1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2014 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include "i40e.h" 28 #include <linux/ptp_classify.h> 29 30 /* The XL710 timesync is very much like Intel's 82599 design when it comes to 31 * the fundamental clock design. However, the clock operations are much simpler 32 * in the XL710 because the device supports a full 64 bits of nanoseconds. 33 * Because the field is so wide, we can forgo the cycle counter and just 34 * operate with the nanosecond field directly without fear of overflow. 35 * 36 * Much like the 82599, the update period is dependent upon the link speed: 37 * At 40Gb link or no link, the period is 1.6ns. 38 * At 10Gb link, the period is multiplied by 2. (3.2ns) 39 * At 1Gb link, the period is multiplied by 20. (32ns) 40 * 1588 functionality is not supported at 100Mbps. 41 */ 42 #define I40E_PTP_40GB_INCVAL 0x0199999999ULL 43 #define I40E_PTP_10GB_INCVAL 0x0333333333ULL 44 #define I40E_PTP_1GB_INCVAL 0x2000000000ULL 45 46 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 47 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \ 48 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 49 50 /** 51 * i40e_ptp_read - Read the PHC time from the device 52 * @pf: Board private structure 53 * @ts: timespec structure to hold the current time value 54 * 55 * This function reads the PRTTSYN_TIME registers and stores them in a 56 * timespec. However, since the registers are 64 bits of nanoseconds, we must 57 * convert the result to a timespec before we can return. 58 **/ 59 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts) 60 { 61 struct i40e_hw *hw = &pf->hw; 62 u32 hi, lo; 63 u64 ns; 64 65 /* The timer latches on the lowest register read. */ 66 lo = rd32(hw, I40E_PRTTSYN_TIME_L); 67 hi = rd32(hw, I40E_PRTTSYN_TIME_H); 68 69 ns = (((u64)hi) << 32) | lo; 70 71 *ts = ns_to_timespec64(ns); 72 } 73 74 /** 75 * i40e_ptp_write - Write the PHC time to the device 76 * @pf: Board private structure 77 * @ts: timespec structure that holds the new time value 78 * 79 * This function writes the PRTTSYN_TIME registers with the user value. Since 80 * we receive a timespec from the stack, we must convert that timespec into 81 * nanoseconds before programming the registers. 82 **/ 83 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts) 84 { 85 struct i40e_hw *hw = &pf->hw; 86 u64 ns = timespec64_to_ns(ts); 87 88 /* The timer will not update until the high register is written, so 89 * write the low register first. 90 */ 91 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); 92 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); 93 } 94 95 /** 96 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time 97 * @hwtstamps: Timestamp structure to update 98 * @timestamp: Timestamp from the hardware 99 * 100 * We need to convert the NIC clock value into a hwtstamp which can be used by 101 * the upper level timestamping functions. Since the timestamp is simply a 64- 102 * bit nanosecond value, we can call ns_to_ktime directly to handle this. 103 **/ 104 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, 105 u64 timestamp) 106 { 107 memset(hwtstamps, 0, sizeof(*hwtstamps)); 108 109 hwtstamps->hwtstamp = ns_to_ktime(timestamp); 110 } 111 112 /** 113 * i40e_ptp_adjfreq - Adjust the PHC frequency 114 * @ptp: The PTP clock structure 115 * @ppb: Parts per billion adjustment from the base 116 * 117 * Adjust the frequency of the PHC by the indicated parts per billion from the 118 * base frequency. 119 **/ 120 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 121 { 122 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 123 struct i40e_hw *hw = &pf->hw; 124 u64 adj, freq, diff; 125 int neg_adj = 0; 126 127 if (ppb < 0) { 128 neg_adj = 1; 129 ppb = -ppb; 130 } 131 132 smp_mb(); /* Force any pending update before accessing. */ 133 adj = ACCESS_ONCE(pf->ptp_base_adj); 134 135 freq = adj; 136 freq *= ppb; 137 diff = div_u64(freq, 1000000000ULL); 138 139 if (neg_adj) 140 adj -= diff; 141 else 142 adj += diff; 143 144 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); 145 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); 146 147 return 0; 148 } 149 150 /** 151 * i40e_ptp_adjtime - Adjust the PHC time 152 * @ptp: The PTP clock structure 153 * @delta: Offset in nanoseconds to adjust the PHC time by 154 * 155 * Adjust the frequency of the PHC by the indicated parts per billion from the 156 * base frequency. 