1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/if_bridge.h> 7 #include <linux/if_macvlan.h> 8 #include <linux/module.h> 9 #include <net/pkt_cls.h> 10 #include <net/xdp_sock_drv.h> 11 12 /* Local includes */ 13 #include "i40e.h" 14 #include "i40e_devids.h" 15 #include "i40e_diag.h" 16 #include "i40e_lan_hmc.h" 17 #include "i40e_virtchnl_pf.h" 18 #include "i40e_xsk.h" 19 20 /* All i40e tracepoints are defined by the include below, which 21 * must be included exactly once across the whole kernel with 22 * CREATE_TRACE_POINTS defined 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "i40e_trace.h" 26 27 const char i40e_driver_name[] = "i40e"; 28 static const char i40e_driver_string[] = 29 "Intel(R) Ethernet Connection XL710 Network Driver"; 30 31 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 32 33 /* a bit of forward declarations */ 34 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 35 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 36 static int i40e_add_vsi(struct i40e_vsi *vsi); 37 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 38 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 39 static int i40e_setup_misc_vector(struct i40e_pf *pf); 40 static void i40e_determine_queue_usage(struct i40e_pf *pf); 41 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 42 static void i40e_prep_for_reset(struct i40e_pf *pf); 43 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 44 bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 48 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 49 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 50 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 51 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 52 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 53 static int i40e_get_capabilities(struct i40e_pf *pf, 54 enum i40e_admin_queue_opc list_type); 55 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 56 57 /* i40e_pci_tbl - PCI Device ID Table 58 * 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id i40e_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_LICENSE("GPL v2"); 104 105 static struct workqueue_struct *i40e_wq; 106 107 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 108 struct net_device *netdev, int delta) 109 { 110 struct netdev_hw_addr_list *ha_list; 111 struct netdev_hw_addr *ha; 112 113 if (!f || !netdev) 114 return; 115 116 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr)) 117 ha_list = &netdev->uc; 118 else 119 ha_list = &netdev->mc; 120 121 netdev_hw_addr_list_for_each(ha, ha_list) { 122 if (ether_addr_equal(ha->addr, f->macaddr)) { 123 ha->refcount += delta; 124 if (ha->refcount <= 0) 125 ha->refcount = 1; 126 break; 127 } 128 } 129 } 130 131 /** 132 * i40e_hw_to_dev - get device pointer from the hardware structure 133 * @hw: pointer to the device HW structure 134 **/ 135 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 136 { 137 struct i40e_pf *pf = i40e_hw_to_pf(hw); 138 139 return &pf->pdev->dev; 140 } 141 142 /** 143 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 144 * @hw: pointer to the HW structure 145 * @mem: ptr to mem struct to fill out 146 * @size: size of memory requested 147 * @alignment: what to align the allocation to 148 **/ 149 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 150 u64 size, u32 alignment) 151 { 152 struct i40e_pf *pf = i40e_hw_to_pf(hw); 153 154 mem->size = ALIGN(size, alignment); 155 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 156 GFP_KERNEL); 157 if (!mem->va) 158 return -ENOMEM; 159 160 return 0; 161 } 162 163 /** 164 * i40e_free_dma_mem - OS specific memory free for shared code 165 * @hw: pointer to the HW structure 166 * @mem: ptr to mem struct to free 167 **/ 168 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 169 { 170 struct i40e_pf *pf = i40e_hw_to_pf(hw); 171 172 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 173 mem->va = NULL; 174 mem->pa = 0; 175 mem->size = 0; 176 177 return 0; 178 } 179 180 /** 181 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 182 * @hw: pointer to the HW structure 183 * @mem: ptr to mem struct to fill out 184 * @size: size of memory requested 185 **/ 186 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 187 u32 size) 188 { 189 mem->size = size; 190 mem->va = kzalloc(size, GFP_KERNEL); 191 192 if (!mem->va) 193 return -ENOMEM; 194 195 return 0; 196 } 197 198 /** 199 * i40e_free_virt_mem - OS specific memory free for shared code 200 * @hw: pointer to the HW structure 201 * @mem: ptr to mem struct to free 202 **/ 203 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 204 { 205 /* it's ok to kfree a NULL pointer */ 206 kfree(mem->va); 207 mem->va = NULL; 208 mem->size = 0; 209 210 return 0; 211 } 212 213 /** 214 * i40e_get_lump - find a lump of free generic resource 215 * @pf: board private structure 216 * @pile: the pile of resource to search 217 * @needed: the number of items needed 218 * @id: an owner id to stick on the items assigned 219 * 220 * Returns the base item index of the lump, or negative for error 221 **/ 222 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 223 u16 needed, u16 id) 224 { 225 int ret = -ENOMEM; 226 int i, j; 227 228 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 229 dev_info(&pf->pdev->dev, 230 "param err: pile=%s needed=%d id=0x%04x\n", 231 pile ? "<valid>" : "<null>", needed, id); 232 return -EINVAL; 233 } 234 235 /* Allocate last queue in the pile for FDIR VSI queue 236 * so it doesn't fragment the qp_pile 237 */ 238 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 239 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 240 dev_err(&pf->pdev->dev, 241 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 242 pile->num_entries - 1); 243 return -ENOMEM; 244 } 245 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 246 return pile->num_entries - 1; 247 } 248 249 i = 0; 250 while (i < pile->num_entries) { 251 /* skip already allocated entries */ 252 if (pile->list[i] & I40E_PILE_VALID_BIT) { 253 i++; 254 continue; 255 } 256 257 /* do we have enough in this lump? */ 258 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 259 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 260 break; 261 } 262 263 if (j == needed) { 264 /* there was enough, so assign it to the requestor */ 265 for (j = 0; j < needed; j++) 266 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 267 ret = i; 268 break; 269 } 270 271 /* not enough, so skip over it and continue looking */ 272 i += j; 273 } 274 275 return ret; 276 } 277 278 /** 279 * i40e_put_lump - return a lump of generic resource 280 * @pile: the pile of resource to search 281 * @index: the base item index 282 * @id: the owner id of the items assigned 283 * 284 * Returns the count of items in the lump 285 **/ 286 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 287 { 288 int valid_id = (id | I40E_PILE_VALID_BIT); 289 int count = 0; 290 u16 i; 291 292 if (!pile || index >= pile->num_entries) 293 return -EINVAL; 294 295 for (i = index; 296 i < pile->num_entries && pile->list[i] == valid_id; 297 i++) { 298 pile->list[i] = 0; 299 count++; 300 } 301 302 303 return count; 304 } 305 306 /** 307 * i40e_find_vsi_from_id - searches for the vsi with the given id 308 * @pf: the pf structure to search for the vsi 309 * @id: id of the vsi it is searching for 310 **/ 311 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 312 { 313 struct i40e_vsi *vsi; 314 int i; 315 316 i40e_pf_for_each_vsi(pf, i, vsi) 317 if (vsi->id == id) 318 return vsi; 319 320 return NULL; 321 } 322 323 /** 324 * i40e_service_event_schedule - Schedule the service task to wake up 325 * @pf: board private structure 326 * 327 * If not already scheduled, this puts the task into the work queue 328 **/ 329 void i40e_service_event_schedule(struct i40e_pf *pf) 330 { 331 if ((!test_bit(__I40E_DOWN, pf->state) && 332 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 333 test_bit(__I40E_RECOVERY_MODE, pf->state)) 334 queue_work(i40e_wq, &pf->service_task); 335 } 336 337 /** 338 * i40e_tx_timeout - Respond to a Tx Hang 339 * @netdev: network interface device structure 340 * @txqueue: queue number timing out 341 * 342 * If any port has noticed a Tx timeout, it is likely that the whole 343 * device is munged, not just the one netdev port, so go for the full 344 * reset. 345 **/ 346 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 347 { 348 struct i40e_netdev_priv *np = netdev_priv(netdev); 349 struct i40e_vsi *vsi = np->vsi; 350 struct i40e_pf *pf = vsi->back; 351 struct i40e_ring *tx_ring = NULL; 352 unsigned int i; 353 u32 head, val; 354 355 pf->tx_timeout_count++; 356 357 /* with txqueue index, find the tx_ring struct */ 358 for (i = 0; i < vsi->num_queue_pairs; i++) { 359 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 360 if (txqueue == 361 vsi->tx_rings[i]->queue_index) { 362 tx_ring = vsi->tx_rings[i]; 363 break; 364 } 365 } 366 } 367 368 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 369 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 370 else if (time_before(jiffies, 371 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 372 return; /* don't do any new action before the next timeout */ 373 374 /* don't kick off another recovery if one is already pending */ 375 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 376 return; 377 378 if (tx_ring) { 379 head = i40e_get_head(tx_ring); 380 /* Read interrupt register */ 381 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 382 val = rd32(&pf->hw, 383 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 384 tx_ring->vsi->base_vector - 1)); 385 else 386 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 387 388 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 389 vsi->seid, txqueue, tx_ring->next_to_clean, 390 head, tx_ring->next_to_use, 391 readl(tx_ring->tail), val); 392 } 393 394 pf->tx_timeout_last_recovery = jiffies; 395 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 396 pf->tx_timeout_recovery_level, txqueue); 397 398 switch (pf->tx_timeout_recovery_level) { 399 case 1: 400 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 401 break; 402 case 2: 403 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 404 break; 405 case 3: 406 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 407 break; 408 default: 409 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 410 set_bit(__I40E_DOWN_REQUESTED, pf->state); 411 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 412 break; 413 } 414 415 i40e_service_event_schedule(pf); 416 pf->tx_timeout_recovery_level++; 417 } 418 419 /** 420 * i40e_get_vsi_stats_struct - Get System Network Statistics 421 * @vsi: the VSI we care about 422 * 423 * Returns the address of the device statistics structure. 424 * The statistics are actually updated from the service task. 425 **/ 426 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 427 { 428 return &vsi->net_stats; 429 } 430 431 /** 432 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 433 * @ring: Tx ring to get statistics from 434 * @stats: statistics entry to be updated 435 **/ 436 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 437 struct rtnl_link_stats64 *stats) 438 { 439 u64 bytes, packets; 440 unsigned int start; 441 442 do { 443 start = u64_stats_fetch_begin(&ring->syncp); 444 packets = ring->stats.packets; 445 bytes = ring->stats.bytes; 446 } while (u64_stats_fetch_retry(&ring->syncp, start)); 447 448 stats->tx_packets += packets; 449 stats->tx_bytes += bytes; 450 } 451 452 /** 453 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 454 * @netdev: network interface device structure 455 * @stats: data structure to store statistics 456 * 457 * Returns the address of the device statistics structure. 458 * The statistics are actually updated from the service task. 459 **/ 460 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 461 struct rtnl_link_stats64 *stats) 462 { 463 struct i40e_netdev_priv *np = netdev_priv(netdev); 464 struct i40e_vsi *vsi = np->vsi; 465 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 466 struct i40e_ring *ring; 467 int i; 468 469 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 470 return; 471 472 if (!vsi->tx_rings) 473 return; 474 475 rcu_read_lock(); 476 for (i = 0; i < vsi->num_queue_pairs; i++) { 477 u64 bytes, packets; 478 unsigned int start; 479 480 ring = READ_ONCE(vsi->tx_rings[i]); 481 if (!ring) 482 continue; 483 i40e_get_netdev_stats_struct_tx(ring, stats); 484 485 if (i40e_enabled_xdp_vsi(vsi)) { 486 ring = READ_ONCE(vsi->xdp_rings[i]); 487 if (!ring) 488 continue; 489 i40e_get_netdev_stats_struct_tx(ring, stats); 490 } 491 492 ring = READ_ONCE(vsi->rx_rings[i]); 493 if (!ring) 494 continue; 495 do { 496 start = u64_stats_fetch_begin(&ring->syncp); 497 packets = ring->stats.packets; 498 bytes = ring->stats.bytes; 499 } while (u64_stats_fetch_retry(&ring->syncp, start)); 500 501 stats->rx_packets += packets; 502 stats->rx_bytes += bytes; 503 504 } 505 rcu_read_unlock(); 506 507 /* following stats updated by i40e_watchdog_subtask() */ 508 stats->multicast = vsi_stats->multicast; 509 stats->tx_errors = vsi_stats->tx_errors; 510 stats->tx_dropped = vsi_stats->tx_dropped; 511 stats->rx_errors = vsi_stats->rx_errors; 512 stats->rx_dropped = vsi_stats->rx_dropped; 513 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 514 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 515 stats->rx_length_errors = vsi_stats->rx_length_errors; 516 } 517 518 /** 519 * i40e_vsi_reset_stats - Resets all stats of the given vsi 520 * @vsi: the VSI to have its stats reset 521 **/ 522 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 523 { 524 struct rtnl_link_stats64 *ns; 525 int i; 526 527 if (!vsi) 528 return; 529 530 ns = i40e_get_vsi_stats_struct(vsi); 531 memset(ns, 0, sizeof(*ns)); 532 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 533 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 534 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 535 if (vsi->rx_rings && vsi->rx_rings[0]) { 536 for (i = 0; i < vsi->num_queue_pairs; i++) { 537 memset(&vsi->rx_rings[i]->stats, 0, 538 sizeof(vsi->rx_rings[i]->stats)); 539 memset(&vsi->rx_rings[i]->rx_stats, 0, 540 sizeof(vsi->rx_rings[i]->rx_stats)); 541 memset(&vsi->tx_rings[i]->stats, 0, 542 sizeof(vsi->tx_rings[i]->stats)); 543 memset(&vsi->tx_rings[i]->tx_stats, 0, 544 sizeof(vsi->tx_rings[i]->tx_stats)); 545 } 546 } 547 vsi->stat_offsets_loaded = false; 548 } 549 550 /** 551 * i40e_pf_reset_stats - Reset all of the stats for the given PF 552 * @pf: the PF to be reset 553 **/ 554 void i40e_pf_reset_stats(struct i40e_pf *pf) 555 { 556 struct i40e_veb *veb; 557 int i; 558 559 memset(&pf->stats, 0, sizeof(pf->stats)); 560 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 561 pf->stat_offsets_loaded = false; 562 563 i40e_pf_for_each_veb(pf, i, veb) { 564 memset(&veb->stats, 0, sizeof(veb->stats)); 565 memset(&veb->stats_offsets, 0, sizeof(veb->stats_offsets)); 566 memset(&veb->tc_stats, 0, sizeof(veb->tc_stats)); 567 memset(&veb->tc_stats_offsets, 0, sizeof(veb->tc_stats_offsets)); 568 veb->stat_offsets_loaded = false; 569 } 570 pf->hw_csum_rx_error = 0; 571 } 572 573 /** 574 * i40e_compute_pci_to_hw_id - compute index form PCI function. 575 * @vsi: ptr to the VSI to read from. 576 * @hw: ptr to the hardware info. 577 **/ 578 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 579 { 580 int pf_count = i40e_get_pf_count(hw); 581 582 if (vsi->type == I40E_VSI_SRIOV) 583 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 584 585 return hw->port + BIT(7); 586 } 587 588 /** 589 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 590 * @hw: ptr to the hardware info. 591 * @hireg: the high 32 bit reg to read. 592 * @loreg: the low 32 bit reg to read. 593 * @offset_loaded: has the initial offset been loaded yet. 594 * @offset: ptr to current offset value. 595 * @stat: ptr to the stat. 596 * 597 * Since the device stats are not reset at PFReset, they will not 598 * be zeroed when the driver starts. We'll save the first values read 599 * and use them as offsets to be subtracted from the raw values in order 600 * to report stats that count from zero. 601 **/ 602 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 603 bool offset_loaded, u64 *offset, u64 *stat) 604 { 605 u64 new_data; 606 607 new_data = rd64(hw, loreg); 608 609 if (!offset_loaded || new_data < *offset) 610 *offset = new_data; 611 *stat = new_data - *offset; 612 } 613 614 /** 615 * i40e_stat_update48 - read and update a 48 bit stat from the chip 616 * @hw: ptr to the hardware info 617 * @hireg: the high 32 bit reg to read 618 * @loreg: the low 32 bit reg to read 619 * @offset_loaded: has the initial offset been loaded yet 620 * @offset: ptr to current offset value 621 * @stat: ptr to the stat 622 * 623 * Since the device stats are not reset at PFReset, they likely will not 624 * be zeroed when the driver starts. We'll save the first values read 625 * and use them as offsets to be subtracted from the raw values in order 626 * to report stats that count from zero. In the process, we also manage 627 * the potential roll-over. 628 **/ 629 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 630 bool offset_loaded, u64 *offset, u64 *stat) 631 { 632 u64 new_data; 633 634 if (hw->device_id == I40E_DEV_ID_QEMU) { 635 new_data = rd32(hw, loreg); 636 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 637 } else { 638 new_data = rd64(hw, loreg); 639 } 640 if (!offset_loaded) 641 *offset = new_data; 642 if (likely(new_data >= *offset)) 643 *stat = new_data - *offset; 644 else 645 *stat = (new_data + BIT_ULL(48)) - *offset; 646 *stat &= 0xFFFFFFFFFFFFULL; 647 } 648 649 /** 650 * i40e_stat_update32 - read and update a 32 bit stat from the chip 651 * @hw: ptr to the hardware info 652 * @reg: the hw reg to read 653 * @offset_loaded: has the initial offset been loaded yet 654 * @offset: ptr to current offset value 655 * @stat: ptr to the stat 656 **/ 657 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 658 bool offset_loaded, u64 *offset, u64 *stat) 659 { 660 u32 new_data; 661 662 new_data = rd32(hw, reg); 663 if (!offset_loaded) 664 *offset = new_data; 665 if (likely(new_data >= *offset)) 666 *stat = (u32)(new_data - *offset); 667 else 668 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 669 } 670 671 /** 672 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 673 * @hw: ptr to the hardware info 674 * @reg: the hw reg to read and clear 675 * @stat: ptr to the stat 676 **/ 677 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 678 { 679 u32 new_data = rd32(hw, reg); 680 681 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 682 *stat += new_data; 683 } 684 685 /** 686 * i40e_stats_update_rx_discards - update rx_discards. 687 * @vsi: ptr to the VSI to be updated. 688 * @hw: ptr to the hardware info. 689 * @stat_idx: VSI's stat_counter_idx. 690 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 691 * @stat_offset: ptr to stat_offset to store first read of specific register. 692 * @stat: ptr to VSI's stat to be updated. 693 **/ 694 static void 695 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 696 int stat_idx, bool offset_loaded, 697 struct i40e_eth_stats *stat_offset, 698 struct i40e_eth_stats *stat) 699 { 700 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 701 &stat_offset->rx_discards, &stat->rx_discards); 702 i40e_stat_update64(hw, 703 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 704 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 705 offset_loaded, &stat_offset->rx_discards_other, 706 &stat->rx_discards_other); 707 } 708 709 /** 710 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 711 * @vsi: the VSI to be updated 712 **/ 713 void i40e_update_eth_stats(struct i40e_vsi *vsi) 714 { 715 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 716 struct i40e_pf *pf = vsi->back; 717 struct i40e_hw *hw = &pf->hw; 718 struct i40e_eth_stats *oes; 719 struct i40e_eth_stats *es; /* device's eth stats */ 720 721 es = &vsi->eth_stats; 722 oes = &vsi->eth_stats_offsets; 723 724 /* Gather up the stats that the hw collects */ 725 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 726 vsi->stat_offsets_loaded, 727 &oes->tx_errors, &es->tx_errors); 728 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 729 vsi->stat_offsets_loaded, 730 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 731 732 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 733 I40E_GLV_GORCL(stat_idx), 734 vsi->stat_offsets_loaded, 735 &oes->rx_bytes, &es->rx_bytes); 736 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 737 I40E_GLV_UPRCL(stat_idx), 738 vsi->stat_offsets_loaded, 739 &oes->rx_unicast, &es->rx_unicast); 740 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 741 I40E_GLV_MPRCL(stat_idx), 742 vsi->stat_offsets_loaded, 743 &oes->rx_multicast, &es->rx_multicast); 744 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 745 I40E_GLV_BPRCL(stat_idx), 746 vsi->stat_offsets_loaded, 747 &oes->rx_broadcast, &es->rx_broadcast); 748 749 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 750 I40E_GLV_GOTCL(stat_idx), 751 vsi->stat_offsets_loaded, 752 &oes->tx_bytes, &es->tx_bytes); 753 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 754 I40E_GLV_UPTCL(stat_idx), 755 vsi->stat_offsets_loaded, 756 &oes->tx_unicast, &es->tx_unicast); 757 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 758 I40E_GLV_MPTCL(stat_idx), 759 vsi->stat_offsets_loaded, 760 &oes->tx_multicast, &es->tx_multicast); 761 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 762 I40E_GLV_BPTCL(stat_idx), 763 vsi->stat_offsets_loaded, 764 &oes->tx_broadcast, &es->tx_broadcast); 765 766 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 767 vsi->stat_offsets_loaded, oes, es); 768 769 vsi->stat_offsets_loaded = true; 770 } 771 772 /** 773 * i40e_update_veb_stats - Update Switch component statistics 774 * @veb: the VEB being updated 775 **/ 776 void i40e_update_veb_stats(struct i40e_veb *veb) 777 { 778 struct i40e_pf *pf = veb->pf; 779 struct i40e_hw *hw = &pf->hw; 780 struct i40e_eth_stats *oes; 781 struct i40e_eth_stats *es; /* device's eth stats */ 782 struct i40e_veb_tc_stats *veb_oes; 783 struct i40e_veb_tc_stats *veb_es; 784 int i, idx = 0; 785 786 idx = veb->stats_idx; 787 es = &veb->stats; 788 oes = &veb->stats_offsets; 789 veb_es = &veb->tc_stats; 790 veb_oes = &veb->tc_stats_offsets; 791 792 /* Gather up the stats that the hw collects */ 793 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 794 veb->stat_offsets_loaded, 795 &oes->tx_discards, &es->tx_discards); 796 if (hw->revision_id > 0) 797 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 798 veb->stat_offsets_loaded, 799 &oes->rx_unknown_protocol, 800 &es->rx_unknown_protocol); 801 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 802 veb->stat_offsets_loaded, 803 &oes->rx_bytes, &es->rx_bytes); 804 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 805 veb->stat_offsets_loaded, 806 &oes->rx_unicast, &es->rx_unicast); 807 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 808 veb->stat_offsets_loaded, 809 &oes->rx_multicast, &es->rx_multicast); 810 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 811 veb->stat_offsets_loaded, 812 &oes->rx_broadcast, &es->rx_broadcast); 813 814 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 815 veb->stat_offsets_loaded, 816 &oes->tx_bytes, &es->tx_bytes); 817 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 818 veb->stat_offsets_loaded, 819 &oes->tx_unicast, &es->tx_unicast); 820 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 821 veb->stat_offsets_loaded, 822 &oes->tx_multicast, &es->tx_multicast); 823 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 824 veb->stat_offsets_loaded, 825 &oes->tx_broadcast, &es->tx_broadcast); 826 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 827 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 828 I40E_GLVEBTC_RPCL(i, idx), 829 veb->stat_offsets_loaded, 830 &veb_oes->tc_rx_packets[i], 831 &veb_es->tc_rx_packets[i]); 832 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 833 I40E_GLVEBTC_RBCL(i, idx), 834 veb->stat_offsets_loaded, 835 &veb_oes->tc_rx_bytes[i], 836 &veb_es->tc_rx_bytes[i]); 837 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 838 I40E_GLVEBTC_TPCL(i, idx), 839 veb->stat_offsets_loaded, 840 &veb_oes->tc_tx_packets[i], 841 &veb_es->tc_tx_packets[i]); 842 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 843 I40E_GLVEBTC_TBCL(i, idx), 844 veb->stat_offsets_loaded, 845 &veb_oes->tc_tx_bytes[i], 846 &veb_es->tc_tx_bytes[i]); 847 } 848 veb->stat_offsets_loaded = true; 849 } 850 851 /** 852 * i40e_update_vsi_stats - Update the vsi statistics counters. 853 * @vsi: the VSI to be updated 854 * 855 * There are a few instances where we store the same stat in a 856 * couple of different structs. This is partly because we have 857 * the netdev stats that need to be filled out, which is slightly 858 * different from the "eth_stats" defined by the chip and used in 859 * VF communications. We sort it out here. 860 **/ 861 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 862 { 863 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 864 struct i40e_pf *pf = vsi->back; 865 struct rtnl_link_stats64 *ons; 866 struct rtnl_link_stats64 *ns; /* netdev stats */ 867 struct i40e_eth_stats *oes; 868 struct i40e_eth_stats *es; /* device's eth stats */ 869 u64 tx_restart, tx_busy; 870 struct i40e_ring *p; 871 u64 bytes, packets; 872 unsigned int start; 873 u64 tx_linearize; 874 u64 tx_force_wb; 875 u64 tx_stopped; 876 u64 rx_p, rx_b; 877 u64 tx_p, tx_b; 878 u16 q; 879 880 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 881 test_bit(__I40E_CONFIG_BUSY, pf->state)) 882 return; 883 884 ns = i40e_get_vsi_stats_struct(vsi); 885 ons = &vsi->net_stats_offsets; 886 es = &vsi->eth_stats; 887 oes = &vsi->eth_stats_offsets; 888 889 /* Gather up the netdev and vsi stats that the driver collects 890 * on the fly during packet processing 891 */ 892 rx_b = rx_p = 0; 893 tx_b = tx_p = 0; 894 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 895 tx_stopped = 0; 896 rx_page = 0; 897 rx_buf = 0; 898 rx_reuse = 0; 899 rx_alloc = 0; 900 rx_waive = 0; 901 rx_busy = 0; 902 rcu_read_lock(); 903 for (q = 0; q < vsi->num_queue_pairs; q++) { 904 /* locate Tx ring */ 905 p = READ_ONCE(vsi->tx_rings[q]); 906 if (!p) 907 continue; 908 909 do { 910 start = u64_stats_fetch_begin(&p->syncp); 911 packets = p->stats.packets; 912 bytes = p->stats.bytes; 913 } while (u64_stats_fetch_retry(&p->syncp, start)); 914 tx_b += bytes; 915 tx_p += packets; 916 tx_restart += p->tx_stats.restart_queue; 917 tx_busy += p->tx_stats.tx_busy; 918 tx_linearize += p->tx_stats.tx_linearize; 919 tx_force_wb += p->tx_stats.tx_force_wb; 920 tx_stopped += p->tx_stats.tx_stopped; 921 922 /* locate Rx ring */ 923 p = READ_ONCE(vsi->rx_rings[q]); 924 if (!p) 925 continue; 926 927 do { 928 start = u64_stats_fetch_begin(&p->syncp); 929 packets = p->stats.packets; 930 bytes = p->stats.bytes; 931 } while (u64_stats_fetch_retry(&p->syncp, start)); 932 rx_b += bytes; 933 rx_p += packets; 934 rx_buf += p->rx_stats.alloc_buff_failed; 935 rx_page += p->rx_stats.alloc_page_failed; 936 rx_reuse += p->rx_stats.page_reuse_count; 937 rx_alloc += p->rx_stats.page_alloc_count; 938 rx_waive += p->rx_stats.page_waive_count; 939 rx_busy += p->rx_stats.page_busy_count; 940 941 if (i40e_enabled_xdp_vsi(vsi)) { 942 /* locate XDP ring */ 943 p = READ_ONCE(vsi->xdp_rings[q]); 944 if (!p) 945 continue; 946 947 do { 948 start = u64_stats_fetch_begin(&p->syncp); 949 packets = p->stats.packets; 950 bytes = p->stats.bytes; 951 } while (u64_stats_fetch_retry(&p->syncp, start)); 952 tx_b += bytes; 953 tx_p += packets; 954 tx_restart += p->tx_stats.restart_queue; 955 tx_busy += p->tx_stats.tx_busy; 956 tx_linearize += p->tx_stats.tx_linearize; 957 tx_force_wb += p->tx_stats.tx_force_wb; 958 } 959 } 960 rcu_read_unlock(); 961 vsi->tx_restart = tx_restart; 962 vsi->tx_busy = tx_busy; 963 vsi->tx_linearize = tx_linearize; 964 vsi->tx_force_wb = tx_force_wb; 965 vsi->tx_stopped = tx_stopped; 966 vsi->rx_page_failed = rx_page; 967 vsi->rx_buf_failed = rx_buf; 968 vsi->rx_page_reuse = rx_reuse; 969 vsi->rx_page_alloc = rx_alloc; 970 vsi->rx_page_waive = rx_waive; 971 vsi->rx_page_busy = rx_busy; 972 973 ns->rx_packets = rx_p; 974 ns->rx_bytes = rx_b; 975 ns->tx_packets = tx_p; 976 ns->tx_bytes = tx_b; 977 978 /* update netdev stats from eth stats */ 979 i40e_update_eth_stats(vsi); 980 ons->tx_errors = oes->tx_errors; 981 ns->tx_errors = es->tx_errors; 982 ons->multicast = oes->rx_multicast; 983 ns->multicast = es->rx_multicast; 984 ons->rx_dropped = oes->rx_discards_other; 985 ns->rx_dropped = es->rx_discards_other; 986 ons->rx_missed_errors = oes->rx_discards; 987 ns->rx_missed_errors = es->rx_discards; 988 ons->tx_dropped = oes->tx_discards; 989 ns->tx_dropped = es->tx_discards; 990 991 /* pull in a couple PF stats if this is the main vsi */ 992 if (vsi == pf->vsi[pf->lan_vsi]) { 993 ns->rx_crc_errors = pf->stats.crc_errors; 994 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 995 ns->rx_length_errors = pf->stats.rx_length_errors; 996 } 997 } 998 999 /** 1000 * i40e_update_pf_stats - Update the PF statistics counters. 1001 * @pf: the PF to be updated 1002 **/ 1003 static void i40e_update_pf_stats(struct i40e_pf *pf) 1004 { 1005 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1006 struct i40e_hw_port_stats *nsd = &pf->stats; 1007 struct i40e_hw *hw = &pf->hw; 1008 u32 val; 1009 int i; 1010 1011 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1012 I40E_GLPRT_GORCL(hw->port), 1013 pf->stat_offsets_loaded, 1014 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1015 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1016 I40E_GLPRT_GOTCL(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1019 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->eth.rx_discards, 1022 &nsd->eth.rx_discards); 1023 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1024 I40E_GLPRT_UPRCL(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->eth.rx_unicast, 1027 &nsd->eth.rx_unicast); 1028 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1029 I40E_GLPRT_MPRCL(hw->port), 1030 pf->stat_offsets_loaded, 1031 &osd->eth.rx_multicast, 1032 &nsd->eth.rx_multicast); 1033 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1034 I40E_GLPRT_BPRCL(hw->port), 1035 pf->stat_offsets_loaded, 1036 &osd->eth.rx_broadcast, 1037 &nsd->eth.rx_broadcast); 1038 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1039 I40E_GLPRT_UPTCL(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->eth.tx_unicast, 1042 &nsd->eth.tx_unicast); 1043 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1044 I40E_GLPRT_MPTCL(hw->port), 1045 pf->stat_offsets_loaded, 1046 &osd->eth.tx_multicast, 1047 &nsd->eth.tx_multicast); 1048 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1049 I40E_GLPRT_BPTCL(hw->port), 1050 pf->stat_offsets_loaded, 1051 &osd->eth.tx_broadcast, 1052 &nsd->eth.tx_broadcast); 1053 1054 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1055 pf->stat_offsets_loaded, 1056 &osd->tx_dropped_link_down, 1057 &nsd->tx_dropped_link_down); 1058 1059 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1060 pf->stat_offsets_loaded, 1061 &osd->crc_errors, &nsd->crc_errors); 1062 1063 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1064 pf->stat_offsets_loaded, 1065 &osd->illegal_bytes, &nsd->illegal_bytes); 1066 1067 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1068 pf->stat_offsets_loaded, 1069 &osd->mac_local_faults, 1070 &nsd->mac_local_faults); 1071 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1072 pf->stat_offsets_loaded, 1073 &osd->mac_remote_faults, 1074 &nsd->mac_remote_faults); 1075 1076 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1077 pf->stat_offsets_loaded, 1078 &osd->rx_length_errors, 1079 &nsd->rx_length_errors); 1080 1081 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1082 pf->stat_offsets_loaded, 1083 &osd->link_xon_rx, &nsd->link_xon_rx); 1084 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1085 pf->stat_offsets_loaded, 1086 &osd->link_xon_tx, &nsd->link_xon_tx); 1087 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1088 pf->stat_offsets_loaded, 1089 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1090 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1091 pf->stat_offsets_loaded, 1092 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1093 1094 for (i = 0; i < 8; i++) { 1095 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1096 pf->stat_offsets_loaded, 1097 &osd->priority_xoff_rx[i], 1098 &nsd->priority_xoff_rx[i]); 1099 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1100 pf->stat_offsets_loaded, 1101 &osd->priority_xon_rx[i], 1102 &nsd->priority_xon_rx[i]); 1103 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1104 pf->stat_offsets_loaded, 1105 &osd->priority_xon_tx[i], 1106 &nsd->priority_xon_tx[i]); 1107 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1108 pf->stat_offsets_loaded, 1109 &osd->priority_xoff_tx[i], 1110 &nsd->priority_xoff_tx[i]); 1111 i40e_stat_update32(hw, 1112 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1113 pf->stat_offsets_loaded, 1114 &osd->priority_xon_2_xoff[i], 1115 &nsd->priority_xon_2_xoff[i]); 1116 } 1117 1118 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1119 I40E_GLPRT_PRC64L(hw->port), 1120 pf->stat_offsets_loaded, 1121 &osd->rx_size_64, &nsd->rx_size_64); 1122 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1123 I40E_GLPRT_PRC127L(hw->port), 1124 pf->stat_offsets_loaded, 1125 &osd->rx_size_127, &nsd->rx_size_127); 1126 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1127 I40E_GLPRT_PRC255L(hw->port), 1128 pf->stat_offsets_loaded, 1129 &osd->rx_size_255, &nsd->rx_size_255); 1130 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1131 I40E_GLPRT_PRC511L(hw->port), 1132 pf->stat_offsets_loaded, 1133 &osd->rx_size_511, &nsd->rx_size_511); 1134 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1135 I40E_GLPRT_PRC1023L(hw->port), 1136 pf->stat_offsets_loaded, 1137 &osd->rx_size_1023, &nsd->rx_size_1023); 1138 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1139 I40E_GLPRT_PRC1522L(hw->port), 1140 pf->stat_offsets_loaded, 1141 &osd->rx_size_1522, &nsd->rx_size_1522); 1142 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1143 I40E_GLPRT_PRC9522L(hw->port), 1144 pf->stat_offsets_loaded, 1145 &osd->rx_size_big, &nsd->rx_size_big); 1146 1147 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1148 I40E_GLPRT_PTC64L(hw->port), 1149 pf->stat_offsets_loaded, 1150 &osd->tx_size_64, &nsd->tx_size_64); 1151 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1152 I40E_GLPRT_PTC127L(hw->port), 1153 pf->stat_offsets_loaded, 1154 &osd->tx_size_127, &nsd->tx_size_127); 1155 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1156 I40E_GLPRT_PTC255L(hw->port), 1157 pf->stat_offsets_loaded, 1158 &osd->tx_size_255, &nsd->tx_size_255); 1159 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1160 I40E_GLPRT_PTC511L(hw->port), 1161 pf->stat_offsets_loaded, 1162 &osd->tx_size_511, &nsd->tx_size_511); 1163 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1164 I40E_GLPRT_PTC1023L(hw->port), 1165 pf->stat_offsets_loaded, 1166 &osd->tx_size_1023, &nsd->tx_size_1023); 1167 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1168 I40E_GLPRT_PTC1522L(hw->port), 1169 pf->stat_offsets_loaded, 1170 &osd->tx_size_1522, &nsd->tx_size_1522); 1171 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1172 I40E_GLPRT_PTC9522L(hw->port), 1173 pf->stat_offsets_loaded, 1174 &osd->tx_size_big, &nsd->tx_size_big); 1175 1176 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1177 pf->stat_offsets_loaded, 1178 &osd->rx_undersize, &nsd->rx_undersize); 1179 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1180 pf->stat_offsets_loaded, 1181 &osd->rx_fragments, &nsd->rx_fragments); 1182 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1183 pf->stat_offsets_loaded, 1184 &osd->rx_oversize, &nsd->rx_oversize); 1185 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1186 pf->stat_offsets_loaded, 1187 &osd->rx_jabber, &nsd->rx_jabber); 1188 1189 /* FDIR stats */ 1190 i40e_stat_update_and_clear32(hw, 1191 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1192 &nsd->fd_atr_match); 1193 i40e_stat_update_and_clear32(hw, 1194 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1195 &nsd->fd_sb_match); 1196 i40e_stat_update_and_clear32(hw, 1197 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1198 &nsd->fd_atr_tunnel_match); 1199 1200 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1201 nsd->tx_lpi_status = 1202 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val); 1203 nsd->rx_lpi_status = 1204 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val); 1205 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1206 pf->stat_offsets_loaded, 1207 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1208 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1209 pf->stat_offsets_loaded, 1210 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1211 1212 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1213 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1214 nsd->fd_sb_status = true; 1215 else 1216 nsd->fd_sb_status = false; 1217 1218 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1219 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1220 nsd->fd_atr_status = true; 1221 else 1222 nsd->fd_atr_status = false; 1223 1224 pf->stat_offsets_loaded = true; 1225 } 1226 1227 /** 1228 * i40e_update_stats - Update the various statistics counters. 1229 * @vsi: the VSI to be updated 1230 * 1231 * Update the various stats for this VSI and its related entities. 1232 **/ 1233 void i40e_update_stats(struct i40e_vsi *vsi) 1234 { 1235 struct i40e_pf *pf = vsi->back; 1236 1237 if (vsi == pf->vsi[pf->lan_vsi]) 1238 i40e_update_pf_stats(pf); 1239 1240 i40e_update_vsi_stats(vsi); 1241 } 1242 1243 /** 1244 * i40e_count_filters - counts VSI mac filters 1245 * @vsi: the VSI to be searched 1246 * 1247 * Returns count of mac filters 1248 **/ 1249 int i40e_count_filters(struct i40e_vsi *vsi) 1250 { 1251 struct i40e_mac_filter *f; 1252 struct hlist_node *h; 1253 int bkt; 1254 int cnt = 0; 1255 1256 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1257 ++cnt; 1258 1259 return cnt; 1260 } 1261 1262 /** 1263 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1264 * @vsi: the VSI to be searched 1265 * @macaddr: the MAC address 1266 * @vlan: the vlan 1267 * 1268 * Returns ptr to the filter object or NULL 1269 **/ 1270 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1271 const u8 *macaddr, s16 vlan) 1272 { 1273 struct i40e_mac_filter *f; 1274 u64 key; 1275 1276 if (!vsi || !macaddr) 1277 return NULL; 1278 1279 key = i40e_addr_to_hkey(macaddr); 1280 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1281 if ((ether_addr_equal(macaddr, f->macaddr)) && 1282 (vlan == f->vlan)) 1283 return f; 1284 } 1285 return NULL; 1286 } 1287 1288 /** 1289 * i40e_find_mac - Find a mac addr in the macvlan filters list 1290 * @vsi: the VSI to be searched 1291 * @macaddr: the MAC address we are searching for 1292 * 1293 * Returns the first filter with the provided MAC address or NULL if 1294 * MAC address was not found 1295 **/ 1296 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1297 { 1298 struct i40e_mac_filter *f; 1299 u64 key; 1300 1301 if (!vsi || !macaddr) 1302 return NULL; 1303 1304 key = i40e_addr_to_hkey(macaddr); 1305 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1306 if ((ether_addr_equal(macaddr, f->macaddr))) 1307 return f; 1308 } 1309 return NULL; 1310 } 1311 1312 /** 1313 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1314 * @vsi: the VSI to be searched 1315 * 1316 * Returns true if VSI is in vlan mode or false otherwise 1317 **/ 1318 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1319 { 1320 /* If we have a PVID, always operate in VLAN mode */ 1321 if (vsi->info.pvid) 1322 return true; 1323 1324 /* We need to operate in VLAN mode whenever we have any filters with 1325 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1326 * time, incurring search cost repeatedly. However, we can notice two 1327 * things: 1328 * 1329 * 1) the only place where we can gain a VLAN filter is in 1330 * i40e_add_filter. 1331 * 1332 * 2) the only place where filters are actually removed is in 1333 * i40e_sync_filters_subtask. 1334 * 1335 * Thus, we can simply use a boolean value, has_vlan_filters which we 1336 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1337 * we have to perform the full search after deleting filters in 1338 * i40e_sync_filters_subtask, but we already have to search 1339 * filters here and can perform the check at the same time. This 1340 * results in avoiding embedding a loop for VLAN mode inside another 1341 * loop over all the filters, and should maintain correctness as noted 1342 * above. 1343 */ 1344 return vsi->has_vlan_filter; 1345 } 1346 1347 /** 1348 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1349 * @vsi: the VSI to configure 1350 * @tmp_add_list: list of filters ready to be added 1351 * @tmp_del_list: list of filters ready to be deleted 1352 * @vlan_filters: the number of active VLAN filters 1353 * 1354 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1355 * behave as expected. If we have any active VLAN filters remaining or about 1356 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1357 * so that they only match against untagged traffic. If we no longer have any 1358 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1359 * so that they match against both tagged and untagged traffic. In this way, 1360 * we ensure that we correctly receive the desired traffic. This ensures that 1361 * when we have an active VLAN we will receive only untagged traffic and 1362 * traffic matching active VLANs. If we have no active VLANs then we will 1363 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1364 * 1365 * Finally, in a similar fashion, this function also corrects filters when 1366 * there is an active PVID assigned to this VSI. 1367 * 1368 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1369 * 1370 * This function is only expected to be called from within 1371 * i40e_sync_vsi_filters. 1372 * 1373 * NOTE: This function expects to be called while under the 1374 * mac_filter_hash_lock 1375 */ 1376 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1377 struct hlist_head *tmp_add_list, 1378 struct hlist_head *tmp_del_list, 1379 int vlan_filters) 1380 { 1381 s16 pvid = le16_to_cpu(vsi->info.pvid); 1382 struct i40e_mac_filter *f, *add_head; 1383 struct i40e_new_mac_filter *new; 1384 struct hlist_node *h; 1385 int bkt, new_vlan; 1386 1387 /* To determine if a particular filter needs to be replaced we 1388 * have the three following conditions: 1389 * 1390 * a) if we have a PVID assigned, then all filters which are 1391 * not marked as VLAN=PVID must be replaced with filters that 1392 * are. 1393 * b) otherwise, if we have any active VLANS, all filters 1394 * which are marked as VLAN=-1 must be replaced with 1395 * filters marked as VLAN=0 1396 * c) finally, if we do not have any active VLANS, all filters 1397 * which are marked as VLAN=0 must be replaced with filters 1398 * marked as VLAN=-1 1399 */ 1400 1401 /* Update the filters about to be added in place */ 1402 hlist_for_each_entry(new, tmp_add_list, hlist) { 1403 if (pvid && new->f->vlan != pvid) 1404 new->f->vlan = pvid; 1405 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1406 new->f->vlan = 0; 1407 else if (!vlan_filters && new->f->vlan == 0) 1408 new->f->vlan = I40E_VLAN_ANY; 1409 } 1410 1411 /* Update the remaining active filters */ 1412 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1413 /* Combine the checks for whether a filter needs to be changed 1414 * and then determine the new VLAN inside the if block, in 1415 * order to avoid duplicating code for adding the new filter 1416 * then deleting the old filter. 1417 */ 1418 if ((pvid && f->vlan != pvid) || 1419 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1420 (!vlan_filters && f->vlan == 0)) { 1421 /* Determine the new vlan we will be adding */ 1422 if (pvid) 1423 new_vlan = pvid; 1424 else if (vlan_filters) 1425 new_vlan = 0; 1426 else 1427 new_vlan = I40E_VLAN_ANY; 1428 1429 /* Create the new filter */ 1430 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1431 if (!add_head) 1432 return -ENOMEM; 1433 1434 /* Create a temporary i40e_new_mac_filter */ 1435 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1436 if (!new) 1437 return -ENOMEM; 1438 1439 new->f = add_head; 1440 new->state = add_head->state; 1441 1442 /* Add the new filter to the tmp list */ 1443 hlist_add_head(&new->hlist, tmp_add_list); 1444 1445 /* Put the original filter into the delete list */ 1446 f->state = I40E_FILTER_REMOVE; 1447 hash_del(&f->hlist); 1448 hlist_add_head(&f->hlist, tmp_del_list); 1449 } 1450 } 1451 1452 vsi->has_vlan_filter = !!vlan_filters; 1453 1454 return 0; 1455 } 1456 1457 /** 1458 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1459 * @vsi: the vsi to configure 1460 * @new_mac: new mac filter to be added 1461 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1462 * @vlan_filters: the number of active VLAN filters 1463 * @trusted: flag if the VF is trusted 1464 * 1465 * Get new VLAN id based on current VLAN filters, trust, PVID 1466 * and vf-vlan-prune-disable flag. 1467 * 1468 * Returns the value of the new vlan filter or 1469 * the old value if no new filter is needed. 1470 */ 1471 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1472 struct i40e_new_mac_filter *new_mac, 1473 struct i40e_mac_filter *f, 1474 int vlan_filters, 1475 bool trusted) 1476 { 1477 s16 pvid = le16_to_cpu(vsi->info.pvid); 1478 struct i40e_pf *pf = vsi->back; 1479 bool is_any; 1480 1481 if (new_mac) 1482 f = new_mac->f; 1483 1484 if (pvid && f->vlan != pvid) 1485 return pvid; 1486 1487 is_any = (trusted || 1488 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1489 1490 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1491 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1492 (is_any && !vlan_filters && f->vlan == 0)) { 1493 if (is_any) 1494 return I40E_VLAN_ANY; 1495 else 1496 return 0; 1497 } 1498 1499 return f->vlan; 1500 } 1501 1502 /** 1503 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1504 * @vsi: the vsi to configure 1505 * @tmp_add_list: list of filters ready to be added 1506 * @tmp_del_list: list of filters ready to be deleted 1507 * @vlan_filters: the number of active VLAN filters 1508 * @trusted: flag if the VF is trusted 1509 * 1510 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1511 * and vf-vlan-prune-disable flag. 1512 * 1513 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1514 * 1515 * This function is only expected to be called from within 1516 * i40e_sync_vsi_filters. 1517 * 1518 * NOTE: This function expects to be called while under the 1519 * mac_filter_hash_lock 1520 */ 1521 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1522 struct hlist_head *tmp_add_list, 1523 struct hlist_head *tmp_del_list, 1524 int vlan_filters, 1525 bool trusted) 1526 { 1527 struct i40e_mac_filter *f, *add_head; 1528 struct i40e_new_mac_filter *new_mac; 1529 struct hlist_node *h; 1530 int bkt, new_vlan; 1531 1532 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1533 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1534 vlan_filters, trusted); 1535 } 1536 1537 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1538 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1539 trusted); 1540 if (new_vlan != f->vlan) { 1541 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1542 if (!add_head) 1543 return -ENOMEM; 1544 /* Create a temporary i40e_new_mac_filter */ 1545 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1546 if (!new_mac) 1547 return -ENOMEM; 1548 new_mac->f = add_head; 1549 new_mac->state = add_head->state; 1550 1551 /* Add the new filter to the tmp list */ 1552 hlist_add_head(&new_mac->hlist, tmp_add_list); 1553 1554 /* Put the original filter into the delete list */ 1555 f->state = I40E_FILTER_REMOVE; 1556 hash_del(&f->hlist); 1557 hlist_add_head(&f->hlist, tmp_del_list); 1558 } 1559 } 1560 1561 vsi->has_vlan_filter = !!vlan_filters; 1562 return 0; 1563 } 1564 1565 /** 1566 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1567 * @vsi: the PF Main VSI - inappropriate for any other VSI 1568 * @macaddr: the MAC address 1569 * 1570 * Remove whatever filter the firmware set up so the driver can manage 1571 * its own filtering intelligently. 1572 **/ 1573 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1574 { 1575 struct i40e_aqc_remove_macvlan_element_data element; 1576 struct i40e_pf *pf = vsi->back; 1577 1578 /* Only appropriate for the PF main VSI */ 1579 if (vsi->type != I40E_VSI_MAIN) 1580 return; 1581 1582 memset(&element, 0, sizeof(element)); 1583 ether_addr_copy(element.mac_addr, macaddr); 1584 element.vlan_tag = 0; 1585 /* Ignore error returns, some firmware does it this way... */ 1586 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1587 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1588 1589 memset(&element, 0, sizeof(element)); 1590 ether_addr_copy(element.mac_addr, macaddr); 1591 element.vlan_tag = 0; 1592 /* ...and some firmware does it this way. */ 1593 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1594 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1595 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1596 } 1597 1598 /** 1599 * i40e_add_filter - Add a mac/vlan filter to the VSI 1600 * @vsi: the VSI to be searched 1601 * @macaddr: the MAC address 1602 * @vlan: the vlan 1603 * 1604 * Returns ptr to the filter object or NULL when no memory available. 1605 * 1606 * NOTE: This function is expected to be called with mac_filter_hash_lock 1607 * being held. 1608 **/ 1609 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1610 const u8 *macaddr, s16 vlan) 1611 { 1612 struct i40e_mac_filter *f; 1613 u64 key; 1614 1615 if (!vsi || !macaddr) 1616 return NULL; 1617 1618 f = i40e_find_filter(vsi, macaddr, vlan); 1619 if (!f) { 1620 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1621 if (!f) 1622 return NULL; 1623 1624 /* Update the boolean indicating if we need to function in 1625 * VLAN mode. 1626 */ 1627 if (vlan >= 0) 1628 vsi->has_vlan_filter = true; 1629 1630 ether_addr_copy(f->macaddr, macaddr); 1631 f->vlan = vlan; 1632 f->state = I40E_FILTER_NEW; 1633 INIT_HLIST_NODE(&f->hlist); 1634 1635 key = i40e_addr_to_hkey(macaddr); 1636 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1637 1638 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1639 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1640 } 1641 1642 /* If we're asked to add a filter that has been marked for removal, it 1643 * is safe to simply restore it to active state. __i40e_del_filter 1644 * will have simply deleted any filters which were previously marked 1645 * NEW or FAILED, so if it is currently marked REMOVE it must have 1646 * previously been ACTIVE. Since we haven't yet run the sync filters 1647 * task, just restore this filter to the ACTIVE state so that the 1648 * sync task leaves it in place 1649 */ 1650 if (f->state == I40E_FILTER_REMOVE) 1651 f->state = I40E_FILTER_ACTIVE; 1652 1653 return f; 1654 } 1655 1656 /** 1657 * __i40e_del_filter - Remove a specific filter from the VSI 1658 * @vsi: VSI to remove from 1659 * @f: the filter to remove from the list 1660 * 1661 * This function should be called instead of i40e_del_filter only if you know 1662 * the exact filter you will remove already, such as via i40e_find_filter or 1663 * i40e_find_mac. 1664 * 1665 * NOTE: This function is expected to be called with mac_filter_hash_lock 1666 * being held. 1667 * ANOTHER NOTE: This function MUST be called from within the context of 1668 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1669 * instead of list_for_each_entry(). 1670 **/ 1671 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1672 { 1673 if (!f) 1674 return; 1675 1676 /* If the filter was never added to firmware then we can just delete it 1677 * directly and we don't want to set the status to remove or else an 1678 * admin queue command will unnecessarily fire. 1679 */ 1680 if ((f->state == I40E_FILTER_FAILED) || 1681 (f->state == I40E_FILTER_NEW)) { 1682 hash_del(&f->hlist); 1683 kfree(f); 1684 } else { 1685 f->state = I40E_FILTER_REMOVE; 1686 } 1687 1688 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1689 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1690 } 1691 1692 /** 1693 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1694 * @vsi: the VSI to be searched 1695 * @macaddr: the MAC address 1696 * @vlan: the VLAN 1697 * 1698 * NOTE: This function is expected to be called with mac_filter_hash_lock 1699 * being held. 1700 * ANOTHER NOTE: This function MUST be called from within the context of 1701 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1702 * instead of list_for_each_entry(). 1703 **/ 1704 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1705 { 1706 struct i40e_mac_filter *f; 1707 1708 if (!vsi || !macaddr) 1709 return; 1710 1711 f = i40e_find_filter(vsi, macaddr, vlan); 1712 __i40e_del_filter(vsi, f); 1713 } 1714 1715 /** 1716 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1717 * @vsi: the VSI to be searched 1718 * @macaddr: the mac address to be filtered 1719 * 1720 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1721 * go through all the macvlan filters and add a macvlan filter for each 1722 * unique vlan that already exists. If a PVID has been assigned, instead only 1723 * add the macaddr to that VLAN. 1724 * 1725 * Returns last filter added on success, else NULL 1726 **/ 1727 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1728 const u8 *macaddr) 1729 { 1730 struct i40e_mac_filter *f, *add = NULL; 1731 struct hlist_node *h; 1732 int bkt; 1733 1734 if (vsi->info.pvid) 1735 return i40e_add_filter(vsi, macaddr, 1736 le16_to_cpu(vsi->info.pvid)); 1737 1738 if (!i40e_is_vsi_in_vlan(vsi)) 1739 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1740 1741 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1742 if (f->state == I40E_FILTER_REMOVE) 1743 continue; 1744 add = i40e_add_filter(vsi, macaddr, f->vlan); 1745 if (!add) 1746 return NULL; 1747 } 1748 1749 return add; 1750 } 1751 1752 /** 1753 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1754 * @vsi: the VSI to be searched 1755 * @macaddr: the mac address to be removed 1756 * 1757 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1758 * associated with. 1759 * 1760 * Returns 0 for success, or error 1761 **/ 1762 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1763 { 1764 struct i40e_mac_filter *f; 1765 struct hlist_node *h; 1766 bool found = false; 1767 int bkt; 1768 1769 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1770 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1771 if (ether_addr_equal(macaddr, f->macaddr)) { 1772 __i40e_del_filter(vsi, f); 1773 found = true; 1774 } 1775 } 1776 1777 if (found) 1778 return 0; 1779 else 1780 return -ENOENT; 1781 } 1782 1783 /** 1784 * i40e_set_mac - NDO callback to set mac address 1785 * @netdev: network interface device structure 1786 * @p: pointer to an address structure 1787 * 1788 * Returns 0 on success, negative on failure 1789 **/ 1790 static int i40e_set_mac(struct net_device *netdev, void *p) 1791 { 1792 struct i40e_netdev_priv *np = netdev_priv(netdev); 1793 struct i40e_vsi *vsi = np->vsi; 1794 struct i40e_pf *pf = vsi->back; 1795 struct i40e_hw *hw = &pf->hw; 1796 struct sockaddr *addr = p; 1797 1798 if (!is_valid_ether_addr(addr->sa_data)) 1799 return -EADDRNOTAVAIL; 1800 1801 if (test_bit(__I40E_DOWN, pf->state) || 1802 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1803 return -EADDRNOTAVAIL; 1804 1805 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1806 netdev_info(netdev, "returning to hw mac address %pM\n", 1807 hw->mac.addr); 1808 else 1809 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1810 1811 /* Copy the address first, so that we avoid a possible race with 1812 * .set_rx_mode(). 1813 * - Remove old address from MAC filter 1814 * - Copy new address 1815 * - Add new address to MAC filter 1816 */ 1817 spin_lock_bh(&vsi->mac_filter_hash_lock); 1818 i40e_del_mac_filter(vsi, netdev->dev_addr); 1819 eth_hw_addr_set(netdev, addr->sa_data); 1820 i40e_add_mac_filter(vsi, netdev->dev_addr); 1821 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1822 1823 if (vsi->type == I40E_VSI_MAIN) { 1824 int ret; 1825 1826 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1827 addr->sa_data, NULL); 1828 if (ret) 1829 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1830 ERR_PTR(ret), 1831 i40e_aq_str(hw, hw->aq.asq_last_status)); 1832 } 1833 1834 /* schedule our worker thread which will take care of 1835 * applying the new filter changes 1836 */ 1837 i40e_service_event_schedule(pf); 1838 return 0; 1839 } 1840 1841 /** 1842 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1843 * @vsi: vsi structure 1844 * @seed: RSS hash seed 1845 * @lut: pointer to lookup table of lut_size 1846 * @lut_size: size of the lookup table 1847 **/ 1848 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1849 u8 *lut, u16 lut_size) 1850 { 1851 struct i40e_pf *pf = vsi->back; 1852 struct i40e_hw *hw = &pf->hw; 1853 int ret = 0; 1854 1855 if (seed) { 1856 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1857 (struct i40e_aqc_get_set_rss_key_data *)seed; 1858 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1859 if (ret) { 1860 dev_info(&pf->pdev->dev, 1861 "Cannot set RSS key, err %pe aq_err %s\n", 1862 ERR_PTR(ret), 1863 i40e_aq_str(hw, hw->aq.asq_last_status)); 1864 return ret; 1865 } 1866 } 1867 if (lut) { 1868 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1869 1870 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1871 if (ret) { 1872 dev_info(&pf->pdev->dev, 1873 "Cannot set RSS lut, err %pe aq_err %s\n", 1874 ERR_PTR(ret), 1875 i40e_aq_str(hw, hw->aq.asq_last_status)); 1876 return ret; 1877 } 1878 } 1879 return ret; 1880 } 1881 1882 /** 1883 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1884 * @vsi: VSI structure 1885 **/ 1886 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1887 { 1888 struct i40e_pf *pf = vsi->back; 1889 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1890 u8 *lut; 1891 int ret; 1892 1893 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1894 return 0; 1895 if (!vsi->rss_size) 1896 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1897 vsi->num_queue_pairs); 1898 if (!vsi->rss_size) 1899 return -EINVAL; 1900 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1901 if (!lut) 1902 return -ENOMEM; 1903 1904 /* Use the user configured hash keys and lookup table if there is one, 1905 * otherwise use default 1906 */ 1907 if (vsi->rss_lut_user) 1908 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1909 else 1910 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1911 if (vsi->rss_hkey_user) 1912 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1913 else 1914 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1915 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1916 kfree(lut); 1917 return ret; 1918 } 1919 1920 /** 1921 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1922 * @vsi: the VSI being configured, 1923 * @ctxt: VSI context structure 1924 * @enabled_tc: number of traffic classes to enable 1925 * 1926 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1927 **/ 1928 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1929 struct i40e_vsi_context *ctxt, 1930 u8 enabled_tc) 1931 { 1932 u16 qcount = 0, max_qcount, qmap, sections = 0; 1933 int i, override_q, pow, num_qps, ret; 1934 u8 netdev_tc = 0, offset = 0; 1935 1936 if (vsi->type != I40E_VSI_MAIN) 1937 return -EINVAL; 1938 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1939 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1940 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1941 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1942 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1943 1944 /* find the next higher power-of-2 of num queue pairs */ 1945 pow = ilog2(num_qps); 1946 if (!is_power_of_2(num_qps)) 1947 pow++; 1948 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1949 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1950 1951 /* Setup queue offset/count for all TCs for given VSI */ 1952 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1953 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1954 /* See if the given TC is enabled for the given VSI */ 1955 if (vsi->tc_config.enabled_tc & BIT(i)) { 1956 offset = vsi->mqprio_qopt.qopt.offset[i]; 1957 qcount = vsi->mqprio_qopt.qopt.count[i]; 1958 if (qcount > max_qcount) 1959 max_qcount = qcount; 1960 vsi->tc_config.tc_info[i].qoffset = offset; 1961 vsi->tc_config.tc_info[i].qcount = qcount; 1962 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1963 } else { 1964 /* TC is not enabled so set the offset to 1965 * default queue and allocate one queue 1966 * for the given TC. 1967 */ 1968 vsi->tc_config.tc_info[i].qoffset = 0; 1969 vsi->tc_config.tc_info[i].qcount = 1; 1970 vsi->tc_config.tc_info[i].netdev_tc = 0; 1971 } 1972 } 1973 1974 /* Set actual Tx/Rx queue pairs */ 1975 vsi->num_queue_pairs = offset + qcount; 1976 1977 /* Setup queue TC[0].qmap for given VSI context */ 1978 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1979 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1980 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1981 ctxt->info.valid_sections |= cpu_to_le16(sections); 1982 1983 /* Reconfigure RSS for main VSI with max queue count */ 1984 vsi->rss_size = max_qcount; 1985 ret = i40e_vsi_config_rss(vsi); 1986 if (ret) { 1987 dev_info(&vsi->back->pdev->dev, 1988 "Failed to reconfig rss for num_queues (%u)\n", 1989 max_qcount); 1990 return ret; 1991 } 1992 vsi->reconfig_rss = true; 1993 dev_dbg(&vsi->back->pdev->dev, 1994 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1995 1996 /* Find queue count available for channel VSIs and starting offset 1997 * for channel VSIs 1998 */ 1999 override_q = vsi->mqprio_qopt.qopt.count[0]; 2000 if (override_q && override_q < vsi->num_queue_pairs) { 2001 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 2002 vsi->next_base_queue = override_q; 2003 } 2004 return 0; 2005 } 2006 2007 /** 2008 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 2009 * @vsi: the VSI being setup 2010 * @ctxt: VSI context structure 2011 * @enabled_tc: Enabled TCs bitmap 2012 * @is_add: True if called before Add VSI 2013 * 2014 * Setup VSI queue mapping for enabled traffic classes. 2015 **/ 2016 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2017 struct i40e_vsi_context *ctxt, 2018 u8 enabled_tc, 2019 bool is_add) 2020 { 2021 struct i40e_pf *pf = vsi->back; 2022 u16 num_tc_qps = 0; 2023 u16 sections = 0; 2024 u8 netdev_tc = 0; 2025 u16 numtc = 1; 2026 u16 qcount; 2027 u8 offset; 2028 u16 qmap; 2029 int i; 2030 2031 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2032 offset = 0; 2033 /* zero out queue mapping, it will get updated on the end of the function */ 2034 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2035 2036 if (vsi->type == I40E_VSI_MAIN) { 2037 /* This code helps add more queue to the VSI if we have 2038 * more cores than RSS can support, the higher cores will 2039 * be served by ATR or other filters. Furthermore, the 2040 * non-zero req_queue_pairs says that user requested a new 2041 * queue count via ethtool's set_channels, so use this 2042 * value for queues distribution across traffic classes 2043 * We need at least one queue pair for the interface 2044 * to be usable as we see in else statement. 