xref: /linux/drivers/net/ethernet/intel/i40e/i40e_ptp.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/ptp_classify.h>
5 #include <linux/posix-clock.h>
6 #include "i40e.h"
7 #include "i40e_devids.h"
8 
9 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
10  * the fundamental clock design. However, the clock operations are much simpler
11  * in the XL710 because the device supports a full 64 bits of nanoseconds.
12  * Because the field is so wide, we can forgo the cycle counter and just
13  * operate with the nanosecond field directly without fear of overflow.
14  *
15  * Much like the 82599, the update period is dependent upon the link speed:
16  * At 40Gb, 25Gb, or no link, the period is 1.6ns.
17  * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
18  * At 1Gb link, the period is multiplied by 20. (32ns)
19  * 1588 functionality is not supported at 100Mbps.
20  */
21 #define I40E_PTP_40GB_INCVAL		0x0199999999ULL
22 #define I40E_PTP_10GB_INCVAL_MULT	2
23 #define I40E_PTP_5GB_INCVAL_MULT	2
24 #define I40E_PTP_1GB_INCVAL_MULT	20
25 #define I40E_ISGN			0x80000000
26 
27 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
28 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
29 					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
30 #define I40E_SUBDEV_ID_25G_PTP_PIN	0xB
31 
32 enum i40e_ptp_pin {
33 	SDP3_2 = 0,
34 	SDP3_3,
35 	GPIO_4
36 };
37 
38 enum i40e_can_set_pins {
39 	CANT_DO_PINS = -1,
40 	CAN_SET_PINS,
41 	CAN_DO_PINS
42 };
43 
44 static struct ptp_pin_desc sdp_desc[] = {
45 	/* name     idx      func      chan */
46 	{"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
47 	{"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
48 	{"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
49 };
50 
51 enum i40e_ptp_gpio_pin_state {
52 	end = -2,
53 	invalid,
54 	off,
55 	in_A,
56 	in_B,
57 	out_A,
58 	out_B,
59 };
60 
61 static const char * const i40e_ptp_gpio_pin_state2str[] = {
62 	"off", "in_A", "in_B", "out_A", "out_B"
63 };
64 
65 enum i40e_ptp_led_pin_state {
66 	led_end = -2,
67 	low = 0,
68 	high,
69 };
70 
71 struct i40e_ptp_pins_settings {
72 	enum i40e_ptp_gpio_pin_state sdp3_2;
73 	enum i40e_ptp_gpio_pin_state sdp3_3;
74 	enum i40e_ptp_gpio_pin_state gpio_4;
75 	enum i40e_ptp_led_pin_state led2_0;
76 	enum i40e_ptp_led_pin_state led2_1;
77 	enum i40e_ptp_led_pin_state led3_0;
78 	enum i40e_ptp_led_pin_state led3_1;
79 };
80 
81 static const struct i40e_ptp_pins_settings
82 	i40e_ptp_pin_led_allowed_states[] = {
83 	{off,	off,	off,		high,	high,	high,	high},
84 	{off,	in_A,	off,		high,	high,	high,	low},
85 	{off,	out_A,	off,		high,	low,	high,	high},
86 	{off,	in_B,	off,		high,	high,	high,	low},
87 	{off,	out_B,	off,		high,	low,	high,	high},
88 	{in_A,	off,	off,		high,	high,	high,	low},
89 	{in_A,	in_B,	off,		high,	high,	high,	low},
90 	{in_A,	out_B,	off,		high,	low,	high,	high},
91 	{out_A,	off,	off,		high,	low,	high,	high},
92 	{out_A,	in_B,	off,		high,	low,	high,	high},
93 	{in_B,	off,	off,		high,	high,	high,	low},
94 	{in_B,	in_A,	off,		high,	high,	high,	low},
95 	{in_B,	out_A,	off,		high,	low,	high,	high},
96 	{out_B,	off,	off,		high,	low,	high,	high},
97 	{out_B,	in_A,	off,		high,	low,	high,	high},
98 	{off,	off,	in_A,		high,	high,	low,	high},
99 	{off,	out_A,	in_A,		high,	low,	low,	high},
100 	{off,	in_B,	in_A,		high,	high,	low,	low},
101 	{off,	out_B,	in_A,		high,	low,	low,	high},
102 	{out_A,	off,	in_A,		high,	low,	low,	high},
103 	{out_A,	in_B,	in_A,		high,	low,	low,	high},
104 	{in_B,	off,	in_A,		high,	high,	low,	low},
105 	{in_B,	out_A,	in_A,		high,	low,	low,	high},
106 	{out_B,	off,	in_A,		high,	low,	low,	high},
107 	{off,	off,	out_A,		low,	high,	high,	high},
108 	{off,	in_A,	out_A,		low,	high,	high,	low},
109 	{off,	in_B,	out_A,		low,	high,	high,	low},
110 	{off,	out_B,	out_A,		low,	low,	high,	high},
111 	{in_A,	off,	out_A,		low,	high,	high,	low},
112 	{in_A,	in_B,	out_A,		low,	high,	high,	low},
113 	{in_A,	out_B,	out_A,		low,	low,	high,	high},
114 	{in_B,	off,	out_A,		low,	high,	high,	low},
115 	{in_B,	in_A,	out_A,		low,	high,	high,	low},
116 	{out_B,	off,	out_A,		low,	low,	high,	high},
117 	{out_B,	in_A,	out_A,		low,	low,	high,	high},
118 	{off,	off,	in_B,		high,	high,	low,	high},
119 	{off,	in_A,	in_B,		high,	high,	low,	low},
120 	{off,	out_A,	in_B,		high,	low,	low,	high},
121 	{off,	out_B,	in_B,		high,	low,	low,	high},
122 	{in_A,	off,	in_B,		high,	high,	low,	low},
123 	{in_A,	out_B,	in_B,		high,	low,	low,	high},
124 	{out_A,	off,	in_B,		high,	low,	low,	high},
125 	{out_B,	off,	in_B,		high,	low,	low,	high},
126 	{out_B,	in_A,	in_B,		high,	low,	low,	high},
127 	{off,	off,	out_B,		low,	high,	high,	high},
128 	{off,	in_A,	out_B,		low,	high,	high,	low},
129 	{off,	out_A,	out_B,		low,	low,	high,	high},
130 	{off,	in_B,	out_B,		low,	high,	high,	low},
131 	{in_A,	off,	out_B,		low,	high,	high,	low},
132 	{in_A,	in_B,	out_B,		low,	high,	high,	low},
133 	{out_A,	off,	out_B,		low,	low,	high,	high},
134 	{out_A,	in_B,	out_B,		low,	low,	high,	high},
135 	{in_B,	off,	out_B,		low,	high,	high,	low},
136 	{in_B,	in_A,	out_B,		low,	high,	high,	low},
137 	{in_B,	out_A,	out_B,		low,	low,	high,	high},
138 	{end,	end,	end,	led_end, led_end, led_end, led_end}
139 };
140 
141 static int i40e_ptp_set_pins(struct i40e_pf *pf,
142 			     struct i40e_ptp_pins_settings *pins);
143 
144 /**
145  * i40e_ptp_extts0_work - workqueue task function
146  * @work: workqueue task structure
147  *
148  * Service for PTP external clock event
149  **/
150 static void i40e_ptp_extts0_work(struct work_struct *work)
151 {
152 	struct i40e_pf *pf = container_of(work, struct i40e_pf,
153 					  ptp_extts0_work);
154 	struct i40e_hw *hw = &pf->hw;
155 	struct ptp_clock_event event;
156 	u32 hi, lo;
157 
158 	/* Event time is captured by one of the two matched registers
159 	 *      PRTTSYN_EVNT_L: 32 LSB of sampled time event
160 	 *      PRTTSYN_EVNT_H: 32 MSB of sampled time event
161 	 * Event is defined in PRTTSYN_EVNT_0 register
162 	 */
163 	lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
164 	hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
165 
166 	event.timestamp = (((u64)hi) << 32) | lo;
167 
168 	event.type = PTP_CLOCK_EXTTS;
169 	event.index = hw->pf_id;
170 
171 	/* fire event */
172 	ptp_clock_event(pf->ptp_clock, &event);
173 }
174 
175 /**
176  * i40e_is_ptp_pin_dev - check if device supports PTP pins
177  * @hw: pointer to the hardware structure
178  *
179  * Return true if device supports PTP pins, false otherwise.
