xref: /linux/drivers/net/ethernet/intel/i40e/i40e_ptp.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include "i40e.h"
28 #include <linux/ptp_classify.h>
29 
30 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
31  * the fundamental clock design. However, the clock operations are much simpler
32  * in the XL710 because the device supports a full 64 bits of nanoseconds.
33  * Because the field is so wide, we can forgo the cycle counter and just
34  * operate with the nanosecond field directly without fear of overflow.
35  *
36  * Much like the 82599, the update period is dependent upon the link speed:
37  * At 40Gb link or no link, the period is 1.6ns.
38  * At 10Gb link, the period is multiplied by 2. (3.2ns)
39  * At 1Gb link, the period is multiplied by 20. (32ns)
40  * 1588 functionality is not supported at 100Mbps.
41  */
42 #define I40E_PTP_40GB_INCVAL 0x0199999999ULL
43 #define I40E_PTP_10GB_INCVAL 0x0333333333ULL
44 #define I40E_PTP_1GB_INCVAL  0x2000000000ULL
45 
46 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
47 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
48 					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
49 
50 /**
51  * i40e_ptp_read - Read the PHC time from the device
52  * @pf: Board private structure
53  * @ts: timespec structure to hold the current time value
54  *
55  * This function reads the PRTTSYN_TIME registers and stores them in a
56  * timespec. However, since the registers are 64 bits of nanoseconds, we must
57  * convert the result to a timespec before we can return.
58  **/
59 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts)
60 {
61 	struct i40e_hw *hw = &pf->hw;
62 	u32 hi, lo;
63 	u64 ns;
64 
65 	/* The timer latches on the lowest register read. */
66 	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
67 	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
68 
69 	ns = (((u64)hi) << 32) | lo;
70 
71 	*ts = ns_to_timespec64(ns);
72 }
73 
74 /**
75  * i40e_ptp_write - Write the PHC time to the device
76  * @pf: Board private structure
77  * @ts: timespec structure that holds the new time value
78  *
79  * This function writes the PRTTSYN_TIME registers with the user value. Since
80  * we receive a timespec from the stack, we must convert that timespec into
81  * nanoseconds before programming the registers.
82  **/
83 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
84 {
85 	struct i40e_hw *hw = &pf->hw;
86 	u64 ns = timespec64_to_ns(ts);
87 
88 	/* The timer will not update until the high register is written, so
89 	 * write the low register first.
90 	 */
91 	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
92 	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
93 }
94 
95 /**
96  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
97  * @hwtstamps: Timestamp structure to update
98  * @timestamp: Timestamp from the hardware
99  *
100  * We need to convert the NIC clock value into a hwtstamp which can be used by
101  * the upper level timestamping functions. Since the timestamp is simply a 64-
102  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
103  **/
104 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
105 					 u64 timestamp)
106 {
107 	memset(hwtstamps, 0, sizeof(*hwtstamps));
108 
109 	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
110 }
111 
112 /**
113  * i40e_ptp_adjfreq - Adjust the PHC frequency
114  * @ptp: The PTP clock structure
115  * @ppb: Parts per billion adjustment from the base
116  *
117  * Adjust the frequency of the PHC by the indicated parts per billion from the
118  * base frequency.
119  **/
120 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
121 {
122 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
123 	struct i40e_hw *hw = &pf->hw;
124 	u64 adj, freq, diff;
125 	int neg_adj = 0;
126 
127 	if (ppb < 0) {
128 		neg_adj = 1;
129 		ppb = -ppb;
130 	}
131 
132 	smp_mb(); /* Force any pending update before accessing. */
133 	adj = ACCESS_ONCE(pf->ptp_base_adj);
134 
135 	freq = adj;
136 	freq *= ppb;
137 	diff = div_u64(freq, 1000000000ULL);
138 
139 	if (neg_adj)
140 		adj -= diff;
141 	else
142 		adj += diff;
143 
144 	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
145 	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
146 
147 	return 0;
148 }
149 
150 /**
151  * i40e_ptp_adjtime - Adjust the PHC time
152  * @ptp: The PTP clock structure
153  * @delta: Offset in nanoseconds to adjust the PHC time by
154  *
155  * Adjust the frequency of the PHC by the indicated parts per billion from the
156  * base frequency.
