDP_TX) {
2410 		struct i40e_ring *xdp_ring =
2411 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2412 
2413 		i40e_xdp_ring_update_tail(xdp_ring);
2414 	}
2415 }
2416 
2417 /**
2418  * i40e_inc_ntp: Advance the next_to_process index
2419  * @rx_ring: Rx ring
2420  **/
2421 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2422 {
2423 	u32 ntp = rx_ring->next_to_process + 1;
2424 
2425 	ntp = (ntp < rx_ring->count) ? ntp : 0;
2426 	rx_ring->next_to_process = ntp;
2427 	prefetch(I40E_RX_DESC(rx_ring, ntp));
2428 }
2429 
2430 /**
2431  * i40e_add_xdp_frag: Add a frag to xdp_buff
2432  * @xdp: xdp_buff pointing to the data
2433  * @nr_frags: return number of buffers for the packet
2434  * @rx_buffer: rx_buffer holding data of the current frag
2435  * @size: size of data of current frag
2436  */
2437 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2438 			     struct i40e_rx_buffer *rx_buffer, u32 size)
2439 {
2440 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2441 
2442 	if (!xdp_buff_has_frags(xdp)) {
2443 		sinfo->nr_frags = 0;
2444 		sinfo->xdp_frags_size = 0;
2445 		xdp_buff_set_frags_flag(xdp);
2446 	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2447 		/* Overflowing packet: All frags need to be dropped */
2448 		return -ENOMEM;
2449 	}
2450 
2451 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2452 				   rx_buffer->page_offset, size);
2453 
2454 	sinfo->xdp_frags_size += size;
2455 
2456 	if (page_is_pfmemalloc(rx_buffer->page))
2457 		xdp_buff_set_frag_pfmemalloc(xdp);
2458 	*nr_frags = sinfo->nr_frags;
2459 
2460 	return 0;
2461 }
2462 
2463 /**
2464  * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2465  * @rx_ring: rx descriptor ring to transact packets on
2466  * @xdp: xdp_buff pointing to the data
2467  * @rx_buffer: rx_buffer of eop desc
2468  */
2469 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2470 				  struct xdp_buff *xdp,
2471 				  struct i40e_rx_buffer *rx_buffer)
2472 {
2473 	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2474 	i40e_put_rx_buffer(rx_ring, rx_buffer);
2475 	rx_ring->next_to_clean = rx_ring->next_to_process;
2476 	xdp->data = NULL;
2477 }
2478 
2479 /**
2480  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2481  * @rx_ring: rx descriptor ring to transact packets on
2482  * @budget: Total limit on number of packets to process
2483  * @rx_cleaned: Out parameter of the number of packets processed
2484  *
2485  * This function provides a "bounce buffer" approach to Rx interrupt
2486  * processing.  The advantage to this is that on systems that have
2487  * expensive overhead for IOMMU access this provides a means of avoiding
2488  * it by maintaining the mapping of the page to the system.
2489  *
2490  * Returns amount of work completed
2491  **/
2492 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2493 			     unsigned int *rx_cleaned)
2494 {
2495 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2496 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2497 	u16 clean_threshold = rx_ring->count / 2;
2498 	unsigned int offset = rx_ring->rx_offset;
2499 	struct xdp_buff *xdp = &rx_ring->xdp;
2500 	unsigned int xdp_xmit = 0;
2501 	struct bpf_prog *xdp_prog;
2502 	bool failure = false;
2503 	int xdp_res = 0;
2504 
2505 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2506 
2507 	while (likely(total_rx_packets < (unsigned int)budget)) {
2508 		u16 ntp = rx_ring->next_to_process;
2509 		struct i40e_rx_buffer *rx_buffer;
2510 		union i40e_rx_desc *rx_desc;
2511 		struct sk_buff *skb;
2512 		unsigned int size;
2513 		u32 nfrags = 0;
2514 		bool neop;
2515 		u64 qword;
2516 
2517 		/* return some buffers to hardware, one at a time is too slow */
2518 		if (cleaned_count >= clean_threshold) {
2519 			failure = failure ||
2520 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2521 			cleaned_count = 0;
2522 		}
2523 
2524 		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2525 
2526 		/* status_error_len will always be zero for unused descriptors
2527 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2528 		 * which is always zero because packet split isn't used, if the
2529 		 * hardware wrote DD then the length will be non-zero
2530 		 */
2531 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2532 
2533 		/* This memory barrier is needed to keep us from reading
2534 		 * any other fields out of the rx_desc until we have
2535 		 * verified the descriptor has been written back.
2536 		 */
2537 		dma_rmb();
2538 
2539 		if (i40e_rx_is_programming_status(qword)) {
2540 			i40e_clean_programming_status(rx_ring,
2541 						      rx_desc->raw.qword[0],
2542 						      qword);
2543 			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2544 			i40e_inc_ntp(rx_ring);
2545 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2546 			/* Update ntc and bump cleaned count if not in the
2547 			 * middle of mb packet.