180  **/
181 static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
182 {
183 	return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
184 	       hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
185 }
186 
187 /**
188  * i40e_can_set_pins - check possibility of manipulating the pins
189  * @pf: board private structure
190  *
191  * Check if all conditions are satisfied to manipulate PTP pins.
192  * Return CAN_SET_PINS if pins can be set on a specific PF or
193  * return CAN_DO_PINS if pins can be manipulated within a NIC or
194  * return CANT_DO_PINS otherwise.
195  **/
196 static enum i40e_can_set_pins i40e_can_set_pins(struct i40e_pf *pf)
197 {
198 	if (!i40e_is_ptp_pin_dev(&pf->hw)) {
199 		dev_warn(&pf->pdev->dev,
200 			 "PTP external clock not supported.\n");
201 		return CANT_DO_PINS;
202 	}
203 
204 	if (!pf->ptp_pins) {
205 		dev_warn(&pf->pdev->dev,
206 			 "PTP PIN manipulation not allowed.\n");
207 		return CANT_DO_PINS;
208 	}
209 
210 	if (pf->hw.pf_id) {
211 		dev_warn(&pf->pdev->dev,
212 			 "PTP PINs should be accessed via PF0.\n");
213 		return CAN_DO_PINS;
214 	}
215 
216 	return CAN_SET_PINS;
217 }
218 
219 /**
220  * i40_ptp_reset_timing_events - Reset PTP timing events
221  * @pf: Board private structure
222  *
223  * This function resets timing events for pf.
224  **/
225 static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
226 {
227 	u32 i;
228 
229 	spin_lock_bh(&pf->ptp_rx_lock);
230 	for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
231 		/* reading and automatically clearing timing events registers */
232 		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
233 		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
234 		pf->latch_events[i] = 0;
235 	}
236 	/* reading and automatically clearing timing events registers */
237 	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
238 	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
239 
240 	pf->tx_hwtstamp_timeouts = 0;
241 	pf->tx_hwtstamp_skipped = 0;
242 	pf->rx_hwtstamp_cleared = 0;
243 	pf->latch_event_flags = 0;
244 	spin_unlock_bh(&pf->ptp_rx_lock);
245 }
246 
247 /**
248  * i40e_ptp_verify - check pins
249  * @ptp: ptp clock
250  * @pin: pin index
251  * @func: assigned function
252  * @chan: channel
253  *
254  * Check pins consistency.
255  * Return 0 on success or error on failure.
256  **/
257 static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
258 			   enum ptp_pin_function func, unsigned int chan)
259 {
260 	switch (func) {
261 	case PTP_PF_NONE:
262 	case PTP_PF_EXTTS:
263 	case PTP_PF_PEROUT:
264 		break;
265 	case PTP_PF_PHYSYNC:
266 		return -EOPNOTSUPP;
267 	}
268 	return 0;
269 }
270 
271 /**
272  * i40e_ptp_read - Read the PHC time from the device
273  * @pf: Board private structure
274  * @ts: timespec structure to hold the current time value
275  * @sts: structure to hold the system time before and after reading the PHC
276  *
277  * This function reads the PRTTSYN_TIME registers and stores them in a
278  * timespec. However, since the registers are 64 bits of nanoseconds, we must
279  * convert the result to a timespec before we can return.
280  **/
281 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
282 			  struct ptp_system_timestamp *sts)
283 {
284 	struct i40e_hw *hw = &pf->hw;
285 	u32 hi, lo;
286 	u64 ns;
287 
288 	/* The timer latches on the lowest register read. */
289 	ptp_read_system_prets(sts);
290 	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
291 	ptp_read_system_postts(sts);
292 	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
293 
294 	ns = (((u64)hi) << 32) | lo;
295 
296 	*ts = ns_to_timespec64(ns);
297 }
298 
299 /**
300  * i40e_ptp_write - Write the PHC time to the device
301  * @pf: Board private structure
302  * @ts: timespec structure that holds the new time value
303  *
304  * This function writes the PRTTSYN_TIME registers with the user value. Since
305  * we receive a timespec from the stack, we must convert that timespec into
306  * nanoseconds before programming the registers.
307  **/
308 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
309 {
310 	struct i40e_hw *hw = &pf->hw;
311 	u64 ns = timespec64_to_ns(ts);
312 
313 	/* The timer will not update until the high register is written, so
314 	 * write the low register first.