157  **/
158 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
159 {
160 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
161 	struct timespec64 now, then;
162 
163 	then = ns_to_timespec64(delta);
164 	mutex_lock(&pf->tmreg_lock);
165 
166 	i40e_ptp_read(pf, &now);
167 	now = timespec64_add(now, then);
168 	i40e_ptp_write(pf, (const struct timespec64 *)&now);
169 
170 	mutex_unlock(&pf->tmreg_lock);
171 
172 	return 0;
173 }
174 
175 /**
176  * i40e_ptp_gettime - Get the time of the PHC
177  * @ptp: The PTP clock structure
178  * @ts: timespec structure to hold the current time value
179  *
180  * Read the device clock and return the correct value on ns, after converting it
181  * into a timespec struct.
182  **/
183 static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
184 {
185 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
186 
187 	mutex_lock(&pf->tmreg_lock);
188 	i40e_ptp_read(pf, ts);
189 	mutex_unlock(&pf->tmreg_lock);
190 
191 	return 0;
192 }
193 
194 /**
195  * i40e_ptp_settime - Set the time of the PHC
196  * @ptp: The PTP clock structure
197  * @ts: timespec structure that holds the new time value
198  *
199  * Set the device clock to the user input value. The conversion from timespec
200  * to ns happens in the write function.
201  **/
202 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
203 			    const struct timespec64 *ts)
204 {
205 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
206 
207 	mutex_lock(&pf->tmreg_lock);
208 	i40e_ptp_write(pf, ts);
209 	mutex_unlock(&pf->tmreg_lock);
210 
211 	return 0;
212 }
213 
214 /**
215  * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
216  * @ptp: The PTP clock structure
217  * @rq: The requested feature to change
218  * @on: Enable/disable flag
219  *
220  * The XL710 does not support any of the ancillary features of the PHC
221  * subsystem, so this function may just return.
222  **/
223 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
224 				   struct ptp_clock_request *rq, int on)
225 {
226 	return -EOPNOTSUPP;
227 }
228 
229 /**
230  * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
231  * @pf: the PF data structure
232  *
233  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
234  * for noticed latch events. This allows the driver to keep track of the first
235  * time a latch event was noticed which will be used to help clear out Rx
236  * timestamps for packets that got dropped or lost.
237  *
238  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
239  * expected to be called only while under the ptp_rx_lock.
240  **/
241 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
242 {
243 	struct i40e_hw *hw = &pf->hw;
244 	u32 prttsyn_stat, new_latch_events;
245 	int  i;
246 
247 	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
248 	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
249 
250 	/* Update the jiffies time for any newly latched timestamp. This
251 	 * ensures that we store the time that we first discovered a timestamp
252 	 * was latched by the hardware. The service task will later determine
253 	 * if we should free the latch and drop that timestamp should too much
254 	 * time pass. This flow ensures that we only update jiffies for new
255 	 * events latched since the last time we checked, and not all events
256 	 * currently latched, so that the service task accounting remains
257 	 * accurate.
258 	 */
259 	for (i = 0; i < 4; i++) {
260 		if (new_latch_events & BIT(i))
261 			pf->latch_events[i] = jiffies;
262 	}
263 
264 	/* Finally, we store the current status of the Rx timestamp latches */
265 	pf->latch_event_flags = prttsyn_stat;
266 
267 	return prttsyn_stat;
268 }
269 
270 /**
271  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
272  * @vsi: The VSI with the rings relevant to 1588
273  *
274  * This watchdog task is scheduled to detect error case where hardware has
275  * dropped an Rx packet that was timestamped when the ring is full. The
276  * particular error is rare but leaves the device in a state unable to timestamp
277  * any future packets.
