xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision 05ee19c18c2bb3dea69e29219017367c4a77e65a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
16  * @tx_ring: Tx ring to send buffer on
17  * @fdata: Flow director filter data
18  * @add: Indicate if we are adding a rule or deleting one
19  *
20  **/
21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 		      struct i40e_fdir_filter *fdata, bool add)
23 {
24 	struct i40e_filter_program_desc *fdir_desc;
25 	struct i40e_pf *pf = tx_ring->vsi->back;
26 	u32 flex_ptype, dtype_cmd;
27 	u16 i;
28 
29 	/* grab the next descriptor */
30 	i = tx_ring->next_to_use;
31 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32 
33 	i++;
34 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35 
36 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38 
39 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41 
42 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44 
45 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47 
48 	/* Use LAN VSI Id if not programmed by user */
49 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52 
53 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54 
55 	dtype_cmd |= add ?
56 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60 
61 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63 
64 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66 
67 	if (fdata->cnt_index) {
68 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 			     ((u32)fdata->cnt_index <<
71 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 	}
73 
74 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 	fdir_desc->rsvd = cpu_to_le32(0);
76 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 }
79 
80 #define I40E_FD_CLEAN_DELAY 10
81 /**
82  * i40e_program_fdir_filter - Program a Flow Director filter
83  * @fdir_data: Packet data that will be filter parameters
84  * @raw_packet: the pre-allocated packet buffer for FDir
85  * @pf: The PF pointer
86  * @add: True for add/update, False for remove
87  **/
88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 				    u8 *raw_packet, struct i40e_pf *pf,
90 				    bool add)
91 {
92 	struct i40e_tx_buffer *tx_buf, *first;
93 	struct i40e_tx_desc *tx_desc;
94 	struct i40e_ring *tx_ring;
95 	struct i40e_vsi *vsi;
96 	struct device *dev;
97 	dma_addr_t dma;
98 	u32 td_cmd = 0;
99 	u16 i;
100 
101 	/* find existing FDIR VSI */
102 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 	if (!vsi)
104 		return -ENOENT;
105 
106 	tx_ring = vsi->tx_rings[0];
107 	dev = tx_ring->dev;
108 
109 	/* we need two descriptors to add/del a filter and we can wait */
110 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 		if (!i)
112 			return -EAGAIN;
113 		msleep_interruptible(1);
114 	}
115 
116 	dma = dma_map_single(dev, raw_packet,
117 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 	if (dma_mapping_error(dev, dma))
119 		goto dma_fail;
120 
121 	/* grab the next descriptor */
122 	i = tx_ring->next_to_use;
123 	first = &tx_ring->tx_bi[i];
124 	i40e_fdir(tx_ring, fdir_data, add);
125 
126 	/* Now program a dummy descriptor */
127 	i = tx_ring->next_to_use;
128 	tx_desc = I40E_TX_DESC(tx_ring, i);
129 	tx_buf = &tx_ring->tx_bi[i];
130 
131 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132 
133 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134 
135 	/* record length, and DMA address */
136 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 	dma_unmap_addr_set(tx_buf, dma, dma);
138 
139 	tx_desc->buffer_addr = cpu_to_le64(dma);
140 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141 
142 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 	tx_buf->raw_buf = (void *)raw_packet;
144 
145 	tx_desc->cmd_type_offset_bsz =
146 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147 
148 	/* Force memory writes to complete before letting h/w
149 	 * know there are new descriptors to fetch.
150 	 */
151 	wmb();
152 
153 	/* Mark the data descriptor to be watched */
154 	first->next_to_watch = tx_desc;
155 
156 	writel(tx_ring->next_to_use, tx_ring->tail);
157 	return 0;
158 
159 dma_fail:
160 	return -1;
161 }
162 
163 #define IP_HEADER_OFFSET 14
164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
165 /**
166  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167  * @vsi: pointer to the targeted VSI
168  * @fd_data: the flow director data required for the FDir descriptor
169  * @add: true adds a filter, false removes it
170  *
171  * Returns 0 if the filters were successfully added or removed
172  **/
173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 				   struct i40e_fdir_filter *fd_data,
175 				   bool add)
176 {
177 	struct i40e_pf *pf = vsi->back;
178 	struct udphdr *udp;
179 	struct iphdr *ip;
180 	u8 *raw_packet;
181 	int ret;
182 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185 
186 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 	if (!raw_packet)
188 		return -ENOMEM;
189 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190 
191 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 	      + sizeof(struct iphdr));
194 
195 	ip->daddr = fd_data->dst_ip;
196 	udp->dest = fd_data->dst_port;
197 	ip->saddr = fd_data->src_ip;
198 	udp->source = fd_data->src_port;
199 
200 	if (fd_data->flex_filter) {
201 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 		__be16 pattern = fd_data->flex_word;
203 		u16 off = fd_data->flex_offset;
204 
205 		*((__force __be16 *)(payload + off)) = pattern;
206 	}
207 
208 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 	if (ret) {
211 		dev_info(&pf->pdev->dev,
212 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 			 fd_data->pctype, fd_data->fd_id, ret);
214 		/* Free the packet buffer since it wasn't added to the ring */
215 		kfree(raw_packet);
216 		return -EOPNOTSUPP;
217 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 		if (add)
219 			dev_info(&pf->pdev->dev,
220 				 "Filter OK for PCTYPE %d loc = %d\n",
221 				 fd_data->pctype, fd_data->fd_id);
222 		else
223 			dev_info(&pf->pdev->dev,
224 				 "Filter deleted for PCTYPE %d loc = %d\n",
225 				 fd_data->pctype, fd_data->fd_id);
226 	}
227 
228 	if (add)
229 		pf->fd_udp4_filter_cnt++;
230 	else
231 		pf->fd_udp4_filter_cnt--;
232 
233 	return 0;
234 }
235 
236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
237 /**
238  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239  * @vsi: pointer to the targeted VSI
240  * @fd_data: the flow director data required for the FDir descriptor
241  * @add: true adds a filter, false removes it
242  *
243  * Returns 0 if the filters were successfully added or removed
244  **/
245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 				   struct i40e_fdir_filter *fd_data,
247 				   bool add)
248 {
249 	struct i40e_pf *pf = vsi->back;
250 	struct tcphdr *tcp;
251 	struct iphdr *ip;
252 	u8 *raw_packet;
253 	int ret;
254 	/* Dummy packet */
255 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 		0x0, 0x72, 0, 0, 0, 0};
259 
260 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 	if (!raw_packet)
262 		return -ENOMEM;
263 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264 
265 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 	      + sizeof(struct iphdr));
268 
269 	ip->daddr = fd_data->dst_ip;
270 	tcp->dest = fd_data->dst_port;
271 	ip->saddr = fd_data->src_ip;
272 	tcp->source = fd_data->src_port;
273 
274 	if (fd_data->flex_filter) {
275 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 		__be16 pattern = fd_data->flex_word;
277 		u16 off = fd_data->flex_offset;
278 
279 		*((__force __be16 *)(payload + off)) = pattern;
280 	}
281 
282 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 	if (ret) {
285 		dev_info(&pf->pdev->dev,
286 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 			 fd_data->pctype, fd_data->fd_id, ret);
288 		/* Free the packet buffer since it wasn't added to the ring */
289 		kfree(raw_packet);
290 		return -EOPNOTSUPP;
291 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 		if (add)
293 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 				 fd_data->pctype, fd_data->fd_id);
295 		else
296 			dev_info(&pf->pdev->dev,
297 				 "Filter deleted for PCTYPE %d loc = %d\n",
298 				 fd_data->pctype, fd_data->fd_id);
299 	}
300 
301 	if (add) {
302 		pf->fd_tcp4_filter_cnt++;
303 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 		    I40E_DEBUG_FD & pf->hw.debug_mask)
305 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 	} else {
308 		pf->fd_tcp4_filter_cnt--;
309 	}
310 
311 	return 0;
312 }
313 
314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315 /**
316  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317  * a specific flow spec
318  * @vsi: pointer to the targeted VSI
319  * @fd_data: the flow director data required for the FDir descriptor
320  * @add: true adds a filter, false removes it
321  *
322  * Returns 0 if the filters were successfully added or removed
323  **/
324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 				    struct i40e_fdir_filter *fd_data,
326 				    bool add)
327 {
328 	struct i40e_pf *pf = vsi->back;
329 	struct sctphdr *sctp;
330 	struct iphdr *ip;
331 	u8 *raw_packet;
332 	int ret;
333 	/* Dummy packet */
334 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337 
338 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 	if (!raw_packet)
340 		return -ENOMEM;
341 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342 
343 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 	      + sizeof(struct iphdr));
346 
347 	ip->daddr = fd_data->dst_ip;
348 	sctp->dest = fd_data->dst_port;
349 	ip->saddr = fd_data->src_ip;
350 	sctp->source = fd_data->src_port;
351 
352 	if (fd_data->flex_filter) {
353 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 		__be16 pattern = fd_data->flex_word;
355 		u16 off = fd_data->flex_offset;
356 
357 		*((__force __be16 *)(payload + off)) = pattern;
358 	}
359 
360 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 	if (ret) {
363 		dev_info(&pf->pdev->dev,
364 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 			 fd_data->pctype, fd_data->fd_id, ret);
366 		/* Free the packet buffer since it wasn't added to the ring */
367 		kfree(raw_packet);
368 		return -EOPNOTSUPP;
369 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 		if (add)
371 			dev_info(&pf->pdev->dev,
372 				 "Filter OK for PCTYPE %d loc = %d\n",
373 				 fd_data->pctype, fd_data->fd_id);
374 		else
375 			dev_info(&pf->pdev->dev,
376 				 "Filter deleted for PCTYPE %d loc = %d\n",
377 				 fd_data->pctype, fd_data->fd_id);
378 	}
379 
380 	if (add)
381 		pf->fd_sctp4_filter_cnt++;
382 	else
383 		pf->fd_sctp4_filter_cnt--;
384 
385 	return 0;
386 }
387 
388 #define I40E_IP_DUMMY_PACKET_LEN 34
389 /**
390  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391  * a specific flow spec
392  * @vsi: pointer to the targeted VSI
393  * @fd_data: the flow director data required for the FDir descriptor
394  * @add: true adds a filter, false removes it
395  *
396  * Returns 0 if the filters were successfully added or removed
397  **/
398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 				  struct i40e_fdir_filter *fd_data,
400 				  bool add)
401 {
402 	struct i40e_pf *pf = vsi->back;
403 	struct iphdr *ip;
404 	u8 *raw_packet;
405 	int ret;
406 	int i;
407 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 		0, 0, 0, 0};
410 
411 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
413 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 		if (!raw_packet)
415 			return -ENOMEM;
416 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418 
419 		ip->saddr = fd_data->src_ip;
420 		ip->daddr = fd_data->dst_ip;
421 		ip->protocol = 0;
422 
423 		if (fd_data->flex_filter) {
424 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 			__be16 pattern = fd_data->flex_word;
426 			u16 off = fd_data->flex_offset;
427 
428 			*((__force __be16 *)(payload + off)) = pattern;
429 		}
430 
431 		fd_data->pctype = i;
432 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 		if (ret) {
434 			dev_info(&pf->pdev->dev,
435 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 				 fd_data->pctype, fd_data->fd_id, ret);
437 			/* The packet buffer wasn't added to the ring so we
438 			 * need to free it now.
439 			 */
440 			kfree(raw_packet);
441 			return -EOPNOTSUPP;
442 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 			if (add)
444 				dev_info(&pf->pdev->dev,
445 					 "Filter OK for PCTYPE %d loc = %d\n",
446 					 fd_data->pctype, fd_data->fd_id);
447 			else
448 				dev_info(&pf->pdev->dev,
449 					 "Filter deleted for PCTYPE %d loc = %d\n",
450 					 fd_data->pctype, fd_data->fd_id);
451 		}
452 	}
453 
454 	if (add)
455 		pf->fd_ip4_filter_cnt++;
456 	else
457 		pf->fd_ip4_filter_cnt--;
458 
459 	return 0;
460 }
461 
462 /**
463  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464  * @vsi: pointer to the targeted VSI
465  * @input: filter to add or delete
466  * @add: true adds a filter, false removes it
467  *
468  **/
469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 		      struct i40e_fdir_filter *input, bool add)
471 {
472 	struct i40e_pf *pf = vsi->back;
473 	int ret;
474 
475 	switch (input->flow_type & ~FLOW_EXT) {
476 	case TCP_V4_FLOW:
477 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 		break;
479 	case UDP_V4_FLOW:
480 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 		break;
482 	case SCTP_V4_FLOW:
483 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 		break;
485 	case IP_USER_FLOW:
486 		switch (input->ip4_proto) {
487 		case IPPROTO_TCP:
488 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 			break;
490 		case IPPROTO_UDP:
491 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 			break;
493 		case IPPROTO_SCTP:
494 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 			break;
496 		case IPPROTO_IP:
497 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 			break;
499 		default:
500 			/* We cannot support masking based on protocol */
501 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 				 input->ip4_proto);
503 			return -EINVAL;
504 		}
505 		break;
506 	default:
507 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 			 input->flow_type);
509 		return -EINVAL;
510 	}
511 
512 	/* The buffer allocated here will be normally be freed by
513 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 	 * completion. In the event of an error adding the buffer to the FDIR
515 	 * ring, it will immediately be freed. It may also be freed by
516 	 * i40e_clean_tx_ring() when closing the VSI.
517 	 */
518 	return ret;
519 }
520 
521 /**
522  * i40e_fd_handle_status - check the Programming Status for FD
523  * @rx_ring: the Rx ring for this descriptor
524  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
525  * @prog_id: the id originally used for programming
526  *
527  * This is used to verify if the FD programming or invalidation
528  * requested by SW to the HW is successful or not and take actions accordingly.
529  **/
530 void i40e_fd_handle_status(struct i40e_ring *rx_ring,
531 			   union i40e_rx_desc *rx_desc, u8 prog_id)
532 {
533 	struct i40e_pf *pf = rx_ring->vsi->back;
534 	struct pci_dev *pdev = pf->pdev;
535 	u32 fcnt_prog, fcnt_avail;
536 	u32 error;
537 	u64 qw;
538 
539 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
540 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
541 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
542 
543 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
544 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
545 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
546 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
547 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
548 				 pf->fd_inv);
549 
550 		/* Check if the programming error is for ATR.