2548 			 */
2549 			if (rx_ring->next_to_clean == ntp) {
2550 				rx_ring->next_to_clean =
2551 					rx_ring->next_to_process;
2552 				cleaned_count++;
2553 			}
2554 			continue;
2555 		}
2556 
2557 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2558 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2559 		if (!size)
2560 			break;
2561 
2562 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2563 		/* retrieve a buffer from the ring */
2564 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2565 
2566 		neop = i40e_is_non_eop(rx_ring, rx_desc);
2567 		i40e_inc_ntp(rx_ring);
2568 
2569 		if (!xdp->data) {
2570 			unsigned char *hard_start;
2571 
2572 			hard_start = page_address(rx_buffer->page) +
2573 				     rx_buffer->page_offset - offset;
2574 			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2575 #if (PAGE_SIZE > 4096)
2576 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2577 			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2578 #endif
2579 		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2580 			   !neop) {
2581 			/* Overflowing packet: Drop all frags on EOP */
2582 			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2583 			break;
2584 		}
2585 
2586 		if (neop)
2587 			continue;
2588 
2589 		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2590 
2591 		if (xdp_res) {
2592 			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2593 
2594 			if (unlikely(xdp_buff_has_frags(xdp))) {
2595 				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2596 				size = xdp_get_buff_len(xdp);
2597 			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2598 				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2599 			} else {
2600 				rx_buffer->pagecnt_bias++;
2601 			}
2602 			total_rx_bytes += size;
2603 		} else {
2604 			if (ring_uses_build_skb(rx_ring))
2605 				skb = i40e_build_skb(rx_ring, xdp, nfrags);
2606 			else
2607 				skb = i40e_construct_skb(rx_ring, xdp, nfrags);
2608 
2609 			/* drop if we failed to retrieve a buffer */
2610 			if (!skb) {
2611 				rx_ring->rx_stats.alloc_buff_failed++;
2612 				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2613 				break;
2614 			}
2615 
2616 			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2617 				goto process_next;
2618 
2619 			/* probably a little skewed due to removing CRC */
2620 			total_rx_bytes += skb->len;
2621 
2622 			/* populate checksum, VLAN, and protocol */
2623 			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2624 
2625 			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2626 			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2627 		}
2628 
2629 		/* update budget accounting */
2630 		total_rx_packets++;
2631 process_next:
2632 		cleaned_count += nfrags + 1;
2633 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2634 		rx_ring->next_to_clean = rx_ring->next_to_process;
2635 
2636 		xdp->data = NULL;
2637 	}
2638 
2639 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2640 
2641 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2642 
2643 	*rx_cleaned = total_rx_packets;
2644 
2645 	/* guarantee a trip back through this routine if there was a failure */
2646 	return failure ? budget : (int)total_rx_packets;
2647 }
2648 
2649 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2650 {
2651 	u32 val;
2652 
2653 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2654 	 * points out doing so is "meaningless since it was already
2655 	 * auto-cleared". The auto-clearing happens when the interrupt is
2656 	 * asserted.
2657 	 *
2658 	 * Hardware errata 28 for also indicates that writing to a
2659 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2660 	 * an event in the PBA anyway so we need to rely on the automask
2661 	 * to hold pending events for us until the interrupt is re-enabled
2662 	 *
2663 	 * The itr value is reported in microseconds, and the register
2664 	 * value is recorded in 2 microsecond units. For this reason we
2665 	 * only need to shift by the interval shift - 1 instead of the
2666 	 * full value.
2667 	 */
2668 	itr &= I40E_ITR_MASK;
2669 
2670 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2671 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2672 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2673 
2674 	return val;
2675 }
2676 
2677 /* a small macro to shorten up some long lines */
2678 #define INTREG I40E_PFINT_DYN_CTLN
2679 
2680 /* The act of updating the ITR will cause it to immediately trigger. In order
2681  * to prevent this from throwing off adaptive update statistics we defer the
2682  * update so that it can only happen so often. So after either Tx or Rx are
2683  * updated we make the adaptive scheme wait until either the ITR completely
2684  * expires via the next_update expiration or we have been through at least
2685  * 3 interrupts.
2686  */
2687 #define ITR_COUNTDOWN_START 3
2688 
2689 /**
2690  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2691  * @vsi: the VSI we care about
2692  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2693  *
2694  **/
2695 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2696 					  struct i40e_q_vector *q_vector)
2697 {
2698 	struct i40e_hw *hw = &vsi->back->hw;
2699 	u32 intval;
2700 
2701 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2702 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2703 		i40e_irq_dynamic_enable_icr0(vsi->back);
2704 		return;
2705 	}
2706 
2707 	/* These will do nothing if dynamic updates are not enabled */
2708 	i40e_update_itr(q_vector, &q_vector->tx);
2709 	i40e_update_itr(q_vector, &q_vector->rx);
2710 
2711 	/* This block of logic allows us to get away with only updating
2712 	 * one ITR value with each interrupt. The idea is to perform a
2713 	 * pseudo-lazy update with the following criteria.
2714 	 *
2715 	 * 1. Rx is given higher priority than Tx if both are in same state
2716 	 * 2. If we must reduce an ITR that is given highest priority.
2717 	 * 3. We then give priority to increasing ITR based on amount.
2718 	 */
2719 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2720 		/* Rx ITR needs to be reduced, this is highest priority */
2721 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2722 					   q_vector->rx.target_itr);
2723 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2724 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2725 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2726 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2727 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2728 		/* Tx ITR needs to be reduced, this is second priority
2729 		 * Tx ITR needs to be increased more than Rx, fourth priority
2730 		 */
2731 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2732 					   q_vector->tx.target_itr);
2733 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2734 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2735 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2736 		/* Rx ITR needs to be increased, third priority */
2737 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2738 					   q_vector->rx.target_itr);
2739 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2740 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2741 	} else {
2742 		/* No ITR update, lowest priority */
2743 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2744 		if (q_vector->itr_countdown)
2745 			q_vector->itr_countdown--;
2746 	}
2747 
2748 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2749 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2750 }
2751 
2752 /**
2753  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2754  * @napi: napi struct with our devices info in it
2755  * @budget: amount of work driver is allowed to do this pass, in packets
2756  *
2757  * This function will clean all queues associated with a q_vector.
2758  *
2759  * Returns the amount of work done
2760  **/
2761 int i40e_napi_poll(struct napi_struct *napi, int budget)
2762 {
2763 	struct i40e_q_vector *q_vector =
2764 			       container_of(napi, struct i40e_q_vector, napi);
2765 	struct i40e_vsi *vsi = q_vector->vsi;
2766 	struct i40e_ring *ring;
2767 	bool tx_clean_complete = true;
2768 	bool rx_clean_complete = true;
2769 	unsigned int tx_cleaned = 0;
2770 	unsigned int rx_cleaned = 0;
2771 	bool clean_complete = true;
2772 	bool arm_wb = false;
2773 	int budget_per_ring;
2774 	int work_done = 0;
2775 
2776 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2777 		napi_complete(napi);
2778 		return 0;
2779 	}
2780 
2781 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2782 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2783 	 */
2784 	i40e_for_each_ring(ring, q_vector->tx) {
2785 		bool wd = ring->xsk_pool ?
2786 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2787 			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2788 
2789 		if (!wd) {
2790 			clean_complete = tx_clean_complete = false;
2791 			continue;
2792 		}
2793 		arm_wb |= ring->arm_wb;
2794 		ring->arm_wb = false;
2795 	}
2796 
2797 	/* Handle case where we are called by netpoll with a budget of 0 */
2798 	if (budget <= 0)
2799 		goto tx_only;
2800 
2801 	/* normally we have 1 Rx ring per q_vector */
2802 	if (unlikely(q_vector->num_ringpairs > 1))
2803 		/* We attempt to distribute budget to each Rx queue fairly, but
2804 		 * don't allow the budget to go below 1 because that would exit
2805 		 * polling early.