2045 */ 2046 if (vsi->req_queue_pairs > 0) 2047 vsi->num_queue_pairs = vsi->req_queue_pairs; 2048 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2049 vsi->num_queue_pairs = pf->num_lan_msix; 2050 else 2051 vsi->num_queue_pairs = 1; 2052 } 2053 2054 /* Number of queues per enabled TC */ 2055 if (vsi->type == I40E_VSI_MAIN || 2056 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2057 num_tc_qps = vsi->num_queue_pairs; 2058 else 2059 num_tc_qps = vsi->alloc_queue_pairs; 2060 2061 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2062 /* Find numtc from enabled TC bitmap */ 2063 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2064 if (enabled_tc & BIT(i)) /* TC is enabled */ 2065 numtc++; 2066 } 2067 if (!numtc) { 2068 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2069 numtc = 1; 2070 } 2071 num_tc_qps = num_tc_qps / numtc; 2072 num_tc_qps = min_t(int, num_tc_qps, 2073 i40e_pf_get_max_q_per_tc(pf)); 2074 } 2075 2076 vsi->tc_config.numtc = numtc; 2077 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2078 2079 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2080 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2081 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2082 2083 /* Setup queue offset/count for all TCs for given VSI */ 2084 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2085 /* See if the given TC is enabled for the given VSI */ 2086 if (vsi->tc_config.enabled_tc & BIT(i)) { 2087 /* TC is enabled */ 2088 int pow, num_qps; 2089 2090 switch (vsi->type) { 2091 case I40E_VSI_MAIN: 2092 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2093 pf->flags) && 2094 !test_bit(I40E_FLAG_FD_ATR_ENA, 2095 pf->flags)) || 2096 vsi->tc_config.enabled_tc != 1) { 2097 qcount = min_t(int, pf->alloc_rss_size, 2098 num_tc_qps); 2099 break; 2100 } 2101 fallthrough; 2102 case I40E_VSI_FDIR: 2103 case I40E_VSI_SRIOV: 2104 case I40E_VSI_VMDQ2: 2105 default: 2106 qcount = num_tc_qps; 2107 WARN_ON(i != 0); 2108 break; 2109 } 2110 vsi->tc_config.tc_info[i].qoffset = offset; 2111 vsi->tc_config.tc_info[i].qcount = qcount; 2112 2113 /* find the next higher power-of-2 of num queue pairs */ 2114 num_qps = qcount; 2115 pow = 0; 2116 while (num_qps && (BIT_ULL(pow) < qcount)) { 2117 pow++; 2118 num_qps >>= 1; 2119 } 2120 2121 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2122 qmap = 2123 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2124 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2125 2126 offset += qcount; 2127 } else { 2128 /* TC is not enabled so set the offset to 2129 * default queue and allocate one queue 2130 * for the given TC. 2131 */ 2132 vsi->tc_config.tc_info[i].qoffset = 0; 2133 vsi->tc_config.tc_info[i].qcount = 1; 2134 vsi->tc_config.tc_info[i].netdev_tc = 0; 2135 2136 qmap = 0; 2137 } 2138 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2139 } 2140 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2141 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2142 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2143 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2144 vsi->num_queue_pairs = offset; 2145 2146 /* Scheduler section valid can only be set for ADD VSI */ 2147 if (is_add) { 2148 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2149 2150 ctxt->info.up_enable_bits = enabled_tc; 2151 } 2152 if (vsi->type == I40E_VSI_SRIOV) { 2153 ctxt->info.mapping_flags |= 2154 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2155 for (i = 0; i < vsi->num_queue_pairs; i++) 2156 ctxt->info.queue_mapping[i] = 2157 cpu_to_le16(vsi->base_queue + i); 2158 } else { 2159 ctxt->info.mapping_flags |= 2160 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2161 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2162 } 2163 ctxt->info.valid_sections |= cpu_to_le16(sections); 2164 } 2165 2166 /** 2167 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2168 * @netdev: the netdevice 2169 * @addr: address to add 2170 * 2171 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2172 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2173 */ 2174 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2175 { 2176 struct i40e_netdev_priv *np = netdev_priv(netdev); 2177 struct i40e_vsi *vsi = np->vsi; 2178 2179 if (i40e_add_mac_filter(vsi, addr)) 2180 return 0; 2181 else 2182 return -ENOMEM; 2183 } 2184 2185 /** 2186 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2187 * @netdev: the netdevice 2188 * @addr: address to add 2189 * 2190 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2191 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2192 */ 2193 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2194 { 2195 struct i40e_netdev_priv *np = netdev_priv(netdev); 2196 struct i40e_vsi *vsi = np->vsi; 2197 2198 /* Under some circumstances, we might receive a request to delete 2199 * our own device address from our uc list. Because we store the 2200 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2201 * such requests and not delete our device address from this list. 2202 */ 2203 if (ether_addr_equal(addr, netdev->dev_addr)) 2204 return 0; 2205 2206 i40e_del_mac_filter(vsi, addr); 2207 2208 return 0; 2209 } 2210 2211 /** 2212 * i40e_set_rx_mode - NDO callback to set the netdev filters 2213 * @netdev: network interface device structure 2214 **/ 2215 static void i40e_set_rx_mode(struct net_device *netdev) 2216 { 2217 struct i40e_netdev_priv *np = netdev_priv(netdev); 2218 struct i40e_vsi *vsi = np->vsi; 2219 2220 spin_lock_bh(&vsi->mac_filter_hash_lock); 2221 2222 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2223 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2224 2225 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2226 2227 /* check for other flag changes */ 2228 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2229 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2230 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2231 } 2232 } 2233 2234 /** 2235 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2236 * @vsi: Pointer to VSI struct 2237 * @from: Pointer to list which contains MAC filter entries - changes to 2238 * those entries needs to be undone. 2239 * 2240 * MAC filter entries from this list were slated for deletion. 2241 **/ 2242 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2243 struct hlist_head *from) 2244 { 2245 struct i40e_mac_filter *f; 2246 struct hlist_node *h; 2247 2248 hlist_for_each_entry_safe(f, h, from, hlist) { 2249 u64 key = i40e_addr_to_hkey(f->macaddr); 2250 2251 /* Move the element back into MAC filter list*/ 2252 hlist_del(&f->hlist); 2253 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2254 } 2255 } 2256 2257 /** 2258 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2259 * @vsi: Pointer to vsi struct 2260 * @from: Pointer to list which contains MAC filter entries - changes to 2261 * those entries needs to be undone. 2262 * 2263 * MAC filter entries from this list were slated for addition. 2264 **/ 2265 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2266 struct hlist_head *from) 2267 { 2268 struct i40e_new_mac_filter *new; 2269 struct hlist_node *h; 2270 2271 hlist_for_each_entry_safe(new, h, from, hlist) { 2272 /* We can simply free the wrapper structure */ 2273 hlist_del(&new->hlist); 2274 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2275 kfree(new); 2276 } 2277 } 2278 2279 /** 2280 * i40e_next_filter - Get the next non-broadcast filter from a list 2281 * @next: pointer to filter in list 2282 * 2283 * Returns the next non-broadcast filter in the list. Required so that we 2284 * ignore broadcast filters within the list, since these are not handled via 2285 * the normal firmware update path. 2286 */ 2287 static 2288 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2289 { 2290 hlist_for_each_entry_continue(next, hlist) { 2291 if (!is_broadcast_ether_addr(next->f->macaddr)) 2292 return next; 2293 } 2294 2295 return NULL; 2296 } 2297 2298 /** 2299 * i40e_update_filter_state - Update filter state based on return data 2300 * from firmware 2301 * @count: Number of filters added 2302 * @add_list: return data from fw 2303 * @add_head: pointer to first filter in current batch 2304 * 2305 * MAC filter entries from list were slated to be added to device. Returns 2306 * number of successful filters. Note that 0 does NOT mean success! 2307 **/ 2308 static int 2309 i40e_update_filter_state(int count, 2310 struct i40e_aqc_add_macvlan_element_data *add_list, 2311 struct i40e_new_mac_filter *add_head) 2312 { 2313 int retval = 0; 2314 int i; 2315 2316 for (i = 0; i < count; i++) { 2317 /* Always check status of each filter. We don't need to check 2318 * the firmware return status because we pre-set the filter 2319 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2320 * request to the adminq. Thus, if it no longer matches then 2321 * we know the filter is active. 2322 */ 2323 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2324 add_head->state = I40E_FILTER_FAILED; 2325 } else { 2326 add_head->state = I40E_FILTER_ACTIVE; 2327 retval++; 2328 } 2329 2330 add_head = i40e_next_filter(add_head); 2331 if (!add_head) 2332 break; 2333 } 2334 2335 return retval; 2336 } 2337 2338 /** 2339 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2340 * @vsi: ptr to the VSI 2341 * @vsi_name: name to display in messages 2342 * @list: the list of filters to send to firmware 2343 * @num_del: the number of filters to delete 2344 * @retval: Set to -EIO on failure to delete 2345 * 2346 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2347 * *retval instead of a return value so that success does not force ret_val to 2348 * be set to 0. This ensures that a sequence of calls to this function 2349 * preserve the previous value of *retval on successful delete. 2350 */ 2351 static 2352 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2353 struct i40e_aqc_remove_macvlan_element_data *list, 2354 int num_del, int *retval) 2355 { 2356 struct i40e_hw *hw = &vsi->back->hw; 2357 enum i40e_admin_queue_err aq_status; 2358 int aq_ret; 2359 2360 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2361 &aq_status); 2362 2363 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2364 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2365 *retval = -EIO; 2366 dev_info(&vsi->back->pdev->dev, 2367 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2368 vsi_name, ERR_PTR(aq_ret), 2369 i40e_aq_str(hw, aq_status)); 2370 } 2371 } 2372 2373 /** 2374 * i40e_aqc_add_filters - Request firmware to add a set of filters 2375 * @vsi: ptr to the VSI 2376 * @vsi_name: name to display in messages 2377 * @list: the list of filters to send to firmware 2378 * @add_head: Position in the add hlist 2379 * @num_add: the number of filters to add 2380 * 2381 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2382 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2383 * space for more filters. 2384 */ 2385 static 2386 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2387 struct i40e_aqc_add_macvlan_element_data *list, 2388 struct i40e_new_mac_filter *add_head, 2389 int num_add) 2390 { 2391 struct i40e_hw *hw = &vsi->back->hw; 2392 enum i40e_admin_queue_err aq_status; 2393 int fcnt; 2394 2395 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2396 fcnt = i40e_update_filter_state(num_add, list, add_head); 2397 2398 if (fcnt != num_add) { 2399 if (vsi->type == I40E_VSI_MAIN) { 2400 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2401 dev_warn(&vsi->back->pdev->dev, 2402 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2403 i40e_aq_str(hw, aq_status), vsi_name); 2404 } else if (vsi->type == I40E_VSI_SRIOV || 2405 vsi->type == I40E_VSI_VMDQ1 || 2406 vsi->type == I40E_VSI_VMDQ2) { 2407 dev_warn(&vsi->back->pdev->dev, 2408 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2409 i40e_aq_str(hw, aq_status), vsi_name, 2410 vsi_name); 2411 } else { 2412 dev_warn(&vsi->back->pdev->dev, 2413 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2414 i40e_aq_str(hw, aq_status), vsi_name, 2415 vsi->type); 2416 } 2417 } 2418 } 2419 2420 /** 2421 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2422 * @vsi: pointer to the VSI 2423 * @vsi_name: the VSI name 2424 * @f: filter data 2425 * 2426 * This function sets or clears the promiscuous broadcast flags for VLAN 2427 * filters in order to properly receive broadcast frames. Assumes that only 2428 * broadcast filters are passed. 2429 * 2430 * Returns status indicating success or failure; 2431 **/ 2432 static int 2433 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2434 struct i40e_mac_filter *f) 2435 { 2436 bool enable = f->state == I40E_FILTER_NEW; 2437 struct i40e_hw *hw = &vsi->back->hw; 2438 int aq_ret; 2439 2440 if (f->vlan == I40E_VLAN_ANY) { 2441 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2442 vsi->seid, 2443 enable, 2444 NULL); 2445 } else { 2446 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2447 vsi->seid, 2448 enable, 2449 f->vlan, 2450 NULL); 2451 } 2452 2453 if (aq_ret) { 2454 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2455 dev_warn(&vsi->back->pdev->dev, 2456 "Error %s, forcing overflow promiscuous on %s\n", 2457 i40e_aq_str(hw, hw->aq.asq_last_status), 2458 vsi_name); 2459 } 2460 2461 return aq_ret; 2462 } 2463 2464 /** 2465 * i40e_set_promiscuous - set promiscuous mode 2466 * @pf: board private structure 2467 * @promisc: promisc on or off 2468 * 2469 * There are different ways of setting promiscuous mode on a PF depending on 2470 * what state/environment we're in. This identifies and sets it appropriately. 2471 * Returns 0 on success. 2472 **/ 2473 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2474 { 2475 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2476 struct i40e_hw *hw = &pf->hw; 2477 int aq_ret; 2478 2479 if (vsi->type == I40E_VSI_MAIN && 2480 pf->lan_veb != I40E_NO_VEB && 2481 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2482 /* set defport ON for Main VSI instead of true promisc 2483 * this way we will get all unicast/multicast and VLAN 2484 * promisc behavior but will not get VF or VMDq traffic 2485 * replicated on the Main VSI. 2486 */ 2487 if (promisc) 2488 aq_ret = i40e_aq_set_default_vsi(hw, 2489 vsi->seid, 2490 NULL); 2491 else 2492 aq_ret = i40e_aq_clear_default_vsi(hw, 2493 vsi->seid, 2494 NULL); 2495 if (aq_ret) { 2496 dev_info(&pf->pdev->dev, 2497 "Set default VSI failed, err %pe, aq_err %s\n", 2498 ERR_PTR(aq_ret), 2499 i40e_aq_str(hw, hw->aq.asq_last_status)); 2500 } 2501 } else { 2502 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2503 hw, 2504 vsi->seid, 2505 promisc, NULL, 2506 true); 2507 if (aq_ret) { 2508 dev_info(&pf->pdev->dev, 2509 "set unicast promisc failed, err %pe, aq_err %s\n", 2510 ERR_PTR(aq_ret), 2511 i40e_aq_str(hw, hw->aq.asq_last_status)); 2512 } 2513 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2514 hw, 2515 vsi->seid, 2516 promisc, NULL); 2517 if (aq_ret) { 2518 dev_info(&pf->pdev->dev, 2519 "set multicast promisc failed, err %pe, aq_err %s\n", 2520 ERR_PTR(aq_ret), 2521 i40e_aq_str(hw, hw->aq.asq_last_status)); 2522 } 2523 } 2524 2525 if (!aq_ret) 2526 pf->cur_promisc = promisc; 2527 2528 return aq_ret; 2529 } 2530 2531 /** 2532 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2533 * @vsi: ptr to the VSI 2534 * 2535 * Push any outstanding VSI filter changes through the AdminQ. 2536 * 2537 * Returns 0 or error value 2538 **/ 2539 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2540 { 2541 struct hlist_head tmp_add_list, tmp_del_list; 2542 struct i40e_mac_filter *f; 2543 struct i40e_new_mac_filter *new, *add_head = NULL; 2544 struct i40e_hw *hw = &vsi->back->hw; 2545 bool old_overflow, new_overflow; 2546 unsigned int failed_filters = 0; 2547 unsigned int vlan_filters = 0; 2548 char vsi_name[16] = "PF"; 2549 int filter_list_len = 0; 2550 u32 changed_flags = 0; 2551 struct hlist_node *h; 2552 struct i40e_pf *pf; 2553 int num_add = 0; 2554 int num_del = 0; 2555 int aq_ret = 0; 2556 int retval = 0; 2557 u16 cmd_flags; 2558 int list_size; 2559 int bkt; 2560 2561 /* empty array typed pointers, kcalloc later */ 2562 struct i40e_aqc_add_macvlan_element_data *add_list; 2563 struct i40e_aqc_remove_macvlan_element_data *del_list; 2564 2565 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2566 usleep_range(1000, 2000); 2567 pf = vsi->back; 2568 2569 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2570 2571 if (vsi->netdev) { 2572 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2573 vsi->current_netdev_flags = vsi->netdev->flags; 2574 } 2575 2576 INIT_HLIST_HEAD(&tmp_add_list); 2577 INIT_HLIST_HEAD(&tmp_del_list); 2578 2579 if (vsi->type == I40E_VSI_SRIOV) 2580 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2581 else if (vsi->type != I40E_VSI_MAIN) 2582 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2583 2584 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2585 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2586 2587 spin_lock_bh(&vsi->mac_filter_hash_lock); 2588 /* Create a list of filters to delete. */ 2589 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2590 if (f->state == I40E_FILTER_REMOVE) { 2591 /* Move the element into temporary del_list */ 2592 hash_del(&f->hlist); 2593 hlist_add_head(&f->hlist, &tmp_del_list); 2594 2595 /* Avoid counting removed filters */ 2596 continue; 2597 } 2598 if (f->state == I40E_FILTER_NEW) { 2599 /* Create a temporary i40e_new_mac_filter */ 2600 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2601 if (!new) 2602 goto err_no_memory_locked; 2603 2604 /* Store pointer to the real filter */ 2605 new->f = f; 2606 new->state = f->state; 2607 2608 /* Add it to the hash list */ 2609 hlist_add_head(&new->hlist, &tmp_add_list); 2610 } 2611 2612 /* Count the number of active (current and new) VLAN 2613 * filters we have now. Does not count filters which 2614 * are marked for deletion. 2615 */ 2616 if (f->vlan > 0) 2617 vlan_filters++; 2618 } 2619 2620 if (vsi->type != I40E_VSI_SRIOV) 2621 retval = i40e_correct_mac_vlan_filters 2622 (vsi, &tmp_add_list, &tmp_del_list, 2623 vlan_filters); 2624 else if (pf->vf) 2625 retval = i40e_correct_vf_mac_vlan_filters 2626 (vsi, &tmp_add_list, &tmp_del_list, 2627 vlan_filters, pf->vf[vsi->vf_id].trusted); 2628 2629 hlist_for_each_entry(new, &tmp_add_list, hlist) 2630 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2631 2632 if (retval) 2633 goto err_no_memory_locked; 2634 2635 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2636 } 2637 2638 /* Now process 'del_list' outside the lock */ 2639 if (!hlist_empty(&tmp_del_list)) { 2640 filter_list_len = hw->aq.asq_buf_size / 2641 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2642 list_size = filter_list_len * 2643 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2644 del_list = kzalloc(list_size, GFP_ATOMIC); 2645 if (!del_list) 2646 goto err_no_memory; 2647 2648 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2649 cmd_flags = 0; 2650 2651 /* handle broadcast filters by updating the broadcast 2652 * promiscuous flag and release filter list. 2653 */ 2654 if (is_broadcast_ether_addr(f->macaddr)) { 2655 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2656 2657 hlist_del(&f->hlist); 2658 kfree(f); 2659 continue; 2660 } 2661 2662 /* add to delete list */ 2663 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2664 if (f->vlan == I40E_VLAN_ANY) { 2665 del_list[num_del].vlan_tag = 0; 2666 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2667 } else { 2668 del_list[num_del].vlan_tag = 2669 cpu_to_le16((u16)(f->vlan)); 2670 } 2671 2672 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2673 del_list[num_del].flags = cmd_flags; 2674 num_del++; 2675 2676 /* flush a full buffer */ 2677 if (num_del == filter_list_len) { 2678 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2679 num_del, &retval); 2680 memset(del_list, 0, list_size); 2681 num_del = 0; 2682 } 2683 /* Release memory for MAC filter entries which were 2684 * synced up with HW. 2685 */ 2686 hlist_del(&f->hlist); 2687 kfree(f); 2688 } 2689 2690 if (num_del) { 2691 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2692 num_del, &retval); 2693 } 2694 2695 kfree(del_list); 2696 del_list = NULL; 2697 } 2698 2699 if (!hlist_empty(&tmp_add_list)) { 2700 /* Do all the adds now. */ 2701 filter_list_len = hw->aq.asq_buf_size / 2702 sizeof(struct i40e_aqc_add_macvlan_element_data); 2703 list_size = filter_list_len * 2704 sizeof(struct i40e_aqc_add_macvlan_element_data); 2705 add_list = kzalloc(list_size, GFP_ATOMIC); 2706 if (!add_list) 2707 goto err_no_memory; 2708 2709 num_add = 0; 2710 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2711 /* handle broadcast filters by updating the broadcast 2712 * promiscuous flag instead of adding a MAC filter. 2713 */ 2714 if (is_broadcast_ether_addr(new->f->macaddr)) { 2715 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2716 new->f)) 2717 new->state = I40E_FILTER_FAILED; 2718 else 2719 new->state = I40E_FILTER_ACTIVE; 2720 continue; 2721 } 2722 2723 /* add to add array */ 2724 if (num_add == 0) 2725 add_head = new; 2726 cmd_flags = 0; 2727 ether_addr_copy(add_list[num_add].mac_addr, 2728 new->f->macaddr); 2729 if (new->f->vlan == I40E_VLAN_ANY) { 2730 add_list[num_add].vlan_tag = 0; 2731 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2732 } else { 2733 add_list[num_add].vlan_tag = 2734 cpu_to_le16((u16)(new->f->vlan)); 2735 } 2736 add_list[num_add].queue_number = 0; 2737 /* set invalid match method for later detection */ 2738 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2739 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2740 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2741 num_add++; 2742 2743 /* flush a full buffer */ 2744 if (num_add == filter_list_len) { 2745 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2746 add_head, num_add); 2747 memset(add_list, 0, list_size); 2748 num_add = 0; 2749 } 2750 } 2751 if (num_add) { 2752 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2753 num_add); 2754 } 2755 /* Now move all of the filters from the temp add list back to 2756 * the VSI's list. 2757 */ 2758 spin_lock_bh(&vsi->mac_filter_hash_lock); 2759 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2760 /* Only update the state if we're still NEW */ 2761 if (new->f->state == I40E_FILTER_NEW) 2762 new->f->state = new->state; 2763 hlist_del(&new->hlist); 2764 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2765 kfree(new); 2766 } 2767 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2768 kfree(add_list); 2769 add_list = NULL; 2770 } 2771 2772 /* Determine the number of active and failed filters. */ 2773 spin_lock_bh(&vsi->mac_filter_hash_lock); 2774 vsi->active_filters = 0; 2775 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2776 if (f->state == I40E_FILTER_ACTIVE) 2777 vsi->active_filters++; 2778 else if (f->state == I40E_FILTER_FAILED) 2779 failed_filters++; 2780 } 2781 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2782 2783 /* Check if we are able to exit overflow promiscuous mode. We can 2784 * safely exit if we didn't just enter, we no longer have any failed 2785 * filters, and we have reduced filters below the threshold value. 2786 */ 2787 if (old_overflow && !failed_filters && 2788 vsi->active_filters < vsi->promisc_threshold) { 2789 dev_info(&pf->pdev->dev, 2790 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2791 vsi_name); 2792 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2793 vsi->promisc_threshold = 0; 2794 } 2795 2796 /* if the VF is not trusted do not do promisc */ 2797 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2798 !pf->vf[vsi->vf_id].trusted) { 2799 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2800 goto out; 2801 } 2802 2803 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2804 2805 /* If we are entering overflow promiscuous, we need to calculate a new 2806 * threshold for when we are safe to exit 2807 */ 2808 if (!old_overflow && new_overflow) 2809 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2810 2811 /* check for changes in promiscuous modes */ 2812 if (changed_flags & IFF_ALLMULTI) { 2813 bool cur_multipromisc; 2814 2815 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2816 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2817 vsi->seid, 2818 cur_multipromisc, 2819 NULL); 2820 if (aq_ret) { 2821 retval = i40e_aq_rc_to_posix(aq_ret, 2822 hw->aq.asq_last_status); 2823 dev_info(&pf->pdev->dev, 2824 "set multi promisc failed on %s, err %pe aq_err %s\n", 2825 vsi_name, 2826 ERR_PTR(aq_ret), 2827 i40e_aq_str(hw, hw->aq.asq_last_status)); 2828 } else { 2829 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2830 cur_multipromisc ? "entering" : "leaving"); 2831 } 2832 } 2833 2834 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2835 bool cur_promisc; 2836 2837 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2838 new_overflow); 2839 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2840 if (aq_ret) { 2841 retval = i40e_aq_rc_to_posix(aq_ret, 2842 hw->aq.asq_last_status); 2843 dev_info(&pf->pdev->dev, 2844 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2845 cur_promisc ? "on" : "off", 2846 vsi_name, 2847 ERR_PTR(aq_ret), 2848 i40e_aq_str(hw, hw->aq.asq_last_status)); 2849 } 2850 } 2851 out: 2852 /* if something went wrong then set the changed flag so we try again */ 2853 if (retval) 2854 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2855 2856 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2857 return retval; 2858 2859 err_no_memory: 2860 /* Restore elements on the temporary add and delete lists */ 2861 spin_lock_bh(&vsi->mac_filter_hash_lock); 2862 err_no_memory_locked: 2863 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2864 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2865 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2866 2867 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2868 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2869 return -ENOMEM; 2870 } 2871 2872 /** 2873 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2874 * @pf: board private structure 2875 **/ 2876 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2877 { 2878 struct i40e_vsi *vsi; 2879 int v; 2880 2881 if (!pf) 2882 return; 2883 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2884 return; 2885 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2886 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2887 return; 2888 } 2889 2890 i40e_pf_for_each_vsi(pf, v, vsi) { 2891 if ((vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2892 !test_bit(__I40E_VSI_RELEASING, vsi->state)) { 2893 int ret = i40e_sync_vsi_filters(vsi); 2894 2895 if (ret) { 2896 /* come back and try again later */ 2897 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2898 pf->state); 2899 break; 2900 } 2901 } 2902 } 2903 } 2904 2905 /** 2906 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2907 * 2908 * @vsi: VSI to calculate rx_buf_len from 2909 */ 2910 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2911 { 2912 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2913 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2914 2915 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2916 } 2917 2918 /** 2919 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2920 * @vsi: the vsi 2921 * @xdp_prog: XDP program 2922 **/ 2923 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2924 struct bpf_prog *xdp_prog) 2925 { 2926 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2927 u16 chain_len; 2928 2929 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2930 chain_len = 1; 2931 else 2932 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2933 2934 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2935 } 2936 2937 /** 2938 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2939 * @netdev: network interface device structure 2940 * @new_mtu: new value for maximum frame size 2941 * 2942 * Returns 0 on success, negative on failure 2943 **/ 2944 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2945 { 2946 struct i40e_netdev_priv *np = netdev_priv(netdev); 2947 struct i40e_vsi *vsi = np->vsi; 2948 struct i40e_pf *pf = vsi->back; 2949 int frame_size; 2950 2951 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2952 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2953 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2954 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2955 return -EINVAL; 2956 } 2957 2958 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2959 netdev->mtu, new_mtu); 2960 netdev->mtu = new_mtu; 2961 if (netif_running(netdev)) 2962 i40e_vsi_reinit_locked(vsi); 2963 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2964 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2965 return 0; 2966 } 2967 2968 /** 2969 * i40e_ioctl - Access the hwtstamp interface 2970 * @netdev: network interface device structure 2971 * @ifr: interface request data 2972 * @cmd: ioctl command 2973 **/ 2974 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2975 { 2976 struct i40e_netdev_priv *np = netdev_priv(netdev); 2977 struct i40e_pf *pf = np->vsi->back; 2978 2979 switch (cmd) { 2980 case SIOCGHWTSTAMP: 2981 return i40e_ptp_get_ts_config(pf, ifr); 2982 case SIOCSHWTSTAMP: 2983 return i40e_ptp_set_ts_config(pf, ifr); 2984 default: 2985 return -EOPNOTSUPP; 2986 } 2987 } 2988 2989 /** 2990 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2991 * @vsi: the vsi being adjusted 2992 **/ 2993 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2994 { 2995 struct i40e_vsi_context ctxt; 2996 int ret; 2997 2998 /* Don't modify stripping options if a port VLAN is active */ 2999 if (vsi->info.pvid) 3000 return; 3001 3002 if ((vsi->info.valid_sections & 3003 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3004 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 3005 return; /* already enabled */ 3006 3007 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3008 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3009 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 3010 3011 ctxt.seid = vsi->seid; 3012 ctxt.info = vsi->info; 3013 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3014 if (ret) { 3015 dev_info(&vsi->back->pdev->dev, 3016 "update vlan stripping failed, err %pe aq_err %s\n", 3017 ERR_PTR(ret), 3018 i40e_aq_str(&vsi->back->hw, 3019 vsi->back->hw.aq.asq_last_status)); 3020 } 3021 } 3022 3023 /** 3024 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 3025 * @vsi: the vsi being adjusted 3026 **/ 3027 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 3028 { 3029 struct i40e_vsi_context ctxt; 3030 int ret; 3031 3032 /* Don't modify stripping options if a port VLAN is active */ 3033 if (vsi->info.pvid) 3034 return; 3035 3036 if ((vsi->info.valid_sections & 3037 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3038 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3039 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3040 return; /* already disabled */ 3041 3042 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3043 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3044 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3045 3046 ctxt.seid = vsi->seid; 3047 ctxt.info = vsi->info; 3048 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3049 if (ret) { 3050 dev_info(&vsi->back->pdev->dev, 3051 "update vlan stripping failed, err %pe aq_err %s\n", 3052 ERR_PTR(ret), 3053 i40e_aq_str(&vsi->back->hw, 3054 vsi->back->hw.aq.asq_last_status)); 3055 } 3056 } 3057 3058 /** 3059 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3060 * @vsi: the vsi being configured 3061 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3062 * 3063 * This is a helper function for adding a new MAC/VLAN filter with the 3064 * specified VLAN for each existing MAC address already in the hash table. 3065 * This function does *not* perform any accounting to update filters based on 3066 * VLAN mode. 3067 * 3068 * NOTE: this function expects to be called while under the 3069 * mac_filter_hash_lock 3070 **/ 3071 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3072 { 3073 struct i40e_mac_filter *f, *add_f; 3074 struct hlist_node *h; 3075 int bkt; 3076 3077 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3078 /* If we're asked to add a filter that has been marked for 3079 * removal, it is safe to simply restore it to active state. 3080 * __i40e_del_filter will have simply deleted any filters which 3081 * were previously marked NEW or FAILED, so if it is currently 3082 * marked REMOVE it must have previously been ACTIVE. Since we 3083 * haven't yet run the sync filters task, just restore this 3084 * filter to the ACTIVE state so that the sync task leaves it 3085 * in place. 3086 */ 3087 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3088 f->state = I40E_FILTER_ACTIVE; 3089 continue; 3090 } else if (f->state == I40E_FILTER_REMOVE) { 3091 continue; 3092 } 3093 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3094 if (!add_f) { 3095 dev_info(&vsi->back->pdev->dev, 3096 "Could not add vlan filter %d for %pM\n", 3097 vid, f->macaddr); 3098 return -ENOMEM; 3099 } 3100 } 3101 3102 return 0; 3103 } 3104 3105 /** 3106 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3107 * @vsi: the VSI being configured 3108 * @vid: VLAN id to be added 3109 **/ 3110 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3111 { 3112 int err; 3113 3114 if (vsi->info.pvid) 3115 return -EINVAL; 3116 3117 /* The network stack will attempt to add VID=0, with the intention to 3118 * receive priority tagged packets with a VLAN of 0. Our HW receives 3119 * these packets by default when configured to receive untagged 3120 * packets, so we don't need to add a filter for this case. 3121 * Additionally, HW interprets adding a VID=0 filter as meaning to 3122 * receive *only* tagged traffic and stops receiving untagged traffic. 3123 * Thus, we do not want to actually add a filter for VID=0 3124 */ 3125 if (!vid) 3126 return 0; 3127 3128 /* Locked once because all functions invoked below iterates list*/ 3129 spin_lock_bh(&vsi->mac_filter_hash_lock); 3130 err = i40e_add_vlan_all_mac(vsi, vid); 3131 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3132 if (err) 3133 return err; 3134 3135 /* schedule our worker thread which will take care of 3136 * applying the new filter changes 3137 */ 3138 i40e_service_event_schedule(vsi->back); 3139 return 0; 3140 } 3141 3142 /** 3143 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3144 * @vsi: the vsi being configured 3145 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3146 * 3147 * This function should be used to remove all VLAN filters which match the 3148 * given VID. It does not schedule the service event and does not take the 3149 * mac_filter_hash_lock so it may be combined with other operations under 3150 * a single invocation of the mac_filter_hash_lock. 3151 * 3152 * NOTE: this function expects to be called while under the 3153 * mac_filter_hash_lock 3154 */ 3155 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3156 { 3157 struct i40e_mac_filter *f; 3158 struct hlist_node *h; 3159 int bkt; 3160 3161 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3162 if (f->vlan == vid) 3163 __i40e_del_filter(vsi, f); 3164 } 3165 } 3166 3167 /** 3168 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3169 * @vsi: the VSI being configured 3170 * @vid: VLAN id to be removed 3171 **/ 3172 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3173 { 3174 if (!vid || vsi->info.pvid) 3175 return; 3176 3177 spin_lock_bh(&vsi->mac_filter_hash_lock); 3178 i40e_rm_vlan_all_mac(vsi, vid); 3179 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3180 3181 /* schedule our worker thread which will take care of 3182 * applying the new filter changes 3183 */ 3184 i40e_service_event_schedule(vsi->back); 3185 } 3186 3187 /** 3188 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3189 * @netdev: network interface to be adjusted 3190 * @proto: unused protocol value 3191 * @vid: vlan id to be added 3192 * 3193 * net_device_ops implementation for adding vlan ids 3194 **/ 3195 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3196 __always_unused __be16 proto, u16 vid) 3197 { 3198 struct i40e_netdev_priv *np = netdev_priv(netdev); 3199 struct i40e_vsi *vsi = np->vsi; 3200 int ret = 0; 3201 3202 if (vid >= VLAN_N_VID) 3203 return -EINVAL; 3204 3205 ret = i40e_vsi_add_vlan(vsi, vid); 3206 if (!ret) 3207 set_bit(vid, vsi->active_vlans); 3208 3209 return ret; 3210 } 3211 3212 /** 3213 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3214 * @netdev: network interface to be adjusted 3215 * @proto: unused protocol value 3216 * @vid: vlan id to be added 3217 **/ 3218 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3219 __always_unused __be16 proto, u16 vid) 3220 { 3221 struct i40e_netdev_priv *np = netdev_priv(netdev); 3222 struct i40e_vsi *vsi = np->vsi; 3223 3224 if (vid >= VLAN_N_VID) 3225 return; 3226 set_bit(vid, vsi->active_vlans); 3227 } 3228 3229 /** 3230 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3231 * @netdev: network interface to be adjusted 3232 * @proto: unused protocol value 3233 * @vid: vlan id to be removed 3234 * 3235 * net_device_ops implementation for removing vlan ids 3236 **/ 3237 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3238 __always_unused __be16 proto, u16 vid) 3239 { 3240 struct i40e_netdev_priv *np = netdev_priv(netdev); 3241 struct i40e_vsi *vsi = np->vsi; 3242 3243 /* return code is ignored as there is nothing a user 3244 * can do about failure to remove and a log message was 3245 * already printed from the other function 3246 */ 3247 i40e_vsi_kill_vlan(vsi, vid); 3248 3249 clear_bit(vid, vsi->active_vlans); 3250 3251 return 0; 3252 } 3253 3254 /** 3255 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3256 * @vsi: the vsi being brought back up 3257 **/ 3258 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3259 { 3260 u16 vid; 3261 3262 if (!vsi->netdev) 3263 return; 3264 3265 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3266 i40e_vlan_stripping_enable(vsi); 3267 else 3268 i40e_vlan_stripping_disable(vsi); 3269 3270 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3271 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3272 vid); 3273 } 3274 3275 /** 3276 * i40e_vsi_add_pvid - Add pvid for the VSI 3277 * @vsi: the vsi being adjusted 3278 * @vid: the vlan id to set as a PVID 3279 **/ 3280 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3281 { 3282 struct i40e_vsi_context ctxt; 3283 int ret; 3284 3285 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3286 vsi->info.pvid = cpu_to_le16(vid); 3287 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3288 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3289 I40E_AQ_VSI_PVLAN_EMOD_STR; 3290 3291 ctxt.seid = vsi->seid; 3292 ctxt.info = vsi->info; 3293 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3294 if (ret) { 3295 dev_info(&vsi->back->pdev->dev, 3296 "add pvid failed, err %pe aq_err %s\n", 3297 ERR_PTR(ret), 3298 i40e_aq_str(&vsi->back->hw, 3299 vsi->back->hw.aq.asq_last_status)); 3300 return -ENOENT; 3301 } 3302 3303 return 0; 3304 } 3305 3306 /** 3307 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3308 * @vsi: the vsi being adjusted 3309 * 3310 * Just use the vlan_rx_register() service to put it back to normal 3311 **/ 3312 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3313 { 3314 vsi->info.pvid = 0; 3315 3316 i40e_vlan_stripping_disable(vsi); 3317 } 3318 3319 /** 3320 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3321 * @vsi: ptr to the VSI 3322 * 3323 * If this function returns with an error, then it's possible one or 3324 * more of the rings is populated (while the rest are not). It is the 3325 * callers duty to clean those orphaned rings. 3326 * 3327 * Return 0 on success, negative on failure 3328 **/ 3329 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3330 { 3331 int i, err = 0; 3332 3333 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3334 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3335 3336 if (!i40e_enabled_xdp_vsi(vsi)) 3337 return err; 3338 3339 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3340 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3341 3342 return err; 3343 } 3344 3345 /** 3346 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3347 * @vsi: ptr to the VSI 3348 * 3349 * Free VSI's transmit software resources 3350 **/ 3351 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3352 { 3353 int i; 3354 3355 if (vsi->tx_rings) { 3356 for (i = 0; i < vsi->num_queue_pairs; i++) 3357 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3358 i40e_free_tx_resources(vsi->tx_rings[i]); 3359 } 3360 3361 if (vsi->xdp_rings) { 3362 for (i = 0; i < vsi->num_queue_pairs; i++) 3363 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3364 i40e_free_tx_resources(vsi->xdp_rings[i]); 3365 } 3366 } 3367 3368 /** 3369 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3370 * @vsi: ptr to the VSI 3371 * 3372 * If this function returns with an error, then it's possible one or 3373 * more of the rings is populated (while the rest are not). It is the 3374 * callers duty to clean those orphaned rings. 3375 * 3376 * Return 0 on success, negative on failure 3377 **/ 3378 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3379 { 3380 int i, err = 0; 3381 3382 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3383 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3384 return err; 3385 } 3386 3387 /** 3388 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3389 * @vsi: ptr to the VSI 3390 * 3391 * Free all receive software resources 3392 **/ 3393 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3394 { 3395 int i; 3396 3397 if (!vsi->rx_rings) 3398 return; 3399 3400 for (i = 0; i < vsi->num_queue_pairs; i++) 3401 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3402 i40e_free_rx_resources(vsi->rx_rings[i]); 3403 } 3404 3405 /** 3406 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3407 * @ring: The Tx ring to configure 3408 * 3409 * This enables/disables XPS for a given Tx descriptor ring 3410 * based on the TCs enabled for the VSI that ring belongs to. 3411 **/ 3412 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3413 { 3414 int cpu; 3415 3416 if (!ring->q_vector || !ring->netdev || ring->ch) 3417 return; 3418 3419 /* We only initialize XPS once, so as not to overwrite user settings */ 3420 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3421 return; 3422 3423 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3424 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3425 ring->queue_index); 3426 } 3427 3428 /** 3429 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3430 * @ring: The Tx or Rx ring 3431 * 3432 * Returns the AF_XDP buffer pool or NULL. 3433 **/ 3434 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3435 { 3436 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3437 int qid = ring->queue_index; 3438 3439 if (ring_is_xdp(ring)) 3440 qid -= ring->vsi->alloc_queue_pairs; 3441 3442 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3443 return NULL; 3444 3445 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3446 } 3447 3448 /** 3449 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3450 * @ring: The Tx ring to configure 3451 * 3452 * Configure the Tx descriptor ring in the HMC context. 3453 **/ 3454 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3455 { 3456 struct i40e_vsi *vsi = ring->vsi; 3457 u16 pf_q = vsi->base_queue + ring->queue_index; 3458 struct i40e_hw *hw = &vsi->back->hw; 3459 struct i40e_hmc_obj_txq tx_ctx; 3460 u32 qtx_ctl = 0; 3461 int err = 0; 3462 3463 if (ring_is_xdp(ring)) 3464 ring->xsk_pool = i40e_xsk_pool(ring); 3465 3466 /* some ATR related tx ring init */ 3467 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3468 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3469 ring->atr_count = 0; 3470 } else { 3471 ring->atr_sample_rate = 0; 3472 } 3473 3474 /* configure XPS */ 3475 i40e_config_xps_tx_ring(ring); 3476 3477 /* clear the context structure first */ 3478 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3479 3480 tx_ctx.new_context = 1; 3481 tx_ctx.base = (ring->dma / 128); 3482 tx_ctx.qlen = ring->count; 3483 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3484 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3485 tx_ctx.fd_ena = 1; 3486 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3487 tx_ctx.timesync_ena = 1; 3488 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3489 if (vsi->type != I40E_VSI_FDIR) 3490 tx_ctx.head_wb_ena = 1; 3491 tx_ctx.head_wb_addr = ring->dma + 3492 (ring->count * sizeof(struct i40e_tx_desc)); 3493 3494 /* As part of VSI creation/update, FW allocates certain 3495 * Tx arbitration queue sets for each TC enabled for 3496 * the VSI. The FW returns the handles to these queue 3497 * sets as part of the response buffer to Add VSI, 3498 * Update VSI, etc. AQ commands. It is expected that 3499 * these queue set handles be associated with the Tx 3500 * queues by the driver as part of the TX queue context 3501 * initialization. This has to be done regardless of 3502 * DCB as by default everything is mapped to TC0. 3503 */ 3504 3505 if (ring->ch) 3506 tx_ctx.rdylist = 3507 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3508 3509 else 3510 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3511 3512 tx_ctx.rdylist_act = 0; 3513 3514 /* clear the context in the HMC */ 3515 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3516 if (err) { 3517 dev_info(&vsi->back->pdev->dev, 3518 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3519 ring->queue_index, pf_q, err); 3520 return -ENOMEM; 3521 } 3522 3523 /* set the context in the HMC */ 3524 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3525 if (err) { 3526 dev_info(&vsi->back->pdev->dev, 3527 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3528 ring->queue_index, pf_q, err); 3529 return -ENOMEM; 3530 } 3531 3532 /* Now associate this queue with this PCI function */ 3533 if (ring->ch) { 3534 if (ring->ch->type == I40E_VSI_VMDQ2) 3535 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3536 else 3537 return -EINVAL; 3538 3539 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3540 ring->ch->vsi_number); 3541 } else { 3542 if (vsi->type == I40E_VSI_VMDQ2) { 3543 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3544 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3545 vsi->id); 3546 } else { 3547 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3548 } 3549 } 3550 3551 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id); 3552 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3553 i40e_flush(hw); 3554 3555 /* cache tail off for easier writes later */ 3556 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3557 3558 return 0; 3559 } 3560 3561 /** 3562 * i40e_rx_offset - Return expected offset into page to access data 3563 * @rx_ring: Ring we are requesting offset of 3564 * 3565 * Returns the offset value for ring into the data buffer. 3566 */ 3567 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3568 { 3569 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3570 } 3571 3572 /** 3573 * i40e_configure_rx_ring - Configure a receive ring context 3574 * @ring: The Rx ring to configure 3575 * 3576 * Configure the Rx descriptor ring in the HMC context. 3577 **/ 3578 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3579 { 3580 struct i40e_vsi *vsi = ring->vsi; 3581 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3582 u16 pf_q = vsi->base_queue + ring->queue_index; 3583 struct i40e_hw *hw = &vsi->back->hw; 3584 struct i40e_hmc_obj_rxq rx_ctx; 3585 int err = 0; 3586 bool ok; 3587 3588 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3589 3590 /* clear the context structure first */ 3591 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3592 3593 ring->rx_buf_len = vsi->rx_buf_len; 3594 3595 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 3596 if (ring->vsi->type != I40E_VSI_MAIN) 3597 goto skip; 3598 3599 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 3600 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3601 ring->queue_index, 3602 ring->q_vector->napi.napi_id, 3603 ring->rx_buf_len); 3604 if (err) 3605 return err; 3606 } 3607 3608 ring->xsk_pool = i40e_xsk_pool(ring); 3609 if (ring->xsk_pool) { 3610 xdp_rxq_info_unreg(&ring->xdp_rxq); 3611 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool); 3612 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3613 ring->queue_index, 3614 ring->q_vector->napi.napi_id, 3615 ring->rx_buf_len); 3616 if (err) 3617 return err; 3618 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3619 MEM_TYPE_XSK_BUFF_POOL, 3620 NULL); 3621 if (err) 3622 return err; 3623 dev_info(&vsi->back->pdev->dev, 3624 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3625 ring->queue_index); 3626 3627 } else { 3628 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3629 MEM_TYPE_PAGE_SHARED, 3630 NULL); 3631 if (err) 3632 return err; 3633 } 3634 3635 skip: 3636 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3637 3638 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3639 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3640 3641 rx_ctx.base = (ring->dma / 128); 3642 rx_ctx.qlen = ring->count; 3643 3644 /* use 16 byte descriptors */ 3645 rx_ctx.dsize = 0; 3646 3647 /* descriptor type is always zero 3648 * rx_ctx.dtype = 0; 3649 */ 3650 rx_ctx.hsplit_0 = 0; 3651 3652 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3653 if (hw->revision_id == 0) 3654 rx_ctx.lrxqthresh = 0; 3655 else 3656 rx_ctx.lrxqthresh = 1; 3657 rx_ctx.crcstrip = 1; 3658 rx_ctx.l2tsel = 1; 3659 /* this controls whether VLAN is stripped from inner headers */ 3660 rx_ctx.showiv = 0; 3661 /* set the prefena field to 1 because the manual says to */ 3662 rx_ctx.prefena = 1; 3663 3664 /* clear the context in the HMC */ 3665 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3666 if (err) { 3667 dev_info(&vsi->back->pdev->dev, 3668 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3669 ring->queue_index, pf_q, err); 3670 return -ENOMEM; 3671 } 3672 3673 /* set the context in the HMC */ 3674 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3675 if (err) { 3676 dev_info(&vsi->back->pdev->dev, 3677 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3678 ring->queue_index, pf_q, err); 3679 return -ENOMEM; 3680 } 3681 3682 /* configure Rx buffer alignment */ 3683 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3684 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3685 dev_info(&vsi->back->pdev->dev, 3686 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3687 return -EOPNOTSUPP; 3688 } 3689 clear_ring_build_skb_enabled(ring); 3690 } else { 3691 set_ring_build_skb_enabled(ring); 3692 } 3693 3694 ring->rx_offset = i40e_rx_offset(ring); 3695 3696 /* cache tail for quicker writes, and clear the reg before use */ 3697 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3698 writel(0, ring->tail); 3699 3700 if (ring->xsk_pool) { 3701 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3702 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3703 } else { 3704 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3705 } 3706 if (!ok) { 3707 /* Log this in case the user has forgotten to give the kernel 3708 * any buffers, even later in the application. 3709 */ 3710 dev_info(&vsi->back->pdev->dev, 3711 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3712 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3713 ring->queue_index, pf_q); 3714 } 3715 3716 return 0; 3717 } 3718 3719 /** 3720 * i40e_vsi_configure_tx - Configure the VSI for Tx 3721 * @vsi: VSI structure describing this set of rings and resources 3722 * 3723 * Configure the Tx VSI for operation. 3724 **/ 3725 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3726 { 3727 int err = 0; 3728 u16 i; 3729 3730 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3731 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3732 3733 if (err || !i40e_enabled_xdp_vsi(vsi)) 3734 return err; 3735 3736 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3737 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3738 3739 return err; 3740 } 3741 3742 /** 3743 * i40e_vsi_configure_rx - Configure the VSI for Rx 3744 * @vsi: the VSI being configured 3745 * 3746 * Configure the Rx VSI for operation. 3747 **/ 3748 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3749 { 3750 int err = 0; 3751 u16 i; 3752 3753 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3754 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3755 3756 #if (PAGE_SIZE < 8192) 3757 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3758 vsi->netdev->mtu <= ETH_DATA_LEN) { 3759 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3760 vsi->max_frame = vsi->rx_buf_len; 3761 } 3762 #endif 3763 3764 /* set up individual rings */ 3765 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3766 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3767 3768 return err; 3769 } 3770 3771 /** 3772 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3773 * @vsi: ptr to the VSI 3774 **/ 3775 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3776 { 3777 struct i40e_ring *tx_ring, *rx_ring; 3778 u16 qoffset, qcount; 3779 int i, n; 3780 3781 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3782 /* Reset the TC information */ 3783 for (i = 0; i < vsi->num_queue_pairs; i++) { 3784 rx_ring = vsi->rx_rings[i]; 3785 tx_ring = vsi->tx_rings[i]; 3786 rx_ring->dcb_tc = 0; 3787 tx_ring->dcb_tc = 0; 3788 } 3789 return; 3790 } 3791 3792 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3793 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3794 continue; 3795 3796 qoffset = vsi->tc_config.tc_info[n].qoffset; 3797 qcount = vsi->tc_config.tc_info[n].qcount; 3798 for (i = qoffset; i < (qoffset + qcount); i++) { 3799 rx_ring = vsi->rx_rings[i]; 3800 tx_ring = vsi->tx_rings[i]; 3801 rx_ring->dcb_tc = n; 3802 tx_ring->dcb_tc = n; 3803 } 3804 } 3805 } 3806 3807 /** 3808 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3809 * @vsi: ptr to the VSI 3810 **/ 3811 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3812 { 3813 if (vsi->netdev) 3814 i40e_set_rx_mode(vsi->netdev); 3815 } 3816 3817 /** 3818 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3819 * @pf: Pointer to the targeted PF 3820 * 3821 * Set all flow director counters to 0. 3822 */ 3823 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3824 { 3825 pf->fd_tcp4_filter_cnt = 0; 3826 pf->fd_udp4_filter_cnt = 0; 3827 pf->fd_sctp4_filter_cnt = 0; 3828 pf->fd_ip4_filter_cnt = 0; 3829 pf->fd_tcp6_filter_cnt = 0; 3830 pf->fd_udp6_filter_cnt = 0; 3831 pf->fd_sctp6_filter_cnt = 0; 3832 pf->fd_ip6_filter_cnt = 0; 3833 } 3834 3835 /** 3836 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3837 * @vsi: Pointer to the targeted VSI 3838 * 3839 * This function replays the hlist on the hw where all the SB Flow Director 3840 * filters were saved. 3841 **/ 3842 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3843 { 3844 struct i40e_fdir_filter *filter; 3845 struct i40e_pf *pf = vsi->back; 3846 struct hlist_node *node; 3847 3848 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3849 return; 3850 3851 /* Reset FDir counters as we're replaying all existing filters */ 3852 i40e_reset_fdir_filter_cnt(pf); 3853 3854 hlist_for_each_entry_safe(filter, node, 3855 &pf->fdir_filter_list, fdir_node) { 3856 i40e_add_del_fdir(vsi, filter, true); 3857 } 3858 } 3859 3860 /** 3861 * i40e_vsi_configure - Set up the VSI for action 3862 * @vsi: the VSI being configured 3863 **/ 3864 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3865 { 3866 int err; 3867 3868 i40e_set_vsi_rx_mode(vsi); 3869 i40e_restore_vlan(vsi); 3870 i40e_vsi_config_dcb_rings(vsi); 3871 err = i40e_vsi_configure_tx(vsi); 3872 if (!err) 3873 err = i40e_vsi_configure_rx(vsi); 3874 3875 return err; 3876 } 3877 3878 /** 3879 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3880 * @vsi: the VSI being configured 3881 **/ 3882 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3883 { 3884 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3885 struct i40e_pf *pf = vsi->back; 3886 struct i40e_hw *hw = &pf->hw; 3887 u16 vector; 3888 int i, q; 3889 u32 qp; 3890 3891 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3892 * and PFINT_LNKLSTn registers, e.g.: 3893 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3894 */ 3895 qp = vsi->base_queue; 3896 vector = vsi->base_vector; 3897 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3898 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3899 3900 q_vector->rx.next_update = jiffies + 1; 3901 q_vector->rx.target_itr = 3902 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3903 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3904 q_vector->rx.target_itr >> 1); 3905 q_vector->rx.current_itr = q_vector->rx.target_itr; 3906 3907 q_vector->tx.next_update = jiffies + 1; 3908 q_vector->tx.target_itr = 3909 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3910 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3911 q_vector->tx.target_itr >> 1); 3912 q_vector->tx.current_itr = q_vector->tx.target_itr; 3913 3914 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3915 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3916 3917 /* begin of linked list for RX queue assigned to this vector */ 3918 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3919 for (q = 0; q < q_vector->num_ringpairs; q++) { 3920 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3921 u32 val; 3922 3923 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3924 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3925 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3926 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3927 (I40E_QUEUE_TYPE_TX << 3928 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3929 3930 wr32(hw, I40E_QINT_RQCTL(qp), val); 3931 3932 if (has_xdp) { 3933 /* TX queue with next queue set to TX */ 3934 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3935 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3936 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3937 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3938 (I40E_QUEUE_TYPE_TX << 3939 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3940 3941 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3942 } 3943 /* TX queue with next RX or end of linked list */ 3944 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3945 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3946 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3947 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3948 (I40E_QUEUE_TYPE_RX << 3949 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3950 3951 /* Terminate the linked list */ 3952 if (q == (q_vector->num_ringpairs - 1)) 3953 val |= (I40E_QUEUE_END_OF_LIST << 3954 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3955 3956 wr32(hw, I40E_QINT_TQCTL(qp), val); 3957 qp++; 3958 } 3959 } 3960 3961 i40e_flush(hw); 3962 } 3963 3964 /** 3965 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3966 * @pf: pointer to private device data structure 3967 **/ 3968 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3969 { 3970 struct i40e_hw *hw = &pf->hw; 3971 u32 val; 3972 3973 /* clear things first */ 3974 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3975 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3976 3977 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3978 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3979 I40E_PFINT_ICR0_ENA_GRST_MASK | 3980 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3981 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3982 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3983 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3984 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3985 3986 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 3987 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3988 3989 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3990 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3991 3992 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3993 3994 /* SW_ITR_IDX = 0, but don't change INTENA */ 3995 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3996 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3997 3998 /* OTHER_ITR_IDX = 0 */ 3999 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 4000 } 4001 4002 /** 4003 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 4004 * @vsi: the VSI being configured 4005 **/ 4006 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 4007 { 4008 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 4009 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4010 struct i40e_pf *pf = vsi->back; 4011 struct i40e_hw *hw = &pf->hw; 4012 4013 /* set the ITR configuration */ 4014 q_vector->rx.next_update = jiffies + 1; 4015 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 4016 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 4017 q_vector->rx.current_itr = q_vector->rx.target_itr; 4018 q_vector->tx.next_update = jiffies + 1; 4019 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 4020 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 4021 q_vector->tx.current_itr = q_vector->tx.target_itr; 4022 4023 i40e_enable_misc_int_causes(pf); 4024 4025 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4026 wr32(hw, I40E_PFINT_LNKLST0, 0); 4027 4028 /* Associate the queue pair to the vector and enable the queue 4029 * interrupt RX queue in linked list with next queue set to TX 4030 */ 4031 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4032 4033 if (i40e_enabled_xdp_vsi(vsi)) { 4034 /* TX queue in linked list with next queue set to TX */ 4035 wr32(hw, I40E_QINT_TQCTL(nextqp), 4036 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4037 } 4038 4039 /* last TX queue so the next RX queue doesn't matter */ 4040 wr32(hw, I40E_QINT_TQCTL(0), 4041 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4042 i40e_flush(hw); 4043 } 4044 4045 /** 4046 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4047 * @pf: board private structure 4048 **/ 4049 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4050 { 4051 struct i40e_hw *hw = &pf->hw; 4052 4053 wr32(hw, I40E_PFINT_DYN_CTL0, 4054 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4055 i40e_flush(hw); 4056 } 4057 4058 /** 4059 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4060 * @pf: board private structure 4061 **/ 4062 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4063 { 4064 struct i40e_hw *hw = &pf->hw; 4065 u32 val; 4066 4067 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4068 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4069 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4070 4071 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4072 i40e_flush(hw); 4073 } 4074 4075 /** 4076 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4077 * @irq: interrupt number 4078 * @data: pointer to a q_vector 4079 **/ 4080 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4081 { 4082 struct i40e_q_vector *q_vector = data; 4083 4084 if (!q_vector->tx.ring && !q_vector->rx.ring) 4085 return IRQ_HANDLED; 4086 4087 napi_schedule_irqoff(&q_vector->napi); 4088 4089 return IRQ_HANDLED; 4090 } 4091 4092 /** 4093 * i40e_irq_affinity_notify - Callback for affinity changes 4094 * @notify: context as to what irq was changed 4095 * @mask: the new affinity mask 4096 * 4097 * This is a callback function used by the irq_set_affinity_notifier function 4098 * so that we may register to receive changes to the irq affinity masks. 4099 **/ 4100 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4101 const cpumask_t *mask) 4102 { 4103 struct i40e_q_vector *q_vector = 4104 container_of(notify, struct i40e_q_vector, affinity_notify); 4105 4106 cpumask_copy(&q_vector->affinity_mask, mask); 4107 } 4108 4109 /** 4110 * i40e_irq_affinity_release - Callback for affinity notifier release 4111 * @ref: internal core kernel usage 4112 * 4113 * This is a callback function used by the irq_set_affinity_notifier function 4114 * to inform the current notification subscriber that they will no longer 4115 * receive notifications. 4116 **/ 4117 static void i40e_irq_affinity_release(struct kref *ref) {} 4118 4119 /** 4120 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4121 * @vsi: the VSI being configured 4122 * @basename: name for the vector 4123 * 4124 * Allocates MSI-X vectors and requests interrupts from the kernel. 