551 		 * If so, auto disable ATR and set a state for
552 		 * flush in progress. Next time we come here if flush is in
553 		 * progress do nothing, once flush is complete the state will
554 		 * be cleared.
555 		 */
556 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
557 			return;
558 
559 		pf->fd_add_err++;
560 		/* store the current atr filter count */
561 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
562 
563 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
564 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
565 			/* These set_bit() calls aren't atomic with the
566 			 * test_bit() here, but worse case we potentially
567 			 * disable ATR and queue a flush right after SB
568 			 * support is re-enabled. That shouldn't cause an
569 			 * issue in practice
570 			 */
571 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
572 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
573 		}
574 
575 		/* filter programming failed most likely due to table full */
576 		fcnt_prog = i40e_get_global_fd_count(pf);
577 		fcnt_avail = pf->fdir_pf_filter_count;
578 		/* If ATR is running fcnt_prog can quickly change,
579 		 * if we are very close to full, it makes sense to disable
580 		 * FD ATR/SB and then re-enable it when there is room.
581 		 */
582 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
583 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
584 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
585 					      pf->state))
586 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
587 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
588 		}
589 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
590 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
591 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
592 				 rx_desc->wb.qword0.hi_dword.fd_id);
593 	}
594 }
595 
596 /**
597  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
598  * @ring:      the ring that owns the buffer
599  * @tx_buffer: the buffer to free
600  **/
601 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
602 					    struct i40e_tx_buffer *tx_buffer)
603 {
604 	if (tx_buffer->skb) {
605 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
606 			kfree(tx_buffer->raw_buf);
607 		else if (ring_is_xdp(ring))
608 			xdp_return_frame(tx_buffer->xdpf);
609 		else
610 			dev_kfree_skb_any(tx_buffer->skb);
611 		if (dma_unmap_len(tx_buffer, len))
612 			dma_unmap_single(ring->dev,
613 					 dma_unmap_addr(tx_buffer, dma),
614 					 dma_unmap_len(tx_buffer, len),
615 					 DMA_TO_DEVICE);
616 	} else if (dma_unmap_len(tx_buffer, len)) {
617 		dma_unmap_page(ring->dev,
618 			       dma_unmap_addr(tx_buffer, dma),
619 			       dma_unmap_len(tx_buffer, len),
620 			       DMA_TO_DEVICE);
621 	}
622 
623 	tx_buffer->next_to_watch = NULL;
624 	tx_buffer->skb = NULL;
625 	dma_unmap_len_set(tx_buffer, len, 0);
626 	/* tx_buffer must be completely set up in the transmit path */
627 }
628 
629 /**
630  * i40e_clean_tx_ring - Free any empty Tx buffers
631  * @tx_ring: ring to be cleaned
632  **/
633 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
634 {
635 	unsigned long bi_size;
636 	u16 i;
637 
638 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
639 		i40e_xsk_clean_tx_ring(tx_ring);
640 	} else {
641 		/* ring already cleared, nothing to do */
642 		if (!tx_ring->tx_bi)
643 			return;
644 
645 		/* Free all the Tx ring sk_buffs */
646 		for (i = 0; i < tx_ring->count; i++)
647 			i40e_unmap_and_free_tx_resource(tx_ring,
648 							&tx_ring->tx_bi[i]);
649 	}
650 
651 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
652 	memset(tx_ring->tx_bi, 0, bi_size);
653 
654 	/* Zero out the descriptor ring */
655 	memset(tx_ring->desc, 0, tx_ring->size);
656 
657 	tx_ring->next_to_use = 0;
658 	tx_ring->next_to_clean = 0;
659 
660 	if (!tx_ring->netdev)
661 		return;
662 
663 	/* cleanup Tx queue statistics */
664 	netdev_tx_reset_queue(txring_txq(tx_ring));
665 }
666 
667 /**
668  * i40e_free_tx_resources - Free Tx resources per queue
669  * @tx_ring: Tx descriptor ring for a specific queue
670  *
671  * Free all transmit software resources
672  **/
673 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
674 {
675 	i40e_clean_tx_ring(tx_ring);
676 	kfree(tx_ring->tx_bi);
677 	tx_ring->tx_bi = NULL;
678 
679 	if (tx_ring->desc) {
680 		dma_free_coherent(tx_ring->dev, tx_ring->size,
681 				  tx_ring->desc, tx_ring->dma);
682 		tx_ring->desc = NULL;
683 	}
684 }
685 
686 /**
687  * i40e_get_tx_pending - how many tx descriptors not processed
688  * @ring: the ring of descriptors
689  * @in_sw: use SW variables
690  *
691  * Since there is no access to the ring head register
692  * in XL710, we need to use our local copies
693  **/
694 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
695 {
696 	u32 head, tail;
697 
698 	if (!in_sw) {
699 		head = i40e_get_head(ring);
700 		tail = readl(ring->tail);
701 	} else {
702 		head = ring->next_to_clean;
703 		tail = ring->next_to_use;
704 	}
705 
706 	if (head != tail)
707 		return (head < tail) ?
708 			tail - head : (tail + ring->count - head);
709 
710 	return 0;
711 }
712 
713 /**
714  * i40e_detect_recover_hung - Function to detect and recover hung_queues
715  * @vsi:  pointer to vsi struct with tx queues
716  *
717  * VSI has netdev and netdev has TX queues. This function is to check each of
718  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
719  **/
720 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
721 {
722 	struct i40e_ring *tx_ring = NULL;
723 	struct net_device *netdev;
724 	unsigned int i;
725 	int packets;
726 
727 	if (!vsi)
728 		return;
729 
730 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
731 		return;
732 
733 	netdev = vsi->netdev;
734 	if (!netdev)
735 		return;
736 
737 	if (!netif_carrier_ok(netdev))
738 		return;
739 
740 	for (i = 0; i < vsi->num_queue_pairs; i++) {
741 		tx_ring = vsi->tx_rings[i];
742 		if (tx_ring && tx_ring->desc) {
743 			/* If packet counter has not changed the queue is
744 			 * likely stalled, so force an interrupt for this
745 			 * queue.
746 			 *
747 			 * prev_pkt_ctr would be negative if there was no
748 			 * pending work.
749 			 */
750 			packets = tx_ring->stats.packets & INT_MAX;
751 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
752 				i40e_force_wb(vsi, tx_ring->q_vector);
753 				continue;
754 			}
755 
756 			/* Memory barrier between read of packet count and call
757 			 * to i40e_get_tx_pending()
758 			 */
759 			smp_rmb();
760 			tx_ring->tx_stats.prev_pkt_ctr =
761 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
762 		}
763 	}
764 }
765 
766 /**
767  * i40e_clean_tx_irq - Reclaim resources after transmit completes
768  * @vsi: the VSI we care about
769  * @tx_ring: Tx ring to clean
770  * @napi_budget: Used to determine if we are in netpoll
771  *
772  * Returns true if there's any budget left (e.g. the clean is finished)
773  **/
774 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
775 			      struct i40e_ring *tx_ring, int napi_budget)
776 {
777 	int i = tx_ring->next_to_clean;
778 	struct i40e_tx_buffer *tx_buf;
779 	struct i40e_tx_desc *tx_head;
780 	struct i40e_tx_desc *tx_desc;
781 	unsigned int total_bytes = 0, total_packets = 0;
782 	unsigned int budget = vsi->work_limit;
783 
784 	tx_buf = &tx_ring->tx_bi[i];
785 	tx_desc = I40E_TX_DESC(tx_ring, i);
786 	i -= tx_ring->count;
787 
788 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
789 
790 	do {
791 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
792 
793 		/* if next_to_watch is not set then there is no work pending */
794 		if (!eop_desc)
795 			break;
796 
797 		/* prevent any other reads prior to eop_desc */
798 		smp_rmb();
799 
800 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
801 		/* we have caught up to head, no work left to do */
802 		if (tx_head == tx_desc)
803 			break;
804 
805 		/* clear next_to_watch to prevent false hangs */
806 		tx_buf->next_to_watch = NULL;
807 
808 		/* update the statistics for this packet */
809 		total_bytes += tx_buf->bytecount;
810 		total_packets += tx_buf->gso_segs;
811 
812 		/* free the skb/XDP data */
813 		if (ring_is_xdp(tx_ring))
814 			xdp_return_frame(tx_buf->xdpf);
815 		else
816 			napi_consume_skb(tx_buf->skb, napi_budget);
817 
818 		/* unmap skb header data */
819 		dma_unmap_single(tx_ring->dev,
820 				 dma_unmap_addr(tx_buf, dma),
821 				 dma_unmap_len(tx_buf, len),
822 				 DMA_TO_DEVICE);
823 
824 		/* clear tx_buffer data */
825 		tx_buf->skb = NULL;
826 		dma_unmap_len_set(tx_buf, len, 0);
827 
828 		/* unmap remaining buffers */
829 		while (tx_desc != eop_desc) {
830 			i40e_trace(clean_tx_irq_unmap,
831 				   tx_ring, tx_desc, tx_buf);
832 
833 			tx_buf++;
834 			tx_desc++;
835 			i++;
836 			if (unlikely(!i)) {
837 				i -= tx_ring->count;
838 				tx_buf = tx_ring->tx_bi;
839 				tx_desc = I40E_TX_DESC(tx_ring, 0);
840 			}
841 
842 			/* unmap any remaining paged data */
843 			if (dma_unmap_len(tx_buf, len)) {
844 				dma_unmap_page(tx_ring->dev,
845 					       dma_unmap_addr(tx_buf, dma),
846 					       dma_unmap_len(tx_buf, len),
847 					       DMA_TO_DEVICE);
848 				dma_unmap_len_set(tx_buf, len, 0);
849 			}
850 		}
851 
852 		/* move us one more past the eop_desc for start of next pkt */
853 		tx_buf++;
854 		tx_desc++;
855 		i++;
856 		if (unlikely(!i)) {
857 			i -= tx_ring->count;
858 			tx_buf = tx_ring->tx_bi;
859 			tx_desc = I40E_TX_DESC(tx_ring, 0);
860 		}
861 
862 		prefetch(tx_desc);
863 
864 		/* update budget accounting */
865 		budget--;
866 	} while (likely(budget));
867 
868 	i += tx_ring->count;
869 	tx_ring->next_to_clean = i;
870 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
871 	i40e_arm_wb(tx_ring, vsi, budget);
872 
873 	if (ring_is_xdp(tx_ring))
874 		return !!budget;
875 
876 	/* notify netdev of completed buffers */
877 	netdev_tx_completed_queue(txring_txq(tx_ring),
878 				  total_packets, total_bytes);
879 
880 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
881 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
882 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
883 		/* Make sure that anybody stopping the queue after this
884 		 * sees the new next_to_clean.
885 		 */
886 		smp_mb();
887 		if (__netif_subqueue_stopped(tx_ring->netdev,
888 					     tx_ring->queue_index) &&
889 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
890 			netif_wake_subqueue(tx_ring->netdev,
891 					    tx_ring->queue_index);
892 			++tx_ring->tx_stats.restart_queue;
893 		}
894 	}
895 
896 	return !!budget;
897 }
898 
899 /**
900  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
901  * @vsi: the VSI we care about
902  * @q_vector: the vector on which to enable writeback
903  *
904  **/
905 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
906 				  struct i40e_q_vector *q_vector)
907 {
908 	u16 flags = q_vector->tx.ring[0].flags;
909 	u32 val;
910 
911 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
912 		return;
913 
914 	if (q_vector->arm_wb_state)
915 		return;
916 
917 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
918 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
919 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
920 
921 		wr32(&vsi->back->hw,
922 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
923 		     val);
924 	} else {
925 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
926 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
927 
928 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
929 	}
930 	q_vector->arm_wb_state = true;
931 }
932 
933 /**
934  * i40e_force_wb - Issue SW Interrupt so HW does a wb
935  * @vsi: the VSI we care about
936  * @q_vector: the vector  on which to force writeback
937  *
938  **/
939 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
940 {
941 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
942 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
943 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
944 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
945 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
946 			  /* allow 00 to be written to the index */
947 
948 		wr32(&vsi->back->hw,
949 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
950 	} else {
951 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
952 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
953 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
954 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
955 			/* allow 00 to be written to the index */
956 
957 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
958 	}
959 }
960 
961 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
962 					struct i40e_ring_container *rc)
963 {
964 	return &q_vector->rx == rc;
965 }
966 
967 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
968 {
969 	unsigned int divisor;
970 
971 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
972 	case I40E_LINK_SPEED_40GB:
973 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
974 		break;
975 	case I40E_LINK_SPEED_25GB:
976 	case I40E_LINK_SPEED_20GB:
977 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
978 		break;
979 	default:
980 	case I40E_LINK_SPEED_10GB:
981 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
982 		break;
983 	case I40E_LINK_SPEED_1GB:
984 	case I40E_LINK_SPEED_100MB:
985 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
986 		break;
987 	}
988 
989 	return divisor;
990 }
991 
992 /**
993  * i40e_update_itr - update the dynamic ITR value based on statistics
994  * @q_vector: structure containing interrupt and ring information
995  * @rc: structure containing ring performance data
996  *
997  * Stores a new ITR value based on packets and byte
998  * counts during the last interrupt.  The advantage of per interrupt
999  * computation is faster updates and more accurate ITR for the current
1000  * traffic pattern.  Constants in this function were computed
1001  * based on theoretical maximum wire speed and thresholds were set based
1002  * on testing data as well as attempting to minimize response time
1003  * while increasing bulk throughput.
1004  **/
1005 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1006 			    struct i40e_ring_container *rc)
1007 {
1008 	unsigned int avg_wire_size, packets, bytes, itr;
1009 	unsigned long next_update = jiffies;
1010 
1011 	/* If we don't have any rings just leave ourselves set for maximum
1012 	 * possible latency so we take ourselves out of the equation.
