1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/if_bridge.h> 7 #include <linux/if_macvlan.h> 8 #include <linux/module.h> 9 #include <net/pkt_cls.h> 10 #include <net/xdp_sock_drv.h> 11 12 /* Local includes */ 13 #include "i40e.h" 14 #include "i40e_devids.h" 15 #include "i40e_diag.h" 16 #include "i40e_lan_hmc.h" 17 #include "i40e_virtchnl_pf.h" 18 #include "i40e_xsk.h" 19 20 /* All i40e tracepoints are defined by the include below, which 21 * must be included exactly once across the whole kernel with 22 * CREATE_TRACE_POINTS defined 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "i40e_trace.h" 26 27 const char i40e_driver_name[] = "i40e"; 28 static const char i40e_driver_string[] = 29 "Intel(R) Ethernet Connection XL710 Network Driver"; 30 31 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 32 33 /* a bit of forward declarations */ 34 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 35 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 36 static int i40e_add_vsi(struct i40e_vsi *vsi); 37 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 38 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 39 static int i40e_setup_misc_vector(struct i40e_pf *pf); 40 static void i40e_determine_queue_usage(struct i40e_pf *pf); 41 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 42 static void i40e_prep_for_reset(struct i40e_pf *pf); 43 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 44 bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 48 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 49 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 50 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 51 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 52 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 53 static int i40e_get_capabilities(struct i40e_pf *pf, 54 enum i40e_admin_queue_opc list_type); 55 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 56 57 /* i40e_pci_tbl - PCI Device ID Table 58 * 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id i40e_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_LICENSE("GPL v2"); 104 105 static struct workqueue_struct *i40e_wq; 106 107 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 108 struct net_device *netdev, int delta) 109 { 110 struct netdev_hw_addr_list *ha_list; 111 struct netdev_hw_addr *ha; 112 113 if (!f || !netdev) 114 return; 115 116 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr)) 117 ha_list = &netdev->uc; 118 else 119 ha_list = &netdev->mc; 120 121 netdev_hw_addr_list_for_each(ha, ha_list) { 122 if (ether_addr_equal(ha->addr, f->macaddr)) { 123 ha->refcount += delta; 124 if (ha->refcount <= 0) 125 ha->refcount = 1; 126 break; 127 } 128 } 129 } 130 131 /** 132 * i40e_hw_to_dev - get device pointer from the hardware structure 133 * @hw: pointer to the device HW structure 134 **/ 135 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 136 { 137 struct i40e_pf *pf = i40e_hw_to_pf(hw); 138 139 return &pf->pdev->dev; 140 } 141 142 /** 143 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 144 * @hw: pointer to the HW structure 145 * @mem: ptr to mem struct to fill out 146 * @size: size of memory requested 147 * @alignment: what to align the allocation to 148 **/ 149 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 150 u64 size, u32 alignment) 151 { 152 struct i40e_pf *pf = i40e_hw_to_pf(hw); 153 154 mem->size = ALIGN(size, alignment); 155 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 156 GFP_KERNEL); 157 if (!mem->va) 158 return -ENOMEM; 159 160 return 0; 161 } 162 163 /** 164 * i40e_free_dma_mem - OS specific memory free for shared code 165 * @hw: pointer to the HW structure 166 * @mem: ptr to mem struct to free 167 **/ 168 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 169 { 170 struct i40e_pf *pf = i40e_hw_to_pf(hw); 171 172 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 173 mem->va = NULL; 174 mem->pa = 0; 175 mem->size = 0; 176 177 return 0; 178 } 179 180 /** 181 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 182 * @hw: pointer to the HW structure 183 * @mem: ptr to mem struct to fill out 184 * @size: size of memory requested 185 **/ 186 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 187 u32 size) 188 { 189 mem->size = size; 190 mem->va = kzalloc(size, GFP_KERNEL); 191 192 if (!mem->va) 193 return -ENOMEM; 194 195 return 0; 196 } 197 198 /** 199 * i40e_free_virt_mem - OS specific memory free for shared code 200 * @hw: pointer to the HW structure 201 * @mem: ptr to mem struct to free 202 **/ 203 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 204 { 205 /* it's ok to kfree a NULL pointer */ 206 kfree(mem->va); 207 mem->va = NULL; 208 mem->size = 0; 209 210 return 0; 211 } 212 213 /** 214 * i40e_get_lump - find a lump of free generic resource 215 * @pf: board private structure 216 * @pile: the pile of resource to search 217 * @needed: the number of items needed 218 * @id: an owner id to stick on the items assigned 219 * 220 * Returns the base item index of the lump, or negative for error 221 **/ 222 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 223 u16 needed, u16 id) 224 { 225 int ret = -ENOMEM; 226 int i, j; 227 228 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 229 dev_info(&pf->pdev->dev, 230 "param err: pile=%s needed=%d id=0x%04x\n", 231 pile ? "<valid>" : "<null>", needed, id); 232 return -EINVAL; 233 } 234 235 /* Allocate last queue in the pile for FDIR VSI queue 236 * so it doesn't fragment the qp_pile 237 */ 238 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 239 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 240 dev_err(&pf->pdev->dev, 241 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 242 pile->num_entries - 1); 243 return -ENOMEM; 244 } 245 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 246 return pile->num_entries - 1; 247 } 248 249 i = 0; 250 while (i < pile->num_entries) { 251 /* skip already allocated entries */ 252 if (pile->list[i] & I40E_PILE_VALID_BIT) { 253 i++; 254 continue; 255 } 256 257 /* do we have enough in this lump? */ 258 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 259 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 260 break; 261 } 262 263 if (j == needed) { 264 /* there was enough, so assign it to the requestor */ 265 for (j = 0; j < needed; j++) 266 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 267 ret = i; 268 break; 269 } 270 271 /* not enough, so skip over it and continue looking */ 272 i += j; 273 } 274 275 return ret; 276 } 277 278 /** 279 * i40e_put_lump - return a lump of generic resource 280 * @pile: the pile of resource to search 281 * @index: the base item index 282 * @id: the owner id of the items assigned 283 * 284 * Returns the count of items in the lump 285 **/ 286 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 287 { 288 int valid_id = (id | I40E_PILE_VALID_BIT); 289 int count = 0; 290 u16 i; 291 292 if (!pile || index >= pile->num_entries) 293 return -EINVAL; 294 295 for (i = index; 296 i < pile->num_entries && pile->list[i] == valid_id; 297 i++) { 298 pile->list[i] = 0; 299 count++; 300 } 301 302 303 return count; 304 } 305 306 /** 307 * i40e_find_vsi_from_id - searches for the vsi with the given id 308 * @pf: the pf structure to search for the vsi 309 * @id: id of the vsi it is searching for 310 **/ 311 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 312 { 313 int i; 314 315 for (i = 0; i < pf->num_alloc_vsi; i++) 316 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 317 return pf->vsi[i]; 318 319 return NULL; 320 } 321 322 /** 323 * i40e_service_event_schedule - Schedule the service task to wake up 324 * @pf: board private structure 325 * 326 * If not already scheduled, this puts the task into the work queue 327 **/ 328 void i40e_service_event_schedule(struct i40e_pf *pf) 329 { 330 if ((!test_bit(__I40E_DOWN, pf->state) && 331 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 332 test_bit(__I40E_RECOVERY_MODE, pf->state)) 333 queue_work(i40e_wq, &pf->service_task); 334 } 335 336 /** 337 * i40e_tx_timeout - Respond to a Tx Hang 338 * @netdev: network interface device structure 339 * @txqueue: queue number timing out 340 * 341 * If any port has noticed a Tx timeout, it is likely that the whole 342 * device is munged, not just the one netdev port, so go for the full 343 * reset. 344 **/ 345 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 346 { 347 struct i40e_netdev_priv *np = netdev_priv(netdev); 348 struct i40e_vsi *vsi = np->vsi; 349 struct i40e_pf *pf = vsi->back; 350 struct i40e_ring *tx_ring = NULL; 351 unsigned int i; 352 u32 head, val; 353 354 pf->tx_timeout_count++; 355 356 /* with txqueue index, find the tx_ring struct */ 357 for (i = 0; i < vsi->num_queue_pairs; i++) { 358 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 359 if (txqueue == 360 vsi->tx_rings[i]->queue_index) { 361 tx_ring = vsi->tx_rings[i]; 362 break; 363 } 364 } 365 } 366 367 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 368 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 369 else if (time_before(jiffies, 370 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 371 return; /* don't do any new action before the next timeout */ 372 373 /* don't kick off another recovery if one is already pending */ 374 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 375 return; 376 377 if (tx_ring) { 378 head = i40e_get_head(tx_ring); 379 /* Read interrupt register */ 380 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 381 val = rd32(&pf->hw, 382 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 383 tx_ring->vsi->base_vector - 1)); 384 else 385 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 386 387 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 388 vsi->seid, txqueue, tx_ring->next_to_clean, 389 head, tx_ring->next_to_use, 390 readl(tx_ring->tail), val); 391 } 392 393 pf->tx_timeout_last_recovery = jiffies; 394 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 395 pf->tx_timeout_recovery_level, txqueue); 396 397 switch (pf->tx_timeout_recovery_level) { 398 case 1: 399 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 400 break; 401 case 2: 402 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 403 break; 404 case 3: 405 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 406 break; 407 default: 408 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 409 set_bit(__I40E_DOWN_REQUESTED, pf->state); 410 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 411 break; 412 } 413 414 i40e_service_event_schedule(pf); 415 pf->tx_timeout_recovery_level++; 416 } 417 418 /** 419 * i40e_get_vsi_stats_struct - Get System Network Statistics 420 * @vsi: the VSI we care about 421 * 422 * Returns the address of the device statistics structure. 423 * The statistics are actually updated from the service task. 424 **/ 425 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 426 { 427 return &vsi->net_stats; 428 } 429 430 /** 431 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 432 * @ring: Tx ring to get statistics from 433 * @stats: statistics entry to be updated 434 **/ 435 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 436 struct rtnl_link_stats64 *stats) 437 { 438 u64 bytes, packets; 439 unsigned int start; 440 441 do { 442 start = u64_stats_fetch_begin(&ring->syncp); 443 packets = ring->stats.packets; 444 bytes = ring->stats.bytes; 445 } while (u64_stats_fetch_retry(&ring->syncp, start)); 446 447 stats->tx_packets += packets; 448 stats->tx_bytes += bytes; 449 } 450 451 /** 452 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 453 * @netdev: network interface device structure 454 * @stats: data structure to store statistics 455 * 456 * Returns the address of the device statistics structure. 457 * The statistics are actually updated from the service task. 458 **/ 459 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 460 struct rtnl_link_stats64 *stats) 461 { 462 struct i40e_netdev_priv *np = netdev_priv(netdev); 463 struct i40e_vsi *vsi = np->vsi; 464 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 465 struct i40e_ring *ring; 466 int i; 467 468 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 469 return; 470 471 if (!vsi->tx_rings) 472 return; 473 474 rcu_read_lock(); 475 for (i = 0; i < vsi->num_queue_pairs; i++) { 476 u64 bytes, packets; 477 unsigned int start; 478 479 ring = READ_ONCE(vsi->tx_rings[i]); 480 if (!ring) 481 continue; 482 i40e_get_netdev_stats_struct_tx(ring, stats); 483 484 if (i40e_enabled_xdp_vsi(vsi)) { 485 ring = READ_ONCE(vsi->xdp_rings[i]); 486 if (!ring) 487 continue; 488 i40e_get_netdev_stats_struct_tx(ring, stats); 489 } 490 491 ring = READ_ONCE(vsi->rx_rings[i]); 492 if (!ring) 493 continue; 494 do { 495 start = u64_stats_fetch_begin(&ring->syncp); 496 packets = ring->stats.packets; 497 bytes = ring->stats.bytes; 498 } while (u64_stats_fetch_retry(&ring->syncp, start)); 499 500 stats->rx_packets += packets; 501 stats->rx_bytes += bytes; 502 503 } 504 rcu_read_unlock(); 505 506 /* following stats updated by i40e_watchdog_subtask() */ 507 stats->multicast = vsi_stats->multicast; 508 stats->tx_errors = vsi_stats->tx_errors; 509 stats->tx_dropped = vsi_stats->tx_dropped; 510 stats->rx_errors = vsi_stats->rx_errors; 511 stats->rx_dropped = vsi_stats->rx_dropped; 512 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 513 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 514 stats->rx_length_errors = vsi_stats->rx_length_errors; 515 } 516 517 /** 518 * i40e_vsi_reset_stats - Resets all stats of the given vsi 519 * @vsi: the VSI to have its stats reset 520 **/ 521 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 522 { 523 struct rtnl_link_stats64 *ns; 524 int i; 525 526 if (!vsi) 527 return; 528 529 ns = i40e_get_vsi_stats_struct(vsi); 530 memset(ns, 0, sizeof(*ns)); 531 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 532 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 533 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 534 if (vsi->rx_rings && vsi->rx_rings[0]) { 535 for (i = 0; i < vsi->num_queue_pairs; i++) { 536 memset(&vsi->rx_rings[i]->stats, 0, 537 sizeof(vsi->rx_rings[i]->stats)); 538 memset(&vsi->rx_rings[i]->rx_stats, 0, 539 sizeof(vsi->rx_rings[i]->rx_stats)); 540 memset(&vsi->tx_rings[i]->stats, 0, 541 sizeof(vsi->tx_rings[i]->stats)); 542 memset(&vsi->tx_rings[i]->tx_stats, 0, 543 sizeof(vsi->tx_rings[i]->tx_stats)); 544 } 545 } 546 vsi->stat_offsets_loaded = false; 547 } 548 549 /** 550 * i40e_pf_reset_stats - Reset all of the stats for the given PF 551 * @pf: the PF to be reset 552 **/ 553 void i40e_pf_reset_stats(struct i40e_pf *pf) 554 { 555 int i; 556 557 memset(&pf->stats, 0, sizeof(pf->stats)); 558 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 559 pf->stat_offsets_loaded = false; 560 561 for (i = 0; i < I40E_MAX_VEB; i++) { 562 if (pf->veb[i]) { 563 memset(&pf->veb[i]->stats, 0, 564 sizeof(pf->veb[i]->stats)); 565 memset(&pf->veb[i]->stats_offsets, 0, 566 sizeof(pf->veb[i]->stats_offsets)); 567 memset(&pf->veb[i]->tc_stats, 0, 568 sizeof(pf->veb[i]->tc_stats)); 569 memset(&pf->veb[i]->tc_stats_offsets, 0, 570 sizeof(pf->veb[i]->tc_stats_offsets)); 571 pf->veb[i]->stat_offsets_loaded = false; 572 } 573 } 574 pf->hw_csum_rx_error = 0; 575 } 576 577 /** 578 * i40e_compute_pci_to_hw_id - compute index form PCI function. 579 * @vsi: ptr to the VSI to read from. 580 * @hw: ptr to the hardware info. 581 **/ 582 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 583 { 584 int pf_count = i40e_get_pf_count(hw); 585 586 if (vsi->type == I40E_VSI_SRIOV) 587 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 588 589 return hw->port + BIT(7); 590 } 591 592 /** 593 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 594 * @hw: ptr to the hardware info. 595 * @hireg: the high 32 bit reg to read. 596 * @loreg: the low 32 bit reg to read. 597 * @offset_loaded: has the initial offset been loaded yet. 598 * @offset: ptr to current offset value. 599 * @stat: ptr to the stat. 600 * 601 * Since the device stats are not reset at PFReset, they will not 602 * be zeroed when the driver starts. We'll save the first values read 603 * and use them as offsets to be subtracted from the raw values in order 604 * to report stats that count from zero. 605 **/ 606 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 607 bool offset_loaded, u64 *offset, u64 *stat) 608 { 609 u64 new_data; 610 611 new_data = rd64(hw, loreg); 612 613 if (!offset_loaded || new_data < *offset) 614 *offset = new_data; 615 *stat = new_data - *offset; 616 } 617 618 /** 619 * i40e_stat_update48 - read and update a 48 bit stat from the chip 620 * @hw: ptr to the hardware info 621 * @hireg: the high 32 bit reg to read 622 * @loreg: the low 32 bit reg to read 623 * @offset_loaded: has the initial offset been loaded yet 624 * @offset: ptr to current offset value 625 * @stat: ptr to the stat 626 * 627 * Since the device stats are not reset at PFReset, they likely will not 628 * be zeroed when the driver starts. We'll save the first values read 629 * and use them as offsets to be subtracted from the raw values in order 630 * to report stats that count from zero. In the process, we also manage 631 * the potential roll-over. 632 **/ 633 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 634 bool offset_loaded, u64 *offset, u64 *stat) 635 { 636 u64 new_data; 637 638 if (hw->device_id == I40E_DEV_ID_QEMU) { 639 new_data = rd32(hw, loreg); 640 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 641 } else { 642 new_data = rd64(hw, loreg); 643 } 644 if (!offset_loaded) 645 *offset = new_data; 646 if (likely(new_data >= *offset)) 647 *stat = new_data - *offset; 648 else 649 *stat = (new_data + BIT_ULL(48)) - *offset; 650 *stat &= 0xFFFFFFFFFFFFULL; 651 } 652 653 /** 654 * i40e_stat_update32 - read and update a 32 bit stat from the chip 655 * @hw: ptr to the hardware info 656 * @reg: the hw reg to read 657 * @offset_loaded: has the initial offset been loaded yet 658 * @offset: ptr to current offset value 659 * @stat: ptr to the stat 660 **/ 661 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 662 bool offset_loaded, u64 *offset, u64 *stat) 663 { 664 u32 new_data; 665 666 new_data = rd32(hw, reg); 667 if (!offset_loaded) 668 *offset = new_data; 669 if (likely(new_data >= *offset)) 670 *stat = (u32)(new_data - *offset); 671 else 672 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 673 } 674 675 /** 676 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 677 * @hw: ptr to the hardware info 678 * @reg: the hw reg to read and clear 679 * @stat: ptr to the stat 680 **/ 681 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 682 { 683 u32 new_data = rd32(hw, reg); 684 685 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 686 *stat += new_data; 687 } 688 689 /** 690 * i40e_stats_update_rx_discards - update rx_discards. 691 * @vsi: ptr to the VSI to be updated. 692 * @hw: ptr to the hardware info. 693 * @stat_idx: VSI's stat_counter_idx. 694 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 695 * @stat_offset: ptr to stat_offset to store first read of specific register. 696 * @stat: ptr to VSI's stat to be updated. 697 **/ 698 static void 699 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 700 int stat_idx, bool offset_loaded, 701 struct i40e_eth_stats *stat_offset, 702 struct i40e_eth_stats *stat) 703 { 704 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 705 &stat_offset->rx_discards, &stat->rx_discards); 706 i40e_stat_update64(hw, 707 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 708 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 709 offset_loaded, &stat_offset->rx_discards_other, 710 &stat->rx_discards_other); 711 } 712 713 /** 714 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 715 * @vsi: the VSI to be updated 716 **/ 717 void i40e_update_eth_stats(struct i40e_vsi *vsi) 718 { 719 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 720 struct i40e_pf *pf = vsi->back; 721 struct i40e_hw *hw = &pf->hw; 722 struct i40e_eth_stats *oes; 723 struct i40e_eth_stats *es; /* device's eth stats */ 724 725 es = &vsi->eth_stats; 726 oes = &vsi->eth_stats_offsets; 727 728 /* Gather up the stats that the hw collects */ 729 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 730 vsi->stat_offsets_loaded, 731 &oes->tx_errors, &es->tx_errors); 732 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 733 vsi->stat_offsets_loaded, 734 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 735 736 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 737 I40E_GLV_GORCL(stat_idx), 738 vsi->stat_offsets_loaded, 739 &oes->rx_bytes, &es->rx_bytes); 740 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 741 I40E_GLV_UPRCL(stat_idx), 742 vsi->stat_offsets_loaded, 743 &oes->rx_unicast, &es->rx_unicast); 744 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 745 I40E_GLV_MPRCL(stat_idx), 746 vsi->stat_offsets_loaded, 747 &oes->rx_multicast, &es->rx_multicast); 748 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 749 I40E_GLV_BPRCL(stat_idx), 750 vsi->stat_offsets_loaded, 751 &oes->rx_broadcast, &es->rx_broadcast); 752 753 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 754 I40E_GLV_GOTCL(stat_idx), 755 vsi->stat_offsets_loaded, 756 &oes->tx_bytes, &es->tx_bytes); 757 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 758 I40E_GLV_UPTCL(stat_idx), 759 vsi->stat_offsets_loaded, 760 &oes->tx_unicast, &es->tx_unicast); 761 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 762 I40E_GLV_MPTCL(stat_idx), 763 vsi->stat_offsets_loaded, 764 &oes->tx_multicast, &es->tx_multicast); 765 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 766 I40E_GLV_BPTCL(stat_idx), 767 vsi->stat_offsets_loaded, 768 &oes->tx_broadcast, &es->tx_broadcast); 769 770 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 771 vsi->stat_offsets_loaded, oes, es); 772 773 vsi->stat_offsets_loaded = true; 774 } 775 776 /** 777 * i40e_update_veb_stats - Update Switch component statistics 778 * @veb: the VEB being updated 779 **/ 780 void i40e_update_veb_stats(struct i40e_veb *veb) 781 { 782 struct i40e_pf *pf = veb->pf; 783 struct i40e_hw *hw = &pf->hw; 784 struct i40e_eth_stats *oes; 785 struct i40e_eth_stats *es; /* device's eth stats */ 786 struct i40e_veb_tc_stats *veb_oes; 787 struct i40e_veb_tc_stats *veb_es; 788 int i, idx = 0; 789 790 idx = veb->stats_idx; 791 es = &veb->stats; 792 oes = &veb->stats_offsets; 793 veb_es = &veb->tc_stats; 794 veb_oes = &veb->tc_stats_offsets; 795 796 /* Gather up the stats that the hw collects */ 797 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 798 veb->stat_offsets_loaded, 799 &oes->tx_discards, &es->tx_discards); 800 if (hw->revision_id > 0) 801 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 802 veb->stat_offsets_loaded, 803 &oes->rx_unknown_protocol, 804 &es->rx_unknown_protocol); 805 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 806 veb->stat_offsets_loaded, 807 &oes->rx_bytes, &es->rx_bytes); 808 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 809 veb->stat_offsets_loaded, 810 &oes->rx_unicast, &es->rx_unicast); 811 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 812 veb->stat_offsets_loaded, 813 &oes->rx_multicast, &es->rx_multicast); 814 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 815 veb->stat_offsets_loaded, 816 &oes->rx_broadcast, &es->rx_broadcast); 817 818 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 819 veb->stat_offsets_loaded, 820 &oes->tx_bytes, &es->tx_bytes); 821 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 822 veb->stat_offsets_loaded, 823 &oes->tx_unicast, &es->tx_unicast); 824 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 825 veb->stat_offsets_loaded, 826 &oes->tx_multicast, &es->tx_multicast); 827 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 828 veb->stat_offsets_loaded, 829 &oes->tx_broadcast, &es->tx_broadcast); 830 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 831 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 832 I40E_GLVEBTC_RPCL(i, idx), 833 veb->stat_offsets_loaded, 834 &veb_oes->tc_rx_packets[i], 835 &veb_es->tc_rx_packets[i]); 836 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 837 I40E_GLVEBTC_RBCL(i, idx), 838 veb->stat_offsets_loaded, 839 &veb_oes->tc_rx_bytes[i], 840 &veb_es->tc_rx_bytes[i]); 841 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 842 I40E_GLVEBTC_TPCL(i, idx), 843 veb->stat_offsets_loaded, 844 &veb_oes->tc_tx_packets[i], 845 &veb_es->tc_tx_packets[i]); 846 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 847 I40E_GLVEBTC_TBCL(i, idx), 848 veb->stat_offsets_loaded, 849 &veb_oes->tc_tx_bytes[i], 850 &veb_es->tc_tx_bytes[i]); 851 } 852 veb->stat_offsets_loaded = true; 853 } 854 855 /** 856 * i40e_update_vsi_stats - Update the vsi statistics counters. 857 * @vsi: the VSI to be updated 858 * 859 * There are a few instances where we store the same stat in a 860 * couple of different structs. This is partly because we have 861 * the netdev stats that need to be filled out, which is slightly 862 * different from the "eth_stats" defined by the chip and used in 863 * VF communications. We sort it out here. 864 **/ 865 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 866 { 867 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 868 struct i40e_pf *pf = vsi->back; 869 struct rtnl_link_stats64 *ons; 870 struct rtnl_link_stats64 *ns; /* netdev stats */ 871 struct i40e_eth_stats *oes; 872 struct i40e_eth_stats *es; /* device's eth stats */ 873 u64 tx_restart, tx_busy; 874 struct i40e_ring *p; 875 u64 bytes, packets; 876 unsigned int start; 877 u64 tx_linearize; 878 u64 tx_force_wb; 879 u64 tx_stopped; 880 u64 rx_p, rx_b; 881 u64 tx_p, tx_b; 882 u16 q; 883 884 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 885 test_bit(__I40E_CONFIG_BUSY, pf->state)) 886 return; 887 888 ns = i40e_get_vsi_stats_struct(vsi); 889 ons = &vsi->net_stats_offsets; 890 es = &vsi->eth_stats; 891 oes = &vsi->eth_stats_offsets; 892 893 /* Gather up the netdev and vsi stats that the driver collects 894 * on the fly during packet processing 895 */ 896 rx_b = rx_p = 0; 897 tx_b = tx_p = 0; 898 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 899 tx_stopped = 0; 900 rx_page = 0; 901 rx_buf = 0; 902 rx_reuse = 0; 903 rx_alloc = 0; 904 rx_waive = 0; 905 rx_busy = 0; 906 rcu_read_lock(); 907 for (q = 0; q < vsi->num_queue_pairs; q++) { 908 /* locate Tx ring */ 909 p = READ_ONCE(vsi->tx_rings[q]); 910 if (!p) 911 continue; 912 913 do { 914 start = u64_stats_fetch_begin(&p->syncp); 915 packets = p->stats.packets; 916 bytes = p->stats.bytes; 917 } while (u64_stats_fetch_retry(&p->syncp, start)); 918 tx_b += bytes; 919 tx_p += packets; 920 tx_restart += p->tx_stats.restart_queue; 921 tx_busy += p->tx_stats.tx_busy; 922 tx_linearize += p->tx_stats.tx_linearize; 923 tx_force_wb += p->tx_stats.tx_force_wb; 924 tx_stopped += p->tx_stats.tx_stopped; 925 926 /* locate Rx ring */ 927 p = READ_ONCE(vsi->rx_rings[q]); 928 if (!p) 929 continue; 930 931 do { 932 start = u64_stats_fetch_begin(&p->syncp); 933 packets = p->stats.packets; 934 bytes = p->stats.bytes; 935 } while (u64_stats_fetch_retry(&p->syncp, start)); 936 rx_b += bytes; 937 rx_p += packets; 938 rx_buf += p->rx_stats.alloc_buff_failed; 939 rx_page += p->rx_stats.alloc_page_failed; 940 rx_reuse += p->rx_stats.page_reuse_count; 941 rx_alloc += p->rx_stats.page_alloc_count; 942 rx_waive += p->rx_stats.page_waive_count; 943 rx_busy += p->rx_stats.page_busy_count; 944 945 if (i40e_enabled_xdp_vsi(vsi)) { 946 /* locate XDP ring */ 947 p = READ_ONCE(vsi->xdp_rings[q]); 948 if (!p) 949 continue; 950 951 do { 952 start = u64_stats_fetch_begin(&p->syncp); 953 packets = p->stats.packets; 954 bytes = p->stats.bytes; 955 } while (u64_stats_fetch_retry(&p->syncp, start)); 956 tx_b += bytes; 957 tx_p += packets; 958 tx_restart += p->tx_stats.restart_queue; 959 tx_busy += p->tx_stats.tx_busy; 960 tx_linearize += p->tx_stats.tx_linearize; 961 tx_force_wb += p->tx_stats.tx_force_wb; 962 } 963 } 964 rcu_read_unlock(); 965 vsi->tx_restart = tx_restart; 966 vsi->tx_busy = tx_busy; 967 vsi->tx_linearize = tx_linearize; 968 vsi->tx_force_wb = tx_force_wb; 969 vsi->tx_stopped = tx_stopped; 970 vsi->rx_page_failed = rx_page; 971 vsi->rx_buf_failed = rx_buf; 972 vsi->rx_page_reuse = rx_reuse; 973 vsi->rx_page_alloc = rx_alloc; 974 vsi->rx_page_waive = rx_waive; 975 vsi->rx_page_busy = rx_busy; 976 977 ns->rx_packets = rx_p; 978 ns->rx_bytes = rx_b; 979 ns->tx_packets = tx_p; 980 ns->tx_bytes = tx_b; 981 982 /* update netdev stats from eth stats */ 983 i40e_update_eth_stats(vsi); 984 ons->tx_errors = oes->tx_errors; 985 ns->tx_errors = es->tx_errors; 986 ons->multicast = oes->rx_multicast; 987 ns->multicast = es->rx_multicast; 988 ons->rx_dropped = oes->rx_discards_other; 989 ns->rx_dropped = es->rx_discards_other; 990 ons->rx_missed_errors = oes->rx_discards; 991 ns->rx_missed_errors = es->rx_discards; 992 ons->tx_dropped = oes->tx_discards; 993 ns->tx_dropped = es->tx_discards; 994 995 /* pull in a couple PF stats if this is the main vsi */ 996 if (vsi == pf->vsi[pf->lan_vsi]) { 997 ns->rx_crc_errors = pf->stats.crc_errors; 998 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 999 ns->rx_length_errors = pf->stats.rx_length_errors; 1000 } 1001 } 1002 1003 /** 1004 * i40e_update_pf_stats - Update the PF statistics counters. 1005 * @pf: the PF to be updated 1006 **/ 1007 static void i40e_update_pf_stats(struct i40e_pf *pf) 1008 { 1009 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1010 struct i40e_hw_port_stats *nsd = &pf->stats; 1011 struct i40e_hw *hw = &pf->hw; 1012 u32 val; 1013 int i; 1014 1015 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1016 I40E_GLPRT_GORCL(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1019 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1020 I40E_GLPRT_GOTCL(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1023 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1024 pf->stat_offsets_loaded, 1025 &osd->eth.rx_discards, 1026 &nsd->eth.rx_discards); 1027 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1028 I40E_GLPRT_UPRCL(hw->port), 1029 pf->stat_offsets_loaded, 1030 &osd->eth.rx_unicast, 1031 &nsd->eth.rx_unicast); 1032 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1033 I40E_GLPRT_MPRCL(hw->port), 1034 pf->stat_offsets_loaded, 1035 &osd->eth.rx_multicast, 1036 &nsd->eth.rx_multicast); 1037 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1038 I40E_GLPRT_BPRCL(hw->port), 1039 pf->stat_offsets_loaded, 1040 &osd->eth.rx_broadcast, 1041 &nsd->eth.rx_broadcast); 1042 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1043 I40E_GLPRT_UPTCL(hw->port), 1044 pf->stat_offsets_loaded, 1045 &osd->eth.tx_unicast, 1046 &nsd->eth.tx_unicast); 1047 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1048 I40E_GLPRT_MPTCL(hw->port), 1049 pf->stat_offsets_loaded, 1050 &osd->eth.tx_multicast, 1051 &nsd->eth.tx_multicast); 1052 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1053 I40E_GLPRT_BPTCL(hw->port), 1054 pf->stat_offsets_loaded, 1055 &osd->eth.tx_broadcast, 1056 &nsd->eth.tx_broadcast); 1057 1058 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1059 pf->stat_offsets_loaded, 1060 &osd->tx_dropped_link_down, 1061 &nsd->tx_dropped_link_down); 1062 1063 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1064 pf->stat_offsets_loaded, 1065 &osd->crc_errors, &nsd->crc_errors); 1066 1067 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1068 pf->stat_offsets_loaded, 1069 &osd->illegal_bytes, &nsd->illegal_bytes); 1070 1071 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1072 pf->stat_offsets_loaded, 1073 &osd->mac_local_faults, 1074 &nsd->mac_local_faults); 1075 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1076 pf->stat_offsets_loaded, 1077 &osd->mac_remote_faults, 1078 &nsd->mac_remote_faults); 1079 1080 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1081 pf->stat_offsets_loaded, 1082 &osd->rx_length_errors, 1083 &nsd->rx_length_errors); 1084 1085 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1086 pf->stat_offsets_loaded, 1087 &osd->link_xon_rx, &nsd->link_xon_rx); 1088 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1089 pf->stat_offsets_loaded, 1090 &osd->link_xon_tx, &nsd->link_xon_tx); 1091 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1092 pf->stat_offsets_loaded, 1093 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1094 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1095 pf->stat_offsets_loaded, 1096 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1097 1098 for (i = 0; i < 8; i++) { 1099 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1100 pf->stat_offsets_loaded, 1101 &osd->priority_xoff_rx[i], 1102 &nsd->priority_xoff_rx[i]); 1103 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1104 pf->stat_offsets_loaded, 1105 &osd->priority_xon_rx[i], 1106 &nsd->priority_xon_rx[i]); 1107 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1108 pf->stat_offsets_loaded, 1109 &osd->priority_xon_tx[i], 1110 &nsd->priority_xon_tx[i]); 1111 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1112 pf->stat_offsets_loaded, 1113 &osd->priority_xoff_tx[i], 1114 &nsd->priority_xoff_tx[i]); 1115 i40e_stat_update32(hw, 1116 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1117 pf->stat_offsets_loaded, 1118 &osd->priority_xon_2_xoff[i], 1119 &nsd->priority_xon_2_xoff[i]); 1120 } 1121 1122 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1123 I40E_GLPRT_PRC64L(hw->port), 1124 pf->stat_offsets_loaded, 1125 &osd->rx_size_64, &nsd->rx_size_64); 1126 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1127 I40E_GLPRT_PRC127L(hw->port), 1128 pf->stat_offsets_loaded, 1129 &osd->rx_size_127, &nsd->rx_size_127); 1130 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1131 I40E_GLPRT_PRC255L(hw->port), 1132 pf->stat_offsets_loaded, 1133 &osd->rx_size_255, &nsd->rx_size_255); 1134 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1135 I40E_GLPRT_PRC511L(hw->port), 1136 pf->stat_offsets_loaded, 1137 &osd->rx_size_511, &nsd->rx_size_511); 1138 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1139 I40E_GLPRT_PRC1023L(hw->port), 1140 pf->stat_offsets_loaded, 1141 &osd->rx_size_1023, &nsd->rx_size_1023); 1142 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1143 I40E_GLPRT_PRC1522L(hw->port), 1144 pf->stat_offsets_loaded, 1145 &osd->rx_size_1522, &nsd->rx_size_1522); 1146 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1147 I40E_GLPRT_PRC9522L(hw->port), 1148 pf->stat_offsets_loaded, 1149 &osd->rx_size_big, &nsd->rx_size_big); 1150 1151 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1152 I40E_GLPRT_PTC64L(hw->port), 1153 pf->stat_offsets_loaded, 1154 &osd->tx_size_64, &nsd->tx_size_64); 1155 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1156 I40E_GLPRT_PTC127L(hw->port), 1157 pf->stat_offsets_loaded, 1158 &osd->tx_size_127, &nsd->tx_size_127); 1159 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1160 I40E_GLPRT_PTC255L(hw->port), 1161 pf->stat_offsets_loaded, 1162 &osd->tx_size_255, &nsd->tx_size_255); 1163 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1164 I40E_GLPRT_PTC511L(hw->port), 1165 pf->stat_offsets_loaded, 1166 &osd->tx_size_511, &nsd->tx_size_511); 1167 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1168 I40E_GLPRT_PTC1023L(hw->port), 1169 pf->stat_offsets_loaded, 1170 &osd->tx_size_1023, &nsd->tx_size_1023); 1171 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1172 I40E_GLPRT_PTC1522L(hw->port), 1173 pf->stat_offsets_loaded, 1174 &osd->tx_size_1522, &nsd->tx_size_1522); 1175 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1176 I40E_GLPRT_PTC9522L(hw->port), 1177 pf->stat_offsets_loaded, 1178 &osd->tx_size_big, &nsd->tx_size_big); 1179 1180 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1181 pf->stat_offsets_loaded, 1182 &osd->rx_undersize, &nsd->rx_undersize); 1183 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1184 pf->stat_offsets_loaded, 1185 &osd->rx_fragments, &nsd->rx_fragments); 1186 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1187 pf->stat_offsets_loaded, 1188 &osd->rx_oversize, &nsd->rx_oversize); 1189 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1190 pf->stat_offsets_loaded, 1191 &osd->rx_jabber, &nsd->rx_jabber); 1192 1193 /* FDIR stats */ 1194 i40e_stat_update_and_clear32(hw, 1195 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1196 &nsd->fd_atr_match); 1197 i40e_stat_update_and_clear32(hw, 1198 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1199 &nsd->fd_sb_match); 1200 i40e_stat_update_and_clear32(hw, 1201 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1202 &nsd->fd_atr_tunnel_match); 1203 1204 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1205 nsd->tx_lpi_status = 1206 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val); 1207 nsd->rx_lpi_status = 1208 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val); 1209 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1210 pf->stat_offsets_loaded, 1211 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1212 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1213 pf->stat_offsets_loaded, 1214 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1215 1216 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1217 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1218 nsd->fd_sb_status = true; 1219 else 1220 nsd->fd_sb_status = false; 1221 1222 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1223 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1224 nsd->fd_atr_status = true; 1225 else 1226 nsd->fd_atr_status = false; 1227 1228 pf->stat_offsets_loaded = true; 1229 } 1230 1231 /** 1232 * i40e_update_stats - Update the various statistics counters. 1233 * @vsi: the VSI to be updated 1234 * 1235 * Update the various stats for this VSI and its related entities. 1236 **/ 1237 void i40e_update_stats(struct i40e_vsi *vsi) 1238 { 1239 struct i40e_pf *pf = vsi->back; 1240 1241 if (vsi == pf->vsi[pf->lan_vsi]) 1242 i40e_update_pf_stats(pf); 1243 1244 i40e_update_vsi_stats(vsi); 1245 } 1246 1247 /** 1248 * i40e_count_filters - counts VSI mac filters 1249 * @vsi: the VSI to be searched 1250 * 1251 * Returns count of mac filters 1252 **/ 1253 int i40e_count_filters(struct i40e_vsi *vsi) 1254 { 1255 struct i40e_mac_filter *f; 1256 struct hlist_node *h; 1257 int bkt; 1258 int cnt = 0; 1259 1260 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1261 ++cnt; 1262 1263 return cnt; 1264 } 1265 1266 /** 1267 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1268 * @vsi: the VSI to be searched 1269 * @macaddr: the MAC address 1270 * @vlan: the vlan 1271 * 1272 * Returns ptr to the filter object or NULL 1273 **/ 1274 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1275 const u8 *macaddr, s16 vlan) 1276 { 1277 struct i40e_mac_filter *f; 1278 u64 key; 1279 1280 if (!vsi || !macaddr) 1281 return NULL; 1282 1283 key = i40e_addr_to_hkey(macaddr); 1284 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1285 if ((ether_addr_equal(macaddr, f->macaddr)) && 1286 (vlan == f->vlan)) 1287 return f; 1288 } 1289 return NULL; 1290 } 1291 1292 /** 1293 * i40e_find_mac - Find a mac addr in the macvlan filters list 1294 * @vsi: the VSI to be searched 1295 * @macaddr: the MAC address we are searching for 1296 * 1297 * Returns the first filter with the provided MAC address or NULL if 1298 * MAC address was not found 1299 **/ 1300 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1301 { 1302 struct i40e_mac_filter *f; 1303 u64 key; 1304 1305 if (!vsi || !macaddr) 1306 return NULL; 1307 1308 key = i40e_addr_to_hkey(macaddr); 1309 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1310 if ((ether_addr_equal(macaddr, f->macaddr))) 1311 return f; 1312 } 1313 return NULL; 1314 } 1315 1316 /** 1317 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1318 * @vsi: the VSI to be searched 1319 * 1320 * Returns true if VSI is in vlan mode or false otherwise 1321 **/ 1322 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1323 { 1324 /* If we have a PVID, always operate in VLAN mode */ 1325 if (vsi->info.pvid) 1326 return true; 1327 1328 /* We need to operate in VLAN mode whenever we have any filters with 1329 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1330 * time, incurring search cost repeatedly. However, we can notice two 1331 * things: 1332 * 1333 * 1) the only place where we can gain a VLAN filter is in 1334 * i40e_add_filter. 1335 * 1336 * 2) the only place where filters are actually removed is in 1337 * i40e_sync_filters_subtask. 1338 * 1339 * Thus, we can simply use a boolean value, has_vlan_filters which we 1340 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1341 * we have to perform the full search after deleting filters in 1342 * i40e_sync_filters_subtask, but we already have to search 1343 * filters here and can perform the check at the same time. This 1344 * results in avoiding embedding a loop for VLAN mode inside another 1345 * loop over all the filters, and should maintain correctness as noted 1346 * above. 1347 */ 1348 return vsi->has_vlan_filter; 1349 } 1350 1351 /** 1352 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1353 * @vsi: the VSI to configure 1354 * @tmp_add_list: list of filters ready to be added 1355 * @tmp_del_list: list of filters ready to be deleted 1356 * @vlan_filters: the number of active VLAN filters 1357 * 1358 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1359 * behave as expected. If we have any active VLAN filters remaining or about 1360 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1361 * so that they only match against untagged traffic. If we no longer have any 1362 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1363 * so that they match against both tagged and untagged traffic. In this way, 1364 * we ensure that we correctly receive the desired traffic. This ensures that 1365 * when we have an active VLAN we will receive only untagged traffic and 1366 * traffic matching active VLANs. If we have no active VLANs then we will 1367 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1368 * 1369 * Finally, in a similar fashion, this function also corrects filters when 1370 * there is an active PVID assigned to this VSI. 1371 * 1372 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1373 * 1374 * This function is only expected to be called from within 1375 * i40e_sync_vsi_filters. 1376 * 1377 * NOTE: This function expects to be called while under the 1378 * mac_filter_hash_lock 1379 */ 1380 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1381 struct hlist_head *tmp_add_list, 1382 struct hlist_head *tmp_del_list, 1383 int vlan_filters) 1384 { 1385 s16 pvid = le16_to_cpu(vsi->info.pvid); 1386 struct i40e_mac_filter *f, *add_head; 1387 struct i40e_new_mac_filter *new; 1388 struct hlist_node *h; 1389 int bkt, new_vlan; 1390 1391 /* To determine if a particular filter needs to be replaced we 1392 * have the three following conditions: 1393 * 1394 * a) if we have a PVID assigned, then all filters which are 1395 * not marked as VLAN=PVID must be replaced with filters that 1396 * are. 1397 * b) otherwise, if we have any active VLANS, all filters 1398 * which are marked as VLAN=-1 must be replaced with 1399 * filters marked as VLAN=0 1400 * c) finally, if we do not have any active VLANS, all filters 1401 * which are marked as VLAN=0 must be replaced with filters 1402 * marked as VLAN=-1 1403 */ 1404 1405 /* Update the filters about to be added in place */ 1406 hlist_for_each_entry(new, tmp_add_list, hlist) { 1407 if (pvid && new->f->vlan != pvid) 1408 new->f->vlan = pvid; 1409 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1410 new->f->vlan = 0; 1411 else if (!vlan_filters && new->f->vlan == 0) 1412 new->f->vlan = I40E_VLAN_ANY; 1413 } 1414 1415 /* Update the remaining active filters */ 1416 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1417 /* Combine the checks for whether a filter needs to be changed 1418 * and then determine the new VLAN inside the if block, in 1419 * order to avoid duplicating code for adding the new filter 1420 * then deleting the old filter. 1421 */ 1422 if ((pvid && f->vlan != pvid) || 1423 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1424 (!vlan_filters && f->vlan == 0)) { 1425 /* Determine the new vlan we will be adding */ 1426 if (pvid) 1427 new_vlan = pvid; 1428 else if (vlan_filters) 1429 new_vlan = 0; 1430 else 1431 new_vlan = I40E_VLAN_ANY; 1432 1433 /* Create the new filter */ 1434 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1435 if (!add_head) 1436 return -ENOMEM; 1437 1438 /* Create a temporary i40e_new_mac_filter */ 1439 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1440 if (!new) 1441 return -ENOMEM; 1442 1443 new->f = add_head; 1444 new->state = add_head->state; 1445 1446 /* Add the new filter to the tmp list */ 1447 hlist_add_head(&new->hlist, tmp_add_list); 1448 1449 /* Put the original filter into the delete list */ 1450 f->state = I40E_FILTER_REMOVE; 1451 hash_del(&f->hlist); 1452 hlist_add_head(&f->hlist, tmp_del_list); 1453 } 1454 } 1455 1456 vsi->has_vlan_filter = !!vlan_filters; 1457 1458 return 0; 1459 } 1460 1461 /** 1462 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1463 * @vsi: the vsi to configure 1464 * @new_mac: new mac filter to be added 1465 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1466 * @vlan_filters: the number of active VLAN filters 1467 * @trusted: flag if the VF is trusted 1468 * 1469 * Get new VLAN id based on current VLAN filters, trust, PVID 1470 * and vf-vlan-prune-disable flag. 1471 * 1472 * Returns the value of the new vlan filter or 1473 * the old value if no new filter is needed. 1474 */ 1475 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1476 struct i40e_new_mac_filter *new_mac, 1477 struct i40e_mac_filter *f, 1478 int vlan_filters, 1479 bool trusted) 1480 { 1481 s16 pvid = le16_to_cpu(vsi->info.pvid); 1482 struct i40e_pf *pf = vsi->back; 1483 bool is_any; 1484 1485 if (new_mac) 1486 f = new_mac->f; 1487 1488 if (pvid && f->vlan != pvid) 1489 return pvid; 1490 1491 is_any = (trusted || 1492 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1493 1494 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1495 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1496 (is_any && !vlan_filters && f->vlan == 0)) { 1497 if (is_any) 1498 return I40E_VLAN_ANY; 1499 else 1500 return 0; 1501 } 1502 1503 return f->vlan; 1504 } 1505 1506 /** 1507 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1508 * @vsi: the vsi to configure 1509 * @tmp_add_list: list of filters ready to be added 1510 * @tmp_del_list: list of filters ready to be deleted 1511 * @vlan_filters: the number of active VLAN filters 1512 * @trusted: flag if the VF is trusted 1513 * 1514 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1515 * and vf-vlan-prune-disable flag. 1516 * 1517 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1518 * 1519 * This function is only expected to be called from within 1520 * i40e_sync_vsi_filters. 1521 * 1522 * NOTE: This function expects to be called while under the 1523 * mac_filter_hash_lock 1524 */ 1525 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1526 struct hlist_head *tmp_add_list, 1527 struct hlist_head *tmp_del_list, 1528 int vlan_filters, 1529 bool trusted) 1530 { 1531 struct i40e_mac_filter *f, *add_head; 1532 struct i40e_new_mac_filter *new_mac; 1533 struct hlist_node *h; 1534 int bkt, new_vlan; 1535 1536 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1537 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1538 vlan_filters, trusted); 1539 } 1540 1541 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1542 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1543 trusted); 1544 if (new_vlan != f->vlan) { 1545 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1546 if (!add_head) 1547 return -ENOMEM; 1548 /* Create a temporary i40e_new_mac_filter */ 1549 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1550 if (!new_mac) 1551 return -ENOMEM; 1552 new_mac->f = add_head; 1553 new_mac->state = add_head->state; 1554 1555 /* Add the new filter to the tmp list */ 1556 hlist_add_head(&new_mac->hlist, tmp_add_list); 1557 1558 /* Put the original filter into the delete list */ 1559 f->state = I40E_FILTER_REMOVE; 1560 hash_del(&f->hlist); 1561 hlist_add_head(&f->hlist, tmp_del_list); 1562 } 1563 } 1564 1565 vsi->has_vlan_filter = !!vlan_filters; 1566 return 0; 1567 } 1568 1569 /** 1570 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1571 * @vsi: the PF Main VSI - inappropriate for any other VSI 1572 * @macaddr: the MAC address 1573 * 1574 * Remove whatever filter the firmware set up so the driver can manage 1575 * its own filtering intelligently. 1576 **/ 1577 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1578 { 1579 struct i40e_aqc_remove_macvlan_element_data element; 1580 struct i40e_pf *pf = vsi->back; 1581 1582 /* Only appropriate for the PF main VSI */ 1583 if (vsi->type != I40E_VSI_MAIN) 1584 return; 1585 1586 memset(&element, 0, sizeof(element)); 1587 ether_addr_copy(element.mac_addr, macaddr); 1588 element.vlan_tag = 0; 1589 /* Ignore error returns, some firmware does it this way... */ 1590 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1591 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1592 1593 memset(&element, 0, sizeof(element)); 1594 ether_addr_copy(element.mac_addr, macaddr); 1595 element.vlan_tag = 0; 1596 /* ...and some firmware does it this way. */ 1597 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1598 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1599 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1600 } 1601 1602 /** 1603 * i40e_add_filter - Add a mac/vlan filter to the VSI 1604 * @vsi: the VSI to be searched 1605 * @macaddr: the MAC address 1606 * @vlan: the vlan 1607 * 1608 * Returns ptr to the filter object or NULL when no memory available. 1609 * 1610 * NOTE: This function is expected to be called with mac_filter_hash_lock 1611 * being held. 1612 **/ 1613 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1614 const u8 *macaddr, s16 vlan) 1615 { 1616 struct i40e_mac_filter *f; 1617 u64 key; 1618 1619 if (!vsi || !macaddr) 1620 return NULL; 1621 1622 f = i40e_find_filter(vsi, macaddr, vlan); 1623 if (!f) { 1624 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1625 if (!f) 1626 return NULL; 1627 1628 /* Update the boolean indicating if we need to function in 1629 * VLAN mode. 1630 */ 1631 if (vlan >= 0) 1632 vsi->has_vlan_filter = true; 1633 1634 ether_addr_copy(f->macaddr, macaddr); 1635 f->vlan = vlan; 1636 f->state = I40E_FILTER_NEW; 1637 INIT_HLIST_NODE(&f->hlist); 1638 1639 key = i40e_addr_to_hkey(macaddr); 1640 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1641 1642 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1643 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1644 } 1645 1646 /* If we're asked to add a filter that has been marked for removal, it 1647 * is safe to simply restore it to active state. __i40e_del_filter 1648 * will have simply deleted any filters which were previously marked 1649 * NEW or FAILED, so if it is currently marked REMOVE it must have 1650 * previously been ACTIVE. Since we haven't yet run the sync filters 1651 * task, just restore this filter to the ACTIVE state so that the 1652 * sync task leaves it in place 1653 */ 1654 if (f->state == I40E_FILTER_REMOVE) 1655 f->state = I40E_FILTER_ACTIVE; 1656 1657 return f; 1658 } 1659 1660 /** 1661 * __i40e_del_filter - Remove a specific filter from the VSI 1662 * @vsi: VSI to remove from 1663 * @f: the filter to remove from the list 1664 * 1665 * This function should be called instead of i40e_del_filter only if you know 1666 * the exact filter you will remove already, such as via i40e_find_filter or 1667 * i40e_find_mac. 1668 * 1669 * NOTE: This function is expected to be called with mac_filter_hash_lock 1670 * being held. 1671 * ANOTHER NOTE: This function MUST be called from within the context of 1672 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1673 * instead of list_for_each_entry(). 