1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/ptp_classify.h> 5 #include <linux/posix-clock.h> 6 #include "i40e.h" 7 #include "i40e_devids.h" 8 9 /* The XL710 timesync is very much like Intel's 82599 design when it comes to 10 * the fundamental clock design. However, the clock operations are much simpler 11 * in the XL710 because the device supports a full 64 bits of nanoseconds. 12 * Because the field is so wide, we can forgo the cycle counter and just 13 * operate with the nanosecond field directly without fear of overflow. 14 * 15 * Much like the 82599, the update period is dependent upon the link speed: 16 * At 40Gb, 25Gb, or no link, the period is 1.6ns. 17 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns) 18 * At 1Gb link, the period is multiplied by 20. (32ns) 19 * 1588 functionality is not supported at 100Mbps. 20 */ 21 #define I40E_PTP_40GB_INCVAL 0x0199999999ULL 22 #define I40E_PTP_10GB_INCVAL_MULT 2 23 #define I40E_PTP_5GB_INCVAL_MULT 2 24 #define I40E_PTP_1GB_INCVAL_MULT 20 25 #define I40E_ISGN 0x80000000 26 27 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 28 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \ 29 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 30 #define I40E_SUBDEV_ID_25G_PTP_PIN 0xB 31 32 enum i40e_ptp_pin { 33 SDP3_2 = 0, 34 SDP3_3, 35 GPIO_4 36 }; 37 38 enum i40e_can_set_pins { 39 CANT_DO_PINS = -1, 40 CAN_SET_PINS, 41 CAN_DO_PINS 42 }; 43 44 static struct ptp_pin_desc sdp_desc[] = { 45 /* name idx func chan */ 46 {"SDP3_2", SDP3_2, PTP_PF_NONE, 0}, 47 {"SDP3_3", SDP3_3, PTP_PF_NONE, 1}, 48 {"GPIO_4", GPIO_4, PTP_PF_NONE, 1}, 49 }; 50 51 enum i40e_ptp_gpio_pin_state { 52 end = -2, 53 invalid, 54 off, 55 in_A, 56 in_B, 57 out_A, 58 out_B, 59 }; 60 61 static const char * const i40e_ptp_gpio_pin_state2str[] = { 62 "off", "in_A", "in_B", "out_A", "out_B" 63 }; 64 65 enum i40e_ptp_led_pin_state { 66 led_end = -2, 67 low = 0, 68 high, 69 }; 70 71 struct i40e_ptp_pins_settings { 72 enum i40e_ptp_gpio_pin_state sdp3_2; 73 enum i40e_ptp_gpio_pin_state sdp3_3; 74 enum i40e_ptp_gpio_pin_state gpio_4; 75 enum i40e_ptp_led_pin_state led2_0; 76 enum i40e_ptp_led_pin_state led2_1; 77 enum i40e_ptp_led_pin_state led3_0; 78 enum i40e_ptp_led_pin_state led3_1; 79 }; 80 81 static const struct i40e_ptp_pins_settings 82 i40e_ptp_pin_led_allowed_states[] = { 83 {off, off, off, high, high, high, high}, 84 {off, in_A, off, high, high, high, low}, 85 {off, out_A, off, high, low, high, high}, 86 {off, in_B, off, high, high, high, low}, 87 {off, out_B, off, high, low, high, high}, 88 {in_A, off, off, high, high, high, low}, 89 {in_A, in_B, off, high, high, high, low}, 90 {in_A, out_B, off, high, low, high, high}, 91 {out_A, off, off, high, low, high, high}, 92 {out_A, in_B, off, high, low, high, high}, 93 {in_B, off, off, high, high, high, low}, 94 {in_B, in_A, off, high, high, high, low}, 95 {in_B, out_A, off, high, low, high, high}, 96 {out_B, off, off, high, low, high, high}, 97 {out_B, in_A, off, high, low, high, high}, 98 {off, off, in_A, high, high, low, high}, 99 {off, out_A, in_A, high, low, low, high}, 100 {off, in_B, in_A, high, high, low, low}, 101 {off, out_B, in_A, high, low, low, high}, 102 {out_A, off, in_A, high, low, low, high}, 103 {out_A, in_B, in_A, high, low, low, high}, 104 {in_B, off, in_A, high, high, low, low}, 105 {in_B, out_A, in_A, high, low, low, high}, 106 {out_B, off, in_A, high, low, low, high}, 107 {off, off, out_A, low, high, high, high}, 108 {off, in_A, out_A, low, high, high, low}, 109 {off, in_B, out_A, low, high, high, low}, 110 {off, out_B, out_A, low, low, high, high}, 111 {in_A, off, out_A, low, high, high, low}, 112 {in_A, in_B, out_A, low, high, high, low}, 113 {in_A, out_B, out_A, low, low, high, high}, 114 {in_B, off, out_A, low, high, high, low}, 115 {in_B, in_A, out_A, low, high, high, low}, 116 {out_B, off, out_A, low, low, high, high}, 117 {out_B, in_A, out_A, low, low, high, high}, 118 {off, off, in_B, high, high, low, high}, 119 {off, in_A, in_B, high, high, low, low}, 120 {off, out_A, in_B, high, low, low, high}, 121 {off, out_B, in_B, high, low, low, high}, 122 {in_A, off, in_B, high, high, low, low}, 123 {in_A, out_B, in_B, high, low, low, high}, 124 {out_A, off, in_B, high, low, low, high}, 125 {out_B, off, in_B, high, low, low, high}, 126 {out_B, in_A, in_B, high, low, low, high}, 127 {off, off, out_B, low, high, high, high}, 128 {off, in_A, out_B, low, high, high, low}, 129 {off, out_A, out_B, low, low, high, high}, 130 {off, in_B, out_B, low, high, high, low}, 131 {in_A, off, out_B, low, high, high, low}, 132 {in_A, in_B, out_B, low, high, high, low}, 133 {out_A, off, out_B, low, low, high, high}, 134 {out_A, in_B, out_B, low, low, high, high}, 135 {in_B, off, out_B, low, high, high, low}, 136 {in_B, in_A, out_B, low, high, high, low}, 137 {in_B, out_A, out_B, low, low, high, high}, 138 {end, end, end, led_end, led_end, led_end, led_end} 139 }; 140 141 static int i40e_ptp_set_pins(struct i40e_pf *pf, 142 struct i40e_ptp_pins_settings *pins); 143 144 /** 145 * i40e_ptp_extts0_work - workqueue task function 146 * @work: workqueue task structure 147 * 148 * Service for PTP external clock event 149 **/ 150 static void i40e_ptp_extts0_work(struct work_struct *work) 151 { 152 struct i40e_pf *pf = container_of(work, struct i40e_pf, 153 ptp_extts0_work); 154 struct i40e_hw *hw = &pf->hw; 155 struct ptp_clock_event event; 156 u32 hi, lo; 157 158 /* Event time is captured by one of the two matched registers 159 * PRTTSYN_EVNT_L: 32 LSB of sampled time event 160 * PRTTSYN_EVNT_H: 32 MSB of sampled time event 161 * Event is defined in PRTTSYN_EVNT_0 register 162 */ 163 lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0)); 164 hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0)); 165 166 event.timestamp = (((u64)hi) << 32) | lo; 167 168 event.type = PTP_CLOCK_EXTTS; 169 event.index = hw->pf_id; 170 171 /* fire event */ 172 ptp_clock_event(pf->ptp_clock, &event); 173 } 174 175 /** 176 * i40e_is_ptp_pin_dev - check if device supports PTP pins 177 * @hw: pointer to the hardware structure 178 * 179 * Return true if device supports PTP pins, false otherwise. 