1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/ptp_classify.h> 5 #include <linux/posix-clock.h> 6 #include "i40e.h" 7 #include "i40e_devids.h" 8 9 /* The XL710 timesync is very much like Intel's 82599 design when it comes to 10 * the fundamental clock design. However, the clock operations are much simpler 11 * in the XL710 because the device supports a full 64 bits of nanoseconds. 12 * Because the field is so wide, we can forgo the cycle counter and just 13 * operate with the nanosecond field directly without fear of overflow. 14 * 15 * Much like the 82599, the update period is dependent upon the link speed: 16 * At 40Gb, 25Gb, or no link, the period is 1.6ns. 17 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns) 18 * At 1Gb link, the period is multiplied by 20. (32ns) 19 * 1588 functionality is not supported at 100Mbps. 20 */ 21 #define I40E_PTP_40GB_INCVAL 0x0199999999ULL 22 #define I40E_PTP_10GB_INCVAL_MULT 2 23 #define I40E_PTP_5GB_INCVAL_MULT 2 24 #define I40E_PTP_1GB_INCVAL_MULT 20 25 #define I40E_ISGN 0x80000000 26 27 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 28 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \ 29 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 30 #define I40E_SUBDEV_ID_25G_PTP_PIN 0xB 31 32 enum i40e_ptp_pin { 33 SDP3_2 = 0, 34 SDP3_3, 35 GPIO_4 36 }; 37 38 enum i40e_can_set_pins { 39 CANT_DO_PINS = -1, 40 CAN_SET_PINS, 41 CAN_DO_PINS 42 }; 43 44 static struct ptp_pin_desc sdp_desc[] = { 45 /* name idx func chan */ 46 {"SDP3_2", SDP3_2, PTP_PF_NONE, 0}, 47 {"SDP3_3", SDP3_3, PTP_PF_NONE, 1}, 48 {"GPIO_4", GPIO_4, PTP_PF_NONE, 1}, 49 }; 50 51 enum i40e_ptp_gpio_pin_state { 52 end = -2, 53 invalid, 54 off, 55 in_A, 56 in_B, 57 out_A, 58 out_B, 59 }; 60 61 static const char * const i40e_ptp_gpio_pin_state2str[] = { 62 "off", "in_A", "in_B", "out_A", "out_B" 63 }; 64 65 enum i40e_ptp_led_pin_state { 66 led_end = -2, 67 low = 0, 68 high, 69 }; 70 71 struct i40e_ptp_pins_settings { 72 enum i40e_ptp_gpio_pin_state sdp3_2; 73 enum i40e_ptp_gpio_pin_state sdp3_3; 74 enum i40e_ptp_gpio_pin_state gpio_4; 75 enum i40e_ptp_led_pin_state led2_0; 76 enum i40e_ptp_led_pin_state led2_1; 77 enum i40e_ptp_led_pin_state led3_0; 78 enum i40e_ptp_led_pin_state led3_1; 79 }; 80 81 static const struct i40e_ptp_pins_settings 82 i40e_ptp_pin_led_allowed_states[] = { 83 {off, off, off, high, high, high, high}, 84 {off, in_A, off, high, high, high, low}, 85 {off, out_A, off, high, low, high, high}, 86 {off, in_B, off, high, high, high, low}, 87 {off, out_B, off, high, low, high, high}, 88 {in_A, off, off, high, high, high, low}, 89 {in_A, in_B, off, high, high, high, low}, 90 {in_A, out_B, off, high, low, high, high}, 91 {out_A, off, off, high, low, high, high}, 92 {out_A, in_B, off, high, low, high, high}, 93 {in_B, off, off, high, high, high, low}, 94 {in_B, in_A, off, high, high, high, low}, 95 {in_B, out_A, off, high, low, high, high}, 96 {out_B, off, off, high, low, high, high}, 97 {out_B, in_A, off, high, low, high, high}, 98 {off, off, in_A, high, high, low, high}, 99 {off, out_A, in_A, high, low, low, high}, 100 {off, in_B, in_A, high, high, low, low}, 101 {off, out_B, in_A, high, low, low, high}, 102 {out_A, off, in_A, high, low, low, high}, 103 {out_A, in_B, in_A, high, low, low, high}, 104 {in_B, off, in_A, high, high, low, low}, 105 {in_B, out_A, in_A, high, low, low, high}, 106 {out_B, off, in_A, high, low, low, high}, 107 {off, off, out_A, low, high, high, high}, 108 {off, in_A, out_A, low, high, high, low}, 109 {off, in_B, out_A, low, high, high, low}, 110 {off, out_B, out_A, low, low, high, high}, 111 {in_A, off, out_A, low, high, high, low}, 112 {in_A, in_B, out_A, low, high, high, low}, 113 {in_A, out_B, out_A, low, low, high, high}, 114 {in_B, off, out_A, low, high, high, low}, 115 {in_B, in_A, out_A, low, high, high, low}, 116 {out_B, off, out_A, low, low, high, high}, 117 {out_B, in_A, out_A, low, low, high, high}, 118 {off, off, in_B, high, high, low, high}, 119 {off, in_A, in_B, high, high, low, low}, 120 {off, out_A, in_B, high, low, low, high}, 121 {off, out_B, in_B, high, low, low, high}, 122 {in_A, off, in_B, high, high, low, low}, 123 {in_A, out_B, in_B, high, low, low, high}, 124 {out_A, off, in_B, high, low, low, high}, 125 {out_B, off, in_B, high, low, low, high}, 126 {out_B, in_A, in_B, high, low, low, high}, 127 {off, off, out_B, low, high, high, high}, 128 {off, in_A, out_B, low, high, high, low}, 129 {off, out_A, out_B, low, low, high, high}, 130 {off, in_B, out_B, low, high, high, low}, 131 {in_A, off, out_B, low, high, high, low}, 132 {in_A, in_B, out_B, low, high, high, low}, 133 {out_A, off, out_B, low, low, high, high}, 134 {out_A, in_B, out_B, low, low, high, high}, 135 {in_B, off, out_B, low, high, high, low}, 136 {in_B, in_A, out_B, low, high, high, low}, 137 {in_B, out_A, out_B, low, low, high, high}, 138 {end, end, end, led_end, led_end, led_end, led_end} 139 }; 140 141 static int i40e_ptp_set_pins(struct i40e_pf *pf, 142 struct i40e_ptp_pins_settings *pins); 143 144 /** 145 * i40e_ptp_extts0_work - workqueue task function 146 * @work: workqueue task structure 147 * 148 * Service for PTP external clock event 149 **/ 150 static void i40e_ptp_extts0_work(struct work_struct *work) 151 { 152 struct i40e_pf *pf = container_of(work, struct i40e_pf, 153 ptp_extts0_work); 154 struct i40e_hw *hw = &pf->hw; 155 struct ptp_clock_event event; 156 u32 hi, lo; 157 158 /* Event time is captured by one of the two matched registers 159 * PRTTSYN_EVNT_L: 32 LSB of sampled time event 160 * PRTTSYN_EVNT_H: 32 MSB of sampled time event 161 * Event is defined in PRTTSYN_EVNT_0 register 162 */ 163 lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0)); 164 hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0)); 165 166 event.timestamp = (((u64)hi) << 32) | lo; 167 168 event.type = PTP_CLOCK_EXTTS; 169 event.index = hw->pf_id; 170 171 /* fire event */ 172 ptp_clock_event(pf->ptp_clock, &event); 173 } 174 175 /** 176 * i40e_is_ptp_pin_dev - check if device supports PTP pins 177 * @hw: pointer to the hardware structure 178 * 179 * Return true if device supports PTP pins, false otherwise. 180 **/ 181 static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw) 182 { 183 return hw->device_id == I40E_DEV_ID_25G_SFP28 && 184 hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN; 185 } 186 187 /** 188 * i40e_can_set_pins - check possibility of manipulating the pins 189 * @pf: board private structure 190 * 191 * Check if all conditions are satisfied to manipulate PTP pins. 192 * Return CAN_SET_PINS if pins can be set on a specific PF or 193 * return CAN_DO_PINS if pins can be manipulated within a NIC or 194 * return CANT_DO_PINS otherwise. 