2806 		 */
2807 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2808 	else
2809 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2810 		budget_per_ring = budget;
2811 
2812 	i40e_for_each_ring(ring, q_vector->rx) {
2813 		int cleaned = ring->xsk_pool ?
2814 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2815 			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2816 
2817 		work_done += cleaned;
2818 		/* if we clean as many as budgeted, we must not be done */
2819 		if (cleaned >= budget_per_ring)
2820 			clean_complete = rx_clean_complete = false;
2821 	}
2822 
2823 	if (!i40e_enabled_xdp_vsi(vsi))
2824 		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2825 				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2826 
2827 	/* If work not completed, return budget and polling will return */
2828 	if (!clean_complete) {
2829 		int cpu_id = smp_processor_id();
2830 
2831 		/* It is possible that the interrupt affinity has changed but,
2832 		 * if the cpu is pegged at 100%, polling will never exit while
2833 		 * traffic continues and the interrupt will be stuck on this
2834 		 * cpu.  We check to make sure affinity is correct before we
2835 		 * continue to poll, otherwise we must stop polling so the
2836 		 * interrupt can move to the correct cpu.
2837 		 */
2838 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2839 			/* Tell napi that we are done polling */
2840 			napi_complete_done(napi, work_done);
2841 
2842 			/* Force an interrupt */
2843 			i40e_force_wb(vsi, q_vector);
2844 
2845 			/* Return budget-1 so that polling stops */
2846 			return budget - 1;
2847 		}
2848 tx_only:
2849 		if (arm_wb) {
2850 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2851 			i40e_enable_wb_on_itr(vsi, q_vector);
2852 		}
2853 		return budget;
2854 	}
2855 
2856 	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2857 		q_vector->arm_wb_state = false;
2858 
2859 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2860 	 * poll us due to busy-polling
2861 	 */
2862 	if (likely(napi_complete_done(napi, work_done)))
2863 		i40e_update_enable_itr(vsi, q_vector);
2864 
2865 	return min(work_done, budget - 1);
2866 }
2867 
2868 /**
2869  * i40e_atr - Add a Flow Director ATR filter
2870  * @tx_ring:  ring to add programming descriptor to
2871  * @skb:      send buffer
2872  * @tx_flags: send tx flags
2873  **/
2874 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2875 		     u32 tx_flags)
2876 {
2877 	struct i40e_filter_program_desc *fdir_desc;
2878 	struct i40e_pf *pf = tx_ring->vsi->back;
2879 	union {
2880 		unsigned char *network;
2881 		struct iphdr *ipv4;
2882 		struct ipv6hdr *ipv6;
2883 	} hdr;
2884 	struct tcphdr *th;
2885 	unsigned int hlen;
2886 	u32 flex_ptype, dtype_cmd;
2887 	int l4_proto;
2888 	u16 i;
2889 
2890 	/* make sure ATR is enabled */
2891 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2892 		return;
2893 
2894 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2895 		return;
2896 
2897 	/* if sampling is disabled do nothing */
2898 	if (!tx_ring->atr_sample_rate)
2899 		return;
2900 
2901 	/* Currently only IPv4/IPv6 with TCP is supported */
2902 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2903 		return;
2904 
2905 	/* snag network header to get L4 type and address */
2906 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2907 		      skb_inner_network_header(skb) : skb_network_header(skb);
2908 
2909 	/* Note: tx_flags gets modified to reflect inner protocols in
2910 	 * tx_enable_csum function if encap is enabled.
2911 	 */
2912 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2913 		/* access ihl as u8 to avoid unaligned access on ia64 */
2914 		hlen = (hdr.network[0] & 0x0F) << 2;
2915 		l4_proto = hdr.ipv4->protocol;
2916 	} else {
2917 		/* find the start of the innermost ipv6 header */
2918 		unsigned int inner_hlen = hdr.network - skb->data;
2919 		unsigned int h_offset = inner_hlen;
2920 
2921 		/* this function updates h_offset to the end of the header */
2922 		l4_proto =
2923 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2924 		/* hlen will contain our best estimate of the tcp header */
2925 		hlen = h_offset - inner_hlen;
2926 	}
2927 
2928 	if (l4_proto != IPPROTO_TCP)
2929 		return;
2930 
2931 	th = (struct tcphdr *)(hdr.network + hlen);
2932 
2933 	/* Due to lack of space, no more new filters can be programmed */
2934 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2935 		return;
2936 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2937 		/* HW ATR eviction will take care of removing filters on FIN
2938 		 * and RST packets.
2939 		 */
2940 		if (th->fin || th->rst)
2941 			return;
2942 	}
2943 
2944 	tx_ring->atr_count++;
2945 
2946 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2947 	if (!th->fin &&
2948 	    !th->syn &&
2949 	    !th->rst &&
2950 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2951 		return;
2952 
2953 	tx_ring->atr_count = 0;
2954 
2955 	/* grab the next descriptor */
2956 	i = tx_ring->next_to_use;
2957 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2958 
2959 	i++;
2960 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2961 
2962 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2963 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2964 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2965 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2966 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2967 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2968 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2969 
2970 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2971 
2972 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2973 
2974 	dtype_cmd |= (th->fin || th->rst) ?
2975 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2976 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2977 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2978 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2979 
2980 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2981 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2982 
2983 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2984 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2985 
2986 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2987 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2988 		dtype_cmd |=
2989 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2990 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2991 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2992 	else
2993 		dtype_cmd |=
2994 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2995 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2996 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2997 
2998 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2999 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
3000 
3001 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3002 	fdir_desc->rsvd = cpu_to_le32(0);
3003 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3004 	fdir_desc->fd_id = cpu_to_le32(0);
3005 }
3006 
3007 /**
3008  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3009  * @skb:     send buffer
3010  * @tx_ring: ring to send buffer on
3011  * @flags:   the tx flags to be set
3012  *
3013  * Checks the skb and set up correspondingly several generic transmit flags
3014  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3015  *
3016  * Returns error code indicate the frame should be dropped upon error and the
3017  * otherwise  returns 0 to indicate the flags has been set properly.