1674 **/ 1675 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1676 { 1677 if (!f) 1678 return; 1679 1680 /* If the filter was never added to firmware then we can just delete it 1681 * directly and we don't want to set the status to remove or else an 1682 * admin queue command will unnecessarily fire. 1683 */ 1684 if ((f->state == I40E_FILTER_FAILED) || 1685 (f->state == I40E_FILTER_NEW)) { 1686 hash_del(&f->hlist); 1687 kfree(f); 1688 } else { 1689 f->state = I40E_FILTER_REMOVE; 1690 } 1691 1692 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1693 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1694 } 1695 1696 /** 1697 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1698 * @vsi: the VSI to be searched 1699 * @macaddr: the MAC address 1700 * @vlan: the VLAN 1701 * 1702 * NOTE: This function is expected to be called with mac_filter_hash_lock 1703 * being held. 1704 * ANOTHER NOTE: This function MUST be called from within the context of 1705 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1706 * instead of list_for_each_entry(). 1707 **/ 1708 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1709 { 1710 struct i40e_mac_filter *f; 1711 1712 if (!vsi || !macaddr) 1713 return; 1714 1715 f = i40e_find_filter(vsi, macaddr, vlan); 1716 __i40e_del_filter(vsi, f); 1717 } 1718 1719 /** 1720 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1721 * @vsi: the VSI to be searched 1722 * @macaddr: the mac address to be filtered 1723 * 1724 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1725 * go through all the macvlan filters and add a macvlan filter for each 1726 * unique vlan that already exists. If a PVID has been assigned, instead only 1727 * add the macaddr to that VLAN. 1728 * 1729 * Returns last filter added on success, else NULL 1730 **/ 1731 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1732 const u8 *macaddr) 1733 { 1734 struct i40e_mac_filter *f, *add = NULL; 1735 struct hlist_node *h; 1736 int bkt; 1737 1738 if (vsi->info.pvid) 1739 return i40e_add_filter(vsi, macaddr, 1740 le16_to_cpu(vsi->info.pvid)); 1741 1742 if (!i40e_is_vsi_in_vlan(vsi)) 1743 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1744 1745 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1746 if (f->state == I40E_FILTER_REMOVE) 1747 continue; 1748 add = i40e_add_filter(vsi, macaddr, f->vlan); 1749 if (!add) 1750 return NULL; 1751 } 1752 1753 return add; 1754 } 1755 1756 /** 1757 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1758 * @vsi: the VSI to be searched 1759 * @macaddr: the mac address to be removed 1760 * 1761 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1762 * associated with. 1763 * 1764 * Returns 0 for success, or error 1765 **/ 1766 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1767 { 1768 struct i40e_mac_filter *f; 1769 struct hlist_node *h; 1770 bool found = false; 1771 int bkt; 1772 1773 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1774 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1775 if (ether_addr_equal(macaddr, f->macaddr)) { 1776 __i40e_del_filter(vsi, f); 1777 found = true; 1778 } 1779 } 1780 1781 if (found) 1782 return 0; 1783 else 1784 return -ENOENT; 1785 } 1786 1787 /** 1788 * i40e_set_mac - NDO callback to set mac address 1789 * @netdev: network interface device structure 1790 * @p: pointer to an address structure 1791 * 1792 * Returns 0 on success, negative on failure 1793 **/ 1794 static int i40e_set_mac(struct net_device *netdev, void *p) 1795 { 1796 struct i40e_netdev_priv *np = netdev_priv(netdev); 1797 struct i40e_vsi *vsi = np->vsi; 1798 struct i40e_pf *pf = vsi->back; 1799 struct i40e_hw *hw = &pf->hw; 1800 struct sockaddr *addr = p; 1801 1802 if (!is_valid_ether_addr(addr->sa_data)) 1803 return -EADDRNOTAVAIL; 1804 1805 if (test_bit(__I40E_DOWN, pf->state) || 1806 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1807 return -EADDRNOTAVAIL; 1808 1809 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1810 netdev_info(netdev, "returning to hw mac address %pM\n", 1811 hw->mac.addr); 1812 else 1813 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1814 1815 /* Copy the address first, so that we avoid a possible race with 1816 * .set_rx_mode(). 1817 * - Remove old address from MAC filter 1818 * - Copy new address 1819 * - Add new address to MAC filter 1820 */ 1821 spin_lock_bh(&vsi->mac_filter_hash_lock); 1822 i40e_del_mac_filter(vsi, netdev->dev_addr); 1823 eth_hw_addr_set(netdev, addr->sa_data); 1824 i40e_add_mac_filter(vsi, netdev->dev_addr); 1825 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1826 1827 if (vsi->type == I40E_VSI_MAIN) { 1828 int ret; 1829 1830 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1831 addr->sa_data, NULL); 1832 if (ret) 1833 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1834 ERR_PTR(ret), 1835 i40e_aq_str(hw, hw->aq.asq_last_status)); 1836 } 1837 1838 /* schedule our worker thread which will take care of 1839 * applying the new filter changes 1840 */ 1841 i40e_service_event_schedule(pf); 1842 return 0; 1843 } 1844 1845 /** 1846 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1847 * @vsi: vsi structure 1848 * @seed: RSS hash seed 1849 * @lut: pointer to lookup table of lut_size 1850 * @lut_size: size of the lookup table 1851 **/ 1852 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1853 u8 *lut, u16 lut_size) 1854 { 1855 struct i40e_pf *pf = vsi->back; 1856 struct i40e_hw *hw = &pf->hw; 1857 int ret = 0; 1858 1859 if (seed) { 1860 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1861 (struct i40e_aqc_get_set_rss_key_data *)seed; 1862 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1863 if (ret) { 1864 dev_info(&pf->pdev->dev, 1865 "Cannot set RSS key, err %pe aq_err %s\n", 1866 ERR_PTR(ret), 1867 i40e_aq_str(hw, hw->aq.asq_last_status)); 1868 return ret; 1869 } 1870 } 1871 if (lut) { 1872 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1873 1874 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1875 if (ret) { 1876 dev_info(&pf->pdev->dev, 1877 "Cannot set RSS lut, err %pe aq_err %s\n", 1878 ERR_PTR(ret), 1879 i40e_aq_str(hw, hw->aq.asq_last_status)); 1880 return ret; 1881 } 1882 } 1883 return ret; 1884 } 1885 1886 /** 1887 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1888 * @vsi: VSI structure 1889 **/ 1890 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1891 { 1892 struct i40e_pf *pf = vsi->back; 1893 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1894 u8 *lut; 1895 int ret; 1896 1897 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1898 return 0; 1899 if (!vsi->rss_size) 1900 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1901 vsi->num_queue_pairs); 1902 if (!vsi->rss_size) 1903 return -EINVAL; 1904 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1905 if (!lut) 1906 return -ENOMEM; 1907 1908 /* Use the user configured hash keys and lookup table if there is one, 1909 * otherwise use default 1910 */ 1911 if (vsi->rss_lut_user) 1912 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1913 else 1914 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1915 if (vsi->rss_hkey_user) 1916 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1917 else 1918 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1919 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1920 kfree(lut); 1921 return ret; 1922 } 1923 1924 /** 1925 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1926 * @vsi: the VSI being configured, 1927 * @ctxt: VSI context structure 1928 * @enabled_tc: number of traffic classes to enable 1929 * 1930 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1931 **/ 1932 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1933 struct i40e_vsi_context *ctxt, 1934 u8 enabled_tc) 1935 { 1936 u16 qcount = 0, max_qcount, qmap, sections = 0; 1937 int i, override_q, pow, num_qps, ret; 1938 u8 netdev_tc = 0, offset = 0; 1939 1940 if (vsi->type != I40E_VSI_MAIN) 1941 return -EINVAL; 1942 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1943 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1944 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1945 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1946 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1947 1948 /* find the next higher power-of-2 of num queue pairs */ 1949 pow = ilog2(num_qps); 1950 if (!is_power_of_2(num_qps)) 1951 pow++; 1952 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1953 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1954 1955 /* Setup queue offset/count for all TCs for given VSI */ 1956 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1957 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1958 /* See if the given TC is enabled for the given VSI */ 1959 if (vsi->tc_config.enabled_tc & BIT(i)) { 1960 offset = vsi->mqprio_qopt.qopt.offset[i]; 1961 qcount = vsi->mqprio_qopt.qopt.count[i]; 1962 if (qcount > max_qcount) 1963 max_qcount = qcount; 1964 vsi->tc_config.tc_info[i].qoffset = offset; 1965 vsi->tc_config.tc_info[i].qcount = qcount; 1966 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1967 } else { 1968 /* TC is not enabled so set the offset to 1969 * default queue and allocate one queue 1970 * for the given TC. 1971 */ 1972 vsi->tc_config.tc_info[i].qoffset = 0; 1973 vsi->tc_config.tc_info[i].qcount = 1; 1974 vsi->tc_config.tc_info[i].netdev_tc = 0; 1975 } 1976 } 1977 1978 /* Set actual Tx/Rx queue pairs */ 1979 vsi->num_queue_pairs = offset + qcount; 1980 1981 /* Setup queue TC[0].qmap for given VSI context */ 1982 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1983 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1984 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1985 ctxt->info.valid_sections |= cpu_to_le16(sections); 1986 1987 /* Reconfigure RSS for main VSI with max queue count */ 1988 vsi->rss_size = max_qcount; 1989 ret = i40e_vsi_config_rss(vsi); 1990 if (ret) { 1991 dev_info(&vsi->back->pdev->dev, 1992 "Failed to reconfig rss for num_queues (%u)\n", 1993 max_qcount); 1994 return ret; 1995 } 1996 vsi->reconfig_rss = true; 1997 dev_dbg(&vsi->back->pdev->dev, 1998 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1999 2000 /* Find queue count available for channel VSIs and starting offset 2001 * for channel VSIs 2002 */ 2003 override_q = vsi->mqprio_qopt.qopt.count[0]; 2004 if (override_q && override_q < vsi->num_queue_pairs) { 2005 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 2006 vsi->next_base_queue = override_q; 2007 } 2008 return 0; 2009 } 2010 2011 /** 2012 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 2013 * @vsi: the VSI being setup 2014 * @ctxt: VSI context structure 2015 * @enabled_tc: Enabled TCs bitmap 2016 * @is_add: True if called before Add VSI 2017 * 2018 * Setup VSI queue mapping for enabled traffic classes. 2019 **/ 2020 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2021 struct i40e_vsi_context *ctxt, 2022 u8 enabled_tc, 2023 bool is_add) 2024 { 2025 struct i40e_pf *pf = vsi->back; 2026 u16 num_tc_qps = 0; 2027 u16 sections = 0; 2028 u8 netdev_tc = 0; 2029 u16 numtc = 1; 2030 u16 qcount; 2031 u8 offset; 2032 u16 qmap; 2033 int i; 2034 2035 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2036 offset = 0; 2037 /* zero out queue mapping, it will get updated on the end of the function */ 2038 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2039 2040 if (vsi->type == I40E_VSI_MAIN) { 2041 /* This code helps add more queue to the VSI if we have 2042 * more cores than RSS can support, the higher cores will 2043 * be served by ATR or other filters. Furthermore, the 2044 * non-zero req_queue_pairs says that user requested a new 2045 * queue count via ethtool's set_channels, so use this 2046 * value for queues distribution across traffic classes 2047 * We need at least one queue pair for the interface 2048 * to be usable as we see in else statement. 2049 */ 2050 if (vsi->req_queue_pairs > 0) 2051 vsi->num_queue_pairs = vsi->req_queue_pairs; 2052 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2053 vsi->num_queue_pairs = pf->num_lan_msix; 2054 else 2055 vsi->num_queue_pairs = 1; 2056 } 2057 2058 /* Number of queues per enabled TC */ 2059 if (vsi->type == I40E_VSI_MAIN || 2060 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2061 num_tc_qps = vsi->num_queue_pairs; 2062 else 2063 num_tc_qps = vsi->alloc_queue_pairs; 2064 2065 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2066 /* Find numtc from enabled TC bitmap */ 2067 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2068 if (enabled_tc & BIT(i)) /* TC is enabled */ 2069 numtc++; 2070 } 2071 if (!numtc) { 2072 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2073 numtc = 1; 2074 } 2075 num_tc_qps = num_tc_qps / numtc; 2076 num_tc_qps = min_t(int, num_tc_qps, 2077 i40e_pf_get_max_q_per_tc(pf)); 2078 } 2079 2080 vsi->tc_config.numtc = numtc; 2081 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2082 2083 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2084 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2085 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2086 2087 /* Setup queue offset/count for all TCs for given VSI */ 2088 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2089 /* See if the given TC is enabled for the given VSI */ 2090 if (vsi->tc_config.enabled_tc & BIT(i)) { 2091 /* TC is enabled */ 2092 int pow, num_qps; 2093 2094 switch (vsi->type) { 2095 case I40E_VSI_MAIN: 2096 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2097 pf->flags) && 2098 !test_bit(I40E_FLAG_FD_ATR_ENA, 2099 pf->flags)) || 2100 vsi->tc_config.enabled_tc != 1) { 2101 qcount = min_t(int, pf->alloc_rss_size, 2102 num_tc_qps); 2103 break; 2104 } 2105 fallthrough; 2106 case I40E_VSI_FDIR: 2107 case I40E_VSI_SRIOV: 2108 case I40E_VSI_VMDQ2: 2109 default: 2110 qcount = num_tc_qps; 2111 WARN_ON(i != 0); 2112 break; 2113 } 2114 vsi->tc_config.tc_info[i].qoffset = offset; 2115 vsi->tc_config.tc_info[i].qcount = qcount; 2116 2117 /* find the next higher power-of-2 of num queue pairs */ 2118 num_qps = qcount; 2119 pow = 0; 2120 while (num_qps && (BIT_ULL(pow) < qcount)) { 2121 pow++; 2122 num_qps >>= 1; 2123 } 2124 2125 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2126 qmap = 2127 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2128 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2129 2130 offset += qcount; 2131 } else { 2132 /* TC is not enabled so set the offset to 2133 * default queue and allocate one queue 2134 * for the given TC. 2135 */ 2136 vsi->tc_config.tc_info[i].qoffset = 0; 2137 vsi->tc_config.tc_info[i].qcount = 1; 2138 vsi->tc_config.tc_info[i].netdev_tc = 0; 2139 2140 qmap = 0; 2141 } 2142 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2143 } 2144 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2145 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2146 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2147 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2148 vsi->num_queue_pairs = offset; 2149 2150 /* Scheduler section valid can only be set for ADD VSI */ 2151 if (is_add) { 2152 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2153 2154 ctxt->info.up_enable_bits = enabled_tc; 2155 } 2156 if (vsi->type == I40E_VSI_SRIOV) { 2157 ctxt->info.mapping_flags |= 2158 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2159 for (i = 0; i < vsi->num_queue_pairs; i++) 2160 ctxt->info.queue_mapping[i] = 2161 cpu_to_le16(vsi->base_queue + i); 2162 } else { 2163 ctxt->info.mapping_flags |= 2164 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2165 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2166 } 2167 ctxt->info.valid_sections |= cpu_to_le16(sections); 2168 } 2169 2170 /** 2171 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2172 * @netdev: the netdevice 2173 * @addr: address to add 2174 * 2175 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2176 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2177 */ 2178 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2179 { 2180 struct i40e_netdev_priv *np = netdev_priv(netdev); 2181 struct i40e_vsi *vsi = np->vsi; 2182 2183 if (i40e_add_mac_filter(vsi, addr)) 2184 return 0; 2185 else 2186 return -ENOMEM; 2187 } 2188 2189 /** 2190 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2191 * @netdev: the netdevice 2192 * @addr: address to add 2193 * 2194 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2195 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2196 */ 2197 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2198 { 2199 struct i40e_netdev_priv *np = netdev_priv(netdev); 2200 struct i40e_vsi *vsi = np->vsi; 2201 2202 /* Under some circumstances, we might receive a request to delete 2203 * our own device address from our uc list. Because we store the 2204 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2205 * such requests and not delete our device address from this list. 2206 */ 2207 if (ether_addr_equal(addr, netdev->dev_addr)) 2208 return 0; 2209 2210 i40e_del_mac_filter(vsi, addr); 2211 2212 return 0; 2213 } 2214 2215 /** 2216 * i40e_set_rx_mode - NDO callback to set the netdev filters 2217 * @netdev: network interface device structure 2218 **/ 2219 static void i40e_set_rx_mode(struct net_device *netdev) 2220 { 2221 struct i40e_netdev_priv *np = netdev_priv(netdev); 2222 struct i40e_vsi *vsi = np->vsi; 2223 2224 spin_lock_bh(&vsi->mac_filter_hash_lock); 2225 2226 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2227 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2228 2229 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2230 2231 /* check for other flag changes */ 2232 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2233 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2234 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2235 } 2236 } 2237 2238 /** 2239 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2240 * @vsi: Pointer to VSI struct 2241 * @from: Pointer to list which contains MAC filter entries - changes to 2242 * those entries needs to be undone. 2243 * 2244 * MAC filter entries from this list were slated for deletion. 2245 **/ 2246 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2247 struct hlist_head *from) 2248 { 2249 struct i40e_mac_filter *f; 2250 struct hlist_node *h; 2251 2252 hlist_for_each_entry_safe(f, h, from, hlist) { 2253 u64 key = i40e_addr_to_hkey(f->macaddr); 2254 2255 /* Move the element back into MAC filter list*/ 2256 hlist_del(&f->hlist); 2257 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2258 } 2259 } 2260 2261 /** 2262 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2263 * @vsi: Pointer to vsi struct 2264 * @from: Pointer to list which contains MAC filter entries - changes to 2265 * those entries needs to be undone. 2266 * 2267 * MAC filter entries from this list were slated for addition. 2268 **/ 2269 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2270 struct hlist_head *from) 2271 { 2272 struct i40e_new_mac_filter *new; 2273 struct hlist_node *h; 2274 2275 hlist_for_each_entry_safe(new, h, from, hlist) { 2276 /* We can simply free the wrapper structure */ 2277 hlist_del(&new->hlist); 2278 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2279 kfree(new); 2280 } 2281 } 2282 2283 /** 2284 * i40e_next_filter - Get the next non-broadcast filter from a list 2285 * @next: pointer to filter in list 2286 * 2287 * Returns the next non-broadcast filter in the list. Required so that we 2288 * ignore broadcast filters within the list, since these are not handled via 2289 * the normal firmware update path. 2290 */ 2291 static 2292 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2293 { 2294 hlist_for_each_entry_continue(next, hlist) { 2295 if (!is_broadcast_ether_addr(next->f->macaddr)) 2296 return next; 2297 } 2298 2299 return NULL; 2300 } 2301 2302 /** 2303 * i40e_update_filter_state - Update filter state based on return data 2304 * from firmware 2305 * @count: Number of filters added 2306 * @add_list: return data from fw 2307 * @add_head: pointer to first filter in current batch 2308 * 2309 * MAC filter entries from list were slated to be added to device. Returns 2310 * number of successful filters. Note that 0 does NOT mean success! 2311 **/ 2312 static int 2313 i40e_update_filter_state(int count, 2314 struct i40e_aqc_add_macvlan_element_data *add_list, 2315 struct i40e_new_mac_filter *add_head) 2316 { 2317 int retval = 0; 2318 int i; 2319 2320 for (i = 0; i < count; i++) { 2321 /* Always check status of each filter. We don't need to check 2322 * the firmware return status because we pre-set the filter 2323 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2324 * request to the adminq. Thus, if it no longer matches then 2325 * we know the filter is active. 2326 */ 2327 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2328 add_head->state = I40E_FILTER_FAILED; 2329 } else { 2330 add_head->state = I40E_FILTER_ACTIVE; 2331 retval++; 2332 } 2333 2334 add_head = i40e_next_filter(add_head); 2335 if (!add_head) 2336 break; 2337 } 2338 2339 return retval; 2340 } 2341 2342 /** 2343 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2344 * @vsi: ptr to the VSI 2345 * @vsi_name: name to display in messages 2346 * @list: the list of filters to send to firmware 2347 * @num_del: the number of filters to delete 2348 * @retval: Set to -EIO on failure to delete 2349 * 2350 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2351 * *retval instead of a return value so that success does not force ret_val to 2352 * be set to 0. This ensures that a sequence of calls to this function 2353 * preserve the previous value of *retval on successful delete. 2354 */ 2355 static 2356 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2357 struct i40e_aqc_remove_macvlan_element_data *list, 2358 int num_del, int *retval) 2359 { 2360 struct i40e_hw *hw = &vsi->back->hw; 2361 enum i40e_admin_queue_err aq_status; 2362 int aq_ret; 2363 2364 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2365 &aq_status); 2366 2367 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2368 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2369 *retval = -EIO; 2370 dev_info(&vsi->back->pdev->dev, 2371 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2372 vsi_name, ERR_PTR(aq_ret), 2373 i40e_aq_str(hw, aq_status)); 2374 } 2375 } 2376 2377 /** 2378 * i40e_aqc_add_filters - Request firmware to add a set of filters 2379 * @vsi: ptr to the VSI 2380 * @vsi_name: name to display in messages 2381 * @list: the list of filters to send to firmware 2382 * @add_head: Position in the add hlist 2383 * @num_add: the number of filters to add 2384 * 2385 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2386 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2387 * space for more filters. 2388 */ 2389 static 2390 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2391 struct i40e_aqc_add_macvlan_element_data *list, 2392 struct i40e_new_mac_filter *add_head, 2393 int num_add) 2394 { 2395 struct i40e_hw *hw = &vsi->back->hw; 2396 enum i40e_admin_queue_err aq_status; 2397 int fcnt; 2398 2399 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2400 fcnt = i40e_update_filter_state(num_add, list, add_head); 2401 2402 if (fcnt != num_add) { 2403 if (vsi->type == I40E_VSI_MAIN) { 2404 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2405 dev_warn(&vsi->back->pdev->dev, 2406 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2407 i40e_aq_str(hw, aq_status), vsi_name); 2408 } else if (vsi->type == I40E_VSI_SRIOV || 2409 vsi->type == I40E_VSI_VMDQ1 || 2410 vsi->type == I40E_VSI_VMDQ2) { 2411 dev_warn(&vsi->back->pdev->dev, 2412 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2413 i40e_aq_str(hw, aq_status), vsi_name, 2414 vsi_name); 2415 } else { 2416 dev_warn(&vsi->back->pdev->dev, 2417 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2418 i40e_aq_str(hw, aq_status), vsi_name, 2419 vsi->type); 2420 } 2421 } 2422 } 2423 2424 /** 2425 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2426 * @vsi: pointer to the VSI 2427 * @vsi_name: the VSI name 2428 * @f: filter data 2429 * 2430 * This function sets or clears the promiscuous broadcast flags for VLAN 2431 * filters in order to properly receive broadcast frames. Assumes that only 2432 * broadcast filters are passed. 2433 * 2434 * Returns status indicating success or failure; 2435 **/ 2436 static int 2437 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2438 struct i40e_mac_filter *f) 2439 { 2440 bool enable = f->state == I40E_FILTER_NEW; 2441 struct i40e_hw *hw = &vsi->back->hw; 2442 int aq_ret; 2443 2444 if (f->vlan == I40E_VLAN_ANY) { 2445 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2446 vsi->seid, 2447 enable, 2448 NULL); 2449 } else { 2450 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2451 vsi->seid, 2452 enable, 2453 f->vlan, 2454 NULL); 2455 } 2456 2457 if (aq_ret) { 2458 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2459 dev_warn(&vsi->back->pdev->dev, 2460 "Error %s, forcing overflow promiscuous on %s\n", 2461 i40e_aq_str(hw, hw->aq.asq_last_status), 2462 vsi_name); 2463 } 2464 2465 return aq_ret; 2466 } 2467 2468 /** 2469 * i40e_set_promiscuous - set promiscuous mode 2470 * @pf: board private structure 2471 * @promisc: promisc on or off 2472 * 2473 * There are different ways of setting promiscuous mode on a PF depending on 2474 * what state/environment we're in. This identifies and sets it appropriately. 2475 * Returns 0 on success. 2476 **/ 2477 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2478 { 2479 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2480 struct i40e_hw *hw = &pf->hw; 2481 int aq_ret; 2482 2483 if (vsi->type == I40E_VSI_MAIN && 2484 pf->lan_veb != I40E_NO_VEB && 2485 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2486 /* set defport ON for Main VSI instead of true promisc 2487 * this way we will get all unicast/multicast and VLAN 2488 * promisc behavior but will not get VF or VMDq traffic 2489 * replicated on the Main VSI. 2490 */ 2491 if (promisc) 2492 aq_ret = i40e_aq_set_default_vsi(hw, 2493 vsi->seid, 2494 NULL); 2495 else 2496 aq_ret = i40e_aq_clear_default_vsi(hw, 2497 vsi->seid, 2498 NULL); 2499 if (aq_ret) { 2500 dev_info(&pf->pdev->dev, 2501 "Set default VSI failed, err %pe, aq_err %s\n", 2502 ERR_PTR(aq_ret), 2503 i40e_aq_str(hw, hw->aq.asq_last_status)); 2504 } 2505 } else { 2506 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2507 hw, 2508 vsi->seid, 2509 promisc, NULL, 2510 true); 2511 if (aq_ret) { 2512 dev_info(&pf->pdev->dev, 2513 "set unicast promisc failed, err %pe, aq_err %s\n", 2514 ERR_PTR(aq_ret), 2515 i40e_aq_str(hw, hw->aq.asq_last_status)); 2516 } 2517 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2518 hw, 2519 vsi->seid, 2520 promisc, NULL); 2521 if (aq_ret) { 2522 dev_info(&pf->pdev->dev, 2523 "set multicast promisc failed, err %pe, aq_err %s\n", 2524 ERR_PTR(aq_ret), 2525 i40e_aq_str(hw, hw->aq.asq_last_status)); 2526 } 2527 } 2528 2529 if (!aq_ret) 2530 pf->cur_promisc = promisc; 2531 2532 return aq_ret; 2533 } 2534 2535 /** 2536 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2537 * @vsi: ptr to the VSI 2538 * 2539 * Push any outstanding VSI filter changes through the AdminQ. 2540 * 2541 * Returns 0 or error value 2542 **/ 2543 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2544 { 2545 struct hlist_head tmp_add_list, tmp_del_list; 2546 struct i40e_mac_filter *f; 2547 struct i40e_new_mac_filter *new, *add_head = NULL; 2548 struct i40e_hw *hw = &vsi->back->hw; 2549 bool old_overflow, new_overflow; 2550 unsigned int failed_filters = 0; 2551 unsigned int vlan_filters = 0; 2552 char vsi_name[16] = "PF"; 2553 int filter_list_len = 0; 2554 u32 changed_flags = 0; 2555 struct hlist_node *h; 2556 struct i40e_pf *pf; 2557 int num_add = 0; 2558 int num_del = 0; 2559 int aq_ret = 0; 2560 int retval = 0; 2561 u16 cmd_flags; 2562 int list_size; 2563 int bkt; 2564 2565 /* empty array typed pointers, kcalloc later */ 2566 struct i40e_aqc_add_macvlan_element_data *add_list; 2567 struct i40e_aqc_remove_macvlan_element_data *del_list; 2568 2569 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2570 usleep_range(1000, 2000); 2571 pf = vsi->back; 2572 2573 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2574 2575 if (vsi->netdev) { 2576 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2577 vsi->current_netdev_flags = vsi->netdev->flags; 2578 } 2579 2580 INIT_HLIST_HEAD(&tmp_add_list); 2581 INIT_HLIST_HEAD(&tmp_del_list); 2582 2583 if (vsi->type == I40E_VSI_SRIOV) 2584 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2585 else if (vsi->type != I40E_VSI_MAIN) 2586 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2587 2588 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2589 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2590 2591 spin_lock_bh(&vsi->mac_filter_hash_lock); 2592 /* Create a list of filters to delete. */ 2593 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2594 if (f->state == I40E_FILTER_REMOVE) { 2595 /* Move the element into temporary del_list */ 2596 hash_del(&f->hlist); 2597 hlist_add_head(&f->hlist, &tmp_del_list); 2598 2599 /* Avoid counting removed filters */ 2600 continue; 2601 } 2602 if (f->state == I40E_FILTER_NEW) { 2603 /* Create a temporary i40e_new_mac_filter */ 2604 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2605 if (!new) 2606 goto err_no_memory_locked; 2607 2608 /* Store pointer to the real filter */ 2609 new->f = f; 2610 new->state = f->state; 2611 2612 /* Add it to the hash list */ 2613 hlist_add_head(&new->hlist, &tmp_add_list); 2614 } 2615 2616 /* Count the number of active (current and new) VLAN 2617 * filters we have now. Does not count filters which 2618 * are marked for deletion. 2619 */ 2620 if (f->vlan > 0) 2621 vlan_filters++; 2622 } 2623 2624 if (vsi->type != I40E_VSI_SRIOV) 2625 retval = i40e_correct_mac_vlan_filters 2626 (vsi, &tmp_add_list, &tmp_del_list, 2627 vlan_filters); 2628 else if (pf->vf) 2629 retval = i40e_correct_vf_mac_vlan_filters 2630 (vsi, &tmp_add_list, &tmp_del_list, 2631 vlan_filters, pf->vf[vsi->vf_id].trusted); 2632 2633 hlist_for_each_entry(new, &tmp_add_list, hlist) 2634 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2635 2636 if (retval) 2637 goto err_no_memory_locked; 2638 2639 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2640 } 2641 2642 /* Now process 'del_list' outside the lock */ 2643 if (!hlist_empty(&tmp_del_list)) { 2644 filter_list_len = hw->aq.asq_buf_size / 2645 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2646 list_size = filter_list_len * 2647 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2648 del_list = kzalloc(list_size, GFP_ATOMIC); 2649 if (!del_list) 2650 goto err_no_memory; 2651 2652 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2653 cmd_flags = 0; 2654 2655 /* handle broadcast filters by updating the broadcast 2656 * promiscuous flag and release filter list. 2657 */ 2658 if (is_broadcast_ether_addr(f->macaddr)) { 2659 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2660 2661 hlist_del(&f->hlist); 2662 kfree(f); 2663 continue; 2664 } 2665 2666 /* add to delete list */ 2667 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2668 if (f->vlan == I40E_VLAN_ANY) { 2669 del_list[num_del].vlan_tag = 0; 2670 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2671 } else { 2672 del_list[num_del].vlan_tag = 2673 cpu_to_le16((u16)(f->vlan)); 2674 } 2675 2676 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2677 del_list[num_del].flags = cmd_flags; 2678 num_del++; 2679 2680 /* flush a full buffer */ 2681 if (num_del == filter_list_len) { 2682 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2683 num_del, &retval); 2684 memset(del_list, 0, list_size); 2685 num_del = 0; 2686 } 2687 /* Release memory for MAC filter entries which were 2688 * synced up with HW. 2689 */ 2690 hlist_del(&f->hlist); 2691 kfree(f); 2692 } 2693 2694 if (num_del) { 2695 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2696 num_del, &retval); 2697 } 2698 2699 kfree(del_list); 2700 del_list = NULL; 2701 } 2702 2703 if (!hlist_empty(&tmp_add_list)) { 2704 /* Do all the adds now. */ 2705 filter_list_len = hw->aq.asq_buf_size / 2706 sizeof(struct i40e_aqc_add_macvlan_element_data); 2707 list_size = filter_list_len * 2708 sizeof(struct i40e_aqc_add_macvlan_element_data); 2709 add_list = kzalloc(list_size, GFP_ATOMIC); 2710 if (!add_list) 2711 goto err_no_memory; 2712 2713 num_add = 0; 2714 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2715 /* handle broadcast filters by updating the broadcast 2716 * promiscuous flag instead of adding a MAC filter. 2717 */ 2718 if (is_broadcast_ether_addr(new->f->macaddr)) { 2719 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2720 new->f)) 2721 new->state = I40E_FILTER_FAILED; 2722 else 2723 new->state = I40E_FILTER_ACTIVE; 2724 continue; 2725 } 2726 2727 /* add to add array */ 2728 if (num_add == 0) 2729 add_head = new; 2730 cmd_flags = 0; 2731 ether_addr_copy(add_list[num_add].mac_addr, 2732 new->f->macaddr); 2733 if (new->f->vlan == I40E_VLAN_ANY) { 2734 add_list[num_add].vlan_tag = 0; 2735 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2736 } else { 2737 add_list[num_add].vlan_tag = 2738 cpu_to_le16((u16)(new->f->vlan)); 2739 } 2740 add_list[num_add].queue_number = 0; 2741 /* set invalid match method for later detection */ 2742 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2743 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2744 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2745 num_add++; 2746 2747 /* flush a full buffer */ 2748 if (num_add == filter_list_len) { 2749 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2750 add_head, num_add); 2751 memset(add_list, 0, list_size); 2752 num_add = 0; 2753 } 2754 } 2755 if (num_add) { 2756 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2757 num_add); 2758 } 2759 /* Now move all of the filters from the temp add list back to 2760 * the VSI's list. 2761 */ 2762 spin_lock_bh(&vsi->mac_filter_hash_lock); 2763 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2764 /* Only update the state if we're still NEW */ 2765 if (new->f->state == I40E_FILTER_NEW) 2766 new->f->state = new->state; 2767 hlist_del(&new->hlist); 2768 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2769 kfree(new); 2770 } 2771 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2772 kfree(add_list); 2773 add_list = NULL; 2774 } 2775 2776 /* Determine the number of active and failed filters. */ 2777 spin_lock_bh(&vsi->mac_filter_hash_lock); 2778 vsi->active_filters = 0; 2779 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2780 if (f->state == I40E_FILTER_ACTIVE) 2781 vsi->active_filters++; 2782 else if (f->state == I40E_FILTER_FAILED) 2783 failed_filters++; 2784 } 2785 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2786 2787 /* Check if we are able to exit overflow promiscuous mode. We can 2788 * safely exit if we didn't just enter, we no longer have any failed 2789 * filters, and we have reduced filters below the threshold value. 2790 */ 2791 if (old_overflow && !failed_filters && 2792 vsi->active_filters < vsi->promisc_threshold) { 2793 dev_info(&pf->pdev->dev, 2794 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2795 vsi_name); 2796 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2797 vsi->promisc_threshold = 0; 2798 } 2799 2800 /* if the VF is not trusted do not do promisc */ 2801 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2802 !pf->vf[vsi->vf_id].trusted) { 2803 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2804 goto out; 2805 } 2806 2807 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2808 2809 /* If we are entering overflow promiscuous, we need to calculate a new 2810 * threshold for when we are safe to exit 2811 */ 2812 if (!old_overflow && new_overflow) 2813 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2814 2815 /* check for changes in promiscuous modes */ 2816 if (changed_flags & IFF_ALLMULTI) { 2817 bool cur_multipromisc; 2818 2819 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2820 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2821 vsi->seid, 2822 cur_multipromisc, 2823 NULL); 2824 if (aq_ret) { 2825 retval = i40e_aq_rc_to_posix(aq_ret, 2826 hw->aq.asq_last_status); 2827 dev_info(&pf->pdev->dev, 2828 "set multi promisc failed on %s, err %pe aq_err %s\n", 2829 vsi_name, 2830 ERR_PTR(aq_ret), 2831 i40e_aq_str(hw, hw->aq.asq_last_status)); 2832 } else { 2833 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2834 cur_multipromisc ? "entering" : "leaving"); 2835 } 2836 } 2837 2838 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2839 bool cur_promisc; 2840 2841 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2842 new_overflow); 2843 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2844 if (aq_ret) { 2845 retval = i40e_aq_rc_to_posix(aq_ret, 2846 hw->aq.asq_last_status); 2847 dev_info(&pf->pdev->dev, 2848 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2849 cur_promisc ? "on" : "off", 2850 vsi_name, 2851 ERR_PTR(aq_ret), 2852 i40e_aq_str(hw, hw->aq.asq_last_status)); 2853 } 2854 } 2855 out: 2856 /* if something went wrong then set the changed flag so we try again */ 2857 if (retval) 2858 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2859 2860 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2861 return retval; 2862 2863 err_no_memory: 2864 /* Restore elements on the temporary add and delete lists */ 2865 spin_lock_bh(&vsi->mac_filter_hash_lock); 2866 err_no_memory_locked: 2867 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2868 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2869 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2870 2871 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2872 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2873 return -ENOMEM; 2874 } 2875 2876 /** 2877 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2878 * @pf: board private structure 2879 **/ 2880 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2881 { 2882 int v; 2883 2884 if (!pf) 2885 return; 2886 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2887 return; 2888 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2889 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2890 return; 2891 } 2892 2893 for (v = 0; v < pf->num_alloc_vsi; v++) { 2894 if (pf->vsi[v] && 2895 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2896 !test_bit(__I40E_VSI_RELEASING, pf->vsi[v]->state)) { 2897 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2898 2899 if (ret) { 2900 /* come back and try again later */ 2901 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2902 pf->state); 2903 break; 2904 } 2905 } 2906 } 2907 } 2908 2909 /** 2910 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2911 * 2912 * @vsi: VSI to calculate rx_buf_len from 2913 */ 2914 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2915 { 2916 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2917 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2918 2919 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2920 } 2921 2922 /** 2923 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2924 * @vsi: the vsi 2925 * @xdp_prog: XDP program 2926 **/ 2927 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2928 struct bpf_prog *xdp_prog) 2929 { 2930 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2931 u16 chain_len; 2932 2933 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2934 chain_len = 1; 2935 else 2936 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2937 2938 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2939 } 2940 2941 /** 2942 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2943 * @netdev: network interface device structure 2944 * @new_mtu: new value for maximum frame size 2945 * 2946 * Returns 0 on success, negative on failure 2947 **/ 2948 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2949 { 2950 struct i40e_netdev_priv *np = netdev_priv(netdev); 2951 struct i40e_vsi *vsi = np->vsi; 2952 struct i40e_pf *pf = vsi->back; 2953 int frame_size; 2954 2955 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2956 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2957 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2958 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2959 return -EINVAL; 2960 } 2961 2962 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2963 netdev->mtu, new_mtu); 2964 netdev->mtu = new_mtu; 2965 if (netif_running(netdev)) 2966 i40e_vsi_reinit_locked(vsi); 2967 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2968 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2969 return 0; 2970 } 2971 2972 /** 2973 * i40e_ioctl - Access the hwtstamp interface 2974 * @netdev: network interface device structure 2975 * @ifr: interface request data 2976 * @cmd: ioctl command 2977 **/ 2978 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2979 { 2980 struct i40e_netdev_priv *np = netdev_priv(netdev); 2981 struct i40e_pf *pf = np->vsi->back; 2982 2983 switch (cmd) { 2984 case SIOCGHWTSTAMP: 2985 return i40e_ptp_get_ts_config(pf, ifr); 2986 case SIOCSHWTSTAMP: 2987 return i40e_ptp_set_ts_config(pf, ifr); 2988 default: 2989 return -EOPNOTSUPP; 2990 } 2991 } 2992 2993 /** 2994 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2995 * @vsi: the vsi being adjusted 2996 **/ 2997 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2998 { 2999 struct i40e_vsi_context ctxt; 3000 int ret; 3001 3002 /* Don't modify stripping options if a port VLAN is active */ 3003 if (vsi->info.pvid) 3004 return; 3005 3006 if ((vsi->info.valid_sections & 3007 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3008 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 3009 return; /* already enabled */ 3010 3011 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3012 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3013 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 3014 3015 ctxt.seid = vsi->seid; 3016 ctxt.info = vsi->info; 3017 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3018 if (ret) { 3019 dev_info(&vsi->back->pdev->dev, 3020 "update vlan stripping failed, err %pe aq_err %s\n", 3021 ERR_PTR(ret), 3022 i40e_aq_str(&vsi->back->hw, 3023 vsi->back->hw.aq.asq_last_status)); 3024 } 3025 } 3026 3027 /** 3028 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 3029 * @vsi: the vsi being adjusted 3030 **/ 3031 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 3032 { 3033 struct i40e_vsi_context ctxt; 3034 int ret; 3035 3036 /* Don't modify stripping options if a port VLAN is active */ 3037 if (vsi->info.pvid) 3038 return; 3039 3040 if ((vsi->info.valid_sections & 3041 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3042 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3043 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3044 return; /* already disabled */ 3045 3046 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3047 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3048 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3049 3050 ctxt.seid = vsi->seid; 3051 ctxt.info = vsi->info; 3052 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3053 if (ret) { 3054 dev_info(&vsi->back->pdev->dev, 3055 "update vlan stripping failed, err %pe aq_err %s\n", 3056 ERR_PTR(ret), 3057 i40e_aq_str(&vsi->back->hw, 3058 vsi->back->hw.aq.asq_last_status)); 3059 } 3060 } 3061 3062 /** 3063 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3064 * @vsi: the vsi being configured 3065 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3066 * 3067 * This is a helper function for adding a new MAC/VLAN filter with the 3068 * specified VLAN for each existing MAC address already in the hash table. 3069 * This function does *not* perform any accounting to update filters based on 3070 * VLAN mode. 3071 * 3072 * NOTE: this function expects to be called while under the 3073 * mac_filter_hash_lock 3074 **/ 3075 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3076 { 3077 struct i40e_mac_filter *f, *add_f; 3078 struct hlist_node *h; 3079 int bkt; 3080 3081 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3082 /* If we're asked to add a filter that has been marked for 3083 * removal, it is safe to simply restore it to active state. 3084 * __i40e_del_filter will have simply deleted any filters which 3085 * were previously marked NEW or FAILED, so if it is currently 3086 * marked REMOVE it must have previously been ACTIVE. Since we 3087 * haven't yet run the sync filters task, just restore this 3088 * filter to the ACTIVE state so that the sync task leaves it 3089 * in place. 3090 */ 3091 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3092 f->state = I40E_FILTER_ACTIVE; 3093 continue; 3094 } else if (f->state == I40E_FILTER_REMOVE) { 3095 continue; 3096 } 3097 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3098 if (!add_f) { 3099 dev_info(&vsi->back->pdev->dev, 3100 "Could not add vlan filter %d for %pM\n", 3101 vid, f->macaddr); 3102 return -ENOMEM; 3103 } 3104 } 3105 3106 return 0; 3107 } 3108 3109 /** 3110 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3111 * @vsi: the VSI being configured 3112 * @vid: VLAN id to be added 3113 **/ 3114 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3115 { 3116 int err; 3117 3118 if (vsi->info.pvid) 3119 return -EINVAL; 3120 3121 /* The network stack will attempt to add VID=0, with the intention to 3122 * receive priority tagged packets with a VLAN of 0. Our HW receives 3123 * these packets by default when configured to receive untagged 3124 * packets, so we don't need to add a filter for this case. 3125 * Additionally, HW interprets adding a VID=0 filter as meaning to 3126 * receive *only* tagged traffic and stops receiving untagged traffic. 3127 * Thus, we do not want to actually add a filter for VID=0 3128 */ 3129 if (!vid) 3130 return 0; 3131 3132 /* Locked once because all functions invoked below iterates list*/ 3133 spin_lock_bh(&vsi->mac_filter_hash_lock); 3134 err = i40e_add_vlan_all_mac(vsi, vid); 3135 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3136 if (err) 3137 return err; 3138 3139 /* schedule our worker thread which will take care of 3140 * applying the new filter changes 3141 */ 3142 i40e_service_event_schedule(vsi->back); 3143 return 0; 3144 } 3145 3146 /** 3147 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3148 * @vsi: the vsi being configured 3149 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3150 * 3151 * This function should be used to remove all VLAN filters which match the 3152 * given VID. It does not schedule the service event and does not take the 3153 * mac_filter_hash_lock so it may be combined with other operations under 3154 * a single invocation of the mac_filter_hash_lock. 3155 * 3156 * NOTE: this function expects to be called while under the 3157 * mac_filter_hash_lock 3158 */ 3159 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3160 { 3161 struct i40e_mac_filter *f; 3162 struct hlist_node *h; 3163 int bkt; 3164 3165 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3166 if (f->vlan == vid) 3167 __i40e_del_filter(vsi, f); 3168 } 3169 } 3170 3171 /** 3172 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3173 * @vsi: the VSI being configured 3174 * @vid: VLAN id to be removed 3175 **/ 3176 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3177 { 3178 if (!vid || vsi->info.pvid) 3179 return; 3180 3181 spin_lock_bh(&vsi->mac_filter_hash_lock); 3182 i40e_rm_vlan_all_mac(vsi, vid); 3183 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3184 3185 /* schedule our worker thread which will take care of 3186 * applying the new filter changes 3187 */ 3188 i40e_service_event_schedule(vsi->back); 3189 } 3190 3191 /** 3192 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3193 * @netdev: network interface to be adjusted 3194 * @proto: unused protocol value 3195 * @vid: vlan id to be added 3196 * 3197 * net_device_ops implementation for adding vlan ids 3198 **/ 3199 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3200 __always_unused __be16 proto, u16 vid) 3201 { 3202 struct i40e_netdev_priv *np = netdev_priv(netdev); 3203 struct i40e_vsi *vsi = np->vsi; 3204 int ret = 0; 3205 3206 if (vid >= VLAN_N_VID) 3207 return -EINVAL; 3208 3209 ret = i40e_vsi_add_vlan(vsi, vid); 3210 if (!ret) 3211 set_bit(vid, vsi->active_vlans); 3212 3213 return ret; 3214 } 3215 3216 /** 3217 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3218 * @netdev: network interface to be adjusted 3219 * @proto: unused protocol value 3220 * @vid: vlan id to be added 3221 **/ 3222 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3223 __always_unused __be16 proto, u16 vid) 3224 { 3225 struct i40e_netdev_priv *np = netdev_priv(netdev); 3226 struct i40e_vsi *vsi = np->vsi; 3227 3228 if (vid >= VLAN_N_VID) 3229 return; 3230 set_bit(vid, vsi->active_vlans); 3231 } 3232 3233 /** 3234 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3235 * @netdev: network interface to be adjusted 3236 * @proto: unused protocol value 3237 * @vid: vlan id to be removed 3238 * 3239 * net_device_ops implementation for removing vlan ids 3240 **/ 3241 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3242 __always_unused __be16 proto, u16 vid) 3243 { 3244 struct i40e_netdev_priv *np = netdev_priv(netdev); 3245 struct i40e_vsi *vsi = np->vsi; 3246 3247 /* return code is ignored as there is nothing a user 3248 * can do about failure to remove and a log message was 3249 * already printed from the other function 3250 */ 3251 i40e_vsi_kill_vlan(vsi, vid); 3252 3253 clear_bit(vid, vsi->active_vlans); 3254 3255 return 0; 3256 } 3257 3258 /** 3259 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3260 * @vsi: the vsi being brought back up 3261 **/ 3262 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3263 { 3264 u16 vid; 3265 3266 if (!vsi->netdev) 3267 return; 3268 3269 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3270 i40e_vlan_stripping_enable(vsi); 3271 else 3272 i40e_vlan_stripping_disable(vsi); 3273 3274 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3275 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3276 vid); 3277 } 3278 3279 /** 3280 * i40e_vsi_add_pvid - Add pvid for the VSI 3281 * @vsi: the vsi being adjusted 3282 * @vid: the vlan id to set as a PVID 3283 **/ 3284 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3285 { 3286 struct i40e_vsi_context ctxt; 3287 int ret; 3288 3289 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3290 vsi->info.pvid = cpu_to_le16(vid); 3291 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3292 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3293 I40E_AQ_VSI_PVLAN_EMOD_STR; 3294 3295 ctxt.seid = vsi->seid; 3296 ctxt.info = vsi->info; 3297 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3298 if (ret) { 3299 dev_info(&vsi->back->pdev->dev, 3300 "add pvid failed, err %pe aq_err %s\n", 3301 ERR_PTR(ret), 3302 i40e_aq_str(&vsi->back->hw, 3303 vsi->back->hw.aq.asq_last_status)); 3304 return -ENOENT; 3305 } 3306 3307 return 0; 3308 } 3309 3310 /** 3311 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3312 * @vsi: the vsi being adjusted 3313 * 3314 * Just use the vlan_rx_register() service to put it back to normal 3315 **/ 3316 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3317 { 3318 vsi->info.pvid = 0; 3319 3320 i40e_vlan_stripping_disable(vsi); 3321 } 3322 3323 /** 3324 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3325 * @vsi: ptr to the VSI 3326 * 3327 * If this function returns with an error, then it's possible one or 3328 * more of the rings is populated (while the rest are not). It is the 3329 * callers duty to clean those orphaned rings. 