1013 	 */
1014 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1015 		return;
1016 
1017 	/* For Rx we want to push the delay up and default to low latency.
1018 	 * for Tx we want to pull the delay down and default to high latency.
1019 	 */
1020 	itr = i40e_container_is_rx(q_vector, rc) ?
1021 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1022 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1023 
1024 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1025 	 * that either packets are coming in so slow there hasn't been
1026 	 * any work, or that there is so much work that NAPI is dealing
1027 	 * with interrupt moderation and we don't need to do anything.
1028 	 */
1029 	if (time_after(next_update, rc->next_update))
1030 		goto clear_counts;
1031 
1032 	/* If itr_countdown is set it means we programmed an ITR within
1033 	 * the last 4 interrupt cycles. This has a side effect of us
1034 	 * potentially firing an early interrupt. In order to work around
1035 	 * this we need to throw out any data received for a few
1036 	 * interrupts following the update.
1037 	 */
1038 	if (q_vector->itr_countdown) {
1039 		itr = rc->target_itr;
1040 		goto clear_counts;
1041 	}
1042 
1043 	packets = rc->total_packets;
1044 	bytes = rc->total_bytes;
1045 
1046 	if (i40e_container_is_rx(q_vector, rc)) {
1047 		/* If Rx there are 1 to 4 packets and bytes are less than
1048 		 * 9000 assume insufficient data to use bulk rate limiting
1049 		 * approach unless Tx is already in bulk rate limiting. We
1050 		 * are likely latency driven.
1051 		 */
1052 		if (packets && packets < 4 && bytes < 9000 &&
1053 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1054 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1055 			goto adjust_by_size;
1056 		}
1057 	} else if (packets < 4) {
1058 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1059 		 * bulk mode and we are receiving 4 or fewer packets just
1060 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1061 		 * that the Rx can relax.
1062 		 */
1063 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1064 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1065 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1066 			goto clear_counts;
1067 	} else if (packets > 32) {
1068 		/* If we have processed over 32 packets in a single interrupt
1069 		 * for Tx assume we need to switch over to "bulk" mode.
1070 		 */
1071 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1072 	}
1073 
1074 	/* We have no packets to actually measure against. This means
1075 	 * either one of the other queues on this vector is active or
1076 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1077 	 *
1078 	 * Between 4 and 56 we can assume that our current interrupt delay
1079 	 * is only slightly too low. As such we should increase it by a small
1080 	 * fixed amount.
1081 	 */
1082 	if (packets < 56) {
1083 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1084 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1085 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1086 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1087 		}
1088 		goto clear_counts;
1089 	}
1090 
1091 	if (packets <= 256) {
1092 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1093 		itr &= I40E_ITR_MASK;
1094 
1095 		/* Between 56 and 112 is our "goldilocks" zone where we are
1096 		 * working out "just right". Just report that our current
1097 		 * ITR is good for us.
1098 		 */
1099 		if (packets <= 112)
1100 			goto clear_counts;
1101 
1102 		/* If packet count is 128 or greater we are likely looking
1103 		 * at a slight overrun of the delay we want. Try halving
1104 		 * our delay to see if that will cut the number of packets
1105 		 * in half per interrupt.
1106 		 */
1107 		itr /= 2;
1108 		itr &= I40E_ITR_MASK;
1109 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1110 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1111 
1112 		goto clear_counts;
1113 	}
1114 
1115 	/* The paths below assume we are dealing with a bulk ITR since
1116 	 * number of packets is greater than 256. We are just going to have
1117 	 * to compute a value and try to bring the count under control,
1118 	 * though for smaller packet sizes there isn't much we can do as
1119 	 * NAPI polling will likely be kicking in sooner rather than later.
1120 	 */
1121 	itr = I40E_ITR_ADAPTIVE_BULK;
1122 
1123 adjust_by_size:
1124 	/* If packet counts are 256 or greater we can assume we have a gross
1125 	 * overestimation of what the rate should be. Instead of trying to fine
1126 	 * tune it just use the formula below to try and dial in an exact value
1127 	 * give the current packet size of the frame.
1128 	 */
1129 	avg_wire_size = bytes / packets;
1130 
1131 	/* The following is a crude approximation of:
1132 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1133 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1134 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1135 	 *
1136 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1137 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1138 	 * formula down to
1139 	 *
1140 	 *  (170 * (size + 24)) / (size + 640) = ITR
1141 	 *
1142 	 * We first do some math on the packet size and then finally bitshift
1143 	 * by 8 after rounding up. We also have to account for PCIe link speed
1144 	 * difference as ITR scales based on this.
1145 	 */
1146 	if (avg_wire_size <= 60) {
1147 		/* Start at 250k ints/sec */
1148 		avg_wire_size = 4096;
1149 	} else if (avg_wire_size <= 380) {
1150 		/* 250K ints/sec to 60K ints/sec */
1151 		avg_wire_size *= 40;
1152 		avg_wire_size += 1696;
1153 	} else if (avg_wire_size <= 1084) {
1154 		/* 60K ints/sec to 36K ints/sec */
1155 		avg_wire_size *= 15;
1156 		avg_wire_size += 11452;
1157 	} else if (avg_wire_size <= 1980) {
1158 		/* 36K ints/sec to 30K ints/sec */
1159 		avg_wire_size *= 5;
1160 		avg_wire_size += 22420;
1161 	} else {
1162 		/* plateau at a limit of 30K ints/sec */
1163 		avg_wire_size = 32256;
1164 	}
1165 
1166 	/* If we are in low latency mode halve our delay which doubles the
1167 	 * rate to somewhere between 100K to 16K ints/sec
1168 	 */
1169 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1170 		avg_wire_size /= 2;
1171 
1172 	/* Resultant value is 256 times larger than it needs to be. This
1173 	 * gives us room to adjust the value as needed to either increase
1174 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1175 	 *
1176 	 * Use addition as we have already recorded the new latency flag
1177 	 * for the ITR value.
1178 	 */
1179 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1180 	       I40E_ITR_ADAPTIVE_MIN_INC;
1181 
1182 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1183 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1184 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1185 	}
1186 
1187 clear_counts:
1188 	/* write back value */
1189 	rc->target_itr = itr;
1190 
1191 	/* next update should occur within next jiffy */
1192 	rc->next_update = next_update + 1;
1193 
1194 	rc->total_bytes = 0;
1195 	rc->total_packets = 0;
1196 }
1197 
1198 /**
1199  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1200  * @rx_ring: rx descriptor ring to store buffers on
1201  * @old_buff: donor buffer to have page reused
1202  *
1203  * Synchronizes page for reuse by the adapter
1204  **/
1205 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1206 			       struct i40e_rx_buffer *old_buff)
1207 {
1208 	struct i40e_rx_buffer *new_buff;
1209 	u16 nta = rx_ring->next_to_alloc;
1210 
1211 	new_buff = &rx_ring->rx_bi[nta];
1212 
1213 	/* update, and store next to alloc */
1214 	nta++;
1215 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1216 
1217 	/* transfer page from old buffer to new buffer */
1218 	new_buff->dma		= old_buff->dma;
1219 	new_buff->page		= old_buff->page;
1220 	new_buff->page_offset	= old_buff->page_offset;
1221 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1222 
1223 	rx_ring->rx_stats.page_reuse_count++;
1224 
1225 	/* clear contents of buffer_info */
1226 	old_buff->page = NULL;
1227 }
1228 
1229 /**
1230  * i40e_rx_is_programming_status - check for programming status descriptor
1231  * @qw: qword representing status_error_len in CPU ordering
1232  *
1233  * The value of in the descriptor length field indicate if this
1234  * is a programming status descriptor for flow director or FCoE
1235  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1236  * it is a packet descriptor.
1237  **/
1238 static inline bool i40e_rx_is_programming_status(u64 qw)
1239 {
1240 	/* The Rx filter programming status and SPH bit occupy the same
1241 	 * spot in the descriptor. Since we don't support packet split we
1242 	 * can just reuse the bit as an indication that this is a
1243 	 * programming status descriptor.
1244 	 */
1245 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1246 }
1247 
1248 /**
1249  * i40e_clean_programming_status - try clean the programming status descriptor
1250  * @rx_ring: the rx ring that has this descriptor
1251  * @rx_desc: the rx descriptor written back by HW
1252  * @qw: qword representing status_error_len in CPU ordering
1253  *
1254  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1255  * status being successful or not and take actions accordingly. FCoE should
1256  * handle its context/filter programming/invalidation status and take actions.
1257  *
1258  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1259  **/
1260 struct i40e_rx_buffer *i40e_clean_programming_status(
1261 	struct i40e_ring *rx_ring,
1262 	union i40e_rx_desc *rx_desc,
1263 	u64 qw)
1264 {
1265 	struct i40e_rx_buffer *rx_buffer;
1266 	u32 ntc;
1267 	u8 id;
1268 
1269 	if (!i40e_rx_is_programming_status(qw))
1270 		return NULL;
1271 
1272 	ntc = rx_ring->next_to_clean;
1273 
1274 	/* fetch, update, and store next to clean */
1275 	rx_buffer = &rx_ring->rx_bi[ntc++];
1276 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1277 	rx_ring->next_to_clean = ntc;
1278 
1279 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1280 
1281 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1282 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1283 
1284 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1285 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1286 
1287 	return rx_buffer;
1288 }
1289 
1290 /**
1291  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1292  * @tx_ring: the tx ring to set up
1293  *
1294  * Return 0 on success, negative on error
1295  **/
1296 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1297 {
1298 	struct device *dev = tx_ring->dev;
1299 	int bi_size;
1300 
1301 	if (!dev)
1302 		return -ENOMEM;
1303 
1304 	/* warn if we are about to overwrite the pointer */
1305 	WARN_ON(tx_ring->tx_bi);
1306 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1307 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1308 	if (!tx_ring->tx_bi)
1309 		goto err;
1310 
1311 	u64_stats_init(&tx_ring->syncp);
1312 
1313 	/* round up to nearest 4K */
1314 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1315 	/* add u32 for head writeback, align after this takes care of
1316 	 * guaranteeing this is at least one cache line in size
1317 	 */
1318 	tx_ring->size += sizeof(u32);
1319 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1320 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1321 					   &tx_ring->dma, GFP_KERNEL);
1322 	if (!tx_ring->desc) {
1323 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1324 			 tx_ring->size);
1325 		goto err;
1326 	}
1327 
1328 	tx_ring->next_to_use = 0;
1329 	tx_ring->next_to_clean = 0;
1330 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1331 	return 0;
1332 
1333 err:
1334 	kfree(tx_ring->tx_bi);
1335 	tx_ring->tx_bi = NULL;
1336 	return -ENOMEM;
1337 }
1338 
1339 /**
1340  * i40e_clean_rx_ring - Free Rx buffers
1341  * @rx_ring: ring to be cleaned
1342  **/
1343 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1344 {
1345 	unsigned long bi_size;
1346 	u16 i;
1347 
1348 	/* ring already cleared, nothing to do */
1349 	if (!rx_ring->rx_bi)
1350 		return;
1351 
1352 	if (rx_ring->skb) {
1353 		dev_kfree_skb(rx_ring->skb);
1354 		rx_ring->skb = NULL;
1355 	}
1356 
1357 	if (rx_ring->xsk_umem) {
1358 		i40e_xsk_clean_rx_ring(rx_ring);
1359 		goto skip_free;
1360 	}
1361 
1362 	/* Free all the Rx ring sk_buffs */
1363 	for (i = 0; i < rx_ring->count; i++) {
1364 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1365 
1366 		if (!rx_bi->page)
1367 			continue;
1368 
1369 		/* Invalidate cache lines that may have been written to by
1370 		 * device so that we avoid corrupting memory.
1371 		 */
1372 		dma_sync_single_range_for_cpu(rx_ring->dev,
1373 					      rx_bi->dma,
1374 					      rx_bi->page_offset,
1375 					      rx_ring->rx_buf_len,
1376 					      DMA_FROM_DEVICE);
1377 
1378 		/* free resources associated with mapping */
1379 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1380 				     i40e_rx_pg_size(rx_ring),
1381 				     DMA_FROM_DEVICE,
1382 				     I40E_RX_DMA_ATTR);
1383 
1384 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1385 
1386 		rx_bi->page = NULL;
1387 		rx_bi->page_offset = 0;
1388 	}
1389 
1390 skip_free:
1391 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1392 	memset(rx_ring->rx_bi, 0, bi_size);
1393 
1394 	/* Zero out the descriptor ring */
1395 	memset(rx_ring->desc, 0, rx_ring->size);
1396 
1397 	rx_ring->next_to_alloc = 0;
1398 	rx_ring->next_to_clean = 0;
1399 	rx_ring->next_to_use = 0;
1400 }
1401 
1402 /**
1403  * i40e_free_rx_resources - Free Rx resources
1404  * @rx_ring: ring to clean the resources from
1405  *
1406  * Free all receive software resources
1407  **/
1408 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1409 {
1410 	i40e_clean_rx_ring(rx_ring);
1411 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1412 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1413 	rx_ring->xdp_prog = NULL;
1414 	kfree(rx_ring->rx_bi);
1415 	rx_ring->rx_bi = NULL;
1416 
1417 	if (rx_ring->desc) {
1418 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1419 				  rx_ring->desc, rx_ring->dma);
1420 		rx_ring->desc = NULL;
1421 	}
1422 }
1423 
1424 /**
1425  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1426  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1427  *
1428  * Returns 0 on success, negative on failure
1429  **/
1430 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1431 {
1432 	struct device *dev = rx_ring->dev;
1433 	int err = -ENOMEM;
1434 	int bi_size;
1435 
1436 	/* warn if we are about to overwrite the pointer */
1437 	WARN_ON(rx_ring->rx_bi);
1438 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1439 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1440 	if (!rx_ring->rx_bi)
1441 		goto err;
1442 
1443 	u64_stats_init(&rx_ring->syncp);
1444 
1445 	/* Round up to nearest 4K */
1446 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1447 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1448 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1449 					   &rx_ring->dma, GFP_KERNEL);
1450 
1451 	if (!rx_ring->desc) {
1452 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1453 			 rx_ring->size);
1454 		goto err;
1455 	}
1456 
1457 	rx_ring->next_to_alloc = 0;
1458 	rx_ring->next_to_clean = 0;
1459 	rx_ring->next_to_use = 0;
1460 
1461 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1462 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1463 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1464 				       rx_ring->queue_index);
1465 		if (err < 0)
1466 			goto err;
1467 	}
1468 
1469 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1470 
1471 	return 0;
1472 err:
1473 	kfree(rx_ring->rx_bi);
1474 	rx_ring->rx_bi = NULL;
1475 	return err;
1476 }
1477 
1478 /**
1479  * i40e_release_rx_desc - Store the new tail and head values
1480  * @rx_ring: ring to bump
1481  * @val: new head index
1482  **/
1483 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1484 {
1485 	rx_ring->next_to_use = val;
1486 
1487 	/* update next to alloc since we have filled the ring */
1488 	rx_ring->next_to_alloc = val;
1489 
1490 	/* Force memory writes to complete before letting h/w
1491 	 * know there are new descriptors to fetch.  (Only
1492 	 * applicable for weak-ordered memory model archs,
1493 	 * such as IA-64).