4125 **/ 4126 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4127 { 4128 int q_vectors = vsi->num_q_vectors; 4129 struct i40e_pf *pf = vsi->back; 4130 int base = vsi->base_vector; 4131 int rx_int_idx = 0; 4132 int tx_int_idx = 0; 4133 int vector, err; 4134 int irq_num; 4135 int cpu; 4136 4137 for (vector = 0; vector < q_vectors; vector++) { 4138 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4139 4140 irq_num = pf->msix_entries[base + vector].vector; 4141 4142 if (q_vector->tx.ring && q_vector->rx.ring) { 4143 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4144 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4145 tx_int_idx++; 4146 } else if (q_vector->rx.ring) { 4147 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4148 "%s-%s-%d", basename, "rx", rx_int_idx++); 4149 } else if (q_vector->tx.ring) { 4150 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4151 "%s-%s-%d", basename, "tx", tx_int_idx++); 4152 } else { 4153 /* skip this unused q_vector */ 4154 continue; 4155 } 4156 err = request_irq(irq_num, 4157 vsi->irq_handler, 4158 0, 4159 q_vector->name, 4160 q_vector); 4161 if (err) { 4162 dev_info(&pf->pdev->dev, 4163 "MSIX request_irq failed, error: %d\n", err); 4164 goto free_queue_irqs; 4165 } 4166 4167 /* register for affinity change notifications */ 4168 q_vector->irq_num = irq_num; 4169 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4170 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4171 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4172 /* Spread affinity hints out across online CPUs. 4173 * 4174 * get_cpu_mask returns a static constant mask with 4175 * a permanent lifetime so it's ok to pass to 4176 * irq_update_affinity_hint without making a copy. 4177 */ 4178 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4179 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4180 } 4181 4182 vsi->irqs_ready = true; 4183 return 0; 4184 4185 free_queue_irqs: 4186 while (vector) { 4187 vector--; 4188 irq_num = pf->msix_entries[base + vector].vector; 4189 irq_set_affinity_notifier(irq_num, NULL); 4190 irq_update_affinity_hint(irq_num, NULL); 4191 free_irq(irq_num, &vsi->q_vectors[vector]); 4192 } 4193 return err; 4194 } 4195 4196 /** 4197 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4198 * @vsi: the VSI being un-configured 4199 **/ 4200 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4201 { 4202 struct i40e_pf *pf = vsi->back; 4203 struct i40e_hw *hw = &pf->hw; 4204 int base = vsi->base_vector; 4205 int i; 4206 4207 /* disable interrupt causation from each queue */ 4208 for (i = 0; i < vsi->num_queue_pairs; i++) { 4209 u32 val; 4210 4211 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4212 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4213 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4214 4215 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4216 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4217 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4218 4219 if (!i40e_enabled_xdp_vsi(vsi)) 4220 continue; 4221 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4222 } 4223 4224 /* disable each interrupt */ 4225 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4226 for (i = vsi->base_vector; 4227 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4228 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4229 4230 i40e_flush(hw); 4231 for (i = 0; i < vsi->num_q_vectors; i++) 4232 synchronize_irq(pf->msix_entries[i + base].vector); 4233 } else { 4234 /* Legacy and MSI mode - this stops all interrupt handling */ 4235 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4236 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4237 i40e_flush(hw); 4238 synchronize_irq(pf->pdev->irq); 4239 } 4240 } 4241 4242 /** 4243 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4244 * @vsi: the VSI being configured 4245 **/ 4246 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4247 { 4248 struct i40e_pf *pf = vsi->back; 4249 int i; 4250 4251 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4252 for (i = 0; i < vsi->num_q_vectors; i++) 4253 i40e_irq_dynamic_enable(vsi, i); 4254 } else { 4255 i40e_irq_dynamic_enable_icr0(pf); 4256 } 4257 4258 i40e_flush(&pf->hw); 4259 return 0; 4260 } 4261 4262 /** 4263 * i40e_free_misc_vector - Free the vector that handles non-queue events 4264 * @pf: board private structure 4265 **/ 4266 static void i40e_free_misc_vector(struct i40e_pf *pf) 4267 { 4268 /* Disable ICR 0 */ 4269 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4270 i40e_flush(&pf->hw); 4271 4272 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4273 free_irq(pf->msix_entries[0].vector, pf); 4274 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4275 } 4276 } 4277 4278 /** 4279 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4280 * @irq: interrupt number 4281 * @data: pointer to a q_vector 4282 * 4283 * This is the handler used for all MSI/Legacy interrupts, and deals 4284 * with both queue and non-queue interrupts. This is also used in 4285 * MSIX mode to handle the non-queue interrupts. 4286 **/ 4287 static irqreturn_t i40e_intr(int irq, void *data) 4288 { 4289 struct i40e_pf *pf = (struct i40e_pf *)data; 4290 struct i40e_hw *hw = &pf->hw; 4291 irqreturn_t ret = IRQ_NONE; 4292 u32 icr0, icr0_remaining; 4293 u32 val, ena_mask; 4294 4295 icr0 = rd32(hw, I40E_PFINT_ICR0); 4296 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4297 4298 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4299 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4300 goto enable_intr; 4301 4302 /* if interrupt but no bits showing, must be SWINT */ 4303 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4304 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4305 pf->sw_int_count++; 4306 4307 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4308 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4309 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4310 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4311 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4312 } 4313 4314 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4315 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4316 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4317 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4318 4319 /* We do not have a way to disarm Queue causes while leaving 4320 * interrupt enabled for all other causes, ideally 4321 * interrupt should be disabled while we are in NAPI but 4322 * this is not a performance path and napi_schedule() 4323 * can deal with rescheduling. 4324 */ 4325 if (!test_bit(__I40E_DOWN, pf->state)) 4326 napi_schedule_irqoff(&q_vector->napi); 4327 } 4328 4329 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4330 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4331 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4332 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4333 } 4334 4335 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4336 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4337 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4338 } 4339 4340 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4341 /* disable any further VFLR event notifications */ 4342 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4343 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4344 4345 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4346 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4347 } else { 4348 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4349 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4350 } 4351 } 4352 4353 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4354 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4355 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4356 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4357 val = rd32(hw, I40E_GLGEN_RSTAT); 4358 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val); 4359 if (val == I40E_RESET_CORER) { 4360 pf->corer_count++; 4361 } else if (val == I40E_RESET_GLOBR) { 4362 pf->globr_count++; 4363 } else if (val == I40E_RESET_EMPR) { 4364 pf->empr_count++; 4365 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4366 } 4367 } 4368 4369 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4370 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4371 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4372 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4373 rd32(hw, I40E_PFHMC_ERRORINFO), 4374 rd32(hw, I40E_PFHMC_ERRORDATA)); 4375 } 4376 4377 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4378 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4379 4380 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4381 schedule_work(&pf->ptp_extts0_work); 4382 4383 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4384 i40e_ptp_tx_hwtstamp(pf); 4385 4386 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4387 } 4388 4389 /* If a critical error is pending we have no choice but to reset the 4390 * device. 4391 * Report and mask out any remaining unexpected interrupts. 4392 */ 4393 icr0_remaining = icr0 & ena_mask; 4394 if (icr0_remaining) { 4395 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4396 icr0_remaining); 4397 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4398 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4399 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4400 dev_info(&pf->pdev->dev, "device will be reset\n"); 4401 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4402 i40e_service_event_schedule(pf); 4403 } 4404 ena_mask &= ~icr0_remaining; 4405 } 4406 ret = IRQ_HANDLED; 4407 4408 enable_intr: 4409 /* re-enable interrupt causes */ 4410 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4411 if (!test_bit(__I40E_DOWN, pf->state) || 4412 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4413 i40e_service_event_schedule(pf); 4414 i40e_irq_dynamic_enable_icr0(pf); 4415 } 4416 4417 return ret; 4418 } 4419 4420 /** 4421 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4422 * @tx_ring: tx ring to clean 4423 * @budget: how many cleans we're allowed 4424 * 4425 * Returns true if there's any budget left (e.g. the clean is finished) 4426 **/ 4427 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4428 { 4429 struct i40e_vsi *vsi = tx_ring->vsi; 4430 u16 i = tx_ring->next_to_clean; 4431 struct i40e_tx_buffer *tx_buf; 4432 struct i40e_tx_desc *tx_desc; 4433 4434 tx_buf = &tx_ring->tx_bi[i]; 4435 tx_desc = I40E_TX_DESC(tx_ring, i); 4436 i -= tx_ring->count; 4437 4438 do { 4439 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4440 4441 /* if next_to_watch is not set then there is no work pending */ 4442 if (!eop_desc) 4443 break; 4444 4445 /* prevent any other reads prior to eop_desc */ 4446 smp_rmb(); 4447 4448 /* if the descriptor isn't done, no work yet to do */ 4449 if (!(eop_desc->cmd_type_offset_bsz & 4450 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4451 break; 4452 4453 /* clear next_to_watch to prevent false hangs */ 4454 tx_buf->next_to_watch = NULL; 4455 4456 tx_desc->buffer_addr = 0; 4457 tx_desc->cmd_type_offset_bsz = 0; 4458 /* move past filter desc */ 4459 tx_buf++; 4460 tx_desc++; 4461 i++; 4462 if (unlikely(!i)) { 4463 i -= tx_ring->count; 4464 tx_buf = tx_ring->tx_bi; 4465 tx_desc = I40E_TX_DESC(tx_ring, 0); 4466 } 4467 /* unmap skb header data */ 4468 dma_unmap_single(tx_ring->dev, 4469 dma_unmap_addr(tx_buf, dma), 4470 dma_unmap_len(tx_buf, len), 4471 DMA_TO_DEVICE); 4472 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4473 kfree(tx_buf->raw_buf); 4474 4475 tx_buf->raw_buf = NULL; 4476 tx_buf->tx_flags = 0; 4477 tx_buf->next_to_watch = NULL; 4478 dma_unmap_len_set(tx_buf, len, 0); 4479 tx_desc->buffer_addr = 0; 4480 tx_desc->cmd_type_offset_bsz = 0; 4481 4482 /* move us past the eop_desc for start of next FD desc */ 4483 tx_buf++; 4484 tx_desc++; 4485 i++; 4486 if (unlikely(!i)) { 4487 i -= tx_ring->count; 4488 tx_buf = tx_ring->tx_bi; 4489 tx_desc = I40E_TX_DESC(tx_ring, 0); 4490 } 4491 4492 /* update budget accounting */ 4493 budget--; 4494 } while (likely(budget)); 4495 4496 i += tx_ring->count; 4497 tx_ring->next_to_clean = i; 4498 4499 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4500 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4501 4502 return budget > 0; 4503 } 4504 4505 /** 4506 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4507 * @irq: interrupt number 4508 * @data: pointer to a q_vector 4509 **/ 4510 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4511 { 4512 struct i40e_q_vector *q_vector = data; 4513 struct i40e_vsi *vsi; 4514 4515 if (!q_vector->tx.ring) 4516 return IRQ_HANDLED; 4517 4518 vsi = q_vector->tx.ring->vsi; 4519 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4520 4521 return IRQ_HANDLED; 4522 } 4523 4524 /** 4525 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4526 * @vsi: the VSI being configured 4527 * @v_idx: vector index 4528 * @qp_idx: queue pair index 4529 **/ 4530 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4531 { 4532 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4533 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4534 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4535 4536 tx_ring->q_vector = q_vector; 4537 tx_ring->next = q_vector->tx.ring; 4538 q_vector->tx.ring = tx_ring; 4539 q_vector->tx.count++; 4540 4541 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4542 if (i40e_enabled_xdp_vsi(vsi)) { 4543 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4544 4545 xdp_ring->q_vector = q_vector; 4546 xdp_ring->next = q_vector->tx.ring; 4547 q_vector->tx.ring = xdp_ring; 4548 q_vector->tx.count++; 4549 } 4550 4551 rx_ring->q_vector = q_vector; 4552 rx_ring->next = q_vector->rx.ring; 4553 q_vector->rx.ring = rx_ring; 4554 q_vector->rx.count++; 4555 } 4556 4557 /** 4558 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4559 * @vsi: the VSI being configured 4560 * 4561 * This function maps descriptor rings to the queue-specific vectors 4562 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4563 * one vector per queue pair, but on a constrained vector budget, we 4564 * group the queue pairs as "efficiently" as possible. 4565 **/ 4566 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4567 { 4568 int qp_remaining = vsi->num_queue_pairs; 4569 int q_vectors = vsi->num_q_vectors; 4570 int num_ringpairs; 4571 int v_start = 0; 4572 int qp_idx = 0; 4573 4574 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4575 * group them so there are multiple queues per vector. 4576 * It is also important to go through all the vectors available to be 4577 * sure that if we don't use all the vectors, that the remaining vectors 4578 * are cleared. This is especially important when decreasing the 4579 * number of queues in use. 4580 */ 4581 for (; v_start < q_vectors; v_start++) { 4582 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4583 4584 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4585 4586 q_vector->num_ringpairs = num_ringpairs; 4587 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4588 4589 q_vector->rx.count = 0; 4590 q_vector->tx.count = 0; 4591 q_vector->rx.ring = NULL; 4592 q_vector->tx.ring = NULL; 4593 4594 while (num_ringpairs--) { 4595 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4596 qp_idx++; 4597 qp_remaining--; 4598 } 4599 } 4600 } 4601 4602 /** 4603 * i40e_vsi_request_irq - Request IRQ from the OS 4604 * @vsi: the VSI being configured 4605 * @basename: name for the vector 4606 **/ 4607 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4608 { 4609 struct i40e_pf *pf = vsi->back; 4610 int err; 4611 4612 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4613 err = i40e_vsi_request_irq_msix(vsi, basename); 4614 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4615 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4616 pf->int_name, pf); 4617 else 4618 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4619 pf->int_name, pf); 4620 4621 if (err) 4622 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4623 4624 return err; 4625 } 4626 4627 #ifdef CONFIG_NET_POLL_CONTROLLER 4628 /** 4629 * i40e_netpoll - A Polling 'interrupt' handler 4630 * @netdev: network interface device structure 4631 * 4632 * This is used by netconsole to send skbs without having to re-enable 4633 * interrupts. It's not called while the normal interrupt routine is executing. 4634 **/ 4635 static void i40e_netpoll(struct net_device *netdev) 4636 { 4637 struct i40e_netdev_priv *np = netdev_priv(netdev); 4638 struct i40e_vsi *vsi = np->vsi; 4639 struct i40e_pf *pf = vsi->back; 4640 int i; 4641 4642 /* if interface is down do nothing */ 4643 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4644 return; 4645 4646 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4647 for (i = 0; i < vsi->num_q_vectors; i++) 4648 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4649 } else { 4650 i40e_intr(pf->pdev->irq, netdev); 4651 } 4652 } 4653 #endif 4654 4655 #define I40E_QTX_ENA_WAIT_COUNT 50 4656 4657 /** 4658 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4659 * @pf: the PF being configured 4660 * @pf_q: the PF queue 4661 * @enable: enable or disable state of the queue 4662 * 4663 * This routine will wait for the given Tx queue of the PF to reach the 4664 * enabled or disabled state. 4665 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4666 * multiple retries; else will return 0 in case of success. 4667 **/ 4668 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4669 { 4670 int i; 4671 u32 tx_reg; 4672 4673 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4674 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4675 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4676 break; 4677 4678 usleep_range(10, 20); 4679 } 4680 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4681 return -ETIMEDOUT; 4682 4683 return 0; 4684 } 4685 4686 /** 4687 * i40e_control_tx_q - Start or stop a particular Tx queue 4688 * @pf: the PF structure 4689 * @pf_q: the PF queue to configure 4690 * @enable: start or stop the queue 4691 * 4692 * This function enables or disables a single queue. Note that any delay 4693 * required after the operation is expected to be handled by the caller of 4694 * this function. 4695 **/ 4696 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4697 { 4698 struct i40e_hw *hw = &pf->hw; 4699 u32 tx_reg; 4700 int i; 4701 4702 /* warn the TX unit of coming changes */ 4703 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4704 if (!enable) 4705 usleep_range(10, 20); 4706 4707 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4708 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4709 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4710 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4711 break; 4712 usleep_range(1000, 2000); 4713 } 4714 4715 /* Skip if the queue is already in the requested state */ 4716 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4717 return; 4718 4719 /* turn on/off the queue */ 4720 if (enable) { 4721 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4722 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4723 } else { 4724 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4725 } 4726 4727 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4728 } 4729 4730 /** 4731 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4732 * @seid: VSI SEID 4733 * @pf: the PF structure 4734 * @pf_q: the PF queue to configure 4735 * @is_xdp: true if the queue is used for XDP 4736 * @enable: start or stop the queue 4737 **/ 4738 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4739 bool is_xdp, bool enable) 4740 { 4741 int ret; 4742 4743 i40e_control_tx_q(pf, pf_q, enable); 4744 4745 /* wait for the change to finish */ 4746 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4747 if (ret) { 4748 dev_info(&pf->pdev->dev, 4749 "VSI seid %d %sTx ring %d %sable timeout\n", 4750 seid, (is_xdp ? "XDP " : ""), pf_q, 4751 (enable ? "en" : "dis")); 4752 } 4753 4754 return ret; 4755 } 4756 4757 /** 4758 * i40e_vsi_enable_tx - Start a VSI's rings 4759 * @vsi: the VSI being configured 4760 **/ 4761 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4762 { 4763 struct i40e_pf *pf = vsi->back; 4764 int i, pf_q, ret = 0; 4765 4766 pf_q = vsi->base_queue; 4767 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4768 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4769 pf_q, 4770 false /*is xdp*/, true); 4771 if (ret) 4772 break; 4773 4774 if (!i40e_enabled_xdp_vsi(vsi)) 4775 continue; 4776 4777 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4778 pf_q + vsi->alloc_queue_pairs, 4779 true /*is xdp*/, true); 4780 if (ret) 4781 break; 4782 } 4783 return ret; 4784 } 4785 4786 /** 4787 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4788 * @pf: the PF being configured 4789 * @pf_q: the PF queue 4790 * @enable: enable or disable state of the queue 4791 * 4792 * This routine will wait for the given Rx queue of the PF to reach the 4793 * enabled or disabled state. 4794 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4795 * multiple retries; else will return 0 in case of success. 4796 **/ 4797 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4798 { 4799 int i; 4800 u32 rx_reg; 4801 4802 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4803 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4804 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4805 break; 4806 4807 usleep_range(10, 20); 4808 } 4809 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4810 return -ETIMEDOUT; 4811 4812 return 0; 4813 } 4814 4815 /** 4816 * i40e_control_rx_q - Start or stop a particular Rx queue 4817 * @pf: the PF structure 4818 * @pf_q: the PF queue to configure 4819 * @enable: start or stop the queue 4820 * 4821 * This function enables or disables a single queue. Note that 4822 * any delay required after the operation is expected to be 4823 * handled by the caller of this function. 4824 **/ 4825 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4826 { 4827 struct i40e_hw *hw = &pf->hw; 4828 u32 rx_reg; 4829 int i; 4830 4831 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4832 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4833 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4834 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4835 break; 4836 usleep_range(1000, 2000); 4837 } 4838 4839 /* Skip if the queue is already in the requested state */ 4840 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4841 return; 4842 4843 /* turn on/off the queue */ 4844 if (enable) 4845 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4846 else 4847 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4848 4849 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4850 } 4851 4852 /** 4853 * i40e_control_wait_rx_q 4854 * @pf: the PF structure 4855 * @pf_q: queue being configured 4856 * @enable: start or stop the rings 4857 * 4858 * This function enables or disables a single queue along with waiting 4859 * for the change to finish. The caller of this function should handle 4860 * the delays needed in the case of disabling queues. 4861 **/ 4862 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4863 { 4864 int ret = 0; 4865 4866 i40e_control_rx_q(pf, pf_q, enable); 4867 4868 /* wait for the change to finish */ 4869 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4870 if (ret) 4871 return ret; 4872 4873 return ret; 4874 } 4875 4876 /** 4877 * i40e_vsi_enable_rx - Start a VSI's rings 4878 * @vsi: the VSI being configured 4879 **/ 4880 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4881 { 4882 struct i40e_pf *pf = vsi->back; 4883 int i, pf_q, ret = 0; 4884 4885 pf_q = vsi->base_queue; 4886 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4887 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4888 if (ret) { 4889 dev_info(&pf->pdev->dev, 4890 "VSI seid %d Rx ring %d enable timeout\n", 4891 vsi->seid, pf_q); 4892 break; 4893 } 4894 } 4895 4896 return ret; 4897 } 4898 4899 /** 4900 * i40e_vsi_start_rings - Start a VSI's rings 4901 * @vsi: the VSI being configured 4902 **/ 4903 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4904 { 4905 int ret = 0; 4906 4907 /* do rx first for enable and last for disable */ 4908 ret = i40e_vsi_enable_rx(vsi); 4909 if (ret) 4910 return ret; 4911 ret = i40e_vsi_enable_tx(vsi); 4912 4913 return ret; 4914 } 4915 4916 #define I40E_DISABLE_TX_GAP_MSEC 50 4917 4918 /** 4919 * i40e_vsi_stop_rings - Stop a VSI's rings 4920 * @vsi: the VSI being configured 4921 **/ 4922 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4923 { 4924 struct i40e_pf *pf = vsi->back; 4925 u32 pf_q, tx_q_end, rx_q_end; 4926 4927 /* When port TX is suspended, don't wait */ 4928 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4929 return i40e_vsi_stop_rings_no_wait(vsi); 4930 4931 tx_q_end = vsi->base_queue + 4932 vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 4933 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4934 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false); 4935 4936 rx_q_end = vsi->base_queue + vsi->num_queue_pairs; 4937 for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++) 4938 i40e_control_rx_q(pf, pf_q, false); 4939 4940 msleep(I40E_DISABLE_TX_GAP_MSEC); 4941 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4942 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4943 4944 i40e_vsi_wait_queues_disabled(vsi); 4945 } 4946 4947 /** 4948 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4949 * @vsi: the VSI being shutdown 4950 * 4951 * This function stops all the rings for a VSI but does not delay to verify 4952 * that rings have been disabled. It is expected that the caller is shutting 4953 * down multiple VSIs at once and will delay together for all the VSIs after 4954 * initiating the shutdown. This is particularly useful for shutting down lots 4955 * of VFs together. Otherwise, a large delay can be incurred while configuring 4956 * each VSI in serial. 4957 **/ 4958 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4959 { 4960 struct i40e_pf *pf = vsi->back; 4961 int i, pf_q; 4962 4963 pf_q = vsi->base_queue; 4964 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4965 i40e_control_tx_q(pf, pf_q, false); 4966 i40e_control_rx_q(pf, pf_q, false); 4967 } 4968 } 4969 4970 /** 4971 * i40e_vsi_free_irq - Free the irq association with the OS 4972 * @vsi: the VSI being configured 4973 **/ 4974 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4975 { 4976 struct i40e_pf *pf = vsi->back; 4977 struct i40e_hw *hw = &pf->hw; 4978 int base = vsi->base_vector; 4979 u32 val, qp; 4980 int i; 4981 4982 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4983 if (!vsi->q_vectors) 4984 return; 4985 4986 if (!vsi->irqs_ready) 4987 return; 4988 4989 vsi->irqs_ready = false; 4990 for (i = 0; i < vsi->num_q_vectors; i++) { 4991 int irq_num; 4992 u16 vector; 4993 4994 vector = i + base; 4995 irq_num = pf->msix_entries[vector].vector; 4996 4997 /* free only the irqs that were actually requested */ 4998 if (!vsi->q_vectors[i] || 4999 !vsi->q_vectors[i]->num_ringpairs) 5000 continue; 5001 5002 /* clear the affinity notifier in the IRQ descriptor */ 5003 irq_set_affinity_notifier(irq_num, NULL); 5004 /* remove our suggested affinity mask for this IRQ */ 5005 irq_update_affinity_hint(irq_num, NULL); 5006 free_irq(irq_num, vsi->q_vectors[i]); 5007 5008 /* Tear down the interrupt queue link list 5009 * 5010 * We know that they come in pairs and always 5011 * the Rx first, then the Tx. To clear the 5012 * link list, stick the EOL value into the 5013 * next_q field of the registers. 5014 */ 5015 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 5016 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, 5017 val); 5018 val |= I40E_QUEUE_END_OF_LIST 5019 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5020 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 5021 5022 while (qp != I40E_QUEUE_END_OF_LIST) { 5023 u32 next; 5024 5025 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5026 5027 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5028 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5029 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5030 I40E_QINT_RQCTL_INTEVENT_MASK); 5031 5032 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5033 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5034 5035 wr32(hw, I40E_QINT_RQCTL(qp), val); 5036 5037 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5038 5039 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK, 5040 val); 5041 5042 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5043 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5044 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5045 I40E_QINT_TQCTL_INTEVENT_MASK); 5046 5047 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5048 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5049 5050 wr32(hw, I40E_QINT_TQCTL(qp), val); 5051 qp = next; 5052 } 5053 } 5054 } else { 5055 free_irq(pf->pdev->irq, pf); 5056 5057 val = rd32(hw, I40E_PFINT_LNKLST0); 5058 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val); 5059 val |= I40E_QUEUE_END_OF_LIST 5060 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5061 wr32(hw, I40E_PFINT_LNKLST0, val); 5062 5063 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5064 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5065 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5066 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5067 I40E_QINT_RQCTL_INTEVENT_MASK); 5068 5069 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5070 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5071 5072 wr32(hw, I40E_QINT_RQCTL(qp), val); 5073 5074 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5075 5076 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5077 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5078 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5079 I40E_QINT_TQCTL_INTEVENT_MASK); 5080 5081 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5082 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5083 5084 wr32(hw, I40E_QINT_TQCTL(qp), val); 5085 } 5086 } 5087 5088 /** 5089 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5090 * @vsi: the VSI being configured 5091 * @v_idx: Index of vector to be freed 5092 * 5093 * This function frees the memory allocated to the q_vector. In addition if 5094 * NAPI is enabled it will delete any references to the NAPI struct prior 5095 * to freeing the q_vector. 5096 **/ 5097 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5098 { 5099 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5100 struct i40e_ring *ring; 5101 5102 if (!q_vector) 5103 return; 5104 5105 /* disassociate q_vector from rings */ 5106 i40e_for_each_ring(ring, q_vector->tx) 5107 ring->q_vector = NULL; 5108 5109 i40e_for_each_ring(ring, q_vector->rx) 5110 ring->q_vector = NULL; 5111 5112 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5113 if (vsi->netdev) 5114 netif_napi_del(&q_vector->napi); 5115 5116 vsi->q_vectors[v_idx] = NULL; 5117 5118 kfree_rcu(q_vector, rcu); 5119 } 5120 5121 /** 5122 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5123 * @vsi: the VSI being un-configured 5124 * 5125 * This frees the memory allocated to the q_vectors and 5126 * deletes references to the NAPI struct. 5127 **/ 5128 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5129 { 5130 int v_idx; 5131 5132 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5133 i40e_free_q_vector(vsi, v_idx); 5134 } 5135 5136 /** 5137 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5138 * @pf: board private structure 5139 **/ 5140 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5141 { 5142 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5143 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5144 pci_disable_msix(pf->pdev); 5145 kfree(pf->msix_entries); 5146 pf->msix_entries = NULL; 5147 kfree(pf->irq_pile); 5148 pf->irq_pile = NULL; 5149 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5150 pci_disable_msi(pf->pdev); 5151 } 5152 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5153 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5154 } 5155 5156 /** 5157 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5158 * @pf: board private structure 5159 * 5160 * We go through and clear interrupt specific resources and reset the structure 5161 * to pre-load conditions 5162 **/ 5163 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5164 { 5165 struct i40e_vsi *vsi; 5166 int i; 5167 5168 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5169 i40e_free_misc_vector(pf); 5170 5171 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5172 I40E_IWARP_IRQ_PILE_ID); 5173 5174 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5175 5176 i40e_pf_for_each_vsi(pf, i, vsi) 5177 i40e_vsi_free_q_vectors(vsi); 5178 5179 i40e_reset_interrupt_capability(pf); 5180 } 5181 5182 /** 5183 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5184 * @vsi: the VSI being configured 5185 **/ 5186 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5187 { 5188 int q_idx; 5189 5190 if (!vsi->netdev) 5191 return; 5192 5193 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5194 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5195 5196 if (q_vector->rx.ring || q_vector->tx.ring) 5197 napi_enable(&q_vector->napi); 5198 } 5199 } 5200 5201 /** 5202 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5203 * @vsi: the VSI being configured 5204 **/ 5205 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5206 { 5207 int q_idx; 5208 5209 if (!vsi->netdev) 5210 return; 5211 5212 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5213 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5214 5215 if (q_vector->rx.ring || q_vector->tx.ring) 5216 napi_disable(&q_vector->napi); 5217 } 5218 } 5219 5220 /** 5221 * i40e_vsi_close - Shut down a VSI 5222 * @vsi: the vsi to be quelled 5223 **/ 5224 static void i40e_vsi_close(struct i40e_vsi *vsi) 5225 { 5226 struct i40e_pf *pf = vsi->back; 5227 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5228 i40e_down(vsi); 5229 i40e_vsi_free_irq(vsi); 5230 i40e_vsi_free_tx_resources(vsi); 5231 i40e_vsi_free_rx_resources(vsi); 5232 vsi->current_netdev_flags = 0; 5233 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5234 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5235 set_bit(__I40E_CLIENT_RESET, pf->state); 5236 } 5237 5238 /** 5239 * i40e_quiesce_vsi - Pause a given VSI 5240 * @vsi: the VSI being paused 5241 **/ 5242 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5243 { 5244 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5245 return; 5246 5247 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5248 if (vsi->netdev && netif_running(vsi->netdev)) 5249 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5250 else 5251 i40e_vsi_close(vsi); 5252 } 5253 5254 /** 5255 * i40e_unquiesce_vsi - Resume a given VSI 5256 * @vsi: the VSI being resumed 5257 **/ 5258 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5259 { 5260 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5261 return; 5262 5263 if (vsi->netdev && netif_running(vsi->netdev)) 5264 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5265 else 5266 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5267 } 5268 5269 /** 5270 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5271 * @pf: the PF 5272 **/ 5273 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5274 { 5275 struct i40e_vsi *vsi; 5276 int v; 5277 5278 i40e_pf_for_each_vsi(pf, v, vsi) 5279 i40e_quiesce_vsi(vsi); 5280 } 5281 5282 /** 5283 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5284 * @pf: the PF 5285 **/ 5286 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5287 { 5288 struct i40e_vsi *vsi; 5289 int v; 5290 5291 i40e_pf_for_each_vsi(pf, v, vsi) 5292 i40e_unquiesce_vsi(vsi); 5293 } 5294 5295 /** 5296 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5297 * @vsi: the VSI being configured 5298 * 5299 * Wait until all queues on a given VSI have been disabled. 5300 **/ 5301 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5302 { 5303 struct i40e_pf *pf = vsi->back; 5304 int i, pf_q, ret; 5305 5306 pf_q = vsi->base_queue; 5307 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5308 /* Check and wait for the Tx queue */ 5309 ret = i40e_pf_txq_wait(pf, pf_q, false); 5310 if (ret) { 5311 dev_info(&pf->pdev->dev, 5312 "VSI seid %d Tx ring %d disable timeout\n", 5313 vsi->seid, pf_q); 5314 return ret; 5315 } 5316 5317 if (!i40e_enabled_xdp_vsi(vsi)) 5318 goto wait_rx; 5319 5320 /* Check and wait for the XDP Tx queue */ 5321 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5322 false); 5323 if (ret) { 5324 dev_info(&pf->pdev->dev, 5325 "VSI seid %d XDP Tx ring %d disable timeout\n", 5326 vsi->seid, pf_q); 5327 return ret; 5328 } 5329 wait_rx: 5330 /* Check and wait for the Rx queue */ 5331 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5332 if (ret) { 5333 dev_info(&pf->pdev->dev, 5334 "VSI seid %d Rx ring %d disable timeout\n", 5335 vsi->seid, pf_q); 5336 return ret; 5337 } 5338 } 5339 5340 return 0; 5341 } 5342 5343 #ifdef CONFIG_I40E_DCB 5344 /** 5345 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5346 * @pf: the PF 5347 * 5348 * This function waits for the queues to be in disabled state for all the 5349 * VSIs that are managed by this PF. 5350 **/ 5351 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5352 { 5353 struct i40e_vsi *vsi; 5354 int v, ret = 0; 5355 5356 i40e_pf_for_each_vsi(pf, v, vsi) { 5357 ret = i40e_vsi_wait_queues_disabled(vsi); 5358 if (ret) 5359 break; 5360 } 5361 5362 return ret; 5363 } 5364 5365 #endif 5366 5367 /** 5368 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5369 * @pf: pointer to PF 5370 * 5371 * Get TC map for ISCSI PF type that will include iSCSI TC 5372 * and LAN TC. 5373 **/ 5374 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5375 { 5376 struct i40e_dcb_app_priority_table app; 5377 struct i40e_hw *hw = &pf->hw; 5378 u8 enabled_tc = 1; /* TC0 is always enabled */ 5379 u8 tc, i; 5380 /* Get the iSCSI APP TLV */ 5381 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5382 5383 for (i = 0; i < dcbcfg->numapps; i++) { 5384 app = dcbcfg->app[i]; 5385 if (app.selector == I40E_APP_SEL_TCPIP && 5386 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5387 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5388 enabled_tc |= BIT(tc); 5389 break; 5390 } 5391 } 5392 5393 return enabled_tc; 5394 } 5395 5396 /** 5397 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5398 * @dcbcfg: the corresponding DCBx configuration structure 5399 * 5400 * Return the number of TCs from given DCBx configuration 5401 **/ 5402 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5403 { 5404 int i, tc_unused = 0; 5405 u8 num_tc = 0; 5406 u8 ret = 0; 5407 5408 /* Scan the ETS Config Priority Table to find 5409 * traffic class enabled for a given priority 5410 * and create a bitmask of enabled TCs 5411 */ 5412 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5413 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5414 5415 /* Now scan the bitmask to check for 5416 * contiguous TCs starting with TC0 5417 */ 5418 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5419 if (num_tc & BIT(i)) { 5420 if (!tc_unused) { 5421 ret++; 5422 } else { 5423 pr_err("Non-contiguous TC - Disabling DCB\n"); 5424 return 1; 5425 } 5426 } else { 5427 tc_unused = 1; 5428 } 5429 } 5430 5431 /* There is always at least TC0 */ 5432 if (!ret) 5433 ret = 1; 5434 5435 return ret; 5436 } 5437 5438 /** 5439 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5440 * @dcbcfg: the corresponding DCBx configuration structure 5441 * 5442 * Query the current DCB configuration and return the number of 5443 * traffic classes enabled from the given DCBX config 5444 **/ 5445 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5446 { 5447 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5448 u8 enabled_tc = 1; 5449 u8 i; 5450 5451 for (i = 0; i < num_tc; i++) 5452 enabled_tc |= BIT(i); 5453 5454 return enabled_tc; 5455 } 5456 5457 /** 5458 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5459 * @pf: PF being queried 5460 * 5461 * Query the current MQPRIO configuration and return the number of 5462 * traffic classes enabled. 5463 **/ 5464 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5465 { 5466 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5467 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5468 u8 enabled_tc = 1, i; 5469 5470 for (i = 1; i < num_tc; i++) 5471 enabled_tc |= BIT(i); 5472 return enabled_tc; 5473 } 5474 5475 /** 5476 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5477 * @pf: PF being queried 5478 * 5479 * Return number of traffic classes enabled for the given PF 5480 **/ 5481 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5482 { 5483 struct i40e_hw *hw = &pf->hw; 5484 u8 i, enabled_tc = 1; 5485 u8 num_tc = 0; 5486 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5487 5488 if (i40e_is_tc_mqprio_enabled(pf)) 5489 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5490 5491 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5492 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5493 return 1; 5494 5495 /* SFP mode will be enabled for all TCs on port */ 5496 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5497 return i40e_dcb_get_num_tc(dcbcfg); 5498 5499 /* MFP mode return count of enabled TCs for this PF */ 5500 if (pf->hw.func_caps.iscsi) 5501 enabled_tc = i40e_get_iscsi_tc_map(pf); 5502 else 5503 return 1; /* Only TC0 */ 5504 5505 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5506 if (enabled_tc & BIT(i)) 5507 num_tc++; 5508 } 5509 return num_tc; 5510 } 5511 5512 /** 5513 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5514 * @pf: PF being queried 5515 * 5516 * Return a bitmap for enabled traffic classes for this PF. 5517 **/ 5518 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5519 { 5520 if (i40e_is_tc_mqprio_enabled(pf)) 5521 return i40e_mqprio_get_enabled_tc(pf); 5522 5523 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5524 * default TC 5525 */ 5526 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5527 return I40E_DEFAULT_TRAFFIC_CLASS; 5528 5529 /* SFP mode we want PF to be enabled for all TCs */ 5530 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5531 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5532 5533 /* MFP enabled and iSCSI PF type */ 5534 if (pf->hw.func_caps.iscsi) 5535 return i40e_get_iscsi_tc_map(pf); 5536 else 5537 return I40E_DEFAULT_TRAFFIC_CLASS; 5538 } 5539 5540 /** 5541 * i40e_vsi_get_bw_info - Query VSI BW Information 5542 * @vsi: the VSI being queried 5543 * 5544 * Returns 0 on success, negative value on failure 5545 **/ 5546 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5547 { 5548 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5549 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5550 struct i40e_pf *pf = vsi->back; 5551 struct i40e_hw *hw = &pf->hw; 5552 u32 tc_bw_max; 5553 int ret; 5554 int i; 5555 5556 /* Get the VSI level BW configuration */ 5557 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5558 if (ret) { 5559 dev_info(&pf->pdev->dev, 5560 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5561 ERR_PTR(ret), 5562 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5563 return -EINVAL; 5564 } 5565 5566 /* Get the VSI level BW configuration per TC */ 5567 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5568 NULL); 5569 if (ret) { 5570 dev_info(&pf->pdev->dev, 5571 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5572 ERR_PTR(ret), 5573 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5574 return -EINVAL; 5575 } 5576 5577 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5578 dev_info(&pf->pdev->dev, 5579 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5580 bw_config.tc_valid_bits, 5581 bw_ets_config.tc_valid_bits); 5582 /* Still continuing */ 5583 } 5584 5585 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5586 vsi->bw_max_quanta = bw_config.max_bw; 5587 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5588 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5589 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5590 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5591 vsi->bw_ets_limit_credits[i] = 5592 le16_to_cpu(bw_ets_config.credits[i]); 5593 /* 3 bits out of 4 for each TC */ 5594 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5595 } 5596 5597 return 0; 5598 } 5599 5600 /** 5601 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5602 * @vsi: the VSI being configured 5603 * @enabled_tc: TC bitmap 5604 * @bw_share: BW shared credits per TC 5605 * 5606 * Returns 0 on success, negative value on failure 5607 **/ 5608 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5609 u8 *bw_share) 5610 { 5611 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5612 struct i40e_pf *pf = vsi->back; 5613 int ret; 5614 int i; 5615 5616 /* There is no need to reset BW when mqprio mode is on. */ 5617 if (i40e_is_tc_mqprio_enabled(pf)) 5618 return 0; 5619 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5620 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5621 if (ret) 5622 dev_info(&pf->pdev->dev, 5623 "Failed to reset tx rate for vsi->seid %u\n", 5624 vsi->seid); 5625 return ret; 5626 } 5627 memset(&bw_data, 0, sizeof(bw_data)); 5628 bw_data.tc_valid_bits = enabled_tc; 5629 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5630 bw_data.tc_bw_credits[i] = bw_share[i]; 5631 5632 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5633 if (ret) { 5634 dev_info(&pf->pdev->dev, 5635 "AQ command Config VSI BW allocation per TC failed = %d\n", 5636 pf->hw.aq.asq_last_status); 5637 return -EINVAL; 5638 } 5639 5640 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5641 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5642 5643 return 0; 5644 } 5645 5646 /** 5647 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5648 * @vsi: the VSI being configured 5649 * @enabled_tc: TC map to be enabled 5650 * 5651 **/ 5652 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5653 { 5654 struct net_device *netdev = vsi->netdev; 5655 struct i40e_pf *pf = vsi->back; 5656 struct i40e_hw *hw = &pf->hw; 5657 u8 netdev_tc = 0; 5658 int i; 5659 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5660 5661 if (!netdev) 5662 return; 5663 5664 if (!enabled_tc) { 5665 netdev_reset_tc(netdev); 5666 return; 5667 } 5668 5669 /* Set up actual enabled TCs on the VSI */ 5670 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5671 return; 5672 5673 /* set per TC queues for the VSI */ 5674 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5675 /* Only set TC queues for enabled tcs 5676 * 5677 * e.g. For a VSI that has TC0 and TC3 enabled the 5678 * enabled_tc bitmap would be 0x00001001; the driver 5679 * will set the numtc for netdev as 2 that will be 5680 * referenced by the netdev layer as TC 0 and 1. 5681 */ 5682 if (vsi->tc_config.enabled_tc & BIT(i)) 5683 netdev_set_tc_queue(netdev, 5684 vsi->tc_config.tc_info[i].netdev_tc, 5685 vsi->tc_config.tc_info[i].qcount, 5686 vsi->tc_config.tc_info[i].qoffset); 5687 } 5688 5689 if (i40e_is_tc_mqprio_enabled(pf)) 5690 return; 5691 5692 /* Assign UP2TC map for the VSI */ 5693 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5694 /* Get the actual TC# for the UP */ 5695 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5696 /* Get the mapped netdev TC# for the UP */ 5697 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5698 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5699 } 5700 } 5701 5702 /** 5703 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5704 * @vsi: the VSI being configured 5705 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5706 **/ 5707 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5708 struct i40e_vsi_context *ctxt) 5709 { 5710 /* copy just the sections touched not the entire info 5711 * since not all sections are valid as returned by 5712 * update vsi params 5713 */ 5714 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5715 memcpy(&vsi->info.queue_mapping, 5716 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5717 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5718 sizeof(vsi->info.tc_mapping)); 5719 } 5720 5721 /** 5722 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5723 * @vsi: the VSI being reconfigured 5724 * @vsi_offset: offset from main VF VSI 5725 */ 5726 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5727 { 5728 struct i40e_vsi_context ctxt = {}; 5729 struct i40e_pf *pf; 5730 struct i40e_hw *hw; 5731 int ret; 5732 5733 if (!vsi) 5734 return -EINVAL; 5735 pf = vsi->back; 5736 hw = &pf->hw; 5737 5738 ctxt.seid = vsi->seid; 5739 ctxt.pf_num = hw->pf_id; 5740 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5741 ctxt.uplink_seid = vsi->uplink_seid; 5742 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5743 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5744 ctxt.info = vsi->info; 5745 5746 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5747 false); 5748 if (vsi->reconfig_rss) { 5749 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5750 vsi->num_queue_pairs); 5751 ret = i40e_vsi_config_rss(vsi); 5752 if (ret) { 5753 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5754 return ret; 5755 } 5756 vsi->reconfig_rss = false; 5757 } 5758 5759 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5760 if (ret) { 5761 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5762 ERR_PTR(ret), 5763 i40e_aq_str(hw, hw->aq.asq_last_status)); 5764 return ret; 5765 } 5766 /* update the local VSI info with updated queue map */ 5767 i40e_vsi_update_queue_map(vsi, &ctxt); 5768 vsi->info.valid_sections = 0; 5769 5770 return ret; 5771 } 5772 5773 /** 5774 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5775 * @vsi: VSI to be configured 5776 * @enabled_tc: TC bitmap 5777 * 5778 * This configures a particular VSI for TCs that are mapped to the 5779 * given TC bitmap. It uses default bandwidth share for TCs across 5780 * VSIs to configure TC for a particular VSI. 5781 * 5782 * NOTE: 5783 * It is expected that the VSI queues have been quisced before calling 5784 * this function. 5785 **/ 5786 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5787 { 5788 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5789 struct i40e_pf *pf = vsi->back; 5790 struct i40e_hw *hw = &pf->hw; 5791 struct i40e_vsi_context ctxt; 5792 int ret = 0; 5793 int i; 5794 5795 /* Check if enabled_tc is same as existing or new TCs */ 5796 if (vsi->tc_config.enabled_tc == enabled_tc && 5797 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5798 return ret; 5799 5800 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5801 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5802 if (enabled_tc & BIT(i)) 5803 bw_share[i] = 1; 5804 } 5805 5806 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5807 if (ret) { 5808 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5809 5810 dev_info(&pf->pdev->dev, 5811 "Failed configuring TC map %d for VSI %d\n", 5812 enabled_tc, vsi->seid); 5813 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5814 &bw_config, NULL); 5815 if (ret) { 5816 dev_info(&pf->pdev->dev, 5817 "Failed querying vsi bw info, err %pe aq_err %s\n", 5818 ERR_PTR(ret), 5819 i40e_aq_str(hw, hw->aq.asq_last_status)); 5820 goto out; 5821 } 5822 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5823 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5824 5825 if (!valid_tc) 5826 valid_tc = bw_config.tc_valid_bits; 5827 /* Always enable TC0, no matter what */ 5828 valid_tc |= 1; 5829 dev_info(&pf->pdev->dev, 5830 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5831 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5832 enabled_tc = valid_tc; 5833 } 5834 5835 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5836 if (ret) { 5837 dev_err(&pf->pdev->dev, 5838 "Unable to configure TC map %d for VSI %d\n", 5839 enabled_tc, vsi->seid); 5840 goto out; 5841 } 5842 } 5843 5844 /* Update Queue Pairs Mapping for currently enabled UPs */ 5845 ctxt.seid = vsi->seid; 5846 ctxt.pf_num = vsi->back->hw.pf_id; 5847 ctxt.vf_num = 0; 5848 ctxt.uplink_seid = vsi->uplink_seid; 5849 ctxt.info = vsi->info; 5850 if (i40e_is_tc_mqprio_enabled(pf)) { 5851 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5852 if (ret) 5853 goto out; 5854 } else { 5855 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5856 } 5857 5858 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5859 * queues changed. 5860 */ 5861 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5862 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5863 vsi->num_queue_pairs); 5864 ret = i40e_vsi_config_rss(vsi); 5865 if (ret) { 5866 dev_info(&vsi->back->pdev->dev, 5867 "Failed to reconfig rss for num_queues\n"); 5868 return ret; 5869 } 5870 vsi->reconfig_rss = false; 5871 } 5872 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5873 ctxt.info.valid_sections |= 5874 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5875 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5876 } 5877 5878 /* Update the VSI after updating the VSI queue-mapping 5879 * information 5880 */ 5881 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5882 if (ret) { 5883 dev_info(&pf->pdev->dev, 5884 "Update vsi tc config failed, err %pe aq_err %s\n", 5885 ERR_PTR(ret), 5886 i40e_aq_str(hw, hw->aq.asq_last_status)); 5887 goto out; 5888 } 5889 /* update the local VSI info with updated queue map */ 5890 i40e_vsi_update_queue_map(vsi, &ctxt); 5891 vsi->info.valid_sections = 0; 5892 5893 /* Update current VSI BW information */ 5894 ret = i40e_vsi_get_bw_info(vsi); 5895 if (ret) { 5896 dev_info(&pf->pdev->dev, 5897 "Failed updating vsi bw info, err %pe aq_err %s\n", 5898 ERR_PTR(ret), 5899 i40e_aq_str(hw, hw->aq.asq_last_status)); 5900 goto out; 5901 } 5902 5903 /* Update the netdev TC setup */ 5904 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5905 out: 5906 return ret; 5907 } 5908 5909 /** 5910 * i40e_get_link_speed - Returns link speed for the interface 5911 * @vsi: VSI to be configured 5912 * 5913 **/ 5914 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5915 { 5916 struct i40e_pf *pf = vsi->back; 5917 5918 switch (pf->hw.phy.link_info.link_speed) { 5919 case I40E_LINK_SPEED_40GB: 5920 return 40000; 5921 case I40E_LINK_SPEED_25GB: 5922 return 25000; 5923 case I40E_LINK_SPEED_20GB: 5924 return 20000; 5925 case I40E_LINK_SPEED_10GB: 5926 return 10000; 5927 case I40E_LINK_SPEED_1GB: 5928 return 1000; 5929 default: 5930 return -EINVAL; 5931 } 5932 } 5933 5934 /** 5935 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5936 * @vsi: Pointer to vsi structure 5937 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5938 * 5939 * Helper function to convert units before send to set BW limit 5940 **/ 5941 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5942 { 5943 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5944 dev_warn(&vsi->back->pdev->dev, 5945 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5946 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5947 } else { 5948 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5949 } 5950 5951 return max_tx_rate; 5952 } 5953 5954 /** 5955 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5956 * @vsi: VSI to be configured 5957 * @seid: seid of the channel/VSI 5958 * @max_tx_rate: max TX rate to be configured as BW limit 5959 * 5960 * Helper function to set BW limit for a given VSI 5961 **/ 5962 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5963 { 5964 struct i40e_pf *pf = vsi->back; 5965 u64 credits = 0; 5966 int speed = 0; 5967 int ret = 0; 5968 5969 speed = i40e_get_link_speed(vsi); 5970 if (max_tx_rate > speed) { 5971 dev_err(&pf->pdev->dev, 5972 "Invalid max tx rate %llu specified for VSI seid %d.", 5973 max_tx_rate, seid); 5974 return -EINVAL; 5975 } 5976 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 5977 dev_warn(&pf->pdev->dev, 5978 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5979 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5980 } 5981 5982 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5983 credits = max_tx_rate; 5984 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5985 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5986 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5987 if (ret) 5988 dev_err(&pf->pdev->dev, 5989 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 5990 max_tx_rate, seid, ERR_PTR(ret), 5991 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5992 return ret; 5993 } 5994 5995 /** 5996 * i40e_remove_queue_channels - Remove queue channels for the TCs 5997 * @vsi: VSI to be configured 5998 * 5999 * Remove queue channels for the TCs 6000 **/ 6001 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 6002 { 6003 enum i40e_admin_queue_err last_aq_status; 6004 struct i40e_cloud_filter *cfilter; 6005 struct i40e_channel *ch, *ch_tmp; 6006 struct i40e_pf *pf = vsi->back; 6007 struct hlist_node *node; 6008 int ret, i; 6009 6010 /* Reset rss size that was stored when reconfiguring rss for 6011 * channel VSIs with non-power-of-2 queue count. 6012 */ 6013 vsi->current_rss_size = 0; 6014 6015 /* perform cleanup for channels if they exist */ 6016 if (list_empty(&vsi->ch_list)) 6017 return; 6018 6019 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6020 struct i40e_vsi *p_vsi; 6021 6022 list_del(&ch->list); 6023 p_vsi = ch->parent_vsi; 6024 if (!p_vsi || !ch->initialized) { 6025 kfree(ch); 6026 continue; 6027 } 6028 /* Reset queue contexts */ 6029 for (i = 0; i < ch->num_queue_pairs; i++) { 6030 struct i40e_ring *tx_ring, *rx_ring; 6031 u16 pf_q; 6032 6033 pf_q = ch->base_queue + i; 6034 tx_ring = vsi->tx_rings[pf_q]; 6035 tx_ring->ch = NULL; 6036 6037 rx_ring = vsi->rx_rings[pf_q]; 6038 rx_ring->ch = NULL; 6039 } 6040 6041 /* Reset BW configured for this VSI via mqprio */ 6042 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6043 if (ret) 6044 dev_info(&vsi->back->pdev->dev, 6045 "Failed to reset tx rate for ch->seid %u\n", 6046 ch->seid); 6047 6048 /* delete cloud filters associated with this channel */ 6049 hlist_for_each_entry_safe(cfilter, node, 6050 &pf->cloud_filter_list, cloud_node) { 6051 if (cfilter->seid != ch->seid) 6052 continue; 6053 6054 hash_del(&cfilter->cloud_node); 6055 if (cfilter->dst_port) 6056 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6057 cfilter, 6058 false); 6059 else 6060 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6061 false); 6062 last_aq_status = pf->hw.aq.asq_last_status; 6063 if (ret) 6064 dev_info(&pf->pdev->dev, 6065 "Failed to delete cloud filter, err %pe aq_err %s\n", 6066 ERR_PTR(ret), 6067 i40e_aq_str(&pf->hw, last_aq_status)); 6068 kfree(cfilter); 6069 } 6070 6071 /* delete VSI from FW */ 6072 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6073 NULL); 6074 if (ret) 6075 dev_err(&vsi->back->pdev->dev, 6076 "unable to remove channel (%d) for parent VSI(%d)\n", 6077 ch->seid, p_vsi->seid); 6078 kfree(ch); 6079 } 6080 INIT_LIST_HEAD(&vsi->ch_list); 6081 } 6082 6083 /** 6084 * i40e_get_max_queues_for_channel 6085 * @vsi: ptr to VSI to which channels are associated with 6086 * 6087 * Helper function which returns max value among the queue counts set on the 6088 * channels/TCs created. 6089 **/ 6090 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6091 { 6092 struct i40e_channel *ch, *ch_tmp; 6093 int max = 0; 6094 6095 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6096 if (!ch->initialized) 6097 continue; 6098 if (ch->num_queue_pairs > max) 6099 max = ch->num_queue_pairs; 6100 } 6101 6102 return max; 6103 } 6104 6105 /** 6106 * i40e_validate_num_queues - validate num_queues w.r.t channel 6107 * @pf: ptr to PF device 6108 * @num_queues: number of queues 6109 * @vsi: the parent VSI 6110 * @reconfig_rss: indicates should the RSS be reconfigured or not 6111 * 6112 * This function validates number of queues in the context of new channel 6113 * which is being established and determines if RSS should be reconfigured 6114 * or not for parent VSI. 6115 **/ 6116 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6117 struct i40e_vsi *vsi, bool *reconfig_rss) 6118 { 6119 int max_ch_queues; 6120 6121 if (!reconfig_rss) 6122 return -EINVAL; 6123 6124 *reconfig_rss = false; 6125 if (vsi->current_rss_size) { 6126 if (num_queues > vsi->current_rss_size) { 6127 dev_dbg(&pf->pdev->dev, 6128 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6129 num_queues, vsi->current_rss_size); 6130 return -EINVAL; 6131 } else if ((num_queues < vsi->current_rss_size) && 6132 (!is_power_of_2(num_queues))) { 6133 dev_dbg(&pf->pdev->dev, 6134 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6135 num_queues, vsi->current_rss_size); 6136 return -EINVAL; 6137 } 6138 } 6139 6140 if (!is_power_of_2(num_queues)) { 6141 /* Find the max num_queues configured for channel if channel 6142 * exist. 6143 * if channel exist, then enforce 'num_queues' to be more than 6144 * max ever queues configured for channel. 6145 */ 6146 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6147 if (num_queues < max_ch_queues) { 6148 dev_dbg(&pf->pdev->dev, 6149 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6150 num_queues, max_ch_queues); 6151 return -EINVAL; 6152 } 6153 *reconfig_rss = true; 6154 } 6155 6156 return 0; 6157 } 6158 6159 /** 6160 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6161 * @vsi: the VSI being setup 6162 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6163 * 6164 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6165 **/ 6166 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6167 { 6168 struct i40e_pf *pf = vsi->back; 6169 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6170 struct i40e_hw *hw = &pf->hw; 6171 int local_rss_size; 6172 u8 *lut; 6173 int ret; 6174 6175 if (!vsi->rss_size) 6176 return -EINVAL; 6177 6178 if (rss_size > vsi->rss_size) 6179 return -EINVAL; 6180 6181 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6182 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6183 if (!lut) 6184 return -ENOMEM; 6185 6186 /* Ignoring user configured lut if there is one */ 6187 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6188 6189 /* Use user configured hash key if there is one, otherwise 6190 * use default. 6191 */ 6192 if (vsi->rss_hkey_user) 6193 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6194 else 6195 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6196 6197 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6198 if (ret) { 6199 dev_info(&pf->pdev->dev, 6200 "Cannot set RSS lut, err %pe aq_err %s\n", 6201 ERR_PTR(ret), 6202 i40e_aq_str(hw, hw->aq.asq_last_status)); 6203 kfree(lut); 6204 return ret; 6205 } 6206 kfree(lut); 6207 6208 /* Do the update w.r.t. storing rss_size */ 6209 if (!vsi->orig_rss_size) 6210 vsi->orig_rss_size = vsi->rss_size; 6211 vsi->current_rss_size = local_rss_size; 6212 6213 return ret; 6214 } 6215 6216 /** 6217 * i40e_channel_setup_queue_map - Setup a channel queue map 6218 * @pf: ptr to PF device 6219 * @ctxt: VSI context structure 6220 * @ch: ptr to channel structure 6221 * 6222 * Setup queue map for a specific channel 6223 **/ 6224 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6225 struct i40e_vsi_context *ctxt, 6226 struct i40e_channel *ch) 6227 { 6228 u16 qcount, qmap, sections = 0; 6229 u8 offset = 0; 6230 int pow; 6231 6232 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6233 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6234 6235 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6236 ch->num_queue_pairs = qcount; 6237 6238 /* find the next higher power-of-2 of num queue pairs */ 6239 pow = ilog2(qcount); 6240 if (!is_power_of_2(qcount)) 6241 pow++; 6242 6243 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6244 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6245 6246 /* Setup queue TC[0].qmap for given VSI context */ 6247 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6248 6249 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6250 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6251 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6252 ctxt->info.valid_sections |= cpu_to_le16(sections); 6253 } 6254 6255 /** 6256 * i40e_add_channel - add a channel by adding VSI 6257 * @pf: ptr to PF device 6258 * @uplink_seid: underlying HW switching element (VEB) ID 6259 * @ch: ptr to channel structure 6260 * 6261 * Add a channel (VSI) using add_vsi and queue_map 6262 **/ 6263 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6264 struct i40e_channel *ch) 6265 { 6266 struct i40e_hw *hw = &pf->hw; 6267 struct i40e_vsi_context ctxt; 6268 u8 enabled_tc = 0x1; /* TC0 enabled */ 6269 int ret; 6270 6271 if (ch->type != I40E_VSI_VMDQ2) { 6272 dev_info(&pf->pdev->dev, 6273 "add new vsi failed, ch->type %d\n", ch->type); 6274 return -EINVAL; 6275 } 6276 6277 memset(&ctxt, 0, sizeof(ctxt)); 6278 ctxt.pf_num = hw->pf_id; 6279 ctxt.vf_num = 0; 6280 ctxt.uplink_seid = uplink_seid; 6281 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6282 if (ch->type == I40E_VSI_VMDQ2) 6283 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6284 6285 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6286 ctxt.info.valid_sections |= 6287 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6288 ctxt.info.switch_id = 6289 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6290 } 6291 6292 /* Set queue map for a given VSI context */ 6293 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6294 6295 /* Now time to create VSI */ 6296 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6297 if (ret) { 6298 dev_info(&pf->pdev->dev, 6299 "add new vsi failed, err %pe aq_err %s\n", 6300 ERR_PTR(ret), 6301 i40e_aq_str(&pf->hw, 6302 pf->hw.aq.asq_last_status)); 6303 return -ENOENT; 6304 } 6305 6306 /* Success, update channel, set enabled_tc only if the channel 6307 * is not a macvlan 6308 */ 6309 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6310 ch->seid = ctxt.seid; 6311 ch->vsi_number = ctxt.vsi_number; 6312 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6313 6314 /* copy just the sections touched not the entire info 6315 * since not all sections are valid as returned by 6316 * update vsi params 6317 */ 6318 ch->info.mapping_flags = ctxt.info.mapping_flags; 6319 memcpy(&ch->info.queue_mapping, 6320 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6321 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6322 sizeof(ctxt.info.tc_mapping)); 6323 6324 return 0; 6325 } 6326 6327 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6328 u8 *bw_share) 6329 { 6330 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6331 int ret; 6332 int i; 6333 6334 memset(&bw_data, 0, sizeof(bw_data)); 6335 bw_data.tc_valid_bits = ch->enabled_tc; 6336 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6337 bw_data.tc_bw_credits[i] = bw_share[i]; 6338 6339 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6340 &bw_data, NULL); 6341 if (ret) { 6342 dev_info(&vsi->back->pdev->dev, 6343 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6344 vsi->back->hw.aq.asq_last_status, ch->seid); 6345 return -EINVAL; 6346 } 6347 6348 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6349 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6350 6351 return 0; 6352 } 6353 6354 /** 6355 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6356 * @pf: ptr to PF device 6357 * @vsi: the VSI being setup 6358 * @ch: ptr to channel structure 6359 * 6360 * Configure TX rings associated with channel (VSI) since queues are being 6361 * from parent VSI. 6362 **/ 6363 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6364 struct i40e_vsi *vsi, 6365 struct i40e_channel *ch) 6366 { 6367 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6368 int ret; 6369 int i; 6370 6371 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6372 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6373 if (ch->enabled_tc & BIT(i)) 6374 bw_share[i] = 1; 6375 } 6376 6377 /* configure BW for new VSI */ 6378 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6379 if (ret) { 6380 dev_info(&vsi->back->pdev->dev, 6381 "Failed configuring TC map %d for channel (seid %u)\n", 6382 ch->enabled_tc, ch->seid); 6383 return ret; 6384 } 6385 6386 for (i = 0; i < ch->num_queue_pairs; i++) { 6387 struct i40e_ring *tx_ring, *rx_ring; 6388 u16 pf_q; 6389 6390 pf_q = ch->base_queue + i; 6391 6392 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6393 * context 6394 */ 6395 tx_ring = vsi->tx_rings[pf_q]; 6396 tx_ring->ch = ch; 6397 6398 /* Get the RX ring ptr */ 6399 rx_ring = vsi->rx_rings[pf_q]; 6400 rx_ring->ch = ch; 6401 } 6402 6403 return 0; 6404 } 6405 6406 /** 6407 * i40e_setup_hw_channel - setup new channel 6408 * @pf: ptr to PF device 6409 * @vsi: the VSI being setup 6410 * @ch: ptr to channel structure 6411 * @uplink_seid: underlying HW switching element (VEB) ID 6412 * @type: type of channel to be created (VMDq2/VF) 6413 * 6414 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6415 * and configures TX rings accordingly 6416 **/ 6417 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6418 struct i40e_vsi *vsi, 6419 struct i40e_channel *ch, 6420 u16 uplink_seid, u8 type) 6421 { 6422 int ret; 6423 6424 ch->initialized = false; 6425 ch->base_queue = vsi->next_base_queue; 6426 ch->type = type; 6427 6428 /* Proceed with creation of channel (VMDq2) VSI */ 6429 ret = i40e_add_channel(pf, uplink_seid, ch); 6430 if (ret) { 6431 dev_info(&pf->pdev->dev, 6432 "failed to add_channel using uplink_seid %u\n", 6433 uplink_seid); 6434 return ret; 6435 } 6436 6437 /* Mark the successful creation of channel */ 6438 ch->initialized = true; 6439 6440 /* Reconfigure TX queues using QTX_CTL register */ 6441 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6442 if (ret) { 6443 dev_info(&pf->pdev->dev, 6444 "failed to configure TX rings for channel %u\n", 6445 ch->seid); 6446 return ret; 6447 } 6448 6449 /* update 'next_base_queue' */ 6450 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6451 dev_dbg(&pf->pdev->dev, 6452 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6453 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6454 ch->num_queue_pairs, 6455 vsi->next_base_queue); 6456 return ret; 6457 } 6458 6459 /** 6460 * i40e_setup_channel - setup new channel using uplink element 6461 * @pf: ptr to PF device 6462 * @vsi: pointer to the VSI to set up the channel within 6463 * @ch: ptr to channel structure 6464 * 6465 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6466 * and uplink switching element (uplink_seid) 6467 **/ 6468 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6469 struct i40e_channel *ch) 6470 { 6471 u8 vsi_type; 6472 u16 seid; 6473 int ret; 6474 6475 if (vsi->type == I40E_VSI_MAIN) { 6476 vsi_type = I40E_VSI_VMDQ2; 6477 } else { 6478 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6479 vsi->type); 6480 return false; 6481 } 6482 6483 /* underlying switching element */ 6484 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6485 6486 /* create channel (VSI), configure TX rings */ 6487 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6488 if (ret) { 6489 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6490 return false; 6491 } 6492 6493 return ch->initialized ? true : false; 6494 } 6495 6496 /** 6497 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6498 * @vsi: ptr to VSI which has PF backing 6499 * 6500 * Sets up switch mode correctly if it needs to be changed and perform 6501 * what are allowed modes. 