3018  **/
3019 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3020 					     struct i40e_ring *tx_ring,
3021 					     u32 *flags)
3022 {
3023 	__be16 protocol = skb->protocol;
3024 	u32  tx_flags = 0;
3025 
3026 	if (protocol == htons(ETH_P_8021Q) &&
3027 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3028 		/* When HW VLAN acceleration is turned off by the user the
3029 		 * stack sets the protocol to 8021q so that the driver
3030 		 * can take any steps required to support the SW only
3031 		 * VLAN handling.  In our case the driver doesn't need
3032 		 * to take any further steps so just set the protocol
3033 		 * to the encapsulated ethertype.
3034 		 */
3035 		skb->protocol = vlan_get_protocol(skb);
3036 		goto out;
3037 	}
3038 
3039 	/* if we have a HW VLAN tag being added, default to the HW one */
3040 	if (skb_vlan_tag_present(skb)) {
3041 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3042 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3043 	/* else if it is a SW VLAN, check the next protocol and store the tag */
3044 	} else if (protocol == htons(ETH_P_8021Q)) {
3045 		struct vlan_hdr *vhdr, _vhdr;
3046 
3047 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3048 		if (!vhdr)
3049 			return -EINVAL;
3050 
3051 		protocol = vhdr->h_vlan_encapsulated_proto;
3052 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3053 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3054 	}
3055 
3056 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
3057 		goto out;
3058 
3059 	/* Insert 802.1p priority into VLAN header */
3060 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3061 	    (skb->priority != TC_PRIO_CONTROL)) {
3062 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3063 		tx_flags |= (skb->priority & 0x7) <<
3064 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3065 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3066 			struct vlan_ethhdr *vhdr;
3067 			int rc;
3068 
3069 			rc = skb_cow_head(skb, 0);
3070 			if (rc < 0)
3071 				return rc;
3072 			vhdr = skb_vlan_eth_hdr(skb);
3073 			vhdr->h_vlan_TCI = htons(tx_flags >>
3074 						 I40E_TX_FLAGS_VLAN_SHIFT);
3075 		} else {
3076 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3077 		}
3078 	}
3079 
3080 out:
3081 	*flags = tx_flags;
3082 	return 0;
3083 }
3084 
3085 /**
3086  * i40e_tso - set up the tso context descriptor
3087  * @first:    pointer to first Tx buffer for xmit
3088  * @hdr_len:  ptr to the size of the packet header
3089  * @cd_type_cmd_tso_mss: Quad Word 1
3090  *
3091  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3092  **/
3093 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3094 		    u64 *cd_type_cmd_tso_mss)
3095 {
3096 	struct sk_buff *skb = first->skb;
3097 	u64 cd_cmd, cd_tso_len, cd_mss;
3098 	__be16 protocol;
3099 	union {
3100 		struct iphdr *v4;
3101 		struct ipv6hdr *v6;
3102 		unsigned char *hdr;
3103 	} ip;
3104 	union {
3105 		struct tcphdr *tcp;
3106 		struct udphdr *udp;
3107 		unsigned char *hdr;
3108 	} l4;
3109 	u32 paylen, l4_offset;
3110 	u16 gso_size;
3111 	int err;
3112 
3113 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3114 		return 0;
3115 
3116 	if (!skb_is_gso(skb))
3117 		return 0;
3118 
3119 	err = skb_cow_head(skb, 0);
3120 	if (err < 0)
3121 		return err;
3122 
3123 	protocol = vlan_get_protocol(skb);
3124 
3125 	if (eth_p_mpls(protocol))
3126 		ip.hdr = skb_inner_network_header(skb);
3127 	else
3128 		ip.hdr = skb_network_header(skb);
3129 	l4.hdr = skb_checksum_start(skb);
3130 
3131 	/* initialize outer IP header fields */
3132 	if (ip.v4->version == 4) {
3133 		ip.v4->tot_len = 0;
3134 		ip.v4->check = 0;
3135 
3136 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3137 	} else {
3138 		ip.v6->payload_len = 0;
3139 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3140 	}
3141 
3142 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3143 					 SKB_GSO_GRE_CSUM |
3144 					 SKB_GSO_IPXIP4 |
3145 					 SKB_GSO_IPXIP6 |
3146 					 SKB_GSO_UDP_TUNNEL |
3147 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3148 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3149 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3150 			l4.udp->len = 0;
3151 
3152 			/* determine offset of outer transport header */
3153 			l4_offset = l4.hdr - skb->data;
3154 
3155 			/* remove payload length from outer checksum */
3156 			paylen = skb->len - l4_offset;
3157 			csum_replace_by_diff(&l4.udp->check,
3158 					     (__force __wsum)htonl(paylen));
3159 		}
3160 
3161 		/* reset pointers to inner headers */
3162 		ip.hdr = skb_inner_network_header(skb);
3163 		l4.hdr = skb_inner_transport_header(skb);
3164 
3165 		/* initialize inner IP header fields */
3166 		if (ip.v4->version == 4) {
3167 			ip.v4->tot_len = 0;
3168 			ip.v4->check = 0;
3169 		} else {
3170 			ip.v6->payload_len = 0;
3171 		}
3172 	}
3173 
3174 	/* determine offset of inner transport header */
3175 	l4_offset = l4.hdr - skb->data;
3176 
3177 	/* remove payload length from inner checksum */
3178 	paylen = skb->len - l4_offset;
3179 
3180 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3181 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3182 		/* compute length of segmentation header */
3183 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3184 	} else {
3185 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3186 		/* compute length of segmentation header */
3187 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3188 	}
3189 
3190 	/* pull values out of skb_shinfo */
3191 	gso_size = skb_shinfo(skb)->gso_size;
3192 
3193 	/* update GSO size and bytecount with header size */
3194 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3195 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3196 
3197 	/* find the field values */
3198 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3199 	cd_tso_len = skb->len - *hdr_len;
3200 	cd_mss = gso_size;
3201 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3202 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3203 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3204 	return 1;
3205 }
3206 
3207 /**
3208  * i40e_tsyn - set up the tsyn context descriptor
3209  * @tx_ring:  ptr to the ring to send
3210  * @skb:      ptr to the skb we're sending
3211  * @tx_flags: the collected send information
3212  * @cd_type_cmd_tso_mss: Quad Word 1
3213  *
3214  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3215  **/
3216 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3217 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3218 {
3219 	struct i40e_pf *pf;
3220 
3221 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3222 		return 0;
3223 
3224 	/* Tx timestamps cannot be sampled when doing TSO */
3225 	if (tx_flags & I40E_TX_FLAGS_TSO)
3226 		return 0;
3227 
3228 	/* only timestamp the outbound packet if the user has requested it and
3229 	 * we are not already transmitting a packet to be timestamped
3230 	 */
3231 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3232 	if (!(pf->flags & I40E_FLAG_PTP))
3233 		return 0;
3234 
3235 	if (pf->ptp_tx &&
3236 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3237 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3238 		pf->ptp_tx_start = jiffies;
3239 		pf->ptp_tx_skb = skb_get(skb);
3240 	} else {
3241 		pf->tx_hwtstamp_skipped++;
3242 		return 0;
3243 	}
3244 
3245 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3246 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3247 
3248 	return 1;
3249 }
3250 
3251 /**
3252  * i40e_tx_enable_csum - Enable Tx checksum offloads
3253  * @skb: send buffer
3254  * @tx_flags: pointer to Tx flags currently set
3255  * @td_cmd: Tx descriptor command bits to set
3256  * @td_offset: Tx descriptor header offsets to set
3257  * @tx_ring: Tx descriptor ring
3258  * @cd_tunneling: ptr to context desc bits
3259  **/
3260 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3261 			       u32 *td_cmd, u32 *td_offset,