1494 	 */
1495 	wmb();
1496 	writel(val, rx_ring->tail);
1497 }
1498 
1499 /**
1500  * i40e_rx_offset - Return expected offset into page to access data
1501  * @rx_ring: Ring we are requesting offset of
1502  *
1503  * Returns the offset value for ring into the data buffer.
1504  */
1505 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1506 {
1507 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1508 }
1509 
1510 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1511 					   unsigned int size)
1512 {
1513 	unsigned int truesize;
1514 
1515 #if (PAGE_SIZE < 8192)
1516 	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1517 #else
1518 	truesize = i40e_rx_offset(rx_ring) ?
1519 		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1520 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1521 		SKB_DATA_ALIGN(size);
1522 #endif
1523 	return truesize;
1524 }
1525 
1526 /**
1527  * i40e_alloc_mapped_page - recycle or make a new page
1528  * @rx_ring: ring to use
1529  * @bi: rx_buffer struct to modify
1530  *
1531  * Returns true if the page was successfully allocated or
1532  * reused.
1533  **/
1534 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1535 				   struct i40e_rx_buffer *bi)
1536 {
1537 	struct page *page = bi->page;
1538 	dma_addr_t dma;
1539 
1540 	/* since we are recycling buffers we should seldom need to alloc */
1541 	if (likely(page)) {
1542 		rx_ring->rx_stats.page_reuse_count++;
1543 		return true;
1544 	}
1545 
1546 	/* alloc new page for storage */
1547 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1548 	if (unlikely(!page)) {
1549 		rx_ring->rx_stats.alloc_page_failed++;
1550 		return false;
1551 	}
1552 
1553 	/* map page for use */
1554 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1555 				 i40e_rx_pg_size(rx_ring),
1556 				 DMA_FROM_DEVICE,
1557 				 I40E_RX_DMA_ATTR);
1558 
1559 	/* if mapping failed free memory back to system since
1560 	 * there isn't much point in holding memory we can't use
1561 	 */
1562 	if (dma_mapping_error(rx_ring->dev, dma)) {
1563 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1564 		rx_ring->rx_stats.alloc_page_failed++;
1565 		return false;
1566 	}
1567 
1568 	bi->dma = dma;
1569 	bi->page = page;
1570 	bi->page_offset = i40e_rx_offset(rx_ring);
1571 	page_ref_add(page, USHRT_MAX - 1);
1572 	bi->pagecnt_bias = USHRT_MAX;
1573 
1574 	return true;
1575 }
1576 
1577 /**
1578  * i40e_alloc_rx_buffers - Replace used receive buffers
1579  * @rx_ring: ring to place buffers on
1580  * @cleaned_count: number of buffers to replace
1581  *
1582  * Returns false if all allocations were successful, true if any fail
1583  **/
1584 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1585 {
1586 	u16 ntu = rx_ring->next_to_use;
1587 	union i40e_rx_desc *rx_desc;
1588 	struct i40e_rx_buffer *bi;
1589 
1590 	/* do nothing if no valid netdev defined */
1591 	if (!rx_ring->netdev || !cleaned_count)
1592 		return false;
1593 
1594 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1595 	bi = &rx_ring->rx_bi[ntu];
1596 
1597 	do {
1598 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1599 			goto no_buffers;
1600 
1601 		/* sync the buffer for use by the device */
1602 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1603 						 bi->page_offset,
1604 						 rx_ring->rx_buf_len,
1605 						 DMA_FROM_DEVICE);
1606 
1607 		/* Refresh the desc even if buffer_addrs didn't change
1608 		 * because each write-back erases this info.
1609 		 */
1610 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1611 
1612 		rx_desc++;
1613 		bi++;
1614 		ntu++;
1615 		if (unlikely(ntu == rx_ring->count)) {
1616 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1617 			bi = rx_ring->rx_bi;
1618 			ntu = 0;
1619 		}
1620 
1621 		/* clear the status bits for the next_to_use descriptor */
1622 		rx_desc->wb.qword1.status_error_len = 0;
1623 
1624 		cleaned_count--;
1625 	} while (cleaned_count);
1626 
1627 	if (rx_ring->next_to_use != ntu)
1628 		i40e_release_rx_desc(rx_ring, ntu);
1629 
1630 	return false;
1631 
1632 no_buffers:
1633 	if (rx_ring->next_to_use != ntu)
1634 		i40e_release_rx_desc(rx_ring, ntu);
1635 
1636 	/* make sure to come back via polling to try again after
1637 	 * allocation failure
1638 	 */
1639 	return true;
1640 }
1641 
1642 /**
1643  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1644  * @vsi: the VSI we care about
1645  * @skb: skb currently being received and modified
1646  * @rx_desc: the receive descriptor
1647  **/
1648 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1649 				    struct sk_buff *skb,
1650 				    union i40e_rx_desc *rx_desc)
1651 {
1652 	struct i40e_rx_ptype_decoded decoded;
1653 	u32 rx_error, rx_status;
1654 	bool ipv4, ipv6;
1655 	u8 ptype;
1656 	u64 qword;
1657 
1658 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1659 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1660 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1661 		   I40E_RXD_QW1_ERROR_SHIFT;
1662 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1663 		    I40E_RXD_QW1_STATUS_SHIFT;
1664 	decoded = decode_rx_desc_ptype(ptype);
1665 
1666 	skb->ip_summed = CHECKSUM_NONE;
1667 
1668 	skb_checksum_none_assert(skb);
1669 
1670 	/* Rx csum enabled and ip headers found? */
1671 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1672 		return;
1673 
1674 	/* did the hardware decode the packet and checksum? */
1675 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1676 		return;
1677 
1678 	/* both known and outer_ip must be set for the below code to work */
1679 	if (!(decoded.known && decoded.outer_ip))
1680 		return;
1681 
1682 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1683 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1684 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1685 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1686 
1687 	if (ipv4 &&
1688 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1689 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1690 		goto checksum_fail;
1691 
1692 	/* likely incorrect csum if alternate IP extension headers found */
1693 	if (ipv6 &&
1694 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1695 		/* don't increment checksum err here, non-fatal err */
1696 		return;
1697 
1698 	/* there was some L4 error, count error and punt packet to the stack */
1699 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1700 		goto checksum_fail;
1701 
1702 	/* handle packets that were not able to be checksummed due
1703 	 * to arrival speed, in this case the stack can compute
1704 	 * the csum.
1705 	 */
1706 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1707 		return;
1708 
1709 	/* If there is an outer header present that might contain a checksum
1710 	 * we need to bump the checksum level by 1 to reflect the fact that
1711 	 * we are indicating we validated the inner checksum.
1712 	 */
1713 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1714 		skb->csum_level = 1;
1715 
1716 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1717 	switch (decoded.inner_prot) {
1718 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1719 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1720 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1721 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1722 		/* fall though */
1723 	default:
1724 		break;
1725 	}
1726 
1727 	return;
1728 
1729 checksum_fail:
1730 	vsi->back->hw_csum_rx_error++;
1731 }
1732 
1733 /**
1734  * i40e_ptype_to_htype - get a hash type
1735  * @ptype: the ptype value from the descriptor
1736  *
1737  * Returns a hash type to be used by skb_set_hash
1738  **/
1739 static inline int i40e_ptype_to_htype(u8 ptype)
1740 {
1741 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1742 
1743 	if (!decoded.known)
1744 		return PKT_HASH_TYPE_NONE;
1745 
1746 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1747 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1748 		return PKT_HASH_TYPE_L4;
1749 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1750 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1751 		return PKT_HASH_TYPE_L3;
1752 	else
1753 		return PKT_HASH_TYPE_L2;
1754 }
1755 
1756 /**
1757  * i40e_rx_hash - set the hash value in the skb
1758  * @ring: descriptor ring
1759  * @rx_desc: specific descriptor
1760  * @skb: skb currently being received and modified
1761  * @rx_ptype: Rx packet type
1762  **/
1763 static inline void i40e_rx_hash(struct i40e_ring *ring,
1764 				union i40e_rx_desc *rx_desc,
1765 				struct sk_buff *skb,
1766 				u8 rx_ptype)
1767 {
1768 	u32 hash;
1769 	const __le64 rss_mask =
1770 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1771 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1772 
1773 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1774 		return;
1775 
1776 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1777 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1778 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1779 	}
1780 }
1781 
1782 /**
1783  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1784  * @rx_ring: rx descriptor ring packet is being transacted on
1785  * @rx_desc: pointer to the EOP Rx descriptor
1786  * @skb: pointer to current skb being populated
1787  * @rx_ptype: the packet type decoded by hardware
1788  *
1789  * This function checks the ring, descriptor, and packet information in
1790  * order to populate the hash, checksum, VLAN, protocol, and
1791  * other fields within the skb.
1792  **/
1793 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1794 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1795 {
1796 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1797 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1798 			I40E_RXD_QW1_STATUS_SHIFT;
1799 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1800 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1801 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1802 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1803 		      I40E_RXD_QW1_PTYPE_SHIFT;
1804 
1805 	if (unlikely(tsynvalid))
1806 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1807 
1808 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1809 
1810 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1811 
1812 	skb_record_rx_queue(skb, rx_ring->queue_index);
1813 
1814 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1815 		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1816 
1817 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1818 				       le16_to_cpu(vlan_tag));
1819 	}
1820 
1821 	/* modifies the skb - consumes the enet header */
1822 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1823 }
1824 
1825 /**
1826  * i40e_cleanup_headers - Correct empty headers
1827  * @rx_ring: rx descriptor ring packet is being transacted on
1828  * @skb: pointer to current skb being fixed
1829  * @rx_desc: pointer to the EOP Rx descriptor
1830  *
1831  * Also address the case where we are pulling data in on pages only
1832  * and as such no data is present in the skb header.
1833  *
1834  * In addition if skb is not at least 60 bytes we need to pad it so that
1835  * it is large enough to qualify as a valid Ethernet frame.
1836  *
1837  * Returns true if an error was encountered and skb was freed.
1838  **/
1839 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1840 				 union i40e_rx_desc *rx_desc)
1841 
1842 {
1843 	/* XDP packets use error pointer so abort at this point */
1844 	if (IS_ERR(skb))
1845 		return true;
1846 
1847 	/* ERR_MASK will only have valid bits if EOP set, and
1848 	 * what we are doing here is actually checking
1849 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1850 	 * the error field
1851 	 */
1852 	if (unlikely(i40e_test_staterr(rx_desc,
1853 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1854 		dev_kfree_skb_any(skb);
1855 		return true;
1856 	}
1857 
1858 	/* if eth_skb_pad returns an error the skb was freed */
1859 	if (eth_skb_pad(skb))
1860 		return true;
1861 
1862 	return false;
1863 }
1864 
1865 /**
1866  * i40e_page_is_reusable - check if any reuse is possible
1867  * @page: page struct to check
1868  *
1869  * A page is not reusable if it was allocated under low memory
1870  * conditions, or it's not in the same NUMA node as this CPU.
1871  */
1872 static inline bool i40e_page_is_reusable(struct page *page)
1873 {
1874 	return (page_to_nid(page) == numa_mem_id()) &&
1875 		!page_is_pfmemalloc(page);
1876 }
1877 
1878 /**
1879  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1880  * the adapter for another receive
1881  *
1882  * @rx_buffer: buffer containing the page
1883  *
1884  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1885  * an unused region in the page.
1886  *
1887  * For small pages, @truesize will be a constant value, half the size
1888  * of the memory at page.  We'll attempt to alternate between high and
1889  * low halves of the page, with one half ready for use by the hardware
1890  * and the other half being consumed by the stack.  We use the page
1891  * ref count to determine whether the stack has finished consuming the
1892  * portion of this page that was passed up with a previous packet.  If
1893  * the page ref count is >1, we'll assume the "other" half page is
1894  * still busy, and this page cannot be reused.
1895  *
1896  * For larger pages, @truesize will be the actual space used by the
1897  * received packet (adjusted upward to an even multiple of the cache
1898  * line size).  This will advance through the page by the amount
1899  * actually consumed by the received packets while there is still
1900  * space for a buffer.  Each region of larger pages will be used at
1901  * most once, after which the page will not be reused.
1902  *
1903  * In either case, if the page is reusable its refcount is increased.
1904  **/
1905 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1906 {
1907 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1908 	struct page *page = rx_buffer->page;
1909 
1910 	/* Is any reuse possible? */
1911 	if (unlikely(!i40e_page_is_reusable(page)))
1912 		return false;
1913 
1914 #if (PAGE_SIZE < 8192)
1915 	/* if we are only owner of page we can reuse it */
1916 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1917 		return false;
1918 #else
1919 #define I40E_LAST_OFFSET \
1920 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1921 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1922 		return false;
1923 #endif
1924 
1925 	/* If we have drained the page fragment pool we need to update
1926 	 * the pagecnt_bias and page count so that we fully restock the
1927 	 * number of references the driver holds.
