1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <linux/prefetch.h> 6 #include <linux/sctp.h> 7 #include <net/mpls.h> 8 #include <net/xdp.h> 9 #include "i40e_txrx_common.h" 10 #include "i40e_trace.h" 11 #include "i40e_xsk.h" 12 13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 14 /** 15 * i40e_fdir - Generate a Flow Director descriptor based on fdata 16 * @tx_ring: Tx ring to send buffer on 17 * @fdata: Flow director filter data 18 * @add: Indicate if we are adding a rule or deleting one 19 * 20 **/ 21 static void i40e_fdir(struct i40e_ring *tx_ring, 22 struct i40e_fdir_filter *fdata, bool add) 23 { 24 struct i40e_filter_program_desc *fdir_desc; 25 struct i40e_pf *pf = tx_ring->vsi->back; 26 u32 flex_ptype, dtype_cmd; 27 u16 i; 28 29 /* grab the next descriptor */ 30 i = tx_ring->next_to_use; 31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 32 33 i++; 34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 35 36 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index); 37 38 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK, 39 fdata->flex_off); 40 41 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype); 42 43 /* Use LAN VSI Id if not programmed by user */ 44 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, 45 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id); 46 47 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 48 49 dtype_cmd |= add ? 50 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 51 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 52 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 53 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 54 55 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl); 56 57 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK, 58 fdata->fd_status); 59 60 if (fdata->cnt_index) { 61 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 62 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK, 63 fdata->cnt_index); 64 } 65 66 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 67 fdir_desc->rsvd = cpu_to_le32(0); 68 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 69 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 70 } 71 72 #define I40E_FD_CLEAN_DELAY 10 73 /** 74 * i40e_program_fdir_filter - Program a Flow Director filter 75 * @fdir_data: Packet data that will be filter parameters 76 * @raw_packet: the pre-allocated packet buffer for FDir 77 * @pf: The PF pointer 78 * @add: True for add/update, False for remove 79 **/ 80 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 81 u8 *raw_packet, struct i40e_pf *pf, 82 bool add) 83 { 84 struct i40e_tx_buffer *tx_buf, *first; 85 struct i40e_tx_desc *tx_desc; 86 struct i40e_ring *tx_ring; 87 struct i40e_vsi *vsi; 88 struct device *dev; 89 dma_addr_t dma; 90 u32 td_cmd = 0; 91 u16 i; 92 93 /* find existing FDIR VSI */ 94 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 95 if (!vsi) 96 return -ENOENT; 97 98 tx_ring = vsi->tx_rings[0]; 99 dev = tx_ring->dev; 100 101 /* we need two descriptors to add/del a filter and we can wait */ 102 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 103 if (!i) 104 return -EAGAIN; 105 msleep_interruptible(1); 106 } 107 108 dma = dma_map_single(dev, raw_packet, 109 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 110 if (dma_mapping_error(dev, dma)) 111 goto dma_fail; 112 113 /* grab the next descriptor */ 114 i = tx_ring->next_to_use; 115 first = &tx_ring->tx_bi[i]; 116 i40e_fdir(tx_ring, fdir_data, add); 117 118 /* Now program a dummy descriptor */ 119 i = tx_ring->next_to_use; 120 tx_desc = I40E_TX_DESC(tx_ring, i); 121 tx_buf = &tx_ring->tx_bi[i]; 122 123 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 124 125 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 126 127 /* record length, and DMA address */ 128 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 129 dma_unmap_addr_set(tx_buf, dma, dma); 130 131 tx_desc->buffer_addr = cpu_to_le64(dma); 132 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 133 134 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 135 tx_buf->raw_buf = (void *)raw_packet; 136 137 tx_desc->cmd_type_offset_bsz = 138 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 139 140 /* Force memory writes to complete before letting h/w 141 * know there are new descriptors to fetch. 142 */ 143 wmb(); 144 145 /* Mark the data descriptor to be watched */ 146 first->next_to_watch = tx_desc; 147 148 writel(tx_ring->next_to_use, tx_ring->tail); 149 return 0; 150 151 dma_fail: 152 return -1; 153 } 154 155 /** 156 * i40e_create_dummy_packet - Constructs dummy packet for HW 157 * @dummy_packet: preallocated space for dummy packet 158 * @ipv4: is layer 3 packet of version 4 or 6 159 * @l4proto: next level protocol used in data portion of l3 160 * @data: filter data 161 * 162 * Returns address of layer 4 protocol dummy packet. 163 **/ 164 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto, 165 struct i40e_fdir_filter *data) 166 { 167 bool is_vlan = !!data->vlan_tag; 168 struct vlan_hdr vlan = {}; 169 struct ipv6hdr ipv6 = {}; 170 struct ethhdr eth = {}; 171 struct iphdr ip = {}; 172 u8 *tmp; 173 174 if (ipv4) { 175 eth.h_proto = cpu_to_be16(ETH_P_IP); 176 ip.protocol = l4proto; 177 ip.version = 0x4; 178 ip.ihl = 0x5; 179 180 ip.daddr = data->dst_ip; 181 ip.saddr = data->src_ip; 182 } else { 183 eth.h_proto = cpu_to_be16(ETH_P_IPV6); 184 ipv6.nexthdr = l4proto; 185 ipv6.version = 0x6; 186 187 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6, 188 sizeof(__be32) * 4); 189 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6, 190 sizeof(__be32) * 4); 191 } 192 193 if (is_vlan) { 194 vlan.h_vlan_TCI = data->vlan_tag; 195 vlan.h_vlan_encapsulated_proto = eth.h_proto; 196 eth.h_proto = data->vlan_etype; 197 } 198 199 tmp = dummy_packet; 200 memcpy(tmp, ð, sizeof(eth)); 201 tmp += sizeof(eth); 202 203 if (is_vlan) { 204 memcpy(tmp, &vlan, sizeof(vlan)); 205 tmp += sizeof(vlan); 206 } 207 208 if (ipv4) { 209 memcpy(tmp, &ip, sizeof(ip)); 210 tmp += sizeof(ip); 211 } else { 212 memcpy(tmp, &ipv6, sizeof(ipv6)); 213 tmp += sizeof(ipv6); 214 } 215 216 return tmp; 217 } 218 219 /** 220 * i40e_create_dummy_udp_packet - helper function to create UDP packet 221 * @raw_packet: preallocated space for dummy packet 222 * @ipv4: is layer 3 packet of version 4 or 6 223 * @l4proto: next level protocol used in data portion of l3 224 * @data: filter data 225 * 226 * Helper function to populate udp fields. 227 **/ 228 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, 229 struct i40e_fdir_filter *data) 230 { 231 struct udphdr *udp; 232 u8 *tmp; 233 234 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data); 235 udp = (struct udphdr *)(tmp); 236 udp->dest = data->dst_port; 237 udp->source = data->src_port; 238 } 239 240 /** 241 * i40e_create_dummy_tcp_packet - helper function to create TCP packet 242 * @raw_packet: preallocated space for dummy packet 243 * @ipv4: is layer 3 packet of version 4 or 6 244 * @l4proto: next level protocol used in data portion of l3 245 * @data: filter data 246 * 247 * Helper function to populate tcp fields. 248 **/ 249 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, 250 struct i40e_fdir_filter *data) 251 { 252 struct tcphdr *tcp; 253 u8 *tmp; 254 /* Dummy tcp packet */ 255 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0}; 257 258 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data); 259 260 tcp = (struct tcphdr *)tmp; 261 memcpy(tcp, tcp_packet, sizeof(tcp_packet)); 262 tcp->dest = data->dst_port; 263 tcp->source = data->src_port; 264 } 265 266 /** 267 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet 268 * @raw_packet: preallocated space for dummy packet 269 * @ipv4: is layer 3 packet of version 4 or 6 270 * @l4proto: next level protocol used in data portion of l3 271 * @data: filter data 272 * 273 * Helper function to populate sctp fields. 274 **/ 275 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4, 276 u8 l4proto, 277 struct i40e_fdir_filter *data) 278 { 279 struct sctphdr *sctp; 280 u8 *tmp; 281 282 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data); 283 284 sctp = (struct sctphdr *)tmp; 285 sctp->dest = data->dst_port; 286 sctp->source = data->src_port; 287 } 288 289 /** 290 * i40e_prepare_fdir_filter - Prepare and program fdir filter 291 * @pf: physical function to attach filter to 292 * @fd_data: filter data 293 * @add: add or delete filter 294 * @packet_addr: address of dummy packet, used in filtering 295 * @payload_offset: offset from dummy packet address to user defined data 296 * @pctype: Packet type for which filter is used 297 * 298 * Helper function to offset data of dummy packet, program it and 299 * handle errors. 300 **/ 301 static int i40e_prepare_fdir_filter(struct i40e_pf *pf, 302 struct i40e_fdir_filter *fd_data, 303 bool add, char *packet_addr, 304 int payload_offset, u8 pctype) 305 { 306 int ret; 307 308 if (fd_data->flex_filter) { 309 u8 *payload; 310 __be16 pattern = fd_data->flex_word; 311 u16 off = fd_data->flex_offset; 312 313 payload = packet_addr + payload_offset; 314 315 /* If user provided vlan, offset payload by vlan header length */ 316 if (!!fd_data->vlan_tag) 317 payload += VLAN_HLEN; 318 319 *((__force __be16 *)(payload + off)) = pattern; 320 } 321 322 fd_data->pctype = pctype; 323 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add); 324 if (ret) { 325 dev_info(&pf->pdev->dev, 326 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 327 fd_data->pctype, fd_data->fd_id, ret); 328 /* Free the packet buffer since it wasn't added to the ring */ 329 return -EOPNOTSUPP; 330 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 331 if (add) 332 dev_info(&pf->pdev->dev, 333 "Filter OK for PCTYPE %d loc = %d\n", 334 fd_data->pctype, fd_data->fd_id); 335 else 336 dev_info(&pf->pdev->dev, 337 "Filter deleted for PCTYPE %d loc = %d\n", 338 fd_data->pctype, fd_data->fd_id); 339 } 340 341 return ret; 342 } 343 344 /** 345 * i40e_change_filter_num - Prepare and program fdir filter 346 * @ipv4: is layer 3 packet of version 4 or 6 347 * @add: add or delete filter 348 * @ipv4_filter_num: field to update 349 * @ipv6_filter_num: field to update 350 * 351 * Update filter number field for pf. 352 **/ 353 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num, 354 u16 *ipv6_filter_num) 355 { 356 if (add) { 357 if (ipv4) 358 (*ipv4_filter_num)++; 359 else 360 (*ipv6_filter_num)++; 361 } else { 362 if (ipv4) 363 (*ipv4_filter_num)--; 364 else 365 (*ipv6_filter_num)--; 366 } 367 } 368 369 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 370 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62 371 /** 372 * i40e_add_del_fdir_udp - Add/Remove UDP filters 373 * @vsi: pointer to the targeted VSI 374 * @fd_data: the flow director data required for the FDir descriptor 375 * @add: true adds a filter, false removes it 376 * @ipv4: true is v4, false is v6 377 * 378 * Returns 0 if the filters were successfully added or removed 379 **/ 380 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi, 381 struct i40e_fdir_filter *fd_data, 382 bool add, 383 bool ipv4) 384 { 385 struct i40e_pf *pf = vsi->back; 386 u8 *raw_packet; 387 int ret; 388 389 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 390 if (!raw_packet) 391 return -ENOMEM; 392 393 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data); 394 395 if (ipv4) 396 ret = i40e_prepare_fdir_filter 397 (pf, fd_data, add, raw_packet, 398 I40E_UDPIP_DUMMY_PACKET_LEN, 399 I40E_FILTER_PCTYPE_NONF_IPV4_UDP); 400 else 401 ret = i40e_prepare_fdir_filter 402 (pf, fd_data, add, raw_packet, 403 I40E_UDPIP6_DUMMY_PACKET_LEN, 404 I40E_FILTER_PCTYPE_NONF_IPV6_UDP); 405 406 if (ret) { 407 kfree(raw_packet); 408 return ret; 409 } 410 411 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt, 412 &pf->fd_udp6_filter_cnt); 413 414 return 0; 415 } 416 417 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 418 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74 419 /** 420 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters 421 * @vsi: pointer to the targeted VSI 422 * @fd_data: the flow director data required for the FDir descriptor 423 * @add: true adds a filter, false removes it 424 * @ipv4: true is v4, false is v6 425 * 426 * Returns 0 if the filters were successfully added or removed 427 **/ 428 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi, 429 struct i40e_fdir_filter *fd_data, 430 bool add, 431 bool ipv4) 432 { 433 struct i40e_pf *pf = vsi->back; 434 u8 *raw_packet; 435 int ret; 436 437 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 438 if (!raw_packet) 439 return -ENOMEM; 440 441 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data); 442 if (ipv4) 443 ret = i40e_prepare_fdir_filter 444 (pf, fd_data, add, raw_packet, 445 I40E_TCPIP_DUMMY_PACKET_LEN, 446 I40E_FILTER_PCTYPE_NONF_IPV4_TCP); 447 else 448 ret = i40e_prepare_fdir_filter 449 (pf, fd_data, add, raw_packet, 450 I40E_TCPIP6_DUMMY_PACKET_LEN, 451 I40E_FILTER_PCTYPE_NONF_IPV6_TCP); 452 453 if (ret) { 454 kfree(raw_packet); 455 return ret; 456 } 457 458 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt, 459 &pf->fd_tcp6_filter_cnt); 460 461 if (add) { 462 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 463 I40E_DEBUG_FD & pf->hw.debug_mask) 464 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 465 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 466 } 467 return 0; 468 } 469 470 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 471 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66 472 /** 473 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for 474 * a specific flow spec 475 * @vsi: pointer to the targeted VSI 476 * @fd_data: the flow director data required for the FDir descriptor 477 * @add: true adds a filter, false removes it 478 * @ipv4: true is v4, false is v6 479 * 480 * Returns 0 if the filters were successfully added or removed 481 **/ 482 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi, 483 struct i40e_fdir_filter *fd_data, 484 bool add, 485 bool ipv4) 486 { 487 struct i40e_pf *pf = vsi->back; 488 u8 *raw_packet; 489 int ret; 490 491 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 492 if (!raw_packet) 493 return -ENOMEM; 494 495 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data); 496 497 if (ipv4) 498 ret = i40e_prepare_fdir_filter 499 (pf, fd_data, add, raw_packet, 500 I40E_SCTPIP_DUMMY_PACKET_LEN, 501 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP); 502 else 503 ret = i40e_prepare_fdir_filter 504 (pf, fd_data, add, raw_packet, 505 I40E_SCTPIP6_DUMMY_PACKET_LEN, 506 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP); 507 508 if (ret) { 509 kfree(raw_packet); 510 return ret; 511 } 512 513 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt, 514 &pf->fd_sctp6_filter_cnt); 515 516 return 0; 517 } 518 519 #define I40E_IP_DUMMY_PACKET_LEN 34 520 #define I40E_IP6_DUMMY_PACKET_LEN 54 521 /** 522 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for 523 * a specific flow spec 524 * @vsi: pointer to the targeted VSI 525 * @fd_data: the flow director data required for the FDir descriptor 526 * @add: true adds a filter, false removes it 527 * @ipv4: true is v4, false is v6 528 * 529 * Returns 0 if the filters were successfully added or removed 530 **/ 531 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi, 532 struct i40e_fdir_filter *fd_data, 533 bool add, 534 bool ipv4) 535 { 536 struct i40e_pf *pf = vsi->back; 537 int payload_offset; 538 u8 *raw_packet; 539 int iter_start; 540 int iter_end; 541 int ret; 542 int i; 543 544 if (ipv4) { 545 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 546 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4; 547 } else { 548 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER; 549 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6; 550 } 551 552 for (i = iter_start; i <= iter_end; i++) { 553 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 