1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2017 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include <linux/etherdevice.h> 28 #include <linux/of_net.h> 29 #include <linux/pci.h> 30 #include <linux/bpf.h> 31 32 /* Local includes */ 33 #include "i40e.h" 34 #include "i40e_diag.h" 35 #include <net/udp_tunnel.h> 36 /* All i40e tracepoints are defined by the include below, which 37 * must be included exactly once across the whole kernel with 38 * CREATE_TRACE_POINTS defined 39 */ 40 #define CREATE_TRACE_POINTS 41 #include "i40e_trace.h" 42 43 const char i40e_driver_name[] = "i40e"; 44 static const char i40e_driver_string[] = 45 "Intel(R) Ethernet Connection XL710 Network Driver"; 46 47 #define DRV_KERN "-k" 48 49 #define DRV_VERSION_MAJOR 2 50 #define DRV_VERSION_MINOR 3 51 #define DRV_VERSION_BUILD 2 52 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 53 __stringify(DRV_VERSION_MINOR) "." \ 54 __stringify(DRV_VERSION_BUILD) DRV_KERN 55 const char i40e_driver_version_str[] = DRV_VERSION; 56 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; 57 58 /* a bit of forward declarations */ 59 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 60 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 61 static int i40e_add_vsi(struct i40e_vsi *vsi); 62 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 63 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 64 static int i40e_setup_misc_vector(struct i40e_pf *pf); 65 static void i40e_determine_queue_usage(struct i40e_pf *pf); 66 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 67 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 68 static int i40e_reset(struct i40e_pf *pf); 69 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 70 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 71 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 72 static int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 73 struct i40e_cloud_filter *filter, 74 bool add); 75 static int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 76 struct i40e_cloud_filter *filter, 77 bool add); 78 static int i40e_get_capabilities(struct i40e_pf *pf, 79 enum i40e_admin_queue_opc list_type); 80 81 82 /* i40e_pci_tbl - PCI Device ID Table 83 * 84 * Last entry must be all 0s 85 * 86 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 87 * Class, Class Mask, private data (not used) } 88 */ 89 static const struct pci_device_id i40e_pci_tbl[] = { 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 91 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 92 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 93 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 94 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 95 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 96 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 97 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 98 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 99 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 100 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 101 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 102 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 103 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 104 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 105 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 106 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 107 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 108 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 109 /* required last entry */ 110 {0, } 111 }; 112 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 113 114 #define I40E_MAX_VF_COUNT 128 115 static int debug = -1; 116 module_param(debug, uint, 0); 117 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 118 119 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 120 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 121 MODULE_LICENSE("GPL"); 122 MODULE_VERSION(DRV_VERSION); 123 124 static struct workqueue_struct *i40e_wq; 125 126 /** 127 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 128 * @hw: pointer to the HW structure 129 * @mem: ptr to mem struct to fill out 130 * @size: size of memory requested 131 * @alignment: what to align the allocation to 132 **/ 133 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 134 u64 size, u32 alignment) 135 { 136 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 137 138 mem->size = ALIGN(size, alignment); 139 mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size, 140 &mem->pa, GFP_KERNEL); 141 if (!mem->va) 142 return -ENOMEM; 143 144 return 0; 145 } 146 147 /** 148 * i40e_free_dma_mem_d - OS specific memory free for shared code 149 * @hw: pointer to the HW structure 150 * @mem: ptr to mem struct to free 151 **/ 152 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 153 { 154 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 155 156 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 157 mem->va = NULL; 158 mem->pa = 0; 159 mem->size = 0; 160 161 return 0; 162 } 163 164 /** 165 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 166 * @hw: pointer to the HW structure 167 * @mem: ptr to mem struct to fill out 168 * @size: size of memory requested 169 **/ 170 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 171 u32 size) 172 { 173 mem->size = size; 174 mem->va = kzalloc(size, GFP_KERNEL); 175 176 if (!mem->va) 177 return -ENOMEM; 178 179 return 0; 180 } 181 182 /** 183 * i40e_free_virt_mem_d - OS specific memory free for shared code 184 * @hw: pointer to the HW structure 185 * @mem: ptr to mem struct to free 186 **/ 187 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 188 { 189 /* it's ok to kfree a NULL pointer */ 190 kfree(mem->va); 191 mem->va = NULL; 192 mem->size = 0; 193 194 return 0; 195 } 196 197 /** 198 * i40e_get_lump - find a lump of free generic resource 199 * @pf: board private structure 200 * @pile: the pile of resource to search 201 * @needed: the number of items needed 202 * @id: an owner id to stick on the items assigned 203 * 204 * Returns the base item index of the lump, or negative for error 205 * 206 * The search_hint trick and lack of advanced fit-finding only work 207 * because we're highly likely to have all the same size lump requests. 208 * Linear search time and any fragmentation should be minimal. 209 **/ 210 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 211 u16 needed, u16 id) 212 { 213 int ret = -ENOMEM; 214 int i, j; 215 216 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 217 dev_info(&pf->pdev->dev, 218 "param err: pile=%p needed=%d id=0x%04x\n", 219 pile, needed, id); 220 return -EINVAL; 221 } 222 223 /* start the linear search with an imperfect hint */ 224 i = pile->search_hint; 225 while (i < pile->num_entries) { 226 /* skip already allocated entries */ 227 if (pile->list[i] & I40E_PILE_VALID_BIT) { 228 i++; 229 continue; 230 } 231 232 /* do we have enough in this lump? */ 233 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 234 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 235 break; 236 } 237 238 if (j == needed) { 239 /* there was enough, so assign it to the requestor */ 240 for (j = 0; j < needed; j++) 241 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 242 ret = i; 243 pile->search_hint = i + j; 244 break; 245 } 246 247 /* not enough, so skip over it and continue looking */ 248 i += j; 249 } 250 251 return ret; 252 } 253 254 /** 255 * i40e_put_lump - return a lump of generic resource 256 * @pile: the pile of resource to search 257 * @index: the base item index 258 * @id: the owner id of the items assigned 259 * 260 * Returns the count of items in the lump 261 **/ 262 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 263 { 264 int valid_id = (id | I40E_PILE_VALID_BIT); 265 int count = 0; 266 int i; 267 268 if (!pile || index >= pile->num_entries) 269 return -EINVAL; 270 271 for (i = index; 272 i < pile->num_entries && pile->list[i] == valid_id; 273 i++) { 274 pile->list[i] = 0; 275 count++; 276 } 277 278 if (count && index < pile->search_hint) 279 pile->search_hint = index; 280 281 return count; 282 } 283 284 /** 285 * i40e_find_vsi_from_id - searches for the vsi with the given id 286 * @pf - the pf structure to search for the vsi 287 * @id - id of the vsi it is searching for 288 **/ 289 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 290 { 291 int i; 292 293 for (i = 0; i < pf->num_alloc_vsi; i++) 294 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 295 return pf->vsi[i]; 296 297 return NULL; 298 } 299 300 /** 301 * i40e_service_event_schedule - Schedule the service task to wake up 302 * @pf: board private structure 303 * 304 * If not already scheduled, this puts the task into the work queue 305 **/ 306 void i40e_service_event_schedule(struct i40e_pf *pf) 307 { 308 if (!test_bit(__I40E_DOWN, pf->state) && 309 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 310 queue_work(i40e_wq, &pf->service_task); 311 } 312 313 /** 314 * i40e_tx_timeout - Respond to a Tx Hang 315 * @netdev: network interface device structure 316 * 317 * If any port has noticed a Tx timeout, it is likely that the whole 318 * device is munged, not just the one netdev port, so go for the full 319 * reset. 320 **/ 321 static void i40e_tx_timeout(struct net_device *netdev) 322 { 323 struct i40e_netdev_priv *np = netdev_priv(netdev); 324 struct i40e_vsi *vsi = np->vsi; 325 struct i40e_pf *pf = vsi->back; 326 struct i40e_ring *tx_ring = NULL; 327 unsigned int i, hung_queue = 0; 328 u32 head, val; 329 330 pf->tx_timeout_count++; 331 332 /* find the stopped queue the same way the stack does */ 333 for (i = 0; i < netdev->num_tx_queues; i++) { 334 struct netdev_queue *q; 335 unsigned long trans_start; 336 337 q = netdev_get_tx_queue(netdev, i); 338 trans_start = q->trans_start; 339 if (netif_xmit_stopped(q) && 340 time_after(jiffies, 341 (trans_start + netdev->watchdog_timeo))) { 342 hung_queue = i; 343 break; 344 } 345 } 346 347 if (i == netdev->num_tx_queues) { 348 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 349 } else { 350 /* now that we have an index, find the tx_ring struct */ 351 for (i = 0; i < vsi->num_queue_pairs; i++) { 352 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 353 if (hung_queue == 354 vsi->tx_rings[i]->queue_index) { 355 tx_ring = vsi->tx_rings[i]; 356 break; 357 } 358 } 359 } 360 } 361 362 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 363 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 364 else if (time_before(jiffies, 365 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 366 return; /* don't do any new action before the next timeout */ 367 368 if (tx_ring) { 369 head = i40e_get_head(tx_ring); 370 /* Read interrupt register */ 371 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 372 val = rd32(&pf->hw, 373 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 374 tx_ring->vsi->base_vector - 1)); 375 else 376 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 377 378 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 379 vsi->seid, hung_queue, tx_ring->next_to_clean, 380 head, tx_ring->next_to_use, 381 readl(tx_ring->tail), val); 382 } 383 384 pf->tx_timeout_last_recovery = jiffies; 385 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 386 pf->tx_timeout_recovery_level, hung_queue); 387 388 switch (pf->tx_timeout_recovery_level) { 389 case 1: 390 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 391 break; 392 case 2: 393 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 394 break; 395 case 3: 396 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 397 break; 398 default: 399 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 400 break; 401 } 402 403 i40e_service_event_schedule(pf); 404 pf->tx_timeout_recovery_level++; 405 } 406 407 /** 408 * i40e_get_vsi_stats_struct - Get System Network Statistics 409 * @vsi: the VSI we care about 410 * 411 * Returns the address of the device statistics structure. 412 * The statistics are actually updated from the service task. 413 **/ 414 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 415 { 416 return &vsi->net_stats; 417 } 418 419 /** 420 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 421 * @ring: Tx ring to get statistics from 422 * @stats: statistics entry to be updated 423 **/ 424 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 425 struct rtnl_link_stats64 *stats) 426 { 427 u64 bytes, packets; 428 unsigned int start; 429 430 do { 431 start = u64_stats_fetch_begin_irq(&ring->syncp); 432 packets = ring->stats.packets; 433 bytes = ring->stats.bytes; 434 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 435 436 stats->tx_packets += packets; 437 stats->tx_bytes += bytes; 438 } 439 440 /** 441 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 442 * @netdev: network interface device structure 443 * 444 * Returns the address of the device statistics structure. 445 * The statistics are actually updated from the service task. 446 **/ 447 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 448 struct rtnl_link_stats64 *stats) 449 { 450 struct i40e_netdev_priv *np = netdev_priv(netdev); 451 struct i40e_ring *tx_ring, *rx_ring; 452 struct i40e_vsi *vsi = np->vsi; 453 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 454 int i; 455 456 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 457 return; 458 459 if (!vsi->tx_rings) 460 return; 461 462 rcu_read_lock(); 463 for (i = 0; i < vsi->num_queue_pairs; i++) { 464 u64 bytes, packets; 465 unsigned int start; 466 467 tx_ring = READ_ONCE(vsi->tx_rings[i]); 468 if (!tx_ring) 469 continue; 470 i40e_get_netdev_stats_struct_tx(tx_ring, stats); 471 472 rx_ring = &tx_ring[1]; 473 474 do { 475 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 476 packets = rx_ring->stats.packets; 477 bytes = rx_ring->stats.bytes; 478 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 479 480 stats->rx_packets += packets; 481 stats->rx_bytes += bytes; 482 483 if (i40e_enabled_xdp_vsi(vsi)) 484 i40e_get_netdev_stats_struct_tx(&rx_ring[1], stats); 485 } 486 rcu_read_unlock(); 487 488 /* following stats updated by i40e_watchdog_subtask() */ 489 stats->multicast = vsi_stats->multicast; 490 stats->tx_errors = vsi_stats->tx_errors; 491 stats->tx_dropped = vsi_stats->tx_dropped; 492 stats->rx_errors = vsi_stats->rx_errors; 493 stats->rx_dropped = vsi_stats->rx_dropped; 494 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 495 stats->rx_length_errors = vsi_stats->rx_length_errors; 496 } 497 498 /** 499 * i40e_vsi_reset_stats - Resets all stats of the given vsi 500 * @vsi: the VSI to have its stats reset 501 **/ 502 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 503 { 504 struct rtnl_link_stats64 *ns; 505 int i; 506 507 if (!vsi) 508 return; 509 510 ns = i40e_get_vsi_stats_struct(vsi); 511 memset(ns, 0, sizeof(*ns)); 512 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 513 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 514 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 515 if (vsi->rx_rings && vsi->rx_rings[0]) { 516 for (i = 0; i < vsi->num_queue_pairs; i++) { 517 memset(&vsi->rx_rings[i]->stats, 0, 518 sizeof(vsi->rx_rings[i]->stats)); 519 memset(&vsi->rx_rings[i]->rx_stats, 0, 520 sizeof(vsi->rx_rings[i]->rx_stats)); 521 memset(&vsi->tx_rings[i]->stats, 0, 522 sizeof(vsi->tx_rings[i]->stats)); 523 memset(&vsi->tx_rings[i]->tx_stats, 0, 524 sizeof(vsi->tx_rings[i]->tx_stats)); 525 } 526 } 527 vsi->stat_offsets_loaded = false; 528 } 529 530 /** 531 * i40e_pf_reset_stats - Reset all of the stats for the given PF 532 * @pf: the PF to be reset 533 **/ 534 void i40e_pf_reset_stats(struct i40e_pf *pf) 535 { 536 int i; 537 538 memset(&pf->stats, 0, sizeof(pf->stats)); 539 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 540 pf->stat_offsets_loaded = false; 541 542 for (i = 0; i < I40E_MAX_VEB; i++) { 543 if (pf->veb[i]) { 544 memset(&pf->veb[i]->stats, 0, 545 sizeof(pf->veb[i]->stats)); 546 memset(&pf->veb[i]->stats_offsets, 0, 547 sizeof(pf->veb[i]->stats_offsets)); 548 pf->veb[i]->stat_offsets_loaded = false; 549 } 550 } 551 pf->hw_csum_rx_error = 0; 552 } 553 554 /** 555 * i40e_stat_update48 - read and update a 48 bit stat from the chip 556 * @hw: ptr to the hardware info 557 * @hireg: the high 32 bit reg to read 558 * @loreg: the low 32 bit reg to read 559 * @offset_loaded: has the initial offset been loaded yet 560 * @offset: ptr to current offset value 561 * @stat: ptr to the stat 562 * 563 * Since the device stats are not reset at PFReset, they likely will not 564 * be zeroed when the driver starts. We'll save the first values read 565 * and use them as offsets to be subtracted from the raw values in order 566 * to report stats that count from zero. In the process, we also manage 567 * the potential roll-over. 568 **/ 569 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 570 bool offset_loaded, u64 *offset, u64 *stat) 571 { 572 u64 new_data; 573 574 if (hw->device_id == I40E_DEV_ID_QEMU) { 575 new_data = rd32(hw, loreg); 576 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 577 } else { 578 new_data = rd64(hw, loreg); 579 } 580 if (!offset_loaded) 581 *offset = new_data; 582 if (likely(new_data >= *offset)) 583 *stat = new_data - *offset; 584 else 585 *stat = (new_data + BIT_ULL(48)) - *offset; 586 *stat &= 0xFFFFFFFFFFFFULL; 587 } 588 589 /** 590 * i40e_stat_update32 - read and update a 32 bit stat from the chip 591 * @hw: ptr to the hardware info 592 * @reg: the hw reg to read 593 * @offset_loaded: has the initial offset been loaded yet 594 * @offset: ptr to current offset value 595 * @stat: ptr to the stat 596 **/ 597 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 598 bool offset_loaded, u64 *offset, u64 *stat) 599 { 600 u32 new_data; 601 602 new_data = rd32(hw, reg); 603 if (!offset_loaded) 604 *offset = new_data; 605 if (likely(new_data >= *offset)) 606 *stat = (u32)(new_data - *offset); 607 else 608 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 609 } 610 611 /** 612 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 613 * @hw: ptr to the hardware info 614 * @reg: the hw reg to read and clear 615 * @stat: ptr to the stat 616 **/ 617 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 618 { 619 u32 new_data = rd32(hw, reg); 620 621 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 622 *stat += new_data; 623 } 624 625 /** 626 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 627 * @vsi: the VSI to be updated 628 **/ 629 void i40e_update_eth_stats(struct i40e_vsi *vsi) 630 { 631 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 632 struct i40e_pf *pf = vsi->back; 633 struct i40e_hw *hw = &pf->hw; 634 struct i40e_eth_stats *oes; 635 struct i40e_eth_stats *es; /* device's eth stats */ 636 637 es = &vsi->eth_stats; 638 oes = &vsi->eth_stats_offsets; 639 640 /* Gather up the stats that the hw collects */ 641 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 642 vsi->stat_offsets_loaded, 643 &oes->tx_errors, &es->tx_errors); 644 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 645 vsi->stat_offsets_loaded, 646 &oes->rx_discards, &es->rx_discards); 647 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 648 vsi->stat_offsets_loaded, 649 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 650 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 651 vsi->stat_offsets_loaded, 652 &oes->tx_errors, &es->tx_errors); 653 654 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 655 I40E_GLV_GORCL(stat_idx), 656 vsi->stat_offsets_loaded, 657 &oes->rx_bytes, &es->rx_bytes); 658 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 659 I40E_GLV_UPRCL(stat_idx), 660 vsi->stat_offsets_loaded, 661 &oes->rx_unicast, &es->rx_unicast); 662 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 663 I40E_GLV_MPRCL(stat_idx), 664 vsi->stat_offsets_loaded, 665 &oes->rx_multicast, &es->rx_multicast); 666 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 667 I40E_GLV_BPRCL(stat_idx), 668 vsi->stat_offsets_loaded, 669 &oes->rx_broadcast, &es->rx_broadcast); 670 671 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 672 I40E_GLV_GOTCL(stat_idx), 673 vsi->stat_offsets_loaded, 674 &oes->tx_bytes, &es->tx_bytes); 675 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 676 I40E_GLV_UPTCL(stat_idx), 677 vsi->stat_offsets_loaded, 678 &oes->tx_unicast, &es->tx_unicast); 679 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 680 I40E_GLV_MPTCL(stat_idx), 681 vsi->stat_offsets_loaded, 682 &oes->tx_multicast, &es->tx_multicast); 683 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 684 I40E_GLV_BPTCL(stat_idx), 685 vsi->stat_offsets_loaded, 686 &oes->tx_broadcast, &es->tx_broadcast); 687 vsi->stat_offsets_loaded = true; 688 } 689 690 /** 691 * i40e_update_veb_stats - Update Switch component statistics 692 * @veb: the VEB being updated 693 **/ 694 static void i40e_update_veb_stats(struct i40e_veb *veb) 695 { 696 struct i40e_pf *pf = veb->pf; 697 struct i40e_hw *hw = &pf->hw; 698 struct i40e_eth_stats *oes; 699 struct i40e_eth_stats *es; /* device's eth stats */ 700 struct i40e_veb_tc_stats *veb_oes; 701 struct i40e_veb_tc_stats *veb_es; 702 int i, idx = 0; 703 704 idx = veb->stats_idx; 705 es = &veb->stats; 706 oes = &veb->stats_offsets; 707 veb_es = &veb->tc_stats; 708 veb_oes = &veb->tc_stats_offsets; 709 710 /* Gather up the stats that the hw collects */ 711 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 712 veb->stat_offsets_loaded, 713 &oes->tx_discards, &es->tx_discards); 714 if (hw->revision_id > 0) 715 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 716 veb->stat_offsets_loaded, 717 &oes->rx_unknown_protocol, 718 &es->rx_unknown_protocol); 719 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 720 veb->stat_offsets_loaded, 721 &oes->rx_bytes, &es->rx_bytes); 722 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 723 veb->stat_offsets_loaded, 724 &oes->rx_unicast, &es->rx_unicast); 725 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 726 veb->stat_offsets_loaded, 727 &oes->rx_multicast, &es->rx_multicast); 728 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 729 veb->stat_offsets_loaded, 730 &oes->rx_broadcast, &es->rx_broadcast); 731 732 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 733 veb->stat_offsets_loaded, 734 &oes->tx_bytes, &es->tx_bytes); 735 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 736 veb->stat_offsets_loaded, 737 &oes->tx_unicast, &es->tx_unicast); 738 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 739 veb->stat_offsets_loaded, 740 &oes->tx_multicast, &es->tx_multicast); 741 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 742 veb->stat_offsets_loaded, 743 &oes->tx_broadcast, &es->tx_broadcast); 744 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 745 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 746 I40E_GLVEBTC_RPCL(i, idx), 747 veb->stat_offsets_loaded, 748 &veb_oes->tc_rx_packets[i], 749 &veb_es->tc_rx_packets[i]); 750 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 751 I40E_GLVEBTC_RBCL(i, idx), 752 veb->stat_offsets_loaded, 753 &veb_oes->tc_rx_bytes[i], 754 &veb_es->tc_rx_bytes[i]); 755 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 756 I40E_GLVEBTC_TPCL(i, idx), 757 veb->stat_offsets_loaded, 758 &veb_oes->tc_tx_packets[i], 759 &veb_es->tc_tx_packets[i]); 760 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 761 I40E_GLVEBTC_TBCL(i, idx), 762 veb->stat_offsets_loaded, 763 &veb_oes->tc_tx_bytes[i], 764 &veb_es->tc_tx_bytes[i]); 765 } 766 veb->stat_offsets_loaded = true; 767 } 768 769 /** 770 * i40e_update_vsi_stats - Update the vsi statistics counters. 771 * @vsi: the VSI to be updated 772 * 773 * There are a few instances where we store the same stat in a 774 * couple of different structs. This is partly because we have 775 * the netdev stats that need to be filled out, which is slightly 776 * different from the "eth_stats" defined by the chip and used in 777 * VF communications. We sort it out here. 778 **/ 779 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 780 { 781 struct i40e_pf *pf = vsi->back; 782 struct rtnl_link_stats64 *ons; 783 struct rtnl_link_stats64 *ns; /* netdev stats */ 784 struct i40e_eth_stats *oes; 785 struct i40e_eth_stats *es; /* device's eth stats */ 786 u32 tx_restart, tx_busy; 787 struct i40e_ring *p; 788 u32 rx_page, rx_buf; 789 u64 bytes, packets; 790 unsigned int start; 791 u64 tx_linearize; 792 u64 tx_force_wb; 793 u64 rx_p, rx_b; 794 u64 tx_p, tx_b; 795 u16 q; 796 797 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 798 test_bit(__I40E_CONFIG_BUSY, pf->state)) 799 return; 800 801 ns = i40e_get_vsi_stats_struct(vsi); 802 ons = &vsi->net_stats_offsets; 803 es = &vsi->eth_stats; 804 oes = &vsi->eth_stats_offsets; 805 806 /* Gather up the netdev and vsi stats that the driver collects 807 * on the fly during packet processing 808 */ 809 rx_b = rx_p = 0; 810 tx_b = tx_p = 0; 811 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 812 rx_page = 0; 813 rx_buf = 0; 814 rcu_read_lock(); 815 for (q = 0; q < vsi->num_queue_pairs; q++) { 816 /* locate Tx ring */ 817 p = READ_ONCE(vsi->tx_rings[q]); 818 819 do { 820 start = u64_stats_fetch_begin_irq(&p->syncp); 821 packets = p->stats.packets; 822 bytes = p->stats.bytes; 823 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 824 tx_b += bytes; 825 tx_p += packets; 826 tx_restart += p->tx_stats.restart_queue; 827 tx_busy += p->tx_stats.tx_busy; 828 tx_linearize += p->tx_stats.tx_linearize; 829 tx_force_wb += p->tx_stats.tx_force_wb; 830 831 /* Rx queue is part of the same block as Tx queue */ 832 p = &p[1]; 833 do { 834 start = u64_stats_fetch_begin_irq(&p->syncp); 835 packets = p->stats.packets; 836 bytes = p->stats.bytes; 837 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 838 rx_b += bytes; 839 rx_p += packets; 840 rx_buf += p->rx_stats.alloc_buff_failed; 841 rx_page += p->rx_stats.alloc_page_failed; 842 } 843 rcu_read_unlock(); 844 vsi->tx_restart = tx_restart; 845 vsi->tx_busy = tx_busy; 846 vsi->tx_linearize = tx_linearize; 847 vsi->tx_force_wb = tx_force_wb; 848 vsi->rx_page_failed = rx_page; 849 vsi->rx_buf_failed = rx_buf; 850 851 ns->rx_packets = rx_p; 852 ns->rx_bytes = rx_b; 853 ns->tx_packets = tx_p; 854 ns->tx_bytes = tx_b; 855 856 /* update netdev stats from eth stats */ 857 i40e_update_eth_stats(vsi); 858 ons->tx_errors = oes->tx_errors; 859 ns->tx_errors = es->tx_errors; 860 ons->multicast = oes->rx_multicast; 861 ns->multicast = es->rx_multicast; 862 ons->rx_dropped = oes->rx_discards; 863 ns->rx_dropped = es->rx_discards; 864 ons->tx_dropped = oes->tx_discards; 865 ns->tx_dropped = es->tx_discards; 866 867 /* pull in a couple PF stats if this is the main vsi */ 868 if (vsi == pf->vsi[pf->lan_vsi]) { 869 ns->rx_crc_errors = pf->stats.crc_errors; 870 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 871 ns->rx_length_errors = pf->stats.rx_length_errors; 872 } 873 } 874 875 /** 876 * i40e_update_pf_stats - Update the PF statistics counters. 877 * @pf: the PF to be updated 878 **/ 879 static void i40e_update_pf_stats(struct i40e_pf *pf) 880 { 881 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 882 struct i40e_hw_port_stats *nsd = &pf->stats; 883 struct i40e_hw *hw = &pf->hw; 884 u32 val; 885 int i; 886 887 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 888 I40E_GLPRT_GORCL(hw->port), 889 pf->stat_offsets_loaded, 890 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 891 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 892 I40E_GLPRT_GOTCL(hw->port), 893 pf->stat_offsets_loaded, 894 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 895 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 896 pf->stat_offsets_loaded, 897 &osd->eth.rx_discards, 898 &nsd->eth.rx_discards); 899 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 900 I40E_GLPRT_UPRCL(hw->port), 901 pf->stat_offsets_loaded, 902 &osd->eth.rx_unicast, 903 &nsd->eth.rx_unicast); 904 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 905 I40E_GLPRT_MPRCL(hw->port), 906 pf->stat_offsets_loaded, 907 &osd->eth.rx_multicast, 908 &nsd->eth.rx_multicast); 909 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 910 I40E_GLPRT_BPRCL(hw->port), 911 pf->stat_offsets_loaded, 912 &osd->eth.rx_broadcast, 913 &nsd->eth.rx_broadcast); 914 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 915 I40E_GLPRT_UPTCL(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->eth.tx_unicast, 918 &nsd->eth.tx_unicast); 919 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 920 I40E_GLPRT_MPTCL(hw->port), 921 pf->stat_offsets_loaded, 922 &osd->eth.tx_multicast, 923 &nsd->eth.tx_multicast); 924 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 925 I40E_GLPRT_BPTCL(hw->port), 926 pf->stat_offsets_loaded, 927 &osd->eth.tx_broadcast, 928 &nsd->eth.tx_broadcast); 929 930 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 931 pf->stat_offsets_loaded, 932 &osd->tx_dropped_link_down, 933 &nsd->tx_dropped_link_down); 934 935 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 936 pf->stat_offsets_loaded, 937 &osd->crc_errors, &nsd->crc_errors); 938 939 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 940 pf->stat_offsets_loaded, 941 &osd->illegal_bytes, &nsd->illegal_bytes); 942 943 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 944 pf->stat_offsets_loaded, 945 &osd->mac_local_faults, 946 &nsd->mac_local_faults); 947 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 948 pf->stat_offsets_loaded, 949 &osd->mac_remote_faults, 950 &nsd->mac_remote_faults); 951 952 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 953 pf->stat_offsets_loaded, 954 &osd->rx_length_errors, 955 &nsd->rx_length_errors); 956 957 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 958 pf->stat_offsets_loaded, 959 &osd->link_xon_rx, &nsd->link_xon_rx); 960 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 961 pf->stat_offsets_loaded, 962 &osd->link_xon_tx, &nsd->link_xon_tx); 963 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 964 pf->stat_offsets_loaded, 965 &osd->link_xoff_rx, &nsd->link_xoff_rx); 966 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 967 pf->stat_offsets_loaded, 968 &osd->link_xoff_tx, &nsd->link_xoff_tx); 969 970 for (i = 0; i < 8; i++) { 971 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 972 pf->stat_offsets_loaded, 973 &osd->priority_xoff_rx[i], 974 &nsd->priority_xoff_rx[i]); 975 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 976 pf->stat_offsets_loaded, 977 &osd->priority_xon_rx[i], 978 &nsd->priority_xon_rx[i]); 979 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 980 pf->stat_offsets_loaded, 981 &osd->priority_xon_tx[i], 982 &nsd->priority_xon_tx[i]); 983 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 984 pf->stat_offsets_loaded, 985 &osd->priority_xoff_tx[i], 986 &nsd->priority_xoff_tx[i]); 987 i40e_stat_update32(hw, 988 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 989 pf->stat_offsets_loaded, 990 &osd->priority_xon_2_xoff[i], 991 &nsd->priority_xon_2_xoff[i]); 992 } 993 994 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 995 I40E_GLPRT_PRC64L(hw->port), 996 pf->stat_offsets_loaded, 997 &osd->rx_size_64, &nsd->rx_size_64); 998 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 999 I40E_GLPRT_PRC127L(hw->port), 1000 pf->stat_offsets_loaded, 1001 &osd->rx_size_127, &nsd->rx_size_127); 1002 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1003 I40E_GLPRT_PRC255L(hw->port), 1004 pf->stat_offsets_loaded, 1005 &osd->rx_size_255, &nsd->rx_size_255); 1006 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1007 I40E_GLPRT_PRC511L(hw->port), 1008 pf->stat_offsets_loaded, 1009 &osd->rx_size_511, &nsd->rx_size_511); 1010 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1011 I40E_GLPRT_PRC1023L(hw->port), 1012 pf->stat_offsets_loaded, 1013 &osd->rx_size_1023, &nsd->rx_size_1023); 1014 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1015 I40E_GLPRT_PRC1522L(hw->port), 1016 pf->stat_offsets_loaded, 1017 &osd->rx_size_1522, &nsd->rx_size_1522); 1018 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1019 I40E_GLPRT_PRC9522L(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->rx_size_big, &nsd->rx_size_big); 1022 1023 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1024 I40E_GLPRT_PTC64L(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->tx_size_64, &nsd->tx_size_64); 1027 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1028 I40E_GLPRT_PTC127L(hw->port), 1029 pf->stat_offsets_loaded, 1030 &osd->tx_size_127, &nsd->tx_size_127); 1031 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1032 I40E_GLPRT_PTC255L(hw->port), 1033 pf->stat_offsets_loaded, 1034 &osd->tx_size_255, &nsd->tx_size_255); 1035 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1036 I40E_GLPRT_PTC511L(hw->port), 1037 pf->stat_offsets_loaded, 1038 &osd->tx_size_511, &nsd->tx_size_511); 1039 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1040 I40E_GLPRT_PTC1023L(hw->port), 1041 pf->stat_offsets_loaded, 1042 &osd->tx_size_1023, &nsd->tx_size_1023); 1043 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1044 I40E_GLPRT_PTC1522L(hw->port), 1045 pf->stat_offsets_loaded, 1046 &osd->tx_size_1522, &nsd->tx_size_1522); 1047 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1048 I40E_GLPRT_PTC9522L(hw->port), 1049 pf->stat_offsets_loaded, 1050 &osd->tx_size_big, &nsd->tx_size_big); 1051 1052 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1053 pf->stat_offsets_loaded, 1054 &osd->rx_undersize, &nsd->rx_undersize); 1055 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1056 pf->stat_offsets_loaded, 1057 &osd->rx_fragments, &nsd->rx_fragments); 1058 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1059 pf->stat_offsets_loaded, 1060 &osd->rx_oversize, &nsd->rx_oversize); 1061 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1062 pf->stat_offsets_loaded, 1063 &osd->rx_jabber, &nsd->rx_jabber); 1064 1065 /* FDIR stats */ 1066 i40e_stat_update_and_clear32(hw, 1067 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1068 &nsd->fd_atr_match); 1069 i40e_stat_update_and_clear32(hw, 1070 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1071 &nsd->fd_sb_match); 1072 i40e_stat_update_and_clear32(hw, 1073 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1074 &nsd->fd_atr_tunnel_match); 1075 1076 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1077 nsd->tx_lpi_status = 1078 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1079 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1080 nsd->rx_lpi_status = 1081 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1082 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1083 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1084 pf->stat_offsets_loaded, 1085 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1086 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1087 pf->stat_offsets_loaded, 1088 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1089 1090 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1091 !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) 1092 nsd->fd_sb_status = true; 1093 else 1094 nsd->fd_sb_status = false; 1095 1096 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1097 !(pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)) 1098 nsd->fd_atr_status = true; 1099 else 1100 nsd->fd_atr_status = false; 1101 1102 pf->stat_offsets_loaded = true; 1103 } 1104 1105 /** 1106 * i40e_update_stats - Update the various statistics counters. 1107 * @vsi: the VSI to be updated 1108 * 1109 * Update the various stats for this VSI and its related entities. 1110 **/ 1111 void i40e_update_stats(struct i40e_vsi *vsi) 1112 { 1113 struct i40e_pf *pf = vsi->back; 1114 1115 if (vsi == pf->vsi[pf->lan_vsi]) 1116 i40e_update_pf_stats(pf); 1117 1118 i40e_update_vsi_stats(vsi); 1119 } 1120 1121 /** 1122 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1123 * @vsi: the VSI to be searched 1124 * @macaddr: the MAC address 1125 * @vlan: the vlan 1126 * 1127 * Returns ptr to the filter object or NULL 1128 **/ 1129 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1130 const u8 *macaddr, s16 vlan) 1131 { 1132 struct i40e_mac_filter *f; 1133 u64 key; 1134 1135 if (!vsi || !macaddr) 1136 return NULL; 1137 1138 key = i40e_addr_to_hkey(macaddr); 1139 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1140 if ((ether_addr_equal(macaddr, f->macaddr)) && 1141 (vlan == f->vlan)) 1142 return f; 1143 } 1144 return NULL; 1145 } 1146 1147 /** 1148 * i40e_find_mac - Find a mac addr in the macvlan filters list 1149 * @vsi: the VSI to be searched 1150 * @macaddr: the MAC address we are searching for 1151 * 1152 * Returns the first filter with the provided MAC address or NULL if 1153 * MAC address was not found 1154 **/ 1155 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1156 { 1157 struct i40e_mac_filter *f; 1158 u64 key; 1159 1160 if (!vsi || !macaddr) 1161 return NULL; 1162 1163 key = i40e_addr_to_hkey(macaddr); 1164 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1165 if ((ether_addr_equal(macaddr, f->macaddr))) 1166 return f; 1167 } 1168 return NULL; 1169 } 1170 1171 /** 1172 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1173 * @vsi: the VSI to be searched 1174 * 1175 * Returns true if VSI is in vlan mode or false otherwise 1176 **/ 1177 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1178 { 1179 /* If we have a PVID, always operate in VLAN mode */ 1180 if (vsi->info.pvid) 1181 return true; 1182 1183 /* We need to operate in VLAN mode whenever we have any filters with 1184 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1185 * time, incurring search cost repeatedly. However, we can notice two 1186 * things: 1187 * 1188 * 1) the only place where we can gain a VLAN filter is in 1189 * i40e_add_filter. 1190 * 1191 * 2) the only place where filters are actually removed is in 1192 * i40e_sync_filters_subtask. 1193 * 1194 * Thus, we can simply use a boolean value, has_vlan_filters which we 1195 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1196 * we have to perform the full search after deleting filters in 1197 * i40e_sync_filters_subtask, but we already have to search 1198 * filters here and can perform the check at the same time. This 1199 * results in avoiding embedding a loop for VLAN mode inside another 1200 * loop over all the filters, and should maintain correctness as noted 1201 * above. 1202 */ 1203 return vsi->has_vlan_filter; 1204 } 1205 1206 /** 1207 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1208 * @vsi: the VSI to configure 1209 * @tmp_add_list: list of filters ready to be added 1210 * @tmp_del_list: list of filters ready to be deleted 1211 * @vlan_filters: the number of active VLAN filters 1212 * 1213 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1214 * behave as expected. If we have any active VLAN filters remaining or about 1215 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1216 * so that they only match against untagged traffic. If we no longer have any 1217 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1218 * so that they match against both tagged and untagged traffic. In this way, 1219 * we ensure that we correctly receive the desired traffic. This ensures that 1220 * when we have an active VLAN we will receive only untagged traffic and 1221 * traffic matching active VLANs. If we have no active VLANs then we will 1222 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1223 * 1224 * Finally, in a similar fashion, this function also corrects filters when 1225 * there is an active PVID assigned to this VSI. 1226 * 1227 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1228 * 1229 * This function is only expected to be called from within 1230 * i40e_sync_vsi_filters. 1231 * 1232 * NOTE: This function expects to be called while under the 1233 * mac_filter_hash_lock 1234 */ 1235 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1236 struct hlist_head *tmp_add_list, 1237 struct hlist_head *tmp_del_list, 1238 int vlan_filters) 1239 { 1240 s16 pvid = le16_to_cpu(vsi->info.pvid); 1241 struct i40e_mac_filter *f, *add_head; 1242 struct i40e_new_mac_filter *new; 1243 struct hlist_node *h; 1244 int bkt, new_vlan; 1245 1246 /* To determine if a particular filter needs to be replaced we 1247 * have the three following conditions: 1248 * 1249 * a) if we have a PVID assigned, then all filters which are 1250 * not marked as VLAN=PVID must be replaced with filters that 1251 * are. 1252 * b) otherwise, if we have any active VLANS, all filters 1253 * which are marked as VLAN=-1 must be replaced with 1254 * filters marked as VLAN=0 1255 * c) finally, if we do not have any active VLANS, all filters 1256 * which are marked as VLAN=0 must be replaced with filters 1257 * marked as VLAN=-1 1258 */ 1259 1260 /* Update the filters about to be added in place */ 1261 hlist_for_each_entry(new, tmp_add_list, hlist) { 1262 if (pvid && new->f->vlan != pvid) 1263 new->f->vlan = pvid; 1264 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1265 new->f->vlan = 0; 1266 else if (!vlan_filters && new->f->vlan == 0) 1267 new->f->vlan = I40E_VLAN_ANY; 1268 } 1269 1270 /* Update the remaining active filters */ 1271 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1272 /* Combine the checks for whether a filter needs to be changed 1273 * and then determine the new VLAN inside the if block, in 1274 * order to avoid duplicating code for adding the new filter 1275 * then deleting the old filter. 1276 */ 1277 if ((pvid && f->vlan != pvid) || 1278 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1279 (!vlan_filters && f->vlan == 0)) { 1280 /* Determine the new vlan we will be adding */ 1281 if (pvid) 1282 new_vlan = pvid; 1283 else if (vlan_filters) 1284 new_vlan = 0; 1285 else 1286 new_vlan = I40E_VLAN_ANY; 1287 1288 /* Create the new filter */ 1289 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1290 if (!add_head) 1291 return -ENOMEM; 1292 1293 /* Create a temporary i40e_new_mac_filter */ 1294 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1295 if (!new) 1296 return -ENOMEM; 1297 1298 new->f = add_head; 1299 new->state = add_head->state; 1300 1301 /* Add the new filter to the tmp list */ 1302 hlist_add_head(&new->hlist, tmp_add_list); 1303 1304 /* Put the original filter into the delete list */ 1305 f->state = I40E_FILTER_REMOVE; 1306 hash_del(&f->hlist); 1307 hlist_add_head(&f->hlist, tmp_del_list); 1308 } 1309 } 1310 1311 vsi->has_vlan_filter = !!vlan_filters; 1312 1313 return 0; 1314 } 1315 1316 /** 1317 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1318 * @vsi: the PF Main VSI - inappropriate for any other VSI 1319 * @macaddr: the MAC address 1320 * 1321 * Remove whatever filter the firmware set up so the driver can manage 1322 * its own filtering intelligently. 1323 **/ 1324 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1325 { 1326 struct i40e_aqc_remove_macvlan_element_data element; 1327 struct i40e_pf *pf = vsi->back; 1328 1329 /* Only appropriate for the PF main VSI */ 1330 if (vsi->type != I40E_VSI_MAIN) 1331 return; 1332 1333 memset(&element, 0, sizeof(element)); 1334 ether_addr_copy(element.mac_addr, macaddr); 1335 element.vlan_tag = 0; 1336 /* Ignore error returns, some firmware does it this way... */ 1337 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1338 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1339 1340 memset(&element, 0, sizeof(element)); 1341 ether_addr_copy(element.mac_addr, macaddr); 1342 element.vlan_tag = 0; 1343 /* ...and some firmware does it this way. */ 1344 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1345 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1346 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1347 } 1348 1349 /** 1350 * i40e_add_filter - Add a mac/vlan filter to the VSI 1351 * @vsi: the VSI to be searched 1352 * @macaddr: the MAC address 1353 * @vlan: the vlan 1354 * 1355 * Returns ptr to the filter object or NULL when no memory available. 1356 * 1357 * NOTE: This function is expected to be called with mac_filter_hash_lock 1358 * being held. 1359 **/ 1360 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1361 const u8 *macaddr, s16 vlan) 1362 { 1363 struct i40e_mac_filter *f; 1364 u64 key; 1365 1366 if (!vsi || !macaddr) 1367 return NULL; 1368 1369 f = i40e_find_filter(vsi, macaddr, vlan); 1370 if (!f) { 1371 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1372 if (!f) 1373 return NULL; 1374 1375 /* Update the boolean indicating if we need to function in 1376 * VLAN mode. 1377 */ 1378 if (vlan >= 0) 1379 vsi->has_vlan_filter = true; 1380 1381 ether_addr_copy(f->macaddr, macaddr); 1382 f->vlan = vlan; 1383 /* If we're in overflow promisc mode, set the state directly 1384 * to failed, so we don't bother to try sending the filter 1385 * to the hardware. 1386 */ 1387 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state)) 1388 f->state = I40E_FILTER_FAILED; 1389 else 1390 f->state = I40E_FILTER_NEW; 1391 INIT_HLIST_NODE(&f->hlist); 1392 1393 key = i40e_addr_to_hkey(macaddr); 1394 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1395 1396 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1397 vsi->back->flags |= I40E_FLAG_FILTER_SYNC; 1398 } 1399 1400 /* If we're asked to add a filter that has been marked for removal, it 1401 * is safe to simply restore it to active state. __i40e_del_filter 1402 * will have simply deleted any filters which were previously marked 1403 * NEW or FAILED, so if it is currently marked REMOVE it must have 1404 * previously been ACTIVE. Since we haven't yet run the sync filters 1405 * task, just restore this filter to the ACTIVE state so that the 1406 * sync task leaves it in place 1407 */ 1408 if (f->state == I40E_FILTER_REMOVE) 1409 f->state = I40E_FILTER_ACTIVE; 1410 1411 return f; 1412 } 1413 1414 /** 1415 * __i40e_del_filter - Remove a specific filter from the VSI 1416 * @vsi: VSI to remove from 1417 * @f: the filter to remove from the list 1418 * 1419 * This function should be called instead of i40e_del_filter only if you know 1420 * the exact filter you will remove already, such as via i40e_find_filter or 1421 * i40e_find_mac. 1422 * 1423 * NOTE: This function is expected to be called with mac_filter_hash_lock 1424 * being held. 1425 * ANOTHER NOTE: This function MUST be called from within the context of 1426 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1427 * instead of list_for_each_entry(). 1428 **/ 1429 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1430 { 1431 if (!f) 1432 return; 1433 1434 /* If the filter was never added to firmware then we can just delete it 1435 * directly and we don't want to set the status to remove or else an 1436 * admin queue command will unnecessarily fire. 1437 */ 1438 if ((f->state == I40E_FILTER_FAILED) || 1439 (f->state == I40E_FILTER_NEW)) { 1440 hash_del(&f->hlist); 1441 kfree(f); 1442 } else { 1443 f->state = I40E_FILTER_REMOVE; 1444 } 1445 1446 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1447 vsi->back->flags |= I40E_FLAG_FILTER_SYNC; 1448 } 1449 1450 /** 1451 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1452 * @vsi: the VSI to be searched 1453 * @macaddr: the MAC address 1454 * @vlan: the VLAN 1455 * 1456 * NOTE: This function is expected to be called with mac_filter_hash_lock 1457 * being held. 1458 * ANOTHER NOTE: This function MUST be called from within the context of 1459 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1460 * instead of list_for_each_entry(). 1461 **/ 1462 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1463 { 1464 struct i40e_mac_filter *f; 1465 1466 if (!vsi || !macaddr) 1467 return; 1468 1469 f = i40e_find_filter(vsi, macaddr, vlan); 1470 __i40e_del_filter(vsi, f); 1471 } 1472 1473 /** 1474 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1475 * @vsi: the VSI to be searched 1476 * @macaddr: the mac address to be filtered 1477 * 1478 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1479 * go through all the macvlan filters and add a macvlan filter for each 1480 * unique vlan that already exists. If a PVID has been assigned, instead only 1481 * add the macaddr to that VLAN. 1482 * 1483 * Returns last filter added on success, else NULL 1484 **/ 1485 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1486 const u8 *macaddr) 1487 { 1488 struct i40e_mac_filter *f, *add = NULL; 1489 struct hlist_node *h; 1490 int bkt; 1491 1492 if (vsi->info.pvid) 1493 return i40e_add_filter(vsi, macaddr, 1494 le16_to_cpu(vsi->info.pvid)); 1495 1496 if (!i40e_is_vsi_in_vlan(vsi)) 1497 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1498 1499 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1500 if (f->state == I40E_FILTER_REMOVE) 1501 continue; 1502 add = i40e_add_filter(vsi, macaddr, f->vlan); 1503 if (!add) 1504 return NULL; 1505 } 1506 1507 return add; 1508 } 1509 1510 /** 1511 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1512 * @vsi: the VSI to be searched 1513 * @macaddr: the mac address to be removed 1514 * 1515 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1516 * associated with. 1517 * 1518 * Returns 0 for success, or error 1519 **/ 1520 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1521 { 1522 struct i40e_mac_filter *f; 1523 struct hlist_node *h; 1524 bool found = false; 1525 int bkt; 1526 1527 WARN(!spin_is_locked(&vsi->mac_filter_hash_lock), 1528 "Missing mac_filter_hash_lock\n"); 1529 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1530 if (ether_addr_equal(macaddr, f->macaddr)) { 1531 __i40e_del_filter(vsi, f); 1532 found = true; 1533 } 1534 } 1535 1536 if (found) 1537 return 0; 1538 else 1539 return -ENOENT; 1540 } 1541 1542 /** 1543 * i40e_set_mac - NDO callback to set mac address 1544 * @netdev: network interface device structure 1545 * @p: pointer to an address structure 1546 * 1547 * Returns 0 on success, negative on failure 1548 **/ 1549 static int i40e_set_mac(struct net_device *netdev, void *p) 1550 { 1551 struct i40e_netdev_priv *np = netdev_priv(netdev); 1552 struct i40e_vsi *vsi = np->vsi; 1553 struct i40e_pf *pf = vsi->back; 1554 struct i40e_hw *hw = &pf->hw; 1555 struct sockaddr *addr = p; 1556 1557 if (!is_valid_ether_addr(addr->sa_data)) 1558 return -EADDRNOTAVAIL; 1559 1560 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1561 netdev_info(netdev, "already using mac address %pM\n", 1562 addr->sa_data); 1563 return 0; 1564 } 1565 1566 if (test_bit(__I40E_VSI_DOWN, vsi->back->state) || 1567 test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state)) 1568 return -EADDRNOTAVAIL; 1569 1570 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1571 netdev_info(netdev, "returning to hw mac address %pM\n", 1572 hw->mac.addr); 1573 else 1574 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1575 1576 /* Copy the address first, so that we avoid a possible race with 1577 * .set_rx_mode(). If we copy after changing the address in the filter 1578 * list, we might open ourselves to a narrow race window where 1579 * .set_rx_mode could delete our dev_addr filter and prevent traffic 1580 * from passing. 1581 */ 1582 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1583 1584 spin_lock_bh(&vsi->mac_filter_hash_lock); 1585 i40e_del_mac_filter(vsi, netdev->dev_addr); 1586 i40e_add_mac_filter(vsi, addr->sa_data); 1587 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1588 if (vsi->type == I40E_VSI_MAIN) { 1589 i40e_status ret; 1590 1591 ret = i40e_aq_mac_address_write(&vsi->back->hw, 1592 I40E_AQC_WRITE_TYPE_LAA_WOL, 1593 addr->sa_data, NULL); 1594 if (ret) 1595 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1596 i40e_stat_str(hw, ret), 1597 i40e_aq_str(hw, hw->aq.asq_last_status)); 1598 } 1599 1600 /* schedule our worker thread which will take care of 1601 * applying the new filter changes 1602 */ 1603 i40e_service_event_schedule(vsi->back); 1604 return 0; 1605 } 1606 1607 /** 1608 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1609 * @vsi: vsi structure 1610 * @seed: RSS hash seed 1611 **/ 1612 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1613 u8 *lut, u16 lut_size) 1614 { 1615 struct i40e_pf *pf = vsi->back; 1616 struct i40e_hw *hw = &pf->hw; 1617 int ret = 0; 1618 1619 if (seed) { 1620 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1621 (struct i40e_aqc_get_set_rss_key_data *)seed; 1622 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1623 if (ret) { 1624 dev_info(&pf->pdev->dev, 1625 "Cannot set RSS key, err %s aq_err %s\n", 1626 i40e_stat_str(hw, ret), 1627 i40e_aq_str(hw, hw->aq.asq_last_status)); 1628 return ret; 1629 } 1630 } 1631 if (lut) { 1632 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1633 1634 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1635 if (ret) { 1636 dev_info(&pf->pdev->dev, 1637 "Cannot set RSS lut, err %s aq_err %s\n", 1638 i40e_stat_str(hw, ret), 1639 i40e_aq_str(hw, hw->aq.asq_last_status)); 1640 return ret; 1641 } 1642 } 1643 return ret; 1644 } 1645 1646 /** 1647 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1648 * @vsi: VSI structure 1649 **/ 1650 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1651 { 1652 struct i40e_pf *pf = vsi->back; 1653 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1654 u8 *lut; 1655 int ret; 1656 1657 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1658 return 0; 1659 if (!vsi->rss_size) 1660 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1661 vsi->num_queue_pairs); 1662 if (!vsi->rss_size) 1663 return -EINVAL; 1664 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1665 if (!lut) 1666 return -ENOMEM; 1667 1668 /* Use the user configured hash keys and lookup table if there is one, 1669 * otherwise use default 1670 */ 1671 if (vsi->rss_lut_user) 1672 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1673 else 1674 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1675 if (vsi->rss_hkey_user) 1676 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1677 else 1678 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1679 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1680 kfree(lut); 1681 return ret; 1682 } 1683 1684 /** 1685 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1686 * @vsi: the VSI being configured, 1687 * @ctxt: VSI context structure 1688 * @enabled_tc: number of traffic classes to enable 1689 * 1690 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1691 **/ 1692 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1693 struct i40e_vsi_context *ctxt, 1694 u8 enabled_tc) 1695 { 1696 u16 qcount = 0, max_qcount, qmap, sections = 0; 1697 int i, override_q, pow, num_qps, ret; 1698 u8 netdev_tc = 0, offset = 0; 1699 1700 if (vsi->type != I40E_VSI_MAIN) 1701 return -EINVAL; 1702 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1703 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1704 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1705 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1706 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1707 1708 /* find the next higher power-of-2 of num queue pairs */ 1709 pow = ilog2(num_qps); 1710 if (!is_power_of_2(num_qps)) 1711 pow++; 1712 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1713 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1714 1715 /* Setup queue offset/count for all TCs for given VSI */ 1716 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1717 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1718 /* See if the given TC is enabled for the given VSI */ 1719 if (vsi->tc_config.enabled_tc & BIT(i)) { 1720 offset = vsi->mqprio_qopt.qopt.offset[i]; 1721 qcount = vsi->mqprio_qopt.qopt.count[i]; 1722 if (qcount > max_qcount) 1723 max_qcount = qcount; 1724 vsi->tc_config.tc_info[i].qoffset = offset; 1725 vsi->tc_config.tc_info[i].qcount = qcount; 1726 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1727 } else { 1728 /* TC is not enabled so set the offset to 1729 * default queue and allocate one queue 1730 * for the given TC. 1731 */ 1732 vsi->tc_config.tc_info[i].qoffset = 0; 1733 vsi->tc_config.tc_info[i].qcount = 1; 1734 vsi->tc_config.tc_info[i].netdev_tc = 0; 1735 } 1736 } 1737 1738 /* Set actual Tx/Rx queue pairs */ 1739 vsi->num_queue_pairs = offset + qcount; 1740 1741 /* Setup queue TC[0].qmap for given VSI context */ 1742 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1743 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1744 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1745 ctxt->info.valid_sections |= cpu_to_le16(sections); 1746 1747 /* Reconfigure RSS for main VSI with max queue count */ 1748 vsi->rss_size = max_qcount; 1749 ret = i40e_vsi_config_rss(vsi); 1750 if (ret) { 1751 dev_info(&vsi->back->pdev->dev, 1752 "Failed to reconfig rss for num_queues (%u)\n", 1753 max_qcount); 1754 return ret; 1755 } 1756 vsi->reconfig_rss = true; 1757 dev_dbg(&vsi->back->pdev->dev, 1758 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1759 1760 /* Find queue count available for channel VSIs and starting offset 1761 * for channel VSIs 1762 */ 1763 override_q = vsi->mqprio_qopt.qopt.count[0]; 1764 if (override_q && override_q < vsi->num_queue_pairs) { 1765 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1766 vsi->next_base_queue = override_q; 1767 } 1768 return 0; 1769 } 1770 1771 /** 1772 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1773 * @vsi: the VSI being setup 1774 * @ctxt: VSI context structure 1775 * @enabled_tc: Enabled TCs bitmap 1776 * @is_add: True if called before Add VSI 1777 * 1778 * Setup VSI queue mapping for enabled traffic classes. 