315 	 */
316 	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
317 	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
318 }
319 
320 /**
321  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
322  * @hwtstamps: Timestamp structure to update
323  * @timestamp: Timestamp from the hardware
324  *
325  * We need to convert the NIC clock value into a hwtstamp which can be used by
326  * the upper level timestamping functions. Since the timestamp is simply a 64-
327  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
328  **/
329 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
330 					 u64 timestamp)
331 {
332 	memset(hwtstamps, 0, sizeof(*hwtstamps));
333 
334 	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
335 }
336 
337 /**
338  * i40e_ptp_adjfine - Adjust the PHC frequency
339  * @ptp: The PTP clock structure
340  * @scaled_ppm: Scaled parts per million adjustment from base
341  *
342  * Adjust the frequency of the PHC by the indicated delta from the base
343  * frequency.
344  *
345  * Scaled parts per million is ppm with a 16 bit binary fractional field.
346  **/
347 static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
348 {
349 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
350 	struct i40e_hw *hw = &pf->hw;
351 	u64 adj, base_adj;
352 
353 	smp_mb(); /* Force any pending update before accessing. */
354 	base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult);
355 
356 	adj = adjust_by_scaled_ppm(base_adj, scaled_ppm);
357 
358 	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
359 	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
360 
361 	return 0;
362 }
363 
364 /**
365  * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
366  * @pf: the PF private data structure
367  *
368  * Configure 1PPS signal used for PTP pins
369  **/
370 static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
371 {
372 	struct i40e_hw *hw = &pf->hw;
373 	struct timespec64 now;
374 	u64 ns;
375 
376 	wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
377 	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
378 	wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
379 
380 	i40e_ptp_read(pf, &now, NULL);
381 	now.tv_sec += I40E_PTP_2_SEC_DELAY;
382 	now.tv_nsec = 0;
383 	ns = timespec64_to_ns(&now);
384 
385 	/* I40E_PRTTSYN_TGT_L(1) */
386 	wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
387 	/* I40E_PRTTSYN_TGT_H(1) */
388 	wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
389 	wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
390 	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
391 	wr32(hw, I40E_PRTTSYN_AUX_0(1),
392 	     I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
393 }
394 
395 /**
396  * i40e_ptp_adjtime - Adjust the PHC time
397  * @ptp: The PTP clock structure
398  * @delta: Offset in nanoseconds to adjust the PHC time by
399  *
400  * Adjust the current clock time by a delta specified in nanoseconds.
401  **/
402 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
403 {
404 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
405 	struct i40e_hw *hw = &pf->hw;
406 
407 	mutex_lock(&pf->tmreg_lock);
408 
409 	if (delta > -999999900LL && delta < 999999900LL) {
410 		int neg_adj = 0;
411 		u32 timadj;
412 		u64 tohw;
413 
414 		if (delta < 0) {
415 			neg_adj = 1;
416 			tohw = -delta;
417 		} else {
418 			tohw = delta;
419 		}
420 
421 		timadj = tohw & 0x3FFFFFFF;
422 		if (neg_adj)
423 			timadj |= I40E_ISGN;
424 		wr32(hw, I40E_PRTTSYN_ADJ, timadj);
425 	} else {
426 		struct timespec64 then, now;
427 
428 		then = ns_to_timespec64(delta);
429 		i40e_ptp_read(pf, &now, NULL);
430 		now = timespec64_add(now, then);
431 		i40e_ptp_write(pf, (const struct timespec64 *)&now);
432 		i40e_ptp_set_1pps_signal_hw(pf);
433 	}
434 
435 	mutex_unlock(&pf->tmreg_lock);
436 
437 	return 0;
438 }
439 
440 /**
441  * i40e_ptp_gettimex - Get the time of the PHC
442  * @ptp: The PTP clock structure
443  * @ts: timespec structure to hold the current time value
444  * @sts: structure to hold the system time before and after reading the PHC
445  *
446  * Read the device clock and return the correct value on ns, after converting it
447  * into a timespec struct.
448  **/
449 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
450 			     struct ptp_system_timestamp *sts)
451 {
452 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
453 
454 	mutex_lock(&pf->tmreg_lock);
455 	i40e_ptp_read(pf, ts, sts);
456 	mutex_unlock(&pf->tmreg_lock);
457 
458 	return 0;
459 }
460 
461 /**
462  * i40e_ptp_settime - Set the time of the PHC
463  * @ptp: The PTP clock structure
464  * @ts: timespec64 structure that holds the new time value
465  *
466  * Set the device clock to the user input value. The conversion from timespec
467  * to ns happens in the write function.
468  **/
469 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
470 			    const struct timespec64 *ts)
471 {
472 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
473 
474 	mutex_lock(&pf->tmreg_lock);
475 	i40e_ptp_write(pf, ts);
476 	mutex_unlock(&pf->tmreg_lock);
477 
478 	return 0;
479 }
480 
481 /**
482  * i40e_pps_configure - configure PPS events
483  * @ptp: ptp clock
484  * @rq: clock request
485  * @on: status
486  *
487  * Configure PPS events for external clock source.
488  * Return 0 on success or error on failure.
489  **/
490 static int i40e_pps_configure(struct ptp_clock_info *ptp,
491 			      struct ptp_clock_request *rq,
492 			      int on)
493 {
494 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
495 
496 	if (!!on)
497 		i40e_ptp_set_1pps_signal_hw(pf);
498 
499 	return 0;
500 }
501 
502 /**
503  * i40e_pin_state - determine PIN state
504  * @index: PIN index
505  * @func: function assigned to PIN
506  *
507  * Determine PIN state based on PIN index and function assigned.
508  * Return PIN state.
509  **/
510 static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
511 {
512 	enum i40e_ptp_gpio_pin_state state = off;
513 
514 	if (index == 0 && func == PTP_PF_EXTTS)
515 		state = in_A;
516 	if (index == 1 && func == PTP_PF_EXTTS)
517 		state = in_B;
518 	if (index == 0 && func == PTP_PF_PEROUT)
519 		state = out_A;
520 	if (index == 1 && func == PTP_PF_PEROUT)
521 		state = out_B;
522 
523 	return state;
524 }
525 
526 /**
527  * i40e_ptp_enable_pin - enable PINs.
528  * @pf: private board structure
529  * @chan: channel
530  * @func: PIN function
531  * @on: state
532  *
533  * Enable PTP pins for external clock source.
534  * Return 0 on success or error code on failure.