554 if (!raw_packet) 555 return -ENOMEM; 556 557 /* IPv6 no header option differs from IPv4 */ 558 (void)i40e_create_dummy_packet 559 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE, 560 fd_data); 561 562 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN : 563 I40E_IP6_DUMMY_PACKET_LEN; 564 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet, 565 payload_offset, i); 566 if (ret) 567 goto err; 568 } 569 570 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt, 571 &pf->fd_ip6_filter_cnt); 572 573 return 0; 574 err: 575 kfree(raw_packet); 576 return ret; 577 } 578 579 /** 580 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 581 * @vsi: pointer to the targeted VSI 582 * @input: filter to add or delete 583 * @add: true adds a filter, false removes it 584 * 585 **/ 586 int i40e_add_del_fdir(struct i40e_vsi *vsi, 587 struct i40e_fdir_filter *input, bool add) 588 { 589 enum ip_ver { ipv6 = 0, ipv4 = 1 }; 590 struct i40e_pf *pf = vsi->back; 591 int ret; 592 593 switch (input->flow_type & ~FLOW_EXT) { 594 case TCP_V4_FLOW: 595 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4); 596 break; 597 case UDP_V4_FLOW: 598 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4); 599 break; 600 case SCTP_V4_FLOW: 601 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4); 602 break; 603 case TCP_V6_FLOW: 604 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6); 605 break; 606 case UDP_V6_FLOW: 607 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6); 608 break; 609 case SCTP_V6_FLOW: 610 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6); 611 break; 612 case IP_USER_FLOW: 613 switch (input->ipl4_proto) { 614 case IPPROTO_TCP: 615 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4); 616 break; 617 case IPPROTO_UDP: 618 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4); 619 break; 620 case IPPROTO_SCTP: 621 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4); 622 break; 623 case IPPROTO_IP: 624 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4); 625 break; 626 default: 627 /* We cannot support masking based on protocol */ 628 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 629 input->ipl4_proto); 630 return -EINVAL; 631 } 632 break; 633 case IPV6_USER_FLOW: 634 switch (input->ipl4_proto) { 635 case IPPROTO_TCP: 636 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6); 637 break; 638 case IPPROTO_UDP: 639 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6); 640 break; 641 case IPPROTO_SCTP: 642 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6); 643 break; 644 case IPPROTO_IP: 645 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6); 646 break; 647 default: 648 /* We cannot support masking based on protocol */ 649 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n", 650 input->ipl4_proto); 651 return -EINVAL; 652 } 653 break; 654 default: 655 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 656 input->flow_type); 657 return -EINVAL; 658 } 659 660 /* The buffer allocated here will be normally be freed by 661 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 662 * completion. In the event of an error adding the buffer to the FDIR 663 * ring, it will immediately be freed. It may also be freed by 664 * i40e_clean_tx_ring() when closing the VSI. 665 */ 666 return ret; 667 } 668 669 /** 670 * i40e_fd_handle_status - check the Programming Status for FD 671 * @rx_ring: the Rx ring for this descriptor 672 * @qword0_raw: qword0 673 * @qword1: qword1 after le_to_cpu 674 * @prog_id: the id originally used for programming 675 * 676 * This is used to verify if the FD programming or invalidation 677 * requested by SW to the HW is successful or not and take actions accordingly. 678 **/ 679 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw, 680 u64 qword1, u8 prog_id) 681 { 682 struct i40e_pf *pf = rx_ring->vsi->back; 683 struct pci_dev *pdev = pf->pdev; 684 struct i40e_16b_rx_wb_qw0 *qw0; 685 u32 fcnt_prog, fcnt_avail; 686 u32 error; 687 688 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw; 689 error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1); 690 691 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 692 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id); 693 if (qw0->hi_dword.fd_id != 0 || 694 (I40E_DEBUG_FD & pf->hw.debug_mask)) 695 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 696 pf->fd_inv); 697 698 /* Check if the programming error is for ATR. 699 * If so, auto disable ATR and set a state for 700 * flush in progress. Next time we come here if flush is in 701 * progress do nothing, once flush is complete the state will 702 * be cleared. 703 */ 704 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 705 return; 706 707 pf->fd_add_err++; 708 /* store the current atr filter count */ 709 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 710 711 if (qw0->hi_dword.fd_id == 0 && 712 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { 713 /* These set_bit() calls aren't atomic with the 714 * test_bit() here, but worse case we potentially 715 * disable ATR and queue a flush right after SB 716 * support is re-enabled. That shouldn't cause an 717 * issue in practice 718 */ 719 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 720 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 721 } 722 723 /* filter programming failed most likely due to table full */ 724 fcnt_prog = i40e_get_global_fd_count(pf); 725 fcnt_avail = pf->fdir_pf_filter_count; 726 /* If ATR is running fcnt_prog can quickly change, 727 * if we are very close to full, it makes sense to disable 728 * FD ATR/SB and then re-enable it when there is room. 729 */ 730 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 731 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 732 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, 733 pf->state)) 734 if (I40E_DEBUG_FD & pf->hw.debug_mask) 735 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 736 } 737 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 738 if (I40E_DEBUG_FD & pf->hw.debug_mask) 739 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 740 qw0->hi_dword.fd_id); 741 } 742 } 743 744 /** 745 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 746 * @ring: the ring that owns the buffer 747 * @tx_buffer: the buffer to free 748 **/ 749 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 750 struct i40e_tx_buffer *tx_buffer) 751 { 752 if (tx_buffer->skb) { 753 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 754 kfree(tx_buffer->raw_buf); 755 else if (ring_is_xdp(ring)) 756 xdp_return_frame(tx_buffer->xdpf); 757 else 758 dev_kfree_skb_any(tx_buffer->skb); 759 if (dma_unmap_len(tx_buffer, len)) 760 dma_unmap_single(ring->dev, 761 dma_unmap_addr(tx_buffer, dma), 762 dma_unmap_len(tx_buffer, len), 763 DMA_TO_DEVICE); 764 } else if (dma_unmap_len(tx_buffer, len)) { 765 dma_unmap_page(ring->dev, 766 dma_unmap_addr(tx_buffer, dma), 767 dma_unmap_len(tx_buffer, len), 768 DMA_TO_DEVICE); 769 } 770 771 tx_buffer->next_to_watch = NULL; 772 tx_buffer->skb = NULL; 773 dma_unmap_len_set(tx_buffer, len, 0); 774 /* tx_buffer must be completely set up in the transmit path */ 775 } 776 777 /** 778 * i40e_clean_tx_ring - Free any empty Tx buffers 779 * @tx_ring: ring to be cleaned 780 **/ 781 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 782 { 783 unsigned long bi_size; 784 u16 i; 785 786 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 787 i40e_xsk_clean_tx_ring(tx_ring); 788 } else { 789 /* ring already cleared, nothing to do */ 790 if (!tx_ring->tx_bi) 791 return; 792 793 /* Free all the Tx ring sk_buffs */ 794 for (i = 0; i < tx_ring->count; i++) 795 i40e_unmap_and_free_tx_resource(tx_ring, 796 &tx_ring->tx_bi[i]); 797 } 798 799 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 800 memset(tx_ring->tx_bi, 0, bi_size); 801 802 /* Zero out the descriptor ring */ 803 memset(tx_ring->desc, 0, tx_ring->size); 804 805 tx_ring->next_to_use = 0; 806 tx_ring->next_to_clean = 0; 807 808 if (!tx_ring->netdev) 809 return; 810 811 /* cleanup Tx queue statistics */ 812 netdev_tx_reset_queue(txring_txq(tx_ring)); 813 } 814 815 /** 816 * i40e_free_tx_resources - Free Tx resources per queue 817 * @tx_ring: Tx descriptor ring for a specific queue 818 * 819 * Free all transmit software resources 820 **/ 821 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 822 { 823 i40e_clean_tx_ring(tx_ring); 824 kfree(tx_ring->tx_bi); 825 tx_ring->tx_bi = NULL; 826 827 if (tx_ring->desc) { 828 dma_free_coherent(tx_ring->dev, tx_ring->size, 829 tx_ring->desc, tx_ring->dma); 830 tx_ring->desc = NULL; 831 } 832 } 833 834 /** 835 * i40e_get_tx_pending - how many tx descriptors not processed 836 * @ring: the ring of descriptors 837 * @in_sw: use SW variables 838 * 839 * Since there is no access to the ring head register 840 * in XL710, we need to use our local copies 841 **/ 842 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 843 { 844 u32 head, tail; 845 846 if (!in_sw) { 847 head = i40e_get_head(ring); 848 tail = readl(ring->tail); 849 } else { 850 head = ring->next_to_clean; 851 tail = ring->next_to_use; 852 } 853 854 if (head != tail) 855 return (head < tail) ? 856 tail - head : (tail + ring->count - head); 857 858 return 0; 859 } 860 861 /** 862 * i40e_detect_recover_hung - Function to detect and recover hung_queues 863 * @vsi: pointer to vsi struct with tx queues 864 * 865 * VSI has netdev and netdev has TX queues. This function is to check each of 866 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 867 **/ 868 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 869 { 870 struct i40e_ring *tx_ring = NULL; 871 struct net_device *netdev; 872 unsigned int i; 873 int packets; 874 875 if (!vsi) 876 return; 877 878 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 879 return; 880 881 netdev = vsi->netdev; 882 if (!netdev) 883 return; 884 885 if (!netif_carrier_ok(netdev)) 886 return; 887 888 for (i = 0; i < vsi->num_queue_pairs; i++) { 889 tx_ring = vsi->tx_rings[i]; 890 if (tx_ring && tx_ring->desc) { 891 /* If packet counter has not changed the queue is 892 * likely stalled, so force an interrupt for this 893 * queue. 894 * 895 * prev_pkt_ctr would be negative if there was no 896 * pending work. 897 */ 898 packets = tx_ring->stats.packets & INT_MAX; 899 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 900 i40e_force_wb(vsi, tx_ring->q_vector); 901 continue; 902 } 903 904 /* Memory barrier between read of packet count and call 905 * to i40e_get_tx_pending() 906 */ 907 smp_rmb(); 908 tx_ring->tx_stats.prev_pkt_ctr = 909 i40e_get_tx_pending(tx_ring, true) ? packets : -1; 910 } 911 } 912 } 913 914 /** 915 * i40e_clean_tx_irq - Reclaim resources after transmit completes 916 * @vsi: the VSI we care about 917 * @tx_ring: Tx ring to clean 918 * @napi_budget: Used to determine if we are in netpoll 919 * @tx_cleaned: Out parameter set to the number of TXes cleaned 920 * 921 * Returns true if there's any budget left (e.g. the clean is finished) 922 **/ 923 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 924 struct i40e_ring *tx_ring, int napi_budget, 925 unsigned int *tx_cleaned) 926 { 927 int i = tx_ring->next_to_clean; 928 struct i40e_tx_buffer *tx_buf; 929 struct i40e_tx_desc *tx_head; 930 struct i40e_tx_desc *tx_desc; 931 unsigned int total_bytes = 0, total_packets = 0; 932 unsigned int budget = vsi->work_limit; 933 934 tx_buf = &tx_ring->tx_bi[i]; 935 tx_desc = I40E_TX_DESC(tx_ring, i); 936 i -= tx_ring->count; 937 938 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 939 940 do { 941 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 942 943 /* if next_to_watch is not set then there is no work pending */ 944 if (!eop_desc) 945 break; 946 947 /* prevent any other reads prior to eop_desc */ 948 smp_rmb(); 949 950 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 951 /* we have caught up to head, no work left to do */ 952 if (tx_head == tx_desc) 953 break; 954 955 /* clear next_to_watch to prevent false hangs */ 956 tx_buf->next_to_watch = NULL; 957 958 /* update the statistics for this packet */ 959 total_bytes += tx_buf->bytecount; 960 total_packets += tx_buf->gso_segs; 961 962 /* free the skb/XDP data */ 963 if (ring_is_xdp(tx_ring)) 964 xdp_return_frame(tx_buf->xdpf); 965 else 966 napi_consume_skb(tx_buf->skb, napi_budget); 967 968 /* unmap skb header data */ 969 dma_unmap_single(tx_ring->dev, 970 dma_unmap_addr(tx_buf, dma), 971 dma_unmap_len(tx_buf, len), 972 DMA_TO_DEVICE); 973 974 /* clear tx_buffer data */ 975 tx_buf->skb = NULL; 976 dma_unmap_len_set(tx_buf, len, 0); 977 978 /* unmap remaining buffers */ 979 while (tx_desc != eop_desc) { 980 i40e_trace(clean_tx_irq_unmap, 981 tx_ring, tx_desc, tx_buf); 982 983 tx_buf++; 984 tx_desc++; 985 i++; 986 if (unlikely(!i)) { 987 i -= tx_ring->count; 988 tx_buf = tx_ring->tx_bi; 989 tx_desc = I40E_TX_DESC(tx_ring, 0); 990 } 991 992 /* unmap any remaining paged data */ 993 if (dma_unmap_len(tx_buf, len)) { 994 dma_unmap_page(tx_ring->dev, 995 dma_unmap_addr(tx_buf, dma), 996 dma_unmap_len(tx_buf, len), 997 DMA_TO_DEVICE); 998 dma_unmap_len_set(tx_buf, len, 0); 999 } 1000 } 1001 1002 /* move us one more past the eop_desc for start of next pkt */ 1003 tx_buf++; 1004 tx_desc++; 1005 i++; 1006 if (unlikely(!i)) { 1007 i -= tx_ring->count; 1008 tx_buf = tx_ring->tx_bi; 1009 tx_desc = I40E_TX_DESC(tx_ring, 0); 1010 } 1011 1012 prefetch(tx_desc); 1013 1014 /* update budget accounting */ 1015 budget--; 1016 } while (likely(budget)); 1017 1018 i += tx_ring->count; 1019 tx_ring->next_to_clean = i; 1020 i40e_update_tx_stats(tx_ring, total_packets, total_bytes); 1021 i40e_arm_wb(tx_ring, vsi, budget); 1022 1023 if (ring_is_xdp(tx_ring)) 1024 return !!budget; 1025 1026 /* notify netdev of completed buffers */ 1027 netdev_tx_completed_queue(txring_txq(tx_ring), 1028 total_packets, total_bytes); 1029 1030 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 1031 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1032 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 1033 /* Make sure that anybody stopping the queue after this 1034 * sees the new next_to_clean. 