3330 * 3331 * Return 0 on success, negative on failure 3332 **/ 3333 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3334 { 3335 int i, err = 0; 3336 3337 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3338 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3339 3340 if (!i40e_enabled_xdp_vsi(vsi)) 3341 return err; 3342 3343 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3344 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3345 3346 return err; 3347 } 3348 3349 /** 3350 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3351 * @vsi: ptr to the VSI 3352 * 3353 * Free VSI's transmit software resources 3354 **/ 3355 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3356 { 3357 int i; 3358 3359 if (vsi->tx_rings) { 3360 for (i = 0; i < vsi->num_queue_pairs; i++) 3361 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3362 i40e_free_tx_resources(vsi->tx_rings[i]); 3363 } 3364 3365 if (vsi->xdp_rings) { 3366 for (i = 0; i < vsi->num_queue_pairs; i++) 3367 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3368 i40e_free_tx_resources(vsi->xdp_rings[i]); 3369 } 3370 } 3371 3372 /** 3373 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3374 * @vsi: ptr to the VSI 3375 * 3376 * If this function returns with an error, then it's possible one or 3377 * more of the rings is populated (while the rest are not). It is the 3378 * callers duty to clean those orphaned rings. 3379 * 3380 * Return 0 on success, negative on failure 3381 **/ 3382 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3383 { 3384 int i, err = 0; 3385 3386 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3387 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3388 return err; 3389 } 3390 3391 /** 3392 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3393 * @vsi: ptr to the VSI 3394 * 3395 * Free all receive software resources 3396 **/ 3397 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3398 { 3399 int i; 3400 3401 if (!vsi->rx_rings) 3402 return; 3403 3404 for (i = 0; i < vsi->num_queue_pairs; i++) 3405 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3406 i40e_free_rx_resources(vsi->rx_rings[i]); 3407 } 3408 3409 /** 3410 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3411 * @ring: The Tx ring to configure 3412 * 3413 * This enables/disables XPS for a given Tx descriptor ring 3414 * based on the TCs enabled for the VSI that ring belongs to. 3415 **/ 3416 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3417 { 3418 int cpu; 3419 3420 if (!ring->q_vector || !ring->netdev || ring->ch) 3421 return; 3422 3423 /* We only initialize XPS once, so as not to overwrite user settings */ 3424 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3425 return; 3426 3427 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3428 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3429 ring->queue_index); 3430 } 3431 3432 /** 3433 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3434 * @ring: The Tx or Rx ring 3435 * 3436 * Returns the AF_XDP buffer pool or NULL. 3437 **/ 3438 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3439 { 3440 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3441 int qid = ring->queue_index; 3442 3443 if (ring_is_xdp(ring)) 3444 qid -= ring->vsi->alloc_queue_pairs; 3445 3446 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3447 return NULL; 3448 3449 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3450 } 3451 3452 /** 3453 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3454 * @ring: The Tx ring to configure 3455 * 3456 * Configure the Tx descriptor ring in the HMC context. 3457 **/ 3458 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3459 { 3460 struct i40e_vsi *vsi = ring->vsi; 3461 u16 pf_q = vsi->base_queue + ring->queue_index; 3462 struct i40e_hw *hw = &vsi->back->hw; 3463 struct i40e_hmc_obj_txq tx_ctx; 3464 u32 qtx_ctl = 0; 3465 int err = 0; 3466 3467 if (ring_is_xdp(ring)) 3468 ring->xsk_pool = i40e_xsk_pool(ring); 3469 3470 /* some ATR related tx ring init */ 3471 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3472 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3473 ring->atr_count = 0; 3474 } else { 3475 ring->atr_sample_rate = 0; 3476 } 3477 3478 /* configure XPS */ 3479 i40e_config_xps_tx_ring(ring); 3480 3481 /* clear the context structure first */ 3482 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3483 3484 tx_ctx.new_context = 1; 3485 tx_ctx.base = (ring->dma / 128); 3486 tx_ctx.qlen = ring->count; 3487 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3488 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3489 tx_ctx.fd_ena = 1; 3490 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3491 tx_ctx.timesync_ena = 1; 3492 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3493 if (vsi->type != I40E_VSI_FDIR) 3494 tx_ctx.head_wb_ena = 1; 3495 tx_ctx.head_wb_addr = ring->dma + 3496 (ring->count * sizeof(struct i40e_tx_desc)); 3497 3498 /* As part of VSI creation/update, FW allocates certain 3499 * Tx arbitration queue sets for each TC enabled for 3500 * the VSI. The FW returns the handles to these queue 3501 * sets as part of the response buffer to Add VSI, 3502 * Update VSI, etc. AQ commands. It is expected that 3503 * these queue set handles be associated with the Tx 3504 * queues by the driver as part of the TX queue context 3505 * initialization. This has to be done regardless of 3506 * DCB as by default everything is mapped to TC0. 3507 */ 3508 3509 if (ring->ch) 3510 tx_ctx.rdylist = 3511 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3512 3513 else 3514 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3515 3516 tx_ctx.rdylist_act = 0; 3517 3518 /* clear the context in the HMC */ 3519 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3520 if (err) { 3521 dev_info(&vsi->back->pdev->dev, 3522 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3523 ring->queue_index, pf_q, err); 3524 return -ENOMEM; 3525 } 3526 3527 /* set the context in the HMC */ 3528 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3529 if (err) { 3530 dev_info(&vsi->back->pdev->dev, 3531 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3532 ring->queue_index, pf_q, err); 3533 return -ENOMEM; 3534 } 3535 3536 /* Now associate this queue with this PCI function */ 3537 if (ring->ch) { 3538 if (ring->ch->type == I40E_VSI_VMDQ2) 3539 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3540 else 3541 return -EINVAL; 3542 3543 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3544 ring->ch->vsi_number); 3545 } else { 3546 if (vsi->type == I40E_VSI_VMDQ2) { 3547 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3548 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3549 vsi->id); 3550 } else { 3551 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3552 } 3553 } 3554 3555 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id); 3556 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3557 i40e_flush(hw); 3558 3559 /* cache tail off for easier writes later */ 3560 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3561 3562 return 0; 3563 } 3564 3565 /** 3566 * i40e_rx_offset - Return expected offset into page to access data 3567 * @rx_ring: Ring we are requesting offset of 3568 * 3569 * Returns the offset value for ring into the data buffer. 3570 */ 3571 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3572 { 3573 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3574 } 3575 3576 /** 3577 * i40e_configure_rx_ring - Configure a receive ring context 3578 * @ring: The Rx ring to configure 3579 * 3580 * Configure the Rx descriptor ring in the HMC context. 3581 **/ 3582 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3583 { 3584 struct i40e_vsi *vsi = ring->vsi; 3585 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3586 u16 pf_q = vsi->base_queue + ring->queue_index; 3587 struct i40e_hw *hw = &vsi->back->hw; 3588 struct i40e_hmc_obj_rxq rx_ctx; 3589 int err = 0; 3590 bool ok; 3591 int ret; 3592 3593 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3594 3595 /* clear the context structure first */ 3596 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3597 3598 if (ring->vsi->type == I40E_VSI_MAIN) 3599 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3600 3601 ring->xsk_pool = i40e_xsk_pool(ring); 3602 if (ring->xsk_pool) { 3603 ring->rx_buf_len = 3604 xsk_pool_get_rx_frame_size(ring->xsk_pool); 3605 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3606 MEM_TYPE_XSK_BUFF_POOL, 3607 NULL); 3608 if (ret) 3609 return ret; 3610 dev_info(&vsi->back->pdev->dev, 3611 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3612 ring->queue_index); 3613 3614 } else { 3615 ring->rx_buf_len = vsi->rx_buf_len; 3616 if (ring->vsi->type == I40E_VSI_MAIN) { 3617 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3618 MEM_TYPE_PAGE_SHARED, 3619 NULL); 3620 if (ret) 3621 return ret; 3622 } 3623 } 3624 3625 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3626 3627 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3628 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3629 3630 rx_ctx.base = (ring->dma / 128); 3631 rx_ctx.qlen = ring->count; 3632 3633 /* use 16 byte descriptors */ 3634 rx_ctx.dsize = 0; 3635 3636 /* descriptor type is always zero 3637 * rx_ctx.dtype = 0; 3638 */ 3639 rx_ctx.hsplit_0 = 0; 3640 3641 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3642 if (hw->revision_id == 0) 3643 rx_ctx.lrxqthresh = 0; 3644 else 3645 rx_ctx.lrxqthresh = 1; 3646 rx_ctx.crcstrip = 1; 3647 rx_ctx.l2tsel = 1; 3648 /* this controls whether VLAN is stripped from inner headers */ 3649 rx_ctx.showiv = 0; 3650 /* set the prefena field to 1 because the manual says to */ 3651 rx_ctx.prefena = 1; 3652 3653 /* clear the context in the HMC */ 3654 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3655 if (err) { 3656 dev_info(&vsi->back->pdev->dev, 3657 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3658 ring->queue_index, pf_q, err); 3659 return -ENOMEM; 3660 } 3661 3662 /* set the context in the HMC */ 3663 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3664 if (err) { 3665 dev_info(&vsi->back->pdev->dev, 3666 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3667 ring->queue_index, pf_q, err); 3668 return -ENOMEM; 3669 } 3670 3671 /* configure Rx buffer alignment */ 3672 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3673 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3674 dev_info(&vsi->back->pdev->dev, 3675 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3676 return -EOPNOTSUPP; 3677 } 3678 clear_ring_build_skb_enabled(ring); 3679 } else { 3680 set_ring_build_skb_enabled(ring); 3681 } 3682 3683 ring->rx_offset = i40e_rx_offset(ring); 3684 3685 /* cache tail for quicker writes, and clear the reg before use */ 3686 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3687 writel(0, ring->tail); 3688 3689 if (ring->xsk_pool) { 3690 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3691 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3692 } else { 3693 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3694 } 3695 if (!ok) { 3696 /* Log this in case the user has forgotten to give the kernel 3697 * any buffers, even later in the application. 3698 */ 3699 dev_info(&vsi->back->pdev->dev, 3700 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3701 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3702 ring->queue_index, pf_q); 3703 } 3704 3705 return 0; 3706 } 3707 3708 /** 3709 * i40e_vsi_configure_tx - Configure the VSI for Tx 3710 * @vsi: VSI structure describing this set of rings and resources 3711 * 3712 * Configure the Tx VSI for operation. 3713 **/ 3714 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3715 { 3716 int err = 0; 3717 u16 i; 3718 3719 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3720 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3721 3722 if (err || !i40e_enabled_xdp_vsi(vsi)) 3723 return err; 3724 3725 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3726 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3727 3728 return err; 3729 } 3730 3731 /** 3732 * i40e_vsi_configure_rx - Configure the VSI for Rx 3733 * @vsi: the VSI being configured 3734 * 3735 * Configure the Rx VSI for operation. 3736 **/ 3737 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3738 { 3739 int err = 0; 3740 u16 i; 3741 3742 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3743 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3744 3745 #if (PAGE_SIZE < 8192) 3746 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3747 vsi->netdev->mtu <= ETH_DATA_LEN) { 3748 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3749 vsi->max_frame = vsi->rx_buf_len; 3750 } 3751 #endif 3752 3753 /* set up individual rings */ 3754 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3755 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3756 3757 return err; 3758 } 3759 3760 /** 3761 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3762 * @vsi: ptr to the VSI 3763 **/ 3764 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3765 { 3766 struct i40e_ring *tx_ring, *rx_ring; 3767 u16 qoffset, qcount; 3768 int i, n; 3769 3770 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3771 /* Reset the TC information */ 3772 for (i = 0; i < vsi->num_queue_pairs; i++) { 3773 rx_ring = vsi->rx_rings[i]; 3774 tx_ring = vsi->tx_rings[i]; 3775 rx_ring->dcb_tc = 0; 3776 tx_ring->dcb_tc = 0; 3777 } 3778 return; 3779 } 3780 3781 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3782 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3783 continue; 3784 3785 qoffset = vsi->tc_config.tc_info[n].qoffset; 3786 qcount = vsi->tc_config.tc_info[n].qcount; 3787 for (i = qoffset; i < (qoffset + qcount); i++) { 3788 rx_ring = vsi->rx_rings[i]; 3789 tx_ring = vsi->tx_rings[i]; 3790 rx_ring->dcb_tc = n; 3791 tx_ring->dcb_tc = n; 3792 } 3793 } 3794 } 3795 3796 /** 3797 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3798 * @vsi: ptr to the VSI 3799 **/ 3800 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3801 { 3802 if (vsi->netdev) 3803 i40e_set_rx_mode(vsi->netdev); 3804 } 3805 3806 /** 3807 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3808 * @pf: Pointer to the targeted PF 3809 * 3810 * Set all flow director counters to 0. 3811 */ 3812 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3813 { 3814 pf->fd_tcp4_filter_cnt = 0; 3815 pf->fd_udp4_filter_cnt = 0; 3816 pf->fd_sctp4_filter_cnt = 0; 3817 pf->fd_ip4_filter_cnt = 0; 3818 pf->fd_tcp6_filter_cnt = 0; 3819 pf->fd_udp6_filter_cnt = 0; 3820 pf->fd_sctp6_filter_cnt = 0; 3821 pf->fd_ip6_filter_cnt = 0; 3822 } 3823 3824 /** 3825 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3826 * @vsi: Pointer to the targeted VSI 3827 * 3828 * This function replays the hlist on the hw where all the SB Flow Director 3829 * filters were saved. 3830 **/ 3831 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3832 { 3833 struct i40e_fdir_filter *filter; 3834 struct i40e_pf *pf = vsi->back; 3835 struct hlist_node *node; 3836 3837 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3838 return; 3839 3840 /* Reset FDir counters as we're replaying all existing filters */ 3841 i40e_reset_fdir_filter_cnt(pf); 3842 3843 hlist_for_each_entry_safe(filter, node, 3844 &pf->fdir_filter_list, fdir_node) { 3845 i40e_add_del_fdir(vsi, filter, true); 3846 } 3847 } 3848 3849 /** 3850 * i40e_vsi_configure - Set up the VSI for action 3851 * @vsi: the VSI being configured 3852 **/ 3853 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3854 { 3855 int err; 3856 3857 i40e_set_vsi_rx_mode(vsi); 3858 i40e_restore_vlan(vsi); 3859 i40e_vsi_config_dcb_rings(vsi); 3860 err = i40e_vsi_configure_tx(vsi); 3861 if (!err) 3862 err = i40e_vsi_configure_rx(vsi); 3863 3864 return err; 3865 } 3866 3867 /** 3868 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3869 * @vsi: the VSI being configured 3870 **/ 3871 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3872 { 3873 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3874 struct i40e_pf *pf = vsi->back; 3875 struct i40e_hw *hw = &pf->hw; 3876 u16 vector; 3877 int i, q; 3878 u32 qp; 3879 3880 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3881 * and PFINT_LNKLSTn registers, e.g.: 3882 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3883 */ 3884 qp = vsi->base_queue; 3885 vector = vsi->base_vector; 3886 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3887 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3888 3889 q_vector->rx.next_update = jiffies + 1; 3890 q_vector->rx.target_itr = 3891 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3892 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3893 q_vector->rx.target_itr >> 1); 3894 q_vector->rx.current_itr = q_vector->rx.target_itr; 3895 3896 q_vector->tx.next_update = jiffies + 1; 3897 q_vector->tx.target_itr = 3898 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3899 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3900 q_vector->tx.target_itr >> 1); 3901 q_vector->tx.current_itr = q_vector->tx.target_itr; 3902 3903 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3904 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3905 3906 /* begin of linked list for RX queue assigned to this vector */ 3907 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3908 for (q = 0; q < q_vector->num_ringpairs; q++) { 3909 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3910 u32 val; 3911 3912 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3913 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3914 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3915 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3916 (I40E_QUEUE_TYPE_TX << 3917 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3918 3919 wr32(hw, I40E_QINT_RQCTL(qp), val); 3920 3921 if (has_xdp) { 3922 /* TX queue with next queue set to TX */ 3923 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3924 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3925 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3926 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3927 (I40E_QUEUE_TYPE_TX << 3928 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3929 3930 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3931 } 3932 /* TX queue with next RX or end of linked list */ 3933 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3934 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3935 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3936 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3937 (I40E_QUEUE_TYPE_RX << 3938 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3939 3940 /* Terminate the linked list */ 3941 if (q == (q_vector->num_ringpairs - 1)) 3942 val |= (I40E_QUEUE_END_OF_LIST << 3943 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3944 3945 wr32(hw, I40E_QINT_TQCTL(qp), val); 3946 qp++; 3947 } 3948 } 3949 3950 i40e_flush(hw); 3951 } 3952 3953 /** 3954 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3955 * @pf: pointer to private device data structure 3956 **/ 3957 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3958 { 3959 struct i40e_hw *hw = &pf->hw; 3960 u32 val; 3961 3962 /* clear things first */ 3963 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3964 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3965 3966 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3967 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3968 I40E_PFINT_ICR0_ENA_GRST_MASK | 3969 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3970 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3971 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3972 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3973 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3974 3975 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 3976 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3977 3978 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3979 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3980 3981 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3982 3983 /* SW_ITR_IDX = 0, but don't change INTENA */ 3984 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3985 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3986 3987 /* OTHER_ITR_IDX = 0 */ 3988 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3989 } 3990 3991 /** 3992 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3993 * @vsi: the VSI being configured 3994 **/ 3995 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3996 { 3997 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3998 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3999 struct i40e_pf *pf = vsi->back; 4000 struct i40e_hw *hw = &pf->hw; 4001 4002 /* set the ITR configuration */ 4003 q_vector->rx.next_update = jiffies + 1; 4004 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 4005 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 4006 q_vector->rx.current_itr = q_vector->rx.target_itr; 4007 q_vector->tx.next_update = jiffies + 1; 4008 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 4009 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 4010 q_vector->tx.current_itr = q_vector->tx.target_itr; 4011 4012 i40e_enable_misc_int_causes(pf); 4013 4014 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4015 wr32(hw, I40E_PFINT_LNKLST0, 0); 4016 4017 /* Associate the queue pair to the vector and enable the queue 4018 * interrupt RX queue in linked list with next queue set to TX 4019 */ 4020 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4021 4022 if (i40e_enabled_xdp_vsi(vsi)) { 4023 /* TX queue in linked list with next queue set to TX */ 4024 wr32(hw, I40E_QINT_TQCTL(nextqp), 4025 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4026 } 4027 4028 /* last TX queue so the next RX queue doesn't matter */ 4029 wr32(hw, I40E_QINT_TQCTL(0), 4030 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4031 i40e_flush(hw); 4032 } 4033 4034 /** 4035 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4036 * @pf: board private structure 4037 **/ 4038 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4039 { 4040 struct i40e_hw *hw = &pf->hw; 4041 4042 wr32(hw, I40E_PFINT_DYN_CTL0, 4043 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4044 i40e_flush(hw); 4045 } 4046 4047 /** 4048 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4049 * @pf: board private structure 4050 **/ 4051 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4052 { 4053 struct i40e_hw *hw = &pf->hw; 4054 u32 val; 4055 4056 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4057 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4058 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4059 4060 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4061 i40e_flush(hw); 4062 } 4063 4064 /** 4065 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4066 * @irq: interrupt number 4067 * @data: pointer to a q_vector 4068 **/ 4069 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4070 { 4071 struct i40e_q_vector *q_vector = data; 4072 4073 if (!q_vector->tx.ring && !q_vector->rx.ring) 4074 return IRQ_HANDLED; 4075 4076 napi_schedule_irqoff(&q_vector->napi); 4077 4078 return IRQ_HANDLED; 4079 } 4080 4081 /** 4082 * i40e_irq_affinity_notify - Callback for affinity changes 4083 * @notify: context as to what irq was changed 4084 * @mask: the new affinity mask 4085 * 4086 * This is a callback function used by the irq_set_affinity_notifier function 4087 * so that we may register to receive changes to the irq affinity masks. 4088 **/ 4089 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4090 const cpumask_t *mask) 4091 { 4092 struct i40e_q_vector *q_vector = 4093 container_of(notify, struct i40e_q_vector, affinity_notify); 4094 4095 cpumask_copy(&q_vector->affinity_mask, mask); 4096 } 4097 4098 /** 4099 * i40e_irq_affinity_release - Callback for affinity notifier release 4100 * @ref: internal core kernel usage 4101 * 4102 * This is a callback function used by the irq_set_affinity_notifier function 4103 * to inform the current notification subscriber that they will no longer 4104 * receive notifications. 4105 **/ 4106 static void i40e_irq_affinity_release(struct kref *ref) {} 4107 4108 /** 4109 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4110 * @vsi: the VSI being configured 4111 * @basename: name for the vector 4112 * 4113 * Allocates MSI-X vectors and requests interrupts from the kernel. 4114 **/ 4115 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4116 { 4117 int q_vectors = vsi->num_q_vectors; 4118 struct i40e_pf *pf = vsi->back; 4119 int base = vsi->base_vector; 4120 int rx_int_idx = 0; 4121 int tx_int_idx = 0; 4122 int vector, err; 4123 int irq_num; 4124 int cpu; 4125 4126 for (vector = 0; vector < q_vectors; vector++) { 4127 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4128 4129 irq_num = pf->msix_entries[base + vector].vector; 4130 4131 if (q_vector->tx.ring && q_vector->rx.ring) { 4132 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4133 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4134 tx_int_idx++; 4135 } else if (q_vector->rx.ring) { 4136 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4137 "%s-%s-%d", basename, "rx", rx_int_idx++); 4138 } else if (q_vector->tx.ring) { 4139 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4140 "%s-%s-%d", basename, "tx", tx_int_idx++); 4141 } else { 4142 /* skip this unused q_vector */ 4143 continue; 4144 } 4145 err = request_irq(irq_num, 4146 vsi->irq_handler, 4147 0, 4148 q_vector->name, 4149 q_vector); 4150 if (err) { 4151 dev_info(&pf->pdev->dev, 4152 "MSIX request_irq failed, error: %d\n", err); 4153 goto free_queue_irqs; 4154 } 4155 4156 /* register for affinity change notifications */ 4157 q_vector->irq_num = irq_num; 4158 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4159 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4160 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4161 /* Spread affinity hints out across online CPUs. 4162 * 4163 * get_cpu_mask returns a static constant mask with 4164 * a permanent lifetime so it's ok to pass to 4165 * irq_update_affinity_hint without making a copy. 4166 */ 4167 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4168 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4169 } 4170 4171 vsi->irqs_ready = true; 4172 return 0; 4173 4174 free_queue_irqs: 4175 while (vector) { 4176 vector--; 4177 irq_num = pf->msix_entries[base + vector].vector; 4178 irq_set_affinity_notifier(irq_num, NULL); 4179 irq_update_affinity_hint(irq_num, NULL); 4180 free_irq(irq_num, &vsi->q_vectors[vector]); 4181 } 4182 return err; 4183 } 4184 4185 /** 4186 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4187 * @vsi: the VSI being un-configured 4188 **/ 4189 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4190 { 4191 struct i40e_pf *pf = vsi->back; 4192 struct i40e_hw *hw = &pf->hw; 4193 int base = vsi->base_vector; 4194 int i; 4195 4196 /* disable interrupt causation from each queue */ 4197 for (i = 0; i < vsi->num_queue_pairs; i++) { 4198 u32 val; 4199 4200 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4201 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4202 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4203 4204 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4205 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4206 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4207 4208 if (!i40e_enabled_xdp_vsi(vsi)) 4209 continue; 4210 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4211 } 4212 4213 /* disable each interrupt */ 4214 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4215 for (i = vsi->base_vector; 4216 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4217 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4218 4219 i40e_flush(hw); 4220 for (i = 0; i < vsi->num_q_vectors; i++) 4221 synchronize_irq(pf->msix_entries[i + base].vector); 4222 } else { 4223 /* Legacy and MSI mode - this stops all interrupt handling */ 4224 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4225 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4226 i40e_flush(hw); 4227 synchronize_irq(pf->pdev->irq); 4228 } 4229 } 4230 4231 /** 4232 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4233 * @vsi: the VSI being configured 4234 **/ 4235 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4236 { 4237 struct i40e_pf *pf = vsi->back; 4238 int i; 4239 4240 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4241 for (i = 0; i < vsi->num_q_vectors; i++) 4242 i40e_irq_dynamic_enable(vsi, i); 4243 } else { 4244 i40e_irq_dynamic_enable_icr0(pf); 4245 } 4246 4247 i40e_flush(&pf->hw); 4248 return 0; 4249 } 4250 4251 /** 4252 * i40e_free_misc_vector - Free the vector that handles non-queue events 4253 * @pf: board private structure 4254 **/ 4255 static void i40e_free_misc_vector(struct i40e_pf *pf) 4256 { 4257 /* Disable ICR 0 */ 4258 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4259 i40e_flush(&pf->hw); 4260 4261 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4262 free_irq(pf->msix_entries[0].vector, pf); 4263 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4264 } 4265 } 4266 4267 /** 4268 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4269 * @irq: interrupt number 4270 * @data: pointer to a q_vector 4271 * 4272 * This is the handler used for all MSI/Legacy interrupts, and deals 4273 * with both queue and non-queue interrupts. This is also used in 4274 * MSIX mode to handle the non-queue interrupts. 4275 **/ 4276 static irqreturn_t i40e_intr(int irq, void *data) 4277 { 4278 struct i40e_pf *pf = (struct i40e_pf *)data; 4279 struct i40e_hw *hw = &pf->hw; 4280 irqreturn_t ret = IRQ_NONE; 4281 u32 icr0, icr0_remaining; 4282 u32 val, ena_mask; 4283 4284 icr0 = rd32(hw, I40E_PFINT_ICR0); 4285 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4286 4287 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4288 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4289 goto enable_intr; 4290 4291 /* if interrupt but no bits showing, must be SWINT */ 4292 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4293 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4294 pf->sw_int_count++; 4295 4296 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4297 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4298 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4299 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4300 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4301 } 4302 4303 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4304 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4305 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4306 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4307 4308 /* We do not have a way to disarm Queue causes while leaving 4309 * interrupt enabled for all other causes, ideally 4310 * interrupt should be disabled while we are in NAPI but 4311 * this is not a performance path and napi_schedule() 4312 * can deal with rescheduling. 4313 */ 4314 if (!test_bit(__I40E_DOWN, pf->state)) 4315 napi_schedule_irqoff(&q_vector->napi); 4316 } 4317 4318 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4319 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4320 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4321 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4322 } 4323 4324 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4325 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4326 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4327 } 4328 4329 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4330 /* disable any further VFLR event notifications */ 4331 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4332 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4333 4334 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4335 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4336 } else { 4337 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4338 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4339 } 4340 } 4341 4342 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4343 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4344 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4345 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4346 val = rd32(hw, I40E_GLGEN_RSTAT); 4347 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val); 4348 if (val == I40E_RESET_CORER) { 4349 pf->corer_count++; 4350 } else if (val == I40E_RESET_GLOBR) { 4351 pf->globr_count++; 4352 } else if (val == I40E_RESET_EMPR) { 4353 pf->empr_count++; 4354 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4355 } 4356 } 4357 4358 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4359 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4360 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4361 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4362 rd32(hw, I40E_PFHMC_ERRORINFO), 4363 rd32(hw, I40E_PFHMC_ERRORDATA)); 4364 } 4365 4366 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4367 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4368 4369 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4370 schedule_work(&pf->ptp_extts0_work); 4371 4372 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4373 i40e_ptp_tx_hwtstamp(pf); 4374 4375 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4376 } 4377 4378 /* If a critical error is pending we have no choice but to reset the 4379 * device. 4380 * Report and mask out any remaining unexpected interrupts. 4381 */ 4382 icr0_remaining = icr0 & ena_mask; 4383 if (icr0_remaining) { 4384 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4385 icr0_remaining); 4386 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4387 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4388 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4389 dev_info(&pf->pdev->dev, "device will be reset\n"); 4390 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4391 i40e_service_event_schedule(pf); 4392 } 4393 ena_mask &= ~icr0_remaining; 4394 } 4395 ret = IRQ_HANDLED; 4396 4397 enable_intr: 4398 /* re-enable interrupt causes */ 4399 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4400 if (!test_bit(__I40E_DOWN, pf->state) || 4401 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4402 i40e_service_event_schedule(pf); 4403 i40e_irq_dynamic_enable_icr0(pf); 4404 } 4405 4406 return ret; 4407 } 4408 4409 /** 4410 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4411 * @tx_ring: tx ring to clean 4412 * @budget: how many cleans we're allowed 4413 * 4414 * Returns true if there's any budget left (e.g. the clean is finished) 4415 **/ 4416 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4417 { 4418 struct i40e_vsi *vsi = tx_ring->vsi; 4419 u16 i = tx_ring->next_to_clean; 4420 struct i40e_tx_buffer *tx_buf; 4421 struct i40e_tx_desc *tx_desc; 4422 4423 tx_buf = &tx_ring->tx_bi[i]; 4424 tx_desc = I40E_TX_DESC(tx_ring, i); 4425 i -= tx_ring->count; 4426 4427 do { 4428 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4429 4430 /* if next_to_watch is not set then there is no work pending */ 4431 if (!eop_desc) 4432 break; 4433 4434 /* prevent any other reads prior to eop_desc */ 4435 smp_rmb(); 4436 4437 /* if the descriptor isn't done, no work yet to do */ 4438 if (!(eop_desc->cmd_type_offset_bsz & 4439 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4440 break; 4441 4442 /* clear next_to_watch to prevent false hangs */ 4443 tx_buf->next_to_watch = NULL; 4444 4445 tx_desc->buffer_addr = 0; 4446 tx_desc->cmd_type_offset_bsz = 0; 4447 /* move past filter desc */ 4448 tx_buf++; 4449 tx_desc++; 4450 i++; 4451 if (unlikely(!i)) { 4452 i -= tx_ring->count; 4453 tx_buf = tx_ring->tx_bi; 4454 tx_desc = I40E_TX_DESC(tx_ring, 0); 4455 } 4456 /* unmap skb header data */ 4457 dma_unmap_single(tx_ring->dev, 4458 dma_unmap_addr(tx_buf, dma), 4459 dma_unmap_len(tx_buf, len), 4460 DMA_TO_DEVICE); 4461 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4462 kfree(tx_buf->raw_buf); 4463 4464 tx_buf->raw_buf = NULL; 4465 tx_buf->tx_flags = 0; 4466 tx_buf->next_to_watch = NULL; 4467 dma_unmap_len_set(tx_buf, len, 0); 4468 tx_desc->buffer_addr = 0; 4469 tx_desc->cmd_type_offset_bsz = 0; 4470 4471 /* move us past the eop_desc for start of next FD desc */ 4472 tx_buf++; 4473 tx_desc++; 4474 i++; 4475 if (unlikely(!i)) { 4476 i -= tx_ring->count; 4477 tx_buf = tx_ring->tx_bi; 4478 tx_desc = I40E_TX_DESC(tx_ring, 0); 4479 } 4480 4481 /* update budget accounting */ 4482 budget--; 4483 } while (likely(budget)); 4484 4485 i += tx_ring->count; 4486 tx_ring->next_to_clean = i; 4487 4488 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4489 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4490 4491 return budget > 0; 4492 } 4493 4494 /** 4495 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4496 * @irq: interrupt number 4497 * @data: pointer to a q_vector 4498 **/ 4499 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4500 { 4501 struct i40e_q_vector *q_vector = data; 4502 struct i40e_vsi *vsi; 4503 4504 if (!q_vector->tx.ring) 4505 return IRQ_HANDLED; 4506 4507 vsi = q_vector->tx.ring->vsi; 4508 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4509 4510 return IRQ_HANDLED; 4511 } 4512 4513 /** 4514 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4515 * @vsi: the VSI being configured 4516 * @v_idx: vector index 4517 * @qp_idx: queue pair index 4518 **/ 4519 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4520 { 4521 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4522 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4523 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4524 4525 tx_ring->q_vector = q_vector; 4526 tx_ring->next = q_vector->tx.ring; 4527 q_vector->tx.ring = tx_ring; 4528 q_vector->tx.count++; 4529 4530 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4531 if (i40e_enabled_xdp_vsi(vsi)) { 4532 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4533 4534 xdp_ring->q_vector = q_vector; 4535 xdp_ring->next = q_vector->tx.ring; 4536 q_vector->tx.ring = xdp_ring; 4537 q_vector->tx.count++; 4538 } 4539 4540 rx_ring->q_vector = q_vector; 4541 rx_ring->next = q_vector->rx.ring; 4542 q_vector->rx.ring = rx_ring; 4543 q_vector->rx.count++; 4544 } 4545 4546 /** 4547 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4548 * @vsi: the VSI being configured 4549 * 4550 * This function maps descriptor rings to the queue-specific vectors 4551 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4552 * one vector per queue pair, but on a constrained vector budget, we 4553 * group the queue pairs as "efficiently" as possible. 4554 **/ 4555 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4556 { 4557 int qp_remaining = vsi->num_queue_pairs; 4558 int q_vectors = vsi->num_q_vectors; 4559 int num_ringpairs; 4560 int v_start = 0; 4561 int qp_idx = 0; 4562 4563 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4564 * group them so there are multiple queues per vector. 4565 * It is also important to go through all the vectors available to be 4566 * sure that if we don't use all the vectors, that the remaining vectors 4567 * are cleared. This is especially important when decreasing the 4568 * number of queues in use. 4569 */ 4570 for (; v_start < q_vectors; v_start++) { 4571 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4572 4573 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4574 4575 q_vector->num_ringpairs = num_ringpairs; 4576 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4577 4578 q_vector->rx.count = 0; 4579 q_vector->tx.count = 0; 4580 q_vector->rx.ring = NULL; 4581 q_vector->tx.ring = NULL; 4582 4583 while (num_ringpairs--) { 4584 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4585 qp_idx++; 4586 qp_remaining--; 4587 } 4588 } 4589 } 4590 4591 /** 4592 * i40e_vsi_request_irq - Request IRQ from the OS 4593 * @vsi: the VSI being configured 4594 * @basename: name for the vector 4595 **/ 4596 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4597 { 4598 struct i40e_pf *pf = vsi->back; 4599 int err; 4600 4601 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4602 err = i40e_vsi_request_irq_msix(vsi, basename); 4603 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4604 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4605 pf->int_name, pf); 4606 else 4607 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4608 pf->int_name, pf); 4609 4610 if (err) 4611 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4612 4613 return err; 4614 } 4615 4616 #ifdef CONFIG_NET_POLL_CONTROLLER 4617 /** 4618 * i40e_netpoll - A Polling 'interrupt' handler 4619 * @netdev: network interface device structure 4620 * 4621 * This is used by netconsole to send skbs without having to re-enable 4622 * interrupts. It's not called while the normal interrupt routine is executing. 4623 **/ 4624 static void i40e_netpoll(struct net_device *netdev) 4625 { 4626 struct i40e_netdev_priv *np = netdev_priv(netdev); 4627 struct i40e_vsi *vsi = np->vsi; 4628 struct i40e_pf *pf = vsi->back; 4629 int i; 4630 4631 /* if interface is down do nothing */ 4632 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4633 return; 4634 4635 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4636 for (i = 0; i < vsi->num_q_vectors; i++) 4637 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4638 } else { 4639 i40e_intr(pf->pdev->irq, netdev); 4640 } 4641 } 4642 #endif 4643 4644 #define I40E_QTX_ENA_WAIT_COUNT 50 4645 4646 /** 4647 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4648 * @pf: the PF being configured 4649 * @pf_q: the PF queue 4650 * @enable: enable or disable state of the queue 4651 * 4652 * This routine will wait for the given Tx queue of the PF to reach the 4653 * enabled or disabled state. 4654 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4655 * multiple retries; else will return 0 in case of success. 4656 **/ 4657 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4658 { 4659 int i; 4660 u32 tx_reg; 4661 4662 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4663 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4664 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4665 break; 4666 4667 usleep_range(10, 20); 4668 } 4669 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4670 return -ETIMEDOUT; 4671 4672 return 0; 4673 } 4674 4675 /** 4676 * i40e_control_tx_q - Start or stop a particular Tx queue 4677 * @pf: the PF structure 4678 * @pf_q: the PF queue to configure 4679 * @enable: start or stop the queue 4680 * 4681 * This function enables or disables a single queue. Note that any delay 4682 * required after the operation is expected to be handled by the caller of 4683 * this function. 4684 **/ 4685 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4686 { 4687 struct i40e_hw *hw = &pf->hw; 4688 u32 tx_reg; 4689 int i; 4690 4691 /* warn the TX unit of coming changes */ 4692 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4693 if (!enable) 4694 usleep_range(10, 20); 4695 4696 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4697 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4698 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4699 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4700 break; 4701 usleep_range(1000, 2000); 4702 } 4703 4704 /* Skip if the queue is already in the requested state */ 4705 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4706 return; 4707 4708 /* turn on/off the queue */ 4709 if (enable) { 4710 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4711 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4712 } else { 4713 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4714 } 4715 4716 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4717 } 4718 4719 /** 4720 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4721 * @seid: VSI SEID 4722 * @pf: the PF structure 4723 * @pf_q: the PF queue to configure 4724 * @is_xdp: true if the queue is used for XDP 4725 * @enable: start or stop the queue 4726 **/ 4727 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4728 bool is_xdp, bool enable) 4729 { 4730 int ret; 4731 4732 i40e_control_tx_q(pf, pf_q, enable); 4733 4734 /* wait for the change to finish */ 4735 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4736 if (ret) { 4737 dev_info(&pf->pdev->dev, 4738 "VSI seid %d %sTx ring %d %sable timeout\n", 4739 seid, (is_xdp ? "XDP " : ""), pf_q, 4740 (enable ? "en" : "dis")); 4741 } 4742 4743 return ret; 4744 } 4745 4746 /** 4747 * i40e_vsi_enable_tx - Start a VSI's rings 4748 * @vsi: the VSI being configured 4749 **/ 4750 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4751 { 4752 struct i40e_pf *pf = vsi->back; 4753 int i, pf_q, ret = 0; 4754 4755 pf_q = vsi->base_queue; 4756 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4757 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4758 pf_q, 4759 false /*is xdp*/, true); 4760 if (ret) 4761 break; 4762 4763 if (!i40e_enabled_xdp_vsi(vsi)) 4764 continue; 4765 4766 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4767 pf_q + vsi->alloc_queue_pairs, 4768 true /*is xdp*/, true); 4769 if (ret) 4770 break; 4771 } 4772 return ret; 4773 } 4774 4775 /** 4776 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4777 * @pf: the PF being configured 4778 * @pf_q: the PF queue 4779 * @enable: enable or disable state of the queue 4780 * 4781 * This routine will wait for the given Rx queue of the PF to reach the 4782 * enabled or disabled state. 4783 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4784 * multiple retries; else will return 0 in case of success. 4785 **/ 4786 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4787 { 4788 int i; 4789 u32 rx_reg; 4790 4791 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4792 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4793 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4794 break; 4795 4796 usleep_range(10, 20); 4797 } 4798 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4799 return -ETIMEDOUT; 4800 4801 return 0; 4802 } 4803 4804 /** 4805 * i40e_control_rx_q - Start or stop a particular Rx queue 4806 * @pf: the PF structure 4807 * @pf_q: the PF queue to configure 4808 * @enable: start or stop the queue 4809 * 4810 * This function enables or disables a single queue. Note that 4811 * any delay required after the operation is expected to be 4812 * handled by the caller of this function. 4813 **/ 4814 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4815 { 4816 struct i40e_hw *hw = &pf->hw; 4817 u32 rx_reg; 4818 int i; 4819 4820 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4821 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4822 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4823 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4824 break; 4825 usleep_range(1000, 2000); 4826 } 4827 4828 /* Skip if the queue is already in the requested state */ 4829 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4830 return; 4831 4832 /* turn on/off the queue */ 4833 if (enable) 4834 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4835 else 4836 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4837 4838 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4839 } 4840 4841 /** 4842 * i40e_control_wait_rx_q 4843 * @pf: the PF structure 4844 * @pf_q: queue being configured 4845 * @enable: start or stop the rings 4846 * 4847 * This function enables or disables a single queue along with waiting 4848 * for the change to finish. The caller of this function should handle 4849 * the delays needed in the case of disabling queues. 4850 **/ 4851 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4852 { 4853 int ret = 0; 4854 4855 i40e_control_rx_q(pf, pf_q, enable); 4856 4857 /* wait for the change to finish */ 4858 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4859 if (ret) 4860 return ret; 4861 4862 return ret; 4863 } 4864 4865 /** 4866 * i40e_vsi_enable_rx - Start a VSI's rings 4867 * @vsi: the VSI being configured 4868 **/ 4869 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4870 { 4871 struct i40e_pf *pf = vsi->back; 4872 int i, pf_q, ret = 0; 4873 4874 pf_q = vsi->base_queue; 4875 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4876 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4877 if (ret) { 4878 dev_info(&pf->pdev->dev, 4879 "VSI seid %d Rx ring %d enable timeout\n", 4880 vsi->seid, pf_q); 4881 break; 4882 } 4883 } 4884 4885 return ret; 4886 } 4887 4888 /** 4889 * i40e_vsi_start_rings - Start a VSI's rings 4890 * @vsi: the VSI being configured 4891 **/ 4892 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4893 { 4894 int ret = 0; 4895 4896 /* do rx first for enable and last for disable */ 4897 ret = i40e_vsi_enable_rx(vsi); 4898 if (ret) 4899 return ret; 4900 ret = i40e_vsi_enable_tx(vsi); 4901 4902 return ret; 4903 } 4904 4905 #define I40E_DISABLE_TX_GAP_MSEC 50 4906 4907 /** 4908 * i40e_vsi_stop_rings - Stop a VSI's rings 4909 * @vsi: the VSI being configured 4910 **/ 4911 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4912 { 4913 struct i40e_pf *pf = vsi->back; 4914 int pf_q, err, q_end; 4915 4916 /* When port TX is suspended, don't wait */ 4917 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4918 return i40e_vsi_stop_rings_no_wait(vsi); 4919 4920 q_end = vsi->base_queue + vsi->num_queue_pairs; 4921 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) 4922 i40e_pre_tx_queue_cfg(&pf->hw, (u32)pf_q, false); 4923 4924 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) { 4925 err = i40e_control_wait_rx_q(pf, pf_q, false); 4926 if (err) 4927 dev_info(&pf->pdev->dev, 4928 "VSI seid %d Rx ring %d disable timeout\n", 4929 vsi->seid, pf_q); 4930 } 4931 4932 msleep(I40E_DISABLE_TX_GAP_MSEC); 4933 pf_q = vsi->base_queue; 4934 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) 4935 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4936 4937 i40e_vsi_wait_queues_disabled(vsi); 4938 } 4939 4940 /** 4941 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4942 * @vsi: the VSI being shutdown 4943 * 4944 * This function stops all the rings for a VSI but does not delay to verify 4945 * that rings have been disabled. It is expected that the caller is shutting 4946 * down multiple VSIs at once and will delay together for all the VSIs after 4947 * initiating the shutdown. This is particularly useful for shutting down lots 4948 * of VFs together. Otherwise, a large delay can be incurred while configuring 4949 * each VSI in serial. 4950 **/ 4951 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4952 { 4953 struct i40e_pf *pf = vsi->back; 4954 int i, pf_q; 4955 4956 pf_q = vsi->base_queue; 4957 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4958 i40e_control_tx_q(pf, pf_q, false); 4959 i40e_control_rx_q(pf, pf_q, false); 4960 } 4961 } 4962 4963 /** 4964 * i40e_vsi_free_irq - Free the irq association with the OS 4965 * @vsi: the VSI being configured 4966 **/ 4967 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4968 { 4969 struct i40e_pf *pf = vsi->back; 4970 struct i40e_hw *hw = &pf->hw; 4971 int base = vsi->base_vector; 4972 u32 val, qp; 4973 int i; 4974 4975 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4976 if (!vsi->q_vectors) 4977 return; 4978 4979 if (!vsi->irqs_ready) 4980 return; 4981 4982 vsi->irqs_ready = false; 4983 for (i = 0; i < vsi->num_q_vectors; i++) { 4984 int irq_num; 4985 u16 vector; 4986 4987 vector = i + base; 4988 irq_num = pf->msix_entries[vector].vector; 4989 4990 /* free only the irqs that were actually requested */ 4991 if (!vsi->q_vectors[i] || 4992 !vsi->q_vectors[i]->num_ringpairs) 4993 continue; 4994 4995 /* clear the affinity notifier in the IRQ descriptor */ 4996 irq_set_affinity_notifier(irq_num, NULL); 4997 /* remove our suggested affinity mask for this IRQ */ 4998 irq_update_affinity_hint(irq_num, NULL); 4999 free_irq(irq_num, vsi->q_vectors[i]); 5000 5001 /* Tear down the interrupt queue link list 5002 * 5003 * We know that they come in pairs and always 5004 * the Rx first, then the Tx. To clear the 5005 * link list, stick the EOL value into the 5006 * next_q field of the registers. 