180 **/ 181 static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw) 182 { 183 return hw->device_id == I40E_DEV_ID_25G_SFP28 && 184 hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN; 185 } 186 187 /** 188 * i40e_can_set_pins - check possibility of manipulating the pins 189 * @pf: board private structure 190 * 191 * Check if all conditions are satisfied to manipulate PTP pins. 192 * Return CAN_SET_PINS if pins can be set on a specific PF or 193 * return CAN_DO_PINS if pins can be manipulated within a NIC or 194 * return CANT_DO_PINS otherwise. 195 **/ 196 static enum i40e_can_set_pins i40e_can_set_pins(struct i40e_pf *pf) 197 { 198 if (!i40e_is_ptp_pin_dev(&pf->hw)) { 199 dev_warn(&pf->pdev->dev, 200 "PTP external clock not supported.\n"); 201 return CANT_DO_PINS; 202 } 203 204 if (!pf->ptp_pins) { 205 dev_warn(&pf->pdev->dev, 206 "PTP PIN manipulation not allowed.\n"); 207 return CANT_DO_PINS; 208 } 209 210 if (pf->hw.pf_id) { 211 dev_warn(&pf->pdev->dev, 212 "PTP PINs should be accessed via PF0.\n"); 213 return CAN_DO_PINS; 214 } 215 216 return CAN_SET_PINS; 217 } 218 219 /** 220 * i40_ptp_reset_timing_events - Reset PTP timing events 221 * @pf: Board private structure 222 * 223 * This function resets timing events for pf. 224 **/ 225 static void i40_ptp_reset_timing_events(struct i40e_pf *pf) 226 { 227 u32 i; 228 229 spin_lock_bh(&pf->ptp_rx_lock); 230 for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) { 231 /* reading and automatically clearing timing events registers */ 232 rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i)); 233 rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i)); 234 pf->latch_events[i] = 0; 235 } 236 /* reading and automatically clearing timing events registers */ 237 rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L); 238 rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H); 239 240 pf->tx_hwtstamp_timeouts = 0; 241 pf->tx_hwtstamp_skipped = 0; 242 pf->rx_hwtstamp_cleared = 0; 243 pf->latch_event_flags = 0; 244 spin_unlock_bh(&pf->ptp_rx_lock); 245 } 246 247 /** 248 * i40e_ptp_verify - check pins 249 * @ptp: ptp clock 250 * @pin: pin index 251 * @func: assigned function 252 * @chan: channel 253 * 254 * Check pins consistency. 255 * Return 0 on success or error on failure. 256 **/ 257 static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 258 enum ptp_pin_function func, unsigned int chan) 259 { 260 switch (func) { 261 case PTP_PF_NONE: 262 case PTP_PF_EXTTS: 263 case PTP_PF_PEROUT: 264 break; 265 case PTP_PF_PHYSYNC: 266 return -EOPNOTSUPP; 267 } 268 return 0; 269 } 270 271 /** 272 * i40e_ptp_read - Read the PHC time from the device 273 * @pf: Board private structure 274 * @ts: timespec structure to hold the current time value 275 * @sts: structure to hold the system time before and after reading the PHC 276 * 277 * This function reads the PRTTSYN_TIME registers and stores them in a 278 * timespec. However, since the registers are 64 bits of nanoseconds, we must 279 * convert the result to a timespec before we can return. 280 **/ 281 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts, 282 struct ptp_system_timestamp *sts) 283 { 284 struct i40e_hw *hw = &pf->hw; 285 u32 hi, lo; 286 u64 ns; 287 288 /* The timer latches on the lowest register read. */ 289 ptp_read_system_prets(sts); 290 lo = rd32(hw, I40E_PRTTSYN_TIME_L); 291 ptp_read_system_postts(sts); 292 hi = rd32(hw, I40E_PRTTSYN_TIME_H); 293 294 ns = (((u64)hi) << 32) | lo; 295 296 *ts = ns_to_timespec64(ns); 297 } 298 299 /** 300 * i40e_ptp_write - Write the PHC time to the device 301 * @pf: Board private structure 302 * @ts: timespec structure that holds the new time value 303 * 304 * This function writes the PRTTSYN_TIME registers with the user value. Since 305 * we receive a timespec from the stack, we must convert that timespec into 306 * nanoseconds before programming the registers. 307 **/ 308 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts) 309 { 310 struct i40e_hw *hw = &pf->hw; 311 u64 ns = timespec64_to_ns(ts); 312 313 /* The timer will not update until the high register is written, so 314 * write the low register first. 315 */ 316 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); 317 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); 318 } 319 320 /** 321 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time 322 * @hwtstamps: Timestamp structure to update 323 * @timestamp: Timestamp from the hardware 324 * 325 * We need to convert the NIC clock value into a hwtstamp which can be used by 326 * the upper level timestamping functions. Since the timestamp is simply a 64- 327 * bit nanosecond value, we can call ns_to_ktime directly to handle this. 328 **/ 329 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, 330 u64 timestamp) 331 { 332 memset(hwtstamps, 0, sizeof(*hwtstamps)); 333 334 hwtstamps->hwtstamp = ns_to_ktime(timestamp); 335 } 336 337 /** 338 * i40e_ptp_adjfine - Adjust the PHC frequency 339 * @ptp: The PTP clock structure 340 * @scaled_ppm: Scaled parts per million adjustment from base 341 * 342 * Adjust the frequency of the PHC by the indicated delta from the base 343 * frequency. 344 * 345 * Scaled parts per million is ppm with a 16 bit binary fractional field. 346 **/ 347 static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 348 { 349 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 350 struct i40e_hw *hw = &pf->hw; 351 u64 adj, base_adj; 352 353 smp_mb(); /* Force any pending update before accessing. */ 354 base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult); 355 356 adj = adjust_by_scaled_ppm(base_adj, scaled_ppm); 357 358 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); 359 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); 360 361 return 0; 362 } 363 364 /** 365 * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins 366 * @pf: the PF private data structure 367 * 368 * Configure 1PPS signal used for PTP pins 369 **/ 370 static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf) 371 { 372 struct i40e_hw *hw = &pf->hw; 373 struct timespec64 now; 374 u64 ns; 375 376 wr32(hw, I40E_PRTTSYN_AUX_0(1), 0); 377 wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); 378 wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE); 379 380 i40e_ptp_read(pf, &now, NULL); 381 now.tv_sec += I40E_PTP_2_SEC_DELAY; 382 now.tv_nsec = 0; 383 ns = timespec64_to_ns(&now); 384 385 /* I40E_PRTTSYN_TGT_L(1) */ 386 wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF); 387 /* I40E_PRTTSYN_TGT_H(1) */ 388 wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32); 389 wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND); 390 wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); 391 wr32(hw, I40E_PRTTSYN_AUX_0(1), 392 I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD); 393 } 394 395 /** 396 * i40e_ptp_adjtime - Adjust the PHC time 397 * @ptp: The PTP clock structure 398 * @delta: Offset in nanoseconds to adjust the PHC time by 399 * 400 * Adjust the current clock time by a delta specified in nanoseconds. 