1035 */ 1036 smp_mb(); 1037 if (__netif_subqueue_stopped(tx_ring->netdev, 1038 tx_ring->queue_index) && 1039 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 1040 netif_wake_subqueue(tx_ring->netdev, 1041 tx_ring->queue_index); 1042 ++tx_ring->tx_stats.restart_queue; 1043 } 1044 } 1045 1046 *tx_cleaned = total_packets; 1047 return !!budget; 1048 } 1049 1050 /** 1051 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 1052 * @vsi: the VSI we care about 1053 * @q_vector: the vector on which to enable writeback 1054 * 1055 **/ 1056 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 1057 struct i40e_q_vector *q_vector) 1058 { 1059 u16 flags = q_vector->tx.ring[0].flags; 1060 u32 val; 1061 1062 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 1063 return; 1064 1065 if (q_vector->arm_wb_state) 1066 return; 1067 1068 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) { 1069 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 1070 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 1071 1072 wr32(&vsi->back->hw, 1073 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 1074 val); 1075 } else { 1076 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 1077 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 1078 1079 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 1080 } 1081 q_vector->arm_wb_state = true; 1082 } 1083 1084 /** 1085 * i40e_force_wb - Issue SW Interrupt so HW does a wb 1086 * @vsi: the VSI we care about 1087 * @q_vector: the vector on which to force writeback 1088 * 1089 **/ 1090 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 1091 { 1092 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) { 1093 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 1094 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 1095 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 1096 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 1097 /* allow 00 to be written to the index */ 1098 1099 wr32(&vsi->back->hw, 1100 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 1101 } else { 1102 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 1103 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 1104 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 1105 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 1106 /* allow 00 to be written to the index */ 1107 1108 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 1109 } 1110 } 1111 1112 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 1113 struct i40e_ring_container *rc) 1114 { 1115 return &q_vector->rx == rc; 1116 } 1117 1118 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 1119 { 1120 unsigned int divisor; 1121 1122 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 1123 case I40E_LINK_SPEED_40GB: 1124 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 1125 break; 1126 case I40E_LINK_SPEED_25GB: 1127 case I40E_LINK_SPEED_20GB: 1128 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 1129 break; 1130 default: 1131 case I40E_LINK_SPEED_10GB: 1132 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 1133 break; 1134 case I40E_LINK_SPEED_1GB: 1135 case I40E_LINK_SPEED_100MB: 1136 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 1137 break; 1138 } 1139 1140 return divisor; 1141 } 1142 1143 /** 1144 * i40e_update_itr - update the dynamic ITR value based on statistics 1145 * @q_vector: structure containing interrupt and ring information 1146 * @rc: structure containing ring performance data 1147 * 1148 * Stores a new ITR value based on packets and byte 1149 * counts during the last interrupt. The advantage of per interrupt 1150 * computation is faster updates and more accurate ITR for the current 1151 * traffic pattern. Constants in this function were computed 1152 * based on theoretical maximum wire speed and thresholds were set based 1153 * on testing data as well as attempting to minimize response time 1154 * while increasing bulk throughput. 1155 **/ 1156 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1157 struct i40e_ring_container *rc) 1158 { 1159 unsigned int avg_wire_size, packets, bytes, itr; 1160 unsigned long next_update = jiffies; 1161 1162 /* If we don't have any rings just leave ourselves set for maximum 1163 * possible latency so we take ourselves out of the equation. 1164 */ 1165 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1166 return; 1167 1168 /* For Rx we want to push the delay up and default to low latency. 1169 * for Tx we want to pull the delay down and default to high latency. 1170 */ 1171 itr = i40e_container_is_rx(q_vector, rc) ? 1172 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1173 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1174 1175 /* If we didn't update within up to 1 - 2 jiffies we can assume 1176 * that either packets are coming in so slow there hasn't been 1177 * any work, or that there is so much work that NAPI is dealing 1178 * with interrupt moderation and we don't need to do anything. 1179 */ 1180 if (time_after(next_update, rc->next_update)) 1181 goto clear_counts; 1182 1183 /* If itr_countdown is set it means we programmed an ITR within 1184 * the last 4 interrupt cycles. This has a side effect of us 1185 * potentially firing an early interrupt. In order to work around 1186 * this we need to throw out any data received for a few 1187 * interrupts following the update. 1188 */ 1189 if (q_vector->itr_countdown) { 1190 itr = rc->target_itr; 1191 goto clear_counts; 1192 } 1193 1194 packets = rc->total_packets; 1195 bytes = rc->total_bytes; 1196 1197 if (i40e_container_is_rx(q_vector, rc)) { 1198 /* If Rx there are 1 to 4 packets and bytes are less than 1199 * 9000 assume insufficient data to use bulk rate limiting 1200 * approach unless Tx is already in bulk rate limiting. We 1201 * are likely latency driven. 1202 */ 1203 if (packets && packets < 4 && bytes < 9000 && 1204 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1205 itr = I40E_ITR_ADAPTIVE_LATENCY; 1206 goto adjust_by_size; 1207 } 1208 } else if (packets < 4) { 1209 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1210 * bulk mode and we are receiving 4 or fewer packets just 1211 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1212 * that the Rx can relax. 1213 */ 1214 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1215 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1216 I40E_ITR_ADAPTIVE_MAX_USECS) 1217 goto clear_counts; 1218 } else if (packets > 32) { 1219 /* If we have processed over 32 packets in a single interrupt 1220 * for Tx assume we need to switch over to "bulk" mode. 1221 */ 1222 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1223 } 1224 1225 /* We have no packets to actually measure against. This means 1226 * either one of the other queues on this vector is active or 1227 * we are a Tx queue doing TSO with too high of an interrupt rate. 1228 * 1229 * Between 4 and 56 we can assume that our current interrupt delay 1230 * is only slightly too low. As such we should increase it by a small 1231 * fixed amount. 1232 */ 1233 if (packets < 56) { 1234 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1235 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1236 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1237 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1238 } 1239 goto clear_counts; 1240 } 1241 1242 if (packets <= 256) { 1243 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1244 itr &= I40E_ITR_MASK; 1245 1246 /* Between 56 and 112 is our "goldilocks" zone where we are 1247 * working out "just right". Just report that our current 1248 * ITR is good for us. 1249 */ 1250 if (packets <= 112) 1251 goto clear_counts; 1252 1253 /* If packet count is 128 or greater we are likely looking 1254 * at a slight overrun of the delay we want. Try halving 1255 * our delay to see if that will cut the number of packets 1256 * in half per interrupt. 1257 */ 1258 itr /= 2; 1259 itr &= I40E_ITR_MASK; 1260 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1261 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1262 1263 goto clear_counts; 1264 } 1265 1266 /* The paths below assume we are dealing with a bulk ITR since 1267 * number of packets is greater than 256. We are just going to have 1268 * to compute a value and try to bring the count under control, 1269 * though for smaller packet sizes there isn't much we can do as 1270 * NAPI polling will likely be kicking in sooner rather than later. 1271 */ 1272 itr = I40E_ITR_ADAPTIVE_BULK; 1273 1274 adjust_by_size: 1275 /* If packet counts are 256 or greater we can assume we have a gross 1276 * overestimation of what the rate should be. Instead of trying to fine 1277 * tune it just use the formula below to try and dial in an exact value 1278 * give the current packet size of the frame. 1279 */ 1280 avg_wire_size = bytes / packets; 1281 1282 /* The following is a crude approximation of: 1283 * wmem_default / (size + overhead) = desired_pkts_per_int 1284 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1285 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1286 * 1287 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1288 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1289 * formula down to 1290 * 1291 * (170 * (size + 24)) / (size + 640) = ITR 1292 * 1293 * We first do some math on the packet size and then finally bitshift 1294 * by 8 after rounding up. We also have to account for PCIe link speed 1295 * difference as ITR scales based on this. 1296 */ 1297 if (avg_wire_size <= 60) { 1298 /* Start at 250k ints/sec */ 1299 avg_wire_size = 4096; 1300 } else if (avg_wire_size <= 380) { 1301 /* 250K ints/sec to 60K ints/sec */ 1302 avg_wire_size *= 40; 1303 avg_wire_size += 1696; 1304 } else if (avg_wire_size <= 1084) { 1305 /* 60K ints/sec to 36K ints/sec */ 1306 avg_wire_size *= 15; 1307 avg_wire_size += 11452; 1308 } else if (avg_wire_size <= 1980) { 1309 /* 36K ints/sec to 30K ints/sec */ 1310 avg_wire_size *= 5; 1311 avg_wire_size += 22420; 1312 } else { 1313 /* plateau at a limit of 30K ints/sec */ 1314 avg_wire_size = 32256; 1315 } 1316 1317 /* If we are in low latency mode halve our delay which doubles the 1318 * rate to somewhere between 100K to 16K ints/sec 1319 */ 1320 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1321 avg_wire_size /= 2; 1322 1323 /* Resultant value is 256 times larger than it needs to be. This 1324 * gives us room to adjust the value as needed to either increase 1325 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1326 * 1327 * Use addition as we have already recorded the new latency flag 1328 * for the ITR value. 1329 */ 1330 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1331 I40E_ITR_ADAPTIVE_MIN_INC; 1332 1333 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1334 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1335 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1336 } 1337 1338 clear_counts: 1339 /* write back value */ 1340 rc->target_itr = itr; 1341 1342 /* next update should occur within next jiffy */ 1343 rc->next_update = next_update + 1; 1344 1345 rc->total_bytes = 0; 1346 rc->total_packets = 0; 1347 } 1348 1349 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) 1350 { 1351 return &rx_ring->rx_bi[idx]; 1352 } 1353 1354 /** 1355 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1356 * @rx_ring: rx descriptor ring to store buffers on 1357 * @old_buff: donor buffer to have page reused 1358 * 1359 * Synchronizes page for reuse by the adapter 1360 **/ 1361 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1362 struct i40e_rx_buffer *old_buff) 1363 { 1364 struct i40e_rx_buffer *new_buff; 1365 u16 nta = rx_ring->next_to_alloc; 1366 1367 new_buff = i40e_rx_bi(rx_ring, nta); 1368 1369 /* update, and store next to alloc */ 1370 nta++; 1371 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1372 1373 /* transfer page from old buffer to new buffer */ 1374 new_buff->dma = old_buff->dma; 1375 new_buff->page = old_buff->page; 1376 new_buff->page_offset = old_buff->page_offset; 1377 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1378 1379 /* clear contents of buffer_info */ 1380 old_buff->page = NULL; 1381 } 1382 1383 /** 1384 * i40e_clean_programming_status - clean the programming status descriptor 1385 * @rx_ring: the rx ring that has this descriptor 1386 * @qword0_raw: qword0 1387 * @qword1: qword1 representing status_error_len in CPU ordering 1388 * 1389 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1390 * status being successful or not and take actions accordingly. FCoE should 1391 * handle its context/filter programming/invalidation status and take actions. 1392 * 1393 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. 1394 **/ 1395 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw, 1396 u64 qword1) 1397 { 1398 u8 id; 1399 1400 id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1); 1401 1402 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1403 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id); 1404 } 1405 1406 /** 1407 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1408 * @tx_ring: the tx ring to set up 1409 * 1410 * Return 0 on success, negative on error 1411 **/ 1412 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1413 { 1414 struct device *dev = tx_ring->dev; 1415 int bi_size; 1416 1417 if (!dev) 1418 return -ENOMEM; 1419 1420 /* warn if we are about to overwrite the pointer */ 1421 WARN_ON(tx_ring->tx_bi); 1422 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1423 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1424 if (!tx_ring->tx_bi) 1425 goto err; 1426 1427 u64_stats_init(&tx_ring->syncp); 1428 1429 /* round up to nearest 4K */ 1430 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1431 /* add u32 for head writeback, align after this takes care of 1432 * guaranteeing this is at least one cache line in size 1433 */ 1434 tx_ring->size += sizeof(u32); 1435 tx_ring->size = ALIGN(tx_ring->size, 4096); 1436 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1437 &tx_ring->dma, GFP_KERNEL); 1438 if (!tx_ring->desc) { 1439 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1440 tx_ring->size); 1441 goto err; 1442 } 1443 1444 tx_ring->next_to_use = 0; 1445 tx_ring->next_to_clean = 0; 1446 tx_ring->tx_stats.prev_pkt_ctr = -1; 1447 return 0; 1448 1449 err: 1450 kfree(tx_ring->tx_bi); 1451 tx_ring->tx_bi = NULL; 1452 return -ENOMEM; 1453 } 1454 1455 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring) 1456 { 1457 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count); 1458 } 1459 1460 /** 1461 * i40e_clean_rx_ring - Free Rx buffers 1462 * @rx_ring: ring to be cleaned 1463 **/ 1464 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1465 { 1466 u16 i; 1467 1468 /* ring already cleared, nothing to do */ 1469 if (!rx_ring->rx_bi) 1470 return; 1471 1472 if (rx_ring->xsk_pool) { 1473 i40e_xsk_clean_rx_ring(rx_ring); 1474 goto skip_free; 1475 } 1476 1477 /* Free all the Rx ring sk_buffs */ 1478 for (i = 0; i < rx_ring->count; i++) { 1479 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i); 1480 1481 if (!rx_bi->page) 1482 continue; 1483 1484 /* Invalidate cache lines that may have been written to by 1485 * device so that we avoid corrupting memory. 1486 */ 1487 dma_sync_single_range_for_cpu(rx_ring->dev, 1488 rx_bi->dma, 1489 rx_bi->page_offset, 1490 rx_ring->rx_buf_len, 1491 DMA_FROM_DEVICE); 1492 1493 /* free resources associated with mapping */ 1494 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1495 i40e_rx_pg_size(rx_ring), 1496 DMA_FROM_DEVICE, 1497 I40E_RX_DMA_ATTR); 1498 1499 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1500 1501 rx_bi->page = NULL; 1502 rx_bi->page_offset = 0; 1503 } 1504 1505 skip_free: 1506 if (rx_ring->xsk_pool) 1507 i40e_clear_rx_bi_zc(rx_ring); 1508 else 1509 i40e_clear_rx_bi(rx_ring); 1510 1511 /* Zero out the descriptor ring */ 1512 memset(rx_ring->desc, 0, rx_ring->size); 1513 1514 rx_ring->next_to_alloc = 0; 1515 rx_ring->next_to_clean = 0; 1516 rx_ring->next_to_process = 0; 1517 rx_ring->next_to_use = 0; 1518 } 1519 1520 /** 1521 * i40e_free_rx_resources - Free Rx resources 1522 * @rx_ring: ring to clean the resources from 1523 * 1524 * Free all receive software resources 1525 **/ 1526 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1527 { 1528 i40e_clean_rx_ring(rx_ring); 1529 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1530 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1531 rx_ring->xdp_prog = NULL; 1532 kfree(rx_ring->rx_bi); 1533 rx_ring->rx_bi = NULL; 1534 1535 if (rx_ring->desc) { 1536 dma_free_coherent(rx_ring->dev, rx_ring->size, 1537 rx_ring->desc, rx_ring->dma); 1538 rx_ring->desc = NULL; 1539 } 1540 } 1541 1542 /** 1543 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1544 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1545 * 1546 * Returns 0 on success, negative on failure 1547 **/ 1548 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1549 { 1550 struct device *dev = rx_ring->dev; 1551 1552 u64_stats_init(&rx_ring->syncp); 1553 1554 /* Round up to nearest 4K */ 1555 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc); 1556 rx_ring->size = ALIGN(rx_ring->size, 4096); 1557 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1558 &rx_ring->dma, GFP_KERNEL); 1559 1560 if (!rx_ring->desc) { 1561 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1562 rx_ring->size); 1563 return -ENOMEM; 1564 } 1565 1566 rx_ring->next_to_alloc = 0; 1567 rx_ring->next_to_clean = 0; 1568 rx_ring->next_to_process = 0; 1569 rx_ring->next_to_use = 0; 1570 1571 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1572 1573 rx_ring->rx_bi = 1574 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL); 1575 if (!rx_ring->rx_bi) 1576 return -ENOMEM; 1577 1578 return 0; 1579 } 1580 1581 /** 1582 * i40e_release_rx_desc - Store the new tail and head values 1583 * @rx_ring: ring to bump 1584 * @val: new head index 1585 **/ 1586 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1587 { 1588 rx_ring->next_to_use = val; 1589 1590 /* update next to alloc since we have filled the ring */ 1591 rx_ring->next_to_alloc = val; 1592 1593 /* Force memory writes to complete before letting h/w 1594 * know there are new descriptors to fetch. (Only 1595 * applicable for weak-ordered memory model archs, 1596 * such as IA-64). 