535  **/
536 static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
537 			       enum ptp_pin_function func, int on)
538 {
539 	enum i40e_ptp_gpio_pin_state *pin = NULL;
540 	struct i40e_ptp_pins_settings pins;
541 	int pin_index;
542 
543 	/* Use PF0 to set pins. Return success for user space tools */
544 	if (pf->hw.pf_id)
545 		return 0;
546 
547 	/* Preserve previous state of pins that we don't touch */
548 	pins.sdp3_2 = pf->ptp_pins->sdp3_2;
549 	pins.sdp3_3 = pf->ptp_pins->sdp3_3;
550 	pins.gpio_4 = pf->ptp_pins->gpio_4;
551 
552 	/* To turn on the pin - find the corresponding one based on
553 	 * the given index. To to turn the function off - find
554 	 * which pin had it assigned. Don't use ptp_find_pin here
555 	 * because it tries to lock the pincfg_mux which is locked by
556 	 * ptp_pin_store() that calls here.
557 	 */
558 	if (on) {
559 		pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
560 		if (pin_index < 0)
561 			return -EBUSY;
562 
563 		switch (pin_index) {
564 		case SDP3_2:
565 			pin = &pins.sdp3_2;
566 			break;
567 		case SDP3_3:
568 			pin = &pins.sdp3_3;
569 			break;
570 		case GPIO_4:
571 			pin = &pins.gpio_4;
572 			break;
573 		default:
574 			return -EINVAL;
575 		}
576 
577 		*pin = i40e_pin_state(chan, func);
578 	} else {
579 		pins.sdp3_2 = off;
580 		pins.sdp3_3 = off;
581 		pins.gpio_4 = off;
582 	}
583 
584 	return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
585 }
586 
587 /**
588  * i40e_ptp_feature_enable - Enable external clock pins
589  * @ptp: The PTP clock structure
590  * @rq: The PTP clock request structure
591  * @on: To turn feature on/off
592  *
593  * Setting on/off PTP PPS feature for pin.
594  **/
595 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
596 				   struct ptp_clock_request *rq,
597 				   int on)
598 {
599 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
600 
601 	enum ptp_pin_function func;
602 	unsigned int chan;
603 
604 	/* TODO: Implement flags handling for EXTTS and PEROUT */
605 	switch (rq->type) {
606 	case PTP_CLK_REQ_EXTTS:
607 		func = PTP_PF_EXTTS;
608 		chan = rq->extts.index;
609 		break;
610 	case PTP_CLK_REQ_PEROUT:
611 		func = PTP_PF_PEROUT;
612 		chan = rq->perout.index;
613 		break;
614 	case PTP_CLK_REQ_PPS:
615 		return i40e_pps_configure(ptp, rq, on);
616 	default:
617 		return -EOPNOTSUPP;
618 	}
619 
620 	return i40e_ptp_enable_pin(pf, chan, func, on);
621 }
622 
623 /**
624  * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
625  * @pf: the PF data structure
626  *
627  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
628  * for noticed latch events. This allows the driver to keep track of the first
629  * time a latch event was noticed which will be used to help clear out Rx
630  * timestamps for packets that got dropped or lost.
631  *
632  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
633  * expected to be called only while under the ptp_rx_lock.
634  **/
635 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
636 {
637 	struct i40e_hw *hw = &pf->hw;
638 	u32 prttsyn_stat, new_latch_events;
639 	int  i;
640 
641 	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
642 	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
643 
644 	/* Update the jiffies time for any newly latched timestamp. This
645 	 * ensures that we store the time that we first discovered a timestamp
646 	 * was latched by the hardware. The service task will later determine
647 	 * if we should free the latch and drop that timestamp should too much
648 	 * time pass. This flow ensures that we only update jiffies for new
649 	 * events latched since the last time we checked, and not all events
650 	 * currently latched, so that the service task accounting remains
651 	 * accurate.
652 	 */
653 	for (i = 0; i < 4; i++) {
654 		if (new_latch_events & BIT(i))
655 			pf->latch_events[i] = jiffies;
656 	}
657 
658 	/* Finally, we store the current status of the Rx timestamp latches */
659 	pf->latch_event_flags = prttsyn_stat;
660 
661 	return prttsyn_stat;
662 }
663 
664 /**
665  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
666  * @pf: The PF private data structure
667  *
668  * This watchdog task is scheduled to detect error case where hardware has
669  * dropped an Rx packet that was timestamped when the ring is full. The
670  * particular error is rare but leaves the device in a state unable to timestamp
671  * any future packets.
672  **/
673 void i40e_ptp_rx_hang(struct i40e_pf *pf)
674 {
675 	struct i40e_hw *hw = &pf->hw;
676 	unsigned int i, cleared = 0;
677 
678 	/* Since we cannot turn off the Rx timestamp logic if the device is
679 	 * configured for Tx timestamping, we check if Rx timestamping is
680 	 * configured. We don't want to spuriously warn about Rx timestamp
681 	 * hangs if we don't care about the timestamps.
682 	 */
683 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx)
684 		return;
685 
686 	spin_lock_bh(&pf->ptp_rx_lock);
687 
688 	/* Update current latch times for Rx events */
689 	i40e_ptp_get_rx_events(pf);
690 
691 	/* Check all the currently latched Rx events and see whether they have
692 	 * been latched for over a second. It is assumed that any timestamp
693 	 * should have been cleared within this time, or else it was captured
694 	 * for a dropped frame that the driver never received. Thus, we will
695 	 * clear any timestamp that has been latched for over 1 second.
696 	 */
697 	for (i = 0; i < 4; i++) {
698 		if ((pf->latch_event_flags & BIT(i)) &&
699 		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
700 			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
701 			pf->latch_event_flags &= ~BIT(i);
702 			cleared++;
703 		}
704 	}
705 
706 	spin_unlock_bh(&pf->ptp_rx_lock);
707 
708 	/* Log a warning if more than 2 timestamps got dropped in the same
709 	 * check. We don't want to warn about all drops because it can occur
710 	 * in normal scenarios such as PTP frames on multicast addresses we
711 	 * aren't listening to. However, administrator should know if this is
712 	 * the reason packets aren't receiving timestamps.
713 	 */
714 	if (cleared > 2)
715 		dev_dbg(&pf->pdev->dev,
716 			"Dropped %d missed RXTIME timestamp events\n",
717 			cleared);
718 
719 	/* Finally, update the rx_hwtstamp_cleared counter */
720 	pf->rx_hwtstamp_cleared += cleared;
721 }
722 
723 /**
724  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
725  * @pf: The PF private data structure
726  *
727  * This watchdog task is run periodically to make sure that we clear the Tx
728  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
729  * time. It is unexpected in the normal case but if it occurs it results in
730  * permanently preventing timestamps of future packets.
