xref: /linux/drivers/net/ethernet/intel/i40e/i40e_nvm.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include "i40e_prototype.h"
28 
29 /**
30  * i40e_init_nvm_ops - Initialize NVM function pointers
31  * @hw: pointer to the HW structure
32  *
33  * Setup the function pointers and the NVM info structure. Should be called
34  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
35  * Please notice that the NVM term is used here (& in all methods covered
36  * in this file) as an equivalent of the FLASH part mapped into the SR.
37  * We are accessing FLASH always thru the Shadow RAM.
38  **/
39 i40e_status i40e_init_nvm(struct i40e_hw *hw)
40 {
41 	struct i40e_nvm_info *nvm = &hw->nvm;
42 	i40e_status ret_code = 0;
43 	u32 fla, gens;
44 	u8 sr_size;
45 
46 	/* The SR size is stored regardless of the nvm programming mode
47 	 * as the blank mode may be used in the factory line.
48 	 */
49 	gens = rd32(hw, I40E_GLNVM_GENS);
50 	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
51 			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
52 	/* Switching to words (sr_size contains power of 2KB) */
53 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
54 
55 	/* Check if we are in the normal or blank NVM programming mode */
56 	fla = rd32(hw, I40E_GLNVM_FLA);
57 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
58 		/* Max NVM timeout */
59 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
60 		nvm->blank_nvm_mode = false;
61 	} else { /* Blank programming mode */
62 		nvm->blank_nvm_mode = true;
63 		ret_code = I40E_ERR_NVM_BLANK_MODE;
64 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
65 	}
66 
67 	return ret_code;
68 }
69 
70 /**
71  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
72  * @hw: pointer to the HW structure
73  * @access: NVM access type (read or write)
74  *
75  * This function will request NVM ownership for reading
76  * via the proper Admin Command.
77  **/
78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
79 				       enum i40e_aq_resource_access_type access)
80 {
81 	i40e_status ret_code = 0;
82 	u64 gtime, timeout;
83 	u64 time_left = 0;
84 
85 	if (hw->nvm.blank_nvm_mode)
86 		goto i40e_i40e_acquire_nvm_exit;
87 
88 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
89 					    0, &time_left, NULL);
90 	/* Reading the Global Device Timer */
91 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
92 
93 	/* Store the timeout */
94 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
95 
96 	if (ret_code)
97 		i40e_debug(hw, I40E_DEBUG_NVM,
98 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
99 			   access, time_left, ret_code, hw->aq.asq_last_status);
100 
101 	if (ret_code && time_left) {
102 		/* Poll until the current NVM owner timeouts */
103 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
104 		while ((gtime < timeout) && time_left) {
105 			usleep_range(10000, 20000);
106 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
107 			ret_code = i40e_aq_request_resource(hw,
108 							I40E_NVM_RESOURCE_ID,
109 							access, 0, &time_left,
110 							NULL);
111 			if (!ret_code) {
112 				hw->nvm.hw_semaphore_timeout =
113 					    I40E_MS_TO_GTIME(time_left) + gtime;
114 				break;
115 			}
116 		}
117 		if (ret_code) {
118 			hw->nvm.hw_semaphore_timeout = 0;
119 			i40e_debug(hw, I40E_DEBUG_NVM,
120 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
121 				   time_left, ret_code, hw->aq.asq_last_status);
122 		}
123 	}
124 
125 i40e_i40e_acquire_nvm_exit:
126 	return ret_code;
127 }
128 
129 /**
130  * i40e_release_nvm - Generic request for releasing the NVM ownership
131  * @hw: pointer to the HW structure
132  *
133  * This function will release NVM resource via the proper Admin Command.
134  **/
135 void i40e_release_nvm(struct i40e_hw *hw)
136 {
137 	if (!hw->nvm.blank_nvm_mode)
138 		i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
139 }
140 
141 /**
142  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
143  * @hw: pointer to the HW structure
144  *
145  * Polls the SRCTL Shadow RAM register done bit.