1597 */ 1598 wmb(); 1599 writel(val, rx_ring->tail); 1600 } 1601 1602 #if (PAGE_SIZE >= 8192) 1603 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring, 1604 unsigned int size) 1605 { 1606 unsigned int truesize; 1607 1608 truesize = rx_ring->rx_offset ? 1609 SKB_DATA_ALIGN(size + rx_ring->rx_offset) + 1610 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1611 SKB_DATA_ALIGN(size); 1612 return truesize; 1613 } 1614 #endif 1615 1616 /** 1617 * i40e_alloc_mapped_page - recycle or make a new page 1618 * @rx_ring: ring to use 1619 * @bi: rx_buffer struct to modify 1620 * 1621 * Returns true if the page was successfully allocated or 1622 * reused. 1623 **/ 1624 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1625 struct i40e_rx_buffer *bi) 1626 { 1627 struct page *page = bi->page; 1628 dma_addr_t dma; 1629 1630 /* since we are recycling buffers we should seldom need to alloc */ 1631 if (likely(page)) { 1632 rx_ring->rx_stats.page_reuse_count++; 1633 return true; 1634 } 1635 1636 /* alloc new page for storage */ 1637 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1638 if (unlikely(!page)) { 1639 rx_ring->rx_stats.alloc_page_failed++; 1640 return false; 1641 } 1642 1643 rx_ring->rx_stats.page_alloc_count++; 1644 1645 /* map page for use */ 1646 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1647 i40e_rx_pg_size(rx_ring), 1648 DMA_FROM_DEVICE, 1649 I40E_RX_DMA_ATTR); 1650 1651 /* if mapping failed free memory back to system since 1652 * there isn't much point in holding memory we can't use 1653 */ 1654 if (dma_mapping_error(rx_ring->dev, dma)) { 1655 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1656 rx_ring->rx_stats.alloc_page_failed++; 1657 return false; 1658 } 1659 1660 bi->dma = dma; 1661 bi->page = page; 1662 bi->page_offset = rx_ring->rx_offset; 1663 page_ref_add(page, USHRT_MAX - 1); 1664 bi->pagecnt_bias = USHRT_MAX; 1665 1666 return true; 1667 } 1668 1669 /** 1670 * i40e_alloc_rx_buffers - Replace used receive buffers 1671 * @rx_ring: ring to place buffers on 1672 * @cleaned_count: number of buffers to replace 1673 * 1674 * Returns false if all allocations were successful, true if any fail 1675 **/ 1676 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1677 { 1678 u16 ntu = rx_ring->next_to_use; 1679 union i40e_rx_desc *rx_desc; 1680 struct i40e_rx_buffer *bi; 1681 1682 /* do nothing if no valid netdev defined */ 1683 if (!rx_ring->netdev || !cleaned_count) 1684 return false; 1685 1686 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1687 bi = i40e_rx_bi(rx_ring, ntu); 1688 1689 do { 1690 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1691 goto no_buffers; 1692 1693 /* sync the buffer for use by the device */ 1694 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1695 bi->page_offset, 1696 rx_ring->rx_buf_len, 1697 DMA_FROM_DEVICE); 1698 1699 /* Refresh the desc even if buffer_addrs didn't change 1700 * because each write-back erases this info. 1701 */ 1702 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1703 1704 rx_desc++; 1705 bi++; 1706 ntu++; 1707 if (unlikely(ntu == rx_ring->count)) { 1708 rx_desc = I40E_RX_DESC(rx_ring, 0); 1709 bi = i40e_rx_bi(rx_ring, 0); 1710 ntu = 0; 1711 } 1712 1713 /* clear the status bits for the next_to_use descriptor */ 1714 rx_desc->wb.qword1.status_error_len = 0; 1715 1716 cleaned_count--; 1717 } while (cleaned_count); 1718 1719 if (rx_ring->next_to_use != ntu) 1720 i40e_release_rx_desc(rx_ring, ntu); 1721 1722 return false; 1723 1724 no_buffers: 1725 if (rx_ring->next_to_use != ntu) 1726 i40e_release_rx_desc(rx_ring, ntu); 1727 1728 /* make sure to come back via polling to try again after 1729 * allocation failure 1730 */ 1731 return true; 1732 } 1733 1734 /** 1735 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1736 * @vsi: the VSI we care about 1737 * @skb: skb currently being received and modified 1738 * @rx_desc: the receive descriptor 1739 **/ 1740 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1741 struct sk_buff *skb, 1742 union i40e_rx_desc *rx_desc) 1743 { 1744 struct i40e_rx_ptype_decoded decoded; 1745 u32 rx_error, rx_status; 1746 bool ipv4, ipv6; 1747 u8 ptype; 1748 u64 qword; 1749 1750 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1751 ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword); 1752 rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword); 1753 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword); 1754 decoded = decode_rx_desc_ptype(ptype); 1755 1756 skb->ip_summed = CHECKSUM_NONE; 1757 1758 skb_checksum_none_assert(skb); 1759 1760 /* Rx csum enabled and ip headers found? */ 1761 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1762 return; 1763 1764 /* did the hardware decode the packet and checksum? */ 1765 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1766 return; 1767 1768 /* both known and outer_ip must be set for the below code to work */ 1769 if (!(decoded.known && decoded.outer_ip)) 1770 return; 1771 1772 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1773 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1774 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1775 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1776 1777 if (ipv4 && 1778 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1779 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1780 goto checksum_fail; 1781 1782 /* likely incorrect csum if alternate IP extension headers found */ 1783 if (ipv6 && 1784 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1785 /* don't increment checksum err here, non-fatal err */ 1786 return; 1787 1788 /* there was some L4 error, count error and punt packet to the stack */ 1789 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1790 goto checksum_fail; 1791 1792 /* handle packets that were not able to be checksummed due 1793 * to arrival speed, in this case the stack can compute 1794 * the csum. 1795 */ 1796 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1797 return; 1798 1799 /* If there is an outer header present that might contain a checksum 1800 * we need to bump the checksum level by 1 to reflect the fact that 1801 * we are indicating we validated the inner checksum. 1802 */ 1803 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1804 skb->csum_level = 1; 1805 1806 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1807 switch (decoded.inner_prot) { 1808 case I40E_RX_PTYPE_INNER_PROT_TCP: 1809 case I40E_RX_PTYPE_INNER_PROT_UDP: 1810 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1811 skb->ip_summed = CHECKSUM_UNNECESSARY; 1812 fallthrough; 1813 default: 1814 break; 1815 } 1816 1817 return; 1818 1819 checksum_fail: 1820 vsi->back->hw_csum_rx_error++; 1821 } 1822 1823 /** 1824 * i40e_ptype_to_htype - get a hash type 1825 * @ptype: the ptype value from the descriptor 1826 * 1827 * Returns a hash type to be used by skb_set_hash 1828 **/ 1829 static inline int i40e_ptype_to_htype(u8 ptype) 1830 { 1831 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1832 1833 if (!decoded.known) 1834 return PKT_HASH_TYPE_NONE; 1835 1836 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1837 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1838 return PKT_HASH_TYPE_L4; 1839 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1840 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1841 return PKT_HASH_TYPE_L3; 1842 else 1843 return PKT_HASH_TYPE_L2; 1844 } 1845 1846 /** 1847 * i40e_rx_hash - set the hash value in the skb 1848 * @ring: descriptor ring 1849 * @rx_desc: specific descriptor 1850 * @skb: skb currently being received and modified 1851 * @rx_ptype: Rx packet type 1852 **/ 1853 static inline void i40e_rx_hash(struct i40e_ring *ring, 1854 union i40e_rx_desc *rx_desc, 1855 struct sk_buff *skb, 1856 u8 rx_ptype) 1857 { 1858 u32 hash; 1859 const __le64 rss_mask = 1860 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1861 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1862 1863 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1864 return; 1865 1866 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1867 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1868 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1869 } 1870 } 1871 1872 /** 1873 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1874 * @rx_ring: rx descriptor ring packet is being transacted on 1875 * @rx_desc: pointer to the EOP Rx descriptor 1876 * @skb: pointer to current skb being populated 1877 * 1878 * This function checks the ring, descriptor, and packet information in 1879 * order to populate the hash, checksum, VLAN, protocol, and 1880 * other fields within the skb. 1881 **/ 1882 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1883 union i40e_rx_desc *rx_desc, struct sk_buff *skb) 1884 { 1885 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1886 u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword); 1887 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1888 u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status); 1889 u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword); 1890 1891 if (unlikely(tsynvalid)) 1892 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1893 1894 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1895 1896 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1897 1898 skb_record_rx_queue(skb, rx_ring->queue_index); 1899 1900 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { 1901 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; 1902 1903 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1904 le16_to_cpu(vlan_tag)); 1905 } 1906 1907 /* modifies the skb - consumes the enet header */ 1908 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1909 } 1910 1911 /** 1912 * i40e_cleanup_headers - Correct empty headers 1913 * @rx_ring: rx descriptor ring packet is being transacted on 1914 * @skb: pointer to current skb being fixed 1915 * @rx_desc: pointer to the EOP Rx descriptor 1916 * 1917 * In addition if skb is not at least 60 bytes we need to pad it so that 1918 * it is large enough to qualify as a valid Ethernet frame. 1919 * 1920 * Returns true if an error was encountered and skb was freed. 1921 **/ 1922 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1923 union i40e_rx_desc *rx_desc) 1924 1925 { 1926 /* ERR_MASK will only have valid bits if EOP set, and 1927 * what we are doing here is actually checking 1928 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1929 * the error field 1930 */ 1931 if (unlikely(i40e_test_staterr(rx_desc, 1932 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1933 dev_kfree_skb_any(skb); 1934 return true; 1935 } 1936 1937 /* if eth_skb_pad returns an error the skb was freed */ 1938 if (eth_skb_pad(skb)) 1939 return true; 1940 1941 return false; 1942 } 1943 1944 /** 1945 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx 1946 * @rx_buffer: buffer containing the page 1947 * @rx_stats: rx stats structure for the rx ring 1948 * 1949 * If page is reusable, we have a green light for calling i40e_reuse_rx_page, 1950 * which will assign the current buffer to the buffer that next_to_alloc is 1951 * pointing to; otherwise, the DMA mapping needs to be destroyed and 1952 * page freed. 1953 * 1954 * rx_stats will be updated to indicate whether the page was waived 1955 * or busy if it could not be reused. 1956 */ 1957 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer, 1958 struct i40e_rx_queue_stats *rx_stats) 1959 { 1960 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1961 struct page *page = rx_buffer->page; 1962 1963 /* Is any reuse possible? */ 1964 if (!dev_page_is_reusable(page)) { 1965 rx_stats->page_waive_count++; 1966 return false; 1967 } 1968 1969 #if (PAGE_SIZE < 8192) 1970 /* if we are only owner of page we can reuse it */ 1971 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) { 1972 rx_stats->page_busy_count++; 1973 return false; 1974 } 1975 #else 1976 #define I40E_LAST_OFFSET \ 1977 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1978 if (rx_buffer->page_offset > I40E_LAST_OFFSET) { 1979 rx_stats->page_busy_count++; 1980 return false; 1981 } 1982 #endif 1983 1984 /* If we have drained the page fragment pool we need to update 1985 * the pagecnt_bias and page count so that we fully restock the 1986 * number of references the driver holds. 1987 */ 1988 if (unlikely(pagecnt_bias == 1)) { 1989 page_ref_add(page, USHRT_MAX - 1); 1990 rx_buffer->pagecnt_bias = USHRT_MAX; 1991 } 1992 1993 return true; 1994 } 1995 1996 /** 1997 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 1998 * @rx_buffer: Rx buffer to adjust 1999 * @truesize: Size of adjustment 2000 **/ 2001 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer, 2002 unsigned int truesize) 2003 { 2004 #if (PAGE_SIZE < 8192) 2005 rx_buffer->page_offset ^= truesize; 2006 #else 2007 rx_buffer->page_offset += truesize; 2008 #endif 2009 } 2010 2011 /** 2012 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 2013 * @rx_ring: rx descriptor ring to transact packets on 2014 * @size: size of buffer to add to skb 2015 * 2016 * This function will pull an Rx buffer from the ring and synchronize it 2017 * for use by the CPU. 2018 */ 2019 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 2020 const unsigned int size) 2021 { 2022 struct i40e_rx_buffer *rx_buffer; 2023 2024 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process); 2025 rx_buffer->page_count = 2026 #if (PAGE_SIZE < 8192) 2027 page_count(rx_buffer->page); 2028 #else 2029 0; 2030 #endif 2031 prefetch_page_address(rx_buffer->page); 2032 2033 /* we are reusing so sync this buffer for CPU use */ 2034 dma_sync_single_range_for_cpu(rx_ring->dev, 2035 rx_buffer->dma, 2036 rx_buffer->page_offset, 2037 size, 2038 DMA_FROM_DEVICE); 2039 2040 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 2041 rx_buffer->pagecnt_bias--; 2042 2043 return rx_buffer; 2044 } 2045 2046 /** 2047 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2048 * @rx_ring: rx descriptor ring to transact packets on 2049 * @rx_buffer: rx buffer to pull data from 2050 * 2051 * This function will clean up the contents of the rx_buffer. It will 2052 * either recycle the buffer or unmap it and free the associated resources. 2053 */ 2054 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2055 struct i40e_rx_buffer *rx_buffer) 2056 { 2057 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) { 2058 /* hand second half of page back to the ring */ 2059 i40e_reuse_rx_page(rx_ring, rx_buffer); 2060 } else { 2061 /* we are not reusing the buffer so unmap it */ 2062 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2063 i40e_rx_pg_size(rx_ring), 2064 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2065 __page_frag_cache_drain(rx_buffer->page, 2066 rx_buffer->pagecnt_bias); 2067 /* clear contents of buffer_info */ 2068 rx_buffer->page = NULL; 2069 } 2070 } 2071 2072 /** 2073 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error 2074 * @rx_ring: Rx descriptor ring to transact packets on 2075 * @xdp_res: Result of the XDP program 2076 * @xdp: xdp_buff pointing to the data 2077 **/ 2078 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res, 2079 struct xdp_buff *xdp) 2080 { 2081 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags; 2082 u32 next = rx_ring->next_to_clean, i = 0; 2083 struct i40e_rx_buffer *rx_buffer; 2084 2085 xdp->flags = 0; 2086 2087 while (1) { 2088 rx_buffer = i40e_rx_bi(rx_ring, next); 2089 if (++next == rx_ring->count) 2090 next = 0; 2091 2092 if (!rx_buffer->page) 2093 continue; 2094 2095 if (xdp_res != I40E_XDP_CONSUMED) 2096 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); 2097 else if (i++ <= nr_frags) 2098 rx_buffer->pagecnt_bias++; 2099 2100 /* EOP buffer will be put in i40e_clean_rx_irq() */ 2101 if (next == rx_ring->next_to_process) 2102 return; 2103 2104 i40e_put_rx_buffer(rx_ring, rx_buffer); 2105 } 2106 } 2107 2108 /** 2109 * i40e_construct_skb - Allocate skb and populate it 2110 * @rx_ring: rx descriptor ring to transact packets on 2111 * @xdp: xdp_buff pointing to the data 2112 * 2113 * This function allocates an skb. It then populates it with the page 2114 * data from the current receive descriptor, taking care to set up the 2115 * skb correctly. 