731  **/
732 void i40e_ptp_tx_hang(struct i40e_pf *pf)
733 {
734 	struct sk_buff *skb;
735 
736 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx)
737 		return;
738 
739 	/* Nothing to do if we're not already waiting for a timestamp */
740 	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
741 		return;
742 
743 	/* We already have a handler routine which is run when we are notified
744 	 * of a Tx timestamp in the hardware. If we don't get an interrupt
745 	 * within a second it is reasonable to assume that we never will.
746 	 */
747 	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
748 		skb = pf->ptp_tx_skb;
749 		pf->ptp_tx_skb = NULL;
750 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
751 
752 		/* Free the skb after we clear the bitlock */
753 		dev_kfree_skb_any(skb);
754 		pf->tx_hwtstamp_timeouts++;
755 	}
756 }
757 
758 /**
759  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
760  * @pf: Board private structure
761  *
762  * Read the value of the Tx timestamp from the registers, convert it into a
763  * value consumable by the stack, and store that result into the shhwtstamps
764  * struct before returning it up the stack.
765  **/
766 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
767 {
768 	struct skb_shared_hwtstamps shhwtstamps;
769 	struct sk_buff *skb = pf->ptp_tx_skb;
770 	struct i40e_hw *hw = &pf->hw;
771 	u32 hi, lo;
772 	u64 ns;
773 
774 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx)
775 		return;
776 
777 	/* don't attempt to timestamp if we don't have an skb */
778 	if (!pf->ptp_tx_skb)
779 		return;
780 
781 	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
782 	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
783 
784 	ns = (((u64)hi) << 32) | lo;
785 	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
786 
787 	/* Clear the bit lock as soon as possible after reading the register,
788 	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
789 	 * applications might wake up and attempt to request another transmit
790 	 * timestamp prior to the bit lock being cleared.
791 	 */
792 	pf->ptp_tx_skb = NULL;
793 	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
794 
795 	/* Notify the stack and free the skb after we've unlocked */
796 	skb_tstamp_tx(skb, &shhwtstamps);
797 	dev_kfree_skb_any(skb);
798 }
799 
800 /**
801  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
802  * @pf: Board private structure
803  * @skb: Particular skb to send timestamp with
804  * @index: Index into the receive timestamp registers for the timestamp
805  *
806  * The XL710 receives a notification in the receive descriptor with an offset
807  * into the set of RXTIME registers where the timestamp is for that skb. This
808  * function goes and fetches the receive timestamp from that offset, if a valid
809  * one exists. The RXTIME registers are in ns, so we must convert the result
810  * first.
811  **/
812 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
813 {
814 	u32 prttsyn_stat, hi, lo;
815 	struct i40e_hw *hw;
816 	u64 ns;
817 
818 	/* Since we cannot turn off the Rx timestamp logic if the device is
819 	 * doing Tx timestamping, check if Rx timestamping is configured.
820 	 */
821 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx)
822 		return;
823 
824 	hw = &pf->hw;
825 
826 	spin_lock_bh(&pf->ptp_rx_lock);
827 
828 	/* Get current Rx events and update latch times */
829 	prttsyn_stat = i40e_ptp_get_rx_events(pf);
830 
831 	/* TODO: Should we warn about missing Rx timestamp event? */
832 	if (!(prttsyn_stat & BIT(index))) {
833 		spin_unlock_bh(&pf->ptp_rx_lock);
834 		return;
835 	}
836 
837 	/* Clear the latched event since we're about to read its register */
838 	pf->latch_event_flags &= ~BIT(index);
839 
840 	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
841 	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
842 
843 	spin_unlock_bh(&pf->ptp_rx_lock);
844 
845 	ns = (((u64)hi) << 32) | lo;
846 
847 	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
848 }
849 
850 /**
851  * i40e_ptp_set_increment - Utility function to update clock increment rate
852  * @pf: Board private structure
853  *
854  * During a link change, the DMA frequency that drives the 1588 logic will
855  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
856  * we must update the increment value per clock tick.
857  **/
858 void i40e_ptp_set_increment(struct i40e_pf *pf)
859 {
860 	struct i40e_link_status *hw_link_info;
861 	struct i40e_hw *hw = &pf->hw;
862 	u64 incval;
863 	u32 mult;
864 
865 	hw_link_info = &hw->phy.link_info;
866 
867 	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
868 
869 	switch (hw_link_info->link_speed) {
870 	case I40E_LINK_SPEED_10GB:
871 		mult = I40E_PTP_10GB_INCVAL_MULT;
872 		break;
873 	case I40E_LINK_SPEED_5GB:
874 		mult = I40E_PTP_5GB_INCVAL_MULT;
875 		break;
876 	case I40E_LINK_SPEED_1GB:
877 		mult = I40E_PTP_1GB_INCVAL_MULT;
878 		break;
879 	case I40E_LINK_SPEED_100MB:
880 	{
881 		static int warn_once;
882 
883 		if (!warn_once) {
884 			dev_warn(&pf->pdev->dev,
885 				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
886 			warn_once++;
887 		}
888 		mult = 0;
889 		break;
890 	}
891 	case I40E_LINK_SPEED_40GB:
892 	default:
893 		mult = 1;
894 		break;
895 	}
896 
897 	/* The increment value is calculated by taking the base 40GbE incvalue
898 	 * and multiplying it by a factor based on the link speed.
899 	 */
900 	incval = I40E_PTP_40GB_INCVAL * mult;
901 
902 	/* Write the new increment value into the increment register. The
903 	 * hardware will not update the clock until both registers have been
904 	 * written.
905 	 */
906 	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
907 	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
908 
909 	/* Update the base adjustement value. */
910 	WRITE_ONCE(pf->ptp_adj_mult, mult);
911 	smp_mb(); /* Force the above update. */
912 }
913 
914 /**
915  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
916  * @pf: Board private structure
917  * @ifr: ioctl data
918  *
919  * Obtain the current hardware timestamping settigs as requested. To do this,
920  * keep a shadow copy of the timestamp settings rather than attempting to
921  * deconstruct it from the registers.
922  **/
923 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
924 {
925 	struct hwtstamp_config *config = &pf->tstamp_config;
926 
927 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
928 		return -EOPNOTSUPP;
929 
930 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
931 		-EFAULT : 0;
932 }
933 
934 /**
935  * i40e_ptp_free_pins - free memory used by PTP pins
936  * @pf: Board private structure
937  *
938  * Release memory allocated for PTP pins.