157 **/ 158 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 159 { 160 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 161 struct timespec64 now, then; 162 163 then = ns_to_timespec64(delta); 164 mutex_lock(&pf->tmreg_lock); 165 166 i40e_ptp_read(pf, &now); 167 now = timespec64_add(now, then); 168 i40e_ptp_write(pf, (const struct timespec64 *)&now); 169 170 mutex_unlock(&pf->tmreg_lock); 171 172 return 0; 173 } 174 175 /** 176 * i40e_ptp_gettime - Get the time of the PHC 177 * @ptp: The PTP clock structure 178 * @ts: timespec structure to hold the current time value 179 * 180 * Read the device clock and return the correct value on ns, after converting it 181 * into a timespec struct. 182 **/ 183 static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 184 { 185 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 186 187 mutex_lock(&pf->tmreg_lock); 188 i40e_ptp_read(pf, ts); 189 mutex_unlock(&pf->tmreg_lock); 190 191 return 0; 192 } 193 194 /** 195 * i40e_ptp_settime - Set the time of the PHC 196 * @ptp: The PTP clock structure 197 * @ts: timespec structure that holds the new time value 198 * 199 * Set the device clock to the user input value. The conversion from timespec 200 * to ns happens in the write function. 201 **/ 202 static int i40e_ptp_settime(struct ptp_clock_info *ptp, 203 const struct timespec64 *ts) 204 { 205 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 206 207 mutex_lock(&pf->tmreg_lock); 208 i40e_ptp_write(pf, ts); 209 mutex_unlock(&pf->tmreg_lock); 210 211 return 0; 212 } 213 214 /** 215 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem 216 * @ptp: The PTP clock structure 217 * @rq: The requested feature to change 218 * @on: Enable/disable flag 219 * 220 * The XL710 does not support any of the ancillary features of the PHC 221 * subsystem, so this function may just return. 222 **/ 223 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp, 224 struct ptp_clock_request *rq, int on) 225 { 226 return -EOPNOTSUPP; 227 } 228 229 /** 230 * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events 231 * @pf: the PF data structure 232 * 233 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers 234 * for noticed latch events. This allows the driver to keep track of the first 235 * time a latch event was noticed which will be used to help clear out Rx 236 * timestamps for packets that got dropped or lost. 237 * 238 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is 239 * expected to be called only while under the ptp_rx_lock. 240 **/ 241 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf) 242 { 243 struct i40e_hw *hw = &pf->hw; 244 u32 prttsyn_stat, new_latch_events; 245 int i; 246 247 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); 248 new_latch_events = prttsyn_stat & ~pf->latch_event_flags; 249 250 /* Update the jiffies time for any newly latched timestamp. This 251 * ensures that we store the time that we first discovered a timestamp 252 * was latched by the hardware. The service task will later determine 253 * if we should free the latch and drop that timestamp should too much 254 * time pass. This flow ensures that we only update jiffies for new 255 * events latched since the last time we checked, and not all events 256 * currently latched, so that the service task accounting remains 257 * accurate. 258 */ 259 for (i = 0; i < 4; i++) { 260 if (new_latch_events & BIT(i)) 261 pf->latch_events[i] = jiffies; 262 } 263 264 /* Finally, we store the current status of the Rx timestamp latches */ 265 pf->latch_event_flags = prttsyn_stat; 266 267 return prttsyn_stat; 268 } 269 270 /** 271 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung 272 * @vsi: The VSI with the rings relevant to 1588 273 * 274 * This watchdog task is scheduled to detect error case where hardware has 275 * dropped an Rx packet that was timestamped when the ring is full. The 276 * particular error is rare but leaves the device in a state unable to timestamp 277 * any future packets. 