1928 	 */
1929 	if (unlikely(pagecnt_bias == 1)) {
1930 		page_ref_add(page, USHRT_MAX - 1);
1931 		rx_buffer->pagecnt_bias = USHRT_MAX;
1932 	}
1933 
1934 	return true;
1935 }
1936 
1937 /**
1938  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1939  * @rx_ring: rx descriptor ring to transact packets on
1940  * @rx_buffer: buffer containing page to add
1941  * @skb: sk_buff to place the data into
1942  * @size: packet length from rx_desc
1943  *
1944  * This function will add the data contained in rx_buffer->page to the skb.
1945  * It will just attach the page as a frag to the skb.
1946  *
1947  * The function will then update the page offset.
1948  **/
1949 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1950 			     struct i40e_rx_buffer *rx_buffer,
1951 			     struct sk_buff *skb,
1952 			     unsigned int size)
1953 {
1954 #if (PAGE_SIZE < 8192)
1955 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1956 #else
1957 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1958 #endif
1959 
1960 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1961 			rx_buffer->page_offset, size, truesize);
1962 
1963 	/* page is being used so we must update the page offset */
1964 #if (PAGE_SIZE < 8192)
1965 	rx_buffer->page_offset ^= truesize;
1966 #else
1967 	rx_buffer->page_offset += truesize;
1968 #endif
1969 }
1970 
1971 /**
1972  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1973  * @rx_ring: rx descriptor ring to transact packets on
1974  * @size: size of buffer to add to skb
1975  *
1976  * This function will pull an Rx buffer from the ring and synchronize it
1977  * for use by the CPU.
1978  */
1979 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1980 						 const unsigned int size)
1981 {
1982 	struct i40e_rx_buffer *rx_buffer;
1983 
1984 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1985 	prefetchw(rx_buffer->page);
1986 
1987 	/* we are reusing so sync this buffer for CPU use */
1988 	dma_sync_single_range_for_cpu(rx_ring->dev,
1989 				      rx_buffer->dma,
1990 				      rx_buffer->page_offset,
1991 				      size,
1992 				      DMA_FROM_DEVICE);
1993 
1994 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1995 	rx_buffer->pagecnt_bias--;
1996 
1997 	return rx_buffer;
1998 }
1999 
2000 /**
2001  * i40e_construct_skb - Allocate skb and populate it
2002  * @rx_ring: rx descriptor ring to transact packets on
2003  * @rx_buffer: rx buffer to pull data from
2004  * @xdp: xdp_buff pointing to the data
2005  *
2006  * This function allocates an skb.  It then populates it with the page
2007  * data from the current receive descriptor, taking care to set up the
2008  * skb correctly.
2009  */
2010 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2011 					  struct i40e_rx_buffer *rx_buffer,
2012 					  struct xdp_buff *xdp)
2013 {
2014 	unsigned int size = xdp->data_end - xdp->data;
2015 #if (PAGE_SIZE < 8192)
2016 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2017 #else
2018 	unsigned int truesize = SKB_DATA_ALIGN(size);
2019 #endif
2020 	unsigned int headlen;
2021 	struct sk_buff *skb;
2022 
2023 	/* prefetch first cache line of first page */
2024 	prefetch(xdp->data);
2025 #if L1_CACHE_BYTES < 128
2026 	prefetch(xdp->data + L1_CACHE_BYTES);
2027 #endif
2028 	/* Note, we get here by enabling legacy-rx via:
2029 	 *
2030 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2031 	 *
2032 	 * In this mode, we currently get 0 extra XDP headroom as
2033 	 * opposed to having legacy-rx off, where we process XDP
2034 	 * packets going to stack via i40e_build_skb(). The latter
2035 	 * provides us currently with 192 bytes of headroom.
2036 	 *
2037 	 * For i40e_construct_skb() mode it means that the
2038 	 * xdp->data_meta will always point to xdp->data, since
2039 	 * the helper cannot expand the head. Should this ever
2040 	 * change in future for legacy-rx mode on, then lets also
2041 	 * add xdp->data_meta handling here.
2042 	 */
2043 
2044 	/* allocate a skb to store the frags */
2045 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2046 			       I40E_RX_HDR_SIZE,
2047 			       GFP_ATOMIC | __GFP_NOWARN);
2048 	if (unlikely(!skb))
2049 		return NULL;
2050 
2051 	/* Determine available headroom for copy */
2052 	headlen = size;
2053 	if (headlen > I40E_RX_HDR_SIZE)
2054 		headlen = eth_get_headlen(skb->dev, xdp->data,
2055 					  I40E_RX_HDR_SIZE);
2056 
2057 	/* align pull length to size of long to optimize memcpy performance */
2058 	memcpy(__skb_put(skb, headlen), xdp->data,
2059 	       ALIGN(headlen, sizeof(long)));
2060 
2061 	/* update all of the pointers */
2062 	size -= headlen;
2063 	if (size) {
2064 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2065 				rx_buffer->page_offset + headlen,
2066 				size, truesize);
2067 
2068 		/* buffer is used by skb, update page_offset */
2069 #if (PAGE_SIZE < 8192)
2070 		rx_buffer->page_offset ^= truesize;
2071 #else
2072 		rx_buffer->page_offset += truesize;
2073 #endif
2074 	} else {
2075 		/* buffer is unused, reset bias back to rx_buffer */
2076 		rx_buffer->pagecnt_bias++;
2077 	}
2078 
2079 	return skb;
2080 }
2081 
2082 /**
2083  * i40e_build_skb - Build skb around an existing buffer
2084  * @rx_ring: Rx descriptor ring to transact packets on
2085  * @rx_buffer: Rx buffer to pull data from
2086  * @xdp: xdp_buff pointing to the data
2087  *
2088  * This function builds an skb around an existing Rx buffer, taking care
2089  * to set up the skb correctly and avoid any memcpy overhead.
2090  */
2091 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2092 				      struct i40e_rx_buffer *rx_buffer,
2093 				      struct xdp_buff *xdp)
2094 {
2095 	unsigned int metasize = xdp->data - xdp->data_meta;
2096 #if (PAGE_SIZE < 8192)
2097 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2098 #else
2099 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2100 				SKB_DATA_ALIGN(xdp->data_end -
2101 					       xdp->data_hard_start);
2102 #endif
2103 	struct sk_buff *skb;
2104 
2105 	/* Prefetch first cache line of first page. If xdp->data_meta
2106 	 * is unused, this points exactly as xdp->data, otherwise we
2107 	 * likely have a consumer accessing first few bytes of meta
2108 	 * data, and then actual data.
2109 	 */
2110 	prefetch(xdp->data_meta);
2111 #if L1_CACHE_BYTES < 128
2112 	prefetch(xdp->data_meta + L1_CACHE_BYTES);
2113 #endif
2114 	/* build an skb around the page buffer */
2115 	skb = build_skb(xdp->data_hard_start, truesize);
2116 	if (unlikely(!skb))
2117 		return NULL;
2118 
2119 	/* update pointers within the skb to store the data */
2120 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2121 	__skb_put(skb, xdp->data_end - xdp->data);
2122 	if (metasize)
2123 		skb_metadata_set(skb, metasize);
2124 
2125 	/* buffer is used by skb, update page_offset */
2126 #if (PAGE_SIZE < 8192)
2127 	rx_buffer->page_offset ^= truesize;
2128 #else
2129 	rx_buffer->page_offset += truesize;
2130 #endif
2131 
2132 	return skb;
2133 }
2134 
2135 /**
2136  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2137  * @rx_ring: rx descriptor ring to transact packets on
2138  * @rx_buffer: rx buffer to pull data from
2139  *
2140  * This function will clean up the contents of the rx_buffer.  It will
2141  * either recycle the buffer or unmap it and free the associated resources.
2142  */
2143 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2144 			       struct i40e_rx_buffer *rx_buffer)
2145 {
2146 	if (i40e_can_reuse_rx_page(rx_buffer)) {
2147 		/* hand second half of page back to the ring */
2148 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2149 	} else {
2150 		/* we are not reusing the buffer so unmap it */
2151 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2152 				     i40e_rx_pg_size(rx_ring),
2153 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2154 		__page_frag_cache_drain(rx_buffer->page,
2155 					rx_buffer->pagecnt_bias);
2156 		/* clear contents of buffer_info */
2157 		rx_buffer->page = NULL;
2158 	}
2159 }
2160 
2161 /**
2162  * i40e_is_non_eop - process handling of non-EOP buffers
2163  * @rx_ring: Rx ring being processed
2164  * @rx_desc: Rx descriptor for current buffer
2165  * @skb: Current socket buffer containing buffer in progress
2166  *
2167  * This function updates next to clean.  If the buffer is an EOP buffer
2168  * this function exits returning false, otherwise it will place the
2169  * sk_buff in the next buffer to be chained and return true indicating
2170  * that this is in fact a non-EOP buffer.
2171  **/
2172 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2173 			    union i40e_rx_desc *rx_desc,
2174 			    struct sk_buff *skb)
2175 {
2176 	u32 ntc = rx_ring->next_to_clean + 1;
2177 
2178 	/* fetch, update, and store next to clean */
2179 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2180 	rx_ring->next_to_clean = ntc;
2181 
2182 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2183 
2184 	/* if we are the last buffer then there is nothing else to do */
2185 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2186 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2187 		return false;
2188 
2189 	rx_ring->rx_stats.non_eop_descs++;
2190 
2191 	return true;
2192 }
2193 
2194 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2195 			      struct i40e_ring *xdp_ring);
2196 
2197 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2198 {
2199 	struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2200 
2201 	if (unlikely(!xdpf))
2202 		return I40E_XDP_CONSUMED;
2203 
2204 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2205 }
2206 
2207 /**
2208  * i40e_run_xdp - run an XDP program
2209  * @rx_ring: Rx ring being processed
2210  * @xdp: XDP buffer containing the frame
2211  **/
2212 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2213 				    struct xdp_buff *xdp)
2214 {
2215 	int err, result = I40E_XDP_PASS;
2216 	struct i40e_ring *xdp_ring;
2217 	struct bpf_prog *xdp_prog;
2218 	u32 act;
2219 
2220 	rcu_read_lock();
2221 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2222 
2223 	if (!xdp_prog)
2224 		goto xdp_out;
2225 
2226 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2227 
2228 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2229 	switch (act) {
2230 	case XDP_PASS:
2231 		break;
2232 	case XDP_TX:
2233 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2234 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2235 		break;
2236 	case XDP_REDIRECT:
2237 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2238 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2239 		break;
2240 	default:
2241 		bpf_warn_invalid_xdp_action(act);
2242 		/* fall through */
2243 	case XDP_ABORTED:
2244 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2245 		/* fall through -- handle aborts by dropping packet */
2246 	case XDP_DROP:
2247 		result = I40E_XDP_CONSUMED;
2248 		break;
2249 	}
2250 xdp_out:
2251 	rcu_read_unlock();
2252 	return ERR_PTR(-result);
2253 }
2254 
2255 /**
2256  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2257  * @rx_ring: Rx ring
2258  * @rx_buffer: Rx buffer to adjust
2259  * @size: Size of adjustment
2260  **/
2261 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2262 				struct i40e_rx_buffer *rx_buffer,
2263 				unsigned int size)
2264 {
2265 	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2266 
2267 #if (PAGE_SIZE < 8192)
2268 	rx_buffer->page_offset ^= truesize;
2269 #else
2270 	rx_buffer->page_offset += truesize;
2271 #endif
2272 }
2273 
2274 /**
2275  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2276  * @xdp_ring: XDP Tx ring
2277  *
2278  * This function updates the XDP Tx ring tail register.
2279  **/
2280 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2281 {
2282 	/* Force memory writes to complete before letting h/w
2283 	 * know there are new descriptors to fetch.
2284 	 */
2285 	wmb();
2286 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2287 }
2288 
2289 /**
2290  * i40e_update_rx_stats - Update Rx ring statistics
2291  * @rx_ring: rx descriptor ring
2292  * @total_rx_bytes: number of bytes received
2293  * @total_rx_packets: number of packets received
2294  *
2295  * This function updates the Rx ring statistics.
2296  **/
2297 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2298 			  unsigned int total_rx_bytes,
2299 			  unsigned int total_rx_packets)
2300 {
2301 	u64_stats_update_begin(&rx_ring->syncp);
2302 	rx_ring->stats.packets += total_rx_packets;
2303 	rx_ring->stats.bytes += total_rx_bytes;
2304 	u64_stats_update_end(&rx_ring->syncp);
2305 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2306 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2307 }
2308 
2309 /**
2310  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2311  * @rx_ring: Rx ring
2312  * @xdp_res: Result of the receive batch
2313  *
2314  * This function bumps XDP Tx tail and/or flush redirect map, and
2315  * should be called when a batch of packets has been processed in the
2316  * napi loop.
2317  **/
2318 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2319 {
2320 	if (xdp_res & I40E_XDP_REDIR)
2321 		xdp_do_flush_map();
2322 
2323 	if (xdp_res & I40E_XDP_TX) {
2324 		struct i40e_ring *xdp_ring =
2325 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2326 
2327 		i40e_xdp_ring_update_tail(xdp_ring);
2328 	}
2329 }
2330 
2331 /**
2332  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2333  * @rx_ring: rx descriptor ring to transact packets on
2334  * @budget: Total limit on number of packets to process
2335  *
2336  * This function provides a "bounce buffer" approach to Rx interrupt
2337  * processing.  The advantage to this is that on systems that have
2338  * expensive overhead for IOMMU access this provides a means of avoiding
2339  * it by maintaining the mapping of the page to the system.