146  **/
147 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
148 {
149 	i40e_status ret_code = I40E_ERR_TIMEOUT;
150 	u32 srctl, wait_cnt;
151 
152 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
153 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
154 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
155 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
156 			ret_code = 0;
157 			break;
158 		}
159 		udelay(5);
160 	}
161 	if (ret_code == I40E_ERR_TIMEOUT)
162 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
163 	return ret_code;
164 }
165 
166 /**
167  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
168  * @hw: pointer to the HW structure
169  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
170  * @data: word read from the Shadow RAM
171  *
172  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
173  **/
174 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
175 					    u16 *data)
176 {
177 	i40e_status ret_code = I40E_ERR_TIMEOUT;
178 	u32 sr_reg;
179 
180 	if (offset >= hw->nvm.sr_size) {
181 		i40e_debug(hw, I40E_DEBUG_NVM,
182 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
183 			   offset, hw->nvm.sr_size);
184 		ret_code = I40E_ERR_PARAM;
185 		goto read_nvm_exit;
186 	}
187 
188 	/* Poll the done bit first */
189 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
190 	if (!ret_code) {
191 		/* Write the address and start reading */
192 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
193 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
194 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
195 
196 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
197 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
198 		if (!ret_code) {
199 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
200 			*data = (u16)((sr_reg &
201 				       I40E_GLNVM_SRDATA_RDDATA_MASK)
202 				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
203 		}
204 	}
205 	if (ret_code)
206 		i40e_debug(hw, I40E_DEBUG_NVM,
207 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
208 			   offset);
209 
210 read_nvm_exit:
211 	return ret_code;
212 }
213 
214 /**
215  * i40e_read_nvm_aq - Read Shadow RAM.
216  * @hw: pointer to the HW structure.
217  * @module_pointer: module pointer location in words from the NVM beginning
218  * @offset: offset in words from module start
219  * @words: number of words to write
220  * @data: buffer with words to write to the Shadow RAM
221  * @last_command: tells the AdminQ that this is the last command
222  *
223  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
224  **/
225 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
226 				    u32 offset, u16 words, void *data,
227 				    bool last_command)
228 {
229 	i40e_status ret_code = I40E_ERR_NVM;
230 	struct i40e_asq_cmd_details cmd_details;
231 
232 	memset(&cmd_details, 0, sizeof(cmd_details));
233 
234 	/* Here we are checking the SR limit only for the flat memory model.
235 	 * We cannot do it for the module-based model, as we did not acquire
236 	 * the NVM resource yet (we cannot get the module pointer value).
237 	 * Firmware will check the module-based model.
238 	 */
239 	if ((offset + words) > hw->nvm.sr_size)
240 		i40e_debug(hw, I40E_DEBUG_NVM,
241 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
242 			   (offset + words), hw->nvm.sr_size);
243 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
244 		/* We can write only up to 4KB (one sector), in one AQ write */
245 		i40e_debug(hw, I40E_DEBUG_NVM,
246 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
247 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
248 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
249 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
250 		/* A single write cannot spread over two sectors */
251 		i40e_debug(hw, I40E_DEBUG_NVM,
252 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
253 			   offset, words);
254 	else
255 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
256 					    2 * offset,  /*bytes*/
257 					    2 * words,   /*bytes*/
258 					    data, last_command, &cmd_details);
259 
260 	return ret_code;
261 }
262 
263 /**
264  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
265  * @hw: pointer to the HW structure
266  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
267  * @data: word read from the Shadow RAM
268  *
269  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
270  **/
271 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
272 					 u16 *data)
273 {
274 	i40e_status ret_code = I40E_ERR_TIMEOUT;
275 
276 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
277 	*data = le16_to_cpu(*(__le16 *)data);
278 
279 	return ret_code;
280 }
281 
282 /**
283  * i40e_read_nvm_word - Reads Shadow RAM
284  * @hw: pointer to the HW structure
285  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
286  * @data: word read from the Shadow RAM
287  *
288  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
289  **/
290 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
291 			       u16 *data)
292 {
293 	if (hw->mac.type == I40E_MAC_X722)
294 		return i40e_read_nvm_word_aq(hw, offset, data);
295 	return i40e_read_nvm_word_srctl(hw, offset, data);
296 }
297 
298 /**
299  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
300  * @hw: pointer to the HW structure
301  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
302  * @words: (in) number of words to read; (out) number of words actually read
303  * @data: words read from the Shadow RAM
304  *
305  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
306  * method. The buffer read is preceded by the NVM ownership take
307  * and followed by the release.