3262 			       struct i40e_ring *tx_ring,
3263 			       u32 *cd_tunneling)
3264 {
3265 	union {
3266 		struct iphdr *v4;
3267 		struct ipv6hdr *v6;
3268 		unsigned char *hdr;
3269 	} ip;
3270 	union {
3271 		struct tcphdr *tcp;
3272 		struct udphdr *udp;
3273 		unsigned char *hdr;
3274 	} l4;
3275 	unsigned char *exthdr;
3276 	u32 offset, cmd = 0;
3277 	__be16 frag_off;
3278 	__be16 protocol;
3279 	u8 l4_proto = 0;
3280 
3281 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3282 		return 0;
3283 
3284 	protocol = vlan_get_protocol(skb);
3285 
3286 	if (eth_p_mpls(protocol)) {
3287 		ip.hdr = skb_inner_network_header(skb);
3288 		l4.hdr = skb_checksum_start(skb);
3289 	} else {
3290 		ip.hdr = skb_network_header(skb);
3291 		l4.hdr = skb_transport_header(skb);
3292 	}
3293 
3294 	/* set the tx_flags to indicate the IP protocol type. this is
3295 	 * required so that checksum header computation below is accurate.
3296 	 */
3297 	if (ip.v4->version == 4)
3298 		*tx_flags |= I40E_TX_FLAGS_IPV4;
3299 	else
3300 		*tx_flags |= I40E_TX_FLAGS_IPV6;
3301 
3302 	/* compute outer L2 header size */
3303 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3304 
3305 	if (skb->encapsulation) {
3306 		u32 tunnel = 0;
3307 		/* define outer network header type */
3308 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3309 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3310 				  I40E_TX_CTX_EXT_IP_IPV4 :
3311 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3312 
3313 			l4_proto = ip.v4->protocol;
3314 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3315 			int ret;
3316 
3317 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3318 
3319 			exthdr = ip.hdr + sizeof(*ip.v6);
3320 			l4_proto = ip.v6->nexthdr;
3321 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3322 					       &l4_proto, &frag_off);
3323 			if (ret < 0)
3324 				return -1;
3325 		}
3326 
3327 		/* define outer transport */
3328 		switch (l4_proto) {
3329 		case IPPROTO_UDP:
3330 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3331 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3332 			break;
3333 		case IPPROTO_GRE:
3334 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3335 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3336 			break;
3337 		case IPPROTO_IPIP:
3338 		case IPPROTO_IPV6:
3339 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3340 			l4.hdr = skb_inner_network_header(skb);
3341 			break;
3342 		default:
3343 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3344 				return -1;
3345 
3346 			skb_checksum_help(skb);
3347 			return 0;
3348 		}
3349 
3350 		/* compute outer L3 header size */
3351 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3352 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3353 
3354 		/* switch IP header pointer from outer to inner header */
3355 		ip.hdr = skb_inner_network_header(skb);
3356 
3357 		/* compute tunnel header size */
3358 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3359 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3360 
3361 		/* indicate if we need to offload outer UDP header */
3362 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3363 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3364 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3365 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3366 
3367 		/* record tunnel offload values */
3368 		*cd_tunneling |= tunnel;
3369 
3370 		/* switch L4 header pointer from outer to inner */
3371 		l4.hdr = skb_inner_transport_header(skb);
3372 		l4_proto = 0;
3373 
3374 		/* reset type as we transition from outer to inner headers */
3375 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3376 		if (ip.v4->version == 4)
3377 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3378 		if (ip.v6->version == 6)
3379 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3380 	}
3381 
3382 	/* Enable IP checksum offloads */
3383 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3384 		l4_proto = ip.v4->protocol;
3385 		/* the stack computes the IP header already, the only time we
3386 		 * need the hardware to recompute it is in the case of TSO.
3387 		 */
3388 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3389 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3390 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3391 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3392 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3393 
3394 		exthdr = ip.hdr + sizeof(*ip.v6);
3395 		l4_proto = ip.v6->nexthdr;
3396 		if (l4.hdr != exthdr)
3397 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3398 					 &l4_proto, &frag_off);
3399 	}
3400 
3401 	/* compute inner L3 header size */
3402 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3403 
3404 	/* Enable L4 checksum offloads */
3405 	switch (l4_proto) {
3406 	case IPPROTO_TCP:
3407 		/* enable checksum offloads */
3408 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3409 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3410 		break;
3411 	case IPPROTO_SCTP:
3412 		/* enable SCTP checksum offload */
3413 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3414 		offset |= (sizeof(struct sctphdr) >> 2) <<
3415 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3416 		break;
3417 	case IPPROTO_UDP:
3418 		/* enable UDP checksum offload */
3419 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3420 		offset |= (sizeof(struct udphdr) >> 2) <<
3421 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3422 		break;
3423 	default:
3424 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3425 			return -1;
3426 		skb_checksum_help(skb);
3427 		return 0;
3428 	}
3429 
3430 	*td_cmd |= cmd;
3431 	*td_offset |= offset;
3432 
3433 	return 1;
3434 }
3435 
3436 /**
3437  * i40e_create_tx_ctx - Build the Tx context descriptor
3438  * @tx_ring:  ring to create the descriptor on
3439  * @cd_type_cmd_tso_mss: Quad Word 1
3440  * @cd_tunneling: Quad Word 0 - bits 0-31
3441  * @cd_l2tag2: Quad Word 0 - bits 32-63
3442  **/
3443 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3444 			       const u64 cd_type_cmd_tso_mss,
3445 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3446 {
3447 	struct i40e_tx_context_desc *context_desc;
3448 	int i = tx_ring->next_to_use;
3449 
3450 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3451 	    !cd_tunneling && !cd_l2tag2)
3452 		return;
3453 
3454 	/* grab the next descriptor */
3455 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3456 
3457 	i++;
3458 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3459 
3460 	/* cpu_to_le32 and assign to struct fields */
3461 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3462 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3463 	context_desc->rsvd = cpu_to_le16(0);
3464 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3465 }
3466 
3467 /**
3468  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3469  * @tx_ring: the ring to be checked
3470  * @size:    the size buffer we want to assure is available
3471  *
3472  * Returns -EBUSY if a stop is needed, else 0
3473  **/
3474 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3475 {
3476 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3477 	/* Memory barrier before checking head and tail */
3478 	smp_mb();
3479 
3480 	++tx_ring->tx_stats.tx_stopped;
3481 
3482 	/* Check again in a case another CPU has just made room available. */
3483 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3484 		return -EBUSY;
3485 
3486 	/* A reprieve! - use start_queue because it doesn't call schedule */
3487 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3488 	++tx_ring->tx_stats.restart_queue;
3489 	return 0;
3490 }
3491 
3492 /**
3493  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3494  * @skb:      send buffer
3495  *
3496  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3497  * and so we need to figure out the cases where we need to linearize the skb.