195 **/ 196 static enum i40e_can_set_pins i40e_can_set_pins(struct i40e_pf *pf) 197 { 198 if (!i40e_is_ptp_pin_dev(&pf->hw)) { 199 dev_warn(&pf->pdev->dev, 200 "PTP external clock not supported.\n"); 201 return CANT_DO_PINS; 202 } 203 204 if (!pf->ptp_pins) { 205 dev_warn(&pf->pdev->dev, 206 "PTP PIN manipulation not allowed.\n"); 207 return CANT_DO_PINS; 208 } 209 210 if (pf->hw.pf_id) { 211 dev_warn(&pf->pdev->dev, 212 "PTP PINs should be accessed via PF0.\n"); 213 return CAN_DO_PINS; 214 } 215 216 return CAN_SET_PINS; 217 } 218 219 /** 220 * i40_ptp_reset_timing_events - Reset PTP timing events 221 * @pf: Board private structure 222 * 223 * This function resets timing events for pf. 224 **/ 225 static void i40_ptp_reset_timing_events(struct i40e_pf *pf) 226 { 227 u32 i; 228 229 spin_lock_bh(&pf->ptp_rx_lock); 230 for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) { 231 /* reading and automatically clearing timing events registers */ 232 rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i)); 233 rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i)); 234 pf->latch_events[i] = 0; 235 } 236 /* reading and automatically clearing timing events registers */ 237 rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L); 238 rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H); 239 240 pf->tx_hwtstamp_timeouts = 0; 241 pf->tx_hwtstamp_skipped = 0; 242 pf->rx_hwtstamp_cleared = 0; 243 pf->latch_event_flags = 0; 244 spin_unlock_bh(&pf->ptp_rx_lock); 245 } 246 247 /** 248 * i40e_ptp_verify - check pins 249 * @ptp: ptp clock 250 * @pin: pin index 251 * @func: assigned function 252 * @chan: channel 253 * 254 * Check pins consistency. 255 * Return 0 on success or error on failure. 256 **/ 257 static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 258 enum ptp_pin_function func, unsigned int chan) 259 { 260 switch (func) { 261 case PTP_PF_NONE: 262 case PTP_PF_EXTTS: 263 case PTP_PF_PEROUT: 264 break; 265 case PTP_PF_PHYSYNC: 266 return -EOPNOTSUPP; 267 } 268 return 0; 269 } 270 271 /** 272 * i40e_ptp_read - Read the PHC time from the device 273 * @pf: Board private structure 274 * @ts: timespec structure to hold the current time value 275 * @sts: structure to hold the system time before and after reading the PHC 276 * 277 * This function reads the PRTTSYN_TIME registers and stores them in a 278 * timespec. However, since the registers are 64 bits of nanoseconds, we must 279 * convert the result to a timespec before we can return. 280 **/ 281 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts, 282 struct ptp_system_timestamp *sts) 283 { 284 struct i40e_hw *hw = &pf->hw; 285 u32 hi, lo; 286 u64 ns; 287 288 /* The timer latches on the lowest register read. */ 289 ptp_read_system_prets(sts); 290 lo = rd32(hw, I40E_PRTTSYN_TIME_L); 291 ptp_read_system_postts(sts); 292 hi = rd32(hw, I40E_PRTTSYN_TIME_H); 293 294 ns = (((u64)hi) << 32) | lo; 295 296 *ts = ns_to_timespec64(ns); 297 } 298 299 /** 300 * i40e_ptp_write - Write the PHC time to the device 301 * @pf: Board private structure 302 * @ts: timespec structure that holds the new time value 303 * 304 * This function writes the PRTTSYN_TIME registers with the user value. Since 305 * we receive a timespec from the stack, we must convert that timespec into 306 * nanoseconds before programming the registers. 307 **/ 308 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts) 309 { 310 struct i40e_hw *hw = &pf->hw; 311 u64 ns = timespec64_to_ns(ts); 312 313 /* The timer will not update until the high register is written, so 314 * write the low register first. 315 */ 316 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); 317 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); 318 } 319 320 /** 321 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time 322 * @hwtstamps: Timestamp structure to update 323 * @timestamp: Timestamp from the hardware 324 * 325 * We need to convert the NIC clock value into a hwtstamp which can be used by 326 * the upper level timestamping functions. Since the timestamp is simply a 64- 327 * bit nanosecond value, we can call ns_to_ktime directly to handle this. 328 **/ 329 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, 330 u64 timestamp) 331 { 332 memset(hwtstamps, 0, sizeof(*hwtstamps)); 333 334 hwtstamps->hwtstamp = ns_to_ktime(timestamp); 335 } 336 337 /** 338 * i40e_ptp_adjfine - Adjust the PHC frequency 339 * @ptp: The PTP clock structure 340 * @scaled_ppm: Scaled parts per million adjustment from base 341 * 342 * Adjust the frequency of the PHC by the indicated delta from the base 343 * frequency. 344 * 345 * Scaled parts per million is ppm with a 16 bit binary fractional field. 346 **/ 347 static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 348 { 349 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 350 struct i40e_hw *hw = &pf->hw; 351 u64 adj, base_adj; 352 353 smp_mb(); /* Force any pending update before accessing. */ 354 base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult); 355 356 adj = adjust_by_scaled_ppm(base_adj, scaled_ppm); 357 358 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); 359 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); 360 361 return 0; 362 } 363 364 /** 365 * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins 366 * @pf: the PF private data structure 367 * 368 * Configure 1PPS signal used for PTP pins 369 **/ 370 static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf) 371 { 372 struct i40e_hw *hw = &pf->hw; 373 struct timespec64 now; 374 u64 ns; 375 376 wr32(hw, I40E_PRTTSYN_AUX_0(1), 0); 377 wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); 378 wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE); 379 380 i40e_ptp_read(pf, &now, NULL); 381 now.tv_sec += I40E_PTP_2_SEC_DELAY; 382 now.tv_nsec = 0; 383 ns = timespec64_to_ns(&now); 384 385 /* I40E_PRTTSYN_TGT_L(1) */ 386 wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF); 387 /* I40E_PRTTSYN_TGT_H(1) */ 388 wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32); 389 wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND); 390 wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); 391 wr32(hw, I40E_PRTTSYN_AUX_0(1), 392 I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD); 393 } 394 395 /** 396 * i40e_ptp_adjtime - Adjust the PHC time 397 * @ptp: The PTP clock structure 398 * @delta: Offset in nanoseconds to adjust the PHC time by 399 * 400 * Adjust the current clock time by a delta specified in nanoseconds. 