308  **/
309 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
310 					      u16 *words, u16 *data)
311 {
312 	i40e_status ret_code = 0;
313 	u16 index, word;
314 
315 	/* Loop thru the selected region */
316 	for (word = 0; word < *words; word++) {
317 		index = offset + word;
318 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
319 		if (ret_code)
320 			break;
321 	}
322 
323 	/* Update the number of words read from the Shadow RAM */
324 	*words = word;
325 
326 	return ret_code;
327 }
328 
329 /**
330  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
331  * @hw: pointer to the HW structure
332  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
333  * @words: (in) number of words to read; (out) number of words actually read
334  * @data: words read from the Shadow RAM
335  *
336  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
337  * method. The buffer read is preceded by the NVM ownership take
338  * and followed by the release.
339  **/
340 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
341 					   u16 *words, u16 *data)
342 {
343 	i40e_status ret_code;
344 	u16 read_size = *words;
345 	bool last_cmd = false;
346 	u16 words_read = 0;
347 	u16 i = 0;
348 
349 	do {
350 		/* Calculate number of bytes we should read in this step.
351 		 * FVL AQ do not allow to read more than one page at a time or
352 		 * to cross page boundaries.
353 		 */
354 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
355 			read_size = min(*words,
356 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
357 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
358 		else
359 			read_size = min((*words - words_read),
360 					I40E_SR_SECTOR_SIZE_IN_WORDS);
361 
362 		/* Check if this is last command, if so set proper flag */
363 		if ((words_read + read_size) >= *words)
364 			last_cmd = true;
365 
366 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
367 					    data + words_read, last_cmd);
368 		if (ret_code)
369 			goto read_nvm_buffer_aq_exit;
370 
371 		/* Increment counter for words already read and move offset to
372 		 * new read location
373 		 */
374 		words_read += read_size;
375 		offset += read_size;
376 	} while (words_read < *words);
377 
378 	for (i = 0; i < *words; i++)
379 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
380 
381 read_nvm_buffer_aq_exit:
382 	*words = words_read;
383 	return ret_code;
384 }
385 
386 /**
387  * i40e_read_nvm_buffer - Reads Shadow RAM buffer
388  * @hw: pointer to the HW structure
389  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
390  * @words: (in) number of words to read; (out) number of words actually read
391  * @data: words read from the Shadow RAM
392  *
393  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
394  * method. The buffer read is preceded by the NVM ownership take
395  * and followed by the release.
396  **/
397 i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
398 				 u16 *words, u16 *data)
399 {
400 	if (hw->mac.type == I40E_MAC_X722)
401 		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
402 	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
403 }
404 
405 /**
406  * i40e_write_nvm_aq - Writes Shadow RAM.
407  * @hw: pointer to the HW structure.
408  * @module_pointer: module pointer location in words from the NVM beginning
409  * @offset: offset in words from module start
410  * @words: number of words to write
411  * @data: buffer with words to write to the Shadow RAM
412  * @last_command: tells the AdminQ that this is the last command
413  *
414  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
415  **/
416 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
417 				     u32 offset, u16 words, void *data,
418 				     bool last_command)
419 {
420 	i40e_status ret_code = I40E_ERR_NVM;
421 
422 	/* Here we are checking the SR limit only for the flat memory model.
423 	 * We cannot do it for the module-based model, as we did not acquire
424 	 * the NVM resource yet (we cannot get the module pointer value).
425 	 * Firmware will check the module-based model.
426 	 */
427 	if ((offset + words) > hw->nvm.sr_size)
428 		i40e_debug(hw, I40E_DEBUG_NVM,
429 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
430 			   (offset + words), hw->nvm.sr_size);
431 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
432 		/* We can write only up to 4KB (one sector), in one AQ write */
433 		i40e_debug(hw, I40E_DEBUG_NVM,
434 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
435 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
436 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
437 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
438 		/* A single write cannot spread over two sectors */
439 		i40e_debug(hw, I40E_DEBUG_NVM,
440 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
441 			   offset, words);
442 	else
443 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
444 					      2 * offset,  /*bytes*/
445 					      2 * words,   /*bytes*/
446 					      data, last_command, NULL);
447 
448 	return ret_code;
449 }
450 
451 /**
452  * i40e_calc_nvm_checksum - Calculates and returns the checksum
453  * @hw: pointer to hardware structure
454  * @checksum: pointer to the checksum
455  *
456  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
457  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
458  * is customer specific and unknown. Therefore, this function skips all maximum
459  * possible size of VPD (1kB).