3498  *
3499  * For TSO we need to count the TSO header and segment payload separately.
3500  * As such we need to check cases where we have 7 fragments or more as we
3501  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3502  * the segment payload in the first descriptor, and another 7 for the
3503  * fragments.
3504  **/
3505 bool __i40e_chk_linearize(struct sk_buff *skb)
3506 {
3507 	const skb_frag_t *frag, *stale;
3508 	int nr_frags, sum;
3509 
3510 	/* no need to check if number of frags is less than 7 */
3511 	nr_frags = skb_shinfo(skb)->nr_frags;
3512 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3513 		return false;
3514 
3515 	/* We need to walk through the list and validate that each group
3516 	 * of 6 fragments totals at least gso_size.
3517 	 */
3518 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3519 	frag = &skb_shinfo(skb)->frags[0];
3520 
3521 	/* Initialize size to the negative value of gso_size minus 1.  We
3522 	 * use this as the worst case scenerio in which the frag ahead
3523 	 * of us only provides one byte which is why we are limited to 6
3524 	 * descriptors for a single transmit as the header and previous
3525 	 * fragment are already consuming 2 descriptors.
3526 	 */
3527 	sum = 1 - skb_shinfo(skb)->gso_size;
3528 
3529 	/* Add size of frags 0 through 4 to create our initial sum */
3530 	sum += skb_frag_size(frag++);
3531 	sum += skb_frag_size(frag++);
3532 	sum += skb_frag_size(frag++);
3533 	sum += skb_frag_size(frag++);
3534 	sum += skb_frag_size(frag++);
3535 
3536 	/* Walk through fragments adding latest fragment, testing it, and
3537 	 * then removing stale fragments from the sum.
3538 	 */
3539 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3540 		int stale_size = skb_frag_size(stale);
3541 
3542 		sum += skb_frag_size(frag++);
3543 
3544 		/* The stale fragment may present us with a smaller
3545 		 * descriptor than the actual fragment size. To account
3546 		 * for that we need to remove all the data on the front and
3547 		 * figure out what the remainder would be in the last
3548 		 * descriptor associated with the fragment.
3549 		 */
3550 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3551 			int align_pad = -(skb_frag_off(stale)) &
3552 					(I40E_MAX_READ_REQ_SIZE - 1);
3553 
3554 			sum -= align_pad;
3555 			stale_size -= align_pad;
3556 
3557 			do {
3558 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3559 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3560 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3561 		}
3562 
3563 		/* if sum is negative we failed to make sufficient progress */
3564 		if (sum < 0)
3565 			return true;
3566 
3567 		if (!nr_frags--)
3568 			break;
3569 
3570 		sum -= stale_size;
3571 	}
3572 
3573 	return false;
3574 }
3575 
3576 /**
3577  * i40e_tx_map - Build the Tx descriptor
3578  * @tx_ring:  ring to send buffer on
3579  * @skb:      send buffer
3580  * @first:    first buffer info buffer to use
3581  * @tx_flags: collected send information
3582  * @hdr_len:  size of the packet header
3583  * @td_cmd:   the command field in the descriptor
3584  * @td_offset: offset for checksum or crc
3585  *
3586  * Returns 0 on success, -1 on failure to DMA
3587  **/
3588 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3589 			      struct i40e_tx_buffer *first, u32 tx_flags,
3590 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3591 {
3592 	unsigned int data_len = skb->data_len;
3593 	unsigned int size = skb_headlen(skb);
3594 	skb_frag_t *frag;
3595 	struct i40e_tx_buffer *tx_bi;
3596 	struct i40e_tx_desc *tx_desc;
3597 	u16 i = tx_ring->next_to_use;
3598 	u32 td_tag = 0;
3599 	dma_addr_t dma;
3600 	u16 desc_count = 1;
3601 
3602 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3603 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3604 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3605 			 I40E_TX_FLAGS_VLAN_SHIFT;
3606 	}
3607 
3608 	first->tx_flags = tx_flags;
3609 
3610 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3611 
3612 	tx_desc = I40E_TX_DESC(tx_ring, i);
3613 	tx_bi = first;
3614 
3615 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3616 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3617 
3618 		if (dma_mapping_error(tx_ring->dev, dma))
3619 			goto dma_error;
3620 
3621 		/* record length, and DMA address */
3622 		dma_unmap_len_set(tx_bi, len, size);
3623 		dma_unmap_addr_set(tx_bi, dma, dma);
3624 
3625 		/* align size to end of page */
3626 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3627 		tx_desc->buffer_addr = cpu_to_le64(dma);
3628 
3629 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3630 			tx_desc->cmd_type_offset_bsz =
3631 				build_ctob(td_cmd, td_offset,
3632 					   max_data, td_tag);
3633 
3634 			tx_desc++;
3635 			i++;
3636 			desc_count++;
3637 
3638 			if (i == tx_ring->count) {
3639 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3640 				i = 0;
3641 			}
3642 
3643 			dma += max_data;
3644 			size -= max_data;
3645 
3646 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3647 			tx_desc->buffer_addr = cpu_to_le64(dma);
3648 		}
3649 
3650 		if (likely(!data_len))
3651 			break;
3652 
3653 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3654 							  size, td_tag);
3655 
3656 		tx_desc++;
3657 		i++;
3658 		desc_count++;
3659 
3660 		if (i == tx_ring->count) {
3661 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3662 			i = 0;
3663 		}
3664 
3665 		size = skb_frag_size(frag);
3666 		data_len -= size;
3667 
3668 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3669 				       DMA_TO_DEVICE);
3670 
3671 		tx_bi = &tx_ring->tx_bi[i];
3672 	}
3673 
3674 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3675 
3676 	i++;
3677 	if (i == tx_ring->count)
3678 		i = 0;
3679 
3680 	tx_ring->next_to_use = i;
3681 
3682 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3683 
3684 	/* write last descriptor with EOP bit */
3685 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3686 
3687 	/* We OR these values together to check both against 4 (WB_STRIDE)
3688 	 * below. This is safe since we don't re-use desc_count afterwards.