1779 **/ 1780 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1781 struct i40e_vsi_context *ctxt, 1782 u8 enabled_tc, 1783 bool is_add) 1784 { 1785 struct i40e_pf *pf = vsi->back; 1786 u16 sections = 0; 1787 u8 netdev_tc = 0; 1788 u16 numtc = 1; 1789 u16 qcount; 1790 u8 offset; 1791 u16 qmap; 1792 int i; 1793 u16 num_tc_qps = 0; 1794 1795 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1796 offset = 0; 1797 1798 /* Number of queues per enabled TC */ 1799 num_tc_qps = vsi->alloc_queue_pairs; 1800 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1801 /* Find numtc from enabled TC bitmap */ 1802 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1803 if (enabled_tc & BIT(i)) /* TC is enabled */ 1804 numtc++; 1805 } 1806 if (!numtc) { 1807 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1808 numtc = 1; 1809 } 1810 num_tc_qps = num_tc_qps / numtc; 1811 num_tc_qps = min_t(int, num_tc_qps, 1812 i40e_pf_get_max_q_per_tc(pf)); 1813 } 1814 1815 vsi->tc_config.numtc = numtc; 1816 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1817 1818 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1819 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1820 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1821 1822 /* Setup queue offset/count for all TCs for given VSI */ 1823 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1824 /* See if the given TC is enabled for the given VSI */ 1825 if (vsi->tc_config.enabled_tc & BIT(i)) { 1826 /* TC is enabled */ 1827 int pow, num_qps; 1828 1829 switch (vsi->type) { 1830 case I40E_VSI_MAIN: 1831 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1832 I40E_FLAG_FD_ATR_ENABLED)) || 1833 vsi->tc_config.enabled_tc != 1) { 1834 qcount = min_t(int, pf->alloc_rss_size, 1835 num_tc_qps); 1836 break; 1837 } 1838 case I40E_VSI_FDIR: 1839 case I40E_VSI_SRIOV: 1840 case I40E_VSI_VMDQ2: 1841 default: 1842 qcount = num_tc_qps; 1843 WARN_ON(i != 0); 1844 break; 1845 } 1846 vsi->tc_config.tc_info[i].qoffset = offset; 1847 vsi->tc_config.tc_info[i].qcount = qcount; 1848 1849 /* find the next higher power-of-2 of num queue pairs */ 1850 num_qps = qcount; 1851 pow = 0; 1852 while (num_qps && (BIT_ULL(pow) < qcount)) { 1853 pow++; 1854 num_qps >>= 1; 1855 } 1856 1857 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1858 qmap = 1859 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1860 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1861 1862 offset += qcount; 1863 } else { 1864 /* TC is not enabled so set the offset to 1865 * default queue and allocate one queue 1866 * for the given TC. 1867 */ 1868 vsi->tc_config.tc_info[i].qoffset = 0; 1869 vsi->tc_config.tc_info[i].qcount = 1; 1870 vsi->tc_config.tc_info[i].netdev_tc = 0; 1871 1872 qmap = 0; 1873 } 1874 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1875 } 1876 1877 /* Set actual Tx/Rx queue pairs */ 1878 vsi->num_queue_pairs = offset; 1879 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1880 if (vsi->req_queue_pairs > 0) 1881 vsi->num_queue_pairs = vsi->req_queue_pairs; 1882 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1883 vsi->num_queue_pairs = pf->num_lan_msix; 1884 } 1885 1886 /* Scheduler section valid can only be set for ADD VSI */ 1887 if (is_add) { 1888 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1889 1890 ctxt->info.up_enable_bits = enabled_tc; 1891 } 1892 if (vsi->type == I40E_VSI_SRIOV) { 1893 ctxt->info.mapping_flags |= 1894 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1895 for (i = 0; i < vsi->num_queue_pairs; i++) 1896 ctxt->info.queue_mapping[i] = 1897 cpu_to_le16(vsi->base_queue + i); 1898 } else { 1899 ctxt->info.mapping_flags |= 1900 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1901 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1902 } 1903 ctxt->info.valid_sections |= cpu_to_le16(sections); 1904 } 1905 1906 /** 1907 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1908 * @netdev: the netdevice 1909 * @addr: address to add 1910 * 1911 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1912 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1913 */ 1914 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1915 { 1916 struct i40e_netdev_priv *np = netdev_priv(netdev); 1917 struct i40e_vsi *vsi = np->vsi; 1918 1919 if (i40e_add_mac_filter(vsi, addr)) 1920 return 0; 1921 else 1922 return -ENOMEM; 1923 } 1924 1925 /** 1926 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1927 * @netdev: the netdevice 1928 * @addr: address to add 1929 * 1930 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1931 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1932 */ 1933 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1934 { 1935 struct i40e_netdev_priv *np = netdev_priv(netdev); 1936 struct i40e_vsi *vsi = np->vsi; 1937 1938 /* Under some circumstances, we might receive a request to delete 1939 * our own device address from our uc list. Because we store the 1940 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1941 * such requests and not delete our device address from this list. 1942 */ 1943 if (ether_addr_equal(addr, netdev->dev_addr)) 1944 return 0; 1945 1946 i40e_del_mac_filter(vsi, addr); 1947 1948 return 0; 1949 } 1950 1951 /** 1952 * i40e_set_rx_mode - NDO callback to set the netdev filters 1953 * @netdev: network interface device structure 1954 **/ 1955 static void i40e_set_rx_mode(struct net_device *netdev) 1956 { 1957 struct i40e_netdev_priv *np = netdev_priv(netdev); 1958 struct i40e_vsi *vsi = np->vsi; 1959 1960 spin_lock_bh(&vsi->mac_filter_hash_lock); 1961 1962 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1963 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1964 1965 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1966 1967 /* check for other flag changes */ 1968 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1969 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1970 vsi->back->flags |= I40E_FLAG_FILTER_SYNC; 1971 } 1972 } 1973 1974 /** 1975 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1976 * @vsi: Pointer to VSI struct 1977 * @from: Pointer to list which contains MAC filter entries - changes to 1978 * those entries needs to be undone. 1979 * 1980 * MAC filter entries from this list were slated for deletion. 1981 **/ 1982 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1983 struct hlist_head *from) 1984 { 1985 struct i40e_mac_filter *f; 1986 struct hlist_node *h; 1987 1988 hlist_for_each_entry_safe(f, h, from, hlist) { 1989 u64 key = i40e_addr_to_hkey(f->macaddr); 1990 1991 /* Move the element back into MAC filter list*/ 1992 hlist_del(&f->hlist); 1993 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1994 } 1995 } 1996 1997 /** 1998 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1999 * @vsi: Pointer to vsi struct 2000 * @from: Pointer to list which contains MAC filter entries - changes to 2001 * those entries needs to be undone. 2002 * 2003 * MAC filter entries from this list were slated for addition. 2004 **/ 2005 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2006 struct hlist_head *from) 2007 { 2008 struct i40e_new_mac_filter *new; 2009 struct hlist_node *h; 2010 2011 hlist_for_each_entry_safe(new, h, from, hlist) { 2012 /* We can simply free the wrapper structure */ 2013 hlist_del(&new->hlist); 2014 kfree(new); 2015 } 2016 } 2017 2018 /** 2019 * i40e_next_entry - Get the next non-broadcast filter from a list 2020 * @next: pointer to filter in list 2021 * 2022 * Returns the next non-broadcast filter in the list. Required so that we 2023 * ignore broadcast filters within the list, since these are not handled via 2024 * the normal firmware update path. 2025 */ 2026 static 2027 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2028 { 2029 hlist_for_each_entry_continue(next, hlist) { 2030 if (!is_broadcast_ether_addr(next->f->macaddr)) 2031 return next; 2032 } 2033 2034 return NULL; 2035 } 2036 2037 /** 2038 * i40e_update_filter_state - Update filter state based on return data 2039 * from firmware 2040 * @count: Number of filters added 2041 * @add_list: return data from fw 2042 * @head: pointer to first filter in current batch 2043 * 2044 * MAC filter entries from list were slated to be added to device. Returns 2045 * number of successful filters. Note that 0 does NOT mean success! 2046 **/ 2047 static int 2048 i40e_update_filter_state(int count, 2049 struct i40e_aqc_add_macvlan_element_data *add_list, 2050 struct i40e_new_mac_filter *add_head) 2051 { 2052 int retval = 0; 2053 int i; 2054 2055 for (i = 0; i < count; i++) { 2056 /* Always check status of each filter. We don't need to check 2057 * the firmware return status because we pre-set the filter 2058 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2059 * request to the adminq. Thus, if it no longer matches then 2060 * we know the filter is active. 2061 */ 2062 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2063 add_head->state = I40E_FILTER_FAILED; 2064 } else { 2065 add_head->state = I40E_FILTER_ACTIVE; 2066 retval++; 2067 } 2068 2069 add_head = i40e_next_filter(add_head); 2070 if (!add_head) 2071 break; 2072 } 2073 2074 return retval; 2075 } 2076 2077 /** 2078 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2079 * @vsi: ptr to the VSI 2080 * @vsi_name: name to display in messages 2081 * @list: the list of filters to send to firmware 2082 * @num_del: the number of filters to delete 2083 * @retval: Set to -EIO on failure to delete 2084 * 2085 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2086 * *retval instead of a return value so that success does not force ret_val to 2087 * be set to 0. This ensures that a sequence of calls to this function 2088 * preserve the previous value of *retval on successful delete. 2089 */ 2090 static 2091 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2092 struct i40e_aqc_remove_macvlan_element_data *list, 2093 int num_del, int *retval) 2094 { 2095 struct i40e_hw *hw = &vsi->back->hw; 2096 i40e_status aq_ret; 2097 int aq_err; 2098 2099 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2100 aq_err = hw->aq.asq_last_status; 2101 2102 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2103 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2104 *retval = -EIO; 2105 dev_info(&vsi->back->pdev->dev, 2106 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2107 vsi_name, i40e_stat_str(hw, aq_ret), 2108 i40e_aq_str(hw, aq_err)); 2109 } 2110 } 2111 2112 /** 2113 * i40e_aqc_add_filters - Request firmware to add a set of filters 2114 * @vsi: ptr to the VSI 2115 * @vsi_name: name to display in messages 2116 * @list: the list of filters to send to firmware 2117 * @add_head: Position in the add hlist 2118 * @num_add: the number of filters to add 2119 * @promisc_change: set to true on exit if promiscuous mode was forced on 2120 * 2121 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2122 * promisc_changed to true if the firmware has run out of space for more 2123 * filters. 2124 */ 2125 static 2126 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2127 struct i40e_aqc_add_macvlan_element_data *list, 2128 struct i40e_new_mac_filter *add_head, 2129 int num_add, bool *promisc_changed) 2130 { 2131 struct i40e_hw *hw = &vsi->back->hw; 2132 int aq_err, fcnt; 2133 2134 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2135 aq_err = hw->aq.asq_last_status; 2136 fcnt = i40e_update_filter_state(num_add, list, add_head); 2137 2138 if (fcnt != num_add) { 2139 *promisc_changed = true; 2140 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2141 dev_warn(&vsi->back->pdev->dev, 2142 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2143 i40e_aq_str(hw, aq_err), 2144 vsi_name); 2145 } 2146 } 2147 2148 /** 2149 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2150 * @vsi: pointer to the VSI 2151 * @f: filter data 2152 * 2153 * This function sets or clears the promiscuous broadcast flags for VLAN 2154 * filters in order to properly receive broadcast frames. Assumes that only 2155 * broadcast filters are passed. 2156 * 2157 * Returns status indicating success or failure; 2158 **/ 2159 static i40e_status 2160 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2161 struct i40e_mac_filter *f) 2162 { 2163 bool enable = f->state == I40E_FILTER_NEW; 2164 struct i40e_hw *hw = &vsi->back->hw; 2165 i40e_status aq_ret; 2166 2167 if (f->vlan == I40E_VLAN_ANY) { 2168 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2169 vsi->seid, 2170 enable, 2171 NULL); 2172 } else { 2173 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2174 vsi->seid, 2175 enable, 2176 f->vlan, 2177 NULL); 2178 } 2179 2180 if (aq_ret) 2181 dev_warn(&vsi->back->pdev->dev, 2182 "Error %s setting broadcast promiscuous mode on %s\n", 2183 i40e_aq_str(hw, hw->aq.asq_last_status), 2184 vsi_name); 2185 2186 return aq_ret; 2187 } 2188 2189 /** 2190 * i40e_set_promiscuous - set promiscuous mode 2191 * @pf: board private structure 2192 * @promisc: promisc on or off 2193 * 2194 * There are different ways of setting promiscuous mode on a PF depending on 2195 * what state/environment we're in. This identifies and sets it appropriately. 2196 * Returns 0 on success. 2197 **/ 2198 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2199 { 2200 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2201 struct i40e_hw *hw = &pf->hw; 2202 i40e_status aq_ret; 2203 2204 if (vsi->type == I40E_VSI_MAIN && 2205 pf->lan_veb != I40E_NO_VEB && 2206 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2207 /* set defport ON for Main VSI instead of true promisc 2208 * this way we will get all unicast/multicast and VLAN 2209 * promisc behavior but will not get VF or VMDq traffic 2210 * replicated on the Main VSI. 2211 */ 2212 if (promisc) 2213 aq_ret = i40e_aq_set_default_vsi(hw, 2214 vsi->seid, 2215 NULL); 2216 else 2217 aq_ret = i40e_aq_clear_default_vsi(hw, 2218 vsi->seid, 2219 NULL); 2220 if (aq_ret) { 2221 dev_info(&pf->pdev->dev, 2222 "Set default VSI failed, err %s, aq_err %s\n", 2223 i40e_stat_str(hw, aq_ret), 2224 i40e_aq_str(hw, hw->aq.asq_last_status)); 2225 } 2226 } else { 2227 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2228 hw, 2229 vsi->seid, 2230 promisc, NULL, 2231 true); 2232 if (aq_ret) { 2233 dev_info(&pf->pdev->dev, 2234 "set unicast promisc failed, err %s, aq_err %s\n", 2235 i40e_stat_str(hw, aq_ret), 2236 i40e_aq_str(hw, hw->aq.asq_last_status)); 2237 } 2238 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2239 hw, 2240 vsi->seid, 2241 promisc, NULL); 2242 if (aq_ret) { 2243 dev_info(&pf->pdev->dev, 2244 "set multicast promisc failed, err %s, aq_err %s\n", 2245 i40e_stat_str(hw, aq_ret), 2246 i40e_aq_str(hw, hw->aq.asq_last_status)); 2247 } 2248 } 2249 2250 if (!aq_ret) 2251 pf->cur_promisc = promisc; 2252 2253 return aq_ret; 2254 } 2255 2256 /** 2257 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2258 * @vsi: ptr to the VSI 2259 * 2260 * Push any outstanding VSI filter changes through the AdminQ. 2261 * 2262 * Returns 0 or error value 2263 **/ 2264 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2265 { 2266 struct hlist_head tmp_add_list, tmp_del_list; 2267 struct i40e_mac_filter *f; 2268 struct i40e_new_mac_filter *new, *add_head = NULL; 2269 struct i40e_hw *hw = &vsi->back->hw; 2270 unsigned int failed_filters = 0; 2271 unsigned int vlan_filters = 0; 2272 bool promisc_changed = false; 2273 char vsi_name[16] = "PF"; 2274 int filter_list_len = 0; 2275 i40e_status aq_ret = 0; 2276 u32 changed_flags = 0; 2277 struct hlist_node *h; 2278 struct i40e_pf *pf; 2279 int num_add = 0; 2280 int num_del = 0; 2281 int retval = 0; 2282 u16 cmd_flags; 2283 int list_size; 2284 int bkt; 2285 2286 /* empty array typed pointers, kcalloc later */ 2287 struct i40e_aqc_add_macvlan_element_data *add_list; 2288 struct i40e_aqc_remove_macvlan_element_data *del_list; 2289 2290 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2291 usleep_range(1000, 2000); 2292 pf = vsi->back; 2293 2294 if (vsi->netdev) { 2295 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2296 vsi->current_netdev_flags = vsi->netdev->flags; 2297 } 2298 2299 INIT_HLIST_HEAD(&tmp_add_list); 2300 INIT_HLIST_HEAD(&tmp_del_list); 2301 2302 if (vsi->type == I40E_VSI_SRIOV) 2303 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2304 else if (vsi->type != I40E_VSI_MAIN) 2305 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2306 2307 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2308 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2309 2310 spin_lock_bh(&vsi->mac_filter_hash_lock); 2311 /* Create a list of filters to delete. */ 2312 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2313 if (f->state == I40E_FILTER_REMOVE) { 2314 /* Move the element into temporary del_list */ 2315 hash_del(&f->hlist); 2316 hlist_add_head(&f->hlist, &tmp_del_list); 2317 2318 /* Avoid counting removed filters */ 2319 continue; 2320 } 2321 if (f->state == I40E_FILTER_NEW) { 2322 /* Create a temporary i40e_new_mac_filter */ 2323 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2324 if (!new) 2325 goto err_no_memory_locked; 2326 2327 /* Store pointer to the real filter */ 2328 new->f = f; 2329 new->state = f->state; 2330 2331 /* Add it to the hash list */ 2332 hlist_add_head(&new->hlist, &tmp_add_list); 2333 } 2334 2335 /* Count the number of active (current and new) VLAN 2336 * filters we have now. Does not count filters which 2337 * are marked for deletion. 2338 */ 2339 if (f->vlan > 0) 2340 vlan_filters++; 2341 } 2342 2343 retval = i40e_correct_mac_vlan_filters(vsi, 2344 &tmp_add_list, 2345 &tmp_del_list, 2346 vlan_filters); 2347 if (retval) 2348 goto err_no_memory_locked; 2349 2350 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2351 } 2352 2353 /* Now process 'del_list' outside the lock */ 2354 if (!hlist_empty(&tmp_del_list)) { 2355 filter_list_len = hw->aq.asq_buf_size / 2356 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2357 list_size = filter_list_len * 2358 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2359 del_list = kzalloc(list_size, GFP_ATOMIC); 2360 if (!del_list) 2361 goto err_no_memory; 2362 2363 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2364 cmd_flags = 0; 2365 2366 /* handle broadcast filters by updating the broadcast 2367 * promiscuous flag and release filter list. 2368 */ 2369 if (is_broadcast_ether_addr(f->macaddr)) { 2370 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2371 2372 hlist_del(&f->hlist); 2373 kfree(f); 2374 continue; 2375 } 2376 2377 /* add to delete list */ 2378 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2379 if (f->vlan == I40E_VLAN_ANY) { 2380 del_list[num_del].vlan_tag = 0; 2381 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2382 } else { 2383 del_list[num_del].vlan_tag = 2384 cpu_to_le16((u16)(f->vlan)); 2385 } 2386 2387 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2388 del_list[num_del].flags = cmd_flags; 2389 num_del++; 2390 2391 /* flush a full buffer */ 2392 if (num_del == filter_list_len) { 2393 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2394 num_del, &retval); 2395 memset(del_list, 0, list_size); 2396 num_del = 0; 2397 } 2398 /* Release memory for MAC filter entries which were 2399 * synced up with HW. 2400 */ 2401 hlist_del(&f->hlist); 2402 kfree(f); 2403 } 2404 2405 if (num_del) { 2406 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2407 num_del, &retval); 2408 } 2409 2410 kfree(del_list); 2411 del_list = NULL; 2412 } 2413 2414 if (!hlist_empty(&tmp_add_list)) { 2415 /* Do all the adds now. */ 2416 filter_list_len = hw->aq.asq_buf_size / 2417 sizeof(struct i40e_aqc_add_macvlan_element_data); 2418 list_size = filter_list_len * 2419 sizeof(struct i40e_aqc_add_macvlan_element_data); 2420 add_list = kzalloc(list_size, GFP_ATOMIC); 2421 if (!add_list) 2422 goto err_no_memory; 2423 2424 num_add = 0; 2425 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2426 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, 2427 vsi->state)) { 2428 new->state = I40E_FILTER_FAILED; 2429 continue; 2430 } 2431 2432 /* handle broadcast filters by updating the broadcast 2433 * promiscuous flag instead of adding a MAC filter. 2434 */ 2435 if (is_broadcast_ether_addr(new->f->macaddr)) { 2436 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2437 new->f)) 2438 new->state = I40E_FILTER_FAILED; 2439 else 2440 new->state = I40E_FILTER_ACTIVE; 2441 continue; 2442 } 2443 2444 /* add to add array */ 2445 if (num_add == 0) 2446 add_head = new; 2447 cmd_flags = 0; 2448 ether_addr_copy(add_list[num_add].mac_addr, 2449 new->f->macaddr); 2450 if (new->f->vlan == I40E_VLAN_ANY) { 2451 add_list[num_add].vlan_tag = 0; 2452 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2453 } else { 2454 add_list[num_add].vlan_tag = 2455 cpu_to_le16((u16)(new->f->vlan)); 2456 } 2457 add_list[num_add].queue_number = 0; 2458 /* set invalid match method for later detection */ 2459 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2460 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2461 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2462 num_add++; 2463 2464 /* flush a full buffer */ 2465 if (num_add == filter_list_len) { 2466 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2467 add_head, num_add, 2468 &promisc_changed); 2469 memset(add_list, 0, list_size); 2470 num_add = 0; 2471 } 2472 } 2473 if (num_add) { 2474 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2475 num_add, &promisc_changed); 2476 } 2477 /* Now move all of the filters from the temp add list back to 2478 * the VSI's list. 2479 */ 2480 spin_lock_bh(&vsi->mac_filter_hash_lock); 2481 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2482 /* Only update the state if we're still NEW */ 2483 if (new->f->state == I40E_FILTER_NEW) 2484 new->f->state = new->state; 2485 hlist_del(&new->hlist); 2486 kfree(new); 2487 } 2488 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2489 kfree(add_list); 2490 add_list = NULL; 2491 } 2492 2493 /* Determine the number of active and failed filters. */ 2494 spin_lock_bh(&vsi->mac_filter_hash_lock); 2495 vsi->active_filters = 0; 2496 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2497 if (f->state == I40E_FILTER_ACTIVE) 2498 vsi->active_filters++; 2499 else if (f->state == I40E_FILTER_FAILED) 2500 failed_filters++; 2501 } 2502 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2503 2504 /* If promiscuous mode has changed, we need to calculate a new 2505 * threshold for when we are safe to exit 2506 */ 2507 if (promisc_changed) 2508 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2509 2510 /* Check if we are able to exit overflow promiscuous mode. We can 2511 * safely exit if we didn't just enter, we no longer have any failed 2512 * filters, and we have reduced filters below the threshold value. 2513 */ 2514 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state) && 2515 !promisc_changed && !failed_filters && 2516 (vsi->active_filters < vsi->promisc_threshold)) { 2517 dev_info(&pf->pdev->dev, 2518 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2519 vsi_name); 2520 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2521 promisc_changed = true; 2522 vsi->promisc_threshold = 0; 2523 } 2524 2525 /* if the VF is not trusted do not do promisc */ 2526 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2527 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2528 goto out; 2529 } 2530 2531 /* check for changes in promiscuous modes */ 2532 if (changed_flags & IFF_ALLMULTI) { 2533 bool cur_multipromisc; 2534 2535 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2536 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2537 vsi->seid, 2538 cur_multipromisc, 2539 NULL); 2540 if (aq_ret) { 2541 retval = i40e_aq_rc_to_posix(aq_ret, 2542 hw->aq.asq_last_status); 2543 dev_info(&pf->pdev->dev, 2544 "set multi promisc failed on %s, err %s aq_err %s\n", 2545 vsi_name, 2546 i40e_stat_str(hw, aq_ret), 2547 i40e_aq_str(hw, hw->aq.asq_last_status)); 2548 } 2549 } 2550 2551 if ((changed_flags & IFF_PROMISC) || promisc_changed) { 2552 bool cur_promisc; 2553 2554 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2555 test_bit(__I40E_VSI_OVERFLOW_PROMISC, 2556 vsi->state)); 2557 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2558 if (aq_ret) { 2559 retval = i40e_aq_rc_to_posix(aq_ret, 2560 hw->aq.asq_last_status); 2561 dev_info(&pf->pdev->dev, 2562 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2563 cur_promisc ? "on" : "off", 2564 vsi_name, 2565 i40e_stat_str(hw, aq_ret), 2566 i40e_aq_str(hw, hw->aq.asq_last_status)); 2567 } 2568 } 2569 out: 2570 /* if something went wrong then set the changed flag so we try again */ 2571 if (retval) 2572 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2573 2574 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2575 return retval; 2576 2577 err_no_memory: 2578 /* Restore elements on the temporary add and delete lists */ 2579 spin_lock_bh(&vsi->mac_filter_hash_lock); 2580 err_no_memory_locked: 2581 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2582 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2583 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2584 2585 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2586 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2587 return -ENOMEM; 2588 } 2589 2590 /** 2591 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2592 * @pf: board private structure 2593 **/ 2594 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2595 { 2596 int v; 2597 2598 if (!pf || !(pf->flags & I40E_FLAG_FILTER_SYNC)) 2599 return; 2600 pf->flags &= ~I40E_FLAG_FILTER_SYNC; 2601 2602 for (v = 0; v < pf->num_alloc_vsi; v++) { 2603 if (pf->vsi[v] && 2604 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2605 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2606 2607 if (ret) { 2608 /* come back and try again later */ 2609 pf->flags |= I40E_FLAG_FILTER_SYNC; 2610 break; 2611 } 2612 } 2613 } 2614 } 2615 2616 /** 2617 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2618 * @vsi: the vsi 2619 **/ 2620 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2621 { 2622 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2623 return I40E_RXBUFFER_2048; 2624 else 2625 return I40E_RXBUFFER_3072; 2626 } 2627 2628 /** 2629 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2630 * @netdev: network interface device structure 2631 * @new_mtu: new value for maximum frame size 2632 * 2633 * Returns 0 on success, negative on failure 2634 **/ 2635 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2636 { 2637 struct i40e_netdev_priv *np = netdev_priv(netdev); 2638 struct i40e_vsi *vsi = np->vsi; 2639 struct i40e_pf *pf = vsi->back; 2640 2641 if (i40e_enabled_xdp_vsi(vsi)) { 2642 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2643 2644 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2645 return -EINVAL; 2646 } 2647 2648 netdev_info(netdev, "changing MTU from %d to %d\n", 2649 netdev->mtu, new_mtu); 2650 netdev->mtu = new_mtu; 2651 if (netif_running(netdev)) 2652 i40e_vsi_reinit_locked(vsi); 2653 pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED | 2654 I40E_FLAG_CLIENT_L2_CHANGE); 2655 return 0; 2656 } 2657 2658 /** 2659 * i40e_ioctl - Access the hwtstamp interface 2660 * @netdev: network interface device structure 2661 * @ifr: interface request data 2662 * @cmd: ioctl command 2663 **/ 2664 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2665 { 2666 struct i40e_netdev_priv *np = netdev_priv(netdev); 2667 struct i40e_pf *pf = np->vsi->back; 2668 2669 switch (cmd) { 2670 case SIOCGHWTSTAMP: 2671 return i40e_ptp_get_ts_config(pf, ifr); 2672 case SIOCSHWTSTAMP: 2673 return i40e_ptp_set_ts_config(pf, ifr); 2674 default: 2675 return -EOPNOTSUPP; 2676 } 2677 } 2678 2679 /** 2680 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2681 * @vsi: the vsi being adjusted 2682 **/ 2683 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2684 { 2685 struct i40e_vsi_context ctxt; 2686 i40e_status ret; 2687 2688 if ((vsi->info.valid_sections & 2689 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2690 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2691 return; /* already enabled */ 2692 2693 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2694 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2695 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2696 2697 ctxt.seid = vsi->seid; 2698 ctxt.info = vsi->info; 2699 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2700 if (ret) { 2701 dev_info(&vsi->back->pdev->dev, 2702 "update vlan stripping failed, err %s aq_err %s\n", 2703 i40e_stat_str(&vsi->back->hw, ret), 2704 i40e_aq_str(&vsi->back->hw, 2705 vsi->back->hw.aq.asq_last_status)); 2706 } 2707 } 2708 2709 /** 2710 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2711 * @vsi: the vsi being adjusted 2712 **/ 2713 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2714 { 2715 struct i40e_vsi_context ctxt; 2716 i40e_status ret; 2717 2718 if ((vsi->info.valid_sections & 2719 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2720 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2721 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2722 return; /* already disabled */ 2723 2724 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2725 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2726 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2727 2728 ctxt.seid = vsi->seid; 2729 ctxt.info = vsi->info; 2730 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2731 if (ret) { 2732 dev_info(&vsi->back->pdev->dev, 2733 "update vlan stripping failed, err %s aq_err %s\n", 2734 i40e_stat_str(&vsi->back->hw, ret), 2735 i40e_aq_str(&vsi->back->hw, 2736 vsi->back->hw.aq.asq_last_status)); 2737 } 2738 } 2739 2740 /** 2741 * i40e_vlan_rx_register - Setup or shutdown vlan offload 2742 * @netdev: network interface to be adjusted 2743 * @features: netdev features to test if VLAN offload is enabled or not 2744 **/ 2745 static void i40e_vlan_rx_register(struct net_device *netdev, u32 features) 2746 { 2747 struct i40e_netdev_priv *np = netdev_priv(netdev); 2748 struct i40e_vsi *vsi = np->vsi; 2749 2750 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2751 i40e_vlan_stripping_enable(vsi); 2752 else 2753 i40e_vlan_stripping_disable(vsi); 2754 } 2755 2756 /** 2757 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2758 * @vsi: the vsi being configured 2759 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2760 * 2761 * This is a helper function for adding a new MAC/VLAN filter with the 2762 * specified VLAN for each existing MAC address already in the hash table. 2763 * This function does *not* perform any accounting to update filters based on 2764 * VLAN mode. 2765 * 2766 * NOTE: this function expects to be called while under the 2767 * mac_filter_hash_lock 2768 **/ 2769 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2770 { 2771 struct i40e_mac_filter *f, *add_f; 2772 struct hlist_node *h; 2773 int bkt; 2774 2775 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2776 if (f->state == I40E_FILTER_REMOVE) 2777 continue; 2778 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2779 if (!add_f) { 2780 dev_info(&vsi->back->pdev->dev, 2781 "Could not add vlan filter %d for %pM\n", 2782 vid, f->macaddr); 2783 return -ENOMEM; 2784 } 2785 } 2786 2787 return 0; 2788 } 2789 2790 /** 2791 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2792 * @vsi: the VSI being configured 2793 * @vid: VLAN id to be added 2794 **/ 2795 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2796 { 2797 int err; 2798 2799 if (vsi->info.pvid) 2800 return -EINVAL; 2801 2802 /* The network stack will attempt to add VID=0, with the intention to 2803 * receive priority tagged packets with a VLAN of 0. Our HW receives 2804 * these packets by default when configured to receive untagged 2805 * packets, so we don't need to add a filter for this case. 2806 * Additionally, HW interprets adding a VID=0 filter as meaning to 2807 * receive *only* tagged traffic and stops receiving untagged traffic. 2808 * Thus, we do not want to actually add a filter for VID=0 2809 */ 2810 if (!vid) 2811 return 0; 2812 2813 /* Locked once because all functions invoked below iterates list*/ 2814 spin_lock_bh(&vsi->mac_filter_hash_lock); 2815 err = i40e_add_vlan_all_mac(vsi, vid); 2816 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2817 if (err) 2818 return err; 2819 2820 /* schedule our worker thread which will take care of 2821 * applying the new filter changes 2822 */ 2823 i40e_service_event_schedule(vsi->back); 2824 return 0; 2825 } 2826 2827 /** 2828 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2829 * @vsi: the vsi being configured 2830 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2831 * 2832 * This function should be used to remove all VLAN filters which match the 2833 * given VID. It does not schedule the service event and does not take the 2834 * mac_filter_hash_lock so it may be combined with other operations under 2835 * a single invocation of the mac_filter_hash_lock. 2836 * 2837 * NOTE: this function expects to be called while under the 2838 * mac_filter_hash_lock 2839 */ 2840 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2841 { 2842 struct i40e_mac_filter *f; 2843 struct hlist_node *h; 2844 int bkt; 2845 2846 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2847 if (f->vlan == vid) 2848 __i40e_del_filter(vsi, f); 2849 } 2850 } 2851 2852 /** 2853 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2854 * @vsi: the VSI being configured 2855 * @vid: VLAN id to be removed 2856 **/ 2857 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2858 { 2859 if (!vid || vsi->info.pvid) 2860 return; 2861 2862 spin_lock_bh(&vsi->mac_filter_hash_lock); 2863 i40e_rm_vlan_all_mac(vsi, vid); 2864 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2865 2866 /* schedule our worker thread which will take care of 2867 * applying the new filter changes 2868 */ 2869 i40e_service_event_schedule(vsi->back); 2870 } 2871 2872 /** 2873 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2874 * @netdev: network interface to be adjusted 2875 * @vid: vlan id to be added 2876 * 2877 * net_device_ops implementation for adding vlan ids 2878 **/ 2879 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2880 __always_unused __be16 proto, u16 vid) 2881 { 2882 struct i40e_netdev_priv *np = netdev_priv(netdev); 2883 struct i40e_vsi *vsi = np->vsi; 2884 int ret = 0; 2885 2886 if (vid >= VLAN_N_VID) 2887 return -EINVAL; 2888 2889 ret = i40e_vsi_add_vlan(vsi, vid); 2890 if (!ret) 2891 set_bit(vid, vsi->active_vlans); 2892 2893 return ret; 2894 } 2895 2896 /** 2897 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2898 * @netdev: network interface to be adjusted 2899 * @vid: vlan id to be removed 2900 * 2901 * net_device_ops implementation for removing vlan ids 2902 **/ 2903 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2904 __always_unused __be16 proto, u16 vid) 2905 { 2906 struct i40e_netdev_priv *np = netdev_priv(netdev); 2907 struct i40e_vsi *vsi = np->vsi; 2908 2909 /* return code is ignored as there is nothing a user 2910 * can do about failure to remove and a log message was 2911 * already printed from the other function 2912 */ 2913 i40e_vsi_kill_vlan(vsi, vid); 2914 2915 clear_bit(vid, vsi->active_vlans); 2916 2917 return 0; 2918 } 2919 2920 /** 2921 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2922 * @vsi: the vsi being brought back up 2923 **/ 2924 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2925 { 2926 u16 vid; 2927 2928 if (!vsi->netdev) 2929 return; 2930 2931 i40e_vlan_rx_register(vsi->netdev, vsi->netdev->features); 2932 2933 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2934 i40e_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), 2935 vid); 2936 } 2937 2938 /** 2939 * i40e_vsi_add_pvid - Add pvid for the VSI 2940 * @vsi: the vsi being adjusted 2941 * @vid: the vlan id to set as a PVID 2942 **/ 2943 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2944 { 2945 struct i40e_vsi_context ctxt; 2946 i40e_status ret; 2947 2948 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2949 vsi->info.pvid = cpu_to_le16(vid); 2950 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2951 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2952 I40E_AQ_VSI_PVLAN_EMOD_STR; 2953 2954 ctxt.seid = vsi->seid; 2955 ctxt.info = vsi->info; 2956 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2957 if (ret) { 2958 dev_info(&vsi->back->pdev->dev, 2959 "add pvid failed, err %s aq_err %s\n", 2960 i40e_stat_str(&vsi->back->hw, ret), 2961 i40e_aq_str(&vsi->back->hw, 2962 vsi->back->hw.aq.asq_last_status)); 2963 return -ENOENT; 2964 } 2965 2966 return 0; 2967 } 2968 2969 /** 2970 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2971 * @vsi: the vsi being adjusted 2972 * 2973 * Just use the vlan_rx_register() service to put it back to normal 2974 **/ 2975 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2976 { 2977 i40e_vlan_stripping_disable(vsi); 2978 2979 vsi->info.pvid = 0; 2980 } 2981 2982 /** 2983 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 2984 * @vsi: ptr to the VSI 2985 * 2986 * If this function returns with an error, then it's possible one or 2987 * more of the rings is populated (while the rest are not). It is the 2988 * callers duty to clean those orphaned rings. 2989 * 2990 * Return 0 on success, negative on failure 2991 **/ 2992 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 2993 { 2994 int i, err = 0; 2995 2996 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2997 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 2998 2999 if (!i40e_enabled_xdp_vsi(vsi)) 3000 return err; 3001 3002 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3003 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3004 3005 return err; 3006 } 3007 3008 /** 3009 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3010 * @vsi: ptr to the VSI 3011 * 3012 * Free VSI's transmit software resources 3013 **/ 3014 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3015 { 3016 int i; 3017 3018 if (vsi->tx_rings) { 3019 for (i = 0; i < vsi->num_queue_pairs; i++) 3020 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3021 i40e_free_tx_resources(vsi->tx_rings[i]); 3022 } 3023 3024 if (vsi->xdp_rings) { 3025 for (i = 0; i < vsi->num_queue_pairs; i++) 3026 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3027 i40e_free_tx_resources(vsi->xdp_rings[i]); 3028 } 3029 } 3030 3031 /** 3032 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3033 * @vsi: ptr to the VSI 3034 * 3035 * If this function returns with an error, then it's possible one or 3036 * more of the rings is populated (while the rest are not). It is the 3037 * callers duty to clean those orphaned rings. 3038 * 3039 * Return 0 on success, negative on failure 3040 **/ 3041 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3042 { 3043 int i, err = 0; 3044 3045 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3046 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3047 return err; 3048 } 3049 3050 /** 3051 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3052 * @vsi: ptr to the VSI 3053 * 3054 * Free all receive software resources 3055 **/ 3056 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3057 { 3058 int i; 3059 3060 if (!vsi->rx_rings) 3061 return; 3062 3063 for (i = 0; i < vsi->num_queue_pairs; i++) 3064 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3065 i40e_free_rx_resources(vsi->rx_rings[i]); 3066 } 3067 3068 /** 3069 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3070 * @ring: The Tx ring to configure 3071 * 3072 * This enables/disables XPS for a given Tx descriptor ring 3073 * based on the TCs enabled for the VSI that ring belongs to. 3074 **/ 3075 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3076 { 3077 int cpu; 3078 3079 if (!ring->q_vector || !ring->netdev || ring->ch) 3080 return; 3081 3082 /* We only initialize XPS once, so as not to overwrite user settings */ 3083 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3084 return; 3085 3086 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3087 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3088 ring->queue_index); 3089 } 3090 3091 /** 3092 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3093 * @ring: The Tx ring to configure 3094 * 3095 * Configure the Tx descriptor ring in the HMC context. 3096 **/ 3097 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3098 { 3099 struct i40e_vsi *vsi = ring->vsi; 3100 u16 pf_q = vsi->base_queue + ring->queue_index; 3101 struct i40e_hw *hw = &vsi->back->hw; 3102 struct i40e_hmc_obj_txq tx_ctx; 3103 i40e_status err = 0; 3104 u32 qtx_ctl = 0; 3105 3106 /* some ATR related tx ring init */ 3107 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3108 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3109 ring->atr_count = 0; 3110 } else { 3111 ring->atr_sample_rate = 0; 3112 } 3113 3114 /* configure XPS */ 3115 i40e_config_xps_tx_ring(ring); 3116 3117 /* clear the context structure first */ 3118 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3119 3120 tx_ctx.new_context = 1; 3121 tx_ctx.base = (ring->dma / 128); 3122 tx_ctx.qlen = ring->count; 3123 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3124 I40E_FLAG_FD_ATR_ENABLED)); 3125 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3126 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3127 if (vsi->type != I40E_VSI_FDIR) 3128 tx_ctx.head_wb_ena = 1; 3129 tx_ctx.head_wb_addr = ring->dma + 3130 (ring->count * sizeof(struct i40e_tx_desc)); 3131 3132 /* As part of VSI creation/update, FW allocates certain 3133 * Tx arbitration queue sets for each TC enabled for 3134 * the VSI. The FW returns the handles to these queue 3135 * sets as part of the response buffer to Add VSI, 3136 * Update VSI, etc. AQ commands. It is expected that 3137 * these queue set handles be associated with the Tx 3138 * queues by the driver as part of the TX queue context 3139 * initialization. This has to be done regardless of 3140 * DCB as by default everything is mapped to TC0. 3141 */ 3142 3143 if (ring->ch) 3144 tx_ctx.rdylist = 3145 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3146 3147 else 3148 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3149 3150 tx_ctx.rdylist_act = 0; 3151 3152 /* clear the context in the HMC */ 3153 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3154 if (err) { 3155 dev_info(&vsi->back->pdev->dev, 3156 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3157 ring->queue_index, pf_q, err); 3158 return -ENOMEM; 3159 } 3160 3161 /* set the context in the HMC */ 3162 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3163 if (err) { 3164 dev_info(&vsi->back->pdev->dev, 3165 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3166 ring->queue_index, pf_q, err); 3167 return -ENOMEM; 3168 } 3169 3170 /* Now associate this queue with this PCI function */ 3171 if (ring->ch) { 3172 if (ring->ch->type == I40E_VSI_VMDQ2) 3173 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3174 else 3175 return -EINVAL; 3176 3177 qtx_ctl |= (ring->ch->vsi_number << 3178 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3179 I40E_QTX_CTL_VFVM_INDX_MASK; 3180 } else { 3181 if (vsi->type == I40E_VSI_VMDQ2) { 3182 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3183 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3184 I40E_QTX_CTL_VFVM_INDX_MASK; 3185 } else { 3186 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3187 } 3188 } 3189 3190 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3191 I40E_QTX_CTL_PF_INDX_MASK); 3192 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3193 i40e_flush(hw); 3194 3195 /* cache tail off for easier writes later */ 3196 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3197 3198 return 0; 3199 } 3200 3201 /** 3202 * i40e_configure_rx_ring - Configure a receive ring context 3203 * @ring: The Rx ring to configure 3204 * 3205 * Configure the Rx descriptor ring in the HMC context. 3206 **/ 3207 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3208 { 3209 struct i40e_vsi *vsi = ring->vsi; 3210 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3211 u16 pf_q = vsi->base_queue + ring->queue_index; 3212 struct i40e_hw *hw = &vsi->back->hw; 3213 struct i40e_hmc_obj_rxq rx_ctx; 3214 i40e_status err = 0; 3215 3216 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3217 3218 /* clear the context structure first */ 3219 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3220 3221 ring->rx_buf_len = vsi->rx_buf_len; 3222 3223 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3224 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3225 3226 rx_ctx.base = (ring->dma / 128); 3227 rx_ctx.qlen = ring->count; 3228 3229 /* use 32 byte descriptors */ 3230 rx_ctx.dsize = 1; 3231 3232 /* descriptor type is always zero 3233 * rx_ctx.dtype = 0; 3234 */ 3235 rx_ctx.hsplit_0 = 0; 3236 3237 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3238 if (hw->revision_id == 0) 3239 rx_ctx.lrxqthresh = 0; 3240 else 3241 rx_ctx.lrxqthresh = 1; 3242 rx_ctx.crcstrip = 1; 3243 rx_ctx.l2tsel = 1; 3244 /* this controls whether VLAN is stripped from inner headers */ 3245 rx_ctx.showiv = 0; 3246 /* set the prefena field to 1 because the manual says to */ 3247 rx_ctx.prefena = 1; 3248 3249 /* clear the context in the HMC */ 3250 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3251 if (err) { 3252 dev_info(&vsi->back->pdev->dev, 3253 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3254 ring->queue_index, pf_q, err); 3255 return -ENOMEM; 3256 } 3257 3258 /* set the context in the HMC */ 3259 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3260 if (err) { 3261 dev_info(&vsi->back->pdev->dev, 3262 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3263 ring->queue_index, pf_q, err); 3264 return -ENOMEM; 3265 } 3266 3267 /* configure Rx buffer alignment */ 3268 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3269 clear_ring_build_skb_enabled(ring); 3270 else 3271 set_ring_build_skb_enabled(ring); 3272 3273 /* cache tail for quicker writes, and clear the reg before use */ 3274 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3275 writel(0, ring->tail); 3276 3277 i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3278 3279 return 0; 3280 } 3281 3282 /** 3283 * i40e_vsi_configure_tx - Configure the VSI for Tx 3284 * @vsi: VSI structure describing this set of rings and resources 3285 * 3286 * Configure the Tx VSI for operation. 3287 **/ 3288 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3289 { 3290 int err = 0; 3291 u16 i; 3292 3293 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3294 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3295 3296 if (!i40e_enabled_xdp_vsi(vsi)) 3297 return err; 3298 3299 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3300 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3301 3302 return err; 3303 } 3304 3305 /** 3306 * i40e_vsi_configure_rx - Configure the VSI for Rx 3307 * @vsi: the VSI being configured 3308 * 3309 * Configure the Rx VSI for operation. 3310 **/ 3311 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3312 { 3313 int err = 0; 3314 u16 i; 3315 3316 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3317 vsi->max_frame = I40E_MAX_RXBUFFER; 3318 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3319 #if (PAGE_SIZE < 8192) 3320 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3321 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3322 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3323 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3324 #endif 3325 } else { 3326 vsi->max_frame = I40E_MAX_RXBUFFER; 3327 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3328 I40E_RXBUFFER_2048; 3329 } 3330 3331 /* set up individual rings */ 3332 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3333 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3334 3335 return err; 3336 } 3337 3338 /** 3339 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3340 * @vsi: ptr to the VSI 3341 **/ 3342 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3343 { 3344 struct i40e_ring *tx_ring, *rx_ring; 3345 u16 qoffset, qcount; 3346 int i, n; 3347 3348 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3349 /* Reset the TC information */ 3350 for (i = 0; i < vsi->num_queue_pairs; i++) { 3351 rx_ring = vsi->rx_rings[i]; 3352 tx_ring = vsi->tx_rings[i]; 3353 rx_ring->dcb_tc = 0; 3354 tx_ring->dcb_tc = 0; 3355 } 3356 return; 3357 } 3358 3359 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3360 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3361 continue; 3362 3363 qoffset = vsi->tc_config.tc_info[n].qoffset; 3364 qcount = vsi->tc_config.tc_info[n].qcount; 3365 for (i = qoffset; i < (qoffset + qcount); i++) { 3366 rx_ring = vsi->rx_rings[i]; 3367 tx_ring = vsi->tx_rings[i]; 3368 rx_ring->dcb_tc = n; 3369 tx_ring->dcb_tc = n; 3370 } 3371 } 3372 } 3373 3374 /** 3375 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3376 * @vsi: ptr to the VSI 3377 **/ 3378 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3379 { 3380 if (vsi->netdev) 3381 i40e_set_rx_mode(vsi->netdev); 3382 } 3383 3384 /** 3385 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3386 * @vsi: Pointer to the targeted VSI 3387 * 3388 * This function replays the hlist on the hw where all the SB Flow Director 3389 * filters were saved. 3390 **/ 3391 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3392 { 3393 struct i40e_fdir_filter *filter; 3394 struct i40e_pf *pf = vsi->back; 3395 struct hlist_node *node; 3396 3397 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3398 return; 3399 3400 /* Reset FDir counters as we're replaying all existing filters */ 3401 pf->fd_tcp4_filter_cnt = 0; 3402 pf->fd_udp4_filter_cnt = 0; 3403 pf->fd_sctp4_filter_cnt = 0; 3404 pf->fd_ip4_filter_cnt = 0; 3405 3406 hlist_for_each_entry_safe(filter, node, 3407 &pf->fdir_filter_list, fdir_node) { 3408 i40e_add_del_fdir(vsi, filter, true); 3409 } 3410 } 3411 3412 /** 3413 * i40e_vsi_configure - Set up the VSI for action 3414 * @vsi: the VSI being configured 3415 **/ 3416 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3417 { 3418 int err; 3419 3420 i40e_set_vsi_rx_mode(vsi); 3421 i40e_restore_vlan(vsi); 3422 i40e_vsi_config_dcb_rings(vsi); 3423 err = i40e_vsi_configure_tx(vsi); 3424 if (!err) 3425 err = i40e_vsi_configure_rx(vsi); 3426 3427 return err; 3428 } 3429 3430 /** 3431 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3432 * @vsi: the VSI being configured 3433 **/ 3434 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3435 { 3436 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3437 struct i40e_pf *pf = vsi->back; 3438 struct i40e_hw *hw = &pf->hw; 3439 u16 vector; 3440 int i, q; 3441 u32 qp; 3442 3443 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3444 * and PFINT_LNKLSTn registers, e.g.: 3445 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3446 */ 3447 qp = vsi->base_queue; 3448 vector = vsi->base_vector; 3449 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3450 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3451 3452 q_vector->itr_countdown = ITR_COUNTDOWN_START; 3453 q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[i]->rx_itr_setting); 3454 q_vector->rx.latency_range = I40E_LOW_LATENCY; 3455 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3456 q_vector->rx.itr); 3457 q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[i]->tx_itr_setting); 3458 q_vector->tx.latency_range = I40E_LOW_LATENCY; 3459 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3460 q_vector->tx.itr); 3461 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3462 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3463 3464 /* Linked list for the queuepairs assigned to this vector */ 3465 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3466 for (q = 0; q < q_vector->num_ringpairs; q++) { 3467 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3468 u32 val; 3469 3470 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3471 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3472 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3473 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3474 (I40E_QUEUE_TYPE_TX << 3475 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3476 3477 wr32(hw, I40E_QINT_RQCTL(qp), val); 3478 3479 if (has_xdp) { 3480 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3481 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3482 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3483 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3484 (I40E_QUEUE_TYPE_TX << 3485 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3486 3487 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3488 } 3489 3490 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3491 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3492 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3493 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3494 (I40E_QUEUE_TYPE_RX << 3495 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3496 3497 /* Terminate the linked list */ 3498 if (q == (q_vector->num_ringpairs - 1)) 3499 val |= (I40E_QUEUE_END_OF_LIST << 3500 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3501 3502 wr32(hw, I40E_QINT_TQCTL(qp), val); 3503 qp++; 3504 } 3505 } 3506 3507 i40e_flush(hw); 3508 } 3509 3510 /** 3511 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3512 * @hw: ptr to the hardware info 3513 **/ 3514 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3515 { 3516 struct i40e_hw *hw = &pf->hw; 3517 u32 val; 3518 3519 /* clear things first */ 3520 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3521 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3522 3523 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3524 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3525 I40E_PFINT_ICR0_ENA_GRST_MASK | 3526 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3527 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3528 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3529 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3530 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3531 3532 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3533 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3534 3535 if (pf->flags & I40E_FLAG_PTP) 3536 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3537 3538 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3539 3540 /* SW_ITR_IDX = 0, but don't change INTENA */ 3541 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3542 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3543 3544 /* OTHER_ITR_IDX = 0 */ 3545 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3546 } 3547 3548 /** 3549 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3550 * @vsi: the VSI being configured 3551 **/ 3552 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3553 { 3554 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3555 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3556 struct i40e_pf *pf = vsi->back; 3557 struct i40e_hw *hw = &pf->hw; 3558 u32 val; 3559 3560 /* set the ITR configuration */ 3561 q_vector->itr_countdown = ITR_COUNTDOWN_START; 3562 q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[0]->rx_itr_setting); 3563 q_vector->rx.latency_range = I40E_LOW_LATENCY; 3564 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.itr); 3565 q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[0]->tx_itr_setting); 3566 q_vector->tx.latency_range = I40E_LOW_LATENCY; 3567 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.itr); 3568 3569 i40e_enable_misc_int_causes(pf); 3570 3571 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3572 wr32(hw, I40E_PFINT_LNKLST0, 0); 3573 3574 /* Associate the queue pair to the vector and enable the queue int */ 3575 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3576 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3577 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3578 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3579 3580 wr32(hw, I40E_QINT_RQCTL(0), val); 3581 3582 if (i40e_enabled_xdp_vsi(vsi)) { 3583 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3584 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3585 (I40E_QUEUE_TYPE_TX 3586 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3587 3588 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3589 } 3590 3591 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3592 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3593 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3594 3595 wr32(hw, I40E_QINT_TQCTL(0), val); 3596 i40e_flush(hw); 3597 } 3598 3599 /** 3600 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3601 * @pf: board private structure 3602 **/ 3603 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3604 { 3605 struct i40e_hw *hw = &pf->hw; 3606 3607 wr32(hw, I40E_PFINT_DYN_CTL0, 3608 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3609 i40e_flush(hw); 3610 } 3611 3612 /** 3613 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3614 * @pf: board private structure 3615 **/ 3616 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3617 { 3618 struct i40e_hw *hw = &pf->hw; 3619 u32 val; 3620 3621 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3622 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3623 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3624 3625 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3626 i40e_flush(hw); 3627 } 3628 3629 /** 3630 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3631 * @irq: interrupt number 3632 * @data: pointer to a q_vector 3633 **/ 3634 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3635 { 3636 struct i40e_q_vector *q_vector = data; 3637 3638 if (!q_vector->tx.ring && !q_vector->rx.ring) 3639 return IRQ_HANDLED; 3640 3641 napi_schedule_irqoff(&q_vector->napi); 3642 3643 return IRQ_HANDLED; 3644 } 3645 3646 /** 3647 * i40e_irq_affinity_notify - Callback for affinity changes 3648 * @notify: context as to what irq was changed 3649 * @mask: the new affinity mask 3650 * 3651 * This is a callback function used by the irq_set_affinity_notifier function 3652 * so that we may register to receive changes to the irq affinity masks. 