939  **/
940 static void i40e_ptp_free_pins(struct i40e_pf *pf)
941 {
942 	if (i40e_is_ptp_pin_dev(&pf->hw)) {
943 		kfree(pf->ptp_pins);
944 		kfree(pf->ptp_caps.pin_config);
945 		pf->ptp_pins = NULL;
946 	}
947 }
948 
949 /**
950  * i40e_ptp_set_pin_hw - Set HW GPIO pin
951  * @hw: pointer to the hardware structure
952  * @pin: pin index
953  * @state: pin state
954  *
955  * Set status of GPIO pin for external clock handling.
956  **/
957 static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
958 				unsigned int pin,
959 				enum i40e_ptp_gpio_pin_state state)
960 {
961 	switch (state) {
962 	case off:
963 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
964 		break;
965 	case in_A:
966 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
967 		     I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
968 		break;
969 	case in_B:
970 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
971 		     I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
972 		break;
973 	case out_A:
974 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
975 		     I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
976 		break;
977 	case out_B:
978 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
979 		     I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
980 		break;
981 	default:
982 		break;
983 	}
984 }
985 
986 /**
987  * i40e_ptp_set_led_hw - Set HW GPIO led
988  * @hw: pointer to the hardware structure
989  * @led: led index
990  * @state: led state
991  *
992  * Set status of GPIO led for external clock handling.
993  **/
994 static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
995 				unsigned int led,
996 				enum i40e_ptp_led_pin_state state)
997 {
998 	switch (state) {
999 	case low:
1000 		wr32(hw, I40E_GLGEN_GPIO_SET,
1001 		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1002 		break;
1003 	case high:
1004 		wr32(hw, I40E_GLGEN_GPIO_SET,
1005 		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1006 		     I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1007 		break;
1008 	default:
1009 		break;
1010 	}
1011 }
1012 
1013 /**
1014  * i40e_ptp_init_leds_hw - init LEDs
1015  * @hw: pointer to a hardware structure
1016  *
1017  * Set initial state of LEDs
1018  **/
1019 static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1020 {
1021 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1022 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1023 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1024 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1025 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1026 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1027 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1028 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1029 }
1030 
1031 /**
1032  * i40e_ptp_set_pins_hw - Set HW GPIO pins
1033  * @pf: Board private structure
1034  *
1035  * This function sets GPIO pins for PTP
1036  **/
1037 static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1038 {
1039 	const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1040 	struct i40e_hw *hw = &pf->hw;
1041 
1042 	/* pin must be disabled before it may be used */
1043 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1044 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1045 	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1046 
1047 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1048 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1049 	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1050 
1051 	i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1052 	i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1053 	i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1054 	i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1055 
1056 	dev_info(&pf->pdev->dev,
1057 		 "PTP configuration set to: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1058 		 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1059 		 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1060 		 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1061 }
1062 
1063 /**
1064  * i40e_ptp_set_pins - set PTP pins in HW
1065  * @pf: Board private structure
1066  * @pins: PTP pins to be applied
1067  *
1068  * Validate and set PTP pins in HW for specific PF.
1069  * Return 0 on success or negative value on error.
1070  **/
1071 static int i40e_ptp_set_pins(struct i40e_pf *pf,
1072 			     struct i40e_ptp_pins_settings *pins)
1073 {
1074 	enum i40e_can_set_pins pin_caps = i40e_can_set_pins(pf);
1075 	int i = 0;
1076 
1077 	if (pin_caps == CANT_DO_PINS)
1078 		return -EOPNOTSUPP;
1079 	else if (pin_caps == CAN_DO_PINS)
1080 		return 0;
1081 
1082 	if (pins->sdp3_2 == invalid)
1083 		pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1084 	if (pins->sdp3_3 == invalid)
1085 		pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1086 	if (pins->gpio_4 == invalid)
1087 		pins->gpio_4 = pf->ptp_pins->gpio_4;
1088 	while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1089 		if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1090 		    pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1091 		    pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1092 			pins->led2_0 =
1093 				i40e_ptp_pin_led_allowed_states[i].led2_0;
1094 			pins->led2_1 =
1095 				i40e_ptp_pin_led_allowed_states[i].led2_1;
1096 			pins->led3_0 =
1097 				i40e_ptp_pin_led_allowed_states[i].led3_0;
1098 			pins->led3_1 =
1099 				i40e_ptp_pin_led_allowed_states[i].led3_1;
1100 			break;
1101 		}
1102 		i++;
1103 	}
1104 	if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1105 		dev_warn(&pf->pdev->dev,
1106 			 "Unsupported PTP pin configuration: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1107 			 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1108 			 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1109 			 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1110 
1111 		return -EPERM;
1112 	}
1113 	memcpy(pf->ptp_pins, pins, sizeof(*pins));
1114 	i40e_ptp_set_pins_hw(pf);
1115 	i40_ptp_reset_timing_events(pf);
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  * i40e_ptp_alloc_pins - allocate PTP pins structure
1122  * @pf: Board private structure
1123  *
1124  * allocate PTP pins structure
1125  **/
1126 int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1127 {
1128 	if (!i40e_is_ptp_pin_dev(&pf->hw))
1129 		return 0;
1130 
1131 	pf->ptp_pins =
1132 		kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1133 
1134 	if (!pf->ptp_pins) {
1135 		dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1136 		return -ENOMEM;
1137 	}
1138 
1139 	pf->ptp_pins->sdp3_2 = off;
1140 	pf->ptp_pins->sdp3_3 = off;
1141 	pf->ptp_pins->gpio_4 = off;
1142 	pf->ptp_pins->led2_0 = high;
1143 	pf->ptp_pins->led2_1 = high;
1144 	pf->ptp_pins->led3_0 = high;
1145 	pf->ptp_pins->led3_1 = high;
1146 
1147 	/* Use PF0 to set pins in HW. Return success for user space tools */
1148 	if (pf->hw.pf_id)
1149 		return 0;
1150 
1151 	i40e_ptp_init_leds_hw(&pf->hw);
1152 	i40e_ptp_set_pins_hw(pf);
1153 
1154 	return 0;
1155 }
1156 
1157 /**
1158  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1159  * @pf: Board private structure
1160  * @config: hwtstamp settings requested or saved
1161  *
1162  * Control hardware registers to enter the specific mode requested by the
1163  * user. Also used during reset path to ensure that timestamp settings are
1164  * maintained.
1165  *
1166  * Note: modifies config in place, and may update the requested mode to be
1167  * more broad if the specific filter is not directly supported.
