1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/bitfield.h> 5 #include <linux/delay.h> 6 #include "i40e_alloc.h" 7 #include "i40e_prototype.h" 8 9 /** 10 * i40e_init_nvm - Initialize NVM function pointers 11 * @hw: pointer to the HW structure 12 * 13 * Setup the function pointers and the NVM info structure. Should be called 14 * once per NVM initialization, e.g. inside the i40e_init_shared_code(). 15 * Please notice that the NVM term is used here (& in all methods covered 16 * in this file) as an equivalent of the FLASH part mapped into the SR. 17 * We are accessing FLASH always thru the Shadow RAM. 18 **/ 19 int i40e_init_nvm(struct i40e_hw *hw) 20 { 21 struct i40e_nvm_info *nvm = &hw->nvm; 22 int ret_code = 0; 23 u32 fla, gens; 24 u8 sr_size; 25 26 /* The SR size is stored regardless of the nvm programming mode 27 * as the blank mode may be used in the factory line. 28 */ 29 gens = rd32(hw, I40E_GLNVM_GENS); 30 sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens); 31 /* Switching to words (sr_size contains power of 2KB) */ 32 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB; 33 34 /* Check if we are in the normal or blank NVM programming mode */ 35 fla = rd32(hw, I40E_GLNVM_FLA); 36 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */ 37 /* Max NVM timeout */ 38 nvm->timeout = I40E_MAX_NVM_TIMEOUT; 39 nvm->blank_nvm_mode = false; 40 } else { /* Blank programming mode */ 41 nvm->blank_nvm_mode = true; 42 ret_code = -EIO; 43 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n"); 44 } 45 46 return ret_code; 47 } 48 49 /** 50 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership 51 * @hw: pointer to the HW structure 52 * @access: NVM access type (read or write) 53 * 54 * This function will request NVM ownership for reading 55 * via the proper Admin Command. 56 **/ 57 int i40e_acquire_nvm(struct i40e_hw *hw, 58 enum i40e_aq_resource_access_type access) 59 { 60 u64 gtime, timeout; 61 u64 time_left = 0; 62 int ret_code = 0; 63 64 if (hw->nvm.blank_nvm_mode) 65 goto i40e_i40e_acquire_nvm_exit; 66 67 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access, 68 0, &time_left, NULL); 69 /* Reading the Global Device Timer */ 70 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 71 72 /* Store the timeout */ 73 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime; 74 75 if (ret_code) 76 i40e_debug(hw, I40E_DEBUG_NVM, 77 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n", 78 access, time_left, ret_code, hw->aq.asq_last_status); 79 80 if (ret_code && time_left) { 81 /* Poll until the current NVM owner timeouts */ 82 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime; 83 while ((gtime < timeout) && time_left) { 84 usleep_range(10000, 20000); 85 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 86 ret_code = i40e_aq_request_resource(hw, 87 I40E_NVM_RESOURCE_ID, 88 access, 0, &time_left, 89 NULL); 90 if (!ret_code) { 91 hw->nvm.hw_semaphore_timeout = 92 I40E_MS_TO_GTIME(time_left) + gtime; 93 break; 94 } 95 } 96 if (ret_code) { 97 hw->nvm.hw_semaphore_timeout = 0; 98 i40e_debug(hw, I40E_DEBUG_NVM, 99 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n", 100 time_left, ret_code, hw->aq.asq_last_status); 101 } 102 } 103 104 i40e_i40e_acquire_nvm_exit: 105 return ret_code; 106 } 107 108 /** 109 * i40e_release_nvm - Generic request for releasing the NVM ownership 110 * @hw: pointer to the HW structure 111 * 112 * This function will release NVM resource via the proper Admin Command. 113 **/ 114 void i40e_release_nvm(struct i40e_hw *hw) 115 { 116 u32 total_delay = 0; 117 int ret_code = 0; 118 119 if (hw->nvm.blank_nvm_mode) 120 return; 121 122 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL); 123 124 /* there are some rare cases when trying to release the resource 125 * results in an admin Q timeout, so handle them correctly 126 */ 127 while ((ret_code == -EIO) && 128 (total_delay < hw->aq.asq_cmd_timeout)) { 129 usleep_range(1000, 2000); 130 ret_code = i40e_aq_release_resource(hw, 131 I40E_NVM_RESOURCE_ID, 132 0, NULL); 133 total_delay++; 134 } 135 } 136 137 /** 138 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit 139 * @hw: pointer to the HW structure 140 * 141 * Polls the SRCTL Shadow RAM register done bit. 142 **/ 143 static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw) 144 { 145 int ret_code = -EIO; 146 u32 srctl, wait_cnt; 147 148 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */ 149 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) { 150 srctl = rd32(hw, I40E_GLNVM_SRCTL); 151 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) { 152 ret_code = 0; 153 break; 154 } 155 udelay(5); 156 } 157 if (ret_code == -EIO) 158 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set"); 159 return ret_code; 160 } 161 162 /** 163 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register 164 * @hw: pointer to the HW structure 165 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 166 * @data: word read from the Shadow RAM 167 * 168 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register. 169 **/ 170 static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset, 171 u16 *data) 172 { 173 int ret_code = -EIO; 174 u32 sr_reg; 175 176 if (offset >= hw->nvm.sr_size) { 177 i40e_debug(hw, I40E_DEBUG_NVM, 178 "NVM read error: offset %d beyond Shadow RAM limit %d\n", 179 offset, hw->nvm.sr_size); 180 ret_code = -EINVAL; 181 goto read_nvm_exit; 182 } 183 184 /* Poll the done bit first */ 185 ret_code = i40e_poll_sr_srctl_done_bit(hw); 186 if (!ret_code) { 187 /* Write the address and start reading */ 188 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) | 189 BIT(I40E_GLNVM_SRCTL_START_SHIFT); 190 wr32(hw, I40E_GLNVM_SRCTL, sr_reg); 191 192 /* Poll I40E_GLNVM_SRCTL until the done bit is set */ 193 ret_code = i40e_poll_sr_srctl_done_bit(hw); 194 if (!ret_code) { 195 sr_reg = rd32(hw, I40E_GLNVM_SRDATA); 196 *data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK, 197 sr_reg); 198 } 199 } 200 if (ret_code) 201 i40e_debug(hw, I40E_DEBUG_NVM, 202 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n", 203 offset); 204 205 read_nvm_exit: 206 return ret_code; 207 } 208 209 /** 210 * i40e_read_nvm_aq - Read Shadow RAM. 211 * @hw: pointer to the HW structure. 