2340  *
2341  * Returns amount of work completed
2342  **/
2343 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2344 {
2345 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2346 	struct sk_buff *skb = rx_ring->skb;
2347 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2348 	unsigned int xdp_xmit = 0;
2349 	bool failure = false;
2350 	struct xdp_buff xdp;
2351 
2352 #if (PAGE_SIZE < 8192)
2353 	xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2354 #endif
2355 	xdp.rxq = &rx_ring->xdp_rxq;
2356 
2357 	while (likely(total_rx_packets < (unsigned int)budget)) {
2358 		struct i40e_rx_buffer *rx_buffer;
2359 		union i40e_rx_desc *rx_desc;
2360 		unsigned int size;
2361 		u64 qword;
2362 
2363 		/* return some buffers to hardware, one at a time is too slow */
2364 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2365 			failure = failure ||
2366 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2367 			cleaned_count = 0;
2368 		}
2369 
2370 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2371 
2372 		/* status_error_len will always be zero for unused descriptors
2373 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2374 		 * which is always zero because packet split isn't used, if the
2375 		 * hardware wrote DD then the length will be non-zero
2376 		 */
2377 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2378 
2379 		/* This memory barrier is needed to keep us from reading
2380 		 * any other fields out of the rx_desc until we have
2381 		 * verified the descriptor has been written back.
2382 		 */
2383 		dma_rmb();
2384 
2385 		rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc,
2386 							  qword);
2387 		if (unlikely(rx_buffer)) {
2388 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2389 			cleaned_count++;
2390 			continue;
2391 		}
2392 
2393 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2394 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2395 		if (!size)
2396 			break;
2397 
2398 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2399 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2400 
2401 		/* retrieve a buffer from the ring */
2402 		if (!skb) {
2403 			xdp.data = page_address(rx_buffer->page) +
2404 				   rx_buffer->page_offset;
2405 			xdp.data_meta = xdp.data;
2406 			xdp.data_hard_start = xdp.data -
2407 					      i40e_rx_offset(rx_ring);
2408 			xdp.data_end = xdp.data + size;
2409 #if (PAGE_SIZE > 4096)
2410 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2411 			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2412 #endif
2413 			skb = i40e_run_xdp(rx_ring, &xdp);
2414 		}
2415 
2416 		if (IS_ERR(skb)) {
2417 			unsigned int xdp_res = -PTR_ERR(skb);
2418 
2419 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2420 				xdp_xmit |= xdp_res;
2421 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2422 			} else {
2423 				rx_buffer->pagecnt_bias++;
2424 			}
2425 			total_rx_bytes += size;
2426 			total_rx_packets++;
2427 		} else if (skb) {
2428 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2429 		} else if (ring_uses_build_skb(rx_ring)) {
2430 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2431 		} else {
2432 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2433 		}
2434 
2435 		/* exit if we failed to retrieve a buffer */
2436 		if (!skb) {
2437 			rx_ring->rx_stats.alloc_buff_failed++;
2438 			rx_buffer->pagecnt_bias++;
2439 			break;
2440 		}
2441 
2442 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2443 		cleaned_count++;
2444 
2445 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2446 			continue;
2447 
2448 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2449 			skb = NULL;
2450 			continue;
2451 		}
2452 
2453 		/* probably a little skewed due to removing CRC */
2454 		total_rx_bytes += skb->len;
2455 
2456 		/* populate checksum, VLAN, and protocol */
2457 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2458 
2459 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2460 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2461 		skb = NULL;
2462 
2463 		/* update budget accounting */
2464 		total_rx_packets++;
2465 	}
2466 
2467 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2468 	rx_ring->skb = skb;
2469 
2470 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2471 
2472 	/* guarantee a trip back through this routine if there was a failure */
2473 	return failure ? budget : (int)total_rx_packets;
2474 }
2475 
2476 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2477 {
2478 	u32 val;
2479 
2480 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2481 	 * points out doing so is "meaningless since it was already
2482 	 * auto-cleared". The auto-clearing happens when the interrupt is
2483 	 * asserted.
2484 	 *
2485 	 * Hardware errata 28 for also indicates that writing to a
2486 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2487 	 * an event in the PBA anyway so we need to rely on the automask
2488 	 * to hold pending events for us until the interrupt is re-enabled
2489 	 *
2490 	 * The itr value is reported in microseconds, and the register
2491 	 * value is recorded in 2 microsecond units. For this reason we
2492 	 * only need to shift by the interval shift - 1 instead of the
2493 	 * full value.
2494 	 */
2495 	itr &= I40E_ITR_MASK;
2496 
2497 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2498 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2499 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2500 
2501 	return val;
2502 }
2503 
2504 /* a small macro to shorten up some long lines */
2505 #define INTREG I40E_PFINT_DYN_CTLN
2506 
2507 /* The act of updating the ITR will cause it to immediately trigger. In order
2508  * to prevent this from throwing off adaptive update statistics we defer the
2509  * update so that it can only happen so often. So after either Tx or Rx are
2510  * updated we make the adaptive scheme wait until either the ITR completely
2511  * expires via the next_update expiration or we have been through at least
2512  * 3 interrupts.
2513  */
2514 #define ITR_COUNTDOWN_START 3
2515 
2516 /**
2517  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2518  * @vsi: the VSI we care about
2519  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2520  *
2521  **/
2522 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2523 					  struct i40e_q_vector *q_vector)
2524 {
2525 	struct i40e_hw *hw = &vsi->back->hw;
2526 	u32 intval;
2527 
2528 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2529 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2530 		i40e_irq_dynamic_enable_icr0(vsi->back);
2531 		return;
2532 	}
2533 
2534 	/* These will do nothing if dynamic updates are not enabled */
2535 	i40e_update_itr(q_vector, &q_vector->tx);
2536 	i40e_update_itr(q_vector, &q_vector->rx);
2537 
2538 	/* This block of logic allows us to get away with only updating
2539 	 * one ITR value with each interrupt. The idea is to perform a
2540 	 * pseudo-lazy update with the following criteria.
2541 	 *
2542 	 * 1. Rx is given higher priority than Tx if both are in same state
2543 	 * 2. If we must reduce an ITR that is given highest priority.
2544 	 * 3. We then give priority to increasing ITR based on amount.
2545 	 */
2546 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2547 		/* Rx ITR needs to be reduced, this is highest priority */
2548 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2549 					   q_vector->rx.target_itr);
2550 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2551 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2552 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2553 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2554 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2555 		/* Tx ITR needs to be reduced, this is second priority
2556 		 * Tx ITR needs to be increased more than Rx, fourth priority
2557 		 */
2558 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2559 					   q_vector->tx.target_itr);
2560 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2561 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2562 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2563 		/* Rx ITR needs to be increased, third priority */
2564 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2565 					   q_vector->rx.target_itr);
2566 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2567 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2568 	} else {
2569 		/* No ITR update, lowest priority */
2570 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2571 		if (q_vector->itr_countdown)
2572 			q_vector->itr_countdown--;
2573 	}
2574 
2575 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2576 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2577 }
2578 
2579 /**
2580  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2581  * @napi: napi struct with our devices info in it
2582  * @budget: amount of work driver is allowed to do this pass, in packets
2583  *
2584  * This function will clean all queues associated with a q_vector.
2585  *
2586  * Returns the amount of work done
2587  **/
2588 int i40e_napi_poll(struct napi_struct *napi, int budget)
2589 {
2590 	struct i40e_q_vector *q_vector =
2591 			       container_of(napi, struct i40e_q_vector, napi);
2592 	struct i40e_vsi *vsi = q_vector->vsi;
2593 	struct i40e_ring *ring;
2594 	bool clean_complete = true;
2595 	bool arm_wb = false;
2596 	int budget_per_ring;
2597 	int work_done = 0;
2598 
2599 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2600 		napi_complete(napi);
2601 		return 0;
2602 	}
2603 
2604 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2605 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2606 	 */
2607 	i40e_for_each_ring(ring, q_vector->tx) {
2608 		bool wd = ring->xsk_umem ?
2609 			  i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2610 			  i40e_clean_tx_irq(vsi, ring, budget);
2611 
2612 		if (!wd) {
2613 			clean_complete = false;
2614 			continue;
2615 		}
2616 		arm_wb |= ring->arm_wb;
2617 		ring->arm_wb = false;
2618 	}
2619 
2620 	/* Handle case where we are called by netpoll with a budget of 0 */
2621 	if (budget <= 0)
2622 		goto tx_only;
2623 
2624 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2625 	 * allow the budget to go below 1 because that would exit polling early.
2626 	 */
2627 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2628 
2629 	i40e_for_each_ring(ring, q_vector->rx) {
2630 		int cleaned = ring->xsk_umem ?
2631 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2632 			      i40e_clean_rx_irq(ring, budget_per_ring);
2633 
2634 		work_done += cleaned;
2635 		/* if we clean as many as budgeted, we must not be done */
2636 		if (cleaned >= budget_per_ring)
2637 			clean_complete = false;
2638 	}
2639 
2640 	/* If work not completed, return budget and polling will return */
2641 	if (!clean_complete) {
2642 		int cpu_id = smp_processor_id();
2643 
2644 		/* It is possible that the interrupt affinity has changed but,
2645 		 * if the cpu is pegged at 100%, polling will never exit while
2646 		 * traffic continues and the interrupt will be stuck on this
2647 		 * cpu.  We check to make sure affinity is correct before we
2648 		 * continue to poll, otherwise we must stop polling so the
2649 		 * interrupt can move to the correct cpu.
2650 		 */
2651 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2652 			/* Tell napi that we are done polling */
2653 			napi_complete_done(napi, work_done);
2654 
2655 			/* Force an interrupt */
2656 			i40e_force_wb(vsi, q_vector);
2657 
2658 			/* Return budget-1 so that polling stops */
2659 			return budget - 1;
2660 		}
2661 tx_only:
2662 		if (arm_wb) {
2663 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2664 			i40e_enable_wb_on_itr(vsi, q_vector);
2665 		}
2666 		return budget;
2667 	}
2668 
2669 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2670 		q_vector->arm_wb_state = false;
2671 
2672 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2673 	 * poll us due to busy-polling
2674 	 */
2675 	if (likely(napi_complete_done(napi, work_done)))
2676 		i40e_update_enable_itr(vsi, q_vector);
2677 
2678 	return min(work_done, budget - 1);
2679 }
2680 
2681 /**
2682  * i40e_atr - Add a Flow Director ATR filter
2683  * @tx_ring:  ring to add programming descriptor to
2684  * @skb:      send buffer
2685  * @tx_flags: send tx flags
2686  **/
2687 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2688 		     u32 tx_flags)
2689 {
2690 	struct i40e_filter_program_desc *fdir_desc;
2691 	struct i40e_pf *pf = tx_ring->vsi->back;
2692 	union {
2693 		unsigned char *network;
2694 		struct iphdr *ipv4;
2695 		struct ipv6hdr *ipv6;
2696 	} hdr;
2697 	struct tcphdr *th;
2698 	unsigned int hlen;
2699 	u32 flex_ptype, dtype_cmd;
2700 	int l4_proto;
2701 	u16 i;
2702 
2703 	/* make sure ATR is enabled */
2704 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2705 		return;
2706 
2707 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2708 		return;
2709 
2710 	/* if sampling is disabled do nothing */
2711 	if (!tx_ring->atr_sample_rate)
2712 		return;
2713 
2714 	/* Currently only IPv4/IPv6 with TCP is supported */
2715 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2716 		return;
2717 
2718 	/* snag network header to get L4 type and address */
2719 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2720 		      skb_inner_network_header(skb) : skb_network_header(skb);
2721 
2722 	/* Note: tx_flags gets modified to reflect inner protocols in
2723 	 * tx_enable_csum function if encap is enabled.
2724 	 */
2725 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2726 		/* access ihl as u8 to avoid unaligned access on ia64 */
2727 		hlen = (hdr.network[0] & 0x0F) << 2;
2728 		l4_proto = hdr.ipv4->protocol;
2729 	} else {
2730 		/* find the start of the innermost ipv6 header */
2731 		unsigned int inner_hlen = hdr.network - skb->data;
2732 		unsigned int h_offset = inner_hlen;
2733 
2734 		/* this function updates h_offset to the end of the header */
2735 		l4_proto =
2736 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2737 		/* hlen will contain our best estimate of the tcp header */
2738 		hlen = h_offset - inner_hlen;
2739 	}
2740 
2741 	if (l4_proto != IPPROTO_TCP)
2742 		return;
2743 
2744 	th = (struct tcphdr *)(hdr.network + hlen);
2745 
2746 	/* Due to lack of space, no more new filters can be programmed */
2747 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2748 		return;
2749 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2750 		/* HW ATR eviction will take care of removing filters on FIN
2751 		 * and RST packets.
2752 		 */
2753 		if (th->fin || th->rst)
2754 			return;
2755 	}
2756 
2757 	tx_ring->atr_count++;
2758 
2759 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2760 	if (!th->fin &&
2761 	    !th->syn &&
2762 	    !th->rst &&
2763 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2764 		return;
2765 
2766 	tx_ring->atr_count = 0;
2767 
2768 	/* grab the next descriptor */
2769 	i = tx_ring->next_to_use;
2770 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2771 
2772 	i++;
2773 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2774 
2775 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2776 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2777 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2778 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2779 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2780 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2781 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2782 
2783 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2784 
2785 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2786 
2787 	dtype_cmd |= (th->fin || th->rst) ?
2788 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2789 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2790 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2791 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2792 
2793 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2794 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2795 
2796 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2797 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2798 
2799 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2800 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2801 		dtype_cmd |=
2802 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2803 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2804 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2805 	else
2806 		dtype_cmd |=
2807 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2808 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2809 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2810 
2811 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2812 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2813 
2814 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2815 	fdir_desc->rsvd = cpu_to_le32(0);
2816 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2817 	fdir_desc->fd_id = cpu_to_le32(0);
2818 }
2819 
2820 /**
2821  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2822  * @skb:     send buffer
2823  * @tx_ring: ring to send buffer on
2824  * @flags:   the tx flags to be set
2825  *
2826  * Checks the skb and set up correspondingly several generic transmit flags
2827  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2828  *
2829  * Returns error code indicate the frame should be dropped upon error and the
2830  * otherwise  returns 0 to indicate the flags has been set properly.
2831  **/
2832 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2833 					     struct i40e_ring *tx_ring,
2834 					     u32 *flags)
2835 {
2836 	__be16 protocol = skb->protocol;
2837 	u32  tx_flags = 0;
2838 
2839 	if (protocol == htons(ETH_P_8021Q) &&
2840 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2841 		/* When HW VLAN acceleration is turned off by the user the
2842 		 * stack sets the protocol to 8021q so that the driver
2843 		 * can take any steps required to support the SW only
2844 		 * VLAN handling.  In our case the driver doesn't need
2845 		 * to take any further steps so just set the protocol
2846 		 * to the encapsulated ethertype.