3653 **/ 3654 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3655 const cpumask_t *mask) 3656 { 3657 struct i40e_q_vector *q_vector = 3658 container_of(notify, struct i40e_q_vector, affinity_notify); 3659 3660 cpumask_copy(&q_vector->affinity_mask, mask); 3661 } 3662 3663 /** 3664 * i40e_irq_affinity_release - Callback for affinity notifier release 3665 * @ref: internal core kernel usage 3666 * 3667 * This is a callback function used by the irq_set_affinity_notifier function 3668 * to inform the current notification subscriber that they will no longer 3669 * receive notifications. 3670 **/ 3671 static void i40e_irq_affinity_release(struct kref *ref) {} 3672 3673 /** 3674 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3675 * @vsi: the VSI being configured 3676 * @basename: name for the vector 3677 * 3678 * Allocates MSI-X vectors and requests interrupts from the kernel. 3679 **/ 3680 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3681 { 3682 int q_vectors = vsi->num_q_vectors; 3683 struct i40e_pf *pf = vsi->back; 3684 int base = vsi->base_vector; 3685 int rx_int_idx = 0; 3686 int tx_int_idx = 0; 3687 int vector, err; 3688 int irq_num; 3689 int cpu; 3690 3691 for (vector = 0; vector < q_vectors; vector++) { 3692 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3693 3694 irq_num = pf->msix_entries[base + vector].vector; 3695 3696 if (q_vector->tx.ring && q_vector->rx.ring) { 3697 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3698 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3699 tx_int_idx++; 3700 } else if (q_vector->rx.ring) { 3701 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3702 "%s-%s-%d", basename, "rx", rx_int_idx++); 3703 } else if (q_vector->tx.ring) { 3704 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3705 "%s-%s-%d", basename, "tx", tx_int_idx++); 3706 } else { 3707 /* skip this unused q_vector */ 3708 continue; 3709 } 3710 err = request_irq(irq_num, 3711 vsi->irq_handler, 3712 0, 3713 q_vector->name, 3714 q_vector); 3715 if (err) { 3716 dev_info(&pf->pdev->dev, 3717 "MSIX request_irq failed, error: %d\n", err); 3718 goto free_queue_irqs; 3719 } 3720 3721 /* register for affinity change notifications */ 3722 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3723 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3724 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3725 /* Spread affinity hints out across online CPUs. 3726 * 3727 * get_cpu_mask returns a static constant mask with 3728 * a permanent lifetime so it's ok to pass to 3729 * irq_set_affinity_hint without making a copy. 3730 */ 3731 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3732 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3733 } 3734 3735 vsi->irqs_ready = true; 3736 return 0; 3737 3738 free_queue_irqs: 3739 while (vector) { 3740 vector--; 3741 irq_num = pf->msix_entries[base + vector].vector; 3742 irq_set_affinity_notifier(irq_num, NULL); 3743 irq_set_affinity_hint(irq_num, NULL); 3744 free_irq(irq_num, &vsi->q_vectors[vector]); 3745 } 3746 return err; 3747 } 3748 3749 /** 3750 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3751 * @vsi: the VSI being un-configured 3752 **/ 3753 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3754 { 3755 struct i40e_pf *pf = vsi->back; 3756 struct i40e_hw *hw = &pf->hw; 3757 int base = vsi->base_vector; 3758 int i; 3759 3760 /* disable interrupt causation from each queue */ 3761 for (i = 0; i < vsi->num_queue_pairs; i++) { 3762 u32 val; 3763 3764 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3765 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3766 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3767 3768 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3769 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3770 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3771 3772 if (!i40e_enabled_xdp_vsi(vsi)) 3773 continue; 3774 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3775 } 3776 3777 /* disable each interrupt */ 3778 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3779 for (i = vsi->base_vector; 3780 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3781 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3782 3783 i40e_flush(hw); 3784 for (i = 0; i < vsi->num_q_vectors; i++) 3785 synchronize_irq(pf->msix_entries[i + base].vector); 3786 } else { 3787 /* Legacy and MSI mode - this stops all interrupt handling */ 3788 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3789 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3790 i40e_flush(hw); 3791 synchronize_irq(pf->pdev->irq); 3792 } 3793 } 3794 3795 /** 3796 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3797 * @vsi: the VSI being configured 3798 **/ 3799 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3800 { 3801 struct i40e_pf *pf = vsi->back; 3802 int i; 3803 3804 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3805 for (i = 0; i < vsi->num_q_vectors; i++) 3806 i40e_irq_dynamic_enable(vsi, i); 3807 } else { 3808 i40e_irq_dynamic_enable_icr0(pf); 3809 } 3810 3811 i40e_flush(&pf->hw); 3812 return 0; 3813 } 3814 3815 /** 3816 * i40e_free_misc_vector - Free the vector that handles non-queue events 3817 * @pf: board private structure 3818 **/ 3819 static void i40e_free_misc_vector(struct i40e_pf *pf) 3820 { 3821 /* Disable ICR 0 */ 3822 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3823 i40e_flush(&pf->hw); 3824 3825 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3826 synchronize_irq(pf->msix_entries[0].vector); 3827 free_irq(pf->msix_entries[0].vector, pf); 3828 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3829 } 3830 } 3831 3832 /** 3833 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3834 * @irq: interrupt number 3835 * @data: pointer to a q_vector 3836 * 3837 * This is the handler used for all MSI/Legacy interrupts, and deals 3838 * with both queue and non-queue interrupts. This is also used in 3839 * MSIX mode to handle the non-queue interrupts. 3840 **/ 3841 static irqreturn_t i40e_intr(int irq, void *data) 3842 { 3843 struct i40e_pf *pf = (struct i40e_pf *)data; 3844 struct i40e_hw *hw = &pf->hw; 3845 irqreturn_t ret = IRQ_NONE; 3846 u32 icr0, icr0_remaining; 3847 u32 val, ena_mask; 3848 3849 icr0 = rd32(hw, I40E_PFINT_ICR0); 3850 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3851 3852 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3853 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3854 goto enable_intr; 3855 3856 /* if interrupt but no bits showing, must be SWINT */ 3857 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3858 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3859 pf->sw_int_count++; 3860 3861 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3862 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3863 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3864 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3865 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3866 } 3867 3868 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3869 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3870 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3871 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3872 3873 /* We do not have a way to disarm Queue causes while leaving 3874 * interrupt enabled for all other causes, ideally 3875 * interrupt should be disabled while we are in NAPI but 3876 * this is not a performance path and napi_schedule() 3877 * can deal with rescheduling. 3878 */ 3879 if (!test_bit(__I40E_DOWN, pf->state)) 3880 napi_schedule_irqoff(&q_vector->napi); 3881 } 3882 3883 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3884 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3885 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3886 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3887 } 3888 3889 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3890 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3891 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3892 } 3893 3894 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3895 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 3896 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 3897 } 3898 3899 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 3900 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 3901 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 3902 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 3903 val = rd32(hw, I40E_GLGEN_RSTAT); 3904 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 3905 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 3906 if (val == I40E_RESET_CORER) { 3907 pf->corer_count++; 3908 } else if (val == I40E_RESET_GLOBR) { 3909 pf->globr_count++; 3910 } else if (val == I40E_RESET_EMPR) { 3911 pf->empr_count++; 3912 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 3913 } 3914 } 3915 3916 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 3917 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 3918 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 3919 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 3920 rd32(hw, I40E_PFHMC_ERRORINFO), 3921 rd32(hw, I40E_PFHMC_ERRORDATA)); 3922 } 3923 3924 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 3925 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 3926 3927 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 3928 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3929 i40e_ptp_tx_hwtstamp(pf); 3930 } 3931 } 3932 3933 /* If a critical error is pending we have no choice but to reset the 3934 * device. 3935 * Report and mask out any remaining unexpected interrupts. 3936 */ 3937 icr0_remaining = icr0 & ena_mask; 3938 if (icr0_remaining) { 3939 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 3940 icr0_remaining); 3941 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 3942 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 3943 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 3944 dev_info(&pf->pdev->dev, "device will be reset\n"); 3945 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 3946 i40e_service_event_schedule(pf); 3947 } 3948 ena_mask &= ~icr0_remaining; 3949 } 3950 ret = IRQ_HANDLED; 3951 3952 enable_intr: 3953 /* re-enable interrupt causes */ 3954 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 3955 if (!test_bit(__I40E_DOWN, pf->state)) { 3956 i40e_service_event_schedule(pf); 3957 i40e_irq_dynamic_enable_icr0(pf); 3958 } 3959 3960 return ret; 3961 } 3962 3963 /** 3964 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 3965 * @tx_ring: tx ring to clean 3966 * @budget: how many cleans we're allowed 3967 * 3968 * Returns true if there's any budget left (e.g. the clean is finished) 3969 **/ 3970 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 3971 { 3972 struct i40e_vsi *vsi = tx_ring->vsi; 3973 u16 i = tx_ring->next_to_clean; 3974 struct i40e_tx_buffer *tx_buf; 3975 struct i40e_tx_desc *tx_desc; 3976 3977 tx_buf = &tx_ring->tx_bi[i]; 3978 tx_desc = I40E_TX_DESC(tx_ring, i); 3979 i -= tx_ring->count; 3980 3981 do { 3982 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 3983 3984 /* if next_to_watch is not set then there is no work pending */ 3985 if (!eop_desc) 3986 break; 3987 3988 /* prevent any other reads prior to eop_desc */ 3989 smp_rmb(); 3990 3991 /* if the descriptor isn't done, no work yet to do */ 3992 if (!(eop_desc->cmd_type_offset_bsz & 3993 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 3994 break; 3995 3996 /* clear next_to_watch to prevent false hangs */ 3997 tx_buf->next_to_watch = NULL; 3998 3999 tx_desc->buffer_addr = 0; 4000 tx_desc->cmd_type_offset_bsz = 0; 4001 /* move past filter desc */ 4002 tx_buf++; 4003 tx_desc++; 4004 i++; 4005 if (unlikely(!i)) { 4006 i -= tx_ring->count; 4007 tx_buf = tx_ring->tx_bi; 4008 tx_desc = I40E_TX_DESC(tx_ring, 0); 4009 } 4010 /* unmap skb header data */ 4011 dma_unmap_single(tx_ring->dev, 4012 dma_unmap_addr(tx_buf, dma), 4013 dma_unmap_len(tx_buf, len), 4014 DMA_TO_DEVICE); 4015 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4016 kfree(tx_buf->raw_buf); 4017 4018 tx_buf->raw_buf = NULL; 4019 tx_buf->tx_flags = 0; 4020 tx_buf->next_to_watch = NULL; 4021 dma_unmap_len_set(tx_buf, len, 0); 4022 tx_desc->buffer_addr = 0; 4023 tx_desc->cmd_type_offset_bsz = 0; 4024 4025 /* move us past the eop_desc for start of next FD desc */ 4026 tx_buf++; 4027 tx_desc++; 4028 i++; 4029 if (unlikely(!i)) { 4030 i -= tx_ring->count; 4031 tx_buf = tx_ring->tx_bi; 4032 tx_desc = I40E_TX_DESC(tx_ring, 0); 4033 } 4034 4035 /* update budget accounting */ 4036 budget--; 4037 } while (likely(budget)); 4038 4039 i += tx_ring->count; 4040 tx_ring->next_to_clean = i; 4041 4042 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4043 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4044 4045 return budget > 0; 4046 } 4047 4048 /** 4049 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4050 * @irq: interrupt number 4051 * @data: pointer to a q_vector 4052 **/ 4053 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4054 { 4055 struct i40e_q_vector *q_vector = data; 4056 struct i40e_vsi *vsi; 4057 4058 if (!q_vector->tx.ring) 4059 return IRQ_HANDLED; 4060 4061 vsi = q_vector->tx.ring->vsi; 4062 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4063 4064 return IRQ_HANDLED; 4065 } 4066 4067 /** 4068 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4069 * @vsi: the VSI being configured 4070 * @v_idx: vector index 4071 * @qp_idx: queue pair index 4072 **/ 4073 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4074 { 4075 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4076 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4077 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4078 4079 tx_ring->q_vector = q_vector; 4080 tx_ring->next = q_vector->tx.ring; 4081 q_vector->tx.ring = tx_ring; 4082 q_vector->tx.count++; 4083 4084 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4085 if (i40e_enabled_xdp_vsi(vsi)) { 4086 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4087 4088 xdp_ring->q_vector = q_vector; 4089 xdp_ring->next = q_vector->tx.ring; 4090 q_vector->tx.ring = xdp_ring; 4091 q_vector->tx.count++; 4092 } 4093 4094 rx_ring->q_vector = q_vector; 4095 rx_ring->next = q_vector->rx.ring; 4096 q_vector->rx.ring = rx_ring; 4097 q_vector->rx.count++; 4098 } 4099 4100 /** 4101 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4102 * @vsi: the VSI being configured 4103 * 4104 * This function maps descriptor rings to the queue-specific vectors 4105 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4106 * one vector per queue pair, but on a constrained vector budget, we 4107 * group the queue pairs as "efficiently" as possible. 4108 **/ 4109 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4110 { 4111 int qp_remaining = vsi->num_queue_pairs; 4112 int q_vectors = vsi->num_q_vectors; 4113 int num_ringpairs; 4114 int v_start = 0; 4115 int qp_idx = 0; 4116 4117 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4118 * group them so there are multiple queues per vector. 4119 * It is also important to go through all the vectors available to be 4120 * sure that if we don't use all the vectors, that the remaining vectors 4121 * are cleared. This is especially important when decreasing the 4122 * number of queues in use. 4123 */ 4124 for (; v_start < q_vectors; v_start++) { 4125 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4126 4127 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4128 4129 q_vector->num_ringpairs = num_ringpairs; 4130 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4131 4132 q_vector->rx.count = 0; 4133 q_vector->tx.count = 0; 4134 q_vector->rx.ring = NULL; 4135 q_vector->tx.ring = NULL; 4136 4137 while (num_ringpairs--) { 4138 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4139 qp_idx++; 4140 qp_remaining--; 4141 } 4142 } 4143 } 4144 4145 /** 4146 * i40e_vsi_request_irq - Request IRQ from the OS 4147 * @vsi: the VSI being configured 4148 * @basename: name for the vector 4149 **/ 4150 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4151 { 4152 struct i40e_pf *pf = vsi->back; 4153 int err; 4154 4155 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4156 err = i40e_vsi_request_irq_msix(vsi, basename); 4157 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4158 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4159 pf->int_name, pf); 4160 else 4161 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4162 pf->int_name, pf); 4163 4164 if (err) 4165 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4166 4167 return err; 4168 } 4169 4170 #ifdef CONFIG_NET_POLL_CONTROLLER 4171 /** 4172 * i40e_netpoll - A Polling 'interrupt' handler 4173 * @netdev: network interface device structure 4174 * 4175 * This is used by netconsole to send skbs without having to re-enable 4176 * interrupts. It's not called while the normal interrupt routine is executing. 4177 **/ 4178 static void i40e_netpoll(struct net_device *netdev) 4179 { 4180 struct i40e_netdev_priv *np = netdev_priv(netdev); 4181 struct i40e_vsi *vsi = np->vsi; 4182 struct i40e_pf *pf = vsi->back; 4183 int i; 4184 4185 /* if interface is down do nothing */ 4186 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4187 return; 4188 4189 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4190 for (i = 0; i < vsi->num_q_vectors; i++) 4191 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4192 } else { 4193 i40e_intr(pf->pdev->irq, netdev); 4194 } 4195 } 4196 #endif 4197 4198 #define I40E_QTX_ENA_WAIT_COUNT 50 4199 4200 /** 4201 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4202 * @pf: the PF being configured 4203 * @pf_q: the PF queue 4204 * @enable: enable or disable state of the queue 4205 * 4206 * This routine will wait for the given Tx queue of the PF to reach the 4207 * enabled or disabled state. 4208 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4209 * multiple retries; else will return 0 in case of success. 4210 **/ 4211 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4212 { 4213 int i; 4214 u32 tx_reg; 4215 4216 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4217 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4218 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4219 break; 4220 4221 usleep_range(10, 20); 4222 } 4223 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4224 return -ETIMEDOUT; 4225 4226 return 0; 4227 } 4228 4229 /** 4230 * i40e_control_tx_q - Start or stop a particular Tx queue 4231 * @pf: the PF structure 4232 * @pf_q: the PF queue to configure 4233 * @enable: start or stop the queue 4234 * 4235 * This function enables or disables a single queue. Note that any delay 4236 * required after the operation is expected to be handled by the caller of 4237 * this function. 4238 **/ 4239 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4240 { 4241 struct i40e_hw *hw = &pf->hw; 4242 u32 tx_reg; 4243 int i; 4244 4245 /* warn the TX unit of coming changes */ 4246 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4247 if (!enable) 4248 usleep_range(10, 20); 4249 4250 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4251 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4252 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4253 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4254 break; 4255 usleep_range(1000, 2000); 4256 } 4257 4258 /* Skip if the queue is already in the requested state */ 4259 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4260 return; 4261 4262 /* turn on/off the queue */ 4263 if (enable) { 4264 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4265 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4266 } else { 4267 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4268 } 4269 4270 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4271 } 4272 4273 /** 4274 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4275 * @seid: VSI SEID 4276 * @pf: the PF structure 4277 * @pf_q: the PF queue to configure 4278 * @is_xdp: true if the queue is used for XDP 4279 * @enable: start or stop the queue 4280 **/ 4281 static int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4282 bool is_xdp, bool enable) 4283 { 4284 int ret; 4285 4286 i40e_control_tx_q(pf, pf_q, enable); 4287 4288 /* wait for the change to finish */ 4289 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4290 if (ret) { 4291 dev_info(&pf->pdev->dev, 4292 "VSI seid %d %sTx ring %d %sable timeout\n", 4293 seid, (is_xdp ? "XDP " : ""), pf_q, 4294 (enable ? "en" : "dis")); 4295 } 4296 4297 return ret; 4298 } 4299 4300 /** 4301 * i40e_vsi_control_tx - Start or stop a VSI's rings 4302 * @vsi: the VSI being configured 4303 * @enable: start or stop the rings 4304 **/ 4305 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4306 { 4307 struct i40e_pf *pf = vsi->back; 4308 int i, pf_q, ret = 0; 4309 4310 pf_q = vsi->base_queue; 4311 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4312 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4313 pf_q, 4314 false /*is xdp*/, enable); 4315 if (ret) 4316 break; 4317 4318 if (!i40e_enabled_xdp_vsi(vsi)) 4319 continue; 4320 4321 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4322 pf_q + vsi->alloc_queue_pairs, 4323 true /*is xdp*/, enable); 4324 if (ret) 4325 break; 4326 } 4327 4328 return ret; 4329 } 4330 4331 /** 4332 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4333 * @pf: the PF being configured 4334 * @pf_q: the PF queue 4335 * @enable: enable or disable state of the queue 4336 * 4337 * This routine will wait for the given Rx queue of the PF to reach the 4338 * enabled or disabled state. 4339 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4340 * multiple retries; else will return 0 in case of success. 4341 **/ 4342 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4343 { 4344 int i; 4345 u32 rx_reg; 4346 4347 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4348 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4349 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4350 break; 4351 4352 usleep_range(10, 20); 4353 } 4354 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4355 return -ETIMEDOUT; 4356 4357 return 0; 4358 } 4359 4360 /** 4361 * i40e_control_rx_q - Start or stop a particular Rx queue 4362 * @pf: the PF structure 4363 * @pf_q: the PF queue to configure 4364 * @enable: start or stop the queue 4365 * 4366 * This function enables or disables a single queue. Note that any delay 4367 * required after the operation is expected to be handled by the caller of 4368 * this function. 4369 **/ 4370 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4371 { 4372 struct i40e_hw *hw = &pf->hw; 4373 u32 rx_reg; 4374 int i; 4375 4376 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4377 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4378 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4379 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4380 break; 4381 usleep_range(1000, 2000); 4382 } 4383 4384 /* Skip if the queue is already in the requested state */ 4385 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4386 return; 4387 4388 /* turn on/off the queue */ 4389 if (enable) 4390 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4391 else 4392 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4393 4394 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4395 } 4396 4397 /** 4398 * i40e_vsi_control_rx - Start or stop a VSI's rings 4399 * @vsi: the VSI being configured 4400 * @enable: start or stop the rings 4401 **/ 4402 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4403 { 4404 struct i40e_pf *pf = vsi->back; 4405 int i, pf_q, ret = 0; 4406 4407 pf_q = vsi->base_queue; 4408 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4409 i40e_control_rx_q(pf, pf_q, enable); 4410 4411 /* wait for the change to finish */ 4412 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4413 if (ret) { 4414 dev_info(&pf->pdev->dev, 4415 "VSI seid %d Rx ring %d %sable timeout\n", 4416 vsi->seid, pf_q, (enable ? "en" : "dis")); 4417 break; 4418 } 4419 } 4420 4421 /* Due to HW errata, on Rx disable only, the register can indicate done 4422 * before it really is. Needs 50ms to be sure 4423 */ 4424 if (!enable) 4425 mdelay(50); 4426 4427 return ret; 4428 } 4429 4430 /** 4431 * i40e_vsi_start_rings - Start a VSI's rings 4432 * @vsi: the VSI being configured 4433 **/ 4434 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4435 { 4436 int ret = 0; 4437 4438 /* do rx first for enable and last for disable */ 4439 ret = i40e_vsi_control_rx(vsi, true); 4440 if (ret) 4441 return ret; 4442 ret = i40e_vsi_control_tx(vsi, true); 4443 4444 return ret; 4445 } 4446 4447 /** 4448 * i40e_vsi_stop_rings - Stop a VSI's rings 4449 * @vsi: the VSI being configured 4450 **/ 4451 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4452 { 4453 /* When port TX is suspended, don't wait */ 4454 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4455 return i40e_vsi_stop_rings_no_wait(vsi); 4456 4457 /* do rx first for enable and last for disable 4458 * Ignore return value, we need to shutdown whatever we can 4459 */ 4460 i40e_vsi_control_tx(vsi, false); 4461 i40e_vsi_control_rx(vsi, false); 4462 } 4463 4464 /** 4465 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4466 * @vsi: the VSI being shutdown 4467 * 4468 * This function stops all the rings for a VSI but does not delay to verify 4469 * that rings have been disabled. It is expected that the caller is shutting 4470 * down multiple VSIs at once and will delay together for all the VSIs after 4471 * initiating the shutdown. This is particularly useful for shutting down lots 4472 * of VFs together. Otherwise, a large delay can be incurred while configuring 4473 * each VSI in serial. 4474 **/ 4475 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4476 { 4477 struct i40e_pf *pf = vsi->back; 4478 int i, pf_q; 4479 4480 pf_q = vsi->base_queue; 4481 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4482 i40e_control_tx_q(pf, pf_q, false); 4483 i40e_control_rx_q(pf, pf_q, false); 4484 } 4485 } 4486 4487 /** 4488 * i40e_vsi_free_irq - Free the irq association with the OS 4489 * @vsi: the VSI being configured 4490 **/ 4491 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4492 { 4493 struct i40e_pf *pf = vsi->back; 4494 struct i40e_hw *hw = &pf->hw; 4495 int base = vsi->base_vector; 4496 u32 val, qp; 4497 int i; 4498 4499 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4500 if (!vsi->q_vectors) 4501 return; 4502 4503 if (!vsi->irqs_ready) 4504 return; 4505 4506 vsi->irqs_ready = false; 4507 for (i = 0; i < vsi->num_q_vectors; i++) { 4508 int irq_num; 4509 u16 vector; 4510 4511 vector = i + base; 4512 irq_num = pf->msix_entries[vector].vector; 4513 4514 /* free only the irqs that were actually requested */ 4515 if (!vsi->q_vectors[i] || 4516 !vsi->q_vectors[i]->num_ringpairs) 4517 continue; 4518 4519 /* clear the affinity notifier in the IRQ descriptor */ 4520 irq_set_affinity_notifier(irq_num, NULL); 4521 /* remove our suggested affinity mask for this IRQ */ 4522 irq_set_affinity_hint(irq_num, NULL); 4523 synchronize_irq(irq_num); 4524 free_irq(irq_num, vsi->q_vectors[i]); 4525 4526 /* Tear down the interrupt queue link list 4527 * 4528 * We know that they come in pairs and always 4529 * the Rx first, then the Tx. To clear the 4530 * link list, stick the EOL value into the 4531 * next_q field of the registers. 4532 */ 4533 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4534 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4535 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4536 val |= I40E_QUEUE_END_OF_LIST 4537 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4538 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4539 4540 while (qp != I40E_QUEUE_END_OF_LIST) { 4541 u32 next; 4542 4543 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4544 4545 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4546 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4547 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4548 I40E_QINT_RQCTL_INTEVENT_MASK); 4549 4550 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4551 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4552 4553 wr32(hw, I40E_QINT_RQCTL(qp), val); 4554 4555 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4556 4557 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4558 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4559 4560 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4561 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4562 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4563 I40E_QINT_TQCTL_INTEVENT_MASK); 4564 4565 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4566 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4567 4568 wr32(hw, I40E_QINT_TQCTL(qp), val); 4569 qp = next; 4570 } 4571 } 4572 } else { 4573 free_irq(pf->pdev->irq, pf); 4574 4575 val = rd32(hw, I40E_PFINT_LNKLST0); 4576 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4577 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4578 val |= I40E_QUEUE_END_OF_LIST 4579 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4580 wr32(hw, I40E_PFINT_LNKLST0, val); 4581 4582 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4583 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4584 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4585 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4586 I40E_QINT_RQCTL_INTEVENT_MASK); 4587 4588 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4589 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4590 4591 wr32(hw, I40E_QINT_RQCTL(qp), val); 4592 4593 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4594 4595 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4596 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4597 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4598 I40E_QINT_TQCTL_INTEVENT_MASK); 4599 4600 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4601 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4602 4603 wr32(hw, I40E_QINT_TQCTL(qp), val); 4604 } 4605 } 4606 4607 /** 4608 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4609 * @vsi: the VSI being configured 4610 * @v_idx: Index of vector to be freed 4611 * 4612 * This function frees the memory allocated to the q_vector. In addition if 4613 * NAPI is enabled it will delete any references to the NAPI struct prior 4614 * to freeing the q_vector. 4615 **/ 4616 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4617 { 4618 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4619 struct i40e_ring *ring; 4620 4621 if (!q_vector) 4622 return; 4623 4624 /* disassociate q_vector from rings */ 4625 i40e_for_each_ring(ring, q_vector->tx) 4626 ring->q_vector = NULL; 4627 4628 i40e_for_each_ring(ring, q_vector->rx) 4629 ring->q_vector = NULL; 4630 4631 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4632 if (vsi->netdev) 4633 netif_napi_del(&q_vector->napi); 4634 4635 vsi->q_vectors[v_idx] = NULL; 4636 4637 kfree_rcu(q_vector, rcu); 4638 } 4639 4640 /** 4641 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4642 * @vsi: the VSI being un-configured 4643 * 4644 * This frees the memory allocated to the q_vectors and 4645 * deletes references to the NAPI struct. 4646 **/ 4647 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4648 { 4649 int v_idx; 4650 4651 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4652 i40e_free_q_vector(vsi, v_idx); 4653 } 4654 4655 /** 4656 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4657 * @pf: board private structure 4658 **/ 4659 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4660 { 4661 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4662 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4663 pci_disable_msix(pf->pdev); 4664 kfree(pf->msix_entries); 4665 pf->msix_entries = NULL; 4666 kfree(pf->irq_pile); 4667 pf->irq_pile = NULL; 4668 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4669 pci_disable_msi(pf->pdev); 4670 } 4671 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4672 } 4673 4674 /** 4675 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4676 * @pf: board private structure 4677 * 4678 * We go through and clear interrupt specific resources and reset the structure 4679 * to pre-load conditions 4680 **/ 4681 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4682 { 4683 int i; 4684 4685 i40e_free_misc_vector(pf); 4686 4687 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4688 I40E_IWARP_IRQ_PILE_ID); 4689 4690 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4691 for (i = 0; i < pf->num_alloc_vsi; i++) 4692 if (pf->vsi[i]) 4693 i40e_vsi_free_q_vectors(pf->vsi[i]); 4694 i40e_reset_interrupt_capability(pf); 4695 } 4696 4697 /** 4698 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4699 * @vsi: the VSI being configured 4700 **/ 4701 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4702 { 4703 int q_idx; 4704 4705 if (!vsi->netdev) 4706 return; 4707 4708 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4709 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4710 4711 if (q_vector->rx.ring || q_vector->tx.ring) 4712 napi_enable(&q_vector->napi); 4713 } 4714 } 4715 4716 /** 4717 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4718 * @vsi: the VSI being configured 4719 **/ 4720 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4721 { 4722 int q_idx; 4723 4724 if (!vsi->netdev) 4725 return; 4726 4727 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4728 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4729 4730 if (q_vector->rx.ring || q_vector->tx.ring) 4731 napi_disable(&q_vector->napi); 4732 } 4733 } 4734 4735 /** 4736 * i40e_vsi_close - Shut down a VSI 4737 * @vsi: the vsi to be quelled 4738 **/ 4739 static void i40e_vsi_close(struct i40e_vsi *vsi) 4740 { 4741 struct i40e_pf *pf = vsi->back; 4742 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4743 i40e_down(vsi); 4744 i40e_vsi_free_irq(vsi); 4745 i40e_vsi_free_tx_resources(vsi); 4746 i40e_vsi_free_rx_resources(vsi); 4747 vsi->current_netdev_flags = 0; 4748 pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED; 4749 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4750 pf->flags |= I40E_FLAG_CLIENT_RESET; 4751 } 4752 4753 /** 4754 * i40e_quiesce_vsi - Pause a given VSI 4755 * @vsi: the VSI being paused 4756 **/ 4757 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4758 { 4759 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4760 return; 4761 4762 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4763 if (vsi->netdev && netif_running(vsi->netdev)) 4764 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4765 else 4766 i40e_vsi_close(vsi); 4767 } 4768 4769 /** 4770 * i40e_unquiesce_vsi - Resume a given VSI 4771 * @vsi: the VSI being resumed 4772 **/ 4773 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4774 { 4775 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4776 return; 4777 4778 if (vsi->netdev && netif_running(vsi->netdev)) 4779 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4780 else 4781 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4782 } 4783 4784 /** 4785 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4786 * @pf: the PF 4787 **/ 4788 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4789 { 4790 int v; 4791 4792 for (v = 0; v < pf->num_alloc_vsi; v++) { 4793 if (pf->vsi[v]) 4794 i40e_quiesce_vsi(pf->vsi[v]); 4795 } 4796 } 4797 4798 /** 4799 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4800 * @pf: the PF 4801 **/ 4802 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4803 { 4804 int v; 4805 4806 for (v = 0; v < pf->num_alloc_vsi; v++) { 4807 if (pf->vsi[v]) 4808 i40e_unquiesce_vsi(pf->vsi[v]); 4809 } 4810 } 4811 4812 /** 4813 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4814 * @vsi: the VSI being configured 4815 * 4816 * Wait until all queues on a given VSI have been disabled. 4817 **/ 4818 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4819 { 4820 struct i40e_pf *pf = vsi->back; 4821 int i, pf_q, ret; 4822 4823 pf_q = vsi->base_queue; 4824 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4825 /* Check and wait for the Tx queue */ 4826 ret = i40e_pf_txq_wait(pf, pf_q, false); 4827 if (ret) { 4828 dev_info(&pf->pdev->dev, 4829 "VSI seid %d Tx ring %d disable timeout\n", 4830 vsi->seid, pf_q); 4831 return ret; 4832 } 4833 4834 if (!i40e_enabled_xdp_vsi(vsi)) 4835 goto wait_rx; 4836 4837 /* Check and wait for the XDP Tx queue */ 4838 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4839 false); 4840 if (ret) { 4841 dev_info(&pf->pdev->dev, 4842 "VSI seid %d XDP Tx ring %d disable timeout\n", 4843 vsi->seid, pf_q); 4844 return ret; 4845 } 4846 wait_rx: 4847 /* Check and wait for the Rx queue */ 4848 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4849 if (ret) { 4850 dev_info(&pf->pdev->dev, 4851 "VSI seid %d Rx ring %d disable timeout\n", 4852 vsi->seid, pf_q); 4853 return ret; 4854 } 4855 } 4856 4857 return 0; 4858 } 4859 4860 #ifdef CONFIG_I40E_DCB 4861 /** 4862 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4863 * @pf: the PF 4864 * 4865 * This function waits for the queues to be in disabled state for all the 4866 * VSIs that are managed by this PF. 4867 **/ 4868 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4869 { 4870 int v, ret = 0; 4871 4872 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4873 if (pf->vsi[v]) { 4874 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 4875 if (ret) 4876 break; 4877 } 4878 } 4879 4880 return ret; 4881 } 4882 4883 #endif 4884 4885 /** 4886 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 4887 * @pf: pointer to PF 4888 * 4889 * Get TC map for ISCSI PF type that will include iSCSI TC 4890 * and LAN TC. 4891 **/ 4892 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 4893 { 4894 struct i40e_dcb_app_priority_table app; 4895 struct i40e_hw *hw = &pf->hw; 4896 u8 enabled_tc = 1; /* TC0 is always enabled */ 4897 u8 tc, i; 4898 /* Get the iSCSI APP TLV */ 4899 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 4900 4901 for (i = 0; i < dcbcfg->numapps; i++) { 4902 app = dcbcfg->app[i]; 4903 if (app.selector == I40E_APP_SEL_TCPIP && 4904 app.protocolid == I40E_APP_PROTOID_ISCSI) { 4905 tc = dcbcfg->etscfg.prioritytable[app.priority]; 4906 enabled_tc |= BIT(tc); 4907 break; 4908 } 4909 } 4910 4911 return enabled_tc; 4912 } 4913 4914 /** 4915 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 4916 * @dcbcfg: the corresponding DCBx configuration structure 4917 * 4918 * Return the number of TCs from given DCBx configuration 4919 **/ 4920 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 4921 { 4922 int i, tc_unused = 0; 4923 u8 num_tc = 0; 4924 u8 ret = 0; 4925 4926 /* Scan the ETS Config Priority Table to find 4927 * traffic class enabled for a given priority 4928 * and create a bitmask of enabled TCs 4929 */ 4930 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 4931 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 4932 4933 /* Now scan the bitmask to check for 4934 * contiguous TCs starting with TC0 4935 */ 4936 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 4937 if (num_tc & BIT(i)) { 4938 if (!tc_unused) { 4939 ret++; 4940 } else { 4941 pr_err("Non-contiguous TC - Disabling DCB\n"); 4942 return 1; 4943 } 4944 } else { 4945 tc_unused = 1; 4946 } 4947 } 4948 4949 /* There is always at least TC0 */ 4950 if (!ret) 4951 ret = 1; 4952 4953 return ret; 4954 } 4955 4956 /** 4957 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 4958 * @dcbcfg: the corresponding DCBx configuration structure 4959 * 4960 * Query the current DCB configuration and return the number of 4961 * traffic classes enabled from the given DCBX config 4962 **/ 4963 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 4964 { 4965 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 4966 u8 enabled_tc = 1; 4967 u8 i; 4968 4969 for (i = 0; i < num_tc; i++) 4970 enabled_tc |= BIT(i); 4971 4972 return enabled_tc; 4973 } 4974 4975 /** 4976 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 4977 * @pf: PF being queried 4978 * 4979 * Query the current MQPRIO configuration and return the number of 4980 * traffic classes enabled. 4981 **/ 4982 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 4983 { 4984 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4985 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 4986 u8 enabled_tc = 1, i; 4987 4988 for (i = 1; i < num_tc; i++) 4989 enabled_tc |= BIT(i); 4990 return enabled_tc; 4991 } 4992 4993 /** 4994 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 4995 * @pf: PF being queried 4996 * 4997 * Return number of traffic classes enabled for the given PF 4998 **/ 4999 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5000 { 5001 struct i40e_hw *hw = &pf->hw; 5002 u8 i, enabled_tc = 1; 5003 u8 num_tc = 0; 5004 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5005 5006 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5007 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5008 5009 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5010 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5011 return 1; 5012 5013 /* SFP mode will be enabled for all TCs on port */ 5014 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5015 return i40e_dcb_get_num_tc(dcbcfg); 5016 5017 /* MFP mode return count of enabled TCs for this PF */ 5018 if (pf->hw.func_caps.iscsi) 5019 enabled_tc = i40e_get_iscsi_tc_map(pf); 5020 else 5021 return 1; /* Only TC0 */ 5022 5023 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5024 if (enabled_tc & BIT(i)) 5025 num_tc++; 5026 } 5027 return num_tc; 5028 } 5029 5030 /** 5031 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5032 * @pf: PF being queried 5033 * 5034 * Return a bitmap for enabled traffic classes for this PF. 5035 **/ 5036 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5037 { 5038 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5039 return i40e_mqprio_get_enabled_tc(pf); 5040 5041 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5042 * default TC 5043 */ 5044 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5045 return I40E_DEFAULT_TRAFFIC_CLASS; 5046 5047 /* SFP mode we want PF to be enabled for all TCs */ 5048 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5049 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5050 5051 /* MFP enabled and iSCSI PF type */ 5052 if (pf->hw.func_caps.iscsi) 5053 return i40e_get_iscsi_tc_map(pf); 5054 else 5055 return I40E_DEFAULT_TRAFFIC_CLASS; 5056 } 5057 5058 /** 5059 * i40e_vsi_get_bw_info - Query VSI BW Information 5060 * @vsi: the VSI being queried 5061 * 5062 * Returns 0 on success, negative value on failure 5063 **/ 5064 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5065 { 5066 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5067 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5068 struct i40e_pf *pf = vsi->back; 5069 struct i40e_hw *hw = &pf->hw; 5070 i40e_status ret; 5071 u32 tc_bw_max; 5072 int i; 5073 5074 /* Get the VSI level BW configuration */ 5075 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5076 if (ret) { 5077 dev_info(&pf->pdev->dev, 5078 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5079 i40e_stat_str(&pf->hw, ret), 5080 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5081 return -EINVAL; 5082 } 5083 5084 /* Get the VSI level BW configuration per TC */ 5085 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5086 NULL); 5087 if (ret) { 5088 dev_info(&pf->pdev->dev, 5089 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5090 i40e_stat_str(&pf->hw, ret), 5091 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5092 return -EINVAL; 5093 } 5094 5095 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5096 dev_info(&pf->pdev->dev, 5097 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5098 bw_config.tc_valid_bits, 5099 bw_ets_config.tc_valid_bits); 5100 /* Still continuing */ 5101 } 5102 5103 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5104 vsi->bw_max_quanta = bw_config.max_bw; 5105 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5106 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5107 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5108 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5109 vsi->bw_ets_limit_credits[i] = 5110 le16_to_cpu(bw_ets_config.credits[i]); 5111 /* 3 bits out of 4 for each TC */ 5112 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5113 } 5114 5115 return 0; 5116 } 5117 5118 /** 5119 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5120 * @vsi: the VSI being configured 5121 * @enabled_tc: TC bitmap 5122 * @bw_credits: BW shared credits per TC 5123 * 5124 * Returns 0 on success, negative value on failure 5125 **/ 5126 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5127 u8 *bw_share) 5128 { 5129 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5130 i40e_status ret; 5131 int i; 5132 5133 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) 5134 return 0; 5135 if (!vsi->mqprio_qopt.qopt.hw) { 5136 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5137 if (ret) 5138 dev_info(&vsi->back->pdev->dev, 5139 "Failed to reset tx rate for vsi->seid %u\n", 5140 vsi->seid); 5141 return ret; 5142 } 5143 bw_data.tc_valid_bits = enabled_tc; 5144 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5145 bw_data.tc_bw_credits[i] = bw_share[i]; 5146 5147 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, vsi->seid, &bw_data, 5148 NULL); 5149 if (ret) { 5150 dev_info(&vsi->back->pdev->dev, 5151 "AQ command Config VSI BW allocation per TC failed = %d\n", 5152 vsi->back->hw.aq.asq_last_status); 5153 return -EINVAL; 5154 } 5155 5156 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5157 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5158 5159 return 0; 5160 } 5161 5162 /** 5163 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5164 * @vsi: the VSI being configured 5165 * @enabled_tc: TC map to be enabled 5166 * 5167 **/ 5168 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5169 { 5170 struct net_device *netdev = vsi->netdev; 5171 struct i40e_pf *pf = vsi->back; 5172 struct i40e_hw *hw = &pf->hw; 5173 u8 netdev_tc = 0; 5174 int i; 5175 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5176 5177 if (!netdev) 5178 return; 5179 5180 if (!enabled_tc) { 5181 netdev_reset_tc(netdev); 5182 return; 5183 } 5184 5185 /* Set up actual enabled TCs on the VSI */ 5186 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5187 return; 5188 5189 /* set per TC queues for the VSI */ 5190 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5191 /* Only set TC queues for enabled tcs 5192 * 5193 * e.g. For a VSI that has TC0 and TC3 enabled the 5194 * enabled_tc bitmap would be 0x00001001; the driver 5195 * will set the numtc for netdev as 2 that will be 5196 * referenced by the netdev layer as TC 0 and 1. 5197 */ 5198 if (vsi->tc_config.enabled_tc & BIT(i)) 5199 netdev_set_tc_queue(netdev, 5200 vsi->tc_config.tc_info[i].netdev_tc, 5201 vsi->tc_config.tc_info[i].qcount, 5202 vsi->tc_config.tc_info[i].qoffset); 5203 } 5204 5205 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5206 return; 5207 5208 /* Assign UP2TC map for the VSI */ 5209 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5210 /* Get the actual TC# for the UP */ 5211 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5212 /* Get the mapped netdev TC# for the UP */ 5213 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5214 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5215 } 5216 } 5217 5218 /** 5219 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5220 * @vsi: the VSI being configured 5221 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5222 **/ 5223 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5224 struct i40e_vsi_context *ctxt) 5225 { 5226 /* copy just the sections touched not the entire info 5227 * since not all sections are valid as returned by 5228 * update vsi params 5229 */ 5230 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5231 memcpy(&vsi->info.queue_mapping, 5232 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5233 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5234 sizeof(vsi->info.tc_mapping)); 5235 } 5236 5237 /** 5238 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5239 * @vsi: VSI to be configured 5240 * @enabled_tc: TC bitmap 5241 * 5242 * This configures a particular VSI for TCs that are mapped to the 5243 * given TC bitmap. It uses default bandwidth share for TCs across 5244 * VSIs to configure TC for a particular VSI. 5245 * 5246 * NOTE: 5247 * It is expected that the VSI queues have been quisced before calling 5248 * this function. 5249 **/ 5250 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5251 { 5252 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5253 struct i40e_pf *pf = vsi->back; 5254 struct i40e_hw *hw = &pf->hw; 5255 struct i40e_vsi_context ctxt; 5256 int ret = 0; 5257 int i; 5258 5259 /* Check if enabled_tc is same as existing or new TCs */ 5260 if (vsi->tc_config.enabled_tc == enabled_tc && 5261 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5262 return ret; 5263 5264 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5265 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5266 if (enabled_tc & BIT(i)) 5267 bw_share[i] = 1; 5268 } 5269 5270 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5271 if (ret) { 5272 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5273 5274 dev_info(&pf->pdev->dev, 5275 "Failed configuring TC map %d for VSI %d\n", 5276 enabled_tc, vsi->seid); 5277 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5278 &bw_config, NULL); 5279 if (ret) { 5280 dev_info(&pf->pdev->dev, 5281 "Failed querying vsi bw info, err %s aq_err %s\n", 5282 i40e_stat_str(hw, ret), 5283 i40e_aq_str(hw, hw->aq.asq_last_status)); 5284 goto out; 5285 } 5286 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5287 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5288 5289 if (!valid_tc) 5290 valid_tc = bw_config.tc_valid_bits; 5291 /* Always enable TC0, no matter what */ 5292 valid_tc |= 1; 5293 dev_info(&pf->pdev->dev, 5294 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5295 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5296 enabled_tc = valid_tc; 5297 } 5298 5299 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5300 if (ret) { 5301 dev_err(&pf->pdev->dev, 5302 "Unable to configure TC map %d for VSI %d\n", 5303 enabled_tc, vsi->seid); 5304 goto out; 5305 } 5306 } 5307 5308 /* Update Queue Pairs Mapping for currently enabled UPs */ 5309 ctxt.seid = vsi->seid; 5310 ctxt.pf_num = vsi->back->hw.pf_id; 5311 ctxt.vf_num = 0; 5312 ctxt.uplink_seid = vsi->uplink_seid; 5313 ctxt.info = vsi->info; 5314 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5315 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5316 if (ret) 5317 goto out; 5318 } else { 5319 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5320 } 5321 5322 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5323 * queues changed. 5324 */ 5325 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5326 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5327 vsi->num_queue_pairs); 5328 ret = i40e_vsi_config_rss(vsi); 5329 if (ret) { 5330 dev_info(&vsi->back->pdev->dev, 5331 "Failed to reconfig rss for num_queues\n"); 5332 return ret; 5333 } 5334 vsi->reconfig_rss = false; 5335 } 5336 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5337 ctxt.info.valid_sections |= 5338 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5339 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5340 } 5341 5342 /* Update the VSI after updating the VSI queue-mapping 5343 * information 5344 */ 5345 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5346 if (ret) { 5347 dev_info(&pf->pdev->dev, 5348 "Update vsi tc config failed, err %s aq_err %s\n", 5349 i40e_stat_str(hw, ret), 5350 i40e_aq_str(hw, hw->aq.asq_last_status)); 5351 goto out; 5352 } 5353 /* update the local VSI info with updated queue map */ 5354 i40e_vsi_update_queue_map(vsi, &ctxt); 5355 vsi->info.valid_sections = 0; 5356 5357 /* Update current VSI BW information */ 5358 ret = i40e_vsi_get_bw_info(vsi); 5359 if (ret) { 5360 dev_info(&pf->pdev->dev, 5361 "Failed updating vsi bw info, err %s aq_err %s\n", 5362 i40e_stat_str(hw, ret), 5363 i40e_aq_str(hw, hw->aq.asq_last_status)); 5364 goto out; 5365 } 5366 5367 /* Update the netdev TC setup */ 5368 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5369 out: 5370 return ret; 5371 } 5372 5373 /** 5374 * i40e_get_link_speed - Returns link speed for the interface 5375 * @vsi: VSI to be configured 5376 * 5377 **/ 5378 int i40e_get_link_speed(struct i40e_vsi *vsi) 5379 { 5380 struct i40e_pf *pf = vsi->back; 5381 5382 switch (pf->hw.phy.link_info.link_speed) { 5383 case I40E_LINK_SPEED_40GB: 5384 return 40000; 5385 case I40E_LINK_SPEED_25GB: 5386 return 25000; 5387 case I40E_LINK_SPEED_20GB: 5388 return 20000; 5389 case I40E_LINK_SPEED_10GB: 5390 return 10000; 5391 case I40E_LINK_SPEED_1GB: 5392 return 1000; 5393 default: 5394 return -EINVAL; 5395 } 5396 } 5397 5398 /** 5399 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5400 * @vsi: VSI to be configured 5401 * @seid: seid of the channel/VSI 5402 * @max_tx_rate: max TX rate to be configured as BW limit 5403 * 5404 * Helper function to set BW limit for a given VSI 5405 **/ 5406 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5407 { 5408 struct i40e_pf *pf = vsi->back; 5409 u64 credits = 0; 5410 int speed = 0; 5411 int ret = 0; 5412 5413 speed = i40e_get_link_speed(vsi); 5414 if (max_tx_rate > speed) { 5415 dev_err(&pf->pdev->dev, 5416 "Invalid max tx rate %llu specified for VSI seid %d.", 5417 max_tx_rate, seid); 5418 return -EINVAL; 5419 } 5420 if (max_tx_rate && max_tx_rate < 50) { 5421 dev_warn(&pf->pdev->dev, 5422 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5423 max_tx_rate = 50; 5424 } 5425 5426 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5427 credits = max_tx_rate; 5428 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5429 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5430 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5431 if (ret) 5432 dev_err(&pf->pdev->dev, 5433 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5434 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5435 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5436 return ret; 5437 } 5438 5439 /** 5440 * i40e_remove_queue_channels - Remove queue channels for the TCs 5441 * @vsi: VSI to be configured 5442 * 5443 * Remove queue channels for the TCs 5444 **/ 5445 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5446 { 5447 enum i40e_admin_queue_err last_aq_status; 5448 struct i40e_cloud_filter *cfilter; 5449 struct i40e_channel *ch, *ch_tmp; 5450 struct i40e_pf *pf = vsi->back; 5451 struct hlist_node *node; 5452 int ret, i; 5453 5454 /* Reset rss size that was stored when reconfiguring rss for 5455 * channel VSIs with non-power-of-2 queue count. 