5007 */ 5008 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 5009 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, 5010 val); 5011 val |= I40E_QUEUE_END_OF_LIST 5012 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5013 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 5014 5015 while (qp != I40E_QUEUE_END_OF_LIST) { 5016 u32 next; 5017 5018 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5019 5020 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5021 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5022 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5023 I40E_QINT_RQCTL_INTEVENT_MASK); 5024 5025 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5026 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5027 5028 wr32(hw, I40E_QINT_RQCTL(qp), val); 5029 5030 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5031 5032 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK, 5033 val); 5034 5035 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5036 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5037 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5038 I40E_QINT_TQCTL_INTEVENT_MASK); 5039 5040 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5041 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5042 5043 wr32(hw, I40E_QINT_TQCTL(qp), val); 5044 qp = next; 5045 } 5046 } 5047 } else { 5048 free_irq(pf->pdev->irq, pf); 5049 5050 val = rd32(hw, I40E_PFINT_LNKLST0); 5051 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val); 5052 val |= I40E_QUEUE_END_OF_LIST 5053 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5054 wr32(hw, I40E_PFINT_LNKLST0, val); 5055 5056 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5057 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5058 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5059 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5060 I40E_QINT_RQCTL_INTEVENT_MASK); 5061 5062 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5063 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5064 5065 wr32(hw, I40E_QINT_RQCTL(qp), val); 5066 5067 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5068 5069 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5070 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5071 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5072 I40E_QINT_TQCTL_INTEVENT_MASK); 5073 5074 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5075 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5076 5077 wr32(hw, I40E_QINT_TQCTL(qp), val); 5078 } 5079 } 5080 5081 /** 5082 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5083 * @vsi: the VSI being configured 5084 * @v_idx: Index of vector to be freed 5085 * 5086 * This function frees the memory allocated to the q_vector. In addition if 5087 * NAPI is enabled it will delete any references to the NAPI struct prior 5088 * to freeing the q_vector. 5089 **/ 5090 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5091 { 5092 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5093 struct i40e_ring *ring; 5094 5095 if (!q_vector) 5096 return; 5097 5098 /* disassociate q_vector from rings */ 5099 i40e_for_each_ring(ring, q_vector->tx) 5100 ring->q_vector = NULL; 5101 5102 i40e_for_each_ring(ring, q_vector->rx) 5103 ring->q_vector = NULL; 5104 5105 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5106 if (vsi->netdev) 5107 netif_napi_del(&q_vector->napi); 5108 5109 vsi->q_vectors[v_idx] = NULL; 5110 5111 kfree_rcu(q_vector, rcu); 5112 } 5113 5114 /** 5115 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5116 * @vsi: the VSI being un-configured 5117 * 5118 * This frees the memory allocated to the q_vectors and 5119 * deletes references to the NAPI struct. 5120 **/ 5121 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5122 { 5123 int v_idx; 5124 5125 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5126 i40e_free_q_vector(vsi, v_idx); 5127 } 5128 5129 /** 5130 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5131 * @pf: board private structure 5132 **/ 5133 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5134 { 5135 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5136 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5137 pci_disable_msix(pf->pdev); 5138 kfree(pf->msix_entries); 5139 pf->msix_entries = NULL; 5140 kfree(pf->irq_pile); 5141 pf->irq_pile = NULL; 5142 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5143 pci_disable_msi(pf->pdev); 5144 } 5145 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5146 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5147 } 5148 5149 /** 5150 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5151 * @pf: board private structure 5152 * 5153 * We go through and clear interrupt specific resources and reset the structure 5154 * to pre-load conditions 5155 **/ 5156 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5157 { 5158 int i; 5159 5160 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5161 i40e_free_misc_vector(pf); 5162 5163 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5164 I40E_IWARP_IRQ_PILE_ID); 5165 5166 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5167 for (i = 0; i < pf->num_alloc_vsi; i++) 5168 if (pf->vsi[i]) 5169 i40e_vsi_free_q_vectors(pf->vsi[i]); 5170 i40e_reset_interrupt_capability(pf); 5171 } 5172 5173 /** 5174 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5175 * @vsi: the VSI being configured 5176 **/ 5177 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5178 { 5179 int q_idx; 5180 5181 if (!vsi->netdev) 5182 return; 5183 5184 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5185 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5186 5187 if (q_vector->rx.ring || q_vector->tx.ring) 5188 napi_enable(&q_vector->napi); 5189 } 5190 } 5191 5192 /** 5193 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5194 * @vsi: the VSI being configured 5195 **/ 5196 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5197 { 5198 int q_idx; 5199 5200 if (!vsi->netdev) 5201 return; 5202 5203 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5204 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5205 5206 if (q_vector->rx.ring || q_vector->tx.ring) 5207 napi_disable(&q_vector->napi); 5208 } 5209 } 5210 5211 /** 5212 * i40e_vsi_close - Shut down a VSI 5213 * @vsi: the vsi to be quelled 5214 **/ 5215 static void i40e_vsi_close(struct i40e_vsi *vsi) 5216 { 5217 struct i40e_pf *pf = vsi->back; 5218 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5219 i40e_down(vsi); 5220 i40e_vsi_free_irq(vsi); 5221 i40e_vsi_free_tx_resources(vsi); 5222 i40e_vsi_free_rx_resources(vsi); 5223 vsi->current_netdev_flags = 0; 5224 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5225 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5226 set_bit(__I40E_CLIENT_RESET, pf->state); 5227 } 5228 5229 /** 5230 * i40e_quiesce_vsi - Pause a given VSI 5231 * @vsi: the VSI being paused 5232 **/ 5233 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5234 { 5235 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5236 return; 5237 5238 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5239 if (vsi->netdev && netif_running(vsi->netdev)) 5240 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5241 else 5242 i40e_vsi_close(vsi); 5243 } 5244 5245 /** 5246 * i40e_unquiesce_vsi - Resume a given VSI 5247 * @vsi: the VSI being resumed 5248 **/ 5249 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5250 { 5251 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5252 return; 5253 5254 if (vsi->netdev && netif_running(vsi->netdev)) 5255 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5256 else 5257 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5258 } 5259 5260 /** 5261 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5262 * @pf: the PF 5263 **/ 5264 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5265 { 5266 int v; 5267 5268 for (v = 0; v < pf->num_alloc_vsi; v++) { 5269 if (pf->vsi[v]) 5270 i40e_quiesce_vsi(pf->vsi[v]); 5271 } 5272 } 5273 5274 /** 5275 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5276 * @pf: the PF 5277 **/ 5278 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5279 { 5280 int v; 5281 5282 for (v = 0; v < pf->num_alloc_vsi; v++) { 5283 if (pf->vsi[v]) 5284 i40e_unquiesce_vsi(pf->vsi[v]); 5285 } 5286 } 5287 5288 /** 5289 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5290 * @vsi: the VSI being configured 5291 * 5292 * Wait until all queues on a given VSI have been disabled. 5293 **/ 5294 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5295 { 5296 struct i40e_pf *pf = vsi->back; 5297 int i, pf_q, ret; 5298 5299 pf_q = vsi->base_queue; 5300 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5301 /* Check and wait for the Tx queue */ 5302 ret = i40e_pf_txq_wait(pf, pf_q, false); 5303 if (ret) { 5304 dev_info(&pf->pdev->dev, 5305 "VSI seid %d Tx ring %d disable timeout\n", 5306 vsi->seid, pf_q); 5307 return ret; 5308 } 5309 5310 if (!i40e_enabled_xdp_vsi(vsi)) 5311 goto wait_rx; 5312 5313 /* Check and wait for the XDP Tx queue */ 5314 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5315 false); 5316 if (ret) { 5317 dev_info(&pf->pdev->dev, 5318 "VSI seid %d XDP Tx ring %d disable timeout\n", 5319 vsi->seid, pf_q); 5320 return ret; 5321 } 5322 wait_rx: 5323 /* Check and wait for the Rx queue */ 5324 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5325 if (ret) { 5326 dev_info(&pf->pdev->dev, 5327 "VSI seid %d Rx ring %d disable timeout\n", 5328 vsi->seid, pf_q); 5329 return ret; 5330 } 5331 } 5332 5333 return 0; 5334 } 5335 5336 #ifdef CONFIG_I40E_DCB 5337 /** 5338 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5339 * @pf: the PF 5340 * 5341 * This function waits for the queues to be in disabled state for all the 5342 * VSIs that are managed by this PF. 5343 **/ 5344 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5345 { 5346 int v, ret = 0; 5347 5348 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 5349 if (pf->vsi[v]) { 5350 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5351 if (ret) 5352 break; 5353 } 5354 } 5355 5356 return ret; 5357 } 5358 5359 #endif 5360 5361 /** 5362 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5363 * @pf: pointer to PF 5364 * 5365 * Get TC map for ISCSI PF type that will include iSCSI TC 5366 * and LAN TC. 5367 **/ 5368 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5369 { 5370 struct i40e_dcb_app_priority_table app; 5371 struct i40e_hw *hw = &pf->hw; 5372 u8 enabled_tc = 1; /* TC0 is always enabled */ 5373 u8 tc, i; 5374 /* Get the iSCSI APP TLV */ 5375 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5376 5377 for (i = 0; i < dcbcfg->numapps; i++) { 5378 app = dcbcfg->app[i]; 5379 if (app.selector == I40E_APP_SEL_TCPIP && 5380 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5381 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5382 enabled_tc |= BIT(tc); 5383 break; 5384 } 5385 } 5386 5387 return enabled_tc; 5388 } 5389 5390 /** 5391 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5392 * @dcbcfg: the corresponding DCBx configuration structure 5393 * 5394 * Return the number of TCs from given DCBx configuration 5395 **/ 5396 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5397 { 5398 int i, tc_unused = 0; 5399 u8 num_tc = 0; 5400 u8 ret = 0; 5401 5402 /* Scan the ETS Config Priority Table to find 5403 * traffic class enabled for a given priority 5404 * and create a bitmask of enabled TCs 5405 */ 5406 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5407 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5408 5409 /* Now scan the bitmask to check for 5410 * contiguous TCs starting with TC0 5411 */ 5412 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5413 if (num_tc & BIT(i)) { 5414 if (!tc_unused) { 5415 ret++; 5416 } else { 5417 pr_err("Non-contiguous TC - Disabling DCB\n"); 5418 return 1; 5419 } 5420 } else { 5421 tc_unused = 1; 5422 } 5423 } 5424 5425 /* There is always at least TC0 */ 5426 if (!ret) 5427 ret = 1; 5428 5429 return ret; 5430 } 5431 5432 /** 5433 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5434 * @dcbcfg: the corresponding DCBx configuration structure 5435 * 5436 * Query the current DCB configuration and return the number of 5437 * traffic classes enabled from the given DCBX config 5438 **/ 5439 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5440 { 5441 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5442 u8 enabled_tc = 1; 5443 u8 i; 5444 5445 for (i = 0; i < num_tc; i++) 5446 enabled_tc |= BIT(i); 5447 5448 return enabled_tc; 5449 } 5450 5451 /** 5452 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5453 * @pf: PF being queried 5454 * 5455 * Query the current MQPRIO configuration and return the number of 5456 * traffic classes enabled. 5457 **/ 5458 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5459 { 5460 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5461 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5462 u8 enabled_tc = 1, i; 5463 5464 for (i = 1; i < num_tc; i++) 5465 enabled_tc |= BIT(i); 5466 return enabled_tc; 5467 } 5468 5469 /** 5470 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5471 * @pf: PF being queried 5472 * 5473 * Return number of traffic classes enabled for the given PF 5474 **/ 5475 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5476 { 5477 struct i40e_hw *hw = &pf->hw; 5478 u8 i, enabled_tc = 1; 5479 u8 num_tc = 0; 5480 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5481 5482 if (i40e_is_tc_mqprio_enabled(pf)) 5483 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5484 5485 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5486 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5487 return 1; 5488 5489 /* SFP mode will be enabled for all TCs on port */ 5490 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5491 return i40e_dcb_get_num_tc(dcbcfg); 5492 5493 /* MFP mode return count of enabled TCs for this PF */ 5494 if (pf->hw.func_caps.iscsi) 5495 enabled_tc = i40e_get_iscsi_tc_map(pf); 5496 else 5497 return 1; /* Only TC0 */ 5498 5499 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5500 if (enabled_tc & BIT(i)) 5501 num_tc++; 5502 } 5503 return num_tc; 5504 } 5505 5506 /** 5507 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5508 * @pf: PF being queried 5509 * 5510 * Return a bitmap for enabled traffic classes for this PF. 5511 **/ 5512 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5513 { 5514 if (i40e_is_tc_mqprio_enabled(pf)) 5515 return i40e_mqprio_get_enabled_tc(pf); 5516 5517 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5518 * default TC 5519 */ 5520 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5521 return I40E_DEFAULT_TRAFFIC_CLASS; 5522 5523 /* SFP mode we want PF to be enabled for all TCs */ 5524 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5525 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5526 5527 /* MFP enabled and iSCSI PF type */ 5528 if (pf->hw.func_caps.iscsi) 5529 return i40e_get_iscsi_tc_map(pf); 5530 else 5531 return I40E_DEFAULT_TRAFFIC_CLASS; 5532 } 5533 5534 /** 5535 * i40e_vsi_get_bw_info - Query VSI BW Information 5536 * @vsi: the VSI being queried 5537 * 5538 * Returns 0 on success, negative value on failure 5539 **/ 5540 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5541 { 5542 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5543 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5544 struct i40e_pf *pf = vsi->back; 5545 struct i40e_hw *hw = &pf->hw; 5546 u32 tc_bw_max; 5547 int ret; 5548 int i; 5549 5550 /* Get the VSI level BW configuration */ 5551 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5552 if (ret) { 5553 dev_info(&pf->pdev->dev, 5554 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5555 ERR_PTR(ret), 5556 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5557 return -EINVAL; 5558 } 5559 5560 /* Get the VSI level BW configuration per TC */ 5561 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5562 NULL); 5563 if (ret) { 5564 dev_info(&pf->pdev->dev, 5565 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5566 ERR_PTR(ret), 5567 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5568 return -EINVAL; 5569 } 5570 5571 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5572 dev_info(&pf->pdev->dev, 5573 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5574 bw_config.tc_valid_bits, 5575 bw_ets_config.tc_valid_bits); 5576 /* Still continuing */ 5577 } 5578 5579 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5580 vsi->bw_max_quanta = bw_config.max_bw; 5581 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5582 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5583 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5584 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5585 vsi->bw_ets_limit_credits[i] = 5586 le16_to_cpu(bw_ets_config.credits[i]); 5587 /* 3 bits out of 4 for each TC */ 5588 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5589 } 5590 5591 return 0; 5592 } 5593 5594 /** 5595 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5596 * @vsi: the VSI being configured 5597 * @enabled_tc: TC bitmap 5598 * @bw_share: BW shared credits per TC 5599 * 5600 * Returns 0 on success, negative value on failure 5601 **/ 5602 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5603 u8 *bw_share) 5604 { 5605 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5606 struct i40e_pf *pf = vsi->back; 5607 int ret; 5608 int i; 5609 5610 /* There is no need to reset BW when mqprio mode is on. */ 5611 if (i40e_is_tc_mqprio_enabled(pf)) 5612 return 0; 5613 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5614 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5615 if (ret) 5616 dev_info(&pf->pdev->dev, 5617 "Failed to reset tx rate for vsi->seid %u\n", 5618 vsi->seid); 5619 return ret; 5620 } 5621 memset(&bw_data, 0, sizeof(bw_data)); 5622 bw_data.tc_valid_bits = enabled_tc; 5623 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5624 bw_data.tc_bw_credits[i] = bw_share[i]; 5625 5626 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5627 if (ret) { 5628 dev_info(&pf->pdev->dev, 5629 "AQ command Config VSI BW allocation per TC failed = %d\n", 5630 pf->hw.aq.asq_last_status); 5631 return -EINVAL; 5632 } 5633 5634 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5635 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5636 5637 return 0; 5638 } 5639 5640 /** 5641 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5642 * @vsi: the VSI being configured 5643 * @enabled_tc: TC map to be enabled 5644 * 5645 **/ 5646 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5647 { 5648 struct net_device *netdev = vsi->netdev; 5649 struct i40e_pf *pf = vsi->back; 5650 struct i40e_hw *hw = &pf->hw; 5651 u8 netdev_tc = 0; 5652 int i; 5653 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5654 5655 if (!netdev) 5656 return; 5657 5658 if (!enabled_tc) { 5659 netdev_reset_tc(netdev); 5660 return; 5661 } 5662 5663 /* Set up actual enabled TCs on the VSI */ 5664 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5665 return; 5666 5667 /* set per TC queues for the VSI */ 5668 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5669 /* Only set TC queues for enabled tcs 5670 * 5671 * e.g. For a VSI that has TC0 and TC3 enabled the 5672 * enabled_tc bitmap would be 0x00001001; the driver 5673 * will set the numtc for netdev as 2 that will be 5674 * referenced by the netdev layer as TC 0 and 1. 5675 */ 5676 if (vsi->tc_config.enabled_tc & BIT(i)) 5677 netdev_set_tc_queue(netdev, 5678 vsi->tc_config.tc_info[i].netdev_tc, 5679 vsi->tc_config.tc_info[i].qcount, 5680 vsi->tc_config.tc_info[i].qoffset); 5681 } 5682 5683 if (i40e_is_tc_mqprio_enabled(pf)) 5684 return; 5685 5686 /* Assign UP2TC map for the VSI */ 5687 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5688 /* Get the actual TC# for the UP */ 5689 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5690 /* Get the mapped netdev TC# for the UP */ 5691 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5692 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5693 } 5694 } 5695 5696 /** 5697 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5698 * @vsi: the VSI being configured 5699 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5700 **/ 5701 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5702 struct i40e_vsi_context *ctxt) 5703 { 5704 /* copy just the sections touched not the entire info 5705 * since not all sections are valid as returned by 5706 * update vsi params 5707 */ 5708 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5709 memcpy(&vsi->info.queue_mapping, 5710 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5711 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5712 sizeof(vsi->info.tc_mapping)); 5713 } 5714 5715 /** 5716 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5717 * @vsi: the VSI being reconfigured 5718 * @vsi_offset: offset from main VF VSI 5719 */ 5720 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5721 { 5722 struct i40e_vsi_context ctxt = {}; 5723 struct i40e_pf *pf; 5724 struct i40e_hw *hw; 5725 int ret; 5726 5727 if (!vsi) 5728 return -EINVAL; 5729 pf = vsi->back; 5730 hw = &pf->hw; 5731 5732 ctxt.seid = vsi->seid; 5733 ctxt.pf_num = hw->pf_id; 5734 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5735 ctxt.uplink_seid = vsi->uplink_seid; 5736 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5737 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5738 ctxt.info = vsi->info; 5739 5740 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5741 false); 5742 if (vsi->reconfig_rss) { 5743 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5744 vsi->num_queue_pairs); 5745 ret = i40e_vsi_config_rss(vsi); 5746 if (ret) { 5747 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5748 return ret; 5749 } 5750 vsi->reconfig_rss = false; 5751 } 5752 5753 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5754 if (ret) { 5755 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5756 ERR_PTR(ret), 5757 i40e_aq_str(hw, hw->aq.asq_last_status)); 5758 return ret; 5759 } 5760 /* update the local VSI info with updated queue map */ 5761 i40e_vsi_update_queue_map(vsi, &ctxt); 5762 vsi->info.valid_sections = 0; 5763 5764 return ret; 5765 } 5766 5767 /** 5768 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5769 * @vsi: VSI to be configured 5770 * @enabled_tc: TC bitmap 5771 * 5772 * This configures a particular VSI for TCs that are mapped to the 5773 * given TC bitmap. It uses default bandwidth share for TCs across 5774 * VSIs to configure TC for a particular VSI. 5775 * 5776 * NOTE: 5777 * It is expected that the VSI queues have been quisced before calling 5778 * this function. 5779 **/ 5780 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5781 { 5782 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5783 struct i40e_pf *pf = vsi->back; 5784 struct i40e_hw *hw = &pf->hw; 5785 struct i40e_vsi_context ctxt; 5786 int ret = 0; 5787 int i; 5788 5789 /* Check if enabled_tc is same as existing or new TCs */ 5790 if (vsi->tc_config.enabled_tc == enabled_tc && 5791 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5792 return ret; 5793 5794 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5795 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5796 if (enabled_tc & BIT(i)) 5797 bw_share[i] = 1; 5798 } 5799 5800 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5801 if (ret) { 5802 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5803 5804 dev_info(&pf->pdev->dev, 5805 "Failed configuring TC map %d for VSI %d\n", 5806 enabled_tc, vsi->seid); 5807 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5808 &bw_config, NULL); 5809 if (ret) { 5810 dev_info(&pf->pdev->dev, 5811 "Failed querying vsi bw info, err %pe aq_err %s\n", 5812 ERR_PTR(ret), 5813 i40e_aq_str(hw, hw->aq.asq_last_status)); 5814 goto out; 5815 } 5816 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5817 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5818 5819 if (!valid_tc) 5820 valid_tc = bw_config.tc_valid_bits; 5821 /* Always enable TC0, no matter what */ 5822 valid_tc |= 1; 5823 dev_info(&pf->pdev->dev, 5824 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5825 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5826 enabled_tc = valid_tc; 5827 } 5828 5829 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5830 if (ret) { 5831 dev_err(&pf->pdev->dev, 5832 "Unable to configure TC map %d for VSI %d\n", 5833 enabled_tc, vsi->seid); 5834 goto out; 5835 } 5836 } 5837 5838 /* Update Queue Pairs Mapping for currently enabled UPs */ 5839 ctxt.seid = vsi->seid; 5840 ctxt.pf_num = vsi->back->hw.pf_id; 5841 ctxt.vf_num = 0; 5842 ctxt.uplink_seid = vsi->uplink_seid; 5843 ctxt.info = vsi->info; 5844 if (i40e_is_tc_mqprio_enabled(pf)) { 5845 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5846 if (ret) 5847 goto out; 5848 } else { 5849 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5850 } 5851 5852 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5853 * queues changed. 5854 */ 5855 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5856 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5857 vsi->num_queue_pairs); 5858 ret = i40e_vsi_config_rss(vsi); 5859 if (ret) { 5860 dev_info(&vsi->back->pdev->dev, 5861 "Failed to reconfig rss for num_queues\n"); 5862 return ret; 5863 } 5864 vsi->reconfig_rss = false; 5865 } 5866 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5867 ctxt.info.valid_sections |= 5868 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5869 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5870 } 5871 5872 /* Update the VSI after updating the VSI queue-mapping 5873 * information 5874 */ 5875 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5876 if (ret) { 5877 dev_info(&pf->pdev->dev, 5878 "Update vsi tc config failed, err %pe aq_err %s\n", 5879 ERR_PTR(ret), 5880 i40e_aq_str(hw, hw->aq.asq_last_status)); 5881 goto out; 5882 } 5883 /* update the local VSI info with updated queue map */ 5884 i40e_vsi_update_queue_map(vsi, &ctxt); 5885 vsi->info.valid_sections = 0; 5886 5887 /* Update current VSI BW information */ 5888 ret = i40e_vsi_get_bw_info(vsi); 5889 if (ret) { 5890 dev_info(&pf->pdev->dev, 5891 "Failed updating vsi bw info, err %pe aq_err %s\n", 5892 ERR_PTR(ret), 5893 i40e_aq_str(hw, hw->aq.asq_last_status)); 5894 goto out; 5895 } 5896 5897 /* Update the netdev TC setup */ 5898 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5899 out: 5900 return ret; 5901 } 5902 5903 /** 5904 * i40e_get_link_speed - Returns link speed for the interface 5905 * @vsi: VSI to be configured 5906 * 5907 **/ 5908 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5909 { 5910 struct i40e_pf *pf = vsi->back; 5911 5912 switch (pf->hw.phy.link_info.link_speed) { 5913 case I40E_LINK_SPEED_40GB: 5914 return 40000; 5915 case I40E_LINK_SPEED_25GB: 5916 return 25000; 5917 case I40E_LINK_SPEED_20GB: 5918 return 20000; 5919 case I40E_LINK_SPEED_10GB: 5920 return 10000; 5921 case I40E_LINK_SPEED_1GB: 5922 return 1000; 5923 default: 5924 return -EINVAL; 5925 } 5926 } 5927 5928 /** 5929 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5930 * @vsi: Pointer to vsi structure 5931 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5932 * 5933 * Helper function to convert units before send to set BW limit 5934 **/ 5935 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5936 { 5937 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5938 dev_warn(&vsi->back->pdev->dev, 5939 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5940 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5941 } else { 5942 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5943 } 5944 5945 return max_tx_rate; 5946 } 5947 5948 /** 5949 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5950 * @vsi: VSI to be configured 5951 * @seid: seid of the channel/VSI 5952 * @max_tx_rate: max TX rate to be configured as BW limit 5953 * 5954 * Helper function to set BW limit for a given VSI 5955 **/ 5956 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5957 { 5958 struct i40e_pf *pf = vsi->back; 5959 u64 credits = 0; 5960 int speed = 0; 5961 int ret = 0; 5962 5963 speed = i40e_get_link_speed(vsi); 5964 if (max_tx_rate > speed) { 5965 dev_err(&pf->pdev->dev, 5966 "Invalid max tx rate %llu specified for VSI seid %d.", 5967 max_tx_rate, seid); 5968 return -EINVAL; 5969 } 5970 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 5971 dev_warn(&pf->pdev->dev, 5972 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5973 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5974 } 5975 5976 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5977 credits = max_tx_rate; 5978 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5979 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5980 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5981 if (ret) 5982 dev_err(&pf->pdev->dev, 5983 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 5984 max_tx_rate, seid, ERR_PTR(ret), 5985 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5986 return ret; 5987 } 5988 5989 /** 5990 * i40e_remove_queue_channels - Remove queue channels for the TCs 5991 * @vsi: VSI to be configured 5992 * 5993 * Remove queue channels for the TCs 5994 **/ 5995 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5996 { 5997 enum i40e_admin_queue_err last_aq_status; 5998 struct i40e_cloud_filter *cfilter; 5999 struct i40e_channel *ch, *ch_tmp; 6000 struct i40e_pf *pf = vsi->back; 6001 struct hlist_node *node; 6002 int ret, i; 6003 6004 /* Reset rss size that was stored when reconfiguring rss for 6005 * channel VSIs with non-power-of-2 queue count. 6006 */ 6007 vsi->current_rss_size = 0; 6008 6009 /* perform cleanup for channels if they exist */ 6010 if (list_empty(&vsi->ch_list)) 6011 return; 6012 6013 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6014 struct i40e_vsi *p_vsi; 6015 6016 list_del(&ch->list); 6017 p_vsi = ch->parent_vsi; 6018 if (!p_vsi || !ch->initialized) { 6019 kfree(ch); 6020 continue; 6021 } 6022 /* Reset queue contexts */ 6023 for (i = 0; i < ch->num_queue_pairs; i++) { 6024 struct i40e_ring *tx_ring, *rx_ring; 6025 u16 pf_q; 6026 6027 pf_q = ch->base_queue + i; 6028 tx_ring = vsi->tx_rings[pf_q]; 6029 tx_ring->ch = NULL; 6030 6031 rx_ring = vsi->rx_rings[pf_q]; 6032 rx_ring->ch = NULL; 6033 } 6034 6035 /* Reset BW configured for this VSI via mqprio */ 6036 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6037 if (ret) 6038 dev_info(&vsi->back->pdev->dev, 6039 "Failed to reset tx rate for ch->seid %u\n", 6040 ch->seid); 6041 6042 /* delete cloud filters associated with this channel */ 6043 hlist_for_each_entry_safe(cfilter, node, 6044 &pf->cloud_filter_list, cloud_node) { 6045 if (cfilter->seid != ch->seid) 6046 continue; 6047 6048 hash_del(&cfilter->cloud_node); 6049 if (cfilter->dst_port) 6050 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6051 cfilter, 6052 false); 6053 else 6054 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6055 false); 6056 last_aq_status = pf->hw.aq.asq_last_status; 6057 if (ret) 6058 dev_info(&pf->pdev->dev, 6059 "Failed to delete cloud filter, err %pe aq_err %s\n", 6060 ERR_PTR(ret), 6061 i40e_aq_str(&pf->hw, last_aq_status)); 6062 kfree(cfilter); 6063 } 6064 6065 /* delete VSI from FW */ 6066 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6067 NULL); 6068 if (ret) 6069 dev_err(&vsi->back->pdev->dev, 6070 "unable to remove channel (%d) for parent VSI(%d)\n", 6071 ch->seid, p_vsi->seid); 6072 kfree(ch); 6073 } 6074 INIT_LIST_HEAD(&vsi->ch_list); 6075 } 6076 6077 /** 6078 * i40e_get_max_queues_for_channel 6079 * @vsi: ptr to VSI to which channels are associated with 6080 * 6081 * Helper function which returns max value among the queue counts set on the 6082 * channels/TCs created. 6083 **/ 6084 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6085 { 6086 struct i40e_channel *ch, *ch_tmp; 6087 int max = 0; 6088 6089 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6090 if (!ch->initialized) 6091 continue; 6092 if (ch->num_queue_pairs > max) 6093 max = ch->num_queue_pairs; 6094 } 6095 6096 return max; 6097 } 6098 6099 /** 6100 * i40e_validate_num_queues - validate num_queues w.r.t channel 6101 * @pf: ptr to PF device 6102 * @num_queues: number of queues 6103 * @vsi: the parent VSI 6104 * @reconfig_rss: indicates should the RSS be reconfigured or not 6105 * 6106 * This function validates number of queues in the context of new channel 6107 * which is being established and determines if RSS should be reconfigured 6108 * or not for parent VSI. 6109 **/ 6110 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6111 struct i40e_vsi *vsi, bool *reconfig_rss) 6112 { 6113 int max_ch_queues; 6114 6115 if (!reconfig_rss) 6116 return -EINVAL; 6117 6118 *reconfig_rss = false; 6119 if (vsi->current_rss_size) { 6120 if (num_queues > vsi->current_rss_size) { 6121 dev_dbg(&pf->pdev->dev, 6122 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6123 num_queues, vsi->current_rss_size); 6124 return -EINVAL; 6125 } else if ((num_queues < vsi->current_rss_size) && 6126 (!is_power_of_2(num_queues))) { 6127 dev_dbg(&pf->pdev->dev, 6128 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6129 num_queues, vsi->current_rss_size); 6130 return -EINVAL; 6131 } 6132 } 6133 6134 if (!is_power_of_2(num_queues)) { 6135 /* Find the max num_queues configured for channel if channel 6136 * exist. 6137 * if channel exist, then enforce 'num_queues' to be more than 6138 * max ever queues configured for channel. 6139 */ 6140 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6141 if (num_queues < max_ch_queues) { 6142 dev_dbg(&pf->pdev->dev, 6143 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6144 num_queues, max_ch_queues); 6145 return -EINVAL; 6146 } 6147 *reconfig_rss = true; 6148 } 6149 6150 return 0; 6151 } 6152 6153 /** 6154 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6155 * @vsi: the VSI being setup 6156 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6157 * 6158 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6159 **/ 6160 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6161 { 6162 struct i40e_pf *pf = vsi->back; 6163 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6164 struct i40e_hw *hw = &pf->hw; 6165 int local_rss_size; 6166 u8 *lut; 6167 int ret; 6168 6169 if (!vsi->rss_size) 6170 return -EINVAL; 6171 6172 if (rss_size > vsi->rss_size) 6173 return -EINVAL; 6174 6175 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6176 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6177 if (!lut) 6178 return -ENOMEM; 6179 6180 /* Ignoring user configured lut if there is one */ 6181 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6182 6183 /* Use user configured hash key if there is one, otherwise 6184 * use default. 6185 */ 6186 if (vsi->rss_hkey_user) 6187 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6188 else 6189 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6190 6191 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6192 if (ret) { 6193 dev_info(&pf->pdev->dev, 6194 "Cannot set RSS lut, err %pe aq_err %s\n", 6195 ERR_PTR(ret), 6196 i40e_aq_str(hw, hw->aq.asq_last_status)); 6197 kfree(lut); 6198 return ret; 6199 } 6200 kfree(lut); 6201 6202 /* Do the update w.r.t. storing rss_size */ 6203 if (!vsi->orig_rss_size) 6204 vsi->orig_rss_size = vsi->rss_size; 6205 vsi->current_rss_size = local_rss_size; 6206 6207 return ret; 6208 } 6209 6210 /** 6211 * i40e_channel_setup_queue_map - Setup a channel queue map 6212 * @pf: ptr to PF device 6213 * @ctxt: VSI context structure 6214 * @ch: ptr to channel structure 6215 * 6216 * Setup queue map for a specific channel 6217 **/ 6218 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6219 struct i40e_vsi_context *ctxt, 6220 struct i40e_channel *ch) 6221 { 6222 u16 qcount, qmap, sections = 0; 6223 u8 offset = 0; 6224 int pow; 6225 6226 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6227 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6228 6229 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6230 ch->num_queue_pairs = qcount; 6231 6232 /* find the next higher power-of-2 of num queue pairs */ 6233 pow = ilog2(qcount); 6234 if (!is_power_of_2(qcount)) 6235 pow++; 6236 6237 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6238 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6239 6240 /* Setup queue TC[0].qmap for given VSI context */ 6241 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6242 6243 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6244 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6245 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6246 ctxt->info.valid_sections |= cpu_to_le16(sections); 6247 } 6248 6249 /** 6250 * i40e_add_channel - add a channel by adding VSI 6251 * @pf: ptr to PF device 6252 * @uplink_seid: underlying HW switching element (VEB) ID 6253 * @ch: ptr to channel structure 6254 * 6255 * Add a channel (VSI) using add_vsi and queue_map 6256 **/ 6257 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6258 struct i40e_channel *ch) 6259 { 6260 struct i40e_hw *hw = &pf->hw; 6261 struct i40e_vsi_context ctxt; 6262 u8 enabled_tc = 0x1; /* TC0 enabled */ 6263 int ret; 6264 6265 if (ch->type != I40E_VSI_VMDQ2) { 6266 dev_info(&pf->pdev->dev, 6267 "add new vsi failed, ch->type %d\n", ch->type); 6268 return -EINVAL; 6269 } 6270 6271 memset(&ctxt, 0, sizeof(ctxt)); 6272 ctxt.pf_num = hw->pf_id; 6273 ctxt.vf_num = 0; 6274 ctxt.uplink_seid = uplink_seid; 6275 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6276 if (ch->type == I40E_VSI_VMDQ2) 6277 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6278 6279 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6280 ctxt.info.valid_sections |= 6281 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6282 ctxt.info.switch_id = 6283 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6284 } 6285 6286 /* Set queue map for a given VSI context */ 6287 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6288 6289 /* Now time to create VSI */ 6290 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6291 if (ret) { 6292 dev_info(&pf->pdev->dev, 6293 "add new vsi failed, err %pe aq_err %s\n", 6294 ERR_PTR(ret), 6295 i40e_aq_str(&pf->hw, 6296 pf->hw.aq.asq_last_status)); 6297 return -ENOENT; 6298 } 6299 6300 /* Success, update channel, set enabled_tc only if the channel 6301 * is not a macvlan 6302 */ 6303 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6304 ch->seid = ctxt.seid; 6305 ch->vsi_number = ctxt.vsi_number; 6306 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6307 6308 /* copy just the sections touched not the entire info 6309 * since not all sections are valid as returned by 6310 * update vsi params 6311 */ 6312 ch->info.mapping_flags = ctxt.info.mapping_flags; 6313 memcpy(&ch->info.queue_mapping, 6314 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6315 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6316 sizeof(ctxt.info.tc_mapping)); 6317 6318 return 0; 6319 } 6320 6321 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6322 u8 *bw_share) 6323 { 6324 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6325 int ret; 6326 int i; 6327 6328 memset(&bw_data, 0, sizeof(bw_data)); 6329 bw_data.tc_valid_bits = ch->enabled_tc; 6330 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6331 bw_data.tc_bw_credits[i] = bw_share[i]; 6332 6333 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6334 &bw_data, NULL); 6335 if (ret) { 6336 dev_info(&vsi->back->pdev->dev, 6337 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6338 vsi->back->hw.aq.asq_last_status, ch->seid); 6339 return -EINVAL; 6340 } 6341 6342 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6343 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6344 6345 return 0; 6346 } 6347 6348 /** 6349 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6350 * @pf: ptr to PF device 6351 * @vsi: the VSI being setup 6352 * @ch: ptr to channel structure 6353 * 6354 * Configure TX rings associated with channel (VSI) since queues are being 6355 * from parent VSI. 6356 **/ 6357 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6358 struct i40e_vsi *vsi, 6359 struct i40e_channel *ch) 6360 { 6361 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6362 int ret; 6363 int i; 6364 6365 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6366 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6367 if (ch->enabled_tc & BIT(i)) 6368 bw_share[i] = 1; 6369 } 6370 6371 /* configure BW for new VSI */ 6372 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6373 if (ret) { 6374 dev_info(&vsi->back->pdev->dev, 6375 "Failed configuring TC map %d for channel (seid %u)\n", 6376 ch->enabled_tc, ch->seid); 6377 return ret; 6378 } 6379 6380 for (i = 0; i < ch->num_queue_pairs; i++) { 6381 struct i40e_ring *tx_ring, *rx_ring; 6382 u16 pf_q; 6383 6384 pf_q = ch->base_queue + i; 6385 6386 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6387 * context 6388 */ 6389 tx_ring = vsi->tx_rings[pf_q]; 6390 tx_ring->ch = ch; 6391 6392 /* Get the RX ring ptr */ 6393 rx_ring = vsi->rx_rings[pf_q]; 6394 rx_ring->ch = ch; 6395 } 6396 6397 return 0; 6398 } 6399 6400 /** 6401 * i40e_setup_hw_channel - setup new channel 6402 * @pf: ptr to PF device 6403 * @vsi: the VSI being setup 6404 * @ch: ptr to channel structure 6405 * @uplink_seid: underlying HW switching element (VEB) ID 6406 * @type: type of channel to be created (VMDq2/VF) 6407 * 6408 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6409 * and configures TX rings accordingly 6410 **/ 6411 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6412 struct i40e_vsi *vsi, 6413 struct i40e_channel *ch, 6414 u16 uplink_seid, u8 type) 6415 { 6416 int ret; 6417 6418 ch->initialized = false; 6419 ch->base_queue = vsi->next_base_queue; 6420 ch->type = type; 6421 6422 /* Proceed with creation of channel (VMDq2) VSI */ 6423 ret = i40e_add_channel(pf, uplink_seid, ch); 6424 if (ret) { 6425 dev_info(&pf->pdev->dev, 6426 "failed to add_channel using uplink_seid %u\n", 6427 uplink_seid); 6428 return ret; 6429 } 6430 6431 /* Mark the successful creation of channel */ 6432 ch->initialized = true; 6433 6434 /* Reconfigure TX queues using QTX_CTL register */ 6435 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6436 if (ret) { 6437 dev_info(&pf->pdev->dev, 6438 "failed to configure TX rings for channel %u\n", 6439 ch->seid); 6440 return ret; 6441 } 6442 6443 /* update 'next_base_queue' */ 6444 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6445 dev_dbg(&pf->pdev->dev, 6446 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6447 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6448 ch->num_queue_pairs, 6449 vsi->next_base_queue); 6450 return ret; 6451 } 6452 6453 /** 6454 * i40e_setup_channel - setup new channel using uplink element 6455 * @pf: ptr to PF device 6456 * @vsi: pointer to the VSI to set up the channel within 6457 * @ch: ptr to channel structure 6458 * 6459 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6460 * and uplink switching element (uplink_seid) 6461 **/ 6462 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6463 struct i40e_channel *ch) 6464 { 6465 u8 vsi_type; 6466 u16 seid; 6467 int ret; 6468 6469 if (vsi->type == I40E_VSI_MAIN) { 6470 vsi_type = I40E_VSI_VMDQ2; 6471 } else { 6472 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6473 vsi->type); 6474 return false; 6475 } 6476 6477 /* underlying switching element */ 6478 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6479 6480 /* create channel (VSI), configure TX rings */ 6481 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6482 if (ret) { 6483 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6484 return false; 6485 } 6486 6487 return ch->initialized ? true : false; 6488 } 6489 6490 /** 6491 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6492 * @vsi: ptr to VSI which has PF backing 6493 * 6494 * Sets up switch mode correctly if it needs to be changed and perform 6495 * what are allowed modes. 6496 **/ 6497 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6498 { 6499 u8 mode; 6500 struct i40e_pf *pf = vsi->back; 6501 struct i40e_hw *hw = &pf->hw; 6502 int ret; 6503 6504 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6505 if (ret) 6506 return -EINVAL; 6507 6508 if (hw->dev_caps.switch_mode) { 6509 /* if switch mode is set, support mode2 (non-tunneled for 6510 * cloud filter) for now 6511 */ 6512 u32 switch_mode = hw->dev_caps.switch_mode & 6513 I40E_SWITCH_MODE_MASK; 6514 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6515 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6516 return 0; 6517 dev_err(&pf->pdev->dev, 6518 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6519 hw->dev_caps.switch_mode); 6520 return -EINVAL; 6521 } 6522 } 6523 6524 /* Set Bit 7 to be valid */ 6525 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6526 6527 /* Set L4type for TCP support */ 6528 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6529 6530 /* Set cloud filter mode */ 6531 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6532 6533 /* Prep mode field for set_switch_config */ 6534 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6535 pf->last_sw_conf_valid_flags, 6536 mode, NULL); 6537 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6538 dev_err(&pf->pdev->dev, 6539 "couldn't set switch config bits, err %pe aq_err %s\n", 6540 ERR_PTR(ret), 6541 i40e_aq_str(hw, 6542 hw->aq.asq_last_status)); 6543 6544 return ret; 6545 } 6546 6547 /** 6548 * i40e_create_queue_channel - function to create channel 6549 * @vsi: VSI to be configured 6550 * @ch: ptr to channel (it contains channel specific params) 6551 * 6552 * This function creates channel (VSI) using num_queues specified by user, 6553 * reconfigs RSS if needed. 6554 **/ 6555 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6556 struct i40e_channel *ch) 6557 { 6558 struct i40e_pf *pf = vsi->back; 6559 bool reconfig_rss; 6560 int err; 6561 6562 if (!ch) 6563 return -EINVAL; 6564 6565 if (!ch->num_queue_pairs) { 6566 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6567 ch->num_queue_pairs); 6568 return -EINVAL; 6569 } 6570 6571 /* validate user requested num_queues for channel */ 6572 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6573 &reconfig_rss); 6574 if (err) { 6575 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6576 ch->num_queue_pairs); 6577 return -EINVAL; 6578 } 6579 6580 /* By default we are in VEPA mode, if this is the first VF/VMDq 6581 * VSI to be added switch to VEB mode. 6582 */ 6583 6584 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6585 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6586 6587 if (vsi->type == I40E_VSI_MAIN) { 6588 if (i40e_is_tc_mqprio_enabled(pf)) 6589 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6590 else 6591 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6592 } 6593 /* now onwards for main VSI, number of queues will be value 6594 * of TC0's queue count 6595 */ 6596 } 6597 6598 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6599 * it should be more than num_queues 6600 */ 6601 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6602 dev_dbg(&pf->pdev->dev, 6603 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6604 vsi->cnt_q_avail, ch->num_queue_pairs); 6605 return -EINVAL; 6606 } 6607 6608 /* reconfig_rss only if vsi type is MAIN_VSI */ 6609 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6610 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6611 if (err) { 6612 dev_info(&pf->pdev->dev, 6613 "Error: unable to reconfig rss for num_queues (%u)\n", 6614 ch->num_queue_pairs); 6615 return -EINVAL; 6616 } 6617 } 6618 6619 if (!i40e_setup_channel(pf, vsi, ch)) { 6620 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6621 return -EINVAL; 6622 } 6623 6624 dev_info(&pf->pdev->dev, 6625 "Setup channel (id:%u) utilizing num_queues %d\n", 6626 ch->seid, ch->num_queue_pairs); 6627 6628 /* configure VSI for BW limit */ 6629 if (ch->max_tx_rate) { 6630 u64 credits = ch->max_tx_rate; 6631 6632 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6633 return -EINVAL; 6634 6635 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6636 dev_dbg(&pf->pdev->dev, 6637 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6638 ch->max_tx_rate, 6639 credits, 6640 ch->seid); 6641 } 6642 6643 /* in case of VF, this will be main SRIOV VSI */ 6644 ch->parent_vsi = vsi; 6645 6646 /* and update main_vsi's count for queue_available to use */ 6647 vsi->cnt_q_avail -= ch->num_queue_pairs; 6648 6649 return 0; 6650 } 6651 6652 /** 6653 * i40e_configure_queue_channels - Add queue channel for the given TCs 6654 * @vsi: VSI to be configured 6655 * 6656 * Configures queue channel mapping to the given TCs 6657 **/ 6658 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6659 { 6660 struct i40e_channel *ch; 6661 u64 max_rate = 0; 6662 int ret = 0, i; 6663 6664 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6665 vsi->tc_seid_map[0] = vsi->seid; 6666 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6667 if (vsi->tc_config.enabled_tc & BIT(i)) { 6668 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6669 if (!ch) { 6670 ret = -ENOMEM; 6671 goto err_free; 6672 } 6673 6674 INIT_LIST_HEAD(&ch->list); 6675 ch->num_queue_pairs = 6676 vsi->tc_config.tc_info[i].qcount; 6677 ch->base_queue = 6678 vsi->tc_config.tc_info[i].qoffset; 6679 6680 /* Bandwidth limit through tc interface is in bytes/s, 6681 * change to Mbit/s 6682 */ 6683 max_rate = vsi->mqprio_qopt.max_rate[i]; 6684 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6685 ch->max_tx_rate = max_rate; 6686 6687 list_add_tail(&ch->list, &vsi->ch_list); 6688 6689 ret = i40e_create_queue_channel(vsi, ch); 6690 if (ret) { 6691 dev_err(&vsi->back->pdev->dev, 6692 "Failed creating queue channel with TC%d: queues %d\n", 6693 i, ch->num_queue_pairs); 6694 goto err_free; 6695 } 6696 vsi->tc_seid_map[i] = ch->seid; 6697 } 6698 } 6699 6700 /* reset to reconfigure TX queue contexts */ 6701 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6702 return ret; 6703 6704 err_free: 6705 i40e_remove_queue_channels(vsi); 6706 return ret; 6707 } 6708 6709 /** 6710 * i40e_veb_config_tc - Configure TCs for given VEB 6711 * @veb: given VEB 6712 * @enabled_tc: TC bitmap 6713 * 6714 * Configures given TC bitmap for VEB (switching) element 6715 **/ 6716 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6717 { 6718 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6719 struct i40e_pf *pf = veb->pf; 6720 int ret = 0; 6721 int i; 6722 6723 /* No TCs or already enabled TCs just return */ 6724 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6725 return ret; 6726 6727 bw_data.tc_valid_bits = enabled_tc; 6728 /* bw_data.absolute_credits is not set (relative) */ 6729 6730 /* Enable ETS TCs with equal BW Share for now */ 6731 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6732 if (enabled_tc & BIT(i)) 6733 bw_data.tc_bw_share_credits[i] = 1; 6734 } 6735 6736 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6737 &bw_data, NULL); 6738 if (ret) { 6739 dev_info(&pf->pdev->dev, 6740 "VEB bw config failed, err %pe aq_err %s\n", 6741 ERR_PTR(ret), 6742 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6743 goto out; 6744 } 6745 6746 /* Update the BW information */ 6747 ret = i40e_veb_get_bw_info(veb); 6748 if (ret) { 6749 dev_info(&pf->pdev->dev, 6750 "Failed getting veb bw config, err %pe aq_err %s\n", 6751 ERR_PTR(ret), 6752 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6753 } 6754 6755 out: 6756 return ret; 6757 } 6758 6759 #ifdef CONFIG_I40E_DCB 6760 /** 6761 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6762 * @pf: PF struct 6763 * 6764 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6765 * the caller would've quiesce all the VSIs before calling 6766 * this function 6767 **/ 6768 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6769 { 6770 u8 tc_map = 0; 6771 int ret; 6772 u8 v; 6773 6774 /* Enable the TCs available on PF to all VEBs */ 6775 tc_map = i40e_pf_get_tc_map(pf); 6776 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6777 return; 6778 6779 for (v = 0; v < I40E_MAX_VEB; v++) { 6780 if (!pf->veb[v]) 6781 continue; 6782 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6783 if (ret) { 6784 dev_info(&pf->pdev->dev, 6785 "Failed configuring TC for VEB seid=%d\n", 6786 pf->veb[v]->seid); 6787 /* Will try to configure as many components */ 6788 } 6789 } 6790 6791 /* Update each VSI */ 6792 for (v = 0; v < pf->num_alloc_vsi; v++) { 6793 if (!pf->vsi[v]) 6794 continue; 6795 6796 /* - Enable all TCs for the LAN VSI 6797 * - For all others keep them at TC0 for now 6798 */ 6799 if (v == pf->lan_vsi) 6800 tc_map = i40e_pf_get_tc_map(pf); 6801 else 6802 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6803 6804 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6805 if (ret) { 6806 dev_info(&pf->pdev->dev, 6807 "Failed configuring TC for VSI seid=%d\n", 6808 pf->vsi[v]->seid); 6809 /* Will try to configure as many components */ 6810 } else { 6811 /* Re-configure VSI vectors based on updated TC map */ 6812 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6813 if (pf->vsi[v]->netdev) 6814 i40e_dcbnl_set_all(pf->vsi[v]); 6815 } 6816 } 6817 } 6818 6819 /** 6820 * i40e_resume_port_tx - Resume port Tx 6821 * @pf: PF struct 6822 * 6823 * Resume a port's Tx and issue a PF reset in case of failure to 6824 * resume. 