460  **/
461 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
462 						    u16 *checksum)
463 {
464 	i40e_status ret_code = 0;
465 	struct i40e_virt_mem vmem;
466 	u16 pcie_alt_module = 0;
467 	u16 checksum_local = 0;
468 	u16 vpd_module = 0;
469 	u16 *data;
470 	u16 i = 0;
471 
472 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
473 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
474 	if (ret_code)
475 		goto i40e_calc_nvm_checksum_exit;
476 	data = (u16 *)vmem.va;
477 
478 	/* read pointer to VPD area */
479 	ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
480 	if (ret_code) {
481 		ret_code = I40E_ERR_NVM_CHECKSUM;
482 		goto i40e_calc_nvm_checksum_exit;
483 	}
484 
485 	/* read pointer to PCIe Alt Auto-load module */
486 	ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
487 				      &pcie_alt_module);
488 	if (ret_code) {
489 		ret_code = I40E_ERR_NVM_CHECKSUM;
490 		goto i40e_calc_nvm_checksum_exit;
491 	}
492 
493 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
494 	 * except the VPD and PCIe ALT Auto-load modules
495 	 */
496 	for (i = 0; i < hw->nvm.sr_size; i++) {
497 		/* Read SR page */
498 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
499 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
500 
501 			ret_code = i40e_read_nvm_buffer(hw, i, &words, data);
502 			if (ret_code) {
503 				ret_code = I40E_ERR_NVM_CHECKSUM;
504 				goto i40e_calc_nvm_checksum_exit;
505 			}
506 		}
507 
508 		/* Skip Checksum word */
509 		if (i == I40E_SR_SW_CHECKSUM_WORD)
510 			continue;
511 		/* Skip VPD module (convert byte size to word count) */
512 		if ((i >= (u32)vpd_module) &&
513 		    (i < ((u32)vpd_module +
514 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
515 			continue;
516 		}
517 		/* Skip PCIe ALT module (convert byte size to word count) */
518 		if ((i >= (u32)pcie_alt_module) &&
519 		    (i < ((u32)pcie_alt_module +
520 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
521 			continue;
522 		}
523 
524 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
525 	}
526 
527 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
528 
529 i40e_calc_nvm_checksum_exit:
530 	i40e_free_virt_mem(hw, &vmem);
531 	return ret_code;
532 }
533 
534 /**
535  * i40e_update_nvm_checksum - Updates the NVM checksum
536  * @hw: pointer to hardware structure
537  *
538  * NVM ownership must be acquired before calling this function and released
539  * on ARQ completion event reception by caller.
540  * This function will commit SR to NVM.
541  **/
542 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
543 {
544 	i40e_status ret_code = 0;
545 	u16 checksum;
546 
547 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
548 	if (!ret_code)
549 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
550 					     1, &checksum, true);
551 
552 	return ret_code;
553 }
554 
555 /**
556  * i40e_validate_nvm_checksum - Validate EEPROM checksum
557  * @hw: pointer to hardware structure
558  * @checksum: calculated checksum
559  *
560  * Performs checksum calculation and validates the NVM SW checksum. If the
561  * caller does not need checksum, the value can be NULL.
562  **/
563 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
564 						 u16 *checksum)
565 {
566 	i40e_status ret_code = 0;
567 	u16 checksum_sr = 0;
568 	u16 checksum_local = 0;
569 
570 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
571 	if (ret_code)
572 		goto i40e_validate_nvm_checksum_exit;
573 
574 	/* Do not use i40e_read_nvm_word() because we do not want to take
575 	 * the synchronization semaphores twice here.