278  **/
279 void i40e_ptp_rx_hang(struct i40e_vsi *vsi)
280 {
281 	struct i40e_pf *pf = vsi->back;
282 	struct i40e_hw *hw = &pf->hw;
283 	unsigned int i, cleared = 0;
284 
285 	/* Since we cannot turn off the Rx timestamp logic if the device is
286 	 * configured for Tx timestamping, we check if Rx timestamping is
287 	 * configured. We don't want to spuriously warn about Rx timestamp
288 	 * hangs if we don't care about the timestamps.
289 	 */
290 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
291 		return;
292 
293 	spin_lock_bh(&pf->ptp_rx_lock);
294 
295 	/* Update current latch times for Rx events */
296 	i40e_ptp_get_rx_events(pf);
297 
298 	/* Check all the currently latched Rx events and see whether they have
299 	 * been latched for over a second. It is assumed that any timestamp
300 	 * should have been cleared within this time, or else it was captured
301 	 * for a dropped frame that the driver never received. Thus, we will
302 	 * clear any timestamp that has been latched for over 1 second.
303 	 */
304 	for (i = 0; i < 4; i++) {
305 		if ((pf->latch_event_flags & BIT(i)) &&
306 		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
307 			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
308 			pf->latch_event_flags &= ~BIT(i);
309 			cleared++;
310 		}
311 	}
312 
313 	spin_unlock_bh(&pf->ptp_rx_lock);
314 
315 	/* Log a warning if more than 2 timestamps got dropped in the same
316 	 * check. We don't want to warn about all drops because it can occur
317 	 * in normal scenarios such as PTP frames on multicast addresses we
318 	 * aren't listening to. However, administrator should know if this is
319 	 * the reason packets aren't receiving timestamps.
320 	 */
321 	if (cleared > 2)
322 		dev_dbg(&pf->pdev->dev,
323 			"Dropped %d missed RXTIME timestamp events\n",
324 			cleared);
325 
326 	/* Finally, update the rx_hwtstamp_cleared counter */
327 	pf->rx_hwtstamp_cleared += cleared;
328 }
329 
330 /**
331  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
332  * @pf: Board private structure
333  *
334  * Read the value of the Tx timestamp from the registers, convert it into a
335  * value consumable by the stack, and store that result into the shhwtstamps
336  * struct before returning it up the stack.
337  **/
338 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
339 {
340 	struct skb_shared_hwtstamps shhwtstamps;
341 	struct i40e_hw *hw = &pf->hw;
342 	u32 hi, lo;
343 	u64 ns;
344 
345 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
346 		return;
347 
348 	/* don't attempt to timestamp if we don't have an skb */
349 	if (!pf->ptp_tx_skb)
350 		return;
351 
352 	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
353 	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
354 
355 	ns = (((u64)hi) << 32) | lo;
356 
357 	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
358 	skb_tstamp_tx(pf->ptp_tx_skb, &shhwtstamps);
359 	dev_kfree_skb_any(pf->ptp_tx_skb);
360 	pf->ptp_tx_skb = NULL;
361 	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, &pf->state);
362 }
363 
364 /**
365  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
366  * @pf: Board private structure
367  * @skb: Particular skb to send timestamp with
368  * @index: Index into the receive timestamp registers for the timestamp
369  *
370  * The XL710 receives a notification in the receive descriptor with an offset
371  * into the set of RXTIME registers where the timestamp is for that skb. This
372  * function goes and fetches the receive timestamp from that offset, if a valid
373  * one exists. The RXTIME registers are in ns, so we must convert the result
374  * first.
375  **/
376 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
377 {
378 	u32 prttsyn_stat, hi, lo;
379 	struct i40e_hw *hw;
380 	u64 ns;
381 
382 	/* Since we cannot turn off the Rx timestamp logic if the device is
383 	 * doing Tx timestamping, check if Rx timestamping is configured.