212 * @module_pointer: module pointer location in words from the NVM beginning 213 * @offset: offset in words from module start 214 * @words: number of words to read 215 * @data: buffer with words to read to the Shadow RAM 216 * @last_command: tells the AdminQ that this is the last command 217 * 218 * Reads a 16 bit words buffer to the Shadow RAM using the admin command. 219 **/ 220 static int i40e_read_nvm_aq(struct i40e_hw *hw, 221 u8 module_pointer, u32 offset, 222 u16 words, void *data, 223 bool last_command) 224 { 225 struct i40e_asq_cmd_details cmd_details; 226 int ret_code = -EIO; 227 228 memset(&cmd_details, 0, sizeof(cmd_details)); 229 cmd_details.wb_desc = &hw->nvm_wb_desc; 230 231 /* Here we are checking the SR limit only for the flat memory model. 232 * We cannot do it for the module-based model, as we did not acquire 233 * the NVM resource yet (we cannot get the module pointer value). 234 * Firmware will check the module-based model. 235 */ 236 if ((offset + words) > hw->nvm.sr_size) 237 i40e_debug(hw, I40E_DEBUG_NVM, 238 "NVM read error: offset %d beyond Shadow RAM limit %d\n", 239 (offset + words), hw->nvm.sr_size); 240 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 241 /* We can read only up to 4KB (one sector), in one AQ write */ 242 i40e_debug(hw, I40E_DEBUG_NVM, 243 "NVM read fail error: tried to read %d words, limit is %d.\n", 244 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 245 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 246 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 247 /* A single read cannot spread over two sectors */ 248 i40e_debug(hw, I40E_DEBUG_NVM, 249 "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n", 250 offset, words); 251 else 252 ret_code = i40e_aq_read_nvm(hw, module_pointer, 253 2 * offset, /*bytes*/ 254 2 * words, /*bytes*/ 255 data, last_command, &cmd_details); 256 257 return ret_code; 258 } 259 260 /** 261 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ 262 * @hw: pointer to the HW structure 263 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 264 * @data: word read from the Shadow RAM 265 * 266 * Reads one 16 bit word from the Shadow RAM using the AdminQ 267 **/ 268 static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset, 269 u16 *data) 270 { 271 int ret_code = -EIO; 272 273 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true); 274 *data = le16_to_cpu(*(__le16 *)data); 275 276 return ret_code; 277 } 278 279 /** 280 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking 281 * @hw: pointer to the HW structure 282 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 283 * @data: word read from the Shadow RAM 284 * 285 * Reads one 16 bit word from the Shadow RAM. 286 * 287 * Do not use this function except in cases where the nvm lock is already 288 * taken via i40e_acquire_nvm(). 289 **/ 290 static int __i40e_read_nvm_word(struct i40e_hw *hw, 291 u16 offset, u16 *data) 292 { 293 if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) 294 return i40e_read_nvm_word_aq(hw, offset, data); 295 296 return i40e_read_nvm_word_srctl(hw, offset, data); 297 } 298 299 /** 300 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary 301 * @hw: pointer to the HW structure 302 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 303 * @data: word read from the Shadow RAM 304 * 305 * Reads one 16 bit word from the Shadow RAM. 306 **/ 307 int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset, 308 u16 *data) 309 { 310 int ret_code = 0; 311 312 if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps)) 313 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 314 if (ret_code) 315 return ret_code; 316 317 ret_code = __i40e_read_nvm_word(hw, offset, data); 318 319 if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps)) 320 i40e_release_nvm(hw); 321 322 return ret_code; 323 } 324 325 /** 326 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location 327 * @hw: Pointer to the HW structure 328 * @module_ptr: Pointer to module in words with respect to NVM beginning 329 * @module_offset: Offset in words from module start 330 * @data_offset: Offset in words from reading data area start 331 * @words_data_size: Words to read from NVM 332 * @data_ptr: Pointer to memory location where resulting buffer will be stored 333 **/ 334 int i40e_read_nvm_module_data(struct i40e_hw *hw, 335 u8 module_ptr, 336 u16 module_offset, 337 u16 data_offset, 338 u16 words_data_size, 339 u16 *data_ptr) 340 { 341 u16 specific_ptr = 0; 342 u16 ptr_value = 0; 343 u32 offset = 0; 344 int status; 345 346 if (module_ptr != 0) { 347 status = i40e_read_nvm_word(hw, module_ptr, &ptr_value); 348 if (status) { 349 i40e_debug(hw, I40E_DEBUG_ALL, 350 "Reading nvm word failed.Error code: %d.\n", 351 status); 352 return -EIO; 353 } 354 } 355 #define I40E_NVM_INVALID_PTR_VAL 0x7FFF 356 #define I40E_NVM_INVALID_VAL 0xFFFF 357 358 /* Pointer not initialized */ 359 if (ptr_value == I40E_NVM_INVALID_PTR_VAL || 360 ptr_value == I40E_NVM_INVALID_VAL) { 361 i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n"); 362 return -EINVAL; 363 } 364 365 /* Check whether the module is in SR mapped area or outside */ 366 if (ptr_value & I40E_PTR_TYPE) { 367 /* Pointer points outside of the Shared RAM mapped area */ 368 i40e_debug(hw, I40E_DEBUG_ALL, 369 "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n"); 370 371 return -EINVAL; 372 } else { 373 /* Read from the Shadow RAM */ 374 375 status = i40e_read_nvm_word(hw, ptr_value + module_offset, 376 &specific_ptr); 377 if (status) { 378 i40e_debug(hw, I40E_DEBUG_ALL, 379 "Reading nvm word failed.Error code: %d.\n", 380 status); 381 return -EIO; 382 } 383 384 offset = ptr_value + module_offset + specific_ptr + 385 data_offset; 386 387 status = i40e_read_nvm_buffer(hw, offset, &words_data_size, 388 data_ptr); 389 if (status) { 390 i40e_debug(hw, I40E_DEBUG_ALL, 391 "Reading nvm buffer failed.Error code: %d.\n", 392 status); 393 } 394 } 395 396 return status; 397 } 398 399 /** 400 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register 401 * @hw: pointer to the HW structure 402 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 403 * @words: (in) number of words to read; (out) number of words actually read 404 * @data: words read from the Shadow RAM 405 * 406 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 407 * method. The buffer read is preceded by the NVM ownership take 408 * and followed by the release. 