6502 **/ 6503 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6504 { 6505 u8 mode; 6506 struct i40e_pf *pf = vsi->back; 6507 struct i40e_hw *hw = &pf->hw; 6508 int ret; 6509 6510 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6511 if (ret) 6512 return -EINVAL; 6513 6514 if (hw->dev_caps.switch_mode) { 6515 /* if switch mode is set, support mode2 (non-tunneled for 6516 * cloud filter) for now 6517 */ 6518 u32 switch_mode = hw->dev_caps.switch_mode & 6519 I40E_SWITCH_MODE_MASK; 6520 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6521 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6522 return 0; 6523 dev_err(&pf->pdev->dev, 6524 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6525 hw->dev_caps.switch_mode); 6526 return -EINVAL; 6527 } 6528 } 6529 6530 /* Set Bit 7 to be valid */ 6531 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6532 6533 /* Set L4type for TCP support */ 6534 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6535 6536 /* Set cloud filter mode */ 6537 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6538 6539 /* Prep mode field for set_switch_config */ 6540 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6541 pf->last_sw_conf_valid_flags, 6542 mode, NULL); 6543 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6544 dev_err(&pf->pdev->dev, 6545 "couldn't set switch config bits, err %pe aq_err %s\n", 6546 ERR_PTR(ret), 6547 i40e_aq_str(hw, 6548 hw->aq.asq_last_status)); 6549 6550 return ret; 6551 } 6552 6553 /** 6554 * i40e_create_queue_channel - function to create channel 6555 * @vsi: VSI to be configured 6556 * @ch: ptr to channel (it contains channel specific params) 6557 * 6558 * This function creates channel (VSI) using num_queues specified by user, 6559 * reconfigs RSS if needed. 6560 **/ 6561 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6562 struct i40e_channel *ch) 6563 { 6564 struct i40e_pf *pf = vsi->back; 6565 bool reconfig_rss; 6566 int err; 6567 6568 if (!ch) 6569 return -EINVAL; 6570 6571 if (!ch->num_queue_pairs) { 6572 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6573 ch->num_queue_pairs); 6574 return -EINVAL; 6575 } 6576 6577 /* validate user requested num_queues for channel */ 6578 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6579 &reconfig_rss); 6580 if (err) { 6581 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6582 ch->num_queue_pairs); 6583 return -EINVAL; 6584 } 6585 6586 /* By default we are in VEPA mode, if this is the first VF/VMDq 6587 * VSI to be added switch to VEB mode. 6588 */ 6589 6590 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6591 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6592 6593 if (vsi->type == I40E_VSI_MAIN) { 6594 if (i40e_is_tc_mqprio_enabled(pf)) 6595 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6596 else 6597 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6598 } 6599 /* now onwards for main VSI, number of queues will be value 6600 * of TC0's queue count 6601 */ 6602 } 6603 6604 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6605 * it should be more than num_queues 6606 */ 6607 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6608 dev_dbg(&pf->pdev->dev, 6609 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6610 vsi->cnt_q_avail, ch->num_queue_pairs); 6611 return -EINVAL; 6612 } 6613 6614 /* reconfig_rss only if vsi type is MAIN_VSI */ 6615 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6616 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6617 if (err) { 6618 dev_info(&pf->pdev->dev, 6619 "Error: unable to reconfig rss for num_queues (%u)\n", 6620 ch->num_queue_pairs); 6621 return -EINVAL; 6622 } 6623 } 6624 6625 if (!i40e_setup_channel(pf, vsi, ch)) { 6626 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6627 return -EINVAL; 6628 } 6629 6630 dev_info(&pf->pdev->dev, 6631 "Setup channel (id:%u) utilizing num_queues %d\n", 6632 ch->seid, ch->num_queue_pairs); 6633 6634 /* configure VSI for BW limit */ 6635 if (ch->max_tx_rate) { 6636 u64 credits = ch->max_tx_rate; 6637 6638 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6639 return -EINVAL; 6640 6641 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6642 dev_dbg(&pf->pdev->dev, 6643 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6644 ch->max_tx_rate, 6645 credits, 6646 ch->seid); 6647 } 6648 6649 /* in case of VF, this will be main SRIOV VSI */ 6650 ch->parent_vsi = vsi; 6651 6652 /* and update main_vsi's count for queue_available to use */ 6653 vsi->cnt_q_avail -= ch->num_queue_pairs; 6654 6655 return 0; 6656 } 6657 6658 /** 6659 * i40e_configure_queue_channels - Add queue channel for the given TCs 6660 * @vsi: VSI to be configured 6661 * 6662 * Configures queue channel mapping to the given TCs 6663 **/ 6664 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6665 { 6666 struct i40e_channel *ch; 6667 u64 max_rate = 0; 6668 int ret = 0, i; 6669 6670 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6671 vsi->tc_seid_map[0] = vsi->seid; 6672 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6673 if (vsi->tc_config.enabled_tc & BIT(i)) { 6674 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6675 if (!ch) { 6676 ret = -ENOMEM; 6677 goto err_free; 6678 } 6679 6680 INIT_LIST_HEAD(&ch->list); 6681 ch->num_queue_pairs = 6682 vsi->tc_config.tc_info[i].qcount; 6683 ch->base_queue = 6684 vsi->tc_config.tc_info[i].qoffset; 6685 6686 /* Bandwidth limit through tc interface is in bytes/s, 6687 * change to Mbit/s 6688 */ 6689 max_rate = vsi->mqprio_qopt.max_rate[i]; 6690 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6691 ch->max_tx_rate = max_rate; 6692 6693 list_add_tail(&ch->list, &vsi->ch_list); 6694 6695 ret = i40e_create_queue_channel(vsi, ch); 6696 if (ret) { 6697 dev_err(&vsi->back->pdev->dev, 6698 "Failed creating queue channel with TC%d: queues %d\n", 6699 i, ch->num_queue_pairs); 6700 goto err_free; 6701 } 6702 vsi->tc_seid_map[i] = ch->seid; 6703 } 6704 } 6705 6706 /* reset to reconfigure TX queue contexts */ 6707 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6708 return ret; 6709 6710 err_free: 6711 i40e_remove_queue_channels(vsi); 6712 return ret; 6713 } 6714 6715 /** 6716 * i40e_veb_config_tc - Configure TCs for given VEB 6717 * @veb: given VEB 6718 * @enabled_tc: TC bitmap 6719 * 6720 * Configures given TC bitmap for VEB (switching) element 6721 **/ 6722 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6723 { 6724 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6725 struct i40e_pf *pf = veb->pf; 6726 int ret = 0; 6727 int i; 6728 6729 /* No TCs or already enabled TCs just return */ 6730 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6731 return ret; 6732 6733 bw_data.tc_valid_bits = enabled_tc; 6734 /* bw_data.absolute_credits is not set (relative) */ 6735 6736 /* Enable ETS TCs with equal BW Share for now */ 6737 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6738 if (enabled_tc & BIT(i)) 6739 bw_data.tc_bw_share_credits[i] = 1; 6740 } 6741 6742 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6743 &bw_data, NULL); 6744 if (ret) { 6745 dev_info(&pf->pdev->dev, 6746 "VEB bw config failed, err %pe aq_err %s\n", 6747 ERR_PTR(ret), 6748 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6749 goto out; 6750 } 6751 6752 /* Update the BW information */ 6753 ret = i40e_veb_get_bw_info(veb); 6754 if (ret) { 6755 dev_info(&pf->pdev->dev, 6756 "Failed getting veb bw config, err %pe aq_err %s\n", 6757 ERR_PTR(ret), 6758 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6759 } 6760 6761 out: 6762 return ret; 6763 } 6764 6765 #ifdef CONFIG_I40E_DCB 6766 /** 6767 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6768 * @pf: PF struct 6769 * 6770 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6771 * the caller would've quiesce all the VSIs before calling 6772 * this function 6773 **/ 6774 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6775 { 6776 struct i40e_vsi *vsi; 6777 struct i40e_veb *veb; 6778 u8 tc_map = 0; 6779 int ret; 6780 int v; 6781 6782 /* Enable the TCs available on PF to all VEBs */ 6783 tc_map = i40e_pf_get_tc_map(pf); 6784 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6785 return; 6786 6787 i40e_pf_for_each_veb(pf, v, veb) { 6788 ret = i40e_veb_config_tc(veb, tc_map); 6789 if (ret) { 6790 dev_info(&pf->pdev->dev, 6791 "Failed configuring TC for VEB seid=%d\n", 6792 veb->seid); 6793 /* Will try to configure as many components */ 6794 } 6795 } 6796 6797 /* Update each VSI */ 6798 i40e_pf_for_each_vsi(pf, v, vsi) { 6799 /* - Enable all TCs for the LAN VSI 6800 * - For all others keep them at TC0 for now 6801 */ 6802 if (v == pf->lan_vsi) 6803 tc_map = i40e_pf_get_tc_map(pf); 6804 else 6805 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6806 6807 ret = i40e_vsi_config_tc(vsi, tc_map); 6808 if (ret) { 6809 dev_info(&pf->pdev->dev, 6810 "Failed configuring TC for VSI seid=%d\n", 6811 vsi->seid); 6812 /* Will try to configure as many components */ 6813 } else { 6814 /* Re-configure VSI vectors based on updated TC map */ 6815 i40e_vsi_map_rings_to_vectors(vsi); 6816 if (vsi->netdev) 6817 i40e_dcbnl_set_all(vsi); 6818 } 6819 } 6820 } 6821 6822 /** 6823 * i40e_resume_port_tx - Resume port Tx 6824 * @pf: PF struct 6825 * 6826 * Resume a port's Tx and issue a PF reset in case of failure to 6827 * resume. 6828 **/ 6829 static int i40e_resume_port_tx(struct i40e_pf *pf) 6830 { 6831 struct i40e_hw *hw = &pf->hw; 6832 int ret; 6833 6834 ret = i40e_aq_resume_port_tx(hw, NULL); 6835 if (ret) { 6836 dev_info(&pf->pdev->dev, 6837 "Resume Port Tx failed, err %pe aq_err %s\n", 6838 ERR_PTR(ret), 6839 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6840 /* Schedule PF reset to recover */ 6841 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6842 i40e_service_event_schedule(pf); 6843 } 6844 6845 return ret; 6846 } 6847 6848 /** 6849 * i40e_suspend_port_tx - Suspend port Tx 6850 * @pf: PF struct 6851 * 6852 * Suspend a port's Tx and issue a PF reset in case of failure. 6853 **/ 6854 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6855 { 6856 struct i40e_hw *hw = &pf->hw; 6857 int ret; 6858 6859 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6860 if (ret) { 6861 dev_info(&pf->pdev->dev, 6862 "Suspend Port Tx failed, err %pe aq_err %s\n", 6863 ERR_PTR(ret), 6864 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6865 /* Schedule PF reset to recover */ 6866 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6867 i40e_service_event_schedule(pf); 6868 } 6869 6870 return ret; 6871 } 6872 6873 /** 6874 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6875 * @pf: PF being configured 6876 * @new_cfg: New DCBX configuration 6877 * 6878 * Program DCB settings into HW and reconfigure VEB/VSIs on 6879 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6880 **/ 6881 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6882 struct i40e_dcbx_config *new_cfg) 6883 { 6884 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6885 int ret; 6886 6887 /* Check if need reconfiguration */ 6888 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6889 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6890 return 0; 6891 } 6892 6893 /* Config change disable all VSIs */ 6894 i40e_pf_quiesce_all_vsi(pf); 6895 6896 /* Copy the new config to the current config */ 6897 *old_cfg = *new_cfg; 6898 old_cfg->etsrec = old_cfg->etscfg; 6899 ret = i40e_set_dcb_config(&pf->hw); 6900 if (ret) { 6901 dev_info(&pf->pdev->dev, 6902 "Set DCB Config failed, err %pe aq_err %s\n", 6903 ERR_PTR(ret), 6904 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6905 goto out; 6906 } 6907 6908 /* Changes in configuration update VEB/VSI */ 6909 i40e_dcb_reconfigure(pf); 6910 out: 6911 /* In case of reset do not try to resume anything */ 6912 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6913 /* Re-start the VSIs if disabled */ 6914 ret = i40e_resume_port_tx(pf); 6915 /* In case of error no point in resuming VSIs */ 6916 if (ret) 6917 goto err; 6918 i40e_pf_unquiesce_all_vsi(pf); 6919 } 6920 err: 6921 return ret; 6922 } 6923 6924 /** 6925 * i40e_hw_dcb_config - Program new DCBX settings into HW 6926 * @pf: PF being configured 6927 * @new_cfg: New DCBX configuration 6928 * 6929 * Program DCB settings into HW and reconfigure VEB/VSIs on 6930 * given PF 6931 **/ 6932 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6933 { 6934 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6935 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6936 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6937 struct i40e_dcbx_config *old_cfg; 6938 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6939 struct i40e_rx_pb_config pb_cfg; 6940 struct i40e_hw *hw = &pf->hw; 6941 u8 num_ports = hw->num_ports; 6942 bool need_reconfig; 6943 int ret = -EINVAL; 6944 u8 lltc_map = 0; 6945 u8 tc_map = 0; 6946 u8 new_numtc; 6947 u8 i; 6948 6949 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6950 /* Un-pack information to Program ETS HW via shared API 6951 * numtc, tcmap 6952 * LLTC map 6953 * ETS/NON-ETS arbiter mode 6954 * max exponent (credit refills) 6955 * Total number of ports 6956 * PFC priority bit-map 6957 * Priority Table 6958 * BW % per TC 6959 * Arbiter mode between UPs sharing same TC 6960 * TSA table (ETS or non-ETS) 6961 * EEE enabled or not 6962 * MFS TC table 6963 */ 6964 6965 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6966 6967 memset(&ets_data, 0, sizeof(ets_data)); 6968 for (i = 0; i < new_numtc; i++) { 6969 tc_map |= BIT(i); 6970 switch (new_cfg->etscfg.tsatable[i]) { 6971 case I40E_IEEE_TSA_ETS: 6972 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6973 ets_data.tc_bw_share_credits[i] = 6974 new_cfg->etscfg.tcbwtable[i]; 6975 break; 6976 case I40E_IEEE_TSA_STRICT: 6977 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6978 lltc_map |= BIT(i); 6979 ets_data.tc_bw_share_credits[i] = 6980 I40E_DCB_STRICT_PRIO_CREDITS; 6981 break; 6982 default: 6983 /* Invalid TSA type */ 6984 need_reconfig = false; 6985 goto out; 6986 } 6987 } 6988 6989 old_cfg = &hw->local_dcbx_config; 6990 /* Check if need reconfiguration */ 6991 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 6992 6993 /* If needed, enable/disable frame tagging, disable all VSIs 6994 * and suspend port tx 6995 */ 6996 if (need_reconfig) { 6997 /* Enable DCB tagging only when more than one TC */ 6998 if (new_numtc > 1) 6999 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7000 else 7001 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7002 7003 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7004 /* Reconfiguration needed quiesce all VSIs */ 7005 i40e_pf_quiesce_all_vsi(pf); 7006 ret = i40e_suspend_port_tx(pf); 7007 if (ret) 7008 goto err; 7009 } 7010 7011 /* Configure Port ETS Tx Scheduler */ 7012 ets_data.tc_valid_bits = tc_map; 7013 ets_data.tc_strict_priority_flags = lltc_map; 7014 ret = i40e_aq_config_switch_comp_ets 7015 (hw, pf->mac_seid, &ets_data, 7016 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7017 if (ret) { 7018 dev_info(&pf->pdev->dev, 7019 "Modify Port ETS failed, err %pe aq_err %s\n", 7020 ERR_PTR(ret), 7021 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7022 goto out; 7023 } 7024 7025 /* Configure Rx ETS HW */ 7026 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7027 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7028 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7029 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7030 I40E_DCB_DEFAULT_MAX_EXPONENT, 7031 lltc_map); 7032 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7033 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7034 prio_type); 7035 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7036 new_cfg->etscfg.prioritytable); 7037 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7038 7039 /* Configure Rx Packet Buffers in HW */ 7040 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7041 mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu; 7042 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7043 } 7044 7045 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7046 false, new_cfg->pfc.pfcenable, 7047 mfs_tc, &pb_cfg); 7048 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7049 7050 /* Update the local Rx Packet buffer config */ 7051 pf->pb_cfg = pb_cfg; 7052 7053 /* Inform the FW about changes to DCB configuration */ 7054 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7055 if (ret) { 7056 dev_info(&pf->pdev->dev, 7057 "DCB Updated failed, err %pe aq_err %s\n", 7058 ERR_PTR(ret), 7059 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7060 goto out; 7061 } 7062 7063 /* Update the port DCBx configuration */ 7064 *old_cfg = *new_cfg; 7065 7066 /* Changes in configuration update VEB/VSI */ 7067 i40e_dcb_reconfigure(pf); 7068 out: 7069 /* Re-start the VSIs if disabled */ 7070 if (need_reconfig) { 7071 ret = i40e_resume_port_tx(pf); 7072 7073 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7074 /* In case of error no point in resuming VSIs */ 7075 if (ret) 7076 goto err; 7077 7078 /* Wait for the PF's queues to be disabled */ 7079 ret = i40e_pf_wait_queues_disabled(pf); 7080 if (ret) { 7081 /* Schedule PF reset to recover */ 7082 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7083 i40e_service_event_schedule(pf); 7084 goto err; 7085 } else { 7086 i40e_pf_unquiesce_all_vsi(pf); 7087 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7088 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7089 } 7090 /* registers are set, lets apply */ 7091 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7092 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7093 } 7094 7095 err: 7096 return ret; 7097 } 7098 7099 /** 7100 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7101 * @pf: PF being queried 7102 * 7103 * Set default DCB configuration in case DCB is to be done in SW. 7104 **/ 7105 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7106 { 7107 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7108 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7109 struct i40e_hw *hw = &pf->hw; 7110 int err; 7111 7112 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7113 /* Update the local cached instance with TC0 ETS */ 7114 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7115 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7116 pf->tmp_cfg.etscfg.maxtcs = 0; 7117 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7118 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7119 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7120 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7121 /* FW needs one App to configure HW */ 7122 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7123 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7124 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7125 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7126 7127 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7128 } 7129 7130 memset(&ets_data, 0, sizeof(ets_data)); 7131 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7132 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7133 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7134 7135 /* Enable ETS on the Physical port */ 7136 err = i40e_aq_config_switch_comp_ets 7137 (hw, pf->mac_seid, &ets_data, 7138 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7139 if (err) { 7140 dev_info(&pf->pdev->dev, 7141 "Enable Port ETS failed, err %pe aq_err %s\n", 7142 ERR_PTR(err), 7143 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7144 err = -ENOENT; 7145 goto out; 7146 } 7147 7148 /* Update the local cached instance with TC0 ETS */ 7149 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7150 dcb_cfg->etscfg.cbs = 0; 7151 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7152 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7153 7154 out: 7155 return err; 7156 } 7157 7158 /** 7159 * i40e_init_pf_dcb - Initialize DCB configuration 7160 * @pf: PF being configured 7161 * 7162 * Query the current DCB configuration and cache it 7163 * in the hardware structure 7164 **/ 7165 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7166 { 7167 struct i40e_hw *hw = &pf->hw; 7168 int err; 7169 7170 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7171 * Also do not enable DCBx if FW LLDP agent is disabled 7172 */ 7173 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7174 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7175 err = -EOPNOTSUPP; 7176 goto out; 7177 } 7178 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7179 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7180 err = i40e_dcb_sw_default_config(pf); 7181 if (err) { 7182 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7183 goto out; 7184 } 7185 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7186 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7187 DCB_CAP_DCBX_VER_IEEE; 7188 /* at init capable but disabled */ 7189 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7190 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7191 goto out; 7192 } 7193 err = i40e_init_dcb(hw, true); 7194 if (!err) { 7195 /* Device/Function is not DCBX capable */ 7196 if ((!hw->func_caps.dcb) || 7197 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7198 dev_info(&pf->pdev->dev, 7199 "DCBX offload is not supported or is disabled for this PF.\n"); 7200 } else { 7201 /* When status is not DISABLED then DCBX in FW */ 7202 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7203 DCB_CAP_DCBX_VER_IEEE; 7204 7205 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7206 /* Enable DCB tagging only when more than one TC 7207 * or explicitly disable if only one TC 7208 */ 7209 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7210 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7211 else 7212 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7213 dev_dbg(&pf->pdev->dev, 7214 "DCBX offload is supported for this PF.\n"); 7215 } 7216 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7217 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7218 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7219 } else { 7220 dev_info(&pf->pdev->dev, 7221 "Query for DCB configuration failed, err %pe aq_err %s\n", 7222 ERR_PTR(err), 7223 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7224 } 7225 7226 out: 7227 return err; 7228 } 7229 #endif /* CONFIG_I40E_DCB */ 7230 7231 /** 7232 * i40e_print_link_message - print link up or down 7233 * @vsi: the VSI for which link needs a message 7234 * @isup: true of link is up, false otherwise 7235 */ 7236 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7237 { 7238 enum i40e_aq_link_speed new_speed; 7239 struct i40e_pf *pf = vsi->back; 7240 char *speed = "Unknown"; 7241 char *fc = "Unknown"; 7242 char *fec = ""; 7243 char *req_fec = ""; 7244 char *an = ""; 7245 7246 if (isup) 7247 new_speed = pf->hw.phy.link_info.link_speed; 7248 else 7249 new_speed = I40E_LINK_SPEED_UNKNOWN; 7250 7251 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7252 return; 7253 vsi->current_isup = isup; 7254 vsi->current_speed = new_speed; 7255 if (!isup) { 7256 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7257 return; 7258 } 7259 7260 /* Warn user if link speed on NPAR enabled partition is not at 7261 * least 10GB 7262 */ 7263 if (pf->hw.func_caps.npar_enable && 7264 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7265 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7266 netdev_warn(vsi->netdev, 7267 "The partition detected link speed that is less than 10Gbps\n"); 7268 7269 switch (pf->hw.phy.link_info.link_speed) { 7270 case I40E_LINK_SPEED_40GB: 7271 speed = "40 G"; 7272 break; 7273 case I40E_LINK_SPEED_20GB: 7274 speed = "20 G"; 7275 break; 7276 case I40E_LINK_SPEED_25GB: 7277 speed = "25 G"; 7278 break; 7279 case I40E_LINK_SPEED_10GB: 7280 speed = "10 G"; 7281 break; 7282 case I40E_LINK_SPEED_5GB: 7283 speed = "5 G"; 7284 break; 7285 case I40E_LINK_SPEED_2_5GB: 7286 speed = "2.5 G"; 7287 break; 7288 case I40E_LINK_SPEED_1GB: 7289 speed = "1000 M"; 7290 break; 7291 case I40E_LINK_SPEED_100MB: 7292 speed = "100 M"; 7293 break; 7294 default: 7295 break; 7296 } 7297 7298 switch (pf->hw.fc.current_mode) { 7299 case I40E_FC_FULL: 7300 fc = "RX/TX"; 7301 break; 7302 case I40E_FC_TX_PAUSE: 7303 fc = "TX"; 7304 break; 7305 case I40E_FC_RX_PAUSE: 7306 fc = "RX"; 7307 break; 7308 default: 7309 fc = "None"; 7310 break; 7311 } 7312 7313 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7314 req_fec = "None"; 7315 fec = "None"; 7316 an = "False"; 7317 7318 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7319 an = "True"; 7320 7321 if (pf->hw.phy.link_info.fec_info & 7322 I40E_AQ_CONFIG_FEC_KR_ENA) 7323 fec = "CL74 FC-FEC/BASE-R"; 7324 else if (pf->hw.phy.link_info.fec_info & 7325 I40E_AQ_CONFIG_FEC_RS_ENA) 7326 fec = "CL108 RS-FEC"; 7327 7328 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7329 * both RS and FC are requested 7330 */ 7331 if (vsi->back->hw.phy.link_info.req_fec_info & 7332 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7333 if (vsi->back->hw.phy.link_info.req_fec_info & 7334 I40E_AQ_REQUEST_FEC_RS) 7335 req_fec = "CL108 RS-FEC"; 7336 else 7337 req_fec = "CL74 FC-FEC/BASE-R"; 7338 } 7339 netdev_info(vsi->netdev, 7340 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7341 speed, req_fec, fec, an, fc); 7342 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7343 req_fec = "None"; 7344 fec = "None"; 7345 an = "False"; 7346 7347 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7348 an = "True"; 7349 7350 if (pf->hw.phy.link_info.fec_info & 7351 I40E_AQ_CONFIG_FEC_KR_ENA) 7352 fec = "CL74 FC-FEC/BASE-R"; 7353 7354 if (pf->hw.phy.link_info.req_fec_info & 7355 I40E_AQ_REQUEST_FEC_KR) 7356 req_fec = "CL74 FC-FEC/BASE-R"; 7357 7358 netdev_info(vsi->netdev, 7359 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7360 speed, req_fec, fec, an, fc); 7361 } else { 7362 netdev_info(vsi->netdev, 7363 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7364 speed, fc); 7365 } 7366 7367 } 7368 7369 /** 7370 * i40e_up_complete - Finish the last steps of bringing up a connection 7371 * @vsi: the VSI being configured 7372 **/ 7373 static int i40e_up_complete(struct i40e_vsi *vsi) 7374 { 7375 struct i40e_pf *pf = vsi->back; 7376 int err; 7377 7378 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7379 i40e_vsi_configure_msix(vsi); 7380 else 7381 i40e_configure_msi_and_legacy(vsi); 7382 7383 /* start rings */ 7384 err = i40e_vsi_start_rings(vsi); 7385 if (err) 7386 return err; 7387 7388 clear_bit(__I40E_VSI_DOWN, vsi->state); 7389 i40e_napi_enable_all(vsi); 7390 i40e_vsi_enable_irq(vsi); 7391 7392 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7393 (vsi->netdev)) { 7394 i40e_print_link_message(vsi, true); 7395 netif_tx_start_all_queues(vsi->netdev); 7396 netif_carrier_on(vsi->netdev); 7397 } 7398 7399 /* replay FDIR SB filters */ 7400 if (vsi->type == I40E_VSI_FDIR) { 7401 /* reset fd counters */ 7402 pf->fd_add_err = 0; 7403 pf->fd_atr_cnt = 0; 7404 i40e_fdir_filter_restore(vsi); 7405 } 7406 7407 /* On the next run of the service_task, notify any clients of the new 7408 * opened netdev 7409 */ 7410 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7411 i40e_service_event_schedule(pf); 7412 7413 return 0; 7414 } 7415 7416 /** 7417 * i40e_vsi_reinit_locked - Reset the VSI 7418 * @vsi: the VSI being configured 7419 * 7420 * Rebuild the ring structs after some configuration 7421 * has changed, e.g. MTU size. 7422 **/ 7423 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7424 { 7425 struct i40e_pf *pf = vsi->back; 7426 7427 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7428 usleep_range(1000, 2000); 7429 i40e_down(vsi); 7430 7431 i40e_up(vsi); 7432 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7433 } 7434 7435 /** 7436 * i40e_force_link_state - Force the link status 7437 * @pf: board private structure 7438 * @is_up: whether the link state should be forced up or down 7439 **/ 7440 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7441 { 7442 struct i40e_aq_get_phy_abilities_resp abilities; 7443 struct i40e_aq_set_phy_config config = {0}; 7444 bool non_zero_phy_type = is_up; 7445 struct i40e_hw *hw = &pf->hw; 7446 u64 mask; 7447 u8 speed; 7448 int err; 7449 7450 /* Card might've been put in an unstable state by other drivers 7451 * and applications, which causes incorrect speed values being 7452 * set on startup. In order to clear speed registers, we call 7453 * get_phy_capabilities twice, once to get initial state of 7454 * available speeds, and once to get current PHY config. 7455 */ 7456 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7457 NULL); 7458 if (err) { 7459 dev_err(&pf->pdev->dev, 7460 "failed to get phy cap., ret = %pe last_status = %s\n", 7461 ERR_PTR(err), 7462 i40e_aq_str(hw, hw->aq.asq_last_status)); 7463 return err; 7464 } 7465 speed = abilities.link_speed; 7466 7467 /* Get the current phy config */ 7468 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7469 NULL); 7470 if (err) { 7471 dev_err(&pf->pdev->dev, 7472 "failed to get phy cap., ret = %pe last_status = %s\n", 7473 ERR_PTR(err), 7474 i40e_aq_str(hw, hw->aq.asq_last_status)); 7475 return err; 7476 } 7477 7478 /* If link needs to go up, but was not forced to go down, 7479 * and its speed values are OK, no need for a flap 7480 * if non_zero_phy_type was set, still need to force up 7481 */ 7482 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7483 non_zero_phy_type = true; 7484 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7485 return 0; 7486 7487 /* To force link we need to set bits for all supported PHY types, 7488 * but there are now more than 32, so we need to split the bitmap 7489 * across two fields. 7490 */ 7491 mask = I40E_PHY_TYPES_BITMASK; 7492 config.phy_type = 7493 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7494 config.phy_type_ext = 7495 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7496 /* Copy the old settings, except of phy_type */ 7497 config.abilities = abilities.abilities; 7498 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7499 if (is_up) 7500 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7501 else 7502 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7503 } 7504 if (abilities.link_speed != 0) 7505 config.link_speed = abilities.link_speed; 7506 else 7507 config.link_speed = speed; 7508 config.eee_capability = abilities.eee_capability; 7509 config.eeer = abilities.eeer_val; 7510 config.low_power_ctrl = abilities.d3_lpan; 7511 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7512 I40E_AQ_PHY_FEC_CONFIG_MASK; 7513 err = i40e_aq_set_phy_config(hw, &config, NULL); 7514 7515 if (err) { 7516 dev_err(&pf->pdev->dev, 7517 "set phy config ret = %pe last_status = %s\n", 7518 ERR_PTR(err), 7519 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7520 return err; 7521 } 7522 7523 /* Update the link info */ 7524 err = i40e_update_link_info(hw); 7525 if (err) { 7526 /* Wait a little bit (on 40G cards it sometimes takes a really 7527 * long time for link to come back from the atomic reset) 7528 * and try once more 7529 */ 7530 msleep(1000); 7531 i40e_update_link_info(hw); 7532 } 7533 7534 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7535 7536 return 0; 7537 } 7538 7539 /** 7540 * i40e_up - Bring the connection back up after being down 7541 * @vsi: the VSI being configured 7542 **/ 7543 int i40e_up(struct i40e_vsi *vsi) 7544 { 7545 int err; 7546 7547 if (vsi->type == I40E_VSI_MAIN && 7548 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7549 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7550 i40e_force_link_state(vsi->back, true); 7551 7552 err = i40e_vsi_configure(vsi); 7553 if (!err) 7554 err = i40e_up_complete(vsi); 7555 7556 return err; 7557 } 7558 7559 /** 7560 * i40e_down - Shutdown the connection processing 7561 * @vsi: the VSI being stopped 7562 **/ 7563 void i40e_down(struct i40e_vsi *vsi) 7564 { 7565 int i; 7566 7567 /* It is assumed that the caller of this function 7568 * sets the vsi->state __I40E_VSI_DOWN bit. 7569 */ 7570 if (vsi->netdev) { 7571 netif_carrier_off(vsi->netdev); 7572 netif_tx_disable(vsi->netdev); 7573 } 7574 i40e_vsi_disable_irq(vsi); 7575 i40e_vsi_stop_rings(vsi); 7576 if (vsi->type == I40E_VSI_MAIN && 7577 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7578 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7579 i40e_force_link_state(vsi->back, false); 7580 i40e_napi_disable_all(vsi); 7581 7582 for (i = 0; i < vsi->num_queue_pairs; i++) { 7583 i40e_clean_tx_ring(vsi->tx_rings[i]); 7584 if (i40e_enabled_xdp_vsi(vsi)) { 7585 /* Make sure that in-progress ndo_xdp_xmit and 7586 * ndo_xsk_wakeup calls are completed. 7587 */ 7588 synchronize_rcu(); 7589 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7590 } 7591 i40e_clean_rx_ring(vsi->rx_rings[i]); 7592 } 7593 7594 } 7595 7596 /** 7597 * i40e_validate_mqprio_qopt- validate queue mapping info 7598 * @vsi: the VSI being configured 7599 * @mqprio_qopt: queue parametrs 7600 **/ 7601 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7602 struct tc_mqprio_qopt_offload *mqprio_qopt) 7603 { 7604 u64 sum_max_rate = 0; 7605 u64 max_rate = 0; 7606 int i; 7607 7608 if (mqprio_qopt->qopt.offset[0] != 0 || 7609 mqprio_qopt->qopt.num_tc < 1 || 7610 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7611 return -EINVAL; 7612 for (i = 0; ; i++) { 7613 if (!mqprio_qopt->qopt.count[i]) 7614 return -EINVAL; 7615 if (mqprio_qopt->min_rate[i]) { 7616 dev_err(&vsi->back->pdev->dev, 7617 "Invalid min tx rate (greater than 0) specified\n"); 7618 return -EINVAL; 7619 } 7620 max_rate = mqprio_qopt->max_rate[i]; 7621 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7622 sum_max_rate += max_rate; 7623 7624 if (i >= mqprio_qopt->qopt.num_tc - 1) 7625 break; 7626 if (mqprio_qopt->qopt.offset[i + 1] != 7627 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7628 return -EINVAL; 7629 } 7630 if (vsi->num_queue_pairs < 7631 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7632 dev_err(&vsi->back->pdev->dev, 7633 "Failed to create traffic channel, insufficient number of queues.\n"); 7634 return -EINVAL; 7635 } 7636 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7637 dev_err(&vsi->back->pdev->dev, 7638 "Invalid max tx rate specified\n"); 7639 return -EINVAL; 7640 } 7641 return 0; 7642 } 7643 7644 /** 7645 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7646 * @vsi: the VSI being configured 7647 **/ 7648 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7649 { 7650 u16 qcount; 7651 int i; 7652 7653 /* Only TC0 is enabled */ 7654 vsi->tc_config.numtc = 1; 7655 vsi->tc_config.enabled_tc = 1; 7656 qcount = min_t(int, vsi->alloc_queue_pairs, 7657 i40e_pf_get_max_q_per_tc(vsi->back)); 7658 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7659 /* For the TC that is not enabled set the offset to default 7660 * queue and allocate one queue for the given TC. 7661 */ 7662 vsi->tc_config.tc_info[i].qoffset = 0; 7663 if (i == 0) 7664 vsi->tc_config.tc_info[i].qcount = qcount; 7665 else 7666 vsi->tc_config.tc_info[i].qcount = 1; 7667 vsi->tc_config.tc_info[i].netdev_tc = 0; 7668 } 7669 } 7670 7671 /** 7672 * i40e_del_macvlan_filter 7673 * @hw: pointer to the HW structure 7674 * @seid: seid of the channel VSI 7675 * @macaddr: the mac address to apply as a filter 7676 * @aq_err: store the admin Q error 7677 * 7678 * This function deletes a mac filter on the channel VSI which serves as the 7679 * macvlan. Returns 0 on success. 7680 **/ 7681 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7682 const u8 *macaddr, int *aq_err) 7683 { 7684 struct i40e_aqc_remove_macvlan_element_data element; 7685 int status; 7686 7687 memset(&element, 0, sizeof(element)); 7688 ether_addr_copy(element.mac_addr, macaddr); 7689 element.vlan_tag = 0; 7690 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7691 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7692 *aq_err = hw->aq.asq_last_status; 7693 7694 return status; 7695 } 7696 7697 /** 7698 * i40e_add_macvlan_filter 7699 * @hw: pointer to the HW structure 7700 * @seid: seid of the channel VSI 7701 * @macaddr: the mac address to apply as a filter 7702 * @aq_err: store the admin Q error 7703 * 7704 * This function adds a mac filter on the channel VSI which serves as the 7705 * macvlan. Returns 0 on success. 7706 **/ 7707 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7708 const u8 *macaddr, int *aq_err) 7709 { 7710 struct i40e_aqc_add_macvlan_element_data element; 7711 u16 cmd_flags = 0; 7712 int status; 7713 7714 ether_addr_copy(element.mac_addr, macaddr); 7715 element.vlan_tag = 0; 7716 element.queue_number = 0; 7717 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7718 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7719 element.flags = cpu_to_le16(cmd_flags); 7720 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7721 *aq_err = hw->aq.asq_last_status; 7722 7723 return status; 7724 } 7725 7726 /** 7727 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7728 * @vsi: the VSI we want to access 7729 * @ch: the channel we want to access 7730 */ 7731 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7732 { 7733 struct i40e_ring *tx_ring, *rx_ring; 7734 u16 pf_q; 7735 int i; 7736 7737 for (i = 0; i < ch->num_queue_pairs; i++) { 7738 pf_q = ch->base_queue + i; 7739 tx_ring = vsi->tx_rings[pf_q]; 7740 tx_ring->ch = NULL; 7741 rx_ring = vsi->rx_rings[pf_q]; 7742 rx_ring->ch = NULL; 7743 } 7744 } 7745 7746 /** 7747 * i40e_free_macvlan_channels 7748 * @vsi: the VSI we want to access 7749 * 7750 * This function frees the Qs of the channel VSI from 7751 * the stack and also deletes the channel VSIs which 7752 * serve as macvlans. 7753 */ 7754 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7755 { 7756 struct i40e_channel *ch, *ch_tmp; 7757 int ret; 7758 7759 if (list_empty(&vsi->macvlan_list)) 7760 return; 7761 7762 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7763 struct i40e_vsi *parent_vsi; 7764 7765 if (i40e_is_channel_macvlan(ch)) { 7766 i40e_reset_ch_rings(vsi, ch); 7767 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7768 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7769 netdev_set_sb_channel(ch->fwd->netdev, 0); 7770 kfree(ch->fwd); 7771 ch->fwd = NULL; 7772 } 7773 7774 list_del(&ch->list); 7775 parent_vsi = ch->parent_vsi; 7776 if (!parent_vsi || !ch->initialized) { 7777 kfree(ch); 7778 continue; 7779 } 7780 7781 /* remove the VSI */ 7782 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7783 NULL); 7784 if (ret) 7785 dev_err(&vsi->back->pdev->dev, 7786 "unable to remove channel (%d) for parent VSI(%d)\n", 7787 ch->seid, parent_vsi->seid); 7788 kfree(ch); 7789 } 7790 vsi->macvlan_cnt = 0; 7791 } 7792 7793 /** 7794 * i40e_fwd_ring_up - bring the macvlan device up 7795 * @vsi: the VSI we want to access 7796 * @vdev: macvlan netdevice 7797 * @fwd: the private fwd structure 7798 */ 7799 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7800 struct i40e_fwd_adapter *fwd) 7801 { 7802 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7803 int ret = 0, num_tc = 1, i, aq_err; 7804 struct i40e_pf *pf = vsi->back; 7805 struct i40e_hw *hw = &pf->hw; 7806 7807 /* Go through the list and find an available channel */ 7808 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7809 if (!i40e_is_channel_macvlan(iter)) { 7810 iter->fwd = fwd; 7811 /* record configuration for macvlan interface in vdev */ 7812 for (i = 0; i < num_tc; i++) 7813 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7814 i, 7815 iter->num_queue_pairs, 7816 iter->base_queue); 7817 for (i = 0; i < iter->num_queue_pairs; i++) { 7818 struct i40e_ring *tx_ring, *rx_ring; 7819 u16 pf_q; 7820 7821 pf_q = iter->base_queue + i; 7822 7823 /* Get to TX ring ptr */ 7824 tx_ring = vsi->tx_rings[pf_q]; 7825 tx_ring->ch = iter; 7826 7827 /* Get the RX ring ptr */ 7828 rx_ring = vsi->rx_rings[pf_q]; 7829 rx_ring->ch = iter; 7830 } 7831 ch = iter; 7832 break; 7833 } 7834 } 7835 7836 if (!ch) 7837 return -EINVAL; 7838 7839 /* Guarantee all rings are updated before we update the 7840 * MAC address filter. 7841 */ 7842 wmb(); 7843 7844 /* Add a mac filter */ 7845 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7846 if (ret) { 7847 /* if we cannot add the MAC rule then disable the offload */ 7848 macvlan_release_l2fw_offload(vdev); 7849 for (i = 0; i < ch->num_queue_pairs; i++) { 7850 struct i40e_ring *rx_ring; 7851 u16 pf_q; 7852 7853 pf_q = ch->base_queue + i; 7854 rx_ring = vsi->rx_rings[pf_q]; 7855 rx_ring->netdev = NULL; 7856 } 7857 dev_info(&pf->pdev->dev, 7858 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7859 ERR_PTR(ret), 7860 i40e_aq_str(hw, aq_err)); 7861 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7862 } 7863 7864 return ret; 7865 } 7866 7867 /** 7868 * i40e_setup_macvlans - create the channels which will be macvlans 7869 * @vsi: the VSI we want to access 7870 * @macvlan_cnt: no. of macvlans to be setup 7871 * @qcnt: no. of Qs per macvlan 7872 * @vdev: macvlan netdevice 7873 */ 7874 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7875 struct net_device *vdev) 7876 { 7877 struct i40e_pf *pf = vsi->back; 7878 struct i40e_hw *hw = &pf->hw; 7879 struct i40e_vsi_context ctxt; 7880 u16 sections, qmap, num_qps; 7881 struct i40e_channel *ch; 7882 int i, pow, ret = 0; 7883 u8 offset = 0; 7884 7885 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7886 return -EINVAL; 7887 7888 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7889 7890 /* find the next higher power-of-2 of num queue pairs */ 7891 pow = fls(roundup_pow_of_two(num_qps) - 1); 7892 7893 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7894 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7895 7896 /* Setup context bits for the main VSI */ 7897 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7898 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7899 memset(&ctxt, 0, sizeof(ctxt)); 7900 ctxt.seid = vsi->seid; 7901 ctxt.pf_num = vsi->back->hw.pf_id; 7902 ctxt.vf_num = 0; 7903 ctxt.uplink_seid = vsi->uplink_seid; 7904 ctxt.info = vsi->info; 7905 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7906 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7907 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7908 ctxt.info.valid_sections |= cpu_to_le16(sections); 7909 7910 /* Reconfigure RSS for main VSI with new max queue count */ 7911 vsi->rss_size = max_t(u16, num_qps, qcnt); 7912 ret = i40e_vsi_config_rss(vsi); 7913 if (ret) { 7914 dev_info(&pf->pdev->dev, 7915 "Failed to reconfig RSS for num_queues (%u)\n", 7916 vsi->rss_size); 7917 return ret; 7918 } 7919 vsi->reconfig_rss = true; 7920 dev_dbg(&vsi->back->pdev->dev, 7921 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7922 vsi->next_base_queue = num_qps; 7923 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7924 7925 /* Update the VSI after updating the VSI queue-mapping 7926 * information 7927 */ 7928 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7929 if (ret) { 7930 dev_info(&pf->pdev->dev, 7931 "Update vsi tc config failed, err %pe aq_err %s\n", 7932 ERR_PTR(ret), 7933 i40e_aq_str(hw, hw->aq.asq_last_status)); 7934 return ret; 7935 } 7936 /* update the local VSI info with updated queue map */ 7937 i40e_vsi_update_queue_map(vsi, &ctxt); 7938 vsi->info.valid_sections = 0; 7939 7940 /* Create channels for macvlans */ 7941 INIT_LIST_HEAD(&vsi->macvlan_list); 7942 for (i = 0; i < macvlan_cnt; i++) { 7943 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7944 if (!ch) { 7945 ret = -ENOMEM; 7946 goto err_free; 7947 } 7948 INIT_LIST_HEAD(&ch->list); 7949 ch->num_queue_pairs = qcnt; 7950 if (!i40e_setup_channel(pf, vsi, ch)) { 7951 ret = -EINVAL; 7952 kfree(ch); 7953 goto err_free; 7954 } 7955 ch->parent_vsi = vsi; 7956 vsi->cnt_q_avail -= ch->num_queue_pairs; 7957 vsi->macvlan_cnt++; 7958 list_add_tail(&ch->list, &vsi->macvlan_list); 7959 } 7960 7961 return ret; 7962 7963 err_free: 7964 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7965 i40e_free_macvlan_channels(vsi); 7966 7967 return ret; 7968 } 7969 7970 /** 7971 * i40e_fwd_add - configure macvlans 7972 * @netdev: net device to configure 7973 * @vdev: macvlan netdevice 7974 **/ 7975 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7976 { 7977 struct i40e_netdev_priv *np = netdev_priv(netdev); 7978 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7979 struct i40e_vsi *vsi = np->vsi; 7980 struct i40e_pf *pf = vsi->back; 7981 struct i40e_fwd_adapter *fwd; 7982 int avail_macvlan, ret; 7983 7984 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 7985 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7986 return ERR_PTR(-EINVAL); 7987 } 7988 if (i40e_is_tc_mqprio_enabled(pf)) { 7989 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7990 return ERR_PTR(-EINVAL); 7991 } 7992 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7993 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7994 return ERR_PTR(-EINVAL); 7995 } 7996 7997 /* The macvlan device has to be a single Q device so that the 7998 * tc_to_txq field can be reused to pick the tx queue. 7999 */ 8000 if (netif_is_multiqueue(vdev)) 8001 return ERR_PTR(-ERANGE); 8002 8003 if (!vsi->macvlan_cnt) { 8004 /* reserve bit 0 for the pf device */ 8005 set_bit(0, vsi->fwd_bitmask); 8006 8007 /* Try to reserve as many queues as possible for macvlans. First 8008 * reserve 3/4th of max vectors, then half, then quarter and 8009 * calculate Qs per macvlan as you go 8010 */ 8011 vectors = pf->num_lan_msix; 8012 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8013 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8014 q_per_macvlan = 4; 8015 macvlan_cnt = (vectors - 32) / 4; 8016 } else if (vectors <= 64 && vectors > 32) { 8017 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8018 q_per_macvlan = 2; 8019 macvlan_cnt = (vectors - 16) / 2; 8020 } else if (vectors <= 32 && vectors > 16) { 8021 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8022 q_per_macvlan = 1; 8023 macvlan_cnt = vectors - 16; 8024 } else if (vectors <= 16 && vectors > 8) { 8025 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8026 q_per_macvlan = 1; 8027 macvlan_cnt = vectors - 8; 8028 } else { 8029 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8030 q_per_macvlan = 1; 8031 macvlan_cnt = vectors - 1; 8032 } 8033 8034 if (macvlan_cnt == 0) 8035 return ERR_PTR(-EBUSY); 8036 8037 /* Quiesce VSI queues */ 8038 i40e_quiesce_vsi(vsi); 8039 8040 /* sets up the macvlans but does not "enable" them */ 8041 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8042 vdev); 8043 if (ret) 8044 return ERR_PTR(ret); 8045 8046 /* Unquiesce VSI */ 8047 i40e_unquiesce_vsi(vsi); 8048 } 8049 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8050 vsi->macvlan_cnt); 8051 if (avail_macvlan >= I40E_MAX_MACVLANS) 8052 return ERR_PTR(-EBUSY); 8053 8054 /* create the fwd struct */ 8055 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8056 if (!fwd) 8057 return ERR_PTR(-ENOMEM); 8058 8059 set_bit(avail_macvlan, vsi->fwd_bitmask); 8060 fwd->bit_no = avail_macvlan; 8061 netdev_set_sb_channel(vdev, avail_macvlan); 8062 fwd->netdev = vdev; 8063 8064 if (!netif_running(netdev)) 8065 return fwd; 8066 8067 /* Set fwd ring up */ 8068 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8069 if (ret) { 8070 /* unbind the queues and drop the subordinate channel config */ 8071 netdev_unbind_sb_channel(netdev, vdev); 8072 netdev_set_sb_channel(vdev, 0); 8073 8074 kfree(fwd); 8075 return ERR_PTR(-EINVAL); 8076 } 8077 8078 return fwd; 8079 } 8080 8081 /** 8082 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8083 * @vsi: the VSI we want to access 8084 */ 8085 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8086 { 8087 struct i40e_channel *ch, *ch_tmp; 8088 struct i40e_pf *pf = vsi->back; 8089 struct i40e_hw *hw = &pf->hw; 8090 int aq_err, ret = 0; 8091 8092 if (list_empty(&vsi->macvlan_list)) 8093 return; 8094 8095 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8096 if (i40e_is_channel_macvlan(ch)) { 8097 ret = i40e_del_macvlan_filter(hw, ch->seid, 8098 i40e_channel_mac(ch), 8099 &aq_err); 8100 if (!ret) { 8101 /* Reset queue contexts */ 8102 i40e_reset_ch_rings(vsi, ch); 8103 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8104 netdev_unbind_sb_channel(vsi->netdev, 8105 ch->fwd->netdev); 8106 netdev_set_sb_channel(ch->fwd->netdev, 0); 8107 kfree(ch->fwd); 8108 ch->fwd = NULL; 8109 } 8110 } 8111 } 8112 } 8113 8114 /** 8115 * i40e_fwd_del - delete macvlan interfaces 8116 * @netdev: net device to configure 8117 * @vdev: macvlan netdevice 8118 */ 8119 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8120 { 8121 struct i40e_netdev_priv *np = netdev_priv(netdev); 8122 struct i40e_fwd_adapter *fwd = vdev; 8123 struct i40e_channel *ch, *ch_tmp; 8124 struct i40e_vsi *vsi = np->vsi; 8125 struct i40e_pf *pf = vsi->back; 8126 struct i40e_hw *hw = &pf->hw; 8127 int aq_err, ret = 0; 8128 8129 /* Find the channel associated with the macvlan and del mac filter */ 8130 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8131 if (i40e_is_channel_macvlan(ch) && 8132 ether_addr_equal(i40e_channel_mac(ch), 8133 fwd->netdev->dev_addr)) { 8134 ret = i40e_del_macvlan_filter(hw, ch->seid, 8135 i40e_channel_mac(ch), 8136 &aq_err); 8137 if (!ret) { 8138 /* Reset queue contexts */ 8139 i40e_reset_ch_rings(vsi, ch); 8140 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8141 netdev_unbind_sb_channel(netdev, fwd->netdev); 8142 netdev_set_sb_channel(fwd->netdev, 0); 8143 kfree(ch->fwd); 8144 ch->fwd = NULL; 8145 } else { 8146 dev_info(&pf->pdev->dev, 8147 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8148 ERR_PTR(ret), 8149 i40e_aq_str(hw, aq_err)); 8150 } 8151 break; 8152 } 8153 } 8154 } 8155 8156 /** 8157 * i40e_setup_tc - configure multiple traffic classes 8158 * @netdev: net device to configure 8159 * @type_data: tc offload data 8160 **/ 8161 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8162 { 8163 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8164 struct i40e_netdev_priv *np = netdev_priv(netdev); 8165 struct i40e_vsi *vsi = np->vsi; 8166 struct i40e_pf *pf = vsi->back; 8167 u8 enabled_tc = 0, num_tc, hw; 8168 bool need_reset = false; 8169 int old_queue_pairs; 8170 int ret = -EINVAL; 8171 u16 mode; 8172 int i; 8173 8174 old_queue_pairs = vsi->num_queue_pairs; 8175 num_tc = mqprio_qopt->qopt.num_tc; 8176 hw = mqprio_qopt->qopt.hw; 8177 mode = mqprio_qopt->mode; 8178 if (!hw) { 8179 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8180 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8181 goto config_tc; 8182 } 8183 8184 /* Check if MFP enabled */ 8185 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8186 netdev_info(netdev, 8187 "Configuring TC not supported in MFP mode\n"); 8188 return ret; 8189 } 8190 switch (mode) { 8191 case TC_MQPRIO_MODE_DCB: 8192 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8193 8194 /* Check if DCB enabled to continue */ 8195 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8196 netdev_info(netdev, 8197 "DCB is not enabled for adapter\n"); 8198 return ret; 8199 } 8200 8201 /* Check whether tc count is within enabled limit */ 8202 if (num_tc > i40e_pf_get_num_tc(pf)) { 8203 netdev_info(netdev, 8204 "TC count greater than enabled on link for adapter\n"); 8205 return ret; 8206 } 8207 break; 8208 case TC_MQPRIO_MODE_CHANNEL: 8209 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8210 netdev_info(netdev, 8211 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8212 return ret; 8213 } 8214 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8215 return ret; 8216 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8217 if (ret) 8218 return ret; 8219 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8220 sizeof(*mqprio_qopt)); 8221 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8222 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8223 break; 8224 default: 8225 return -EINVAL; 8226 } 8227 8228 config_tc: 8229 /* Generate TC map for number of tc requested */ 8230 for (i = 0; i < num_tc; i++) 8231 enabled_tc |= BIT(i); 8232 8233 /* Requesting same TC configuration as already enabled */ 8234 if (enabled_tc == vsi->tc_config.enabled_tc && 8235 mode != TC_MQPRIO_MODE_CHANNEL) 8236 return 0; 8237 8238 /* Quiesce VSI queues */ 8239 i40e_quiesce_vsi(vsi); 8240 8241 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8242 i40e_remove_queue_channels(vsi); 8243 8244 /* Configure VSI for enabled TCs */ 8245 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8246 if (ret) { 8247 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8248 vsi->seid); 8249 need_reset = true; 8250 goto exit; 8251 } else if (enabled_tc && 8252 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8253 netdev_info(netdev, 8254 "Failed to create channel. Override queues (%u) not power of 2\n", 8255 vsi->tc_config.tc_info[0].qcount); 8256 ret = -EINVAL; 8257 need_reset = true; 8258 goto exit; 8259 } 8260 8261 dev_info(&vsi->back->pdev->dev, 8262 "Setup channel (id:%u) utilizing num_queues %d\n", 8263 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8264 8265 if (i40e_is_tc_mqprio_enabled(pf)) { 8266 if (vsi->mqprio_qopt.max_rate[0]) { 8267 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8268 vsi->mqprio_qopt.max_rate[0]); 8269 8270 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8271 if (!ret) { 8272 u64 credits = max_tx_rate; 8273 8274 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8275 dev_dbg(&vsi->back->pdev->dev, 8276 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8277 max_tx_rate, 8278 credits, 8279 vsi->seid); 8280 } else { 8281 need_reset = true; 8282 goto exit; 8283 } 8284 } 8285 ret = i40e_configure_queue_channels(vsi); 8286 if (ret) { 8287 vsi->num_queue_pairs = old_queue_pairs; 8288 netdev_info(netdev, 8289 "Failed configuring queue channels\n"); 8290 need_reset = true; 8291 goto exit; 8292 } 8293 } 8294 8295 exit: 8296 /* Reset the configuration data to defaults, only TC0 is enabled */ 8297 if (need_reset) { 8298 i40e_vsi_set_default_tc_config(vsi); 8299 need_reset = false; 8300 } 8301 8302 /* Unquiesce VSI */ 8303 i40e_unquiesce_vsi(vsi); 8304 return ret; 8305 } 8306 8307 /** 8308 * i40e_set_cld_element - sets cloud filter element data 8309 * @filter: cloud filter rule 8310 * @cld: ptr to cloud filter element data 8311 * 8312 * This is helper function to copy data into cloud filter element 8313 **/ 8314 static inline void 8315 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8316 struct i40e_aqc_cloud_filters_element_data *cld) 8317 { 8318 u32 ipa; 8319 int i; 8320 8321 memset(cld, 0, sizeof(*cld)); 8322 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8323 ether_addr_copy(cld->inner_mac, filter->src_mac); 8324 8325 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8326 return; 8327 8328 if (filter->n_proto == ETH_P_IPV6) { 8329 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8330 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8331 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8332 8333 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8334 } 8335 } else { 8336 ipa = be32_to_cpu(filter->dst_ipv4); 8337 8338 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8339 } 8340 8341 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8342 8343 /* tenant_id is not supported by FW now, once the support is enabled 8344 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8345 */ 8346 if (filter->tenant_id) 8347 return; 8348 } 8349 8350 /** 8351 * i40e_add_del_cloud_filter - Add/del cloud filter 8352 * @vsi: pointer to VSI 8353 * @filter: cloud filter rule 8354 * @add: if true, add, if false, delete 8355 * 8356 * Add or delete a cloud filter for a specific flow spec. 8357 * Returns 0 if the filter were successfully added. 8358 **/ 8359 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8360 struct i40e_cloud_filter *filter, bool add) 8361 { 8362 struct i40e_aqc_cloud_filters_element_data cld_filter; 8363 struct i40e_pf *pf = vsi->back; 8364 int ret; 8365 static const u16 flag_table[128] = { 8366 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8367 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8368 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8369 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8370 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8371 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8372 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8373 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8374 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8375 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8376 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8377 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8378 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8379 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8380 }; 8381 8382 if (filter->flags >= ARRAY_SIZE(flag_table)) 8383 return -EIO; 8384 8385 memset(&cld_filter, 0, sizeof(cld_filter)); 8386 8387 /* copy element needed to add cloud filter from filter */ 8388 i40e_set_cld_element(filter, &cld_filter); 8389 8390 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8391 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8392 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8393 8394 if (filter->n_proto == ETH_P_IPV6) 8395 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8396 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8397 else 8398 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8399 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8400 8401 if (add) 8402 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8403 &cld_filter, 1); 8404 else 8405 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8406 &cld_filter, 1); 8407 if (ret) 8408 dev_dbg(&pf->pdev->dev, 8409 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8410 add ? "add" : "delete", filter->dst_port, ret, 8411 pf->hw.aq.asq_last_status); 8412 else 8413 dev_info(&pf->pdev->dev, 8414 "%s cloud filter for VSI: %d\n", 8415 add ? "Added" : "Deleted", filter->seid); 8416 return ret; 8417 } 8418 8419 /** 8420 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8421 * @vsi: pointer to VSI 8422 * @filter: cloud filter rule 8423 * @add: if true, add, if false, delete 8424 * 8425 * Add or delete a cloud filter for a specific flow spec using big buffer. 8426 * Returns 0 if the filter were successfully added. 