5456 */ 5457 vsi->current_rss_size = 0; 5458 5459 /* perform cleanup for channels if they exist */ 5460 if (list_empty(&vsi->ch_list)) 5461 return; 5462 5463 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5464 struct i40e_vsi *p_vsi; 5465 5466 list_del(&ch->list); 5467 p_vsi = ch->parent_vsi; 5468 if (!p_vsi || !ch->initialized) { 5469 kfree(ch); 5470 continue; 5471 } 5472 /* Reset queue contexts */ 5473 for (i = 0; i < ch->num_queue_pairs; i++) { 5474 struct i40e_ring *tx_ring, *rx_ring; 5475 u16 pf_q; 5476 5477 pf_q = ch->base_queue + i; 5478 tx_ring = vsi->tx_rings[pf_q]; 5479 tx_ring->ch = NULL; 5480 5481 rx_ring = vsi->rx_rings[pf_q]; 5482 rx_ring->ch = NULL; 5483 } 5484 5485 /* Reset BW configured for this VSI via mqprio */ 5486 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5487 if (ret) 5488 dev_info(&vsi->back->pdev->dev, 5489 "Failed to reset tx rate for ch->seid %u\n", 5490 ch->seid); 5491 5492 /* delete cloud filters associated with this channel */ 5493 hlist_for_each_entry_safe(cfilter, node, 5494 &pf->cloud_filter_list, cloud_node) { 5495 if (cfilter->seid != ch->seid) 5496 continue; 5497 5498 hash_del(&cfilter->cloud_node); 5499 if (cfilter->dst_port) 5500 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5501 cfilter, 5502 false); 5503 else 5504 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5505 false); 5506 last_aq_status = pf->hw.aq.asq_last_status; 5507 if (ret) 5508 dev_info(&pf->pdev->dev, 5509 "Failed to delete cloud filter, err %s aq_err %s\n", 5510 i40e_stat_str(&pf->hw, ret), 5511 i40e_aq_str(&pf->hw, last_aq_status)); 5512 kfree(cfilter); 5513 } 5514 5515 /* delete VSI from FW */ 5516 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5517 NULL); 5518 if (ret) 5519 dev_err(&vsi->back->pdev->dev, 5520 "unable to remove channel (%d) for parent VSI(%d)\n", 5521 ch->seid, p_vsi->seid); 5522 kfree(ch); 5523 } 5524 INIT_LIST_HEAD(&vsi->ch_list); 5525 } 5526 5527 /** 5528 * i40e_is_any_channel - channel exist or not 5529 * @vsi: ptr to VSI to which channels are associated with 5530 * 5531 * Returns true or false if channel(s) exist for associated VSI or not 5532 **/ 5533 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5534 { 5535 struct i40e_channel *ch, *ch_tmp; 5536 5537 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5538 if (ch->initialized) 5539 return true; 5540 } 5541 5542 return false; 5543 } 5544 5545 /** 5546 * i40e_get_max_queues_for_channel 5547 * @vsi: ptr to VSI to which channels are associated with 5548 * 5549 * Helper function which returns max value among the queue counts set on the 5550 * channels/TCs created. 5551 **/ 5552 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5553 { 5554 struct i40e_channel *ch, *ch_tmp; 5555 int max = 0; 5556 5557 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5558 if (!ch->initialized) 5559 continue; 5560 if (ch->num_queue_pairs > max) 5561 max = ch->num_queue_pairs; 5562 } 5563 5564 return max; 5565 } 5566 5567 /** 5568 * i40e_validate_num_queues - validate num_queues w.r.t channel 5569 * @pf: ptr to PF device 5570 * @num_queues: number of queues 5571 * @vsi: the parent VSI 5572 * @reconfig_rss: indicates should the RSS be reconfigured or not 5573 * 5574 * This function validates number of queues in the context of new channel 5575 * which is being established and determines if RSS should be reconfigured 5576 * or not for parent VSI. 5577 **/ 5578 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5579 struct i40e_vsi *vsi, bool *reconfig_rss) 5580 { 5581 int max_ch_queues; 5582 5583 if (!reconfig_rss) 5584 return -EINVAL; 5585 5586 *reconfig_rss = false; 5587 if (vsi->current_rss_size) { 5588 if (num_queues > vsi->current_rss_size) { 5589 dev_dbg(&pf->pdev->dev, 5590 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5591 num_queues, vsi->current_rss_size); 5592 return -EINVAL; 5593 } else if ((num_queues < vsi->current_rss_size) && 5594 (!is_power_of_2(num_queues))) { 5595 dev_dbg(&pf->pdev->dev, 5596 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5597 num_queues, vsi->current_rss_size); 5598 return -EINVAL; 5599 } 5600 } 5601 5602 if (!is_power_of_2(num_queues)) { 5603 /* Find the max num_queues configured for channel if channel 5604 * exist. 5605 * if channel exist, then enforce 'num_queues' to be more than 5606 * max ever queues configured for channel. 5607 */ 5608 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5609 if (num_queues < max_ch_queues) { 5610 dev_dbg(&pf->pdev->dev, 5611 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5612 num_queues, max_ch_queues); 5613 return -EINVAL; 5614 } 5615 *reconfig_rss = true; 5616 } 5617 5618 return 0; 5619 } 5620 5621 /** 5622 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5623 * @vsi: the VSI being setup 5624 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5625 * 5626 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5627 **/ 5628 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5629 { 5630 struct i40e_pf *pf = vsi->back; 5631 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5632 struct i40e_hw *hw = &pf->hw; 5633 int local_rss_size; 5634 u8 *lut; 5635 int ret; 5636 5637 if (!vsi->rss_size) 5638 return -EINVAL; 5639 5640 if (rss_size > vsi->rss_size) 5641 return -EINVAL; 5642 5643 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5644 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5645 if (!lut) 5646 return -ENOMEM; 5647 5648 /* Ignoring user configured lut if there is one */ 5649 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5650 5651 /* Use user configured hash key if there is one, otherwise 5652 * use default. 5653 */ 5654 if (vsi->rss_hkey_user) 5655 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5656 else 5657 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5658 5659 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5660 if (ret) { 5661 dev_info(&pf->pdev->dev, 5662 "Cannot set RSS lut, err %s aq_err %s\n", 5663 i40e_stat_str(hw, ret), 5664 i40e_aq_str(hw, hw->aq.asq_last_status)); 5665 kfree(lut); 5666 return ret; 5667 } 5668 kfree(lut); 5669 5670 /* Do the update w.r.t. storing rss_size */ 5671 if (!vsi->orig_rss_size) 5672 vsi->orig_rss_size = vsi->rss_size; 5673 vsi->current_rss_size = local_rss_size; 5674 5675 return ret; 5676 } 5677 5678 /** 5679 * i40e_channel_setup_queue_map - Setup a channel queue map 5680 * @pf: ptr to PF device 5681 * @vsi: the VSI being setup 5682 * @ctxt: VSI context structure 5683 * @ch: ptr to channel structure 5684 * 5685 * Setup queue map for a specific channel 5686 **/ 5687 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5688 struct i40e_vsi_context *ctxt, 5689 struct i40e_channel *ch) 5690 { 5691 u16 qcount, qmap, sections = 0; 5692 u8 offset = 0; 5693 int pow; 5694 5695 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5696 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5697 5698 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5699 ch->num_queue_pairs = qcount; 5700 5701 /* find the next higher power-of-2 of num queue pairs */ 5702 pow = ilog2(qcount); 5703 if (!is_power_of_2(qcount)) 5704 pow++; 5705 5706 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5707 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5708 5709 /* Setup queue TC[0].qmap for given VSI context */ 5710 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5711 5712 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5713 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5714 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5715 ctxt->info.valid_sections |= cpu_to_le16(sections); 5716 } 5717 5718 /** 5719 * i40e_add_channel - add a channel by adding VSI 5720 * @pf: ptr to PF device 5721 * @uplink_seid: underlying HW switching element (VEB) ID 5722 * @ch: ptr to channel structure 5723 * 5724 * Add a channel (VSI) using add_vsi and queue_map 5725 **/ 5726 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5727 struct i40e_channel *ch) 5728 { 5729 struct i40e_hw *hw = &pf->hw; 5730 struct i40e_vsi_context ctxt; 5731 u8 enabled_tc = 0x1; /* TC0 enabled */ 5732 int ret; 5733 5734 if (ch->type != I40E_VSI_VMDQ2) { 5735 dev_info(&pf->pdev->dev, 5736 "add new vsi failed, ch->type %d\n", ch->type); 5737 return -EINVAL; 5738 } 5739 5740 memset(&ctxt, 0, sizeof(ctxt)); 5741 ctxt.pf_num = hw->pf_id; 5742 ctxt.vf_num = 0; 5743 ctxt.uplink_seid = uplink_seid; 5744 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5745 if (ch->type == I40E_VSI_VMDQ2) 5746 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5747 5748 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5749 ctxt.info.valid_sections |= 5750 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5751 ctxt.info.switch_id = 5752 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5753 } 5754 5755 /* Set queue map for a given VSI context */ 5756 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5757 5758 /* Now time to create VSI */ 5759 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5760 if (ret) { 5761 dev_info(&pf->pdev->dev, 5762 "add new vsi failed, err %s aq_err %s\n", 5763 i40e_stat_str(&pf->hw, ret), 5764 i40e_aq_str(&pf->hw, 5765 pf->hw.aq.asq_last_status)); 5766 return -ENOENT; 5767 } 5768 5769 /* Success, update channel */ 5770 ch->enabled_tc = enabled_tc; 5771 ch->seid = ctxt.seid; 5772 ch->vsi_number = ctxt.vsi_number; 5773 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5774 5775 /* copy just the sections touched not the entire info 5776 * since not all sections are valid as returned by 5777 * update vsi params 5778 */ 5779 ch->info.mapping_flags = ctxt.info.mapping_flags; 5780 memcpy(&ch->info.queue_mapping, 5781 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5782 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5783 sizeof(ctxt.info.tc_mapping)); 5784 5785 return 0; 5786 } 5787 5788 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5789 u8 *bw_share) 5790 { 5791 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5792 i40e_status ret; 5793 int i; 5794 5795 bw_data.tc_valid_bits = ch->enabled_tc; 5796 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5797 bw_data.tc_bw_credits[i] = bw_share[i]; 5798 5799 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5800 &bw_data, NULL); 5801 if (ret) { 5802 dev_info(&vsi->back->pdev->dev, 5803 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5804 vsi->back->hw.aq.asq_last_status, ch->seid); 5805 return -EINVAL; 5806 } 5807 5808 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5809 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5810 5811 return 0; 5812 } 5813 5814 /** 5815 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5816 * @pf: ptr to PF device 5817 * @vsi: the VSI being setup 5818 * @ch: ptr to channel structure 5819 * 5820 * Configure TX rings associated with channel (VSI) since queues are being 5821 * from parent VSI. 5822 **/ 5823 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5824 struct i40e_vsi *vsi, 5825 struct i40e_channel *ch) 5826 { 5827 i40e_status ret; 5828 int i; 5829 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5830 5831 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5832 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5833 if (ch->enabled_tc & BIT(i)) 5834 bw_share[i] = 1; 5835 } 5836 5837 /* configure BW for new VSI */ 5838 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5839 if (ret) { 5840 dev_info(&vsi->back->pdev->dev, 5841 "Failed configuring TC map %d for channel (seid %u)\n", 5842 ch->enabled_tc, ch->seid); 5843 return ret; 5844 } 5845 5846 for (i = 0; i < ch->num_queue_pairs; i++) { 5847 struct i40e_ring *tx_ring, *rx_ring; 5848 u16 pf_q; 5849 5850 pf_q = ch->base_queue + i; 5851 5852 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5853 * context 5854 */ 5855 tx_ring = vsi->tx_rings[pf_q]; 5856 tx_ring->ch = ch; 5857 5858 /* Get the RX ring ptr */ 5859 rx_ring = vsi->rx_rings[pf_q]; 5860 rx_ring->ch = ch; 5861 } 5862 5863 return 0; 5864 } 5865 5866 /** 5867 * i40e_setup_hw_channel - setup new channel 5868 * @pf: ptr to PF device 5869 * @vsi: the VSI being setup 5870 * @ch: ptr to channel structure 5871 * @uplink_seid: underlying HW switching element (VEB) ID 5872 * @type: type of channel to be created (VMDq2/VF) 5873 * 5874 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5875 * and configures TX rings accordingly 5876 **/ 5877 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 5878 struct i40e_vsi *vsi, 5879 struct i40e_channel *ch, 5880 u16 uplink_seid, u8 type) 5881 { 5882 int ret; 5883 5884 ch->initialized = false; 5885 ch->base_queue = vsi->next_base_queue; 5886 ch->type = type; 5887 5888 /* Proceed with creation of channel (VMDq2) VSI */ 5889 ret = i40e_add_channel(pf, uplink_seid, ch); 5890 if (ret) { 5891 dev_info(&pf->pdev->dev, 5892 "failed to add_channel using uplink_seid %u\n", 5893 uplink_seid); 5894 return ret; 5895 } 5896 5897 /* Mark the successful creation of channel */ 5898 ch->initialized = true; 5899 5900 /* Reconfigure TX queues using QTX_CTL register */ 5901 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 5902 if (ret) { 5903 dev_info(&pf->pdev->dev, 5904 "failed to configure TX rings for channel %u\n", 5905 ch->seid); 5906 return ret; 5907 } 5908 5909 /* update 'next_base_queue' */ 5910 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 5911 dev_dbg(&pf->pdev->dev, 5912 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 5913 ch->seid, ch->vsi_number, ch->stat_counter_idx, 5914 ch->num_queue_pairs, 5915 vsi->next_base_queue); 5916 return ret; 5917 } 5918 5919 /** 5920 * i40e_setup_channel - setup new channel using uplink element 5921 * @pf: ptr to PF device 5922 * @type: type of channel to be created (VMDq2/VF) 5923 * @uplink_seid: underlying HW switching element (VEB) ID 5924 * @ch: ptr to channel structure 5925 * 5926 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5927 * and uplink switching element (uplink_seid) 5928 **/ 5929 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 5930 struct i40e_channel *ch) 5931 { 5932 u8 vsi_type; 5933 u16 seid; 5934 int ret; 5935 5936 if (vsi->type == I40E_VSI_MAIN) { 5937 vsi_type = I40E_VSI_VMDQ2; 5938 } else { 5939 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 5940 vsi->type); 5941 return false; 5942 } 5943 5944 /* underlying switching element */ 5945 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 5946 5947 /* create channel (VSI), configure TX rings */ 5948 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 5949 if (ret) { 5950 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 5951 return false; 5952 } 5953 5954 return ch->initialized ? true : false; 5955 } 5956 5957 /** 5958 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 5959 * @vsi: ptr to VSI which has PF backing 5960 * 5961 * Sets up switch mode correctly if it needs to be changed and perform 5962 * what are allowed modes. 5963 **/ 5964 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 5965 { 5966 u8 mode; 5967 struct i40e_pf *pf = vsi->back; 5968 struct i40e_hw *hw = &pf->hw; 5969 int ret; 5970 5971 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 5972 if (ret) 5973 return -EINVAL; 5974 5975 if (hw->dev_caps.switch_mode) { 5976 /* if switch mode is set, support mode2 (non-tunneled for 5977 * cloud filter) for now 5978 */ 5979 u32 switch_mode = hw->dev_caps.switch_mode & 5980 I40E_SWITCH_MODE_MASK; 5981 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 5982 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 5983 return 0; 5984 dev_err(&pf->pdev->dev, 5985 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 5986 hw->dev_caps.switch_mode); 5987 return -EINVAL; 5988 } 5989 } 5990 5991 /* Set Bit 7 to be valid */ 5992 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 5993 5994 /* Set L4type for TCP support */ 5995 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 5996 5997 /* Set cloud filter mode */ 5998 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 5999 6000 /* Prep mode field for set_switch_config */ 6001 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6002 pf->last_sw_conf_valid_flags, 6003 mode, NULL); 6004 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6005 dev_err(&pf->pdev->dev, 6006 "couldn't set switch config bits, err %s aq_err %s\n", 6007 i40e_stat_str(hw, ret), 6008 i40e_aq_str(hw, 6009 hw->aq.asq_last_status)); 6010 6011 return ret; 6012 } 6013 6014 /** 6015 * i40e_create_queue_channel - function to create channel 6016 * @vsi: VSI to be configured 6017 * @ch: ptr to channel (it contains channel specific params) 6018 * 6019 * This function creates channel (VSI) using num_queues specified by user, 6020 * reconfigs RSS if needed. 6021 **/ 6022 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6023 struct i40e_channel *ch) 6024 { 6025 struct i40e_pf *pf = vsi->back; 6026 bool reconfig_rss; 6027 int err; 6028 6029 if (!ch) 6030 return -EINVAL; 6031 6032 if (!ch->num_queue_pairs) { 6033 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6034 ch->num_queue_pairs); 6035 return -EINVAL; 6036 } 6037 6038 /* validate user requested num_queues for channel */ 6039 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6040 &reconfig_rss); 6041 if (err) { 6042 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6043 ch->num_queue_pairs); 6044 return -EINVAL; 6045 } 6046 6047 /* By default we are in VEPA mode, if this is the first VF/VMDq 6048 * VSI to be added switch to VEB mode. 6049 */ 6050 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6051 (!i40e_is_any_channel(vsi))) { 6052 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6053 dev_dbg(&pf->pdev->dev, 6054 "Failed to create channel. Override queues (%u) not power of 2\n", 6055 vsi->tc_config.tc_info[0].qcount); 6056 return -EINVAL; 6057 } 6058 6059 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6060 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6061 6062 if (vsi->type == I40E_VSI_MAIN) { 6063 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6064 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6065 true); 6066 else 6067 i40e_do_reset_safe(pf, 6068 I40E_PF_RESET_FLAG); 6069 } 6070 } 6071 /* now onwards for main VSI, number of queues will be value 6072 * of TC0's queue count 6073 */ 6074 } 6075 6076 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6077 * it should be more than num_queues 6078 */ 6079 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6080 dev_dbg(&pf->pdev->dev, 6081 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6082 vsi->cnt_q_avail, ch->num_queue_pairs); 6083 return -EINVAL; 6084 } 6085 6086 /* reconfig_rss only if vsi type is MAIN_VSI */ 6087 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6088 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6089 if (err) { 6090 dev_info(&pf->pdev->dev, 6091 "Error: unable to reconfig rss for num_queues (%u)\n", 6092 ch->num_queue_pairs); 6093 return -EINVAL; 6094 } 6095 } 6096 6097 if (!i40e_setup_channel(pf, vsi, ch)) { 6098 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6099 return -EINVAL; 6100 } 6101 6102 dev_info(&pf->pdev->dev, 6103 "Setup channel (id:%u) utilizing num_queues %d\n", 6104 ch->seid, ch->num_queue_pairs); 6105 6106 /* configure VSI for BW limit */ 6107 if (ch->max_tx_rate) { 6108 u64 credits = ch->max_tx_rate; 6109 6110 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6111 return -EINVAL; 6112 6113 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6114 dev_dbg(&pf->pdev->dev, 6115 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6116 ch->max_tx_rate, 6117 credits, 6118 ch->seid); 6119 } 6120 6121 /* in case of VF, this will be main SRIOV VSI */ 6122 ch->parent_vsi = vsi; 6123 6124 /* and update main_vsi's count for queue_available to use */ 6125 vsi->cnt_q_avail -= ch->num_queue_pairs; 6126 6127 return 0; 6128 } 6129 6130 /** 6131 * i40e_configure_queue_channels - Add queue channel for the given TCs 6132 * @vsi: VSI to be configured 6133 * 6134 * Configures queue channel mapping to the given TCs 6135 **/ 6136 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6137 { 6138 struct i40e_channel *ch; 6139 u64 max_rate = 0; 6140 int ret = 0, i; 6141 6142 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6143 vsi->tc_seid_map[0] = vsi->seid; 6144 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6145 if (vsi->tc_config.enabled_tc & BIT(i)) { 6146 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6147 if (!ch) { 6148 ret = -ENOMEM; 6149 goto err_free; 6150 } 6151 6152 INIT_LIST_HEAD(&ch->list); 6153 ch->num_queue_pairs = 6154 vsi->tc_config.tc_info[i].qcount; 6155 ch->base_queue = 6156 vsi->tc_config.tc_info[i].qoffset; 6157 6158 /* Bandwidth limit through tc interface is in bytes/s, 6159 * change to Mbit/s 6160 */ 6161 max_rate = vsi->mqprio_qopt.max_rate[i]; 6162 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6163 ch->max_tx_rate = max_rate; 6164 6165 list_add_tail(&ch->list, &vsi->ch_list); 6166 6167 ret = i40e_create_queue_channel(vsi, ch); 6168 if (ret) { 6169 dev_err(&vsi->back->pdev->dev, 6170 "Failed creating queue channel with TC%d: queues %d\n", 6171 i, ch->num_queue_pairs); 6172 goto err_free; 6173 } 6174 vsi->tc_seid_map[i] = ch->seid; 6175 } 6176 } 6177 return ret; 6178 6179 err_free: 6180 i40e_remove_queue_channels(vsi); 6181 return ret; 6182 } 6183 6184 /** 6185 * i40e_veb_config_tc - Configure TCs for given VEB 6186 * @veb: given VEB 6187 * @enabled_tc: TC bitmap 6188 * 6189 * Configures given TC bitmap for VEB (switching) element 6190 **/ 6191 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6192 { 6193 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6194 struct i40e_pf *pf = veb->pf; 6195 int ret = 0; 6196 int i; 6197 6198 /* No TCs or already enabled TCs just return */ 6199 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6200 return ret; 6201 6202 bw_data.tc_valid_bits = enabled_tc; 6203 /* bw_data.absolute_credits is not set (relative) */ 6204 6205 /* Enable ETS TCs with equal BW Share for now */ 6206 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6207 if (enabled_tc & BIT(i)) 6208 bw_data.tc_bw_share_credits[i] = 1; 6209 } 6210 6211 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6212 &bw_data, NULL); 6213 if (ret) { 6214 dev_info(&pf->pdev->dev, 6215 "VEB bw config failed, err %s aq_err %s\n", 6216 i40e_stat_str(&pf->hw, ret), 6217 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6218 goto out; 6219 } 6220 6221 /* Update the BW information */ 6222 ret = i40e_veb_get_bw_info(veb); 6223 if (ret) { 6224 dev_info(&pf->pdev->dev, 6225 "Failed getting veb bw config, err %s aq_err %s\n", 6226 i40e_stat_str(&pf->hw, ret), 6227 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6228 } 6229 6230 out: 6231 return ret; 6232 } 6233 6234 #ifdef CONFIG_I40E_DCB 6235 /** 6236 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6237 * @pf: PF struct 6238 * 6239 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6240 * the caller would've quiesce all the VSIs before calling 6241 * this function 6242 **/ 6243 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6244 { 6245 u8 tc_map = 0; 6246 int ret; 6247 u8 v; 6248 6249 /* Enable the TCs available on PF to all VEBs */ 6250 tc_map = i40e_pf_get_tc_map(pf); 6251 for (v = 0; v < I40E_MAX_VEB; v++) { 6252 if (!pf->veb[v]) 6253 continue; 6254 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6255 if (ret) { 6256 dev_info(&pf->pdev->dev, 6257 "Failed configuring TC for VEB seid=%d\n", 6258 pf->veb[v]->seid); 6259 /* Will try to configure as many components */ 6260 } 6261 } 6262 6263 /* Update each VSI */ 6264 for (v = 0; v < pf->num_alloc_vsi; v++) { 6265 if (!pf->vsi[v]) 6266 continue; 6267 6268 /* - Enable all TCs for the LAN VSI 6269 * - For all others keep them at TC0 for now 6270 */ 6271 if (v == pf->lan_vsi) 6272 tc_map = i40e_pf_get_tc_map(pf); 6273 else 6274 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6275 6276 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6277 if (ret) { 6278 dev_info(&pf->pdev->dev, 6279 "Failed configuring TC for VSI seid=%d\n", 6280 pf->vsi[v]->seid); 6281 /* Will try to configure as many components */ 6282 } else { 6283 /* Re-configure VSI vectors based on updated TC map */ 6284 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6285 if (pf->vsi[v]->netdev) 6286 i40e_dcbnl_set_all(pf->vsi[v]); 6287 } 6288 } 6289 } 6290 6291 /** 6292 * i40e_resume_port_tx - Resume port Tx 6293 * @pf: PF struct 6294 * 6295 * Resume a port's Tx and issue a PF reset in case of failure to 6296 * resume. 6297 **/ 6298 static int i40e_resume_port_tx(struct i40e_pf *pf) 6299 { 6300 struct i40e_hw *hw = &pf->hw; 6301 int ret; 6302 6303 ret = i40e_aq_resume_port_tx(hw, NULL); 6304 if (ret) { 6305 dev_info(&pf->pdev->dev, 6306 "Resume Port Tx failed, err %s aq_err %s\n", 6307 i40e_stat_str(&pf->hw, ret), 6308 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6309 /* Schedule PF reset to recover */ 6310 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6311 i40e_service_event_schedule(pf); 6312 } 6313 6314 return ret; 6315 } 6316 6317 /** 6318 * i40e_init_pf_dcb - Initialize DCB configuration 6319 * @pf: PF being configured 6320 * 6321 * Query the current DCB configuration and cache it 6322 * in the hardware structure 6323 **/ 6324 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6325 { 6326 struct i40e_hw *hw = &pf->hw; 6327 int err = 0; 6328 6329 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6330 * Also do not enable DCBx if FW LLDP agent is disabled 6331 */ 6332 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6333 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) 6334 goto out; 6335 6336 /* Get the initial DCB configuration */ 6337 err = i40e_init_dcb(hw); 6338 if (!err) { 6339 /* Device/Function is not DCBX capable */ 6340 if ((!hw->func_caps.dcb) || 6341 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6342 dev_info(&pf->pdev->dev, 6343 "DCBX offload is not supported or is disabled for this PF.\n"); 6344 } else { 6345 /* When status is not DISABLED then DCBX in FW */ 6346 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6347 DCB_CAP_DCBX_VER_IEEE; 6348 6349 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6350 /* Enable DCB tagging only when more than one TC 6351 * or explicitly disable if only one TC 6352 */ 6353 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6354 pf->flags |= I40E_FLAG_DCB_ENABLED; 6355 else 6356 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6357 dev_dbg(&pf->pdev->dev, 6358 "DCBX offload is supported for this PF.\n"); 6359 } 6360 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6361 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6362 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6363 } else { 6364 dev_info(&pf->pdev->dev, 6365 "Query for DCB configuration failed, err %s aq_err %s\n", 6366 i40e_stat_str(&pf->hw, err), 6367 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6368 } 6369 6370 out: 6371 return err; 6372 } 6373 #endif /* CONFIG_I40E_DCB */ 6374 #define SPEED_SIZE 14 6375 #define FC_SIZE 8 6376 /** 6377 * i40e_print_link_message - print link up or down 6378 * @vsi: the VSI for which link needs a message 6379 */ 6380 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6381 { 6382 enum i40e_aq_link_speed new_speed; 6383 struct i40e_pf *pf = vsi->back; 6384 char *speed = "Unknown"; 6385 char *fc = "Unknown"; 6386 char *fec = ""; 6387 char *req_fec = ""; 6388 char *an = ""; 6389 6390 new_speed = pf->hw.phy.link_info.link_speed; 6391 6392 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6393 return; 6394 vsi->current_isup = isup; 6395 vsi->current_speed = new_speed; 6396 if (!isup) { 6397 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6398 return; 6399 } 6400 6401 /* Warn user if link speed on NPAR enabled partition is not at 6402 * least 10GB 6403 */ 6404 if (pf->hw.func_caps.npar_enable && 6405 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6406 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6407 netdev_warn(vsi->netdev, 6408 "The partition detected link speed that is less than 10Gbps\n"); 6409 6410 switch (pf->hw.phy.link_info.link_speed) { 6411 case I40E_LINK_SPEED_40GB: 6412 speed = "40 G"; 6413 break; 6414 case I40E_LINK_SPEED_20GB: 6415 speed = "20 G"; 6416 break; 6417 case I40E_LINK_SPEED_25GB: 6418 speed = "25 G"; 6419 break; 6420 case I40E_LINK_SPEED_10GB: 6421 speed = "10 G"; 6422 break; 6423 case I40E_LINK_SPEED_1GB: 6424 speed = "1000 M"; 6425 break; 6426 case I40E_LINK_SPEED_100MB: 6427 speed = "100 M"; 6428 break; 6429 default: 6430 break; 6431 } 6432 6433 switch (pf->hw.fc.current_mode) { 6434 case I40E_FC_FULL: 6435 fc = "RX/TX"; 6436 break; 6437 case I40E_FC_TX_PAUSE: 6438 fc = "TX"; 6439 break; 6440 case I40E_FC_RX_PAUSE: 6441 fc = "RX"; 6442 break; 6443 default: 6444 fc = "None"; 6445 break; 6446 } 6447 6448 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6449 req_fec = ", Requested FEC: None"; 6450 fec = ", FEC: None"; 6451 an = ", Autoneg: False"; 6452 6453 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6454 an = ", Autoneg: True"; 6455 6456 if (pf->hw.phy.link_info.fec_info & 6457 I40E_AQ_CONFIG_FEC_KR_ENA) 6458 fec = ", FEC: CL74 FC-FEC/BASE-R"; 6459 else if (pf->hw.phy.link_info.fec_info & 6460 I40E_AQ_CONFIG_FEC_RS_ENA) 6461 fec = ", FEC: CL108 RS-FEC"; 6462 6463 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6464 * both RS and FC are requested 6465 */ 6466 if (vsi->back->hw.phy.link_info.req_fec_info & 6467 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6468 if (vsi->back->hw.phy.link_info.req_fec_info & 6469 I40E_AQ_REQUEST_FEC_RS) 6470 req_fec = ", Requested FEC: CL108 RS-FEC"; 6471 else 6472 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R"; 6473 } 6474 } 6475 6476 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n", 6477 speed, req_fec, fec, an, fc); 6478 } 6479 6480 /** 6481 * i40e_up_complete - Finish the last steps of bringing up a connection 6482 * @vsi: the VSI being configured 6483 **/ 6484 static int i40e_up_complete(struct i40e_vsi *vsi) 6485 { 6486 struct i40e_pf *pf = vsi->back; 6487 int err; 6488 6489 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6490 i40e_vsi_configure_msix(vsi); 6491 else 6492 i40e_configure_msi_and_legacy(vsi); 6493 6494 /* start rings */ 6495 err = i40e_vsi_start_rings(vsi); 6496 if (err) 6497 return err; 6498 6499 clear_bit(__I40E_VSI_DOWN, vsi->state); 6500 i40e_napi_enable_all(vsi); 6501 i40e_vsi_enable_irq(vsi); 6502 6503 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6504 (vsi->netdev)) { 6505 i40e_print_link_message(vsi, true); 6506 netif_tx_start_all_queues(vsi->netdev); 6507 netif_carrier_on(vsi->netdev); 6508 } 6509 6510 /* replay FDIR SB filters */ 6511 if (vsi->type == I40E_VSI_FDIR) { 6512 /* reset fd counters */ 6513 pf->fd_add_err = 0; 6514 pf->fd_atr_cnt = 0; 6515 i40e_fdir_filter_restore(vsi); 6516 } 6517 6518 /* On the next run of the service_task, notify any clients of the new 6519 * opened netdev 6520 */ 6521 pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED; 6522 i40e_service_event_schedule(pf); 6523 6524 return 0; 6525 } 6526 6527 /** 6528 * i40e_vsi_reinit_locked - Reset the VSI 6529 * @vsi: the VSI being configured 6530 * 6531 * Rebuild the ring structs after some configuration 6532 * has changed, e.g. MTU size. 6533 **/ 6534 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6535 { 6536 struct i40e_pf *pf = vsi->back; 6537 6538 WARN_ON(in_interrupt()); 6539 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6540 usleep_range(1000, 2000); 6541 i40e_down(vsi); 6542 6543 i40e_up(vsi); 6544 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6545 } 6546 6547 /** 6548 * i40e_up - Bring the connection back up after being down 6549 * @vsi: the VSI being configured 6550 **/ 6551 int i40e_up(struct i40e_vsi *vsi) 6552 { 6553 int err; 6554 6555 err = i40e_vsi_configure(vsi); 6556 if (!err) 6557 err = i40e_up_complete(vsi); 6558 6559 return err; 6560 } 6561 6562 /** 6563 * i40e_down - Shutdown the connection processing 6564 * @vsi: the VSI being stopped 6565 **/ 6566 void i40e_down(struct i40e_vsi *vsi) 6567 { 6568 int i; 6569 6570 /* It is assumed that the caller of this function 6571 * sets the vsi->state __I40E_VSI_DOWN bit. 6572 */ 6573 if (vsi->netdev) { 6574 netif_carrier_off(vsi->netdev); 6575 netif_tx_disable(vsi->netdev); 6576 } 6577 i40e_vsi_disable_irq(vsi); 6578 i40e_vsi_stop_rings(vsi); 6579 i40e_napi_disable_all(vsi); 6580 6581 for (i = 0; i < vsi->num_queue_pairs; i++) { 6582 i40e_clean_tx_ring(vsi->tx_rings[i]); 6583 if (i40e_enabled_xdp_vsi(vsi)) 6584 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6585 i40e_clean_rx_ring(vsi->rx_rings[i]); 6586 } 6587 6588 } 6589 6590 /** 6591 * i40e_validate_mqprio_qopt- validate queue mapping info 6592 * @vsi: the VSI being configured 6593 * @mqprio_qopt: queue parametrs 6594 **/ 6595 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6596 struct tc_mqprio_qopt_offload *mqprio_qopt) 6597 { 6598 u64 sum_max_rate = 0; 6599 u64 max_rate = 0; 6600 int i; 6601 6602 if (mqprio_qopt->qopt.offset[0] != 0 || 6603 mqprio_qopt->qopt.num_tc < 1 || 6604 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6605 return -EINVAL; 6606 for (i = 0; ; i++) { 6607 if (!mqprio_qopt->qopt.count[i]) 6608 return -EINVAL; 6609 if (mqprio_qopt->min_rate[i]) { 6610 dev_err(&vsi->back->pdev->dev, 6611 "Invalid min tx rate (greater than 0) specified\n"); 6612 return -EINVAL; 6613 } 6614 max_rate = mqprio_qopt->max_rate[i]; 6615 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6616 sum_max_rate += max_rate; 6617 6618 if (i >= mqprio_qopt->qopt.num_tc - 1) 6619 break; 6620 if (mqprio_qopt->qopt.offset[i + 1] != 6621 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6622 return -EINVAL; 6623 } 6624 if (vsi->num_queue_pairs < 6625 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6626 return -EINVAL; 6627 } 6628 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6629 dev_err(&vsi->back->pdev->dev, 6630 "Invalid max tx rate specified\n"); 6631 return -EINVAL; 6632 } 6633 return 0; 6634 } 6635 6636 /** 6637 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6638 * @vsi: the VSI being configured 6639 **/ 6640 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6641 { 6642 u16 qcount; 6643 int i; 6644 6645 /* Only TC0 is enabled */ 6646 vsi->tc_config.numtc = 1; 6647 vsi->tc_config.enabled_tc = 1; 6648 qcount = min_t(int, vsi->alloc_queue_pairs, 6649 i40e_pf_get_max_q_per_tc(vsi->back)); 6650 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6651 /* For the TC that is not enabled set the offset to to default 6652 * queue and allocate one queue for the given TC. 6653 */ 6654 vsi->tc_config.tc_info[i].qoffset = 0; 6655 if (i == 0) 6656 vsi->tc_config.tc_info[i].qcount = qcount; 6657 else 6658 vsi->tc_config.tc_info[i].qcount = 1; 6659 vsi->tc_config.tc_info[i].netdev_tc = 0; 6660 } 6661 } 6662 6663 /** 6664 * i40e_setup_tc - configure multiple traffic classes 6665 * @netdev: net device to configure 6666 * @type_data: tc offload data 6667 **/ 6668 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 6669 { 6670 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 6671 struct i40e_netdev_priv *np = netdev_priv(netdev); 6672 struct i40e_vsi *vsi = np->vsi; 6673 struct i40e_pf *pf = vsi->back; 6674 u8 enabled_tc = 0, num_tc, hw; 6675 bool need_reset = false; 6676 int ret = -EINVAL; 6677 u16 mode; 6678 int i; 6679 6680 num_tc = mqprio_qopt->qopt.num_tc; 6681 hw = mqprio_qopt->qopt.hw; 6682 mode = mqprio_qopt->mode; 6683 if (!hw) { 6684 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6685 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 6686 goto config_tc; 6687 } 6688 6689 /* Check if MFP enabled */ 6690 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 6691 netdev_info(netdev, 6692 "Configuring TC not supported in MFP mode\n"); 6693 return ret; 6694 } 6695 switch (mode) { 6696 case TC_MQPRIO_MODE_DCB: 6697 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6698 6699 /* Check if DCB enabled to continue */ 6700 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 6701 netdev_info(netdev, 6702 "DCB is not enabled for adapter\n"); 6703 return ret; 6704 } 6705 6706 /* Check whether tc count is within enabled limit */ 6707 if (num_tc > i40e_pf_get_num_tc(pf)) { 6708 netdev_info(netdev, 6709 "TC count greater than enabled on link for adapter\n"); 6710 return ret; 6711 } 6712 break; 6713 case TC_MQPRIO_MODE_CHANNEL: 6714 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 6715 netdev_info(netdev, 6716 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 6717 return ret; 6718 } 6719 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 6720 return ret; 6721 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 6722 if (ret) 6723 return ret; 6724 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 6725 sizeof(*mqprio_qopt)); 6726 pf->flags |= I40E_FLAG_TC_MQPRIO; 6727 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6728 break; 6729 default: 6730 return -EINVAL; 6731 } 6732 6733 config_tc: 6734 /* Generate TC map for number of tc requested */ 6735 for (i = 0; i < num_tc; i++) 6736 enabled_tc |= BIT(i); 6737 6738 /* Requesting same TC configuration as already enabled */ 6739 if (enabled_tc == vsi->tc_config.enabled_tc && 6740 mode != TC_MQPRIO_MODE_CHANNEL) 6741 return 0; 6742 6743 /* Quiesce VSI queues */ 6744 i40e_quiesce_vsi(vsi); 6745 6746 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 6747 i40e_remove_queue_channels(vsi); 6748 6749 /* Configure VSI for enabled TCs */ 6750 ret = i40e_vsi_config_tc(vsi, enabled_tc); 6751 if (ret) { 6752 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 6753 vsi->seid); 6754 need_reset = true; 6755 goto exit; 6756 } 6757 6758 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 6759 if (vsi->mqprio_qopt.max_rate[0]) { 6760 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 6761 6762 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 6763 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 6764 if (!ret) { 6765 u64 credits = max_tx_rate; 6766 6767 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6768 dev_dbg(&vsi->back->pdev->dev, 6769 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6770 max_tx_rate, 6771 credits, 6772 vsi->seid); 6773 } else { 6774 need_reset = true; 6775 goto exit; 6776 } 6777 } 6778 ret = i40e_configure_queue_channels(vsi); 6779 if (ret) { 6780 netdev_info(netdev, 6781 "Failed configuring queue channels\n"); 6782 need_reset = true; 6783 goto exit; 6784 } 6785 } 6786 6787 exit: 6788 /* Reset the configuration data to defaults, only TC0 is enabled */ 6789 if (need_reset) { 6790 i40e_vsi_set_default_tc_config(vsi); 6791 need_reset = false; 6792 } 6793 6794 /* Unquiesce VSI */ 6795 i40e_unquiesce_vsi(vsi); 6796 return ret; 6797 } 6798 6799 /** 6800 * i40e_set_cld_element - sets cloud filter element data 6801 * @filter: cloud filter rule 6802 * @cld: ptr to cloud filter element data 6803 * 6804 * This is helper function to copy data into cloud filter element 6805 **/ 6806 static inline void 6807 i40e_set_cld_element(struct i40e_cloud_filter *filter, 6808 struct i40e_aqc_cloud_filters_element_data *cld) 6809 { 6810 int i, j; 6811 u32 ipa; 6812 6813 memset(cld, 0, sizeof(*cld)); 6814 ether_addr_copy(cld->outer_mac, filter->dst_mac); 6815 ether_addr_copy(cld->inner_mac, filter->src_mac); 6816 6817 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 6818 return; 6819 6820 if (filter->n_proto == ETH_P_IPV6) { 6821 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 6822 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 6823 i++, j += 2) { 6824 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 6825 ipa = cpu_to_le32(ipa); 6826 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 6827 } 6828 } else { 6829 ipa = be32_to_cpu(filter->dst_ipv4); 6830 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 6831 } 6832 6833 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 6834 6835 /* tenant_id is not supported by FW now, once the support is enabled 6836 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 6837 */ 6838 if (filter->tenant_id) 6839 return; 6840 } 6841 6842 /** 6843 * i40e_add_del_cloud_filter - Add/del cloud filter 6844 * @vsi: pointer to VSI 6845 * @filter: cloud filter rule 6846 * @add: if true, add, if false, delete 6847 * 6848 * Add or delete a cloud filter for a specific flow spec. 6849 * Returns 0 if the filter were successfully added. 6850 **/ 6851 static int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 6852 struct i40e_cloud_filter *filter, bool add) 6853 { 6854 struct i40e_aqc_cloud_filters_element_data cld_filter; 6855 struct i40e_pf *pf = vsi->back; 6856 int ret; 6857 static const u16 flag_table[128] = { 6858 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 6859 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 6860 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 6861 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 6862 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 6863 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 6864 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 6865 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 6866 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 6867 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 6868 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 6869 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 6870 [I40E_CLOUD_FILTER_FLAGS_IIP] = 6871 I40E_AQC_ADD_CLOUD_FILTER_IIP, 6872 }; 6873 6874 if (filter->flags >= ARRAY_SIZE(flag_table)) 6875 return I40E_ERR_CONFIG; 6876 6877 /* copy element needed to add cloud filter from filter */ 6878 i40e_set_cld_element(filter, &cld_filter); 6879 6880 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 6881 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 6882 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 6883 6884 if (filter->n_proto == ETH_P_IPV6) 6885 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 6886 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 6887 else 6888 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 6889 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 6890 6891 if (add) 6892 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 6893 &cld_filter, 1); 6894 else 6895 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 6896 &cld_filter, 1); 6897 if (ret) 6898 dev_dbg(&pf->pdev->dev, 6899 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 6900 add ? "add" : "delete", filter->dst_port, ret, 6901 pf->hw.aq.asq_last_status); 6902 else 6903 dev_info(&pf->pdev->dev, 6904 "%s cloud filter for VSI: %d\n", 6905 add ? "Added" : "Deleted", filter->seid); 6906 return ret; 6907 } 6908 6909 /** 6910 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 6911 * @vsi: pointer to VSI 6912 * @filter: cloud filter rule 6913 * @add: if true, add, if false, delete 6914 * 6915 * Add or delete a cloud filter for a specific flow spec using big buffer. 6916 * Returns 0 if the filter were successfully added. 6917 **/ 6918 static int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 6919 struct i40e_cloud_filter *filter, 6920 bool add) 6921 { 6922 struct i40e_aqc_cloud_filters_element_bb cld_filter; 6923 struct i40e_pf *pf = vsi->back; 6924 int ret; 6925 6926 /* Both (src/dst) valid mac_addr are not supported */ 6927 if ((is_valid_ether_addr(filter->dst_mac) && 6928 is_valid_ether_addr(filter->src_mac)) || 6929 (is_multicast_ether_addr(filter->dst_mac) && 6930 is_multicast_ether_addr(filter->src_mac))) 6931 return -EOPNOTSUPP; 6932 6933 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 6934 * ports are not supported via big buffer now. 6935 */ 6936 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 6937 return -EOPNOTSUPP; 6938 6939 /* adding filter using src_port/src_ip is not supported at this stage */ 6940 if (filter->src_port || filter->src_ipv4 || 6941 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 6942 return -EOPNOTSUPP; 6943 6944 /* copy element needed to add cloud filter from filter */ 6945 i40e_set_cld_element(filter, &cld_filter.element); 6946 6947 if (is_valid_ether_addr(filter->dst_mac) || 6948 is_valid_ether_addr(filter->src_mac) || 6949 is_multicast_ether_addr(filter->dst_mac) || 6950 is_multicast_ether_addr(filter->src_mac)) { 6951 /* MAC + IP : unsupported mode */ 6952 if (filter->dst_ipv4) 6953 return -EOPNOTSUPP; 6954 6955 /* since we validated that L4 port must be valid before 6956 * we get here, start with respective "flags" value 6957 * and update if vlan is present or not 6958 */ 6959 cld_filter.element.flags = 6960 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 6961 6962 if (filter->vlan_id) { 6963 cld_filter.element.flags = 6964 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 6965 } 6966 6967 } else if (filter->dst_ipv4 || 6968 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 6969 cld_filter.element.flags = 6970 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 6971 if (filter->n_proto == ETH_P_IPV6) 6972 cld_filter.element.flags |= 6973 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 6974 else 6975 cld_filter.element.flags |= 6976 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 6977 } else { 6978 dev_err(&pf->pdev->dev, 6979 "either mac or ip has to be valid for cloud filter\n"); 6980 return -EINVAL; 6981 } 6982 6983 /* Now copy L4 port in Byte 6..7 in general fields */ 6984 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 6985 be16_to_cpu(filter->dst_port); 6986 6987 if (add) { 6988 /* Validate current device switch mode, change if necessary */ 6989 ret = i40e_validate_and_set_switch_mode(vsi); 6990 if (ret) { 6991 dev_err(&pf->pdev->dev, 6992 "failed to set switch mode, ret %d\n", 6993 ret); 6994 return ret; 6995 } 6996 6997 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 6998 &cld_filter, 1); 6999 } else { 7000 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7001 &cld_filter, 1); 7002 } 7003 7004 if (ret) 7005 dev_dbg(&pf->pdev->dev, 7006 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7007 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7008 else 7009 dev_info(&pf->pdev->dev, 7010 "%s cloud filter for VSI: %d, L4 port: %d\n", 7011 add ? "add" : "delete", filter->seid, 7012 ntohs(filter->dst_port)); 7013 return ret; 7014 } 7015 7016 /** 7017 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7018 * @vsi: Pointer to VSI 7019 * @cls_flower: Pointer to struct tc_cls_flower_offload 7020 * @filter: Pointer to cloud filter structure 7021 * 7022 **/ 7023 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7024 struct tc_cls_flower_offload *f, 7025 struct i40e_cloud_filter *filter) 7026 { 7027 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7028 struct i40e_pf *pf = vsi->back; 7029 u8 field_flags = 0; 7030 7031 if (f->dissector->used_keys & 7032 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7033 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7034 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7035 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7036 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7037 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7038 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7039 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7040 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7041 f->dissector->used_keys); 7042 return -EOPNOTSUPP; 7043 } 7044 7045 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7046 struct flow_dissector_key_keyid *key = 7047 skb_flow_dissector_target(f->dissector, 7048 FLOW_DISSECTOR_KEY_ENC_KEYID, 7049 f->key); 7050 7051 struct flow_dissector_key_keyid *mask = 7052 skb_flow_dissector_target(f->dissector, 7053 FLOW_DISSECTOR_KEY_ENC_KEYID, 7054 f->mask); 7055 7056 if (mask->keyid != 0) 7057 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7058 7059 filter->tenant_id = be32_to_cpu(key->keyid); 7060 } 7061 7062 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) { 7063 struct flow_dissector_key_basic *key = 7064 skb_flow_dissector_target(f->dissector, 7065 FLOW_DISSECTOR_KEY_BASIC, 7066 f->key); 7067 7068 struct flow_dissector_key_basic *mask = 7069 skb_flow_dissector_target(f->dissector, 7070 FLOW_DISSECTOR_KEY_BASIC, 7071 f->mask); 7072 7073 n_proto_key = ntohs(key->n_proto); 7074 n_proto_mask = ntohs(mask->n_proto); 7075 7076 if (n_proto_key == ETH_P_ALL) { 7077 n_proto_key = 0; 7078 n_proto_mask = 0; 7079 } 7080 filter->n_proto = n_proto_key & n_proto_mask; 7081 filter->ip_proto = key->ip_proto; 7082 } 7083 7084 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7085 struct flow_dissector_key_eth_addrs *key = 7086 skb_flow_dissector_target(f->dissector, 7087 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7088 f->key); 7089 7090 struct flow_dissector_key_eth_addrs *mask = 7091 skb_flow_dissector_target(f->dissector, 7092 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7093 f->mask); 7094 7095 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7096 if (!is_zero_ether_addr(mask->dst)) { 7097 if (is_broadcast_ether_addr(mask->dst)) { 7098 field_flags |= I40E_CLOUD_FIELD_OMAC; 7099 } else { 7100 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7101 mask->dst); 7102 return I40E_ERR_CONFIG; 7103 } 7104 } 7105 7106 if (!is_zero_ether_addr(mask->src)) { 7107 if (is_broadcast_ether_addr(mask->src)) { 7108 field_flags |= I40E_CLOUD_FIELD_IMAC; 7109 } else { 7110 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7111 mask->src); 7112 return I40E_ERR_CONFIG; 7113 } 7114 } 7115 ether_addr_copy(filter->dst_mac, key->dst); 7116 ether_addr_copy(filter->src_mac, key->src); 7117 } 7118 7119 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) { 7120 struct flow_dissector_key_vlan *key = 7121 skb_flow_dissector_target(f->dissector, 7122 FLOW_DISSECTOR_KEY_VLAN, 7123 f->key); 7124 struct flow_dissector_key_vlan *mask = 7125 skb_flow_dissector_target(f->dissector, 7126 FLOW_DISSECTOR_KEY_VLAN, 7127 f->mask); 7128 7129 if (mask->vlan_id) { 7130 if (mask->vlan_id == VLAN_VID_MASK) { 7131 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7132 7133 } else { 7134 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7135 mask->vlan_id); 7136 return I40E_ERR_CONFIG; 7137 } 7138 } 7139 7140 filter->vlan_id = cpu_to_be16(key->vlan_id); 7141 } 7142 7143 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_CONTROL)) { 7144 struct flow_dissector_key_control *key = 7145 skb_flow_dissector_target(f->dissector, 7146 FLOW_DISSECTOR_KEY_CONTROL, 7147 f->key); 7148 7149 addr_type = key->addr_type; 7150 } 7151 7152 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7153 struct flow_dissector_key_ipv4_addrs *key = 7154 skb_flow_dissector_target(f->dissector, 7155 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7156 f->key); 7157 struct flow_dissector_key_ipv4_addrs *mask = 7158 skb_flow_dissector_target(f->dissector, 7159 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7160 f->mask); 7161 7162 if (mask->dst) { 7163 if (mask->dst == cpu_to_be32(0xffffffff)) { 7164 field_flags |= I40E_CLOUD_FIELD_IIP; 7165 } else { 7166 mask->dst = be32_to_cpu(mask->dst); 7167 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4\n", 7168 &mask->dst); 7169 return I40E_ERR_CONFIG; 7170 } 7171 } 7172 7173 if (mask->src) { 7174 if (mask->src == cpu_to_be32(0xffffffff)) { 7175 field_flags |= I40E_CLOUD_FIELD_IIP; 7176 } else { 7177 mask->src = be32_to_cpu(mask->src); 7178 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4\n", 7179 &mask->src); 7180 return I40E_ERR_CONFIG; 7181 } 7182 } 7183 7184 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7185 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7186 return I40E_ERR_CONFIG; 7187 } 7188 filter->dst_ipv4 = key->dst; 7189 filter->src_ipv4 = key->src; 7190 } 7191 7192 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7193 struct flow_dissector_key_ipv6_addrs *key = 7194 skb_flow_dissector_target(f->dissector, 7195 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7196 f->key); 7197 struct flow_dissector_key_ipv6_addrs *mask = 7198 skb_flow_dissector_target(f->dissector, 7199 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7200 f->mask); 7201 7202 /* src and dest IPV6 address should not be LOOPBACK 7203 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7204 */ 7205 if (ipv6_addr_loopback(&key->dst) || 7206 ipv6_addr_loopback(&key->src)) { 7207 dev_err(&pf->pdev->dev, 7208 "Bad ipv6, addr is LOOPBACK\n"); 7209 return I40E_ERR_CONFIG; 7210 } 7211 if (!ipv6_addr_any(&mask->dst) || !ipv6_addr_any(&mask->src)) 7212 field_flags |= I40E_CLOUD_FIELD_IIP; 7213 7214 memcpy(&filter->src_ipv6, &key->src.s6_addr32, 7215 sizeof(filter->src_ipv6)); 7216 memcpy(&filter->dst_ipv6, &key->dst.s6_addr32, 7217 sizeof(filter->dst_ipv6)); 7218 } 7219 7220 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS)) { 7221 struct flow_dissector_key_ports *key = 7222 skb_flow_dissector_target(f->dissector, 7223 FLOW_DISSECTOR_KEY_PORTS, 7224 f->key); 7225 struct flow_dissector_key_ports *mask = 7226 skb_flow_dissector_target(f->dissector, 7227 FLOW_DISSECTOR_KEY_PORTS, 7228 f->mask); 7229 7230 if (mask->src) { 7231 if (mask->src == cpu_to_be16(0xffff)) { 7232 field_flags |= I40E_CLOUD_FIELD_IIP; 7233 } else { 7234 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7235 be16_to_cpu(mask->src)); 7236 return I40E_ERR_CONFIG; 7237 } 7238 } 7239 7240 if (mask->dst) { 7241 if (mask->dst == cpu_to_be16(0xffff)) { 7242 field_flags |= I40E_CLOUD_FIELD_IIP; 7243 } else { 7244 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7245 be16_to_cpu(mask->dst)); 7246 return I40E_ERR_CONFIG; 7247 } 7248 } 7249 7250 filter->dst_port = key->dst; 7251 filter->src_port = key->src; 7252 7253 switch (filter->ip_proto) { 7254 case IPPROTO_TCP: 7255 case IPPROTO_UDP: 7256 break; 7257 default: 7258 dev_err(&pf->pdev->dev, 7259 "Only UDP and TCP transport are supported\n"); 7260 return -EINVAL; 7261 } 7262 } 7263 filter->flags = field_flags; 7264 return 0; 7265 } 7266 7267 /** 7268 * i40e_handle_tclass: Forward to a traffic class on the device 7269 * @vsi: Pointer to VSI 7270 * @tc: traffic class index on the device 7271 * @filter: Pointer to cloud filter structure 7272 * 7273 **/ 7274 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7275 struct i40e_cloud_filter *filter) 7276 { 7277 struct i40e_channel *ch, *ch_tmp; 7278 7279 /* direct to a traffic class on the same device */ 7280 if (tc == 0) { 7281 filter->seid = vsi->seid; 7282 return 0; 7283 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7284 if (!filter->dst_port) { 7285 dev_err(&vsi->back->pdev->dev, 7286 "Specify destination port to direct to traffic class that is not default\n"); 7287 return -EINVAL; 7288 } 7289 if (list_empty(&vsi->ch_list)) 7290 return -EINVAL; 7291 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7292 list) { 7293 if (ch->seid == vsi->tc_seid_map[tc]) 7294 filter->seid = ch->seid; 7295 } 7296 return 0; 7297 } 7298 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7299 return -EINVAL; 7300 } 7301 7302 /** 7303 * i40e_configure_clsflower - Configure tc flower filters 7304 * @vsi: Pointer to VSI 7305 * @cls_flower: Pointer to struct tc_cls_flower_offload 7306 * 7307 **/ 7308 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 7309 struct tc_cls_flower_offload *cls_flower) 7310 { 7311 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 7312 struct i40e_cloud_filter *filter = NULL; 7313 struct i40e_pf *pf = vsi->back; 7314 int err = 0; 7315 7316 if (tc < 0) { 7317 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 7318 return -EOPNOTSUPP; 7319 } 7320 7321 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 7322 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 7323 return -EBUSY; 7324 7325 if (pf->fdir_pf_active_filters || 7326 (!hlist_empty(&pf->fdir_filter_list))) { 7327 dev_err(&vsi->back->pdev->dev, 7328 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 7329 return -EINVAL; 7330 } 7331 7332 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 7333 dev_err(&vsi->back->pdev->dev, 7334 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 7335 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 7336 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7337 } 7338 7339 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 7340 if (!filter) 7341 return -ENOMEM; 7342 7343 filter->cookie = cls_flower->cookie; 7344 7345 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 7346 if (err < 0) 7347 goto err; 7348 7349 err = i40e_handle_tclass(vsi, tc, filter); 7350 if (err < 0) 7351 goto err; 7352 7353 /* Add cloud filter */ 7354 if (filter->dst_port) 7355 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 7356 else 7357 err = i40e_add_del_cloud_filter(vsi, filter, true); 7358 7359 if (err) { 7360 dev_err(&pf->pdev->dev, 7361 "Failed to add cloud filter, err %s\n", 7362 i40e_stat_str(&pf->hw, err)); 7363 goto err; 7364 } 7365 7366 /* add filter to the ordered list */ 7367 INIT_HLIST_NODE(&filter->cloud_node); 7368 7369 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 7370 7371 pf->num_cloud_filters++; 7372 7373 return err; 7374 err: 7375 kfree(filter); 7376 return err; 7377 } 7378 7379 /** 7380 * i40e_find_cloud_filter - Find the could filter in the list 7381 * @vsi: Pointer to VSI 7382 * @cookie: filter specific cookie 7383 * 7384 **/ 7385 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 7386 unsigned long *cookie) 7387 { 7388 struct i40e_cloud_filter *filter = NULL; 7389 struct hlist_node *node2; 7390 7391 hlist_for_each_entry_safe(filter, node2, 7392 &vsi->back->cloud_filter_list, cloud_node) 7393 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 7394 return filter; 7395 return NULL; 7396 } 7397 7398 /** 7399 * i40e_delete_clsflower - Remove tc flower filters 7400 * @vsi: Pointer to VSI 7401 * @cls_flower: Pointer to struct tc_cls_flower_offload 7402 * 7403 **/ 7404 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 7405 struct tc_cls_flower_offload *cls_flower) 7406 { 7407 struct i40e_cloud_filter *filter = NULL; 7408 struct i40e_pf *pf = vsi->back; 7409 int err = 0; 7410 7411 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 7412 7413 if (!filter) 7414 return -EINVAL; 7415 7416 hash_del(&filter->cloud_node); 7417 7418 if (filter->dst_port) 7419 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 7420 else 7421 err = i40e_add_del_cloud_filter(vsi, filter, false); 7422 7423 kfree(filter); 7424 if (err) { 7425 dev_err(&pf->pdev->dev, 7426 "Failed to delete cloud filter, err %s\n", 7427 i40e_stat_str(&pf->hw, err)); 7428 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 7429 } 7430 7431 pf->num_cloud_filters--; 7432 if (!pf->num_cloud_filters) 7433 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7434 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7435 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7436 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7437 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7438 } 7439 return 0; 7440 } 7441 7442 /** 7443 * i40e_setup_tc_cls_flower - flower classifier offloads 7444 * @netdev: net device to configure 7445 * @type_data: offload data 7446 **/ 7447 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 7448 struct tc_cls_flower_offload *cls_flower) 7449 { 7450 struct i40e_vsi *vsi = np->vsi; 7451 7452 switch (cls_flower->command) { 7453 case TC_CLSFLOWER_REPLACE: 7454 return i40e_configure_clsflower(vsi, cls_flower); 7455 case TC_CLSFLOWER_DESTROY: 7456 return i40e_delete_clsflower(vsi, cls_flower); 7457 case TC_CLSFLOWER_STATS: 7458 return -EOPNOTSUPP; 7459 default: 7460 return -EINVAL; 7461 } 7462 } 7463 7464 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 7465 void *cb_priv) 7466 { 7467 struct i40e_netdev_priv *np = cb_priv; 7468 7469 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 7470 return -EOPNOTSUPP; 7471 7472 switch (type) { 7473 case TC_SETUP_CLSFLOWER: 7474 return i40e_setup_tc_cls_flower(np, type_data); 7475 7476 default: 7477 return -EOPNOTSUPP; 7478 } 7479 } 7480 7481 static int i40e_setup_tc_block(struct net_device *dev, 7482 struct tc_block_offload *f) 7483 { 7484 struct i40e_netdev_priv *np = netdev_priv(dev); 7485 7486 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 7487 return -EOPNOTSUPP; 7488 7489 switch (f->command) { 7490 case TC_BLOCK_BIND: 7491 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb, 7492 np, np); 7493 case TC_BLOCK_UNBIND: 7494 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np); 7495 return 0; 7496 default: 7497 return -EOPNOTSUPP; 7498 } 7499 } 7500 7501 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 7502 void *type_data) 7503 { 7504 switch (type) { 7505 case TC_SETUP_QDISC_MQPRIO: 7506 return i40e_setup_tc(netdev, type_data); 7507 case TC_SETUP_BLOCK: 7508 return i40e_setup_tc_block(netdev, type_data); 7509 default: 7510 return -EOPNOTSUPP; 7511 } 7512 } 7513 7514 /** 7515 * i40e_open - Called when a network interface is made active 7516 * @netdev: network interface device structure 7517 * 7518 * The open entry point is called when a network interface is made 7519 * active by the system (IFF_UP). At this point all resources needed 7520 * for transmit and receive operations are allocated, the interrupt 7521 * handler is registered with the OS, the netdev watchdog subtask is 7522 * enabled, and the stack is notified that the interface is ready. 