3689 	 */
3690 	desc_count |= ++tx_ring->packet_stride;
3691 
3692 	if (desc_count >= WB_STRIDE) {
3693 		/* write last descriptor with RS bit set */
3694 		td_cmd |= I40E_TX_DESC_CMD_RS;
3695 		tx_ring->packet_stride = 0;
3696 	}
3697 
3698 	tx_desc->cmd_type_offset_bsz =
3699 			build_ctob(td_cmd, td_offset, size, td_tag);
3700 
3701 	skb_tx_timestamp(skb);
3702 
3703 	/* Force memory writes to complete before letting h/w know there
3704 	 * are new descriptors to fetch.
3705 	 *
3706 	 * We also use this memory barrier to make certain all of the
3707 	 * status bits have been updated before next_to_watch is written.
3708 	 */
3709 	wmb();
3710 
3711 	/* set next_to_watch value indicating a packet is present */
3712 	first->next_to_watch = tx_desc;
3713 
3714 	/* notify HW of packet */
3715 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3716 		writel(i, tx_ring->tail);
3717 	}
3718 
3719 	return 0;
3720 
3721 dma_error:
3722 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3723 
3724 	/* clear dma mappings for failed tx_bi map */
3725 	for (;;) {
3726 		tx_bi = &tx_ring->tx_bi[i];
3727 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3728 		if (tx_bi == first)
3729 			break;
3730 		if (i == 0)
3731 			i = tx_ring->count;
3732 		i--;
3733 	}
3734 
3735 	tx_ring->next_to_use = i;
3736 
3737 	return -1;
3738 }
3739 
3740 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3741 				  const struct sk_buff *skb,
3742 				  u16 num_tx_queues)
3743 {
3744 	u32 jhash_initval_salt = 0xd631614b;
3745 	u32 hash;
3746 
3747 	if (skb->sk && skb->sk->sk_hash)
3748 		hash = skb->sk->sk_hash;
3749 	else
3750 		hash = (__force u16)skb->protocol ^ skb->hash;
3751 
3752 	hash = jhash_1word(hash, jhash_initval_salt);
3753 
3754 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3755 }
3756 
3757 u16 i40e_lan_select_queue(struct net_device *netdev,
3758 			  struct sk_buff *skb,
3759 			  struct net_device __always_unused *sb_dev)
3760 {
3761 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3762 	struct i40e_vsi *vsi = np->vsi;
3763 	struct i40e_hw *hw;
3764 	u16 qoffset;
3765 	u16 qcount;
3766 	u8 tclass;
3767 	u16 hash;
3768 	u8 prio;
3769 
3770 	/* is DCB enabled at all? */
3771 	if (vsi->tc_config.numtc == 1 ||
3772 	    i40e_is_tc_mqprio_enabled(vsi->back))
3773 		return netdev_pick_tx(netdev, skb, sb_dev);
3774 
3775 	prio = skb->priority;
3776 	hw = &vsi->back->hw;
3777 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3778 	/* sanity check */
3779 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3780 		tclass = 0;
3781 
3782 	/* select a queue assigned for the given TC */
3783 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3784 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3785 
3786 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3787 	return qoffset + hash;
3788 }
3789 
3790 /**
3791  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3792  * @xdpf: data to transmit
3793  * @xdp_ring: XDP Tx ring
3794  **/
3795 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3796 			      struct i40e_ring *xdp_ring)
3797 {
3798 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3799 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3800 	u16 i = 0, index = xdp_ring->next_to_use;
3801 	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3802 	struct i40e_tx_buffer *tx_bi = tx_head;
3803 	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3804 	void *data = xdpf->data;
3805 	u32 size = xdpf->len;
3806 
3807 	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3808 		xdp_ring->tx_stats.tx_busy++;
3809 		return I40E_XDP_CONSUMED;
3810 	}
3811 
3812 	tx_head->bytecount = xdp_get_frame_len(xdpf);
3813 	tx_head->gso_segs = 1;
3814 	tx_head->xdpf = xdpf;
3815 
3816 	for (;;) {
3817 		dma_addr_t dma;
3818 
3819 		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3820 		if (dma_mapping_error(xdp_ring->dev, dma))
3821 			goto unmap;
3822 
3823 		/* record length, and DMA address */
3824 		dma_unmap_len_set(tx_bi, len, size);
3825 		dma_unmap_addr_set(tx_bi, dma, dma);
3826 
3827 		tx_desc->buffer_addr = cpu_to_le64(dma);
3828 		tx_desc->cmd_type_offset_bsz =
3829 			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3830 
3831 		if (++index == xdp_ring->count)
3832 			index = 0;
3833 
3834 		if (i == nr_frags)
3835 			break;
3836 
3837 		tx_bi = &xdp_ring->tx_bi[index];
3838 		tx_desc = I40E_TX_DESC(xdp_ring, index);
3839 
3840 		data = skb_frag_address(&sinfo->frags[i]);
3841 		size = skb_frag_size(&sinfo->frags[i]);
3842 		i++;
3843 	}
3844 
3845 	tx_desc->cmd_type_offset_bsz |=
3846 		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3847 
3848 	/* Make certain all of the status bits have been updated
3849 	 * before next_to_watch is written.