384 	 */
385 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
386 		return;
387 
388 	hw = &pf->hw;
389 
390 	spin_lock_bh(&pf->ptp_rx_lock);
391 
392 	/* Get current Rx events and update latch times */
393 	prttsyn_stat = i40e_ptp_get_rx_events(pf);
394 
395 	/* TODO: Should we warn about missing Rx timestamp event? */
396 	if (!(prttsyn_stat & BIT(index))) {
397 		spin_unlock_bh(&pf->ptp_rx_lock);
398 		return;
399 	}
400 
401 	/* Clear the latched event since we're about to read its register */
402 	pf->latch_event_flags &= ~BIT(index);
403 
404 	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
405 	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
406 
407 	spin_unlock_bh(&pf->ptp_rx_lock);
408 
409 	ns = (((u64)hi) << 32) | lo;
410 
411 	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
412 }
413 
414 /**
415  * i40e_ptp_set_increment - Utility function to update clock increment rate
416  * @pf: Board private structure
417  *
418  * During a link change, the DMA frequency that drives the 1588 logic will
419  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
420  * we must update the increment value per clock tick.
421  **/
422 void i40e_ptp_set_increment(struct i40e_pf *pf)
423 {
424 	struct i40e_link_status *hw_link_info;
425 	struct i40e_hw *hw = &pf->hw;
426 	u64 incval;
427 
428 	hw_link_info = &hw->phy.link_info;
429 
430 	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
431 
432 	switch (hw_link_info->link_speed) {
433 	case I40E_LINK_SPEED_10GB:
434 		incval = I40E_PTP_10GB_INCVAL;
435 		break;
436 	case I40E_LINK_SPEED_1GB:
437 		incval = I40E_PTP_1GB_INCVAL;
438 		break;
439 	case I40E_LINK_SPEED_100MB:
440 	{
441 		static int warn_once;
442 
443 		if (!warn_once) {
444 			dev_warn(&pf->pdev->dev,
445 				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
446 			warn_once++;
447 		}
448 		incval = 0;
449 		break;
450 	}
451 	case I40E_LINK_SPEED_40GB:
452 	default:
453 		incval = I40E_PTP_40GB_INCVAL;
454 		break;
455 	}
456 
457 	/* Write the new increment value into the increment register. The
458 	 * hardware will not update the clock until both registers have been
459 	 * written.
460 	 */
461 	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
462 	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
463 
464 	/* Update the base adjustement value. */
465 	ACCESS_ONCE(pf->ptp_base_adj) = incval;
466 	smp_mb(); /* Force the above update. */
467 }
468 
469 /**
470  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
471  * @pf: Board private structure
472  * @ifreq: ioctl data
473  *
474  * Obtain the current hardware timestamping settigs as requested. To do this,
475  * keep a shadow copy of the timestamp settings rather than attempting to
476  * deconstruct it from the registers.
477  **/
478 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
479 {
480 	struct hwtstamp_config *config = &pf->tstamp_config;
481 
482 	if (!(pf->flags & I40E_FLAG_PTP))
483 		return -EOPNOTSUPP;
484 
485 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
486 		-EFAULT : 0;
487 }
488 
489 /**
490  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
491  * @pf: Board private structure
492  * @config: hwtstamp settings requested or saved
493  *
494  * Control hardware registers to enter the specific mode requested by the
495  * user. Also used during reset path to ensure that timestamp settings are
496  * maintained.
497  *
498  * Note: modifies config in place, and may update the requested mode to be
499  * more broad if the specific filter is not directly supported.
500  **/
501 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
502 				       struct hwtstamp_config *config)
503 {
504 	struct i40e_hw *hw = &pf->hw;
505 	u32 tsyntype, regval;
506 
507 	/* Reserved for future extensions. */
508 	if (config->flags)
509 		return -EINVAL;
510 
511 	switch (config->tx_type) {
512 	case HWTSTAMP_TX_OFF:
513 		pf->ptp_tx = false;
514 		break;
515 	case HWTSTAMP_TX_ON:
516 		pf->ptp_tx = true;
517 		break;
518 	default:
519 		return -ERANGE;
520 	}
521 
522 	switch (config->rx_filter) {
523 	case HWTSTAMP_FILTER_NONE:
524 		pf->ptp_rx = false;
525 		/* We set the type to V1, but do not enable UDP packet
526 		 * recognition. In this way, we should be as close to
527 		 * disabling PTP Rx timestamps as possible since V1 packets
528 		 * are always UDP, since L2 packets are a V2 feature.