6825 **/ 6826 static int i40e_resume_port_tx(struct i40e_pf *pf) 6827 { 6828 struct i40e_hw *hw = &pf->hw; 6829 int ret; 6830 6831 ret = i40e_aq_resume_port_tx(hw, NULL); 6832 if (ret) { 6833 dev_info(&pf->pdev->dev, 6834 "Resume Port Tx failed, err %pe aq_err %s\n", 6835 ERR_PTR(ret), 6836 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6837 /* Schedule PF reset to recover */ 6838 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6839 i40e_service_event_schedule(pf); 6840 } 6841 6842 return ret; 6843 } 6844 6845 /** 6846 * i40e_suspend_port_tx - Suspend port Tx 6847 * @pf: PF struct 6848 * 6849 * Suspend a port's Tx and issue a PF reset in case of failure. 6850 **/ 6851 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6852 { 6853 struct i40e_hw *hw = &pf->hw; 6854 int ret; 6855 6856 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6857 if (ret) { 6858 dev_info(&pf->pdev->dev, 6859 "Suspend Port Tx failed, err %pe aq_err %s\n", 6860 ERR_PTR(ret), 6861 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6862 /* Schedule PF reset to recover */ 6863 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6864 i40e_service_event_schedule(pf); 6865 } 6866 6867 return ret; 6868 } 6869 6870 /** 6871 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6872 * @pf: PF being configured 6873 * @new_cfg: New DCBX configuration 6874 * 6875 * Program DCB settings into HW and reconfigure VEB/VSIs on 6876 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6877 **/ 6878 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6879 struct i40e_dcbx_config *new_cfg) 6880 { 6881 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6882 int ret; 6883 6884 /* Check if need reconfiguration */ 6885 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6886 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6887 return 0; 6888 } 6889 6890 /* Config change disable all VSIs */ 6891 i40e_pf_quiesce_all_vsi(pf); 6892 6893 /* Copy the new config to the current config */ 6894 *old_cfg = *new_cfg; 6895 old_cfg->etsrec = old_cfg->etscfg; 6896 ret = i40e_set_dcb_config(&pf->hw); 6897 if (ret) { 6898 dev_info(&pf->pdev->dev, 6899 "Set DCB Config failed, err %pe aq_err %s\n", 6900 ERR_PTR(ret), 6901 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6902 goto out; 6903 } 6904 6905 /* Changes in configuration update VEB/VSI */ 6906 i40e_dcb_reconfigure(pf); 6907 out: 6908 /* In case of reset do not try to resume anything */ 6909 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6910 /* Re-start the VSIs if disabled */ 6911 ret = i40e_resume_port_tx(pf); 6912 /* In case of error no point in resuming VSIs */ 6913 if (ret) 6914 goto err; 6915 i40e_pf_unquiesce_all_vsi(pf); 6916 } 6917 err: 6918 return ret; 6919 } 6920 6921 /** 6922 * i40e_hw_dcb_config - Program new DCBX settings into HW 6923 * @pf: PF being configured 6924 * @new_cfg: New DCBX configuration 6925 * 6926 * Program DCB settings into HW and reconfigure VEB/VSIs on 6927 * given PF 6928 **/ 6929 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6930 { 6931 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6932 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6933 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6934 struct i40e_dcbx_config *old_cfg; 6935 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6936 struct i40e_rx_pb_config pb_cfg; 6937 struct i40e_hw *hw = &pf->hw; 6938 u8 num_ports = hw->num_ports; 6939 bool need_reconfig; 6940 int ret = -EINVAL; 6941 u8 lltc_map = 0; 6942 u8 tc_map = 0; 6943 u8 new_numtc; 6944 u8 i; 6945 6946 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6947 /* Un-pack information to Program ETS HW via shared API 6948 * numtc, tcmap 6949 * LLTC map 6950 * ETS/NON-ETS arbiter mode 6951 * max exponent (credit refills) 6952 * Total number of ports 6953 * PFC priority bit-map 6954 * Priority Table 6955 * BW % per TC 6956 * Arbiter mode between UPs sharing same TC 6957 * TSA table (ETS or non-ETS) 6958 * EEE enabled or not 6959 * MFS TC table 6960 */ 6961 6962 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6963 6964 memset(&ets_data, 0, sizeof(ets_data)); 6965 for (i = 0; i < new_numtc; i++) { 6966 tc_map |= BIT(i); 6967 switch (new_cfg->etscfg.tsatable[i]) { 6968 case I40E_IEEE_TSA_ETS: 6969 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6970 ets_data.tc_bw_share_credits[i] = 6971 new_cfg->etscfg.tcbwtable[i]; 6972 break; 6973 case I40E_IEEE_TSA_STRICT: 6974 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6975 lltc_map |= BIT(i); 6976 ets_data.tc_bw_share_credits[i] = 6977 I40E_DCB_STRICT_PRIO_CREDITS; 6978 break; 6979 default: 6980 /* Invalid TSA type */ 6981 need_reconfig = false; 6982 goto out; 6983 } 6984 } 6985 6986 old_cfg = &hw->local_dcbx_config; 6987 /* Check if need reconfiguration */ 6988 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 6989 6990 /* If needed, enable/disable frame tagging, disable all VSIs 6991 * and suspend port tx 6992 */ 6993 if (need_reconfig) { 6994 /* Enable DCB tagging only when more than one TC */ 6995 if (new_numtc > 1) 6996 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 6997 else 6998 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 6999 7000 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7001 /* Reconfiguration needed quiesce all VSIs */ 7002 i40e_pf_quiesce_all_vsi(pf); 7003 ret = i40e_suspend_port_tx(pf); 7004 if (ret) 7005 goto err; 7006 } 7007 7008 /* Configure Port ETS Tx Scheduler */ 7009 ets_data.tc_valid_bits = tc_map; 7010 ets_data.tc_strict_priority_flags = lltc_map; 7011 ret = i40e_aq_config_switch_comp_ets 7012 (hw, pf->mac_seid, &ets_data, 7013 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7014 if (ret) { 7015 dev_info(&pf->pdev->dev, 7016 "Modify Port ETS failed, err %pe aq_err %s\n", 7017 ERR_PTR(ret), 7018 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7019 goto out; 7020 } 7021 7022 /* Configure Rx ETS HW */ 7023 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7024 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7025 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7026 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7027 I40E_DCB_DEFAULT_MAX_EXPONENT, 7028 lltc_map); 7029 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7030 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7031 prio_type); 7032 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7033 new_cfg->etscfg.prioritytable); 7034 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7035 7036 /* Configure Rx Packet Buffers in HW */ 7037 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7038 mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu; 7039 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7040 } 7041 7042 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7043 false, new_cfg->pfc.pfcenable, 7044 mfs_tc, &pb_cfg); 7045 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7046 7047 /* Update the local Rx Packet buffer config */ 7048 pf->pb_cfg = pb_cfg; 7049 7050 /* Inform the FW about changes to DCB configuration */ 7051 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7052 if (ret) { 7053 dev_info(&pf->pdev->dev, 7054 "DCB Updated failed, err %pe aq_err %s\n", 7055 ERR_PTR(ret), 7056 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7057 goto out; 7058 } 7059 7060 /* Update the port DCBx configuration */ 7061 *old_cfg = *new_cfg; 7062 7063 /* Changes in configuration update VEB/VSI */ 7064 i40e_dcb_reconfigure(pf); 7065 out: 7066 /* Re-start the VSIs if disabled */ 7067 if (need_reconfig) { 7068 ret = i40e_resume_port_tx(pf); 7069 7070 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7071 /* In case of error no point in resuming VSIs */ 7072 if (ret) 7073 goto err; 7074 7075 /* Wait for the PF's queues to be disabled */ 7076 ret = i40e_pf_wait_queues_disabled(pf); 7077 if (ret) { 7078 /* Schedule PF reset to recover */ 7079 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7080 i40e_service_event_schedule(pf); 7081 goto err; 7082 } else { 7083 i40e_pf_unquiesce_all_vsi(pf); 7084 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7085 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7086 } 7087 /* registers are set, lets apply */ 7088 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7089 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7090 } 7091 7092 err: 7093 return ret; 7094 } 7095 7096 /** 7097 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7098 * @pf: PF being queried 7099 * 7100 * Set default DCB configuration in case DCB is to be done in SW. 7101 **/ 7102 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7103 { 7104 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7105 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7106 struct i40e_hw *hw = &pf->hw; 7107 int err; 7108 7109 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7110 /* Update the local cached instance with TC0 ETS */ 7111 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7112 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7113 pf->tmp_cfg.etscfg.maxtcs = 0; 7114 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7115 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7116 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7117 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7118 /* FW needs one App to configure HW */ 7119 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7120 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7121 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7122 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7123 7124 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7125 } 7126 7127 memset(&ets_data, 0, sizeof(ets_data)); 7128 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7129 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7130 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7131 7132 /* Enable ETS on the Physical port */ 7133 err = i40e_aq_config_switch_comp_ets 7134 (hw, pf->mac_seid, &ets_data, 7135 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7136 if (err) { 7137 dev_info(&pf->pdev->dev, 7138 "Enable Port ETS failed, err %pe aq_err %s\n", 7139 ERR_PTR(err), 7140 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7141 err = -ENOENT; 7142 goto out; 7143 } 7144 7145 /* Update the local cached instance with TC0 ETS */ 7146 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7147 dcb_cfg->etscfg.cbs = 0; 7148 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7149 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7150 7151 out: 7152 return err; 7153 } 7154 7155 /** 7156 * i40e_init_pf_dcb - Initialize DCB configuration 7157 * @pf: PF being configured 7158 * 7159 * Query the current DCB configuration and cache it 7160 * in the hardware structure 7161 **/ 7162 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7163 { 7164 struct i40e_hw *hw = &pf->hw; 7165 int err; 7166 7167 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7168 * Also do not enable DCBx if FW LLDP agent is disabled 7169 */ 7170 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7171 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7172 err = -EOPNOTSUPP; 7173 goto out; 7174 } 7175 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7176 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7177 err = i40e_dcb_sw_default_config(pf); 7178 if (err) { 7179 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7180 goto out; 7181 } 7182 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7183 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7184 DCB_CAP_DCBX_VER_IEEE; 7185 /* at init capable but disabled */ 7186 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7187 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7188 goto out; 7189 } 7190 err = i40e_init_dcb(hw, true); 7191 if (!err) { 7192 /* Device/Function is not DCBX capable */ 7193 if ((!hw->func_caps.dcb) || 7194 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7195 dev_info(&pf->pdev->dev, 7196 "DCBX offload is not supported or is disabled for this PF.\n"); 7197 } else { 7198 /* When status is not DISABLED then DCBX in FW */ 7199 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7200 DCB_CAP_DCBX_VER_IEEE; 7201 7202 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7203 /* Enable DCB tagging only when more than one TC 7204 * or explicitly disable if only one TC 7205 */ 7206 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7207 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7208 else 7209 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7210 dev_dbg(&pf->pdev->dev, 7211 "DCBX offload is supported for this PF.\n"); 7212 } 7213 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7214 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7215 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7216 } else { 7217 dev_info(&pf->pdev->dev, 7218 "Query for DCB configuration failed, err %pe aq_err %s\n", 7219 ERR_PTR(err), 7220 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7221 } 7222 7223 out: 7224 return err; 7225 } 7226 #endif /* CONFIG_I40E_DCB */ 7227 7228 /** 7229 * i40e_print_link_message - print link up or down 7230 * @vsi: the VSI for which link needs a message 7231 * @isup: true of link is up, false otherwise 7232 */ 7233 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7234 { 7235 enum i40e_aq_link_speed new_speed; 7236 struct i40e_pf *pf = vsi->back; 7237 char *speed = "Unknown"; 7238 char *fc = "Unknown"; 7239 char *fec = ""; 7240 char *req_fec = ""; 7241 char *an = ""; 7242 7243 if (isup) 7244 new_speed = pf->hw.phy.link_info.link_speed; 7245 else 7246 new_speed = I40E_LINK_SPEED_UNKNOWN; 7247 7248 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7249 return; 7250 vsi->current_isup = isup; 7251 vsi->current_speed = new_speed; 7252 if (!isup) { 7253 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7254 return; 7255 } 7256 7257 /* Warn user if link speed on NPAR enabled partition is not at 7258 * least 10GB 7259 */ 7260 if (pf->hw.func_caps.npar_enable && 7261 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7262 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7263 netdev_warn(vsi->netdev, 7264 "The partition detected link speed that is less than 10Gbps\n"); 7265 7266 switch (pf->hw.phy.link_info.link_speed) { 7267 case I40E_LINK_SPEED_40GB: 7268 speed = "40 G"; 7269 break; 7270 case I40E_LINK_SPEED_20GB: 7271 speed = "20 G"; 7272 break; 7273 case I40E_LINK_SPEED_25GB: 7274 speed = "25 G"; 7275 break; 7276 case I40E_LINK_SPEED_10GB: 7277 speed = "10 G"; 7278 break; 7279 case I40E_LINK_SPEED_5GB: 7280 speed = "5 G"; 7281 break; 7282 case I40E_LINK_SPEED_2_5GB: 7283 speed = "2.5 G"; 7284 break; 7285 case I40E_LINK_SPEED_1GB: 7286 speed = "1000 M"; 7287 break; 7288 case I40E_LINK_SPEED_100MB: 7289 speed = "100 M"; 7290 break; 7291 default: 7292 break; 7293 } 7294 7295 switch (pf->hw.fc.current_mode) { 7296 case I40E_FC_FULL: 7297 fc = "RX/TX"; 7298 break; 7299 case I40E_FC_TX_PAUSE: 7300 fc = "TX"; 7301 break; 7302 case I40E_FC_RX_PAUSE: 7303 fc = "RX"; 7304 break; 7305 default: 7306 fc = "None"; 7307 break; 7308 } 7309 7310 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7311 req_fec = "None"; 7312 fec = "None"; 7313 an = "False"; 7314 7315 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7316 an = "True"; 7317 7318 if (pf->hw.phy.link_info.fec_info & 7319 I40E_AQ_CONFIG_FEC_KR_ENA) 7320 fec = "CL74 FC-FEC/BASE-R"; 7321 else if (pf->hw.phy.link_info.fec_info & 7322 I40E_AQ_CONFIG_FEC_RS_ENA) 7323 fec = "CL108 RS-FEC"; 7324 7325 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7326 * both RS and FC are requested 7327 */ 7328 if (vsi->back->hw.phy.link_info.req_fec_info & 7329 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7330 if (vsi->back->hw.phy.link_info.req_fec_info & 7331 I40E_AQ_REQUEST_FEC_RS) 7332 req_fec = "CL108 RS-FEC"; 7333 else 7334 req_fec = "CL74 FC-FEC/BASE-R"; 7335 } 7336 netdev_info(vsi->netdev, 7337 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7338 speed, req_fec, fec, an, fc); 7339 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7340 req_fec = "None"; 7341 fec = "None"; 7342 an = "False"; 7343 7344 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7345 an = "True"; 7346 7347 if (pf->hw.phy.link_info.fec_info & 7348 I40E_AQ_CONFIG_FEC_KR_ENA) 7349 fec = "CL74 FC-FEC/BASE-R"; 7350 7351 if (pf->hw.phy.link_info.req_fec_info & 7352 I40E_AQ_REQUEST_FEC_KR) 7353 req_fec = "CL74 FC-FEC/BASE-R"; 7354 7355 netdev_info(vsi->netdev, 7356 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7357 speed, req_fec, fec, an, fc); 7358 } else { 7359 netdev_info(vsi->netdev, 7360 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7361 speed, fc); 7362 } 7363 7364 } 7365 7366 /** 7367 * i40e_up_complete - Finish the last steps of bringing up a connection 7368 * @vsi: the VSI being configured 7369 **/ 7370 static int i40e_up_complete(struct i40e_vsi *vsi) 7371 { 7372 struct i40e_pf *pf = vsi->back; 7373 int err; 7374 7375 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7376 i40e_vsi_configure_msix(vsi); 7377 else 7378 i40e_configure_msi_and_legacy(vsi); 7379 7380 /* start rings */ 7381 err = i40e_vsi_start_rings(vsi); 7382 if (err) 7383 return err; 7384 7385 clear_bit(__I40E_VSI_DOWN, vsi->state); 7386 i40e_napi_enable_all(vsi); 7387 i40e_vsi_enable_irq(vsi); 7388 7389 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7390 (vsi->netdev)) { 7391 i40e_print_link_message(vsi, true); 7392 netif_tx_start_all_queues(vsi->netdev); 7393 netif_carrier_on(vsi->netdev); 7394 } 7395 7396 /* replay FDIR SB filters */ 7397 if (vsi->type == I40E_VSI_FDIR) { 7398 /* reset fd counters */ 7399 pf->fd_add_err = 0; 7400 pf->fd_atr_cnt = 0; 7401 i40e_fdir_filter_restore(vsi); 7402 } 7403 7404 /* On the next run of the service_task, notify any clients of the new 7405 * opened netdev 7406 */ 7407 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7408 i40e_service_event_schedule(pf); 7409 7410 return 0; 7411 } 7412 7413 /** 7414 * i40e_vsi_reinit_locked - Reset the VSI 7415 * @vsi: the VSI being configured 7416 * 7417 * Rebuild the ring structs after some configuration 7418 * has changed, e.g. MTU size. 7419 **/ 7420 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7421 { 7422 struct i40e_pf *pf = vsi->back; 7423 7424 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7425 usleep_range(1000, 2000); 7426 i40e_down(vsi); 7427 7428 i40e_up(vsi); 7429 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7430 } 7431 7432 /** 7433 * i40e_force_link_state - Force the link status 7434 * @pf: board private structure 7435 * @is_up: whether the link state should be forced up or down 7436 **/ 7437 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7438 { 7439 struct i40e_aq_get_phy_abilities_resp abilities; 7440 struct i40e_aq_set_phy_config config = {0}; 7441 bool non_zero_phy_type = is_up; 7442 struct i40e_hw *hw = &pf->hw; 7443 u64 mask; 7444 u8 speed; 7445 int err; 7446 7447 /* Card might've been put in an unstable state by other drivers 7448 * and applications, which causes incorrect speed values being 7449 * set on startup. In order to clear speed registers, we call 7450 * get_phy_capabilities twice, once to get initial state of 7451 * available speeds, and once to get current PHY config. 7452 */ 7453 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7454 NULL); 7455 if (err) { 7456 dev_err(&pf->pdev->dev, 7457 "failed to get phy cap., ret = %pe last_status = %s\n", 7458 ERR_PTR(err), 7459 i40e_aq_str(hw, hw->aq.asq_last_status)); 7460 return err; 7461 } 7462 speed = abilities.link_speed; 7463 7464 /* Get the current phy config */ 7465 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7466 NULL); 7467 if (err) { 7468 dev_err(&pf->pdev->dev, 7469 "failed to get phy cap., ret = %pe last_status = %s\n", 7470 ERR_PTR(err), 7471 i40e_aq_str(hw, hw->aq.asq_last_status)); 7472 return err; 7473 } 7474 7475 /* If link needs to go up, but was not forced to go down, 7476 * and its speed values are OK, no need for a flap 7477 * if non_zero_phy_type was set, still need to force up 7478 */ 7479 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7480 non_zero_phy_type = true; 7481 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7482 return 0; 7483 7484 /* To force link we need to set bits for all supported PHY types, 7485 * but there are now more than 32, so we need to split the bitmap 7486 * across two fields. 7487 */ 7488 mask = I40E_PHY_TYPES_BITMASK; 7489 config.phy_type = 7490 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7491 config.phy_type_ext = 7492 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7493 /* Copy the old settings, except of phy_type */ 7494 config.abilities = abilities.abilities; 7495 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7496 if (is_up) 7497 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7498 else 7499 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7500 } 7501 if (abilities.link_speed != 0) 7502 config.link_speed = abilities.link_speed; 7503 else 7504 config.link_speed = speed; 7505 config.eee_capability = abilities.eee_capability; 7506 config.eeer = abilities.eeer_val; 7507 config.low_power_ctrl = abilities.d3_lpan; 7508 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7509 I40E_AQ_PHY_FEC_CONFIG_MASK; 7510 err = i40e_aq_set_phy_config(hw, &config, NULL); 7511 7512 if (err) { 7513 dev_err(&pf->pdev->dev, 7514 "set phy config ret = %pe last_status = %s\n", 7515 ERR_PTR(err), 7516 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7517 return err; 7518 } 7519 7520 /* Update the link info */ 7521 err = i40e_update_link_info(hw); 7522 if (err) { 7523 /* Wait a little bit (on 40G cards it sometimes takes a really 7524 * long time for link to come back from the atomic reset) 7525 * and try once more 7526 */ 7527 msleep(1000); 7528 i40e_update_link_info(hw); 7529 } 7530 7531 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7532 7533 return 0; 7534 } 7535 7536 /** 7537 * i40e_up - Bring the connection back up after being down 7538 * @vsi: the VSI being configured 7539 **/ 7540 int i40e_up(struct i40e_vsi *vsi) 7541 { 7542 int err; 7543 7544 if (vsi->type == I40E_VSI_MAIN && 7545 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7546 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7547 i40e_force_link_state(vsi->back, true); 7548 7549 err = i40e_vsi_configure(vsi); 7550 if (!err) 7551 err = i40e_up_complete(vsi); 7552 7553 return err; 7554 } 7555 7556 /** 7557 * i40e_down - Shutdown the connection processing 7558 * @vsi: the VSI being stopped 7559 **/ 7560 void i40e_down(struct i40e_vsi *vsi) 7561 { 7562 int i; 7563 7564 /* It is assumed that the caller of this function 7565 * sets the vsi->state __I40E_VSI_DOWN bit. 7566 */ 7567 if (vsi->netdev) { 7568 netif_carrier_off(vsi->netdev); 7569 netif_tx_disable(vsi->netdev); 7570 } 7571 i40e_vsi_disable_irq(vsi); 7572 i40e_vsi_stop_rings(vsi); 7573 if (vsi->type == I40E_VSI_MAIN && 7574 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7575 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7576 i40e_force_link_state(vsi->back, false); 7577 i40e_napi_disable_all(vsi); 7578 7579 for (i = 0; i < vsi->num_queue_pairs; i++) { 7580 i40e_clean_tx_ring(vsi->tx_rings[i]); 7581 if (i40e_enabled_xdp_vsi(vsi)) { 7582 /* Make sure that in-progress ndo_xdp_xmit and 7583 * ndo_xsk_wakeup calls are completed. 7584 */ 7585 synchronize_rcu(); 7586 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7587 } 7588 i40e_clean_rx_ring(vsi->rx_rings[i]); 7589 } 7590 7591 } 7592 7593 /** 7594 * i40e_validate_mqprio_qopt- validate queue mapping info 7595 * @vsi: the VSI being configured 7596 * @mqprio_qopt: queue parametrs 7597 **/ 7598 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7599 struct tc_mqprio_qopt_offload *mqprio_qopt) 7600 { 7601 u64 sum_max_rate = 0; 7602 u64 max_rate = 0; 7603 int i; 7604 7605 if (mqprio_qopt->qopt.offset[0] != 0 || 7606 mqprio_qopt->qopt.num_tc < 1 || 7607 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7608 return -EINVAL; 7609 for (i = 0; ; i++) { 7610 if (!mqprio_qopt->qopt.count[i]) 7611 return -EINVAL; 7612 if (mqprio_qopt->min_rate[i]) { 7613 dev_err(&vsi->back->pdev->dev, 7614 "Invalid min tx rate (greater than 0) specified\n"); 7615 return -EINVAL; 7616 } 7617 max_rate = mqprio_qopt->max_rate[i]; 7618 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7619 sum_max_rate += max_rate; 7620 7621 if (i >= mqprio_qopt->qopt.num_tc - 1) 7622 break; 7623 if (mqprio_qopt->qopt.offset[i + 1] != 7624 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7625 return -EINVAL; 7626 } 7627 if (vsi->num_queue_pairs < 7628 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7629 dev_err(&vsi->back->pdev->dev, 7630 "Failed to create traffic channel, insufficient number of queues.\n"); 7631 return -EINVAL; 7632 } 7633 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7634 dev_err(&vsi->back->pdev->dev, 7635 "Invalid max tx rate specified\n"); 7636 return -EINVAL; 7637 } 7638 return 0; 7639 } 7640 7641 /** 7642 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7643 * @vsi: the VSI being configured 7644 **/ 7645 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7646 { 7647 u16 qcount; 7648 int i; 7649 7650 /* Only TC0 is enabled */ 7651 vsi->tc_config.numtc = 1; 7652 vsi->tc_config.enabled_tc = 1; 7653 qcount = min_t(int, vsi->alloc_queue_pairs, 7654 i40e_pf_get_max_q_per_tc(vsi->back)); 7655 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7656 /* For the TC that is not enabled set the offset to default 7657 * queue and allocate one queue for the given TC. 7658 */ 7659 vsi->tc_config.tc_info[i].qoffset = 0; 7660 if (i == 0) 7661 vsi->tc_config.tc_info[i].qcount = qcount; 7662 else 7663 vsi->tc_config.tc_info[i].qcount = 1; 7664 vsi->tc_config.tc_info[i].netdev_tc = 0; 7665 } 7666 } 7667 7668 /** 7669 * i40e_del_macvlan_filter 7670 * @hw: pointer to the HW structure 7671 * @seid: seid of the channel VSI 7672 * @macaddr: the mac address to apply as a filter 7673 * @aq_err: store the admin Q error 7674 * 7675 * This function deletes a mac filter on the channel VSI which serves as the 7676 * macvlan. Returns 0 on success. 7677 **/ 7678 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7679 const u8 *macaddr, int *aq_err) 7680 { 7681 struct i40e_aqc_remove_macvlan_element_data element; 7682 int status; 7683 7684 memset(&element, 0, sizeof(element)); 7685 ether_addr_copy(element.mac_addr, macaddr); 7686 element.vlan_tag = 0; 7687 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7688 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7689 *aq_err = hw->aq.asq_last_status; 7690 7691 return status; 7692 } 7693 7694 /** 7695 * i40e_add_macvlan_filter 7696 * @hw: pointer to the HW structure 7697 * @seid: seid of the channel VSI 7698 * @macaddr: the mac address to apply as a filter 7699 * @aq_err: store the admin Q error 7700 * 7701 * This function adds a mac filter on the channel VSI which serves as the 7702 * macvlan. Returns 0 on success. 7703 **/ 7704 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7705 const u8 *macaddr, int *aq_err) 7706 { 7707 struct i40e_aqc_add_macvlan_element_data element; 7708 u16 cmd_flags = 0; 7709 int status; 7710 7711 ether_addr_copy(element.mac_addr, macaddr); 7712 element.vlan_tag = 0; 7713 element.queue_number = 0; 7714 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7715 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7716 element.flags = cpu_to_le16(cmd_flags); 7717 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7718 *aq_err = hw->aq.asq_last_status; 7719 7720 return status; 7721 } 7722 7723 /** 7724 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7725 * @vsi: the VSI we want to access 7726 * @ch: the channel we want to access 7727 */ 7728 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7729 { 7730 struct i40e_ring *tx_ring, *rx_ring; 7731 u16 pf_q; 7732 int i; 7733 7734 for (i = 0; i < ch->num_queue_pairs; i++) { 7735 pf_q = ch->base_queue + i; 7736 tx_ring = vsi->tx_rings[pf_q]; 7737 tx_ring->ch = NULL; 7738 rx_ring = vsi->rx_rings[pf_q]; 7739 rx_ring->ch = NULL; 7740 } 7741 } 7742 7743 /** 7744 * i40e_free_macvlan_channels 7745 * @vsi: the VSI we want to access 7746 * 7747 * This function frees the Qs of the channel VSI from 7748 * the stack and also deletes the channel VSIs which 7749 * serve as macvlans. 7750 */ 7751 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7752 { 7753 struct i40e_channel *ch, *ch_tmp; 7754 int ret; 7755 7756 if (list_empty(&vsi->macvlan_list)) 7757 return; 7758 7759 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7760 struct i40e_vsi *parent_vsi; 7761 7762 if (i40e_is_channel_macvlan(ch)) { 7763 i40e_reset_ch_rings(vsi, ch); 7764 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7765 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7766 netdev_set_sb_channel(ch->fwd->netdev, 0); 7767 kfree(ch->fwd); 7768 ch->fwd = NULL; 7769 } 7770 7771 list_del(&ch->list); 7772 parent_vsi = ch->parent_vsi; 7773 if (!parent_vsi || !ch->initialized) { 7774 kfree(ch); 7775 continue; 7776 } 7777 7778 /* remove the VSI */ 7779 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7780 NULL); 7781 if (ret) 7782 dev_err(&vsi->back->pdev->dev, 7783 "unable to remove channel (%d) for parent VSI(%d)\n", 7784 ch->seid, parent_vsi->seid); 7785 kfree(ch); 7786 } 7787 vsi->macvlan_cnt = 0; 7788 } 7789 7790 /** 7791 * i40e_fwd_ring_up - bring the macvlan device up 7792 * @vsi: the VSI we want to access 7793 * @vdev: macvlan netdevice 7794 * @fwd: the private fwd structure 7795 */ 7796 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7797 struct i40e_fwd_adapter *fwd) 7798 { 7799 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7800 int ret = 0, num_tc = 1, i, aq_err; 7801 struct i40e_pf *pf = vsi->back; 7802 struct i40e_hw *hw = &pf->hw; 7803 7804 /* Go through the list and find an available channel */ 7805 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7806 if (!i40e_is_channel_macvlan(iter)) { 7807 iter->fwd = fwd; 7808 /* record configuration for macvlan interface in vdev */ 7809 for (i = 0; i < num_tc; i++) 7810 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7811 i, 7812 iter->num_queue_pairs, 7813 iter->base_queue); 7814 for (i = 0; i < iter->num_queue_pairs; i++) { 7815 struct i40e_ring *tx_ring, *rx_ring; 7816 u16 pf_q; 7817 7818 pf_q = iter->base_queue + i; 7819 7820 /* Get to TX ring ptr */ 7821 tx_ring = vsi->tx_rings[pf_q]; 7822 tx_ring->ch = iter; 7823 7824 /* Get the RX ring ptr */ 7825 rx_ring = vsi->rx_rings[pf_q]; 7826 rx_ring->ch = iter; 7827 } 7828 ch = iter; 7829 break; 7830 } 7831 } 7832 7833 if (!ch) 7834 return -EINVAL; 7835 7836 /* Guarantee all rings are updated before we update the 7837 * MAC address filter. 7838 */ 7839 wmb(); 7840 7841 /* Add a mac filter */ 7842 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7843 if (ret) { 7844 /* if we cannot add the MAC rule then disable the offload */ 7845 macvlan_release_l2fw_offload(vdev); 7846 for (i = 0; i < ch->num_queue_pairs; i++) { 7847 struct i40e_ring *rx_ring; 7848 u16 pf_q; 7849 7850 pf_q = ch->base_queue + i; 7851 rx_ring = vsi->rx_rings[pf_q]; 7852 rx_ring->netdev = NULL; 7853 } 7854 dev_info(&pf->pdev->dev, 7855 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7856 ERR_PTR(ret), 7857 i40e_aq_str(hw, aq_err)); 7858 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7859 } 7860 7861 return ret; 7862 } 7863 7864 /** 7865 * i40e_setup_macvlans - create the channels which will be macvlans 7866 * @vsi: the VSI we want to access 7867 * @macvlan_cnt: no. of macvlans to be setup 7868 * @qcnt: no. of Qs per macvlan 7869 * @vdev: macvlan netdevice 7870 */ 7871 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7872 struct net_device *vdev) 7873 { 7874 struct i40e_pf *pf = vsi->back; 7875 struct i40e_hw *hw = &pf->hw; 7876 struct i40e_vsi_context ctxt; 7877 u16 sections, qmap, num_qps; 7878 struct i40e_channel *ch; 7879 int i, pow, ret = 0; 7880 u8 offset = 0; 7881 7882 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7883 return -EINVAL; 7884 7885 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7886 7887 /* find the next higher power-of-2 of num queue pairs */ 7888 pow = fls(roundup_pow_of_two(num_qps) - 1); 7889 7890 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7891 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7892 7893 /* Setup context bits for the main VSI */ 7894 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7895 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7896 memset(&ctxt, 0, sizeof(ctxt)); 7897 ctxt.seid = vsi->seid; 7898 ctxt.pf_num = vsi->back->hw.pf_id; 7899 ctxt.vf_num = 0; 7900 ctxt.uplink_seid = vsi->uplink_seid; 7901 ctxt.info = vsi->info; 7902 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7903 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7904 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7905 ctxt.info.valid_sections |= cpu_to_le16(sections); 7906 7907 /* Reconfigure RSS for main VSI with new max queue count */ 7908 vsi->rss_size = max_t(u16, num_qps, qcnt); 7909 ret = i40e_vsi_config_rss(vsi); 7910 if (ret) { 7911 dev_info(&pf->pdev->dev, 7912 "Failed to reconfig RSS for num_queues (%u)\n", 7913 vsi->rss_size); 7914 return ret; 7915 } 7916 vsi->reconfig_rss = true; 7917 dev_dbg(&vsi->back->pdev->dev, 7918 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7919 vsi->next_base_queue = num_qps; 7920 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7921 7922 /* Update the VSI after updating the VSI queue-mapping 7923 * information 7924 */ 7925 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7926 if (ret) { 7927 dev_info(&pf->pdev->dev, 7928 "Update vsi tc config failed, err %pe aq_err %s\n", 7929 ERR_PTR(ret), 7930 i40e_aq_str(hw, hw->aq.asq_last_status)); 7931 return ret; 7932 } 7933 /* update the local VSI info with updated queue map */ 7934 i40e_vsi_update_queue_map(vsi, &ctxt); 7935 vsi->info.valid_sections = 0; 7936 7937 /* Create channels for macvlans */ 7938 INIT_LIST_HEAD(&vsi->macvlan_list); 7939 for (i = 0; i < macvlan_cnt; i++) { 7940 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7941 if (!ch) { 7942 ret = -ENOMEM; 7943 goto err_free; 7944 } 7945 INIT_LIST_HEAD(&ch->list); 7946 ch->num_queue_pairs = qcnt; 7947 if (!i40e_setup_channel(pf, vsi, ch)) { 7948 ret = -EINVAL; 7949 kfree(ch); 7950 goto err_free; 7951 } 7952 ch->parent_vsi = vsi; 7953 vsi->cnt_q_avail -= ch->num_queue_pairs; 7954 vsi->macvlan_cnt++; 7955 list_add_tail(&ch->list, &vsi->macvlan_list); 7956 } 7957 7958 return ret; 7959 7960 err_free: 7961 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7962 i40e_free_macvlan_channels(vsi); 7963 7964 return ret; 7965 } 7966 7967 /** 7968 * i40e_fwd_add - configure macvlans 7969 * @netdev: net device to configure 7970 * @vdev: macvlan netdevice 7971 **/ 7972 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7973 { 7974 struct i40e_netdev_priv *np = netdev_priv(netdev); 7975 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7976 struct i40e_vsi *vsi = np->vsi; 7977 struct i40e_pf *pf = vsi->back; 7978 struct i40e_fwd_adapter *fwd; 7979 int avail_macvlan, ret; 7980 7981 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 7982 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7983 return ERR_PTR(-EINVAL); 7984 } 7985 if (i40e_is_tc_mqprio_enabled(pf)) { 7986 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7987 return ERR_PTR(-EINVAL); 7988 } 7989 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7990 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7991 return ERR_PTR(-EINVAL); 7992 } 7993 7994 /* The macvlan device has to be a single Q device so that the 7995 * tc_to_txq field can be reused to pick the tx queue. 7996 */ 7997 if (netif_is_multiqueue(vdev)) 7998 return ERR_PTR(-ERANGE); 7999 8000 if (!vsi->macvlan_cnt) { 8001 /* reserve bit 0 for the pf device */ 8002 set_bit(0, vsi->fwd_bitmask); 8003 8004 /* Try to reserve as many queues as possible for macvlans. First 8005 * reserve 3/4th of max vectors, then half, then quarter and 8006 * calculate Qs per macvlan as you go 8007 */ 8008 vectors = pf->num_lan_msix; 8009 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8010 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8011 q_per_macvlan = 4; 8012 macvlan_cnt = (vectors - 32) / 4; 8013 } else if (vectors <= 64 && vectors > 32) { 8014 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8015 q_per_macvlan = 2; 8016 macvlan_cnt = (vectors - 16) / 2; 8017 } else if (vectors <= 32 && vectors > 16) { 8018 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8019 q_per_macvlan = 1; 8020 macvlan_cnt = vectors - 16; 8021 } else if (vectors <= 16 && vectors > 8) { 8022 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8023 q_per_macvlan = 1; 8024 macvlan_cnt = vectors - 8; 8025 } else { 8026 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8027 q_per_macvlan = 1; 8028 macvlan_cnt = vectors - 1; 8029 } 8030 8031 if (macvlan_cnt == 0) 8032 return ERR_PTR(-EBUSY); 8033 8034 /* Quiesce VSI queues */ 8035 i40e_quiesce_vsi(vsi); 8036 8037 /* sets up the macvlans but does not "enable" them */ 8038 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8039 vdev); 8040 if (ret) 8041 return ERR_PTR(ret); 8042 8043 /* Unquiesce VSI */ 8044 i40e_unquiesce_vsi(vsi); 8045 } 8046 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8047 vsi->macvlan_cnt); 8048 if (avail_macvlan >= I40E_MAX_MACVLANS) 8049 return ERR_PTR(-EBUSY); 8050 8051 /* create the fwd struct */ 8052 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8053 if (!fwd) 8054 return ERR_PTR(-ENOMEM); 8055 8056 set_bit(avail_macvlan, vsi->fwd_bitmask); 8057 fwd->bit_no = avail_macvlan; 8058 netdev_set_sb_channel(vdev, avail_macvlan); 8059 fwd->netdev = vdev; 8060 8061 if (!netif_running(netdev)) 8062 return fwd; 8063 8064 /* Set fwd ring up */ 8065 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8066 if (ret) { 8067 /* unbind the queues and drop the subordinate channel config */ 8068 netdev_unbind_sb_channel(netdev, vdev); 8069 netdev_set_sb_channel(vdev, 0); 8070 8071 kfree(fwd); 8072 return ERR_PTR(-EINVAL); 8073 } 8074 8075 return fwd; 8076 } 8077 8078 /** 8079 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8080 * @vsi: the VSI we want to access 8081 */ 8082 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8083 { 8084 struct i40e_channel *ch, *ch_tmp; 8085 struct i40e_pf *pf = vsi->back; 8086 struct i40e_hw *hw = &pf->hw; 8087 int aq_err, ret = 0; 8088 8089 if (list_empty(&vsi->macvlan_list)) 8090 return; 8091 8092 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8093 if (i40e_is_channel_macvlan(ch)) { 8094 ret = i40e_del_macvlan_filter(hw, ch->seid, 8095 i40e_channel_mac(ch), 8096 &aq_err); 8097 if (!ret) { 8098 /* Reset queue contexts */ 8099 i40e_reset_ch_rings(vsi, ch); 8100 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8101 netdev_unbind_sb_channel(vsi->netdev, 8102 ch->fwd->netdev); 8103 netdev_set_sb_channel(ch->fwd->netdev, 0); 8104 kfree(ch->fwd); 8105 ch->fwd = NULL; 8106 } 8107 } 8108 } 8109 } 8110 8111 /** 8112 * i40e_fwd_del - delete macvlan interfaces 8113 * @netdev: net device to configure 8114 * @vdev: macvlan netdevice 8115 */ 8116 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8117 { 8118 struct i40e_netdev_priv *np = netdev_priv(netdev); 8119 struct i40e_fwd_adapter *fwd = vdev; 8120 struct i40e_channel *ch, *ch_tmp; 8121 struct i40e_vsi *vsi = np->vsi; 8122 struct i40e_pf *pf = vsi->back; 8123 struct i40e_hw *hw = &pf->hw; 8124 int aq_err, ret = 0; 8125 8126 /* Find the channel associated with the macvlan and del mac filter */ 8127 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8128 if (i40e_is_channel_macvlan(ch) && 8129 ether_addr_equal(i40e_channel_mac(ch), 8130 fwd->netdev->dev_addr)) { 8131 ret = i40e_del_macvlan_filter(hw, ch->seid, 8132 i40e_channel_mac(ch), 8133 &aq_err); 8134 if (!ret) { 8135 /* Reset queue contexts */ 8136 i40e_reset_ch_rings(vsi, ch); 8137 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8138 netdev_unbind_sb_channel(netdev, fwd->netdev); 8139 netdev_set_sb_channel(fwd->netdev, 0); 8140 kfree(ch->fwd); 8141 ch->fwd = NULL; 8142 } else { 8143 dev_info(&pf->pdev->dev, 8144 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8145 ERR_PTR(ret), 8146 i40e_aq_str(hw, aq_err)); 8147 } 8148 break; 8149 } 8150 } 8151 } 8152 8153 /** 8154 * i40e_setup_tc - configure multiple traffic classes 8155 * @netdev: net device to configure 8156 * @type_data: tc offload data 8157 **/ 8158 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8159 { 8160 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8161 struct i40e_netdev_priv *np = netdev_priv(netdev); 8162 struct i40e_vsi *vsi = np->vsi; 8163 struct i40e_pf *pf = vsi->back; 8164 u8 enabled_tc = 0, num_tc, hw; 8165 bool need_reset = false; 8166 int old_queue_pairs; 8167 int ret = -EINVAL; 8168 u16 mode; 8169 int i; 8170 8171 old_queue_pairs = vsi->num_queue_pairs; 8172 num_tc = mqprio_qopt->qopt.num_tc; 8173 hw = mqprio_qopt->qopt.hw; 8174 mode = mqprio_qopt->mode; 8175 if (!hw) { 8176 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8177 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8178 goto config_tc; 8179 } 8180 8181 /* Check if MFP enabled */ 8182 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8183 netdev_info(netdev, 8184 "Configuring TC not supported in MFP mode\n"); 8185 return ret; 8186 } 8187 switch (mode) { 8188 case TC_MQPRIO_MODE_DCB: 8189 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8190 8191 /* Check if DCB enabled to continue */ 8192 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8193 netdev_info(netdev, 8194 "DCB is not enabled for adapter\n"); 8195 return ret; 8196 } 8197 8198 /* Check whether tc count is within enabled limit */ 8199 if (num_tc > i40e_pf_get_num_tc(pf)) { 8200 netdev_info(netdev, 8201 "TC count greater than enabled on link for adapter\n"); 8202 return ret; 8203 } 8204 break; 8205 case TC_MQPRIO_MODE_CHANNEL: 8206 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8207 netdev_info(netdev, 8208 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8209 return ret; 8210 } 8211 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8212 return ret; 8213 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8214 if (ret) 8215 return ret; 8216 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8217 sizeof(*mqprio_qopt)); 8218 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8219 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8220 break; 8221 default: 8222 return -EINVAL; 8223 } 8224 8225 config_tc: 8226 /* Generate TC map for number of tc requested */ 8227 for (i = 0; i < num_tc; i++) 8228 enabled_tc |= BIT(i); 8229 8230 /* Requesting same TC configuration as already enabled */ 8231 if (enabled_tc == vsi->tc_config.enabled_tc && 8232 mode != TC_MQPRIO_MODE_CHANNEL) 8233 return 0; 8234 8235 /* Quiesce VSI queues */ 8236 i40e_quiesce_vsi(vsi); 8237 8238 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8239 i40e_remove_queue_channels(vsi); 8240 8241 /* Configure VSI for enabled TCs */ 8242 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8243 if (ret) { 8244 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8245 vsi->seid); 8246 need_reset = true; 8247 goto exit; 8248 } else if (enabled_tc && 8249 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8250 netdev_info(netdev, 8251 "Failed to create channel. Override queues (%u) not power of 2\n", 8252 vsi->tc_config.tc_info[0].qcount); 8253 ret = -EINVAL; 8254 need_reset = true; 8255 goto exit; 8256 } 8257 8258 dev_info(&vsi->back->pdev->dev, 8259 "Setup channel (id:%u) utilizing num_queues %d\n", 8260 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8261 8262 if (i40e_is_tc_mqprio_enabled(pf)) { 8263 if (vsi->mqprio_qopt.max_rate[0]) { 8264 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8265 vsi->mqprio_qopt.max_rate[0]); 8266 8267 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8268 if (!ret) { 8269 u64 credits = max_tx_rate; 8270 8271 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8272 dev_dbg(&vsi->back->pdev->dev, 8273 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8274 max_tx_rate, 8275 credits, 8276 vsi->seid); 8277 } else { 8278 need_reset = true; 8279 goto exit; 8280 } 8281 } 8282 ret = i40e_configure_queue_channels(vsi); 8283 if (ret) { 8284 vsi->num_queue_pairs = old_queue_pairs; 8285 netdev_info(netdev, 8286 "Failed configuring queue channels\n"); 8287 need_reset = true; 8288 goto exit; 8289 } 8290 } 8291 8292 exit: 8293 /* Reset the configuration data to defaults, only TC0 is enabled */ 8294 if (need_reset) { 8295 i40e_vsi_set_default_tc_config(vsi); 8296 need_reset = false; 8297 } 8298 8299 /* Unquiesce VSI */ 8300 i40e_unquiesce_vsi(vsi); 8301 return ret; 8302 } 8303 8304 /** 8305 * i40e_set_cld_element - sets cloud filter element data 8306 * @filter: cloud filter rule 8307 * @cld: ptr to cloud filter element data 8308 * 8309 * This is helper function to copy data into cloud filter element 8310 **/ 8311 static inline void 8312 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8313 struct i40e_aqc_cloud_filters_element_data *cld) 8314 { 8315 u32 ipa; 8316 int i; 8317 8318 memset(cld, 0, sizeof(*cld)); 8319 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8320 ether_addr_copy(cld->inner_mac, filter->src_mac); 8321 8322 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8323 return; 8324 8325 if (filter->n_proto == ETH_P_IPV6) { 8326 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8327 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8328 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8329 8330 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8331 } 8332 } else { 8333 ipa = be32_to_cpu(filter->dst_ipv4); 8334 8335 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8336 } 8337 8338 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8339 8340 /* tenant_id is not supported by FW now, once the support is enabled 8341 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8342 */ 8343 if (filter->tenant_id) 8344 return; 8345 } 8346 8347 /** 8348 * i40e_add_del_cloud_filter - Add/del cloud filter 8349 * @vsi: pointer to VSI 8350 * @filter: cloud filter rule 8351 * @add: if true, add, if false, delete 8352 * 8353 * Add or delete a cloud filter for a specific flow spec. 8354 * Returns 0 if the filter were successfully added. 8355 **/ 8356 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8357 struct i40e_cloud_filter *filter, bool add) 8358 { 8359 struct i40e_aqc_cloud_filters_element_data cld_filter; 8360 struct i40e_pf *pf = vsi->back; 8361 int ret; 8362 static const u16 flag_table[128] = { 8363 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8364 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8365 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8366 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8367 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8368 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8369 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8370 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8371 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8372 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8373 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8374 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8375 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8376 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8377 }; 8378 8379 if (filter->flags >= ARRAY_SIZE(flag_table)) 8380 return -EIO; 8381 8382 memset(&cld_filter, 0, sizeof(cld_filter)); 8383 8384 /* copy element needed to add cloud filter from filter */ 8385 i40e_set_cld_element(filter, &cld_filter); 8386 8387 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8388 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8389 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8390 8391 if (filter->n_proto == ETH_P_IPV6) 8392 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8393 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8394 else 8395 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8396 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8397 8398 if (add) 8399 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8400 &cld_filter, 1); 8401 else 8402 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8403 &cld_filter, 1); 8404 if (ret) 8405 dev_dbg(&pf->pdev->dev, 8406 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8407 add ? "add" : "delete", filter->dst_port, ret, 8408 pf->hw.aq.asq_last_status); 8409 else 8410 dev_info(&pf->pdev->dev, 8411 "%s cloud filter for VSI: %d\n", 8412 add ? "Added" : "Deleted", filter->seid); 8413 return ret; 8414 } 8415 8416 /** 8417 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8418 * @vsi: pointer to VSI 8419 * @filter: cloud filter rule 8420 * @add: if true, add, if false, delete 8421 * 8422 * Add or delete a cloud filter for a specific flow spec using big buffer. 8423 * Returns 0 if the filter were successfully added. 