2847 		 */
2848 		skb->protocol = vlan_get_protocol(skb);
2849 		goto out;
2850 	}
2851 
2852 	/* if we have a HW VLAN tag being added, default to the HW one */
2853 	if (skb_vlan_tag_present(skb)) {
2854 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2855 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2856 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2857 	} else if (protocol == htons(ETH_P_8021Q)) {
2858 		struct vlan_hdr *vhdr, _vhdr;
2859 
2860 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2861 		if (!vhdr)
2862 			return -EINVAL;
2863 
2864 		protocol = vhdr->h_vlan_encapsulated_proto;
2865 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2866 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2867 	}
2868 
2869 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2870 		goto out;
2871 
2872 	/* Insert 802.1p priority into VLAN header */
2873 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2874 	    (skb->priority != TC_PRIO_CONTROL)) {
2875 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2876 		tx_flags |= (skb->priority & 0x7) <<
2877 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2878 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2879 			struct vlan_ethhdr *vhdr;
2880 			int rc;
2881 
2882 			rc = skb_cow_head(skb, 0);
2883 			if (rc < 0)
2884 				return rc;
2885 			vhdr = (struct vlan_ethhdr *)skb->data;
2886 			vhdr->h_vlan_TCI = htons(tx_flags >>
2887 						 I40E_TX_FLAGS_VLAN_SHIFT);
2888 		} else {
2889 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2890 		}
2891 	}
2892 
2893 out:
2894 	*flags = tx_flags;
2895 	return 0;
2896 }
2897 
2898 /**
2899  * i40e_tso - set up the tso context descriptor
2900  * @first:    pointer to first Tx buffer for xmit
2901  * @hdr_len:  ptr to the size of the packet header
2902  * @cd_type_cmd_tso_mss: Quad Word 1
2903  *
2904  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2905  **/
2906 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2907 		    u64 *cd_type_cmd_tso_mss)
2908 {
2909 	struct sk_buff *skb = first->skb;
2910 	u64 cd_cmd, cd_tso_len, cd_mss;
2911 	union {
2912 		struct iphdr *v4;
2913 		struct ipv6hdr *v6;
2914 		unsigned char *hdr;
2915 	} ip;
2916 	union {
2917 		struct tcphdr *tcp;
2918 		struct udphdr *udp;
2919 		unsigned char *hdr;
2920 	} l4;
2921 	u32 paylen, l4_offset;
2922 	u16 gso_segs, gso_size;
2923 	int err;
2924 
2925 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2926 		return 0;
2927 
2928 	if (!skb_is_gso(skb))
2929 		return 0;
2930 
2931 	err = skb_cow_head(skb, 0);
2932 	if (err < 0)
2933 		return err;
2934 
2935 	ip.hdr = skb_network_header(skb);
2936 	l4.hdr = skb_transport_header(skb);
2937 
2938 	/* initialize outer IP header fields */
2939 	if (ip.v4->version == 4) {
2940 		ip.v4->tot_len = 0;
2941 		ip.v4->check = 0;
2942 	} else {
2943 		ip.v6->payload_len = 0;
2944 	}
2945 
2946 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2947 					 SKB_GSO_GRE_CSUM |
2948 					 SKB_GSO_IPXIP4 |
2949 					 SKB_GSO_IPXIP6 |
2950 					 SKB_GSO_UDP_TUNNEL |
2951 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2952 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2953 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2954 			l4.udp->len = 0;
2955 
2956 			/* determine offset of outer transport header */
2957 			l4_offset = l4.hdr - skb->data;
2958 
2959 			/* remove payload length from outer checksum */
2960 			paylen = skb->len - l4_offset;
2961 			csum_replace_by_diff(&l4.udp->check,
2962 					     (__force __wsum)htonl(paylen));
2963 		}
2964 
2965 		/* reset pointers to inner headers */
2966 		ip.hdr = skb_inner_network_header(skb);
2967 		l4.hdr = skb_inner_transport_header(skb);
2968 
2969 		/* initialize inner IP header fields */
2970 		if (ip.v4->version == 4) {
2971 			ip.v4->tot_len = 0;
2972 			ip.v4->check = 0;
2973 		} else {
2974 			ip.v6->payload_len = 0;
2975 		}
2976 	}
2977 
2978 	/* determine offset of inner transport header */
2979 	l4_offset = l4.hdr - skb->data;
2980 
2981 	/* remove payload length from inner checksum */
2982 	paylen = skb->len - l4_offset;
2983 
2984 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2985 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2986 		/* compute length of segmentation header */
2987 		*hdr_len = sizeof(*l4.udp) + l4_offset;
2988 	} else {
2989 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2990 		/* compute length of segmentation header */
2991 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2992 	}
2993 
2994 	/* pull values out of skb_shinfo */
2995 	gso_size = skb_shinfo(skb)->gso_size;
2996 	gso_segs = skb_shinfo(skb)->gso_segs;
2997 
2998 	/* update GSO size and bytecount with header size */
2999 	first->gso_segs = gso_segs;
3000 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3001 
3002 	/* find the field values */
3003 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3004 	cd_tso_len = skb->len - *hdr_len;
3005 	cd_mss = gso_size;
3006 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3007 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3008 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3009 	return 1;
3010 }
3011 
3012 /**
3013  * i40e_tsyn - set up the tsyn context descriptor
3014  * @tx_ring:  ptr to the ring to send
3015  * @skb:      ptr to the skb we're sending
3016  * @tx_flags: the collected send information
3017  * @cd_type_cmd_tso_mss: Quad Word 1
3018  *
3019  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3020  **/
3021 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3022 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3023 {
3024 	struct i40e_pf *pf;
3025 
3026 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3027 		return 0;
3028 
3029 	/* Tx timestamps cannot be sampled when doing TSO */
3030 	if (tx_flags & I40E_TX_FLAGS_TSO)
3031 		return 0;
3032 
3033 	/* only timestamp the outbound packet if the user has requested it and
3034 	 * we are not already transmitting a packet to be timestamped
3035 	 */
3036 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3037 	if (!(pf->flags & I40E_FLAG_PTP))
3038 		return 0;
3039 
3040 	if (pf->ptp_tx &&
3041 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3042 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3043 		pf->ptp_tx_start = jiffies;
3044 		pf->ptp_tx_skb = skb_get(skb);
3045 	} else {
3046 		pf->tx_hwtstamp_skipped++;
3047 		return 0;
3048 	}
3049 
3050 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3051 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3052 
3053 	return 1;
3054 }
3055 
3056 /**
3057  * i40e_tx_enable_csum - Enable Tx checksum offloads
3058  * @skb: send buffer
3059  * @tx_flags: pointer to Tx flags currently set
3060  * @td_cmd: Tx descriptor command bits to set
3061  * @td_offset: Tx descriptor header offsets to set
3062  * @tx_ring: Tx descriptor ring
3063  * @cd_tunneling: ptr to context desc bits
3064  **/
3065 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3066 			       u32 *td_cmd, u32 *td_offset,
3067 			       struct i40e_ring *tx_ring,
3068 			       u32 *cd_tunneling)
3069 {
3070 	union {
3071 		struct iphdr *v4;
3072 		struct ipv6hdr *v6;
3073 		unsigned char *hdr;
3074 	} ip;
3075 	union {
3076 		struct tcphdr *tcp;
3077 		struct udphdr *udp;
3078 		unsigned char *hdr;
3079 	} l4;
3080 	unsigned char *exthdr;
3081 	u32 offset, cmd = 0;
3082 	__be16 frag_off;
3083 	u8 l4_proto = 0;
3084 
3085 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3086 		return 0;
3087 
3088 	ip.hdr = skb_network_header(skb);
3089 	l4.hdr = skb_transport_header(skb);
3090 
3091 	/* compute outer L2 header size */
3092 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3093 
3094 	if (skb->encapsulation) {
3095 		u32 tunnel = 0;
3096 		/* define outer network header type */
3097 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3098 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3099 				  I40E_TX_CTX_EXT_IP_IPV4 :
3100 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3101 
3102 			l4_proto = ip.v4->protocol;
3103 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3104 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3105 
3106 			exthdr = ip.hdr + sizeof(*ip.v6);
3107 			l4_proto = ip.v6->nexthdr;
3108 			if (l4.hdr != exthdr)
3109 				ipv6_skip_exthdr(skb, exthdr - skb->data,
3110 						 &l4_proto, &frag_off);
3111 		}
3112 
3113 		/* define outer transport */
3114 		switch (l4_proto) {
3115 		case IPPROTO_UDP:
3116 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3117 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3118 			break;
3119 		case IPPROTO_GRE:
3120 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3121 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3122 			break;
3123 		case IPPROTO_IPIP:
3124 		case IPPROTO_IPV6:
3125 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3126 			l4.hdr = skb_inner_network_header(skb);
3127 			break;
3128 		default:
3129 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3130 				return -1;
3131 
3132 			skb_checksum_help(skb);
3133 			return 0;
3134 		}
3135 
3136 		/* compute outer L3 header size */
3137 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3138 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3139 
3140 		/* switch IP header pointer from outer to inner header */
3141 		ip.hdr = skb_inner_network_header(skb);
3142 
3143 		/* compute tunnel header size */
3144 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3145 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3146 
3147 		/* indicate if we need to offload outer UDP header */
3148 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3149 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3150 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3151 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3152 
3153 		/* record tunnel offload values */
3154 		*cd_tunneling |= tunnel;
3155 
3156 		/* switch L4 header pointer from outer to inner */
3157 		l4.hdr = skb_inner_transport_header(skb);
3158 		l4_proto = 0;
3159 
3160 		/* reset type as we transition from outer to inner headers */
3161 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3162 		if (ip.v4->version == 4)
3163 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3164 		if (ip.v6->version == 6)
3165 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3166 	}
3167 
3168 	/* Enable IP checksum offloads */
3169 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3170 		l4_proto = ip.v4->protocol;
3171 		/* the stack computes the IP header already, the only time we
3172 		 * need the hardware to recompute it is in the case of TSO.
3173 		 */
3174 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3175 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3176 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3177 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3178 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3179 
3180 		exthdr = ip.hdr + sizeof(*ip.v6);
3181 		l4_proto = ip.v6->nexthdr;
3182 		if (l4.hdr != exthdr)
3183 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3184 					 &l4_proto, &frag_off);
3185 	}
3186 
3187 	/* compute inner L3 header size */
3188 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3189 
3190 	/* Enable L4 checksum offloads */
3191 	switch (l4_proto) {
3192 	case IPPROTO_TCP:
3193 		/* enable checksum offloads */
3194 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3195 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3196 		break;
3197 	case IPPROTO_SCTP:
3198 		/* enable SCTP checksum offload */
3199 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3200 		offset |= (sizeof(struct sctphdr) >> 2) <<
3201 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3202 		break;
3203 	case IPPROTO_UDP:
3204 		/* enable UDP checksum offload */
3205 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3206 		offset |= (sizeof(struct udphdr) >> 2) <<
3207 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3208 		break;
3209 	default:
3210 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3211 			return -1;
3212 		skb_checksum_help(skb);
3213 		return 0;
3214 	}
3215 
3216 	*td_cmd |= cmd;
3217 	*td_offset |= offset;
3218 
3219 	return 1;
3220 }
3221 
3222 /**
3223  * i40e_create_tx_ctx Build the Tx context descriptor
3224  * @tx_ring:  ring to create the descriptor on
3225  * @cd_type_cmd_tso_mss: Quad Word 1
3226  * @cd_tunneling: Quad Word 0 - bits 0-31
3227  * @cd_l2tag2: Quad Word 0 - bits 32-63
3228  **/
3229 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3230 			       const u64 cd_type_cmd_tso_mss,
3231 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3232 {
3233 	struct i40e_tx_context_desc *context_desc;
3234 	int i = tx_ring->next_to_use;
3235 
3236 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3237 	    !cd_tunneling && !cd_l2tag2)
3238 		return;
3239 
3240 	/* grab the next descriptor */
3241 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3242 
3243 	i++;
3244 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3245 
3246 	/* cpu_to_le32 and assign to struct fields */
3247 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3248 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3249 	context_desc->rsvd = cpu_to_le16(0);
3250 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3251 }
3252 
3253 /**
3254  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3255  * @tx_ring: the ring to be checked
3256  * @size:    the size buffer we want to assure is available
3257  *
3258  * Returns -EBUSY if a stop is needed, else 0
3259  **/
3260 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3261 {
3262 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3263 	/* Memory barrier before checking head and tail */
3264 	smp_mb();
3265 
3266 	/* Check again in a case another CPU has just made room available. */
3267 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3268 		return -EBUSY;
3269 
3270 	/* A reprieve! - use start_queue because it doesn't call schedule */
3271 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3272 	++tx_ring->tx_stats.restart_queue;
3273 	return 0;
3274 }
3275 
3276 /**
3277  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3278  * @skb:      send buffer
3279  *
3280  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3281  * and so we need to figure out the cases where we need to linearize the skb.
3282  *
3283  * For TSO we need to count the TSO header and segment payload separately.
3284  * As such we need to check cases where we have 7 fragments or more as we
3285  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3286  * the segment payload in the first descriptor, and another 7 for the
3287  * fragments.
3288  **/
3289 bool __i40e_chk_linearize(struct sk_buff *skb)
3290 {
3291 	const skb_frag_t *frag, *stale;
3292 	int nr_frags, sum;
3293 
3294 	/* no need to check if number of frags is less than 7 */
3295 	nr_frags = skb_shinfo(skb)->nr_frags;
3296 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3297 		return false;
3298 
3299 	/* We need to walk through the list and validate that each group
3300 	 * of 6 fragments totals at least gso_size.
3301 	 */
3302 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3303 	frag = &skb_shinfo(skb)->frags[0];
3304 
3305 	/* Initialize size to the negative value of gso_size minus 1.  We
3306 	 * use this as the worst case scenerio in which the frag ahead
3307 	 * of us only provides one byte which is why we are limited to 6
3308 	 * descriptors for a single transmit as the header and previous
3309 	 * fragment are already consuming 2 descriptors.