401 **/ 402 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 403 { 404 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 405 struct i40e_hw *hw = &pf->hw; 406 407 mutex_lock(&pf->tmreg_lock); 408 409 if (delta > -999999900LL && delta < 999999900LL) { 410 int neg_adj = 0; 411 u32 timadj; 412 u64 tohw; 413 414 if (delta < 0) { 415 neg_adj = 1; 416 tohw = -delta; 417 } else { 418 tohw = delta; 419 } 420 421 timadj = tohw & 0x3FFFFFFF; 422 if (neg_adj) 423 timadj |= I40E_ISGN; 424 wr32(hw, I40E_PRTTSYN_ADJ, timadj); 425 } else { 426 struct timespec64 then, now; 427 428 then = ns_to_timespec64(delta); 429 i40e_ptp_read(pf, &now, NULL); 430 now = timespec64_add(now, then); 431 i40e_ptp_write(pf, (const struct timespec64 *)&now); 432 i40e_ptp_set_1pps_signal_hw(pf); 433 } 434 435 mutex_unlock(&pf->tmreg_lock); 436 437 return 0; 438 } 439 440 /** 441 * i40e_ptp_gettimex - Get the time of the PHC 442 * @ptp: The PTP clock structure 443 * @ts: timespec structure to hold the current time value 444 * @sts: structure to hold the system time before and after reading the PHC 445 * 446 * Read the device clock and return the correct value on ns, after converting it 447 * into a timespec struct. 448 **/ 449 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, 450 struct ptp_system_timestamp *sts) 451 { 452 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 453 454 mutex_lock(&pf->tmreg_lock); 455 i40e_ptp_read(pf, ts, sts); 456 mutex_unlock(&pf->tmreg_lock); 457 458 return 0; 459 } 460 461 /** 462 * i40e_ptp_settime - Set the time of the PHC 463 * @ptp: The PTP clock structure 464 * @ts: timespec64 structure that holds the new time value 465 * 466 * Set the device clock to the user input value. The conversion from timespec 467 * to ns happens in the write function. 468 **/ 469 static int i40e_ptp_settime(struct ptp_clock_info *ptp, 470 const struct timespec64 *ts) 471 { 472 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 473 474 mutex_lock(&pf->tmreg_lock); 475 i40e_ptp_write(pf, ts); 476 mutex_unlock(&pf->tmreg_lock); 477 478 return 0; 479 } 480 481 /** 482 * i40e_pps_configure - configure PPS events 483 * @ptp: ptp clock 484 * @rq: clock request 485 * @on: status 486 * 487 * Configure PPS events for external clock source. 488 * Return 0 on success or error on failure. 489 **/ 490 static int i40e_pps_configure(struct ptp_clock_info *ptp, 491 struct ptp_clock_request *rq, 492 int on) 493 { 494 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 495 496 if (!!on) 497 i40e_ptp_set_1pps_signal_hw(pf); 498 499 return 0; 500 } 501 502 /** 503 * i40e_pin_state - determine PIN state 504 * @index: PIN index 505 * @func: function assigned to PIN 506 * 507 * Determine PIN state based on PIN index and function assigned. 508 * Return PIN state. 509 **/ 510 static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func) 511 { 512 enum i40e_ptp_gpio_pin_state state = off; 513 514 if (index == 0 && func == PTP_PF_EXTTS) 515 state = in_A; 516 if (index == 1 && func == PTP_PF_EXTTS) 517 state = in_B; 518 if (index == 0 && func == PTP_PF_PEROUT) 519 state = out_A; 520 if (index == 1 && func == PTP_PF_PEROUT) 521 state = out_B; 522 523 return state; 524 } 525 526 /** 527 * i40e_ptp_enable_pin - enable PINs. 528 * @pf: private board structure 529 * @chan: channel 530 * @func: PIN function 531 * @on: state 532 * 533 * Enable PTP pins for external clock source. 534 * Return 0 on success or error code on failure. 535 **/ 536 static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan, 537 enum ptp_pin_function func, int on) 538 { 539 enum i40e_ptp_gpio_pin_state *pin = NULL; 540 struct i40e_ptp_pins_settings pins; 541 int pin_index; 542 543 /* Use PF0 to set pins. Return success for user space tools */ 544 if (pf->hw.pf_id) 545 return 0; 546 547 /* Preserve previous state of pins that we don't touch */ 548 pins.sdp3_2 = pf->ptp_pins->sdp3_2; 549 pins.sdp3_3 = pf->ptp_pins->sdp3_3; 550 pins.gpio_4 = pf->ptp_pins->gpio_4; 551 552 /* To turn on the pin - find the corresponding one based on 553 * the given index. To turn the function off - find 554 * which pin had it assigned. Don't use ptp_find_pin here 555 * because it tries to lock the pincfg_mux which is locked by 556 * ptp_pin_store() that calls here. 557 */ 558 if (on) { 559 pin_index = ptp_find_pin(pf->ptp_clock, func, chan); 560 if (pin_index < 0) 561 return -EBUSY; 562 563 switch (pin_index) { 564 case SDP3_2: 565 pin = &pins.sdp3_2; 566 break; 567 case SDP3_3: 568 pin = &pins.sdp3_3; 569 break; 570 case GPIO_4: 571 pin = &pins.gpio_4; 572 break; 573 default: 574 return -EINVAL; 575 } 576 577 *pin = i40e_pin_state(chan, func); 578 } else { 579 pins.sdp3_2 = off; 580 pins.sdp3_3 = off; 581 pins.gpio_4 = off; 582 } 583 584 return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0; 585 } 586 587 /** 588 * i40e_ptp_feature_enable - Enable external clock pins 589 * @ptp: The PTP clock structure 590 * @rq: The PTP clock request structure 591 * @on: To turn feature on/off 592 * 593 * Setting on/off PTP PPS feature for pin. 594 **/ 595 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp, 596 struct ptp_clock_request *rq, 597 int on) 598 { 599 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 600 601 enum ptp_pin_function func; 602 unsigned int chan; 603 604 /* TODO: Implement flags handling for EXTTS and PEROUT */ 605 switch (rq->type) { 606 case PTP_CLK_REQ_EXTTS: 607 func = PTP_PF_EXTTS; 608 chan = rq->extts.index; 609 break; 610 case PTP_CLK_REQ_PEROUT: 611 func = PTP_PF_PEROUT; 612 chan = rq->perout.index; 613 break; 614 case PTP_CLK_REQ_PPS: 615 return i40e_pps_configure(ptp, rq, on); 616 default: 617 return -EOPNOTSUPP; 618 } 619 620 return i40e_ptp_enable_pin(pf, chan, func, on); 621 } 622 623 /** 624 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events 625 * @pf: the PF data structure 626 * 627 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers 628 * for noticed latch events. This allows the driver to keep track of the first 629 * time a latch event was noticed which will be used to help clear out Rx 630 * timestamps for packets that got dropped or lost. 631 * 632 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is 633 * expected to be called only while under the ptp_rx_lock. 634 **/ 635 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf) 636 { 637 struct i40e_hw *hw = &pf->hw; 638 u32 prttsyn_stat, new_latch_events; 639 int i; 640 641 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); 642 new_latch_events = prttsyn_stat & ~pf->latch_event_flags; 643 644 /* Update the jiffies time for any newly latched timestamp. This 645 * ensures that we store the time that we first discovered a timestamp 646 * was latched by the hardware. The service task will later determine 647 * if we should free the latch and drop that timestamp should too much 648 * time pass. This flow ensures that we only update jiffies for new 649 * events latched since the last time we checked, and not all events 650 * currently latched, so that the service task accounting remains 651 * accurate. 