8424 **/ 8425 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8426 struct i40e_cloud_filter *filter, 8427 bool add) 8428 { 8429 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8430 struct i40e_pf *pf = vsi->back; 8431 int ret; 8432 8433 /* Both (src/dst) valid mac_addr are not supported */ 8434 if ((is_valid_ether_addr(filter->dst_mac) && 8435 is_valid_ether_addr(filter->src_mac)) || 8436 (is_multicast_ether_addr(filter->dst_mac) && 8437 is_multicast_ether_addr(filter->src_mac))) 8438 return -EOPNOTSUPP; 8439 8440 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8441 * ports are not supported via big buffer now. 8442 */ 8443 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8444 return -EOPNOTSUPP; 8445 8446 /* adding filter using src_port/src_ip is not supported at this stage */ 8447 if (filter->src_port || 8448 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8449 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8450 return -EOPNOTSUPP; 8451 8452 memset(&cld_filter, 0, sizeof(cld_filter)); 8453 8454 /* copy element needed to add cloud filter from filter */ 8455 i40e_set_cld_element(filter, &cld_filter.element); 8456 8457 if (is_valid_ether_addr(filter->dst_mac) || 8458 is_valid_ether_addr(filter->src_mac) || 8459 is_multicast_ether_addr(filter->dst_mac) || 8460 is_multicast_ether_addr(filter->src_mac)) { 8461 /* MAC + IP : unsupported mode */ 8462 if (filter->dst_ipv4) 8463 return -EOPNOTSUPP; 8464 8465 /* since we validated that L4 port must be valid before 8466 * we get here, start with respective "flags" value 8467 * and update if vlan is present or not 8468 */ 8469 cld_filter.element.flags = 8470 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8471 8472 if (filter->vlan_id) { 8473 cld_filter.element.flags = 8474 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8475 } 8476 8477 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8478 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8479 cld_filter.element.flags = 8480 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8481 if (filter->n_proto == ETH_P_IPV6) 8482 cld_filter.element.flags |= 8483 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8484 else 8485 cld_filter.element.flags |= 8486 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8487 } else { 8488 dev_err(&pf->pdev->dev, 8489 "either mac or ip has to be valid for cloud filter\n"); 8490 return -EINVAL; 8491 } 8492 8493 /* Now copy L4 port in Byte 6..7 in general fields */ 8494 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8495 be16_to_cpu(filter->dst_port); 8496 8497 if (add) { 8498 /* Validate current device switch mode, change if necessary */ 8499 ret = i40e_validate_and_set_switch_mode(vsi); 8500 if (ret) { 8501 dev_err(&pf->pdev->dev, 8502 "failed to set switch mode, ret %d\n", 8503 ret); 8504 return ret; 8505 } 8506 8507 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8508 &cld_filter, 1); 8509 } else { 8510 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8511 &cld_filter, 1); 8512 } 8513 8514 if (ret) 8515 dev_dbg(&pf->pdev->dev, 8516 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8517 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8518 else 8519 dev_info(&pf->pdev->dev, 8520 "%s cloud filter for VSI: %d, L4 port: %d\n", 8521 add ? "add" : "delete", filter->seid, 8522 ntohs(filter->dst_port)); 8523 return ret; 8524 } 8525 8526 /** 8527 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8528 * @vsi: Pointer to VSI 8529 * @f: Pointer to struct flow_cls_offload 8530 * @filter: Pointer to cloud filter structure 8531 * 8532 **/ 8533 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8534 struct flow_cls_offload *f, 8535 struct i40e_cloud_filter *filter) 8536 { 8537 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8538 struct flow_dissector *dissector = rule->match.dissector; 8539 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8540 struct i40e_pf *pf = vsi->back; 8541 u8 field_flags = 0; 8542 8543 if (dissector->used_keys & 8544 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8545 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8546 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8547 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8548 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8549 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8550 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8551 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8552 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8553 dissector->used_keys); 8554 return -EOPNOTSUPP; 8555 } 8556 8557 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8558 struct flow_match_enc_keyid match; 8559 8560 flow_rule_match_enc_keyid(rule, &match); 8561 if (match.mask->keyid != 0) 8562 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8563 8564 filter->tenant_id = be32_to_cpu(match.key->keyid); 8565 } 8566 8567 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8568 struct flow_match_basic match; 8569 8570 flow_rule_match_basic(rule, &match); 8571 n_proto_key = ntohs(match.key->n_proto); 8572 n_proto_mask = ntohs(match.mask->n_proto); 8573 8574 if (n_proto_key == ETH_P_ALL) { 8575 n_proto_key = 0; 8576 n_proto_mask = 0; 8577 } 8578 filter->n_proto = n_proto_key & n_proto_mask; 8579 filter->ip_proto = match.key->ip_proto; 8580 } 8581 8582 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8583 struct flow_match_eth_addrs match; 8584 8585 flow_rule_match_eth_addrs(rule, &match); 8586 8587 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8588 if (!is_zero_ether_addr(match.mask->dst)) { 8589 if (is_broadcast_ether_addr(match.mask->dst)) { 8590 field_flags |= I40E_CLOUD_FIELD_OMAC; 8591 } else { 8592 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8593 match.mask->dst); 8594 return -EIO; 8595 } 8596 } 8597 8598 if (!is_zero_ether_addr(match.mask->src)) { 8599 if (is_broadcast_ether_addr(match.mask->src)) { 8600 field_flags |= I40E_CLOUD_FIELD_IMAC; 8601 } else { 8602 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8603 match.mask->src); 8604 return -EIO; 8605 } 8606 } 8607 ether_addr_copy(filter->dst_mac, match.key->dst); 8608 ether_addr_copy(filter->src_mac, match.key->src); 8609 } 8610 8611 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8612 struct flow_match_vlan match; 8613 8614 flow_rule_match_vlan(rule, &match); 8615 if (match.mask->vlan_id) { 8616 if (match.mask->vlan_id == VLAN_VID_MASK) { 8617 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8618 8619 } else { 8620 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8621 match.mask->vlan_id); 8622 return -EIO; 8623 } 8624 } 8625 8626 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8627 } 8628 8629 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8630 struct flow_match_control match; 8631 8632 flow_rule_match_control(rule, &match); 8633 addr_type = match.key->addr_type; 8634 } 8635 8636 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8637 struct flow_match_ipv4_addrs match; 8638 8639 flow_rule_match_ipv4_addrs(rule, &match); 8640 if (match.mask->dst) { 8641 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8642 field_flags |= I40E_CLOUD_FIELD_IIP; 8643 } else { 8644 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8645 &match.mask->dst); 8646 return -EIO; 8647 } 8648 } 8649 8650 if (match.mask->src) { 8651 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8652 field_flags |= I40E_CLOUD_FIELD_IIP; 8653 } else { 8654 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8655 &match.mask->src); 8656 return -EIO; 8657 } 8658 } 8659 8660 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8661 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8662 return -EIO; 8663 } 8664 filter->dst_ipv4 = match.key->dst; 8665 filter->src_ipv4 = match.key->src; 8666 } 8667 8668 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8669 struct flow_match_ipv6_addrs match; 8670 8671 flow_rule_match_ipv6_addrs(rule, &match); 8672 8673 /* src and dest IPV6 address should not be LOOPBACK 8674 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8675 */ 8676 if (ipv6_addr_loopback(&match.key->dst) || 8677 ipv6_addr_loopback(&match.key->src)) { 8678 dev_err(&pf->pdev->dev, 8679 "Bad ipv6, addr is LOOPBACK\n"); 8680 return -EIO; 8681 } 8682 if (!ipv6_addr_any(&match.mask->dst) || 8683 !ipv6_addr_any(&match.mask->src)) 8684 field_flags |= I40E_CLOUD_FIELD_IIP; 8685 8686 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8687 sizeof(filter->src_ipv6)); 8688 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8689 sizeof(filter->dst_ipv6)); 8690 } 8691 8692 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8693 struct flow_match_ports match; 8694 8695 flow_rule_match_ports(rule, &match); 8696 if (match.mask->src) { 8697 if (match.mask->src == cpu_to_be16(0xffff)) { 8698 field_flags |= I40E_CLOUD_FIELD_IIP; 8699 } else { 8700 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8701 be16_to_cpu(match.mask->src)); 8702 return -EIO; 8703 } 8704 } 8705 8706 if (match.mask->dst) { 8707 if (match.mask->dst == cpu_to_be16(0xffff)) { 8708 field_flags |= I40E_CLOUD_FIELD_IIP; 8709 } else { 8710 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8711 be16_to_cpu(match.mask->dst)); 8712 return -EIO; 8713 } 8714 } 8715 8716 filter->dst_port = match.key->dst; 8717 filter->src_port = match.key->src; 8718 8719 switch (filter->ip_proto) { 8720 case IPPROTO_TCP: 8721 case IPPROTO_UDP: 8722 break; 8723 default: 8724 dev_err(&pf->pdev->dev, 8725 "Only UDP and TCP transport are supported\n"); 8726 return -EINVAL; 8727 } 8728 } 8729 filter->flags = field_flags; 8730 return 0; 8731 } 8732 8733 /** 8734 * i40e_handle_tclass: Forward to a traffic class on the device 8735 * @vsi: Pointer to VSI 8736 * @tc: traffic class index on the device 8737 * @filter: Pointer to cloud filter structure 8738 * 8739 **/ 8740 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8741 struct i40e_cloud_filter *filter) 8742 { 8743 struct i40e_channel *ch, *ch_tmp; 8744 8745 /* direct to a traffic class on the same device */ 8746 if (tc == 0) { 8747 filter->seid = vsi->seid; 8748 return 0; 8749 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8750 if (!filter->dst_port) { 8751 dev_err(&vsi->back->pdev->dev, 8752 "Specify destination port to direct to traffic class that is not default\n"); 8753 return -EINVAL; 8754 } 8755 if (list_empty(&vsi->ch_list)) 8756 return -EINVAL; 8757 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8758 list) { 8759 if (ch->seid == vsi->tc_seid_map[tc]) 8760 filter->seid = ch->seid; 8761 } 8762 return 0; 8763 } 8764 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8765 return -EINVAL; 8766 } 8767 8768 /** 8769 * i40e_configure_clsflower - Configure tc flower filters 8770 * @vsi: Pointer to VSI 8771 * @cls_flower: Pointer to struct flow_cls_offload 8772 * 8773 **/ 8774 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8775 struct flow_cls_offload *cls_flower) 8776 { 8777 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8778 struct i40e_cloud_filter *filter = NULL; 8779 struct i40e_pf *pf = vsi->back; 8780 int err = 0; 8781 8782 if (tc < 0) { 8783 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8784 return -EOPNOTSUPP; 8785 } 8786 8787 if (!tc) { 8788 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8789 return -EINVAL; 8790 } 8791 8792 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8793 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8794 return -EBUSY; 8795 8796 if (pf->fdir_pf_active_filters || 8797 (!hlist_empty(&pf->fdir_filter_list))) { 8798 dev_err(&vsi->back->pdev->dev, 8799 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8800 return -EINVAL; 8801 } 8802 8803 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8804 dev_err(&vsi->back->pdev->dev, 8805 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8806 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8807 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8808 } 8809 8810 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8811 if (!filter) 8812 return -ENOMEM; 8813 8814 filter->cookie = cls_flower->cookie; 8815 8816 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8817 if (err < 0) 8818 goto err; 8819 8820 err = i40e_handle_tclass(vsi, tc, filter); 8821 if (err < 0) 8822 goto err; 8823 8824 /* Add cloud filter */ 8825 if (filter->dst_port) 8826 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8827 else 8828 err = i40e_add_del_cloud_filter(vsi, filter, true); 8829 8830 if (err) { 8831 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8832 err); 8833 goto err; 8834 } 8835 8836 /* add filter to the ordered list */ 8837 INIT_HLIST_NODE(&filter->cloud_node); 8838 8839 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8840 8841 pf->num_cloud_filters++; 8842 8843 return err; 8844 err: 8845 kfree(filter); 8846 return err; 8847 } 8848 8849 /** 8850 * i40e_find_cloud_filter - Find the could filter in the list 8851 * @vsi: Pointer to VSI 8852 * @cookie: filter specific cookie 8853 * 8854 **/ 8855 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8856 unsigned long *cookie) 8857 { 8858 struct i40e_cloud_filter *filter = NULL; 8859 struct hlist_node *node2; 8860 8861 hlist_for_each_entry_safe(filter, node2, 8862 &vsi->back->cloud_filter_list, cloud_node) 8863 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8864 return filter; 8865 return NULL; 8866 } 8867 8868 /** 8869 * i40e_delete_clsflower - Remove tc flower filters 8870 * @vsi: Pointer to VSI 8871 * @cls_flower: Pointer to struct flow_cls_offload 8872 * 8873 **/ 8874 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8875 struct flow_cls_offload *cls_flower) 8876 { 8877 struct i40e_cloud_filter *filter = NULL; 8878 struct i40e_pf *pf = vsi->back; 8879 int err = 0; 8880 8881 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8882 8883 if (!filter) 8884 return -EINVAL; 8885 8886 hash_del(&filter->cloud_node); 8887 8888 if (filter->dst_port) 8889 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8890 else 8891 err = i40e_add_del_cloud_filter(vsi, filter, false); 8892 8893 kfree(filter); 8894 if (err) { 8895 dev_err(&pf->pdev->dev, 8896 "Failed to delete cloud filter, err %pe\n", 8897 ERR_PTR(err)); 8898 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8899 } 8900 8901 pf->num_cloud_filters--; 8902 if (!pf->num_cloud_filters) 8903 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8904 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8905 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8906 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8907 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8908 } 8909 return 0; 8910 } 8911 8912 /** 8913 * i40e_setup_tc_cls_flower - flower classifier offloads 8914 * @np: net device to configure 8915 * @cls_flower: offload data 8916 **/ 8917 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8918 struct flow_cls_offload *cls_flower) 8919 { 8920 struct i40e_vsi *vsi = np->vsi; 8921 8922 switch (cls_flower->command) { 8923 case FLOW_CLS_REPLACE: 8924 return i40e_configure_clsflower(vsi, cls_flower); 8925 case FLOW_CLS_DESTROY: 8926 return i40e_delete_clsflower(vsi, cls_flower); 8927 case FLOW_CLS_STATS: 8928 return -EOPNOTSUPP; 8929 default: 8930 return -EOPNOTSUPP; 8931 } 8932 } 8933 8934 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8935 void *cb_priv) 8936 { 8937 struct i40e_netdev_priv *np = cb_priv; 8938 8939 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8940 return -EOPNOTSUPP; 8941 8942 switch (type) { 8943 case TC_SETUP_CLSFLOWER: 8944 return i40e_setup_tc_cls_flower(np, type_data); 8945 8946 default: 8947 return -EOPNOTSUPP; 8948 } 8949 } 8950 8951 static LIST_HEAD(i40e_block_cb_list); 8952 8953 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8954 void *type_data) 8955 { 8956 struct i40e_netdev_priv *np = netdev_priv(netdev); 8957 8958 switch (type) { 8959 case TC_SETUP_QDISC_MQPRIO: 8960 return i40e_setup_tc(netdev, type_data); 8961 case TC_SETUP_BLOCK: 8962 return flow_block_cb_setup_simple(type_data, 8963 &i40e_block_cb_list, 8964 i40e_setup_tc_block_cb, 8965 np, np, true); 8966 default: 8967 return -EOPNOTSUPP; 8968 } 8969 } 8970 8971 /** 8972 * i40e_open - Called when a network interface is made active 8973 * @netdev: network interface device structure 8974 * 8975 * The open entry point is called when a network interface is made 8976 * active by the system (IFF_UP). At this point all resources needed 8977 * for transmit and receive operations are allocated, the interrupt 8978 * handler is registered with the OS, the netdev watchdog subtask is 8979 * enabled, and the stack is notified that the interface is ready. 8980 * 8981 * Returns 0 on success, negative value on failure 8982 **/ 8983 int i40e_open(struct net_device *netdev) 8984 { 8985 struct i40e_netdev_priv *np = netdev_priv(netdev); 8986 struct i40e_vsi *vsi = np->vsi; 8987 struct i40e_pf *pf = vsi->back; 8988 int err; 8989 8990 /* disallow open during test or if eeprom is broken */ 8991 if (test_bit(__I40E_TESTING, pf->state) || 8992 test_bit(__I40E_BAD_EEPROM, pf->state)) 8993 return -EBUSY; 8994 8995 netif_carrier_off(netdev); 8996 8997 if (i40e_force_link_state(pf, true)) 8998 return -EAGAIN; 8999 9000 err = i40e_vsi_open(vsi); 9001 if (err) 9002 return err; 9003 9004 /* configure global TSO hardware offload settings */ 9005 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9006 TCP_FLAG_FIN) >> 16); 9007 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9008 TCP_FLAG_FIN | 9009 TCP_FLAG_CWR) >> 16); 9010 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9011 udp_tunnel_get_rx_info(netdev); 9012 9013 return 0; 9014 } 9015 9016 /** 9017 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9018 * @vsi: vsi structure 9019 * 9020 * This updates netdev's number of tx/rx queues 9021 * 9022 * Returns status of setting tx/rx queues 9023 **/ 9024 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9025 { 9026 int ret; 9027 9028 ret = netif_set_real_num_rx_queues(vsi->netdev, 9029 vsi->num_queue_pairs); 9030 if (ret) 9031 return ret; 9032 9033 return netif_set_real_num_tx_queues(vsi->netdev, 9034 vsi->num_queue_pairs); 9035 } 9036 9037 /** 9038 * i40e_vsi_open - 9039 * @vsi: the VSI to open 9040 * 9041 * Finish initialization of the VSI. 9042 * 9043 * Returns 0 on success, negative value on failure 9044 * 9045 * Note: expects to be called while under rtnl_lock() 9046 **/ 9047 int i40e_vsi_open(struct i40e_vsi *vsi) 9048 { 9049 struct i40e_pf *pf = vsi->back; 9050 char int_name[I40E_INT_NAME_STR_LEN]; 9051 int err; 9052 9053 /* allocate descriptors */ 9054 err = i40e_vsi_setup_tx_resources(vsi); 9055 if (err) 9056 goto err_setup_tx; 9057 err = i40e_vsi_setup_rx_resources(vsi); 9058 if (err) 9059 goto err_setup_rx; 9060 9061 err = i40e_vsi_configure(vsi); 9062 if (err) 9063 goto err_setup_rx; 9064 9065 if (vsi->netdev) { 9066 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9067 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9068 err = i40e_vsi_request_irq(vsi, int_name); 9069 if (err) 9070 goto err_setup_rx; 9071 9072 /* Notify the stack of the actual queue counts. */ 9073 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9074 if (err) 9075 goto err_set_queues; 9076 9077 } else if (vsi->type == I40E_VSI_FDIR) { 9078 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9079 dev_driver_string(&pf->pdev->dev), 9080 dev_name(&pf->pdev->dev)); 9081 err = i40e_vsi_request_irq(vsi, int_name); 9082 if (err) 9083 goto err_setup_rx; 9084 9085 } else { 9086 err = -EINVAL; 9087 goto err_setup_rx; 9088 } 9089 9090 err = i40e_up_complete(vsi); 9091 if (err) 9092 goto err_up_complete; 9093 9094 return 0; 9095 9096 err_up_complete: 9097 i40e_down(vsi); 9098 err_set_queues: 9099 i40e_vsi_free_irq(vsi); 9100 err_setup_rx: 9101 i40e_vsi_free_rx_resources(vsi); 9102 err_setup_tx: 9103 i40e_vsi_free_tx_resources(vsi); 9104 if (vsi == pf->vsi[pf->lan_vsi]) 9105 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9106 9107 return err; 9108 } 9109 9110 /** 9111 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9112 * @pf: Pointer to PF 9113 * 9114 * This function destroys the hlist where all the Flow Director 9115 * filters were saved. 9116 **/ 9117 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9118 { 9119 struct i40e_fdir_filter *filter; 9120 struct i40e_flex_pit *pit_entry, *tmp; 9121 struct hlist_node *node2; 9122 9123 hlist_for_each_entry_safe(filter, node2, 9124 &pf->fdir_filter_list, fdir_node) { 9125 hlist_del(&filter->fdir_node); 9126 kfree(filter); 9127 } 9128 9129 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9130 list_del(&pit_entry->list); 9131 kfree(pit_entry); 9132 } 9133 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9134 9135 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9136 list_del(&pit_entry->list); 9137 kfree(pit_entry); 9138 } 9139 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9140 9141 pf->fdir_pf_active_filters = 0; 9142 i40e_reset_fdir_filter_cnt(pf); 9143 9144 /* Reprogram the default input set for TCP/IPv4 */ 9145 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9146 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9147 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9148 9149 /* Reprogram the default input set for TCP/IPv6 */ 9150 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 9151 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9152 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9153 9154 /* Reprogram the default input set for UDP/IPv4 */ 9155 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 9156 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9157 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9158 9159 /* Reprogram the default input set for UDP/IPv6 */ 9160 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 9161 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9162 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9163 9164 /* Reprogram the default input set for SCTP/IPv4 */ 9165 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 9166 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9167 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9168 9169 /* Reprogram the default input set for SCTP/IPv6 */ 9170 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 9171 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9172 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9173 9174 /* Reprogram the default input set for Other/IPv4 */ 9175 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 9176 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9177 9178 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 9179 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9180 9181 /* Reprogram the default input set for Other/IPv6 */ 9182 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 9183 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9184 9185 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 9186 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9187 } 9188 9189 /** 9190 * i40e_cloud_filter_exit - Cleans up the cloud filters 9191 * @pf: Pointer to PF 9192 * 9193 * This function destroys the hlist where all the cloud filters 9194 * were saved. 9195 **/ 9196 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9197 { 9198 struct i40e_cloud_filter *cfilter; 9199 struct hlist_node *node; 9200 9201 hlist_for_each_entry_safe(cfilter, node, 9202 &pf->cloud_filter_list, cloud_node) { 9203 hlist_del(&cfilter->cloud_node); 9204 kfree(cfilter); 9205 } 9206 pf->num_cloud_filters = 0; 9207 9208 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9209 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9210 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9211 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9212 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9213 } 9214 } 9215 9216 /** 9217 * i40e_close - Disables a network interface 9218 * @netdev: network interface device structure 9219 * 9220 * The close entry point is called when an interface is de-activated 9221 * by the OS. The hardware is still under the driver's control, but 9222 * this netdev interface is disabled. 9223 * 9224 * Returns 0, this is not allowed to fail 9225 **/ 9226 int i40e_close(struct net_device *netdev) 9227 { 9228 struct i40e_netdev_priv *np = netdev_priv(netdev); 9229 struct i40e_vsi *vsi = np->vsi; 9230 9231 i40e_vsi_close(vsi); 9232 9233 return 0; 9234 } 9235 9236 /** 9237 * i40e_do_reset - Start a PF or Core Reset sequence 9238 * @pf: board private structure 9239 * @reset_flags: which reset is requested 9240 * @lock_acquired: indicates whether or not the lock has been acquired 9241 * before this function was called. 9242 * 9243 * The essential difference in resets is that the PF Reset 9244 * doesn't clear the packet buffers, doesn't reset the PE 9245 * firmware, and doesn't bother the other PFs on the chip. 9246 **/ 9247 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9248 { 9249 u32 val; 9250 9251 /* do the biggest reset indicated */ 9252 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9253 9254 /* Request a Global Reset 9255 * 9256 * This will start the chip's countdown to the actual full 9257 * chip reset event, and a warning interrupt to be sent 9258 * to all PFs, including the requestor. Our handler 9259 * for the warning interrupt will deal with the shutdown 9260 * and recovery of the switch setup. 9261 */ 9262 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9263 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9264 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9265 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9266 9267 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9268 9269 /* Request a Core Reset 9270 * 9271 * Same as Global Reset, except does *not* include the MAC/PHY 9272 */ 9273 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9274 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9275 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9276 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9277 i40e_flush(&pf->hw); 9278 9279 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9280 9281 /* Request a PF Reset 9282 * 9283 * Resets only the PF-specific registers 9284 * 9285 * This goes directly to the tear-down and rebuild of 9286 * the switch, since we need to do all the recovery as 9287 * for the Core Reset. 9288 */ 9289 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9290 i40e_handle_reset_warning(pf, lock_acquired); 9291 9292 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9293 /* Request a PF Reset 9294 * 9295 * Resets PF and reinitializes PFs VSI. 9296 */ 9297 i40e_prep_for_reset(pf); 9298 i40e_reset_and_rebuild(pf, true, lock_acquired); 9299 dev_info(&pf->pdev->dev, 9300 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9301 "FW LLDP is disabled\n" : 9302 "FW LLDP is enabled\n"); 9303 9304 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9305 int v; 9306 9307 /* Find the VSI(s) that requested a re-init */ 9308 dev_info(&pf->pdev->dev, 9309 "VSI reinit requested\n"); 9310 for (v = 0; v < pf->num_alloc_vsi; v++) { 9311 struct i40e_vsi *vsi = pf->vsi[v]; 9312 9313 if (vsi != NULL && 9314 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9315 vsi->state)) 9316 i40e_vsi_reinit_locked(pf->vsi[v]); 9317 } 9318 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9319 int v; 9320 9321 /* Find the VSI(s) that needs to be brought down */ 9322 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9323 for (v = 0; v < pf->num_alloc_vsi; v++) { 9324 struct i40e_vsi *vsi = pf->vsi[v]; 9325 9326 if (vsi != NULL && 9327 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9328 vsi->state)) { 9329 set_bit(__I40E_VSI_DOWN, vsi->state); 9330 i40e_down(vsi); 9331 } 9332 } 9333 } else { 9334 dev_info(&pf->pdev->dev, 9335 "bad reset request 0x%08x\n", reset_flags); 9336 } 9337 } 9338 9339 #ifdef CONFIG_I40E_DCB 9340 /** 9341 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9342 * @pf: board private structure 9343 * @old_cfg: current DCB config 9344 * @new_cfg: new DCB config 9345 **/ 9346 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9347 struct i40e_dcbx_config *old_cfg, 9348 struct i40e_dcbx_config *new_cfg) 9349 { 9350 bool need_reconfig = false; 9351 9352 /* Check if ETS configuration has changed */ 9353 if (memcmp(&new_cfg->etscfg, 9354 &old_cfg->etscfg, 9355 sizeof(new_cfg->etscfg))) { 9356 /* If Priority Table has changed reconfig is needed */ 9357 if (memcmp(&new_cfg->etscfg.prioritytable, 9358 &old_cfg->etscfg.prioritytable, 9359 sizeof(new_cfg->etscfg.prioritytable))) { 9360 need_reconfig = true; 9361 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9362 } 9363 9364 if (memcmp(&new_cfg->etscfg.tcbwtable, 9365 &old_cfg->etscfg.tcbwtable, 9366 sizeof(new_cfg->etscfg.tcbwtable))) 9367 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9368 9369 if (memcmp(&new_cfg->etscfg.tsatable, 9370 &old_cfg->etscfg.tsatable, 9371 sizeof(new_cfg->etscfg.tsatable))) 9372 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9373 } 9374 9375 /* Check if PFC configuration has changed */ 9376 if (memcmp(&new_cfg->pfc, 9377 &old_cfg->pfc, 9378 sizeof(new_cfg->pfc))) { 9379 need_reconfig = true; 9380 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9381 } 9382 9383 /* Check if APP Table has changed */ 9384 if (memcmp(&new_cfg->app, 9385 &old_cfg->app, 9386 sizeof(new_cfg->app))) { 9387 need_reconfig = true; 9388 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9389 } 9390 9391 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9392 return need_reconfig; 9393 } 9394 9395 /** 9396 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9397 * @pf: board private structure 9398 * @e: event info posted on ARQ 9399 **/ 9400 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9401 struct i40e_arq_event_info *e) 9402 { 9403 struct i40e_aqc_lldp_get_mib *mib = 9404 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9405 struct i40e_hw *hw = &pf->hw; 9406 struct i40e_dcbx_config tmp_dcbx_cfg; 9407 bool need_reconfig = false; 9408 int ret = 0; 9409 u8 type; 9410 9411 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9412 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9413 (hw->phy.link_info.link_speed & 9414 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9415 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9416 /* let firmware decide if the DCB should be disabled */ 9417 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9418 9419 /* Not DCB capable or capability disabled */ 9420 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9421 return ret; 9422 9423 /* Ignore if event is not for Nearest Bridge */ 9424 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9425 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9426 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9427 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9428 return ret; 9429 9430 /* Check MIB Type and return if event for Remote MIB update */ 9431 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9432 dev_dbg(&pf->pdev->dev, 9433 "LLDP event mib type %s\n", type ? "remote" : "local"); 9434 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9435 /* Update the remote cached instance and return */ 9436 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9437 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9438 &hw->remote_dcbx_config); 9439 goto exit; 9440 } 9441 9442 /* Store the old configuration */ 9443 tmp_dcbx_cfg = hw->local_dcbx_config; 9444 9445 /* Reset the old DCBx configuration data */ 9446 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9447 /* Get updated DCBX data from firmware */ 9448 ret = i40e_get_dcb_config(&pf->hw); 9449 if (ret) { 9450 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9451 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9452 (hw->phy.link_info.link_speed & 9453 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9454 dev_warn(&pf->pdev->dev, 9455 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9456 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9457 } else { 9458 dev_info(&pf->pdev->dev, 9459 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9460 ERR_PTR(ret), 9461 i40e_aq_str(&pf->hw, 9462 pf->hw.aq.asq_last_status)); 9463 } 9464 goto exit; 9465 } 9466 9467 /* No change detected in DCBX configs */ 9468 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9469 sizeof(tmp_dcbx_cfg))) { 9470 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9471 goto exit; 9472 } 9473 9474 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9475 &hw->local_dcbx_config); 9476 9477 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9478 9479 if (!need_reconfig) 9480 goto exit; 9481 9482 /* Enable DCB tagging only when more than one TC */ 9483 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9484 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9485 else 9486 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9487 9488 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9489 /* Reconfiguration needed quiesce all VSIs */ 9490 i40e_pf_quiesce_all_vsi(pf); 9491 9492 /* Changes in configuration update VEB/VSI */ 9493 i40e_dcb_reconfigure(pf); 9494 9495 ret = i40e_resume_port_tx(pf); 9496 9497 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9498 /* In case of error no point in resuming VSIs */ 9499 if (ret) 9500 goto exit; 9501 9502 /* Wait for the PF's queues to be disabled */ 9503 ret = i40e_pf_wait_queues_disabled(pf); 9504 if (ret) { 9505 /* Schedule PF reset to recover */ 9506 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9507 i40e_service_event_schedule(pf); 9508 } else { 9509 i40e_pf_unquiesce_all_vsi(pf); 9510 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9511 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9512 } 9513 9514 exit: 9515 return ret; 9516 } 9517 #endif /* CONFIG_I40E_DCB */ 9518 9519 /** 9520 * i40e_do_reset_safe - Protected reset path for userland calls. 9521 * @pf: board private structure 9522 * @reset_flags: which reset is requested 9523 * 9524 **/ 9525 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9526 { 9527 rtnl_lock(); 9528 i40e_do_reset(pf, reset_flags, true); 9529 rtnl_unlock(); 9530 } 9531 9532 /** 9533 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9534 * @pf: board private structure 9535 * @e: event info posted on ARQ 9536 * 9537 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9538 * and VF queues 9539 **/ 9540 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9541 struct i40e_arq_event_info *e) 9542 { 9543 struct i40e_aqc_lan_overflow *data = 9544 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9545 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9546 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9547 struct i40e_hw *hw = &pf->hw; 9548 struct i40e_vf *vf; 9549 u16 vf_id; 9550 9551 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9552 queue, qtx_ctl); 9553 9554 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) != 9555 I40E_QTX_CTL_VF_QUEUE) 9556 return; 9557 9558 /* Queue belongs to VF, find the VF and issue VF reset */ 9559 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl); 9560 vf_id -= hw->func_caps.vf_base_id; 9561 vf = &pf->vf[vf_id]; 9562 i40e_vc_notify_vf_reset(vf); 9563 /* Allow VF to process pending reset notification */ 9564 msleep(20); 9565 i40e_reset_vf(vf, false); 9566 } 9567 9568 /** 9569 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9570 * @pf: board private structure 9571 **/ 9572 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9573 { 9574 u32 val, fcnt_prog; 9575 9576 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9577 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9578 return fcnt_prog; 9579 } 9580 9581 /** 9582 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9583 * @pf: board private structure 9584 **/ 9585 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9586 { 9587 u32 val, fcnt_prog; 9588 9589 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9590 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9591 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val); 9592 return fcnt_prog; 9593 } 9594 9595 /** 9596 * i40e_get_global_fd_count - Get total FD filters programmed on device 9597 * @pf: board private structure 9598 **/ 9599 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9600 { 9601 u32 val, fcnt_prog; 9602 9603 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9604 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9605 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val); 9606 return fcnt_prog; 9607 } 9608 9609 /** 9610 * i40e_reenable_fdir_sb - Restore FDir SB capability 9611 * @pf: board private structure 9612 **/ 9613 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9614 { 9615 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9616 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9617 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9618 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9619 } 9620 9621 /** 9622 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9623 * @pf: board private structure 9624 **/ 9625 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9626 { 9627 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9628 /* ATR uses the same filtering logic as SB rules. It only 9629 * functions properly if the input set mask is at the default 9630 * settings. It is safe to restore the default input set 9631 * because there are no active TCPv4 filter rules. 9632 */ 9633 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9634 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9635 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9636 9637 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9638 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9639 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9640 } 9641 } 9642 9643 /** 9644 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9645 * @pf: board private structure 9646 * @filter: FDir filter to remove 9647 */ 9648 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9649 struct i40e_fdir_filter *filter) 9650 { 9651 /* Update counters */ 9652 pf->fdir_pf_active_filters--; 9653 pf->fd_inv = 0; 9654 9655 switch (filter->flow_type) { 9656 case TCP_V4_FLOW: 9657 pf->fd_tcp4_filter_cnt--; 9658 break; 9659 case UDP_V4_FLOW: 9660 pf->fd_udp4_filter_cnt--; 9661 break; 9662 case SCTP_V4_FLOW: 9663 pf->fd_sctp4_filter_cnt--; 9664 break; 9665 case TCP_V6_FLOW: 9666 pf->fd_tcp6_filter_cnt--; 9667 break; 9668 case UDP_V6_FLOW: 9669 pf->fd_udp6_filter_cnt--; 9670 break; 9671 case SCTP_V6_FLOW: 9672 pf->fd_udp6_filter_cnt--; 9673 break; 9674 case IP_USER_FLOW: 9675 switch (filter->ipl4_proto) { 9676 case IPPROTO_TCP: 9677 pf->fd_tcp4_filter_cnt--; 9678 break; 9679 case IPPROTO_UDP: 9680 pf->fd_udp4_filter_cnt--; 9681 break; 9682 case IPPROTO_SCTP: 9683 pf->fd_sctp4_filter_cnt--; 9684 break; 9685 case IPPROTO_IP: 9686 pf->fd_ip4_filter_cnt--; 9687 break; 9688 } 9689 break; 9690 case IPV6_USER_FLOW: 9691 switch (filter->ipl4_proto) { 9692 case IPPROTO_TCP: 9693 pf->fd_tcp6_filter_cnt--; 9694 break; 9695 case IPPROTO_UDP: 9696 pf->fd_udp6_filter_cnt--; 9697 break; 9698 case IPPROTO_SCTP: 9699 pf->fd_sctp6_filter_cnt--; 9700 break; 9701 case IPPROTO_IP: 9702 pf->fd_ip6_filter_cnt--; 9703 break; 9704 } 9705 break; 9706 } 9707 9708 /* Remove the filter from the list and free memory */ 9709 hlist_del(&filter->fdir_node); 9710 kfree(filter); 9711 } 9712 9713 /** 9714 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9715 * @pf: board private structure 9716 **/ 9717 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9718 { 9719 struct i40e_fdir_filter *filter; 9720 u32 fcnt_prog, fcnt_avail; 9721 struct hlist_node *node; 9722 9723 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9724 return; 9725 9726 /* Check if we have enough room to re-enable FDir SB capability. */ 9727 fcnt_prog = i40e_get_global_fd_count(pf); 9728 fcnt_avail = pf->fdir_pf_filter_count; 9729 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9730 (pf->fd_add_err == 0) || 9731 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9732 i40e_reenable_fdir_sb(pf); 9733 9734 /* We should wait for even more space before re-enabling ATR. 9735 * Additionally, we cannot enable ATR as long as we still have TCP SB 9736 * rules active. 9737 */ 9738 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9739 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9740 i40e_reenable_fdir_atr(pf); 9741 9742 /* if hw had a problem adding a filter, delete it */ 9743 if (pf->fd_inv > 0) { 9744 hlist_for_each_entry_safe(filter, node, 9745 &pf->fdir_filter_list, fdir_node) 9746 if (filter->fd_id == pf->fd_inv) 9747 i40e_delete_invalid_filter(pf, filter); 9748 } 9749 } 9750 9751 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9752 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9753 /** 9754 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9755 * @pf: board private structure 9756 **/ 9757 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9758 { 9759 unsigned long min_flush_time; 9760 int flush_wait_retry = 50; 9761 bool disable_atr = false; 9762 int fd_room; 9763 int reg; 9764 9765 if (!time_after(jiffies, pf->fd_flush_timestamp + 9766 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9767 return; 9768 9769 /* If the flush is happening too quick and we have mostly SB rules we 9770 * should not re-enable ATR for some time. 9771 */ 9772 min_flush_time = pf->fd_flush_timestamp + 9773 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9774 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9775 9776 if (!(time_after(jiffies, min_flush_time)) && 9777 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9778 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9779 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9780 disable_atr = true; 9781 } 9782 9783 pf->fd_flush_timestamp = jiffies; 9784 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9785 /* flush all filters */ 9786 wr32(&pf->hw, I40E_PFQF_CTL_1, 9787 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9788 i40e_flush(&pf->hw); 9789 pf->fd_flush_cnt++; 9790 pf->fd_add_err = 0; 9791 do { 9792 /* Check FD flush status every 5-6msec */ 9793 usleep_range(5000, 6000); 9794 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9795 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9796 break; 9797 } while (flush_wait_retry--); 9798 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9799 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9800 } else { 9801 /* replay sideband filters */ 9802 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 9803 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9804 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9805 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9806 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9807 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9808 } 9809 } 9810 9811 /** 9812 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9813 * @pf: board private structure 9814 **/ 9815 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9816 { 9817 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9818 } 9819 9820 /** 9821 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9822 * @pf: board private structure 9823 **/ 9824 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9825 { 9826 9827 /* if interface is down do nothing */ 9828 if (test_bit(__I40E_DOWN, pf->state)) 9829 return; 9830 9831 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9832 i40e_fdir_flush_and_replay(pf); 9833 9834 i40e_fdir_check_and_reenable(pf); 9835 9836 } 9837 9838 /** 9839 * i40e_vsi_link_event - notify VSI of a link event 9840 * @vsi: vsi to be notified 9841 * @link_up: link up or down 9842 **/ 9843 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9844 { 9845 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9846 return; 9847 9848 switch (vsi->type) { 9849 case I40E_VSI_MAIN: 9850 if (!vsi->netdev || !vsi->netdev_registered) 9851 break; 9852 9853 if (link_up) { 9854 netif_carrier_on(vsi->netdev); 9855 netif_tx_wake_all_queues(vsi->netdev); 9856 } else { 9857 netif_carrier_off(vsi->netdev); 9858 netif_tx_stop_all_queues(vsi->netdev); 9859 } 9860 break; 9861 9862 case I40E_VSI_SRIOV: 9863 case I40E_VSI_VMDQ2: 9864 case I40E_VSI_CTRL: 9865 case I40E_VSI_IWARP: 9866 case I40E_VSI_MIRROR: 9867 default: 9868 /* there is no notification for other VSIs */ 9869 break; 9870 } 9871 } 9872 9873 /** 9874 * i40e_veb_link_event - notify elements on the veb of a link event 9875 * @veb: veb to be notified 9876 * @link_up: link up or down 9877 **/ 9878 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9879 { 9880 struct i40e_pf *pf; 9881 int i; 9882 9883 if (!veb || !veb->pf) 9884 return; 9885 pf = veb->pf; 9886 9887 /* depth first... */ 9888 for (i = 0; i < I40E_MAX_VEB; i++) 9889 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9890 i40e_veb_link_event(pf->veb[i], link_up); 9891 9892 /* ... now the local VSIs */ 9893 for (i = 0; i < pf->num_alloc_vsi; i++) 9894 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9895 i40e_vsi_link_event(pf->vsi[i], link_up); 9896 } 9897 9898 /** 9899 * i40e_link_event - Update netif_carrier status 9900 * @pf: board private structure 9901 **/ 9902 static void i40e_link_event(struct i40e_pf *pf) 9903 { 9904 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9905 u8 new_link_speed, old_link_speed; 9906 bool new_link, old_link; 9907 int status; 9908 #ifdef CONFIG_I40E_DCB 9909 int err; 9910 #endif /* CONFIG_I40E_DCB */ 9911 9912 /* set this to force the get_link_status call to refresh state */ 9913 pf->hw.phy.get_link_info = true; 9914 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9915 status = i40e_get_link_status(&pf->hw, &new_link); 9916 9917 /* On success, disable temp link polling */ 9918 if (status == 0) { 9919 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9920 } else { 9921 /* Enable link polling temporarily until i40e_get_link_status 9922 * returns 0 9923 */ 9924 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9925 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9926 status); 9927 return; 9928 } 9929 9930 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9931 new_link_speed = pf->hw.phy.link_info.link_speed; 9932 9933 if (new_link == old_link && 9934 new_link_speed == old_link_speed && 9935 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9936 new_link == netif_carrier_ok(vsi->netdev))) 9937 return; 9938 9939 i40e_print_link_message(vsi, new_link); 9940 9941 /* Notify the base of the switch tree connected to 9942 * the link. Floating VEBs are not notified. 9943 */ 9944 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9945 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9946 else 9947 i40e_vsi_link_event(vsi, new_link); 9948 9949 if (pf->vf) 9950 i40e_vc_notify_link_state(pf); 9951 9952 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 9953 i40e_ptp_set_increment(pf); 9954 #ifdef CONFIG_I40E_DCB 9955 if (new_link == old_link) 9956 return; 9957 /* Not SW DCB so firmware will take care of default settings */ 9958 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9959 return; 9960 9961 /* We cover here only link down, as after link up in case of SW DCB 9962 * SW LLDP agent will take care of setting it up 9963 */ 9964 if (!new_link) { 9965 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9966 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9967 err = i40e_dcb_sw_default_config(pf); 9968 if (err) { 9969 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9970 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9971 } else { 9972 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9973 DCB_CAP_DCBX_VER_IEEE; 9974 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9975 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9976 } 9977 } 9978 #endif /* CONFIG_I40E_DCB */ 9979 } 9980 9981 /** 9982 * i40e_watchdog_subtask - periodic checks not using event driven response 9983 * @pf: board private structure 9984 **/ 9985 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9986 { 9987 int i; 9988 9989 /* if interface is down do nothing */ 9990 if (test_bit(__I40E_DOWN, pf->state) || 9991 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9992 return; 9993 9994 /* make sure we don't do these things too often */ 9995 if (time_before(jiffies, (pf->service_timer_previous + 9996 pf->service_timer_period))) 9997 return; 9998 pf->service_timer_previous = jiffies; 9999 10000 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 10001 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 10002 i40e_link_event(pf); 10003 10004 /* Update the stats for active netdevs so the network stack 10005 * can look at updated numbers whenever it cares to 10006 */ 10007 for (i = 0; i < pf->num_alloc_vsi; i++) 10008 if (pf->vsi[i] && pf->vsi[i]->netdev) 10009 i40e_update_stats(pf->vsi[i]); 10010 10011 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10012 /* Update the stats for the active switching components */ 10013 for (i = 0; i < I40E_MAX_VEB; i++) 10014 if (pf->veb[i]) 10015 i40e_update_veb_stats(pf->veb[i]); 10016 } 10017 10018 i40e_ptp_rx_hang(pf); 10019 i40e_ptp_tx_hang(pf); 10020 } 10021 10022 /** 10023 * i40e_reset_subtask - Set up for resetting the device and driver 10024 * @pf: board private structure 10025 **/ 10026 static void i40e_reset_subtask(struct i40e_pf *pf) 10027 { 10028 u32 reset_flags = 0; 10029 10030 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10031 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10032 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10033 } 10034 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10035 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10036 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10037 } 10038 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10039 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10040 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10041 } 10042 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10043 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10044 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10045 } 10046 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10047 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10048 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10049 } 10050 10051 /* If there's a recovery already waiting, it takes 10052 * precedence before starting a new reset sequence. 10053 */ 10054 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10055 i40e_prep_for_reset(pf); 10056 i40e_reset(pf); 10057 i40e_rebuild(pf, false, false); 10058 } 10059 10060 /* If we're already down or resetting, just bail */ 10061 if (reset_flags && 10062 !test_bit(__I40E_DOWN, pf->state) && 10063 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10064 i40e_do_reset(pf, reset_flags, false); 10065 } 10066 } 10067 10068 /** 10069 * i40e_handle_link_event - Handle link event 10070 * @pf: board private structure 10071 * @e: event info posted on ARQ 10072 **/ 10073 static void i40e_handle_link_event(struct i40e_pf *pf, 10074 struct i40e_arq_event_info *e) 10075 { 10076 struct i40e_aqc_get_link_status *status = 10077 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10078 10079 /* Do a new status request to re-enable LSE reporting 10080 * and load new status information into the hw struct 10081 * This completely ignores any state information 10082 * in the ARQ event info, instead choosing to always 10083 * issue the AQ update link status command. 10084 */ 10085 i40e_link_event(pf); 10086 10087 /* Check if module meets thermal requirements */ 10088 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10089 dev_err(&pf->pdev->dev, 10090 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10091 dev_err(&pf->pdev->dev, 10092 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10093 } else { 10094 /* check for unqualified module, if link is down, suppress 10095 * the message if link was forced to be down. 10096 */ 10097 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10098 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10099 (!