2116 */ 2117 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 2118 struct xdp_buff *xdp) 2119 { 2120 unsigned int size = xdp->data_end - xdp->data; 2121 struct i40e_rx_buffer *rx_buffer; 2122 struct skb_shared_info *sinfo; 2123 unsigned int headlen; 2124 struct sk_buff *skb; 2125 u32 nr_frags = 0; 2126 2127 /* prefetch first cache line of first page */ 2128 net_prefetch(xdp->data); 2129 2130 /* Note, we get here by enabling legacy-rx via: 2131 * 2132 * ethtool --set-priv-flags <dev> legacy-rx on 2133 * 2134 * In this mode, we currently get 0 extra XDP headroom as 2135 * opposed to having legacy-rx off, where we process XDP 2136 * packets going to stack via i40e_build_skb(). The latter 2137 * provides us currently with 192 bytes of headroom. 2138 * 2139 * For i40e_construct_skb() mode it means that the 2140 * xdp->data_meta will always point to xdp->data, since 2141 * the helper cannot expand the head. Should this ever 2142 * change in future for legacy-rx mode on, then lets also 2143 * add xdp->data_meta handling here. 2144 */ 2145 2146 /* allocate a skb to store the frags */ 2147 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2148 I40E_RX_HDR_SIZE, 2149 GFP_ATOMIC | __GFP_NOWARN); 2150 if (unlikely(!skb)) 2151 return NULL; 2152 2153 /* Determine available headroom for copy */ 2154 headlen = size; 2155 if (headlen > I40E_RX_HDR_SIZE) 2156 headlen = eth_get_headlen(skb->dev, xdp->data, 2157 I40E_RX_HDR_SIZE); 2158 2159 /* align pull length to size of long to optimize memcpy performance */ 2160 memcpy(__skb_put(skb, headlen), xdp->data, 2161 ALIGN(headlen, sizeof(long))); 2162 2163 if (unlikely(xdp_buff_has_frags(xdp))) { 2164 sinfo = xdp_get_shared_info_from_buff(xdp); 2165 nr_frags = sinfo->nr_frags; 2166 } 2167 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 2168 /* update all of the pointers */ 2169 size -= headlen; 2170 if (size) { 2171 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2172 dev_kfree_skb(skb); 2173 return NULL; 2174 } 2175 skb_add_rx_frag(skb, 0, rx_buffer->page, 2176 rx_buffer->page_offset + headlen, 2177 size, xdp->frame_sz); 2178 /* buffer is used by skb, update page_offset */ 2179 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); 2180 } else { 2181 /* buffer is unused, reset bias back to rx_buffer */ 2182 rx_buffer->pagecnt_bias++; 2183 } 2184 2185 if (unlikely(xdp_buff_has_frags(xdp))) { 2186 struct skb_shared_info *skinfo = skb_shinfo(skb); 2187 2188 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], 2189 sizeof(skb_frag_t) * nr_frags); 2190 2191 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags, 2192 sinfo->xdp_frags_size, 2193 nr_frags * xdp->frame_sz, 2194 xdp_buff_is_frag_pfmemalloc(xdp)); 2195 2196 /* First buffer has already been processed, so bump ntc */ 2197 if (++rx_ring->next_to_clean == rx_ring->count) 2198 rx_ring->next_to_clean = 0; 2199 2200 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); 2201 } 2202 2203 return skb; 2204 } 2205 2206 /** 2207 * i40e_build_skb - Build skb around an existing buffer 2208 * @rx_ring: Rx descriptor ring to transact packets on 2209 * @xdp: xdp_buff pointing to the data 2210 * 2211 * This function builds an skb around an existing Rx buffer, taking care 2212 * to set up the skb correctly and avoid any memcpy overhead. 2213 */ 2214 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2215 struct xdp_buff *xdp) 2216 { 2217 unsigned int metasize = xdp->data - xdp->data_meta; 2218 struct skb_shared_info *sinfo; 2219 struct sk_buff *skb; 2220 u32 nr_frags; 2221 2222 /* Prefetch first cache line of first page. If xdp->data_meta 2223 * is unused, this points exactly as xdp->data, otherwise we 2224 * likely have a consumer accessing first few bytes of meta 2225 * data, and then actual data. 2226 */ 2227 net_prefetch(xdp->data_meta); 2228 2229 if (unlikely(xdp_buff_has_frags(xdp))) { 2230 sinfo = xdp_get_shared_info_from_buff(xdp); 2231 nr_frags = sinfo->nr_frags; 2232 } 2233 2234 /* build an skb around the page buffer */ 2235 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); 2236 if (unlikely(!skb)) 2237 return NULL; 2238 2239 /* update pointers within the skb to store the data */ 2240 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2241 __skb_put(skb, xdp->data_end - xdp->data); 2242 if (metasize) 2243 skb_metadata_set(skb, metasize); 2244 2245 if (unlikely(xdp_buff_has_frags(xdp))) { 2246 xdp_update_skb_shared_info(skb, nr_frags, 2247 sinfo->xdp_frags_size, 2248 nr_frags * xdp->frame_sz, 2249 xdp_buff_is_frag_pfmemalloc(xdp)); 2250 2251 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); 2252 } else { 2253 struct i40e_rx_buffer *rx_buffer; 2254 2255 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 2256 /* buffer is used by skb, update page_offset */ 2257 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); 2258 } 2259 2260 return skb; 2261 } 2262 2263 /** 2264 * i40e_is_non_eop - process handling of non-EOP buffers 2265 * @rx_ring: Rx ring being processed 2266 * @rx_desc: Rx descriptor for current buffer 2267 * 2268 * If the buffer is an EOP buffer, this function exits returning false, 2269 * otherwise return true indicating that this is in fact a non-EOP buffer. 2270 */ 2271 bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2272 union i40e_rx_desc *rx_desc) 2273 { 2274 /* if we are the last buffer then there is nothing else to do */ 2275 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2276 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2277 return false; 2278 2279 rx_ring->rx_stats.non_eop_descs++; 2280 2281 return true; 2282 } 2283 2284 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 2285 struct i40e_ring *xdp_ring); 2286 2287 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) 2288 { 2289 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2290 2291 if (unlikely(!xdpf)) 2292 return I40E_XDP_CONSUMED; 2293 2294 return i40e_xmit_xdp_ring(xdpf, xdp_ring); 2295 } 2296 2297 /** 2298 * i40e_run_xdp - run an XDP program 2299 * @rx_ring: Rx ring being processed 2300 * @xdp: XDP buffer containing the frame 2301 * @xdp_prog: XDP program to run 2302 **/ 2303 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) 2304 { 2305 int err, result = I40E_XDP_PASS; 2306 struct i40e_ring *xdp_ring; 2307 u32 act; 2308 2309 if (!xdp_prog) 2310 goto xdp_out; 2311 2312 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 2313 2314 act = bpf_prog_run_xdp(xdp_prog, xdp); 2315 switch (act) { 2316 case XDP_PASS: 2317 break; 2318 case XDP_TX: 2319 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2320 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 2321 if (result == I40E_XDP_CONSUMED) 2322 goto out_failure; 2323 break; 2324 case XDP_REDIRECT: 2325 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 2326 if (err) 2327 goto out_failure; 2328 result = I40E_XDP_REDIR; 2329 break; 2330 default: 2331 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 2332 fallthrough; 2333 case XDP_ABORTED: 2334 out_failure: 2335 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2336 fallthrough; /* handle aborts by dropping packet */ 2337 case XDP_DROP: 2338 result = I40E_XDP_CONSUMED; 2339 break; 2340 } 2341 xdp_out: 2342 return result; 2343 } 2344 2345 /** 2346 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register 2347 * @xdp_ring: XDP Tx ring 2348 * 2349 * This function updates the XDP Tx ring tail register. 2350 **/ 2351 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) 2352 { 2353 /* Force memory writes to complete before letting h/w 2354 * know there are new descriptors to fetch. 2355 */ 2356 wmb(); 2357 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); 2358 } 2359 2360 /** 2361 * i40e_update_rx_stats - Update Rx ring statistics 2362 * @rx_ring: rx descriptor ring 2363 * @total_rx_bytes: number of bytes received 2364 * @total_rx_packets: number of packets received 2365 * 2366 * This function updates the Rx ring statistics. 2367 **/ 2368 void i40e_update_rx_stats(struct i40e_ring *rx_ring, 2369 unsigned int total_rx_bytes, 2370 unsigned int total_rx_packets) 2371 { 2372 u64_stats_update_begin(&rx_ring->syncp); 2373 rx_ring->stats.packets += total_rx_packets; 2374 rx_ring->stats.bytes += total_rx_bytes; 2375 u64_stats_update_end(&rx_ring->syncp); 2376 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2377 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2378 } 2379 2380 /** 2381 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 2382 * @rx_ring: Rx ring 2383 * @xdp_res: Result of the receive batch 2384 * 2385 * This function bumps XDP Tx tail and/or flush redirect map, and 2386 * should be called when a batch of packets has been processed in the 2387 * napi loop. 2388 **/ 2389 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) 2390 { 2391 if (xdp_res & I40E_XDP_REDIR) 2392 xdp_do_flush(); 2393 2394 if (xdp_res & I40E_XDP_TX) { 2395 struct i40e_ring *xdp_ring = 2396 rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2397 2398 i40e_xdp_ring_update_tail(xdp_ring); 2399 } 2400 } 2401 2402 /** 2403 * i40e_inc_ntp: Advance the next_to_process index 2404 * @rx_ring: Rx ring 2405 **/ 2406 static void i40e_inc_ntp(struct i40e_ring *rx_ring) 2407 { 2408 u32 ntp = rx_ring->next_to_process + 1; 2409 2410 ntp = (ntp < rx_ring->count) ? ntp : 0; 2411 rx_ring->next_to_process = ntp; 2412 prefetch(I40E_RX_DESC(rx_ring, ntp)); 2413 } 2414 2415 /** 2416 * i40e_add_xdp_frag: Add a frag to xdp_buff 2417 * @xdp: xdp_buff pointing to the data 2418 * @nr_frags: return number of buffers for the packet 2419 * @rx_buffer: rx_buffer holding data of the current frag 2420 * @size: size of data of current frag 2421 */ 2422 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags, 2423 struct i40e_rx_buffer *rx_buffer, u32 size) 2424 { 2425 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2426 2427 if (!xdp_buff_has_frags(xdp)) { 2428 sinfo->nr_frags = 0; 2429 sinfo->xdp_frags_size = 0; 2430 xdp_buff_set_frags_flag(xdp); 2431 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) { 2432 /* Overflowing packet: All frags need to be dropped */ 2433 return -ENOMEM; 2434 } 2435 2436 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page, 2437 rx_buffer->page_offset, size); 2438 2439 sinfo->xdp_frags_size += size; 2440 2441 if (page_is_pfmemalloc(rx_buffer->page)) 2442 xdp_buff_set_frag_pfmemalloc(xdp); 2443 *nr_frags = sinfo->nr_frags; 2444 2445 return 0; 2446 } 2447 2448 /** 2449 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc 2450 * @rx_ring: rx descriptor ring to transact packets on 2451 * @xdp: xdp_buff pointing to the data 2452 * @rx_buffer: rx_buffer of eop desc 2453 */ 2454 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring, 2455 struct xdp_buff *xdp, 2456 struct i40e_rx_buffer *rx_buffer) 2457 { 2458 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp); 2459 i40e_put_rx_buffer(rx_ring, rx_buffer); 2460 rx_ring->next_to_clean = rx_ring->next_to_process; 2461 xdp->data = NULL; 2462 } 2463 2464 /** 2465 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2466 * @rx_ring: rx descriptor ring to transact packets on 2467 * @budget: Total limit on number of packets to process 2468 * @rx_cleaned: Out parameter of the number of packets processed 2469 * 2470 * This function provides a "bounce buffer" approach to Rx interrupt 2471 * processing. The advantage to this is that on systems that have 2472 * expensive overhead for IOMMU access this provides a means of avoiding 2473 * it by maintaining the mapping of the page to the system. 2474 * 2475 * Returns amount of work completed 2476 **/ 2477 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget, 2478 unsigned int *rx_cleaned) 2479 { 2480 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2481 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2482 u16 clean_threshold = rx_ring->count / 2; 2483 unsigned int offset = rx_ring->rx_offset; 2484 struct xdp_buff *xdp = &rx_ring->xdp; 2485 unsigned int xdp_xmit = 0; 2486 struct bpf_prog *xdp_prog; 2487 bool failure = false; 2488 int xdp_res = 0; 2489 2490 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2491 2492 while (likely(total_rx_packets < (unsigned int)budget)) { 2493 u16 ntp = rx_ring->next_to_process; 2494 struct i40e_rx_buffer *rx_buffer; 2495 union i40e_rx_desc *rx_desc; 2496 struct sk_buff *skb; 2497 unsigned int size; 2498 u32 nfrags = 0; 2499 bool neop; 2500 u64 qword; 2501 2502 /* return some buffers to hardware, one at a time is too slow */ 2503 if (cleaned_count >= clean_threshold) { 2504 failure = failure || 2505 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2506 cleaned_count = 0; 2507 } 2508 2509 rx_desc = I40E_RX_DESC(rx_ring, ntp); 2510 2511 /* status_error_len will always be zero for unused descriptors 2512 * because it's cleared in cleanup, and overlaps with hdr_addr 2513 * which is always zero because packet split isn't used, if the 2514 * hardware wrote DD then the length will be non-zero 2515 */ 2516 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2517 2518 /* This memory barrier is needed to keep us from reading 2519 * any other fields out of the rx_desc until we have 2520 * verified the descriptor has been written back. 2521 */ 2522 dma_rmb(); 2523 2524 if (i40e_rx_is_programming_status(qword)) { 2525 i40e_clean_programming_status(rx_ring, 2526 rx_desc->raw.qword[0], 2527 qword); 2528 rx_buffer = i40e_rx_bi(rx_ring, ntp); 2529 i40e_inc_ntp(rx_ring); 2530 i40e_reuse_rx_page(rx_ring, rx_buffer); 2531 /* Update ntc and bump cleaned count if not in the 2532 * middle of mb packet. 