576 	 */
577 	i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
578 
579 	/* Verify read checksum from EEPROM is the same as
580 	 * calculated checksum
581 	 */
582 	if (checksum_local != checksum_sr)
583 		ret_code = I40E_ERR_NVM_CHECKSUM;
584 
585 	/* If the user cares, return the calculated checksum */
586 	if (checksum)
587 		*checksum = checksum_local;
588 
589 i40e_validate_nvm_checksum_exit:
590 	return ret_code;
591 }
592 
593 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
594 					  struct i40e_nvm_access *cmd,
595 					  u8 *bytes, int *errno);
596 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
597 					     struct i40e_nvm_access *cmd,
598 					     u8 *bytes, int *errno);
599 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
600 					     struct i40e_nvm_access *cmd,
601 					     u8 *bytes, int *errno);
602 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
603 						struct i40e_nvm_access *cmd,
604 						int *errno);
605 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
606 					 struct i40e_nvm_access *cmd,
607 					 int *errno);
608 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
609 					 struct i40e_nvm_access *cmd,
610 					 u8 *bytes, int *errno);
611 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
612 					struct i40e_nvm_access *cmd,
613 					u8 *bytes, int *errno);
614 static inline u8 i40e_nvmupd_get_module(u32 val)
615 {
616 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
617 }
618 static inline u8 i40e_nvmupd_get_transaction(u32 val)
619 {
620 	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
621 }
622 
623 static char *i40e_nvm_update_state_str[] = {
624 	"I40E_NVMUPD_INVALID",
625 	"I40E_NVMUPD_READ_CON",
626 	"I40E_NVMUPD_READ_SNT",
627 	"I40E_NVMUPD_READ_LCB",
628 	"I40E_NVMUPD_READ_SA",
629 	"I40E_NVMUPD_WRITE_ERA",
630 	"I40E_NVMUPD_WRITE_CON",
631 	"I40E_NVMUPD_WRITE_SNT",
632 	"I40E_NVMUPD_WRITE_LCB",
633 	"I40E_NVMUPD_WRITE_SA",
634 	"I40E_NVMUPD_CSUM_CON",
635 	"I40E_NVMUPD_CSUM_SA",
636 	"I40E_NVMUPD_CSUM_LCB",
637 };
638 
639 /**
640  * i40e_nvmupd_command - Process an NVM update command
641  * @hw: pointer to hardware structure
642  * @cmd: pointer to nvm update command
643  * @bytes: pointer to the data buffer
644  * @errno: pointer to return error code
645  *
646  * Dispatches command depending on what update state is current
647  **/
648 i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
649 				struct i40e_nvm_access *cmd,
650 				u8 *bytes, int *errno)
651 {
652 	i40e_status status;
653 
654 	/* assume success */
655 	*errno = 0;
656 
657 	switch (hw->nvmupd_state) {
658 	case I40E_NVMUPD_STATE_INIT:
659 		status = i40e_nvmupd_state_init(hw, cmd, bytes, errno);
660 		break;
661 
662 	case I40E_NVMUPD_STATE_READING:
663 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, errno);
664 		break;
665 
666 	case I40E_NVMUPD_STATE_WRITING:
667 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, errno);
668 		break;
669 
670 	default:
671 		/* invalid state, should never happen */
672 		i40e_debug(hw, I40E_DEBUG_NVM,
673 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
674 		status = I40E_NOT_SUPPORTED;
675 		*errno = -ESRCH;
676 		break;
677 	}
678 	return status;
679 }
680 
681 /**
682  * i40e_nvmupd_state_init - Handle NVM update state Init
683  * @hw: pointer to hardware structure
684  * @cmd: pointer to nvm update command buffer
685  * @bytes: pointer to the data buffer
686  * @errno: pointer to return error code
687  *
688  * Process legitimate commands of the Init state and conditionally set next
689  * state. Reject all other commands.
690  **/
691 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
692 					  struct i40e_nvm_access *cmd,
693 					  u8 *bytes, int *errno)
694 {
695 	i40e_status status = 0;
696 	enum i40e_nvmupd_cmd upd_cmd;
697 
698 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, errno);
699 
700 	switch (upd_cmd) {
701 	case I40E_NVMUPD_READ_SA:
702 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
703 		if (status) {
704 			*errno = i40e_aq_rc_to_posix(status,
705 						     hw->aq.asq_last_status);
706 		} else {
707 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, errno);
708 			i40e_release_nvm(hw);
709 		}
710 		break;
711 
712 	case I40E_NVMUPD_READ_SNT:
713 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
714 		if (status) {
715 			*errno = i40e_aq_rc_to_posix(status,
716 						     hw->aq.asq_last_status);
717 		} else {
718 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, errno);
719 			if (status)
720 				i40e_release_nvm(hw);
721 			else
722 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
723 		}
724 		break;
725 
726 	case I40E_NVMUPD_WRITE_ERA:
727 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
728 		if (status) {
729 			*errno = i40e_aq_rc_to_posix(status,
730 						     hw->aq.asq_last_status);
731 		} else {
732 			status = i40e_nvmupd_nvm_erase(hw, cmd, errno);
733 			if (status)
734 				i40e_release_nvm(hw);
735 			else
736 				hw->aq.nvm_release_on_done = true;
737 		}
738 		break;
739 
740 	case I40E_NVMUPD_WRITE_SA:
741 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
742 		if (status) {
743 			*errno = i40e_aq_rc_to_posix(status,
744 						     hw->aq.asq_last_status);
745 		} else {
746 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, errno);
747 			if (status)
748 				i40e_release_nvm(hw);
749 			else
750 				hw->aq.nvm_release_on_done = true;
751 		}
752 		break;
753 
754 	case I40E_NVMUPD_WRITE_SNT:
755 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
756 		if (status) {
757 			*errno = i40e_aq_rc_to_posix(status,
758 						     hw->aq.asq_last_status);
759 		} else {
760 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, errno);
761 			if (status)
762 				i40e_release_nvm(hw);
763 			else
764 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
765 		}
766 		break;
767 
768 	case I40E_NVMUPD_CSUM_SA:
769 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
770 		if (status) {
771 			*errno = i40e_aq_rc_to_posix(status,
772 						     hw->aq.asq_last_status);
773 		} else {
774 			status = i40e_update_nvm_checksum(hw);
775 			if (status) {
776 				*errno = hw->aq.asq_last_status ?