278 **/ 279 void i40e_ptp_rx_hang(struct i40e_vsi *vsi) 280 { 281 struct i40e_pf *pf = vsi->back; 282 struct i40e_hw *hw = &pf->hw; 283 unsigned int i, cleared = 0; 284 285 /* Since we cannot turn off the Rx timestamp logic if the device is 286 * configured for Tx timestamping, we check if Rx timestamping is 287 * configured. We don't want to spuriously warn about Rx timestamp 288 * hangs if we don't care about the timestamps. 289 */ 290 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) 291 return; 292 293 spin_lock_bh(&pf->ptp_rx_lock); 294 295 /* Update current latch times for Rx events */ 296 i40e_ptp_get_rx_events(pf); 297 298 /* Check all the currently latched Rx events and see whether they have 299 * been latched for over a second. It is assumed that any timestamp 300 * should have been cleared within this time, or else it was captured 301 * for a dropped frame that the driver never received. Thus, we will 302 * clear any timestamp that has been latched for over 1 second. 303 */ 304 for (i = 0; i < 4; i++) { 305 if ((pf->latch_event_flags & BIT(i)) && 306 time_is_before_jiffies(pf->latch_events[i] + HZ)) { 307 rd32(hw, I40E_PRTTSYN_RXTIME_H(i)); 308 pf->latch_event_flags &= ~BIT(i); 309 cleared++; 310 } 311 } 312 313 spin_unlock_bh(&pf->ptp_rx_lock); 314 315 /* Log a warning if more than 2 timestamps got dropped in the same 316 * check. We don't want to warn about all drops because it can occur 317 * in normal scenarios such as PTP frames on multicast addresses we 318 * aren't listening to. However, administrator should know if this is 319 * the reason packets aren't receiving timestamps. 320 */ 321 if (cleared > 2) 322 dev_dbg(&pf->pdev->dev, 323 "Dropped %d missed RXTIME timestamp events\n", 324 cleared); 325 326 /* Finally, update the rx_hwtstamp_cleared counter */ 327 pf->rx_hwtstamp_cleared += cleared; 328 } 329 330 /** 331 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp 332 * @pf: Board private structure 333 * 334 * Read the value of the Tx timestamp from the registers, convert it into a 335 * value consumable by the stack, and store that result into the shhwtstamps 336 * struct before returning it up the stack. 337 **/ 338 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) 339 { 340 struct skb_shared_hwtstamps shhwtstamps; 341 struct i40e_hw *hw = &pf->hw; 342 u32 hi, lo; 343 u64 ns; 344 345 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) 346 return; 347 348 /* don't attempt to timestamp if we don't have an skb */ 349 if (!pf->ptp_tx_skb) 350 return; 351 352 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); 353 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); 354 355 ns = (((u64)hi) << 32) | lo; 356 357 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); 358 skb_tstamp_tx(pf->ptp_tx_skb, &shhwtstamps); 359 dev_kfree_skb_any(pf->ptp_tx_skb); 360 pf->ptp_tx_skb = NULL; 361 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, &pf->state); 362 } 363 364 /** 365 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp 366 * @pf: Board private structure 367 * @skb: Particular skb to send timestamp with 368 * @index: Index into the receive timestamp registers for the timestamp 369 * 370 * The XL710 receives a notification in the receive descriptor with an offset 371 * into the set of RXTIME registers where the timestamp is for that skb. This 372 * function goes and fetches the receive timestamp from that offset, if a valid 373 * one exists. The RXTIME registers are in ns, so we must convert the result 374 * first. 375 **/ 376 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) 377 { 378 u32 prttsyn_stat, hi, lo; 379 struct i40e_hw *hw; 380 u64 ns; 381 382 /* Since we cannot turn off the Rx timestamp logic if the device is 383 * doing Tx timestamping, check if Rx timestamping is configured. 384 */ 385 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) 386 return; 387 388 hw = &pf->hw; 389 390 spin_lock_bh(&pf->ptp_rx_lock); 391 392 /* Get current Rx events and update latch times */ 393 prttsyn_stat = i40e_ptp_get_rx_events(pf); 394 395 /* TODO: Should we warn about missing Rx timestamp event? */ 396 if (!