401 **/ 402 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 403 { 404 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 405 struct i40e_hw *hw = &pf->hw; 406 407 mutex_lock(&pf->tmreg_lock); 408 409 if (delta > -999999900LL && delta < 999999900LL) { 410 int neg_adj = 0; 411 u32 timadj; 412 u64 tohw; 413 414 if (delta < 0) { 415 neg_adj = 1; 416 tohw = -delta; 417 } else { 418 tohw = delta; 419 } 420 421 timadj = tohw & 0x3FFFFFFF; 422 if (neg_adj) 423 timadj |= I40E_ISGN; 424 wr32(hw, I40E_PRTTSYN_ADJ, timadj); 425 } else { 426 struct timespec64 then, now; 427 428 then = ns_to_timespec64(delta); 429 i40e_ptp_read(pf, &now, NULL); 430 now = timespec64_add(now, then); 431 i40e_ptp_write(pf, (const struct timespec64 *)&now); 432 i40e_ptp_set_1pps_signal_hw(pf); 433 } 434 435 mutex_unlock(&pf->tmreg_lock); 436 437 return 0; 438 } 439 440 /** 441 * i40e_ptp_gettimex - Get the time of the PHC 442 * @ptp: The PTP clock structure 443 * @ts: timespec structure to hold the current time value 444 * @sts: structure to hold the system time before and after reading the PHC 445 * 446 * Read the device clock and return the correct value on ns, after converting it 447 * into a timespec struct. 448 **/ 449 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, 450 struct ptp_system_timestamp *sts) 451 { 452 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 453 454 mutex_lock(&pf->tmreg_lock); 455 i40e_ptp_read(pf, ts, sts); 456 mutex_unlock(&pf->tmreg_lock); 457 458 return 0; 459 } 460 461 /** 462 * i40e_ptp_settime - Set the time of the PHC 463 * @ptp: The PTP clock structure 464 * @ts: timespec64 structure that holds the new time value 465 * 466 * Set the device clock to the user input value. The conversion from timespec 467 * to ns happens in the write function. 468 **/ 469 static int i40e_ptp_settime(struct ptp_clock_info *ptp, 470 const struct timespec64 *ts) 471 { 472 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 473 474 mutex_lock(&pf->tmreg_lock); 475 i40e_ptp_write(pf, ts); 476 mutex_unlock(&pf->tmreg_lock); 477 478 return 0; 479 } 480 481 /** 482 * i40e_pps_configure - configure PPS events 483 * @ptp: ptp clock 484 * @rq: clock request 485 * @on: status 486 * 487 * Configure PPS events for external clock source. 488 * Return 0 on success or error on failure. 489 **/ 490 static int i40e_pps_configure(struct ptp_clock_info *ptp, 491 struct ptp_clock_request *rq, 492 int on) 493 { 494 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 495 496 if (!!on) 497 i40e_ptp_set_1pps_signal_hw(pf); 498 499 return 0; 500 } 501 502 /** 503 * i40e_pin_state - determine PIN state 504 * @index: PIN index 505 * @func: function assigned to PIN 506 * 507 * Determine PIN state based on PIN index and function assigned. 508 * Return PIN state. 509 **/ 510 static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func) 511 { 512 enum i40e_ptp_gpio_pin_state state = off; 513 514 if (index == 0 && func == PTP_PF_EXTTS) 515 state = in_A; 516 if (index == 1 && func == PTP_PF_EXTTS) 517 state = in_B; 518 if (index == 0 && func == PTP_PF_PEROUT) 519 state = out_A; 520 if (index == 1 && func == PTP_PF_PEROUT) 521 state = out_B; 522 523 return state; 524 } 525 526 /** 527 * i40e_ptp_enable_pin - enable PINs. 528 * @pf: private board structure 529 * @chan: channel 530 * @func: PIN function 531 * @on: state 532 * 533 * Enable PTP pins for external clock source. 534 * Return 0 on success or error code on failure. 535 **/ 536 static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan, 537 enum ptp_pin_function func, int on) 538 { 539 enum i40e_ptp_gpio_pin_state *pin = NULL; 540 struct i40e_ptp_pins_settings pins; 541 int pin_index; 542 543 /* Use PF0 to set pins. Return success for user space tools */ 544 if (pf->hw.pf_id) 545 return 0; 546 547 /* Preserve previous state of pins that we don't touch */ 548 pins.sdp3_2 = pf->ptp_pins->sdp3_2; 549 pins.sdp3_3 = pf->ptp_pins->sdp3_3; 550 pins.gpio_4 = pf->ptp_pins->gpio_4; 551 552 /* To turn on the pin - find the corresponding one based on 553 * the given index. To to turn the function off - find 554 * which pin had it assigned. Don't use ptp_find_pin here 555 * because it tries to lock the pincfg_mux which is locked by 556 * ptp_pin_store() that calls here. 557 */ 558 if (on) { 559 pin_index = ptp_find_pin(pf->ptp_clock, func, chan); 560 if (pin_index < 0) 561 return -EBUSY; 562 563 switch (pin_index) { 564 case SDP3_2: 565 pin = &pins.sdp3_2; 566 break; 567 case SDP3_3: 568 pin = &pins.sdp3_3; 569 break; 570 case GPIO_4: 571 pin = &pins.gpio_4; 572 break; 573 default: 574 return -EINVAL; 575 } 576 577 *pin = i40e_pin_state(chan, func); 578 } else { 579 pins.sdp3_2 = off; 580 pins.sdp3_3 = off; 581 pins.gpio_4 = off; 582 } 583 584 return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0; 585 } 586 587 /** 588 * i40e_ptp_feature_enable - Enable external clock pins 589 * @ptp: The PTP clock structure 590 * @rq: The PTP clock request structure 591 * @on: To turn feature on/off 592 * 593 * Setting on/off PTP PPS feature for pin. 594 **/ 595 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp, 596 struct ptp_clock_request *rq, 597 int on) 598 { 599 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 600 601 enum ptp_pin_function func; 602 unsigned int chan; 603 604 /* TODO: Implement flags handling for EXTTS and PEROUT */ 605 switch (rq->type) { 606 case PTP_CLK_REQ_EXTTS: 607 func = PTP_PF_EXTTS; 608 chan = rq->extts.index; 609 break; 610 case PTP_CLK_REQ_PEROUT: 611 func = PTP_PF_PEROUT; 612 chan = rq->perout.index; 613 break; 614 case PTP_CLK_REQ_PPS: 615 return i40e_pps_configure(ptp, rq, on); 616 default: 617 return -EOPNOTSUPP; 618 } 619 620 return i40e_ptp_enable_pin(pf, chan, func, on); 621 } 622 623 /** 624 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events 625 * @pf: the PF data structure 626 * 627 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers 628 * for noticed latch events. This allows the driver to keep track of the first 629 * time a latch event was noticed which will be used to help clear out Rx 630 * timestamps for