(status->link_info & I40E_AQ_LINK_UP)) && 10100 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10101 dev_err(&pf->pdev->dev, 10102 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10103 dev_err(&pf->pdev->dev, 10104 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10105 } 10106 } 10107 } 10108 10109 /** 10110 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10111 * @pf: board private structure 10112 **/ 10113 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10114 { 10115 struct i40e_arq_event_info event; 10116 struct i40e_hw *hw = &pf->hw; 10117 u16 pending, i = 0; 10118 u16 opcode; 10119 u32 oldval; 10120 int ret; 10121 u32 val; 10122 10123 /* Do not run clean AQ when PF reset fails */ 10124 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10125 return; 10126 10127 /* check for error indications */ 10128 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10129 oldval = val; 10130 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10131 if (hw->debug_mask & I40E_DEBUG_AQ) 10132 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10133 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10134 } 10135 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10136 if (hw->debug_mask & I40E_DEBUG_AQ) 10137 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10138 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10139 pf->arq_overflows++; 10140 } 10141 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10142 if (hw->debug_mask & I40E_DEBUG_AQ) 10143 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10144 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10145 } 10146 if (oldval != val) 10147 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10148 10149 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10150 oldval = val; 10151 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10152 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10153 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10154 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10155 } 10156 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10157 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10158 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10159 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10160 } 10161 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10162 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10163 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10164 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10165 } 10166 if (oldval != val) 10167 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10168 10169 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10170 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10171 if (!event.msg_buf) 10172 return; 10173 10174 do { 10175 ret = i40e_clean_arq_element(hw, &event, &pending); 10176 if (ret == -EALREADY) 10177 break; 10178 else if (ret) { 10179 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10180 break; 10181 } 10182 10183 opcode = le16_to_cpu(event.desc.opcode); 10184 switch (opcode) { 10185 10186 case i40e_aqc_opc_get_link_status: 10187 rtnl_lock(); 10188 i40e_handle_link_event(pf, &event); 10189 rtnl_unlock(); 10190 break; 10191 case i40e_aqc_opc_send_msg_to_pf: 10192 ret = i40e_vc_process_vf_msg(pf, 10193 le16_to_cpu(event.desc.retval), 10194 le32_to_cpu(event.desc.cookie_high), 10195 le32_to_cpu(event.desc.cookie_low), 10196 event.msg_buf, 10197 event.msg_len); 10198 break; 10199 case i40e_aqc_opc_lldp_update_mib: 10200 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10201 #ifdef CONFIG_I40E_DCB 10202 rtnl_lock(); 10203 i40e_handle_lldp_event(pf, &event); 10204 rtnl_unlock(); 10205 #endif /* CONFIG_I40E_DCB */ 10206 break; 10207 case i40e_aqc_opc_event_lan_overflow: 10208 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10209 i40e_handle_lan_overflow_event(pf, &event); 10210 break; 10211 case i40e_aqc_opc_send_msg_to_peer: 10212 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10213 break; 10214 case i40e_aqc_opc_nvm_erase: 10215 case i40e_aqc_opc_nvm_update: 10216 case i40e_aqc_opc_oem_post_update: 10217 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10218 "ARQ NVM operation 0x%04x completed\n", 10219 opcode); 10220 break; 10221 default: 10222 dev_info(&pf->pdev->dev, 10223 "ARQ: Unknown event 0x%04x ignored\n", 10224 opcode); 10225 break; 10226 } 10227 } while (i++ < I40E_AQ_WORK_LIMIT); 10228 10229 if (i < I40E_AQ_WORK_LIMIT) 10230 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10231 10232 /* re-enable Admin queue interrupt cause */ 10233 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10234 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10235 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10236 i40e_flush(hw); 10237 10238 kfree(event.msg_buf); 10239 } 10240 10241 /** 10242 * i40e_verify_eeprom - make sure eeprom is good to use 10243 * @pf: board private structure 10244 **/ 10245 static void i40e_verify_eeprom(struct i40e_pf *pf) 10246 { 10247 int err; 10248 10249 err = i40e_diag_eeprom_test(&pf->hw); 10250 if (err) { 10251 /* retry in case of garbage read */ 10252 err = i40e_diag_eeprom_test(&pf->hw); 10253 if (err) { 10254 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10255 err); 10256 set_bit(__I40E_BAD_EEPROM, pf->state); 10257 } 10258 } 10259 10260 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10261 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10262 clear_bit(__I40E_BAD_EEPROM, pf->state); 10263 } 10264 } 10265 10266 /** 10267 * i40e_enable_pf_switch_lb 10268 * @pf: pointer to the PF structure 10269 * 10270 * enable switch loop back or die - no point in a return value 10271 **/ 10272 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10273 { 10274 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10275 struct i40e_vsi_context ctxt; 10276 int ret; 10277 10278 ctxt.seid = pf->main_vsi_seid; 10279 ctxt.pf_num = pf->hw.pf_id; 10280 ctxt.vf_num = 0; 10281 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10282 if (ret) { 10283 dev_info(&pf->pdev->dev, 10284 "couldn't get PF vsi config, err %pe aq_err %s\n", 10285 ERR_PTR(ret), 10286 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10287 return; 10288 } 10289 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10290 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10291 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10292 10293 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10294 if (ret) { 10295 dev_info(&pf->pdev->dev, 10296 "update vsi switch failed, err %pe aq_err %s\n", 10297 ERR_PTR(ret), 10298 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10299 } 10300 } 10301 10302 /** 10303 * i40e_disable_pf_switch_lb 10304 * @pf: pointer to the PF structure 10305 * 10306 * disable switch loop back or die - no point in a return value 10307 **/ 10308 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10309 { 10310 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10311 struct i40e_vsi_context ctxt; 10312 int ret; 10313 10314 ctxt.seid = pf->main_vsi_seid; 10315 ctxt.pf_num = pf->hw.pf_id; 10316 ctxt.vf_num = 0; 10317 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10318 if (ret) { 10319 dev_info(&pf->pdev->dev, 10320 "couldn't get PF vsi config, err %pe aq_err %s\n", 10321 ERR_PTR(ret), 10322 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10323 return; 10324 } 10325 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10326 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10327 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10328 10329 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10330 if (ret) { 10331 dev_info(&pf->pdev->dev, 10332 "update vsi switch failed, err %pe aq_err %s\n", 10333 ERR_PTR(ret), 10334 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10335 } 10336 } 10337 10338 /** 10339 * i40e_config_bridge_mode - Configure the HW bridge mode 10340 * @veb: pointer to the bridge instance 10341 * 10342 * Configure the loop back mode for the LAN VSI that is downlink to the 10343 * specified HW bridge instance. It is expected this function is called 10344 * when a new HW bridge is instantiated. 10345 **/ 10346 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10347 { 10348 struct i40e_pf *pf = veb->pf; 10349 10350 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10351 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10352 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10353 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10354 i40e_disable_pf_switch_lb(pf); 10355 else 10356 i40e_enable_pf_switch_lb(pf); 10357 } 10358 10359 /** 10360 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 10361 * @veb: pointer to the VEB instance 10362 * 10363 * This is a recursive function that first builds the attached VSIs then 10364 * recurses in to build the next layer of VEB. We track the connections 10365 * through our own index numbers because the seid's from the HW could 10366 * change across the reset. 10367 **/ 10368 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10369 { 10370 struct i40e_vsi *ctl_vsi = NULL; 10371 struct i40e_pf *pf = veb->pf; 10372 int v, veb_idx; 10373 int ret; 10374 10375 /* build VSI that owns this VEB, temporarily attached to base VEB */ 10376 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 10377 if (pf->vsi[v] && 10378 pf->vsi[v]->veb_idx == veb->idx && 10379 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 10380 ctl_vsi = pf->vsi[v]; 10381 break; 10382 } 10383 } 10384 if (!ctl_vsi) { 10385 dev_info(&pf->pdev->dev, 10386 "missing owner VSI for veb_idx %d\n", veb->idx); 10387 ret = -ENOENT; 10388 goto end_reconstitute; 10389 } 10390 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 10391 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 10392 ret = i40e_add_vsi(ctl_vsi); 10393 if (ret) { 10394 dev_info(&pf->pdev->dev, 10395 "rebuild of veb_idx %d owner VSI failed: %d\n", 10396 veb->idx, ret); 10397 goto end_reconstitute; 10398 } 10399 i40e_vsi_reset_stats(ctl_vsi); 10400 10401 /* create the VEB in the switch and move the VSI onto the VEB */ 10402 ret = i40e_add_veb(veb, ctl_vsi); 10403 if (ret) 10404 goto end_reconstitute; 10405 10406 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10407 veb->bridge_mode = BRIDGE_MODE_VEB; 10408 else 10409 veb->bridge_mode = BRIDGE_MODE_VEPA; 10410 i40e_config_bridge_mode(veb); 10411 10412 /* create the remaining VSIs attached to this VEB */ 10413 for (v = 0; v < pf->num_alloc_vsi; v++) { 10414 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 10415 continue; 10416 10417 if (pf->vsi[v]->veb_idx == veb->idx) { 10418 struct i40e_vsi *vsi = pf->vsi[v]; 10419 10420 vsi->uplink_seid = veb->seid; 10421 ret = i40e_add_vsi(vsi); 10422 if (ret) { 10423 dev_info(&pf->pdev->dev, 10424 "rebuild of vsi_idx %d failed: %d\n", 10425 v, ret); 10426 goto end_reconstitute; 10427 } 10428 i40e_vsi_reset_stats(vsi); 10429 } 10430 } 10431 10432 /* create any VEBs attached to this VEB - RECURSION */ 10433 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 10434 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 10435 pf->veb[veb_idx]->uplink_seid = veb->seid; 10436 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 10437 if (ret) 10438 break; 10439 } 10440 } 10441 10442 end_reconstitute: 10443 return ret; 10444 } 10445 10446 /** 10447 * i40e_get_capabilities - get info about the HW 10448 * @pf: the PF struct 10449 * @list_type: AQ capability to be queried 10450 **/ 10451 static int i40e_get_capabilities(struct i40e_pf *pf, 10452 enum i40e_admin_queue_opc list_type) 10453 { 10454 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10455 u16 data_size; 10456 int buf_len; 10457 int err; 10458 10459 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10460 do { 10461 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10462 if (!cap_buf) 10463 return -ENOMEM; 10464 10465 /* this loads the data into the hw struct for us */ 10466 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10467 &data_size, list_type, 10468 NULL); 10469 /* data loaded, buffer no longer needed */ 10470 kfree(cap_buf); 10471 10472 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10473 /* retry with a larger buffer */ 10474 buf_len = data_size; 10475 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10476 dev_info(&pf->pdev->dev, 10477 "capability discovery failed, err %pe aq_err %s\n", 10478 ERR_PTR(err), 10479 i40e_aq_str(&pf->hw, 10480 pf->hw.aq.asq_last_status)); 10481 return -ENODEV; 10482 } 10483 } while (err); 10484 10485 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10486 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10487 dev_info(&pf->pdev->dev, 10488 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10489 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10490 pf->hw.func_caps.num_msix_vectors, 10491 pf->hw.func_caps.num_msix_vectors_vf, 10492 pf->hw.func_caps.fd_filters_guaranteed, 10493 pf->hw.func_caps.fd_filters_best_effort, 10494 pf->hw.func_caps.num_tx_qp, 10495 pf->hw.func_caps.num_vsis); 10496 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10497 dev_info(&pf->pdev->dev, 10498 "switch_mode=0x%04x, function_valid=0x%08x\n", 10499 pf->hw.dev_caps.switch_mode, 10500 pf->hw.dev_caps.valid_functions); 10501 dev_info(&pf->pdev->dev, 10502 "SR-IOV=%d, num_vfs for all function=%u\n", 10503 pf->hw.dev_caps.sr_iov_1_1, 10504 pf->hw.dev_caps.num_vfs); 10505 dev_info(&pf->pdev->dev, 10506 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10507 pf->hw.dev_caps.num_vsis, 10508 pf->hw.dev_caps.num_rx_qp, 10509 pf->hw.dev_caps.num_tx_qp); 10510 } 10511 } 10512 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10513 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10514 + pf->hw.func_caps.num_vfs) 10515 if (pf->hw.revision_id == 0 && 10516 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10517 dev_info(&pf->pdev->dev, 10518 "got num_vsis %d, setting num_vsis to %d\n", 10519 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10520 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10521 } 10522 } 10523 return 0; 10524 } 10525 10526 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10527 10528 /** 10529 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10530 * @pf: board private structure 10531 **/ 10532 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10533 { 10534 struct i40e_vsi *vsi; 10535 10536 /* quick workaround for an NVM issue that leaves a critical register 10537 * uninitialized 10538 */ 10539 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10540 static const u32 hkey[] = { 10541 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10542 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10543 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10544 0x95b3a76d}; 10545 int i; 10546 10547 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10548 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10549 } 10550 10551 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10552 return; 10553 10554 /* find existing VSI and see if it needs configuring */ 10555 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10556 10557 /* create a new VSI if none exists */ 10558 if (!vsi) { 10559 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 10560 pf->vsi[pf->lan_vsi]->seid, 0); 10561 if (!vsi) { 10562 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10563 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10564 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10565 return; 10566 } 10567 } 10568 10569 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10570 } 10571 10572 /** 10573 * i40e_fdir_teardown - release the Flow Director resources 10574 * @pf: board private structure 10575 **/ 10576 static void i40e_fdir_teardown(struct i40e_pf *pf) 10577 { 10578 struct i40e_vsi *vsi; 10579 10580 i40e_fdir_filter_exit(pf); 10581 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10582 if (vsi) 10583 i40e_vsi_release(vsi); 10584 } 10585 10586 /** 10587 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10588 * @vsi: PF main vsi 10589 * @seid: seid of main or channel VSIs 10590 * 10591 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10592 * existed before reset 10593 **/ 10594 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10595 { 10596 struct i40e_cloud_filter *cfilter; 10597 struct i40e_pf *pf = vsi->back; 10598 struct hlist_node *node; 10599 int ret; 10600 10601 /* Add cloud filters back if they exist */ 10602 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10603 cloud_node) { 10604 if (cfilter->seid != seid) 10605 continue; 10606 10607 if (cfilter->dst_port) 10608 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10609 true); 10610 else 10611 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10612 10613 if (ret) { 10614 dev_dbg(&pf->pdev->dev, 10615 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10616 ERR_PTR(ret), 10617 i40e_aq_str(&pf->hw, 10618 pf->hw.aq.asq_last_status)); 10619 return ret; 10620 } 10621 } 10622 return 0; 10623 } 10624 10625 /** 10626 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10627 * @vsi: PF main vsi 10628 * 10629 * Rebuilds channel VSIs if they existed before reset 10630 **/ 10631 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10632 { 10633 struct i40e_channel *ch, *ch_tmp; 10634 int ret; 10635 10636 if (list_empty(&vsi->ch_list)) 10637 return 0; 10638 10639 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10640 if (!ch->initialized) 10641 break; 10642 /* Proceed with creation of channel (VMDq2) VSI */ 10643 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10644 if (ret) { 10645 dev_info(&vsi->back->pdev->dev, 10646 "failed to rebuild channels using uplink_seid %u\n", 10647 vsi->uplink_seid); 10648 return ret; 10649 } 10650 /* Reconfigure TX queues using QTX_CTL register */ 10651 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10652 if (ret) { 10653 dev_info(&vsi->back->pdev->dev, 10654 "failed to configure TX rings for channel %u\n", 10655 ch->seid); 10656 return ret; 10657 } 10658 /* update 'next_base_queue' */ 10659 vsi->next_base_queue = vsi->next_base_queue + 10660 ch->num_queue_pairs; 10661 if (ch->max_tx_rate) { 10662 u64 credits = ch->max_tx_rate; 10663 10664 if (i40e_set_bw_limit(vsi, ch->seid, 10665 ch->max_tx_rate)) 10666 return -EINVAL; 10667 10668 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10669 dev_dbg(&vsi->back->pdev->dev, 10670 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10671 ch->max_tx_rate, 10672 credits, 10673 ch->seid); 10674 } 10675 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10676 if (ret) { 10677 dev_dbg(&vsi->back->pdev->dev, 10678 "Failed to rebuild cloud filters for channel VSI %u\n", 10679 ch->seid); 10680 return ret; 10681 } 10682 } 10683 return 0; 10684 } 10685 10686 /** 10687 * i40e_clean_xps_state - clean xps state for every tx_ring 10688 * @vsi: ptr to the VSI 10689 **/ 10690 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10691 { 10692 int i; 10693 10694 if (vsi->tx_rings) 10695 for (i = 0; i < vsi->num_queue_pairs; i++) 10696 if (vsi->tx_rings[i]) 10697 clear_bit(__I40E_TX_XPS_INIT_DONE, 10698 vsi->tx_rings[i]->state); 10699 } 10700 10701 /** 10702 * i40e_prep_for_reset - prep for the core to reset 10703 * @pf: board private structure 10704 * 10705 * Close up the VFs and other things in prep for PF Reset. 10706 **/ 10707 static void i40e_prep_for_reset(struct i40e_pf *pf) 10708 { 10709 struct i40e_hw *hw = &pf->hw; 10710 int ret = 0; 10711 u32 v; 10712 10713 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10714 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10715 return; 10716 if (i40e_check_asq_alive(&pf->hw)) 10717 i40e_vc_notify_reset(pf); 10718 10719 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10720 10721 /* quiesce the VSIs and their queues that are not already DOWN */ 10722 i40e_pf_quiesce_all_vsi(pf); 10723 10724 for (v = 0; v < pf->num_alloc_vsi; v++) { 10725 if (pf->vsi[v]) { 10726 i40e_clean_xps_state(pf->vsi[v]); 10727 pf->vsi[v]->seid = 0; 10728 } 10729 } 10730 10731 i40e_shutdown_adminq(&pf->hw); 10732 10733 /* call shutdown HMC */ 10734 if (hw->hmc.hmc_obj) { 10735 ret = i40e_shutdown_lan_hmc(hw); 10736 if (ret) 10737 dev_warn(&pf->pdev->dev, 10738 "shutdown_lan_hmc failed: %d\n", ret); 10739 } 10740 10741 /* Save the current PTP time so that we can restore the time after the 10742 * reset completes. 10743 */ 10744 i40e_ptp_save_hw_time(pf); 10745 } 10746 10747 /** 10748 * i40e_send_version - update firmware with driver version 10749 * @pf: PF struct 10750 */ 10751 static void i40e_send_version(struct i40e_pf *pf) 10752 { 10753 struct i40e_driver_version dv; 10754 10755 dv.major_version = 0xff; 10756 dv.minor_version = 0xff; 10757 dv.build_version = 0xff; 10758 dv.subbuild_version = 0; 10759 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10760 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10761 } 10762 10763 /** 10764 * i40e_get_oem_version - get OEM specific version information 10765 * @hw: pointer to the hardware structure 10766 **/ 10767 static void i40e_get_oem_version(struct i40e_hw *hw) 10768 { 10769 u16 block_offset = 0xffff; 10770 u16 block_length = 0; 10771 u16 capabilities = 0; 10772 u16 gen_snap = 0; 10773 u16 release = 0; 10774 10775 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10776 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10777 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10778 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10779 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10780 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10781 #define I40E_NVM_OEM_LENGTH 3 10782 10783 /* Check if pointer to OEM version block is valid. */ 10784 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10785 if (block_offset == 0xffff) 10786 return; 10787 10788 /* Check if OEM version block has correct length. */ 10789 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10790 &block_length); 10791 if (block_length < I40E_NVM_OEM_LENGTH) 10792 return; 10793 10794 /* Check if OEM version format is as expected. */ 10795 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10796 &capabilities); 10797 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10798 return; 10799 10800 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10801 &gen_snap); 10802 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10803 &release); 10804 hw->nvm.oem_ver = 10805 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10806 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10807 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10808 } 10809 10810 /** 10811 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10812 * @pf: board private structure 10813 **/ 10814 static int i40e_reset(struct i40e_pf *pf) 10815 { 10816 struct i40e_hw *hw = &pf->hw; 10817 int ret; 10818 10819 ret = i40e_pf_reset(hw); 10820 if (ret) { 10821 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10822 set_bit(__I40E_RESET_FAILED, pf->state); 10823 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10824 } else { 10825 pf->pfr_count++; 10826 } 10827 return ret; 10828 } 10829 10830 /** 10831 * i40e_rebuild - rebuild using a saved config 10832 * @pf: board private structure 10833 * @reinit: if the Main VSI needs to re-initialized. 10834 * @lock_acquired: indicates whether or not the lock has been acquired 10835 * before this function was called. 10836 **/ 10837 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10838 { 10839 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10840 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10841 struct i40e_hw *hw = &pf->hw; 10842 int ret; 10843 u32 val; 10844 int v; 10845 10846 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10847 is_recovery_mode_reported) 10848 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 10849 10850 if (test_bit(__I40E_DOWN, pf->state) && 10851 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10852 goto clear_recovery; 10853 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10854 10855 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10856 ret = i40e_init_adminq(&pf->hw); 10857 if (ret) { 10858 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10859 ERR_PTR(ret), 10860 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10861 goto clear_recovery; 10862 } 10863 i40e_get_oem_version(&pf->hw); 10864 10865 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10866 /* The following delay is necessary for firmware update. */ 10867 mdelay(1000); 10868 } 10869 10870 /* re-verify the eeprom if we just had an EMP reset */ 10871 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10872 i40e_verify_eeprom(pf); 10873 10874 /* if we are going out of or into recovery mode we have to act 10875 * accordingly with regard to resources initialization 10876 * and deinitialization 10877 */ 10878 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10879 if (i40e_get_capabilities(pf, 10880 i40e_aqc_opc_list_func_capabilities)) 10881 goto end_unlock; 10882 10883 if (is_recovery_mode_reported) { 10884 /* we're staying in recovery mode so we'll reinitialize 10885 * misc vector here 10886 */ 10887 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10888 goto end_unlock; 10889 } else { 10890 if (!lock_acquired) 10891 rtnl_lock(); 10892 /* we're going out of recovery mode so we'll free 10893 * the IRQ allocated specifically for recovery mode 10894 * and restore the interrupt scheme 10895 */ 10896 free_irq(pf->pdev->irq, pf); 10897 i40e_clear_interrupt_scheme(pf); 10898 if (i40e_restore_interrupt_scheme(pf)) 10899 goto end_unlock; 10900 } 10901 10902 /* tell the firmware that we're starting */ 10903 i40e_send_version(pf); 10904 10905 /* bail out in case recovery mode was detected, as there is 10906 * no need for further configuration. 10907 */ 10908 goto end_unlock; 10909 } 10910 10911 i40e_clear_pxe_mode(hw); 10912 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10913 if (ret) 10914 goto end_core_reset; 10915 10916 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10917 hw->func_caps.num_rx_qp, 0, 0); 10918 if (ret) { 10919 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10920 goto end_core_reset; 10921 } 10922 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10923 if (ret) { 10924 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10925 goto end_core_reset; 10926 } 10927 10928 #ifdef CONFIG_I40E_DCB 10929 /* Enable FW to write a default DCB config on link-up 10930 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10931 * is not supported with new link speed 10932 */ 10933 if (i40e_is_tc_mqprio_enabled(pf)) { 10934 i40e_aq_set_dcb_parameters(hw, false, NULL); 10935 } else { 10936 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10937 (hw->phy.link_info.link_speed & 10938 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10939 i40e_aq_set_dcb_parameters(hw, false, NULL); 10940 dev_warn(&pf->pdev->dev, 10941 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10942 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10943 } else { 10944 i40e_aq_set_dcb_parameters(hw, true, NULL); 10945 ret = i40e_init_pf_dcb(pf); 10946 if (ret) { 10947 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10948 ret); 10949 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10950 /* Continue without DCB enabled */ 10951 } 10952 } 10953 } 10954 10955 #endif /* CONFIG_I40E_DCB */ 10956 if (!lock_acquired) 10957 rtnl_lock(); 10958 ret = i40e_setup_pf_switch(pf, reinit, true); 10959 if (ret) 10960 goto end_unlock; 10961 10962 /* The driver only wants link up/down and module qualification 10963 * reports from firmware. Note the negative logic. 10964 */ 10965 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10966 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10967 I40E_AQ_EVENT_MEDIA_NA | 10968 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10969 if (ret) 10970 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 10971 ERR_PTR(ret), 10972 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10973 10974 /* Rebuild the VSIs and VEBs that existed before reset. 10975 * They are still in our local switch element arrays, so only 10976 * need to rebuild the switch model in the HW. 10977 * 10978 * If there were VEBs but the reconstitution failed, we'll try 10979 * to recover minimal use by getting the basic PF VSI working. 10980 */ 10981 if (vsi->uplink_seid != pf->mac_seid) { 10982 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10983 /* find the one VEB connected to the MAC, and find orphans */ 10984 for (v = 0; v < I40E_MAX_VEB; v++) { 10985 if (!pf->veb[v]) 10986 continue; 10987 10988 if (pf->veb[v]->uplink_seid == pf->mac_seid || 10989 pf->veb[v]->uplink_seid == 0) { 10990 ret = i40e_reconstitute_veb(pf->veb[v]); 10991 10992 if (!ret) 10993 continue; 10994 10995 /* If Main VEB failed, we're in deep doodoo, 10996 * so give up rebuilding the switch and set up 10997 * for minimal rebuild of PF VSI. 10998 * If orphan failed, we'll report the error 10999 * but try to keep going. 11000 */ 11001 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 11002 dev_info(&pf->pdev->dev, 11003 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 11004 ret); 11005 vsi->uplink_seid = pf->mac_seid; 11006 break; 11007 } else if (pf->veb[v]->uplink_seid == 0) { 11008 dev_info(&pf->pdev->dev, 11009 "rebuild of orphan VEB failed: %d\n", 11010 ret); 11011 } 11012 } 11013 } 11014 } 11015 11016 if (vsi->uplink_seid == pf->mac_seid) { 11017 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11018 /* no VEB, so rebuild only the Main VSI */ 11019 ret = i40e_add_vsi(vsi); 11020 if (ret) { 11021 dev_info(&pf->pdev->dev, 11022 "rebuild of Main VSI failed: %d\n", ret); 11023 goto end_unlock; 11024 } 11025 } 11026 11027 if (vsi->mqprio_qopt.max_rate[0]) { 11028 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11029 vsi->mqprio_qopt.max_rate[0]); 11030 u64 credits = 0; 11031 11032 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11033 if (ret) 11034 goto end_unlock; 11035 11036 credits = max_tx_rate; 11037 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11038 dev_dbg(&vsi->back->pdev->dev, 11039 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11040 max_tx_rate, 11041 credits, 11042 vsi->seid); 11043 } 11044 11045 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11046 if (ret) 11047 goto end_unlock; 11048 11049 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11050 * for this main VSI if they exist 11051 */ 11052 ret = i40e_rebuild_channels(vsi); 11053 if (ret) 11054 goto end_unlock; 11055 11056 /* Reconfigure hardware for allowing smaller MSS in the case 11057 * of TSO, so that we avoid the MDD being fired and causing 11058 * a reset in the case of small MSS+TSO. 11059 */ 11060 #define I40E_REG_MSS 0x000E64DC 11061 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11062 #define I40E_64BYTE_MSS 0x400000 11063 val = rd32(hw, I40E_REG_MSS); 11064 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11065 val &= ~I40E_REG_MSS_MIN_MASK; 11066 val |= I40E_64BYTE_MSS; 11067 wr32(hw, I40E_REG_MSS, val); 11068 } 11069 11070 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11071 msleep(75); 11072 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11073 if (ret) 11074 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11075 ERR_PTR(ret), 11076 i40e_aq_str(&pf->hw, 11077 pf->hw.aq.asq_last_status)); 11078 } 11079 /* reinit the misc interrupt */ 11080 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11081 ret = i40e_setup_misc_vector(pf); 11082 if (ret) 11083 goto end_unlock; 11084 } 11085 11086 /* Add a filter to drop all Flow control frames from any VSI from being 11087 * transmitted. By doing so we stop a malicious VF from sending out 11088 * PAUSE or PFC frames and potentially controlling traffic for other 11089 * PF/VF VSIs. 11090 * The FW can still send Flow control frames if enabled. 11091 */ 11092 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11093 pf->main_vsi_seid); 11094 11095 /* restart the VSIs that were rebuilt and running before the reset */ 11096 i40e_pf_unquiesce_all_vsi(pf); 11097 11098 /* Release the RTNL lock before we start resetting VFs */ 11099 if (!lock_acquired) 11100 rtnl_unlock(); 11101 11102 /* Restore promiscuous settings */ 11103 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11104 if (ret) 11105 dev_warn(&pf->pdev->dev, 11106 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11107 pf->cur_promisc ? "on" : "off", 11108 ERR_PTR(ret), 11109 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11110 11111 i40e_reset_all_vfs(pf, true); 11112 11113 /* tell the firmware that we're starting */ 11114 i40e_send_version(pf); 11115 11116 /* We've already released the lock, so don't do it again */ 11117 goto end_core_reset; 11118 11119 end_unlock: 11120 if (!lock_acquired) 11121 rtnl_unlock(); 11122 end_core_reset: 11123 clear_bit(__I40E_RESET_FAILED, pf->state); 11124 clear_recovery: 11125 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11126 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11127 } 11128 11129 /** 11130 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11131 * @pf: board private structure 11132 * @reinit: if the Main VSI needs to re-initialized. 11133 * @lock_acquired: indicates whether or not the lock has been acquired 11134 * before this function was called. 11135 **/ 11136 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11137 bool lock_acquired) 11138 { 11139 int ret; 11140 11141 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11142 return; 11143 /* Now we wait for GRST to settle out. 11144 * We don't have to delete the VEBs or VSIs from the hw switch 11145 * because the reset will make them disappear. 11146 */ 11147 ret = i40e_reset(pf); 11148 if (!ret) 11149 i40e_rebuild(pf, reinit, lock_acquired); 11150 } 11151 11152 /** 11153 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11154 * @pf: board private structure 11155 * 11156 * Close up the VFs and other things in prep for a Core Reset, 11157 * then get ready to rebuild the world. 11158 * @lock_acquired: indicates whether or not the lock has been acquired 11159 * before this function was called. 11160 **/ 11161 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11162 { 11163 i40e_prep_for_reset(pf); 11164 i40e_reset_and_rebuild(pf, false, lock_acquired); 11165 } 11166 11167 /** 11168 * i40e_handle_mdd_event 11169 * @pf: pointer to the PF structure 11170 * 11171 * Called from the MDD irq handler to identify possibly malicious vfs 11172 **/ 11173 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11174 { 11175 struct i40e_hw *hw = &pf->hw; 11176 bool mdd_detected = false; 11177 struct i40e_vf *vf; 11178 u32 reg; 11179 int i; 11180 11181 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 11182 return; 11183 11184 /* find what triggered the MDD event */ 11185 reg = rd32(hw, I40E_GL_MDET_TX); 11186 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11187 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg); 11188 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg); 11189 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg); 11190 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) - 11191 pf->hw.func_caps.base_queue; 11192 if (netif_msg_tx_err(pf)) 11193 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11194 event, queue, pf_num, vf_num); 11195 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11196 mdd_detected = true; 11197 } 11198 reg = rd32(hw, I40E_GL_MDET_RX); 11199 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11200 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg); 11201 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg); 11202 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) - 11203 pf->hw.func_caps.base_queue; 11204 if (netif_msg_rx_err(pf)) 11205 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11206 event, queue, func); 11207 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11208 mdd_detected = true; 11209 } 11210 11211 if (mdd_detected) { 11212 reg = rd32(hw, I40E_PF_MDET_TX); 11213 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11214 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11215 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11216 } 11217 reg = rd32(hw, I40E_PF_MDET_RX); 11218 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11219 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11220 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11221 } 11222 } 11223 11224 /* see if one of the VFs needs its hand slapped */ 11225 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11226 vf = &(pf->vf[i]); 11227 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11228 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11229 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11230 vf->num_mdd_events++; 11231 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 11232 i); 11233 dev_info(&pf->pdev->dev, 11234 "Use PF Control I/F to re-enable the VF\n"); 11235 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11236 } 11237 11238 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11239 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11240 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11241 vf->num_mdd_events++; 11242 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 11243 i); 11244 dev_info(&pf->pdev->dev, 11245 "Use PF Control I/F to re-enable the VF\n"); 11246 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11247 } 11248 } 11249 11250 /* re-enable mdd interrupt cause */ 11251 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 11252 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11253 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11254 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11255 i40e_flush(hw); 11256 } 11257 11258 /** 11259 * i40e_service_task - Run the driver's async subtasks 11260 * @work: pointer to work_struct containing our data 11261 **/ 11262 static void i40e_service_task(struct work_struct *work) 11263 { 11264 struct i40e_pf *pf = container_of(work, 11265 struct i40e_pf, 11266 service_task); 11267 unsigned long start_time = jiffies; 11268 11269 /* don't bother with service tasks if a reset is in progress */ 11270 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11271 test_bit(__I40E_SUSPENDED, pf->state)) 11272 return; 11273 11274 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11275 return; 11276 11277 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11278 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 11279 i40e_sync_filters_subtask(pf); 11280 i40e_reset_subtask(pf); 11281 i40e_handle_mdd_event(pf); 11282 i40e_vc_process_vflr_event(pf); 11283 i40e_watchdog_subtask(pf); 11284 i40e_fdir_reinit_subtask(pf); 11285 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11286 /* Client subtask will reopen next time through. */ 11287 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 11288 true); 11289 } else { 11290 i40e_client_subtask(pf); 11291 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11292 pf->state)) 11293 i40e_notify_client_of_l2_param_changes( 11294 pf->vsi[pf->lan_vsi]); 11295 } 11296 i40e_sync_filters_subtask(pf); 11297 } else { 11298 i40e_reset_subtask(pf); 11299 } 11300 11301 i40e_clean_adminq_subtask(pf); 11302 11303 /* flush memory to make sure state is correct before next watchdog */ 11304 smp_mb__before_atomic(); 11305 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11306 11307 /* If the tasks have taken longer than one timer cycle or there 11308 * is more work to be done, reschedule the service task now 11309 * rather than wait for the timer to tick again. 11310 */ 11311 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11312 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11313 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11314 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11315 i40e_service_event_schedule(pf); 11316 } 11317 11318 /** 11319 * i40e_service_timer - timer callback 11320 * @t: timer list pointer 11321 **/ 11322 static void i40e_service_timer(struct timer_list *t) 11323 { 11324 struct i40e_pf *pf = from_timer(pf, t, service_timer); 11325 11326 mod_timer(&pf->service_timer, 11327 round_jiffies(jiffies + pf->service_timer_period)); 11328 i40e_service_event_schedule(pf); 11329 } 11330 11331 /** 11332 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11333 * @vsi: the VSI being configured 11334 **/ 11335 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11336 { 11337 struct i40e_pf *pf = vsi->back; 11338 11339 switch (vsi->type) { 11340 case I40E_VSI_MAIN: 11341 vsi->alloc_queue_pairs = pf->num_lan_qps; 11342 if (!vsi->num_tx_desc) 11343 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11344 I40E_REQ_DESCRIPTOR_MULTIPLE); 11345 if (!vsi->num_rx_desc) 11346 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11347 I40E_REQ_DESCRIPTOR_MULTIPLE); 11348 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11349 vsi->num_q_vectors = pf->num_lan_msix; 11350 else 11351 vsi->num_q_vectors = 1; 11352 11353 break; 11354 11355 case I40E_VSI_FDIR: 11356 vsi->alloc_queue_pairs = 1; 11357 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11358 I40E_REQ_DESCRIPTOR_MULTIPLE); 11359 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11360 I40E_REQ_DESCRIPTOR_MULTIPLE); 11361 vsi->num_q_vectors = pf->num_fdsb_msix; 11362 break; 11363 11364 case I40E_VSI_VMDQ2: 11365 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11366 if (!vsi->num_tx_desc) 11367 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11368 I40E_REQ_DESCRIPTOR_MULTIPLE); 11369 if (!vsi->num_rx_desc) 11370 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11371 I40E_REQ_DESCRIPTOR_MULTIPLE); 11372 vsi->num_q_vectors = pf->num_vmdq_msix; 11373 break; 11374 11375 case I40E_VSI_SRIOV: 11376 vsi->alloc_queue_pairs = pf->num_vf_qps; 11377 if (!vsi->num_tx_desc) 11378 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11379 I40E_REQ_DESCRIPTOR_MULTIPLE); 11380 if (!vsi->num_rx_desc) 11381 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11382 I40E_REQ_DESCRIPTOR_MULTIPLE); 11383 break; 11384 11385 default: 11386 WARN_ON(1); 11387 return -ENODATA; 11388 } 11389 11390 if (is_kdump_kernel()) { 11391 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11392 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11393 } 11394 11395 return 0; 11396 } 11397 11398 /** 11399 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11400 * @vsi: VSI pointer 11401 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11402 * 11403 * On error: returns error code (negative) 11404 * On success: returns 0 11405 **/ 11406 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11407 { 11408 struct i40e_ring **next_rings; 11409 int size; 11410 int ret = 0; 11411 11412 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11413 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11414 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11415 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11416 if (!vsi->tx_rings) 11417 return -ENOMEM; 11418 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11419 if (i40e_enabled_xdp_vsi(vsi)) { 11420 vsi->xdp_rings = next_rings; 11421 next_rings += vsi->alloc_queue_pairs; 11422 } 11423 vsi->rx_rings = next_rings; 11424 11425 if (alloc_qvectors) { 11426 /* allocate memory for q_vector pointers */ 11427 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11428 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11429 if (!vsi->q_vectors) { 11430 ret = -ENOMEM; 11431 goto err_vectors; 11432 } 11433 } 11434 return ret; 11435 11436 err_vectors: 11437 kfree(vsi->tx_rings); 11438 return ret; 11439 } 11440 11441 /** 11442 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11443 * @pf: board private structure 11444 * @type: type of VSI 11445 * 11446 * On error: returns error code (negative) 11447 * On success: returns vsi index in PF (positive) 11448 **/ 11449 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11450 { 11451 int ret = -ENODEV; 11452 struct i40e_vsi *vsi; 11453 int vsi_idx; 11454 int i; 11455 11456 /* Need to protect the allocation of the VSIs at the PF level */ 11457 mutex_lock(&pf->switch_mutex); 11458 11459 /* VSI list may be fragmented if VSI creation/destruction has 11460 * been happening. We can afford to do a quick scan to look 11461 * for any free VSIs in the list. 11462 * 11463 * find next empty vsi slot, looping back around if necessary 11464 */ 11465 i = pf->next_vsi; 11466 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11467 i++; 11468 if (i >= pf->num_alloc_vsi) { 11469 i = 0; 11470 while (i < pf->next_vsi && pf->vsi[i]) 11471 i++; 11472 } 11473 11474 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11475 vsi_idx = i; /* Found one! */ 11476 } else { 11477 ret = -ENODEV; 11478 goto unlock_pf; /* out of VSI slots! */ 11479 } 11480 pf->next_vsi = ++i; 11481 11482 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11483 if (!vsi) { 11484 ret = -ENOMEM; 11485 goto unlock_pf; 11486 } 11487 vsi->type = type; 11488 vsi->back = pf; 11489 set_bit(__I40E_VSI_DOWN, vsi->state); 11490 vsi->flags = 0; 11491 vsi->idx = vsi_idx; 11492 vsi->int_rate_limit = 0; 11493 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11494 pf->rss_table_size : 64; 11495 vsi->netdev_registered = false; 11496 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11497 hash_init(vsi->mac_filter_hash); 11498 vsi->irqs_ready = false; 11499 11500 if (type == I40E_VSI_MAIN) { 11501 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11502 if (!vsi->af_xdp_zc_qps) 11503 goto err_rings; 11504 } 11505 11506 ret = i40e_set_num_rings_in_vsi(vsi); 11507 if (ret) 11508 goto err_rings; 11509 11510 ret = i40e_vsi_alloc_arrays(vsi, true); 11511 if (ret) 11512 goto err_rings; 11513 11514 /* Setup default MSIX irq handler for VSI */ 11515 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11516 11517 /* Initialize VSI lock */ 11518 spin_lock_init(&vsi->mac_filter_hash_lock); 11519 pf->vsi[vsi_idx] = vsi; 11520 ret = vsi_idx; 11521 goto unlock_pf; 11522 11523 err_rings: 11524 bitmap_free(vsi->af_xdp_zc_qps); 11525 pf->next_vsi = i - 1; 11526 kfree(vsi); 11527 unlock_pf: 11528 mutex_unlock(&pf->switch_mutex); 11529 return ret; 11530 } 11531 11532 /** 11533 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11534 * @vsi: VSI pointer 11535 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11536 * 11537 * On error: returns error code (negative) 11538 * On success: returns 0 11539 **/ 11540 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11541 { 11542 /* free the ring and vector containers */ 11543 if (free_qvectors) { 11544 kfree(vsi->q_vectors); 11545 vsi->q_vectors = NULL; 11546 } 11547 kfree(vsi->tx_rings); 11548 vsi->tx_rings = NULL; 11549 vsi->rx_rings = NULL; 11550 vsi->xdp_rings = NULL; 11551 } 11552 11553 /** 11554 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11555 * and lookup table 11556 * @vsi: Pointer to VSI structure 11557 */ 11558 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11559 { 11560 if (!vsi) 11561 return; 11562 11563 kfree(vsi->rss_hkey_user); 11564 vsi->rss_hkey_user = NULL; 11565 11566 kfree(vsi->rss_lut_user); 11567 vsi->rss_lut_user = NULL; 11568 } 11569 11570 /** 11571 * i40e_vsi_clear - Deallocate the VSI provided 11572 * @vsi: the VSI being un-configured 11573 **/ 11574 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11575 { 11576 struct i40e_pf *pf; 11577 11578 if (!vsi) 11579 return 0; 11580 11581 if (!vsi->back) 11582 goto free_vsi; 11583 pf = vsi->back; 11584 11585 mutex_lock(&pf->switch_mutex); 11586 if (!pf->vsi[vsi->idx]) { 11587 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11588 vsi->idx, vsi->idx, vsi->type); 11589 goto unlock_vsi; 11590 } 11591 11592 if (pf->vsi[vsi->idx] != vsi) { 11593 dev_err(&pf->pdev->dev, 11594 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11595 pf->vsi[vsi->idx]->idx, 11596 pf->vsi[vsi->idx]->type, 11597 vsi->idx, vsi->type); 11598 goto unlock_vsi; 11599 } 11600 11601 /* updates the PF for this cleared vsi */ 11602 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11603 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11604 11605 bitmap_free(vsi->af_xdp_zc_qps); 11606 i40e_vsi_free_arrays(vsi, true); 11607 i40e_clear_rss_config_user(vsi); 11608 11609 pf->vsi[vsi->idx] = NULL; 11610 if (vsi->idx < pf->next_vsi) 11611 pf->next_vsi = vsi->idx; 11612 11613 unlock_vsi: 11614 mutex_unlock(&pf->switch_mutex); 11615 free_vsi: 11616 kfree(vsi); 11617 11618 return 0; 11619 } 11620 11621 /** 11622 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11623 * @vsi: the VSI being cleaned 11624 **/ 11625 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11626 { 11627 int i; 11628 11629 if (vsi->tx_rings && vsi->tx_rings[0]) { 11630 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11631 kfree_rcu(vsi->tx_rings[i], rcu); 11632 WRITE_ONCE(vsi->tx_rings[i], NULL); 11633 WRITE_ONCE(vsi->rx_rings[i], NULL); 11634 if (vsi->xdp_rings) 11635 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11636 } 11637 } 11638 } 11639 11640 /** 11641 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11642 * @vsi: the VSI being configured 11643 **/ 11644 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11645 { 11646 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11647 struct i40e_pf *pf = vsi->back; 11648 struct i40e_ring *ring; 11649 11650 /* Set basic values in the rings to be used later during open() */ 11651 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11652 /* allocate space for both Tx and Rx in one shot */ 11653 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11654 if (!ring) 11655 goto err_out; 11656 11657 ring->queue_index = i; 11658 ring->reg_idx = vsi->base_queue + i; 11659 ring->ring_active = false; 11660 ring->vsi = vsi; 11661 ring->netdev = vsi->netdev; 11662 ring->dev = &pf->pdev->dev; 11663 ring->count = vsi->num_tx_desc; 11664 ring->size = 0; 11665 ring->dcb_tc = 0; 11666 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11667 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11668 ring->itr_setting = pf->tx_itr_default; 11669 WRITE_ONCE(vsi->tx_rings[i], ring++); 11670 11671 if (!i40e_enabled_xdp_vsi(vsi)) 11672 goto setup_rx; 11673 11674 ring->queue_index = vsi->alloc_queue_pairs + i; 11675 ring->reg_idx = vsi->base_queue + ring->queue_index; 11676 ring->ring_active = false; 11677 ring->vsi = vsi; 11678 ring->netdev = NULL; 11679 ring->dev = &pf->pdev->dev; 11680 ring->count = vsi->num_tx_desc; 11681 ring->size = 0; 11682 ring->dcb_tc = 0; 11683 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11684 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11685 set_ring_xdp(ring); 11686 ring->itr_setting = pf->tx_itr_default; 11687 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11688 11689 setup_rx: 11690 ring->queue_index = i; 11691 ring->reg_idx = vsi->base_queue + i; 11692 ring->ring_active = false; 11693 ring->vsi = vsi; 11694 ring->netdev = vsi->netdev; 11695 ring->dev = &pf->pdev->dev; 11696 ring->count = vsi->num_rx_desc; 11697 ring->size = 0; 11698 ring->dcb_tc = 0; 11699 ring->itr_setting = pf->rx_itr_default; 11700 WRITE_ONCE(vsi->rx_rings[i], ring); 11701 } 11702 11703 return 0; 11704 11705 err_out: 11706 i40e_vsi_clear_rings(vsi); 11707 return -ENOMEM; 11708 } 11709 11710 /** 11711 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11712 * @pf: board private structure 11713 * @vectors: the number of MSI-X vectors to request 11714 * 11715 * Returns the number of vectors reserved, or error 11716 **/ 11717 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11718 { 11719 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11720 I40E_MIN_MSIX, vectors); 11721 if (vectors < 0) { 11722 dev_info(&pf->pdev->dev, 11723 "MSI-X vector reservation failed: %d\n", vectors); 11724 vectors = 0; 11725 } 11726 11727 return vectors; 11728 } 11729 11730 /** 11731 * i40e_init_msix - Setup the MSIX capability 11732 * @pf: board private structure 11733 * 11734 * Work with the OS to set up the MSIX vectors needed. 