652 */ 653 for (i = 0; i < 4; i++) { 654 if (new_latch_events & BIT(i)) 655 pf->latch_events[i] = jiffies; 656 } 657 658 /* Finally, we store the current status of the Rx timestamp latches */ 659 pf->latch_event_flags = prttsyn_stat; 660 661 return prttsyn_stat; 662 } 663 664 /** 665 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung 666 * @pf: The PF private data structure 667 * 668 * This watchdog task is scheduled to detect error case where hardware has 669 * dropped an Rx packet that was timestamped when the ring is full. The 670 * particular error is rare but leaves the device in a state unable to timestamp 671 * any future packets. 672 **/ 673 void i40e_ptp_rx_hang(struct i40e_pf *pf) 674 { 675 struct i40e_hw *hw = &pf->hw; 676 unsigned int i, cleared = 0; 677 678 /* Since we cannot turn off the Rx timestamp logic if the device is 679 * configured for Tx timestamping, we check if Rx timestamping is 680 * configured. We don't want to spuriously warn about Rx timestamp 681 * hangs if we don't care about the timestamps. 682 */ 683 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx) 684 return; 685 686 spin_lock_bh(&pf->ptp_rx_lock); 687 688 /* Update current latch times for Rx events */ 689 i40e_ptp_get_rx_events(pf); 690 691 /* Check all the currently latched Rx events and see whether they have 692 * been latched for over a second. It is assumed that any timestamp 693 * should have been cleared within this time, or else it was captured 694 * for a dropped frame that the driver never received. Thus, we will 695 * clear any timestamp that has been latched for over 1 second. 696 */ 697 for (i = 0; i < 4; i++) { 698 if ((pf->latch_event_flags & BIT(i)) && 699 time_is_before_jiffies(pf->latch_events[i] + HZ)) { 700 rd32(hw, I40E_PRTTSYN_RXTIME_H(i)); 701 pf->latch_event_flags &= ~BIT(i); 702 cleared++; 703 } 704 } 705 706 spin_unlock_bh(&pf->ptp_rx_lock); 707 708 /* Log a warning if more than 2 timestamps got dropped in the same 709 * check. We don't want to warn about all drops because it can occur 710 * in normal scenarios such as PTP frames on multicast addresses we 711 * aren't listening to. However, administrator should know if this is 712 * the reason packets aren't receiving timestamps. 713 */ 714 if (cleared > 2) 715 dev_dbg(&pf->pdev->dev, 716 "Dropped %d missed RXTIME timestamp events\n", 717 cleared); 718 719 /* Finally, update the rx_hwtstamp_cleared counter */ 720 pf->rx_hwtstamp_cleared += cleared; 721 } 722 723 /** 724 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung 725 * @pf: The PF private data structure 726 * 727 * This watchdog task is run periodically to make sure that we clear the Tx 728 * timestamp logic if we don't obtain a timestamp in a reasonable amount of 729 * time. It is unexpected in the normal case but if it occurs it results in 730 * permanently preventing timestamps of future packets. 731 **/ 732 void i40e_ptp_tx_hang(struct i40e_pf *pf) 733 { 734 struct sk_buff *skb; 735 736 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx) 737 return; 738 739 /* Nothing to do if we're not already waiting for a timestamp */ 740 if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state)) 741 return; 742 743 /* We already have a handler routine which is run when we are notified 744 * of a Tx timestamp in the hardware. If we don't get an interrupt 745 * within a second it is reasonable to assume that we never will. 746 */ 747 if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) { 748 skb = pf->ptp_tx_skb; 749 pf->ptp_tx_skb = NULL; 750 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 751 752 /* Free the skb after we clear the bitlock */ 753 dev_kfree_skb_any(skb); 754 pf->tx_hwtstamp_timeouts++; 755 } 756 } 757 758 /** 759 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp 760 * @pf: Board private structure 761 * 762 * Read the value of the Tx timestamp from the registers, convert it into a 763 * value consumable by the stack, and store that result into the shhwtstamps 764 * struct before returning it up the stack. 765 **/ 766 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) 767 { 768 struct skb_shared_hwtstamps shhwtstamps; 769 struct sk_buff *skb = pf->ptp_tx_skb; 770 struct i40e_hw *hw = &pf->hw; 771 u32 hi, lo; 772 u64 ns; 773 774 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx) 775 return; 776 777 /* don't attempt to timestamp if we don't have an skb */ 778 if (!pf->ptp_tx_skb) 779 return; 780 781 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); 782 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); 783 784 ns = (((u64)hi) << 32) | lo; 785 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); 786 787 /* Clear the bit lock as soon as possible after reading the register, 788 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise 789 * applications might wake up and attempt to request another transmit 790 * timestamp prior to the bit lock being cleared. 791 */ 792 pf->ptp_tx_skb = NULL; 793 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 794 795 /* Notify the stack and free the skb after we've unlocked */ 796 skb_tstamp_tx(skb, &shhwtstamps); 797 dev_kfree_skb_any(skb); 798 } 799 800 /** 801 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp 802 * @pf: Board private structure 803 * @skb: Particular skb to send timestamp with 804 * @index: Index into the receive timestamp registers for the timestamp 805 * 806 * The XL710 receives a notification in the receive descriptor with an offset 807 * into the set of RXTIME registers where the timestamp is for that skb. This 808 * function goes and fetches the receive timestamp from that offset, if a valid 809 * one exists. The RXTIME registers are in ns, so we must convert the result 810 * first. 