packets that got dropped or lost. 631 * 632 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is 633 * expected to be called only while under the ptp_rx_lock. 634 **/ 635 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf) 636 { 637 struct i40e_hw *hw = &pf->hw; 638 u32 prttsyn_stat, new_latch_events; 639 int i; 640 641 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); 642 new_latch_events = prttsyn_stat & ~pf->latch_event_flags; 643 644 /* Update the jiffies time for any newly latched timestamp. This 645 * ensures that we store the time that we first discovered a timestamp 646 * was latched by the hardware. The service task will later determine 647 * if we should free the latch and drop that timestamp should too much 648 * time pass. This flow ensures that we only update jiffies for new 649 * events latched since the last time we checked, and not all events 650 * currently latched, so that the service task accounting remains 651 * accurate. 652 */ 653 for (i = 0; i < 4; i++) { 654 if (new_latch_events & BIT(i)) 655 pf->latch_events[i] = jiffies; 656 } 657 658 /* Finally, we store the current status of the Rx timestamp latches */ 659 pf->latch_event_flags = prttsyn_stat; 660 661 return prttsyn_stat; 662 } 663 664 /** 665 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung 666 * @pf: The PF private data structure 667 * 668 * This watchdog task is scheduled to detect error case where hardware has 669 * dropped an Rx packet that was timestamped when the ring is full. The 670 * particular error is rare but leaves the device in a state unable to timestamp 671 * any future packets. 672 **/ 673 void i40e_ptp_rx_hang(struct i40e_pf *pf) 674 { 675 struct i40e_hw *hw = &pf->hw; 676 unsigned int i, cleared = 0; 677 678 /* Since we cannot turn off the Rx timestamp logic if the device is 679 * configured for Tx timestamping, we check if Rx timestamping is 680 * configured. We don't want to spuriously warn about Rx timestamp 681 * hangs if we don't care about the timestamps. 682 */ 683 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx) 684 return; 685 686 spin_lock_bh(&pf->ptp_rx_lock); 687 688 /* Update current latch times for Rx events */ 689 i40e_ptp_get_rx_events(pf); 690 691 /* Check all the currently latched Rx events and see whether they have 692 * been latched for over a second. It is assumed that any timestamp 693 * should have been cleared within this time, or else it was captured 694 * for a dropped frame that the driver never received. Thus, we will 695 * clear any timestamp that has been latched for over 1 second. 696 */ 697 for (i = 0; i < 4; i++) { 698 if ((pf->latch_event_flags & BIT(i)) && 699 time_is_before_jiffies(pf->latch_events[i] + HZ)) { 700 rd32(hw, I40E_PRTTSYN_RXTIME_H(i)); 701 pf->latch_event_flags &= ~BIT(i); 702 cleared++; 703 } 704 } 705 706 spin_unlock_bh(&pf->ptp_rx_lock); 707 708 /* Log a warning if more than 2 timestamps got dropped in the same 709 * check. We don't want to warn about all drops because it can occur 710 * in normal scenarios such as PTP frames on multicast addresses we 711 * aren't listening to. However, administrator should know if this is 712 * the reason packets aren't receiving timestamps. 713 */ 714 if (cleared > 2) 715 dev_dbg(&pf->pdev->dev, 716 "Dropped %d missed RXTIME timestamp events\n", 717 cleared); 718 719 /* Finally, update the rx_hwtstamp_cleared counter */ 720 pf->rx_hwtstamp_cleared += cleared; 721 } 722 723 /** 724 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung 725 * @pf: The PF private data structure 726 * 727 * This watchdog task is run periodically to make sure that we clear the Tx 728 * timestamp logic if we don't obtain a timestamp in a reasonable amount of 729 * time. It is unexpected in the normal case but if it occurs it results in 730 * permanently preventing timestamps of future packets. 731 **/ 732 void i40e_ptp_tx_hang(struct i40e_pf *pf) 733 { 734 struct sk_buff *skb; 735 736 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx) 737 return; 738 739 /* Nothing to do if we're not already waiting for a timestamp */ 740 if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state)) 741 return; 742 743 /* We already have a handler routine which is run when we are notified 744 * of a Tx timestamp in the hardware. If we don't get an interrupt 745 * within a second it is reasonable to assume that we never will. 746 */ 747 if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) { 748 skb = pf->ptp_tx_skb; 749 pf->ptp_tx_skb = NULL; 750 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 751 752 /* Free the skb after we clear the bitlock */ 753 dev_kfree_skb_any(skb); 754 pf->tx_hwtstamp_timeouts++; 755 } 756 } 757 758 /** 759 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp 760 * @pf: Board private structure 761 * 762 * Read the value of the Tx timestamp from the registers, convert it into a 763 * value consumable by the stack, and store that result into the shhwtstamps 764 * struct before returning it up the stack. 765 **/ 766 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) 767 { 768 struct skb_shared_hwtstamps shhwtstamps; 769 struct sk_buff *skb = pf->ptp_tx_skb; 770 struct i40e_hw *hw = &pf->hw; 771 u32 hi, lo; 772 u64 ns; 773 774 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx) 775 return; 776 777 /* don't attempt to timestamp if we don't have an skb */ 778 if (!pf->ptp_tx_skb) 779 return; 780 781 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); 782 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); 783 784 ns = (((u64)hi) << 32) | lo; 785 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); 786 787 /* Clear the bit lock as soon as possible after reading the register, 788 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise 789 * applications might wake up and attempt to request another transmit 790 * timestamp prior to the bit lock being cleared. 791 */ 792 pf->ptp_tx_skb = NULL; 793 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 794 795 /* Notify the stack and free the skb after we've unlocked */ 796 skb_tstamp_tx(skb, &shhwtstamps); 797 dev_kfree_skb_any(skb); 798 } 799 800 /** 801 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp 802 * @pf: Board private structure 803 * @skb: Particular skb to send timestamp with 804 * @index: Index into the receive timestamp registers for the timestamp 805 * 806 * The XL710 receives a notification in the receive descriptor with an offset 807 * into the set of RXTIME registers where the timestamp is for that skb. This 808 * function goes and fetches the receive timestamp from that offset, if a valid 809 * one exists. The RXTIME registers are in ns, so we must convert the result 810 * first. 