409 **/ 410 static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset, 411 u16 *words, u16 *data) 412 { 413 int ret_code = 0; 414 u16 index, word; 415 416 /* Loop thru the selected region */ 417 for (word = 0; word < *words; word++) { 418 index = offset + word; 419 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]); 420 if (ret_code) 421 break; 422 } 423 424 /* Update the number of words read from the Shadow RAM */ 425 *words = word; 426 427 return ret_code; 428 } 429 430 /** 431 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ 432 * @hw: pointer to the HW structure 433 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 434 * @words: (in) number of words to read; (out) number of words actually read 435 * @data: words read from the Shadow RAM 436 * 437 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq() 438 * method. The buffer read is preceded by the NVM ownership take 439 * and followed by the release. 440 **/ 441 static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset, 442 u16 *words, u16 *data) 443 { 444 bool last_cmd = false; 445 u16 words_read = 0; 446 u16 read_size; 447 int ret_code; 448 u16 i = 0; 449 450 do { 451 /* Calculate number of bytes we should read in this step. 452 * FVL AQ do not allow to read more than one page at a time or 453 * to cross page boundaries. 454 */ 455 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS) 456 read_size = min(*words, 457 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS - 458 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS))); 459 else 460 read_size = min((*words - words_read), 461 I40E_SR_SECTOR_SIZE_IN_WORDS); 462 463 /* Check if this is last command, if so set proper flag */ 464 if ((words_read + read_size) >= *words) 465 last_cmd = true; 466 467 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size, 468 data + words_read, last_cmd); 469 if (ret_code) 470 goto read_nvm_buffer_aq_exit; 471 472 /* Increment counter for words already read and move offset to 473 * new read location 474 */ 475 words_read += read_size; 476 offset += read_size; 477 } while (words_read < *words); 478 479 for (i = 0; i < *words; i++) 480 data[i] = le16_to_cpu(((__le16 *)data)[i]); 481 482 read_nvm_buffer_aq_exit: 483 *words = words_read; 484 return ret_code; 485 } 486 487 /** 488 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock 489 * @hw: pointer to the HW structure 490 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 491 * @words: (in) number of words to read; (out) number of words actually read 492 * @data: words read from the Shadow RAM 493 * 494 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 495 * method. 496 **/ 497 static int __i40e_read_nvm_buffer(struct i40e_hw *hw, 498 u16 offset, u16 *words, 499 u16 *data) 500 { 501 if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) 502 return i40e_read_nvm_buffer_aq(hw, offset, words, data); 503 504 return i40e_read_nvm_buffer_srctl(hw, offset, words, data); 505 } 506 507 /** 508 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary 509 * @hw: pointer to the HW structure 510 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 511 * @words: (in) number of words to read; (out) number of words actually read 512 * @data: words read from the Shadow RAM 513 * 514 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 515 * method. The buffer read is preceded by the NVM ownership take 516 * and followed by the release. 517 **/ 518 int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset, 519 u16 *words, u16 *data) 520 { 521 int ret_code = 0; 522 523 if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) { 524 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 525 if (!ret_code) { 526 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words, 527 data); 528 i40e_release_nvm(hw); 529 } 530 } else { 531 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data); 532 } 533 534 return ret_code; 535 } 536 537 /** 538 * i40e_write_nvm_aq - Writes Shadow RAM. 539 * @hw: pointer to the HW structure. 540 * @module_pointer: module pointer location in words from the NVM beginning 541 * @offset: offset in words from module start 542 * @words: number of words to write 543 * @data: buffer with words to write to the Shadow RAM 544 * @last_command: tells the AdminQ that this is the last command 545 * 546 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 547 **/ 548 static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer, 549 u32 offset, u16 words, void *data, 550 bool last_command) 551 { 552 struct i40e_asq_cmd_details cmd_details; 553 int ret_code = -EIO; 554 555 memset(&cmd_details, 0, sizeof(cmd_details)); 556 cmd_details.wb_desc = &hw->nvm_wb_desc; 557 558 /* Here we are checking the SR limit only for the flat memory model. 559 * We cannot do it for the module-based model, as we did not acquire 560 * the NVM resource yet (we cannot get the module pointer value). 561 * Firmware will check the module-based model. 562 */ 563 if ((offset + words) > hw->nvm.sr_size) 564 i40e_debug(hw, I40E_DEBUG_NVM, 565 "NVM write error: offset %d beyond Shadow RAM limit %d\n", 566 (offset + words), hw->nvm.sr_size); 567 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 568 /* We can write only up to 4KB (one sector), in one AQ write */ 569 i40e_debug(hw, I40E_DEBUG_NVM, 570 "NVM write fail error: tried to write %d words, limit is %d.\n", 571 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 572 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 573 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 574 /* A single write cannot spread over two sectors */ 575 i40e_debug(hw, I40E_DEBUG_NVM, 576 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", 577 offset, words); 578 else 579 ret_code = i40e_aq_update_nvm(hw, module_pointer, 580 2 * offset, /*bytes*/ 581 2 * words, /*bytes*/ 582 data, last_command, 0, 583 &cmd_details); 584 585 return ret_code; 586 } 587 588 /** 589 * i40e_calc_nvm_checksum - Calculates and returns the checksum 590 * @hw: pointer to hardware structure 591 * @checksum: pointer to the checksum 592 * 593 * This function calculates SW Checksum that covers the whole 64kB shadow RAM 594 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD 595 * is customer specific and unknown. Therefore, this function skips all maximum 596 * possible size of VPD (1kB). 