3310 	 */
3311 	sum = 1 - skb_shinfo(skb)->gso_size;
3312 
3313 	/* Add size of frags 0 through 4 to create our initial sum */
3314 	sum += skb_frag_size(frag++);
3315 	sum += skb_frag_size(frag++);
3316 	sum += skb_frag_size(frag++);
3317 	sum += skb_frag_size(frag++);
3318 	sum += skb_frag_size(frag++);
3319 
3320 	/* Walk through fragments adding latest fragment, testing it, and
3321 	 * then removing stale fragments from the sum.
3322 	 */
3323 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3324 		int stale_size = skb_frag_size(stale);
3325 
3326 		sum += skb_frag_size(frag++);
3327 
3328 		/* The stale fragment may present us with a smaller
3329 		 * descriptor than the actual fragment size. To account
3330 		 * for that we need to remove all the data on the front and
3331 		 * figure out what the remainder would be in the last
3332 		 * descriptor associated with the fragment.
3333 		 */
3334 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3335 			int align_pad = -(skb_frag_off(stale)) &
3336 					(I40E_MAX_READ_REQ_SIZE - 1);
3337 
3338 			sum -= align_pad;
3339 			stale_size -= align_pad;
3340 
3341 			do {
3342 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3343 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3344 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3345 		}
3346 
3347 		/* if sum is negative we failed to make sufficient progress */
3348 		if (sum < 0)
3349 			return true;
3350 
3351 		if (!nr_frags--)
3352 			break;
3353 
3354 		sum -= stale_size;
3355 	}
3356 
3357 	return false;
3358 }
3359 
3360 /**
3361  * i40e_tx_map - Build the Tx descriptor
3362  * @tx_ring:  ring to send buffer on
3363  * @skb:      send buffer
3364  * @first:    first buffer info buffer to use
3365  * @tx_flags: collected send information
3366  * @hdr_len:  size of the packet header
3367  * @td_cmd:   the command field in the descriptor
3368  * @td_offset: offset for checksum or crc
3369  *
3370  * Returns 0 on success, -1 on failure to DMA
3371  **/
3372 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3373 			      struct i40e_tx_buffer *first, u32 tx_flags,
3374 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3375 {
3376 	unsigned int data_len = skb->data_len;
3377 	unsigned int size = skb_headlen(skb);
3378 	skb_frag_t *frag;
3379 	struct i40e_tx_buffer *tx_bi;
3380 	struct i40e_tx_desc *tx_desc;
3381 	u16 i = tx_ring->next_to_use;
3382 	u32 td_tag = 0;
3383 	dma_addr_t dma;
3384 	u16 desc_count = 1;
3385 
3386 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3387 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3388 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3389 			 I40E_TX_FLAGS_VLAN_SHIFT;
3390 	}
3391 
3392 	first->tx_flags = tx_flags;
3393 
3394 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3395 
3396 	tx_desc = I40E_TX_DESC(tx_ring, i);
3397 	tx_bi = first;
3398 
3399 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3400 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3401 
3402 		if (dma_mapping_error(tx_ring->dev, dma))
3403 			goto dma_error;
3404 
3405 		/* record length, and DMA address */
3406 		dma_unmap_len_set(tx_bi, len, size);
3407 		dma_unmap_addr_set(tx_bi, dma, dma);
3408 
3409 		/* align size to end of page */
3410 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3411 		tx_desc->buffer_addr = cpu_to_le64(dma);
3412 
3413 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3414 			tx_desc->cmd_type_offset_bsz =
3415 				build_ctob(td_cmd, td_offset,
3416 					   max_data, td_tag);
3417 
3418 			tx_desc++;
3419 			i++;
3420 			desc_count++;
3421 
3422 			if (i == tx_ring->count) {
3423 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3424 				i = 0;
3425 			}
3426 
3427 			dma += max_data;
3428 			size -= max_data;
3429 
3430 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3431 			tx_desc->buffer_addr = cpu_to_le64(dma);
3432 		}
3433 
3434 		if (likely(!data_len))
3435 			break;
3436 
3437 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3438 							  size, td_tag);
3439 
3440 		tx_desc++;
3441 		i++;
3442 		desc_count++;
3443 
3444 		if (i == tx_ring->count) {
3445 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3446 			i = 0;
3447 		}
3448 
3449 		size = skb_frag_size(frag);
3450 		data_len -= size;
3451 
3452 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3453 				       DMA_TO_DEVICE);
3454 
3455 		tx_bi = &tx_ring->tx_bi[i];
3456 	}
3457 
3458 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3459 
3460 	i++;
3461 	if (i == tx_ring->count)
3462 		i = 0;
3463 
3464 	tx_ring->next_to_use = i;
3465 
3466 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3467 
3468 	/* write last descriptor with EOP bit */
3469 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3470 
3471 	/* We OR these values together to check both against 4 (WB_STRIDE)
3472 	 * below. This is safe since we don't re-use desc_count afterwards.
3473 	 */
3474 	desc_count |= ++tx_ring->packet_stride;
3475 
3476 	if (desc_count >= WB_STRIDE) {
3477 		/* write last descriptor with RS bit set */
3478 		td_cmd |= I40E_TX_DESC_CMD_RS;
3479 		tx_ring->packet_stride = 0;
3480 	}
3481 
3482 	tx_desc->cmd_type_offset_bsz =
3483 			build_ctob(td_cmd, td_offset, size, td_tag);
3484 
3485 	skb_tx_timestamp(skb);
3486 
3487 	/* Force memory writes to complete before letting h/w know there
3488 	 * are new descriptors to fetch.
3489 	 *
3490 	 * We also use this memory barrier to make certain all of the
3491 	 * status bits have been updated before next_to_watch is written.
3492 	 */
3493 	wmb();
3494 
3495 	/* set next_to_watch value indicating a packet is present */
3496 	first->next_to_watch = tx_desc;
3497 
3498 	/* notify HW of packet */
3499 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3500 		writel(i, tx_ring->tail);
3501 	}
3502 
3503 	return 0;
3504 
3505 dma_error:
3506 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3507 
3508 	/* clear dma mappings for failed tx_bi map */
3509 	for (;;) {
3510 		tx_bi = &tx_ring->tx_bi[i];
3511 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3512 		if (tx_bi == first)
3513 			break;
3514 		if (i == 0)
3515 			i = tx_ring->count;
3516 		i--;
3517 	}
3518 
3519 	tx_ring->next_to_use = i;
3520 
3521 	return -1;
3522 }
3523 
3524 /**
3525  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3526  * @xdp: data to transmit
3527  * @xdp_ring: XDP Tx ring
3528  **/
3529 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3530 			      struct i40e_ring *xdp_ring)
3531 {
3532 	u16 i = xdp_ring->next_to_use;
3533 	struct i40e_tx_buffer *tx_bi;
3534 	struct i40e_tx_desc *tx_desc;
3535 	void *data = xdpf->data;
3536 	u32 size = xdpf->len;
3537 	dma_addr_t dma;
3538 
3539 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3540 		xdp_ring->tx_stats.tx_busy++;
3541 		return I40E_XDP_CONSUMED;
3542 	}
3543 	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3544 	if (dma_mapping_error(xdp_ring->dev, dma))
3545 		return I40E_XDP_CONSUMED;
3546 
3547 	tx_bi = &xdp_ring->tx_bi[i];
3548 	tx_bi->bytecount = size;
3549 	tx_bi->gso_segs = 1;
3550 	tx_bi->xdpf = xdpf;
3551 
3552 	/* record length, and DMA address */
3553 	dma_unmap_len_set(tx_bi, len, size);
3554 	dma_unmap_addr_set(tx_bi, dma, dma);
3555 
3556 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3557 	tx_desc->buffer_addr = cpu_to_le64(dma);
3558 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3559 						  | I40E_TXD_CMD,
3560 						  0, size, 0);
3561 
3562 	/* Make certain all of the status bits have been updated
3563 	 * before next_to_watch is written.
3564 	 */
3565 	smp_wmb();
3566 
3567 	i++;
3568 	if (i == xdp_ring->count)
3569 		i = 0;
3570 
3571 	tx_bi->next_to_watch = tx_desc;
3572 	xdp_ring->next_to_use = i;
3573 
3574 	return I40E_XDP_TX;
3575 }
3576 
3577 /**
3578  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3579  * @skb:     send buffer
3580  * @tx_ring: ring to send buffer on
3581  *
3582  * Returns NETDEV_TX_OK if sent, else an error code
3583  **/
3584 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3585 					struct i40e_ring *tx_ring)
3586 {
3587 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3588 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3589 	struct i40e_tx_buffer *first;
3590 	u32 td_offset = 0;
3591 	u32 tx_flags = 0;
3592 	__be16 protocol;
3593 	u32 td_cmd = 0;
3594 	u8 hdr_len = 0;
3595 	int tso, count;
3596 	int tsyn;
3597 
3598 	/* prefetch the data, we'll need it later */
3599 	prefetch(skb->data);
3600 
3601 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3602 
3603 	count = i40e_xmit_descriptor_count(skb);
3604 	if (i40e_chk_linearize(skb, count)) {
3605 		if (__skb_linearize(skb)) {
3606 			dev_kfree_skb_any(skb);
3607 			return NETDEV_TX_OK;
3608 		}
3609 		count = i40e_txd_use_count(skb->len);
3610 		tx_ring->tx_stats.tx_linearize++;
3611 	}
3612 
3613 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3614 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3615 	 *       + 4 desc gap to avoid the cache line where head is,
3616 	 *       + 1 desc for context descriptor,
3617 	 * otherwise try next time
3618 	 */
3619 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3620 		tx_ring->tx_stats.tx_busy++;
3621 		return NETDEV_TX_BUSY;
3622 	}
3623 
3624 	/* record the location of the first descriptor for this packet */
3625 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3626 	first->skb = skb;
3627 	first->bytecount = skb->len;
3628 	first->gso_segs = 1;
3629 
3630 	/* prepare the xmit flags */
3631 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3632 		goto out_drop;
3633 
3634 	/* obtain protocol of skb */
3635 	protocol = vlan_get_protocol(skb);
3636 
3637 	/* setup IPv4/IPv6 offloads */
3638 	if (protocol == htons(ETH_P_IP))
3639 		tx_flags |= I40E_TX_FLAGS_IPV4;
3640 	else if (protocol == htons(ETH_P_IPV6))
3641 		tx_flags |= I40E_TX_FLAGS_IPV6;
3642 
3643 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3644 
3645 	if (tso < 0)
3646 		goto out_drop;
3647 	else if (tso)
3648 		tx_flags |= I40E_TX_FLAGS_TSO;
3649 
3650 	/* Always offload the checksum, since it's in the data descriptor */
3651 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3652 				  tx_ring, &cd_tunneling);
3653 	if (tso < 0)
3654 		goto out_drop;
3655 
3656 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3657 
3658 	if (tsyn)
3659 		tx_flags |= I40E_TX_FLAGS_TSYN;
3660 
3661 	/* always enable CRC insertion offload */
3662 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3663 
3664 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3665 			   cd_tunneling, cd_l2tag2);
3666 
3667 	/* Add Flow Director ATR if it's enabled.
3668 	 *
3669 	 * NOTE: this must always be directly before the data descriptor.
3670 	 */
3671 	i40e_atr(tx_ring, skb, tx_flags);
3672 
3673 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3674 			td_cmd, td_offset))
3675 		goto cleanup_tx_tstamp;
3676 
3677 	return NETDEV_TX_OK;
3678 
3679 out_drop:
3680 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3681 	dev_kfree_skb_any(first->skb);
3682 	first->skb = NULL;
3683 cleanup_tx_tstamp:
3684 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3685 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3686 
3687 		dev_kfree_skb_any(pf->ptp_tx_skb);
3688 		pf->ptp_tx_skb = NULL;
3689 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3690 	}
3691 
3692 	return NETDEV_TX_OK;
3693 }
3694 
3695 /**
3696  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3697  * @skb:    send buffer
3698  * @netdev: network interface device structure
3699  *
3700  * Returns NETDEV_TX_OK if sent, else an error code
3701  **/
3702 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3703 {
3704 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3705 	struct i40e_vsi *vsi = np->vsi;
3706 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3707 
3708 	/* hardware can't handle really short frames, hardware padding works
3709 	 * beyond this point
3710 	 */
3711 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3712 		return NETDEV_TX_OK;
3713 
3714 	return i40e_xmit_frame_ring(skb, tx_ring);
3715 }
3716 
3717 /**
3718  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3719  * @dev: netdev
3720  * @xdp: XDP buffer
3721  *
3722  * Returns number of frames successfully sent. Frames that fail are
3723  * free'ed via XDP return API.
3724  *
3725  * For error cases, a negative errno code is returned and no-frames
3726  * are transmitted (caller must handle freeing frames).
3727  **/
3728 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3729 		  u32 flags)
3730 {
3731 	struct i40e_netdev_priv *np = netdev_priv(dev);
3732 	unsigned int queue_index = smp_processor_id();
3733 	struct i40e_vsi *vsi = np->vsi;
3734 	struct i40e_pf *pf = vsi->back;
3735 	struct i40e_ring *xdp_ring;
3736 	int drops = 0;
3737 	int i;
3738 
3739 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3740 		return -ENETDOWN;
3741 
3742 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3743 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3744 		return -ENXIO;
3745 
3746 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3747 		return -EINVAL;
3748 
3749 	xdp_ring = vsi->xdp_rings[queue_index];
3750 
3751 	for (i = 0; i < n; i++) {
3752 		struct xdp_frame *xdpf = frames[i];
3753 		int err;
3754 
3755 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3756 		if (err != I40E_XDP_TX) {
3757 			xdp_return_frame_rx_napi(xdpf);
3758 			drops++;
3759 		}
3760 	}
3761 
3762 	if (unlikely(flags & XDP_XMIT_FLUSH))
3763 		i40e_xdp_ring_update_tail(xdp_ring);
3764 
3765 	return n - drops;
3766 }
3767