777 				   i40e_aq_rc_to_posix(status,
778 						       hw->aq.asq_last_status) :
779 				   -EIO;
780 				i40e_release_nvm(hw);
781 			} else {
782 				hw->aq.nvm_release_on_done = true;
783 			}
784 		}
785 		break;
786 
787 	default:
788 		i40e_debug(hw, I40E_DEBUG_NVM,
789 			   "NVMUPD: bad cmd %s in init state\n",
790 			   i40e_nvm_update_state_str[upd_cmd]);
791 		status = I40E_ERR_NVM;
792 		*errno = -ESRCH;
793 		break;
794 	}
795 	return status;
796 }
797 
798 /**
799  * i40e_nvmupd_state_reading - Handle NVM update state Reading
800  * @hw: pointer to hardware structure
801  * @cmd: pointer to nvm update command buffer
802  * @bytes: pointer to the data buffer
803  * @errno: pointer to return error code
804  *
805  * NVM ownership is already held.  Process legitimate commands and set any
806  * change in state; reject all other commands.
807  **/
808 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
809 					     struct i40e_nvm_access *cmd,
810 					     u8 *bytes, int *errno)
811 {
812 	i40e_status status;
813 	enum i40e_nvmupd_cmd upd_cmd;
814 
815 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, errno);
816 
817 	switch (upd_cmd) {
818 	case I40E_NVMUPD_READ_SA:
819 	case I40E_NVMUPD_READ_CON:
820 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, errno);
821 		break;
822 
823 	case I40E_NVMUPD_READ_LCB:
824 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, errno);
825 		i40e_release_nvm(hw);
826 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
827 		break;
828 
829 	default:
830 		i40e_debug(hw, I40E_DEBUG_NVM,
831 			   "NVMUPD: bad cmd %s in reading state.\n",
832 			   i40e_nvm_update_state_str[upd_cmd]);
833 		status = I40E_NOT_SUPPORTED;
834 		*errno = -ESRCH;
835 		break;
836 	}
837 	return status;
838 }
839 
840 /**
841  * i40e_nvmupd_state_writing - Handle NVM update state Writing
842  * @hw: pointer to hardware structure
843  * @cmd: pointer to nvm update command buffer
844  * @bytes: pointer to the data buffer
845  * @errno: pointer to return error code
846  *
847  * NVM ownership is already held.  Process legitimate commands and set any
848  * change in state; reject all other commands
849  **/
850 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
851 					     struct i40e_nvm_access *cmd,
852 					     u8 *bytes, int *errno)
853 {
854 	i40e_status status;
855 	enum i40e_nvmupd_cmd upd_cmd;
856 	bool retry_attempt = false;
857 
858 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, errno);
859 
860 retry:
861 	switch (upd_cmd) {
862 	case I40E_NVMUPD_WRITE_CON:
863 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, errno);
864 		break;
865 
866 	case I40E_NVMUPD_WRITE_LCB:
867 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, errno);
868 		if (!status)
869 			hw->aq.nvm_release_on_done = true;
870 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
871 		break;
872 
873 	case I40E_NVMUPD_CSUM_CON:
874 		status = i40e_update_nvm_checksum(hw);
875 		if (status) {
876 			*errno = hw->aq.asq_last_status ?