811 **/ 812 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) 813 { 814 u32 prttsyn_stat, hi, lo; 815 struct i40e_hw *hw; 816 u64 ns; 817 818 /* Since we cannot turn off the Rx timestamp logic if the device is 819 * doing Tx timestamping, check if Rx timestamping is configured. 820 */ 821 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx) 822 return; 823 824 hw = &pf->hw; 825 826 spin_lock_bh(&pf->ptp_rx_lock); 827 828 /* Get current Rx events and update latch times */ 829 prttsyn_stat = i40e_ptp_get_rx_events(pf); 830 831 /* TODO: Should we warn about missing Rx timestamp event? */ 832 if (!(prttsyn_stat & BIT(index))) { 833 spin_unlock_bh(&pf->ptp_rx_lock); 834 return; 835 } 836 837 /* Clear the latched event since we're about to read its register */ 838 pf->latch_event_flags &= ~BIT(index); 839 840 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); 841 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); 842 843 spin_unlock_bh(&pf->ptp_rx_lock); 844 845 ns = (((u64)hi) << 32) | lo; 846 847 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); 848 } 849 850 /** 851 * i40e_ptp_set_increment - Utility function to update clock increment rate 852 * @pf: Board private structure 853 * 854 * During a link change, the DMA frequency that drives the 1588 logic will 855 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, 856 * we must update the increment value per clock tick. 857 **/ 858 void i40e_ptp_set_increment(struct i40e_pf *pf) 859 { 860 struct i40e_link_status *hw_link_info; 861 struct i40e_hw *hw = &pf->hw; 862 u64 incval; 863 u32 mult; 864 865 hw_link_info = &hw->phy.link_info; 866 867 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); 868 869 switch (hw_link_info->link_speed) { 870 case I40E_LINK_SPEED_10GB: 871 mult = I40E_PTP_10GB_INCVAL_MULT; 872 break; 873 case I40E_LINK_SPEED_5GB: 874 mult = I40E_PTP_5GB_INCVAL_MULT; 875 break; 876 case I40E_LINK_SPEED_1GB: 877 mult = I40E_PTP_1GB_INCVAL_MULT; 878 break; 879 case I40E_LINK_SPEED_100MB: 880 { 881 static int warn_once; 882 883 if (!warn_once) { 884 dev_warn(&pf->pdev->dev, 885 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n"); 886 warn_once++; 887 } 888 mult = 0; 889 break; 890 } 891 case I40E_LINK_SPEED_40GB: 892 default: 893 mult = 1; 894 break; 895 } 896 897 /* The increment value is calculated by taking the base 40GbE incvalue 898 * and multiplying it by a factor based on the link speed. 899 */ 900 incval = I40E_PTP_40GB_INCVAL * mult; 901 902 /* Write the new increment value into the increment register. The 903 * hardware will not update the clock until both registers have been 904 * written. 905 */ 906 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); 907 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); 908 909 /* Update the base adjustement value. */ 910 WRITE_ONCE(pf->ptp_adj_mult, mult); 911 smp_mb(); /* Force the above update. */ 912 } 913 914 /** 915 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping 916 * @pf: Board private structure 917 * @ifr: ioctl data 918 * 919 * Obtain the current hardware timestamping settigs as requested. To do this, 920 * keep a shadow copy of the timestamp settings rather than attempting to 921 * deconstruct it from the registers. 922 **/ 923 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr) 924 { 925 struct hwtstamp_config *config = &pf->tstamp_config; 926 927 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 928 return -EOPNOTSUPP; 929 930 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 931 -EFAULT : 0; 932 } 933 934 /** 935 * i40e_ptp_free_pins - free memory used by PTP pins 936 * @pf: Board private structure 937 * 938 * Release memory allocated for PTP pins. 939 **/ 940 static void i40e_ptp_free_pins(struct i40e_pf *pf) 941 { 942 if (i40e_is_ptp_pin_dev(&pf->hw)) { 943 kfree(pf->ptp_pins); 944 kfree(pf->ptp_caps.pin_config); 945 pf->ptp_pins = NULL; 946 } 947 } 948 949 /** 950 * i40e_ptp_set_pin_hw - Set HW GPIO pin 951 * @hw: pointer to the hardware structure 952 * @pin: pin index 953 * @state: pin state 954 * 955 * Set status of GPIO pin for external clock handling. 956 **/ 957 static void i40e_ptp_set_pin_hw(struct i40e_hw *hw, 958 unsigned int pin, 959 enum i40e_ptp_gpio_pin_state state) 960 { 961 switch (state) { 962 case off: 963 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0); 964 break; 965 case in_A: 966 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 967 I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0); 968 break; 969 case in_B: 970 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 971 I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0); 972 break; 973 case out_A: 974 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 975 I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1); 976 break; 977 case out_B: 978 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 979 I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1); 980 break; 981 default: 982 break; 983 } 984 } 985 986 /** 987 * i40e_ptp_set_led_hw - Set HW GPIO led 988 * @hw: pointer to the hardware structure 989 * @led: led index 990 * @state: led state 991 * 992 * Set status of GPIO led for external clock handling. 993 **/ 994 static void i40e_ptp_set_led_hw(struct i40e_hw *hw, 995 unsigned int led, 996 enum i40e_ptp_led_pin_state state) 997 { 998 switch (state) { 999 case low: 1000 wr32(hw, I40E_GLGEN_GPIO_SET, 1001 I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led); 1002 break; 1003 case high: 1004 wr32(hw, I40E_GLGEN_GPIO_SET, 1005 I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | 1006 I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led); 1007 break; 1008 default: 1009 break; 1010 } 1011 } 1012 1013 /** 1014 * i40e_ptp_init_leds_hw - init LEDs 1015 * @hw: pointer to a hardware structure 1016 * 1017 * Set initial state of LEDs 1018 **/ 1019 static void i40e_ptp_init_leds_hw(struct i40e_hw *hw) 1020 { 1021 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0), 1022 I40E_GLGEN_GPIO_CTL_LED_INIT); 1023 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1), 1024 I40E_GLGEN_GPIO_CTL_LED_INIT); 1025 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0), 