2533 */ 2534 if (rx_ring->next_to_clean == ntp) { 2535 rx_ring->next_to_clean = 2536 rx_ring->next_to_process; 2537 cleaned_count++; 2538 } 2539 continue; 2540 } 2541 2542 size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword); 2543 if (!size) 2544 break; 2545 2546 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp); 2547 /* retrieve a buffer from the ring */ 2548 rx_buffer = i40e_get_rx_buffer(rx_ring, size); 2549 2550 neop = i40e_is_non_eop(rx_ring, rx_desc); 2551 i40e_inc_ntp(rx_ring); 2552 2553 if (!xdp->data) { 2554 unsigned char *hard_start; 2555 2556 hard_start = page_address(rx_buffer->page) + 2557 rx_buffer->page_offset - offset; 2558 xdp_prepare_buff(xdp, hard_start, offset, size, true); 2559 #if (PAGE_SIZE > 4096) 2560 /* At larger PAGE_SIZE, frame_sz depend on len size */ 2561 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size); 2562 #endif 2563 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) && 2564 !neop) { 2565 /* Overflowing packet: Drop all frags on EOP */ 2566 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); 2567 break; 2568 } 2569 2570 if (neop) 2571 continue; 2572 2573 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog); 2574 2575 if (xdp_res) { 2576 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR); 2577 2578 if (unlikely(xdp_buff_has_frags(xdp))) { 2579 i40e_process_rx_buffs(rx_ring, xdp_res, xdp); 2580 size = xdp_get_buff_len(xdp); 2581 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 2582 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); 2583 } else { 2584 rx_buffer->pagecnt_bias++; 2585 } 2586 total_rx_bytes += size; 2587 } else { 2588 if (ring_uses_build_skb(rx_ring)) 2589 skb = i40e_build_skb(rx_ring, xdp); 2590 else 2591 skb = i40e_construct_skb(rx_ring, xdp); 2592 2593 /* drop if we failed to retrieve a buffer */ 2594 if (!skb) { 2595 rx_ring->rx_stats.alloc_buff_failed++; 2596 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); 2597 break; 2598 } 2599 2600 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) 2601 goto process_next; 2602 2603 /* probably a little skewed due to removing CRC */ 2604 total_rx_bytes += skb->len; 2605 2606 /* populate checksum, VLAN, and protocol */ 2607 i40e_process_skb_fields(rx_ring, rx_desc, skb); 2608 2609 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp); 2610 napi_gro_receive(&rx_ring->q_vector->napi, skb); 2611 } 2612 2613 /* update budget accounting */ 2614 total_rx_packets++; 2615 process_next: 2616 cleaned_count += nfrags + 1; 2617 i40e_put_rx_buffer(rx_ring, rx_buffer); 2618 rx_ring->next_to_clean = rx_ring->next_to_process; 2619 2620 xdp->data = NULL; 2621 } 2622 2623 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 2624 2625 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 2626 2627 *rx_cleaned = total_rx_packets; 2628 2629 /* guarantee a trip back through this routine if there was a failure */ 2630 return failure ? budget : (int)total_rx_packets; 2631 } 2632 2633 /** 2634 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register 2635 * @itr_idx: interrupt throttling index 2636 * @interval: interrupt throttling interval value in usecs 2637 * @force_swint: force software interrupt 2638 * 2639 * The function builds a value for I40E_PFINT_DYN_CTLN register that 2640 * is used to update interrupt throttling interval for specified ITR index 2641 * and optionally enforces a software interrupt. If the @itr_idx is equal 2642 * to I40E_ITR_NONE then no interval change is applied and only @force_swint 2643 * parameter is taken into account. If the interval change and enforced 2644 * software interrupt are not requested then the built value just enables 2645 * appropriate vector interrupt. 2646 **/ 2647 static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval, 2648 bool force_swint) 2649 { 2650 u32 val; 2651 2652 /* We don't bother with setting the CLEARPBA bit as the data sheet 2653 * points out doing so is "meaningless since it was already 2654 * auto-cleared". The auto-clearing happens when the interrupt is 2655 * asserted. 2656 * 2657 * Hardware errata 28 for also indicates that writing to a 2658 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2659 * an event in the PBA anyway so we need to rely on the automask 2660 * to hold pending events for us until the interrupt is re-enabled 2661 * 2662 * We have to shift the given value as it is reported in microseconds 2663 * and the register value is recorded in 2 microsecond units. 2664 */ 2665 interval >>= 1; 2666 2667 /* 1. Enable vector interrupt 2668 * 2. Update the interval for the specified ITR index 2669 * (I40E_ITR_NONE in the register is used to indicate that 2670 * no interval update is requested) 2671 */ 2672 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2673 FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) | 2674 FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval); 2675 2676 /* 3. Enforce software interrupt trigger if requested 2677 * (These software interrupts rate is limited by ITR2 that is 2678 * set to 20K interrupts per second) 2679 */ 2680 if (force_swint) 2681 val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 2682 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK | 2683 FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK, 2684 I40E_SW_ITR); 2685 2686 return val; 2687 } 2688 2689 /* The act of updating the ITR will cause it to immediately trigger. In order 2690 * to prevent this from throwing off adaptive update statistics we defer the 2691 * update so that it can only happen so often. So after either Tx or Rx are 2692 * updated we make the adaptive scheme wait until either the ITR completely 2693 * expires via the next_update expiration or we have been through at least 2694 * 3 interrupts. 2695 */ 2696 #define ITR_COUNTDOWN_START 3 2697 2698 /** 2699 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2700 * @vsi: the VSI we care about 2701 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2702 * 2703 **/ 2704 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2705 struct i40e_q_vector *q_vector) 2706 { 2707 enum i40e_dyn_idx itr_idx = I40E_ITR_NONE; 2708 struct i40e_hw *hw = &vsi->back->hw; 2709 u16 interval = 0; 2710 u32 itr_val; 2711 2712 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2713 if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) { 2714 i40e_irq_dynamic_enable_icr0(vsi->back); 2715 return; 2716 } 2717 2718 /* These will do nothing if dynamic updates are not enabled */ 2719 i40e_update_itr(q_vector, &q_vector->tx); 2720 i40e_update_itr(q_vector, &q_vector->rx); 2721 2722 /* This block of logic allows us to get away with only updating 2723 * one ITR value with each interrupt. The idea is to perform a 2724 * pseudo-lazy update with the following criteria. 2725 * 2726 * 1. Rx is given higher priority than Tx if both are in same state 2727 * 2. If we must reduce an ITR that is given highest priority. 2728 * 3. We then give priority to increasing ITR based on amount. 2729 */ 2730 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2731 /* Rx ITR needs to be reduced, this is highest priority */ 2732 itr_idx = I40E_RX_ITR; 2733 interval = q_vector->rx.target_itr; 2734 q_vector->rx.current_itr = q_vector->rx.target_itr; 2735 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2736 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2737 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2738 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2739 /* Tx ITR needs to be reduced, this is second priority 2740 * Tx ITR needs to be increased more than Rx, fourth priority 2741 */ 2742 itr_idx = I40E_TX_ITR; 2743 interval = q_vector->tx.target_itr; 2744 q_vector->tx.current_itr = q_vector->tx.target_itr; 2745 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2746 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2747 /* Rx ITR needs to be increased, third priority */ 2748 itr_idx = I40E_RX_ITR; 2749 interval = q_vector->rx.target_itr; 2750 q_vector->rx.current_itr = q_vector->rx.target_itr; 2751 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2752 } else { 2753 /* No ITR update, lowest priority */ 2754 if (q_vector->itr_countdown) 2755 q_vector->itr_countdown--; 2756 } 2757 2758 /* Do not update interrupt control register if VSI is down */ 2759 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 2760 return; 2761 2762 /* Update ITR interval if necessary and enforce software interrupt 2763 * if we are exiting busy poll. 2764 */ 2765 if (q_vector->in_busy_poll) { 2766 itr_val = i40e_buildreg_itr(itr_idx, interval, true); 2767 q_vector->in_busy_poll = false; 2768 } else { 2769 itr_val = i40e_buildreg_itr(itr_idx, interval, false); 2770 } 2771 wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val); 2772 } 2773 2774 /** 2775 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2776 * @napi: napi struct with our devices info in it 2777 * @budget: amount of work driver is allowed to do this pass, in packets 2778 * 2779 * This function will clean all queues associated with a q_vector. 2780 * 2781 * Returns the amount of work done 2782 **/ 2783 int i40e_napi_poll(struct napi_struct *napi, int budget) 2784 { 2785 struct i40e_q_vector *q_vector = 2786 container_of(napi, struct i40e_q_vector, napi); 2787 struct i40e_vsi *vsi = q_vector->vsi; 2788 struct i40e_ring *ring; 2789 bool tx_clean_complete = true; 2790 bool rx_clean_complete = true; 2791 unsigned int tx_cleaned = 0; 2792 unsigned int rx_cleaned = 0; 2793 bool clean_complete = true; 2794 bool arm_wb = false; 2795 int budget_per_ring; 2796 int work_done = 0; 2797 2798 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2799 napi_complete(napi); 2800 return 0; 2801 } 2802 2803 /* Since the actual Tx work is minimal, we can give the Tx a larger 2804 * budget and be more aggressive about cleaning up the Tx descriptors. 2805 */ 2806 i40e_for_each_ring(ring, q_vector->tx) { 2807 bool wd = ring->xsk_pool ? 2808 i40e_clean_xdp_tx_irq(vsi, ring) : 2809 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned); 2810 2811 if (!wd) { 2812 clean_complete = tx_clean_complete = false; 2813 continue; 2814 } 2815 arm_wb |= ring->arm_wb; 2816 ring->arm_wb = false; 2817 } 2818 2819 /* Handle case where we are called by netpoll with a budget of 0 */ 2820 if (budget <= 0) 2821 goto tx_only; 2822 2823 /* normally we have 1 Rx ring per q_vector */ 2824 if (unlikely(q_vector->num_ringpairs > 1)) 2825 /* We attempt to distribute budget to each Rx queue fairly, but 2826 * don't allow the budget to go below 1 because that would exit 2827 * polling early. 2828 */ 2829 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1); 2830 else 2831 /* Max of 1 Rx ring in this q_vector so give it the budget */ 2832 budget_per_ring = budget; 2833 2834 i40e_for_each_ring(ring, q_vector->rx) { 2835 int cleaned = ring->xsk_pool ? 2836 i40e_clean_rx_irq_zc(ring, budget_per_ring) : 2837 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned); 2838 2839 work_done += cleaned; 2840 /* if we clean as many as budgeted, we must not be done */ 2841 if (cleaned >= budget_per_ring) 2842 clean_complete = rx_clean_complete = false; 2843 } 2844 2845 if (!i40e_enabled_xdp_vsi(vsi)) 2846 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned, 2847 tx_cleaned, rx_clean_complete, tx_clean_complete); 2848 2849 /* If work not completed, return budget and polling will return */ 2850 if (!clean_complete) { 2851 int cpu_id = smp_processor_id(); 2852 2853 /* It is possible that the interrupt affinity has changed but, 2854 * if the cpu is pegged at 100%, polling will never exit while 2855 * traffic continues and the interrupt will be stuck on this 2856 * cpu. We check to make sure affinity is correct before we 2857 * continue to poll, otherwise we must stop polling so the 2858 * interrupt can move to the correct cpu. 2859 */ 2860 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2861 /* Tell napi that we are done polling */ 2862 napi_complete_done(napi, work_done); 2863 2864 /* Force an interrupt */ 2865 i40e_force_wb(vsi, q_vector); 2866 2867 /* Return budget-1 so that polling stops */ 2868 return budget - 1; 2869 } 2870 tx_only: 2871 if (arm_wb) { 2872 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2873 i40e_enable_wb_on_itr(vsi, q_vector); 2874 } 2875 return budget; 2876 } 2877 2878 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR) 2879 q_vector->arm_wb_state = false; 2880 2881 /* Exit the polling mode, but don't re-enable interrupts if stack might 2882 * poll us due to busy-polling 2883 */ 2884 if (likely(napi_complete_done(napi, work_done))) 2885 i40e_update_enable_itr(vsi, q_vector); 2886 else 2887 q_vector->in_busy_poll = true; 2888 2889 return min(work_done, budget - 1); 2890 } 2891 2892 /** 2893 * i40e_atr - Add a Flow Director ATR filter 2894 * @tx_ring: ring to add programming descriptor to 2895 * @skb: send buffer 2896 * @tx_flags: send tx flags 2897 **/ 2898 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2899 u32 tx_flags) 2900 { 2901 struct i40e_filter_program_desc *fdir_desc; 2902 struct i40e_pf *pf = tx_ring->vsi->back; 2903 union { 2904 unsigned char *network; 2905 struct iphdr *ipv4; 2906 struct ipv6hdr *ipv6; 2907 } hdr; 2908 struct tcphdr *th; 2909 unsigned int hlen; 2910 u32 flex_ptype, dtype_cmd; 2911 int l4_proto; 2912 u16 i; 2913 2914 /* make sure ATR is enabled */ 2915 if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 2916 return; 2917 2918 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2919 return; 2920 2921 /* if sampling is disabled do nothing */ 2922 if (!tx_ring->atr_sample_rate) 2923 return; 2924 2925 /* Currently only IPv4/IPv6 with TCP is supported */ 2926 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2927 return; 2928 2929 /* snag network header to get L4 type and address */ 2930 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2931 skb_inner_network_header(skb) : skb_network_header(skb); 2932 2933 /* Note: tx_flags gets modified to reflect inner protocols in 2934 * tx_enable_csum function if encap is enabled. 2935 */ 2936 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2937 /* access ihl as u8 to avoid unaligned access on ia64 */ 2938 hlen = (hdr.network[0] & 0x0F) << 2; 2939 l4_proto = hdr.ipv4->protocol; 2940 } else { 2941 /* find the start of the innermost ipv6 header */ 2942 unsigned int inner_hlen = hdr.network - skb->data; 2943 unsigned int h_offset = inner_hlen; 2944 2945 /* this function updates h_offset to the end of the header */ 2946 l4_proto = 2947 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2948 /* hlen will contain our best estimate of the tcp header */ 2949 hlen = h_offset - inner_hlen; 2950 } 2951 2952 if (l4_proto != IPPROTO_TCP) 2953 return; 2954 2955 th = (struct tcphdr *)(hdr.network + hlen); 2956 2957 /* Due to lack of space, no more new filters can be programmed */ 2958 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2959 return; 2960 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) { 2961 /* HW ATR eviction will take care of removing filters on FIN 2962 * and RST packets. 2963 */ 2964 if (th->fin || th->rst) 2965 return; 2966 } 2967 2968 tx_ring->atr_count++; 2969 2970 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2971 if (!th->fin && 2972 !th->syn && 2973 !th->rst && 2974 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2975 return; 2976 2977 tx_ring->atr_count = 0; 2978 2979 /* grab the next descriptor */ 2980 i = tx_ring->next_to_use; 2981 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2982 2983 i++; 2984 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2985 2986 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, 2987 tx_ring->queue_index); 2988 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2989 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2990 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2991 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2992 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2993 2994 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2995 2996 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2997 2998 dtype_cmd |= (th->fin || th->rst) ? 2999 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 3000 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 3001 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 3002 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 3003 3004 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 3005 I40E_TXD_FLTR_QW1_DEST_SHIFT; 3006 3007 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 3008 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 3009 3010 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 3011 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 3012 dtype_cmd |= 3013 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK, 3014 I40E_FD_ATR_STAT_IDX(pf->hw.pf_id)); 3015 else 3016 dtype_cmd |= 3017 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK, 3018 I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id)); 3019 3020 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) 3021 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 3022 3023 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 3024 fdir_desc->rsvd = cpu_to_le32(0); 3025 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 3026 fdir_desc->fd_id = cpu_to_le32(0); 3027 } 3028 3029 /** 3030 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 3031 * @skb: send buffer 3032 * @tx_ring: ring to send buffer on 3033 * @flags: the tx flags to be set 3034 * 3035 * Checks the skb and set up correspondingly several generic transmit flags 3036 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 3037 * 3038 * Returns error code indicate the frame should be dropped upon error and the 3039 * otherwise returns 0 to indicate the flags has been set properly. 