877 				   i40e_aq_rc_to_posix(status,
878 						       hw->aq.asq_last_status) :
879 				   -EIO;
880 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
881 		}
882 		break;
883 
884 	case I40E_NVMUPD_CSUM_LCB:
885 		status = i40e_update_nvm_checksum(hw);
886 		if (status)
887 			*errno = hw->aq.asq_last_status ?
888 				   i40e_aq_rc_to_posix(status,
889 						       hw->aq.asq_last_status) :
890 				   -EIO;
891 		else
892 			hw->aq.nvm_release_on_done = true;
893 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
894 		break;
895 
896 	default:
897 		i40e_debug(hw, I40E_DEBUG_NVM,
898 			   "NVMUPD: bad cmd %s in writing state.\n",
899 			   i40e_nvm_update_state_str[upd_cmd]);
900 		status = I40E_NOT_SUPPORTED;
901 		*errno = -ESRCH;
902 		break;
903 	}
904 
905 	/* In some circumstances, a multi-write transaction takes longer
906 	 * than the default 3 minute timeout on the write semaphore.  If
907 	 * the write failed with an EBUSY status, this is likely the problem,
908 	 * so here we try to reacquire the semaphore then retry the write.
909 	 * We only do one retry, then give up.
910 	 */
911 	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
912 	    !retry_attempt) {
913 		i40e_status old_status = status;
914 		u32 old_asq_status = hw->aq.asq_last_status;
915 		u32 gtime;
916 
917 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
918 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
919 			i40e_debug(hw, I40E_DEBUG_ALL,
920 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
921 				   gtime, hw->nvm.hw_semaphore_timeout);
922 			i40e_release_nvm(hw);
923 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
924 			if (status) {
925 				i40e_debug(hw, I40E_DEBUG_ALL,
926 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
927 					   hw->aq.asq_last_status);
928 				status = old_status;
929 				hw->aq.asq_last_status = old_asq_status;
930 			} else {
931 				retry_attempt = true;
932 				goto retry;
933 			}
934 		}
935 	}
936 
937 	return status;
938 }
939 
940 /**
941  * i40e_nvmupd_validate_command - Validate given command
942  * @hw: pointer to hardware structure
943  * @cmd: pointer to nvm update command buffer
944  * @errno: pointer to return error code
945  *
946  * Return one of the valid command types or I40E_NVMUPD_INVALID
947  **/
948 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
949 						 struct i40e_nvm_access *cmd,
950 						 int *errno)
951 {
952 	enum i40e_nvmupd_cmd upd_cmd;
953 	u8 transaction;
954 
955 	/* anything that doesn't match a recognized case is an error */
956 	upd_cmd = I40E_NVMUPD_INVALID;
957 
958 	transaction = i40e_nvmupd_get_transaction(cmd->config);
959 
960 	/* limits on data size */
961 	if ((cmd->data_size < 1) ||
962 	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
963 		i40e_debug(hw, I40E_DEBUG_NVM,
964 			   "i40e_nvmupd_validate_command data_size %d\n",
965 			   cmd->data_size);
966 		*errno = -EFAULT;
967 		return I40E_NVMUPD_INVALID;
968 	}
969 
970 	switch (cmd->command) {
971 	case I40E_NVM_READ:
972 		switch (transaction) {
973 		case I40E_NVM_CON:
974 			upd_cmd = I40E_NVMUPD_READ_CON;
975 			break;
976 		case I40E_NVM_SNT:
977 			upd_cmd = I40E_NVMUPD_READ_SNT;
978 			break;
979 		case I40E_NVM_LCB:
980 			upd_cmd = I40E_NVMUPD_READ_LCB;
981 			break;
982 		case I40E_NVM_SA:
983 			upd_cmd = I40E_NVMUPD_READ_SA;
984 			break;
985 		}
986 		break;
987 
988 	case I40E_NVM_WRITE:
989 		switch (transaction) {
990 		case I40E_NVM_CON:
991 			upd_cmd = I40E_NVMUPD_WRITE_CON;
992 			break;
993 		case I40E_NVM_SNT:
994 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
995 			break;
996 		case I40E_NVM_LCB:
997 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
998 			break;
999 		case I40E_NVM_SA:
1000 			upd_cmd = I40E_NVMUPD_WRITE_SA;
1001 			break;
1002 		case I40E_NVM_ERA:
1003 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1004 			break;
1005 		case I40E_NVM_CSUM:
1006 			upd_cmd = I40E_NVMUPD_CSUM_CON;
1007 			break;
1008 		case (I40E_NVM_CSUM|I40E_NVM_SA):
1009 			upd_cmd = I40E_NVMUPD_CSUM_SA;
1010 			break;