1026 I40E_GLGEN_GPIO_CTL_LED_INIT); 1027 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1), 1028 I40E_GLGEN_GPIO_CTL_LED_INIT); 1029 } 1030 1031 /** 1032 * i40e_ptp_set_pins_hw - Set HW GPIO pins 1033 * @pf: Board private structure 1034 * 1035 * This function sets GPIO pins for PTP 1036 **/ 1037 static void i40e_ptp_set_pins_hw(struct i40e_pf *pf) 1038 { 1039 const struct i40e_ptp_pins_settings *pins = pf->ptp_pins; 1040 struct i40e_hw *hw = &pf->hw; 1041 1042 /* pin must be disabled before it may be used */ 1043 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); 1044 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); 1045 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); 1046 1047 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2); 1048 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3); 1049 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4); 1050 1051 i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0); 1052 i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1); 1053 i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0); 1054 i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1); 1055 1056 dev_info(&pf->pdev->dev, 1057 "PTP configuration set to: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", 1058 i40e_ptp_gpio_pin_state2str[pins->sdp3_2], 1059 i40e_ptp_gpio_pin_state2str[pins->sdp3_3], 1060 i40e_ptp_gpio_pin_state2str[pins->gpio_4]); 1061 } 1062 1063 /** 1064 * i40e_ptp_set_pins - set PTP pins in HW 1065 * @pf: Board private structure 1066 * @pins: PTP pins to be applied 1067 * 1068 * Validate and set PTP pins in HW for specific PF. 1069 * Return 0 on success or negative value on error. 1070 **/ 1071 static int i40e_ptp_set_pins(struct i40e_pf *pf, 1072 struct i40e_ptp_pins_settings *pins) 1073 { 1074 enum i40e_can_set_pins pin_caps = i40e_can_set_pins(pf); 1075 int i = 0; 1076 1077 if (pin_caps == CANT_DO_PINS) 1078 return -EOPNOTSUPP; 1079 else if (pin_caps == CAN_DO_PINS) 1080 return 0; 1081 1082 if (pins->sdp3_2 == invalid) 1083 pins->sdp3_2 = pf->ptp_pins->sdp3_2; 1084 if (pins->sdp3_3 == invalid) 1085 pins->sdp3_3 = pf->ptp_pins->sdp3_3; 1086 if (pins->gpio_4 == invalid) 1087 pins->gpio_4 = pf->ptp_pins->gpio_4; 1088 while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) { 1089 if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 && 1090 pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 && 1091 pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) { 1092 pins->led2_0 = 1093 i40e_ptp_pin_led_allowed_states[i].led2_0; 1094 pins->led2_1 = 1095 i40e_ptp_pin_led_allowed_states[i].led2_1; 1096 pins->led3_0 = 1097 i40e_ptp_pin_led_allowed_states[i].led3_0; 1098 pins->led3_1 = 1099 i40e_ptp_pin_led_allowed_states[i].led3_1; 1100 break; 1101 } 1102 i++; 1103 } 1104 if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) { 1105 dev_warn(&pf->pdev->dev, 1106 "Unsupported PTP pin configuration: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", 1107 i40e_ptp_gpio_pin_state2str[pins->sdp3_2], 1108 i40e_ptp_gpio_pin_state2str[pins->sdp3_3], 1109 i40e_ptp_gpio_pin_state2str[pins->gpio_4]); 1110 1111 return -EPERM; 1112 } 1113 memcpy(pf->ptp_pins, pins, sizeof(*pins)); 1114 i40e_ptp_set_pins_hw(pf); 1115 i40_ptp_reset_timing_events(pf); 1116 1117 return 0; 1118 } 1119 1120 /** 1121 * i40e_ptp_alloc_pins - allocate PTP pins structure 1122 * @pf: Board private structure 1123 * 1124 * allocate PTP pins structure 1125 **/ 1126 int i40e_ptp_alloc_pins(struct i40e_pf *pf) 1127 { 1128 if (!i40e_is_ptp_pin_dev(&pf->hw)) 1129 return 0; 1130 1131 pf->ptp_pins = 1132 kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL); 1133 1134 if (!pf->ptp_pins) { 1135 dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n"); 1136 return -ENOMEM; 1137 } 1138 1139 pf->ptp_pins->sdp3_2 = off; 1140 pf->ptp_pins->sdp3_3 = off; 1141 pf->ptp_pins->gpio_4 = off; 1142 pf->ptp_pins->led2_0 = high; 1143 pf->ptp_pins->led2_1 = high; 1144 pf->ptp_pins->led3_0 = high; 1145 pf->ptp_pins->led3_1 = high; 1146 1147 /* Use PF0 to set pins in HW. Return success for user space tools */ 1148 if (pf->hw.pf_id) 1149 return 0; 1150 1151 i40e_ptp_init_leds_hw(&pf->hw); 1152 i40e_ptp_set_pins_hw(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode 1159 * @pf: Board private structure 1160 * @config: hwtstamp settings requested or saved 1161 * 1162 * Control hardware registers to enter the specific mode requested by the 1163 * user. Also used during reset path to ensure that timestamp settings are 1164 * maintained. 1165 * 1166 * Note: modifies config in place, and may update the requested mode to be 1167 * more broad if the specific filter is not directly supported. 1168 **/ 1169 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf, 1170 struct hwtstamp_config *config) 1171 { 1172 struct i40e_hw *hw = &pf->hw; 1173 u32 tsyntype, regval; 1174 1175 /* Selects external trigger to cause event */ 1176 regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); 1177 /* Bit 17:16 is EVNTLVL, 01B rising edge */ 1178 regval &= 0; 1179 regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT); 1180 /* regval: 0001 0000 0000 0000 0000 */ 1181 wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); 1182 1183 /* Enabel interrupts */ 1184 regval = rd32(hw, I40E_PRTTSYN_CTL0); 1185 regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT; 1186 wr32(hw, I40E_PRTTSYN_CTL0, regval); 1187 1188 INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work); 1189 1190 switch (config->tx_type) { 1191 case HWTSTAMP_TX_OFF: 1192 pf->ptp_tx = false; 1193 break; 1194 case HWTSTAMP_TX_ON: 1195 pf->ptp_tx = true; 1196 break; 1197 default: 1198 return -ERANGE; 1199 } 1200 1201 switch (config->rx_filter) { 1202 case HWTSTAMP_FILTER_NONE: 1203 pf->ptp_rx = false; 1204 /* We set the type to V1, but do not enable UDP packet 1205 * recognition. In this way, we should be as close to 1206 * disabling PTP Rx timestamps as possible since V1 packets 1207 * are always UDP, since L2 packets are a V2 feature. 