597 **/ 598 static int i40e_calc_nvm_checksum(struct i40e_hw *hw, 599 u16 *checksum) 600 { 601 struct i40e_virt_mem vmem; 602 u16 pcie_alt_module = 0; 603 u16 checksum_local = 0; 604 u16 vpd_module = 0; 605 int ret_code; 606 u16 *data; 607 u16 i = 0; 608 609 ret_code = i40e_allocate_virt_mem(hw, &vmem, 610 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16)); 611 if (ret_code) 612 goto i40e_calc_nvm_checksum_exit; 613 data = (u16 *)vmem.va; 614 615 /* read pointer to VPD area */ 616 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module); 617 if (ret_code) { 618 ret_code = -EIO; 619 goto i40e_calc_nvm_checksum_exit; 620 } 621 622 /* read pointer to PCIe Alt Auto-load module */ 623 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR, 624 &pcie_alt_module); 625 if (ret_code) { 626 ret_code = -EIO; 627 goto i40e_calc_nvm_checksum_exit; 628 } 629 630 /* Calculate SW checksum that covers the whole 64kB shadow RAM 631 * except the VPD and PCIe ALT Auto-load modules 632 */ 633 for (i = 0; i < hw->nvm.sr_size; i++) { 634 /* Read SR page */ 635 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) { 636 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS; 637 638 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data); 639 if (ret_code) { 640 ret_code = -EIO; 641 goto i40e_calc_nvm_checksum_exit; 642 } 643 } 644 645 /* Skip Checksum word */ 646 if (i == I40E_SR_SW_CHECKSUM_WORD) 647 continue; 648 /* Skip VPD module (convert byte size to word count) */ 649 if ((i >= (u32)vpd_module) && 650 (i < ((u32)vpd_module + 651 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) { 652 continue; 653 } 654 /* Skip PCIe ALT module (convert byte size to word count) */ 655 if ((i >= (u32)pcie_alt_module) && 656 (i < ((u32)pcie_alt_module + 657 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) { 658 continue; 659 } 660 661 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS]; 662 } 663 664 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local; 665 666 i40e_calc_nvm_checksum_exit: 667 i40e_free_virt_mem(hw, &vmem); 668 return ret_code; 669 } 670 671 /** 672 * i40e_update_nvm_checksum - Updates the NVM checksum 673 * @hw: pointer to hardware structure 674 * 675 * NVM ownership must be acquired before calling this function and released 676 * on ARQ completion event reception by caller. 677 * This function will commit SR to NVM. 678 **/ 679 int i40e_update_nvm_checksum(struct i40e_hw *hw) 680 { 681 __le16 le_sum; 682 int ret_code; 683 u16 checksum; 684 685 ret_code = i40e_calc_nvm_checksum(hw, &checksum); 686 if (!ret_code) { 687 le_sum = cpu_to_le16(checksum); 688 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD, 689 1, &le_sum, true); 690 } 691 692 return ret_code; 693 } 694 695 /** 696 * i40e_validate_nvm_checksum - Validate EEPROM checksum 697 * @hw: pointer to hardware structure 698 * @checksum: calculated checksum 699 * 700 * Performs checksum calculation and validates the NVM SW checksum. If the 701 * caller does not need checksum, the value can be NULL. 702 **/ 703 int i40e_validate_nvm_checksum(struct i40e_hw *hw, 704 u16 *checksum) 705 { 706 u16 checksum_local = 0; 707 u16 checksum_sr = 0; 708 int ret_code = 0; 709 710 /* We must acquire the NVM lock in order to correctly synchronize the 711 * NVM accesses across multiple PFs. Without doing so it is possible 712 * for one of the PFs to read invalid data potentially indicating that 713 * the checksum is invalid. 714 */ 715 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 716 if (ret_code) 717 return ret_code; 718 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local); 719 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr); 720 i40e_release_nvm(hw); 721 if (ret_code) 722 return ret_code; 723 724 /* Verify read checksum from EEPROM is the same as 725 * calculated checksum 726 */ 727 if (checksum_local != checksum_sr) 728 ret_code = -EIO; 729 730 /* If the user cares, return the calculated checksum */ 731 if (checksum) 732 *checksum = checksum_local; 733 734 return ret_code; 735 } 736 737 static int i40e_nvmupd_state_init(struct i40e_hw *hw, 738 struct i40e_nvm_access *cmd, 739 u8 *bytes, int *perrno); 740 static int i40e_nvmupd_state_reading(struct i40e_hw *hw, 741 struct i40e_nvm_access *cmd, 742 u8 *bytes, int *perrno); 743 static int i40e_nvmupd_state_writing(struct i40e_hw *hw, 744 struct i40e_nvm_access *cmd, 745 u8 *bytes, int *errno); 746 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 747 struct i40e_nvm_access *cmd, 748 int *perrno); 749 static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 750 struct i40e_nvm_access *cmd, 751 int *perrno); 752 static int i40e_nvmupd_nvm_write(struct i40e_hw *hw, 753 struct i40e_nvm_access *cmd, 754 u8 *bytes, int *perrno); 755 static int i40e_nvmupd_nvm_read(struct i40e_hw *hw, 756 struct i40e_nvm_access *cmd, 757 u8 *bytes, int *perrno); 758 static int i40e_nvmupd_exec_aq(struct i40e_hw *hw, 759 struct i40e_nvm_access *cmd, 760 u8 *bytes, int *perrno); 761 static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 762 struct i40e_nvm_access *cmd, 763 u8 *bytes, int *perrno); 764 static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw, 765 struct i40e_nvm_access *cmd, 766 u8 *bytes, int *perrno); 767 static inline u8 i40e_nvmupd_get_module(u32 val) 768 { 769 return (u8)(val & I40E_NVM_MOD_PNT_MASK); 770 } 771 static inline u8 i40e_nvmupd_get_transaction(u32 val) 772 { 773 return FIELD_GET(I40E_NVM_TRANS_MASK, val); 774 } 775 776 static inline u8 i40e_nvmupd_get_preservation_flags(u32 val) 777 { 778 return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val); 779 } 780 781 static const char * const i40e_nvm_update_state_str[] = { 782 "I40E_NVMUPD_INVALID", 783 "I40E_NVMUPD_READ_CON", 784 "I40E_NVMUPD_READ_SNT", 785 "I40E_NVMUPD_READ_LCB", 786 "I40E_NVMUPD_READ_SA", 787 "I40E_NVMUPD_WRITE_ERA", 788 "I40E_NVMUPD_WRITE_CON", 789 "I40E_NVMUPD_WRITE_SNT", 790 "I40E_NVMUPD_WRITE_LCB", 791 "I40E_NVMUPD_WRITE_SA", 792 "I40E_NVMUPD_CSUM_CON", 793 "I40E_NVMUPD_CSUM_SA", 794 "I40E_NVMUPD_CSUM_LCB", 795 "I40E_NVMUPD_STATUS", 796 "I40E_NVMUPD_EXEC_AQ", 797 "I40E_NVMUPD_GET_AQ_RESULT", 798 "I40E_NVMUPD_GET_AQ_EVENT", 799 }; 800 801 /** 802 * i40e_nvmupd_command - Process an NVM update command 803 * @hw: pointer to hardware structure 804 * @cmd: pointer to nvm update command 805 * @bytes: pointer to the data buffer 806 * @perrno: pointer to return error code 807 * 808 * Dispatches command depending on what update state is current 809 **/ 810 int