8427 **/ 8428 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8429 struct i40e_cloud_filter *filter, 8430 bool add) 8431 { 8432 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8433 struct i40e_pf *pf = vsi->back; 8434 int ret; 8435 8436 /* Both (src/dst) valid mac_addr are not supported */ 8437 if ((is_valid_ether_addr(filter->dst_mac) && 8438 is_valid_ether_addr(filter->src_mac)) || 8439 (is_multicast_ether_addr(filter->dst_mac) && 8440 is_multicast_ether_addr(filter->src_mac))) 8441 return -EOPNOTSUPP; 8442 8443 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8444 * ports are not supported via big buffer now. 8445 */ 8446 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8447 return -EOPNOTSUPP; 8448 8449 /* adding filter using src_port/src_ip is not supported at this stage */ 8450 if (filter->src_port || 8451 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8452 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8453 return -EOPNOTSUPP; 8454 8455 memset(&cld_filter, 0, sizeof(cld_filter)); 8456 8457 /* copy element needed to add cloud filter from filter */ 8458 i40e_set_cld_element(filter, &cld_filter.element); 8459 8460 if (is_valid_ether_addr(filter->dst_mac) || 8461 is_valid_ether_addr(filter->src_mac) || 8462 is_multicast_ether_addr(filter->dst_mac) || 8463 is_multicast_ether_addr(filter->src_mac)) { 8464 /* MAC + IP : unsupported mode */ 8465 if (filter->dst_ipv4) 8466 return -EOPNOTSUPP; 8467 8468 /* since we validated that L4 port must be valid before 8469 * we get here, start with respective "flags" value 8470 * and update if vlan is present or not 8471 */ 8472 cld_filter.element.flags = 8473 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8474 8475 if (filter->vlan_id) { 8476 cld_filter.element.flags = 8477 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8478 } 8479 8480 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8481 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8482 cld_filter.element.flags = 8483 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8484 if (filter->n_proto == ETH_P_IPV6) 8485 cld_filter.element.flags |= 8486 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8487 else 8488 cld_filter.element.flags |= 8489 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8490 } else { 8491 dev_err(&pf->pdev->dev, 8492 "either mac or ip has to be valid for cloud filter\n"); 8493 return -EINVAL; 8494 } 8495 8496 /* Now copy L4 port in Byte 6..7 in general fields */ 8497 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8498 be16_to_cpu(filter->dst_port); 8499 8500 if (add) { 8501 /* Validate current device switch mode, change if necessary */ 8502 ret = i40e_validate_and_set_switch_mode(vsi); 8503 if (ret) { 8504 dev_err(&pf->pdev->dev, 8505 "failed to set switch mode, ret %d\n", 8506 ret); 8507 return ret; 8508 } 8509 8510 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8511 &cld_filter, 1); 8512 } else { 8513 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8514 &cld_filter, 1); 8515 } 8516 8517 if (ret) 8518 dev_dbg(&pf->pdev->dev, 8519 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8520 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8521 else 8522 dev_info(&pf->pdev->dev, 8523 "%s cloud filter for VSI: %d, L4 port: %d\n", 8524 add ? "add" : "delete", filter->seid, 8525 ntohs(filter->dst_port)); 8526 return ret; 8527 } 8528 8529 /** 8530 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8531 * @vsi: Pointer to VSI 8532 * @f: Pointer to struct flow_cls_offload 8533 * @filter: Pointer to cloud filter structure 8534 * 8535 **/ 8536 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8537 struct flow_cls_offload *f, 8538 struct i40e_cloud_filter *filter) 8539 { 8540 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8541 struct flow_dissector *dissector = rule->match.dissector; 8542 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8543 struct i40e_pf *pf = vsi->back; 8544 u8 field_flags = 0; 8545 8546 if (dissector->used_keys & 8547 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8548 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8549 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8550 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8551 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8552 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8553 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8554 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8555 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8556 dissector->used_keys); 8557 return -EOPNOTSUPP; 8558 } 8559 8560 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8561 struct flow_match_enc_keyid match; 8562 8563 flow_rule_match_enc_keyid(rule, &match); 8564 if (match.mask->keyid != 0) 8565 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8566 8567 filter->tenant_id = be32_to_cpu(match.key->keyid); 8568 } 8569 8570 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8571 struct flow_match_basic match; 8572 8573 flow_rule_match_basic(rule, &match); 8574 n_proto_key = ntohs(match.key->n_proto); 8575 n_proto_mask = ntohs(match.mask->n_proto); 8576 8577 if (n_proto_key == ETH_P_ALL) { 8578 n_proto_key = 0; 8579 n_proto_mask = 0; 8580 } 8581 filter->n_proto = n_proto_key & n_proto_mask; 8582 filter->ip_proto = match.key->ip_proto; 8583 } 8584 8585 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8586 struct flow_match_eth_addrs match; 8587 8588 flow_rule_match_eth_addrs(rule, &match); 8589 8590 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8591 if (!is_zero_ether_addr(match.mask->dst)) { 8592 if (is_broadcast_ether_addr(match.mask->dst)) { 8593 field_flags |= I40E_CLOUD_FIELD_OMAC; 8594 } else { 8595 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8596 match.mask->dst); 8597 return -EIO; 8598 } 8599 } 8600 8601 if (!is_zero_ether_addr(match.mask->src)) { 8602 if (is_broadcast_ether_addr(match.mask->src)) { 8603 field_flags |= I40E_CLOUD_FIELD_IMAC; 8604 } else { 8605 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8606 match.mask->src); 8607 return -EIO; 8608 } 8609 } 8610 ether_addr_copy(filter->dst_mac, match.key->dst); 8611 ether_addr_copy(filter->src_mac, match.key->src); 8612 } 8613 8614 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8615 struct flow_match_vlan match; 8616 8617 flow_rule_match_vlan(rule, &match); 8618 if (match.mask->vlan_id) { 8619 if (match.mask->vlan_id == VLAN_VID_MASK) { 8620 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8621 8622 } else { 8623 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8624 match.mask->vlan_id); 8625 return -EIO; 8626 } 8627 } 8628 8629 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8630 } 8631 8632 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8633 struct flow_match_control match; 8634 8635 flow_rule_match_control(rule, &match); 8636 addr_type = match.key->addr_type; 8637 } 8638 8639 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8640 struct flow_match_ipv4_addrs match; 8641 8642 flow_rule_match_ipv4_addrs(rule, &match); 8643 if (match.mask->dst) { 8644 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8645 field_flags |= I40E_CLOUD_FIELD_IIP; 8646 } else { 8647 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8648 &match.mask->dst); 8649 return -EIO; 8650 } 8651 } 8652 8653 if (match.mask->src) { 8654 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8655 field_flags |= I40E_CLOUD_FIELD_IIP; 8656 } else { 8657 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8658 &match.mask->src); 8659 return -EIO; 8660 } 8661 } 8662 8663 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8664 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8665 return -EIO; 8666 } 8667 filter->dst_ipv4 = match.key->dst; 8668 filter->src_ipv4 = match.key->src; 8669 } 8670 8671 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8672 struct flow_match_ipv6_addrs match; 8673 8674 flow_rule_match_ipv6_addrs(rule, &match); 8675 8676 /* src and dest IPV6 address should not be LOOPBACK 8677 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8678 */ 8679 if (ipv6_addr_loopback(&match.key->dst) || 8680 ipv6_addr_loopback(&match.key->src)) { 8681 dev_err(&pf->pdev->dev, 8682 "Bad ipv6, addr is LOOPBACK\n"); 8683 return -EIO; 8684 } 8685 if (!ipv6_addr_any(&match.mask->dst) || 8686 !ipv6_addr_any(&match.mask->src)) 8687 field_flags |= I40E_CLOUD_FIELD_IIP; 8688 8689 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8690 sizeof(filter->src_ipv6)); 8691 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8692 sizeof(filter->dst_ipv6)); 8693 } 8694 8695 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8696 struct flow_match_ports match; 8697 8698 flow_rule_match_ports(rule, &match); 8699 if (match.mask->src) { 8700 if (match.mask->src == cpu_to_be16(0xffff)) { 8701 field_flags |= I40E_CLOUD_FIELD_IIP; 8702 } else { 8703 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8704 be16_to_cpu(match.mask->src)); 8705 return -EIO; 8706 } 8707 } 8708 8709 if (match.mask->dst) { 8710 if (match.mask->dst == cpu_to_be16(0xffff)) { 8711 field_flags |= I40E_CLOUD_FIELD_IIP; 8712 } else { 8713 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8714 be16_to_cpu(match.mask->dst)); 8715 return -EIO; 8716 } 8717 } 8718 8719 filter->dst_port = match.key->dst; 8720 filter->src_port = match.key->src; 8721 8722 switch (filter->ip_proto) { 8723 case IPPROTO_TCP: 8724 case IPPROTO_UDP: 8725 break; 8726 default: 8727 dev_err(&pf->pdev->dev, 8728 "Only UDP and TCP transport are supported\n"); 8729 return -EINVAL; 8730 } 8731 } 8732 filter->flags = field_flags; 8733 return 0; 8734 } 8735 8736 /** 8737 * i40e_handle_tclass: Forward to a traffic class on the device 8738 * @vsi: Pointer to VSI 8739 * @tc: traffic class index on the device 8740 * @filter: Pointer to cloud filter structure 8741 * 8742 **/ 8743 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8744 struct i40e_cloud_filter *filter) 8745 { 8746 struct i40e_channel *ch, *ch_tmp; 8747 8748 /* direct to a traffic class on the same device */ 8749 if (tc == 0) { 8750 filter->seid = vsi->seid; 8751 return 0; 8752 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8753 if (!filter->dst_port) { 8754 dev_err(&vsi->back->pdev->dev, 8755 "Specify destination port to direct to traffic class that is not default\n"); 8756 return -EINVAL; 8757 } 8758 if (list_empty(&vsi->ch_list)) 8759 return -EINVAL; 8760 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8761 list) { 8762 if (ch->seid == vsi->tc_seid_map[tc]) 8763 filter->seid = ch->seid; 8764 } 8765 return 0; 8766 } 8767 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8768 return -EINVAL; 8769 } 8770 8771 /** 8772 * i40e_configure_clsflower - Configure tc flower filters 8773 * @vsi: Pointer to VSI 8774 * @cls_flower: Pointer to struct flow_cls_offload 8775 * 8776 **/ 8777 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8778 struct flow_cls_offload *cls_flower) 8779 { 8780 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8781 struct i40e_cloud_filter *filter = NULL; 8782 struct i40e_pf *pf = vsi->back; 8783 int err = 0; 8784 8785 if (tc < 0) { 8786 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8787 return -EOPNOTSUPP; 8788 } 8789 8790 if (!tc) { 8791 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8792 return -EINVAL; 8793 } 8794 8795 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8796 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8797 return -EBUSY; 8798 8799 if (pf->fdir_pf_active_filters || 8800 (!hlist_empty(&pf->fdir_filter_list))) { 8801 dev_err(&vsi->back->pdev->dev, 8802 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8803 return -EINVAL; 8804 } 8805 8806 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8807 dev_err(&vsi->back->pdev->dev, 8808 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8809 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8810 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8811 } 8812 8813 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8814 if (!filter) 8815 return -ENOMEM; 8816 8817 filter->cookie = cls_flower->cookie; 8818 8819 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8820 if (err < 0) 8821 goto err; 8822 8823 err = i40e_handle_tclass(vsi, tc, filter); 8824 if (err < 0) 8825 goto err; 8826 8827 /* Add cloud filter */ 8828 if (filter->dst_port) 8829 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8830 else 8831 err = i40e_add_del_cloud_filter(vsi, filter, true); 8832 8833 if (err) { 8834 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8835 err); 8836 goto err; 8837 } 8838 8839 /* add filter to the ordered list */ 8840 INIT_HLIST_NODE(&filter->cloud_node); 8841 8842 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8843 8844 pf->num_cloud_filters++; 8845 8846 return err; 8847 err: 8848 kfree(filter); 8849 return err; 8850 } 8851 8852 /** 8853 * i40e_find_cloud_filter - Find the could filter in the list 8854 * @vsi: Pointer to VSI 8855 * @cookie: filter specific cookie 8856 * 8857 **/ 8858 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8859 unsigned long *cookie) 8860 { 8861 struct i40e_cloud_filter *filter = NULL; 8862 struct hlist_node *node2; 8863 8864 hlist_for_each_entry_safe(filter, node2, 8865 &vsi->back->cloud_filter_list, cloud_node) 8866 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8867 return filter; 8868 return NULL; 8869 } 8870 8871 /** 8872 * i40e_delete_clsflower - Remove tc flower filters 8873 * @vsi: Pointer to VSI 8874 * @cls_flower: Pointer to struct flow_cls_offload 8875 * 8876 **/ 8877 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8878 struct flow_cls_offload *cls_flower) 8879 { 8880 struct i40e_cloud_filter *filter = NULL; 8881 struct i40e_pf *pf = vsi->back; 8882 int err = 0; 8883 8884 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8885 8886 if (!filter) 8887 return -EINVAL; 8888 8889 hash_del(&filter->cloud_node); 8890 8891 if (filter->dst_port) 8892 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8893 else 8894 err = i40e_add_del_cloud_filter(vsi, filter, false); 8895 8896 kfree(filter); 8897 if (err) { 8898 dev_err(&pf->pdev->dev, 8899 "Failed to delete cloud filter, err %pe\n", 8900 ERR_PTR(err)); 8901 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8902 } 8903 8904 pf->num_cloud_filters--; 8905 if (!pf->num_cloud_filters) 8906 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8907 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8908 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8909 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8910 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8911 } 8912 return 0; 8913 } 8914 8915 /** 8916 * i40e_setup_tc_cls_flower - flower classifier offloads 8917 * @np: net device to configure 8918 * @cls_flower: offload data 8919 **/ 8920 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8921 struct flow_cls_offload *cls_flower) 8922 { 8923 struct i40e_vsi *vsi = np->vsi; 8924 8925 switch (cls_flower->command) { 8926 case FLOW_CLS_REPLACE: 8927 return i40e_configure_clsflower(vsi, cls_flower); 8928 case FLOW_CLS_DESTROY: 8929 return i40e_delete_clsflower(vsi, cls_flower); 8930 case FLOW_CLS_STATS: 8931 return -EOPNOTSUPP; 8932 default: 8933 return -EOPNOTSUPP; 8934 } 8935 } 8936 8937 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8938 void *cb_priv) 8939 { 8940 struct i40e_netdev_priv *np = cb_priv; 8941 8942 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8943 return -EOPNOTSUPP; 8944 8945 switch (type) { 8946 case TC_SETUP_CLSFLOWER: 8947 return i40e_setup_tc_cls_flower(np, type_data); 8948 8949 default: 8950 return -EOPNOTSUPP; 8951 } 8952 } 8953 8954 static LIST_HEAD(i40e_block_cb_list); 8955 8956 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8957 void *type_data) 8958 { 8959 struct i40e_netdev_priv *np = netdev_priv(netdev); 8960 8961 switch (type) { 8962 case TC_SETUP_QDISC_MQPRIO: 8963 return i40e_setup_tc(netdev, type_data); 8964 case TC_SETUP_BLOCK: 8965 return flow_block_cb_setup_simple(type_data, 8966 &i40e_block_cb_list, 8967 i40e_setup_tc_block_cb, 8968 np, np, true); 8969 default: 8970 return -EOPNOTSUPP; 8971 } 8972 } 8973 8974 /** 8975 * i40e_open - Called when a network interface is made active 8976 * @netdev: network interface device structure 8977 * 8978 * The open entry point is called when a network interface is made 8979 * active by the system (IFF_UP). At this point all resources needed 8980 * for transmit and receive operations are allocated, the interrupt 8981 * handler is registered with the OS, the netdev watchdog subtask is 8982 * enabled, and the stack is notified that the interface is ready. 8983 * 8984 * Returns 0 on success, negative value on failure 8985 **/ 8986 int i40e_open(struct net_device *netdev) 8987 { 8988 struct i40e_netdev_priv *np = netdev_priv(netdev); 8989 struct i40e_vsi *vsi = np->vsi; 8990 struct i40e_pf *pf = vsi->back; 8991 int err; 8992 8993 /* disallow open during test or if eeprom is broken */ 8994 if (test_bit(__I40E_TESTING, pf->state) || 8995 test_bit(__I40E_BAD_EEPROM, pf->state)) 8996 return -EBUSY; 8997 8998 netif_carrier_off(netdev); 8999 9000 if (i40e_force_link_state(pf, true)) 9001 return -EAGAIN; 9002 9003 err = i40e_vsi_open(vsi); 9004 if (err) 9005 return err; 9006 9007 /* configure global TSO hardware offload settings */ 9008 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9009 TCP_FLAG_FIN) >> 16); 9010 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9011 TCP_FLAG_FIN | 9012 TCP_FLAG_CWR) >> 16); 9013 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9014 udp_tunnel_get_rx_info(netdev); 9015 9016 return 0; 9017 } 9018 9019 /** 9020 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9021 * @vsi: vsi structure 9022 * 9023 * This updates netdev's number of tx/rx queues 9024 * 9025 * Returns status of setting tx/rx queues 9026 **/ 9027 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9028 { 9029 int ret; 9030 9031 ret = netif_set_real_num_rx_queues(vsi->netdev, 9032 vsi->num_queue_pairs); 9033 if (ret) 9034 return ret; 9035 9036 return netif_set_real_num_tx_queues(vsi->netdev, 9037 vsi->num_queue_pairs); 9038 } 9039 9040 /** 9041 * i40e_vsi_open - 9042 * @vsi: the VSI to open 9043 * 9044 * Finish initialization of the VSI. 9045 * 9046 * Returns 0 on success, negative value on failure 9047 * 9048 * Note: expects to be called while under rtnl_lock() 9049 **/ 9050 int i40e_vsi_open(struct i40e_vsi *vsi) 9051 { 9052 struct i40e_pf *pf = vsi->back; 9053 char int_name[I40E_INT_NAME_STR_LEN]; 9054 int err; 9055 9056 /* allocate descriptors */ 9057 err = i40e_vsi_setup_tx_resources(vsi); 9058 if (err) 9059 goto err_setup_tx; 9060 err = i40e_vsi_setup_rx_resources(vsi); 9061 if (err) 9062 goto err_setup_rx; 9063 9064 err = i40e_vsi_configure(vsi); 9065 if (err) 9066 goto err_setup_rx; 9067 9068 if (vsi->netdev) { 9069 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9070 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9071 err = i40e_vsi_request_irq(vsi, int_name); 9072 if (err) 9073 goto err_setup_rx; 9074 9075 /* Notify the stack of the actual queue counts. */ 9076 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9077 if (err) 9078 goto err_set_queues; 9079 9080 } else if (vsi->type == I40E_VSI_FDIR) { 9081 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9082 dev_driver_string(&pf->pdev->dev), 9083 dev_name(&pf->pdev->dev)); 9084 err = i40e_vsi_request_irq(vsi, int_name); 9085 if (err) 9086 goto err_setup_rx; 9087 9088 } else { 9089 err = -EINVAL; 9090 goto err_setup_rx; 9091 } 9092 9093 err = i40e_up_complete(vsi); 9094 if (err) 9095 goto err_up_complete; 9096 9097 return 0; 9098 9099 err_up_complete: 9100 i40e_down(vsi); 9101 err_set_queues: 9102 i40e_vsi_free_irq(vsi); 9103 err_setup_rx: 9104 i40e_vsi_free_rx_resources(vsi); 9105 err_setup_tx: 9106 i40e_vsi_free_tx_resources(vsi); 9107 if (vsi == pf->vsi[pf->lan_vsi]) 9108 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9109 9110 return err; 9111 } 9112 9113 /** 9114 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9115 * @pf: Pointer to PF 9116 * 9117 * This function destroys the hlist where all the Flow Director 9118 * filters were saved. 9119 **/ 9120 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9121 { 9122 struct i40e_fdir_filter *filter; 9123 struct i40e_flex_pit *pit_entry, *tmp; 9124 struct hlist_node *node2; 9125 9126 hlist_for_each_entry_safe(filter, node2, 9127 &pf->fdir_filter_list, fdir_node) { 9128 hlist_del(&filter->fdir_node); 9129 kfree(filter); 9130 } 9131 9132 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9133 list_del(&pit_entry->list); 9134 kfree(pit_entry); 9135 } 9136 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9137 9138 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9139 list_del(&pit_entry->list); 9140 kfree(pit_entry); 9141 } 9142 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9143 9144 pf->fdir_pf_active_filters = 0; 9145 i40e_reset_fdir_filter_cnt(pf); 9146 9147 /* Reprogram the default input set for TCP/IPv4 */ 9148 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9149 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9150 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9151 9152 /* Reprogram the default input set for TCP/IPv6 */ 9153 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 9154 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9155 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9156 9157 /* Reprogram the default input set for UDP/IPv4 */ 9158 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 9159 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9160 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9161 9162 /* Reprogram the default input set for UDP/IPv6 */ 9163 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 9164 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9165 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9166 9167 /* Reprogram the default input set for SCTP/IPv4 */ 9168 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 9169 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9170 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9171 9172 /* Reprogram the default input set for SCTP/IPv6 */ 9173 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 9174 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9175 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9176 9177 /* Reprogram the default input set for Other/IPv4 */ 9178 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 9179 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9180 9181 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 9182 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9183 9184 /* Reprogram the default input set for Other/IPv6 */ 9185 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 9186 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9187 9188 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 9189 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9190 } 9191 9192 /** 9193 * i40e_cloud_filter_exit - Cleans up the cloud filters 9194 * @pf: Pointer to PF 9195 * 9196 * This function destroys the hlist where all the cloud filters 9197 * were saved. 9198 **/ 9199 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9200 { 9201 struct i40e_cloud_filter *cfilter; 9202 struct hlist_node *node; 9203 9204 hlist_for_each_entry_safe(cfilter, node, 9205 &pf->cloud_filter_list, cloud_node) { 9206 hlist_del(&cfilter->cloud_node); 9207 kfree(cfilter); 9208 } 9209 pf->num_cloud_filters = 0; 9210 9211 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9212 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9213 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9214 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9215 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9216 } 9217 } 9218 9219 /** 9220 * i40e_close - Disables a network interface 9221 * @netdev: network interface device structure 9222 * 9223 * The close entry point is called when an interface is de-activated 9224 * by the OS. The hardware is still under the driver's control, but 9225 * this netdev interface is disabled. 9226 * 9227 * Returns 0, this is not allowed to fail 9228 **/ 9229 int i40e_close(struct net_device *netdev) 9230 { 9231 struct i40e_netdev_priv *np = netdev_priv(netdev); 9232 struct i40e_vsi *vsi = np->vsi; 9233 9234 i40e_vsi_close(vsi); 9235 9236 return 0; 9237 } 9238 9239 /** 9240 * i40e_do_reset - Start a PF or Core Reset sequence 9241 * @pf: board private structure 9242 * @reset_flags: which reset is requested 9243 * @lock_acquired: indicates whether or not the lock has been acquired 9244 * before this function was called. 9245 * 9246 * The essential difference in resets is that the PF Reset 9247 * doesn't clear the packet buffers, doesn't reset the PE 9248 * firmware, and doesn't bother the other PFs on the chip. 9249 **/ 9250 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9251 { 9252 struct i40e_vsi *vsi; 9253 u32 val; 9254 int i; 9255 9256 /* do the biggest reset indicated */ 9257 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9258 9259 /* Request a Global Reset 9260 * 9261 * This will start the chip's countdown to the actual full 9262 * chip reset event, and a warning interrupt to be sent 9263 * to all PFs, including the requestor. Our handler 9264 * for the warning interrupt will deal with the shutdown 9265 * and recovery of the switch setup. 9266 */ 9267 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9268 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9269 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9270 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9271 9272 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9273 9274 /* Request a Core Reset 9275 * 9276 * Same as Global Reset, except does *not* include the MAC/PHY 9277 */ 9278 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9279 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9280 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9281 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9282 i40e_flush(&pf->hw); 9283 9284 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9285 9286 /* Request a PF Reset 9287 * 9288 * Resets only the PF-specific registers 9289 * 9290 * This goes directly to the tear-down and rebuild of 9291 * the switch, since we need to do all the recovery as 9292 * for the Core Reset. 9293 */ 9294 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9295 i40e_handle_reset_warning(pf, lock_acquired); 9296 9297 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9298 /* Request a PF Reset 9299 * 9300 * Resets PF and reinitializes PFs VSI. 9301 */ 9302 i40e_prep_for_reset(pf); 9303 i40e_reset_and_rebuild(pf, true, lock_acquired); 9304 dev_info(&pf->pdev->dev, 9305 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9306 "FW LLDP is disabled\n" : 9307 "FW LLDP is enabled\n"); 9308 9309 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9310 /* Find the VSI(s) that requested a re-init */ 9311 dev_info(&pf->pdev->dev, "VSI reinit requested\n"); 9312 9313 i40e_pf_for_each_vsi(pf, i, vsi) { 9314 if (test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9315 vsi->state)) 9316 i40e_vsi_reinit_locked(vsi); 9317 } 9318 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9319 /* Find the VSI(s) that needs to be brought down */ 9320 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9321 9322 i40e_pf_for_each_vsi(pf, i, vsi) { 9323 if (test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9324 vsi->state)) { 9325 set_bit(__I40E_VSI_DOWN, vsi->state); 9326 i40e_down(vsi); 9327 } 9328 } 9329 } else { 9330 dev_info(&pf->pdev->dev, 9331 "bad reset request 0x%08x\n", reset_flags); 9332 } 9333 } 9334 9335 #ifdef CONFIG_I40E_DCB 9336 /** 9337 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9338 * @pf: board private structure 9339 * @old_cfg: current DCB config 9340 * @new_cfg: new DCB config 9341 **/ 9342 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9343 struct i40e_dcbx_config *old_cfg, 9344 struct i40e_dcbx_config *new_cfg) 9345 { 9346 bool need_reconfig = false; 9347 9348 /* Check if ETS configuration has changed */ 9349 if (memcmp(&new_cfg->etscfg, 9350 &old_cfg->etscfg, 9351 sizeof(new_cfg->etscfg))) { 9352 /* If Priority Table has changed reconfig is needed */ 9353 if (memcmp(&new_cfg->etscfg.prioritytable, 9354 &old_cfg->etscfg.prioritytable, 9355 sizeof(new_cfg->etscfg.prioritytable))) { 9356 need_reconfig = true; 9357 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9358 } 9359 9360 if (memcmp(&new_cfg->etscfg.tcbwtable, 9361 &old_cfg->etscfg.tcbwtable, 9362 sizeof(new_cfg->etscfg.tcbwtable))) 9363 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9364 9365 if (memcmp(&new_cfg->etscfg.tsatable, 9366 &old_cfg->etscfg.tsatable, 9367 sizeof(new_cfg->etscfg.tsatable))) 9368 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9369 } 9370 9371 /* Check if PFC configuration has changed */ 9372 if (memcmp(&new_cfg->pfc, 9373 &old_cfg->pfc, 9374 sizeof(new_cfg->pfc))) { 9375 need_reconfig = true; 9376 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9377 } 9378 9379 /* Check if APP Table has changed */ 9380 if (memcmp(&new_cfg->app, 9381 &old_cfg->app, 9382 sizeof(new_cfg->app))) { 9383 need_reconfig = true; 9384 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9385 } 9386 9387 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9388 return need_reconfig; 9389 } 9390 9391 /** 9392 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9393 * @pf: board private structure 9394 * @e: event info posted on ARQ 9395 **/ 9396 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9397 struct i40e_arq_event_info *e) 9398 { 9399 struct i40e_aqc_lldp_get_mib *mib = 9400 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9401 struct i40e_hw *hw = &pf->hw; 9402 struct i40e_dcbx_config tmp_dcbx_cfg; 9403 bool need_reconfig = false; 9404 int ret = 0; 9405 u8 type; 9406 9407 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9408 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9409 (hw->phy.link_info.link_speed & 9410 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9411 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9412 /* let firmware decide if the DCB should be disabled */ 9413 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9414 9415 /* Not DCB capable or capability disabled */ 9416 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9417 return ret; 9418 9419 /* Ignore if event is not for Nearest Bridge */ 9420 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9421 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9422 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9423 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9424 return ret; 9425 9426 /* Check MIB Type and return if event for Remote MIB update */ 9427 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9428 dev_dbg(&pf->pdev->dev, 9429 "LLDP event mib type %s\n", type ? "remote" : "local"); 9430 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9431 /* Update the remote cached instance and return */ 9432 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9433 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9434 &hw->remote_dcbx_config); 9435 goto exit; 9436 } 9437 9438 /* Store the old configuration */ 9439 tmp_dcbx_cfg = hw->local_dcbx_config; 9440 9441 /* Reset the old DCBx configuration data */ 9442 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9443 /* Get updated DCBX data from firmware */ 9444 ret = i40e_get_dcb_config(&pf->hw); 9445 if (ret) { 9446 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9447 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9448 (hw->phy.link_info.link_speed & 9449 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9450 dev_warn(&pf->pdev->dev, 9451 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9452 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9453 } else { 9454 dev_info(&pf->pdev->dev, 9455 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9456 ERR_PTR(ret), 9457 i40e_aq_str(&pf->hw, 9458 pf->hw.aq.asq_last_status)); 9459 } 9460 goto exit; 9461 } 9462 9463 /* No change detected in DCBX configs */ 9464 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9465 sizeof(tmp_dcbx_cfg))) { 9466 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9467 goto exit; 9468 } 9469 9470 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9471 &hw->local_dcbx_config); 9472 9473 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9474 9475 if (!need_reconfig) 9476 goto exit; 9477 9478 /* Enable DCB tagging only when more than one TC */ 9479 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9480 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9481 else 9482 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9483 9484 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9485 /* Reconfiguration needed quiesce all VSIs */ 9486 i40e_pf_quiesce_all_vsi(pf); 9487 9488 /* Changes in configuration update VEB/VSI */ 9489 i40e_dcb_reconfigure(pf); 9490 9491 ret = i40e_resume_port_tx(pf); 9492 9493 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9494 /* In case of error no point in resuming VSIs */ 9495 if (ret) 9496 goto exit; 9497 9498 /* Wait for the PF's queues to be disabled */ 9499 ret = i40e_pf_wait_queues_disabled(pf); 9500 if (ret) { 9501 /* Schedule PF reset to recover */ 9502 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9503 i40e_service_event_schedule(pf); 9504 } else { 9505 i40e_pf_unquiesce_all_vsi(pf); 9506 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9507 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9508 } 9509 9510 exit: 9511 return ret; 9512 } 9513 #endif /* CONFIG_I40E_DCB */ 9514 9515 /** 9516 * i40e_do_reset_safe - Protected reset path for userland calls. 9517 * @pf: board private structure 9518 * @reset_flags: which reset is requested 9519 * 9520 **/ 9521 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9522 { 9523 rtnl_lock(); 9524 i40e_do_reset(pf, reset_flags, true); 9525 rtnl_unlock(); 9526 } 9527 9528 /** 9529 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9530 * @pf: board private structure 9531 * @e: event info posted on ARQ 9532 * 9533 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9534 * and VF queues 9535 **/ 9536 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9537 struct i40e_arq_event_info *e) 9538 { 9539 struct i40e_aqc_lan_overflow *data = 9540 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9541 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9542 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9543 struct i40e_hw *hw = &pf->hw; 9544 struct i40e_vf *vf; 9545 u16 vf_id; 9546 9547 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9548 queue, qtx_ctl); 9549 9550 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) != 9551 I40E_QTX_CTL_VF_QUEUE) 9552 return; 9553 9554 /* Queue belongs to VF, find the VF and issue VF reset */ 9555 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl); 9556 vf_id -= hw->func_caps.vf_base_id; 9557 vf = &pf->vf[vf_id]; 9558 i40e_vc_notify_vf_reset(vf); 9559 /* Allow VF to process pending reset notification */ 9560 msleep(20); 9561 i40e_reset_vf(vf, false); 9562 } 9563 9564 /** 9565 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9566 * @pf: board private structure 9567 **/ 9568 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9569 { 9570 u32 val, fcnt_prog; 9571 9572 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9573 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9574 return fcnt_prog; 9575 } 9576 9577 /** 9578 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9579 * @pf: board private structure 9580 **/ 9581 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9582 { 9583 u32 val, fcnt_prog; 9584 9585 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9586 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9587 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val); 9588 return fcnt_prog; 9589 } 9590 9591 /** 9592 * i40e_get_global_fd_count - Get total FD filters programmed on device 9593 * @pf: board private structure 9594 **/ 9595 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9596 { 9597 u32 val, fcnt_prog; 9598 9599 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9600 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9601 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val); 9602 return fcnt_prog; 9603 } 9604 9605 /** 9606 * i40e_reenable_fdir_sb - Restore FDir SB capability 9607 * @pf: board private structure 9608 **/ 9609 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9610 { 9611 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9612 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9613 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9614 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9615 } 9616 9617 /** 9618 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9619 * @pf: board private structure 9620 **/ 9621 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9622 { 9623 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9624 /* ATR uses the same filtering logic as SB rules. It only 9625 * functions properly if the input set mask is at the default 9626 * settings. It is safe to restore the default input set 9627 * because there are no active TCPv4 filter rules. 9628 */ 9629 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9630 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9631 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9632 9633 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9634 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9635 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9636 } 9637 } 9638 9639 /** 9640 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9641 * @pf: board private structure 9642 * @filter: FDir filter to remove 9643 */ 9644 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9645 struct i40e_fdir_filter *filter) 9646 { 9647 /* Update counters */ 9648 pf->fdir_pf_active_filters--; 9649 pf->fd_inv = 0; 9650 9651 switch (filter->flow_type) { 9652 case TCP_V4_FLOW: 9653 pf->fd_tcp4_filter_cnt--; 9654 break; 9655 case UDP_V4_FLOW: 9656 pf->fd_udp4_filter_cnt--; 9657 break; 9658 case SCTP_V4_FLOW: 9659 pf->fd_sctp4_filter_cnt--; 9660 break; 9661 case TCP_V6_FLOW: 9662 pf->fd_tcp6_filter_cnt--; 9663 break; 9664 case UDP_V6_FLOW: 9665 pf->fd_udp6_filter_cnt--; 9666 break; 9667 case SCTP_V6_FLOW: 9668 pf->fd_udp6_filter_cnt--; 9669 break; 9670 case IP_USER_FLOW: 9671 switch (filter->ipl4_proto) { 9672 case IPPROTO_TCP: 9673 pf->fd_tcp4_filter_cnt--; 9674 break; 9675 case IPPROTO_UDP: 9676 pf->fd_udp4_filter_cnt--; 9677 break; 9678 case IPPROTO_SCTP: 9679 pf->fd_sctp4_filter_cnt--; 9680 break; 9681 case IPPROTO_IP: 9682 pf->fd_ip4_filter_cnt--; 9683 break; 9684 } 9685 break; 9686 case IPV6_USER_FLOW: 9687 switch (filter->ipl4_proto) { 9688 case IPPROTO_TCP: 9689 pf->fd_tcp6_filter_cnt--; 9690 break; 9691 case IPPROTO_UDP: 9692 pf->fd_udp6_filter_cnt--; 9693 break; 9694 case IPPROTO_SCTP: 9695 pf->fd_sctp6_filter_cnt--; 9696 break; 9697 case IPPROTO_IP: 9698 pf->fd_ip6_filter_cnt--; 9699 break; 9700 } 9701 break; 9702 } 9703 9704 /* Remove the filter from the list and free memory */ 9705 hlist_del(&filter->fdir_node); 9706 kfree(filter); 9707 } 9708 9709 /** 9710 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9711 * @pf: board private structure 9712 **/ 9713 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9714 { 9715 struct i40e_fdir_filter *filter; 9716 u32 fcnt_prog, fcnt_avail; 9717 struct hlist_node *node; 9718 9719 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9720 return; 9721 9722 /* Check if we have enough room to re-enable FDir SB capability. */ 9723 fcnt_prog = i40e_get_global_fd_count(pf); 9724 fcnt_avail = pf->fdir_pf_filter_count; 9725 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9726 (pf->fd_add_err == 0) || 9727 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9728 i40e_reenable_fdir_sb(pf); 9729 9730 /* We should wait for even more space before re-enabling ATR. 9731 * Additionally, we cannot enable ATR as long as we still have TCP SB 9732 * rules active. 9733 */ 9734 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9735 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9736 i40e_reenable_fdir_atr(pf); 9737 9738 /* if hw had a problem adding a filter, delete it */ 9739 if (pf->fd_inv > 0) { 9740 hlist_for_each_entry_safe(filter, node, 9741 &pf->fdir_filter_list, fdir_node) 9742 if (filter->fd_id == pf->fd_inv) 9743 i40e_delete_invalid_filter(pf, filter); 9744 } 9745 } 9746 9747 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9748 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9749 /** 9750 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9751 * @pf: board private structure 9752 **/ 9753 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9754 { 9755 unsigned long min_flush_time; 9756 int flush_wait_retry = 50; 9757 bool disable_atr = false; 9758 int fd_room; 9759 int reg; 9760 9761 if (!time_after(jiffies, pf->fd_flush_timestamp + 9762 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9763 return; 9764 9765 /* If the flush is happening too quick and we have mostly SB rules we 9766 * should not re-enable ATR for some time. 9767 */ 9768 min_flush_time = pf->fd_flush_timestamp + 9769 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9770 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9771 9772 if (!(time_after(jiffies, min_flush_time)) && 9773 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9774 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9775 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9776 disable_atr = true; 9777 } 9778 9779 pf->fd_flush_timestamp = jiffies; 9780 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9781 /* flush all filters */ 9782 wr32(&pf->hw, I40E_PFQF_CTL_1, 9783 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9784 i40e_flush(&pf->hw); 9785 pf->fd_flush_cnt++; 9786 pf->fd_add_err = 0; 9787 do { 9788 /* Check FD flush status every 5-6msec */ 9789 usleep_range(5000, 6000); 9790 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9791 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9792 break; 9793 } while (flush_wait_retry--); 9794 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9795 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9796 } else { 9797 /* replay sideband filters */ 9798 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 9799 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9800 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9801 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9802 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9803 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9804 } 9805 } 9806 9807 /** 9808 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9809 * @pf: board private structure 9810 **/ 9811 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9812 { 9813 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9814 } 9815 9816 /** 9817 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9818 * @pf: board private structure 9819 **/ 9820 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9821 { 9822 9823 /* if interface is down do nothing */ 9824 if (test_bit(__I40E_DOWN, pf->state)) 9825 return; 9826 9827 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9828 i40e_fdir_flush_and_replay(pf); 9829 9830 i40e_fdir_check_and_reenable(pf); 9831 9832 } 9833 9834 /** 9835 * i40e_vsi_link_event - notify VSI of a link event 9836 * @vsi: vsi to be notified 9837 * @link_up: link up or down 9838 **/ 9839 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9840 { 9841 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9842 return; 9843 9844 switch (vsi->type) { 9845 case I40E_VSI_MAIN: 9846 if (!vsi->netdev || !vsi->netdev_registered) 9847 break; 9848 9849 if (link_up) { 9850 netif_carrier_on(vsi->netdev); 9851 netif_tx_wake_all_queues(vsi->netdev); 9852 } else { 9853 netif_carrier_off(vsi->netdev); 9854 netif_tx_stop_all_queues(vsi->netdev); 9855 } 9856 break; 9857 9858 case I40E_VSI_SRIOV: 9859 case I40E_VSI_VMDQ2: 9860 case I40E_VSI_CTRL: 9861 case I40E_VSI_IWARP: 9862 case I40E_VSI_MIRROR: 9863 default: 9864 /* there is no notification for other VSIs */ 9865 break; 9866 } 9867 } 9868 9869 /** 9870 * i40e_veb_link_event - notify elements on the veb of a link event 9871 * @veb: veb to be notified 9872 * @link_up: link up or down 9873 **/ 9874 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9875 { 9876 struct i40e_vsi *vsi; 9877 struct i40e_pf *pf; 9878 int i; 9879 9880 if (!veb || !veb->pf) 9881 return; 9882 pf = veb->pf; 9883 9884 /* Send link event to contained VSIs */ 9885 i40e_pf_for_each_vsi(pf, i, vsi) 9886 if (vsi->uplink_seid == veb->seid) 9887 i40e_vsi_link_event(vsi, link_up); 9888 } 9889 9890 /** 9891 * i40e_link_event - Update netif_carrier status 9892 * @pf: board private structure 9893 **/ 9894 static void i40e_link_event(struct i40e_pf *pf) 9895 { 9896 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9897 u8 new_link_speed, old_link_speed; 9898 bool new_link, old_link; 9899 int status; 9900 #ifdef CONFIG_I40E_DCB 9901 int err; 9902 #endif /* CONFIG_I40E_DCB */ 9903 9904 /* set this to force the get_link_status call to refresh state */ 9905 pf->hw.phy.get_link_info = true; 9906 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9907 status = i40e_get_link_status(&pf->hw, &new_link); 9908 9909 /* On success, disable temp link polling */ 9910 if (status == 0) { 9911 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9912 } else { 9913 /* Enable link polling temporarily until i40e_get_link_status 9914 * returns 0 9915 */ 9916 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9917 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9918 status); 9919 return; 9920 } 9921 9922 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9923 new_link_speed = pf->hw.phy.link_info.link_speed; 9924 9925 if (new_link == old_link && 9926 new_link_speed == old_link_speed && 9927 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9928 new_link == netif_carrier_ok(vsi->netdev))) 9929 return; 9930 9931 i40e_print_link_message(vsi, new_link); 9932 9933 /* Notify the base of the switch tree connected to 9934 * the link. Floating VEBs are not notified. 9935 */ 9936 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9937 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9938 else 9939 i40e_vsi_link_event(vsi, new_link); 9940 9941 if (pf->vf) 9942 i40e_vc_notify_link_state(pf); 9943 9944 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 9945 i40e_ptp_set_increment(pf); 9946 #ifdef CONFIG_I40E_DCB 9947 if (new_link == old_link) 9948 return; 9949 /* Not SW DCB so firmware will take care of default settings */ 9950 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9951 return; 9952 9953 /* We cover here only link down, as after link up in case of SW DCB 9954 * SW LLDP agent will take care of setting it up 9955 */ 9956 if (!new_link) { 9957 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9958 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9959 err = i40e_dcb_sw_default_config(pf); 9960 if (err) { 9961 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9962 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9963 } else { 9964 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9965 DCB_CAP_DCBX_VER_IEEE; 9966 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9967 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9968 } 9969 } 9970 #endif /* CONFIG_I40E_DCB */ 9971 } 9972 9973 /** 9974 * i40e_watchdog_subtask - periodic checks not using event driven response 9975 * @pf: board private structure 9976 **/ 9977 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9978 { 9979 struct i40e_vsi *vsi; 9980 struct i40e_veb *veb; 9981 int i; 9982 9983 /* if interface is down do nothing */ 9984 if (test_bit(__I40E_DOWN, pf->state) || 9985 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9986 return; 9987 9988 /* make sure we don't do these things too often */ 9989 if (time_before(jiffies, (pf->service_timer_previous + 9990 pf->service_timer_period))) 9991 return; 9992 pf->service_timer_previous = jiffies; 9993 9994 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 9995 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 9996 i40e_link_event(pf); 9997 9998 /* Update the stats for active netdevs so the network stack 9999 * can look at updated numbers whenever it cares to 10000 */ 10001 i40e_pf_for_each_vsi(pf, i, vsi) 10002 if (vsi->netdev) 10003 i40e_update_stats(vsi); 10004 10005 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10006 /* Update the stats for the active switching components */ 10007 i40e_pf_for_each_veb(pf, i, veb) 10008 i40e_update_veb_stats(veb); 10009 } 10010 10011 i40e_ptp_rx_hang(pf); 10012 i40e_ptp_tx_hang(pf); 10013 } 10014 10015 /** 10016 * i40e_reset_subtask - Set up for resetting the device and driver 10017 * @pf: board private structure 10018 **/ 10019 static void i40e_reset_subtask(struct i40e_pf *pf) 10020 { 10021 u32 reset_flags = 0; 10022 10023 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10024 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10025 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10026 } 10027 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10028 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10029 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10030 } 10031 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10032 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10033 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10034 } 10035 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10036 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10037 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10038 } 10039 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10040 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10041 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10042 } 10043 10044 /* If there's a recovery already waiting, it takes 10045 * precedence before starting a new reset sequence. 10046 */ 10047 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10048 i40e_prep_for_reset(pf); 10049 i40e_reset(pf); 10050 i40e_rebuild(pf, false, false); 10051 } 10052 10053 /* If we're already down or resetting, just bail */ 10054 if (reset_flags && 10055 !test_bit(__I40E_DOWN, pf->state) && 10056 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10057 i40e_do_reset(pf, reset_flags, false); 10058 } 10059 } 10060 10061 /** 10062 * i40e_handle_link_event - Handle link event 10063 * @pf: board private structure 10064 * @e: event info posted on ARQ 10065 **/ 10066 static void i40e_handle_link_event(struct i40e_pf *pf, 10067 struct i40e_arq_event_info *e) 10068 { 10069 struct i40e_aqc_get_link_status *status = 10070 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10071 10072 /* Do a new status request to re-enable LSE reporting 10073 * and load new status information into the hw struct 10074 * This completely ignores any state information 10075 * in the ARQ event info, instead choosing to always 10076 * issue the AQ update link status command. 10077 */ 10078 i40e_link_event(pf); 10079 10080 /* Check if module meets thermal requirements */ 10081 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10082 dev_err(&pf->pdev->dev, 10083 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10084 dev_err(&pf->pdev->dev, 10085 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10086 } else { 10087 /* check for unqualified module, if link is down, suppress 10088 * the message if link was forced to be down. 10089 */ 10090 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10091 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10092 (!(status->link_info & I40E_AQ_LINK_UP)) && 10093 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10094 dev_err(&pf->pdev->dev, 10095 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10096 dev_err(&pf->pdev->dev, 10097 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10098 } 10099 } 10100 } 10101 10102 /** 10103 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10104 * @pf: board private structure 10105 **/ 10106 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10107 { 10108 struct i40e_arq_event_info event; 10109 struct i40e_hw *hw = &pf->hw; 10110 u16 pending, i = 0; 10111 u16 opcode; 10112 u32 oldval; 10113 int ret; 10114 u32 val; 10115 10116 /* Do not run clean AQ when PF reset fails */ 10117 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10118 return; 10119 10120 /* check for error indications */ 10121 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10122 oldval = val; 10123 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10124 if (hw->debug_mask & I40E_DEBUG_AQ) 10125 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10126 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10127 } 10128 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10129 if (hw->debug_mask & I40E_DEBUG_AQ) 10130 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10131 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10132 pf->arq_overflows++; 10133 } 10134 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10135 if (hw->debug_mask & I40E_DEBUG_AQ) 10136 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10137 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10138 } 10139 if (oldval != val) 10140 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10141 10142 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10143 oldval = val; 10144 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10145 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10146 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10147 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10148 } 10149 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10150 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10151 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10152 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10153 } 10154 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10155 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10156 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10157 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10158 } 10159 if (oldval != val) 10160 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10161 10162 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10163 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10164 if (!event.msg_buf) 10165 return; 10166 10167 do { 10168 ret = i40e_clean_arq_element(hw, &event, &pending); 10169 if (ret == -EALREADY) 10170 break; 10171 else if (ret) { 10172 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10173 break; 10174 } 10175 10176 opcode = le16_to_cpu(event.desc.opcode); 10177 switch (opcode) { 10178 10179 case i40e_aqc_opc_get_link_status: 10180 rtnl_lock(); 10181 i40e_handle_link_event(pf, &event); 10182 rtnl_unlock(); 10183 break; 10184 case i40e_aqc_opc_send_msg_to_pf: 10185 ret = i40e_vc_process_vf_msg(pf, 10186 le16_to_cpu(event.desc.retval), 10187 le32_to_cpu(event.desc.cookie_high), 10188 le32_to_cpu(event.desc.cookie_low), 10189 event.msg_buf, 10190 event.msg_len); 10191 break; 10192 case i40e_aqc_opc_lldp_update_mib: 10193 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10194 #ifdef CONFIG_I40E_DCB 10195 rtnl_lock(); 10196 i40e_handle_lldp_event(pf, &event); 10197 rtnl_unlock(); 10198 #endif /* CONFIG_I40E_DCB */ 10199 break; 10200 case i40e_aqc_opc_event_lan_overflow: 10201 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10202 i40e_handle_lan_overflow_event(pf, &event); 10203 break; 10204 case i40e_aqc_opc_send_msg_to_peer: 10205 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10206 break; 10207 case i40e_aqc_opc_nvm_erase: 10208 case i40e_aqc_opc_nvm_update: 10209 case i40e_aqc_opc_oem_post_update: 10210 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10211 "ARQ NVM operation 0x%04x completed\n", 10212 opcode); 10213 break; 10214 default: 10215 dev_info(&pf->pdev->dev, 10216 "ARQ: Unknown event 0x%04x ignored\n", 10217 opcode); 10218 break; 10219 } 10220 } while (i++ < I40E_AQ_WORK_LIMIT); 10221 10222 if (i < I40E_AQ_WORK_LIMIT) 10223 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10224 10225 /* re-enable Admin queue interrupt cause */ 10226 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10227 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10228 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10229 i40e_flush(hw); 10230 10231 kfree(event.msg_buf); 10232 } 10233 10234 /** 10235 * i40e_verify_eeprom - make sure eeprom is good to use 10236 * @pf: board private structure 10237 **/ 10238 static void i40e_verify_eeprom(struct i40e_pf *pf) 10239 { 10240 int err; 10241 10242 err = i40e_diag_eeprom_test(&pf->hw); 10243 if (err) { 10244 /* retry in case of garbage read */ 10245 err = i40e_diag_eeprom_test(&pf->hw); 10246 if (err) { 10247 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10248 err); 10249 set_bit(__I40E_BAD_EEPROM, pf->state); 10250 } 10251 } 10252 10253 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10254 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10255 clear_bit(__I40E_BAD_EEPROM, pf->state); 10256 } 10257 } 10258 10259 /** 10260 * i40e_enable_pf_switch_lb 10261 * @pf: pointer to the PF structure 10262 * 10263 * enable switch loop back or die - no point in a return value 10264 **/ 10265 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10266 { 10267 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10268 struct i40e_vsi_context ctxt; 10269 int ret; 10270 10271 ctxt.seid = pf->main_vsi_seid; 10272 ctxt.pf_num = pf->hw.pf_id; 10273 ctxt.vf_num = 0; 10274 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10275 if (ret) { 10276 dev_info(&pf->pdev->dev, 10277 "couldn't get PF vsi config, err %pe aq_err %s\n", 10278 ERR_PTR(ret), 10279 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10280 return; 10281 } 10282 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10283 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10284 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10285 10286 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10287 if (ret) { 10288 dev_info(&pf->pdev->dev, 10289 "update vsi switch failed, err %pe aq_err %s\n", 10290 ERR_PTR(ret), 10291 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10292 } 10293 } 10294 10295 /** 10296 * i40e_disable_pf_switch_lb 10297 * @pf: pointer to the PF structure 10298 * 10299 * disable switch loop back or die - no point in a return value 10300 **/ 10301 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10302 { 10303 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10304 struct i40e_vsi_context ctxt; 10305 int ret; 10306 10307 ctxt.seid = pf->main_vsi_seid; 10308 ctxt.pf_num = pf->hw.pf_id; 10309 ctxt.vf_num = 0; 10310 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10311 if (ret) { 10312 dev_info(&pf->pdev->dev, 10313 "couldn't get PF vsi config, err %pe aq_err %s\n", 10314 ERR_PTR(ret), 10315 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10316 return; 10317 } 10318 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10319 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10320 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10321 10322 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10323 if (ret) { 10324 dev_info(&pf->pdev->dev, 10325 "update vsi switch failed, err %pe aq_err %s\n", 10326 ERR_PTR(ret), 10327 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10328 } 10329 } 10330 10331 /** 10332 * i40e_config_bridge_mode - Configure the HW bridge mode 10333 * @veb: pointer to the bridge instance 10334 * 10335 * Configure the loop back mode for the LAN VSI that is downlink to the 10336 * specified HW bridge instance. It is expected this function is called 10337 * when a new HW bridge is instantiated. 10338 **/ 10339 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10340 { 10341 struct i40e_pf *pf = veb->pf; 10342 10343 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10344 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10345 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10346 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10347 i40e_disable_pf_switch_lb(pf); 10348 else 10349 i40e_enable_pf_switch_lb(pf); 10350 } 10351 10352 /** 10353 * i40e_reconstitute_veb - rebuild the VEB and VSIs connected to it 10354 * @veb: pointer to the VEB instance 10355 * 10356 * This is a function that builds the attached VSIs. We track the connections 10357 * through our own index numbers because the seid's from the HW could change 10358 * across the reset. 10359 **/ 10360 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10361 { 10362 struct i40e_vsi *ctl_vsi = NULL; 10363 struct i40e_pf *pf = veb->pf; 10364 struct i40e_vsi *vsi; 10365 int v, ret; 10366 10367 /* As we do not maintain PV (port virtualizer) switch element then 10368 * there can be only one non-floating VEB that have uplink to MAC SEID 10369 * and its control VSI is the main one. 10370 */ 10371 if (WARN_ON(veb->uplink_seid && veb->uplink_seid != pf->mac_seid)) { 10372 dev_err(&pf->pdev->dev, 10373 "Invalid uplink SEID for VEB %d\n", veb->idx); 10374 return -ENOENT; 10375 } 10376 10377 if (veb->uplink_seid == pf->mac_seid) { 10378 /* Check that the LAN VSI has VEB owning flag set */ 10379 ctl_vsi = pf->vsi[pf->lan_vsi]; 10380 10381 if (WARN_ON(ctl_vsi->veb_idx != veb->idx || 10382 !(ctl_vsi->flags & I40E_VSI_FLAG_VEB_OWNER))) { 10383 dev_err(&pf->pdev->dev, 10384 "Invalid control VSI for VEB %d\n", veb->idx); 10385 return -ENOENT; 10386 } 10387 10388 /* Add the control VSI to switch */ 10389 ret = i40e_add_vsi(ctl_vsi); 10390 if (ret) { 10391 dev_err(&pf->pdev->dev, 10392 "Rebuild of owner VSI for VEB %d failed: %d\n", 10393 veb->idx, ret); 10394 return ret; 10395 } 10396 10397 i40e_vsi_reset_stats(ctl_vsi); 10398 } 10399 10400 /* create the VEB in the switch and move the VSI onto the VEB */ 10401 ret = i40e_add_veb(veb, ctl_vsi); 10402 if (ret) 10403 return ret; 10404 10405 if (veb->uplink_seid) { 10406 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10407 veb->bridge_mode = BRIDGE_MODE_VEB; 10408 else 10409 veb->bridge_mode = BRIDGE_MODE_VEPA; 10410 i40e_config_bridge_mode(veb); 10411 } 10412 10413 /* create the remaining VSIs attached to this VEB */ 10414 i40e_pf_for_each_vsi(pf, v, vsi) { 10415 if (vsi == ctl_vsi) 10416 continue; 10417 10418 if (vsi->veb_idx == veb->idx) { 10419 vsi->uplink_seid = veb->seid; 10420 ret = i40e_add_vsi(vsi); 10421 if (ret) { 10422 dev_info(&pf->pdev->dev, 10423 "rebuild of vsi_idx %d failed: %d\n", 10424 v, ret); 10425 return ret; 10426 } 10427 i40e_vsi_reset_stats(vsi); 10428 } 10429 } 10430 10431 return ret; 10432 } 10433 10434 /** 10435 * i40e_get_capabilities - get info about the HW 10436 * @pf: the PF struct 10437 * @list_type: AQ capability to be queried 10438 **/ 10439 static int i40e_get_capabilities(struct i40e_pf *pf, 10440 enum i40e_admin_queue_opc list_type) 10441 { 10442 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10443 u16 data_size; 10444 int buf_len; 10445 int err; 10446 10447 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10448 do { 10449 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10450 if (!cap_buf) 10451 return -ENOMEM; 10452 10453 /* this loads the data into the hw struct for us */ 10454 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10455 &data_size, list_type, 10456 NULL); 10457 /* data loaded, buffer no longer needed */ 10458 kfree(cap_buf); 10459 10460 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10461 /* retry with a larger buffer */ 10462 buf_len = data_size; 10463 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10464 dev_info(&pf->pdev->dev, 10465 "capability discovery failed, err %pe aq_err %s\n", 10466 ERR_PTR(err), 10467 i40e_aq_str(&pf->hw, 10468 pf->hw.aq.asq_last_status)); 10469 return -ENODEV; 10470 } 10471 } while (err); 10472 10473 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10474 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10475 dev_info(&pf->pdev->dev, 10476 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10477 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10478 pf->hw.func_caps.num_msix_vectors, 10479 pf->hw.func_caps.num_msix_vectors_vf, 10480 pf->hw.func_caps.fd_filters_guaranteed, 10481 pf->hw.func_caps.fd_filters_best_effort, 10482 pf->hw.func_caps.num_tx_qp, 10483 pf->hw.func_caps.num_vsis); 10484 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10485 dev_info(&pf->pdev->dev, 10486 "switch_mode=0x%04x, function_valid=0x%08x\n", 10487 pf->hw.dev_caps.switch_mode, 10488 pf->hw.dev_caps.valid_functions); 10489 dev_info(&pf->pdev->dev, 10490 "SR-IOV=%d, num_vfs for all function=%u\n", 10491 pf->hw.dev_caps.sr_iov_1_1, 10492 pf->hw.dev_caps.num_vfs); 10493 dev_info(&pf->pdev->dev, 10494 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10495 pf->hw.dev_caps.num_vsis, 10496 pf->hw.dev_caps.num_rx_qp, 10497 pf->hw.dev_caps.num_tx_qp); 10498 } 10499 } 10500 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10501 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10502 + pf->hw.func_caps.num_vfs) 10503 if (pf->hw.revision_id == 0 && 10504 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10505 dev_info(&pf->pdev->dev, 10506 "got num_vsis %d, setting num_vsis to %d\n", 10507 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10508 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10509 } 10510 } 10511 return 0; 10512 } 10513 10514 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10515 10516 /** 10517 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10518 * @pf: board private structure 10519 **/ 10520 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10521 { 10522 struct i40e_vsi *vsi; 10523 10524 /* quick workaround for an NVM issue that leaves a critical register 10525 * uninitialized 10526 */ 10527 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10528 static const u32 hkey[] = { 10529 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10530 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10531 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10532 0x95b3a76d}; 10533 int i; 10534 10535 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10536 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10537 } 10538 10539 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10540 return; 10541 10542 /* find existing VSI and see if it needs configuring */ 10543 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10544 10545 /* create a new VSI if none exists */ 10546 if (!vsi) { 10547 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 10548 pf->vsi[pf->lan_vsi]->seid, 0); 10549 if (!vsi) { 10550 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10551 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10552 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10553 return; 10554 } 10555 } 10556 10557 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10558 } 10559 10560 /** 10561 * i40e_fdir_teardown - release the Flow Director resources 10562 * @pf: board private structure 10563 **/ 10564 static void i40e_fdir_teardown(struct i40e_pf *pf) 10565 { 10566 struct i40e_vsi *vsi; 10567 10568 i40e_fdir_filter_exit(pf); 10569 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10570 if (vsi) 10571 i40e_vsi_release(vsi); 10572 } 10573 10574 /** 10575 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10576 * @vsi: PF main vsi 10577 * @seid: seid of main or channel VSIs 10578 * 10579 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10580 * existed before reset 10581 **/ 10582 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10583 { 10584 struct i40e_cloud_filter *cfilter; 10585 struct i40e_pf *pf = vsi->back; 10586 struct hlist_node *node; 10587 int ret; 10588 10589 /* Add cloud filters back if they exist */ 10590 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10591 cloud_node) { 10592 if (cfilter->seid != seid) 10593 continue; 10594 10595 if (cfilter->dst_port) 10596 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10597 true); 10598 else 10599 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10600 10601 if (ret) { 10602 dev_dbg(&pf->pdev->dev, 10603 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10604 ERR_PTR(ret), 10605 i40e_aq_str(&pf->hw, 10606 pf->hw.aq.asq_last_status)); 10607 return ret; 10608 } 10609 } 10610 return 0; 10611 } 10612 10613 /** 10614 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10615 * @vsi: PF main vsi 10616 * 10617 * Rebuilds channel VSIs if they existed before reset 10618 **/ 10619 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10620 { 10621 struct i40e_channel *ch, *ch_tmp; 10622 int ret; 10623 10624 if (list_empty(&vsi->ch_list)) 10625 return 0; 10626 10627 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10628 if (!ch->initialized) 10629 break; 10630 /* Proceed with creation of channel (VMDq2) VSI */ 10631 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10632 if (ret) { 10633 dev_info(&vsi->back->pdev->dev, 10634 "failed to rebuild channels using uplink_seid %u\n", 10635 vsi->uplink_seid); 10636 return ret; 10637 } 10638 /* Reconfigure TX queues using QTX_CTL register */ 10639 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10640 if (ret) { 10641 dev_info(&vsi->back->pdev->dev, 10642 "failed to configure TX rings for channel %u\n", 10643 ch->seid); 10644 return ret; 10645 } 10646 /* update 'next_base_queue' */ 10647 vsi->next_base_queue = vsi->next_base_queue + 10648 ch->num_queue_pairs; 10649 if (ch->max_tx_rate) { 10650 u64 credits = ch->max_tx_rate; 10651 10652 if (i40e_set_bw_limit(vsi, ch->seid, 10653 ch->max_tx_rate)) 10654 return -EINVAL; 10655 10656 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10657 dev_dbg(&vsi->back->pdev->dev, 10658 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10659 ch->max_tx_rate, 10660 credits, 10661 ch->seid); 10662 } 10663 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10664 if (ret) { 10665 dev_dbg(&vsi->back->pdev->dev, 10666 "Failed to rebuild cloud filters for channel VSI %u\n", 10667 ch->seid); 10668 return ret; 10669 } 10670 } 10671 return 0; 10672 } 10673 10674 /** 10675 * i40e_clean_xps_state - clean xps state for every tx_ring 10676 * @vsi: ptr to the VSI 10677 **/ 10678 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10679 { 10680 int i; 10681 10682 if (vsi->tx_rings) 10683 for (i = 0; i < vsi->num_queue_pairs; i++) 10684 if (vsi->tx_rings[i]) 10685 clear_bit(__I40E_TX_XPS_INIT_DONE, 10686 vsi->tx_rings[i]->state); 10687 } 10688 10689 /** 10690 * i40e_prep_for_reset - prep for the core to reset 10691 * @pf: board private structure 10692 * 10693 * Close up the VFs and other things in prep for PF Reset. 