811 **/ 812 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) 813 { 814 u32 prttsyn_stat, hi, lo; 815 struct i40e_hw *hw; 816 u64 ns; 817 818 /* Since we cannot turn off the Rx timestamp logic if the device is 819 * doing Tx timestamping, check if Rx timestamping is configured. 820 */ 821 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx) 822 return; 823 824 hw = &pf->hw; 825 826 spin_lock_bh(&pf->ptp_rx_lock); 827 828 /* Get current Rx events and update latch times */ 829 prttsyn_stat = i40e_ptp_get_rx_events(pf); 830 831 /* TODO: Should we warn about missing Rx timestamp event? */ 832 if (!(prttsyn_stat & BIT(index))) { 833 spin_unlock_bh(&pf->ptp_rx_lock); 834 return; 835 } 836 837 /* Clear the latched event since we're about to read its register */ 838 pf->latch_event_flags &= ~BIT(index); 839 840 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); 841 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); 842 843 spin_unlock_bh(&pf->ptp_rx_lock); 844 845 ns = (((u64)hi) << 32) | lo; 846 847 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); 848 } 849 850 /** 851 * i40e_ptp_set_increment - Utility function to update clock increment rate 852 * @pf: Board private structure 853 * 854 * During a link change, the DMA frequency that drives the 1588 logic will 855 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, 856 * we must update the increment value per clock tick. 857 **/ 858 void i40e_ptp_set_increment(struct i40e_pf *pf) 859 { 860 struct i40e_link_status *hw_link_info; 861 struct i40e_hw *hw = &pf->hw; 862 u64 incval; 863 u32 mult; 864 865 hw_link_info = &hw->phy.link_info; 866 867 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); 868 869 switch (hw_link_info->link_speed) { 870 case I40E_LINK_SPEED_10GB: 871 mult = I40E_PTP_10GB_INCVAL_MULT; 872 break; 873 case I40E_LINK_SPEED_5GB: 874 mult = I40E_PTP_5GB_INCVAL_MULT; 875 break; 876 case I40E_LINK_SPEED_1GB: 877 mult = I40E_PTP_1GB_INCVAL_MULT; 878 break; 879 case I40E_LINK_SPEED_100MB: 880 { 881 static int warn_once; 882 883 if (!warn_once) { 884 dev_warn(&pf->pdev->dev, 885 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n"); 886 warn_once++; 887 } 888 mult = 0; 889 break; 890 } 891 case I40E_LINK_SPEED_40GB: 892 default: 893 mult = 1; 894 break; 895 } 896 897 /* The increment value is calculated by taking the base 40GbE incvalue 898 * and multiplying it by a factor based on the link speed. 899 */ 900 incval = I40E_PTP_40GB_INCVAL * mult; 901 902 /* Write the new increment value into the increment register. The 903 * hardware will not update the clock until both registers have been 904 * written. 905 */ 906 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); 907 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); 908 909 /* Update the base adjustement value. */ 910 WRITE_ONCE(pf->ptp_adj_mult, mult); 911 smp_mb(); /* Force the above update. */ 912 } 913 914 /** 915 * i40e_ptp_hwtstamp_get - interface to read the HW timestamping 916 * @netdev: Network device structure 917 * @config: Timestamping configuration structure 918 * 919 * Obtain the current hardware timestamping settigs as requested. To do this, 920 * keep a shadow copy of the timestamp settings rather than attempting to 921 * deconstruct it from the registers. 922 **/ 923 int i40e_ptp_hwtstamp_get(struct net_device *netdev, 924 struct kernel_hwtstamp_config *config) 925 { 926 struct i40e_netdev_priv *np = netdev_priv(netdev); 927 struct i40e_pf *pf = np->vsi->back; 928 929 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 930 return -EOPNOTSUPP; 931 932 *config = pf->tstamp_config; 933 934 return 0; 935 } 936 937 /** 938 * i40e_ptp_free_pins - free memory used by PTP pins 939 * @pf: Board private structure 940 * 941 * Release memory allocated for PTP pins. 942 **/ 943 static void i40e_ptp_free_pins(struct i40e_pf *pf) 944 { 945 if (i40e_is_ptp_pin_dev(&pf->hw)) { 946 kfree(pf->ptp_pins); 947 kfree(pf->ptp_caps.pin_config); 948 pf->ptp_pins = NULL; 949 } 950 } 951 952 /** 953 * i40e_ptp_set_pin_hw - Set HW GPIO pin 954 * @hw: pointer to the hardware structure 955 * @pin: pin index 956 * @state: pin state 957 * 958 * Set status of GPIO pin for external clock handling. 959 **/ 960 static void i40e_ptp_set_pin_hw(struct i40e_hw *hw, 961 unsigned int pin, 962 enum i40e_ptp_gpio_pin_state state) 963 { 964 switch (state) { 965 case off: 966 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0); 967 break; 968 case in_A: 969 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 970 I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0); 971 break; 972 case in_B: 973 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 974 I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0); 975 break; 976 case out_A: 977 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 978 I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1); 979 break; 980 case out_B: 981 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 982 I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1); 983 break; 984 default: 985 break; 986 } 987 } 988 989 /** 990 * i40e_ptp_set_led_hw - Set HW GPIO led 991 * @hw: pointer to the hardware structure 992 * @led: led index 993 * @state: led state 994 * 995 * Set status of GPIO led for external clock handling. 996 **/ 997 static void i40e_ptp_set_led_hw(struct i40e_hw *hw, 998 unsigned int led, 999 enum i40e_ptp_led_pin_state state) 1000 { 1001 switch (state) { 1002 case low: 1003 wr32(hw, I40E_GLGEN_GPIO_SET, 1004 I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led); 1005 break; 1006 case high: 1007 wr32(hw, I40E_GLGEN_GPIO_SET, 1008 I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | 1009 I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led); 1010 break; 1011 default: 1012 break; 1013 } 1014 } 1015 1016 /** 1017 * i40e_ptp_init_leds_hw - init LEDs 1018 * @hw: pointer to a hardware structure 1019 * 1020 * Set initial state of LEDs 1021 **/ 1022 static void i40e_ptp_init_leds_hw(struct i40e_hw *hw) 1023 { 1024 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0), 1025 I40E_GLGEN_GPIO_CTL_LED_INIT); 1026 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1), 1027 I40E_GLGEN_GPIO_CTL_LED_INIT); 1028 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0), 1029 I40E_GLGEN_GPIO_CTL_LED_INIT); 1030 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1), 1031 I40E_GLGEN_GPIO_CTL_LED_INIT); 