1168  **/
1169 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1170 				       struct hwtstamp_config *config)
1171 {
1172 	struct i40e_hw *hw = &pf->hw;
1173 	u32 tsyntype, regval;
1174 
1175 	/* Selects external trigger to cause event */
1176 	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1177 	/* Bit 17:16 is EVNTLVL, 01B rising edge */
1178 	regval &= 0;
1179 	regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1180 	/* regval: 0001 0000 0000 0000 0000 */
1181 	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1182 
1183 	/* Enabel interrupts */
1184 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1185 	regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1186 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1187 
1188 	INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1189 
1190 	switch (config->tx_type) {
1191 	case HWTSTAMP_TX_OFF:
1192 		pf->ptp_tx = false;
1193 		break;
1194 	case HWTSTAMP_TX_ON:
1195 		pf->ptp_tx = true;
1196 		break;
1197 	default:
1198 		return -ERANGE;
1199 	}
1200 
1201 	switch (config->rx_filter) {
1202 	case HWTSTAMP_FILTER_NONE:
1203 		pf->ptp_rx = false;
1204 		/* We set the type to V1, but do not enable UDP packet
1205 		 * recognition. In this way, we should be as close to
1206 		 * disabling PTP Rx timestamps as possible since V1 packets
1207 		 * are always UDP, since L2 packets are a V2 feature.
1208 		 */
1209 		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1210 		break;
1211 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1212 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1213 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1214 		if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps))
1215 			return -ERANGE;
1216 		pf->ptp_rx = true;
1217 		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1218 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1219 			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1220 		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1221 		break;
1222 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1223 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1224 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1225 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1226 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1227 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1228 		if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps))
1229 			return -ERANGE;
1230 		fallthrough;
1231 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1232 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1233 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1234 		pf->ptp_rx = true;
1235 		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1236 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1237 		if (test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) {
1238 			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1239 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1240 		} else {
1241 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1242 		}
1243 		break;
1244 	case HWTSTAMP_FILTER_NTP_ALL:
1245 	case HWTSTAMP_FILTER_ALL:
1246 	default:
1247 		return -ERANGE;
1248 	}
1249 
1250 	/* Clear out all 1588-related registers to clear and unlatch them. */
1251 	spin_lock_bh(&pf->ptp_rx_lock);
1252 	rd32(hw, I40E_PRTTSYN_STAT_0);
1253 	rd32(hw, I40E_PRTTSYN_TXTIME_H);
1254 	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1255 	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1256 	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1257 	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1258 	pf->latch_event_flags = 0;
1259 	spin_unlock_bh(&pf->ptp_rx_lock);
1260 
1261 	/* Enable/disable the Tx timestamp interrupt based on user input. */
1262 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1263 	if (pf->ptp_tx)
1264 		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1265 	else
1266 		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1267 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1268 
1269 	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1270 	if (pf->ptp_tx)
1271 		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1272 	else
1273 		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1274 	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1275 
1276 	/* Although there is no simple on/off switch for Rx, we "disable" Rx
1277 	 * timestamps by setting to V1 only mode and clear the UDP
1278 	 * recognition. This ought to disable all PTP Rx timestamps as V1
1279 	 * packets are always over UDP. Note that software is configured to
1280 	 * ignore Rx timestamps via the pf->ptp_rx flag.
1281 	 */
1282 	regval = rd32(hw, I40E_PRTTSYN_CTL1);
1283 	/* clear everything but the enable bit */
1284 	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1285 	/* now enable bits for desired Rx timestamps */
1286 	regval |= tsyntype;
1287 	wr32(hw, I40E_PRTTSYN_CTL1, regval);
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1294  * @pf: Board private structure
1295  * @ifr: ioctl data
1296  *
1297  * Respond to the user filter requests and make the appropriate hardware
1298  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1299  * logic, so keep track in software of whether to indicate these timestamps
1300  * or not.
1301  *
1302  * It is permissible to "upgrade" the user request to a broader filter, as long
1303  * as the user receives the timestamps they care about and the user is notified
1304  * the filter has been broadened.
1305  **/
1306 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1307 {
1308 	struct hwtstamp_config config;
1309 	int err;
1310 
1311 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
1312 		return -EOPNOTSUPP;
1313 
1314 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1315 		return -EFAULT;
1316 
1317 	err = i40e_ptp_set_timestamp_mode(pf, &config);
1318 	if (err)
1319 		return err;
1320 
1321 	/* save these settings for future reference */
1322 	pf->tstamp_config = config;
1323 
1324 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1325 		-EFAULT : 0;
1326 }
1327 
1328 /**
1329  * i40e_init_pin_config - initialize pins.
1330  * @pf: private board structure
1331  *
1332  * Initialize pins for external clock source.
1333  * Return 0 on success or error code on failure.
1334  **/
1335 static int i40e_init_pin_config(struct i40e_pf *pf)
1336 {
1337 	int i;
1338 
1339 	pf->ptp_caps.n_pins = 3;
1340 	pf->ptp_caps.n_ext_ts = 2;
1341 	pf->ptp_caps.pps = 1;
1342 	pf->ptp_caps.n_per_out = 2;
1343 
1344 	pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1345 					  sizeof(*pf->ptp_caps.pin_config),
1346 					  GFP_KERNEL);
1347 	if (!pf->ptp_caps.pin_config)
1348 		return -ENOMEM;
1349 
1350 	for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1351 		snprintf(pf->ptp_caps.pin_config[i].name,
1352 			 sizeof(pf->ptp_caps.pin_config[i].name),
1353 			 "%s", sdp_desc[i].name);
1354 		pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1355 		pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1356 		pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1357 	}
1358 
1359 	pf->ptp_caps.verify = i40e_ptp_verify;
1360 	pf->ptp_caps.enable = i40e_ptp_feature_enable;
1361 
1362 	pf->ptp_caps.pps = 1;
1363 
1364 	return 0;
1365 }
1366 
1367 /**
1368  * i40e_ptp_create_clock - Create PTP clock device for userspace
1369  * @pf: Board private structure
1370  *
1371  * This function creates a new PTP clock device. It only creates one if we
1372  * don't already have one, so it is safe to call. Will return error if it
1373  * can't create one, but success if we already have a device. Should be used
1374  * by i40e_ptp_init to create clock initially, and prevent global resets from
1375  * creating new clock devices.