3850 	 */
3851 	smp_wmb();
3852 
3853 	xdp_ring->xdp_tx_active++;
3854 
3855 	tx_head->next_to_watch = tx_desc;
3856 	xdp_ring->next_to_use = index;
3857 
3858 	return I40E_XDP_TX;
3859 
3860 unmap:
3861 	for (;;) {
3862 		tx_bi = &xdp_ring->tx_bi[index];
3863 		if (dma_unmap_len(tx_bi, len))
3864 			dma_unmap_page(xdp_ring->dev,
3865 				       dma_unmap_addr(tx_bi, dma),
3866 				       dma_unmap_len(tx_bi, len),
3867 				       DMA_TO_DEVICE);
3868 		dma_unmap_len_set(tx_bi, len, 0);
3869 		if (tx_bi == tx_head)
3870 			break;
3871 
3872 		if (!index)
3873 			index += xdp_ring->count;
3874 		index--;
3875 	}
3876 
3877 	return I40E_XDP_CONSUMED;
3878 }
3879 
3880 /**
3881  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3882  * @skb:     send buffer
3883  * @tx_ring: ring to send buffer on
3884  *
3885  * Returns NETDEV_TX_OK if sent, else an error code
3886  **/
3887 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3888 					struct i40e_ring *tx_ring)
3889 {
3890 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3891 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3892 	struct i40e_tx_buffer *first;
3893 	u32 td_offset = 0;
3894 	u32 tx_flags = 0;
3895 	u32 td_cmd = 0;
3896 	u8 hdr_len = 0;
3897 	int tso, count;
3898 	int tsyn;
3899 
3900 	/* prefetch the data, we'll need it later */
3901 	prefetch(skb->data);
3902 
3903 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3904 
3905 	count = i40e_xmit_descriptor_count(skb);
3906 	if (i40e_chk_linearize(skb, count)) {
3907 		if (__skb_linearize(skb)) {
3908 			dev_kfree_skb_any(skb);
3909 			return NETDEV_TX_OK;
3910 		}
3911 		count = i40e_txd_use_count(skb->len);
3912 		tx_ring->tx_stats.tx_linearize++;
3913 	}
3914 
3915 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3916 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3917 	 *       + 4 desc gap to avoid the cache line where head is,
3918 	 *       + 1 desc for context descriptor,
3919 	 * otherwise try next time
3920 	 */
3921 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3922 		tx_ring->tx_stats.tx_busy++;
3923 		return NETDEV_TX_BUSY;
3924 	}
3925 
3926 	/* record the location of the first descriptor for this packet */
3927 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3928 	first->skb = skb;
3929 	first->bytecount = skb->len;
3930 	first->gso_segs = 1;
3931 
3932 	/* prepare the xmit flags */
3933 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3934 		goto out_drop;
3935 
3936 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3937 
3938 	if (tso < 0)
3939 		goto out_drop;
3940 	else if (tso)
3941 		tx_flags |= I40E_TX_FLAGS_TSO;
3942 
3943 	/* Always offload the checksum, since it's in the data descriptor */
3944 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3945 				  tx_ring, &cd_tunneling);
3946 	if (tso < 0)
3947 		goto out_drop;
3948 
3949 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3950 
3951 	if (tsyn)
3952 		tx_flags |= I40E_TX_FLAGS_TSYN;
3953 
3954 	/* always enable CRC insertion offload */
3955 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3956 
3957 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3958 			   cd_tunneling, cd_l2tag2);
3959 
3960 	/* Add Flow Director ATR if it's enabled.
3961 	 *
3962 	 * NOTE: this must always be directly before the data descriptor.
3963 	 */
3964 	i40e_atr(tx_ring, skb, tx_flags);
3965 
3966 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3967 			td_cmd, td_offset))
3968 		goto cleanup_tx_tstamp;
3969 
3970 	return NETDEV_TX_OK;
3971 
3972 out_drop:
3973 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3974 	dev_kfree_skb_any(first->skb);
3975 	first->skb = NULL;
3976 cleanup_tx_tstamp:
3977 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3978 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3979 
3980 		dev_kfree_skb_any(pf->ptp_tx_skb);
3981 		pf->ptp_tx_skb = NULL;
3982 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3983 	}
3984 
3985 	return NETDEV_TX_OK;
3986 }
3987 
3988 /**
3989  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3990  * @skb:    send buffer
3991  * @netdev: network interface device structure
3992  *
3993  * Returns NETDEV_TX_OK if sent, else an error code
3994  **/
3995 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3996 {
3997 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3998 	struct i40e_vsi *vsi = np->vsi;
3999 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
4000 
4001 	/* hardware can't handle really short frames, hardware padding works
4002 	 * beyond this point
4003 	 */
4004 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4005 		return NETDEV_TX_OK;
4006 
4007 	return i40e_xmit_frame_ring(skb, tx_ring);
4008 }
4009 
4010 /**
4011  * i40e_xdp_xmit - Implements ndo_xdp_xmit
4012  * @dev: netdev
4013  * @n: number of frames
4014  * @frames: array of XDP buffer pointers
4015  * @flags: XDP extra info
4016  *
4017  * Returns number of frames successfully sent. Failed frames
4018  * will be free'ed by XDP core.
4019  *
4020  * For error cases, a negative errno code is returned and no-frames
4021  * are transmitted (caller must handle freeing frames).
4022  **/
4023 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4024 		  u32 flags)
4025 {
4026 	struct i40e_netdev_priv *np = netdev_priv(dev);
4027 	unsigned int queue_index = smp_processor_id();
4028 	struct i40e_vsi *vsi = np->vsi;
4029 	struct i40e_pf *pf = vsi->back;
4030 	struct i40e_ring *xdp_ring;
4031 	int nxmit = 0;
4032 	int i;
4033 
4034 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4035 		return -ENETDOWN;
4036 
4037 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4038 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4039 		return -ENXIO;
4040 
4041 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4042 		return -EINVAL;
4043 
4044 	xdp_ring = vsi->xdp_rings[queue_index];
4045 
4046 	for (i = 0; i < n; i++) {
4047 		struct xdp_frame *xdpf = frames[i];
4048 		int err;
4049 
4050 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4051 		if (err != I40E_XDP_TX)
4052 			break;
4053 		nxmit++;
4054 	}
4055 
4056 	if (unlikely(flags & XDP_XMIT_FLUSH))
4057 		i40e_xdp_ring_update_tail(xdp_ring);
4058 
4059 	return nxmit;
4060 }
4061