10694 **/ 10695 static void i40e_prep_for_reset(struct i40e_pf *pf) 10696 { 10697 struct i40e_hw *hw = &pf->hw; 10698 struct i40e_vsi *vsi; 10699 int ret = 0; 10700 u32 v; 10701 10702 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10703 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10704 return; 10705 if (i40e_check_asq_alive(&pf->hw)) 10706 i40e_vc_notify_reset(pf); 10707 10708 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10709 10710 /* quiesce the VSIs and their queues that are not already DOWN */ 10711 i40e_pf_quiesce_all_vsi(pf); 10712 10713 i40e_pf_for_each_vsi(pf, v, vsi) { 10714 i40e_clean_xps_state(vsi); 10715 vsi->seid = 0; 10716 } 10717 10718 i40e_shutdown_adminq(&pf->hw); 10719 10720 /* call shutdown HMC */ 10721 if (hw->hmc.hmc_obj) { 10722 ret = i40e_shutdown_lan_hmc(hw); 10723 if (ret) 10724 dev_warn(&pf->pdev->dev, 10725 "shutdown_lan_hmc failed: %d\n", ret); 10726 } 10727 10728 /* Save the current PTP time so that we can restore the time after the 10729 * reset completes. 10730 */ 10731 i40e_ptp_save_hw_time(pf); 10732 } 10733 10734 /** 10735 * i40e_send_version - update firmware with driver version 10736 * @pf: PF struct 10737 */ 10738 static void i40e_send_version(struct i40e_pf *pf) 10739 { 10740 struct i40e_driver_version dv; 10741 10742 dv.major_version = 0xff; 10743 dv.minor_version = 0xff; 10744 dv.build_version = 0xff; 10745 dv.subbuild_version = 0; 10746 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10747 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10748 } 10749 10750 /** 10751 * i40e_get_oem_version - get OEM specific version information 10752 * @hw: pointer to the hardware structure 10753 **/ 10754 static void i40e_get_oem_version(struct i40e_hw *hw) 10755 { 10756 u16 block_offset = 0xffff; 10757 u16 block_length = 0; 10758 u16 capabilities = 0; 10759 u16 gen_snap = 0; 10760 u16 release = 0; 10761 10762 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10763 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10764 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10765 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10766 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10767 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10768 #define I40E_NVM_OEM_LENGTH 3 10769 10770 /* Check if pointer to OEM version block is valid. */ 10771 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10772 if (block_offset == 0xffff) 10773 return; 10774 10775 /* Check if OEM version block has correct length. */ 10776 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10777 &block_length); 10778 if (block_length < I40E_NVM_OEM_LENGTH) 10779 return; 10780 10781 /* Check if OEM version format is as expected. */ 10782 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10783 &capabilities); 10784 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10785 return; 10786 10787 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10788 &gen_snap); 10789 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10790 &release); 10791 hw->nvm.oem_ver = 10792 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10793 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10794 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10795 } 10796 10797 /** 10798 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10799 * @pf: board private structure 10800 **/ 10801 static int i40e_reset(struct i40e_pf *pf) 10802 { 10803 struct i40e_hw *hw = &pf->hw; 10804 int ret; 10805 10806 ret = i40e_pf_reset(hw); 10807 if (ret) { 10808 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10809 set_bit(__I40E_RESET_FAILED, pf->state); 10810 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10811 } else { 10812 pf->pfr_count++; 10813 } 10814 return ret; 10815 } 10816 10817 /** 10818 * i40e_rebuild - rebuild using a saved config 10819 * @pf: board private structure 10820 * @reinit: if the Main VSI needs to re-initialized. 10821 * @lock_acquired: indicates whether or not the lock has been acquired 10822 * before this function was called. 10823 **/ 10824 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10825 { 10826 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10827 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10828 struct i40e_hw *hw = &pf->hw; 10829 struct i40e_veb *veb; 10830 int ret; 10831 u32 val; 10832 int v; 10833 10834 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10835 is_recovery_mode_reported) 10836 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 10837 10838 if (test_bit(__I40E_DOWN, pf->state) && 10839 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10840 goto clear_recovery; 10841 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10842 10843 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10844 ret = i40e_init_adminq(&pf->hw); 10845 if (ret) { 10846 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10847 ERR_PTR(ret), 10848 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10849 goto clear_recovery; 10850 } 10851 i40e_get_oem_version(&pf->hw); 10852 10853 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10854 /* The following delay is necessary for firmware update. */ 10855 mdelay(1000); 10856 } 10857 10858 /* re-verify the eeprom if we just had an EMP reset */ 10859 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10860 i40e_verify_eeprom(pf); 10861 10862 /* if we are going out of or into recovery mode we have to act 10863 * accordingly with regard to resources initialization 10864 * and deinitialization 10865 */ 10866 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10867 if (i40e_get_capabilities(pf, 10868 i40e_aqc_opc_list_func_capabilities)) 10869 goto end_unlock; 10870 10871 if (is_recovery_mode_reported) { 10872 /* we're staying in recovery mode so we'll reinitialize 10873 * misc vector here 10874 */ 10875 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10876 goto end_unlock; 10877 } else { 10878 if (!lock_acquired) 10879 rtnl_lock(); 10880 /* we're going out of recovery mode so we'll free 10881 * the IRQ allocated specifically for recovery mode 10882 * and restore the interrupt scheme 10883 */ 10884 free_irq(pf->pdev->irq, pf); 10885 i40e_clear_interrupt_scheme(pf); 10886 if (i40e_restore_interrupt_scheme(pf)) 10887 goto end_unlock; 10888 } 10889 10890 /* tell the firmware that we're starting */ 10891 i40e_send_version(pf); 10892 10893 /* bail out in case recovery mode was detected, as there is 10894 * no need for further configuration. 10895 */ 10896 goto end_unlock; 10897 } 10898 10899 i40e_clear_pxe_mode(hw); 10900 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10901 if (ret) 10902 goto end_core_reset; 10903 10904 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10905 hw->func_caps.num_rx_qp, 0, 0); 10906 if (ret) { 10907 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10908 goto end_core_reset; 10909 } 10910 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10911 if (ret) { 10912 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10913 goto end_core_reset; 10914 } 10915 10916 #ifdef CONFIG_I40E_DCB 10917 /* Enable FW to write a default DCB config on link-up 10918 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10919 * is not supported with new link speed 10920 */ 10921 if (i40e_is_tc_mqprio_enabled(pf)) { 10922 i40e_aq_set_dcb_parameters(hw, false, NULL); 10923 } else { 10924 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10925 (hw->phy.link_info.link_speed & 10926 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10927 i40e_aq_set_dcb_parameters(hw, false, NULL); 10928 dev_warn(&pf->pdev->dev, 10929 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10930 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10931 } else { 10932 i40e_aq_set_dcb_parameters(hw, true, NULL); 10933 ret = i40e_init_pf_dcb(pf); 10934 if (ret) { 10935 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10936 ret); 10937 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10938 /* Continue without DCB enabled */ 10939 } 10940 } 10941 } 10942 10943 #endif /* CONFIG_I40E_DCB */ 10944 if (!lock_acquired) 10945 rtnl_lock(); 10946 ret = i40e_setup_pf_switch(pf, reinit, true); 10947 if (ret) 10948 goto end_unlock; 10949 10950 /* The driver only wants link up/down and module qualification 10951 * reports from firmware. Note the negative logic. 10952 */ 10953 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10954 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10955 I40E_AQ_EVENT_MEDIA_NA | 10956 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10957 if (ret) 10958 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 10959 ERR_PTR(ret), 10960 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10961 10962 /* Rebuild the VSIs and VEBs that existed before reset. 10963 * They are still in our local switch element arrays, so only 10964 * need to rebuild the switch model in the HW. 10965 * 10966 * If there were VEBs but the reconstitution failed, we'll try 10967 * to recover minimal use by getting the basic PF VSI working. 10968 */ 10969 if (vsi->uplink_seid != pf->mac_seid) { 10970 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10971 10972 /* Rebuild VEBs */ 10973 i40e_pf_for_each_veb(pf, v, veb) { 10974 ret = i40e_reconstitute_veb(veb); 10975 if (!ret) 10976 continue; 10977 10978 /* If Main VEB failed, we're in deep doodoo, 10979 * so give up rebuilding the switch and set up 10980 * for minimal rebuild of PF VSI. 10981 * If orphan failed, we'll report the error 10982 * but try to keep going. 10983 */ 10984 if (veb->uplink_seid == pf->mac_seid) { 10985 dev_info(&pf->pdev->dev, 10986 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 10987 ret); 10988 vsi->uplink_seid = pf->mac_seid; 10989 break; 10990 } else if (veb->uplink_seid == 0) { 10991 dev_info(&pf->pdev->dev, 10992 "rebuild of orphan VEB failed: %d\n", 10993 ret); 10994 } 10995 } 10996 } 10997 10998 if (vsi->uplink_seid == pf->mac_seid) { 10999 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11000 /* no VEB, so rebuild only the Main VSI */ 11001 ret = i40e_add_vsi(vsi); 11002 if (ret) { 11003 dev_info(&pf->pdev->dev, 11004 "rebuild of Main VSI failed: %d\n", ret); 11005 goto end_unlock; 11006 } 11007 } 11008 11009 if (vsi->mqprio_qopt.max_rate[0]) { 11010 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11011 vsi->mqprio_qopt.max_rate[0]); 11012 u64 credits = 0; 11013 11014 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11015 if (ret) 11016 goto end_unlock; 11017 11018 credits = max_tx_rate; 11019 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11020 dev_dbg(&vsi->back->pdev->dev, 11021 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11022 max_tx_rate, 11023 credits, 11024 vsi->seid); 11025 } 11026 11027 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11028 if (ret) 11029 goto end_unlock; 11030 11031 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11032 * for this main VSI if they exist 11033 */ 11034 ret = i40e_rebuild_channels(vsi); 11035 if (ret) 11036 goto end_unlock; 11037 11038 /* Reconfigure hardware for allowing smaller MSS in the case 11039 * of TSO, so that we avoid the MDD being fired and causing 11040 * a reset in the case of small MSS+TSO. 11041 */ 11042 #define I40E_REG_MSS 0x000E64DC 11043 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11044 #define I40E_64BYTE_MSS 0x400000 11045 val = rd32(hw, I40E_REG_MSS); 11046 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11047 val &= ~I40E_REG_MSS_MIN_MASK; 11048 val |= I40E_64BYTE_MSS; 11049 wr32(hw, I40E_REG_MSS, val); 11050 } 11051 11052 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11053 msleep(75); 11054 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11055 if (ret) 11056 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11057 ERR_PTR(ret), 11058 i40e_aq_str(&pf->hw, 11059 pf->hw.aq.asq_last_status)); 11060 } 11061 /* reinit the misc interrupt */ 11062 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11063 ret = i40e_setup_misc_vector(pf); 11064 if (ret) 11065 goto end_unlock; 11066 } 11067 11068 /* Add a filter to drop all Flow control frames from any VSI from being 11069 * transmitted. By doing so we stop a malicious VF from sending out 11070 * PAUSE or PFC frames and potentially controlling traffic for other 11071 * PF/VF VSIs. 11072 * The FW can still send Flow control frames if enabled. 11073 */ 11074 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11075 pf->main_vsi_seid); 11076 11077 /* restart the VSIs that were rebuilt and running before the reset */ 11078 i40e_pf_unquiesce_all_vsi(pf); 11079 11080 /* Release the RTNL lock before we start resetting VFs */ 11081 if (!lock_acquired) 11082 rtnl_unlock(); 11083 11084 /* Restore promiscuous settings */ 11085 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11086 if (ret) 11087 dev_warn(&pf->pdev->dev, 11088 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11089 pf->cur_promisc ? "on" : "off", 11090 ERR_PTR(ret), 11091 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11092 11093 i40e_reset_all_vfs(pf, true); 11094 11095 /* tell the firmware that we're starting */ 11096 i40e_send_version(pf); 11097 11098 /* We've already released the lock, so don't do it again */ 11099 goto end_core_reset; 11100 11101 end_unlock: 11102 if (!lock_acquired) 11103 rtnl_unlock(); 11104 end_core_reset: 11105 clear_bit(__I40E_RESET_FAILED, pf->state); 11106 clear_recovery: 11107 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11108 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11109 } 11110 11111 /** 11112 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11113 * @pf: board private structure 11114 * @reinit: if the Main VSI needs to re-initialized. 11115 * @lock_acquired: indicates whether or not the lock has been acquired 11116 * before this function was called. 11117 **/ 11118 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11119 bool lock_acquired) 11120 { 11121 int ret; 11122 11123 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11124 return; 11125 /* Now we wait for GRST to settle out. 11126 * We don't have to delete the VEBs or VSIs from the hw switch 11127 * because the reset will make them disappear. 11128 */ 11129 ret = i40e_reset(pf); 11130 if (!ret) 11131 i40e_rebuild(pf, reinit, lock_acquired); 11132 } 11133 11134 /** 11135 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11136 * @pf: board private structure 11137 * 11138 * Close up the VFs and other things in prep for a Core Reset, 11139 * then get ready to rebuild the world. 11140 * @lock_acquired: indicates whether or not the lock has been acquired 11141 * before this function was called. 11142 **/ 11143 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11144 { 11145 i40e_prep_for_reset(pf); 11146 i40e_reset_and_rebuild(pf, false, lock_acquired); 11147 } 11148 11149 /** 11150 * i40e_handle_mdd_event 11151 * @pf: pointer to the PF structure 11152 * 11153 * Called from the MDD irq handler to identify possibly malicious vfs 11154 **/ 11155 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11156 { 11157 struct i40e_hw *hw = &pf->hw; 11158 bool mdd_detected = false; 11159 struct i40e_vf *vf; 11160 u32 reg; 11161 int i; 11162 11163 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 11164 return; 11165 11166 /* find what triggered the MDD event */ 11167 reg = rd32(hw, I40E_GL_MDET_TX); 11168 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11169 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg); 11170 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg); 11171 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg); 11172 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) - 11173 pf->hw.func_caps.base_queue; 11174 if (netif_msg_tx_err(pf)) 11175 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11176 event, queue, pf_num, vf_num); 11177 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11178 mdd_detected = true; 11179 } 11180 reg = rd32(hw, I40E_GL_MDET_RX); 11181 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11182 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg); 11183 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg); 11184 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) - 11185 pf->hw.func_caps.base_queue; 11186 if (netif_msg_rx_err(pf)) 11187 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11188 event, queue, func); 11189 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11190 mdd_detected = true; 11191 } 11192 11193 if (mdd_detected) { 11194 reg = rd32(hw, I40E_PF_MDET_TX); 11195 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11196 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11197 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11198 } 11199 reg = rd32(hw, I40E_PF_MDET_RX); 11200 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11201 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11202 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11203 } 11204 } 11205 11206 /* see if one of the VFs needs its hand slapped */ 11207 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11208 vf = &(pf->vf[i]); 11209 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11210 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11211 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11212 vf->num_mdd_events++; 11213 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 11214 i); 11215 dev_info(&pf->pdev->dev, 11216 "Use PF Control I/F to re-enable the VF\n"); 11217 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11218 } 11219 11220 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11221 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11222 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11223 vf->num_mdd_events++; 11224 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 11225 i); 11226 dev_info(&pf->pdev->dev, 11227 "Use PF Control I/F to re-enable the VF\n"); 11228 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11229 } 11230 } 11231 11232 /* re-enable mdd interrupt cause */ 11233 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 11234 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11235 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11236 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11237 i40e_flush(hw); 11238 } 11239 11240 /** 11241 * i40e_service_task - Run the driver's async subtasks 11242 * @work: pointer to work_struct containing our data 11243 **/ 11244 static void i40e_service_task(struct work_struct *work) 11245 { 11246 struct i40e_pf *pf = container_of(work, 11247 struct i40e_pf, 11248 service_task); 11249 unsigned long start_time = jiffies; 11250 11251 /* don't bother with service tasks if a reset is in progress */ 11252 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11253 test_bit(__I40E_SUSPENDED, pf->state)) 11254 return; 11255 11256 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11257 return; 11258 11259 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11260 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 11261 i40e_sync_filters_subtask(pf); 11262 i40e_reset_subtask(pf); 11263 i40e_handle_mdd_event(pf); 11264 i40e_vc_process_vflr_event(pf); 11265 i40e_watchdog_subtask(pf); 11266 i40e_fdir_reinit_subtask(pf); 11267 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11268 /* Client subtask will reopen next time through. */ 11269 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 11270 true); 11271 } else { 11272 i40e_client_subtask(pf); 11273 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11274 pf->state)) 11275 i40e_notify_client_of_l2_param_changes( 11276 pf->vsi[pf->lan_vsi]); 11277 } 11278 i40e_sync_filters_subtask(pf); 11279 } else { 11280 i40e_reset_subtask(pf); 11281 } 11282 11283 i40e_clean_adminq_subtask(pf); 11284 11285 /* flush memory to make sure state is correct before next watchdog */ 11286 smp_mb__before_atomic(); 11287 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11288 11289 /* If the tasks have taken longer than one timer cycle or there 11290 * is more work to be done, reschedule the service task now 11291 * rather than wait for the timer to tick again. 11292 */ 11293 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11294 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11295 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11296 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11297 i40e_service_event_schedule(pf); 11298 } 11299 11300 /** 11301 * i40e_service_timer - timer callback 11302 * @t: timer list pointer 11303 **/ 11304 static void i40e_service_timer(struct timer_list *t) 11305 { 11306 struct i40e_pf *pf = from_timer(pf, t, service_timer); 11307 11308 mod_timer(&pf->service_timer, 11309 round_jiffies(jiffies + pf->service_timer_period)); 11310 i40e_service_event_schedule(pf); 11311 } 11312 11313 /** 11314 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11315 * @vsi: the VSI being configured 11316 **/ 11317 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11318 { 11319 struct i40e_pf *pf = vsi->back; 11320 11321 switch (vsi->type) { 11322 case I40E_VSI_MAIN: 11323 vsi->alloc_queue_pairs = pf->num_lan_qps; 11324 if (!vsi->num_tx_desc) 11325 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11326 I40E_REQ_DESCRIPTOR_MULTIPLE); 11327 if (!vsi->num_rx_desc) 11328 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11329 I40E_REQ_DESCRIPTOR_MULTIPLE); 11330 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11331 vsi->num_q_vectors = pf->num_lan_msix; 11332 else 11333 vsi->num_q_vectors = 1; 11334 11335 break; 11336 11337 case I40E_VSI_FDIR: 11338 vsi->alloc_queue_pairs = 1; 11339 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11340 I40E_REQ_DESCRIPTOR_MULTIPLE); 11341 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11342 I40E_REQ_DESCRIPTOR_MULTIPLE); 11343 vsi->num_q_vectors = pf->num_fdsb_msix; 11344 break; 11345 11346 case I40E_VSI_VMDQ2: 11347 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11348 if (!vsi->num_tx_desc) 11349 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11350 I40E_REQ_DESCRIPTOR_MULTIPLE); 11351 if (!vsi->num_rx_desc) 11352 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11353 I40E_REQ_DESCRIPTOR_MULTIPLE); 11354 vsi->num_q_vectors = pf->num_vmdq_msix; 11355 break; 11356 11357 case I40E_VSI_SRIOV: 11358 vsi->alloc_queue_pairs = pf->num_vf_qps; 11359 if (!vsi->num_tx_desc) 11360 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11361 I40E_REQ_DESCRIPTOR_MULTIPLE); 11362 if (!vsi->num_rx_desc) 11363 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11364 I40E_REQ_DESCRIPTOR_MULTIPLE); 11365 break; 11366 11367 default: 11368 WARN_ON(1); 11369 return -ENODATA; 11370 } 11371 11372 if (is_kdump_kernel()) { 11373 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11374 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11375 } 11376 11377 return 0; 11378 } 11379 11380 /** 11381 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11382 * @vsi: VSI pointer 11383 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11384 * 11385 * On error: returns error code (negative) 11386 * On success: returns 0 11387 **/ 11388 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11389 { 11390 struct i40e_ring **next_rings; 11391 int size; 11392 int ret = 0; 11393 11394 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11395 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11396 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11397 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11398 if (!vsi->tx_rings) 11399 return -ENOMEM; 11400 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11401 if (i40e_enabled_xdp_vsi(vsi)) { 11402 vsi->xdp_rings = next_rings; 11403 next_rings += vsi->alloc_queue_pairs; 11404 } 11405 vsi->rx_rings = next_rings; 11406 11407 if (alloc_qvectors) { 11408 /* allocate memory for q_vector pointers */ 11409 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11410 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11411 if (!vsi->q_vectors) { 11412 ret = -ENOMEM; 11413 goto err_vectors; 11414 } 11415 } 11416 return ret; 11417 11418 err_vectors: 11419 kfree(vsi->tx_rings); 11420 return ret; 11421 } 11422 11423 /** 11424 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11425 * @pf: board private structure 11426 * @type: type of VSI 11427 * 11428 * On error: returns error code (negative) 11429 * On success: returns vsi index in PF (positive) 11430 **/ 11431 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11432 { 11433 int ret = -ENODEV; 11434 struct i40e_vsi *vsi; 11435 int vsi_idx; 11436 int i; 11437 11438 /* Need to protect the allocation of the VSIs at the PF level */ 11439 mutex_lock(&pf->switch_mutex); 11440 11441 /* VSI list may be fragmented if VSI creation/destruction has 11442 * been happening. We can afford to do a quick scan to look 11443 * for any free VSIs in the list. 11444 * 11445 * find next empty vsi slot, looping back around if necessary 11446 */ 11447 i = pf->next_vsi; 11448 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11449 i++; 11450 if (i >= pf->num_alloc_vsi) { 11451 i = 0; 11452 while (i < pf->next_vsi && pf->vsi[i]) 11453 i++; 11454 } 11455 11456 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11457 vsi_idx = i; /* Found one! */ 11458 } else { 11459 ret = -ENODEV; 11460 goto unlock_pf; /* out of VSI slots! */ 11461 } 11462 pf->next_vsi = ++i; 11463 11464 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11465 if (!vsi) { 11466 ret = -ENOMEM; 11467 goto unlock_pf; 11468 } 11469 vsi->type = type; 11470 vsi->back = pf; 11471 set_bit(__I40E_VSI_DOWN, vsi->state); 11472 vsi->flags = 0; 11473 vsi->idx = vsi_idx; 11474 vsi->int_rate_limit = 0; 11475 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11476 pf->rss_table_size : 64; 11477 vsi->netdev_registered = false; 11478 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11479 hash_init(vsi->mac_filter_hash); 11480 vsi->irqs_ready = false; 11481 11482 if (type == I40E_VSI_MAIN) { 11483 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11484 if (!vsi->af_xdp_zc_qps) 11485 goto err_rings; 11486 } 11487 11488 ret = i40e_set_num_rings_in_vsi(vsi); 11489 if (ret) 11490 goto err_rings; 11491 11492 ret = i40e_vsi_alloc_arrays(vsi, true); 11493 if (ret) 11494 goto err_rings; 11495 11496 /* Setup default MSIX irq handler for VSI */ 11497 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11498 11499 /* Initialize VSI lock */ 11500 spin_lock_init(&vsi->mac_filter_hash_lock); 11501 pf->vsi[vsi_idx] = vsi; 11502 ret = vsi_idx; 11503 goto unlock_pf; 11504 11505 err_rings: 11506 bitmap_free(vsi->af_xdp_zc_qps); 11507 pf->next_vsi = i - 1; 11508 kfree(vsi); 11509 unlock_pf: 11510 mutex_unlock(&pf->switch_mutex); 11511 return ret; 11512 } 11513 11514 /** 11515 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11516 * @vsi: VSI pointer 11517 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11518 * 11519 * On error: returns error code (negative) 11520 * On success: returns 0 11521 **/ 11522 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11523 { 11524 /* free the ring and vector containers */ 11525 if (free_qvectors) { 11526 kfree(vsi->q_vectors); 11527 vsi->q_vectors = NULL; 11528 } 11529 kfree(vsi->tx_rings); 11530 vsi->tx_rings = NULL; 11531 vsi->rx_rings = NULL; 11532 vsi->xdp_rings = NULL; 11533 } 11534 11535 /** 11536 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11537 * and lookup table 11538 * @vsi: Pointer to VSI structure 11539 */ 11540 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11541 { 11542 if (!vsi) 11543 return; 11544 11545 kfree(vsi->rss_hkey_user); 11546 vsi->rss_hkey_user = NULL; 11547 11548 kfree(vsi->rss_lut_user); 11549 vsi->rss_lut_user = NULL; 11550 } 11551 11552 /** 11553 * i40e_vsi_clear - Deallocate the VSI provided 11554 * @vsi: the VSI being un-configured 11555 **/ 11556 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11557 { 11558 struct i40e_pf *pf; 11559 11560 if (!vsi) 11561 return 0; 11562 11563 if (!vsi->back) 11564 goto free_vsi; 11565 pf = vsi->back; 11566 11567 mutex_lock(&pf->switch_mutex); 11568 if (!pf->vsi[vsi->idx]) { 11569 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11570 vsi->idx, vsi->idx, vsi->type); 11571 goto unlock_vsi; 11572 } 11573 11574 if (pf->vsi[vsi->idx] != vsi) { 11575 dev_err(&pf->pdev->dev, 11576 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11577 pf->vsi[vsi->idx]->idx, 11578 pf->vsi[vsi->idx]->type, 11579 vsi->idx, vsi->type); 11580 goto unlock_vsi; 11581 } 11582 11583 /* updates the PF for this cleared vsi */ 11584 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11585 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11586 11587 bitmap_free(vsi->af_xdp_zc_qps); 11588 i40e_vsi_free_arrays(vsi, true); 11589 i40e_clear_rss_config_user(vsi); 11590 11591 pf->vsi[vsi->idx] = NULL; 11592 if (vsi->idx < pf->next_vsi) 11593 pf->next_vsi = vsi->idx; 11594 11595 unlock_vsi: 11596 mutex_unlock(&pf->switch_mutex); 11597 free_vsi: 11598 kfree(vsi); 11599 11600 return 0; 11601 } 11602 11603 /** 11604 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11605 * @vsi: the VSI being cleaned 11606 **/ 11607 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11608 { 11609 int i; 11610 11611 if (vsi->tx_rings && vsi->tx_rings[0]) { 11612 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11613 kfree_rcu(vsi->tx_rings[i], rcu); 11614 WRITE_ONCE(vsi->tx_rings[i], NULL); 11615 WRITE_ONCE(vsi->rx_rings[i], NULL); 11616 if (vsi->xdp_rings) 11617 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11618 } 11619 } 11620 } 11621 11622 /** 11623 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11624 * @vsi: the VSI being configured 11625 **/ 11626 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11627 { 11628 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11629 struct i40e_pf *pf = vsi->back; 11630 struct i40e_ring *ring; 11631 11632 /* Set basic values in the rings to be used later during open() */ 11633 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11634 /* allocate space for both Tx and Rx in one shot */ 11635 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11636 if (!ring) 11637 goto err_out; 11638 11639 ring->queue_index = i; 11640 ring->reg_idx = vsi->base_queue + i; 11641 ring->ring_active = false; 11642 ring->vsi = vsi; 11643 ring->netdev = vsi->netdev; 11644 ring->dev = &pf->pdev->dev; 11645 ring->count = vsi->num_tx_desc; 11646 ring->size = 0; 11647 ring->dcb_tc = 0; 11648 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11649 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11650 ring->itr_setting = pf->tx_itr_default; 11651 WRITE_ONCE(vsi->tx_rings[i], ring++); 11652 11653 if (!i40e_enabled_xdp_vsi(vsi)) 11654 goto setup_rx; 11655 11656 ring->queue_index = vsi->alloc_queue_pairs + i; 11657 ring->reg_idx = vsi->base_queue + ring->queue_index; 11658 ring->ring_active = false; 11659 ring->vsi = vsi; 11660 ring->netdev = NULL; 11661 ring->dev = &pf->pdev->dev; 11662 ring->count = vsi->num_tx_desc; 11663 ring->size = 0; 11664 ring->dcb_tc = 0; 11665 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11666 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11667 set_ring_xdp(ring); 11668 ring->itr_setting = pf->tx_itr_default; 11669 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11670 11671 setup_rx: 11672 ring->queue_index = i; 11673 ring->reg_idx = vsi->base_queue + i; 11674 ring->ring_active = false; 11675 ring->vsi = vsi; 11676 ring->netdev = vsi->netdev; 11677 ring->dev = &pf->pdev->dev; 11678 ring->count = vsi->num_rx_desc; 11679 ring->size = 0; 11680 ring->dcb_tc = 0; 11681 ring->itr_setting = pf->rx_itr_default; 11682 WRITE_ONCE(vsi->rx_rings[i], ring); 11683 } 11684 11685 return 0; 11686 11687 err_out: 11688 i40e_vsi_clear_rings(vsi); 11689 return -ENOMEM; 11690 } 11691 11692 /** 11693 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11694 * @pf: board private structure 11695 * @vectors: the number of MSI-X vectors to request 11696 * 11697 * Returns the number of vectors reserved, or error 11698 **/ 11699 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11700 { 11701 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11702 I40E_MIN_MSIX, vectors); 11703 if (vectors < 0) { 11704 dev_info(&pf->pdev->dev, 11705 "MSI-X vector reservation failed: %d\n", vectors); 11706 vectors = 0; 11707 } 11708 11709 return vectors; 11710 } 11711 11712 /** 11713 * i40e_init_msix - Setup the MSIX capability 11714 * @pf: board private structure 11715 * 11716 * Work with the OS to set up the MSIX vectors needed. 11717 * 11718 * Returns the number of vectors reserved or negative on failure 11719 **/ 11720 static int i40e_init_msix(struct i40e_pf *pf) 11721 { 11722 struct i40e_hw *hw = &pf->hw; 11723 int cpus, extra_vectors; 11724 int vectors_left; 11725 int v_budget, i; 11726 int v_actual; 11727 int iwarp_requested = 0; 11728 11729 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11730 return -ENODEV; 11731 11732 /* The number of vectors we'll request will be comprised of: 11733 * - Add 1 for "other" cause for Admin Queue events, etc. 11734 * - The number of LAN queue pairs 11735 * - Queues being used for RSS. 11736 * We don't need as many as max_rss_size vectors. 11737 * use rss_size instead in the calculation since that 11738 * is governed by number of cpus in the system. 11739 * - assumes symmetric Tx/Rx pairing 11740 * - The number of VMDq pairs 11741 * - The CPU count within the NUMA node if iWARP is enabled 11742 * Once we count this up, try the request. 11743 * 11744 * If we can't get what we want, we'll simplify to nearly nothing 11745 * and try again. If that still fails, we punt. 11746 */ 11747 vectors_left = hw->func_caps.num_msix_vectors; 11748 v_budget = 0; 11749 11750 /* reserve one vector for miscellaneous handler */ 11751 if (vectors_left) { 11752 v_budget++; 11753 vectors_left--; 11754 } 11755 11756 /* reserve some vectors for the main PF traffic queues. Initially we 11757 * only reserve at most 50% of the available vectors, in the case that 11758 * the number of online CPUs is large. This ensures that we can enable 11759 * extra features as well. Once we've enabled the other features, we 11760 * will use any remaining vectors to reach as close as we can to the 11761 * number of online CPUs. 11762 */ 11763 cpus = num_online_cpus(); 11764 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11765 vectors_left -= pf->num_lan_msix; 11766 11767 /* reserve one vector for sideband flow director */ 11768 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11769 if (vectors_left) { 11770 pf->num_fdsb_msix = 1; 11771 v_budget++; 11772 vectors_left--; 11773 } else { 11774 pf->num_fdsb_msix = 0; 11775 } 11776 } 11777 11778 /* can we reserve enough for iWARP? */ 11779 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11780 iwarp_requested = pf->num_iwarp_msix; 11781 11782 if (!vectors_left) 11783 pf->num_iwarp_msix = 0; 11784 else if (vectors_left < pf->num_iwarp_msix) 11785 pf->num_iwarp_msix = 1; 11786 v_budget += pf->num_iwarp_msix; 11787 vectors_left -= pf->num_iwarp_msix; 11788 } 11789 11790 /* any vectors left over go for VMDq support */ 11791 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11792 if (!vectors_left) { 11793 pf->num_vmdq_msix = 0; 11794 pf->num_vmdq_qps = 0; 11795 } else { 11796 int vmdq_vecs_wanted = 11797 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11798 int vmdq_vecs = 11799 min_t(int, vectors_left, vmdq_vecs_wanted); 11800 11801 /* if we're short on vectors for what's desired, we limit 11802 * the queues per vmdq. If this is still more than are 11803 * available, the user will need to change the number of 11804 * queues/vectors used by the PF later with the ethtool 11805 * channels command 11806 */ 11807 if (vectors_left < vmdq_vecs_wanted) { 11808 pf->num_vmdq_qps = 1; 11809 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11810 vmdq_vecs = min_t(int, 11811 vectors_left, 11812 vmdq_vecs_wanted); 11813 } 11814 pf->num_vmdq_msix = pf->num_vmdq_qps; 11815 11816 v_budget += vmdq_vecs; 11817 vectors_left -= vmdq_vecs; 11818 } 11819 } 11820 11821 /* On systems with a large number of SMP cores, we previously limited 11822 * the number of vectors for num_lan_msix to be at most 50% of the 11823 * available vectors, to allow for other features. Now, we add back 11824 * the remaining vectors. However, we ensure that the total 11825 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11826 * calculate the number of vectors we can add without going over the 11827 * cap of CPUs. For systems with a small number of CPUs this will be 11828 * zero. 11829 */ 11830 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11831 pf->num_lan_msix += extra_vectors; 11832 vectors_left -= extra_vectors; 11833 11834 WARN(vectors_left < 0, 11835 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11836 11837 v_budget += pf->num_lan_msix; 11838 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11839 GFP_KERNEL); 11840 if (!pf->msix_entries) 11841 return -ENOMEM; 11842 11843 for (i = 0; i < v_budget; i++) 11844 pf->msix_entries[i].entry = i; 11845 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11846 11847 if (v_actual < I40E_MIN_MSIX) { 11848 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11849 kfree(pf->msix_entries); 11850 pf->msix_entries = NULL; 11851 pci_disable_msix(pf->pdev); 11852 return -ENODEV; 11853 11854 } else if (v_actual == I40E_MIN_MSIX) { 11855 /* Adjust for minimal MSIX use */ 11856 pf->num_vmdq_vsis = 0; 11857 pf->num_vmdq_qps = 0; 11858 pf->num_lan_qps = 1; 11859 pf->num_lan_msix = 1; 11860 11861 } else if (v_actual != v_budget) { 11862 /* If we have limited resources, we will start with no vectors 11863 * for the special features and then allocate vectors to some 11864 * of these features based on the policy and at the end disable 11865 * the features that did not get any vectors. 11866 */ 11867 int vec; 11868 11869 dev_info(&pf->pdev->dev, 11870 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11871 v_actual, v_budget); 11872 /* reserve the misc vector */ 11873 vec = v_actual - 1; 11874 11875 /* Scale vector usage down */ 11876 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11877 pf->num_vmdq_vsis = 1; 11878 pf->num_vmdq_qps = 1; 11879 11880 /* partition out the remaining vectors */ 11881 switch (vec) { 11882 case 2: 11883 pf->num_lan_msix = 1; 11884 break; 11885 case 3: 11886 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11887 pf->num_lan_msix = 1; 11888 pf->num_iwarp_msix = 1; 11889 } else { 11890 pf->num_lan_msix = 2; 11891 } 11892 break; 11893 default: 11894 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11895 pf->num_iwarp_msix = min_t(int, (vec / 3), 11896 iwarp_requested); 11897 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11898 I40E_DEFAULT_NUM_VMDQ_VSI); 11899 } else { 11900 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11901 I40E_DEFAULT_NUM_VMDQ_VSI); 11902 } 11903 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11904 pf->num_fdsb_msix = 1; 11905 vec--; 11906 } 11907 pf->num_lan_msix = min_t(int, 11908 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11909 pf->num_lan_msix); 11910 pf->num_lan_qps = pf->num_lan_msix; 11911 break; 11912 } 11913 } 11914 11915 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 11916 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11917 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 11918 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 11919 } 11920 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 11921 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11922 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 11923 } 11924 11925 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 11926 pf->num_iwarp_msix == 0) { 11927 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11928 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 11929 } 11930 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11931 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11932 pf->num_lan_msix, 11933 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11934 pf->num_fdsb_msix, 11935 pf->num_iwarp_msix); 11936 11937 return v_actual; 11938 } 11939 11940 /** 11941 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11942 * @vsi: the VSI being configured 11943 * @v_idx: index of the vector in the vsi struct 11944 * 11945 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11946 **/ 11947 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 11948 { 11949 struct i40e_q_vector *q_vector; 11950 11951 /* allocate q_vector */ 11952 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11953 if (!q_vector) 11954 return -ENOMEM; 11955 11956 q_vector->vsi = vsi; 11957 q_vector->v_idx = v_idx; 11958 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11959 11960 if (vsi->netdev) 11961 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 11962 11963 /* tie q_vector and vsi together */ 11964 vsi->q_vectors[v_idx] = q_vector; 11965 11966 return 0; 11967 } 11968 11969 /** 11970 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11971 * @vsi: the VSI being configured 11972 * 11973 * We allocate one q_vector per queue interrupt. If allocation fails we 11974 * return -ENOMEM. 11975 **/ 11976 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 11977 { 11978 struct i40e_pf *pf = vsi->back; 11979 int err, v_idx, num_q_vectors; 11980 11981 /* if not MSIX, give the one vector only to the LAN VSI */ 11982 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11983 num_q_vectors = vsi->num_q_vectors; 11984 else if (vsi == pf->vsi[pf->lan_vsi]) 11985 num_q_vectors = 1; 11986 else 11987 return -EINVAL; 11988 11989 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 11990 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 11991 if (err) 11992 goto err_out; 11993 } 11994 11995 return 0; 11996 11997 err_out: 11998 while (v_idx--) 11999 i40e_free_q_vector(vsi, v_idx); 12000 12001 return err; 12002 } 12003 12004 /** 12005 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12006 * @pf: board private structure to initialize 12007 **/ 12008 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12009 { 12010 int vectors = 0; 12011 ssize_t size; 12012 12013 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12014 vectors = i40e_init_msix(pf); 12015 if (vectors < 0) { 12016 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12017 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12018 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12019 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12020 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12021 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12022 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12023 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12024 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12025 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12026 12027 /* rework the queue expectations without MSIX */ 12028 i40e_determine_queue_usage(pf); 12029 } 12030 } 12031 12032 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12033 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12034 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12035 vectors = pci_enable_msi(pf->pdev); 12036 if (vectors < 0) { 12037 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12038 vectors); 12039 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12040 } 12041 vectors = 1; /* one MSI or Legacy vector */ 12042 } 12043 12044 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12045 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12046 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12047 12048 /* set up vector assignment tracking */ 12049 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12050 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12051 if (!pf->irq_pile) 12052 return -ENOMEM; 12053 12054 pf->irq_pile->num_entries = vectors; 12055 12056 /* track first vector for misc interrupts, ignore return */ 12057 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12058 12059 return 0; 12060 } 12061 12062 /** 12063 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12064 * @pf: private board data structure 12065 * 12066 * Restore the interrupt scheme that was cleared when we suspended the 12067 * device. This should be called during resume to re-allocate the q_vectors 12068 * and reacquire IRQs. 12069 */ 12070 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12071 { 12072 struct i40e_vsi *vsi; 12073 int err, i; 12074 12075 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12076 * scheme. We need to re-enabled them here in order to attempt to 12077 * re-acquire the MSI or MSI-X vectors 12078 */ 12079 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12080 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12081 12082 err = i40e_init_interrupt_scheme(pf); 12083 if (err) 12084 return err; 12085 12086 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12087 * rings together again. 12088 */ 12089 i40e_pf_for_each_vsi(pf, i, vsi) { 12090 err = i40e_vsi_alloc_q_vectors(vsi); 12091 if (err) 12092 goto err_unwind; 12093 12094 i40e_vsi_map_rings_to_vectors(vsi); 12095 } 12096 12097 err = i40e_setup_misc_vector(pf); 12098 if (err) 12099 goto err_unwind; 12100 12101 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12102 i40e_client_update_msix_info(pf); 12103 12104 return 0; 12105 12106 err_unwind: 12107 while (i--) { 12108 if (pf->vsi[i]) 12109 i40e_vsi_free_q_vectors(pf->vsi[i]); 12110 } 12111 12112 return err; 12113 } 12114 12115 /** 12116 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12117 * non queue events in recovery mode 12118 * @pf: board private structure 12119 * 12120 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12121 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12122 * This is handled differently than in recovery mode since no Tx/Rx resources 12123 * are being allocated. 12124 **/ 12125 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12126 { 12127 int err; 12128 12129 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12130 err = i40e_setup_misc_vector(pf); 12131 12132 if (err) { 12133 dev_info(&pf->pdev->dev, 12134 "MSI-X misc vector request failed, error %d\n", 12135 err); 12136 return err; 12137 } 12138 } else { 12139 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12140 12141 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12142 pf->int_name, pf); 12143 12144 if (err) { 12145 dev_info(&pf->pdev->dev, 12146 "MSI/legacy misc vector request failed, error %d\n", 12147 err); 12148 return err; 12149 } 12150 i40e_enable_misc_int_causes(pf); 12151 i40e_irq_dynamic_enable_icr0(pf); 12152 } 12153 12154 return 0; 12155 } 12156 12157 /** 12158 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12159 * @pf: board private structure 12160 * 12161 * This sets up the handler for MSIX 0, which is used to manage the 12162 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12163 * when in MSI or Legacy interrupt mode. 12164 **/ 12165 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12166 { 12167 struct i40e_hw *hw = &pf->hw; 12168 int err = 0; 12169 12170 /* Only request the IRQ once, the first time through. */ 12171 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12172 err = request_irq(pf->msix_entries[0].vector, 12173 i40e_intr, 0, pf->int_name, pf); 12174 if (err) { 12175 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12176 dev_info(&pf->pdev->dev, 12177 "request_irq for %s failed: %d\n", 12178 pf->int_name, err); 12179 return -EFAULT; 12180 } 12181 } 12182 12183 i40e_enable_misc_int_causes(pf); 12184 12185 /* associate no queues to the misc vector */ 12186 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12187 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12188 12189 i40e_flush(hw); 12190 12191 i40e_irq_dynamic_enable_icr0(pf); 12192 12193 return err; 12194 } 12195 12196 /** 12197 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12198 * @vsi: Pointer to vsi structure 12199 * @seed: Buffter to store the hash keys 12200 * @lut: Buffer to store the lookup table entries 12201 * @lut_size: Size of buffer to store the lookup table entries 12202 * 12203 * Return 0 on success, negative on failure 12204 */ 12205 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12206 u8 *lut, u16 lut_size) 12207 { 12208 struct i40e_pf *pf = vsi->back; 12209 struct i40e_hw *hw = &pf->hw; 12210 int ret = 0; 12211 12212 if (seed) { 12213 ret = i40e_aq_get_rss_key(hw, vsi->id, 12214 (struct i40e_aqc_get_set_rss_key_data *)seed); 12215 if (ret) { 12216 dev_info(&pf->pdev->dev, 12217 "Cannot get RSS key, err %pe aq_err %s\n", 12218 ERR_PTR(ret), 12219 i40e_aq_str(&pf->hw, 12220 pf->hw.aq.asq_last_status)); 12221 return ret; 12222 } 12223 } 12224 12225 if (lut) { 12226 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12227 12228 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12229 if (ret) { 12230 dev_info(&pf->pdev->dev, 12231 "Cannot get RSS lut, err %pe aq_err %s\n", 12232 ERR_PTR(ret), 12233 i40e_aq_str(&pf->hw, 12234 pf->hw.aq.asq_last_status)); 12235 return ret; 12236 } 12237 } 12238 12239 return ret; 12240 } 12241 12242 /** 12243 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12244 * @vsi: Pointer to vsi structure 12245 * @seed: RSS hash seed 12246 * @lut: Lookup table 12247 * @lut_size: Lookup table size 12248 * 12249 * Returns 0 on success, negative on failure 12250 **/ 12251 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12252 const u8 *lut, u16 lut_size) 12253 { 12254 struct i40e_pf *pf = vsi->back; 12255 struct i40e_hw *hw = &pf->hw; 12256 u16 vf_id = vsi->vf_id; 12257 u8 i; 12258 12259 /* Fill out hash function seed */ 12260 if (seed) { 12261 u32 *seed_dw = (u32 *)seed; 12262 12263 if (vsi->type == I40E_VSI_MAIN) { 12264 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12265 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12266 } else if (vsi->type == I40E_VSI_SRIOV) { 12267 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12268 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12269 } else { 12270 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12271 } 12272 } 12273 12274 if (lut) { 12275 u32 *lut_dw = (u32 *)lut; 12276 12277 if (vsi->type == I40E_VSI_MAIN) { 12278 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12279 return -EINVAL; 12280 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12281 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12282 } else if (vsi->type == I40E_VSI_SRIOV) { 12283 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12284 return -EINVAL; 12285 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12286 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12287 } else { 12288 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12289 } 12290 } 12291 i40e_flush(hw); 12292 12293 return 0; 12294 } 12295 12296 /** 12297 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12298 * @vsi: Pointer to VSI structure 12299 * @seed: Buffer to store the keys 12300 * @lut: Buffer to store the lookup table entries 12301 * @lut_size: Size of buffer to store the lookup table entries 12302 * 12303 * Returns 0 on success, negative on failure 12304 */ 12305 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12306 u8 *lut, u16 lut_size) 12307 { 12308 struct i40e_pf *pf = vsi->back; 12309 struct i40e_hw *hw = &pf->hw; 12310 u16 i; 12311 12312 if (seed) { 12313 u32 *seed_dw = (u32 *)seed; 12314 12315 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12316 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12317 } 12318 if (lut) { 12319 u32 *lut_dw = (u32 *)lut; 12320 12321 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12322 return -EINVAL; 12323 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12324 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12325 } 12326 12327 return 0; 12328 } 12329 12330 /** 12331 * i40e_config_rss - Configure RSS keys and lut 12332 * @vsi: Pointer to VSI structure 12333 * @seed: RSS hash seed 12334 * @lut: Lookup table 12335 * @lut_size: Lookup table size 12336 * 12337 * Returns 0 on success, negative on failure 12338 */ 12339 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12340 { 12341 struct i40e_pf *pf = vsi->back; 12342 12343 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12344 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12345 else 12346 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12347 } 12348 12349 /** 12350 * i40e_get_rss - Get RSS keys and lut 12351 * @vsi: Pointer to VSI structure 12352 * @seed: Buffer to store the keys 12353 * @lut: Buffer to store the lookup table entries 12354 * @lut_size: Size of buffer to store the lookup table entries 12355 * 12356 * Returns 0 on success, negative on failure 12357 */ 12358 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12359 { 12360 struct i40e_pf *pf = vsi->back; 12361 12362 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12363 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12364 else 12365 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12366 } 12367 12368 /** 12369 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12370 * @pf: Pointer to board private structure 12371 * @lut: Lookup table 12372 * @rss_table_size: Lookup table size 12373 * @rss_size: Range of queue number for hashing 12374 */ 12375 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12376 u16 rss_table_size, u16 rss_size) 12377 { 12378 u16 i; 12379 12380 for (i = 0; i < rss_table_size; i++) 12381 lut[i] = i % rss_size; 12382 } 12383 12384 /** 12385 * i40e_pf_config_rss - Prepare for RSS if used 12386 * @pf: board private structure 12387 **/ 12388 static int i40e_pf_config_rss(struct i40e_pf *pf) 12389 { 12390 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12391 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12392 u8 *lut; 12393 struct i40e_hw *hw = &pf->hw; 12394 u32 reg_val; 12395 u64 hena; 12396 int ret; 12397 12398 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12399 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12400 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12401 hena |= i40e_pf_get_default_rss_hena(pf); 12402 12403 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12404 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12405 12406 /* Determine the RSS table size based on the hardware capabilities */ 12407 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12408 reg_val = (pf->rss_table_size == 512) ? 12409 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12410 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12411 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12412 12413 /* Determine the RSS size of the VSI */ 12414 if (!vsi->rss_size) { 12415 u16 qcount; 12416 /* If the firmware does something weird during VSI init, we 12417 * could end up with zero TCs. Check for that to avoid 12418 * divide-by-zero. It probably won't pass traffic, but it also 12419 * won't panic. 12420 */ 12421 qcount = vsi->num_queue_pairs / 12422 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12423 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12424 } 12425 if (!vsi->rss_size) 12426 return -EINVAL; 12427 12428 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12429 if (!lut) 12430 return -ENOMEM; 12431 12432 /* Use user configured lut if there is one, otherwise use default */ 12433 if (vsi->rss_lut_user) 12434 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12435 else 12436 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12437 12438 /* Use user configured hash key if there is one, otherwise 12439 * use default. 12440 */ 12441 if (vsi->rss_hkey_user) 12442 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12443 else 12444 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12445 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12446 kfree(lut); 12447 12448 return ret; 12449 } 12450 12451 /** 12452 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12453 * @pf: board private structure 12454 * @queue_count: the requested queue count for rss. 12455 * 12456 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12457 * count which may be different from the requested queue count. 12458 * Note: expects to be called while under rtnl_lock() 12459 **/ 12460 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12461 { 12462 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12463 int new_rss_size; 12464 12465 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12466 return 0; 12467 12468 queue_count = min_t(int, queue_count, num_online_cpus()); 12469 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12470 12471 if (queue_count != vsi->num_queue_pairs) { 12472 u16 qcount; 12473 12474 vsi->req_queue_pairs = queue_count; 12475 i40e_prep_for_reset(pf); 12476 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12477 return pf->alloc_rss_size; 12478 12479 pf->alloc_rss_size = new_rss_size; 12480 12481 i40e_reset_and_rebuild(pf, true, true); 12482 12483 /* Discard the user configured hash keys and lut, if less 12484 * queues are enabled. 12485 */ 12486 if (queue_count < vsi->rss_size) { 12487 i40e_clear_rss_config_user(vsi); 12488 dev_dbg(&pf->pdev->dev, 12489 "discard user configured hash keys and lut\n"); 12490 } 12491 12492 /* Reset vsi->rss_size, as number of enabled queues changed */ 12493 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12494 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12495 12496 i40e_pf_config_rss(pf); 12497 } 12498 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12499 vsi->req_queue_pairs, pf->rss_size_max); 12500 return pf->alloc_rss_size; 12501 } 12502 12503 /** 12504 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12505 * @pf: board private structure 12506 **/ 12507 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12508 { 12509 bool min_valid, max_valid; 12510 u32 max_bw, min_bw; 12511 int status; 12512 12513 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12514 &min_valid, &max_valid); 12515 12516 if (!status) { 12517 if (min_valid) 12518 pf->min_bw = min_bw; 12519 if (max_valid) 12520 pf->max_bw = max_bw; 12521 } 12522 12523 return status; 12524 } 12525 12526 /** 12527 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12528 * @pf: board private structure 12529 **/ 12530 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12531 { 12532 struct i40e_aqc_configure_partition_bw_data bw_data; 12533 int status; 12534 12535 memset(&bw_data, 0, sizeof(bw_data)); 12536 12537 /* Set the valid bit for this PF */ 12538 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12539 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12540 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12541 12542 /* Set the new bandwidths */ 12543 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12544 12545 return status; 12546 } 12547 12548 /** 12549 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12550 * @pf: board private structure 12551 **/ 12552 int i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12553 { 12554 /* Commit temporary BW setting to permanent NVM image */ 12555 enum i40e_admin_queue_err last_aq_status; 12556 u16 nvm_word; 12557 int ret; 12558 12559 if (pf->hw.partition_id != 1) { 12560 dev_info(&pf->pdev->dev, 12561 "Commit BW only works on partition 1! This is partition %d", 12562 pf->hw.partition_id); 12563 ret = -EOPNOTSUPP; 12564 goto bw_commit_out; 12565 } 12566 12567 /* Acquire NVM for read access */ 12568 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12569 last_aq_status = pf->hw.aq.asq_last_status; 12570 if (ret) { 12571 dev_info(&pf->pdev->dev, 12572 "Cannot acquire NVM for read access, err %pe aq_err %s\n", 12573 ERR_PTR(ret), 12574 i40e_aq_str(&pf->hw, last_aq_status)); 12575 goto bw_commit_out; 12576 } 12577 12578 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12579 ret = i40e_aq_read_nvm(&pf->hw, 12580 I40E_SR_NVM_CONTROL_WORD, 12581 0x10, sizeof(nvm_word), &nvm_word, 12582 false, NULL); 12583 /* Save off last admin queue command status before releasing 12584 * the NVM 12585 */ 12586 last_aq_status = pf->hw.aq.asq_last_status; 12587 i40e_release_nvm(&pf->hw); 12588 if (ret) { 12589 dev_info(&pf->pdev->dev, "NVM read error, err %pe aq_err %s\n", 12590 ERR_PTR(ret), 12591 i40e_aq_str(&pf->hw, last_aq_status)); 12592 goto bw_commit_out; 12593 } 12594 12595 /* Wait a bit for NVM release to complete */ 12596 msleep(50); 12597 12598 /* Acquire NVM for write access */ 12599 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12600 last_aq_status = pf->hw.aq.asq_last_status; 12601 if (ret) { 12602 dev_info(&pf->pdev->dev, 12603 "Cannot acquire NVM for write access, err %pe aq_err %s\n", 12604 ERR_PTR(ret), 12605 i40e_aq_str(&pf->hw, last_aq_status)); 12606 goto bw_commit_out; 12607 } 12608 /* Write it back out unchanged to initiate update NVM, 12609 * which will force a write of the shadow (alt) RAM to 12610 * the NVM - thus storing the bandwidth values permanently. 12611 */ 12612 ret = i40e_aq_update_nvm(&pf->hw, 12613 I40E_SR_NVM_CONTROL_WORD, 12614 0x10, sizeof(nvm_word), 12615 &nvm_word, true, 0, NULL); 12616 /* Save off last admin queue command status before releasing 12617 * the NVM 12618 */ 12619 last_aq_status = pf->hw.aq.asq_last_status; 12620 i40e_release_nvm(&pf->hw); 12621 if (ret) 12622 dev_info(&pf->pdev->dev, 12623 "BW settings NOT SAVED, err %pe aq_err %s\n", 12624 ERR_PTR(ret), 12625 i40e_aq_str(&pf->hw, last_aq_status)); 12626 bw_commit_out: 12627 12628 return ret; 12629 } 12630 12631 /** 12632 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12633 * if total port shutdown feature is enabled for this PF 12634 * @pf: board private structure 12635 **/ 12636 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12637 { 12638 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12639 #define I40E_FEATURES_ENABLE_PTR 0x2A 12640 #define I40E_CURRENT_SETTING_PTR 0x2B 12641 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12642 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12643 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12644 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12645 u16 sr_emp_sr_settings_ptr = 0; 12646 u16 features_enable = 0; 12647 u16 link_behavior = 0; 12648 int read_status = 0; 12649 bool ret = false; 12650 12651 read_status = i40e_read_nvm_word(&pf->hw, 12652 I40E_SR_EMP_SR_SETTINGS_PTR, 12653 &sr_emp_sr_settings_ptr); 12654 if (read_status) 12655 goto err_nvm; 12656 read_status = i40e_read_nvm_word(&pf->hw, 12657 sr_emp_sr_settings_ptr + 12658 I40E_FEATURES_ENABLE_PTR, 12659 &features_enable); 12660 if (read_status) 12661 goto err_nvm; 12662 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12663 read_status = i40e_read_nvm_module_data(&pf->hw, 12664 I40E_SR_EMP_SR_SETTINGS_PTR, 12665 I40E_CURRENT_SETTING_PTR, 12666 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12667 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12668 &link_behavior); 12669 if (read_status) 12670 goto err_nvm; 12671 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12672 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12673 } 12674 return ret; 12675 12676 err_nvm: 12677 dev_warn(&pf->pdev->dev, 12678 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12679 ERR_PTR(read_status)); 12680 return ret; 12681 } 12682 12683 /** 12684 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12685 * @pf: board private structure to initialize 12686 * 12687 * i40e_sw_init initializes the Adapter private data structure. 