529 		 */
530 		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
531 		break;
532 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
533 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
534 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
535 		if (!(pf->flags & I40E_FLAG_PTP_L4_CAPABLE))
536 			return -ERANGE;
537 		pf->ptp_rx = true;
538 		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
539 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
540 			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
541 		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
542 		break;
543 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
544 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
545 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
546 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
547 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
548 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
549 		if (!(pf->flags & I40E_FLAG_PTP_L4_CAPABLE))
550 			return -ERANGE;
551 		/* fall through */
552 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
553 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
554 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
555 		pf->ptp_rx = true;
556 		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
557 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
558 		if (pf->flags & I40E_FLAG_PTP_L4_CAPABLE) {
559 			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
560 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
561 		} else {
562 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
563 		}
564 		break;
565 	case HWTSTAMP_FILTER_ALL:
566 	default:
567 		return -ERANGE;
568 	}
569 
570 	/* Clear out all 1588-related registers to clear and unlatch them. */
571 	spin_lock_bh(&pf->ptp_rx_lock);
572 	rd32(hw, I40E_PRTTSYN_STAT_0);
573 	rd32(hw, I40E_PRTTSYN_TXTIME_H);
574 	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
575 	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
576 	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
577 	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
578 	pf->latch_event_flags = 0;
579 	spin_unlock_bh(&pf->ptp_rx_lock);
580 
581 	/* Enable/disable the Tx timestamp interrupt based on user input. */
582 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
583 	if (pf->ptp_tx)
584 		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
585 	else
586 		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
587 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
588 
589 	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
590 	if (pf->ptp_tx)
591 		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
592 	else
593 		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
594 	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
595 
596 	/* Although there is no simple on/off switch for Rx, we "disable" Rx
597 	 * timestamps by setting to V1 only mode and clear the UDP
598 	 * recognition. This ought to disable all PTP Rx timestamps as V1
599 	 * packets are always over UDP. Note that software is configured to
600 	 * ignore Rx timestamps via the pf->ptp_rx flag.
601 	 */
602 	regval = rd32(hw, I40E_PRTTSYN_CTL1);
603 	/* clear everything but the enable bit */
604 	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
605 	/* now enable bits for desired Rx timestamps */
606 	regval |= tsyntype;
607 	wr32(hw, I40E_PRTTSYN_CTL1, regval);
608 
609 	return 0;
610 }
611 
612 /**
613  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
614  * @pf: Board private structure
615  * @ifreq: ioctl data
616  *
617  * Respond to the user filter requests and make the appropriate hardware
618  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
619  * logic, so keep track in software of whether to indicate these timestamps
620  * or not.
621  *
622  * It is permissible to "upgrade" the user request to a broader filter, as long
623  * as the user receives the timestamps they care about and the user is notified
624  * the filter has been broadened.
625  **/
626 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
627 {
628 	struct hwtstamp_config config;
629 	int err;
630 
631 	if (!(pf->flags & I40E_FLAG_PTP))
632 		return -EOPNOTSUPP;
633 
634 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
635 		return -EFAULT;
636 
637 	err = i40e_ptp_set_timestamp_mode(pf, &config);
638 	if (err)
639 		return err;
640 
641 	/* save these settings for future reference */
642 	pf->tstamp_config = config;
643 
644 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
645 		-EFAULT : 0;
646 }
647 
648 /**
649  * i40e_ptp_create_clock - Create PTP clock device for userspace
650  * @pf: Board private structure
651  *
652  * This function creates a new PTP clock device. It only creates one if we
653  * don't already have one, so it is safe to call. Will return error if it
654  * can't create one, but success if we already have a device. Should be used
655  * by i40e_ptp_init to create clock initially, and prevent global resets from
656  * creating new clock devices.