i40e_nvmupd_command(struct i40e_hw *hw, 811 struct i40e_nvm_access *cmd, 812 u8 *bytes, int *perrno) 813 { 814 enum i40e_nvmupd_cmd upd_cmd; 815 int status; 816 817 /* assume success */ 818 *perrno = 0; 819 820 /* early check for status command and debug msgs */ 821 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 822 823 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n", 824 i40e_nvm_update_state_str[upd_cmd], 825 hw->nvmupd_state, 826 hw->nvm_release_on_done, hw->nvm_wait_opcode, 827 cmd->command, cmd->config, cmd->offset, cmd->data_size); 828 829 if (upd_cmd == I40E_NVMUPD_INVALID) { 830 *perrno = -EFAULT; 831 i40e_debug(hw, I40E_DEBUG_NVM, 832 "i40e_nvmupd_validate_command returns %d errno %d\n", 833 upd_cmd, *perrno); 834 } 835 836 /* a status request returns immediately rather than 837 * going into the state machine 838 */ 839 if (upd_cmd == I40E_NVMUPD_STATUS) { 840 if (!cmd->data_size) { 841 *perrno = -EFAULT; 842 return -EINVAL; 843 } 844 845 bytes[0] = hw->nvmupd_state; 846 847 if (cmd->data_size >= 4) { 848 bytes[1] = 0; 849 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode; 850 } 851 852 /* Clear error status on read */ 853 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) 854 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 855 856 return 0; 857 } 858 859 /* Clear status even it is not read and log */ 860 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) { 861 i40e_debug(hw, I40E_DEBUG_NVM, 862 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n"); 863 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 864 } 865 866 /* Acquire lock to prevent race condition where adminq_task 867 * can execute after i40e_nvmupd_nvm_read/write but before state 868 * variables (nvm_wait_opcode, nvm_release_on_done) are updated. 869 * 870 * During NVMUpdate, it is observed that lock could be held for 871 * ~5ms for most commands. However lock is held for ~60ms for 872 * NVMUPD_CSUM_LCB command. 873 */ 874 mutex_lock(&hw->aq.arq_mutex); 875 switch (hw->nvmupd_state) { 876 case I40E_NVMUPD_STATE_INIT: 877 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno); 878 break; 879 880 case I40E_NVMUPD_STATE_READING: 881 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno); 882 break; 883 884 case I40E_NVMUPD_STATE_WRITING: 885 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno); 886 break; 887 888 case I40E_NVMUPD_STATE_INIT_WAIT: 889 case I40E_NVMUPD_STATE_WRITE_WAIT: 890 /* if we need to stop waiting for an event, clear 891 * the wait info and return before doing anything else 892 */ 893 if (cmd->offset == 0xffff) { 894 i40e_nvmupd_clear_wait_state(hw); 895 status = 0; 896 break; 897 } 898 899 status = -EBUSY; 900 *perrno = -EBUSY; 901 break; 902 903 default: 904 /* invalid state, should never happen */ 905 i40e_debug(hw, I40E_DEBUG_NVM, 906 "NVMUPD: no such state %d\n", hw->nvmupd_state); 907 status = -EOPNOTSUPP; 908 *perrno = -ESRCH; 909 break; 910 } 911 912 mutex_unlock(&hw->aq.arq_mutex); 913 return status; 914 } 915 916 /** 917 * i40e_nvmupd_state_init - Handle NVM update state Init 918 * @hw: pointer to hardware structure 919 * @cmd: pointer to nvm update command buffer 920 * @bytes: pointer to the data buffer 921 * @perrno: pointer to return error code 922 * 923 * Process legitimate commands of the Init state and conditionally set next 924 * state. Reject all other commands. 925 **/ 926 static int i40e_nvmupd_state_init(struct i40e_hw *hw, 927 struct i40e_nvm_access *cmd, 928 u8 *bytes, int *perrno) 929 { 930 enum i40e_nvmupd_cmd upd_cmd; 931 int status = 0; 932 933 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 934 935 switch (upd_cmd) { 936 case I40E_NVMUPD_READ_SA: 937 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 938 if (status) { 939 *perrno = i40e_aq_rc_to_posix(status, 940 hw->aq.asq_last_status); 941 } else { 942 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 943 i40e_release_nvm(hw); 944 } 945 break; 946 947 case I40E_NVMUPD_READ_SNT: 948 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 949 if (status) { 950 *perrno = i40e_aq_rc_to_posix(status, 951 hw->aq.asq_last_status); 952 } else { 953 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 954 if (status) 955 i40e_release_nvm(hw); 956 else 957 hw->nvmupd_state = I40E_NVMUPD_STATE_READING; 958 } 959 break; 960 961 case I40E_NVMUPD_WRITE_ERA: 962 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 963 if (status) { 964 *perrno = i40e_aq_rc_to_posix(status, 965 hw->aq.asq_last_status); 966 } else { 967 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno); 968 if (status) { 969 i40e_release_nvm(hw); 970 } else { 971 hw->nvm_release_on_done = true; 972 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase; 973 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 974 } 975 } 976 break; 977 978 case I40E_NVMUPD_WRITE_SA: 979 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 980 if (status) { 981 *perrno = i40e_aq_rc_to_posix(status, 982 hw->aq.asq_last_status); 983 } else { 984 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 985 if (status) { 986 i40e_release_nvm(hw); 987 } else { 988 hw->nvm_release_on_done = true; 989 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 990 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 991 } 992 } 993 break; 994 995 case I40E_NVMUPD_WRITE_SNT: 996 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 997 if (status) { 998 *perrno = i40e_aq_rc_to_posix(status, 999 hw->aq.asq_last_status); 1000 } else { 1001 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1002 if (status) { 1003 i40e_release_nvm(hw); 1004 } else { 1005 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1006 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1007 } 1008 } 1009 break; 1010 1011 case I40E_NVMUPD_CSUM_SA: 1012 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 1013 if (status) { 1014 *perrno = i40e_aq_rc_to_posix(status, 1015 hw->aq.asq_last_status); 1016 } else { 1017 status = i40e_update_nvm_checksum(hw); 1018 if (status) { 1019 *perrno = hw->aq.asq_last_status ? 