12688 * Fields are initialized based on PCI device information and 12689 * OS network device settings (MTU size). 12690 **/ 12691 static int i40e_sw_init(struct i40e_pf *pf) 12692 { 12693 int err = 0; 12694 int size; 12695 u16 pow; 12696 12697 /* Set default capability flags */ 12698 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12699 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12700 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12701 12702 /* Set default ITR */ 12703 pf->rx_itr_default = I40E_ITR_RX_DEF; 12704 pf->tx_itr_default = I40E_ITR_TX_DEF; 12705 12706 /* Depending on PF configurations, it is possible that the RSS 12707 * maximum might end up larger than the available queues 12708 */ 12709 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12710 pf->alloc_rss_size = 1; 12711 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12712 pf->rss_size_max = min_t(int, pf->rss_size_max, 12713 pf->hw.func_caps.num_tx_qp); 12714 12715 /* find the next higher power-of-2 of num cpus */ 12716 pow = roundup_pow_of_two(num_online_cpus()); 12717 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12718 12719 if (pf->hw.func_caps.rss) { 12720 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12721 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12722 num_online_cpus()); 12723 } 12724 12725 /* MFP mode enabled */ 12726 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12727 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12728 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12729 if (i40e_get_partition_bw_setting(pf)) { 12730 dev_warn(&pf->pdev->dev, 12731 "Could not get partition bw settings\n"); 12732 } else { 12733 dev_info(&pf->pdev->dev, 12734 "Partition BW Min = %8.8x, Max = %8.8x\n", 12735 pf->min_bw, pf->max_bw); 12736 12737 /* nudge the Tx scheduler */ 12738 i40e_set_partition_bw_setting(pf); 12739 } 12740 } 12741 12742 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12743 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12744 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12745 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12746 pf->hw.num_partitions > 1) 12747 dev_info(&pf->pdev->dev, 12748 "Flow Director Sideband mode Disabled in MFP mode\n"); 12749 else 12750 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12751 pf->fdir_pf_filter_count = 12752 pf->hw.func_caps.fd_filters_guaranteed; 12753 pf->hw.fdir_shared_filter_count = 12754 pf->hw.func_caps.fd_filters_best_effort; 12755 } 12756 12757 /* Enable HW ATR eviction if possible */ 12758 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12759 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12760 12761 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12762 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12763 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12764 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12765 } 12766 12767 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12768 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12769 /* IWARP needs one extra vector for CQP just like MISC.*/ 12770 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12771 } 12772 /* Stopping FW LLDP engine is supported on XL710 and X722 12773 * starting from FW versions determined in i40e_init_adminq. 12774 * Stopping the FW LLDP engine is not supported on XL710 12775 * if NPAR is functioning so unset this hw flag in this case. 12776 */ 12777 if (pf->hw.mac.type == I40E_MAC_XL710 && 12778 pf->hw.func_caps.npar_enable) 12779 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12780 12781 #ifdef CONFIG_PCI_IOV 12782 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12783 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12784 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12785 pf->num_req_vfs = min_t(int, 12786 pf->hw.func_caps.num_vfs, 12787 I40E_MAX_VF_COUNT); 12788 } 12789 #endif /* CONFIG_PCI_IOV */ 12790 pf->lan_veb = I40E_NO_VEB; 12791 pf->lan_vsi = I40E_NO_VSI; 12792 12793 /* By default FW has this off for performance reasons */ 12794 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12795 12796 /* set up queue assignment tracking */ 12797 size = sizeof(struct i40e_lump_tracking) 12798 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12799 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12800 if (!pf->qp_pile) { 12801 err = -ENOMEM; 12802 goto sw_init_done; 12803 } 12804 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12805 12806 pf->tx_timeout_recovery_level = 1; 12807 12808 if (pf->hw.mac.type != I40E_MAC_X722 && 12809 i40e_is_total_port_shutdown_enabled(pf)) { 12810 /* Link down on close must be on when total port shutdown 12811 * is enabled for a given port 12812 */ 12813 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12814 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12815 dev_info(&pf->pdev->dev, 12816 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12817 } 12818 mutex_init(&pf->switch_mutex); 12819 12820 sw_init_done: 12821 return err; 12822 } 12823 12824 /** 12825 * i40e_set_ntuple - set the ntuple feature flag and take action 12826 * @pf: board private structure to initialize 12827 * @features: the feature set that the stack is suggesting 12828 * 12829 * returns a bool to indicate if reset needs to happen 12830 **/ 12831 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12832 { 12833 bool need_reset = false; 12834 12835 /* Check if Flow Director n-tuple support was enabled or disabled. If 12836 * the state changed, we need to reset. 12837 */ 12838 if (features & NETIF_F_NTUPLE) { 12839 /* Enable filters and mark for reset */ 12840 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12841 need_reset = true; 12842 /* enable FD_SB only if there is MSI-X vector and no cloud 12843 * filters exist 12844 */ 12845 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12846 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12847 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12848 } 12849 } else { 12850 /* turn off filters, mark for reset and clear SW filter list */ 12851 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12852 need_reset = true; 12853 i40e_fdir_filter_exit(pf); 12854 } 12855 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12856 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12857 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12858 12859 /* reset fd counters */ 12860 pf->fd_add_err = 0; 12861 pf->fd_atr_cnt = 0; 12862 /* if ATR was auto disabled it can be re-enabled. */ 12863 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12864 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12865 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12866 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12867 } 12868 return need_reset; 12869 } 12870 12871 /** 12872 * i40e_clear_rss_lut - clear the rx hash lookup table 12873 * @vsi: the VSI being configured 12874 **/ 12875 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12876 { 12877 struct i40e_pf *pf = vsi->back; 12878 struct i40e_hw *hw = &pf->hw; 12879 u16 vf_id = vsi->vf_id; 12880 u8 i; 12881 12882 if (vsi->type == I40E_VSI_MAIN) { 12883 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12884 wr32(hw, I40E_PFQF_HLUT(i), 0); 12885 } else if (vsi->type == I40E_VSI_SRIOV) { 12886 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12887 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12888 } else { 12889 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12890 } 12891 } 12892 12893 /** 12894 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12895 * @vsi: ptr to VSI 12896 * @ena: flag to indicate the on/off setting 12897 */ 12898 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12899 { 12900 bool if_running = netif_running(vsi->netdev) && 12901 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12902 int ret; 12903 12904 if (if_running) 12905 i40e_down(vsi); 12906 12907 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12908 if (ret) 12909 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12910 if (if_running) 12911 i40e_up(vsi); 12912 12913 return ret; 12914 } 12915 12916 /** 12917 * i40e_set_features - set the netdev feature flags 12918 * @netdev: ptr to the netdev being adjusted 12919 * @features: the feature set that the stack is suggesting 12920 * Note: expects to be called while under rtnl_lock() 12921 **/ 12922 static int i40e_set_features(struct net_device *netdev, 12923 netdev_features_t features) 12924 { 12925 struct i40e_netdev_priv *np = netdev_priv(netdev); 12926 struct i40e_vsi *vsi = np->vsi; 12927 struct i40e_pf *pf = vsi->back; 12928 bool need_reset; 12929 12930 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12931 i40e_pf_config_rss(pf); 12932 else if (!(features & NETIF_F_RXHASH) && 12933 netdev->features & NETIF_F_RXHASH) 12934 i40e_clear_rss_lut(vsi); 12935 12936 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12937 i40e_vlan_stripping_enable(vsi); 12938 else 12939 i40e_vlan_stripping_disable(vsi); 12940 12941 if (!(features & NETIF_F_HW_TC) && 12942 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12943 dev_err(&pf->pdev->dev, 12944 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12945 return -EINVAL; 12946 } 12947 12948 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12949 i40e_del_all_macvlans(vsi); 12950 12951 need_reset = i40e_set_ntuple(pf, features); 12952 12953 if (need_reset) 12954 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12955 12956 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 12957 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 12958 12959 return 0; 12960 } 12961 12962 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12963 unsigned int table, unsigned int idx, 12964 struct udp_tunnel_info *ti) 12965 { 12966 struct i40e_netdev_priv *np = netdev_priv(netdev); 12967 struct i40e_hw *hw = &np->vsi->back->hw; 12968 u8 type, filter_index; 12969 int ret; 12970 12971 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 12972 I40E_AQC_TUNNEL_TYPE_NGE; 12973 12974 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 12975 NULL); 12976 if (ret) { 12977 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 12978 ERR_PTR(ret), 12979 i40e_aq_str(hw, hw->aq.asq_last_status)); 12980 return -EIO; 12981 } 12982 12983 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 12984 return 0; 12985 } 12986 12987 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 12988 unsigned int table, unsigned int idx, 12989 struct udp_tunnel_info *ti) 12990 { 12991 struct i40e_netdev_priv *np = netdev_priv(netdev); 12992 struct i40e_hw *hw = &np->vsi->back->hw; 12993 int ret; 12994 12995 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 12996 if (ret) { 12997 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 12998 ERR_PTR(ret), 12999 i40e_aq_str(hw, hw->aq.asq_last_status)); 13000 return -EIO; 13001 } 13002 13003 return 0; 13004 } 13005 13006 static int i40e_get_phys_port_id(struct net_device *netdev, 13007 struct netdev_phys_item_id *ppid) 13008 { 13009 struct i40e_netdev_priv *np = netdev_priv(netdev); 13010 struct i40e_pf *pf = np->vsi->back; 13011 struct i40e_hw *hw = &pf->hw; 13012 13013 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13014 return -EOPNOTSUPP; 13015 13016 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13017 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13018 13019 return 0; 13020 } 13021 13022 /** 13023 * i40e_ndo_fdb_add - add an entry to the hardware database 13024 * @ndm: the input from the stack 13025 * @tb: pointer to array of nladdr (unused) 13026 * @dev: the net device pointer 13027 * @addr: the MAC address entry being added 13028 * @vid: VLAN ID 13029 * @flags: instructions from stack about fdb operation 13030 * @extack: netlink extended ack, unused currently 13031 */ 13032 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13033 struct net_device *dev, 13034 const unsigned char *addr, u16 vid, 13035 u16 flags, 13036 struct netlink_ext_ack *extack) 13037 { 13038 struct i40e_netdev_priv *np = netdev_priv(dev); 13039 struct i40e_pf *pf = np->vsi->back; 13040 int err = 0; 13041 13042 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13043 return -EOPNOTSUPP; 13044 13045 if (vid) { 13046 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13047 return -EINVAL; 13048 } 13049 13050 /* Hardware does not support aging addresses so if a 13051 * ndm_state is given only allow permanent addresses 13052 */ 13053 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13054 netdev_info(dev, "FDB only supports static addresses\n"); 13055 return -EINVAL; 13056 } 13057 13058 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13059 err = dev_uc_add_excl(dev, addr); 13060 else if (is_multicast_ether_addr(addr)) 13061 err = dev_mc_add_excl(dev, addr); 13062 else 13063 err = -EINVAL; 13064 13065 /* Only return duplicate errors if NLM_F_EXCL is set */ 13066 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13067 err = 0; 13068 13069 return err; 13070 } 13071 13072 /** 13073 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13074 * @dev: the netdev being configured 13075 * @nlh: RTNL message 13076 * @flags: bridge flags 13077 * @extack: netlink extended ack 13078 * 13079 * Inserts a new hardware bridge if not already created and 13080 * enables the bridging mode requested (VEB or VEPA). If the 13081 * hardware bridge has already been inserted and the request 13082 * is to change the mode then that requires a PF reset to 13083 * allow rebuild of the components with required hardware 13084 * bridge mode enabled. 13085 * 13086 * Note: expects to be called while under rtnl_lock() 13087 **/ 13088 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13089 struct nlmsghdr *nlh, 13090 u16 flags, 13091 struct netlink_ext_ack *extack) 13092 { 13093 struct i40e_netdev_priv *np = netdev_priv(dev); 13094 struct i40e_vsi *vsi = np->vsi; 13095 struct i40e_pf *pf = vsi->back; 13096 struct nlattr *attr, *br_spec; 13097 struct i40e_veb *veb; 13098 int rem; 13099 13100 /* Only for PF VSI for now */ 13101 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13102 return -EOPNOTSUPP; 13103 13104 /* Find the HW bridge for PF VSI */ 13105 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13106 13107 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13108 if (!br_spec) 13109 return -EINVAL; 13110 13111 nla_for_each_nested(attr, br_spec, rem) { 13112 __u16 mode; 13113 13114 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13115 continue; 13116 13117 mode = nla_get_u16(attr); 13118 if ((mode != BRIDGE_MODE_VEPA) && 13119 (mode != BRIDGE_MODE_VEB)) 13120 return -EINVAL; 13121 13122 /* Insert a new HW bridge */ 13123 if (!veb) { 13124 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 13125 vsi->tc_config.enabled_tc); 13126 if (veb) { 13127 veb->bridge_mode = mode; 13128 i40e_config_bridge_mode(veb); 13129 } else { 13130 /* No Bridge HW offload available */ 13131 return -ENOENT; 13132 } 13133 break; 13134 } else if (mode != veb->bridge_mode) { 13135 /* Existing HW bridge but different mode needs reset */ 13136 veb->bridge_mode = mode; 13137 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13138 if (mode == BRIDGE_MODE_VEB) 13139 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13140 else 13141 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13142 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13143 break; 13144 } 13145 } 13146 13147 return 0; 13148 } 13149 13150 /** 13151 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13152 * @skb: skb buff 13153 * @pid: process id 13154 * @seq: RTNL message seq # 13155 * @dev: the netdev being configured 13156 * @filter_mask: unused 13157 * @nlflags: netlink flags passed in 13158 * 13159 * Return the mode in which the hardware bridge is operating in 13160 * i.e VEB or VEPA. 13161 **/ 13162 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13163 struct net_device *dev, 13164 u32 __always_unused filter_mask, 13165 int nlflags) 13166 { 13167 struct i40e_netdev_priv *np = netdev_priv(dev); 13168 struct i40e_vsi *vsi = np->vsi; 13169 struct i40e_pf *pf = vsi->back; 13170 struct i40e_veb *veb; 13171 13172 /* Only for PF VSI for now */ 13173 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13174 return -EOPNOTSUPP; 13175 13176 /* Find the HW bridge for the PF VSI */ 13177 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13178 if (!veb) 13179 return 0; 13180 13181 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13182 0, 0, nlflags, filter_mask, NULL); 13183 } 13184 13185 /** 13186 * i40e_features_check - Validate encapsulated packet conforms to limits 13187 * @skb: skb buff 13188 * @dev: This physical port's netdev 13189 * @features: Offload features that the stack believes apply 13190 **/ 13191 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13192 struct net_device *dev, 13193 netdev_features_t features) 13194 { 13195 size_t len; 13196 13197 /* No point in doing any of this if neither checksum nor GSO are 13198 * being requested for this frame. We can rule out both by just 13199 * checking for CHECKSUM_PARTIAL 13200 */ 13201 if (skb->ip_summed != CHECKSUM_PARTIAL) 13202 return features; 13203 13204 /* We cannot support GSO if the MSS is going to be less than 13205 * 64 bytes. If it is then we need to drop support for GSO. 13206 */ 13207 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13208 features &= ~NETIF_F_GSO_MASK; 13209 13210 /* MACLEN can support at most 63 words */ 13211 len = skb_network_offset(skb); 13212 if (len & ~(63 * 2)) 13213 goto out_err; 13214 13215 /* IPLEN and EIPLEN can support at most 127 dwords */ 13216 len = skb_network_header_len(skb); 13217 if (len & ~(127 * 4)) 13218 goto out_err; 13219 13220 if (skb->encapsulation) { 13221 /* L4TUNLEN can support 127 words */ 13222 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13223 if (len & ~(127 * 2)) 13224 goto out_err; 13225 13226 /* IPLEN can support at most 127 dwords */ 13227 len = skb_inner_transport_header(skb) - 13228 skb_inner_network_header(skb); 13229 if (len & ~(127 * 4)) 13230 goto out_err; 13231 } 13232 13233 /* No need to validate L4LEN as TCP is the only protocol with a 13234 * flexible value and we support all possible values supported 13235 * by TCP, which is at most 15 dwords 13236 */ 13237 13238 return features; 13239 out_err: 13240 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13241 } 13242 13243 /** 13244 * i40e_xdp_setup - add/remove an XDP program 13245 * @vsi: VSI to changed 13246 * @prog: XDP program 13247 * @extack: netlink extended ack 13248 **/ 13249 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13250 struct netlink_ext_ack *extack) 13251 { 13252 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13253 struct i40e_pf *pf = vsi->back; 13254 struct bpf_prog *old_prog; 13255 bool need_reset; 13256 int i; 13257 13258 /* Don't allow frames that span over multiple buffers */ 13259 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13260 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13261 return -EINVAL; 13262 } 13263 13264 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13265 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13266 13267 if (need_reset) 13268 i40e_prep_for_reset(pf); 13269 13270 /* VSI shall be deleted in a moment, just return EINVAL */ 13271 if (test_bit(__I40E_IN_REMOVE, pf->state)) 13272 return -EINVAL; 13273 13274 old_prog = xchg(&vsi->xdp_prog, prog); 13275 13276 if (need_reset) { 13277 if (!prog) { 13278 xdp_features_clear_redirect_target(vsi->netdev); 13279 /* Wait until ndo_xsk_wakeup completes. */ 13280 synchronize_rcu(); 13281 } 13282 i40e_reset_and_rebuild(pf, true, true); 13283 } 13284 13285 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13286 if (i40e_realloc_rx_bi_zc(vsi, true)) 13287 return -ENOMEM; 13288 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13289 if (i40e_realloc_rx_bi_zc(vsi, false)) 13290 return -ENOMEM; 13291 } 13292 13293 for (i = 0; i < vsi->num_queue_pairs; i++) 13294 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13295 13296 if (old_prog) 13297 bpf_prog_put(old_prog); 13298 13299 /* Kick start the NAPI context if there is an AF_XDP socket open 13300 * on that queue id. This so that receiving will start. 13301 */ 13302 if (need_reset && prog) { 13303 for (i = 0; i < vsi->num_queue_pairs; i++) 13304 if (vsi->xdp_rings[i]->xsk_pool) 13305 (void)i40e_xsk_wakeup(vsi->netdev, i, 13306 XDP_WAKEUP_RX); 13307 xdp_features_set_redirect_target(vsi->netdev, true); 13308 } 13309 13310 return 0; 13311 } 13312 13313 /** 13314 * i40e_enter_busy_conf - Enters busy config state 13315 * @vsi: vsi 13316 * 13317 * Returns 0 on success, <0 for failure. 13318 **/ 13319 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13320 { 13321 struct i40e_pf *pf = vsi->back; 13322 int timeout = 50; 13323 13324 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13325 timeout--; 13326 if (!timeout) 13327 return -EBUSY; 13328 usleep_range(1000, 2000); 13329 } 13330 13331 return 0; 13332 } 13333 13334 /** 13335 * i40e_exit_busy_conf - Exits busy config state 13336 * @vsi: vsi 13337 **/ 13338 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13339 { 13340 struct i40e_pf *pf = vsi->back; 13341 13342 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13343 } 13344 13345 /** 13346 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13347 * @vsi: vsi 13348 * @queue_pair: queue pair 13349 **/ 13350 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13351 { 13352 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13353 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13354 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13355 sizeof(vsi->tx_rings[queue_pair]->stats)); 13356 if (i40e_enabled_xdp_vsi(vsi)) { 13357 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13358 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13359 } 13360 } 13361 13362 /** 13363 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13364 * @vsi: vsi 13365 * @queue_pair: queue pair 13366 **/ 13367 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13368 { 13369 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13370 if (i40e_enabled_xdp_vsi(vsi)) { 13371 /* Make sure that in-progress ndo_xdp_xmit calls are 13372 * completed. 13373 */ 13374 synchronize_rcu(); 13375 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13376 } 13377 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13378 } 13379 13380 /** 13381 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13382 * @vsi: vsi 13383 * @queue_pair: queue pair 13384 * @enable: true for enable, false for disable 13385 **/ 13386 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13387 bool enable) 13388 { 13389 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13390 struct i40e_q_vector *q_vector = rxr->q_vector; 13391 13392 if (!vsi->netdev) 13393 return; 13394 13395 /* All rings in a qp belong to the same qvector. */ 13396 if (q_vector->rx.ring || q_vector->tx.ring) { 13397 if (enable) 13398 napi_enable(&q_vector->napi); 13399 else 13400 napi_disable(&q_vector->napi); 13401 } 13402 } 13403 13404 /** 13405 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13406 * @vsi: vsi 13407 * @queue_pair: queue pair 13408 * @enable: true for enable, false for disable 13409 * 13410 * Returns 0 on success, <0 on failure. 13411 **/ 13412 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13413 bool enable) 13414 { 13415 struct i40e_pf *pf = vsi->back; 13416 int pf_q, ret = 0; 13417 13418 pf_q = vsi->base_queue + queue_pair; 13419 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13420 false /*is xdp*/, enable); 13421 if (ret) { 13422 dev_info(&pf->pdev->dev, 13423 "VSI seid %d Tx ring %d %sable timeout\n", 13424 vsi->seid, pf_q, (enable ? "en" : "dis")); 13425 return ret; 13426 } 13427 13428 i40e_control_rx_q(pf, pf_q, enable); 13429 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13430 if (ret) { 13431 dev_info(&pf->pdev->dev, 13432 "VSI seid %d Rx ring %d %sable timeout\n", 13433 vsi->seid, pf_q, (enable ? "en" : "dis")); 13434 return ret; 13435 } 13436 13437 /* Due to HW errata, on Rx disable only, the register can 13438 * indicate done before it really is. Needs 50ms to be sure 13439 */ 13440 if (!enable) 13441 mdelay(50); 13442 13443 if (!i40e_enabled_xdp_vsi(vsi)) 13444 return ret; 13445 13446 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13447 pf_q + vsi->alloc_queue_pairs, 13448 true /*is xdp*/, enable); 13449 if (ret) { 13450 dev_info(&pf->pdev->dev, 13451 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13452 vsi->seid, pf_q, (enable ? "en" : "dis")); 13453 } 13454 13455 return ret; 13456 } 13457 13458 /** 13459 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13460 * @vsi: vsi 13461 * @queue_pair: queue_pair 13462 **/ 13463 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13464 { 13465 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13466 struct i40e_pf *pf = vsi->back; 13467 struct i40e_hw *hw = &pf->hw; 13468 13469 /* All rings in a qp belong to the same qvector. */ 13470 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13471 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13472 else 13473 i40e_irq_dynamic_enable_icr0(pf); 13474 13475 i40e_flush(hw); 13476 } 13477 13478 /** 13479 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13480 * @vsi: vsi 13481 * @queue_pair: queue_pair 13482 **/ 13483 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13484 { 13485 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13486 struct i40e_pf *pf = vsi->back; 13487 struct i40e_hw *hw = &pf->hw; 13488 13489 /* For simplicity, instead of removing the qp interrupt causes 13490 * from the interrupt linked list, we simply disable the interrupt, and 13491 * leave the list intact. 13492 * 13493 * All rings in a qp belong to the same qvector. 13494 */ 13495 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13496 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13497 13498 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13499 i40e_flush(hw); 13500 synchronize_irq(pf->msix_entries[intpf].vector); 13501 } else { 13502 /* Legacy and MSI mode - this stops all interrupt handling */ 13503 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13504 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13505 i40e_flush(hw); 13506 synchronize_irq(pf->pdev->irq); 13507 } 13508 } 13509 13510 /** 13511 * i40e_queue_pair_disable - Disables a queue pair 13512 * @vsi: vsi 13513 * @queue_pair: queue pair 13514 * 13515 * Returns 0 on success, <0 on failure. 13516 **/ 13517 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13518 { 13519 int err; 13520 13521 err = i40e_enter_busy_conf(vsi); 13522 if (err) 13523 return err; 13524 13525 i40e_queue_pair_disable_irq(vsi, queue_pair); 13526 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13527 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13528 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13529 i40e_queue_pair_clean_rings(vsi, queue_pair); 13530 i40e_queue_pair_reset_stats(vsi, queue_pair); 13531 13532 return err; 13533 } 13534 13535 /** 13536 * i40e_queue_pair_enable - Enables a queue pair 13537 * @vsi: vsi 13538 * @queue_pair: queue pair 13539 * 13540 * Returns 0 on success, <0 on failure. 13541 **/ 13542 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13543 { 13544 int err; 13545 13546 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13547 if (err) 13548 return err; 13549 13550 if (i40e_enabled_xdp_vsi(vsi)) { 13551 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13552 if (err) 13553 return err; 13554 } 13555 13556 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13557 if (err) 13558 return err; 13559 13560 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13561 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13562 i40e_queue_pair_enable_irq(vsi, queue_pair); 13563 13564 i40e_exit_busy_conf(vsi); 13565 13566 return err; 13567 } 13568 13569 /** 13570 * i40e_xdp - implements ndo_bpf for i40e 13571 * @dev: netdevice 13572 * @xdp: XDP command 13573 **/ 13574 static int i40e_xdp(struct net_device *dev, 13575 struct netdev_bpf *xdp) 13576 { 13577 struct i40e_netdev_priv *np = netdev_priv(dev); 13578 struct i40e_vsi *vsi = np->vsi; 13579 13580 if (vsi->type != I40E_VSI_MAIN) 13581 return -EINVAL; 13582 13583 switch (xdp->command) { 13584 case XDP_SETUP_PROG: 13585 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13586 case XDP_SETUP_XSK_POOL: 13587 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13588 xdp->xsk.queue_id); 13589 default: 13590 return -EINVAL; 13591 } 13592 } 13593 13594 static const struct net_device_ops i40e_netdev_ops = { 13595 .ndo_open = i40e_open, 13596 .ndo_stop = i40e_close, 13597 .ndo_start_xmit = i40e_lan_xmit_frame, 13598 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13599 .ndo_set_rx_mode = i40e_set_rx_mode, 13600 .ndo_validate_addr = eth_validate_addr, 13601 .ndo_set_mac_address = i40e_set_mac, 13602 .ndo_change_mtu = i40e_change_mtu, 13603 .ndo_eth_ioctl = i40e_ioctl, 13604 .ndo_tx_timeout = i40e_tx_timeout, 13605 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13606 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13607 #ifdef CONFIG_NET_POLL_CONTROLLER 13608 .ndo_poll_controller = i40e_netpoll, 13609 #endif 13610 .ndo_setup_tc = __i40e_setup_tc, 13611 .ndo_select_queue = i40e_lan_select_queue, 13612 .ndo_set_features = i40e_set_features, 13613 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13614 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13615 .ndo_get_vf_stats = i40e_get_vf_stats, 13616 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13617 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13618 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13619 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13620 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13621 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13622 .ndo_fdb_add = i40e_ndo_fdb_add, 13623 .ndo_features_check = i40e_features_check, 13624 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13625 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13626 .ndo_bpf = i40e_xdp, 13627 .ndo_xdp_xmit = i40e_xdp_xmit, 13628 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13629 .ndo_dfwd_add_station = i40e_fwd_add, 13630 .ndo_dfwd_del_station = i40e_fwd_del, 13631 }; 13632 13633 /** 13634 * i40e_config_netdev - Setup the netdev flags 13635 * @vsi: the VSI being configured 13636 * 13637 * Returns 0 on success, negative value on failure 13638 **/ 13639 static int i40e_config_netdev(struct i40e_vsi *vsi) 13640 { 13641 struct i40e_pf *pf = vsi->back; 13642 struct i40e_hw *hw = &pf->hw; 13643 struct i40e_netdev_priv *np; 13644 struct net_device *netdev; 13645 u8 broadcast[ETH_ALEN]; 13646 u8 mac_addr[ETH_ALEN]; 13647 int etherdev_size; 13648 netdev_features_t hw_enc_features; 13649 netdev_features_t hw_features; 13650 13651 etherdev_size = sizeof(struct i40e_netdev_priv); 13652 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13653 if (!netdev) 13654 return -ENOMEM; 13655 13656 vsi->netdev = netdev; 13657 np = netdev_priv(netdev); 13658 np->vsi = vsi; 13659 13660 hw_enc_features = NETIF_F_SG | 13661 NETIF_F_HW_CSUM | 13662 NETIF_F_HIGHDMA | 13663 NETIF_F_SOFT_FEATURES | 13664 NETIF_F_TSO | 13665 NETIF_F_TSO_ECN | 13666 NETIF_F_TSO6 | 13667 NETIF_F_GSO_GRE | 13668 NETIF_F_GSO_GRE_CSUM | 13669 NETIF_F_GSO_PARTIAL | 13670 NETIF_F_GSO_IPXIP4 | 13671 NETIF_F_GSO_IPXIP6 | 13672 NETIF_F_GSO_UDP_TUNNEL | 13673 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13674 NETIF_F_GSO_UDP_L4 | 13675 NETIF_F_SCTP_CRC | 13676 NETIF_F_RXHASH | 13677 NETIF_F_RXCSUM | 13678 0; 13679 13680 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13681 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13682 13683 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13684 13685 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13686 13687 netdev->hw_enc_features |= hw_enc_features; 13688 13689 /* record features VLANs can make use of */ 13690 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13691 13692 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13693 NETIF_F_GSO_GRE_CSUM | \ 13694 NETIF_F_GSO_IPXIP4 | \ 13695 NETIF_F_GSO_IPXIP6 | \ 13696 NETIF_F_GSO_UDP_TUNNEL | \ 13697 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13698 13699 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13700 netdev->features |= NETIF_F_GSO_PARTIAL | 13701 I40E_GSO_PARTIAL_FEATURES; 13702 13703 netdev->mpls_features |= NETIF_F_SG; 13704 netdev->mpls_features |= NETIF_F_HW_CSUM; 13705 netdev->mpls_features |= NETIF_F_TSO; 13706 netdev->mpls_features |= NETIF_F_TSO6; 13707 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13708 13709 /* enable macvlan offloads */ 13710 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13711 13712 hw_features = hw_enc_features | 13713 NETIF_F_HW_VLAN_CTAG_TX | 13714 NETIF_F_HW_VLAN_CTAG_RX; 13715 13716 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13717 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13718 13719 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13720 13721 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13722 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13723 13724 netdev->features &= ~NETIF_F_HW_TC; 13725 13726 if (vsi->type == I40E_VSI_MAIN) { 13727 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13728 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13729 /* The following steps are necessary for two reasons. First, 13730 * some older NVM configurations load a default MAC-VLAN 13731 * filter that will accept any tagged packet, and we want to 13732 * replace this with a normal filter. Additionally, it is 13733 * possible our MAC address was provided by the platform using 13734 * Open Firmware or similar. 13735 * 13736 * Thus, we need to remove the default filter and install one 13737 * specific to the MAC address. 13738 */ 13739 i40e_rm_default_mac_filter(vsi, mac_addr); 13740 spin_lock_bh(&vsi->mac_filter_hash_lock); 13741 i40e_add_mac_filter(vsi, mac_addr); 13742 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13743 13744 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13745 NETDEV_XDP_ACT_REDIRECT | 13746 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13747 NETDEV_XDP_ACT_RX_SG; 13748 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13749 } else { 13750 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13751 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13752 * the end, which is 4 bytes long, so force truncation of the 13753 * original name by IFNAMSIZ - 4 13754 */ 13755 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 13756 IFNAMSIZ - 4, 13757 pf->vsi[pf->lan_vsi]->netdev->name); 13758 eth_random_addr(mac_addr); 13759 13760 spin_lock_bh(&vsi->mac_filter_hash_lock); 13761 i40e_add_mac_filter(vsi, mac_addr); 13762 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13763 } 13764 13765 /* Add the broadcast filter so that we initially will receive 13766 * broadcast packets. Note that when a new VLAN is first added the 13767 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13768 * specific filters as part of transitioning into "vlan" operation. 13769 * When more VLANs are added, the driver will copy each existing MAC 13770 * filter and add it for the new VLAN. 13771 * 13772 * Broadcast filters are handled specially by 13773 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13774 * promiscuous bit instead of adding this directly as a MAC/VLAN 13775 * filter. The subtask will update the correct broadcast promiscuous 13776 * bits as VLANs become active or inactive. 13777 */ 13778 eth_broadcast_addr(broadcast); 13779 spin_lock_bh(&vsi->mac_filter_hash_lock); 13780 i40e_add_mac_filter(vsi, broadcast); 13781 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13782 13783 eth_hw_addr_set(netdev, mac_addr); 13784 ether_addr_copy(netdev->perm_addr, mac_addr); 13785 13786 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13787 netdev->neigh_priv_len = sizeof(u32) * 4; 13788 13789 netdev->priv_flags |= IFF_UNICAST_FLT; 13790 netdev->priv_flags |= IFF_SUPP_NOFCS; 13791 /* Setup netdev TC information */ 13792 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13793 13794 netdev->netdev_ops = &i40e_netdev_ops; 13795 netdev->watchdog_timeo = 5 * HZ; 13796 i40e_set_ethtool_ops(netdev); 13797 13798 /* MTU range: 68 - 9706 */ 13799 netdev->min_mtu = ETH_MIN_MTU; 13800 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13801 13802 return 0; 13803 } 13804 13805 /** 13806 * i40e_vsi_delete - Delete a VSI from the switch 13807 * @vsi: the VSI being removed 13808 * 13809 * Returns 0 on success, negative value on failure 13810 **/ 13811 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13812 { 13813 /* remove default VSI is not allowed */ 13814 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13815 return; 13816 13817 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13818 } 13819 13820 /** 13821 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13822 * @vsi: the VSI being queried 13823 * 13824 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13825 **/ 13826 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13827 { 13828 struct i40e_veb *veb; 13829 struct i40e_pf *pf = vsi->back; 13830 13831 /* Uplink is not a bridge so default to VEB */ 13832 if (vsi->veb_idx >= I40E_MAX_VEB) 13833 return 1; 13834 13835 veb = pf->veb[vsi->veb_idx]; 13836 if (!veb) { 13837 dev_info(&pf->pdev->dev, 13838 "There is no veb associated with the bridge\n"); 13839 return -ENOENT; 13840 } 13841 13842 /* Uplink is a bridge in VEPA mode */ 13843 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13844 return 0; 13845 } else { 13846 /* Uplink is a bridge in VEB mode */ 13847 return 1; 13848 } 13849 13850 /* VEPA is now default bridge, so return 0 */ 13851 return 0; 13852 } 13853 13854 /** 13855 * i40e_add_vsi - Add a VSI to the switch 13856 * @vsi: the VSI being configured 13857 * 13858 * This initializes a VSI context depending on the VSI type to be added and 13859 * passes it down to the add_vsi aq command. 13860 **/ 13861 static int i40e_add_vsi(struct i40e_vsi *vsi) 13862 { 13863 int ret = -ENODEV; 13864 struct i40e_pf *pf = vsi->back; 13865 struct i40e_hw *hw = &pf->hw; 13866 struct i40e_vsi_context ctxt; 13867 struct i40e_mac_filter *f; 13868 struct hlist_node *h; 13869 int bkt; 13870 13871 u8 enabled_tc = 0x1; /* TC0 enabled */ 13872 int f_count = 0; 13873 13874 memset(&ctxt, 0, sizeof(ctxt)); 13875 switch (vsi->type) { 13876 case I40E_VSI_MAIN: 13877 /* The PF's main VSI is already setup as part of the 13878 * device initialization, so we'll not bother with 13879 * the add_vsi call, but we will retrieve the current 13880 * VSI context. 13881 */ 13882 ctxt.seid = pf->main_vsi_seid; 13883 ctxt.pf_num = pf->hw.pf_id; 13884 ctxt.vf_num = 0; 13885 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13886 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13887 if (ret) { 13888 dev_info(&pf->pdev->dev, 13889 "couldn't get PF vsi config, err %pe aq_err %s\n", 13890 ERR_PTR(ret), 13891 i40e_aq_str(&pf->hw, 13892 pf->hw.aq.asq_last_status)); 13893 return -ENOENT; 13894 } 13895 vsi->info = ctxt.info; 13896 vsi->info.valid_sections = 0; 13897 13898 vsi->seid = ctxt.seid; 13899 vsi->id = ctxt.vsi_number; 13900 13901 enabled_tc = i40e_pf_get_tc_map(pf); 13902 13903 /* Source pruning is enabled by default, so the flag is 13904 * negative logic - if it's set, we need to fiddle with 13905 * the VSI to disable source pruning. 13906 */ 13907 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13908 memset(&ctxt, 0, sizeof(ctxt)); 13909 ctxt.seid = pf->main_vsi_seid; 13910 ctxt.pf_num = pf->hw.pf_id; 13911 ctxt.vf_num = 0; 13912 ctxt.info.valid_sections |= 13913 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13914 ctxt.info.switch_id = 13915 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13916 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13917 if (ret) { 13918 dev_info(&pf->pdev->dev, 13919 "update vsi failed, err %d aq_err %s\n", 13920 ret, 13921 i40e_aq_str(&pf->hw, 13922 pf->hw.aq.asq_last_status)); 13923 ret = -ENOENT; 13924 goto err; 13925 } 13926 } 13927 13928 /* MFP mode setup queue map and update VSI */ 13929 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13930 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13931 memset(&ctxt, 0, sizeof(ctxt)); 13932 ctxt.seid = pf->main_vsi_seid; 13933 ctxt.pf_num = pf->hw.pf_id; 13934 ctxt.vf_num = 0; 13935 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13936 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13937 if (ret) { 13938 dev_info(&pf->pdev->dev, 13939 "update vsi failed, err %pe aq_err %s\n", 13940 ERR_PTR(ret), 13941 i40e_aq_str(&pf->hw, 13942 pf->hw.aq.asq_last_status)); 13943 ret = -ENOENT; 13944 goto err; 13945 } 13946 /* update the local VSI info queue map */ 13947 i40e_vsi_update_queue_map(vsi, &ctxt); 13948 vsi->info.valid_sections = 0; 13949 } else { 13950 /* Default/Main VSI is only enabled for TC0 13951 * reconfigure it to enable all TCs that are 13952 * available on the port in SFP mode. 13953 * For MFP case the iSCSI PF would use this 13954 * flow to enable LAN+iSCSI TC. 13955 */ 13956 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13957 if (ret) { 13958 /* Single TC condition is not fatal, 13959 * message and continue 13960 */ 13961 dev_info(&pf->pdev->dev, 13962 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 13963 enabled_tc, 13964 ERR_PTR(ret), 13965 i40e_aq_str(&pf->hw, 13966 pf->hw.aq.asq_last_status)); 13967 } 13968 } 13969 break; 13970 13971 case I40E_VSI_FDIR: 13972 ctxt.pf_num = hw->pf_id; 13973 ctxt.vf_num = 0; 13974 ctxt.uplink_seid = vsi->uplink_seid; 13975 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13976 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13977 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 13978 (i40e_is_vsi_uplink_mode_veb(vsi))) { 13979 ctxt.info.valid_sections |= 13980 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13981 ctxt.info.switch_id = 13982 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13983 } 13984 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13985 break; 13986 13987 case I40E_VSI_VMDQ2: 13988 ctxt.pf_num = hw->pf_id; 13989 ctxt.vf_num = 0; 13990 ctxt.uplink_seid = vsi->uplink_seid; 13991 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13992 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 13993 13994 /* This VSI is connected to VEB so the switch_id 13995 * should be set to zero by default. 13996 */ 13997 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13998 ctxt.info.valid_sections |= 13999 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14000 ctxt.info.switch_id = 14001 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14002 } 14003 14004 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14005 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14006 break; 14007 14008 case I40E_VSI_SRIOV: 14009 ctxt.pf_num = hw->pf_id; 14010 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14011 ctxt.uplink_seid = vsi->uplink_seid; 14012 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14013 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14014 14015 /* This VSI is connected to VEB so the switch_id 14016 * should be set to zero by default. 14017 */ 14018 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14019 ctxt.info.valid_sections |= 14020 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14021 ctxt.info.switch_id = 14022 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14023 } 14024 14025 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14026 ctxt.info.valid_sections |= 14027 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14028 ctxt.info.queueing_opt_flags |= 14029 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14030 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14031 } 14032 14033 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14034 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14035 if (pf->vf[vsi->vf_id].spoofchk) { 14036 ctxt.info.valid_sections |= 14037 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14038 ctxt.info.sec_flags |= 14039 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14040 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14041 } 14042 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14043 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14044 break; 14045 14046 case I40E_VSI_IWARP: 14047 /* send down message to iWARP */ 14048 break; 14049 14050 default: 14051 return -ENODEV; 14052 } 14053 14054 if (vsi->type != I40E_VSI_MAIN) { 14055 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14056 if (ret) { 14057 dev_info(&vsi->back->pdev->dev, 14058 "add vsi failed, err %pe aq_err %s\n", 14059 ERR_PTR(ret), 14060 i40e_aq_str(&pf->hw, 14061 pf->hw.aq.asq_last_status)); 14062 ret = -ENOENT; 14063 goto err; 14064 } 14065 vsi->info = ctxt.info; 14066 vsi->info.valid_sections = 0; 14067 vsi->seid = ctxt.seid; 14068 vsi->id = ctxt.vsi_number; 14069 } 14070 14071 spin_lock_bh(&vsi->mac_filter_hash_lock); 14072 vsi->active_filters = 0; 14073 /* If macvlan filters already exist, force them to get loaded */ 14074 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14075 f->state = I40E_FILTER_NEW; 14076 f_count++; 14077 } 14078 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14079 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14080 14081 if (f_count) { 14082 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14083 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14084 } 14085 14086 /* Update VSI BW information */ 14087 ret = i40e_vsi_get_bw_info(vsi); 14088 if (ret) { 14089 dev_info(&pf->pdev->dev, 14090 "couldn't get vsi bw info, err %pe aq_err %s\n", 14091 ERR_PTR(ret), 14092 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14093 /* VSI is already added so not tearing that up */ 14094 ret = 0; 14095 } 14096 14097 err: 14098 return ret; 14099 } 14100 14101 /** 14102 * i40e_vsi_release - Delete a VSI and free its resources 14103 * @vsi: the VSI being removed 14104 * 14105 * Returns 0 on success or < 0 on error 14106 **/ 14107 int i40e_vsi_release(struct i40e_vsi *vsi) 14108 { 14109 struct i40e_mac_filter *f; 14110 struct hlist_node *h; 14111 struct i40e_veb *veb; 14112 struct i40e_pf *pf; 14113 u16 uplink_seid; 14114 int i, n, bkt; 14115 14116 pf = vsi->back; 14117 14118 /* release of a VEB-owner or last VSI is not allowed */ 14119 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14120 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14121 vsi->seid, vsi->uplink_seid); 14122 return -ENODEV; 14123 } 14124 if (vsi == pf->vsi[pf->lan_vsi] && 14125 !test_bit(__I40E_DOWN, pf->state)) { 14126 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14127 return -ENODEV; 14128 } 14129 set_bit(__I40E_VSI_RELEASING, vsi->state); 14130 uplink_seid = vsi->uplink_seid; 14131 14132 if (vsi->type != I40E_VSI_SRIOV) { 14133 if (vsi->netdev_registered) { 14134 vsi->netdev_registered = false; 14135 if (vsi->netdev) { 14136 /* results in a call to i40e_close() */ 14137 unregister_netdev(vsi->netdev); 14138 } 14139 } else { 14140 i40e_vsi_close(vsi); 14141 } 14142 i40e_vsi_disable_irq(vsi); 14143 } 14144 14145 if (vsi->type == I40E_VSI_MAIN) 14146 i40e_devlink_destroy_port(pf); 14147 14148 spin_lock_bh(&vsi->mac_filter_hash_lock); 14149 14150 /* clear the sync flag on all filters */ 14151 if (vsi->netdev) { 14152 __dev_uc_unsync(vsi->netdev, NULL); 14153 __dev_mc_unsync(vsi->netdev, NULL); 14154 } 14155 14156 /* make sure any remaining filters are marked for deletion */ 14157 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14158 __i40e_del_filter(vsi, f); 14159 14160 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14161 14162 i40e_sync_vsi_filters(vsi); 14163 14164 i40e_vsi_delete(vsi); 14165 i40e_vsi_free_q_vectors(vsi); 14166 if (vsi->netdev) { 14167 free_netdev(vsi->netdev); 14168 vsi->netdev = NULL; 14169 } 14170 i40e_vsi_clear_rings(vsi); 14171 i40e_vsi_clear(vsi); 14172 14173 /* If this was the last thing on the VEB, except for the 14174 * controlling VSI, remove the VEB, which puts the controlling 14175 * VSI onto the uplink port. 14176 * 14177 * Well, okay, there's one more exception here: don't remove 14178 * the floating VEBs yet. We'll wait for an explicit remove request 14179 * from up the network stack. 14180 */ 14181 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14182 if (veb && veb->uplink_seid) { 14183 n = 0; 14184 14185 /* Count non-controlling VSIs present on the VEB */ 14186 i40e_pf_for_each_vsi(pf, i, vsi) 14187 if (vsi->uplink_seid == uplink_seid && 14188 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14189 n++; 14190 14191 /* If there is no VSI except the control one then release 14192 * the VEB and put the control VSI onto VEB uplink. 14193 */ 14194 if (!n) 14195 i40e_veb_release(veb); 14196 } 14197 14198 return 0; 14199 } 14200 14201 /** 14202 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14203 * @vsi: ptr to the VSI 14204 * 14205 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14206 * corresponding SW VSI structure and initializes num_queue_pairs for the 14207 * newly allocated VSI. 14208 * 14209 * Returns 0 on success or negative on failure 14210 **/ 14211 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14212 { 14213 int ret = -ENOENT; 14214 struct i40e_pf *pf = vsi->back; 14215 14216 if (vsi->q_vectors[0]) { 14217 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14218 vsi->seid); 14219 return -EEXIST; 14220 } 14221 14222 if (vsi->base_vector) { 14223 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14224 vsi->seid, vsi->base_vector); 14225 return -EEXIST; 14226 } 14227 14228 ret = i40e_vsi_alloc_q_vectors(vsi); 14229 if (ret) { 14230 dev_info(&pf->pdev->dev, 14231 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14232 vsi->num_q_vectors, vsi->seid, ret); 14233 vsi->num_q_vectors = 0; 14234 goto vector_setup_out; 14235 } 14236 14237 /* In Legacy mode, we do not have to get any other vector since we 14238 * piggyback on the misc/ICR0 for queue interrupts. 14239 */ 14240 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14241 return ret; 14242 if (vsi->num_q_vectors) 14243 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14244 vsi->num_q_vectors, vsi->idx); 14245 if (vsi->base_vector < 0) { 14246 dev_info(&pf->pdev->dev, 14247 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14248 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14249 i40e_vsi_free_q_vectors(vsi); 14250 ret = -ENOENT; 14251 goto vector_setup_out; 14252 } 14253 14254 vector_setup_out: 14255 return ret; 14256 } 14257 14258 /** 14259 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14260 * @vsi: pointer to the vsi. 14261 * 14262 * This re-allocates a vsi's queue resources. 14263 * 14264 * Returns pointer to the successfully allocated and configured VSI sw struct 14265 * on success, otherwise returns NULL on failure. 14266 **/ 14267 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14268 { 14269 u16 alloc_queue_pairs; 14270 struct i40e_pf *pf; 14271 u8 enabled_tc; 14272 int ret; 14273 14274 if (!vsi) 14275 return NULL; 14276 14277 pf = vsi->back; 14278 14279 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14280 i40e_vsi_clear_rings(vsi); 14281 14282 i40e_vsi_free_arrays(vsi, false); 14283 i40e_set_num_rings_in_vsi(vsi); 14284 ret = i40e_vsi_alloc_arrays(vsi, false); 14285 if (ret) 14286 goto err_vsi; 14287 14288 alloc_queue_pairs = vsi->alloc_queue_pairs * 14289 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14290 14291 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14292 if (ret < 0) { 14293 dev_info(&pf->pdev->dev, 14294 "failed to get tracking for %d queues for VSI %d err %d\n", 14295 alloc_queue_pairs, vsi->seid, ret); 14296 goto err_vsi; 14297 } 14298 vsi->base_queue = ret; 14299 14300 /* Update the FW view of the VSI. Force a reset of TC and queue 14301 * layout configurations. 14302 */ 14303 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14304 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14305 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14306 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14307 if (vsi->type == I40E_VSI_MAIN) 14308 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14309 14310 /* assign it some queues */ 14311 ret = i40e_alloc_rings(vsi); 14312 if (ret) 14313 goto err_rings; 14314 14315 /* map all of the rings to the q_vectors */ 14316 i40e_vsi_map_rings_to_vectors(vsi); 14317 return vsi; 14318 14319 err_rings: 14320 i40e_vsi_free_q_vectors(vsi); 14321 if (vsi->netdev_registered) { 14322 vsi->netdev_registered = false; 14323 unregister_netdev(vsi->netdev); 14324 free_netdev(vsi->netdev); 14325 vsi->netdev = NULL; 14326 } 14327 if (vsi->type == I40E_VSI_MAIN) 14328 i40e_devlink_destroy_port(pf); 14329 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14330 err_vsi: 14331 i40e_vsi_clear(vsi); 14332 return NULL; 14333 } 14334 14335 /** 14336 * i40e_vsi_setup - Set up a VSI by a given type 14337 * @pf: board private structure 14338 * @type: VSI type 14339 * @uplink_seid: the switch element to link to 14340 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14341 * 14342 * This allocates the sw VSI structure and its queue resources, then add a VSI 14343 * to the identified VEB. 14344 * 14345 * Returns pointer to the successfully allocated and configure VSI sw struct on 14346 * success, otherwise returns NULL on failure. 14347 **/ 14348 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14349 u16 uplink_seid, u32 param1) 14350 { 14351 struct i40e_vsi *vsi = NULL; 14352 struct i40e_veb *veb = NULL; 14353 u16 alloc_queue_pairs; 14354 int v_idx; 14355 int ret; 14356 14357 /* The requested uplink_seid must be either 14358 * - the PF's port seid 14359 * no VEB is needed because this is the PF 14360 * or this is a Flow Director special case VSI 14361 * - seid of an existing VEB 14362 * - seid of a VSI that owns an existing VEB 14363 * - seid of a VSI that doesn't own a VEB 14364 * a new VEB is created and the VSI becomes the owner 14365 * - seid of the PF VSI, which is what creates the first VEB 14366 * this is a special case of the previous 14367 * 14368 * Find which uplink_seid we were given and create a new VEB if needed 14369 */ 14370 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14371 if (!veb && uplink_seid != pf->mac_seid) { 14372 vsi = i40e_pf_get_vsi_by_seid(pf, uplink_seid); 14373 if (!vsi) { 14374 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14375 uplink_seid); 14376 return NULL; 14377 } 14378 14379 if (vsi->uplink_seid == pf->mac_seid) 14380 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 14381 vsi->tc_config.enabled_tc); 14382 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14383 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 14384 vsi->tc_config.enabled_tc); 14385 if (veb) { 14386 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 14387 dev_info(&vsi->back->pdev->dev, 14388 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14389 return NULL; 14390 } 14391 /* We come up by default in VEPA mode if SRIOV is not 14392 * already enabled, in which case we can't force VEPA 14393 * mode. 14394 */ 14395 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14396 veb->bridge_mode = BRIDGE_MODE_VEPA; 14397 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14398 } 14399 i40e_config_bridge_mode(veb); 14400 } 14401 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 14402 if (!veb) { 14403 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14404 return NULL; 14405 } 14406 14407 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14408 uplink_seid = veb->seid; 14409 } 14410 14411 /* get vsi sw struct */ 14412 v_idx = i40e_vsi_mem_alloc(pf, type); 14413 if (v_idx < 0) 14414 goto err_alloc; 14415 vsi = pf->vsi[v_idx]; 14416 if (!vsi) 14417 goto err_alloc; 14418 vsi->type = type; 14419 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14420 14421 if (type == I40E_VSI_MAIN) 14422 pf->lan_vsi = v_idx; 14423 else if (type == I40E_VSI_SRIOV) 14424 vsi->vf_id = param1; 14425 /* assign it some queues */ 14426 alloc_queue_pairs = vsi->alloc_queue_pairs * 14427 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14428 14429 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14430 if (ret < 0) { 14431 dev_info(&pf->pdev->dev, 14432 "failed to get tracking for %d queues for VSI %d err=%d\n", 14433 alloc_queue_pairs, vsi->seid, ret); 14434 goto err_vsi; 14435 } 14436 vsi->base_queue = ret; 14437 14438 /* get a VSI from the hardware */ 14439 vsi->uplink_seid = uplink_seid; 14440 ret = i40e_add_vsi(vsi); 14441 if (ret) 14442 goto err_vsi; 14443 14444 switch (vsi->type) { 14445 /* setup the netdev if needed */ 14446 case I40E_VSI_MAIN: 14447 case I40E_VSI_VMDQ2: 14448 ret = i40e_config_netdev(vsi); 14449 if (ret) 14450 goto err_netdev; 14451 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14452 if (ret) 14453 goto err_netdev; 14454 if (vsi->type == I40E_VSI_MAIN) { 14455 ret = i40e_devlink_create_port(pf); 14456 if (ret) 14457 goto err_netdev; 14458 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14459 } 14460 ret = register_netdev(vsi->netdev); 14461 if (ret) 14462 goto err_dl_port; 14463 vsi->netdev_registered = true; 14464 netif_carrier_off(vsi->netdev); 14465 #ifdef CONFIG_I40E_DCB 14466 /* Setup DCB netlink interface */ 14467 i40e_dcbnl_setup(vsi); 14468 #endif /* CONFIG_I40E_DCB */ 14469 fallthrough; 14470 case I40E_VSI_FDIR: 14471 /* set up vectors and rings if needed */ 14472 ret = i40e_vsi_setup_vectors(vsi); 14473 if (ret) 14474 goto err_msix; 14475 14476 ret = i40e_alloc_rings(vsi); 14477 if (ret) 14478 goto err_rings; 14479 14480 /* map all of the rings to the q_vectors */ 14481 i40e_vsi_map_rings_to_vectors(vsi); 14482 14483 i40e_vsi_reset_stats(vsi); 14484 break; 14485 default: 14486 /* no netdev or rings for the other VSI types */ 14487 break; 14488 } 14489 14490 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14491 vsi->type == I40E_VSI_VMDQ2) { 14492 ret = i40e_vsi_config_rss(vsi); 14493 if (ret) 14494 goto err_config; 14495 } 14496 return vsi; 14497 14498 err_config: 14499 i40e_vsi_clear_rings(vsi); 14500 err_rings: 14501 i40e_vsi_free_q_vectors(vsi); 14502 err_msix: 14503 if (vsi->netdev_registered) { 14504 vsi->netdev_registered = false; 14505 unregister_netdev(vsi->netdev); 14506 free_netdev(vsi->netdev); 14507 vsi->netdev = NULL; 14508 } 14509 err_dl_port: 14510 if (vsi->type == I40E_VSI_MAIN) 14511 i40e_devlink_destroy_port(pf); 14512 err_netdev: 14513 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14514 err_vsi: 14515 i40e_vsi_clear(vsi); 14516 err_alloc: 14517 return NULL; 14518 } 14519 14520 /** 14521 * i40e_veb_get_bw_info - Query VEB BW information 14522 * @veb: the veb to query 14523 * 14524 * Query the Tx scheduler BW configuration data for given VEB 14525 **/ 14526 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14527 { 14528 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14529 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14530 struct i40e_pf *pf = veb->pf; 14531 struct i40e_hw *hw = &pf->hw; 14532 u32 tc_bw_max; 14533 int ret = 0; 14534 int i; 14535 14536 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14537 &bw_data, NULL); 14538 if (ret) { 14539 dev_info(&pf->pdev->dev, 14540 "query veb bw config failed, err %pe aq_err %s\n", 14541 ERR_PTR(ret), 14542 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14543 goto out; 14544 } 14545 14546 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14547 &ets_data, NULL); 14548 if (ret) { 14549 dev_info(&pf->pdev->dev, 14550 "query veb bw ets config failed, err %pe aq_err %s\n", 14551 ERR_PTR(ret), 14552 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14553 goto out; 14554 } 14555 14556 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14557 veb->bw_max_quanta = ets_data.tc_bw_max; 14558 veb->is_abs_credits = bw_data.absolute_credits_enable; 14559 veb->enabled_tc = ets_data.tc_valid_bits; 14560 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14561 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14562 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14563 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14564 veb->bw_tc_limit_credits[i] = 14565 le16_to_cpu(bw_data.tc_bw_limits[i]); 14566 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14567 } 14568 14569 out: 14570 return ret; 14571 } 14572 14573 /** 14574 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14575 * @pf: board private structure 14576 * 14577 * On error: returns error code (negative) 14578 * On success: returns vsi index in PF (positive) 14579 **/ 14580 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14581 { 14582 int ret = -ENOENT; 14583 struct i40e_veb *veb; 14584 int i; 14585 14586 /* Need to protect the allocation of switch elements at the PF level */ 14587 mutex_lock(&pf->switch_mutex); 14588 14589 /* VEB list may be fragmented if VEB creation/destruction has 14590 * been happening. We can afford to do a quick scan to look 14591 * for any free slots in the list. 14592 * 14593 * find next empty veb slot, looping back around if necessary 14594 */ 14595 i = 0; 14596 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14597 i++; 14598 if (i >= I40E_MAX_VEB) { 14599 ret = -ENOMEM; 14600 goto err_alloc_veb; /* out of VEB slots! */ 14601 } 14602 14603 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14604 if (!veb) { 14605 ret = -ENOMEM; 14606 goto err_alloc_veb; 14607 } 14608 veb->pf = pf; 14609 veb->idx = i; 14610 veb->enabled_tc = 1; 14611 14612 pf->veb[i] = veb; 14613 ret = i; 14614 err_alloc_veb: 14615 mutex_unlock(&pf->switch_mutex); 14616 return ret; 14617 } 14618 14619 /** 14620 * i40e_switch_branch_release - Delete a branch of the switch tree 14621 * @branch: where to start deleting 14622 * 14623 * This uses recursion to find the tips of the branch to be 14624 * removed, deleting until we get back to and can delete this VEB. 14625 **/ 14626 static void i40e_switch_branch_release(struct i40e_veb *branch) 14627 { 14628 struct i40e_pf *pf = branch->pf; 14629 u16 branch_seid = branch->seid; 14630 u16 veb_idx = branch->idx; 14631 struct i40e_vsi *vsi; 14632 struct i40e_veb *veb; 14633 int i; 14634 14635 /* release any VEBs on this VEB - RECURSION */ 14636 i40e_pf_for_each_veb(pf, i, veb) 14637 if (veb->uplink_seid == branch->seid) 14638 i40e_switch_branch_release(veb); 14639 14640 /* Release the VSIs on this VEB, but not the owner VSI. 14641 * 14642 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14643 * the VEB itself, so don't use (*branch) after this loop. 14644 */ 14645 i40e_pf_for_each_vsi(pf, i, vsi) 14646 if (vsi->uplink_seid == branch_seid && 14647 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14648 i40e_vsi_release(vsi); 14649 14650 /* There's one corner case where the VEB might not have been 14651 * removed, so double check it here and remove it if needed. 