7523 * 7524 * Returns 0 on success, negative value on failure 7525 **/ 7526 int i40e_open(struct net_device *netdev) 7527 { 7528 struct i40e_netdev_priv *np = netdev_priv(netdev); 7529 struct i40e_vsi *vsi = np->vsi; 7530 struct i40e_pf *pf = vsi->back; 7531 int err; 7532 7533 /* disallow open during test or if eeprom is broken */ 7534 if (test_bit(__I40E_TESTING, pf->state) || 7535 test_bit(__I40E_BAD_EEPROM, pf->state)) 7536 return -EBUSY; 7537 7538 netif_carrier_off(netdev); 7539 7540 err = i40e_vsi_open(vsi); 7541 if (err) 7542 return err; 7543 7544 /* configure global TSO hardware offload settings */ 7545 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 7546 TCP_FLAG_FIN) >> 16); 7547 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 7548 TCP_FLAG_FIN | 7549 TCP_FLAG_CWR) >> 16); 7550 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 7551 7552 udp_tunnel_get_rx_info(netdev); 7553 7554 return 0; 7555 } 7556 7557 /** 7558 * i40e_vsi_open - 7559 * @vsi: the VSI to open 7560 * 7561 * Finish initialization of the VSI. 7562 * 7563 * Returns 0 on success, negative value on failure 7564 * 7565 * Note: expects to be called while under rtnl_lock() 7566 **/ 7567 int i40e_vsi_open(struct i40e_vsi *vsi) 7568 { 7569 struct i40e_pf *pf = vsi->back; 7570 char int_name[I40E_INT_NAME_STR_LEN]; 7571 int err; 7572 7573 /* allocate descriptors */ 7574 err = i40e_vsi_setup_tx_resources(vsi); 7575 if (err) 7576 goto err_setup_tx; 7577 err = i40e_vsi_setup_rx_resources(vsi); 7578 if (err) 7579 goto err_setup_rx; 7580 7581 err = i40e_vsi_configure(vsi); 7582 if (err) 7583 goto err_setup_rx; 7584 7585 if (vsi->netdev) { 7586 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7587 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 7588 err = i40e_vsi_request_irq(vsi, int_name); 7589 if (err) 7590 goto err_setup_rx; 7591 7592 /* Notify the stack of the actual queue counts. */ 7593 err = netif_set_real_num_tx_queues(vsi->netdev, 7594 vsi->num_queue_pairs); 7595 if (err) 7596 goto err_set_queues; 7597 7598 err = netif_set_real_num_rx_queues(vsi->netdev, 7599 vsi->num_queue_pairs); 7600 if (err) 7601 goto err_set_queues; 7602 7603 } else if (vsi->type == I40E_VSI_FDIR) { 7604 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 7605 dev_driver_string(&pf->pdev->dev), 7606 dev_name(&pf->pdev->dev)); 7607 err = i40e_vsi_request_irq(vsi, int_name); 7608 7609 } else { 7610 err = -EINVAL; 7611 goto err_setup_rx; 7612 } 7613 7614 err = i40e_up_complete(vsi); 7615 if (err) 7616 goto err_up_complete; 7617 7618 return 0; 7619 7620 err_up_complete: 7621 i40e_down(vsi); 7622 err_set_queues: 7623 i40e_vsi_free_irq(vsi); 7624 err_setup_rx: 7625 i40e_vsi_free_rx_resources(vsi); 7626 err_setup_tx: 7627 i40e_vsi_free_tx_resources(vsi); 7628 if (vsi == pf->vsi[pf->lan_vsi]) 7629 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 7630 7631 return err; 7632 } 7633 7634 /** 7635 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 7636 * @pf: Pointer to PF 7637 * 7638 * This function destroys the hlist where all the Flow Director 7639 * filters were saved. 7640 **/ 7641 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 7642 { 7643 struct i40e_fdir_filter *filter; 7644 struct i40e_flex_pit *pit_entry, *tmp; 7645 struct hlist_node *node2; 7646 7647 hlist_for_each_entry_safe(filter, node2, 7648 &pf->fdir_filter_list, fdir_node) { 7649 hlist_del(&filter->fdir_node); 7650 kfree(filter); 7651 } 7652 7653 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 7654 list_del(&pit_entry->list); 7655 kfree(pit_entry); 7656 } 7657 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 7658 7659 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 7660 list_del(&pit_entry->list); 7661 kfree(pit_entry); 7662 } 7663 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 7664 7665 pf->fdir_pf_active_filters = 0; 7666 pf->fd_tcp4_filter_cnt = 0; 7667 pf->fd_udp4_filter_cnt = 0; 7668 pf->fd_sctp4_filter_cnt = 0; 7669 pf->fd_ip4_filter_cnt = 0; 7670 7671 /* Reprogram the default input set for TCP/IPv4 */ 7672 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 7673 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7674 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7675 7676 /* Reprogram the default input set for UDP/IPv4 */ 7677 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 7678 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7679 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7680 7681 /* Reprogram the default input set for SCTP/IPv4 */ 7682 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 7683 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7684 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7685 7686 /* Reprogram the default input set for Other/IPv4 */ 7687 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 7688 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7689 7690 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 7691 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7692 } 7693 7694 /** 7695 * i40e_cloud_filter_exit - Cleans up the cloud filters 7696 * @pf: Pointer to PF 7697 * 7698 * This function destroys the hlist where all the cloud filters 7699 * were saved. 7700 **/ 7701 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 7702 { 7703 struct i40e_cloud_filter *cfilter; 7704 struct hlist_node *node; 7705 7706 hlist_for_each_entry_safe(cfilter, node, 7707 &pf->cloud_filter_list, cloud_node) { 7708 hlist_del(&cfilter->cloud_node); 7709 kfree(cfilter); 7710 } 7711 pf->num_cloud_filters = 0; 7712 7713 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7714 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7715 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7716 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7717 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7718 } 7719 } 7720 7721 /** 7722 * i40e_close - Disables a network interface 7723 * @netdev: network interface device structure 7724 * 7725 * The close entry point is called when an interface is de-activated 7726 * by the OS. The hardware is still under the driver's control, but 7727 * this netdev interface is disabled. 7728 * 7729 * Returns 0, this is not allowed to fail 7730 **/ 7731 int i40e_close(struct net_device *netdev) 7732 { 7733 struct i40e_netdev_priv *np = netdev_priv(netdev); 7734 struct i40e_vsi *vsi = np->vsi; 7735 7736 i40e_vsi_close(vsi); 7737 7738 return 0; 7739 } 7740 7741 /** 7742 * i40e_do_reset - Start a PF or Core Reset sequence 7743 * @pf: board private structure 7744 * @reset_flags: which reset is requested 7745 * @lock_acquired: indicates whether or not the lock has been acquired 7746 * before this function was called. 7747 * 7748 * The essential difference in resets is that the PF Reset 7749 * doesn't clear the packet buffers, doesn't reset the PE 7750 * firmware, and doesn't bother the other PFs on the chip. 7751 **/ 7752 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 7753 { 7754 u32 val; 7755 7756 WARN_ON(in_interrupt()); 7757 7758 7759 /* do the biggest reset indicated */ 7760 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 7761 7762 /* Request a Global Reset 7763 * 7764 * This will start the chip's countdown to the actual full 7765 * chip reset event, and a warning interrupt to be sent 7766 * to all PFs, including the requestor. Our handler 7767 * for the warning interrupt will deal with the shutdown 7768 * and recovery of the switch setup. 7769 */ 7770 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 7771 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7772 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 7773 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7774 7775 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 7776 7777 /* Request a Core Reset 7778 * 7779 * Same as Global Reset, except does *not* include the MAC/PHY 7780 */ 7781 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 7782 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7783 val |= I40E_GLGEN_RTRIG_CORER_MASK; 7784 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7785 i40e_flush(&pf->hw); 7786 7787 } else if (reset_flags & I40E_PF_RESET_FLAG) { 7788 7789 /* Request a PF Reset 7790 * 7791 * Resets only the PF-specific registers 7792 * 7793 * This goes directly to the tear-down and rebuild of 7794 * the switch, since we need to do all the recovery as 7795 * for the Core Reset. 7796 */ 7797 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 7798 i40e_handle_reset_warning(pf, lock_acquired); 7799 7800 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 7801 int v; 7802 7803 /* Find the VSI(s) that requested a re-init */ 7804 dev_info(&pf->pdev->dev, 7805 "VSI reinit requested\n"); 7806 for (v = 0; v < pf->num_alloc_vsi; v++) { 7807 struct i40e_vsi *vsi = pf->vsi[v]; 7808 7809 if (vsi != NULL && 7810 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 7811 vsi->state)) 7812 i40e_vsi_reinit_locked(pf->vsi[v]); 7813 } 7814 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 7815 int v; 7816 7817 /* Find the VSI(s) that needs to be brought down */ 7818 dev_info(&pf->pdev->dev, "VSI down requested\n"); 7819 for (v = 0; v < pf->num_alloc_vsi; v++) { 7820 struct i40e_vsi *vsi = pf->vsi[v]; 7821 7822 if (vsi != NULL && 7823 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 7824 vsi->state)) { 7825 set_bit(__I40E_VSI_DOWN, vsi->state); 7826 i40e_down(vsi); 7827 } 7828 } 7829 } else { 7830 dev_info(&pf->pdev->dev, 7831 "bad reset request 0x%08x\n", reset_flags); 7832 } 7833 } 7834 7835 #ifdef CONFIG_I40E_DCB 7836 /** 7837 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 7838 * @pf: board private structure 7839 * @old_cfg: current DCB config 7840 * @new_cfg: new DCB config 7841 **/ 7842 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 7843 struct i40e_dcbx_config *old_cfg, 7844 struct i40e_dcbx_config *new_cfg) 7845 { 7846 bool need_reconfig = false; 7847 7848 /* Check if ETS configuration has changed */ 7849 if (memcmp(&new_cfg->etscfg, 7850 &old_cfg->etscfg, 7851 sizeof(new_cfg->etscfg))) { 7852 /* If Priority Table has changed reconfig is needed */ 7853 if (memcmp(&new_cfg->etscfg.prioritytable, 7854 &old_cfg->etscfg.prioritytable, 7855 sizeof(new_cfg->etscfg.prioritytable))) { 7856 need_reconfig = true; 7857 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 7858 } 7859 7860 if (memcmp(&new_cfg->etscfg.tcbwtable, 7861 &old_cfg->etscfg.tcbwtable, 7862 sizeof(new_cfg->etscfg.tcbwtable))) 7863 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 7864 7865 if (memcmp(&new_cfg->etscfg.tsatable, 7866 &old_cfg->etscfg.tsatable, 7867 sizeof(new_cfg->etscfg.tsatable))) 7868 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 7869 } 7870 7871 /* Check if PFC configuration has changed */ 7872 if (memcmp(&new_cfg->pfc, 7873 &old_cfg->pfc, 7874 sizeof(new_cfg->pfc))) { 7875 need_reconfig = true; 7876 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 7877 } 7878 7879 /* Check if APP Table has changed */ 7880 if (memcmp(&new_cfg->app, 7881 &old_cfg->app, 7882 sizeof(new_cfg->app))) { 7883 need_reconfig = true; 7884 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 7885 } 7886 7887 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 7888 return need_reconfig; 7889 } 7890 7891 /** 7892 * i40e_handle_lldp_event - Handle LLDP Change MIB event 7893 * @pf: board private structure 7894 * @e: event info posted on ARQ 7895 **/ 7896 static int i40e_handle_lldp_event(struct i40e_pf *pf, 7897 struct i40e_arq_event_info *e) 7898 { 7899 struct i40e_aqc_lldp_get_mib *mib = 7900 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 7901 struct i40e_hw *hw = &pf->hw; 7902 struct i40e_dcbx_config tmp_dcbx_cfg; 7903 bool need_reconfig = false; 7904 int ret = 0; 7905 u8 type; 7906 7907 /* Not DCB capable or capability disabled */ 7908 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 7909 return ret; 7910 7911 /* Ignore if event is not for Nearest Bridge */ 7912 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 7913 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 7914 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 7915 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 7916 return ret; 7917 7918 /* Check MIB Type and return if event for Remote MIB update */ 7919 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 7920 dev_dbg(&pf->pdev->dev, 7921 "LLDP event mib type %s\n", type ? "remote" : "local"); 7922 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 7923 /* Update the remote cached instance and return */ 7924 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 7925 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 7926 &hw->remote_dcbx_config); 7927 goto exit; 7928 } 7929 7930 /* Store the old configuration */ 7931 tmp_dcbx_cfg = hw->local_dcbx_config; 7932 7933 /* Reset the old DCBx configuration data */ 7934 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 7935 /* Get updated DCBX data from firmware */ 7936 ret = i40e_get_dcb_config(&pf->hw); 7937 if (ret) { 7938 dev_info(&pf->pdev->dev, 7939 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 7940 i40e_stat_str(&pf->hw, ret), 7941 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7942 goto exit; 7943 } 7944 7945 /* No change detected in DCBX configs */ 7946 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 7947 sizeof(tmp_dcbx_cfg))) { 7948 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 7949 goto exit; 7950 } 7951 7952 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 7953 &hw->local_dcbx_config); 7954 7955 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 7956 7957 if (!need_reconfig) 7958 goto exit; 7959 7960 /* Enable DCB tagging only when more than one TC */ 7961 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7962 pf->flags |= I40E_FLAG_DCB_ENABLED; 7963 else 7964 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 7965 7966 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7967 /* Reconfiguration needed quiesce all VSIs */ 7968 i40e_pf_quiesce_all_vsi(pf); 7969 7970 /* Changes in configuration update VEB/VSI */ 7971 i40e_dcb_reconfigure(pf); 7972 7973 ret = i40e_resume_port_tx(pf); 7974 7975 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7976 /* In case of error no point in resuming VSIs */ 7977 if (ret) 7978 goto exit; 7979 7980 /* Wait for the PF's queues to be disabled */ 7981 ret = i40e_pf_wait_queues_disabled(pf); 7982 if (ret) { 7983 /* Schedule PF reset to recover */ 7984 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7985 i40e_service_event_schedule(pf); 7986 } else { 7987 i40e_pf_unquiesce_all_vsi(pf); 7988 pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED | 7989 I40E_FLAG_CLIENT_L2_CHANGE); 7990 } 7991 7992 exit: 7993 return ret; 7994 } 7995 #endif /* CONFIG_I40E_DCB */ 7996 7997 /** 7998 * i40e_do_reset_safe - Protected reset path for userland calls. 7999 * @pf: board private structure 8000 * @reset_flags: which reset is requested 8001 * 8002 **/ 8003 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8004 { 8005 rtnl_lock(); 8006 i40e_do_reset(pf, reset_flags, true); 8007 rtnl_unlock(); 8008 } 8009 8010 /** 8011 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8012 * @pf: board private structure 8013 * @e: event info posted on ARQ 8014 * 8015 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8016 * and VF queues 8017 **/ 8018 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8019 struct i40e_arq_event_info *e) 8020 { 8021 struct i40e_aqc_lan_overflow *data = 8022 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8023 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8024 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8025 struct i40e_hw *hw = &pf->hw; 8026 struct i40e_vf *vf; 8027 u16 vf_id; 8028 8029 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8030 queue, qtx_ctl); 8031 8032 /* Queue belongs to VF, find the VF and issue VF reset */ 8033 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8034 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8035 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8036 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8037 vf_id -= hw->func_caps.vf_base_id; 8038 vf = &pf->vf[vf_id]; 8039 i40e_vc_notify_vf_reset(vf); 8040 /* Allow VF to process pending reset notification */ 8041 msleep(20); 8042 i40e_reset_vf(vf, false); 8043 } 8044 } 8045 8046 /** 8047 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8048 * @pf: board private structure 8049 **/ 8050 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8051 { 8052 u32 val, fcnt_prog; 8053 8054 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8055 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8056 return fcnt_prog; 8057 } 8058 8059 /** 8060 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8061 * @pf: board private structure 8062 **/ 8063 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8064 { 8065 u32 val, fcnt_prog; 8066 8067 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8068 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8069 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8070 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8071 return fcnt_prog; 8072 } 8073 8074 /** 8075 * i40e_get_global_fd_count - Get total FD filters programmed on device 8076 * @pf: board private structure 8077 **/ 8078 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8079 { 8080 u32 val, fcnt_prog; 8081 8082 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8083 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8084 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8085 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8086 return fcnt_prog; 8087 } 8088 8089 /** 8090 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8091 * @pf: board private structure 8092 **/ 8093 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8094 { 8095 struct i40e_fdir_filter *filter; 8096 u32 fcnt_prog, fcnt_avail; 8097 struct hlist_node *node; 8098 8099 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8100 return; 8101 8102 /* Check if we have enough room to re-enable FDir SB capability. */ 8103 fcnt_prog = i40e_get_global_fd_count(pf); 8104 fcnt_avail = pf->fdir_pf_filter_count; 8105 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8106 (pf->fd_add_err == 0) || 8107 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) { 8108 if (pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) { 8109 pf->flags &= ~I40E_FLAG_FD_SB_AUTO_DISABLED; 8110 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8111 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8112 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8113 } 8114 } 8115 8116 /* We should wait for even more space before re-enabling ATR. 8117 * Additionally, we cannot enable ATR as long as we still have TCP SB 8118 * rules active. 8119 */ 8120 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8121 (pf->fd_tcp4_filter_cnt == 0)) { 8122 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) { 8123 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED; 8124 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8125 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8126 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8127 } 8128 } 8129 8130 /* if hw had a problem adding a filter, delete it */ 8131 if (pf->fd_inv > 0) { 8132 hlist_for_each_entry_safe(filter, node, 8133 &pf->fdir_filter_list, fdir_node) { 8134 if (filter->fd_id == pf->fd_inv) { 8135 hlist_del(&filter->fdir_node); 8136 kfree(filter); 8137 pf->fdir_pf_active_filters--; 8138 pf->fd_inv = 0; 8139 } 8140 } 8141 } 8142 } 8143 8144 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8145 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8146 /** 8147 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8148 * @pf: board private structure 8149 **/ 8150 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8151 { 8152 unsigned long min_flush_time; 8153 int flush_wait_retry = 50; 8154 bool disable_atr = false; 8155 int fd_room; 8156 int reg; 8157 8158 if (!time_after(jiffies, pf->fd_flush_timestamp + 8159 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8160 return; 8161 8162 /* If the flush is happening too quick and we have mostly SB rules we 8163 * should not re-enable ATR for some time. 8164 */ 8165 min_flush_time = pf->fd_flush_timestamp + 8166 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8167 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8168 8169 if (!(time_after(jiffies, min_flush_time)) && 8170 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8171 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8172 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8173 disable_atr = true; 8174 } 8175 8176 pf->fd_flush_timestamp = jiffies; 8177 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED; 8178 /* flush all filters */ 8179 wr32(&pf->hw, I40E_PFQF_CTL_1, 8180 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8181 i40e_flush(&pf->hw); 8182 pf->fd_flush_cnt++; 8183 pf->fd_add_err = 0; 8184 do { 8185 /* Check FD flush status every 5-6msec */ 8186 usleep_range(5000, 6000); 8187 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8188 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8189 break; 8190 } while (flush_wait_retry--); 8191 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8192 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8193 } else { 8194 /* replay sideband filters */ 8195 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8196 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8197 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED; 8198 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8199 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8200 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8201 } 8202 } 8203 8204 /** 8205 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8206 * @pf: board private structure 8207 **/ 8208 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8209 { 8210 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8211 } 8212 8213 /* We can see up to 256 filter programming desc in transit if the filters are 8214 * being applied really fast; before we see the first 8215 * filter miss error on Rx queue 0. Accumulating enough error messages before 8216 * reacting will make sure we don't cause flush too often. 8217 */ 8218 #define I40E_MAX_FD_PROGRAM_ERROR 256 8219 8220 /** 8221 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8222 * @pf: board private structure 8223 **/ 8224 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8225 { 8226 8227 /* if interface is down do nothing */ 8228 if (test_bit(__I40E_DOWN, pf->state)) 8229 return; 8230 8231 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8232 i40e_fdir_flush_and_replay(pf); 8233 8234 i40e_fdir_check_and_reenable(pf); 8235 8236 } 8237 8238 /** 8239 * i40e_vsi_link_event - notify VSI of a link event 8240 * @vsi: vsi to be notified 8241 * @link_up: link up or down 8242 **/ 8243 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8244 { 8245 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8246 return; 8247 8248 switch (vsi->type) { 8249 case I40E_VSI_MAIN: 8250 if (!vsi->netdev || !vsi->netdev_registered) 8251 break; 8252 8253 if (link_up) { 8254 netif_carrier_on(vsi->netdev); 8255 netif_tx_wake_all_queues(vsi->netdev); 8256 } else { 8257 netif_carrier_off(vsi->netdev); 8258 netif_tx_stop_all_queues(vsi->netdev); 8259 } 8260 break; 8261 8262 case I40E_VSI_SRIOV: 8263 case I40E_VSI_VMDQ2: 8264 case I40E_VSI_CTRL: 8265 case I40E_VSI_IWARP: 8266 case I40E_VSI_MIRROR: 8267 default: 8268 /* there is no notification for other VSIs */ 8269 break; 8270 } 8271 } 8272 8273 /** 8274 * i40e_veb_link_event - notify elements on the veb of a link event 8275 * @veb: veb to be notified 8276 * @link_up: link up or down 8277 **/ 8278 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 8279 { 8280 struct i40e_pf *pf; 8281 int i; 8282 8283 if (!veb || !veb->pf) 8284 return; 8285 pf = veb->pf; 8286 8287 /* depth first... */ 8288 for (i = 0; i < I40E_MAX_VEB; i++) 8289 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 8290 i40e_veb_link_event(pf->veb[i], link_up); 8291 8292 /* ... now the local VSIs */ 8293 for (i = 0; i < pf->num_alloc_vsi; i++) 8294 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 8295 i40e_vsi_link_event(pf->vsi[i], link_up); 8296 } 8297 8298 /** 8299 * i40e_link_event - Update netif_carrier status 8300 * @pf: board private structure 8301 **/ 8302 static void i40e_link_event(struct i40e_pf *pf) 8303 { 8304 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8305 u8 new_link_speed, old_link_speed; 8306 i40e_status status; 8307 bool new_link, old_link; 8308 8309 /* save off old link status information */ 8310 pf->hw.phy.link_info_old = pf->hw.phy.link_info; 8311 8312 /* set this to force the get_link_status call to refresh state */ 8313 pf->hw.phy.get_link_info = true; 8314 8315 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 8316 8317 status = i40e_get_link_status(&pf->hw, &new_link); 8318 8319 /* On success, disable temp link polling */ 8320 if (status == I40E_SUCCESS) { 8321 if (pf->flags & I40E_FLAG_TEMP_LINK_POLLING) 8322 pf->flags &= ~I40E_FLAG_TEMP_LINK_POLLING; 8323 } else { 8324 /* Enable link polling temporarily until i40e_get_link_status 8325 * returns I40E_SUCCESS 8326 */ 8327 pf->flags |= I40E_FLAG_TEMP_LINK_POLLING; 8328 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 8329 status); 8330 return; 8331 } 8332 8333 old_link_speed = pf->hw.phy.link_info_old.link_speed; 8334 new_link_speed = pf->hw.phy.link_info.link_speed; 8335 8336 if (new_link == old_link && 8337 new_link_speed == old_link_speed && 8338 (test_bit(__I40E_VSI_DOWN, vsi->state) || 8339 new_link == netif_carrier_ok(vsi->netdev))) 8340 return; 8341 8342 i40e_print_link_message(vsi, new_link); 8343 8344 /* Notify the base of the switch tree connected to 8345 * the link. Floating VEBs are not notified. 8346 */ 8347 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 8348 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 8349 else 8350 i40e_vsi_link_event(vsi, new_link); 8351 8352 if (pf->vf) 8353 i40e_vc_notify_link_state(pf); 8354 8355 if (pf->flags & I40E_FLAG_PTP) 8356 i40e_ptp_set_increment(pf); 8357 } 8358 8359 /** 8360 * i40e_watchdog_subtask - periodic checks not using event driven response 8361 * @pf: board private structure 8362 **/ 8363 static void i40e_watchdog_subtask(struct i40e_pf *pf) 8364 { 8365 int i; 8366 8367 /* if interface is down do nothing */ 8368 if (test_bit(__I40E_DOWN, pf->state) || 8369 test_bit(__I40E_CONFIG_BUSY, pf->state)) 8370 return; 8371 8372 /* make sure we don't do these things too often */ 8373 if (time_before(jiffies, (pf->service_timer_previous + 8374 pf->service_timer_period))) 8375 return; 8376 pf->service_timer_previous = jiffies; 8377 8378 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 8379 (pf->flags & I40E_FLAG_TEMP_LINK_POLLING)) 8380 i40e_link_event(pf); 8381 8382 /* Update the stats for active netdevs so the network stack 8383 * can look at updated numbers whenever it cares to 8384 */ 8385 for (i = 0; i < pf->num_alloc_vsi; i++) 8386 if (pf->vsi[i] && pf->vsi[i]->netdev) 8387 i40e_update_stats(pf->vsi[i]); 8388 8389 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 8390 /* Update the stats for the active switching components */ 8391 for (i = 0; i < I40E_MAX_VEB; i++) 8392 if (pf->veb[i]) 8393 i40e_update_veb_stats(pf->veb[i]); 8394 } 8395 8396 i40e_ptp_rx_hang(pf); 8397 i40e_ptp_tx_hang(pf); 8398 } 8399 8400 /** 8401 * i40e_reset_subtask - Set up for resetting the device and driver 8402 * @pf: board private structure 8403 **/ 8404 static void i40e_reset_subtask(struct i40e_pf *pf) 8405 { 8406 u32 reset_flags = 0; 8407 8408 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 8409 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 8410 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 8411 } 8412 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 8413 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 8414 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8415 } 8416 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 8417 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 8418 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 8419 } 8420 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 8421 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 8422 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 8423 } 8424 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 8425 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 8426 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 8427 } 8428 8429 /* If there's a recovery already waiting, it takes 8430 * precedence before starting a new reset sequence. 8431 */ 8432 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 8433 i40e_prep_for_reset(pf, false); 8434 i40e_reset(pf); 8435 i40e_rebuild(pf, false, false); 8436 } 8437 8438 /* If we're already down or resetting, just bail */ 8439 if (reset_flags && 8440 !test_bit(__I40E_DOWN, pf->state) && 8441 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 8442 i40e_do_reset(pf, reset_flags, false); 8443 } 8444 } 8445 8446 /** 8447 * i40e_handle_link_event - Handle link event 8448 * @pf: board private structure 8449 * @e: event info posted on ARQ 8450 **/ 8451 static void i40e_handle_link_event(struct i40e_pf *pf, 8452 struct i40e_arq_event_info *e) 8453 { 8454 struct i40e_aqc_get_link_status *status = 8455 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 8456 8457 /* Do a new status request to re-enable LSE reporting 8458 * and load new status information into the hw struct 8459 * This completely ignores any state information 8460 * in the ARQ event info, instead choosing to always 8461 * issue the AQ update link status command. 8462 */ 8463 i40e_link_event(pf); 8464 8465 /* Check if module meets thermal requirements */ 8466 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 8467 dev_err(&pf->pdev->dev, 8468 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 8469 dev_err(&pf->pdev->dev, 8470 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8471 } else { 8472 /* check for unqualified module, if link is down, suppress 8473 * the message if link was forced to be down. 8474 */ 8475 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 8476 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 8477 (!(status->link_info & I40E_AQ_LINK_UP)) && 8478 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 8479 dev_err(&pf->pdev->dev, 8480 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 8481 dev_err(&pf->pdev->dev, 8482 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8483 } 8484 } 8485 } 8486 8487 /** 8488 * i40e_clean_adminq_subtask - Clean the AdminQ rings 8489 * @pf: board private structure 8490 **/ 8491 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 8492 { 8493 struct i40e_arq_event_info event; 8494 struct i40e_hw *hw = &pf->hw; 8495 u16 pending, i = 0; 8496 i40e_status ret; 8497 u16 opcode; 8498 u32 oldval; 8499 u32 val; 8500 8501 /* Do not run clean AQ when PF reset fails */ 8502 if (test_bit(__I40E_RESET_FAILED, pf->state)) 8503 return; 8504 8505 /* check for error indications */ 8506 val = rd32(&pf->hw, pf->hw.aq.arq.len); 8507 oldval = val; 8508 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 8509 if (hw->debug_mask & I40E_DEBUG_AQ) 8510 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 8511 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 8512 } 8513 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 8514 if (hw->debug_mask & I40E_DEBUG_AQ) 8515 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 8516 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 8517 pf->arq_overflows++; 8518 } 8519 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 8520 if (hw->debug_mask & I40E_DEBUG_AQ) 8521 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 8522 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 8523 } 8524 if (oldval != val) 8525 wr32(&pf->hw, pf->hw.aq.arq.len, val); 8526 8527 val = rd32(&pf->hw, pf->hw.aq.asq.len); 8528 oldval = val; 8529 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 8530 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8531 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 8532 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 8533 } 8534 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 8535 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8536 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 8537 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 8538 } 8539 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 8540 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8541 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 8542 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 8543 } 8544 if (oldval != val) 8545 wr32(&pf->hw, pf->hw.aq.asq.len, val); 8546 8547 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 8548 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 8549 if (!event.msg_buf) 8550 return; 8551 8552 do { 8553 ret = i40e_clean_arq_element(hw, &event, &pending); 8554 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 8555 break; 8556 else if (ret) { 8557 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 8558 break; 8559 } 8560 8561 opcode = le16_to_cpu(event.desc.opcode); 8562 switch (opcode) { 8563 8564 case i40e_aqc_opc_get_link_status: 8565 i40e_handle_link_event(pf, &event); 8566 break; 8567 case i40e_aqc_opc_send_msg_to_pf: 8568 ret = i40e_vc_process_vf_msg(pf, 8569 le16_to_cpu(event.desc.retval), 8570 le32_to_cpu(event.desc.cookie_high), 8571 le32_to_cpu(event.desc.cookie_low), 8572 event.msg_buf, 8573 event.msg_len); 8574 break; 8575 case i40e_aqc_opc_lldp_update_mib: 8576 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 8577 #ifdef CONFIG_I40E_DCB 8578 rtnl_lock(); 8579 ret = i40e_handle_lldp_event(pf, &event); 8580 rtnl_unlock(); 8581 #endif /* CONFIG_I40E_DCB */ 8582 break; 8583 case i40e_aqc_opc_event_lan_overflow: 8584 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 8585 i40e_handle_lan_overflow_event(pf, &event); 8586 break; 8587 case i40e_aqc_opc_send_msg_to_peer: 8588 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 8589 break; 8590 case i40e_aqc_opc_nvm_erase: 8591 case i40e_aqc_opc_nvm_update: 8592 case i40e_aqc_opc_oem_post_update: 8593 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 8594 "ARQ NVM operation 0x%04x completed\n", 8595 opcode); 8596 break; 8597 default: 8598 dev_info(&pf->pdev->dev, 8599 "ARQ: Unknown event 0x%04x ignored\n", 8600 opcode); 8601 break; 8602 } 8603 } while (i++ < pf->adminq_work_limit); 8604 8605 if (i < pf->adminq_work_limit) 8606 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 8607 8608 /* re-enable Admin queue interrupt cause */ 8609 val = rd32(hw, I40E_PFINT_ICR0_ENA); 8610 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 8611 wr32(hw, I40E_PFINT_ICR0_ENA, val); 8612 i40e_flush(hw); 8613 8614 kfree(event.msg_buf); 8615 } 8616 8617 /** 8618 * i40e_verify_eeprom - make sure eeprom is good to use 8619 * @pf: board private structure 8620 **/ 8621 static void i40e_verify_eeprom(struct i40e_pf *pf) 8622 { 8623 int err; 8624 8625 err = i40e_diag_eeprom_test(&pf->hw); 8626 if (err) { 8627 /* retry in case of garbage read */ 8628 err = i40e_diag_eeprom_test(&pf->hw); 8629 if (err) { 8630 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 8631 err); 8632 set_bit(__I40E_BAD_EEPROM, pf->state); 8633 } 8634 } 8635 8636 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 8637 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 8638 clear_bit(__I40E_BAD_EEPROM, pf->state); 8639 } 8640 } 8641 8642 /** 8643 * i40e_enable_pf_switch_lb 8644 * @pf: pointer to the PF structure 8645 * 8646 * enable switch loop back or die - no point in a return value 8647 **/ 8648 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 8649 { 8650 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8651 struct i40e_vsi_context ctxt; 8652 int ret; 8653 8654 ctxt.seid = pf->main_vsi_seid; 8655 ctxt.pf_num = pf->hw.pf_id; 8656 ctxt.vf_num = 0; 8657 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8658 if (ret) { 8659 dev_info(&pf->pdev->dev, 8660 "couldn't get PF vsi config, err %s aq_err %s\n", 8661 i40e_stat_str(&pf->hw, ret), 8662 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8663 return; 8664 } 8665 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8666 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8667 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8668 8669 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8670 if (ret) { 8671 dev_info(&pf->pdev->dev, 8672 "update vsi switch failed, err %s aq_err %s\n", 8673 i40e_stat_str(&pf->hw, ret), 8674 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8675 } 8676 } 8677 8678 /** 8679 * i40e_disable_pf_switch_lb 8680 * @pf: pointer to the PF structure 8681 * 8682 * disable switch loop back or die - no point in a return value 8683 **/ 8684 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 8685 { 8686 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8687 struct i40e_vsi_context ctxt; 8688 int ret; 8689 8690 ctxt.seid = pf->main_vsi_seid; 8691 ctxt.pf_num = pf->hw.pf_id; 8692 ctxt.vf_num = 0; 8693 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8694 if (ret) { 8695 dev_info(&pf->pdev->dev, 8696 "couldn't get PF vsi config, err %s aq_err %s\n", 8697 i40e_stat_str(&pf->hw, ret), 8698 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8699 return; 8700 } 8701 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8702 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8703 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8704 8705 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8706 if (ret) { 8707 dev_info(&pf->pdev->dev, 8708 "update vsi switch failed, err %s aq_err %s\n", 8709 i40e_stat_str(&pf->hw, ret), 8710 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8711 } 8712 } 8713 8714 /** 8715 * i40e_config_bridge_mode - Configure the HW bridge mode 8716 * @veb: pointer to the bridge instance 8717 * 8718 * Configure the loop back mode for the LAN VSI that is downlink to the 8719 * specified HW bridge instance. It is expected this function is called 8720 * when a new HW bridge is instantiated. 8721 **/ 8722 static void i40e_config_bridge_mode(struct i40e_veb *veb) 8723 { 8724 struct i40e_pf *pf = veb->pf; 8725 8726 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 8727 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 8728 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 8729 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 8730 i40e_disable_pf_switch_lb(pf); 8731 else 8732 i40e_enable_pf_switch_lb(pf); 8733 } 8734 8735 /** 8736 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 8737 * @veb: pointer to the VEB instance 8738 * 8739 * This is a recursive function that first builds the attached VSIs then 8740 * recurses in to build the next layer of VEB. We track the connections 8741 * through our own index numbers because the seid's from the HW could 8742 * change across the reset. 8743 **/ 8744 static int i40e_reconstitute_veb(struct i40e_veb *veb) 8745 { 8746 struct i40e_vsi *ctl_vsi = NULL; 8747 struct i40e_pf *pf = veb->pf; 8748 int v, veb_idx; 8749 int ret; 8750 8751 /* build VSI that owns this VEB, temporarily attached to base VEB */ 8752 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 8753 if (pf->vsi[v] && 8754 pf->vsi[v]->veb_idx == veb->idx && 8755 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 8756 ctl_vsi = pf->vsi[v]; 8757 break; 8758 } 8759 } 8760 if (!ctl_vsi) { 8761 dev_info(&pf->pdev->dev, 8762 "missing owner VSI for veb_idx %d\n", veb->idx); 8763 ret = -ENOENT; 8764 goto end_reconstitute; 8765 } 8766 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 8767 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 8768 ret = i40e_add_vsi(ctl_vsi); 8769 if (ret) { 8770 dev_info(&pf->pdev->dev, 8771 "rebuild of veb_idx %d owner VSI failed: %d\n", 8772 veb->idx, ret); 8773 goto end_reconstitute; 8774 } 8775 i40e_vsi_reset_stats(ctl_vsi); 8776 8777 /* create the VEB in the switch and move the VSI onto the VEB */ 8778 ret = i40e_add_veb(veb, ctl_vsi); 8779 if (ret) 8780 goto end_reconstitute; 8781 8782 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 8783 veb->bridge_mode = BRIDGE_MODE_VEB; 8784 else 8785 veb->bridge_mode = BRIDGE_MODE_VEPA; 8786 i40e_config_bridge_mode(veb); 8787 8788 /* create the remaining VSIs attached to this VEB */ 8789 for (v = 0; v < pf->num_alloc_vsi; v++) { 8790 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 8791 continue; 8792 8793 if (pf->vsi[v]->veb_idx == veb->idx) { 8794 struct i40e_vsi *vsi = pf->vsi[v]; 8795 8796 vsi->uplink_seid = veb->seid; 8797 ret = i40e_add_vsi(vsi); 8798 if (ret) { 8799 dev_info(&pf->pdev->dev, 8800 "rebuild of vsi_idx %d failed: %d\n", 8801 v, ret); 8802 goto end_reconstitute; 8803 } 8804 i40e_vsi_reset_stats(vsi); 8805 } 8806 } 8807 8808 /* create any VEBs attached to this VEB - RECURSION */ 8809 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 8810 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 8811 pf->veb[veb_idx]->uplink_seid = veb->seid; 8812 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 8813 if (ret) 8814 break; 8815 } 8816 } 8817 8818 end_reconstitute: 8819 return ret; 8820 } 8821 8822 /** 8823 * i40e_get_capabilities - get info about the HW 8824 * @pf: the PF struct 8825 **/ 8826 static int i40e_get_capabilities(struct i40e_pf *pf, 8827 enum i40e_admin_queue_opc list_type) 8828 { 8829 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 8830 u16 data_size; 8831 int buf_len; 8832 int err; 8833 8834 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 8835 do { 8836 cap_buf = kzalloc(buf_len, GFP_KERNEL); 8837 if (!cap_buf) 8838 return -ENOMEM; 8839 8840 /* this loads the data into the hw struct for us */ 8841 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 8842 &data_size, list_type, 8843 NULL); 8844 /* data loaded, buffer no longer needed */ 8845 kfree(cap_buf); 8846 8847 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 8848 /* retry with a larger buffer */ 8849 buf_len = data_size; 8850 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 8851 dev_info(&pf->pdev->dev, 8852 "capability discovery failed, err %s aq_err %s\n", 8853 i40e_stat_str(&pf->hw, err), 8854 i40e_aq_str(&pf->hw, 8855 pf->hw.aq.asq_last_status)); 8856 return -ENODEV; 8857 } 8858 } while (err); 8859 8860 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 8861 if (list_type == i40e_aqc_opc_list_func_capabilities) { 8862 dev_info(&pf->pdev->dev, 8863 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 8864 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 8865 pf->hw.func_caps.num_msix_vectors, 8866 pf->hw.func_caps.num_msix_vectors_vf, 8867 pf->hw.func_caps.fd_filters_guaranteed, 8868 pf->hw.func_caps.fd_filters_best_effort, 8869 pf->hw.func_caps.num_tx_qp, 8870 pf->hw.func_caps.num_vsis); 8871 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 8872 dev_info(&pf->pdev->dev, 8873 "switch_mode=0x%04x, function_valid=0x%08x\n", 8874 pf->hw.dev_caps.switch_mode, 8875 pf->hw.dev_caps.valid_functions); 8876 dev_info(&pf->pdev->dev, 8877 "SR-IOV=%d, num_vfs for all function=%u\n", 8878 pf->hw.dev_caps.sr_iov_1_1, 8879 pf->hw.dev_caps.num_vfs); 8880 dev_info(&pf->pdev->dev, 8881 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 8882 pf->hw.dev_caps.num_vsis, 8883 pf->hw.dev_caps.num_rx_qp, 8884 pf->hw.dev_caps.num_tx_qp); 8885 } 8886 } 8887 if (list_type == i40e_aqc_opc_list_func_capabilities) { 8888 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 8889 + pf->hw.func_caps.num_vfs) 8890 if (pf->hw.revision_id == 0 && 8891 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 8892 dev_info(&pf->pdev->dev, 8893 "got num_vsis %d, setting num_vsis to %d\n", 8894 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 8895 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 8896 } 8897 } 8898 return 0; 8899 } 8900 8901 static int i40e_vsi_clear(struct i40e_vsi *vsi); 8902 8903 /** 8904 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 8905 * @pf: board private structure 8906 **/ 8907 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 8908 { 8909 struct i40e_vsi *vsi; 8910 8911 /* quick workaround for an NVM issue that leaves a critical register 8912 * uninitialized 8913 */ 8914 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 8915 static const u32 hkey[] = { 8916 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 8917 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 8918 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 8919 0x95b3a76d}; 8920 int i; 8921 8922 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 8923 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 8924 } 8925 8926 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 8927 return; 8928 8929 /* find existing VSI and see if it needs configuring */ 8930 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 8931 8932 /* create a new VSI if none exists */ 8933 if (!vsi) { 8934 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 8935 pf->vsi[pf->lan_vsi]->seid, 0); 8936 if (!vsi) { 8937 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 8938 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 8939 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 8940 return; 8941 } 8942 } 8943 8944 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 8945 } 8946 8947 /** 8948 * i40e_fdir_teardown - release the Flow Director resources 8949 * @pf: board private structure 8950 **/ 8951 static void i40e_fdir_teardown(struct i40e_pf *pf) 8952 { 8953 struct i40e_vsi *vsi; 8954 8955 i40e_fdir_filter_exit(pf); 8956 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 8957 if (vsi) 8958 i40e_vsi_release(vsi); 8959 } 8960 8961 /** 8962 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 8963 * @vsi: PF main vsi 8964 * @seid: seid of main or channel VSIs 8965 * 8966 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 8967 * existed before reset 8968 **/ 8969 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 8970 { 8971 struct i40e_cloud_filter *cfilter; 8972 struct i40e_pf *pf = vsi->back; 8973 struct hlist_node *node; 8974 i40e_status ret; 8975 8976 /* Add cloud filters back if they exist */ 8977 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 8978 cloud_node) { 8979 if (cfilter->seid != seid) 8980 continue; 8981 8982 if (cfilter->dst_port) 8983 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 8984 true); 8985 else 8986 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 8987 8988 if (ret) { 8989 dev_dbg(&pf->pdev->dev, 8990 "Failed to rebuild cloud filter, err %s aq_err %s\n", 8991 i40e_stat_str(&pf->hw, ret), 8992 i40e_aq_str(&pf->hw, 8993 pf->hw.aq.asq_last_status)); 8994 return ret; 8995 } 8996 } 8997 return 0; 8998 } 8999 9000 /** 9001 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9002 * @vsi: PF main vsi 9003 * 9004 * Rebuilds channel VSIs if they existed before reset 9005 **/ 9006 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9007 { 9008 struct i40e_channel *ch, *ch_tmp; 9009 i40e_status ret; 9010 9011 if (list_empty(&vsi->ch_list)) 9012 return 0; 9013 9014 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9015 if (!ch->initialized) 9016 break; 9017 /* Proceed with creation of channel (VMDq2) VSI */ 9018 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9019 if (ret) { 9020 dev_info(&vsi->back->pdev->dev, 9021 "failed to rebuild channels using uplink_seid %u\n", 9022 vsi->uplink_seid); 9023 return ret; 9024 } 9025 /* Reconfigure TX queues using QTX_CTL register */ 9026 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9027 if (ret) { 9028 dev_info(&vsi->back->pdev->dev, 9029 "failed to configure TX rings for channel %u\n", 9030 ch->seid); 9031 return ret; 9032 } 9033 /* update 'next_base_queue' */ 9034 vsi->next_base_queue = vsi->next_base_queue + 9035 ch->num_queue_pairs; 9036 if (ch->max_tx_rate) { 9037 u64 credits = ch->max_tx_rate; 9038 9039 if (i40e_set_bw_limit(vsi, ch->seid, 9040 ch->max_tx_rate)) 9041 return -EINVAL; 9042 9043 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9044 dev_dbg(&vsi->back->pdev->dev, 9045 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9046 ch->max_tx_rate, 9047 credits, 9048 ch->seid); 9049 } 9050 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9051 if (ret) { 9052 dev_dbg(&vsi->back->pdev->dev, 9053 "Failed to rebuild cloud filters for channel VSI %u\n", 9054 ch->seid); 9055 return ret; 9056 } 9057 } 9058 return 0; 9059 } 9060 9061 /** 9062 * i40e_prep_for_reset - prep for the core to reset 9063 * @pf: board private structure 9064 * @lock_acquired: indicates whether or not the lock has been acquired 9065 * before this function was called. 9066 * 9067 * Close up the VFs and other things in prep for PF Reset. 