3040 **/ 3041 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 3042 struct i40e_ring *tx_ring, 3043 u32 *flags) 3044 { 3045 __be16 protocol = skb->protocol; 3046 u32 tx_flags = 0; 3047 3048 if (protocol == htons(ETH_P_8021Q) && 3049 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 3050 /* When HW VLAN acceleration is turned off by the user the 3051 * stack sets the protocol to 8021q so that the driver 3052 * can take any steps required to support the SW only 3053 * VLAN handling. In our case the driver doesn't need 3054 * to take any further steps so just set the protocol 3055 * to the encapsulated ethertype. 3056 */ 3057 skb->protocol = vlan_get_protocol(skb); 3058 goto out; 3059 } 3060 3061 /* if we have a HW VLAN tag being added, default to the HW one */ 3062 if (skb_vlan_tag_present(skb)) { 3063 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 3064 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 3065 /* else if it is a SW VLAN, check the next protocol and store the tag */ 3066 } else if (protocol == htons(ETH_P_8021Q)) { 3067 struct vlan_hdr *vhdr, _vhdr; 3068 3069 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 3070 if (!vhdr) 3071 return -EINVAL; 3072 3073 protocol = vhdr->h_vlan_encapsulated_proto; 3074 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 3075 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 3076 } 3077 3078 if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags)) 3079 goto out; 3080 3081 /* Insert 802.1p priority into VLAN header */ 3082 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 3083 (skb->priority != TC_PRIO_CONTROL)) { 3084 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 3085 tx_flags |= (skb->priority & 0x7) << 3086 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 3087 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 3088 struct vlan_ethhdr *vhdr; 3089 int rc; 3090 3091 rc = skb_cow_head(skb, 0); 3092 if (rc < 0) 3093 return rc; 3094 vhdr = skb_vlan_eth_hdr(skb); 3095 vhdr->h_vlan_TCI = htons(tx_flags >> 3096 I40E_TX_FLAGS_VLAN_SHIFT); 3097 } else { 3098 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 3099 } 3100 } 3101 3102 out: 3103 *flags = tx_flags; 3104 return 0; 3105 } 3106 3107 /** 3108 * i40e_tso - set up the tso context descriptor 3109 * @first: pointer to first Tx buffer for xmit 3110 * @hdr_len: ptr to the size of the packet header 3111 * @cd_type_cmd_tso_mss: Quad Word 1 3112 * 3113 * Returns 0 if no TSO can happen, 1 if tso is going, or error 3114 **/ 3115 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 3116 u64 *cd_type_cmd_tso_mss) 3117 { 3118 struct sk_buff *skb = first->skb; 3119 u64 cd_cmd, cd_tso_len, cd_mss; 3120 __be16 protocol; 3121 union { 3122 struct iphdr *v4; 3123 struct ipv6hdr *v6; 3124 unsigned char *hdr; 3125 } ip; 3126 union { 3127 struct tcphdr *tcp; 3128 struct udphdr *udp; 3129 unsigned char *hdr; 3130 } l4; 3131 u32 paylen, l4_offset; 3132 u16 gso_size; 3133 int err; 3134 3135 if (skb->ip_summed != CHECKSUM_PARTIAL) 3136 return 0; 3137 3138 if (!skb_is_gso(skb)) 3139 return 0; 3140 3141 err = skb_cow_head(skb, 0); 3142 if (err < 0) 3143 return err; 3144 3145 protocol = vlan_get_protocol(skb); 3146 3147 if (eth_p_mpls(protocol)) 3148 ip.hdr = skb_inner_network_header(skb); 3149 else 3150 ip.hdr = skb_network_header(skb); 3151 l4.hdr = skb_checksum_start(skb); 3152 3153 /* initialize outer IP header fields */ 3154 if (ip.v4->version == 4) { 3155 ip.v4->tot_len = 0; 3156 ip.v4->check = 0; 3157 3158 first->tx_flags |= I40E_TX_FLAGS_TSO; 3159 } else { 3160 ip.v6->payload_len = 0; 3161 first->tx_flags |= I40E_TX_FLAGS_TSO; 3162 } 3163 3164 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 3165 SKB_GSO_GRE_CSUM | 3166 SKB_GSO_IPXIP4 | 3167 SKB_GSO_IPXIP6 | 3168 SKB_GSO_UDP_TUNNEL | 3169 SKB_GSO_UDP_TUNNEL_CSUM)) { 3170 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3171 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 3172 l4.udp->len = 0; 3173 3174 /* determine offset of outer transport header */ 3175 l4_offset = l4.hdr - skb->data; 3176 3177 /* remove payload length from outer checksum */ 3178 paylen = skb->len - l4_offset; 3179 csum_replace_by_diff(&l4.udp->check, 3180 (__force __wsum)htonl(paylen)); 3181 } 3182 3183 /* reset pointers to inner headers */ 3184 ip.hdr = skb_inner_network_header(skb); 3185 l4.hdr = skb_inner_transport_header(skb); 3186 3187 /* initialize inner IP header fields */ 3188 if (ip.v4->version == 4) { 3189 ip.v4->tot_len = 0; 3190 ip.v4->check = 0; 3191 } else { 3192 ip.v6->payload_len = 0; 3193 } 3194 } 3195 3196 /* determine offset of inner transport header */ 3197 l4_offset = l4.hdr - skb->data; 3198 3199 /* remove payload length from inner checksum */ 3200 paylen = skb->len - l4_offset; 3201 3202 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3203 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); 3204 /* compute length of segmentation header */ 3205 *hdr_len = sizeof(*l4.udp) + l4_offset; 3206 } else { 3207 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3208 /* compute length of segmentation header */ 3209 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3210 } 3211 3212 /* pull values out of skb_shinfo */ 3213 gso_size = skb_shinfo(skb)->gso_size; 3214 3215 /* update GSO size and bytecount with header size */ 3216 first->gso_segs = skb_shinfo(skb)->gso_segs; 3217 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3218 3219 /* find the field values */ 3220 cd_cmd = I40E_TX_CTX_DESC_TSO; 3221 cd_tso_len = skb->len - *hdr_len; 3222 cd_mss = gso_size; 3223 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 3224 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 3225 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 3226 return 1; 3227 } 3228 3229 /** 3230 * i40e_tsyn - set up the tsyn context descriptor 3231 * @tx_ring: ptr to the ring to send 3232 * @skb: ptr to the skb we're sending 3233 * @tx_flags: the collected send information 3234 * @cd_type_cmd_tso_mss: Quad Word 1 3235 * 3236 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 3237 **/ 3238 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 3239 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 3240 { 3241 struct i40e_pf *pf; 3242 3243 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 3244 return 0; 3245 3246 /* Tx timestamps cannot be sampled when doing TSO */ 3247 if (tx_flags & I40E_TX_FLAGS_TSO) 3248 return 0; 3249 3250 /* only timestamp the outbound packet if the user has requested it and 3251 * we are not already transmitting a packet to be timestamped 3252 */ 3253 pf = i40e_netdev_to_pf(tx_ring->netdev); 3254 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3255 return 0; 3256 3257 if (pf->ptp_tx && 3258 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 3259 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3260 pf->ptp_tx_start = jiffies; 3261 pf->ptp_tx_skb = skb_get(skb); 3262 } else { 3263 pf->tx_hwtstamp_skipped++; 3264 return 0; 3265 } 3266 3267 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 3268 I40E_TXD_CTX_QW1_CMD_SHIFT; 3269 3270 return 1; 3271 } 3272 3273 /** 3274 * i40e_tx_enable_csum - Enable Tx checksum offloads 3275 * @skb: send buffer 3276 * @tx_flags: pointer to Tx flags currently set 3277 * @td_cmd: Tx descriptor command bits to set 3278 * @td_offset: Tx descriptor header offsets to set 3279 * @tx_ring: Tx descriptor ring 3280 * @cd_tunneling: ptr to context desc bits 3281 **/ 3282 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 3283 u32 *td_cmd, u32 *td_offset, 3284 struct i40e_ring *tx_ring, 3285 u32 *cd_tunneling) 3286 { 3287 union { 3288 struct iphdr *v4; 3289 struct ipv6hdr *v6; 3290 unsigned char *hdr; 3291 } ip; 3292 union { 3293 struct tcphdr *tcp; 3294 struct udphdr *udp; 3295 unsigned char *hdr; 3296 } l4; 3297 unsigned char *exthdr; 3298 u32 offset, cmd = 0; 3299 __be16 frag_off; 3300 __be16 protocol; 3301 u8 l4_proto = 0; 3302 3303 if (skb->ip_summed != CHECKSUM_PARTIAL) 3304 return 0; 3305 3306 protocol = vlan_get_protocol(skb); 3307 3308 if (eth_p_mpls(protocol)) { 3309 ip.hdr = skb_inner_network_header(skb); 3310 l4.hdr = skb_checksum_start(skb); 3311 } else { 3312 ip.hdr = skb_network_header(skb); 3313 l4.hdr = skb_transport_header(skb); 3314 } 3315 3316 /* set the tx_flags to indicate the IP protocol type. this is 3317 * required so that checksum header computation below is accurate. 3318 */ 3319 if (ip.v4->version == 4) 3320 *tx_flags |= I40E_TX_FLAGS_IPV4; 3321 else 3322 *tx_flags |= I40E_TX_FLAGS_IPV6; 3323 3324 /* compute outer L2 header size */ 3325 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3326 3327 if (skb->encapsulation) { 3328 u32 tunnel = 0; 3329 /* define outer network header type */ 3330 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3331 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3332 I40E_TX_CTX_EXT_IP_IPV4 : 3333 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3334 3335 l4_proto = ip.v4->protocol; 3336 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3337 int ret; 3338 3339 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3340 3341 exthdr = ip.hdr + sizeof(*ip.v6); 3342 l4_proto = ip.v6->nexthdr; 3343 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 3344 &l4_proto, &frag_off); 3345 if (ret < 0) 3346 return -1; 3347 } 3348 3349 /* define outer transport */ 3350 switch (l4_proto) { 3351 case IPPROTO_UDP: 3352 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3353 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3354 break; 3355 case IPPROTO_GRE: 3356 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3357 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3358 break; 3359 case IPPROTO_IPIP: 3360 case IPPROTO_IPV6: 3361 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3362 l4.hdr = skb_inner_network_header(skb); 3363 break; 3364 default: 3365 if (*tx_flags & I40E_TX_FLAGS_TSO) 3366 return -1; 3367 3368 skb_checksum_help(skb); 3369 return 0; 3370 } 3371 3372 /* compute outer L3 header size */ 3373 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3374 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3375 3376 /* switch IP header pointer from outer to inner header */ 3377 ip.hdr = skb_inner_network_header(skb); 3378 3379 /* compute tunnel header size */ 3380 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3381 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3382 3383 /* indicate if we need to offload outer UDP header */ 3384 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3385 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3386 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3387 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3388 3389 /* record tunnel offload values */ 3390 *cd_tunneling |= tunnel; 3391 3392 /* switch L4 header pointer from outer to inner */ 3393 l4.hdr = skb_inner_transport_header(skb); 3394 l4_proto = 0; 3395 3396 /* reset type as we transition from outer to inner headers */ 3397 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3398 if (ip.v4->version == 4) 3399 *tx_flags |= I40E_TX_FLAGS_IPV4; 3400 if (ip.v6->version == 6) 3401 *tx_flags |= I40E_TX_FLAGS_IPV6; 3402 } 3403 3404 /* Enable IP checksum offloads */ 3405 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3406 l4_proto = ip.v4->protocol; 3407 /* the stack computes the IP header already, the only time we 3408 * need the hardware to recompute it is in the case of TSO. 3409 */ 3410 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3411 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3412 I40E_TX_DESC_CMD_IIPT_IPV4; 3413 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3414 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3415 3416 exthdr = ip.hdr + sizeof(*ip.v6); 3417 l4_proto = ip.v6->nexthdr; 3418 if (l4.hdr != exthdr) 3419 ipv6_skip_exthdr(skb, exthdr - skb->data, 3420 &l4_proto, &frag_off); 3421 } 3422 3423 /* compute inner L3 header size */ 3424 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3425 3426 /* Enable L4 checksum offloads */ 3427 switch (l4_proto) { 3428 case IPPROTO_TCP: 3429 /* enable checksum offloads */ 3430 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3431 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3432 break; 3433 case IPPROTO_SCTP: 3434 /* enable SCTP checksum offload */ 3435 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3436 offset |= (sizeof(struct sctphdr) >> 2) << 3437 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3438 break; 3439 case IPPROTO_UDP: 3440 /* enable UDP checksum offload */ 3441 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3442 offset |= (sizeof(struct udphdr) >> 2) << 3443 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3444 break; 3445 default: 3446 if (*tx_flags & I40E_TX_FLAGS_TSO) 3447 return -1; 3448 skb_checksum_help(skb); 3449 return 0; 3450 } 3451 3452 *td_cmd |= cmd; 3453 *td_offset |= offset; 3454 3455 return 1; 3456 } 3457 3458 /** 3459 * i40e_create_tx_ctx - Build the Tx context descriptor 3460 * @tx_ring: ring to create the descriptor on 3461 * @cd_type_cmd_tso_mss: Quad Word 1 3462 * @cd_tunneling: Quad Word 0 - bits 0-31 3463 * @cd_l2tag2: Quad Word 0 - bits 32-63 3464 **/ 3465 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3466 const u64 cd_type_cmd_tso_mss, 3467 const u32 cd_tunneling, const u32 cd_l2tag2) 3468 { 3469 struct i40e_tx_context_desc *context_desc; 3470 int i = tx_ring->next_to_use; 3471 3472 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3473 !cd_tunneling && !cd_l2tag2) 3474 return; 3475 3476 /* grab the next descriptor */ 3477 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3478 3479 i++; 3480 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3481 3482 /* cpu_to_le32 and assign to struct fields */ 3483 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3484 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3485 context_desc->rsvd = cpu_to_le16(0); 3486 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3487 } 3488 3489 /** 3490 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3491 * @tx_ring: the ring to be checked 3492 * @size: the size buffer we want to assure is available 3493 * 3494 * Returns -EBUSY if a stop is needed, else 0 3495 **/ 3496 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3497 { 3498 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3499 /* Memory barrier before checking head and tail */ 3500 smp_mb(); 3501 3502 ++tx_ring->tx_stats.tx_stopped; 3503 3504 /* Check again in a case another CPU has just made room available. */ 3505 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3506 return -EBUSY; 3507 3508 /* A reprieve! - use start_queue because it doesn't call schedule */ 3509 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3510 ++tx_ring->tx_stats.restart_queue; 3511 return 0; 3512 } 3513 3514 /** 3515 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3516 * @skb: send buffer 3517 * 3518 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3519 * and so we need to figure out the cases where we need to linearize the skb. 3520 * 3521 * For TSO we need to count the TSO header and segment payload separately. 3522 * As such we need to check cases where we have 7 fragments or more as we 3523 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3524 * the segment payload in the first descriptor, and another 7 for the 3525 * fragments. 