1376  **/
1377 static long i40e_ptp_create_clock(struct i40e_pf *pf)
1378 {
1379 	/* no need to create a clock device if we already have one */
1380 	if (!IS_ERR_OR_NULL(pf->ptp_clock))
1381 		return 0;
1382 
1383 	strscpy(pf->ptp_caps.name, i40e_driver_name,
1384 		sizeof(pf->ptp_caps.name) - 1);
1385 	pf->ptp_caps.owner = THIS_MODULE;
1386 	pf->ptp_caps.max_adj = 999999999;
1387 	pf->ptp_caps.adjfine = i40e_ptp_adjfine;
1388 	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1389 	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1390 	pf->ptp_caps.settime64 = i40e_ptp_settime;
1391 	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1392 		int err = i40e_init_pin_config(pf);
1393 
1394 		if (err)
1395 			return err;
1396 	}
1397 
1398 	/* Attempt to register the clock before enabling the hardware. */
1399 	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1400 	if (IS_ERR(pf->ptp_clock))
1401 		return PTR_ERR(pf->ptp_clock);
1402 
1403 	/* clear the hwtstamp settings here during clock create, instead of
1404 	 * during regular init, so that we can maintain settings across a
1405 	 * reset or suspend.
1406 	 */
1407 	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1408 	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1409 
1410 	/* Set the previous "reset" time to the current Kernel clock time */
1411 	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1412 	pf->ptp_reset_start = ktime_get();
1413 
1414 	return 0;
1415 }
1416 
1417 /**
1418  * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1419  * @pf: Board private structure
1420  *
1421  * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1422  * be called at the end of preparing to reset, just before hardware reset
1423  * occurs, in order to preserve the PTP time as close as possible across
1424  * resets.
1425  */
1426 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1427 {
1428 	/* don't try to access the PTP clock if it's not enabled */
1429 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
1430 		return;
1431 
1432 	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1433 	/* Get a monotonic starting time for this reset */
1434 	pf->ptp_reset_start = ktime_get();
1435 }
1436 
1437 /**
1438  * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1439  * @pf: Board private structure
1440  *
1441  * Restore the PTP hardware clock registers. We previously cached the PTP
1442  * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1443  * update this value based on the time delta since the time was saved, using
1444  * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1445  *
1446  * This ensures that the hardware clock is restored to nearly what it should
1447  * have been if a reset had not occurred.
1448  */
1449 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1450 {
1451 	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1452 
1453 	/* Update the previous HW time with the ktime delta */
1454 	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1455 
1456 	/* Restore the hardware clock registers */
1457 	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1458 }
1459 
1460 /**
1461  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1462  * @pf: Board private structure
1463  *
1464  * This function sets device up for 1588 support. The first time it is run, it
1465  * will create a PHC clock device. It does not create a clock device if one
1466  * already exists. It also reconfigures the device after a reset.
1467  *
1468  * The first time a clock is created, i40e_ptp_create_clock will set
1469  * pf->ptp_prev_hw_time to the current system time. During resets, it is
1470  * expected that this timespec will be set to the last known PTP clock time,
1471  * in order to preserve the clock time as close as possible across a reset.
1472  **/
1473 void i40e_ptp_init(struct i40e_pf *pf)
1474 {
1475 	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
1476 	struct net_device *netdev = vsi->netdev;
1477 	struct i40e_hw *hw = &pf->hw;
1478 	u32 pf_id;
1479 	long err;
1480 
1481 	/* Only one PF is assigned to control 1588 logic per port. Do not
1482 	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1483 	 */
1484 	pf_id = FIELD_GET(I40E_PRTTSYN_CTL0_PF_ID_MASK,
1485 			  rd32(hw, I40E_PRTTSYN_CTL0));
1486 	if (hw->pf_id != pf_id) {
1487 		clear_bit(I40E_FLAG_PTP_ENA, pf->flags);
1488 		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1489 			 __func__,
1490 			 netdev->name);
1491 		return;
1492 	}
1493 
1494 	mutex_init(&pf->tmreg_lock);
1495 	spin_lock_init(&pf->ptp_rx_lock);
1496 
1497 	/* ensure we have a clock device */
1498 	err = i40e_ptp_create_clock(pf);
1499 	if (err) {
1500 		pf->ptp_clock = NULL;
1501 		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1502 			__func__);
1503 	} else if (pf->ptp_clock) {
1504 		u32 regval;
1505 
1506 		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1507 			dev_info(&pf->pdev->dev, "PHC enabled\n");
1508 		set_bit(I40E_FLAG_PTP_ENA, pf->flags);
1509 
1510 		/* Ensure the clocks are running. */
1511 		regval = rd32(hw, I40E_PRTTSYN_CTL0);
1512 		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1513 		wr32(hw, I40E_PRTTSYN_CTL0, regval);
1514 		regval = rd32(hw, I40E_PRTTSYN_CTL1);
1515 		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1516 		wr32(hw, I40E_PRTTSYN_CTL1, regval);
1517 
1518 		/* Set the increment value per clock tick. */
1519 		i40e_ptp_set_increment(pf);
1520 
1521 		/* reset timestamping mode */
1522 		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1523 
1524 		/* Restore the clock time based on last known value */
1525 		i40e_ptp_restore_hw_time(pf);
1526 	}
1527 
1528 	i40e_ptp_set_1pps_signal_hw(pf);
1529 }
1530 
1531 /**
1532  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1533  * @pf: Board private structure
1534  *
1535  * This function handles the cleanup work required from the initialization by
1536  * clearing out the important information and unregistering the PHC.
1537  **/
1538 void i40e_ptp_stop(struct i40e_pf *pf)
1539 {
1540 	struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
1541 	struct i40e_hw *hw = &pf->hw;
1542 	u32 regval;
1543 
1544 	clear_bit(I40E_FLAG_PTP_ENA, pf->flags);
1545 	pf->ptp_tx = false;
1546 	pf->ptp_rx = false;
1547 
1548 	if (pf->ptp_tx_skb) {
1549 		struct sk_buff *skb = pf->ptp_tx_skb;
1550 
1551 		pf->ptp_tx_skb = NULL;
1552 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1553 		dev_kfree_skb_any(skb);
1554 	}
1555 
1556 	if (pf->ptp_clock) {
1557 		ptp_clock_unregister(pf->ptp_clock);
1558 		pf->ptp_clock = NULL;
1559 		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1560 			 main_vsi->netdev->name);
1561 	}
1562 
1563 	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1564 		i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1565 		i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1566 		i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1567 	}
1568 
1569 	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1570 	regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1571 	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1572 
1573 	/* Disable interrupts */
1574 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1575 	regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1576 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1577 
1578 	i40e_ptp_free_pins(pf);
1579 }
1580