9068 **/ 9069 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9070 { 9071 struct i40e_hw *hw = &pf->hw; 9072 i40e_status ret = 0; 9073 u32 v; 9074 9075 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9076 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9077 return; 9078 if (i40e_check_asq_alive(&pf->hw)) 9079 i40e_vc_notify_reset(pf); 9080 9081 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9082 9083 /* quiesce the VSIs and their queues that are not already DOWN */ 9084 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9085 if (!lock_acquired) 9086 rtnl_lock(); 9087 i40e_pf_quiesce_all_vsi(pf); 9088 if (!lock_acquired) 9089 rtnl_unlock(); 9090 9091 for (v = 0; v < pf->num_alloc_vsi; v++) { 9092 if (pf->vsi[v]) 9093 pf->vsi[v]->seid = 0; 9094 } 9095 9096 i40e_shutdown_adminq(&pf->hw); 9097 9098 /* call shutdown HMC */ 9099 if (hw->hmc.hmc_obj) { 9100 ret = i40e_shutdown_lan_hmc(hw); 9101 if (ret) 9102 dev_warn(&pf->pdev->dev, 9103 "shutdown_lan_hmc failed: %d\n", ret); 9104 } 9105 } 9106 9107 /** 9108 * i40e_send_version - update firmware with driver version 9109 * @pf: PF struct 9110 */ 9111 static void i40e_send_version(struct i40e_pf *pf) 9112 { 9113 struct i40e_driver_version dv; 9114 9115 dv.major_version = DRV_VERSION_MAJOR; 9116 dv.minor_version = DRV_VERSION_MINOR; 9117 dv.build_version = DRV_VERSION_BUILD; 9118 dv.subbuild_version = 0; 9119 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9120 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9121 } 9122 9123 /** 9124 * i40e_get_oem_version - get OEM specific version information 9125 * @hw: pointer to the hardware structure 9126 **/ 9127 static void i40e_get_oem_version(struct i40e_hw *hw) 9128 { 9129 u16 block_offset = 0xffff; 9130 u16 block_length = 0; 9131 u16 capabilities = 0; 9132 u16 gen_snap = 0; 9133 u16 release = 0; 9134 9135 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9136 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9137 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9138 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9139 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9140 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9141 #define I40E_NVM_OEM_LENGTH 3 9142 9143 /* Check if pointer to OEM version block is valid. */ 9144 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9145 if (block_offset == 0xffff) 9146 return; 9147 9148 /* Check if OEM version block has correct length. */ 9149 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9150 &block_length); 9151 if (block_length < I40E_NVM_OEM_LENGTH) 9152 return; 9153 9154 /* Check if OEM version format is as expected. */ 9155 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9156 &capabilities); 9157 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9158 return; 9159 9160 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9161 &gen_snap); 9162 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9163 &release); 9164 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9165 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9166 } 9167 9168 /** 9169 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9170 * @pf: board private structure 9171 **/ 9172 static int i40e_reset(struct i40e_pf *pf) 9173 { 9174 struct i40e_hw *hw = &pf->hw; 9175 i40e_status ret; 9176 9177 ret = i40e_pf_reset(hw); 9178 if (ret) { 9179 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9180 set_bit(__I40E_RESET_FAILED, pf->state); 9181 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9182 } else { 9183 pf->pfr_count++; 9184 } 9185 return ret; 9186 } 9187 9188 /** 9189 * i40e_rebuild - rebuild using a saved config 9190 * @pf: board private structure 9191 * @reinit: if the Main VSI needs to re-initialized. 9192 * @lock_acquired: indicates whether or not the lock has been acquired 9193 * before this function was called. 9194 **/ 9195 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9196 { 9197 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9198 struct i40e_hw *hw = &pf->hw; 9199 u8 set_fc_aq_fail = 0; 9200 i40e_status ret; 9201 u32 val; 9202 int v; 9203 9204 if (test_bit(__I40E_DOWN, pf->state)) 9205 goto clear_recovery; 9206 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9207 9208 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9209 ret = i40e_init_adminq(&pf->hw); 9210 if (ret) { 9211 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9212 i40e_stat_str(&pf->hw, ret), 9213 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9214 goto clear_recovery; 9215 } 9216 i40e_get_oem_version(&pf->hw); 9217 9218 /* re-verify the eeprom if we just had an EMP reset */ 9219 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9220 i40e_verify_eeprom(pf); 9221 9222 i40e_clear_pxe_mode(hw); 9223 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 9224 if (ret) 9225 goto end_core_reset; 9226 9227 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 9228 hw->func_caps.num_rx_qp, 0, 0); 9229 if (ret) { 9230 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 9231 goto end_core_reset; 9232 } 9233 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 9234 if (ret) { 9235 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 9236 goto end_core_reset; 9237 } 9238 9239 /* Enable FW to write a default DCB config on link-up */ 9240 i40e_aq_set_dcb_parameters(hw, true, NULL); 9241 9242 #ifdef CONFIG_I40E_DCB 9243 ret = i40e_init_pf_dcb(pf); 9244 if (ret) { 9245 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 9246 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9247 /* Continue without DCB enabled */ 9248 } 9249 #endif /* CONFIG_I40E_DCB */ 9250 /* do basic switch setup */ 9251 if (!lock_acquired) 9252 rtnl_lock(); 9253 ret = i40e_setup_pf_switch(pf, reinit); 9254 if (ret) 9255 goto end_unlock; 9256 9257 /* The driver only wants link up/down and module qualification 9258 * reports from firmware. Note the negative logic. 9259 */ 9260 ret = i40e_aq_set_phy_int_mask(&pf->hw, 9261 ~(I40E_AQ_EVENT_LINK_UPDOWN | 9262 I40E_AQ_EVENT_MEDIA_NA | 9263 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 9264 if (ret) 9265 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 9266 i40e_stat_str(&pf->hw, ret), 9267 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9268 9269 /* make sure our flow control settings are restored */ 9270 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 9271 if (ret) 9272 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 9273 i40e_stat_str(&pf->hw, ret), 9274 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9275 9276 /* Rebuild the VSIs and VEBs that existed before reset. 9277 * They are still in our local switch element arrays, so only 9278 * need to rebuild the switch model in the HW. 9279 * 9280 * If there were VEBs but the reconstitution failed, we'll try 9281 * try to recover minimal use by getting the basic PF VSI working. 9282 */ 9283 if (vsi->uplink_seid != pf->mac_seid) { 9284 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 9285 /* find the one VEB connected to the MAC, and find orphans */ 9286 for (v = 0; v < I40E_MAX_VEB; v++) { 9287 if (!pf->veb[v]) 9288 continue; 9289 9290 if (pf->veb[v]->uplink_seid == pf->mac_seid || 9291 pf->veb[v]->uplink_seid == 0) { 9292 ret = i40e_reconstitute_veb(pf->veb[v]); 9293 9294 if (!ret) 9295 continue; 9296 9297 /* If Main VEB failed, we're in deep doodoo, 9298 * so give up rebuilding the switch and set up 9299 * for minimal rebuild of PF VSI. 9300 * If orphan failed, we'll report the error 9301 * but try to keep going. 9302 */ 9303 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 9304 dev_info(&pf->pdev->dev, 9305 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 9306 ret); 9307 vsi->uplink_seid = pf->mac_seid; 9308 break; 9309 } else if (pf->veb[v]->uplink_seid == 0) { 9310 dev_info(&pf->pdev->dev, 9311 "rebuild of orphan VEB failed: %d\n", 9312 ret); 9313 } 9314 } 9315 } 9316 } 9317 9318 if (vsi->uplink_seid == pf->mac_seid) { 9319 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 9320 /* no VEB, so rebuild only the Main VSI */ 9321 ret = i40e_add_vsi(vsi); 9322 if (ret) { 9323 dev_info(&pf->pdev->dev, 9324 "rebuild of Main VSI failed: %d\n", ret); 9325 goto end_unlock; 9326 } 9327 } 9328 9329 if (vsi->mqprio_qopt.max_rate[0]) { 9330 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9331 u64 credits = 0; 9332 9333 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 9334 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 9335 if (ret) 9336 goto end_unlock; 9337 9338 credits = max_tx_rate; 9339 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9340 dev_dbg(&vsi->back->pdev->dev, 9341 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9342 max_tx_rate, 9343 credits, 9344 vsi->seid); 9345 } 9346 9347 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 9348 if (ret) 9349 goto end_unlock; 9350 9351 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 9352 * for this main VSI if they exist 9353 */ 9354 ret = i40e_rebuild_channels(vsi); 9355 if (ret) 9356 goto end_unlock; 9357 9358 /* Reconfigure hardware for allowing smaller MSS in the case 9359 * of TSO, so that we avoid the MDD being fired and causing 9360 * a reset in the case of small MSS+TSO. 9361 */ 9362 #define I40E_REG_MSS 0x000E64DC 9363 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 9364 #define I40E_64BYTE_MSS 0x400000 9365 val = rd32(hw, I40E_REG_MSS); 9366 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 9367 val &= ~I40E_REG_MSS_MIN_MASK; 9368 val |= I40E_64BYTE_MSS; 9369 wr32(hw, I40E_REG_MSS, val); 9370 } 9371 9372 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 9373 msleep(75); 9374 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 9375 if (ret) 9376 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 9377 i40e_stat_str(&pf->hw, ret), 9378 i40e_aq_str(&pf->hw, 9379 pf->hw.aq.asq_last_status)); 9380 } 9381 /* reinit the misc interrupt */ 9382 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9383 ret = i40e_setup_misc_vector(pf); 9384 9385 /* Add a filter to drop all Flow control frames from any VSI from being 9386 * transmitted. By doing so we stop a malicious VF from sending out 9387 * PAUSE or PFC frames and potentially controlling traffic for other 9388 * PF/VF VSIs. 9389 * The FW can still send Flow control frames if enabled. 9390 */ 9391 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 9392 pf->main_vsi_seid); 9393 9394 /* restart the VSIs that were rebuilt and running before the reset */ 9395 i40e_pf_unquiesce_all_vsi(pf); 9396 9397 /* Release the RTNL lock before we start resetting VFs */ 9398 if (!lock_acquired) 9399 rtnl_unlock(); 9400 9401 /* Restore promiscuous settings */ 9402 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 9403 if (ret) 9404 dev_warn(&pf->pdev->dev, 9405 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 9406 pf->cur_promisc ? "on" : "off", 9407 i40e_stat_str(&pf->hw, ret), 9408 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9409 9410 i40e_reset_all_vfs(pf, true); 9411 9412 /* tell the firmware that we're starting */ 9413 i40e_send_version(pf); 9414 9415 /* We've already released the lock, so don't do it again */ 9416 goto end_core_reset; 9417 9418 end_unlock: 9419 if (!lock_acquired) 9420 rtnl_unlock(); 9421 end_core_reset: 9422 clear_bit(__I40E_RESET_FAILED, pf->state); 9423 clear_recovery: 9424 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9425 } 9426 9427 /** 9428 * i40e_reset_and_rebuild - reset and rebuild using a saved config 9429 * @pf: board private structure 9430 * @reinit: if the Main VSI needs to re-initialized. 9431 * @lock_acquired: indicates whether or not the lock has been acquired 9432 * before this function was called. 9433 **/ 9434 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 9435 bool lock_acquired) 9436 { 9437 int ret; 9438 /* Now we wait for GRST to settle out. 9439 * We don't have to delete the VEBs or VSIs from the hw switch 9440 * because the reset will make them disappear. 9441 */ 9442 ret = i40e_reset(pf); 9443 if (!ret) 9444 i40e_rebuild(pf, reinit, lock_acquired); 9445 } 9446 9447 /** 9448 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 9449 * @pf: board private structure 9450 * 9451 * Close up the VFs and other things in prep for a Core Reset, 9452 * then get ready to rebuild the world. 9453 * @lock_acquired: indicates whether or not the lock has been acquired 9454 * before this function was called. 9455 **/ 9456 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 9457 { 9458 i40e_prep_for_reset(pf, lock_acquired); 9459 i40e_reset_and_rebuild(pf, false, lock_acquired); 9460 } 9461 9462 /** 9463 * i40e_handle_mdd_event 9464 * @pf: pointer to the PF structure 9465 * 9466 * Called from the MDD irq handler to identify possibly malicious vfs 9467 **/ 9468 static void i40e_handle_mdd_event(struct i40e_pf *pf) 9469 { 9470 struct i40e_hw *hw = &pf->hw; 9471 bool mdd_detected = false; 9472 bool pf_mdd_detected = false; 9473 struct i40e_vf *vf; 9474 u32 reg; 9475 int i; 9476 9477 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 9478 return; 9479 9480 /* find what triggered the MDD event */ 9481 reg = rd32(hw, I40E_GL_MDET_TX); 9482 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 9483 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 9484 I40E_GL_MDET_TX_PF_NUM_SHIFT; 9485 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 9486 I40E_GL_MDET_TX_VF_NUM_SHIFT; 9487 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 9488 I40E_GL_MDET_TX_EVENT_SHIFT; 9489 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 9490 I40E_GL_MDET_TX_QUEUE_SHIFT) - 9491 pf->hw.func_caps.base_queue; 9492 if (netif_msg_tx_err(pf)) 9493 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 9494 event, queue, pf_num, vf_num); 9495 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 9496 mdd_detected = true; 9497 } 9498 reg = rd32(hw, I40E_GL_MDET_RX); 9499 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 9500 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 9501 I40E_GL_MDET_RX_FUNCTION_SHIFT; 9502 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 9503 I40E_GL_MDET_RX_EVENT_SHIFT; 9504 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 9505 I40E_GL_MDET_RX_QUEUE_SHIFT) - 9506 pf->hw.func_caps.base_queue; 9507 if (netif_msg_rx_err(pf)) 9508 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 9509 event, queue, func); 9510 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 9511 mdd_detected = true; 9512 } 9513 9514 if (mdd_detected) { 9515 reg = rd32(hw, I40E_PF_MDET_TX); 9516 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 9517 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 9518 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 9519 pf_mdd_detected = true; 9520 } 9521 reg = rd32(hw, I40E_PF_MDET_RX); 9522 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 9523 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 9524 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 9525 pf_mdd_detected = true; 9526 } 9527 /* Queue belongs to the PF, initiate a reset */ 9528 if (pf_mdd_detected) { 9529 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9530 i40e_service_event_schedule(pf); 9531 } 9532 } 9533 9534 /* see if one of the VFs needs its hand slapped */ 9535 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 9536 vf = &(pf->vf[i]); 9537 reg = rd32(hw, I40E_VP_MDET_TX(i)); 9538 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 9539 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 9540 vf->num_mdd_events++; 9541 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 9542 i); 9543 } 9544 9545 reg = rd32(hw, I40E_VP_MDET_RX(i)); 9546 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 9547 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 9548 vf->num_mdd_events++; 9549 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 9550 i); 9551 } 9552 9553 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) { 9554 dev_info(&pf->pdev->dev, 9555 "Too many MDD events on VF %d, disabled\n", i); 9556 dev_info(&pf->pdev->dev, 9557 "Use PF Control I/F to re-enable the VF\n"); 9558 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 9559 } 9560 } 9561 9562 /* re-enable mdd interrupt cause */ 9563 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 9564 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 9565 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 9566 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 9567 i40e_flush(hw); 9568 } 9569 9570 static const char *i40e_tunnel_name(struct i40e_udp_port_config *port) 9571 { 9572 switch (port->type) { 9573 case UDP_TUNNEL_TYPE_VXLAN: 9574 return "vxlan"; 9575 case UDP_TUNNEL_TYPE_GENEVE: 9576 return "geneve"; 9577 default: 9578 return "unknown"; 9579 } 9580 } 9581 9582 /** 9583 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 9584 * @pf: board private structure 9585 **/ 9586 static void i40e_sync_udp_filters(struct i40e_pf *pf) 9587 { 9588 int i; 9589 9590 /* loop through and set pending bit for all active UDP filters */ 9591 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9592 if (pf->udp_ports[i].port) 9593 pf->pending_udp_bitmap |= BIT_ULL(i); 9594 } 9595 9596 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC; 9597 } 9598 9599 /** 9600 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 9601 * @pf: board private structure 9602 **/ 9603 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 9604 { 9605 struct i40e_hw *hw = &pf->hw; 9606 i40e_status ret; 9607 u16 port; 9608 int i; 9609 9610 if (!(pf->flags & I40E_FLAG_UDP_FILTER_SYNC)) 9611 return; 9612 9613 pf->flags &= ~I40E_FLAG_UDP_FILTER_SYNC; 9614 9615 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9616 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 9617 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9618 port = pf->udp_ports[i].port; 9619 if (port) 9620 ret = i40e_aq_add_udp_tunnel(hw, port, 9621 pf->udp_ports[i].type, 9622 NULL, NULL); 9623 else 9624 ret = i40e_aq_del_udp_tunnel(hw, i, NULL); 9625 9626 if (ret) { 9627 dev_info(&pf->pdev->dev, 9628 "%s %s port %d, index %d failed, err %s aq_err %s\n", 9629 i40e_tunnel_name(&pf->udp_ports[i]), 9630 port ? "add" : "delete", 9631 port, i, 9632 i40e_stat_str(&pf->hw, ret), 9633 i40e_aq_str(&pf->hw, 9634 pf->hw.aq.asq_last_status)); 9635 pf->udp_ports[i].port = 0; 9636 } 9637 } 9638 } 9639 } 9640 9641 /** 9642 * i40e_service_task - Run the driver's async subtasks 9643 * @work: pointer to work_struct containing our data 9644 **/ 9645 static void i40e_service_task(struct work_struct *work) 9646 { 9647 struct i40e_pf *pf = container_of(work, 9648 struct i40e_pf, 9649 service_task); 9650 unsigned long start_time = jiffies; 9651 9652 /* don't bother with service tasks if a reset is in progress */ 9653 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9654 return; 9655 9656 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 9657 return; 9658 9659 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 9660 i40e_sync_filters_subtask(pf); 9661 i40e_reset_subtask(pf); 9662 i40e_handle_mdd_event(pf); 9663 i40e_vc_process_vflr_event(pf); 9664 i40e_watchdog_subtask(pf); 9665 i40e_fdir_reinit_subtask(pf); 9666 if (pf->flags & I40E_FLAG_CLIENT_RESET) { 9667 /* Client subtask will reopen next time through. */ 9668 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true); 9669 pf->flags &= ~I40E_FLAG_CLIENT_RESET; 9670 } else { 9671 i40e_client_subtask(pf); 9672 if (pf->flags & I40E_FLAG_CLIENT_L2_CHANGE) { 9673 i40e_notify_client_of_l2_param_changes( 9674 pf->vsi[pf->lan_vsi]); 9675 pf->flags &= ~I40E_FLAG_CLIENT_L2_CHANGE; 9676 } 9677 } 9678 i40e_sync_filters_subtask(pf); 9679 i40e_sync_udp_filters_subtask(pf); 9680 i40e_clean_adminq_subtask(pf); 9681 9682 /* flush memory to make sure state is correct before next watchdog */ 9683 smp_mb__before_atomic(); 9684 clear_bit(__I40E_SERVICE_SCHED, pf->state); 9685 9686 /* If the tasks have taken longer than one timer cycle or there 9687 * is more work to be done, reschedule the service task now 9688 * rather than wait for the timer to tick again. 9689 */ 9690 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 9691 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 9692 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 9693 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 9694 i40e_service_event_schedule(pf); 9695 } 9696 9697 /** 9698 * i40e_service_timer - timer callback 9699 * @data: pointer to PF struct 9700 **/ 9701 static void i40e_service_timer(struct timer_list *t) 9702 { 9703 struct i40e_pf *pf = from_timer(pf, t, service_timer); 9704 9705 mod_timer(&pf->service_timer, 9706 round_jiffies(jiffies + pf->service_timer_period)); 9707 i40e_service_event_schedule(pf); 9708 } 9709 9710 /** 9711 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 9712 * @vsi: the VSI being configured 9713 **/ 9714 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 9715 { 9716 struct i40e_pf *pf = vsi->back; 9717 9718 switch (vsi->type) { 9719 case I40E_VSI_MAIN: 9720 vsi->alloc_queue_pairs = pf->num_lan_qps; 9721 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9722 I40E_REQ_DESCRIPTOR_MULTIPLE); 9723 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9724 vsi->num_q_vectors = pf->num_lan_msix; 9725 else 9726 vsi->num_q_vectors = 1; 9727 9728 break; 9729 9730 case I40E_VSI_FDIR: 9731 vsi->alloc_queue_pairs = 1; 9732 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT, 9733 I40E_REQ_DESCRIPTOR_MULTIPLE); 9734 vsi->num_q_vectors = pf->num_fdsb_msix; 9735 break; 9736 9737 case I40E_VSI_VMDQ2: 9738 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 9739 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9740 I40E_REQ_DESCRIPTOR_MULTIPLE); 9741 vsi->num_q_vectors = pf->num_vmdq_msix; 9742 break; 9743 9744 case I40E_VSI_SRIOV: 9745 vsi->alloc_queue_pairs = pf->num_vf_qps; 9746 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9747 I40E_REQ_DESCRIPTOR_MULTIPLE); 9748 break; 9749 9750 default: 9751 WARN_ON(1); 9752 return -ENODATA; 9753 } 9754 9755 return 0; 9756 } 9757 9758 /** 9759 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 9760 * @vsi: VSI pointer 9761 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 9762 * 9763 * On error: returns error code (negative) 9764 * On success: returns 0 9765 **/ 9766 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 9767 { 9768 struct i40e_ring **next_rings; 9769 int size; 9770 int ret = 0; 9771 9772 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 9773 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 9774 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 9775 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 9776 if (!vsi->tx_rings) 9777 return -ENOMEM; 9778 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 9779 if (i40e_enabled_xdp_vsi(vsi)) { 9780 vsi->xdp_rings = next_rings; 9781 next_rings += vsi->alloc_queue_pairs; 9782 } 9783 vsi->rx_rings = next_rings; 9784 9785 if (alloc_qvectors) { 9786 /* allocate memory for q_vector pointers */ 9787 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 9788 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 9789 if (!vsi->q_vectors) { 9790 ret = -ENOMEM; 9791 goto err_vectors; 9792 } 9793 } 9794 return ret; 9795 9796 err_vectors: 9797 kfree(vsi->tx_rings); 9798 return ret; 9799 } 9800 9801 /** 9802 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 9803 * @pf: board private structure 9804 * @type: type of VSI 9805 * 9806 * On error: returns error code (negative) 9807 * On success: returns vsi index in PF (positive) 9808 **/ 9809 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 9810 { 9811 int ret = -ENODEV; 9812 struct i40e_vsi *vsi; 9813 int vsi_idx; 9814 int i; 9815 9816 /* Need to protect the allocation of the VSIs at the PF level */ 9817 mutex_lock(&pf->switch_mutex); 9818 9819 /* VSI list may be fragmented if VSI creation/destruction has 9820 * been happening. We can afford to do a quick scan to look 9821 * for any free VSIs in the list. 9822 * 9823 * find next empty vsi slot, looping back around if necessary 9824 */ 9825 i = pf->next_vsi; 9826 while (i < pf->num_alloc_vsi && pf->vsi[i]) 9827 i++; 9828 if (i >= pf->num_alloc_vsi) { 9829 i = 0; 9830 while (i < pf->next_vsi && pf->vsi[i]) 9831 i++; 9832 } 9833 9834 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 9835 vsi_idx = i; /* Found one! */ 9836 } else { 9837 ret = -ENODEV; 9838 goto unlock_pf; /* out of VSI slots! */ 9839 } 9840 pf->next_vsi = ++i; 9841 9842 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 9843 if (!vsi) { 9844 ret = -ENOMEM; 9845 goto unlock_pf; 9846 } 9847 vsi->type = type; 9848 vsi->back = pf; 9849 set_bit(__I40E_VSI_DOWN, vsi->state); 9850 vsi->flags = 0; 9851 vsi->idx = vsi_idx; 9852 vsi->int_rate_limit = 0; 9853 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 9854 pf->rss_table_size : 64; 9855 vsi->netdev_registered = false; 9856 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 9857 hash_init(vsi->mac_filter_hash); 9858 vsi->irqs_ready = false; 9859 9860 ret = i40e_set_num_rings_in_vsi(vsi); 9861 if (ret) 9862 goto err_rings; 9863 9864 ret = i40e_vsi_alloc_arrays(vsi, true); 9865 if (ret) 9866 goto err_rings; 9867 9868 /* Setup default MSIX irq handler for VSI */ 9869 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 9870 9871 /* Initialize VSI lock */ 9872 spin_lock_init(&vsi->mac_filter_hash_lock); 9873 pf->vsi[vsi_idx] = vsi; 9874 ret = vsi_idx; 9875 goto unlock_pf; 9876 9877 err_rings: 9878 pf->next_vsi = i - 1; 9879 kfree(vsi); 9880 unlock_pf: 9881 mutex_unlock(&pf->switch_mutex); 9882 return ret; 9883 } 9884 9885 /** 9886 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 9887 * @type: VSI pointer 9888 * @free_qvectors: a bool to specify if q_vectors need to be freed. 9889 * 9890 * On error: returns error code (negative) 9891 * On success: returns 0 9892 **/ 9893 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 9894 { 9895 /* free the ring and vector containers */ 9896 if (free_qvectors) { 9897 kfree(vsi->q_vectors); 9898 vsi->q_vectors = NULL; 9899 } 9900 kfree(vsi->tx_rings); 9901 vsi->tx_rings = NULL; 9902 vsi->rx_rings = NULL; 9903 vsi->xdp_rings = NULL; 9904 } 9905 9906 /** 9907 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 9908 * and lookup table 9909 * @vsi: Pointer to VSI structure 9910 */ 9911 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 9912 { 9913 if (!vsi) 9914 return; 9915 9916 kfree(vsi->rss_hkey_user); 9917 vsi->rss_hkey_user = NULL; 9918 9919 kfree(vsi->rss_lut_user); 9920 vsi->rss_lut_user = NULL; 9921 } 9922 9923 /** 9924 * i40e_vsi_clear - Deallocate the VSI provided 9925 * @vsi: the VSI being un-configured 9926 **/ 9927 static int i40e_vsi_clear(struct i40e_vsi *vsi) 9928 { 9929 struct i40e_pf *pf; 9930 9931 if (!vsi) 9932 return 0; 9933 9934 if (!vsi->back) 9935 goto free_vsi; 9936 pf = vsi->back; 9937 9938 mutex_lock(&pf->switch_mutex); 9939 if (!pf->vsi[vsi->idx]) { 9940 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](%p,type %d)\n", 9941 vsi->idx, vsi->idx, vsi, vsi->type); 9942 goto unlock_vsi; 9943 } 9944 9945 if (pf->vsi[vsi->idx] != vsi) { 9946 dev_err(&pf->pdev->dev, 9947 "pf->vsi[%d](%p, type %d) != vsi[%d](%p,type %d): no free!\n", 9948 pf->vsi[vsi->idx]->idx, 9949 pf->vsi[vsi->idx], 9950 pf->vsi[vsi->idx]->type, 9951 vsi->idx, vsi, vsi->type); 9952 goto unlock_vsi; 9953 } 9954 9955 /* updates the PF for this cleared vsi */ 9956 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 9957 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 9958 9959 i40e_vsi_free_arrays(vsi, true); 9960 i40e_clear_rss_config_user(vsi); 9961 9962 pf->vsi[vsi->idx] = NULL; 9963 if (vsi->idx < pf->next_vsi) 9964 pf->next_vsi = vsi->idx; 9965 9966 unlock_vsi: 9967 mutex_unlock(&pf->switch_mutex); 9968 free_vsi: 9969 kfree(vsi); 9970 9971 return 0; 9972 } 9973 9974 /** 9975 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 9976 * @vsi: the VSI being cleaned 9977 **/ 9978 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 9979 { 9980 int i; 9981 9982 if (vsi->tx_rings && vsi->tx_rings[0]) { 9983 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 9984 kfree_rcu(vsi->tx_rings[i], rcu); 9985 vsi->tx_rings[i] = NULL; 9986 vsi->rx_rings[i] = NULL; 9987 if (vsi->xdp_rings) 9988 vsi->xdp_rings[i] = NULL; 9989 } 9990 } 9991 } 9992 9993 /** 9994 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 9995 * @vsi: the VSI being configured 9996 **/ 9997 static int i40e_alloc_rings(struct i40e_vsi *vsi) 9998 { 9999 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10000 struct i40e_pf *pf = vsi->back; 10001 struct i40e_ring *ring; 10002 10003 /* Set basic values in the rings to be used later during open() */ 10004 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10005 /* allocate space for both Tx and Rx in one shot */ 10006 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10007 if (!ring) 10008 goto err_out; 10009 10010 ring->queue_index = i; 10011 ring->reg_idx = vsi->base_queue + i; 10012 ring->ring_active = false; 10013 ring->vsi = vsi; 10014 ring->netdev = vsi->netdev; 10015 ring->dev = &pf->pdev->dev; 10016 ring->count = vsi->num_desc; 10017 ring->size = 0; 10018 ring->dcb_tc = 0; 10019 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10020 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10021 ring->tx_itr_setting = pf->tx_itr_default; 10022 vsi->tx_rings[i] = ring++; 10023 10024 if (!i40e_enabled_xdp_vsi(vsi)) 10025 goto setup_rx; 10026 10027 ring->queue_index = vsi->alloc_queue_pairs + i; 10028 ring->reg_idx = vsi->base_queue + ring->queue_index; 10029 ring->ring_active = false; 10030 ring->vsi = vsi; 10031 ring->netdev = NULL; 10032 ring->dev = &pf->pdev->dev; 10033 ring->count = vsi->num_desc; 10034 ring->size = 0; 10035 ring->dcb_tc = 0; 10036 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10037 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10038 set_ring_xdp(ring); 10039 ring->tx_itr_setting = pf->tx_itr_default; 10040 vsi->xdp_rings[i] = ring++; 10041 10042 setup_rx: 10043 ring->queue_index = i; 10044 ring->reg_idx = vsi->base_queue + i; 10045 ring->ring_active = false; 10046 ring->vsi = vsi; 10047 ring->netdev = vsi->netdev; 10048 ring->dev = &pf->pdev->dev; 10049 ring->count = vsi->num_desc; 10050 ring->size = 0; 10051 ring->dcb_tc = 0; 10052 ring->rx_itr_setting = pf->rx_itr_default; 10053 vsi->rx_rings[i] = ring; 10054 } 10055 10056 return 0; 10057 10058 err_out: 10059 i40e_vsi_clear_rings(vsi); 10060 return -ENOMEM; 10061 } 10062 10063 /** 10064 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10065 * @pf: board private structure 10066 * @vectors: the number of MSI-X vectors to request 10067 * 10068 * Returns the number of vectors reserved, or error 10069 **/ 10070 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10071 { 10072 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10073 I40E_MIN_MSIX, vectors); 10074 if (vectors < 0) { 10075 dev_info(&pf->pdev->dev, 10076 "MSI-X vector reservation failed: %d\n", vectors); 10077 vectors = 0; 10078 } 10079 10080 return vectors; 10081 } 10082 10083 /** 10084 * i40e_init_msix - Setup the MSIX capability 10085 * @pf: board private structure 10086 * 10087 * Work with the OS to set up the MSIX vectors needed. 10088 * 10089 * Returns the number of vectors reserved or negative on failure 10090 **/ 10091 static int i40e_init_msix(struct i40e_pf *pf) 10092 { 10093 struct i40e_hw *hw = &pf->hw; 10094 int cpus, extra_vectors; 10095 int vectors_left; 10096 int v_budget, i; 10097 int v_actual; 10098 int iwarp_requested = 0; 10099 10100 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10101 return -ENODEV; 10102 10103 /* The number of vectors we'll request will be comprised of: 10104 * - Add 1 for "other" cause for Admin Queue events, etc. 10105 * - The number of LAN queue pairs 10106 * - Queues being used for RSS. 10107 * We don't need as many as max_rss_size vectors. 10108 * use rss_size instead in the calculation since that 10109 * is governed by number of cpus in the system. 10110 * - assumes symmetric Tx/Rx pairing 10111 * - The number of VMDq pairs 10112 * - The CPU count within the NUMA node if iWARP is enabled 10113 * Once we count this up, try the request. 10114 * 10115 * If we can't get what we want, we'll simplify to nearly nothing 10116 * and try again. If that still fails, we punt. 10117 */ 10118 vectors_left = hw->func_caps.num_msix_vectors; 10119 v_budget = 0; 10120 10121 /* reserve one vector for miscellaneous handler */ 10122 if (vectors_left) { 10123 v_budget++; 10124 vectors_left--; 10125 } 10126 10127 /* reserve some vectors for the main PF traffic queues. Initially we 10128 * only reserve at most 50% of the available vectors, in the case that 10129 * the number of online CPUs is large. This ensures that we can enable 10130 * extra features as well. Once we've enabled the other features, we 10131 * will use any remaining vectors to reach as close as we can to the 10132 * number of online CPUs. 10133 */ 10134 cpus = num_online_cpus(); 10135 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10136 vectors_left -= pf->num_lan_msix; 10137 10138 /* reserve one vector for sideband flow director */ 10139 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10140 if (vectors_left) { 10141 pf->num_fdsb_msix = 1; 10142 v_budget++; 10143 vectors_left--; 10144 } else { 10145 pf->num_fdsb_msix = 0; 10146 } 10147 } 10148 10149 /* can we reserve enough for iWARP? */ 10150 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10151 iwarp_requested = pf->num_iwarp_msix; 10152 10153 if (!vectors_left) 10154 pf->num_iwarp_msix = 0; 10155 else if (vectors_left < pf->num_iwarp_msix) 10156 pf->num_iwarp_msix = 1; 10157 v_budget += pf->num_iwarp_msix; 10158 vectors_left -= pf->num_iwarp_msix; 10159 } 10160 10161 /* any vectors left over go for VMDq support */ 10162 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 10163 int vmdq_vecs_wanted = pf->num_vmdq_vsis * pf->num_vmdq_qps; 10164 int vmdq_vecs = min_t(int, vectors_left, vmdq_vecs_wanted); 10165 10166 if (!vectors_left) { 10167 pf->num_vmdq_msix = 0; 10168 pf->num_vmdq_qps = 0; 10169 } else { 10170 /* if we're short on vectors for what's desired, we limit 10171 * the queues per vmdq. If this is still more than are 10172 * available, the user will need to change the number of 10173 * queues/vectors used by the PF later with the ethtool 10174 * channels command 10175 */ 10176 if (vmdq_vecs < vmdq_vecs_wanted) 10177 pf->num_vmdq_qps = 1; 10178 pf->num_vmdq_msix = pf->num_vmdq_qps; 10179 10180 v_budget += vmdq_vecs; 10181 vectors_left -= vmdq_vecs; 10182 } 10183 } 10184 10185 /* On systems with a large number of SMP cores, we previously limited 10186 * the number of vectors for num_lan_msix to be at most 50% of the 10187 * available vectors, to allow for other features. Now, we add back 10188 * the remaining vectors. However, we ensure that the total 10189 * num_lan_msix will not exceed num_online_cpus(). To do this, we 10190 * calculate the number of vectors we can add without going over the 10191 * cap of CPUs. For systems with a small number of CPUs this will be 10192 * zero. 10193 */ 10194 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 10195 pf->num_lan_msix += extra_vectors; 10196 vectors_left -= extra_vectors; 10197 10198 WARN(vectors_left < 0, 10199 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 10200 10201 v_budget += pf->num_lan_msix; 10202 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 10203 GFP_KERNEL); 10204 if (!pf->msix_entries) 10205 return -ENOMEM; 10206 10207 for (i = 0; i < v_budget; i++) 10208 pf->msix_entries[i].entry = i; 10209 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 10210 10211 if (v_actual < I40E_MIN_MSIX) { 10212 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 10213 kfree(pf->msix_entries); 10214 pf->msix_entries = NULL; 10215 pci_disable_msix(pf->pdev); 10216 return -ENODEV; 10217 10218 } else if (v_actual == I40E_MIN_MSIX) { 10219 /* Adjust for minimal MSIX use */ 10220 pf->num_vmdq_vsis = 0; 10221 pf->num_vmdq_qps = 0; 10222 pf->num_lan_qps = 1; 10223 pf->num_lan_msix = 1; 10224 10225 } else if (v_actual != v_budget) { 10226 /* If we have limited resources, we will start with no vectors 10227 * for the special features and then allocate vectors to some 10228 * of these features based on the policy and at the end disable 10229 * the features that did not get any vectors. 10230 */ 10231 int vec; 10232 10233 dev_info(&pf->pdev->dev, 10234 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 10235 v_actual, v_budget); 10236 /* reserve the misc vector */ 10237 vec = v_actual - 1; 10238 10239 /* Scale vector usage down */ 10240 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 10241 pf->num_vmdq_vsis = 1; 10242 pf->num_vmdq_qps = 1; 10243 10244 /* partition out the remaining vectors */ 10245 switch (vec) { 10246 case 2: 10247 pf->num_lan_msix = 1; 10248 break; 10249 case 3: 10250 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10251 pf->num_lan_msix = 1; 10252 pf->num_iwarp_msix = 1; 10253 } else { 10254 pf->num_lan_msix = 2; 10255 } 10256 break; 10257 default: 10258 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10259 pf->num_iwarp_msix = min_t(int, (vec / 3), 10260 iwarp_requested); 10261 pf->num_vmdq_vsis = min_t(int, (vec / 3), 10262 I40E_DEFAULT_NUM_VMDQ_VSI); 10263 } else { 10264 pf->num_vmdq_vsis = min_t(int, (vec / 2), 10265 I40E_DEFAULT_NUM_VMDQ_VSI); 10266 } 10267 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10268 pf->num_fdsb_msix = 1; 10269 vec--; 10270 } 10271 pf->num_lan_msix = min_t(int, 10272 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 10273 pf->num_lan_msix); 10274 pf->num_lan_qps = pf->num_lan_msix; 10275 break; 10276 } 10277 } 10278 10279 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 10280 (pf->num_fdsb_msix == 0)) { 10281 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 10282 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10283 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10284 } 10285 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 10286 (pf->num_vmdq_msix == 0)) { 10287 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 10288 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 10289 } 10290 10291 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 10292 (pf->num_iwarp_msix == 0)) { 10293 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 10294 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 10295 } 10296 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 10297 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 10298 pf->num_lan_msix, 10299 pf->num_vmdq_msix * pf->num_vmdq_vsis, 10300 pf->num_fdsb_msix, 10301 pf->num_iwarp_msix); 10302 10303 return v_actual; 10304 } 10305 10306 /** 10307 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 10308 * @vsi: the VSI being configured 10309 * @v_idx: index of the vector in the vsi struct 10310 * @cpu: cpu to be used on affinity_mask 10311 * 10312 * We allocate one q_vector. If allocation fails we return -ENOMEM. 10313 **/ 10314 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 10315 { 10316 struct i40e_q_vector *q_vector; 10317 10318 /* allocate q_vector */ 10319 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 10320 if (!q_vector) 10321 return -ENOMEM; 10322 10323 q_vector->vsi = vsi; 10324 q_vector->v_idx = v_idx; 10325 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 10326 10327 if (vsi->netdev) 10328 netif_napi_add(vsi->netdev, &q_vector->napi, 10329 i40e_napi_poll, NAPI_POLL_WEIGHT); 10330 10331 q_vector->rx.latency_range = I40E_LOW_LATENCY; 10332 q_vector->tx.latency_range = I40E_LOW_LATENCY; 10333 10334 /* tie q_vector and vsi together */ 10335 vsi->q_vectors[v_idx] = q_vector; 10336 10337 return 0; 10338 } 10339 10340 /** 10341 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 10342 * @vsi: the VSI being configured 10343 * 10344 * We allocate one q_vector per queue interrupt. If allocation fails we 10345 * return -ENOMEM. 10346 **/ 10347 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 10348 { 10349 struct i40e_pf *pf = vsi->back; 10350 int err, v_idx, num_q_vectors, current_cpu; 10351 10352 /* if not MSIX, give the one vector only to the LAN VSI */ 10353 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10354 num_q_vectors = vsi->num_q_vectors; 10355 else if (vsi == pf->vsi[pf->lan_vsi]) 10356 num_q_vectors = 1; 10357 else 10358 return -EINVAL; 10359 10360 current_cpu = cpumask_first(cpu_online_mask); 10361 10362 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 10363 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 10364 if (err) 10365 goto err_out; 10366 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 10367 if (unlikely(current_cpu >= nr_cpu_ids)) 10368 current_cpu = cpumask_first(cpu_online_mask); 10369 } 10370 10371 return 0; 10372 10373 err_out: 10374 while (v_idx--) 10375 i40e_free_q_vector(vsi, v_idx); 10376 10377 return err; 10378 } 10379 10380 /** 10381 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 10382 * @pf: board private structure to initialize 10383 **/ 10384 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 10385 { 10386 int vectors = 0; 10387 ssize_t size; 10388 10389 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 10390 vectors = i40e_init_msix(pf); 10391 if (vectors < 0) { 10392 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 10393 I40E_FLAG_IWARP_ENABLED | 10394 I40E_FLAG_RSS_ENABLED | 10395 I40E_FLAG_DCB_CAPABLE | 10396 I40E_FLAG_DCB_ENABLED | 10397 I40E_FLAG_SRIOV_ENABLED | 10398 I40E_FLAG_FD_SB_ENABLED | 10399 I40E_FLAG_FD_ATR_ENABLED | 10400 I40E_FLAG_VMDQ_ENABLED); 10401 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10402 10403 /* rework the queue expectations without MSIX */ 10404 i40e_determine_queue_usage(pf); 10405 } 10406 } 10407 10408 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 10409 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 10410 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 10411 vectors = pci_enable_msi(pf->pdev); 10412 if (vectors < 0) { 10413 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 10414 vectors); 10415 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 10416 } 10417 vectors = 1; /* one MSI or Legacy vector */ 10418 } 10419 10420 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 10421 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 10422 10423 /* set up vector assignment tracking */ 10424 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 10425 pf->irq_pile = kzalloc(size, GFP_KERNEL); 10426 if (!pf->irq_pile) 10427 return -ENOMEM; 10428 10429 pf->irq_pile->num_entries = vectors; 10430 pf->irq_pile->search_hint = 0; 10431 10432 /* track first vector for misc interrupts, ignore return */ 10433 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 10434 10435 return 0; 10436 } 10437 10438 /** 10439 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 10440 * @pf: private board data structure 10441 * 10442 * Restore the interrupt scheme that was cleared when we suspended the 10443 * device. This should be called during resume to re-allocate the q_vectors 10444 * and reacquire IRQs. 10445 */ 10446 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 10447 { 10448 int err, i; 10449 10450 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 10451 * scheme. We need to re-enabled them here in order to attempt to 10452 * re-acquire the MSI or MSI-X vectors 10453 */ 10454 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 10455 10456 err = i40e_init_interrupt_scheme(pf); 10457 if (err) 10458 return err; 10459 10460 /* Now that we've re-acquired IRQs, we need to remap the vectors and 10461 * rings together again. 10462 */ 10463 for (i = 0; i < pf->num_alloc_vsi; i++) { 10464 if (pf->vsi[i]) { 10465 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 10466 if (err) 10467 goto err_unwind; 10468 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 10469 } 10470 } 10471 10472 err = i40e_setup_misc_vector(pf); 10473 if (err) 10474 goto err_unwind; 10475 10476 return 0; 10477 10478 err_unwind: 10479 while (i--) { 10480 if (pf->vsi[i]) 10481 i40e_vsi_free_q_vectors(pf->vsi[i]); 10482 } 10483 10484 return err; 10485 } 10486 10487 /** 10488 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 10489 * @pf: board private structure 10490 * 10491 * This sets up the handler for MSIX 0, which is used to manage the 10492 * non-queue interrupts, e.g. AdminQ and errors. This is not used 10493 * when in MSI or Legacy interrupt mode. 10494 **/ 10495 static int i40e_setup_misc_vector(struct i40e_pf *pf) 10496 { 10497 struct i40e_hw *hw = &pf->hw; 10498 int err = 0; 10499 10500 /* Only request the IRQ once, the first time through. */ 10501 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 10502 err = request_irq(pf->msix_entries[0].vector, 10503 i40e_intr, 0, pf->int_name, pf); 10504 if (err) { 10505 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 10506 dev_info(&pf->pdev->dev, 10507 "request_irq for %s failed: %d\n", 10508 pf->int_name, err); 10509 return -EFAULT; 10510 } 10511 } 10512 10513 i40e_enable_misc_int_causes(pf); 10514 10515 /* associate no queues to the misc vector */ 10516 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 10517 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); 10518 10519 i40e_flush(hw); 10520 10521 i40e_irq_dynamic_enable_icr0(pf); 10522 10523 return err; 10524 } 10525 10526 /** 10527 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 10528 * @vsi: Pointer to vsi structure 10529 * @seed: Buffter to store the hash keys 10530 * @lut: Buffer to store the lookup table entries 10531 * @lut_size: Size of buffer to store the lookup table entries 10532 * 10533 * Return 0 on success, negative on failure 10534 */ 10535 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 10536 u8 *lut, u16 lut_size) 10537 { 10538 struct i40e_pf *pf = vsi->back; 10539 struct i40e_hw *hw = &pf->hw; 10540 int ret = 0; 10541 10542 if (seed) { 10543 ret = i40e_aq_get_rss_key(hw, vsi->id, 10544 (struct i40e_aqc_get_set_rss_key_data *)seed); 10545 if (ret) { 10546 dev_info(&pf->pdev->dev, 10547 "Cannot get RSS key, err %s aq_err %s\n", 10548 i40e_stat_str(&pf->hw, ret), 10549 i40e_aq_str(&pf->hw, 10550 pf->hw.aq.asq_last_status)); 10551 return ret; 10552 } 10553 } 10554 10555 if (lut) { 10556 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 10557 10558 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 10559 if (ret) { 10560 dev_info(&pf->pdev->dev, 10561 "Cannot get RSS lut, err %s aq_err %s\n", 10562 i40e_stat_str(&pf->hw, ret), 10563 i40e_aq_str(&pf->hw, 10564 pf->hw.aq.asq_last_status)); 10565 return ret; 10566 } 10567 } 10568 10569 return ret; 10570 } 10571 10572 /** 10573 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 10574 * @vsi: Pointer to vsi structure 10575 * @seed: RSS hash seed 10576 * @lut: Lookup table 10577 * @lut_size: Lookup table size 10578 * 10579 * Returns 0 on success, negative on failure 10580 **/ 10581 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 10582 const u8 *lut, u16 lut_size) 10583 { 10584 struct i40e_pf *pf = vsi->back; 10585 struct i40e_hw *hw = &pf->hw; 10586 u16 vf_id = vsi->vf_id; 10587 u8 i; 10588 10589 /* Fill out hash function seed */ 10590 if (seed) { 10591 u32 *seed_dw = (u32 *)seed; 10592 10593 if (vsi->type == I40E_VSI_MAIN) { 10594 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10595 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 10596 } else if (vsi->type == I40E_VSI_SRIOV) { 10597 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 10598 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 10599 } else { 10600 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 10601 } 10602 } 10603 10604 if (lut) { 10605 u32 *lut_dw = (u32 *)lut; 10606 10607 if (vsi->type == I40E_VSI_MAIN) { 10608 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10609 return -EINVAL; 10610 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10611 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 10612 } else if (vsi->type == I40E_VSI_SRIOV) { 10613 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 10614 return -EINVAL; 10615 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 10616 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 10617 } else { 10618 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 10619 } 10620 } 10621 i40e_flush(hw); 10622 10623 return 0; 10624 } 10625 10626 /** 10627 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 10628 * @vsi: Pointer to VSI structure 10629 * @seed: Buffer to store the keys 10630 * @lut: Buffer to store the lookup table entries 10631 * @lut_size: Size of buffer to store the lookup table entries 10632 * 10633 * Returns 0 on success, negative on failure 10634 */ 10635 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 10636 u8 *lut, u16 lut_size) 10637 { 10638 struct i40e_pf *pf = vsi->back; 10639 struct i40e_hw *hw = &pf->hw; 10640 u16 i; 10641 10642 if (seed) { 10643 u32 *seed_dw = (u32 *)seed; 10644 10645 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10646 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 10647 } 10648 if (lut) { 10649 u32 *lut_dw = (u32 *)lut; 10650 10651 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10652 return -EINVAL; 10653 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10654 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 10655 } 10656 10657 return 0; 10658 } 10659 10660 /** 10661 * i40e_config_rss - Configure RSS keys and lut 10662 * @vsi: Pointer to VSI structure 10663 * @seed: RSS hash seed 10664 * @lut: Lookup table 10665 * @lut_size: Lookup table size 10666 * 10667 * Returns 0 on success, negative on failure 10668 */ 10669 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10670 { 10671 struct i40e_pf *pf = vsi->back; 10672 10673 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10674 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 10675 else 10676 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 10677 } 10678 10679 /** 10680 * i40e_get_rss - Get RSS keys and lut 10681 * @vsi: Pointer to VSI structure 10682 * @seed: Buffer to store the keys 10683 * @lut: Buffer to store the lookup table entries 10684 * lut_size: Size of buffer to store the lookup table entries 10685 * 10686 * Returns 0 on success, negative on failure 10687 */ 10688 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10689 { 10690 struct i40e_pf *pf = vsi->back; 10691 10692 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10693 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 10694 else 10695 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 10696 } 10697 10698 /** 10699 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 10700 * @pf: Pointer to board private structure 10701 * @lut: Lookup table 10702 * @rss_table_size: Lookup table size 10703 * @rss_size: Range of queue number for hashing 10704 */ 10705 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 10706 u16 rss_table_size, u16 rss_size) 10707 { 10708 u16 i; 10709 10710 for (i = 0; i < rss_table_size; i++) 10711 lut[i] = i % rss_size; 10712 } 10713 10714 /** 10715 * i40e_pf_config_rss - Prepare for RSS if used 10716 * @pf: board private structure 10717 **/ 10718 static int i40e_pf_config_rss(struct i40e_pf *pf) 10719 { 10720 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10721 u8 seed[I40E_HKEY_ARRAY_SIZE]; 10722 u8 *lut; 10723 struct i40e_hw *hw = &pf->hw; 10724 u32 reg_val; 10725 u64 hena; 10726 int ret; 10727 10728 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 10729 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 10730 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 10731 hena |= i40e_pf_get_default_rss_hena(pf); 10732 10733 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 10734 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 10735 10736 /* Determine the RSS table size based on the hardware capabilities */ 10737 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 10738 reg_val = (pf->rss_table_size == 512) ? 10739 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 10740 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 10741 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 10742 10743 /* Determine the RSS size of the VSI */ 10744 if (!vsi->rss_size) { 10745 u16 qcount; 10746 /* If the firmware does something weird during VSI init, we 10747 * could end up with zero TCs. Check for that to avoid 10748 * divide-by-zero. It probably won't pass traffic, but it also 10749 * won't panic. 10750 */ 10751 qcount = vsi->num_queue_pairs / 10752 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 10753 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 10754 } 10755 if (!vsi->rss_size) 10756 return -EINVAL; 10757 10758 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 10759 if (!lut) 10760 return -ENOMEM; 10761 10762 /* Use user configured lut if there is one, otherwise use default */ 10763 if (vsi->rss_lut_user) 10764 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 10765 else 10766 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 10767 10768 /* Use user configured hash key if there is one, otherwise 10769 * use default. 10770 */ 10771 if (vsi->rss_hkey_user) 10772 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 10773 else 10774 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 10775 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 10776 kfree(lut); 10777 10778 return ret; 10779 } 10780 10781 /** 10782 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 10783 * @pf: board private structure 10784 * @queue_count: the requested queue count for rss. 10785 * 10786 * returns 0 if rss is not enabled, if enabled returns the final rss queue 10787 * count which may be different from the requested queue count. 10788 * Note: expects to be called while under rtnl_lock() 10789 **/ 10790 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 10791 { 10792 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10793 int new_rss_size; 10794 10795 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 10796 return 0; 10797 10798 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 10799 10800 if (queue_count != vsi->num_queue_pairs) { 10801 u16 qcount; 10802 10803 vsi->req_queue_pairs = queue_count; 10804 i40e_prep_for_reset(pf, true); 10805 10806 pf->alloc_rss_size = new_rss_size; 10807 10808 i40e_reset_and_rebuild(pf, true, true); 10809 10810 /* Discard the user configured hash keys and lut, if less 10811 * queues are enabled. 10812 */ 10813 if (queue_count < vsi->rss_size) { 10814 i40e_clear_rss_config_user(vsi); 10815 dev_dbg(&pf->pdev->dev, 10816 "discard user configured hash keys and lut\n"); 10817 } 10818 10819 /* Reset vsi->rss_size, as number of enabled queues changed */ 10820 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 10821 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 10822 10823 i40e_pf_config_rss(pf); 10824 } 10825 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 10826 vsi->req_queue_pairs, pf->rss_size_max); 10827 return pf->alloc_rss_size; 10828 } 10829 10830 /** 10831 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 10832 * @pf: board private structure 10833 **/ 10834 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 10835 { 10836 i40e_status status; 10837 bool min_valid, max_valid; 10838 u32 max_bw, min_bw; 10839 10840 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 10841 &min_valid, &max_valid); 10842 10843 if (!status) { 10844 if (min_valid) 10845 pf->min_bw = min_bw; 10846 if (max_valid) 10847 pf->max_bw = max_bw; 10848 } 10849 10850 return status; 10851 } 10852 10853 /** 10854 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 10855 * @pf: board private structure 10856 **/ 10857 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 10858 { 10859 struct i40e_aqc_configure_partition_bw_data bw_data; 10860 i40e_status status; 10861 10862 /* Set the valid bit for this PF */ 10863 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 10864 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 10865 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 10866 10867 /* Set the new bandwidths */ 10868 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 10869 10870 return status; 10871 } 10872 10873 /** 10874 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 10875 * @pf: board private structure 10876 **/ 10877 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 10878 { 10879 /* Commit temporary BW setting to permanent NVM image */ 10880 enum i40e_admin_queue_err last_aq_status; 10881 i40e_status ret; 10882 u16 nvm_word; 10883 10884 if (pf->hw.partition_id != 1) { 10885 dev_info(&pf->pdev->dev, 10886 "Commit BW only works on partition 1! This is partition %d", 10887 pf->hw.partition_id); 10888 ret = I40E_NOT_SUPPORTED; 10889 goto bw_commit_out; 10890 } 10891 10892 /* Acquire NVM for read access */ 10893 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 10894 last_aq_status = pf->hw.aq.asq_last_status; 10895 if (ret) { 10896 dev_info(&pf->pdev->dev, 10897 "Cannot acquire NVM for read access, err %s aq_err %s\n", 10898 i40e_stat_str(&pf->hw, ret), 10899 i40e_aq_str(&pf->hw, last_aq_status)); 10900 goto bw_commit_out; 10901 } 10902 10903 /* Read word 0x10 of NVM - SW compatibility word 1 */ 10904 ret = i40e_aq_read_nvm(&pf->hw, 10905 I40E_SR_NVM_CONTROL_WORD, 10906 0x10, sizeof(nvm_word), &nvm_word, 10907 false, NULL); 10908 /* Save off last admin queue command status before releasing 10909 * the NVM 10910 */ 10911 last_aq_status = pf->hw.aq.asq_last_status; 10912 i40e_release_nvm(&pf->hw); 10913 if (ret) { 10914 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 10915 i40e_stat_str(&pf->hw, ret), 10916 i40e_aq_str(&pf->hw, last_aq_status)); 10917 goto bw_commit_out; 10918 } 10919 10920 /* Wait a bit for NVM release to complete */ 10921 msleep(50); 10922 10923 /* Acquire NVM for write access */ 10924 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 10925 last_aq_status = pf->hw.aq.asq_last_status; 10926 if (ret) { 10927 dev_info(&pf->pdev->dev, 10928 "Cannot acquire NVM for write access, err %s aq_err %s\n", 10929 i40e_stat_str(&pf->hw, ret), 10930 i40e_aq_str(&pf->hw, last_aq_status)); 10931 goto bw_commit_out; 10932 } 10933 /* Write it back out unchanged to initiate update NVM, 10934 * which will force a write of the shadow (alt) RAM to 10935 * the NVM - thus storing the bandwidth values permanently. 