(prttsyn_stat & BIT(index))) { 397 spin_unlock_bh(&pf->ptp_rx_lock); 398 return; 399 } 400 401 /* Clear the latched event since we're about to read its register */ 402 pf->latch_event_flags &= ~BIT(index); 403 404 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); 405 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); 406 407 spin_unlock_bh(&pf->ptp_rx_lock); 408 409 ns = (((u64)hi) << 32) | lo; 410 411 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); 412 } 413 414 /** 415 * i40e_ptp_set_increment - Utility function to update clock increment rate 416 * @pf: Board private structure 417 * 418 * During a link change, the DMA frequency that drives the 1588 logic will 419 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, 420 * we must update the increment value per clock tick. 421 **/ 422 void i40e_ptp_set_increment(struct i40e_pf *pf) 423 { 424 struct i40e_link_status *hw_link_info; 425 struct i40e_hw *hw = &pf->hw; 426 u64 incval; 427 428 hw_link_info = &hw->phy.link_info; 429 430 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); 431 432 switch (hw_link_info->link_speed) { 433 case I40E_LINK_SPEED_10GB: 434 incval = I40E_PTP_10GB_INCVAL; 435 break; 436 case I40E_LINK_SPEED_1GB: 437 incval = I40E_PTP_1GB_INCVAL; 438 break; 439 case I40E_LINK_SPEED_100MB: 440 { 441 static int warn_once; 442 443 if (!warn_once) { 444 dev_warn(&pf->pdev->dev, 445 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n"); 446 warn_once++; 447 } 448 incval = 0; 449 break; 450 } 451 case I40E_LINK_SPEED_40GB: 452 default: 453 incval = I40E_PTP_40GB_INCVAL; 454 break; 455 } 456 457 /* Write the new increment value into the increment register. The 458 * hardware will not update the clock until both registers have been 459 * written. 460 */ 461 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); 462 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); 463 464 /* Update the base adjustement value. */ 465 ACCESS_ONCE(pf->ptp_base_adj) = incval; 466 smp_mb(); /* Force the above update. */ 467 } 468 469 /** 470 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping 471 * @pf: Board private structure 472 * @ifreq: ioctl data 473 * 474 * Obtain the current hardware timestamping settigs as requested. To do this, 475 * keep a shadow copy of the timestamp settings rather than attempting to 476 * deconstruct it from the registers. 477 **/ 478 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr) 479 { 480 struct hwtstamp_config *config = &pf->tstamp_config; 481 482 if (!(pf->flags & I40E_FLAG_PTP)) 483 return -EOPNOTSUPP; 484 485 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 486 -EFAULT : 0; 487 } 488 489 /** 490 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode 491 * @pf: Board private structure 492 * @config: hwtstamp settings requested or saved 493 * 494 * Control hardware registers to enter the specific mode requested by the 495 * user. Also used during reset path to ensure that timestamp settings are 496 * maintained. 497 * 498 * Note: modifies config in place, and may update the requested mode to be 499 * more broad if the specific filter is not directly supported. 500 **/ 501 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf, 502 struct hwtstamp_config *config) 503 { 504 struct i40e_hw *hw = &pf->hw; 505 u32 tsyntype, regval; 506 507 /* Reserved for future extensions. */ 508 if (config->flags) 509 return -EINVAL; 510 511 switch (config->tx_type) { 512 case HWTSTAMP_TX_OFF: 513 pf->ptp_tx = false; 514 break; 515 case HWTSTAMP_TX_ON: 516 pf->ptp_tx = true; 517 break; 518 default: 519 return -ERANGE; 520 } 521 522 switch (config->rx_filter) { 523 case HWTSTAMP_FILTER_NONE: 524 pf->ptp_rx = false; 525 /* We set the type to V1, but do not enable UDP packet 526 * recognition. In this way, we should be as close to 527 * disabling PTP Rx timestamps as possible since V1 packets 528 * are always UDP, since L2 packets are a V2 feature. 529 */ 530 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1; 531 break; 532 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 533 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 534 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 535 if (!