1020 i40e_aq_rc_to_posix(status, 1021 hw->aq.asq_last_status) : 1022 -EIO; 1023 i40e_release_nvm(hw); 1024 } else { 1025 hw->nvm_release_on_done = true; 1026 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1027 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1028 } 1029 } 1030 break; 1031 1032 case I40E_NVMUPD_EXEC_AQ: 1033 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno); 1034 break; 1035 1036 case I40E_NVMUPD_GET_AQ_RESULT: 1037 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno); 1038 break; 1039 1040 case I40E_NVMUPD_GET_AQ_EVENT: 1041 status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno); 1042 break; 1043 1044 default: 1045 i40e_debug(hw, I40E_DEBUG_NVM, 1046 "NVMUPD: bad cmd %s in init state\n", 1047 i40e_nvm_update_state_str[upd_cmd]); 1048 status = -EIO; 1049 *perrno = -ESRCH; 1050 break; 1051 } 1052 return status; 1053 } 1054 1055 /** 1056 * i40e_nvmupd_state_reading - Handle NVM update state Reading 1057 * @hw: pointer to hardware structure 1058 * @cmd: pointer to nvm update command buffer 1059 * @bytes: pointer to the data buffer 1060 * @perrno: pointer to return error code 1061 * 1062 * NVM ownership is already held. Process legitimate commands and set any 1063 * change in state; reject all other commands. 1064 **/ 1065 static int i40e_nvmupd_state_reading(struct i40e_hw *hw, 1066 struct i40e_nvm_access *cmd, 1067 u8 *bytes, int *perrno) 1068 { 1069 enum i40e_nvmupd_cmd upd_cmd; 1070 int status = 0; 1071 1072 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 1073 1074 switch (upd_cmd) { 1075 case I40E_NVMUPD_READ_SA: 1076 case I40E_NVMUPD_READ_CON: 1077 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 1078 break; 1079 1080 case I40E_NVMUPD_READ_LCB: 1081 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 1082 i40e_release_nvm(hw); 1083 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1084 break; 1085 1086 default: 1087 i40e_debug(hw, I40E_DEBUG_NVM, 1088 "NVMUPD: bad cmd %s in reading state.\n", 1089 i40e_nvm_update_state_str[upd_cmd]); 1090 status = -EOPNOTSUPP; 1091 *perrno = -ESRCH; 1092 break; 1093 } 1094 return status; 1095 } 1096 1097 /** 1098 * i40e_nvmupd_state_writing - Handle NVM update state Writing 1099 * @hw: pointer to hardware structure 1100 * @cmd: pointer to nvm update command buffer 1101 * @bytes: pointer to the data buffer 1102 * @perrno: pointer to return error code 1103 * 1104 * NVM ownership is already held. Process legitimate commands and set any 1105 * change in state; reject all other commands 1106 **/ 1107 static int i40e_nvmupd_state_writing(struct i40e_hw *hw, 1108 struct i40e_nvm_access *cmd, 1109 u8 *bytes, int *perrno) 1110 { 1111 enum i40e_nvmupd_cmd upd_cmd; 1112 bool retry_attempt = false; 1113 int status = 0; 1114 1115 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 1116 1117 retry: 1118 switch (upd_cmd) { 1119 case I40E_NVMUPD_WRITE_CON: 1120 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1121 if (!status) { 1122 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1123 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1124 } 1125 break; 1126 1127 case I40E_NVMUPD_WRITE_LCB: 1128 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1129 if (status) { 1130 *perrno = hw->aq.asq_last_status ? 1131 i40e_aq_rc_to_posix(status, 1132 hw->aq.asq_last_status) : 1133 -EIO; 1134 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1135 } else { 1136 hw->nvm_release_on_done = true; 1137 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1138 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1139 } 1140 break; 1141 1142 case I40E_NVMUPD_CSUM_CON: 1143 /* Assumes the caller has acquired the nvm */ 1144 status = i40e_update_nvm_checksum(hw); 1145 if (status) { 1146 *perrno = hw->aq.asq_last_status ? 1147 i40e_aq_rc_to_posix(status, 1148 hw->aq.asq_last_status) : 1149 -EIO; 1150 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1151 } else { 1152 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1153 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1154 } 1155 break; 1156 1157 case I40E_NVMUPD_CSUM_LCB: 1158 /* Assumes the caller has acquired the nvm */ 1159 status = i40e_update_nvm_checksum(hw); 1160 if (status) { 1161 *perrno = hw->aq.asq_last_status ? 1162 i40e_aq_rc_to_posix(status, 1163 hw->aq.asq_last_status) : 1164 -EIO; 1165 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1166 } else { 1167 hw->nvm_release_on_done = true; 1168 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1169 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1170 } 1171 break; 1172 1173 default: 1174 i40e_debug(hw, I40E_DEBUG_NVM, 1175 "NVMUPD: bad cmd %s in writing state.\n", 1176 i40e_nvm_update_state_str[upd_cmd]); 1177 status = -EOPNOTSUPP; 1178 *perrno = -ESRCH; 1179 break; 1180 } 1181 1182 /* In some circumstances, a multi-write transaction takes longer 1183 * than the default 3 minute timeout on the write semaphore. If 1184 * the write failed with an EBUSY status, this is likely the problem, 1185 * so here we try to reacquire the semaphore then retry the write. 1186 * We only do one retry, then give up. 1187 */ 1188 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) && 1189 !retry_attempt) { 1190 u32 old_asq_status = hw->aq.asq_last_status; 1191 int old_status = status; 1192 u32 gtime; 1193 1194 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 1195 if (gtime >= hw->nvm.hw_semaphore_timeout) { 1196 i40e_debug(hw, I40E_DEBUG_ALL, 1197 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n", 1198 gtime, hw->nvm.hw_semaphore_timeout); 1199 i40e_release_nvm(hw); 1200 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 1201 if (status) { 1202 i40e_debug(hw, I40E_DEBUG_ALL, 1203 "NVMUPD: write semaphore reacquire failed aq_err = %d\n", 1204 hw->aq.asq_last_status); 1205 status = old_status; 1206 hw->aq.asq_last_status = old_asq_status; 1207 } else { 1208 retry_attempt = true; 1209 goto retry; 1210 } 1211 } 1212 } 1213 1214 return status; 1215 } 1216 1217 /** 1218 * i40e_nvmupd_clear_wait_state - clear wait state on hw 1219 * @hw: pointer to the hardware structure 1220 **/ 1221 void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw) 1222 { 1223 i40e_debug(hw, I40E_DEBUG_NVM, 1224 "NVMUPD: clearing wait on opcode 0x%04x\n", 1225 hw->nvm_wait_opcode); 1226 1227 if (hw->nvm_release_on_done) { 1228 i40e_release_nvm(hw); 1229 hw->nvm_release_on_done = false; 1230 } 1231 hw->nvm_wait_opcode = 0; 1232 1233 if (hw->aq.arq_last_status) { 1234 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR; 1235 return; 1236 } 1237 1238 switch (hw->nvmupd_state) { 1239 case I40E_NVMUPD_STATE_INIT_WAIT: 1240 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1241 break; 1242 