1032 } 1033 1034 /** 1035 * i40e_ptp_set_pins_hw - Set HW GPIO pins 1036 * @pf: Board private structure 1037 * 1038 * This function sets GPIO pins for PTP 1039 **/ 1040 static void i40e_ptp_set_pins_hw(struct i40e_pf *pf) 1041 { 1042 const struct i40e_ptp_pins_settings *pins = pf->ptp_pins; 1043 struct i40e_hw *hw = &pf->hw; 1044 1045 /* pin must be disabled before it may be used */ 1046 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); 1047 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); 1048 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); 1049 1050 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2); 1051 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3); 1052 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4); 1053 1054 i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0); 1055 i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1); 1056 i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0); 1057 i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1); 1058 1059 dev_info(&pf->pdev->dev, 1060 "PTP configuration set to: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", 1061 i40e_ptp_gpio_pin_state2str[pins->sdp3_2], 1062 i40e_ptp_gpio_pin_state2str[pins->sdp3_3], 1063 i40e_ptp_gpio_pin_state2str[pins->gpio_4]); 1064 } 1065 1066 /** 1067 * i40e_ptp_set_pins - set PTP pins in HW 1068 * @pf: Board private structure 1069 * @pins: PTP pins to be applied 1070 * 1071 * Validate and set PTP pins in HW for specific PF. 1072 * Return 0 on success or negative value on error. 1073 **/ 1074 static int i40e_ptp_set_pins(struct i40e_pf *pf, 1075 struct i40e_ptp_pins_settings *pins) 1076 { 1077 enum i40e_can_set_pins pin_caps = i40e_can_set_pins(pf); 1078 int i = 0; 1079 1080 if (pin_caps == CANT_DO_PINS) 1081 return -EOPNOTSUPP; 1082 else if (pin_caps == CAN_DO_PINS) 1083 return 0; 1084 1085 if (pins->sdp3_2 == invalid) 1086 pins->sdp3_2 = pf->ptp_pins->sdp3_2; 1087 if (pins->sdp3_3 == invalid) 1088 pins->sdp3_3 = pf->ptp_pins->sdp3_3; 1089 if (pins->gpio_4 == invalid) 1090 pins->gpio_4 = pf->ptp_pins->gpio_4; 1091 while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) { 1092 if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 && 1093 pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 && 1094 pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) { 1095 pins->led2_0 = 1096 i40e_ptp_pin_led_allowed_states[i].led2_0; 1097 pins->led2_1 = 1098 i40e_ptp_pin_led_allowed_states[i].led2_1; 1099 pins->led3_0 = 1100 i40e_ptp_pin_led_allowed_states[i].led3_0; 1101 pins->led3_1 = 1102 i40e_ptp_pin_led_allowed_states[i].led3_1; 1103 break; 1104 } 1105 i++; 1106 } 1107 if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) { 1108 dev_warn(&pf->pdev->dev, 1109 "Unsupported PTP pin configuration: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", 1110 i40e_ptp_gpio_pin_state2str[pins->sdp3_2], 1111 i40e_ptp_gpio_pin_state2str[pins->sdp3_3], 1112 i40e_ptp_gpio_pin_state2str[pins->gpio_4]); 1113 1114 return -EPERM; 1115 } 1116 memcpy(pf->ptp_pins, pins, sizeof(*pins)); 1117 i40e_ptp_set_pins_hw(pf); 1118 i40_ptp_reset_timing_events(pf); 1119 1120 return 0; 1121 } 1122 1123 /** 1124 * i40e_ptp_alloc_pins - allocate PTP pins structure 1125 * @pf: Board private structure 1126 * 1127 * allocate PTP pins structure 1128 **/ 1129 int i40e_ptp_alloc_pins(struct i40e_pf *pf) 1130 { 1131 if (!i40e_is_ptp_pin_dev(&pf->hw)) 1132 return 0; 1133 1134 pf->ptp_pins = 1135 kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL); 1136 1137 if (!pf->ptp_pins) { 1138 dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n"); 1139 return -ENOMEM; 1140 } 1141 1142 pf->ptp_pins->sdp3_2 = off; 1143 pf->ptp_pins->sdp3_3 = off; 1144 pf->ptp_pins->gpio_4 = off; 1145 pf->ptp_pins->led2_0 = high; 1146 pf->ptp_pins->led2_1 = high; 1147 pf->ptp_pins->led3_0 = high; 1148 pf->ptp_pins->led3_1 = high; 1149 1150 /* Use PF0 to set pins in HW. Return success for user space tools */ 1151 if (pf->hw.pf_id) 1152 return 0; 1153 1154 i40e_ptp_init_leds_hw(&pf->hw); 1155 i40e_ptp_set_pins_hw(pf); 1156 1157 return 0; 1158 } 1159 1160 /** 1161 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode 1162 * @pf: Board private structure 1163 * @config: hwtstamp settings requested or saved 1164 * 1165 * Control hardware registers to enter the specific mode requested by the 1166 * user. Also used during reset path to ensure that timestamp settings are 1167 * maintained. 1168 * 1169 * Note: modifies config in place, and may update the requested mode to be 1170 * more broad if the specific filter is not directly supported. 1171 **/ 1172 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf, 1173 struct kernel_hwtstamp_config *config) 1174 { 1175 struct i40e_hw *hw = &pf->hw; 1176 u32 tsyntype, regval; 1177 1178 /* Selects external trigger to cause event */ 1179 regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); 1180 /* Bit 17:16 is EVNTLVL, 01B rising edge */ 1181 regval &= 0; 1182 regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT); 1183 /* regval: 0001 0000 0000 0000 0000 */ 1184 wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); 1185 1186 /* Enabel interrupts */ 1187 regval = rd32(hw, I40E_PRTTSYN_CTL0); 1188 regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT; 1189 wr32(hw, I40E_PRTTSYN_CTL0, regval); 1190 1191 INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work); 1192 1193 switch (config->tx_type) { 1194 case HWTSTAMP_TX_OFF: 1195 pf->ptp_tx = false; 1196 break; 1197 case HWTSTAMP_TX_ON: 1198 pf->ptp_tx = true; 1199 break; 1200 default: 1201 return -ERANGE; 1202 } 1203 1204 switch (config->rx_filter) { 1205 case HWTSTAMP_FILTER_NONE: 1206 pf->ptp_rx = false; 1207 /* We set the type to V1, but do not enable UDP packet 1208 * recognition. In this way, we should be as close to 1209 * disabling PTP Rx timestamps as possible since V1 packets 1210 * are always UDP, since L2 packets are a V2 feature. 