(pf->flags & I40E_FLAG_PTP_L4_CAPABLE)) 536 return -ERANGE; 537 pf->ptp_rx = true; 538 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | 539 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | 540 I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 541 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 542 break; 543 case HWTSTAMP_FILTER_PTP_V2_EVENT: 544 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 545 case HWTSTAMP_FILTER_PTP_V2_SYNC: 546 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 547 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 549 if (!(pf->flags & I40E_FLAG_PTP_L4_CAPABLE)) 550 return -ERANGE; 551 /* fall through */ 552 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 553 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 554 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 555 pf->ptp_rx = true; 556 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | 557 I40E_PRTTSYN_CTL1_TSYNTYPE_V2; 558 if (pf->flags & I40E_FLAG_PTP_L4_CAPABLE) { 559 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 560 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 561 } else { 562 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 563 } 564 break; 565 case HWTSTAMP_FILTER_ALL: 566 default: 567 return -ERANGE; 568 } 569 570 /* Clear out all 1588-related registers to clear and unlatch them. */ 571 spin_lock_bh(&pf->ptp_rx_lock); 572 rd32(hw, I40E_PRTTSYN_STAT_0); 573 rd32(hw, I40E_PRTTSYN_TXTIME_H); 574 rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); 575 rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); 576 rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); 577 rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); 578 pf->latch_event_flags = 0; 579 spin_unlock_bh(&pf->ptp_rx_lock); 580 581 /* Enable/disable the Tx timestamp interrupt based on user input. */ 582 regval = rd32(hw, I40E_PRTTSYN_CTL0); 583 if (pf->ptp_tx) 584 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 585 else 586 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 587 wr32(hw, I40E_PRTTSYN_CTL0, regval); 588 589 regval = rd32(hw, I40E_PFINT_ICR0_ENA); 590 if (pf->ptp_tx) 591 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 592 else 593 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 594 wr32(hw, I40E_PFINT_ICR0_ENA, regval); 595 596 /* Although there is no simple on/off switch for Rx, we "disable" Rx 597 * timestamps by setting to V1 only mode and clear the UDP 598 * recognition. This ought to disable all PTP Rx timestamps as V1 599 * packets are always over UDP. Note that software is configured to 600 * ignore Rx timestamps via the pf->ptp_rx flag. 601 */ 602 regval = rd32(hw, I40E_PRTTSYN_CTL1); 603 /* clear everything but the enable bit */ 604 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 605 /* now enable bits for desired Rx timestamps */ 606 regval |= tsyntype; 607 wr32(hw, I40E_PRTTSYN_CTL1, regval); 608 609 return 0; 610 } 611 612 /** 613 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping 614 * @pf: Board private structure 615 * @ifreq: ioctl data 616 * 617 * Respond to the user filter requests and make the appropriate hardware 618 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping 619 * logic, so keep track in software of whether to indicate these timestamps 620 * or not. 621 * 622 * It is permissible to "upgrade" the user request to a broader filter, as long 623 * as the user receives the timestamps they care about and the user is notified 624 * the filter has been broadened. 625 **/ 626 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr) 627 { 628 struct hwtstamp_config config; 629 int err; 630 631 if (!(pf->flags & I40E_FLAG_PTP)) 632 return -EOPNOTSUPP; 633 634 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 635 return -EFAULT; 636 637 err = i40e_ptp_set_timestamp_mode(pf, &config); 638 if (err) 639 return err; 640 641 /* save these settings for future reference */ 642 pf->tstamp_config = config; 643 644 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 645 -EFAULT : 0; 646 } 647 648 /** 649 * i40e_ptp_create_clock - Create PTP clock device for userspace 650 * @pf: Board private structure 651 * 652 * This function creates a new PTP clock device. It only creates one if we 653 * don't already have one, so it is safe to call. Will return error if it 654 * can't create one, but success if we already have a device. Should be used 655 * by i40e_ptp_init to create clock initially, and prevent global resets from 656 * creating new clock devices. 