1243 case I40E_NVMUPD_STATE_WRITE_WAIT: 1244 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING; 1245 break; 1246 1247 default: 1248 break; 1249 } 1250 } 1251 1252 /** 1253 * i40e_nvmupd_check_wait_event - handle NVM update operation events 1254 * @hw: pointer to the hardware structure 1255 * @opcode: the event that just happened 1256 * @desc: AdminQ descriptor 1257 **/ 1258 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode, 1259 struct i40e_aq_desc *desc) 1260 { 1261 u32 aq_desc_len = sizeof(struct i40e_aq_desc); 1262 1263 if (opcode == hw->nvm_wait_opcode) { 1264 memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len); 1265 i40e_nvmupd_clear_wait_state(hw); 1266 } 1267 } 1268 1269 /** 1270 * i40e_nvmupd_validate_command - Validate given command 1271 * @hw: pointer to hardware structure 1272 * @cmd: pointer to nvm update command buffer 1273 * @perrno: pointer to return error code 1274 * 1275 * Return one of the valid command types or I40E_NVMUPD_INVALID 1276 **/ 1277 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 1278 struct i40e_nvm_access *cmd, 1279 int *perrno) 1280 { 1281 enum i40e_nvmupd_cmd upd_cmd; 1282 u8 module, transaction; 1283 1284 /* anything that doesn't match a recognized case is an error */ 1285 upd_cmd = I40E_NVMUPD_INVALID; 1286 1287 transaction = i40e_nvmupd_get_transaction(cmd->config); 1288 module = i40e_nvmupd_get_module(cmd->config); 1289 1290 /* limits on data size */ 1291 if ((cmd->data_size < 1) || 1292 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) { 1293 i40e_debug(hw, I40E_DEBUG_NVM, 1294 "i40e_nvmupd_validate_command data_size %d\n", 1295 cmd->data_size); 1296 *perrno = -EFAULT; 1297 return I40E_NVMUPD_INVALID; 1298 } 1299 1300 switch (cmd->command) { 1301 case I40E_NVM_READ: 1302 switch (transaction) { 1303 case I40E_NVM_CON: 1304 upd_cmd = I40E_NVMUPD_READ_CON; 1305 break; 1306 case I40E_NVM_SNT: 1307 upd_cmd = I40E_NVMUPD_READ_SNT; 1308 break; 1309 case I40E_NVM_LCB: 1310 upd_cmd = I40E_NVMUPD_READ_LCB; 1311 break; 1312 case I40E_NVM_SA: 1313 upd_cmd = I40E_NVMUPD_READ_SA; 1314 break; 1315 case I40E_NVM_EXEC: 1316 if (module == 0xf) 1317 upd_cmd = I40E_NVMUPD_STATUS; 1318 else if (module == 0) 1319 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT; 1320 break; 1321 case I40E_NVM_AQE: 1322 upd_cmd = I40E_NVMUPD_GET_AQ_EVENT; 1323 break; 1324 } 1325 break; 1326 1327 case I40E_NVM_WRITE: 1328 switch (transaction) { 1329 case I40E_NVM_CON: 1330 upd_cmd = I40E_NVMUPD_WRITE_CON; 1331 break; 1332 case I40E_NVM_SNT: 1333 upd_cmd = I40E_NVMUPD_WRITE_SNT; 1334 break; 1335 case I40E_NVM_LCB: 1336 upd_cmd = I40E_NVMUPD_WRITE_LCB; 1337 break; 1338 case I40E_NVM_SA: 1339 upd_cmd = I40E_NVMUPD_WRITE_SA; 1340 break; 1341 case I40E_NVM_ERA: 1342 upd_cmd = I40E_NVMUPD_WRITE_ERA; 1343 break; 1344 case I40E_NVM_CSUM: 1345 upd_cmd = I40E_NVMUPD_CSUM_CON; 1346 break; 1347 case (I40E_NVM_CSUM|I40E_NVM_SA): 1348 upd_cmd = I40E_NVMUPD_CSUM_SA; 1349 break; 1350 case (I40E_NVM_CSUM|I40E_NVM_LCB): 1351 upd_cmd = I40E_NVMUPD_CSUM_LCB; 1352 break; 1353 case I40E_NVM_EXEC: 1354 if (module == 0) 1355 upd_cmd = I40E_NVMUPD_EXEC_AQ; 1356 break; 1357 } 1358 break; 1359 } 1360 1361 return upd_cmd; 1362 } 1363 1364 /** 1365 * i40e_nvmupd_exec_aq - Run an AQ command 1366 * @hw: pointer to hardware structure 1367 * @cmd: pointer to nvm update command buffer 1368 * @bytes: pointer to the data buffer 1369 * @perrno: pointer to return error code 1370 * 1371 * cmd structure contains identifiers and data buffer 1372 **/ 1373 static int i40e_nvmupd_exec_aq(struct i40e_hw *hw, 1374 struct i40e_nvm_access *cmd, 1375 u8 *bytes, int *perrno) 1376 { 1377 struct i40e_asq_cmd_details cmd_details; 1378 struct i40e_aq_desc *aq_desc; 1379 u32 buff_size = 0; 1380 u8 *buff = NULL; 1381 u32 aq_desc_len; 1382 u32 aq_data_len; 1383 int status; 1384 1385 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1386 if (cmd->offset == 0xffff) 1387 return 0; 1388 1389 memset(&cmd_details, 0, sizeof(cmd_details)); 1390 cmd_details.wb_desc = &hw->nvm_wb_desc; 1391 1392 aq_desc_len = sizeof(struct i40e_aq_desc); 1393 memset(&hw->nvm_wb_desc, 0, aq_desc_len); 1394 1395 /* get the aq descriptor */ 1396 if (cmd->data_size < aq_desc_len) { 1397 i40e_debug(hw, I40E_DEBUG_NVM, 1398 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n", 1399 cmd->data_size, aq_desc_len); 1400 *perrno = -EINVAL; 1401 return -EINVAL; 1402 } 1403 aq_desc = (struct i40e_aq_desc *)bytes; 1404 1405 /* if data buffer needed, make sure it's ready */ 1406 aq_data_len = cmd->data_size - aq_desc_len; 1407 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen)); 1408 if (buff_size) { 1409 if (!hw->nvm_buff.va) { 1410 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff, 1411 hw->aq.asq_buf_size); 1412 if (status) 1413 i40e_debug(hw, I40E_DEBUG_NVM, 1414 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n", 1415 status); 1416 } 1417 1418 if (hw->nvm_buff.va) { 1419 buff = hw->nvm_buff.va; 1420 memcpy(buff, &bytes[aq_desc_len], aq_data_len); 1421 } 1422 } 1423 1424 if (cmd->offset) 1425 memset(&hw->nvm_aq_event_desc, 0, aq_desc_len); 1426 1427 /* and away we go! */ 1428 status = i40e_asq_send_command(hw, aq_desc, buff, 1429 buff_size, &cmd_details); 1430 if (status) { 1431 i40e_debug(hw, I40E_DEBUG_NVM, 1432 "%s err %pe aq_err %s\n", 1433 __func__, ERR_PTR(status), 1434 i40e_aq_str(hw, hw->aq.asq_last_status)); 1435 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1436 return status; 1437 } 1438 1439 /* should we wait for a followup event? */ 1440 if (cmd->offset) { 1441 hw->nvm_wait_opcode = cmd->offset; 1442 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1443 } 1444 1445 return status; 1446 } 1447 1448 /** 1449 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq 1450 * @hw: pointer to hardware structure 1451 * @cmd: pointer to nvm update command buffer 1452 * @bytes: pointer to the data buffer 1453 * @perrno: pointer to return error code 1454 * 1455 * cmd structure contains identifiers and data buffer 1456 **/ 1457 static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 1458 struct i40e_nvm_access *cmd, 1459 u8 *bytes, int *perrno) 1460 { 1461 u32 aq_total_len; 1462 u32 aq_desc_len; 1463 int remainder; 1464 u8 *buff; 1465 1466 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1467 1468 aq_desc_len = sizeof(struct i40e_aq_desc); 1469 