10936 */ 10937 ret = i40e_aq_update_nvm(&pf->hw, 10938 I40E_SR_NVM_CONTROL_WORD, 10939 0x10, sizeof(nvm_word), 10940 &nvm_word, true, 0, NULL); 10941 /* Save off last admin queue command status before releasing 10942 * the NVM 10943 */ 10944 last_aq_status = pf->hw.aq.asq_last_status; 10945 i40e_release_nvm(&pf->hw); 10946 if (ret) 10947 dev_info(&pf->pdev->dev, 10948 "BW settings NOT SAVED, err %s aq_err %s\n", 10949 i40e_stat_str(&pf->hw, ret), 10950 i40e_aq_str(&pf->hw, last_aq_status)); 10951 bw_commit_out: 10952 10953 return ret; 10954 } 10955 10956 /** 10957 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 10958 * @pf: board private structure to initialize 10959 * 10960 * i40e_sw_init initializes the Adapter private data structure. 10961 * Fields are initialized based on PCI device information and 10962 * OS network device settings (MTU size). 10963 **/ 10964 static int i40e_sw_init(struct i40e_pf *pf) 10965 { 10966 int err = 0; 10967 int size; 10968 10969 /* Set default capability flags */ 10970 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 10971 I40E_FLAG_MSI_ENABLED | 10972 I40E_FLAG_MSIX_ENABLED; 10973 10974 /* Set default ITR */ 10975 pf->rx_itr_default = I40E_ITR_RX_DEF; 10976 pf->tx_itr_default = I40E_ITR_TX_DEF; 10977 10978 /* Depending on PF configurations, it is possible that the RSS 10979 * maximum might end up larger than the available queues 10980 */ 10981 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 10982 pf->alloc_rss_size = 1; 10983 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 10984 pf->rss_size_max = min_t(int, pf->rss_size_max, 10985 pf->hw.func_caps.num_tx_qp); 10986 if (pf->hw.func_caps.rss) { 10987 pf->flags |= I40E_FLAG_RSS_ENABLED; 10988 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 10989 num_online_cpus()); 10990 } 10991 10992 /* MFP mode enabled */ 10993 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 10994 pf->flags |= I40E_FLAG_MFP_ENABLED; 10995 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 10996 if (i40e_get_partition_bw_setting(pf)) { 10997 dev_warn(&pf->pdev->dev, 10998 "Could not get partition bw settings\n"); 10999 } else { 11000 dev_info(&pf->pdev->dev, 11001 "Partition BW Min = %8.8x, Max = %8.8x\n", 11002 pf->min_bw, pf->max_bw); 11003 11004 /* nudge the Tx scheduler */ 11005 i40e_set_partition_bw_setting(pf); 11006 } 11007 } 11008 11009 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11010 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11011 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11012 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11013 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11014 pf->hw.num_partitions > 1) 11015 dev_info(&pf->pdev->dev, 11016 "Flow Director Sideband mode Disabled in MFP mode\n"); 11017 else 11018 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11019 pf->fdir_pf_filter_count = 11020 pf->hw.func_caps.fd_filters_guaranteed; 11021 pf->hw.fdir_shared_filter_count = 11022 pf->hw.func_caps.fd_filters_best_effort; 11023 } 11024 11025 if (pf->hw.mac.type == I40E_MAC_X722) { 11026 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11027 I40E_HW_128_QP_RSS_CAPABLE | 11028 I40E_HW_ATR_EVICT_CAPABLE | 11029 I40E_HW_WB_ON_ITR_CAPABLE | 11030 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11031 I40E_HW_NO_PCI_LINK_CHECK | 11032 I40E_HW_USE_SET_LLDP_MIB | 11033 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11034 I40E_HW_PTP_L4_CAPABLE | 11035 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11036 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11037 11038 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11039 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11040 I40E_FDEVICT_PCTYPE_DEFAULT) { 11041 dev_warn(&pf->pdev->dev, 11042 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11043 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11044 } 11045 } else if ((pf->hw.aq.api_maj_ver > 1) || 11046 ((pf->hw.aq.api_maj_ver == 1) && 11047 (pf->hw.aq.api_min_ver > 4))) { 11048 /* Supported in FW API version higher than 1.4 */ 11049 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11050 } 11051 11052 /* Enable HW ATR eviction if possible */ 11053 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11054 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11055 11056 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11057 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11058 (pf->hw.aq.fw_maj_ver < 4))) { 11059 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11060 /* No DCB support for FW < v4.33 */ 11061 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11062 } 11063 11064 /* Disable FW LLDP if FW < v4.3 */ 11065 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11066 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11067 (pf->hw.aq.fw_maj_ver < 4))) 11068 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11069 11070 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11071 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11072 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11073 (pf->hw.aq.fw_maj_ver >= 5))) 11074 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11075 11076 /* Enable PTP L4 if FW > v6.0 */ 11077 if (pf->hw.mac.type == I40E_MAC_XL710 && 11078 pf->hw.aq.fw_maj_ver >= 6) 11079 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11080 11081 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11082 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11083 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11084 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11085 } 11086 11087 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11088 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11089 /* IWARP needs one extra vector for CQP just like MISC.*/ 11090 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11091 } 11092 11093 #ifdef CONFIG_PCI_IOV 11094 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 11095 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 11096 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 11097 pf->num_req_vfs = min_t(int, 11098 pf->hw.func_caps.num_vfs, 11099 I40E_MAX_VF_COUNT); 11100 } 11101 #endif /* CONFIG_PCI_IOV */ 11102 pf->eeprom_version = 0xDEAD; 11103 pf->lan_veb = I40E_NO_VEB; 11104 pf->lan_vsi = I40E_NO_VSI; 11105 11106 /* By default FW has this off for performance reasons */ 11107 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 11108 11109 /* set up queue assignment tracking */ 11110 size = sizeof(struct i40e_lump_tracking) 11111 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 11112 pf->qp_pile = kzalloc(size, GFP_KERNEL); 11113 if (!pf->qp_pile) { 11114 err = -ENOMEM; 11115 goto sw_init_done; 11116 } 11117 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 11118 pf->qp_pile->search_hint = 0; 11119 11120 pf->tx_timeout_recovery_level = 1; 11121 11122 mutex_init(&pf->switch_mutex); 11123 11124 sw_init_done: 11125 return err; 11126 } 11127 11128 /** 11129 * i40e_set_ntuple - set the ntuple feature flag and take action 11130 * @pf: board private structure to initialize 11131 * @features: the feature set that the stack is suggesting 11132 * 11133 * returns a bool to indicate if reset needs to happen 11134 **/ 11135 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 11136 { 11137 bool need_reset = false; 11138 11139 /* Check if Flow Director n-tuple support was enabled or disabled. If 11140 * the state changed, we need to reset. 11141 */ 11142 if (features & NETIF_F_NTUPLE) { 11143 /* Enable filters and mark for reset */ 11144 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 11145 need_reset = true; 11146 /* enable FD_SB only if there is MSI-X vector and no cloud 11147 * filters exist 11148 */ 11149 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 11150 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11151 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 11152 } 11153 } else { 11154 /* turn off filters, mark for reset and clear SW filter list */ 11155 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11156 need_reset = true; 11157 i40e_fdir_filter_exit(pf); 11158 } 11159 pf->flags &= ~(I40E_FLAG_FD_SB_ENABLED | 11160 I40E_FLAG_FD_SB_AUTO_DISABLED); 11161 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11162 11163 /* reset fd counters */ 11164 pf->fd_add_err = 0; 11165 pf->fd_atr_cnt = 0; 11166 /* if ATR was auto disabled it can be re-enabled. */ 11167 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) { 11168 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED; 11169 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 11170 (I40E_DEBUG_FD & pf->hw.debug_mask)) 11171 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 11172 } 11173 } 11174 return need_reset; 11175 } 11176 11177 /** 11178 * i40e_clear_rss_lut - clear the rx hash lookup table 11179 * @vsi: the VSI being configured 11180 **/ 11181 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 11182 { 11183 struct i40e_pf *pf = vsi->back; 11184 struct i40e_hw *hw = &pf->hw; 11185 u16 vf_id = vsi->vf_id; 11186 u8 i; 11187 11188 if (vsi->type == I40E_VSI_MAIN) { 11189 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11190 wr32(hw, I40E_PFQF_HLUT(i), 0); 11191 } else if (vsi->type == I40E_VSI_SRIOV) { 11192 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11193 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 11194 } else { 11195 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11196 } 11197 } 11198 11199 /** 11200 * i40e_set_features - set the netdev feature flags 11201 * @netdev: ptr to the netdev being adjusted 11202 * @features: the feature set that the stack is suggesting 11203 * Note: expects to be called while under rtnl_lock() 11204 **/ 11205 static int i40e_set_features(struct net_device *netdev, 11206 netdev_features_t features) 11207 { 11208 struct i40e_netdev_priv *np = netdev_priv(netdev); 11209 struct i40e_vsi *vsi = np->vsi; 11210 struct i40e_pf *pf = vsi->back; 11211 bool need_reset; 11212 11213 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 11214 i40e_pf_config_rss(pf); 11215 else if (!(features & NETIF_F_RXHASH) && 11216 netdev->features & NETIF_F_RXHASH) 11217 i40e_clear_rss_lut(vsi); 11218 11219 if (features & NETIF_F_HW_VLAN_CTAG_RX) 11220 i40e_vlan_stripping_enable(vsi); 11221 else 11222 i40e_vlan_stripping_disable(vsi); 11223 11224 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 11225 dev_err(&pf->pdev->dev, 11226 "Offloaded tc filters active, can't turn hw_tc_offload off"); 11227 return -EINVAL; 11228 } 11229 11230 need_reset = i40e_set_ntuple(pf, features); 11231 11232 if (need_reset) 11233 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11234 11235 return 0; 11236 } 11237 11238 /** 11239 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 11240 * @pf: board private structure 11241 * @port: The UDP port to look up 11242 * 11243 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 11244 **/ 11245 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 11246 { 11247 u8 i; 11248 11249 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 11250 if (pf->udp_ports[i].port == port) 11251 return i; 11252 } 11253 11254 return i; 11255 } 11256 11257 /** 11258 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 11259 * @netdev: This physical port's netdev 11260 * @ti: Tunnel endpoint information 11261 **/ 11262 static void i40e_udp_tunnel_add(struct net_device *netdev, 11263 struct udp_tunnel_info *ti) 11264 { 11265 struct i40e_netdev_priv *np = netdev_priv(netdev); 11266 struct i40e_vsi *vsi = np->vsi; 11267 struct i40e_pf *pf = vsi->back; 11268 u16 port = ntohs(ti->port); 11269 u8 next_idx; 11270 u8 idx; 11271 11272 idx = i40e_get_udp_port_idx(pf, port); 11273 11274 /* Check if port already exists */ 11275 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11276 netdev_info(netdev, "port %d already offloaded\n", port); 11277 return; 11278 } 11279 11280 /* Now check if there is space to add the new port */ 11281 next_idx = i40e_get_udp_port_idx(pf, 0); 11282 11283 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11284 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 11285 port); 11286 return; 11287 } 11288 11289 switch (ti->type) { 11290 case UDP_TUNNEL_TYPE_VXLAN: 11291 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 11292 break; 11293 case UDP_TUNNEL_TYPE_GENEVE: 11294 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 11295 return; 11296 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 11297 break; 11298 default: 11299 return; 11300 } 11301 11302 /* New port: add it and mark its index in the bitmap */ 11303 pf->udp_ports[next_idx].port = port; 11304 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 11305 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC; 11306 } 11307 11308 /** 11309 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 11310 * @netdev: This physical port's netdev 11311 * @ti: Tunnel endpoint information 11312 **/ 11313 static void i40e_udp_tunnel_del(struct net_device *netdev, 11314 struct udp_tunnel_info *ti) 11315 { 11316 struct i40e_netdev_priv *np = netdev_priv(netdev); 11317 struct i40e_vsi *vsi = np->vsi; 11318 struct i40e_pf *pf = vsi->back; 11319 u16 port = ntohs(ti->port); 11320 u8 idx; 11321 11322 idx = i40e_get_udp_port_idx(pf, port); 11323 11324 /* Check if port already exists */ 11325 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 11326 goto not_found; 11327 11328 switch (ti->type) { 11329 case UDP_TUNNEL_TYPE_VXLAN: 11330 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 11331 goto not_found; 11332 break; 11333 case UDP_TUNNEL_TYPE_GENEVE: 11334 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 11335 goto not_found; 11336 break; 11337 default: 11338 goto not_found; 11339 } 11340 11341 /* if port exists, set it to 0 (mark for deletion) 11342 * and make it pending 11343 */ 11344 pf->udp_ports[idx].port = 0; 11345 pf->pending_udp_bitmap |= BIT_ULL(idx); 11346 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC; 11347 11348 return; 11349 not_found: 11350 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 11351 port); 11352 } 11353 11354 static int i40e_get_phys_port_id(struct net_device *netdev, 11355 struct netdev_phys_item_id *ppid) 11356 { 11357 struct i40e_netdev_priv *np = netdev_priv(netdev); 11358 struct i40e_pf *pf = np->vsi->back; 11359 struct i40e_hw *hw = &pf->hw; 11360 11361 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 11362 return -EOPNOTSUPP; 11363 11364 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 11365 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 11366 11367 return 0; 11368 } 11369 11370 /** 11371 * i40e_ndo_fdb_add - add an entry to the hardware database 11372 * @ndm: the input from the stack 11373 * @tb: pointer to array of nladdr (unused) 11374 * @dev: the net device pointer 11375 * @addr: the MAC address entry being added 11376 * @flags: instructions from stack about fdb operation 11377 */ 11378 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 11379 struct net_device *dev, 11380 const unsigned char *addr, u16 vid, 11381 u16 flags) 11382 { 11383 struct i40e_netdev_priv *np = netdev_priv(dev); 11384 struct i40e_pf *pf = np->vsi->back; 11385 int err = 0; 11386 11387 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 11388 return -EOPNOTSUPP; 11389 11390 if (vid) { 11391 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 11392 return -EINVAL; 11393 } 11394 11395 /* Hardware does not support aging addresses so if a 11396 * ndm_state is given only allow permanent addresses 11397 */ 11398 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 11399 netdev_info(dev, "FDB only supports static addresses\n"); 11400 return -EINVAL; 11401 } 11402 11403 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 11404 err = dev_uc_add_excl(dev, addr); 11405 else if (is_multicast_ether_addr(addr)) 11406 err = dev_mc_add_excl(dev, addr); 11407 else 11408 err = -EINVAL; 11409 11410 /* Only return duplicate errors if NLM_F_EXCL is set */ 11411 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 11412 err = 0; 11413 11414 return err; 11415 } 11416 11417 /** 11418 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 11419 * @dev: the netdev being configured 11420 * @nlh: RTNL message 11421 * 11422 * Inserts a new hardware bridge if not already created and 11423 * enables the bridging mode requested (VEB or VEPA). If the 11424 * hardware bridge has already been inserted and the request 11425 * is to change the mode then that requires a PF reset to 11426 * allow rebuild of the components with required hardware 11427 * bridge mode enabled. 11428 * 11429 * Note: expects to be called while under rtnl_lock() 11430 **/ 11431 static int i40e_ndo_bridge_setlink(struct net_device *dev, 11432 struct nlmsghdr *nlh, 11433 u16 flags) 11434 { 11435 struct i40e_netdev_priv *np = netdev_priv(dev); 11436 struct i40e_vsi *vsi = np->vsi; 11437 struct i40e_pf *pf = vsi->back; 11438 struct i40e_veb *veb = NULL; 11439 struct nlattr *attr, *br_spec; 11440 int i, rem; 11441 11442 /* Only for PF VSI for now */ 11443 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11444 return -EOPNOTSUPP; 11445 11446 /* Find the HW bridge for PF VSI */ 11447 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11448 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11449 veb = pf->veb[i]; 11450 } 11451 11452 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 11453 11454 nla_for_each_nested(attr, br_spec, rem) { 11455 __u16 mode; 11456 11457 if (nla_type(attr) != IFLA_BRIDGE_MODE) 11458 continue; 11459 11460 mode = nla_get_u16(attr); 11461 if ((mode != BRIDGE_MODE_VEPA) && 11462 (mode != BRIDGE_MODE_VEB)) 11463 return -EINVAL; 11464 11465 /* Insert a new HW bridge */ 11466 if (!veb) { 11467 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 11468 vsi->tc_config.enabled_tc); 11469 if (veb) { 11470 veb->bridge_mode = mode; 11471 i40e_config_bridge_mode(veb); 11472 } else { 11473 /* No Bridge HW offload available */ 11474 return -ENOENT; 11475 } 11476 break; 11477 } else if (mode != veb->bridge_mode) { 11478 /* Existing HW bridge but different mode needs reset */ 11479 veb->bridge_mode = mode; 11480 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 11481 if (mode == BRIDGE_MODE_VEB) 11482 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 11483 else 11484 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 11485 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11486 break; 11487 } 11488 } 11489 11490 return 0; 11491 } 11492 11493 /** 11494 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 11495 * @skb: skb buff 11496 * @pid: process id 11497 * @seq: RTNL message seq # 11498 * @dev: the netdev being configured 11499 * @filter_mask: unused 11500 * @nlflags: netlink flags passed in 11501 * 11502 * Return the mode in which the hardware bridge is operating in 11503 * i.e VEB or VEPA. 11504 **/ 11505 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11506 struct net_device *dev, 11507 u32 __always_unused filter_mask, 11508 int nlflags) 11509 { 11510 struct i40e_netdev_priv *np = netdev_priv(dev); 11511 struct i40e_vsi *vsi = np->vsi; 11512 struct i40e_pf *pf = vsi->back; 11513 struct i40e_veb *veb = NULL; 11514 int i; 11515 11516 /* Only for PF VSI for now */ 11517 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11518 return -EOPNOTSUPP; 11519 11520 /* Find the HW bridge for the PF VSI */ 11521 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11522 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11523 veb = pf->veb[i]; 11524 } 11525 11526 if (!veb) 11527 return 0; 11528 11529 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 11530 0, 0, nlflags, filter_mask, NULL); 11531 } 11532 11533 /** 11534 * i40e_features_check - Validate encapsulated packet conforms to limits 11535 * @skb: skb buff 11536 * @dev: This physical port's netdev 11537 * @features: Offload features that the stack believes apply 11538 **/ 11539 static netdev_features_t i40e_features_check(struct sk_buff *skb, 11540 struct net_device *dev, 11541 netdev_features_t features) 11542 { 11543 size_t len; 11544 11545 /* No point in doing any of this if neither checksum nor GSO are 11546 * being requested for this frame. We can rule out both by just 11547 * checking for CHECKSUM_PARTIAL 11548 */ 11549 if (skb->ip_summed != CHECKSUM_PARTIAL) 11550 return features; 11551 11552 /* We cannot support GSO if the MSS is going to be less than 11553 * 64 bytes. If it is then we need to drop support for GSO. 11554 */ 11555 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 11556 features &= ~NETIF_F_GSO_MASK; 11557 11558 /* MACLEN can support at most 63 words */ 11559 len = skb_network_header(skb) - skb->data; 11560 if (len & ~(63 * 2)) 11561 goto out_err; 11562 11563 /* IPLEN and EIPLEN can support at most 127 dwords */ 11564 len = skb_transport_header(skb) - skb_network_header(skb); 11565 if (len & ~(127 * 4)) 11566 goto out_err; 11567 11568 if (skb->encapsulation) { 11569 /* L4TUNLEN can support 127 words */ 11570 len = skb_inner_network_header(skb) - skb_transport_header(skb); 11571 if (len & ~(127 * 2)) 11572 goto out_err; 11573 11574 /* IPLEN can support at most 127 dwords */ 11575 len = skb_inner_transport_header(skb) - 11576 skb_inner_network_header(skb); 11577 if (len & ~(127 * 4)) 11578 goto out_err; 11579 } 11580 11581 /* No need to validate L4LEN as TCP is the only protocol with a 11582 * a flexible value and we support all possible values supported 11583 * by TCP, which is at most 15 dwords 11584 */ 11585 11586 return features; 11587 out_err: 11588 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11589 } 11590 11591 /** 11592 * i40e_xdp_setup - add/remove an XDP program 11593 * @vsi: VSI to changed 11594 * @prog: XDP program 11595 **/ 11596 static int i40e_xdp_setup(struct i40e_vsi *vsi, 11597 struct bpf_prog *prog) 11598 { 11599 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 11600 struct i40e_pf *pf = vsi->back; 11601 struct bpf_prog *old_prog; 11602 bool need_reset; 11603 int i; 11604 11605 /* Don't allow frames that span over multiple buffers */ 11606 if (frame_size > vsi->rx_buf_len) 11607 return -EINVAL; 11608 11609 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 11610 return 0; 11611 11612 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 11613 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 11614 11615 if (need_reset) 11616 i40e_prep_for_reset(pf, true); 11617 11618 old_prog = xchg(&vsi->xdp_prog, prog); 11619 11620 if (need_reset) 11621 i40e_reset_and_rebuild(pf, true, true); 11622 11623 for (i = 0; i < vsi->num_queue_pairs; i++) 11624 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 11625 11626 if (old_prog) 11627 bpf_prog_put(old_prog); 11628 11629 return 0; 11630 } 11631 11632 /** 11633 * i40e_xdp - implements ndo_bpf for i40e 11634 * @dev: netdevice 11635 * @xdp: XDP command 11636 **/ 11637 static int i40e_xdp(struct net_device *dev, 11638 struct netdev_bpf *xdp) 11639 { 11640 struct i40e_netdev_priv *np = netdev_priv(dev); 11641 struct i40e_vsi *vsi = np->vsi; 11642 11643 if (vsi->type != I40E_VSI_MAIN) 11644 return -EINVAL; 11645 11646 switch (xdp->command) { 11647 case XDP_SETUP_PROG: 11648 return i40e_xdp_setup(vsi, xdp->prog); 11649 case XDP_QUERY_PROG: 11650 xdp->prog_attached = i40e_enabled_xdp_vsi(vsi); 11651 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 11652 return 0; 11653 default: 11654 return -EINVAL; 11655 } 11656 } 11657 11658 static const struct net_device_ops i40e_netdev_ops = { 11659 .ndo_open = i40e_open, 11660 .ndo_stop = i40e_close, 11661 .ndo_start_xmit = i40e_lan_xmit_frame, 11662 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 11663 .ndo_set_rx_mode = i40e_set_rx_mode, 11664 .ndo_validate_addr = eth_validate_addr, 11665 .ndo_set_mac_address = i40e_set_mac, 11666 .ndo_change_mtu = i40e_change_mtu, 11667 .ndo_do_ioctl = i40e_ioctl, 11668 .ndo_tx_timeout = i40e_tx_timeout, 11669 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 11670 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 11671 #ifdef CONFIG_NET_POLL_CONTROLLER 11672 .ndo_poll_controller = i40e_netpoll, 11673 #endif 11674 .ndo_setup_tc = __i40e_setup_tc, 11675 .ndo_set_features = i40e_set_features, 11676 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 11677 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 11678 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 11679 .ndo_get_vf_config = i40e_ndo_get_vf_config, 11680 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 11681 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 11682 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 11683 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 11684 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 11685 .ndo_get_phys_port_id = i40e_get_phys_port_id, 11686 .ndo_fdb_add = i40e_ndo_fdb_add, 11687 .ndo_features_check = i40e_features_check, 11688 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 11689 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 11690 .ndo_bpf = i40e_xdp, 11691 }; 11692 11693 /** 11694 * i40e_config_netdev - Setup the netdev flags 11695 * @vsi: the VSI being configured 11696 * 11697 * Returns 0 on success, negative value on failure 11698 **/ 11699 static int i40e_config_netdev(struct i40e_vsi *vsi) 11700 { 11701 struct i40e_pf *pf = vsi->back; 11702 struct i40e_hw *hw = &pf->hw; 11703 struct i40e_netdev_priv *np; 11704 struct net_device *netdev; 11705 u8 broadcast[ETH_ALEN]; 11706 u8 mac_addr[ETH_ALEN]; 11707 int etherdev_size; 11708 netdev_features_t hw_enc_features; 11709 netdev_features_t hw_features; 11710 11711 etherdev_size = sizeof(struct i40e_netdev_priv); 11712 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 11713 if (!netdev) 11714 return -ENOMEM; 11715 11716 vsi->netdev = netdev; 11717 np = netdev_priv(netdev); 11718 np->vsi = vsi; 11719 11720 hw_enc_features = NETIF_F_SG | 11721 NETIF_F_IP_CSUM | 11722 NETIF_F_IPV6_CSUM | 11723 NETIF_F_HIGHDMA | 11724 NETIF_F_SOFT_FEATURES | 11725 NETIF_F_TSO | 11726 NETIF_F_TSO_ECN | 11727 NETIF_F_TSO6 | 11728 NETIF_F_GSO_GRE | 11729 NETIF_F_GSO_GRE_CSUM | 11730 NETIF_F_GSO_PARTIAL | 11731 NETIF_F_GSO_UDP_TUNNEL | 11732 NETIF_F_GSO_UDP_TUNNEL_CSUM | 11733 NETIF_F_SCTP_CRC | 11734 NETIF_F_RXHASH | 11735 NETIF_F_RXCSUM | 11736 0; 11737 11738 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 11739 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 11740 11741 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 11742 11743 netdev->hw_enc_features |= hw_enc_features; 11744 11745 /* record features VLANs can make use of */ 11746 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 11747 11748 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 11749 netdev->hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 11750 11751 hw_features = hw_enc_features | 11752 NETIF_F_HW_VLAN_CTAG_TX | 11753 NETIF_F_HW_VLAN_CTAG_RX; 11754 11755 netdev->hw_features |= hw_features; 11756 11757 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 11758 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11759 11760 if (vsi->type == I40E_VSI_MAIN) { 11761 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 11762 ether_addr_copy(mac_addr, hw->mac.perm_addr); 11763 /* The following steps are necessary for two reasons. First, 11764 * some older NVM configurations load a default MAC-VLAN 11765 * filter that will accept any tagged packet, and we want to 11766 * replace this with a normal filter. Additionally, it is 11767 * possible our MAC address was provided by the platform using 11768 * Open Firmware or similar. 11769 * 11770 * Thus, we need to remove the default filter and install one 11771 * specific to the MAC address. 11772 */ 11773 i40e_rm_default_mac_filter(vsi, mac_addr); 11774 spin_lock_bh(&vsi->mac_filter_hash_lock); 11775 i40e_add_mac_filter(vsi, mac_addr); 11776 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11777 } else { 11778 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 11779 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 11780 * the end, which is 4 bytes long, so force truncation of the 11781 * original name by IFNAMSIZ - 4 11782 */ 11783 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 11784 IFNAMSIZ - 4, 11785 pf->vsi[pf->lan_vsi]->netdev->name); 11786 random_ether_addr(mac_addr); 11787 11788 spin_lock_bh(&vsi->mac_filter_hash_lock); 11789 i40e_add_mac_filter(vsi, mac_addr); 11790 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11791 } 11792 11793 /* Add the broadcast filter so that we initially will receive 11794 * broadcast packets. Note that when a new VLAN is first added the 11795 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 11796 * specific filters as part of transitioning into "vlan" operation. 11797 * When more VLANs are added, the driver will copy each existing MAC 11798 * filter and add it for the new VLAN. 11799 * 11800 * Broadcast filters are handled specially by 11801 * i40e_sync_filters_subtask, as the driver must to set the broadcast 11802 * promiscuous bit instead of adding this directly as a MAC/VLAN 11803 * filter. The subtask will update the correct broadcast promiscuous 11804 * bits as VLANs become active or inactive. 11805 */ 11806 eth_broadcast_addr(broadcast); 11807 spin_lock_bh(&vsi->mac_filter_hash_lock); 11808 i40e_add_mac_filter(vsi, broadcast); 11809 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11810 11811 ether_addr_copy(netdev->dev_addr, mac_addr); 11812 ether_addr_copy(netdev->perm_addr, mac_addr); 11813 11814 netdev->priv_flags |= IFF_UNICAST_FLT; 11815 netdev->priv_flags |= IFF_SUPP_NOFCS; 11816 /* Setup netdev TC information */ 11817 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 11818 11819 netdev->netdev_ops = &i40e_netdev_ops; 11820 netdev->watchdog_timeo = 5 * HZ; 11821 i40e_set_ethtool_ops(netdev); 11822 11823 /* MTU range: 68 - 9706 */ 11824 netdev->min_mtu = ETH_MIN_MTU; 11825 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 11826 11827 return 0; 11828 } 11829 11830 /** 11831 * i40e_vsi_delete - Delete a VSI from the switch 11832 * @vsi: the VSI being removed 11833 * 11834 * Returns 0 on success, negative value on failure 11835 **/ 11836 static void i40e_vsi_delete(struct i40e_vsi *vsi) 11837 { 11838 /* remove default VSI is not allowed */ 11839 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 11840 return; 11841 11842 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 11843 } 11844 11845 /** 11846 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 11847 * @vsi: the VSI being queried 11848 * 11849 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 11850 **/ 11851 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 11852 { 11853 struct i40e_veb *veb; 11854 struct i40e_pf *pf = vsi->back; 11855 11856 /* Uplink is not a bridge so default to VEB */ 11857 if (vsi->veb_idx == I40E_NO_VEB) 11858 return 1; 11859 11860 veb = pf->veb[vsi->veb_idx]; 11861 if (!veb) { 11862 dev_info(&pf->pdev->dev, 11863 "There is no veb associated with the bridge\n"); 11864 return -ENOENT; 11865 } 11866 11867 /* Uplink is a bridge in VEPA mode */ 11868 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 11869 return 0; 11870 } else { 11871 /* Uplink is a bridge in VEB mode */ 11872 return 1; 11873 } 11874 11875 /* VEPA is now default bridge, so return 0 */ 11876 return 0; 11877 } 11878 11879 /** 11880 * i40e_add_vsi - Add a VSI to the switch 11881 * @vsi: the VSI being configured 11882 * 11883 * This initializes a VSI context depending on the VSI type to be added and 11884 * passes it down to the add_vsi aq command. 11885 **/ 11886 static int i40e_add_vsi(struct i40e_vsi *vsi) 11887 { 11888 int ret = -ENODEV; 11889 struct i40e_pf *pf = vsi->back; 11890 struct i40e_hw *hw = &pf->hw; 11891 struct i40e_vsi_context ctxt; 11892 struct i40e_mac_filter *f; 11893 struct hlist_node *h; 11894 int bkt; 11895 11896 u8 enabled_tc = 0x1; /* TC0 enabled */ 11897 int f_count = 0; 11898 11899 memset(&ctxt, 0, sizeof(ctxt)); 11900 switch (vsi->type) { 11901 case I40E_VSI_MAIN: 11902 /* The PF's main VSI is already setup as part of the 11903 * device initialization, so we'll not bother with 11904 * the add_vsi call, but we will retrieve the current 11905 * VSI context. 11906 */ 11907 ctxt.seid = pf->main_vsi_seid; 11908 ctxt.pf_num = pf->hw.pf_id; 11909 ctxt.vf_num = 0; 11910 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 11911 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 11912 if (ret) { 11913 dev_info(&pf->pdev->dev, 11914 "couldn't get PF vsi config, err %s aq_err %s\n", 11915 i40e_stat_str(&pf->hw, ret), 11916 i40e_aq_str(&pf->hw, 11917 pf->hw.aq.asq_last_status)); 11918 return -ENOENT; 11919 } 11920 vsi->info = ctxt.info; 11921 vsi->info.valid_sections = 0; 11922 11923 vsi->seid = ctxt.seid; 11924 vsi->id = ctxt.vsi_number; 11925 11926 enabled_tc = i40e_pf_get_tc_map(pf); 11927 11928 /* Source pruning is enabled by default, so the flag is 11929 * negative logic - if it's set, we need to fiddle with 11930 * the VSI to disable source pruning. 11931 */ 11932 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 11933 memset(&ctxt, 0, sizeof(ctxt)); 11934 ctxt.seid = pf->main_vsi_seid; 11935 ctxt.pf_num = pf->hw.pf_id; 11936 ctxt.vf_num = 0; 11937 ctxt.info.valid_sections |= 11938 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 11939 ctxt.info.switch_id = 11940 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 11941 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 11942 if (ret) { 11943 dev_info(&pf->pdev->dev, 11944 "update vsi failed, err %s aq_err %s\n", 11945 i40e_stat_str(&pf->hw, ret), 11946 i40e_aq_str(&pf->hw, 11947 pf->hw.aq.asq_last_status)); 11948 ret = -ENOENT; 11949 goto err; 11950 } 11951 } 11952 11953 /* MFP mode setup queue map and update VSI */ 11954 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 11955 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 11956 memset(&ctxt, 0, sizeof(ctxt)); 11957 ctxt.seid = pf->main_vsi_seid; 11958 ctxt.pf_num = pf->hw.pf_id; 11959 ctxt.vf_num = 0; 11960 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 11961 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 11962 if (ret) { 11963 dev_info(&pf->pdev->dev, 11964 "update vsi failed, err %s aq_err %s\n", 11965 i40e_stat_str(&pf->hw, ret), 11966 i40e_aq_str(&pf->hw, 11967 pf->hw.aq.asq_last_status)); 11968 ret = -ENOENT; 11969 goto err; 11970 } 11971 /* update the local VSI info queue map */ 11972 i40e_vsi_update_queue_map(vsi, &ctxt); 11973 vsi->info.valid_sections = 0; 11974 } else { 11975 /* Default/Main VSI is only enabled for TC0 11976 * reconfigure it to enable all TCs that are 11977 * available on the port in SFP mode. 11978 * For MFP case the iSCSI PF would use this 11979 * flow to enable LAN+iSCSI TC. 11980 */ 11981 ret = i40e_vsi_config_tc(vsi, enabled_tc); 11982 if (ret) { 11983 /* Single TC condition is not fatal, 11984 * message and continue 11985 */ 11986 dev_info(&pf->pdev->dev, 11987 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 11988 enabled_tc, 11989 i40e_stat_str(&pf->hw, ret), 11990 i40e_aq_str(&pf->hw, 11991 pf->hw.aq.asq_last_status)); 11992 } 11993 } 11994 break; 11995 11996 case I40E_VSI_FDIR: 11997 ctxt.pf_num = hw->pf_id; 11998 ctxt.vf_num = 0; 11999 ctxt.uplink_seid = vsi->uplink_seid; 12000 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12001 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12002 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 12003 (i40e_is_vsi_uplink_mode_veb(vsi))) { 12004 ctxt.info.valid_sections |= 12005 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12006 ctxt.info.switch_id = 12007 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12008 } 12009 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12010 break; 12011 12012 case I40E_VSI_VMDQ2: 12013 ctxt.pf_num = hw->pf_id; 12014 ctxt.vf_num = 0; 12015 ctxt.uplink_seid = vsi->uplink_seid; 12016 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12017 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 12018 12019 /* This VSI is connected to VEB so the switch_id 12020 * should be set to zero by default. 12021 */ 12022 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12023 ctxt.info.valid_sections |= 12024 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12025 ctxt.info.switch_id = 12026 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12027 } 12028 12029 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12030 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12031 break; 12032 12033 case I40E_VSI_SRIOV: 12034 ctxt.pf_num = hw->pf_id; 12035 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 12036 ctxt.uplink_seid = vsi->uplink_seid; 12037 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12038 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 12039 12040 /* This VSI is connected to VEB so the switch_id 12041 * should be set to zero by default. 12042 */ 12043 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12044 ctxt.info.valid_sections |= 12045 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12046 ctxt.info.switch_id = 12047 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12048 } 12049 12050 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 12051 ctxt.info.valid_sections |= 12052 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 12053 ctxt.info.queueing_opt_flags |= 12054 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 12055 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 12056 } 12057 12058 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 12059 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 12060 if (pf->vf[vsi->vf_id].spoofchk) { 12061 ctxt.info.valid_sections |= 12062 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 12063 ctxt.info.sec_flags |= 12064 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 12065 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 12066 } 12067 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12068 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12069 break; 12070 12071 case I40E_VSI_IWARP: 12072 /* send down message to iWARP */ 12073 break; 12074 12075 default: 12076 return -ENODEV; 12077 } 12078 12079 if (vsi->type != I40E_VSI_MAIN) { 12080 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 12081 if (ret) { 12082 dev_info(&vsi->back->pdev->dev, 12083 "add vsi failed, err %s aq_err %s\n", 12084 i40e_stat_str(&pf->hw, ret), 12085 i40e_aq_str(&pf->hw, 12086 pf->hw.aq.asq_last_status)); 12087 ret = -ENOENT; 12088 goto err; 12089 } 12090 vsi->info = ctxt.info; 12091 vsi->info.valid_sections = 0; 12092 vsi->seid = ctxt.seid; 12093 vsi->id = ctxt.vsi_number; 12094 } 12095 12096 vsi->active_filters = 0; 12097 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 12098 spin_lock_bh(&vsi->mac_filter_hash_lock); 12099 /* If macvlan filters already exist, force them to get loaded */ 12100 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 12101 f->state = I40E_FILTER_NEW; 12102 f_count++; 12103 } 12104 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12105 12106 if (f_count) { 12107 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 12108 pf->flags |= I40E_FLAG_FILTER_SYNC; 12109 } 12110 12111 /* Update VSI BW information */ 12112 ret = i40e_vsi_get_bw_info(vsi); 12113 if (ret) { 12114 dev_info(&pf->pdev->dev, 12115 "couldn't get vsi bw info, err %s aq_err %s\n", 12116 i40e_stat_str(&pf->hw, ret), 12117 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12118 /* VSI is already added so not tearing that up */ 12119 ret = 0; 12120 } 12121 12122 err: 12123 return ret; 12124 } 12125 12126 /** 12127 * i40e_vsi_release - Delete a VSI and free its resources 12128 * @vsi: the VSI being removed 12129 * 12130 * Returns 0 on success or < 0 on error 12131 **/ 12132 int i40e_vsi_release(struct i40e_vsi *vsi) 12133 { 12134 struct i40e_mac_filter *f; 12135 struct hlist_node *h; 12136 struct i40e_veb *veb = NULL; 12137 struct i40e_pf *pf; 12138 u16 uplink_seid; 12139 int i, n, bkt; 12140 12141 pf = vsi->back; 12142 12143 /* release of a VEB-owner or last VSI is not allowed */ 12144 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 12145 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 12146 vsi->seid, vsi->uplink_seid); 12147 return -ENODEV; 12148 } 12149 if (vsi == pf->vsi[pf->lan_vsi] && 12150 !test_bit(__I40E_DOWN, pf->state)) { 12151 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 12152 return -ENODEV; 12153 } 12154 12155 uplink_seid = vsi->uplink_seid; 12156 if (vsi->type != I40E_VSI_SRIOV) { 12157 if (vsi->netdev_registered) { 12158 vsi->netdev_registered = false; 12159 if (vsi->netdev) { 12160 /* results in a call to i40e_close() */ 12161 unregister_netdev(vsi->netdev); 12162 } 12163 } else { 12164 i40e_vsi_close(vsi); 12165 } 12166 i40e_vsi_disable_irq(vsi); 12167 } 12168 12169 spin_lock_bh(&vsi->mac_filter_hash_lock); 12170 12171 /* clear the sync flag on all filters */ 12172 if (vsi->netdev) { 12173 __dev_uc_unsync(vsi->netdev, NULL); 12174 __dev_mc_unsync(vsi->netdev, NULL); 12175 } 12176 12177 /* make sure any remaining filters are marked for deletion */ 12178 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 12179 __i40e_del_filter(vsi, f); 12180 12181 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12182 12183 i40e_sync_vsi_filters(vsi); 12184 12185 i40e_vsi_delete(vsi); 12186 i40e_vsi_free_q_vectors(vsi); 12187 if (vsi->netdev) { 12188 free_netdev(vsi->netdev); 12189 vsi->netdev = NULL; 12190 } 12191 i40e_vsi_clear_rings(vsi); 12192 i40e_vsi_clear(vsi); 12193 12194 /* If this was the last thing on the VEB, except for the 12195 * controlling VSI, remove the VEB, which puts the controlling 12196 * VSI onto the next level down in the switch. 12197 * 12198 * Well, okay, there's one more exception here: don't remove 12199 * the orphan VEBs yet. We'll wait for an explicit remove request 12200 * from up the network stack. 12201 */ 12202 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 12203 if (pf->vsi[i] && 12204 pf->vsi[i]->uplink_seid == uplink_seid && 12205 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12206 n++; /* count the VSIs */ 12207 } 12208 } 12209 for (i = 0; i < I40E_MAX_VEB; i++) { 12210 if (!pf->veb[i]) 12211 continue; 12212 if (pf->veb[i]->uplink_seid == uplink_seid) 12213 n++; /* count the VEBs */ 12214 if (pf->veb[i]->seid == uplink_seid) 12215 veb = pf->veb[i]; 12216 } 12217 if (n == 0 && veb && veb->uplink_seid != 0) 12218 i40e_veb_release(veb); 12219 12220 return 0; 12221 } 12222 12223 /** 12224 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 12225 * @vsi: ptr to the VSI 12226 * 12227 * This should only be called after i40e_vsi_mem_alloc() which allocates the 12228 * corresponding SW VSI structure and initializes num_queue_pairs for the 12229 * newly allocated VSI. 12230 * 12231 * Returns 0 on success or negative on failure 12232 **/ 12233 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 12234 { 12235 int ret = -ENOENT; 12236 struct i40e_pf *pf = vsi->back; 12237 12238 if (vsi->q_vectors[0]) { 12239 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 12240 vsi->seid); 12241 return -EEXIST; 12242 } 12243 12244 if (vsi->base_vector) { 12245 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 12246 vsi->seid, vsi->base_vector); 12247 return -EEXIST; 12248 } 12249 12250 ret = i40e_vsi_alloc_q_vectors(vsi); 12251 if (ret) { 12252 dev_info(&pf->pdev->dev, 12253 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 12254 vsi->num_q_vectors, vsi->seid, ret); 12255 vsi->num_q_vectors = 0; 12256 goto vector_setup_out; 12257 } 12258 12259 /* In Legacy mode, we do not have to get any other vector since we 12260 * piggyback on the misc/ICR0 for queue interrupts. 12261 */ 12262 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 12263 return ret; 12264 if (vsi->num_q_vectors) 12265 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 12266 vsi->num_q_vectors, vsi->idx); 12267 if (vsi->base_vector < 0) { 12268 dev_info(&pf->pdev->dev, 12269 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 12270 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 12271 i40e_vsi_free_q_vectors(vsi); 12272 ret = -ENOENT; 12273 goto vector_setup_out; 12274 } 12275 12276 vector_setup_out: 12277 return ret; 12278 } 12279 12280 /** 12281 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 12282 * @vsi: pointer to the vsi. 12283 * 12284 * This re-allocates a vsi's queue resources. 12285 * 12286 * Returns pointer to the successfully allocated and configured VSI sw struct 12287 * on success, otherwise returns NULL on failure. 12288 **/ 12289 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 12290 { 12291 u16 alloc_queue_pairs; 12292 struct i40e_pf *pf; 12293 u8 enabled_tc; 12294 int ret; 12295 12296 if (!vsi) 12297 return NULL; 12298 12299 pf = vsi->back; 12300 12301 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 12302 i40e_vsi_clear_rings(vsi); 12303 12304 i40e_vsi_free_arrays(vsi, false); 12305 i40e_set_num_rings_in_vsi(vsi); 12306 ret = i40e_vsi_alloc_arrays(vsi, false); 12307 if (ret) 12308 goto err_vsi; 12309 12310 alloc_queue_pairs = vsi->alloc_queue_pairs * 12311 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12312 12313 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12314 if (ret < 0) { 12315 dev_info(&pf->pdev->dev, 12316 "failed to get tracking for %d queues for VSI %d err %d\n", 12317 alloc_queue_pairs, vsi->seid, ret); 12318 goto err_vsi; 12319 } 12320 vsi->base_queue = ret; 12321 12322 /* Update the FW view of the VSI. Force a reset of TC and queue 12323 * layout configurations. 12324 */ 12325 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 12326 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 12327 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 12328 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 12329 if (vsi->type == I40E_VSI_MAIN) 12330 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 12331 12332 /* assign it some queues */ 12333 ret = i40e_alloc_rings(vsi); 12334 if (ret) 12335 goto err_rings; 12336 12337 /* map all of the rings to the q_vectors */ 12338 i40e_vsi_map_rings_to_vectors(vsi); 12339 return vsi; 12340 12341 err_rings: 12342 i40e_vsi_free_q_vectors(vsi); 12343 if (vsi->netdev_registered) { 12344 vsi->netdev_registered = false; 12345 unregister_netdev(vsi->netdev); 12346 free_netdev(vsi->netdev); 12347 vsi->netdev = NULL; 12348 } 12349 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12350 err_vsi: 12351 i40e_vsi_clear(vsi); 12352 return NULL; 12353 } 12354 12355 /** 12356 * i40e_vsi_setup - Set up a VSI by a given type 12357 * @pf: board private structure 12358 * @type: VSI type 12359 * @uplink_seid: the switch element to link to 12360 * @param1: usage depends upon VSI type. For VF types, indicates VF id 12361 * 12362 * This allocates the sw VSI structure and its queue resources, then add a VSI 12363 * to the identified VEB. 12364 * 12365 * Returns pointer to the successfully allocated and configure VSI sw struct on 12366 * success, otherwise returns NULL on failure. 12367 **/ 12368 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 12369 u16 uplink_seid, u32 param1) 12370 { 12371 struct i40e_vsi *vsi = NULL; 12372 struct i40e_veb *veb = NULL; 12373 u16 alloc_queue_pairs; 12374 int ret, i; 12375 int v_idx; 12376 12377 /* The requested uplink_seid must be either 12378 * - the PF's port seid 12379 * no VEB is needed because this is the PF 12380 * or this is a Flow Director special case VSI 12381 * - seid of an existing VEB 12382 * - seid of a VSI that owns an existing VEB 12383 * - seid of a VSI that doesn't own a VEB 12384 * a new VEB is created and the VSI becomes the owner 12385 * - seid of the PF VSI, which is what creates the first VEB 12386 * this is a special case of the previous 12387 * 12388 * Find which uplink_seid we were given and create a new VEB if needed 12389 */ 12390 for (i = 0; i < I40E_MAX_VEB; i++) { 12391 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 12392 veb = pf->veb[i]; 12393 break; 12394 } 12395 } 12396 12397 if (!veb && uplink_seid != pf->mac_seid) { 12398 12399 for (i = 0; i < pf->num_alloc_vsi; i++) { 12400 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 12401 vsi = pf->vsi[i]; 12402 break; 12403 } 12404 } 12405 if (!vsi) { 12406 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 12407 uplink_seid); 12408 return NULL; 12409 } 12410 12411 if (vsi->uplink_seid == pf->mac_seid) 12412 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 12413 vsi->tc_config.enabled_tc); 12414 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 12415 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12416 vsi->tc_config.enabled_tc); 12417 if (veb) { 12418 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 12419 dev_info(&vsi->back->pdev->dev, 12420 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 12421 return NULL; 12422 } 12423 /* We come up by default in VEPA mode if SRIOV is not 12424 * already enabled, in which case we can't force VEPA 12425 * mode. 12426 */ 12427 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 12428 veb->bridge_mode = BRIDGE_MODE_VEPA; 12429 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12430 } 12431 i40e_config_bridge_mode(veb); 12432 } 12433 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12434 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12435 veb = pf->veb[i]; 12436 } 12437 if (!veb) { 12438 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 12439 return NULL; 12440 } 12441 12442 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12443 uplink_seid = veb->seid; 12444 } 12445 12446 /* get vsi sw struct */ 12447 v_idx = i40e_vsi_mem_alloc(pf, type); 12448 if (v_idx < 0) 12449 goto err_alloc; 12450 vsi = pf->vsi[v_idx]; 12451 if (!vsi) 12452 goto err_alloc; 12453 vsi->type = type; 12454 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 12455 12456 if (type == I40E_VSI_MAIN) 12457 pf->lan_vsi = v_idx; 12458 else if (type == I40E_VSI_SRIOV) 12459 vsi->vf_id = param1; 12460 /* assign it some queues */ 12461 alloc_queue_pairs = vsi->alloc_queue_pairs * 12462 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12463 12464 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12465 if (ret < 0) { 12466 dev_info(&pf->pdev->dev, 12467 "failed to get tracking for %d queues for VSI %d err=%d\n", 12468 alloc_queue_pairs, vsi->seid, ret); 12469 goto err_vsi; 12470 } 12471 vsi->base_queue = ret; 12472 12473 /* get a VSI from the hardware */ 12474 vsi->uplink_seid = uplink_seid; 12475 ret = i40e_add_vsi(vsi); 12476 if (ret) 12477 goto err_vsi; 12478 12479 switch (vsi->type) { 12480 /* setup the netdev if needed */ 12481 case I40E_VSI_MAIN: 12482 case I40E_VSI_VMDQ2: 12483 ret = i40e_config_netdev(vsi); 12484 if (ret) 12485 goto err_netdev; 12486 ret = register_netdev(vsi->netdev); 12487 if (ret) 12488 goto err_netdev; 12489 vsi->netdev_registered = true; 12490 netif_carrier_off(vsi->netdev); 12491 #ifdef CONFIG_I40E_DCB 12492 /* Setup DCB netlink interface */ 12493 i40e_dcbnl_setup(vsi); 12494 #endif /* CONFIG_I40E_DCB */ 12495 /* fall through */ 12496 12497 case I40E_VSI_FDIR: 12498 /* set up vectors and rings if needed */ 12499 ret = i40e_vsi_setup_vectors(vsi); 12500 if (ret) 12501 goto err_msix; 12502 12503 ret = i40e_alloc_rings(vsi); 12504 if (ret) 12505 goto err_rings; 12506 12507 /* map all of the rings to the q_vectors */ 12508 i40e_vsi_map_rings_to_vectors(vsi); 12509 12510 i40e_vsi_reset_stats(vsi); 12511 break; 12512 12513 default: 12514 /* no netdev or rings for the other VSI types */ 12515 break; 12516 } 12517 12518 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 12519 (vsi->type == I40E_VSI_VMDQ2)) { 12520 ret = i40e_vsi_config_rss(vsi); 12521 } 12522 return vsi; 12523 12524 err_rings: 12525 i40e_vsi_free_q_vectors(vsi); 12526 err_msix: 12527 if (vsi->netdev_registered) { 12528 vsi->netdev_registered = false; 12529 unregister_netdev(vsi->netdev); 12530 free_netdev(vsi->netdev); 12531 vsi->netdev = NULL; 12532 } 12533 err_netdev: 12534 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12535 err_vsi: 12536 i40e_vsi_clear(vsi); 12537 err_alloc: 12538 return NULL; 12539 } 12540 12541 /** 12542 * i40e_veb_get_bw_info - Query VEB BW information 12543 * @veb: the veb to query 12544 * 12545 * Query the Tx scheduler BW configuration data for given VEB 12546 **/ 12547 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 12548 { 12549 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 12550 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 12551 struct i40e_pf *pf = veb->pf; 12552 struct i40e_hw *hw = &pf->hw; 12553 u32 tc_bw_max; 12554 int ret = 0; 12555 int i; 12556 12557 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 12558 &bw_data, NULL); 12559 if (ret) { 12560 dev_info(&pf->pdev->dev, 12561 "query veb bw config failed, err %s aq_err %s\n", 12562 i40e_stat_str(&pf->hw, ret), 12563 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 12564 goto out; 12565 } 12566 12567 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 12568 &ets_data, NULL); 12569 if (ret) { 12570 dev_info(&pf->pdev->dev, 12571 "query veb bw ets config failed, err %s aq_err %s\n", 12572 i40e_stat_str(&pf->hw, ret), 12573 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 12574 goto out; 12575 } 12576 12577 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 12578 veb->bw_max_quanta = ets_data.tc_bw_max; 12579 veb->is_abs_credits = bw_data.absolute_credits_enable; 12580 veb->enabled_tc = ets_data.tc_valid_bits; 12581 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 12582 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 12583 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 12584 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 12585 veb->bw_tc_limit_credits[i] = 12586 le16_to_cpu(bw_data.tc_bw_limits[i]); 12587 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 12588 } 12589 12590 out: 12591 return ret; 12592 } 12593 12594 /** 12595 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 12596 * @pf: board private structure 12597 * 12598 * On error: returns error code (negative) 12599 * On success: returns vsi index in PF (positive) 12600 **/ 12601 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 12602 { 12603 int ret = -ENOENT; 12604 struct i40e_veb *veb; 12605 int i; 12606 12607 /* Need to protect the allocation of switch elements at the PF level */ 12608 mutex_lock(&pf->switch_mutex); 12609 12610 /* VEB list may be fragmented if VEB creation/destruction has 12611 * been happening. We can afford to do a quick scan to look 12612 * for any free slots in the list. 12613 * 12614 * find next empty veb slot, looping back around if necessary 12615 */ 12616 i = 0; 12617 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 12618 i++; 12619 if (i >= I40E_MAX_VEB) { 12620 ret = -ENOMEM; 12621 goto err_alloc_veb; /* out of VEB slots! */ 12622 } 12623 12624 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 12625 if (!veb) { 12626 ret = -ENOMEM; 12627 goto err_alloc_veb; 12628 } 12629 veb->pf = pf; 12630 veb->idx = i; 12631 veb->enabled_tc = 1; 12632 12633 pf->veb[i] = veb; 12634 ret = i; 12635 err_alloc_veb: 12636 mutex_unlock(&pf->switch_mutex); 12637 return ret; 12638 } 12639 12640 /** 12641 * i40e_switch_branch_release - Delete a branch of the switch tree 12642 * @branch: where to start deleting 12643 * 12644 * This uses recursion to find the tips of the branch to be 12645 * removed, deleting until we get back to and can delete this VEB. 12646 **/ 12647 static void i40e_switch_branch_release(struct i40e_veb *branch) 12648 { 12649 struct i40e_pf *pf = branch->pf; 12650 u16 branch_seid = branch->seid; 12651 u16 veb_idx = branch->idx; 12652 int i; 12653 12654 /* release any VEBs on this VEB - RECURSION */ 12655 for (i = 0; i < I40E_MAX_VEB; i++) { 12656 if (!pf->veb[i]) 12657 continue; 12658 if (pf->veb[i]->uplink_seid == branch->seid) 12659 i40e_switch_branch_release(pf->veb[i]); 12660 } 12661 12662 /* Release the VSIs on this VEB, but not the owner VSI. 12663 * 12664 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 12665 * the VEB itself, so don't use (*branch) after this loop. 12666 */ 12667 for (i = 0; i < pf->num_alloc_vsi; i++) { 12668 if (!pf->vsi[i]) 12669 continue; 12670 if (pf->vsi[i]->uplink_seid == branch_seid && 12671 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12672 i40e_vsi_release(pf->vsi[i]); 12673 } 12674 } 12675 12676 /* There's one corner case where the VEB might not have been 12677 * removed, so double check it here and remove it if needed. 