657 **/ 658 static long i40e_ptp_create_clock(struct i40e_pf *pf) 659 { 660 /* no need to create a clock device if we already have one */ 661 if (!IS_ERR_OR_NULL(pf->ptp_clock)) 662 return 0; 663 664 strncpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name)); 665 pf->ptp_caps.owner = THIS_MODULE; 666 pf->ptp_caps.max_adj = 999999999; 667 pf->ptp_caps.n_ext_ts = 0; 668 pf->ptp_caps.pps = 0; 669 pf->ptp_caps.adjfreq = i40e_ptp_adjfreq; 670 pf->ptp_caps.adjtime = i40e_ptp_adjtime; 671 pf->ptp_caps.gettime64 = i40e_ptp_gettime; 672 pf->ptp_caps.settime64 = i40e_ptp_settime; 673 pf->ptp_caps.enable = i40e_ptp_feature_enable; 674 675 /* Attempt to register the clock before enabling the hardware. */ 676 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); 677 if (IS_ERR(pf->ptp_clock)) 678 return PTR_ERR(pf->ptp_clock); 679 680 /* clear the hwtstamp settings here during clock create, instead of 681 * during regular init, so that we can maintain settings across a 682 * reset or suspend. 683 */ 684 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 685 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 686 687 return 0; 688 } 689 690 /** 691 * i40e_ptp_init - Initialize the 1588 support after device probe or reset 692 * @pf: Board private structure 693 * 694 * This function sets device up for 1588 support. The first time it is run, it 695 * will create a PHC clock device. It does not create a clock device if one 696 * already exists. It also reconfigures the device after a reset. 697 **/ 698 void i40e_ptp_init(struct i40e_pf *pf) 699 { 700 struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev; 701 struct i40e_hw *hw = &pf->hw; 702 u32 pf_id; 703 long err; 704 705 /* Only one PF is assigned to control 1588 logic per port. Do not 706 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID 707 */ 708 pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >> 709 I40E_PRTTSYN_CTL0_PF_ID_SHIFT; 710 if (hw->pf_id != pf_id) { 711 pf->flags &= ~I40E_FLAG_PTP; 712 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n", 713 __func__, 714 netdev->name); 715 return; 716 } 717 718 mutex_init(&pf->tmreg_lock); 719 spin_lock_init(&pf->ptp_rx_lock); 720 721 /* ensure we have a clock device */ 722 err = i40e_ptp_create_clock(pf); 723 if (err) { 724 pf->ptp_clock = NULL; 725 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", 726 __func__); 727 } else if (pf->ptp_clock) { 728 struct timespec64 ts; 729 u32 regval; 730 731 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 732 dev_info(&pf->pdev->dev, "PHC enabled\n"); 733 pf->flags |= I40E_FLAG_PTP; 734 735 /* Ensure the clocks are running. */ 736 regval = rd32(hw, I40E_PRTTSYN_CTL0); 737 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; 738 wr32(hw, I40E_PRTTSYN_CTL0, regval); 739 regval = rd32(hw, I40E_PRTTSYN_CTL1); 740 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 741 wr32(hw, I40E_PRTTSYN_CTL1, regval); 742 743 /* Set the increment value per clock tick. */ 744 i40e_ptp_set_increment(pf); 745 746 /* reset timestamping mode */ 747 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config); 748 749 /* Set the clock value. */ 750 ts = ktime_to_timespec64(ktime_get_real()); 751 i40e_ptp_settime(&pf->ptp_caps, &ts); 752 } 753 } 754 755 /** 756 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC 757 * @pf: Board private structure 758 * 759 * This function handles the cleanup work required from the initialization by 760 * clearing out the important information and unregistering the PHC. 761 **/ 762 void i40e_ptp_stop(struct i40e_pf *pf) 763 { 764 pf->flags &= ~I40E_FLAG_PTP; 765 pf->ptp_tx = false; 766 pf->ptp_rx = false; 767 768 if (pf->ptp_tx_skb) { 769 dev_kfree_skb_any(pf->ptp_tx_skb); 770 pf->ptp_tx_skb = NULL; 771 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, &pf->state); 772 } 773 774 if (pf->ptp_clock) { 775 ptp_clock_unregister(pf->ptp_clock); 776 pf->ptp_clock = NULL; 777 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, 778 pf->vsi[pf->lan_vsi]->netdev->name); 779 } 780 } 781