1211 */ 1212 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1; 1213 break; 1214 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1215 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1216 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1217 if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) 1218 return -ERANGE; 1219 pf->ptp_rx = true; 1220 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | 1221 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | 1222 I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 1223 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 1224 break; 1225 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1226 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1227 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1228 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1229 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1230 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1231 if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) 1232 return -ERANGE; 1233 fallthrough; 1234 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1235 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1236 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1237 pf->ptp_rx = true; 1238 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | 1239 I40E_PRTTSYN_CTL1_TSYNTYPE_V2; 1240 if (test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) { 1241 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 1242 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1243 } else { 1244 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 1245 } 1246 break; 1247 case HWTSTAMP_FILTER_NTP_ALL: 1248 case HWTSTAMP_FILTER_ALL: 1249 default: 1250 return -ERANGE; 1251 } 1252 1253 /* Clear out all 1588-related registers to clear and unlatch them. */ 1254 spin_lock_bh(&pf->ptp_rx_lock); 1255 rd32(hw, I40E_PRTTSYN_STAT_0); 1256 rd32(hw, I40E_PRTTSYN_TXTIME_H); 1257 rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); 1258 rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); 1259 rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); 1260 rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); 1261 pf->latch_event_flags = 0; 1262 spin_unlock_bh(&pf->ptp_rx_lock); 1263 1264 /* Enable/disable the Tx timestamp interrupt based on user input. */ 1265 regval = rd32(hw, I40E_PRTTSYN_CTL0); 1266 if (pf->ptp_tx) 1267 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 1268 else 1269 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 1270 wr32(hw, I40E_PRTTSYN_CTL0, regval); 1271 1272 regval = rd32(hw, I40E_PFINT_ICR0_ENA); 1273 if (pf->ptp_tx) 1274 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 1275 else 1276 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 1277 wr32(hw, I40E_PFINT_ICR0_ENA, regval); 1278 1279 /* Although there is no simple on/off switch for Rx, we "disable" Rx 1280 * timestamps by setting to V1 only mode and clear the UDP 1281 * recognition. This ought to disable all PTP Rx timestamps as V1 1282 * packets are always over UDP. Note that software is configured to 1283 * ignore Rx timestamps via the pf->ptp_rx flag. 1284 */ 1285 regval = rd32(hw, I40E_PRTTSYN_CTL1); 1286 /* clear everything but the enable bit */ 1287 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 1288 /* now enable bits for desired Rx timestamps */ 1289 regval |= tsyntype; 1290 wr32(hw, I40E_PRTTSYN_CTL1, regval); 1291 1292 return 0; 1293 } 1294 1295 /** 1296 * i40e_ptp_hwtstamp_set - interface to control the HW timestamping 1297 * @netdev: Network device structure 1298 * @config: Timestamping configuration structure 1299 * @extack: Netlink extended ack structure for error reporting 1300 * 1301 * Respond to the user filter requests and make the appropriate hardware 1302 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping 1303 * logic, so keep track in software of whether to indicate these timestamps 1304 * or not. 1305 * 1306 * It is permissible to "upgrade" the user request to a broader filter, as long 1307 * as the user receives the timestamps they care about and the user is notified 1308 * the filter has been broadened. 1309 **/ 1310 int i40e_ptp_hwtstamp_set(struct net_device *netdev, 1311 struct kernel_hwtstamp_config *config, 1312 struct netlink_ext_ack *extack) 1313 { 1314 struct i40e_netdev_priv *np = netdev_priv(netdev); 1315 struct i40e_pf *pf = np->vsi->back; 1316 int err; 1317 1318 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 1319 return -EOPNOTSUPP; 1320 1321 err = i40e_ptp_set_timestamp_mode(pf, config); 1322 if (err) 1323 return err; 1324 1325 /* save these settings for future reference */ 1326 pf->tstamp_config = *config; 1327 1328 return 0; 1329 } 1330 1331 /** 1332 * i40e_init_pin_config - initialize pins. 1333 * @pf: private board structure 1334 * 1335 * Initialize pins for external clock source. 1336 * Return 0 on success or error code on failure. 1337 **/ 1338 static int i40e_init_pin_config(struct i40e_pf *pf) 1339 { 1340 int i; 1341 1342 pf->ptp_caps.n_pins = 3; 1343 pf->ptp_caps.n_ext_ts = 2; 1344 pf->ptp_caps.pps = 1; 1345 pf->ptp_caps.n_per_out = 2; 1346 1347 pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins, 1348 sizeof(*pf->ptp_caps.pin_config), 1349 GFP_KERNEL); 1350 if (!pf->ptp_caps.pin_config) 1351 return -ENOMEM; 1352 1353 for (i = 0; i < pf->ptp_caps.n_pins; i++) { 1354 snprintf(pf->ptp_caps.pin_config[i].name, 1355 sizeof(pf->ptp_caps.pin_config[i].name), 1356 "%s", sdp_desc[i].name); 1357 pf->ptp_caps.pin_config[i].index = sdp_desc[i].index; 1358 pf->ptp_caps.pin_config[i].func = PTP_PF_NONE; 1359 pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan; 1360 } 1361 1362 pf->ptp_caps.verify = i40e_ptp_verify; 1363 pf->ptp_caps.enable = i40e_ptp_feature_enable; 1364 1365 pf->ptp_caps.pps = 1; 1366 1367 return 0; 1368 } 1369 1370 /** 1371 * i40e_ptp_create_clock - Create PTP clock device for userspace 1372 * @pf: Board private structure 1373 * 1374 * This function creates a new PTP clock device. It only creates one if we 1375 * don't already have one, so it is safe to call. Will return error if it 1376 * can't create one, but success if we already have a device. Should be used 1377 * by i40e_ptp_init to create clock initially, and prevent global resets from 1378 * creating new clock devices. 1379 **/ 1380 static long i40e_ptp_create_clock(struct i40e_pf *pf) 1381 { 1382 /* no need to create a clock device if we already have one */ 1383 if (!IS_ERR_OR_NULL(pf->ptp_clock)) 1384 return 0; 1385 1386 strscpy(pf->ptp_caps.name, i40e_driver_name, 1387 sizeof(pf->ptp_caps.name) - 1); 1388 pf->ptp_caps.owner = THIS_MODULE; 1389 pf->ptp_caps.max_adj = 999999999; 1390 pf->ptp_caps.adjfine = i40e_ptp_adjfine; 1391 pf->ptp_caps.adjtime = i40e_ptp_adjtime; 1392 pf->ptp_caps.gettimex64 = i40e_ptp_gettimex; 1393 pf->ptp_caps.settime64 = i40e_ptp_settime; 1394 if (i40e_is_ptp_pin_dev(&pf->hw)) { 1395 int err = i40e_init_pin_config(pf); 1396 1397 if (err) 1398 return err; 1399 } 1400 1401 /* Attempt to register the clock before enabling the hardware. */ 1402 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); 1403 if (IS_ERR(pf->ptp_clock)) 1404 return PTR_ERR(pf->ptp_clock); 1405 1406 /* clear the hwtstamp settings here during clock create, instead of 1407 * during regular init, so that we can maintain settings across a 1408 * reset or suspend. 