1208 */ 1209 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1; 1210 break; 1211 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1212 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1213 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1214 if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) 1215 return -ERANGE; 1216 pf->ptp_rx = true; 1217 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | 1218 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | 1219 I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 1220 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 1221 break; 1222 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1223 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1224 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1225 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1226 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1227 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1228 if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) 1229 return -ERANGE; 1230 fallthrough; 1231 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1232 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1233 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1234 pf->ptp_rx = true; 1235 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | 1236 I40E_PRTTSYN_CTL1_TSYNTYPE_V2; 1237 if (test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) { 1238 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 1239 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1240 } else { 1241 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 1242 } 1243 break; 1244 case HWTSTAMP_FILTER_NTP_ALL: 1245 case HWTSTAMP_FILTER_ALL: 1246 default: 1247 return -ERANGE; 1248 } 1249 1250 /* Clear out all 1588-related registers to clear and unlatch them. */ 1251 spin_lock_bh(&pf->ptp_rx_lock); 1252 rd32(hw, I40E_PRTTSYN_STAT_0); 1253 rd32(hw, I40E_PRTTSYN_TXTIME_H); 1254 rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); 1255 rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); 1256 rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); 1257 rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); 1258 pf->latch_event_flags = 0; 1259 spin_unlock_bh(&pf->ptp_rx_lock); 1260 1261 /* Enable/disable the Tx timestamp interrupt based on user input. */ 1262 regval = rd32(hw, I40E_PRTTSYN_CTL0); 1263 if (pf->ptp_tx) 1264 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 1265 else 1266 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 1267 wr32(hw, I40E_PRTTSYN_CTL0, regval); 1268 1269 regval = rd32(hw, I40E_PFINT_ICR0_ENA); 1270 if (pf->ptp_tx) 1271 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 1272 else 1273 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 1274 wr32(hw, I40E_PFINT_ICR0_ENA, regval); 1275 1276 /* Although there is no simple on/off switch for Rx, we "disable" Rx 1277 * timestamps by setting to V1 only mode and clear the UDP 1278 * recognition. This ought to disable all PTP Rx timestamps as V1 1279 * packets are always over UDP. Note that software is configured to 1280 * ignore Rx timestamps via the pf->ptp_rx flag. 1281 */ 1282 regval = rd32(hw, I40E_PRTTSYN_CTL1); 1283 /* clear everything but the enable bit */ 1284 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 1285 /* now enable bits for desired Rx timestamps */ 1286 regval |= tsyntype; 1287 wr32(hw, I40E_PRTTSYN_CTL1, regval); 1288 1289 return 0; 1290 } 1291 1292 /** 1293 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping 1294 * @pf: Board private structure 1295 * @ifr: ioctl data 1296 * 1297 * Respond to the user filter requests and make the appropriate hardware 1298 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping 1299 * logic, so keep track in software of whether to indicate these timestamps 1300 * or not. 1301 * 1302 * It is permissible to "upgrade" the user request to a broader filter, as long 1303 * as the user receives the timestamps they care about and the user is notified 1304 * the filter has been broadened. 1305 **/ 1306 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr) 1307 { 1308 struct hwtstamp_config config; 1309 int err; 1310 1311 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 1312 return -EOPNOTSUPP; 1313 1314 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1315 return -EFAULT; 1316 1317 err = i40e_ptp_set_timestamp_mode(pf, &config); 1318 if (err) 1319 return err; 1320 1321 /* save these settings for future reference */ 1322 pf->tstamp_config = config; 1323 1324 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1325 -EFAULT : 0; 1326 } 1327 1328 /** 1329 * i40e_init_pin_config - initialize pins. 1330 * @pf: private board structure 1331 * 1332 * Initialize pins for external clock source. 1333 * Return 0 on success or error code on failure. 1334 **/ 1335 static int i40e_init_pin_config(struct i40e_pf *pf) 1336 { 1337 int i; 1338 1339 pf->ptp_caps.n_pins = 3; 1340 pf->ptp_caps.n_ext_ts = 2; 1341 pf->ptp_caps.pps = 1; 1342 pf->ptp_caps.n_per_out = 2; 1343 1344 pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins, 1345 sizeof(*pf->ptp_caps.pin_config), 1346 GFP_KERNEL); 1347 if (!pf->ptp_caps.pin_config) 1348 return -ENOMEM; 1349 1350 for (i = 0; i < pf->ptp_caps.n_pins; i++) { 1351 snprintf(pf->ptp_caps.pin_config[i].name, 1352 sizeof(pf->ptp_caps.pin_config[i].name), 1353 "%s", sdp_desc[i].name); 1354 pf->ptp_caps.pin_config[i].index = sdp_desc[i].index; 1355 pf->ptp_caps.pin_config[i].func = PTP_PF_NONE; 1356 pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan; 1357 } 1358 1359 pf->ptp_caps.verify = i40e_ptp_verify; 1360 pf->ptp_caps.enable = i40e_ptp_feature_enable; 1361 1362 pf->ptp_caps.pps = 1; 1363 1364 return 0; 1365 } 1366 1367 /** 1368 * i40e_ptp_create_clock - Create PTP clock device for userspace 1369 * @pf: Board private structure 1370 * 1371 * This function creates a new PTP clock device. It only creates one if we 1372 * don't already have one, so it is safe to call. Will return error if it 1373 * can't create one, but success if we already have a device. Should be used 1374 * by i40e_ptp_init to create clock initially, and prevent global resets from 1375 * creating new clock devices. 1376 **/ 1377 static long i40e_ptp_create_clock(struct i40e_pf *pf) 1378 { 1379 /* no need to create a clock device if we already have one */ 1380 if (!IS_ERR_OR_NULL(pf->ptp_clock)) 1381 return 0; 1382 1383 strscpy(pf->ptp_caps.name, i40e_driver_name, 1384 sizeof(pf->ptp_caps.name) - 1); 1385 pf->ptp_caps.owner = THIS_MODULE; 1386 pf->ptp_caps.max_adj = 999999999; 1387 pf->ptp_caps.adjfine = i40e_ptp_adjfine; 1388 pf->ptp_caps.adjtime = i40e_ptp_adjtime; 1389 pf->ptp_caps.gettimex64 = i40e_ptp_gettimex; 1390 pf->ptp_caps.settime64 = i40e_ptp_settime; 1391 if (i40e_is_ptp_pin_dev(&pf->hw)) { 1392 int err = i40e_init_pin_config(pf); 1393 1394 if (err) 1395 return err; 1396 } 1397 1398 /* Attempt to register the clock before enabling the hardware. */ 1399 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); 1400 if (IS_ERR(pf->ptp_clock)) 1401 return PTR_ERR(pf->ptp_clock); 1402 1403 /* clear the hwtstamp settings here during clock create, instead of 1404 * during regular init, so that we can maintain settings across a 1405 * reset or suspend. 