1011 		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1012 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1013 			break;
1014 		}
1015 		break;
1016 	}
1017 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d\n",
1018 		   i40e_nvm_update_state_str[upd_cmd],
1019 		   hw->nvmupd_state,
1020 		   hw->aq.nvm_release_on_done);
1021 
1022 	if (upd_cmd == I40E_NVMUPD_INVALID) {
1023 		*errno = -EFAULT;
1024 		i40e_debug(hw, I40E_DEBUG_NVM,
1025 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
1026 			   upd_cmd, *errno);
1027 	}
1028 	return upd_cmd;
1029 }
1030 
1031 /**
1032  * i40e_nvmupd_nvm_read - Read NVM
1033  * @hw: pointer to hardware structure
1034  * @cmd: pointer to nvm update command buffer
1035  * @bytes: pointer to the data buffer
1036  * @errno: pointer to return error code
1037  *
1038  * cmd structure contains identifiers and data buffer
1039  **/
1040 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1041 					struct i40e_nvm_access *cmd,
1042 					u8 *bytes, int *errno)
1043 {
1044 	i40e_status status;
1045 	u8 module, transaction;
1046 	bool last;
1047 
1048 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1049 	module = i40e_nvmupd_get_module(cmd->config);
1050 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1051 
1052 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1053 				  bytes, last, NULL);
1054 	if (status) {
1055 		i40e_debug(hw, I40E_DEBUG_NVM,
1056 			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1057 			   module, cmd->offset, cmd->data_size);
1058 		i40e_debug(hw, I40E_DEBUG_NVM,
1059 			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1060 			   status, hw->aq.asq_last_status);
1061 		*errno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1062 	}
1063 
1064 	return status;
1065 }
1066 
1067 /**
1068  * i40e_nvmupd_nvm_erase - Erase an NVM module
1069  * @hw: pointer to hardware structure
1070  * @cmd: pointer to nvm update command buffer
1071  * @errno: pointer to return error code
1072  *
1073  * module, offset, data_size and data are in cmd structure
1074  **/
1075 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1076 					 struct i40e_nvm_access *cmd,
1077 					 int *errno)
1078 {
1079 	i40e_status status = 0;
1080 	u8 module, transaction;
1081 	bool last;
1082 
1083 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1084 	module = i40e_nvmupd_get_module(cmd->config);
1085 	last = (transaction & I40E_NVM_LCB);
1086 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1087 				   last, NULL);
1088 	if (status) {
1089 		i40e_debug(hw, I40E_DEBUG_NVM,
1090 			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1091 			   module, cmd->offset, cmd->data_size);
1092 		i40e_debug(hw, I40E_DEBUG_NVM,
1093 			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1094 			   status, hw->aq.asq_last_status);
1095 		*errno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1096 	}
1097 
1098 	return status;
1099 }
1100 
1101 /**
1102  * i40e_nvmupd_nvm_write - Write NVM
1103  * @hw: pointer to hardware structure
1104  * @cmd: pointer to nvm update command buffer
1105  * @bytes: pointer to the data buffer
1106  * @errno: pointer to return error code
1107  *
1108  * module, offset, data_size and data are in cmd structure
1109  **/
1110 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1111 					 struct i40e_nvm_access *cmd,
1112 					 u8 *bytes, int *errno)
1113 {
1114 	i40e_status status = 0;
1115 	u8 module, transaction;
1116 	bool last;
1117 
1118 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1119 	module = i40e_nvmupd_get_module(cmd->config);
1120 	last = (transaction & I40E_NVM_LCB);
1121 
1122 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1123 				    (u16)cmd->data_size, bytes, last, NULL);
1124 	if (status) {
1125 		i40e_debug(hw, I40E_DEBUG_NVM,
1126 			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1127 			   module, cmd->offset, cmd->data_size);
1128 		i40e_debug(hw, I40E_DEBUG_NVM,
1129 			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1130 			   status, hw->aq.asq_last_status);
1131 		*errno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1132 	}
1133 
1134 	return status;
1135 }
1136