657  **/
658 static long i40e_ptp_create_clock(struct i40e_pf *pf)
659 {
660 	/* no need to create a clock device if we already have one */
661 	if (!IS_ERR_OR_NULL(pf->ptp_clock))
662 		return 0;
663 
664 	strncpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name));
665 	pf->ptp_caps.owner = THIS_MODULE;
666 	pf->ptp_caps.max_adj = 999999999;
667 	pf->ptp_caps.n_ext_ts = 0;
668 	pf->ptp_caps.pps = 0;
669 	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
670 	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
671 	pf->ptp_caps.gettime64 = i40e_ptp_gettime;
672 	pf->ptp_caps.settime64 = i40e_ptp_settime;
673 	pf->ptp_caps.enable = i40e_ptp_feature_enable;
674 
675 	/* Attempt to register the clock before enabling the hardware. */
676 	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
677 	if (IS_ERR(pf->ptp_clock))
678 		return PTR_ERR(pf->ptp_clock);
679 
680 	/* clear the hwtstamp settings here during clock create, instead of
681 	 * during regular init, so that we can maintain settings across a
682 	 * reset or suspend.
683 	 */
684 	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
685 	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
686 
687 	return 0;
688 }
689 
690 /**
691  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
692  * @pf: Board private structure
693  *
694  * This function sets device up for 1588 support. The first time it is run, it
695  * will create a PHC clock device. It does not create a clock device if one
696  * already exists. It also reconfigures the device after a reset.
697  **/
698 void i40e_ptp_init(struct i40e_pf *pf)
699 {
700 	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
701 	struct i40e_hw *hw = &pf->hw;
702 	u32 pf_id;
703 	long err;
704 
705 	/* Only one PF is assigned to control 1588 logic per port. Do not
706 	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
707 	 */
708 	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
709 		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
710 	if (hw->pf_id != pf_id) {
711 		pf->flags &= ~I40E_FLAG_PTP;
712 		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
713 			 __func__,
714 			 netdev->name);
715 		return;
716 	}
717 
718 	mutex_init(&pf->tmreg_lock);
719 	spin_lock_init(&pf->ptp_rx_lock);
720 
721 	/* ensure we have a clock device */
722 	err = i40e_ptp_create_clock(pf);
723 	if (err) {
724 		pf->ptp_clock = NULL;
725 		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
726 			__func__);
727 	} else if (pf->ptp_clock) {
728 		struct timespec64 ts;
729 		u32 regval;
730 
731 		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
732 			dev_info(&pf->pdev->dev, "PHC enabled\n");
733 		pf->flags |= I40E_FLAG_PTP;
734 
735 		/* Ensure the clocks are running. */
736 		regval = rd32(hw, I40E_PRTTSYN_CTL0);
737 		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
738 		wr32(hw, I40E_PRTTSYN_CTL0, regval);
739 		regval = rd32(hw, I40E_PRTTSYN_CTL1);
740 		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
741 		wr32(hw, I40E_PRTTSYN_CTL1, regval);
742 
743 		/* Set the increment value per clock tick. */
744 		i40e_ptp_set_increment(pf);
745 
746 		/* reset timestamping mode */
747 		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
748 
749 		/* Set the clock value. */
750 		ts = ktime_to_timespec64(ktime_get_real());
751 		i40e_ptp_settime(&pf->ptp_caps, &ts);
752 	}
753 }
754 
755 /**
756  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
757  * @pf: Board private structure
758  *
759  * This function handles the cleanup work required from the initialization by
760  * clearing out the important information and unregistering the PHC.
761  **/
762 void i40e_ptp_stop(struct i40e_pf *pf)
763 {
764 	pf->flags &= ~I40E_FLAG_PTP;
765 	pf->ptp_tx = false;
766 	pf->ptp_rx = false;
767 
768 	if (pf->ptp_tx_skb) {
769 		dev_kfree_skb_any(pf->ptp_tx_skb);
770 		pf->ptp_tx_skb = NULL;
771 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, &pf->state);
772 	}
773 
774 	if (pf->ptp_clock) {
775 		ptp_clock_unregister(pf->ptp_clock);
776 		pf->ptp_clock = NULL;
777 		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
778 			 pf->vsi[pf->lan_vsi]->netdev->name);
779 	}
780 }
781