3526 **/ 3527 bool __i40e_chk_linearize(struct sk_buff *skb) 3528 { 3529 const skb_frag_t *frag, *stale; 3530 int nr_frags, sum; 3531 3532 /* no need to check if number of frags is less than 7 */ 3533 nr_frags = skb_shinfo(skb)->nr_frags; 3534 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3535 return false; 3536 3537 /* We need to walk through the list and validate that each group 3538 * of 6 fragments totals at least gso_size. 3539 */ 3540 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3541 frag = &skb_shinfo(skb)->frags[0]; 3542 3543 /* Initialize size to the negative value of gso_size minus 1. We 3544 * use this as the worst case scenerio in which the frag ahead 3545 * of us only provides one byte which is why we are limited to 6 3546 * descriptors for a single transmit as the header and previous 3547 * fragment are already consuming 2 descriptors. 3548 */ 3549 sum = 1 - skb_shinfo(skb)->gso_size; 3550 3551 /* Add size of frags 0 through 4 to create our initial sum */ 3552 sum += skb_frag_size(frag++); 3553 sum += skb_frag_size(frag++); 3554 sum += skb_frag_size(frag++); 3555 sum += skb_frag_size(frag++); 3556 sum += skb_frag_size(frag++); 3557 3558 /* Walk through fragments adding latest fragment, testing it, and 3559 * then removing stale fragments from the sum. 3560 */ 3561 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3562 int stale_size = skb_frag_size(stale); 3563 3564 sum += skb_frag_size(frag++); 3565 3566 /* The stale fragment may present us with a smaller 3567 * descriptor than the actual fragment size. To account 3568 * for that we need to remove all the data on the front and 3569 * figure out what the remainder would be in the last 3570 * descriptor associated with the fragment. 3571 */ 3572 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3573 int align_pad = -(skb_frag_off(stale)) & 3574 (I40E_MAX_READ_REQ_SIZE - 1); 3575 3576 sum -= align_pad; 3577 stale_size -= align_pad; 3578 3579 do { 3580 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3581 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3582 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3583 } 3584 3585 /* if sum is negative we failed to make sufficient progress */ 3586 if (sum < 0) 3587 return true; 3588 3589 if (!nr_frags--) 3590 break; 3591 3592 sum -= stale_size; 3593 } 3594 3595 return false; 3596 } 3597 3598 /** 3599 * i40e_tx_map - Build the Tx descriptor 3600 * @tx_ring: ring to send buffer on 3601 * @skb: send buffer 3602 * @first: first buffer info buffer to use 3603 * @tx_flags: collected send information 3604 * @hdr_len: size of the packet header 3605 * @td_cmd: the command field in the descriptor 3606 * @td_offset: offset for checksum or crc 3607 * 3608 * Returns 0 on success, -1 on failure to DMA 3609 **/ 3610 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3611 struct i40e_tx_buffer *first, u32 tx_flags, 3612 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3613 { 3614 unsigned int data_len = skb->data_len; 3615 unsigned int size = skb_headlen(skb); 3616 skb_frag_t *frag; 3617 struct i40e_tx_buffer *tx_bi; 3618 struct i40e_tx_desc *tx_desc; 3619 u16 i = tx_ring->next_to_use; 3620 u32 td_tag = 0; 3621 dma_addr_t dma; 3622 u16 desc_count = 1; 3623 3624 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3625 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3626 td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags); 3627 } 3628 3629 first->tx_flags = tx_flags; 3630 3631 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3632 3633 tx_desc = I40E_TX_DESC(tx_ring, i); 3634 tx_bi = first; 3635 3636 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3637 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3638 3639 if (dma_mapping_error(tx_ring->dev, dma)) 3640 goto dma_error; 3641 3642 /* record length, and DMA address */ 3643 dma_unmap_len_set(tx_bi, len, size); 3644 dma_unmap_addr_set(tx_bi, dma, dma); 3645 3646 /* align size to end of page */ 3647 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3648 tx_desc->buffer_addr = cpu_to_le64(dma); 3649 3650 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3651 tx_desc->cmd_type_offset_bsz = 3652 build_ctob(td_cmd, td_offset, 3653 max_data, td_tag); 3654 3655 tx_desc++; 3656 i++; 3657 desc_count++; 3658 3659 if (i == tx_ring->count) { 3660 tx_desc = I40E_TX_DESC(tx_ring, 0); 3661 i = 0; 3662 } 3663 3664 dma += max_data; 3665 size -= max_data; 3666 3667 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3668 tx_desc->buffer_addr = cpu_to_le64(dma); 3669 } 3670 3671 if (likely(!data_len)) 3672 break; 3673 3674 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3675 size, td_tag); 3676 3677 tx_desc++; 3678 i++; 3679 desc_count++; 3680 3681 if (i == tx_ring->count) { 3682 tx_desc = I40E_TX_DESC(tx_ring, 0); 3683 i = 0; 3684 } 3685 3686 size = skb_frag_size(frag); 3687 data_len -= size; 3688 3689 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3690 DMA_TO_DEVICE); 3691 3692 tx_bi = &tx_ring->tx_bi[i]; 3693 } 3694 3695 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3696 3697 i++; 3698 if (i == tx_ring->count) 3699 i = 0; 3700 3701 tx_ring->next_to_use = i; 3702 3703 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3704 3705 /* write last descriptor with EOP bit */ 3706 td_cmd |= I40E_TX_DESC_CMD_EOP; 3707 3708 /* We OR these values together to check both against 4 (WB_STRIDE) 3709 * below. This is safe since we don't re-use desc_count afterwards. 3710 */ 3711 desc_count |= ++tx_ring->packet_stride; 3712 3713 if (desc_count >= WB_STRIDE) { 3714 /* write last descriptor with RS bit set */ 3715 td_cmd |= I40E_TX_DESC_CMD_RS; 3716 tx_ring->packet_stride = 0; 3717 } 3718 3719 tx_desc->cmd_type_offset_bsz = 3720 build_ctob(td_cmd, td_offset, size, td_tag); 3721 3722 skb_tx_timestamp(skb); 3723 3724 /* Force memory writes to complete before letting h/w know there 3725 * are new descriptors to fetch. 3726 * 3727 * We also use this memory barrier to make certain all of the 3728 * status bits have been updated before next_to_watch is written. 3729 */ 3730 wmb(); 3731 3732 /* set next_to_watch value indicating a packet is present */ 3733 first->next_to_watch = tx_desc; 3734 3735 /* notify HW of packet */ 3736 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 3737 writel(i, tx_ring->tail); 3738 } 3739 3740 return 0; 3741 3742 dma_error: 3743 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3744 3745 /* clear dma mappings for failed tx_bi map */ 3746 for (;;) { 3747 tx_bi = &tx_ring->tx_bi[i]; 3748 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3749 if (tx_bi == first) 3750 break; 3751 if (i == 0) 3752 i = tx_ring->count; 3753 i--; 3754 } 3755 3756 tx_ring->next_to_use = i; 3757 3758 return -1; 3759 } 3760 3761 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev, 3762 const struct sk_buff *skb, 3763 u16 num_tx_queues) 3764 { 3765 u32 jhash_initval_salt = 0xd631614b; 3766 u32 hash; 3767 3768 if (skb->sk && skb->sk->sk_hash) 3769 hash = skb->sk->sk_hash; 3770 else 3771 hash = (__force u16)skb->protocol ^ skb->hash; 3772 3773 hash = jhash_1word(hash, jhash_initval_salt); 3774 3775 return (u16)(((u64)hash * num_tx_queues) >> 32); 3776 } 3777 3778 u16 i40e_lan_select_queue(struct net_device *netdev, 3779 struct sk_buff *skb, 3780 struct net_device __always_unused *sb_dev) 3781 { 3782 struct i40e_netdev_priv *np = netdev_priv(netdev); 3783 struct i40e_vsi *vsi = np->vsi; 3784 struct i40e_hw *hw; 3785 u16 qoffset; 3786 u16 qcount; 3787 u8 tclass; 3788 u16 hash; 3789 u8 prio; 3790 3791 /* is DCB enabled at all? */ 3792 if (vsi->tc_config.numtc == 1 || 3793 i40e_is_tc_mqprio_enabled(vsi->back)) 3794 return netdev_pick_tx(netdev, skb, sb_dev); 3795 3796 prio = skb->priority; 3797 hw = &vsi->back->hw; 3798 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio]; 3799 /* sanity check */ 3800 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass)))) 3801 tclass = 0; 3802 3803 /* select a queue assigned for the given TC */ 3804 qcount = vsi->tc_config.tc_info[tclass].qcount; 3805 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount); 3806 3807 qoffset = vsi->tc_config.tc_info[tclass].qoffset; 3808 return qoffset + hash; 3809 } 3810 3811 /** 3812 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3813 * @xdpf: data to transmit 3814 * @xdp_ring: XDP Tx ring 3815 **/ 3816 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 3817 struct i40e_ring *xdp_ring) 3818 { 3819 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 3820 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 3821 u16 i = 0, index = xdp_ring->next_to_use; 3822 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index]; 3823 struct i40e_tx_buffer *tx_bi = tx_head; 3824 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index); 3825 void *data = xdpf->data; 3826 u32 size = xdpf->len; 3827 3828 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) { 3829 xdp_ring->tx_stats.tx_busy++; 3830 return I40E_XDP_CONSUMED; 3831 } 3832 3833 tx_head->bytecount = xdp_get_frame_len(xdpf); 3834 tx_head->gso_segs = 1; 3835 tx_head->xdpf = xdpf; 3836 3837 for (;;) { 3838 dma_addr_t dma; 3839 3840 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); 3841 if (dma_mapping_error(xdp_ring->dev, dma)) 3842 goto unmap; 3843 3844 /* record length, and DMA address */ 3845 dma_unmap_len_set(tx_bi, len, size); 3846 dma_unmap_addr_set(tx_bi, dma, dma); 3847 3848 tx_desc->buffer_addr = cpu_to_le64(dma); 3849 tx_desc->cmd_type_offset_bsz = 3850 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0); 3851 3852 if (++index == xdp_ring->count) 3853 index = 0; 3854 3855 if (i == nr_frags) 3856 break; 3857 3858 tx_bi = &xdp_ring->tx_bi[index]; 3859 tx_desc = I40E_TX_DESC(xdp_ring, index); 3860 3861 data = skb_frag_address(&sinfo->frags[i]); 3862 size = skb_frag_size(&sinfo->frags[i]); 3863 i++; 3864 } 3865 3866 tx_desc->cmd_type_offset_bsz |= 3867 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT); 3868 3869 /* Make certain all of the status bits have been updated 3870 * before next_to_watch is written. 3871 */ 3872 smp_wmb(); 3873 3874 xdp_ring->xdp_tx_active++; 3875 3876 tx_head->next_to_watch = tx_desc; 3877 xdp_ring->next_to_use = index; 3878 3879 return I40E_XDP_TX; 3880 3881 unmap: 3882 for (;;) { 3883 tx_bi = &xdp_ring->tx_bi[index]; 3884 if (dma_unmap_len(tx_bi, len)) 3885 dma_unmap_page(xdp_ring->dev, 3886 dma_unmap_addr(tx_bi, dma), 3887 dma_unmap_len(tx_bi, len), 3888 DMA_TO_DEVICE); 3889 dma_unmap_len_set(tx_bi, len, 0); 3890 if (tx_bi == tx_head) 3891 break; 3892 3893 if (!index) 3894 index += xdp_ring->count; 3895 index--; 3896 } 3897 3898 return I40E_XDP_CONSUMED; 3899 } 3900 3901 /** 3902 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3903 * @skb: send buffer 3904 * @tx_ring: ring to send buffer on 3905 * 3906 * Returns NETDEV_TX_OK if sent, else an error code 3907 **/ 3908 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3909 struct i40e_ring *tx_ring) 3910 { 3911 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3912 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3913 struct i40e_tx_buffer *first; 3914 u32 td_offset = 0; 3915 u32 tx_flags = 0; 3916 u32 td_cmd = 0; 3917 u8 hdr_len = 0; 3918 int tso, count; 3919 int tsyn; 3920 3921 /* prefetch the data, we'll need it later */ 3922 prefetch(skb->data); 3923 3924 i40e_trace(xmit_frame_ring, skb, tx_ring); 3925 3926 count = i40e_xmit_descriptor_count(skb); 3927 if (i40e_chk_linearize(skb, count)) { 3928 if (__skb_linearize(skb)) { 3929 dev_kfree_skb_any(skb); 3930 return NETDEV_TX_OK; 3931 } 3932 count = i40e_txd_use_count(skb->len); 3933 tx_ring->tx_stats.tx_linearize++; 3934 } 3935 3936 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3937 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3938 * + 4 desc gap to avoid the cache line where head is, 3939 * + 1 desc for context descriptor, 3940 * otherwise try next time 3941 */ 3942 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3943 tx_ring->tx_stats.tx_busy++; 3944 return NETDEV_TX_BUSY; 3945 } 3946 3947 /* record the location of the first descriptor for this packet */ 3948 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3949 first->skb = skb; 3950 first->bytecount = skb->len; 3951 first->gso_segs = 1; 3952 3953 /* prepare the xmit flags */ 3954 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3955 goto out_drop; 3956 3957 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3958 3959 if (tso < 0) 3960 goto out_drop; 3961 else if (tso) 3962 tx_flags |= I40E_TX_FLAGS_TSO; 3963 3964 /* Always offload the checksum, since it's in the data descriptor */ 3965 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3966 tx_ring, &cd_tunneling); 3967 if (tso < 0) 3968 goto out_drop; 3969 3970 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3971 3972 if (tsyn) 3973 tx_flags |= I40E_TX_FLAGS_TSYN; 3974 3975 /* always enable CRC insertion offload */ 3976 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3977 3978 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3979 cd_tunneling, cd_l2tag2); 3980 3981 /* Add Flow Director ATR if it's enabled. 3982 * 3983 * NOTE: this must always be directly before the data descriptor. 3984 */ 3985 i40e_atr(tx_ring, skb, tx_flags); 3986 3987 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3988 td_cmd, td_offset)) 3989 goto cleanup_tx_tstamp; 3990 3991 return NETDEV_TX_OK; 3992 3993 out_drop: 3994 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3995 dev_kfree_skb_any(first->skb); 3996 first->skb = NULL; 3997 cleanup_tx_tstamp: 3998 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3999 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 4000 4001 dev_kfree_skb_any(pf->ptp_tx_skb); 4002 pf->ptp_tx_skb = NULL; 4003 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 4004 } 4005 4006 return NETDEV_TX_OK; 4007 } 4008 4009 /** 4010 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 4011 * @skb: send buffer 4012 * @netdev: network interface device structure 4013 * 4014 * Returns NETDEV_TX_OK if sent, else an error code 4015 **/ 4016 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4017 { 4018 struct i40e_netdev_priv *np = netdev_priv(netdev); 4019 struct i40e_vsi *vsi = np->vsi; 4020 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 4021 4022 /* hardware can't handle really short frames, hardware padding works 4023 * beyond this point 4024 */ 4025 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 4026 return NETDEV_TX_OK; 4027 4028 return i40e_xmit_frame_ring(skb, tx_ring); 4029 } 4030 4031 /** 4032 * i40e_xdp_xmit - Implements ndo_xdp_xmit 4033 * @dev: netdev 4034 * @n: number of frames 4035 * @frames: array of XDP buffer pointers 4036 * @flags: XDP extra info 4037 * 4038 * Returns number of frames successfully sent. Failed frames 4039 * will be free'ed by XDP core. 4040 * 4041 * For error cases, a negative errno code is returned and no-frames 4042 * are transmitted (caller must handle freeing frames). 4043 **/ 4044 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 4045 u32 flags) 4046 { 4047 struct i40e_netdev_priv *np = netdev_priv(dev); 4048 unsigned int queue_index = smp_processor_id(); 4049 struct i40e_vsi *vsi = np->vsi; 4050 struct i40e_pf *pf = vsi->back; 4051 struct i40e_ring *xdp_ring; 4052 int nxmit = 0; 4053 int i; 4054 4055 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4056 return -ENETDOWN; 4057 4058 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs || 4059 test_bit(__I40E_CONFIG_BUSY, pf->state)) 4060 return -ENXIO; 4061 4062 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 4063 return -EINVAL; 4064 4065 xdp_ring = vsi->xdp_rings[queue_index]; 4066 4067 for (i = 0; i < n; i++) { 4068 struct xdp_frame *xdpf = frames[i]; 4069 int err; 4070 4071 err = i40e_xmit_xdp_ring(xdpf, xdp_ring); 4072 if (err != I40E_XDP_TX) 4073 break; 4074 nxmit++; 4075 } 4076 4077 if (unlikely(flags & XDP_XMIT_FLUSH)) 4078 i40e_xdp_ring_update_tail(xdp_ring); 4079 4080 return nxmit; 4081 } 4082