12678 * This case happens if the veb was created from the debugfs 12679 * commands and no VSIs were added to it. 12680 */ 12681 if (pf->veb[veb_idx]) 12682 i40e_veb_release(pf->veb[veb_idx]); 12683 } 12684 12685 /** 12686 * i40e_veb_clear - remove veb struct 12687 * @veb: the veb to remove 12688 **/ 12689 static void i40e_veb_clear(struct i40e_veb *veb) 12690 { 12691 if (!veb) 12692 return; 12693 12694 if (veb->pf) { 12695 struct i40e_pf *pf = veb->pf; 12696 12697 mutex_lock(&pf->switch_mutex); 12698 if (pf->veb[veb->idx] == veb) 12699 pf->veb[veb->idx] = NULL; 12700 mutex_unlock(&pf->switch_mutex); 12701 } 12702 12703 kfree(veb); 12704 } 12705 12706 /** 12707 * i40e_veb_release - Delete a VEB and free its resources 12708 * @veb: the VEB being removed 12709 **/ 12710 void i40e_veb_release(struct i40e_veb *veb) 12711 { 12712 struct i40e_vsi *vsi = NULL; 12713 struct i40e_pf *pf; 12714 int i, n = 0; 12715 12716 pf = veb->pf; 12717 12718 /* find the remaining VSI and check for extras */ 12719 for (i = 0; i < pf->num_alloc_vsi; i++) { 12720 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 12721 n++; 12722 vsi = pf->vsi[i]; 12723 } 12724 } 12725 if (n != 1) { 12726 dev_info(&pf->pdev->dev, 12727 "can't remove VEB %d with %d VSIs left\n", 12728 veb->seid, n); 12729 return; 12730 } 12731 12732 /* move the remaining VSI to uplink veb */ 12733 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 12734 if (veb->uplink_seid) { 12735 vsi->uplink_seid = veb->uplink_seid; 12736 if (veb->uplink_seid == pf->mac_seid) 12737 vsi->veb_idx = I40E_NO_VEB; 12738 else 12739 vsi->veb_idx = veb->veb_idx; 12740 } else { 12741 /* floating VEB */ 12742 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 12743 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 12744 } 12745 12746 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 12747 i40e_veb_clear(veb); 12748 } 12749 12750 /** 12751 * i40e_add_veb - create the VEB in the switch 12752 * @veb: the VEB to be instantiated 12753 * @vsi: the controlling VSI 12754 **/ 12755 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 12756 { 12757 struct i40e_pf *pf = veb->pf; 12758 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 12759 int ret; 12760 12761 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 12762 veb->enabled_tc, false, 12763 &veb->seid, enable_stats, NULL); 12764 12765 /* get a VEB from the hardware */ 12766 if (ret) { 12767 dev_info(&pf->pdev->dev, 12768 "couldn't add VEB, err %s aq_err %s\n", 12769 i40e_stat_str(&pf->hw, ret), 12770 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12771 return -EPERM; 12772 } 12773 12774 /* get statistics counter */ 12775 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 12776 &veb->stats_idx, NULL, NULL, NULL); 12777 if (ret) { 12778 dev_info(&pf->pdev->dev, 12779 "couldn't get VEB statistics idx, err %s aq_err %s\n", 12780 i40e_stat_str(&pf->hw, ret), 12781 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12782 return -EPERM; 12783 } 12784 ret = i40e_veb_get_bw_info(veb); 12785 if (ret) { 12786 dev_info(&pf->pdev->dev, 12787 "couldn't get VEB bw info, err %s aq_err %s\n", 12788 i40e_stat_str(&pf->hw, ret), 12789 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12790 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 12791 return -ENOENT; 12792 } 12793 12794 vsi->uplink_seid = veb->seid; 12795 vsi->veb_idx = veb->idx; 12796 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12797 12798 return 0; 12799 } 12800 12801 /** 12802 * i40e_veb_setup - Set up a VEB 12803 * @pf: board private structure 12804 * @flags: VEB setup flags 12805 * @uplink_seid: the switch element to link to 12806 * @vsi_seid: the initial VSI seid 12807 * @enabled_tc: Enabled TC bit-map 12808 * 12809 * This allocates the sw VEB structure and links it into the switch 12810 * It is possible and legal for this to be a duplicate of an already 12811 * existing VEB. It is also possible for both uplink and vsi seids 12812 * to be zero, in order to create a floating VEB. 12813 * 12814 * Returns pointer to the successfully allocated VEB sw struct on 12815 * success, otherwise returns NULL on failure. 12816 **/ 12817 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 12818 u16 uplink_seid, u16 vsi_seid, 12819 u8 enabled_tc) 12820 { 12821 struct i40e_veb *veb, *uplink_veb = NULL; 12822 int vsi_idx, veb_idx; 12823 int ret; 12824 12825 /* if one seid is 0, the other must be 0 to create a floating relay */ 12826 if ((uplink_seid == 0 || vsi_seid == 0) && 12827 (uplink_seid + vsi_seid != 0)) { 12828 dev_info(&pf->pdev->dev, 12829 "one, not both seid's are 0: uplink=%d vsi=%d\n", 12830 uplink_seid, vsi_seid); 12831 return NULL; 12832 } 12833 12834 /* make sure there is such a vsi and uplink */ 12835 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 12836 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 12837 break; 12838 if (vsi_idx >= pf->num_alloc_vsi && vsi_seid != 0) { 12839 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 12840 vsi_seid); 12841 return NULL; 12842 } 12843 12844 if (uplink_seid && uplink_seid != pf->mac_seid) { 12845 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 12846 if (pf->veb[veb_idx] && 12847 pf->veb[veb_idx]->seid == uplink_seid) { 12848 uplink_veb = pf->veb[veb_idx]; 12849 break; 12850 } 12851 } 12852 if (!uplink_veb) { 12853 dev_info(&pf->pdev->dev, 12854 "uplink seid %d not found\n", uplink_seid); 12855 return NULL; 12856 } 12857 } 12858 12859 /* get veb sw struct */ 12860 veb_idx = i40e_veb_mem_alloc(pf); 12861 if (veb_idx < 0) 12862 goto err_alloc; 12863 veb = pf->veb[veb_idx]; 12864 veb->flags = flags; 12865 veb->uplink_seid = uplink_seid; 12866 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 12867 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 12868 12869 /* create the VEB in the switch */ 12870 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 12871 if (ret) 12872 goto err_veb; 12873 if (vsi_idx == pf->lan_vsi) 12874 pf->lan_veb = veb->idx; 12875 12876 return veb; 12877 12878 err_veb: 12879 i40e_veb_clear(veb); 12880 err_alloc: 12881 return NULL; 12882 } 12883 12884 /** 12885 * i40e_setup_pf_switch_element - set PF vars based on switch type 12886 * @pf: board private structure 12887 * @ele: element we are building info from 12888 * @num_reported: total number of elements 12889 * @printconfig: should we print the contents 12890 * 12891 * helper function to assist in extracting a few useful SEID values. 12892 **/ 12893 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 12894 struct i40e_aqc_switch_config_element_resp *ele, 12895 u16 num_reported, bool printconfig) 12896 { 12897 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 12898 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 12899 u8 element_type = ele->element_type; 12900 u16 seid = le16_to_cpu(ele->seid); 12901 12902 if (printconfig) 12903 dev_info(&pf->pdev->dev, 12904 "type=%d seid=%d uplink=%d downlink=%d\n", 12905 element_type, seid, uplink_seid, downlink_seid); 12906 12907 switch (element_type) { 12908 case I40E_SWITCH_ELEMENT_TYPE_MAC: 12909 pf->mac_seid = seid; 12910 break; 12911 case I40E_SWITCH_ELEMENT_TYPE_VEB: 12912 /* Main VEB? */ 12913 if (uplink_seid != pf->mac_seid) 12914 break; 12915 if (pf->lan_veb == I40E_NO_VEB) { 12916 int v; 12917 12918 /* find existing or else empty VEB */ 12919 for (v = 0; v < I40E_MAX_VEB; v++) { 12920 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 12921 pf->lan_veb = v; 12922 break; 12923 } 12924 } 12925 if (pf->lan_veb == I40E_NO_VEB) { 12926 v = i40e_veb_mem_alloc(pf); 12927 if (v < 0) 12928 break; 12929 pf->lan_veb = v; 12930 } 12931 } 12932 12933 pf->veb[pf->lan_veb]->seid = seid; 12934 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 12935 pf->veb[pf->lan_veb]->pf = pf; 12936 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 12937 break; 12938 case I40E_SWITCH_ELEMENT_TYPE_VSI: 12939 if (num_reported != 1) 12940 break; 12941 /* This is immediately after a reset so we can assume this is 12942 * the PF's VSI 12943 */ 12944 pf->mac_seid = uplink_seid; 12945 pf->pf_seid = downlink_seid; 12946 pf->main_vsi_seid = seid; 12947 if (printconfig) 12948 dev_info(&pf->pdev->dev, 12949 "pf_seid=%d main_vsi_seid=%d\n", 12950 pf->pf_seid, pf->main_vsi_seid); 12951 break; 12952 case I40E_SWITCH_ELEMENT_TYPE_PF: 12953 case I40E_SWITCH_ELEMENT_TYPE_VF: 12954 case I40E_SWITCH_ELEMENT_TYPE_EMP: 12955 case I40E_SWITCH_ELEMENT_TYPE_BMC: 12956 case I40E_SWITCH_ELEMENT_TYPE_PE: 12957 case I40E_SWITCH_ELEMENT_TYPE_PA: 12958 /* ignore these for now */ 12959 break; 12960 default: 12961 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 12962 element_type, seid); 12963 break; 12964 } 12965 } 12966 12967 /** 12968 * i40e_fetch_switch_configuration - Get switch config from firmware 12969 * @pf: board private structure 12970 * @printconfig: should we print the contents 12971 * 12972 * Get the current switch configuration from the device and 12973 * extract a few useful SEID values. 12974 **/ 12975 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 12976 { 12977 struct i40e_aqc_get_switch_config_resp *sw_config; 12978 u16 next_seid = 0; 12979 int ret = 0; 12980 u8 *aq_buf; 12981 int i; 12982 12983 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 12984 if (!aq_buf) 12985 return -ENOMEM; 12986 12987 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 12988 do { 12989 u16 num_reported, num_total; 12990 12991 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 12992 I40E_AQ_LARGE_BUF, 12993 &next_seid, NULL); 12994 if (ret) { 12995 dev_info(&pf->pdev->dev, 12996 "get switch config failed err %s aq_err %s\n", 12997 i40e_stat_str(&pf->hw, ret), 12998 i40e_aq_str(&pf->hw, 12999 pf->hw.aq.asq_last_status)); 13000 kfree(aq_buf); 13001 return -ENOENT; 13002 } 13003 13004 num_reported = le16_to_cpu(sw_config->header.num_reported); 13005 num_total = le16_to_cpu(sw_config->header.num_total); 13006 13007 if (printconfig) 13008 dev_info(&pf->pdev->dev, 13009 "header: %d reported %d total\n", 13010 num_reported, num_total); 13011 13012 for (i = 0; i < num_reported; i++) { 13013 struct i40e_aqc_switch_config_element_resp *ele = 13014 &sw_config->element[i]; 13015 13016 i40e_setup_pf_switch_element(pf, ele, num_reported, 13017 printconfig); 13018 } 13019 } while (next_seid != 0); 13020 13021 kfree(aq_buf); 13022 return ret; 13023 } 13024 13025 /** 13026 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 13027 * @pf: board private structure 13028 * @reinit: if the Main VSI needs to re-initialized. 13029 * 13030 * Returns 0 on success, negative value on failure 13031 **/ 13032 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 13033 { 13034 u16 flags = 0; 13035 int ret; 13036 13037 /* find out what's out there already */ 13038 ret = i40e_fetch_switch_configuration(pf, false); 13039 if (ret) { 13040 dev_info(&pf->pdev->dev, 13041 "couldn't fetch switch config, err %s aq_err %s\n", 13042 i40e_stat_str(&pf->hw, ret), 13043 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13044 return ret; 13045 } 13046 i40e_pf_reset_stats(pf); 13047 13048 /* set the switch config bit for the whole device to 13049 * support limited promisc or true promisc 13050 * when user requests promisc. The default is limited 13051 * promisc. 13052 */ 13053 13054 if ((pf->hw.pf_id == 0) && 13055 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 13056 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13057 pf->last_sw_conf_flags = flags; 13058 } 13059 13060 if (pf->hw.pf_id == 0) { 13061 u16 valid_flags; 13062 13063 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13064 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 13065 NULL); 13066 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 13067 dev_info(&pf->pdev->dev, 13068 "couldn't set switch config bits, err %s aq_err %s\n", 13069 i40e_stat_str(&pf->hw, ret), 13070 i40e_aq_str(&pf->hw, 13071 pf->hw.aq.asq_last_status)); 13072 /* not a fatal problem, just keep going */ 13073 } 13074 pf->last_sw_conf_valid_flags = valid_flags; 13075 } 13076 13077 /* first time setup */ 13078 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 13079 struct i40e_vsi *vsi = NULL; 13080 u16 uplink_seid; 13081 13082 /* Set up the PF VSI associated with the PF's main VSI 13083 * that is already in the HW switch 13084 */ 13085 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 13086 uplink_seid = pf->veb[pf->lan_veb]->seid; 13087 else 13088 uplink_seid = pf->mac_seid; 13089 if (pf->lan_vsi == I40E_NO_VSI) 13090 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 13091 else if (reinit) 13092 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 13093 if (!vsi) { 13094 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 13095 i40e_cloud_filter_exit(pf); 13096 i40e_fdir_teardown(pf); 13097 return -EAGAIN; 13098 } 13099 } else { 13100 /* force a reset of TC and queue layout configurations */ 13101 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13102 13103 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13104 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13105 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13106 } 13107 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 13108 13109 i40e_fdir_sb_setup(pf); 13110 13111 /* Setup static PF queue filter control settings */ 13112 ret = i40e_setup_pf_filter_control(pf); 13113 if (ret) { 13114 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 13115 ret); 13116 /* Failure here should not stop continuing other steps */ 13117 } 13118 13119 /* enable RSS in the HW, even for only one queue, as the stack can use 13120 * the hash 13121 */ 13122 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 13123 i40e_pf_config_rss(pf); 13124 13125 /* fill in link information and enable LSE reporting */ 13126 i40e_link_event(pf); 13127 13128 /* Initialize user-specific link properties */ 13129 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 13130 I40E_AQ_AN_COMPLETED) ? true : false); 13131 13132 i40e_ptp_init(pf); 13133 13134 /* repopulate tunnel port filters */ 13135 i40e_sync_udp_filters(pf); 13136 13137 return ret; 13138 } 13139 13140 /** 13141 * i40e_determine_queue_usage - Work out queue distribution 13142 * @pf: board private structure 13143 **/ 13144 static void i40e_determine_queue_usage(struct i40e_pf *pf) 13145 { 13146 int queues_left; 13147 int q_max; 13148 13149 pf->num_lan_qps = 0; 13150 13151 /* Find the max queues to be put into basic use. We'll always be 13152 * using TC0, whether or not DCB is running, and TC0 will get the 13153 * big RSS set. 13154 */ 13155 queues_left = pf->hw.func_caps.num_tx_qp; 13156 13157 if ((queues_left == 1) || 13158 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 13159 /* one qp for PF, no queues for anything else */ 13160 queues_left = 0; 13161 pf->alloc_rss_size = pf->num_lan_qps = 1; 13162 13163 /* make sure all the fancies are disabled */ 13164 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13165 I40E_FLAG_IWARP_ENABLED | 13166 I40E_FLAG_FD_SB_ENABLED | 13167 I40E_FLAG_FD_ATR_ENABLED | 13168 I40E_FLAG_DCB_CAPABLE | 13169 I40E_FLAG_DCB_ENABLED | 13170 I40E_FLAG_SRIOV_ENABLED | 13171 I40E_FLAG_VMDQ_ENABLED); 13172 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13173 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 13174 I40E_FLAG_FD_SB_ENABLED | 13175 I40E_FLAG_FD_ATR_ENABLED | 13176 I40E_FLAG_DCB_CAPABLE))) { 13177 /* one qp for PF */ 13178 pf->alloc_rss_size = pf->num_lan_qps = 1; 13179 queues_left -= pf->num_lan_qps; 13180 13181 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13182 I40E_FLAG_IWARP_ENABLED | 13183 I40E_FLAG_FD_SB_ENABLED | 13184 I40E_FLAG_FD_ATR_ENABLED | 13185 I40E_FLAG_DCB_ENABLED | 13186 I40E_FLAG_VMDQ_ENABLED); 13187 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13188 } else { 13189 /* Not enough queues for all TCs */ 13190 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 13191 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 13192 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 13193 I40E_FLAG_DCB_ENABLED); 13194 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 13195 } 13196 13197 /* limit lan qps to the smaller of qps, cpus or msix */ 13198 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 13199 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 13200 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 13201 pf->num_lan_qps = q_max; 13202 13203 queues_left -= pf->num_lan_qps; 13204 } 13205 13206 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13207 if (queues_left > 1) { 13208 queues_left -= 1; /* save 1 queue for FD */ 13209 } else { 13210 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 13211 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13212 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 13213 } 13214 } 13215 13216 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13217 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 13218 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 13219 (queues_left / pf->num_vf_qps)); 13220 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 13221 } 13222 13223 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 13224 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 13225 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 13226 (queues_left / pf->num_vmdq_qps)); 13227 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 13228 } 13229 13230 pf->queues_left = queues_left; 13231 dev_dbg(&pf->pdev->dev, 13232 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 13233 pf->hw.func_caps.num_tx_qp, 13234 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 13235 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 13236 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 13237 queues_left); 13238 } 13239 13240 /** 13241 * i40e_setup_pf_filter_control - Setup PF static filter control 13242 * @pf: PF to be setup 13243 * 13244 * i40e_setup_pf_filter_control sets up a PF's initial filter control 13245 * settings. If PE/FCoE are enabled then it will also set the per PF 13246 * based filter sizes required for them. It also enables Flow director, 13247 * ethertype and macvlan type filter settings for the pf. 13248 * 13249 * Returns 0 on success, negative on failure 13250 **/ 13251 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 13252 { 13253 struct i40e_filter_control_settings *settings = &pf->filter_settings; 13254 13255 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 13256 13257 /* Flow Director is enabled */ 13258 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 13259 settings->enable_fdir = true; 13260 13261 /* Ethtype and MACVLAN filters enabled for PF */ 13262 settings->enable_ethtype = true; 13263 settings->enable_macvlan = true; 13264 13265 if (i40e_set_filter_control(&pf->hw, settings)) 13266 return -ENOENT; 13267 13268 return 0; 13269 } 13270 13271 #define INFO_STRING_LEN 255 13272 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 13273 static void i40e_print_features(struct i40e_pf *pf) 13274 { 13275 struct i40e_hw *hw = &pf->hw; 13276 char *buf; 13277 int i; 13278 13279 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 13280 if (!buf) 13281 return; 13282 13283 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 13284 #ifdef CONFIG_PCI_IOV 13285 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 13286 #endif 13287 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 13288 pf->hw.func_caps.num_vsis, 13289 pf->vsi[pf->lan_vsi]->num_queue_pairs); 13290 if (pf->flags & I40E_FLAG_RSS_ENABLED) 13291 i += snprintf(&buf[i], REMAIN(i), " RSS"); 13292 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 13293 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 13294 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13295 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 13296 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 13297 } 13298 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 13299 i += snprintf(&buf[i], REMAIN(i), " DCB"); 13300 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 13301 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 13302 if (pf->flags & I40E_FLAG_PTP) 13303 i += snprintf(&buf[i], REMAIN(i), " PTP"); 13304 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 13305 i += snprintf(&buf[i], REMAIN(i), " VEB"); 13306 else 13307 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 13308 13309 dev_info(&pf->pdev->dev, "%s\n", buf); 13310 kfree(buf); 13311 WARN_ON(i > INFO_STRING_LEN); 13312 } 13313 13314 /** 13315 * i40e_get_platform_mac_addr - get platform-specific MAC address 13316 * @pdev: PCI device information struct 13317 * @pf: board private structure 13318 * 13319 * Look up the MAC address for the device. First we'll try 13320 * eth_platform_get_mac_address, which will check Open Firmware, or arch 13321 * specific fallback. Otherwise, we'll default to the stored value in 13322 * firmware. 13323 **/ 13324 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 13325 { 13326 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 13327 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 13328 } 13329 13330 /** 13331 * i40e_probe - Device initialization routine 13332 * @pdev: PCI device information struct 13333 * @ent: entry in i40e_pci_tbl 13334 * 13335 * i40e_probe initializes a PF identified by a pci_dev structure. 13336 * The OS initialization, configuring of the PF private structure, 13337 * and a hardware reset occur. 13338 * 13339 * Returns 0 on success, negative on failure 13340 **/ 13341 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 13342 { 13343 struct i40e_aq_get_phy_abilities_resp abilities; 13344 struct i40e_pf *pf; 13345 struct i40e_hw *hw; 13346 static u16 pfs_found; 13347 u16 wol_nvm_bits; 13348 u16 link_status; 13349 int err; 13350 u32 val; 13351 u32 i; 13352 u8 set_fc_aq_fail; 13353 13354 err = pci_enable_device_mem(pdev); 13355 if (err) 13356 return err; 13357 13358 /* set up for high or low dma */ 13359 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 13360 if (err) { 13361 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 13362 if (err) { 13363 dev_err(&pdev->dev, 13364 "DMA configuration failed: 0x%x\n", err); 13365 goto err_dma; 13366 } 13367 } 13368 13369 /* set up pci connections */ 13370 err = pci_request_mem_regions(pdev, i40e_driver_name); 13371 if (err) { 13372 dev_info(&pdev->dev, 13373 "pci_request_selected_regions failed %d\n", err); 13374 goto err_pci_reg; 13375 } 13376 13377 pci_enable_pcie_error_reporting(pdev); 13378 pci_set_master(pdev); 13379 13380 /* Now that we have a PCI connection, we need to do the 13381 * low level device setup. This is primarily setting up 13382 * the Admin Queue structures and then querying for the 13383 * device's current profile information. 13384 */ 13385 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 13386 if (!pf) { 13387 err = -ENOMEM; 13388 goto err_pf_alloc; 13389 } 13390 pf->next_vsi = 0; 13391 pf->pdev = pdev; 13392 set_bit(__I40E_DOWN, pf->state); 13393 13394 hw = &pf->hw; 13395 hw->back = pf; 13396 13397 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 13398 I40E_MAX_CSR_SPACE); 13399 13400 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 13401 if (!hw->hw_addr) { 13402 err = -EIO; 13403 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 13404 (unsigned int)pci_resource_start(pdev, 0), 13405 pf->ioremap_len, err); 13406 goto err_ioremap; 13407 } 13408 hw->vendor_id = pdev->vendor; 13409 hw->device_id = pdev->device; 13410 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 13411 hw->subsystem_vendor_id = pdev->subsystem_vendor; 13412 hw->subsystem_device_id = pdev->subsystem_device; 13413 hw->bus.device = PCI_SLOT(pdev->devfn); 13414 hw->bus.func = PCI_FUNC(pdev->devfn); 13415 hw->bus.bus_id = pdev->bus->number; 13416 pf->instance = pfs_found; 13417 13418 /* Select something other than the 802.1ad ethertype for the 13419 * switch to use internally and drop on ingress. 13420 */ 13421 hw->switch_tag = 0xffff; 13422 hw->first_tag = ETH_P_8021AD; 13423 hw->second_tag = ETH_P_8021Q; 13424 13425 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 13426 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 13427 13428 /* set up the locks for the AQ, do this only once in probe 13429 * and destroy them only once in remove 13430 */ 13431 mutex_init(&hw->aq.asq_mutex); 13432 mutex_init(&hw->aq.arq_mutex); 13433 13434 pf->msg_enable = netif_msg_init(debug, 13435 NETIF_MSG_DRV | 13436 NETIF_MSG_PROBE | 13437 NETIF_MSG_LINK); 13438 if (debug < -1) 13439 pf->hw.debug_mask = debug; 13440 13441 /* do a special CORER for clearing PXE mode once at init */ 13442 if (hw->revision_id == 0 && 13443 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 13444 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 13445 i40e_flush(hw); 13446 msleep(200); 13447 pf->corer_count++; 13448 13449 i40e_clear_pxe_mode(hw); 13450 } 13451 13452 /* Reset here to make sure all is clean and to define PF 'n' */ 13453 i40e_clear_hw(hw); 13454 err = i40e_pf_reset(hw); 13455 if (err) { 13456 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 13457 goto err_pf_reset; 13458 } 13459 pf->pfr_count++; 13460 13461 hw->aq.num_arq_entries = I40E_AQ_LEN; 13462 hw->aq.num_asq_entries = I40E_AQ_LEN; 13463 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13464 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13465 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 13466 13467 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 13468 "%s-%s:misc", 13469 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 13470 13471 err = i40e_init_shared_code(hw); 13472 if (err) { 13473 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 13474 err); 13475 goto err_pf_reset; 13476 } 13477 13478 /* set up a default setting for link flow control */ 13479 pf->hw.fc.requested_mode = I40E_FC_NONE; 13480 13481 err = i40e_init_adminq(hw); 13482 if (err) { 13483 if (err == I40E_ERR_FIRMWARE_API_VERSION) 13484 dev_info(&pdev->dev, 13485 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n"); 13486 else 13487 dev_info(&pdev->dev, 13488 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 13489 13490 goto err_pf_reset; 13491 } 13492 i40e_get_oem_version(hw); 13493 13494 /* provide nvm, fw, api versions */ 13495 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n", 13496 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 13497 hw->aq.api_maj_ver, hw->aq.api_min_ver, 13498 i40e_nvm_version_str(hw)); 13499 13500 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 13501 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 13502 dev_info(&pdev->dev, 13503 "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n"); 13504 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 13505 dev_info(&pdev->dev, 13506 "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n"); 13507 13508 i40e_verify_eeprom(pf); 13509 13510 /* Rev 0 hardware was never productized */ 13511 if (hw->revision_id < 1) 13512 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 13513 13514 i40e_clear_pxe_mode(hw); 13515 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 13516 if (err) 13517 goto err_adminq_setup; 13518 13519 err = i40e_sw_init(pf); 13520 if (err) { 13521 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 13522 goto err_sw_init; 13523 } 13524 13525 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 13526 hw->func_caps.num_rx_qp, 0, 0); 13527 if (err) { 13528 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 13529 goto err_init_lan_hmc; 13530 } 13531 13532 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 13533 if (err) { 13534 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 13535 err = -ENOENT; 13536 goto err_configure_lan_hmc; 13537 } 13538 13539 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 13540 * Ignore error return codes because if it was already disabled via 13541 * hardware settings this will fail 13542 */ 13543 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 13544 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 13545 i40e_aq_stop_lldp(hw, true, NULL); 13546 } 13547 13548 /* allow a platform config to override the HW addr */ 13549 i40e_get_platform_mac_addr(pdev, pf); 13550 13551 if (!is_valid_ether_addr(hw->mac.addr)) { 13552 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 13553 err = -EIO; 13554 goto err_mac_addr; 13555 } 13556 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 13557 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 13558 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 13559 if (is_valid_ether_addr(hw->mac.port_addr)) 13560 pf->hw_features |= I40E_HW_PORT_ID_VALID; 13561 13562 pci_set_drvdata(pdev, pf); 13563 pci_save_state(pdev); 13564 13565 /* Enable FW to write default DCB config on link-up */ 13566 i40e_aq_set_dcb_parameters(hw, true, NULL); 13567 13568 #ifdef CONFIG_I40E_DCB 13569 err = i40e_init_pf_dcb(pf); 13570 if (err) { 13571 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 13572 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 13573 /* Continue without DCB enabled */ 13574 } 13575 #endif /* CONFIG_I40E_DCB */ 13576 13577 /* set up periodic task facility */ 13578 timer_setup(&pf->service_timer, i40e_service_timer, 0); 13579 pf->service_timer_period = HZ; 13580 13581 INIT_WORK(&pf->service_task, i40e_service_task); 13582 clear_bit(__I40E_SERVICE_SCHED, pf->state); 13583 13584 /* NVM bit on means WoL disabled for the port */ 13585 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 13586 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 13587 pf->wol_en = false; 13588 else 13589 pf->wol_en = true; 13590 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 13591 13592 /* set up the main switch operations */ 13593 i40e_determine_queue_usage(pf); 13594 err = i40e_init_interrupt_scheme(pf); 13595 if (err) 13596 goto err_switch_setup; 13597 13598 /* The number of VSIs reported by the FW is the minimum guaranteed 13599 * to us; HW supports far more and we share the remaining pool with 13600 * the other PFs. We allocate space for more than the guarantee with 13601 * the understanding that we might not get them all later. 13602 */ 13603 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 13604 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 13605 else 13606 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 13607 13608 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 13609 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 13610 GFP_KERNEL); 13611 if (!pf->vsi) { 13612 err = -ENOMEM; 13613 goto err_switch_setup; 13614 } 13615 13616 #ifdef CONFIG_PCI_IOV 13617 /* prep for VF support */ 13618 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13619 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 13620 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 13621 if (pci_num_vf(pdev)) 13622 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 13623 } 13624 #endif 13625 err = i40e_setup_pf_switch(pf, false); 13626 if (err) { 13627 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 13628 goto err_vsis; 13629 } 13630 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 13631 13632 /* Make sure flow control is set according to current settings */ 13633 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 13634 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 13635 dev_dbg(&pf->pdev->dev, 13636 "Set fc with err %s aq_err %s on get_phy_cap\n", 13637 i40e_stat_str(hw, err), 13638 i40e_aq_str(hw, hw->aq.asq_last_status)); 13639 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 13640 dev_dbg(&pf->pdev->dev, 13641 "Set fc with err %s aq_err %s on set_phy_config\n", 13642 i40e_stat_str(hw, err), 13643 i40e_aq_str(hw, hw->aq.asq_last_status)); 13644 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 13645 dev_dbg(&pf->pdev->dev, 13646 "Set fc with err %s aq_err %s on get_link_info\n", 13647 i40e_stat_str(hw, err), 13648 i40e_aq_str(hw, hw->aq.asq_last_status)); 13649 13650 /* if FDIR VSI was set up, start it now */ 13651 for (i = 0; i < pf->num_alloc_vsi; i++) { 13652 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 13653 i40e_vsi_open(pf->vsi[i]); 13654 break; 13655 } 13656 } 13657 13658 /* The driver only wants link up/down and module qualification 13659 * reports from firmware. Note the negative logic. 13660 */ 13661 err = i40e_aq_set_phy_int_mask(&pf->hw, 13662 ~(I40E_AQ_EVENT_LINK_UPDOWN | 13663 I40E_AQ_EVENT_MEDIA_NA | 13664 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 13665 if (err) 13666 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 13667 i40e_stat_str(&pf->hw, err), 13668 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13669 13670 /* Reconfigure hardware for allowing smaller MSS in the case 13671 * of TSO, so that we avoid the MDD being fired and causing 13672 * a reset in the case of small MSS+TSO. 13673 */ 13674 val = rd32(hw, I40E_REG_MSS); 13675 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 13676 val &= ~I40E_REG_MSS_MIN_MASK; 13677 val |= I40E_64BYTE_MSS; 13678 wr32(hw, I40E_REG_MSS, val); 13679 } 13680 13681 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 13682 msleep(75); 13683 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 13684 if (err) 13685 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 13686 i40e_stat_str(&pf->hw, err), 13687 i40e_aq_str(&pf->hw, 13688 pf->hw.aq.asq_last_status)); 13689 } 13690 /* The main driver is (mostly) up and happy. We need to set this state 13691 * before setting up the misc vector or we get a race and the vector 13692 * ends up disabled forever. 13693 */ 13694 clear_bit(__I40E_DOWN, pf->state); 13695 13696 /* In case of MSIX we are going to setup the misc vector right here 13697 * to handle admin queue events etc. In case of legacy and MSI 13698 * the misc functionality and queue processing is combined in 13699 * the same vector and that gets setup at open. 13700 */ 13701 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 13702 err = i40e_setup_misc_vector(pf); 13703 if (err) { 13704 dev_info(&pdev->dev, 13705 "setup of misc vector failed: %d\n", err); 13706 goto err_vsis; 13707 } 13708 } 13709 13710 #ifdef CONFIG_PCI_IOV 13711 /* prep for VF support */ 13712 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13713 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 13714 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 13715 /* disable link interrupts for VFs */ 13716 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 13717 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 13718 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 13719 i40e_flush(hw); 13720 13721 if (pci_num_vf(pdev)) { 13722 dev_info(&pdev->dev, 13723 "Active VFs found, allocating resources.\n"); 13724 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 13725 if (err) 13726 dev_info(&pdev->dev, 13727 "Error %d allocating resources for existing VFs\n", 13728 err); 13729 } 13730 } 13731 #endif /* CONFIG_PCI_IOV */ 13732 13733 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13734 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 13735 pf->num_iwarp_msix, 13736 I40E_IWARP_IRQ_PILE_ID); 13737 if (pf->iwarp_base_vector < 0) { 13738 dev_info(&pdev->dev, 13739 "failed to get tracking for %d vectors for IWARP err=%d\n", 13740 pf->num_iwarp_msix, pf->iwarp_base_vector); 13741 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 13742 } 13743 } 13744 13745 i40e_dbg_pf_init(pf); 13746 13747 /* tell the firmware that we're starting */ 13748 i40e_send_version(pf); 13749 13750 /* since everything's happy, start the service_task timer */ 13751 mod_timer(&pf->service_timer, 13752 round_jiffies(jiffies + pf->service_timer_period)); 13753 13754 /* add this PF to client device list and launch a client service task */ 13755 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13756 err = i40e_lan_add_device(pf); 13757 if (err) 13758 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 13759 err); 13760 } 13761 13762 #define PCI_SPEED_SIZE 8 13763 #define PCI_WIDTH_SIZE 8 13764 /* Devices on the IOSF bus do not have this information 13765 * and will report PCI Gen 1 x 1 by default so don't bother 13766 * checking them. 13767 */ 13768 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 13769 char speed[PCI_SPEED_SIZE] = "Unknown"; 13770 char width[PCI_WIDTH_SIZE] = "Unknown"; 13771 13772 /* Get the negotiated link width and speed from PCI config 13773 * space 13774 */ 13775 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 13776 &link_status); 13777 13778 i40e_set_pci_config_data(hw, link_status); 13779 13780 switch (hw->bus.speed) { 13781 case i40e_bus_speed_8000: 13782 strncpy(speed, "8.0", PCI_SPEED_SIZE); break; 13783 case i40e_bus_speed_5000: 13784 strncpy(speed, "5.0", PCI_SPEED_SIZE); break; 13785 case i40e_bus_speed_2500: 13786 strncpy(speed, "2.5", PCI_SPEED_SIZE); break; 13787 default: 13788 break; 13789 } 13790 switch (hw->bus.width) { 13791 case i40e_bus_width_pcie_x8: 13792 strncpy(width, "8", PCI_WIDTH_SIZE); break; 13793 case i40e_bus_width_pcie_x4: 13794 strncpy(width, "4", PCI_WIDTH_SIZE); break; 13795 case i40e_bus_width_pcie_x2: 13796 strncpy(width, "2", PCI_WIDTH_SIZE); break; 13797 case i40e_bus_width_pcie_x1: 13798 strncpy(width, "1", PCI_WIDTH_SIZE); break; 13799 default: 13800 break; 13801 } 13802 13803 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 13804 speed, width); 13805 13806 if (hw->bus.width < i40e_bus_width_pcie_x8 || 13807 hw->bus.speed < i40e_bus_speed_8000) { 13808 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 13809 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 13810 } 13811 } 13812 13813 /* get the requested speeds from the fw */ 13814 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 13815 if (err) 13816 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 13817 i40e_stat_str(&pf->hw, err), 13818 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13819 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 13820 13821 /* get the supported phy types from the fw */ 13822 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 13823 if (err) 13824 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 13825 i40e_stat_str(&pf->hw, err), 13826 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13827 13828 /* Add a filter to drop all Flow control frames from any VSI from being 13829 * transmitted. By doing so we stop a malicious VF from sending out 13830 * PAUSE or PFC frames and potentially controlling traffic for other 13831 * PF/VF VSIs. 13832 * The FW can still send Flow control frames if enabled. 13833 */ 13834 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 13835 pf->main_vsi_seid); 13836 13837 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 13838 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 13839 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 13840 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 13841 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 13842 /* print a string summarizing features */ 13843 i40e_print_features(pf); 13844 13845 return 0; 13846 13847 /* Unwind what we've done if something failed in the setup */ 13848 err_vsis: 13849 set_bit(__I40E_DOWN, pf->state); 13850 i40e_clear_interrupt_scheme(pf); 13851 kfree(pf->vsi); 13852 err_switch_setup: 13853 i40e_reset_interrupt_capability(pf); 13854 del_timer_sync(&pf->service_timer); 13855 err_mac_addr: 13856 err_configure_lan_hmc: 13857 (void)i40e_shutdown_lan_hmc(hw); 13858 err_init_lan_hmc: 13859 kfree(pf->qp_pile); 13860 err_sw_init: 13861 err_adminq_setup: 13862 err_pf_reset: 13863 iounmap(hw->hw_addr); 13864 err_ioremap: 13865 kfree(pf); 13866 err_pf_alloc: 13867 pci_disable_pcie_error_reporting(pdev); 13868 pci_release_mem_regions(pdev); 13869 err_pci_reg: 13870 err_dma: 13871 pci_disable_device(pdev); 13872 return err; 13873 } 13874 13875 /** 13876 * i40e_remove - Device removal routine 13877 * @pdev: PCI device information struct 13878 * 13879 * i40e_remove is called by the PCI subsystem to alert the driver 13880 * that is should release a PCI device. This could be caused by a 13881 * Hot-Plug event, or because the driver is going to be removed from 13882 * memory. 13883 **/ 13884 static void i40e_remove(struct pci_dev *pdev) 13885 { 13886 struct i40e_pf *pf = pci_get_drvdata(pdev); 13887 struct i40e_hw *hw = &pf->hw; 13888 i40e_status ret_code; 13889 int i; 13890 13891 i40e_dbg_pf_exit(pf); 13892 13893 i40e_ptp_stop(pf); 13894 13895 /* Disable RSS in hw */ 13896 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 13897 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 13898 13899 /* no more scheduling of any task */ 13900 set_bit(__I40E_SUSPENDED, pf->state); 13901 set_bit(__I40E_DOWN, pf->state); 13902 if (pf->service_timer.function) 13903 del_timer_sync(&pf->service_timer); 13904 if (pf->service_task.func) 13905 cancel_work_sync(&pf->service_task); 13906 13907 /* Client close must be called explicitly here because the timer 13908 * has been stopped. 13909 */ 13910 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 13911 13912 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 13913 i40e_free_vfs(pf); 13914 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 13915 } 13916 13917 i40e_fdir_teardown(pf); 13918 13919 /* If there is a switch structure or any orphans, remove them. 13920 * This will leave only the PF's VSI remaining. 13921 */ 13922 for (i = 0; i < I40E_MAX_VEB; i++) { 13923 if (!pf->veb[i]) 13924 continue; 13925 13926 if (pf->veb[i]->uplink_seid == pf->mac_seid || 13927 pf->veb[i]->uplink_seid == 0) 13928 i40e_switch_branch_release(pf->veb[i]); 13929 } 13930 13931 /* Now we can shutdown the PF's VSI, just before we kill 13932 * adminq and hmc. 13933 */ 13934 if (pf->vsi[pf->lan_vsi]) 13935 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 13936 13937 i40e_cloud_filter_exit(pf); 13938 13939 /* remove attached clients */ 13940 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13941 ret_code = i40e_lan_del_device(pf); 13942 if (ret_code) 13943 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 13944 ret_code); 13945 } 13946 13947 /* shutdown and destroy the HMC */ 13948 if (hw->hmc.hmc_obj) { 13949 ret_code = i40e_shutdown_lan_hmc(hw); 13950 if (ret_code) 13951 dev_warn(&pdev->dev, 13952 "Failed to destroy the HMC resources: %d\n", 13953 ret_code); 13954 } 13955 13956 /* shutdown the adminq */ 13957 i40e_shutdown_adminq(hw); 13958 13959 /* destroy the locks only once, here */ 13960 mutex_destroy(&hw->aq.arq_mutex); 13961 mutex_destroy(&hw->aq.asq_mutex); 13962 13963 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 13964 i40e_clear_interrupt_scheme(pf); 13965 for (i = 0; i < pf->num_alloc_vsi; i++) { 13966 if (pf->vsi[i]) { 13967 i40e_vsi_clear_rings(pf->vsi[i]); 13968 i40e_vsi_clear(pf->vsi[i]); 13969 pf->vsi[i] = NULL; 13970 } 13971 } 13972 13973 for (i = 0; i < I40E_MAX_VEB; i++) { 13974 kfree(pf->veb[i]); 13975 pf->veb[i] = NULL; 13976 } 13977 13978 kfree(pf->qp_pile); 13979 kfree(pf->vsi); 13980 13981 iounmap(hw->hw_addr); 13982 kfree(pf); 13983 pci_release_mem_regions(pdev); 13984 13985 pci_disable_pcie_error_reporting(pdev); 13986 pci_disable_device(pdev); 13987 } 13988 13989 /** 13990 * i40e_pci_error_detected - warning that something funky happened in PCI land 13991 * @pdev: PCI device information struct 13992 * 13993 * Called to warn that something happened and the error handling steps 13994 * are in progress. Allows the driver to quiesce things, be ready for 13995 * remediation. 13996 **/ 13997 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 13998 enum pci_channel_state error) 13999 { 14000 struct i40e_pf *pf = pci_get_drvdata(pdev); 14001 14002 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 14003 14004 if (!pf) { 14005 dev_info(&pdev->dev, 14006 "Cannot recover - error happened during device probe\n"); 14007 return PCI_ERS_RESULT_DISCONNECT; 14008 } 14009 14010 /* shutdown all operations */ 14011 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14012 i40e_prep_for_reset(pf, false); 14013 14014 /* Request a slot reset */ 14015 return PCI_ERS_RESULT_NEED_RESET; 14016 } 14017 14018 /** 14019 * i40e_pci_error_slot_reset - a PCI slot reset just happened 14020 * @pdev: PCI device information struct 14021 * 14022 * Called to find if the driver can work with the device now that 14023 * the pci slot has been reset. If a basic connection seems good 14024 * (registers are readable and have sane content) then return a 14025 * happy little PCI_ERS_RESULT_xxx. 14026 **/ 14027 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 14028 { 14029 struct i40e_pf *pf = pci_get_drvdata(pdev); 14030 pci_ers_result_t result; 14031 int err; 14032 u32 reg; 14033 14034 dev_dbg(&pdev->dev, "%s\n", __func__); 14035 if (pci_enable_device_mem(pdev)) { 14036 dev_info(&pdev->dev, 14037 "Cannot re-enable PCI device after reset.\n"); 14038 result = PCI_ERS_RESULT_DISCONNECT; 14039 } else { 14040 pci_set_master(pdev); 14041 pci_restore_state(pdev); 14042 pci_save_state(pdev); 14043 pci_wake_from_d3(pdev, false); 14044 14045 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 14046 if (reg == 0) 14047 result = PCI_ERS_RESULT_RECOVERED; 14048 else 14049 result = PCI_ERS_RESULT_DISCONNECT; 14050 } 14051 14052 err = pci_cleanup_aer_uncorrect_error_status(pdev); 14053 if (err) { 14054 dev_info(&pdev->dev, 14055 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 14056 err); 14057 /* non-fatal, continue */ 14058 } 14059 14060 return result; 14061 } 14062 14063 /** 14064 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 14065 * @pdev: PCI device information struct 14066 */ 14067 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 14068 { 14069 struct i40e_pf *pf = pci_get_drvdata(pdev); 14070 14071 i40e_prep_for_reset(pf, false); 14072 } 14073 14074 /** 14075 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 14076 * @pdev: PCI device information struct 14077 */ 14078 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 14079 { 14080 struct i40e_pf *pf = pci_get_drvdata(pdev); 14081 14082 i40e_reset_and_rebuild(pf, false, false); 14083 } 14084 14085 /** 14086 * i40e_pci_error_resume - restart operations after PCI error recovery 14087 * @pdev: PCI device information struct 14088 * 14089 * Called to allow the driver to bring things back up after PCI error 14090 * and/or reset recovery has finished. 14091 **/ 14092 static void i40e_pci_error_resume(struct pci_dev *pdev) 14093 { 14094 struct i40e_pf *pf = pci_get_drvdata(pdev); 14095 14096 dev_dbg(&pdev->dev, "%s\n", __func__); 14097 if (test_bit(__I40E_SUSPENDED, pf->state)) 14098 return; 14099 14100 i40e_handle_reset_warning(pf, false); 14101 } 14102 14103 /** 14104 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 14105 * using the mac_address_write admin q function 14106 * @pf: pointer to i40e_pf struct 14107 **/ 14108 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 14109 { 14110 struct i40e_hw *hw = &pf->hw; 14111 i40e_status ret; 14112 u8 mac_addr[6]; 14113 u16 flags = 0; 14114 14115 /* Get current MAC address in case it's an LAA */ 14116 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 14117 ether_addr_copy(mac_addr, 14118 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 14119 } else { 14120 dev_err(&pf->pdev->dev, 14121 "Failed to retrieve MAC address; using default\n"); 14122 ether_addr_copy(mac_addr, hw->mac.addr); 14123 } 14124 14125 /* The FW expects the mac address write cmd to first be called with 14126 * one of these flags before calling it again with the multicast 14127 * enable flags. 14128 */ 14129 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 14130 14131 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 14132 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 14133 14134 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14135 if (ret) { 14136 dev_err(&pf->pdev->dev, 14137 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 14138 return; 14139 } 14140 14141 flags = I40E_AQC_MC_MAG_EN 14142 | I40E_AQC_WOL_PRESERVE_ON_PFR 14143 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 14144 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14145 if (ret) 14146 dev_err(&pf->pdev->dev, 14147 "Failed to enable Multicast Magic Packet wake up\n"); 14148 } 14149 14150 /** 14151 * i40e_shutdown - PCI callback for shutting down 14152 * @pdev: PCI device information struct 14153 **/ 14154 static void i40e_shutdown(struct pci_dev *pdev) 14155 { 14156 struct i40e_pf *pf = pci_get_drvdata(pdev); 14157 struct i40e_hw *hw = &pf->hw; 14158 14159 set_bit(__I40E_SUSPENDED, pf->state); 14160 set_bit(__I40E_DOWN, pf->state); 14161 rtnl_lock(); 14162 i40e_prep_for_reset(pf, true); 14163 rtnl_unlock(); 14164 14165 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14166 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14167 14168 del_timer_sync(&pf->service_timer); 14169 cancel_work_sync(&pf->service_task); 14170 i40e_cloud_filter_exit(pf); 14171 i40e_fdir_teardown(pf); 14172 14173 /* Client close must be called explicitly here because the timer 14174 * has been stopped. 14175 */ 14176 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14177 14178 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14179 i40e_enable_mc_magic_wake(pf); 14180 14181 i40e_prep_for_reset(pf, false); 14182 14183 wr32(hw, I40E_PFPM_APM, 14184 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14185 wr32(hw, I40E_PFPM_WUFC, 14186 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14187 14188 i40e_clear_interrupt_scheme(pf); 14189 14190 if (system_state == SYSTEM_POWER_OFF) { 14191 pci_wake_from_d3(pdev, pf->wol_en); 14192 pci_set_power_state(pdev, PCI_D3hot); 14193 } 14194 } 14195 14196 /** 14197 * i40e_suspend - PM callback for moving to D3 14198 * @dev: generic device information structure 14199 **/ 14200 static int __maybe_unused i40e_suspend(struct device *dev) 14201 { 14202 struct pci_dev *pdev = to_pci_dev(dev); 14203 struct i40e_pf *pf = pci_get_drvdata(pdev); 14204 struct i40e_hw *hw = &pf->hw; 14205 14206 /* If we're already suspended, then there is nothing to do */ 14207 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 14208 return 0; 14209 14210 set_bit(__I40E_DOWN, pf->state); 14211 14212 /* Ensure service task will not be running */ 14213 del_timer_sync(&pf->service_timer); 14214 cancel_work_sync(&pf->service_task); 14215 14216 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14217 i40e_enable_mc_magic_wake(pf); 14218 14219 i40e_prep_for_reset(pf, false); 14220 14221 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14222 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14223 14224 /* Clear the interrupt scheme and release our IRQs so that the system 14225 * can safely hibernate even when there are a large number of CPUs. 14226 * Otherwise hibernation might fail when mapping all the vectors back 14227 * to CPU0. 14228 */ 14229 i40e_clear_interrupt_scheme(pf); 14230 14231 return 0; 14232 } 14233 14234 /** 14235 * i40e_resume - PM callback for waking up from D3 14236 * @dev: generic device information structure 14237 **/ 14238 static int __maybe_unused i40e_resume(struct device *dev) 14239 { 14240 struct pci_dev *pdev = to_pci_dev(dev); 14241 struct i40e_pf *pf = pci_get_drvdata(pdev); 14242 int err; 14243 14244 /* If we're not suspended, then there is nothing to do */ 14245 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14246 return 0; 14247 14248 /* We cleared the interrupt scheme when we suspended, so we need to 14249 * restore it now to resume device functionality. 14250 */ 14251 err = i40e_restore_interrupt_scheme(pf); 14252 if (err) { 14253 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n", 14254 err); 14255 } 14256 14257 clear_bit(__I40E_DOWN, pf->state); 14258 i40e_reset_and_rebuild(pf, false, false); 14259 14260 /* Clear suspended state last after everything is recovered */ 14261 clear_bit(__I40E_SUSPENDED, pf->state); 14262 14263 /* Restart the service task */ 14264 mod_timer(&pf->service_timer, 14265 round_jiffies(jiffies + pf->service_timer_period)); 14266 14267 return 0; 14268 } 14269 14270 static const struct pci_error_handlers i40e_err_handler = { 14271 .error_detected = i40e_pci_error_detected, 14272 .slot_reset = i40e_pci_error_slot_reset, 14273 .reset_prepare = i40e_pci_error_reset_prepare, 14274 .reset_done = i40e_pci_error_reset_done, 14275 .resume = i40e_pci_error_resume, 14276 }; 14277 14278 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 14279 14280 static struct pci_driver i40e_driver = { 14281 .name = i40e_driver_name, 14282 .id_table = i40e_pci_tbl, 14283 .probe = i40e_probe, 14284 .remove = i40e_remove, 14285 .driver = { 14286 .pm = &i40e_pm_ops, 14287 }, 14288 .shutdown = i40e_shutdown, 14289 .err_handler = &i40e_err_handler, 14290 .sriov_configure = i40e_pci_sriov_configure, 14291 }; 14292 14293 /** 14294 * i40e_init_module - Driver registration routine 14295 * 14296 * i40e_init_module is the first routine called when the driver is 14297 * loaded. All it does is register with the PCI subsystem. 14298 **/ 14299 static int __init i40e_init_module(void) 14300 { 14301 pr_info("%s: %s - version %s\n", i40e_driver_name, 14302 i40e_driver_string, i40e_driver_version_str); 14303 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 14304 14305 /* There is no need to throttle the number of active tasks because 14306 * each device limits its own task using a state bit for scheduling 14307 * the service task, and the device tasks do not interfere with each 14308 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 14309 * since we need to be able to guarantee forward progress even under 14310 * memory pressure. 14311 */ 14312 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 14313 if (!i40e_wq) { 14314 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 14315 return -ENOMEM; 14316 } 14317 14318 i40e_dbg_init(); 14319 return pci_register_driver(&i40e_driver); 14320 } 14321 module_init(i40e_init_module); 14322 14323 /** 14324 * i40e_exit_module - Driver exit cleanup routine 14325 * 14326 * i40e_exit_module is called just before the driver is removed 14327 * from memory. 14328 **/ 14329 static void __exit i40e_exit_module(void) 14330 { 14331 pci_unregister_driver(&i40e_driver); 14332 destroy_workqueue(i40e_wq); 14333 i40e_dbg_exit(); 14334 } 14335 module_exit(i40e_exit_module); 14336