1409 */ 1410 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1411 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1412 1413 /* Set the previous "reset" time to the current Kernel clock time */ 1414 ktime_get_real_ts64(&pf->ptp_prev_hw_time); 1415 pf->ptp_reset_start = ktime_get(); 1416 1417 return 0; 1418 } 1419 1420 /** 1421 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time 1422 * @pf: Board private structure 1423 * 1424 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should 1425 * be called at the end of preparing to reset, just before hardware reset 1426 * occurs, in order to preserve the PTP time as close as possible across 1427 * resets. 1428 */ 1429 void i40e_ptp_save_hw_time(struct i40e_pf *pf) 1430 { 1431 /* don't try to access the PTP clock if it's not enabled */ 1432 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 1433 return; 1434 1435 i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL); 1436 /* Get a monotonic starting time for this reset */ 1437 pf->ptp_reset_start = ktime_get(); 1438 } 1439 1440 /** 1441 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs 1442 * @pf: Board private structure 1443 * 1444 * Restore the PTP hardware clock registers. We previously cached the PTP 1445 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible, 1446 * update this value based on the time delta since the time was saved, using 1447 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference. 1448 * 1449 * This ensures that the hardware clock is restored to nearly what it should 1450 * have been if a reset had not occurred. 1451 */ 1452 void i40e_ptp_restore_hw_time(struct i40e_pf *pf) 1453 { 1454 ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start); 1455 1456 /* Update the previous HW time with the ktime delta */ 1457 timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta)); 1458 1459 /* Restore the hardware clock registers */ 1460 i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time); 1461 } 1462 1463 /** 1464 * i40e_ptp_init - Initialize the 1588 support after device probe or reset 1465 * @pf: Board private structure 1466 * 1467 * This function sets device up for 1588 support. The first time it is run, it 1468 * will create a PHC clock device. It does not create a clock device if one 1469 * already exists. It also reconfigures the device after a reset. 1470 * 1471 * The first time a clock is created, i40e_ptp_create_clock will set 1472 * pf->ptp_prev_hw_time to the current system time. During resets, it is 1473 * expected that this timespec will be set to the last known PTP clock time, 1474 * in order to preserve the clock time as close as possible across a reset. 1475 **/ 1476 void i40e_ptp_init(struct i40e_pf *pf) 1477 { 1478 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 1479 struct net_device *netdev = vsi->netdev; 1480 struct i40e_hw *hw = &pf->hw; 1481 u32 pf_id; 1482 long err; 1483 1484 /* Only one PF is assigned to control 1588 logic per port. Do not 1485 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID 1486 */ 1487 pf_id = FIELD_GET(I40E_PRTTSYN_CTL0_PF_ID_MASK, 1488 rd32(hw, I40E_PRTTSYN_CTL0)); 1489 if (hw->pf_id != pf_id) { 1490 clear_bit(I40E_FLAG_PTP_ENA, pf->flags); 1491 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n", 1492 __func__, 1493 netdev->name); 1494 return; 1495 } 1496 1497 mutex_init(&pf->tmreg_lock); 1498 spin_lock_init(&pf->ptp_rx_lock); 1499 1500 /* ensure we have a clock device */ 1501 err = i40e_ptp_create_clock(pf); 1502 if (err) { 1503 pf->ptp_clock = NULL; 1504 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", 1505 __func__); 1506 } else if (pf->ptp_clock) { 1507 u32 regval; 1508 1509 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 1510 dev_info(&pf->pdev->dev, "PHC enabled\n"); 1511 set_bit(I40E_FLAG_PTP_ENA, pf->flags); 1512 1513 /* Ensure the clocks are running. */ 1514 regval = rd32(hw, I40E_PRTTSYN_CTL0); 1515 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; 1516 wr32(hw, I40E_PRTTSYN_CTL0, regval); 1517 regval = rd32(hw, I40E_PRTTSYN_CTL1); 1518 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 1519 wr32(hw, I40E_PRTTSYN_CTL1, regval); 1520 1521 /* Set the increment value per clock tick. */ 1522 i40e_ptp_set_increment(pf); 1523 1524 /* reset timestamping mode */ 1525 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config); 1526 1527 /* Restore the clock time based on last known value */ 1528 i40e_ptp_restore_hw_time(pf); 1529 } 1530 1531 i40e_ptp_set_1pps_signal_hw(pf); 1532 } 1533 1534 /** 1535 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC 1536 * @pf: Board private structure 1537 * 1538 * This function handles the cleanup work required from the initialization by 1539 * clearing out the important information and unregistering the PHC. 1540 **/ 1541 void i40e_ptp_stop(struct i40e_pf *pf) 1542 { 1543 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 1544 struct i40e_hw *hw = &pf->hw; 1545 u32 regval; 1546 1547 clear_bit(I40E_FLAG_PTP_ENA, pf->flags); 1548 pf->ptp_tx = false; 1549 pf->ptp_rx = false; 1550 1551 if (pf->ptp_tx_skb) { 1552 struct sk_buff *skb = pf->ptp_tx_skb; 1553 1554 pf->ptp_tx_skb = NULL; 1555 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 1556 dev_kfree_skb_any(skb); 1557 } 1558 1559 if (pf->ptp_clock) { 1560 ptp_clock_unregister(pf->ptp_clock); 1561 pf->ptp_clock = NULL; 1562 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, 1563 main_vsi->netdev->name); 1564 } 1565 1566 if (i40e_is_ptp_pin_dev(&pf->hw)) { 1567 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); 1568 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); 1569 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); 1570 } 1571 1572 regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); 1573 regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK; 1574 wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); 1575 1576 /* Disable interrupts */ 1577 regval = rd32(hw, I40E_PRTTSYN_CTL0); 1578 regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK; 1579 wr32(hw, I40E_PRTTSYN_CTL0, regval); 1580 1581 i40e_ptp_free_pins(pf); 1582 } 1583