14652 * This case happens if the veb was created from the debugfs 14653 * commands and no VSIs were added to it. 14654 */ 14655 if (pf->veb[veb_idx]) 14656 i40e_veb_release(pf->veb[veb_idx]); 14657 } 14658 14659 /** 14660 * i40e_veb_clear - remove veb struct 14661 * @veb: the veb to remove 14662 **/ 14663 static void i40e_veb_clear(struct i40e_veb *veb) 14664 { 14665 if (!veb) 14666 return; 14667 14668 if (veb->pf) { 14669 struct i40e_pf *pf = veb->pf; 14670 14671 mutex_lock(&pf->switch_mutex); 14672 if (pf->veb[veb->idx] == veb) 14673 pf->veb[veb->idx] = NULL; 14674 mutex_unlock(&pf->switch_mutex); 14675 } 14676 14677 kfree(veb); 14678 } 14679 14680 /** 14681 * i40e_veb_release - Delete a VEB and free its resources 14682 * @veb: the VEB being removed 14683 **/ 14684 void i40e_veb_release(struct i40e_veb *veb) 14685 { 14686 struct i40e_vsi *vsi, *vsi_it; 14687 struct i40e_pf *pf; 14688 int i, n = 0; 14689 14690 pf = veb->pf; 14691 14692 /* find the remaining VSI and check for extras */ 14693 i40e_pf_for_each_vsi(pf, i, vsi_it) 14694 if (vsi_it->uplink_seid == veb->seid) { 14695 if (vsi_it->flags & I40E_VSI_FLAG_VEB_OWNER) 14696 vsi = vsi_it; 14697 n++; 14698 } 14699 14700 /* Floating VEB has to be empty and regular one must have 14701 * single owner VSI. 14702 */ 14703 if ((veb->uplink_seid && n != 1) || (!veb->uplink_seid && n != 0)) { 14704 dev_info(&pf->pdev->dev, 14705 "can't remove VEB %d with %d VSIs left\n", 14706 veb->seid, n); 14707 return; 14708 } 14709 14710 /* For regular VEB move the owner VSI to uplink port */ 14711 if (veb->uplink_seid) { 14712 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14713 vsi->uplink_seid = veb->uplink_seid; 14714 vsi->veb_idx = I40E_NO_VEB; 14715 } 14716 14717 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14718 i40e_veb_clear(veb); 14719 } 14720 14721 /** 14722 * i40e_add_veb - create the VEB in the switch 14723 * @veb: the VEB to be instantiated 14724 * @vsi: the controlling VSI 14725 **/ 14726 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14727 { 14728 struct i40e_pf *pf = veb->pf; 14729 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14730 int ret; 14731 14732 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi ? vsi->seid : 0, 14733 veb->enabled_tc, vsi ? false : true, 14734 &veb->seid, enable_stats, NULL); 14735 14736 /* get a VEB from the hardware */ 14737 if (ret) { 14738 dev_info(&pf->pdev->dev, 14739 "couldn't add VEB, err %pe aq_err %s\n", 14740 ERR_PTR(ret), 14741 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14742 return -EPERM; 14743 } 14744 14745 /* get statistics counter */ 14746 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14747 &veb->stats_idx, NULL, NULL, NULL); 14748 if (ret) { 14749 dev_info(&pf->pdev->dev, 14750 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14751 ERR_PTR(ret), 14752 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14753 return -EPERM; 14754 } 14755 ret = i40e_veb_get_bw_info(veb); 14756 if (ret) { 14757 dev_info(&pf->pdev->dev, 14758 "couldn't get VEB bw info, err %pe aq_err %s\n", 14759 ERR_PTR(ret), 14760 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14761 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14762 return -ENOENT; 14763 } 14764 14765 if (vsi) { 14766 vsi->uplink_seid = veb->seid; 14767 vsi->veb_idx = veb->idx; 14768 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14769 } 14770 14771 return 0; 14772 } 14773 14774 /** 14775 * i40e_veb_setup - Set up a VEB 14776 * @pf: board private structure 14777 * @flags: VEB setup flags 14778 * @uplink_seid: the switch element to link to 14779 * @vsi_seid: the initial VSI seid 14780 * @enabled_tc: Enabled TC bit-map 14781 * 14782 * This allocates the sw VEB structure and links it into the switch 14783 * It is possible and legal for this to be a duplicate of an already 14784 * existing VEB. It is also possible for both uplink and vsi seids 14785 * to be zero, in order to create a floating VEB. 14786 * 14787 * Returns pointer to the successfully allocated VEB sw struct on 14788 * success, otherwise returns NULL on failure. 14789 **/ 14790 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14791 u16 uplink_seid, u16 vsi_seid, 14792 u8 enabled_tc) 14793 { 14794 struct i40e_vsi *vsi = NULL; 14795 struct i40e_veb *veb; 14796 int veb_idx; 14797 int ret; 14798 14799 /* if one seid is 0, the other must be 0 to create a floating relay */ 14800 if ((uplink_seid == 0 || vsi_seid == 0) && 14801 (uplink_seid + vsi_seid != 0)) { 14802 dev_info(&pf->pdev->dev, 14803 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14804 uplink_seid, vsi_seid); 14805 return NULL; 14806 } 14807 14808 /* make sure there is such a vsi and uplink */ 14809 if (vsi_seid) { 14810 vsi = i40e_pf_get_vsi_by_seid(pf, vsi_seid); 14811 if (!vsi) { 14812 dev_err(&pf->pdev->dev, "vsi seid %d not found\n", 14813 vsi_seid); 14814 return NULL; 14815 } 14816 } 14817 14818 /* get veb sw struct */ 14819 veb_idx = i40e_veb_mem_alloc(pf); 14820 if (veb_idx < 0) 14821 goto err_alloc; 14822 veb = pf->veb[veb_idx]; 14823 veb->flags = flags; 14824 veb->uplink_seid = uplink_seid; 14825 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14826 14827 /* create the VEB in the switch */ 14828 ret = i40e_add_veb(veb, vsi); 14829 if (ret) 14830 goto err_veb; 14831 14832 if (vsi && vsi->idx == pf->lan_vsi) 14833 pf->lan_veb = veb->idx; 14834 14835 return veb; 14836 14837 err_veb: 14838 i40e_veb_clear(veb); 14839 err_alloc: 14840 return NULL; 14841 } 14842 14843 /** 14844 * i40e_setup_pf_switch_element - set PF vars based on switch type 14845 * @pf: board private structure 14846 * @ele: element we are building info from 14847 * @num_reported: total number of elements 14848 * @printconfig: should we print the contents 14849 * 14850 * helper function to assist in extracting a few useful SEID values. 14851 **/ 14852 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14853 struct i40e_aqc_switch_config_element_resp *ele, 14854 u16 num_reported, bool printconfig) 14855 { 14856 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14857 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14858 u8 element_type = ele->element_type; 14859 u16 seid = le16_to_cpu(ele->seid); 14860 struct i40e_veb *veb; 14861 14862 if (printconfig) 14863 dev_info(&pf->pdev->dev, 14864 "type=%d seid=%d uplink=%d downlink=%d\n", 14865 element_type, seid, uplink_seid, downlink_seid); 14866 14867 switch (element_type) { 14868 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14869 pf->mac_seid = seid; 14870 break; 14871 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14872 /* Main VEB? */ 14873 if (uplink_seid != pf->mac_seid) 14874 break; 14875 if (pf->lan_veb >= I40E_MAX_VEB) { 14876 int v; 14877 14878 /* find existing or else empty VEB */ 14879 veb = i40e_pf_get_veb_by_seid(pf, seid); 14880 if (veb) { 14881 pf->lan_veb = veb->idx; 14882 } else { 14883 v = i40e_veb_mem_alloc(pf); 14884 if (v < 0) 14885 break; 14886 pf->lan_veb = v; 14887 } 14888 } 14889 if (pf->lan_veb >= I40E_MAX_VEB) 14890 break; 14891 14892 pf->veb[pf->lan_veb]->seid = seid; 14893 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14894 pf->veb[pf->lan_veb]->pf = pf; 14895 break; 14896 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14897 if (num_reported != 1) 14898 break; 14899 /* This is immediately after a reset so we can assume this is 14900 * the PF's VSI 14901 */ 14902 pf->mac_seid = uplink_seid; 14903 pf->main_vsi_seid = seid; 14904 if (printconfig) 14905 dev_info(&pf->pdev->dev, 14906 "pf_seid=%d main_vsi_seid=%d\n", 14907 downlink_seid, pf->main_vsi_seid); 14908 break; 14909 case I40E_SWITCH_ELEMENT_TYPE_PF: 14910 case I40E_SWITCH_ELEMENT_TYPE_VF: 14911 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14912 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14913 case I40E_SWITCH_ELEMENT_TYPE_PE: 14914 case I40E_SWITCH_ELEMENT_TYPE_PA: 14915 /* ignore these for now */ 14916 break; 14917 default: 14918 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14919 element_type, seid); 14920 break; 14921 } 14922 } 14923 14924 /** 14925 * i40e_fetch_switch_configuration - Get switch config from firmware 14926 * @pf: board private structure 14927 * @printconfig: should we print the contents 14928 * 14929 * Get the current switch configuration from the device and 14930 * extract a few useful SEID values. 14931 **/ 14932 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14933 { 14934 struct i40e_aqc_get_switch_config_resp *sw_config; 14935 u16 next_seid = 0; 14936 int ret = 0; 14937 u8 *aq_buf; 14938 int i; 14939 14940 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14941 if (!aq_buf) 14942 return -ENOMEM; 14943 14944 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14945 do { 14946 u16 num_reported, num_total; 14947 14948 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14949 I40E_AQ_LARGE_BUF, 14950 &next_seid, NULL); 14951 if (ret) { 14952 dev_info(&pf->pdev->dev, 14953 "get switch config failed err %d aq_err %s\n", 14954 ret, 14955 i40e_aq_str(&pf->hw, 14956 pf->hw.aq.asq_last_status)); 14957 kfree(aq_buf); 14958 return -ENOENT; 14959 } 14960 14961 num_reported = le16_to_cpu(sw_config->header.num_reported); 14962 num_total = le16_to_cpu(sw_config->header.num_total); 14963 14964 if (printconfig) 14965 dev_info(&pf->pdev->dev, 14966 "header: %d reported %d total\n", 14967 num_reported, num_total); 14968 14969 for (i = 0; i < num_reported; i++) { 14970 struct i40e_aqc_switch_config_element_resp *ele = 14971 &sw_config->element[i]; 14972 14973 i40e_setup_pf_switch_element(pf, ele, num_reported, 14974 printconfig); 14975 } 14976 } while (next_seid != 0); 14977 14978 kfree(aq_buf); 14979 return ret; 14980 } 14981 14982 /** 14983 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 14984 * @pf: board private structure 14985 * @reinit: if the Main VSI needs to re-initialized. 14986 * @lock_acquired: indicates whether or not the lock has been acquired 14987 * 14988 * Returns 0 on success, negative value on failure 14989 **/ 14990 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 14991 { 14992 u16 flags = 0; 14993 int ret; 14994 14995 /* find out what's out there already */ 14996 ret = i40e_fetch_switch_configuration(pf, false); 14997 if (ret) { 14998 dev_info(&pf->pdev->dev, 14999 "couldn't fetch switch config, err %pe aq_err %s\n", 15000 ERR_PTR(ret), 15001 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15002 return ret; 15003 } 15004 i40e_pf_reset_stats(pf); 15005 15006 /* set the switch config bit for the whole device to 15007 * support limited promisc or true promisc 15008 * when user requests promisc. The default is limited 15009 * promisc. 15010 */ 15011 15012 if ((pf->hw.pf_id == 0) && 15013 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15014 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15015 pf->last_sw_conf_flags = flags; 15016 } 15017 15018 if (pf->hw.pf_id == 0) { 15019 u16 valid_flags; 15020 15021 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15022 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15023 NULL); 15024 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15025 dev_info(&pf->pdev->dev, 15026 "couldn't set switch config bits, err %pe aq_err %s\n", 15027 ERR_PTR(ret), 15028 i40e_aq_str(&pf->hw, 15029 pf->hw.aq.asq_last_status)); 15030 /* not a fatal problem, just keep going */ 15031 } 15032 pf->last_sw_conf_valid_flags = valid_flags; 15033 } 15034 15035 /* first time setup */ 15036 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 15037 struct i40e_vsi *vsi = NULL; 15038 u16 uplink_seid; 15039 15040 /* Set up the PF VSI associated with the PF's main VSI 15041 * that is already in the HW switch 15042 */ 15043 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 15044 uplink_seid = pf->veb[pf->lan_veb]->seid; 15045 else 15046 uplink_seid = pf->mac_seid; 15047 if (pf->lan_vsi == I40E_NO_VSI) 15048 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 15049 else if (reinit) 15050 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 15051 if (!vsi) { 15052 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15053 i40e_cloud_filter_exit(pf); 15054 i40e_fdir_teardown(pf); 15055 return -EAGAIN; 15056 } 15057 } else { 15058 /* force a reset of TC and queue layout configurations */ 15059 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 15060 15061 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 15062 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 15063 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 15064 } 15065 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 15066 15067 i40e_fdir_sb_setup(pf); 15068 15069 /* Setup static PF queue filter control settings */ 15070 ret = i40e_setup_pf_filter_control(pf); 15071 if (ret) { 15072 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15073 ret); 15074 /* Failure here should not stop continuing other steps */ 15075 } 15076 15077 /* enable RSS in the HW, even for only one queue, as the stack can use 15078 * the hash 15079 */ 15080 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15081 i40e_pf_config_rss(pf); 15082 15083 /* fill in link information and enable LSE reporting */ 15084 i40e_link_event(pf); 15085 15086 i40e_ptp_init(pf); 15087 15088 if (!lock_acquired) 15089 rtnl_lock(); 15090 15091 /* repopulate tunnel port filters */ 15092 udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev); 15093 15094 if (!lock_acquired) 15095 rtnl_unlock(); 15096 15097 return ret; 15098 } 15099 15100 /** 15101 * i40e_determine_queue_usage - Work out queue distribution 15102 * @pf: board private structure 15103 **/ 15104 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15105 { 15106 int queues_left; 15107 int q_max; 15108 15109 pf->num_lan_qps = 0; 15110 15111 /* Find the max queues to be put into basic use. We'll always be 15112 * using TC0, whether or not DCB is running, and TC0 will get the 15113 * big RSS set. 15114 */ 15115 queues_left = pf->hw.func_caps.num_tx_qp; 15116 15117 if ((queues_left == 1) || 15118 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15119 /* one qp for PF, no queues for anything else */ 15120 queues_left = 0; 15121 pf->alloc_rss_size = pf->num_lan_qps = 1; 15122 15123 /* make sure all the fancies are disabled */ 15124 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15125 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15126 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15127 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15128 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15129 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15130 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15131 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15132 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15133 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15134 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15135 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15136 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15137 /* one qp for PF */ 15138 pf->alloc_rss_size = pf->num_lan_qps = 1; 15139 queues_left -= pf->num_lan_qps; 15140 15141 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15142 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15143 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15144 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15145 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15146 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15147 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15148 } else { 15149 /* Not enough queues for all TCs */ 15150 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15151 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15152 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15153 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15154 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15155 } 15156 15157 /* limit lan qps to the smaller of qps, cpus or msix */ 15158 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15159 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15160 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15161 pf->num_lan_qps = q_max; 15162 15163 queues_left -= pf->num_lan_qps; 15164 } 15165 15166 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15167 if (queues_left > 1) { 15168 queues_left -= 1; /* save 1 queue for FD */ 15169 } else { 15170 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15171 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15172 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15173 } 15174 } 15175 15176 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15177 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15178 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15179 (queues_left / pf->num_vf_qps)); 15180 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15181 } 15182 15183 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15184 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15185 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15186 (queues_left / pf->num_vmdq_qps)); 15187 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15188 } 15189 15190 pf->queues_left = queues_left; 15191 dev_dbg(&pf->pdev->dev, 15192 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15193 pf->hw.func_caps.num_tx_qp, 15194 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15195 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15196 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15197 queues_left); 15198 } 15199 15200 /** 15201 * i40e_setup_pf_filter_control - Setup PF static filter control 15202 * @pf: PF to be setup 15203 * 15204 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15205 * settings. If PE/FCoE are enabled then it will also set the per PF 15206 * based filter sizes required for them. It also enables Flow director, 15207 * ethertype and macvlan type filter settings for the pf. 15208 * 15209 * Returns 0 on success, negative on failure 15210 **/ 15211 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15212 { 15213 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15214 15215 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15216 15217 /* Flow Director is enabled */ 15218 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15219 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15220 settings->enable_fdir = true; 15221 15222 /* Ethtype and MACVLAN filters enabled for PF */ 15223 settings->enable_ethtype = true; 15224 settings->enable_macvlan = true; 15225 15226 if (i40e_set_filter_control(&pf->hw, settings)) 15227 return -ENOENT; 15228 15229 return 0; 15230 } 15231 15232 #define INFO_STRING_LEN 255 15233 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15234 static void i40e_print_features(struct i40e_pf *pf) 15235 { 15236 struct i40e_hw *hw = &pf->hw; 15237 char *buf; 15238 int i; 15239 15240 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15241 if (!buf) 15242 return; 15243 15244 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15245 #ifdef CONFIG_PCI_IOV 15246 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15247 #endif 15248 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15249 pf->hw.func_caps.num_vsis, 15250 pf->vsi[pf->lan_vsi]->num_queue_pairs); 15251 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15252 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15253 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15254 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15255 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15256 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15257 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15258 } 15259 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15260 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15261 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15262 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15263 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15264 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15265 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15266 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15267 else 15268 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15269 15270 dev_info(&pf->pdev->dev, "%s\n", buf); 15271 kfree(buf); 15272 WARN_ON(i > INFO_STRING_LEN); 15273 } 15274 15275 /** 15276 * i40e_get_platform_mac_addr - get platform-specific MAC address 15277 * @pdev: PCI device information struct 15278 * @pf: board private structure 15279 * 15280 * Look up the MAC address for the device. First we'll try 15281 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15282 * specific fallback. Otherwise, we'll default to the stored value in 15283 * firmware. 15284 **/ 15285 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15286 { 15287 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15288 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15289 } 15290 15291 /** 15292 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15293 * @fec_cfg: FEC option to set in flags 15294 * @flags: ptr to flags in which we set FEC option 15295 **/ 15296 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15297 { 15298 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15299 set_bit(I40E_FLAG_RS_FEC, flags); 15300 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15301 } 15302 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15303 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15304 set_bit(I40E_FLAG_RS_FEC, flags); 15305 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15306 } 15307 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15308 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15309 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15310 clear_bit(I40E_FLAG_RS_FEC, flags); 15311 } 15312 if (fec_cfg == 0) { 15313 clear_bit(I40E_FLAG_RS_FEC, flags); 15314 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15315 } 15316 } 15317 15318 /** 15319 * i40e_check_recovery_mode - check if we are running transition firmware 15320 * @pf: board private structure 15321 * 15322 * Check registers indicating the firmware runs in recovery mode. Sets the 15323 * appropriate driver state. 15324 * 15325 * Returns true if the recovery mode was detected, false otherwise 15326 **/ 15327 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15328 { 15329 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15330 15331 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15332 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15333 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15334 set_bit(__I40E_RECOVERY_MODE, pf->state); 15335 15336 return true; 15337 } 15338 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15339 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15340 15341 return false; 15342 } 15343 15344 /** 15345 * i40e_pf_loop_reset - perform reset in a loop. 15346 * @pf: board private structure 15347 * 15348 * This function is useful when a NIC is about to enter recovery mode. 15349 * When a NIC's internal data structures are corrupted the NIC's 15350 * firmware is going to enter recovery mode. 15351 * Right after a POR it takes about 7 minutes for firmware to enter 15352 * recovery mode. Until that time a NIC is in some kind of intermediate 15353 * state. After that time period the NIC almost surely enters 15354 * recovery mode. The only way for a driver to detect intermediate 15355 * state is to issue a series of pf-resets and check a return value. 15356 * If a PF reset returns success then the firmware could be in recovery 15357 * mode so the caller of this code needs to check for recovery mode 15358 * if this function returns success. There is a little chance that 15359 * firmware will hang in intermediate state forever. 15360 * Since waiting 7 minutes is quite a lot of time this function waits 15361 * 10 seconds and then gives up by returning an error. 15362 * 15363 * Return 0 on success, negative on failure. 15364 **/ 15365 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15366 { 15367 /* wait max 10 seconds for PF reset to succeed */ 15368 const unsigned long time_end = jiffies + 10 * HZ; 15369 struct i40e_hw *hw = &pf->hw; 15370 int ret; 15371 15372 ret = i40e_pf_reset(hw); 15373 while (ret != 0 && time_before(jiffies, time_end)) { 15374 usleep_range(10000, 20000); 15375 ret = i40e_pf_reset(hw); 15376 } 15377 15378 if (ret == 0) 15379 pf->pfr_count++; 15380 else 15381 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15382 15383 return ret; 15384 } 15385 15386 /** 15387 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15388 * @pf: board private structure 15389 * 15390 * Check FW registers to determine if FW issued unexpected EMP Reset. 15391 * Every time when unexpected EMP Reset occurs the FW increments 15392 * a counter of unexpected EMP Resets. When the counter reaches 10 15393 * the FW should enter the Recovery mode 15394 * 15395 * Returns true if FW issued unexpected EMP Reset 15396 **/ 15397 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15398 { 15399 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15400 I40E_GL_FWSTS_FWS1B_MASK; 15401 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15402 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15403 } 15404 15405 /** 15406 * i40e_handle_resets - handle EMP resets and PF resets 15407 * @pf: board private structure 15408 * 15409 * Handle both EMP resets and PF resets and conclude whether there are 15410 * any issues regarding these resets. If there are any issues then 15411 * generate log entry. 15412 * 15413 * Return 0 if NIC is healthy or negative value when there are issues 15414 * with resets 15415 **/ 15416 static int i40e_handle_resets(struct i40e_pf *pf) 15417 { 15418 const int pfr = i40e_pf_loop_reset(pf); 15419 const bool is_empr = i40e_check_fw_empr(pf); 15420 15421 if (is_empr || pfr != 0) 15422 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15423 15424 return is_empr ? -EIO : pfr; 15425 } 15426 15427 /** 15428 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15429 * @pf: board private structure 15430 * @hw: ptr to the hardware info 15431 * 15432 * This function does a minimal setup of all subsystems needed for running 15433 * recovery mode. 15434 * 15435 * Returns 0 on success, negative on failure 15436 **/ 15437 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15438 { 15439 struct i40e_vsi *vsi; 15440 int err; 15441 int v_idx; 15442 15443 pci_set_drvdata(pf->pdev, pf); 15444 pci_save_state(pf->pdev); 15445 15446 /* set up periodic task facility */ 15447 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15448 pf->service_timer_period = HZ; 15449 15450 INIT_WORK(&pf->service_task, i40e_service_task); 15451 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15452 15453 err = i40e_init_interrupt_scheme(pf); 15454 if (err) 15455 goto err_switch_setup; 15456 15457 /* The number of VSIs reported by the FW is the minimum guaranteed 15458 * to us; HW supports far more and we share the remaining pool with 15459 * the other PFs. We allocate space for more than the guarantee with 15460 * the understanding that we might not get them all later. 15461 */ 15462 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15463 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15464 else 15465 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15466 15467 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15468 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15469 GFP_KERNEL); 15470 if (!pf->vsi) { 15471 err = -ENOMEM; 15472 goto err_switch_setup; 15473 } 15474 15475 /* We allocate one VSI which is needed as absolute minimum 15476 * in order to register the netdev 15477 */ 15478 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15479 if (v_idx < 0) { 15480 err = v_idx; 15481 goto err_switch_setup; 15482 } 15483 pf->lan_vsi = v_idx; 15484 vsi = pf->vsi[v_idx]; 15485 if (!vsi) { 15486 err = -EFAULT; 15487 goto err_switch_setup; 15488 } 15489 vsi->alloc_queue_pairs = 1; 15490 err = i40e_config_netdev(vsi); 15491 if (err) 15492 goto err_switch_setup; 15493 err = register_netdev(vsi->netdev); 15494 if (err) 15495 goto err_switch_setup; 15496 vsi->netdev_registered = true; 15497 i40e_dbg_pf_init(pf); 15498 15499 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15500 if (err) 15501 goto err_switch_setup; 15502 15503 /* tell the firmware that we're starting */ 15504 i40e_send_version(pf); 15505 15506 /* since everything's happy, start the service_task timer */ 15507 mod_timer(&pf->service_timer, 15508 round_jiffies(jiffies + pf->service_timer_period)); 15509 15510 return 0; 15511 15512 err_switch_setup: 15513 i40e_reset_interrupt_capability(pf); 15514 timer_shutdown_sync(&pf->service_timer); 15515 i40e_shutdown_adminq(hw); 15516 iounmap(hw->hw_addr); 15517 pci_release_mem_regions(pf->pdev); 15518 pci_disable_device(pf->pdev); 15519 i40e_free_pf(pf); 15520 15521 return err; 15522 } 15523 15524 /** 15525 * i40e_set_subsystem_device_id - set subsystem device id 15526 * @hw: pointer to the hardware info 15527 * 15528 * Set PCI subsystem device id either from a pci_dev structure or 15529 * a specific FW register. 15530 **/ 15531 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15532 { 15533 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15534 15535 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15536 pf->pdev->subsystem_device : 15537 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15538 } 15539 15540 /** 15541 * i40e_probe - Device initialization routine 15542 * @pdev: PCI device information struct 15543 * @ent: entry in i40e_pci_tbl 15544 * 15545 * i40e_probe initializes a PF identified by a pci_dev structure. 15546 * The OS initialization, configuring of the PF private structure, 15547 * and a hardware reset occur. 15548 * 15549 * Returns 0 on success, negative on failure 15550 **/ 15551 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15552 { 15553 struct i40e_aq_get_phy_abilities_resp abilities; 15554 #ifdef CONFIG_I40E_DCB 15555 enum i40e_get_fw_lldp_status_resp lldp_status; 15556 #endif /* CONFIG_I40E_DCB */ 15557 struct i40e_vsi *vsi; 15558 struct i40e_pf *pf; 15559 struct i40e_hw *hw; 15560 u16 wol_nvm_bits; 15561 char nvm_ver[32]; 15562 u16 link_status; 15563 #ifdef CONFIG_I40E_DCB 15564 int status; 15565 #endif /* CONFIG_I40E_DCB */ 15566 int err; 15567 u32 val; 15568 15569 err = pci_enable_device_mem(pdev); 15570 if (err) 15571 return err; 15572 15573 /* set up for high or low dma */ 15574 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15575 if (err) { 15576 dev_err(&pdev->dev, 15577 "DMA configuration failed: 0x%x\n", err); 15578 goto err_dma; 15579 } 15580 15581 /* set up pci connections */ 15582 err = pci_request_mem_regions(pdev, i40e_driver_name); 15583 if (err) { 15584 dev_info(&pdev->dev, 15585 "pci_request_selected_regions failed %d\n", err); 15586 goto err_pci_reg; 15587 } 15588 15589 pci_set_master(pdev); 15590 15591 /* Now that we have a PCI connection, we need to do the 15592 * low level device setup. This is primarily setting up 15593 * the Admin Queue structures and then querying for the 15594 * device's current profile information. 15595 */ 15596 pf = i40e_alloc_pf(&pdev->dev); 15597 if (!pf) { 15598 err = -ENOMEM; 15599 goto err_pf_alloc; 15600 } 15601 pf->next_vsi = 0; 15602 pf->pdev = pdev; 15603 set_bit(__I40E_DOWN, pf->state); 15604 15605 hw = &pf->hw; 15606 15607 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15608 I40E_MAX_CSR_SPACE); 15609 /* We believe that the highest register to read is 15610 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15611 * is not less than that before mapping to prevent a 15612 * kernel panic. 15613 */ 15614 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15615 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15616 pf->ioremap_len); 15617 err = -ENOMEM; 15618 goto err_ioremap; 15619 } 15620 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15621 if (!hw->hw_addr) { 15622 err = -EIO; 15623 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15624 (unsigned int)pci_resource_start(pdev, 0), 15625 pf->ioremap_len, err); 15626 goto err_ioremap; 15627 } 15628 hw->vendor_id = pdev->vendor; 15629 hw->device_id = pdev->device; 15630 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15631 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15632 i40e_set_subsystem_device_id(hw); 15633 hw->bus.device = PCI_SLOT(pdev->devfn); 15634 hw->bus.func = PCI_FUNC(pdev->devfn); 15635 hw->bus.bus_id = pdev->bus->number; 15636 15637 /* Select something other than the 802.1ad ethertype for the 15638 * switch to use internally and drop on ingress. 15639 */ 15640 hw->switch_tag = 0xffff; 15641 hw->first_tag = ETH_P_8021AD; 15642 hw->second_tag = ETH_P_8021Q; 15643 15644 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15645 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15646 INIT_LIST_HEAD(&pf->ddp_old_prof); 15647 15648 /* set up the locks for the AQ, do this only once in probe 15649 * and destroy them only once in remove 15650 */ 15651 mutex_init(&hw->aq.asq_mutex); 15652 mutex_init(&hw->aq.arq_mutex); 15653 15654 pf->msg_enable = netif_msg_init(debug, 15655 NETIF_MSG_DRV | 15656 NETIF_MSG_PROBE | 15657 NETIF_MSG_LINK); 15658 if (debug < -1) 15659 pf->hw.debug_mask = debug; 15660 15661 /* do a special CORER for clearing PXE mode once at init */ 15662 if (hw->revision_id == 0 && 15663 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15664 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15665 i40e_flush(hw); 15666 msleep(200); 15667 pf->corer_count++; 15668 15669 i40e_clear_pxe_mode(hw); 15670 } 15671 15672 /* Reset here to make sure all is clean and to define PF 'n' */ 15673 i40e_clear_hw(hw); 15674 15675 err = i40e_set_mac_type(hw); 15676 if (err) { 15677 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15678 err); 15679 goto err_pf_reset; 15680 } 15681 15682 err = i40e_handle_resets(pf); 15683 if (err) 15684 goto err_pf_reset; 15685 15686 i40e_check_recovery_mode(pf); 15687 15688 if (is_kdump_kernel()) { 15689 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15690 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15691 } else { 15692 hw->aq.num_arq_entries = I40E_AQ_LEN; 15693 hw->aq.num_asq_entries = I40E_AQ_LEN; 15694 } 15695 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15696 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15697 15698 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15699 "%s-%s:misc", 15700 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15701 15702 err = i40e_init_shared_code(hw); 15703 if (err) { 15704 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15705 err); 15706 goto err_pf_reset; 15707 } 15708 15709 /* set up a default setting for link flow control */ 15710 pf->hw.fc.requested_mode = I40E_FC_NONE; 15711 15712 err = i40e_init_adminq(hw); 15713 if (err) { 15714 if (err == -EIO) 15715 dev_info(&pdev->dev, 15716 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15717 hw->aq.api_maj_ver, 15718 hw->aq.api_min_ver, 15719 I40E_FW_API_VERSION_MAJOR, 15720 I40E_FW_MINOR_VERSION(hw)); 15721 else 15722 dev_info(&pdev->dev, 15723 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15724 15725 goto err_pf_reset; 15726 } 15727 i40e_get_oem_version(hw); 15728 i40e_get_pba_string(hw); 15729 15730 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15731 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15732 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15733 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15734 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15735 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15736 hw->subsystem_device_id); 15737 15738 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15739 I40E_FW_MINOR_VERSION(hw) + 1)) 15740 dev_dbg(&pdev->dev, 15741 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15742 hw->aq.api_maj_ver, 15743 hw->aq.api_min_ver, 15744 I40E_FW_API_VERSION_MAJOR, 15745 I40E_FW_MINOR_VERSION(hw)); 15746 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15747 dev_info(&pdev->dev, 15748 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15749 hw->aq.api_maj_ver, 15750 hw->aq.api_min_ver, 15751 I40E_FW_API_VERSION_MAJOR, 15752 I40E_FW_MINOR_VERSION(hw)); 15753 15754 i40e_verify_eeprom(pf); 15755 15756 /* Rev 0 hardware was never productized */ 15757 if (hw->revision_id < 1) 15758 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15759 15760 i40e_clear_pxe_mode(hw); 15761 15762 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15763 if (err) 15764 goto err_adminq_setup; 15765 15766 err = i40e_sw_init(pf); 15767 if (err) { 15768 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15769 goto err_sw_init; 15770 } 15771 15772 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15773 return i40e_init_recovery_mode(pf, hw); 15774 15775 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15776 hw->func_caps.num_rx_qp, 0, 0); 15777 if (err) { 15778 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15779 goto err_init_lan_hmc; 15780 } 15781 15782 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15783 if (err) { 15784 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15785 err = -ENOENT; 15786 goto err_configure_lan_hmc; 15787 } 15788 15789 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15790 * Ignore error return codes because if it was already disabled via 15791 * hardware settings this will fail 15792 */ 15793 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15794 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15795 i40e_aq_stop_lldp(hw, true, false, NULL); 15796 } 15797 15798 /* allow a platform config to override the HW addr */ 15799 i40e_get_platform_mac_addr(pdev, pf); 15800 15801 if (!is_valid_ether_addr(hw->mac.addr)) { 15802 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15803 err = -EIO; 15804 goto err_mac_addr; 15805 } 15806 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15807 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15808 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15809 if (is_valid_ether_addr(hw->mac.port_addr)) 15810 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15811 15812 i40e_ptp_alloc_pins(pf); 15813 pci_set_drvdata(pdev, pf); 15814 pci_save_state(pdev); 15815 15816 #ifdef CONFIG_I40E_DCB 15817 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15818 (!status && 15819 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15820 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15821 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15822 dev_info(&pdev->dev, 15823 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15824 "FW LLDP is disabled\n" : 15825 "FW LLDP is enabled\n"); 15826 15827 /* Enable FW to write default DCB config on link-up */ 15828 i40e_aq_set_dcb_parameters(hw, true, NULL); 15829 15830 err = i40e_init_pf_dcb(pf); 15831 if (err) { 15832 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15833 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15834 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15835 /* Continue without DCB enabled */ 15836 } 15837 #endif /* CONFIG_I40E_DCB */ 15838 15839 /* set up periodic task facility */ 15840 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15841 pf->service_timer_period = HZ; 15842 15843 INIT_WORK(&pf->service_task, i40e_service_task); 15844 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15845 15846 /* NVM bit on means WoL disabled for the port */ 15847 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15848 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15849 pf->wol_en = false; 15850 else 15851 pf->wol_en = true; 15852 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15853 15854 /* set up the main switch operations */ 15855 i40e_determine_queue_usage(pf); 15856 err = i40e_init_interrupt_scheme(pf); 15857 if (err) 15858 goto err_switch_setup; 15859 15860 /* Reduce Tx and Rx pairs for kdump 15861 * When MSI-X is enabled, it's not allowed to use more TC queue 15862 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15863 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15864 */ 15865 if (is_kdump_kernel()) 15866 pf->num_lan_msix = 1; 15867 15868 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15869 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15870 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15871 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15872 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15873 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15874 UDP_TUNNEL_TYPE_GENEVE; 15875 15876 /* The number of VSIs reported by the FW is the minimum guaranteed 15877 * to us; HW supports far more and we share the remaining pool with 15878 * the other PFs. We allocate space for more than the guarantee with 15879 * the understanding that we might not get them all later. 15880 */ 15881 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15882 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15883 else 15884 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15885 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15886 dev_warn(&pf->pdev->dev, 15887 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15888 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15889 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15890 } 15891 15892 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15893 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15894 GFP_KERNEL); 15895 if (!pf->vsi) { 15896 err = -ENOMEM; 15897 goto err_switch_setup; 15898 } 15899 15900 #ifdef CONFIG_PCI_IOV 15901 /* prep for VF support */ 15902 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15903 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15904 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15905 if (pci_num_vf(pdev)) 15906 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15907 } 15908 #endif 15909 err = i40e_setup_pf_switch(pf, false, false); 15910 if (err) { 15911 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15912 goto err_vsis; 15913 } 15914 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15915 15916 /* if FDIR VSI was set up, start it now */ 15917 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 15918 if (vsi) 15919 i40e_vsi_open(vsi); 15920 15921 /* The driver only wants link up/down and module qualification 15922 * reports from firmware. Note the negative logic. 15923 */ 15924 err = i40e_aq_set_phy_int_mask(&pf->hw, 15925 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15926 I40E_AQ_EVENT_MEDIA_NA | 15927 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15928 if (err) 15929 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 15930 ERR_PTR(err), 15931 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15932 15933 /* Reconfigure hardware for allowing smaller MSS in the case 15934 * of TSO, so that we avoid the MDD being fired and causing 15935 * a reset in the case of small MSS+TSO. 15936 */ 15937 val = rd32(hw, I40E_REG_MSS); 15938 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15939 val &= ~I40E_REG_MSS_MIN_MASK; 15940 val |= I40E_64BYTE_MSS; 15941 wr32(hw, I40E_REG_MSS, val); 15942 } 15943 15944 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 15945 msleep(75); 15946 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15947 if (err) 15948 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 15949 ERR_PTR(err), 15950 i40e_aq_str(&pf->hw, 15951 pf->hw.aq.asq_last_status)); 15952 } 15953 /* The main driver is (mostly) up and happy. We need to set this state 15954 * before setting up the misc vector or we get a race and the vector 15955 * ends up disabled forever. 15956 */ 15957 clear_bit(__I40E_DOWN, pf->state); 15958 15959 /* In case of MSIX we are going to setup the misc vector right here 15960 * to handle admin queue events etc. In case of legacy and MSI 15961 * the misc functionality and queue processing is combined in 15962 * the same vector and that gets setup at open. 15963 */ 15964 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15965 err = i40e_setup_misc_vector(pf); 15966 if (err) { 15967 dev_info(&pdev->dev, 15968 "setup of misc vector failed: %d\n", err); 15969 i40e_cloud_filter_exit(pf); 15970 i40e_fdir_teardown(pf); 15971 goto err_vsis; 15972 } 15973 } 15974 15975 #ifdef CONFIG_PCI_IOV 15976 /* prep for VF support */ 15977 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15978 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15979 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15980 /* disable link interrupts for VFs */ 15981 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 15982 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 15983 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 15984 i40e_flush(hw); 15985 15986 if (pci_num_vf(pdev)) { 15987 dev_info(&pdev->dev, 15988 "Active VFs found, allocating resources.\n"); 15989 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 15990 if (err) 15991 dev_info(&pdev->dev, 15992 "Error %d allocating resources for existing VFs\n", 15993 err); 15994 } 15995 } 15996 #endif /* CONFIG_PCI_IOV */ 15997 15998 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 15999 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16000 pf->num_iwarp_msix, 16001 I40E_IWARP_IRQ_PILE_ID); 16002 if (pf->iwarp_base_vector < 0) { 16003 dev_info(&pdev->dev, 16004 "failed to get tracking for %d vectors for IWARP err=%d\n", 16005 pf->num_iwarp_msix, pf->iwarp_base_vector); 16006 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16007 } 16008 } 16009 16010 i40e_dbg_pf_init(pf); 16011 16012 /* tell the firmware that we're starting */ 16013 i40e_send_version(pf); 16014 16015 /* since everything's happy, start the service_task timer */ 16016 mod_timer(&pf->service_timer, 16017 round_jiffies(jiffies + pf->service_timer_period)); 16018 16019 /* add this PF to client device list and launch a client service task */ 16020 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16021 err = i40e_lan_add_device(pf); 16022 if (err) 16023 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16024 err); 16025 } 16026 16027 #define PCI_SPEED_SIZE 8 16028 #define PCI_WIDTH_SIZE 8 16029 /* Devices on the IOSF bus do not have this information 16030 * and will report PCI Gen 1 x 1 by default so don't bother 16031 * checking them. 16032 */ 16033 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16034 char speed[PCI_SPEED_SIZE] = "Unknown"; 16035 char width[PCI_WIDTH_SIZE] = "Unknown"; 16036 16037 /* Get the negotiated link width and speed from PCI config 16038 * space 16039 */ 16040 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16041 &link_status); 16042 16043 i40e_set_pci_config_data(hw, link_status); 16044 16045 switch (hw->bus.speed) { 16046 case i40e_bus_speed_8000: 16047 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16048 case i40e_bus_speed_5000: 16049 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16050 case i40e_bus_speed_2500: 16051 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16052 default: 16053 break; 16054 } 16055 switch (hw->bus.width) { 16056 case i40e_bus_width_pcie_x8: 16057 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16058 case i40e_bus_width_pcie_x4: 16059 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16060 case i40e_bus_width_pcie_x2: 16061 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16062 case i40e_bus_width_pcie_x1: 16063 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16064 default: 16065 break; 16066 } 16067 16068 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16069 speed, width); 16070 16071 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16072 hw->bus.speed < i40e_bus_speed_8000) { 16073 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16074 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16075 } 16076 } 16077 16078 /* get the requested speeds from the fw */ 16079 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16080 if (err) 16081 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16082 ERR_PTR(err), 16083 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16084 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16085 16086 /* set the FEC config due to the board capabilities */ 16087 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16088 16089 /* get the supported phy types from the fw */ 16090 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16091 if (err) 16092 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16093 ERR_PTR(err), 16094 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16095 16096 /* make sure the MFS hasn't been set lower than the default */ 16097 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16098 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK, 16099 rd32(&pf->hw, I40E_PRTGL_SAH)); 16100 if (val < MAX_FRAME_SIZE_DEFAULT) 16101 dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n", 16102 pf->hw.port, val); 16103 16104 /* Add a filter to drop all Flow control frames from any VSI from being 16105 * transmitted. By doing so we stop a malicious VF from sending out 16106 * PAUSE or PFC frames and potentially controlling traffic for other 16107 * PF/VF VSIs. 16108 * The FW can still send Flow control frames if enabled. 16109 */ 16110 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16111 pf->main_vsi_seid); 16112 16113 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16114 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16115 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16116 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16117 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16118 /* print a string summarizing features */ 16119 i40e_print_features(pf); 16120 16121 i40e_devlink_register(pf); 16122 16123 return 0; 16124 16125 /* Unwind what we've done if something failed in the setup */ 16126 err_vsis: 16127 set_bit(__I40E_DOWN, pf->state); 16128 i40e_clear_interrupt_scheme(pf); 16129 kfree(pf->vsi); 16130 err_switch_setup: 16131 i40e_reset_interrupt_capability(pf); 16132 timer_shutdown_sync(&pf->service_timer); 16133 err_mac_addr: 16134 err_configure_lan_hmc: 16135 (void)i40e_shutdown_lan_hmc(hw); 16136 err_init_lan_hmc: 16137 kfree(pf->qp_pile); 16138 err_sw_init: 16139 err_adminq_setup: 16140 err_pf_reset: 16141 iounmap(hw->hw_addr); 16142 err_ioremap: 16143 i40e_free_pf(pf); 16144 err_pf_alloc: 16145 pci_release_mem_regions(pdev); 16146 err_pci_reg: 16147 err_dma: 16148 pci_disable_device(pdev); 16149 return err; 16150 } 16151 16152 /** 16153 * i40e_remove - Device removal routine 16154 * @pdev: PCI device information struct 16155 * 16156 * i40e_remove is called by the PCI subsystem to alert the driver 16157 * that is should release a PCI device. This could be caused by a 16158 * Hot-Plug event, or because the driver is going to be removed from 16159 * memory. 16160 **/ 16161 static void i40e_remove(struct pci_dev *pdev) 16162 { 16163 struct i40e_pf *pf = pci_get_drvdata(pdev); 16164 struct i40e_hw *hw = &pf->hw; 16165 struct i40e_vsi *vsi; 16166 struct i40e_veb *veb; 16167 int ret_code; 16168 int i; 16169 16170 i40e_devlink_unregister(pf); 16171 16172 i40e_dbg_pf_exit(pf); 16173 16174 i40e_ptp_stop(pf); 16175 16176 /* Disable RSS in hw */ 16177 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16178 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16179 16180 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16181 * flags, once they are set, i40e_rebuild should not be called as 16182 * i40e_prep_for_reset always returns early. 16183 */ 16184 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16185 usleep_range(1000, 2000); 16186 set_bit(__I40E_IN_REMOVE, pf->state); 16187 16188 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16189 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16190 i40e_free_vfs(pf); 16191 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16192 } 16193 /* no more scheduling of any task */ 16194 set_bit(__I40E_SUSPENDED, pf->state); 16195 set_bit(__I40E_DOWN, pf->state); 16196 if (pf->service_timer.function) 16197 timer_shutdown_sync(&pf->service_timer); 16198 if (pf->service_task.func) 16199 cancel_work_sync(&pf->service_task); 16200 16201 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16202 struct i40e_vsi *vsi = pf->vsi[0]; 16203 16204 /* We know that we have allocated only one vsi for this PF, 16205 * it was just for registering netdevice, so the interface 16206 * could be visible in the 'ifconfig' output 16207 */ 16208 unregister_netdev(vsi->netdev); 16209 free_netdev(vsi->netdev); 16210 16211 goto unmap; 16212 } 16213 16214 /* Client close must be called explicitly here because the timer 16215 * has been stopped. 16216 */ 16217 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16218 16219 i40e_fdir_teardown(pf); 16220 16221 /* If there is a switch structure or any orphans, remove them. 16222 * This will leave only the PF's VSI remaining. 16223 */ 16224 i40e_pf_for_each_veb(pf, i, veb) 16225 if (veb->uplink_seid == pf->mac_seid || 16226 veb->uplink_seid == 0) 16227 i40e_switch_branch_release(veb); 16228 16229 /* Now we can shutdown the PF's VSIs, just before we kill 16230 * adminq and hmc. 16231 */ 16232 i40e_pf_for_each_vsi(pf, i, vsi) { 16233 i40e_vsi_close(vsi); 16234 i40e_vsi_release(vsi); 16235 pf->vsi[i] = NULL; 16236 } 16237 16238 i40e_cloud_filter_exit(pf); 16239 16240 /* remove attached clients */ 16241 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16242 ret_code = i40e_lan_del_device(pf); 16243 if (ret_code) 16244 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16245 ret_code); 16246 } 16247 16248 /* shutdown and destroy the HMC */ 16249 if (hw->hmc.hmc_obj) { 16250 ret_code = i40e_shutdown_lan_hmc(hw); 16251 if (ret_code) 16252 dev_warn(&pdev->dev, 16253 "Failed to destroy the HMC resources: %d\n", 16254 ret_code); 16255 } 16256 16257 unmap: 16258 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16259 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16260 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16261 free_irq(pf->pdev->irq, pf); 16262 16263 /* shutdown the adminq */ 16264 i40e_shutdown_adminq(hw); 16265 16266 /* destroy the locks only once, here */ 16267 mutex_destroy(&hw->aq.arq_mutex); 16268 mutex_destroy(&hw->aq.asq_mutex); 16269 16270 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16271 rtnl_lock(); 16272 i40e_clear_interrupt_scheme(pf); 16273 i40e_pf_for_each_vsi(pf, i, vsi) { 16274 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16275 i40e_vsi_clear_rings(vsi); 16276 16277 i40e_vsi_clear(vsi); 16278 pf->vsi[i] = NULL; 16279 } 16280 rtnl_unlock(); 16281 16282 i40e_pf_for_each_veb(pf, i, veb) { 16283 kfree(veb); 16284 pf->veb[i] = NULL; 16285 } 16286 16287 kfree(pf->qp_pile); 16288 kfree(pf->vsi); 16289 16290 iounmap(hw->hw_addr); 16291 i40e_free_pf(pf); 16292 pci_release_mem_regions(pdev); 16293 16294 pci_disable_device(pdev); 16295 } 16296 16297 /** 16298 * i40e_pci_error_detected - warning that something funky happened in PCI land 16299 * @pdev: PCI device information struct 16300 * @error: the type of PCI error 16301 * 16302 * Called to warn that something happened and the error handling steps 16303 * are in progress. Allows the driver to quiesce things, be ready for 16304 * remediation. 16305 **/ 16306 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16307 pci_channel_state_t error) 16308 { 16309 struct i40e_pf *pf = pci_get_drvdata(pdev); 16310 16311 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16312 16313 if (!pf) { 16314 dev_info(&pdev->dev, 16315 "Cannot recover - error happened during device probe\n"); 16316 return PCI_ERS_RESULT_DISCONNECT; 16317 } 16318 16319 /* shutdown all operations */ 16320 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16321 i40e_prep_for_reset(pf); 16322 16323 /* Request a slot reset */ 16324 return PCI_ERS_RESULT_NEED_RESET; 16325 } 16326 16327 /** 16328 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16329 * @pdev: PCI device information struct 16330 * 16331 * Called to find if the driver can work with the device now that 16332 * the pci slot has been reset. If a basic connection seems good 16333 * (registers are readable and have sane content) then return a 16334 * happy little PCI_ERS_RESULT_xxx. 16335 **/ 16336 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16337 { 16338 struct i40e_pf *pf = pci_get_drvdata(pdev); 16339 pci_ers_result_t result; 16340 u32 reg; 16341 16342 dev_dbg(&pdev->dev, "%s\n", __func__); 16343 if (pci_enable_device_mem(pdev)) { 16344 dev_info(&pdev->dev, 16345 "Cannot re-enable PCI device after reset.\n"); 16346 result = PCI_ERS_RESULT_DISCONNECT; 16347 } else { 16348 pci_set_master(pdev); 16349 pci_restore_state(pdev); 16350 pci_save_state(pdev); 16351 pci_wake_from_d3(pdev, false); 16352 16353 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16354 if (reg == 0) 16355 result = PCI_ERS_RESULT_RECOVERED; 16356 else 16357 result = PCI_ERS_RESULT_DISCONNECT; 16358 } 16359 16360 return result; 16361 } 16362 16363 /** 16364 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16365 * @pdev: PCI device information struct 16366 */ 16367 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16368 { 16369 struct i40e_pf *pf = pci_get_drvdata(pdev); 16370 16371 i40e_prep_for_reset(pf); 16372 } 16373 16374 /** 16375 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16376 * @pdev: PCI device information struct 16377 */ 16378 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16379 { 16380 struct i40e_pf *pf = pci_get_drvdata(pdev); 16381 16382 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16383 return; 16384 16385 i40e_reset_and_rebuild(pf, false, false); 16386 #ifdef CONFIG_PCI_IOV 16387 i40e_restore_all_vfs_msi_state(pdev); 16388 #endif /* CONFIG_PCI_IOV */ 16389 } 16390 16391 /** 16392 * i40e_pci_error_resume - restart operations after PCI error recovery 16393 * @pdev: PCI device information struct 16394 * 16395 * Called to allow the driver to bring things back up after PCI error 16396 * and/or reset recovery has finished. 16397 **/ 16398 static void i40e_pci_error_resume(struct pci_dev *pdev) 16399 { 16400 struct i40e_pf *pf = pci_get_drvdata(pdev); 16401 16402 dev_dbg(&pdev->dev, "%s\n", __func__); 16403 if (test_bit(__I40E_SUSPENDED, pf->state)) 16404 return; 16405 16406 i40e_handle_reset_warning(pf, false); 16407 } 16408 16409 /** 16410 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16411 * using the mac_address_write admin q function 16412 * @pf: pointer to i40e_pf struct 16413 **/ 16414 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16415 { 16416 struct i40e_hw *hw = &pf->hw; 16417 u8 mac_addr[6]; 16418 u16 flags = 0; 16419 int ret; 16420 16421 /* Get current MAC address in case it's an LAA */ 16422 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 16423 ether_addr_copy(mac_addr, 16424 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 16425 } else { 16426 dev_err(&pf->pdev->dev, 16427 "Failed to retrieve MAC address; using default\n"); 16428 ether_addr_copy(mac_addr, hw->mac.addr); 16429 } 16430 16431 /* The FW expects the mac address write cmd to first be called with 16432 * one of these flags before calling it again with the multicast 16433 * enable flags. 16434 */ 16435 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16436 16437 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16438 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16439 16440 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16441 if (ret) { 16442 dev_err(&pf->pdev->dev, 16443 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16444 return; 16445 } 16446 16447 flags = I40E_AQC_MC_MAG_EN 16448 | I40E_AQC_WOL_PRESERVE_ON_PFR 16449 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16450 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16451 if (ret) 16452 dev_err(&pf->pdev->dev, 16453 "Failed to enable Multicast Magic Packet wake up\n"); 16454 } 16455 16456 /** 16457 * i40e_shutdown - PCI callback for shutting down 16458 * @pdev: PCI device information struct 16459 **/ 16460 static void i40e_shutdown(struct pci_dev *pdev) 16461 { 16462 struct i40e_pf *pf = pci_get_drvdata(pdev); 16463 struct i40e_hw *hw = &pf->hw; 16464 16465 set_bit(__I40E_SUSPENDED, pf->state); 16466 set_bit(__I40E_DOWN, pf->state); 16467 16468 del_timer_sync(&pf->service_timer); 16469 cancel_work_sync(&pf->service_task); 16470 i40e_cloud_filter_exit(pf); 16471 i40e_fdir_teardown(pf); 16472 16473 /* Client close must be called explicitly here because the timer 16474 * has been stopped. 16475 */ 16476 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16477 16478 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16479 pf->wol_en) 16480 i40e_enable_mc_magic_wake(pf); 16481 16482 i40e_prep_for_reset(pf); 16483 16484 wr32(hw, I40E_PFPM_APM, 16485 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16486 wr32(hw, I40E_PFPM_WUFC, 16487 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16488 16489 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16490 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16491 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16492 free_irq(pf->pdev->irq, pf); 16493 16494 /* Since we're going to destroy queues during the 16495 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16496 * whole section 16497 */ 16498 rtnl_lock(); 16499 i40e_clear_interrupt_scheme(pf); 16500 rtnl_unlock(); 16501 16502 if (system_state == SYSTEM_POWER_OFF) { 16503 pci_wake_from_d3(pdev, pf->wol_en); 16504 pci_set_power_state(pdev, PCI_D3hot); 16505 } 16506 } 16507 16508 /** 16509 * i40e_suspend - PM callback for moving to D3 16510 * @dev: generic device information structure 16511 **/ 16512 static int __maybe_unused i40e_suspend(struct device *dev) 16513 { 16514 struct i40e_pf *pf = dev_get_drvdata(dev); 16515 struct i40e_hw *hw = &pf->hw; 16516 16517 /* If we're already suspended, then there is nothing to do */ 16518 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16519 return 0; 16520 16521 set_bit(__I40E_DOWN, pf->state); 16522 16523 /* Ensure service task will not be running */ 16524 del_timer_sync(&pf->service_timer); 16525 cancel_work_sync(&pf->service_task); 16526 16527 /* Client close must be called explicitly here because the timer 16528 * has been stopped. 16529 */ 16530 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16531 16532 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16533 pf->wol_en) 16534 i40e_enable_mc_magic_wake(pf); 16535 16536 /* Since we're going to destroy queues during the 16537 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16538 * whole section 16539 */ 16540 rtnl_lock(); 16541 16542 i40e_prep_for_reset(pf); 16543 16544 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16545 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16546 16547 /* Clear the interrupt scheme and release our IRQs so that the system 16548 * can safely hibernate even when there are a large number of CPUs. 16549 * Otherwise hibernation might fail when mapping all the vectors back 16550 * to CPU0. 16551 */ 16552 i40e_clear_interrupt_scheme(pf); 16553 16554 rtnl_unlock(); 16555 16556 return 0; 16557 } 16558 16559 /** 16560 * i40e_resume - PM callback for waking up from D3 16561 * @dev: generic device information structure 16562 **/ 16563 static int __maybe_unused i40e_resume(struct device *dev) 16564 { 16565 struct i40e_pf *pf = dev_get_drvdata(dev); 16566 int err; 16567 16568 /* If we're not suspended, then there is nothing to do */ 16569 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16570 return 0; 16571 16572 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16573 * since we're going to be restoring queues 16574 */ 16575 rtnl_lock(); 16576 16577 /* We cleared the interrupt scheme when we suspended, so we need to 16578 * restore it now to resume device functionality. 16579 */ 16580 err = i40e_restore_interrupt_scheme(pf); 16581 if (err) { 16582 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16583 err); 16584 } 16585 16586 clear_bit(__I40E_DOWN, pf->state); 16587 i40e_reset_and_rebuild(pf, false, true); 16588 16589 rtnl_unlock(); 16590 16591 /* Clear suspended state last after everything is recovered */ 16592 clear_bit(__I40E_SUSPENDED, pf->state); 16593 16594 /* Restart the service task */ 16595 mod_timer(&pf->service_timer, 16596 round_jiffies(jiffies + pf->service_timer_period)); 16597 16598 return 0; 16599 } 16600 16601 static const struct pci_error_handlers i40e_err_handler = { 16602 .error_detected = i40e_pci_error_detected, 16603 .slot_reset = i40e_pci_error_slot_reset, 16604 .reset_prepare = i40e_pci_error_reset_prepare, 16605 .reset_done = i40e_pci_error_reset_done, 16606 .resume = i40e_pci_error_resume, 16607 }; 16608 16609 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16610 16611 static struct pci_driver i40e_driver = { 16612 .name = i40e_driver_name, 16613 .id_table = i40e_pci_tbl, 16614 .probe = i40e_probe, 16615 .remove = i40e_remove, 16616 .driver = { 16617 .pm = &i40e_pm_ops, 16618 }, 16619 .shutdown = i40e_shutdown, 16620 .err_handler = &i40e_err_handler, 16621 .sriov_configure = i40e_pci_sriov_configure, 16622 }; 16623 16624 /** 16625 * i40e_init_module - Driver registration routine 16626 * 16627 * i40e_init_module is the first routine called when the driver is 16628 * loaded. All it does is register with the PCI subsystem. 16629 **/ 16630 static int __init i40e_init_module(void) 16631 { 16632 int err; 16633 16634 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16635 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16636 16637 /* There is no need to throttle the number of active tasks because 16638 * each device limits its own task using a state bit for scheduling 16639 * the service task, and the device tasks do not interfere with each 16640 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16641 * since we need to be able to guarantee forward progress even under 16642 * memory pressure. 16643 */ 16644 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 16645 if (!i40e_wq) { 16646 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16647 return -ENOMEM; 16648 } 16649 16650 i40e_dbg_init(); 16651 err = pci_register_driver(&i40e_driver); 16652 if (err) { 16653 destroy_workqueue(i40e_wq); 16654 i40e_dbg_exit(); 16655 return err; 16656 } 16657 16658 return 0; 16659 } 16660 module_init(i40e_init_module); 16661 16662 /** 16663 * i40e_exit_module - Driver exit cleanup routine 16664 * 16665 * i40e_exit_module is called just before the driver is removed 16666 * from memory. 16667 **/ 16668 static void __exit i40e_exit_module(void) 16669 { 16670 pci_unregister_driver(&i40e_driver); 16671 destroy_workqueue(i40e_wq); 16672 ida_destroy(&i40e_client_ida); 16673 i40e_dbg_exit(); 16674 } 16675 module_exit(i40e_exit_module); 16676