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen); 1470 1471 /* check offset range */ 1472 if (cmd->offset > aq_total_len) { 1473 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n", 1474 __func__, cmd->offset, aq_total_len); 1475 *perrno = -EINVAL; 1476 return -EINVAL; 1477 } 1478 1479 /* check copylength range */ 1480 if (cmd->data_size > (aq_total_len - cmd->offset)) { 1481 int new_len = aq_total_len - cmd->offset; 1482 1483 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n", 1484 __func__, cmd->data_size, new_len); 1485 cmd->data_size = new_len; 1486 } 1487 1488 remainder = cmd->data_size; 1489 if (cmd->offset < aq_desc_len) { 1490 u32 len = aq_desc_len - cmd->offset; 1491 1492 len = min(len, cmd->data_size); 1493 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n", 1494 __func__, cmd->offset, cmd->offset + len); 1495 1496 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset; 1497 memcpy(bytes, buff, len); 1498 1499 bytes += len; 1500 remainder -= len; 1501 buff = hw->nvm_buff.va; 1502 } else { 1503 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len); 1504 } 1505 1506 if (remainder > 0) { 1507 int start_byte = buff - (u8 *)hw->nvm_buff.va; 1508 1509 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n", 1510 __func__, start_byte, start_byte + remainder); 1511 memcpy(bytes, buff, remainder); 1512 } 1513 1514 return 0; 1515 } 1516 1517 /** 1518 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq 1519 * @hw: pointer to hardware structure 1520 * @cmd: pointer to nvm update command buffer 1521 * @bytes: pointer to the data buffer 1522 * @perrno: pointer to return error code 1523 * 1524 * cmd structure contains identifiers and data buffer 1525 **/ 1526 static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw, 1527 struct i40e_nvm_access *cmd, 1528 u8 *bytes, int *perrno) 1529 { 1530 u32 aq_total_len; 1531 u32 aq_desc_len; 1532 1533 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1534 1535 aq_desc_len = sizeof(struct i40e_aq_desc); 1536 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen); 1537 1538 /* check copylength range */ 1539 if (cmd->data_size > aq_total_len) { 1540 i40e_debug(hw, I40E_DEBUG_NVM, 1541 "%s: copy length %d too big, trimming to %d\n", 1542 __func__, cmd->data_size, aq_total_len); 1543 cmd->data_size = aq_total_len; 1544 } 1545 1546 memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size); 1547 1548 return 0; 1549 } 1550 1551 /** 1552 * i40e_nvmupd_nvm_read - Read NVM 1553 * @hw: pointer to hardware structure 1554 * @cmd: pointer to nvm update command buffer 1555 * @bytes: pointer to the data buffer 1556 * @perrno: pointer to return error code 1557 * 1558 * cmd structure contains identifiers and data buffer 1559 **/ 1560 static int i40e_nvmupd_nvm_read(struct i40e_hw *hw, 1561 struct i40e_nvm_access *cmd, 1562 u8 *bytes, int *perrno) 1563 { 1564 struct i40e_asq_cmd_details cmd_details; 1565 u8 module, transaction; 1566 int status; 1567 bool last; 1568 1569 transaction = i40e_nvmupd_get_transaction(cmd->config); 1570 module = i40e_nvmupd_get_module(cmd->config); 1571 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA); 1572 1573 memset(&cmd_details, 0, sizeof(cmd_details)); 1574 cmd_details.wb_desc = &hw->nvm_wb_desc; 1575 1576 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1577 bytes, last, &cmd_details); 1578 if (status) { 1579 i40e_debug(hw, I40E_DEBUG_NVM, 1580 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n", 1581 module, cmd->offset, cmd->data_size); 1582 i40e_debug(hw, I40E_DEBUG_NVM, 1583 "i40e_nvmupd_nvm_read status %d aq %d\n", 1584 status, hw->aq.asq_last_status); 1585 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1586 } 1587 1588 return status; 1589 } 1590 1591 /** 1592 * i40e_nvmupd_nvm_erase - Erase an NVM module 1593 * @hw: pointer to hardware structure 1594 * @cmd: pointer to nvm update command buffer 1595 * @perrno: pointer to return error code 1596 * 1597 * module, offset, data_size and data are in cmd structure 1598 **/ 1599 static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 1600 struct i40e_nvm_access *cmd, 1601 int *perrno) 1602 { 1603 struct i40e_asq_cmd_details cmd_details; 1604 u8 module, transaction; 1605 int status = 0; 1606 bool last; 1607 1608 transaction = i40e_nvmupd_get_transaction(cmd->config); 1609 module = i40e_nvmupd_get_module(cmd->config); 1610 last = (transaction & I40E_NVM_LCB); 1611 1612 memset(&cmd_details, 0, sizeof(cmd_details)); 1613 cmd_details.wb_desc = &hw->nvm_wb_desc; 1614 1615 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1616 last, &cmd_details); 1617 if (status) { 1618 i40e_debug(hw, I40E_DEBUG_NVM, 1619 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n", 1620 module, cmd->offset, cmd->data_size); 1621 i40e_debug(hw, I40E_DEBUG_NVM, 1622 "i40e_nvmupd_nvm_erase status %d aq %d\n", 1623 status, hw->aq.asq_last_status); 1624 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1625 } 1626 1627 return status; 1628 } 1629 1630 /** 1631 * i40e_nvmupd_nvm_write - Write NVM 1632 * @hw: pointer to hardware structure 1633 * @cmd: pointer to nvm update command buffer 1634 * @bytes: pointer to the data buffer 1635 * @perrno: pointer to return error code 1636 * 1637 * module, offset, data_size and data are in cmd structure 1638 **/ 1639 static int i40e_nvmupd_nvm_write(struct i40e_hw *hw, 1640 struct i40e_nvm_access *cmd, 1641 u8 *bytes, int *perrno) 1642 { 1643 struct i40e_asq_cmd_details cmd_details; 1644 u8 module, transaction; 1645 u8 preservation_flags; 1646 int status = 0; 1647 bool last; 1648 1649 transaction = i40e_nvmupd_get_transaction(cmd->config); 1650 module = i40e_nvmupd_get_module(cmd->config); 1651 last = (transaction & I40E_NVM_LCB); 1652 preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config); 1653 1654 memset(&cmd_details, 0, sizeof(cmd_details)); 1655 cmd_details.wb_desc = &hw->nvm_wb_desc; 1656 1657 status = i40e_aq_update_nvm(hw, module, cmd->offset, 1658 (u16)cmd->data_size, bytes, last, 1659 preservation_flags, &cmd_details); 1660 if (status) { 1661 i40e_debug(hw, I40E_DEBUG_NVM, 1662 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n", 1663 module, cmd->offset, cmd->data_size); 1664 i40e_debug(hw, I40E_DEBUG_NVM, 1665 "i40e_nvmupd_nvm_write status %d aq %d\n", 1666 status, hw->aq.asq_last_status); 1667 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1668 } 1669 1670 return status; 1671 } 1672