1406 */ 1407 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1408 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1409 1410 /* Set the previous "reset" time to the current Kernel clock time */ 1411 ktime_get_real_ts64(&pf->ptp_prev_hw_time); 1412 pf->ptp_reset_start = ktime_get(); 1413 1414 return 0; 1415 } 1416 1417 /** 1418 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time 1419 * @pf: Board private structure 1420 * 1421 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should 1422 * be called at the end of preparing to reset, just before hardware reset 1423 * occurs, in order to preserve the PTP time as close as possible across 1424 * resets. 1425 */ 1426 void i40e_ptp_save_hw_time(struct i40e_pf *pf) 1427 { 1428 /* don't try to access the PTP clock if it's not enabled */ 1429 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 1430 return; 1431 1432 i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL); 1433 /* Get a monotonic starting time for this reset */ 1434 pf->ptp_reset_start = ktime_get(); 1435 } 1436 1437 /** 1438 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs 1439 * @pf: Board private structure 1440 * 1441 * Restore the PTP hardware clock registers. We previously cached the PTP 1442 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible, 1443 * update this value based on the time delta since the time was saved, using 1444 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference. 1445 * 1446 * This ensures that the hardware clock is restored to nearly what it should 1447 * have been if a reset had not occurred. 1448 */ 1449 void i40e_ptp_restore_hw_time(struct i40e_pf *pf) 1450 { 1451 ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start); 1452 1453 /* Update the previous HW time with the ktime delta */ 1454 timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta)); 1455 1456 /* Restore the hardware clock registers */ 1457 i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time); 1458 } 1459 1460 /** 1461 * i40e_ptp_init - Initialize the 1588 support after device probe or reset 1462 * @pf: Board private structure 1463 * 1464 * This function sets device up for 1588 support. The first time it is run, it 1465 * will create a PHC clock device. It does not create a clock device if one 1466 * already exists. It also reconfigures the device after a reset. 1467 * 1468 * The first time a clock is created, i40e_ptp_create_clock will set 1469 * pf->ptp_prev_hw_time to the current system time. During resets, it is 1470 * expected that this timespec will be set to the last known PTP clock time, 1471 * in order to preserve the clock time as close as possible across a reset. 1472 **/ 1473 void i40e_ptp_init(struct i40e_pf *pf) 1474 { 1475 struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev; 1476 struct i40e_hw *hw = &pf->hw; 1477 u32 pf_id; 1478 long err; 1479 1480 /* Only one PF is assigned to control 1588 logic per port. Do not 1481 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID 1482 */ 1483 pf_id = FIELD_GET(I40E_PRTTSYN_CTL0_PF_ID_MASK, 1484 rd32(hw, I40E_PRTTSYN_CTL0)); 1485 if (hw->pf_id != pf_id) { 1486 clear_bit(I40E_FLAG_PTP_ENA, pf->flags); 1487 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n", 1488 __func__, 1489 netdev->name); 1490 return; 1491 } 1492 1493 mutex_init(&pf->tmreg_lock); 1494 spin_lock_init(&pf->ptp_rx_lock); 1495 1496 /* ensure we have a clock device */ 1497 err = i40e_ptp_create_clock(pf); 1498 if (err) { 1499 pf->ptp_clock = NULL; 1500 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", 1501 __func__); 1502 } else if (pf->ptp_clock) { 1503 u32 regval; 1504 1505 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 1506 dev_info(&pf->pdev->dev, "PHC enabled\n"); 1507 set_bit(I40E_FLAG_PTP_ENA, pf->flags); 1508 1509 /* Ensure the clocks are running. */ 1510 regval = rd32(hw, I40E_PRTTSYN_CTL0); 1511 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; 1512 wr32(hw, I40E_PRTTSYN_CTL0, regval); 1513 regval = rd32(hw, I40E_PRTTSYN_CTL1); 1514 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 1515 wr32(hw, I40E_PRTTSYN_CTL1, regval); 1516 1517 /* Set the increment value per clock tick. */ 1518 i40e_ptp_set_increment(pf); 1519 1520 /* reset timestamping mode */ 1521 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config); 1522 1523 /* Restore the clock time based on last known value */ 1524 i40e_ptp_restore_hw_time(pf); 1525 } 1526 1527 i40e_ptp_set_1pps_signal_hw(pf); 1528 } 1529 1530 /** 1531 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC 1532 * @pf: Board private structure 1533 * 1534 * This function handles the cleanup work required from the initialization by 1535 * clearing out the important information and unregistering the PHC. 1536 **/ 1537 void i40e_ptp_stop(struct i40e_pf *pf) 1538 { 1539 struct i40e_hw *hw = &pf->hw; 1540 u32 regval; 1541 1542 clear_bit(I40E_FLAG_PTP_ENA, pf->flags); 1543 pf->ptp_tx = false; 1544 pf->ptp_rx = false; 1545 1546 if (pf->ptp_tx_skb) { 1547 struct sk_buff *skb = pf->ptp_tx_skb; 1548 1549 pf->ptp_tx_skb = NULL; 1550 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 1551 dev_kfree_skb_any(skb); 1552 } 1553 1554 if (pf->ptp_clock) { 1555 ptp_clock_unregister(pf->ptp_clock); 1556 pf->ptp_clock = NULL; 1557 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, 1558 pf->vsi[pf->lan_vsi]->netdev->name); 1559 } 1560 1561 if (i40e_is_ptp_pin_dev(&pf->hw)) { 1562 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); 1563 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); 1564 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); 1565 } 1566 1567 regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); 1568 regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK; 1569 wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); 1570 1571 /* Disable interrupts */ 1572 regval = rd32(hw, I40E_PRTTSYN_CTL0); 1573 regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK; 1574 wr32(hw, I40E_PRTTSYN_CTL0, regval); 1575 1576 i40e_ptp_free_pins(pf); 1577 } 1578