11735 * 11736 * Returns the number of vectors reserved or negative on failure 11737 **/ 11738 static int i40e_init_msix(struct i40e_pf *pf) 11739 { 11740 struct i40e_hw *hw = &pf->hw; 11741 int cpus, extra_vectors; 11742 int vectors_left; 11743 int v_budget, i; 11744 int v_actual; 11745 int iwarp_requested = 0; 11746 11747 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11748 return -ENODEV; 11749 11750 /* The number of vectors we'll request will be comprised of: 11751 * - Add 1 for "other" cause for Admin Queue events, etc. 11752 * - The number of LAN queue pairs 11753 * - Queues being used for RSS. 11754 * We don't need as many as max_rss_size vectors. 11755 * use rss_size instead in the calculation since that 11756 * is governed by number of cpus in the system. 11757 * - assumes symmetric Tx/Rx pairing 11758 * - The number of VMDq pairs 11759 * - The CPU count within the NUMA node if iWARP is enabled 11760 * Once we count this up, try the request. 11761 * 11762 * If we can't get what we want, we'll simplify to nearly nothing 11763 * and try again. If that still fails, we punt. 11764 */ 11765 vectors_left = hw->func_caps.num_msix_vectors; 11766 v_budget = 0; 11767 11768 /* reserve one vector for miscellaneous handler */ 11769 if (vectors_left) { 11770 v_budget++; 11771 vectors_left--; 11772 } 11773 11774 /* reserve some vectors for the main PF traffic queues. Initially we 11775 * only reserve at most 50% of the available vectors, in the case that 11776 * the number of online CPUs is large. This ensures that we can enable 11777 * extra features as well. Once we've enabled the other features, we 11778 * will use any remaining vectors to reach as close as we can to the 11779 * number of online CPUs. 11780 */ 11781 cpus = num_online_cpus(); 11782 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11783 vectors_left -= pf->num_lan_msix; 11784 11785 /* reserve one vector for sideband flow director */ 11786 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11787 if (vectors_left) { 11788 pf->num_fdsb_msix = 1; 11789 v_budget++; 11790 vectors_left--; 11791 } else { 11792 pf->num_fdsb_msix = 0; 11793 } 11794 } 11795 11796 /* can we reserve enough for iWARP? */ 11797 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11798 iwarp_requested = pf->num_iwarp_msix; 11799 11800 if (!vectors_left) 11801 pf->num_iwarp_msix = 0; 11802 else if (vectors_left < pf->num_iwarp_msix) 11803 pf->num_iwarp_msix = 1; 11804 v_budget += pf->num_iwarp_msix; 11805 vectors_left -= pf->num_iwarp_msix; 11806 } 11807 11808 /* any vectors left over go for VMDq support */ 11809 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11810 if (!vectors_left) { 11811 pf->num_vmdq_msix = 0; 11812 pf->num_vmdq_qps = 0; 11813 } else { 11814 int vmdq_vecs_wanted = 11815 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11816 int vmdq_vecs = 11817 min_t(int, vectors_left, vmdq_vecs_wanted); 11818 11819 /* if we're short on vectors for what's desired, we limit 11820 * the queues per vmdq. If this is still more than are 11821 * available, the user will need to change the number of 11822 * queues/vectors used by the PF later with the ethtool 11823 * channels command 11824 */ 11825 if (vectors_left < vmdq_vecs_wanted) { 11826 pf->num_vmdq_qps = 1; 11827 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11828 vmdq_vecs = min_t(int, 11829 vectors_left, 11830 vmdq_vecs_wanted); 11831 } 11832 pf->num_vmdq_msix = pf->num_vmdq_qps; 11833 11834 v_budget += vmdq_vecs; 11835 vectors_left -= vmdq_vecs; 11836 } 11837 } 11838 11839 /* On systems with a large number of SMP cores, we previously limited 11840 * the number of vectors for num_lan_msix to be at most 50% of the 11841 * available vectors, to allow for other features. Now, we add back 11842 * the remaining vectors. However, we ensure that the total 11843 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11844 * calculate the number of vectors we can add without going over the 11845 * cap of CPUs. For systems with a small number of CPUs this will be 11846 * zero. 11847 */ 11848 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11849 pf->num_lan_msix += extra_vectors; 11850 vectors_left -= extra_vectors; 11851 11852 WARN(vectors_left < 0, 11853 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11854 11855 v_budget += pf->num_lan_msix; 11856 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11857 GFP_KERNEL); 11858 if (!pf->msix_entries) 11859 return -ENOMEM; 11860 11861 for (i = 0; i < v_budget; i++) 11862 pf->msix_entries[i].entry = i; 11863 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11864 11865 if (v_actual < I40E_MIN_MSIX) { 11866 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11867 kfree(pf->msix_entries); 11868 pf->msix_entries = NULL; 11869 pci_disable_msix(pf->pdev); 11870 return -ENODEV; 11871 11872 } else if (v_actual == I40E_MIN_MSIX) { 11873 /* Adjust for minimal MSIX use */ 11874 pf->num_vmdq_vsis = 0; 11875 pf->num_vmdq_qps = 0; 11876 pf->num_lan_qps = 1; 11877 pf->num_lan_msix = 1; 11878 11879 } else if (v_actual != v_budget) { 11880 /* If we have limited resources, we will start with no vectors 11881 * for the special features and then allocate vectors to some 11882 * of these features based on the policy and at the end disable 11883 * the features that did not get any vectors. 11884 */ 11885 int vec; 11886 11887 dev_info(&pf->pdev->dev, 11888 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11889 v_actual, v_budget); 11890 /* reserve the misc vector */ 11891 vec = v_actual - 1; 11892 11893 /* Scale vector usage down */ 11894 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11895 pf->num_vmdq_vsis = 1; 11896 pf->num_vmdq_qps = 1; 11897 11898 /* partition out the remaining vectors */ 11899 switch (vec) { 11900 case 2: 11901 pf->num_lan_msix = 1; 11902 break; 11903 case 3: 11904 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11905 pf->num_lan_msix = 1; 11906 pf->num_iwarp_msix = 1; 11907 } else { 11908 pf->num_lan_msix = 2; 11909 } 11910 break; 11911 default: 11912 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11913 pf->num_iwarp_msix = min_t(int, (vec / 3), 11914 iwarp_requested); 11915 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11916 I40E_DEFAULT_NUM_VMDQ_VSI); 11917 } else { 11918 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11919 I40E_DEFAULT_NUM_VMDQ_VSI); 11920 } 11921 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11922 pf->num_fdsb_msix = 1; 11923 vec--; 11924 } 11925 pf->num_lan_msix = min_t(int, 11926 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11927 pf->num_lan_msix); 11928 pf->num_lan_qps = pf->num_lan_msix; 11929 break; 11930 } 11931 } 11932 11933 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 11934 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11935 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 11936 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 11937 } 11938 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 11939 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11940 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 11941 } 11942 11943 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 11944 pf->num_iwarp_msix == 0) { 11945 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11946 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 11947 } 11948 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11949 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11950 pf->num_lan_msix, 11951 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11952 pf->num_fdsb_msix, 11953 pf->num_iwarp_msix); 11954 11955 return v_actual; 11956 } 11957 11958 /** 11959 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11960 * @vsi: the VSI being configured 11961 * @v_idx: index of the vector in the vsi struct 11962 * 11963 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11964 **/ 11965 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 11966 { 11967 struct i40e_q_vector *q_vector; 11968 11969 /* allocate q_vector */ 11970 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11971 if (!q_vector) 11972 return -ENOMEM; 11973 11974 q_vector->vsi = vsi; 11975 q_vector->v_idx = v_idx; 11976 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11977 11978 if (vsi->netdev) 11979 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 11980 11981 /* tie q_vector and vsi together */ 11982 vsi->q_vectors[v_idx] = q_vector; 11983 11984 return 0; 11985 } 11986 11987 /** 11988 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11989 * @vsi: the VSI being configured 11990 * 11991 * We allocate one q_vector per queue interrupt. If allocation fails we 11992 * return -ENOMEM. 11993 **/ 11994 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 11995 { 11996 struct i40e_pf *pf = vsi->back; 11997 int err, v_idx, num_q_vectors; 11998 11999 /* if not MSIX, give the one vector only to the LAN VSI */ 12000 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12001 num_q_vectors = vsi->num_q_vectors; 12002 else if (vsi == pf->vsi[pf->lan_vsi]) 12003 num_q_vectors = 1; 12004 else 12005 return -EINVAL; 12006 12007 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 12008 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 12009 if (err) 12010 goto err_out; 12011 } 12012 12013 return 0; 12014 12015 err_out: 12016 while (v_idx--) 12017 i40e_free_q_vector(vsi, v_idx); 12018 12019 return err; 12020 } 12021 12022 /** 12023 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12024 * @pf: board private structure to initialize 12025 **/ 12026 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12027 { 12028 int vectors = 0; 12029 ssize_t size; 12030 12031 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12032 vectors = i40e_init_msix(pf); 12033 if (vectors < 0) { 12034 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12035 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12036 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12037 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12038 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12039 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12040 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12041 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12042 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12043 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12044 12045 /* rework the queue expectations without MSIX */ 12046 i40e_determine_queue_usage(pf); 12047 } 12048 } 12049 12050 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12051 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12052 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12053 vectors = pci_enable_msi(pf->pdev); 12054 if (vectors < 0) { 12055 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12056 vectors); 12057 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12058 } 12059 vectors = 1; /* one MSI or Legacy vector */ 12060 } 12061 12062 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12063 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12064 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12065 12066 /* set up vector assignment tracking */ 12067 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12068 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12069 if (!pf->irq_pile) 12070 return -ENOMEM; 12071 12072 pf->irq_pile->num_entries = vectors; 12073 12074 /* track first vector for misc interrupts, ignore return */ 12075 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12076 12077 return 0; 12078 } 12079 12080 /** 12081 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12082 * @pf: private board data structure 12083 * 12084 * Restore the interrupt scheme that was cleared when we suspended the 12085 * device. This should be called during resume to re-allocate the q_vectors 12086 * and reacquire IRQs. 12087 */ 12088 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12089 { 12090 int err, i; 12091 12092 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12093 * scheme. We need to re-enabled them here in order to attempt to 12094 * re-acquire the MSI or MSI-X vectors 12095 */ 12096 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12097 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12098 12099 err = i40e_init_interrupt_scheme(pf); 12100 if (err) 12101 return err; 12102 12103 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12104 * rings together again. 12105 */ 12106 for (i = 0; i < pf->num_alloc_vsi; i++) { 12107 if (pf->vsi[i]) { 12108 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 12109 if (err) 12110 goto err_unwind; 12111 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 12112 } 12113 } 12114 12115 err = i40e_setup_misc_vector(pf); 12116 if (err) 12117 goto err_unwind; 12118 12119 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12120 i40e_client_update_msix_info(pf); 12121 12122 return 0; 12123 12124 err_unwind: 12125 while (i--) { 12126 if (pf->vsi[i]) 12127 i40e_vsi_free_q_vectors(pf->vsi[i]); 12128 } 12129 12130 return err; 12131 } 12132 12133 /** 12134 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12135 * non queue events in recovery mode 12136 * @pf: board private structure 12137 * 12138 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12139 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12140 * This is handled differently than in recovery mode since no Tx/Rx resources 12141 * are being allocated. 12142 **/ 12143 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12144 { 12145 int err; 12146 12147 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12148 err = i40e_setup_misc_vector(pf); 12149 12150 if (err) { 12151 dev_info(&pf->pdev->dev, 12152 "MSI-X misc vector request failed, error %d\n", 12153 err); 12154 return err; 12155 } 12156 } else { 12157 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12158 12159 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12160 pf->int_name, pf); 12161 12162 if (err) { 12163 dev_info(&pf->pdev->dev, 12164 "MSI/legacy misc vector request failed, error %d\n", 12165 err); 12166 return err; 12167 } 12168 i40e_enable_misc_int_causes(pf); 12169 i40e_irq_dynamic_enable_icr0(pf); 12170 } 12171 12172 return 0; 12173 } 12174 12175 /** 12176 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12177 * @pf: board private structure 12178 * 12179 * This sets up the handler for MSIX 0, which is used to manage the 12180 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12181 * when in MSI or Legacy interrupt mode. 12182 **/ 12183 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12184 { 12185 struct i40e_hw *hw = &pf->hw; 12186 int err = 0; 12187 12188 /* Only request the IRQ once, the first time through. */ 12189 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12190 err = request_irq(pf->msix_entries[0].vector, 12191 i40e_intr, 0, pf->int_name, pf); 12192 if (err) { 12193 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12194 dev_info(&pf->pdev->dev, 12195 "request_irq for %s failed: %d\n", 12196 pf->int_name, err); 12197 return -EFAULT; 12198 } 12199 } 12200 12201 i40e_enable_misc_int_causes(pf); 12202 12203 /* associate no queues to the misc vector */ 12204 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12205 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12206 12207 i40e_flush(hw); 12208 12209 i40e_irq_dynamic_enable_icr0(pf); 12210 12211 return err; 12212 } 12213 12214 /** 12215 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12216 * @vsi: Pointer to vsi structure 12217 * @seed: Buffter to store the hash keys 12218 * @lut: Buffer to store the lookup table entries 12219 * @lut_size: Size of buffer to store the lookup table entries 12220 * 12221 * Return 0 on success, negative on failure 12222 */ 12223 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12224 u8 *lut, u16 lut_size) 12225 { 12226 struct i40e_pf *pf = vsi->back; 12227 struct i40e_hw *hw = &pf->hw; 12228 int ret = 0; 12229 12230 if (seed) { 12231 ret = i40e_aq_get_rss_key(hw, vsi->id, 12232 (struct i40e_aqc_get_set_rss_key_data *)seed); 12233 if (ret) { 12234 dev_info(&pf->pdev->dev, 12235 "Cannot get RSS key, err %pe aq_err %s\n", 12236 ERR_PTR(ret), 12237 i40e_aq_str(&pf->hw, 12238 pf->hw.aq.asq_last_status)); 12239 return ret; 12240 } 12241 } 12242 12243 if (lut) { 12244 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12245 12246 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12247 if (ret) { 12248 dev_info(&pf->pdev->dev, 12249 "Cannot get RSS lut, err %pe aq_err %s\n", 12250 ERR_PTR(ret), 12251 i40e_aq_str(&pf->hw, 12252 pf->hw.aq.asq_last_status)); 12253 return ret; 12254 } 12255 } 12256 12257 return ret; 12258 } 12259 12260 /** 12261 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12262 * @vsi: Pointer to vsi structure 12263 * @seed: RSS hash seed 12264 * @lut: Lookup table 12265 * @lut_size: Lookup table size 12266 * 12267 * Returns 0 on success, negative on failure 12268 **/ 12269 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12270 const u8 *lut, u16 lut_size) 12271 { 12272 struct i40e_pf *pf = vsi->back; 12273 struct i40e_hw *hw = &pf->hw; 12274 u16 vf_id = vsi->vf_id; 12275 u8 i; 12276 12277 /* Fill out hash function seed */ 12278 if (seed) { 12279 u32 *seed_dw = (u32 *)seed; 12280 12281 if (vsi->type == I40E_VSI_MAIN) { 12282 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12283 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12284 } else if (vsi->type == I40E_VSI_SRIOV) { 12285 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12286 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12287 } else { 12288 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12289 } 12290 } 12291 12292 if (lut) { 12293 u32 *lut_dw = (u32 *)lut; 12294 12295 if (vsi->type == I40E_VSI_MAIN) { 12296 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12297 return -EINVAL; 12298 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12299 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12300 } else if (vsi->type == I40E_VSI_SRIOV) { 12301 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12302 return -EINVAL; 12303 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12304 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12305 } else { 12306 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12307 } 12308 } 12309 i40e_flush(hw); 12310 12311 return 0; 12312 } 12313 12314 /** 12315 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12316 * @vsi: Pointer to VSI structure 12317 * @seed: Buffer to store the keys 12318 * @lut: Buffer to store the lookup table entries 12319 * @lut_size: Size of buffer to store the lookup table entries 12320 * 12321 * Returns 0 on success, negative on failure 12322 */ 12323 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12324 u8 *lut, u16 lut_size) 12325 { 12326 struct i40e_pf *pf = vsi->back; 12327 struct i40e_hw *hw = &pf->hw; 12328 u16 i; 12329 12330 if (seed) { 12331 u32 *seed_dw = (u32 *)seed; 12332 12333 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12334 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12335 } 12336 if (lut) { 12337 u32 *lut_dw = (u32 *)lut; 12338 12339 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12340 return -EINVAL; 12341 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12342 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12343 } 12344 12345 return 0; 12346 } 12347 12348 /** 12349 * i40e_config_rss - Configure RSS keys and lut 12350 * @vsi: Pointer to VSI structure 12351 * @seed: RSS hash seed 12352 * @lut: Lookup table 12353 * @lut_size: Lookup table size 12354 * 12355 * Returns 0 on success, negative on failure 12356 */ 12357 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12358 { 12359 struct i40e_pf *pf = vsi->back; 12360 12361 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12362 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12363 else 12364 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12365 } 12366 12367 /** 12368 * i40e_get_rss - Get RSS keys and lut 12369 * @vsi: Pointer to VSI structure 12370 * @seed: Buffer to store the keys 12371 * @lut: Buffer to store the lookup table entries 12372 * @lut_size: Size of buffer to store the lookup table entries 12373 * 12374 * Returns 0 on success, negative on failure 12375 */ 12376 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12377 { 12378 struct i40e_pf *pf = vsi->back; 12379 12380 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12381 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12382 else 12383 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12384 } 12385 12386 /** 12387 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12388 * @pf: Pointer to board private structure 12389 * @lut: Lookup table 12390 * @rss_table_size: Lookup table size 12391 * @rss_size: Range of queue number for hashing 12392 */ 12393 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12394 u16 rss_table_size, u16 rss_size) 12395 { 12396 u16 i; 12397 12398 for (i = 0; i < rss_table_size; i++) 12399 lut[i] = i % rss_size; 12400 } 12401 12402 /** 12403 * i40e_pf_config_rss - Prepare for RSS if used 12404 * @pf: board private structure 12405 **/ 12406 static int i40e_pf_config_rss(struct i40e_pf *pf) 12407 { 12408 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12409 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12410 u8 *lut; 12411 struct i40e_hw *hw = &pf->hw; 12412 u32 reg_val; 12413 u64 hena; 12414 int ret; 12415 12416 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12417 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12418 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12419 hena |= i40e_pf_get_default_rss_hena(pf); 12420 12421 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12422 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12423 12424 /* Determine the RSS table size based on the hardware capabilities */ 12425 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12426 reg_val = (pf->rss_table_size == 512) ? 12427 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12428 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12429 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12430 12431 /* Determine the RSS size of the VSI */ 12432 if (!vsi->rss_size) { 12433 u16 qcount; 12434 /* If the firmware does something weird during VSI init, we 12435 * could end up with zero TCs. Check for that to avoid 12436 * divide-by-zero. It probably won't pass traffic, but it also 12437 * won't panic. 12438 */ 12439 qcount = vsi->num_queue_pairs / 12440 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12441 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12442 } 12443 if (!vsi->rss_size) 12444 return -EINVAL; 12445 12446 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12447 if (!lut) 12448 return -ENOMEM; 12449 12450 /* Use user configured lut if there is one, otherwise use default */ 12451 if (vsi->rss_lut_user) 12452 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12453 else 12454 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12455 12456 /* Use user configured hash key if there is one, otherwise 12457 * use default. 12458 */ 12459 if (vsi->rss_hkey_user) 12460 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12461 else 12462 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12463 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12464 kfree(lut); 12465 12466 return ret; 12467 } 12468 12469 /** 12470 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12471 * @pf: board private structure 12472 * @queue_count: the requested queue count for rss. 12473 * 12474 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12475 * count which may be different from the requested queue count. 12476 * Note: expects to be called while under rtnl_lock() 12477 **/ 12478 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12479 { 12480 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12481 int new_rss_size; 12482 12483 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12484 return 0; 12485 12486 queue_count = min_t(int, queue_count, num_online_cpus()); 12487 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12488 12489 if (queue_count != vsi->num_queue_pairs) { 12490 u16 qcount; 12491 12492 vsi->req_queue_pairs = queue_count; 12493 i40e_prep_for_reset(pf); 12494 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12495 return pf->alloc_rss_size; 12496 12497 pf->alloc_rss_size = new_rss_size; 12498 12499 i40e_reset_and_rebuild(pf, true, true); 12500 12501 /* Discard the user configured hash keys and lut, if less 12502 * queues are enabled. 12503 */ 12504 if (queue_count < vsi->rss_size) { 12505 i40e_clear_rss_config_user(vsi); 12506 dev_dbg(&pf->pdev->dev, 12507 "discard user configured hash keys and lut\n"); 12508 } 12509 12510 /* Reset vsi->rss_size, as number of enabled queues changed */ 12511 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12512 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12513 12514 i40e_pf_config_rss(pf); 12515 } 12516 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12517 vsi->req_queue_pairs, pf->rss_size_max); 12518 return pf->alloc_rss_size; 12519 } 12520 12521 /** 12522 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12523 * @pf: board private structure 12524 **/ 12525 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12526 { 12527 bool min_valid, max_valid; 12528 u32 max_bw, min_bw; 12529 int status; 12530 12531 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12532 &min_valid, &max_valid); 12533 12534 if (!status) { 12535 if (min_valid) 12536 pf->min_bw = min_bw; 12537 if (max_valid) 12538 pf->max_bw = max_bw; 12539 } 12540 12541 return status; 12542 } 12543 12544 /** 12545 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12546 * @pf: board private structure 12547 **/ 12548 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12549 { 12550 struct i40e_aqc_configure_partition_bw_data bw_data; 12551 int status; 12552 12553 memset(&bw_data, 0, sizeof(bw_data)); 12554 12555 /* Set the valid bit for this PF */ 12556 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12557 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12558 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12559 12560 /* Set the new bandwidths */ 12561 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12562 12563 return status; 12564 } 12565 12566 /** 12567 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12568 * @pf: board private structure 12569 **/ 12570 int i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12571 { 12572 /* Commit temporary BW setting to permanent NVM image */ 12573 enum i40e_admin_queue_err last_aq_status; 12574 u16 nvm_word; 12575 int ret; 12576 12577 if (pf->hw.partition_id != 1) { 12578 dev_info(&pf->pdev->dev, 12579 "Commit BW only works on partition 1! This is partition %d", 12580 pf->hw.partition_id); 12581 ret = -EOPNOTSUPP; 12582 goto bw_commit_out; 12583 } 12584 12585 /* Acquire NVM for read access */ 12586 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12587 last_aq_status = pf->hw.aq.asq_last_status; 12588 if (ret) { 12589 dev_info(&pf->pdev->dev, 12590 "Cannot acquire NVM for read access, err %pe aq_err %s\n", 12591 ERR_PTR(ret), 12592 i40e_aq_str(&pf->hw, last_aq_status)); 12593 goto bw_commit_out; 12594 } 12595 12596 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12597 ret = i40e_aq_read_nvm(&pf->hw, 12598 I40E_SR_NVM_CONTROL_WORD, 12599 0x10, sizeof(nvm_word), &nvm_word, 12600 false, NULL); 12601 /* Save off last admin queue command status before releasing 12602 * the NVM 12603 */ 12604 last_aq_status = pf->hw.aq.asq_last_status; 12605 i40e_release_nvm(&pf->hw); 12606 if (ret) { 12607 dev_info(&pf->pdev->dev, "NVM read error, err %pe aq_err %s\n", 12608 ERR_PTR(ret), 12609 i40e_aq_str(&pf->hw, last_aq_status)); 12610 goto bw_commit_out; 12611 } 12612 12613 /* Wait a bit for NVM release to complete */ 12614 msleep(50); 12615 12616 /* Acquire NVM for write access */ 12617 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12618 last_aq_status = pf->hw.aq.asq_last_status; 12619 if (ret) { 12620 dev_info(&pf->pdev->dev, 12621 "Cannot acquire NVM for write access, err %pe aq_err %s\n", 12622 ERR_PTR(ret), 12623 i40e_aq_str(&pf->hw, last_aq_status)); 12624 goto bw_commit_out; 12625 } 12626 /* Write it back out unchanged to initiate update NVM, 12627 * which will force a write of the shadow (alt) RAM to 12628 * the NVM - thus storing the bandwidth values permanently. 12629 */ 12630 ret = i40e_aq_update_nvm(&pf->hw, 12631 I40E_SR_NVM_CONTROL_WORD, 12632 0x10, sizeof(nvm_word), 12633 &nvm_word, true, 0, NULL); 12634 /* Save off last admin queue command status before releasing 12635 * the NVM 12636 */ 12637 last_aq_status = pf->hw.aq.asq_last_status; 12638 i40e_release_nvm(&pf->hw); 12639 if (ret) 12640 dev_info(&pf->pdev->dev, 12641 "BW settings NOT SAVED, err %pe aq_err %s\n", 12642 ERR_PTR(ret), 12643 i40e_aq_str(&pf->hw, last_aq_status)); 12644 bw_commit_out: 12645 12646 return ret; 12647 } 12648 12649 /** 12650 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12651 * if total port shutdown feature is enabled for this PF 12652 * @pf: board private structure 12653 **/ 12654 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12655 { 12656 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12657 #define I40E_FEATURES_ENABLE_PTR 0x2A 12658 #define I40E_CURRENT_SETTING_PTR 0x2B 12659 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12660 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12661 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12662 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12663 u16 sr_emp_sr_settings_ptr = 0; 12664 u16 features_enable = 0; 12665 u16 link_behavior = 0; 12666 int read_status = 0; 12667 bool ret = false; 12668 12669 read_status = i40e_read_nvm_word(&pf->hw, 12670 I40E_SR_EMP_SR_SETTINGS_PTR, 12671 &sr_emp_sr_settings_ptr); 12672 if (read_status) 12673 goto err_nvm; 12674 read_status = i40e_read_nvm_word(&pf->hw, 12675 sr_emp_sr_settings_ptr + 12676 I40E_FEATURES_ENABLE_PTR, 12677 &features_enable); 12678 if (read_status) 12679 goto err_nvm; 12680 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12681 read_status = i40e_read_nvm_module_data(&pf->hw, 12682 I40E_SR_EMP_SR_SETTINGS_PTR, 12683 I40E_CURRENT_SETTING_PTR, 12684 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12685 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12686 &link_behavior); 12687 if (read_status) 12688 goto err_nvm; 12689 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12690 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12691 } 12692 return ret; 12693 12694 err_nvm: 12695 dev_warn(&pf->pdev->dev, 12696 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12697 ERR_PTR(read_status)); 12698 return ret; 12699 } 12700 12701 /** 12702 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12703 * @pf: board private structure to initialize 12704 * 12705 * i40e_sw_init initializes the Adapter private data structure. 12706 * Fields are initialized based on PCI device information and 12707 * OS network device settings (MTU size). 12708 **/ 12709 static int i40e_sw_init(struct i40e_pf *pf) 12710 { 12711 int err = 0; 12712 int size; 12713 u16 pow; 12714 12715 /* Set default capability flags */ 12716 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12717 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12718 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12719 12720 /* Set default ITR */ 12721 pf->rx_itr_default = I40E_ITR_RX_DEF; 12722 pf->tx_itr_default = I40E_ITR_TX_DEF; 12723 12724 /* Depending on PF configurations, it is possible that the RSS 12725 * maximum might end up larger than the available queues 12726 */ 12727 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12728 pf->alloc_rss_size = 1; 12729 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12730 pf->rss_size_max = min_t(int, pf->rss_size_max, 12731 pf->hw.func_caps.num_tx_qp); 12732 12733 /* find the next higher power-of-2 of num cpus */ 12734 pow = roundup_pow_of_two(num_online_cpus()); 12735 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12736 12737 if (pf->hw.func_caps.rss) { 12738 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12739 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12740 num_online_cpus()); 12741 } 12742 12743 /* MFP mode enabled */ 12744 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12745 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12746 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12747 if (i40e_get_partition_bw_setting(pf)) { 12748 dev_warn(&pf->pdev->dev, 12749 "Could not get partition bw settings\n"); 12750 } else { 12751 dev_info(&pf->pdev->dev, 12752 "Partition BW Min = %8.8x, Max = %8.8x\n", 12753 pf->min_bw, pf->max_bw); 12754 12755 /* nudge the Tx scheduler */ 12756 i40e_set_partition_bw_setting(pf); 12757 } 12758 } 12759 12760 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12761 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12762 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12763 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12764 pf->hw.num_partitions > 1) 12765 dev_info(&pf->pdev->dev, 12766 "Flow Director Sideband mode Disabled in MFP mode\n"); 12767 else 12768 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12769 pf->fdir_pf_filter_count = 12770 pf->hw.func_caps.fd_filters_guaranteed; 12771 pf->hw.fdir_shared_filter_count = 12772 pf->hw.func_caps.fd_filters_best_effort; 12773 } 12774 12775 /* Enable HW ATR eviction if possible */ 12776 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12777 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12778 12779 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12780 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12781 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12782 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12783 } 12784 12785 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12786 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12787 /* IWARP needs one extra vector for CQP just like MISC.*/ 12788 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12789 } 12790 /* Stopping FW LLDP engine is supported on XL710 and X722 12791 * starting from FW versions determined in i40e_init_adminq. 12792 * Stopping the FW LLDP engine is not supported on XL710 12793 * if NPAR is functioning so unset this hw flag in this case. 12794 */ 12795 if (pf->hw.mac.type == I40E_MAC_XL710 && 12796 pf->hw.func_caps.npar_enable) 12797 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12798 12799 #ifdef CONFIG_PCI_IOV 12800 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12801 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12802 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12803 pf->num_req_vfs = min_t(int, 12804 pf->hw.func_caps.num_vfs, 12805 I40E_MAX_VF_COUNT); 12806 } 12807 #endif /* CONFIG_PCI_IOV */ 12808 pf->lan_veb = I40E_NO_VEB; 12809 pf->lan_vsi = I40E_NO_VSI; 12810 12811 /* By default FW has this off for performance reasons */ 12812 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12813 12814 /* set up queue assignment tracking */ 12815 size = sizeof(struct i40e_lump_tracking) 12816 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12817 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12818 if (!pf->qp_pile) { 12819 err = -ENOMEM; 12820 goto sw_init_done; 12821 } 12822 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12823 12824 pf->tx_timeout_recovery_level = 1; 12825 12826 if (pf->hw.mac.type != I40E_MAC_X722 && 12827 i40e_is_total_port_shutdown_enabled(pf)) { 12828 /* Link down on close must be on when total port shutdown 12829 * is enabled for a given port 12830 */ 12831 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12832 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12833 dev_info(&pf->pdev->dev, 12834 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12835 } 12836 mutex_init(&pf->switch_mutex); 12837 12838 sw_init_done: 12839 return err; 12840 } 12841 12842 /** 12843 * i40e_set_ntuple - set the ntuple feature flag and take action 12844 * @pf: board private structure to initialize 12845 * @features: the feature set that the stack is suggesting 12846 * 12847 * returns a bool to indicate if reset needs to happen 12848 **/ 12849 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12850 { 12851 bool need_reset = false; 12852 12853 /* Check if Flow Director n-tuple support was enabled or disabled. If 12854 * the state changed, we need to reset. 12855 */ 12856 if (features & NETIF_F_NTUPLE) { 12857 /* Enable filters and mark for reset */ 12858 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12859 need_reset = true; 12860 /* enable FD_SB only if there is MSI-X vector and no cloud 12861 * filters exist 12862 */ 12863 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12864 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12865 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12866 } 12867 } else { 12868 /* turn off filters, mark for reset and clear SW filter list */ 12869 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12870 need_reset = true; 12871 i40e_fdir_filter_exit(pf); 12872 } 12873 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12874 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12875 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12876 12877 /* reset fd counters */ 12878 pf->fd_add_err = 0; 12879 pf->fd_atr_cnt = 0; 12880 /* if ATR was auto disabled it can be re-enabled. */ 12881 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12882 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12883 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12884 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12885 } 12886 return need_reset; 12887 } 12888 12889 /** 12890 * i40e_clear_rss_lut - clear the rx hash lookup table 12891 * @vsi: the VSI being configured 12892 **/ 12893 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12894 { 12895 struct i40e_pf *pf = vsi->back; 12896 struct i40e_hw *hw = &pf->hw; 12897 u16 vf_id = vsi->vf_id; 12898 u8 i; 12899 12900 if (vsi->type == I40E_VSI_MAIN) { 12901 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12902 wr32(hw, I40E_PFQF_HLUT(i), 0); 12903 } else if (vsi->type == I40E_VSI_SRIOV) { 12904 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12905 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12906 } else { 12907 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12908 } 12909 } 12910 12911 /** 12912 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12913 * @vsi: ptr to VSI 12914 * @ena: flag to indicate the on/off setting 12915 */ 12916 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12917 { 12918 bool if_running = netif_running(vsi->netdev) && 12919 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12920 int ret; 12921 12922 if (if_running) 12923 i40e_down(vsi); 12924 12925 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12926 if (ret) 12927 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12928 if (if_running) 12929 i40e_up(vsi); 12930 12931 return ret; 12932 } 12933 12934 /** 12935 * i40e_set_features - set the netdev feature flags 12936 * @netdev: ptr to the netdev being adjusted 12937 * @features: the feature set that the stack is suggesting 12938 * Note: expects to be called while under rtnl_lock() 12939 **/ 12940 static int i40e_set_features(struct net_device *netdev, 12941 netdev_features_t features) 12942 { 12943 struct i40e_netdev_priv *np = netdev_priv(netdev); 12944 struct i40e_vsi *vsi = np->vsi; 12945 struct i40e_pf *pf = vsi->back; 12946 bool need_reset; 12947 12948 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12949 i40e_pf_config_rss(pf); 12950 else if (!(features & NETIF_F_RXHASH) && 12951 netdev->features & NETIF_F_RXHASH) 12952 i40e_clear_rss_lut(vsi); 12953 12954 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12955 i40e_vlan_stripping_enable(vsi); 12956 else 12957 i40e_vlan_stripping_disable(vsi); 12958 12959 if (!(features & NETIF_F_HW_TC) && 12960 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12961 dev_err(&pf->pdev->dev, 12962 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12963 return -EINVAL; 12964 } 12965 12966 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12967 i40e_del_all_macvlans(vsi); 12968 12969 need_reset = i40e_set_ntuple(pf, features); 12970 12971 if (need_reset) 12972 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12973 12974 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 12975 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 12976 12977 return 0; 12978 } 12979 12980 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12981 unsigned int table, unsigned int idx, 12982 struct udp_tunnel_info *ti) 12983 { 12984 struct i40e_netdev_priv *np = netdev_priv(netdev); 12985 struct i40e_hw *hw = &np->vsi->back->hw; 12986 u8 type, filter_index; 12987 int ret; 12988 12989 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 12990 I40E_AQC_TUNNEL_TYPE_NGE; 12991 12992 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 12993 NULL); 12994 if (ret) { 12995 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 12996 ERR_PTR(ret), 12997 i40e_aq_str(hw, hw->aq.asq_last_status)); 12998 return -EIO; 12999 } 13000 13001 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 13002 return 0; 13003 } 13004 13005 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 13006 unsigned int table, unsigned int idx, 13007 struct udp_tunnel_info *ti) 13008 { 13009 struct i40e_netdev_priv *np = netdev_priv(netdev); 13010 struct i40e_hw *hw = &np->vsi->back->hw; 13011 int ret; 13012 13013 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 13014 if (ret) { 13015 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 13016 ERR_PTR(ret), 13017 i40e_aq_str(hw, hw->aq.asq_last_status)); 13018 return -EIO; 13019 } 13020 13021 return 0; 13022 } 13023 13024 static int i40e_get_phys_port_id(struct net_device *netdev, 13025 struct netdev_phys_item_id *ppid) 13026 { 13027 struct i40e_netdev_priv *np = netdev_priv(netdev); 13028 struct i40e_pf *pf = np->vsi->back; 13029 struct i40e_hw *hw = &pf->hw; 13030 13031 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13032 return -EOPNOTSUPP; 13033 13034 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13035 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13036 13037 return 0; 13038 } 13039 13040 /** 13041 * i40e_ndo_fdb_add - add an entry to the hardware database 13042 * @ndm: the input from the stack 13043 * @tb: pointer to array of nladdr (unused) 13044 * @dev: the net device pointer 13045 * @addr: the MAC address entry being added 13046 * @vid: VLAN ID 13047 * @flags: instructions from stack about fdb operation 13048 * @extack: netlink extended ack, unused currently 13049 */ 13050 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13051 struct net_device *dev, 13052 const unsigned char *addr, u16 vid, 13053 u16 flags, 13054 struct netlink_ext_ack *extack) 13055 { 13056 struct i40e_netdev_priv *np = netdev_priv(dev); 13057 struct i40e_pf *pf = np->vsi->back; 13058 int err = 0; 13059 13060 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13061 return -EOPNOTSUPP; 13062 13063 if (vid) { 13064 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13065 return -EINVAL; 13066 } 13067 13068 /* Hardware does not support aging addresses so if a 13069 * ndm_state is given only allow permanent addresses 13070 */ 13071 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13072 netdev_info(dev, "FDB only supports static addresses\n"); 13073 return -EINVAL; 13074 } 13075 13076 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13077 err = dev_uc_add_excl(dev, addr); 13078 else if (is_multicast_ether_addr(addr)) 13079 err = dev_mc_add_excl(dev, addr); 13080 else 13081 err = -EINVAL; 13082 13083 /* Only return duplicate errors if NLM_F_EXCL is set */ 13084 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13085 err = 0; 13086 13087 return err; 13088 } 13089 13090 /** 13091 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13092 * @dev: the netdev being configured 13093 * @nlh: RTNL message 13094 * @flags: bridge flags 13095 * @extack: netlink extended ack 13096 * 13097 * Inserts a new hardware bridge if not already created and 13098 * enables the bridging mode requested (VEB or VEPA). If the 13099 * hardware bridge has already been inserted and the request 13100 * is to change the mode then that requires a PF reset to 13101 * allow rebuild of the components with required hardware 13102 * bridge mode enabled. 13103 * 13104 * Note: expects to be called while under rtnl_lock() 13105 **/ 13106 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13107 struct nlmsghdr *nlh, 13108 u16 flags, 13109 struct netlink_ext_ack *extack) 13110 { 13111 struct i40e_netdev_priv *np = netdev_priv(dev); 13112 struct i40e_vsi *vsi = np->vsi; 13113 struct i40e_pf *pf = vsi->back; 13114 struct i40e_veb *veb = NULL; 13115 struct nlattr *attr, *br_spec; 13116 int i, rem; 13117 13118 /* Only for PF VSI for now */ 13119 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13120 return -EOPNOTSUPP; 13121 13122 /* Find the HW bridge for PF VSI */ 13123 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13124 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13125 veb = pf->veb[i]; 13126 } 13127 13128 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13129 if (!br_spec) 13130 return -EINVAL; 13131 13132 nla_for_each_nested(attr, br_spec, rem) { 13133 __u16 mode; 13134 13135 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13136 continue; 13137 13138 mode = nla_get_u16(attr); 13139 if ((mode != BRIDGE_MODE_VEPA) && 13140 (mode != BRIDGE_MODE_VEB)) 13141 return -EINVAL; 13142 13143 /* Insert a new HW bridge */ 13144 if (!veb) { 13145 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 13146 vsi->tc_config.enabled_tc); 13147 if (veb) { 13148 veb->bridge_mode = mode; 13149 i40e_config_bridge_mode(veb); 13150 } else { 13151 /* No Bridge HW offload available */ 13152 return -ENOENT; 13153 } 13154 break; 13155 } else if (mode != veb->bridge_mode) { 13156 /* Existing HW bridge but different mode needs reset */ 13157 veb->bridge_mode = mode; 13158 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13159 if (mode == BRIDGE_MODE_VEB) 13160 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13161 else 13162 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13163 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13164 break; 13165 } 13166 } 13167 13168 return 0; 13169 } 13170 13171 /** 13172 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13173 * @skb: skb buff 13174 * @pid: process id 13175 * @seq: RTNL message seq # 13176 * @dev: the netdev being configured 13177 * @filter_mask: unused 13178 * @nlflags: netlink flags passed in 13179 * 13180 * Return the mode in which the hardware bridge is operating in 13181 * i.e VEB or VEPA. 13182 **/ 13183 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13184 struct net_device *dev, 13185 u32 __always_unused filter_mask, 13186 int nlflags) 13187 { 13188 struct i40e_netdev_priv *np = netdev_priv(dev); 13189 struct i40e_vsi *vsi = np->vsi; 13190 struct i40e_pf *pf = vsi->back; 13191 struct i40e_veb *veb = NULL; 13192 int i; 13193 13194 /* Only for PF VSI for now */ 13195 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13196 return -EOPNOTSUPP; 13197 13198 /* Find the HW bridge for the PF VSI */ 13199 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13200 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13201 veb = pf->veb[i]; 13202 } 13203 13204 if (!veb) 13205 return 0; 13206 13207 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13208 0, 0, nlflags, filter_mask, NULL); 13209 } 13210 13211 /** 13212 * i40e_features_check - Validate encapsulated packet conforms to limits 13213 * @skb: skb buff 13214 * @dev: This physical port's netdev 13215 * @features: Offload features that the stack believes apply 13216 **/ 13217 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13218 struct net_device *dev, 13219 netdev_features_t features) 13220 { 13221 size_t len; 13222 13223 /* No point in doing any of this if neither checksum nor GSO are 13224 * being requested for this frame. We can rule out both by just 13225 * checking for CHECKSUM_PARTIAL 13226 */ 13227 if (skb->ip_summed != CHECKSUM_PARTIAL) 13228 return features; 13229 13230 /* We cannot support GSO if the MSS is going to be less than 13231 * 64 bytes. If it is then we need to drop support for GSO. 13232 */ 13233 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13234 features &= ~NETIF_F_GSO_MASK; 13235 13236 /* MACLEN can support at most 63 words */ 13237 len = skb_network_header(skb) - skb->data; 13238 if (len & ~(63 * 2)) 13239 goto out_err; 13240 13241 /* IPLEN and EIPLEN can support at most 127 dwords */ 13242 len = skb_transport_header(skb) - skb_network_header(skb); 13243 if (len & ~(127 * 4)) 13244 goto out_err; 13245 13246 if (skb->encapsulation) { 13247 /* L4TUNLEN can support 127 words */ 13248 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13249 if (len & ~(127 * 2)) 13250 goto out_err; 13251 13252 /* IPLEN can support at most 127 dwords */ 13253 len = skb_inner_transport_header(skb) - 13254 skb_inner_network_header(skb); 13255 if (len & ~(127 * 4)) 13256 goto out_err; 13257 } 13258 13259 /* No need to validate L4LEN as TCP is the only protocol with a 13260 * flexible value and we support all possible values supported 13261 * by TCP, which is at most 15 dwords 13262 */ 13263 13264 return features; 13265 out_err: 13266 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13267 } 13268 13269 /** 13270 * i40e_xdp_setup - add/remove an XDP program 13271 * @vsi: VSI to changed 13272 * @prog: XDP program 13273 * @extack: netlink extended ack 13274 **/ 13275 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13276 struct netlink_ext_ack *extack) 13277 { 13278 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13279 struct i40e_pf *pf = vsi->back; 13280 struct bpf_prog *old_prog; 13281 bool need_reset; 13282 int i; 13283 13284 /* Don't allow frames that span over multiple buffers */ 13285 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13286 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13287 return -EINVAL; 13288 } 13289 13290 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13291 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13292 13293 if (need_reset) 13294 i40e_prep_for_reset(pf); 13295 13296 /* VSI shall be deleted in a moment, just return EINVAL */ 13297 if (test_bit(__I40E_IN_REMOVE, pf->state)) 13298 return -EINVAL; 13299 13300 old_prog = xchg(&vsi->xdp_prog, prog); 13301 13302 if (need_reset) { 13303 if (!prog) { 13304 xdp_features_clear_redirect_target(vsi->netdev); 13305 /* Wait until ndo_xsk_wakeup completes. */ 13306 synchronize_rcu(); 13307 } 13308 i40e_reset_and_rebuild(pf, true, true); 13309 } 13310 13311 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13312 if (i40e_realloc_rx_bi_zc(vsi, true)) 13313 return -ENOMEM; 13314 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13315 if (i40e_realloc_rx_bi_zc(vsi, false)) 13316 return -ENOMEM; 13317 } 13318 13319 for (i = 0; i < vsi->num_queue_pairs; i++) 13320 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13321 13322 if (old_prog) 13323 bpf_prog_put(old_prog); 13324 13325 /* Kick start the NAPI context if there is an AF_XDP socket open 13326 * on that queue id. This so that receiving will start. 13327 */ 13328 if (need_reset && prog) { 13329 for (i = 0; i < vsi->num_queue_pairs; i++) 13330 if (vsi->xdp_rings[i]->xsk_pool) 13331 (void)i40e_xsk_wakeup(vsi->netdev, i, 13332 XDP_WAKEUP_RX); 13333 xdp_features_set_redirect_target(vsi->netdev, true); 13334 } 13335 13336 return 0; 13337 } 13338 13339 /** 13340 * i40e_enter_busy_conf - Enters busy config state 13341 * @vsi: vsi 13342 * 13343 * Returns 0 on success, <0 for failure. 13344 **/ 13345 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13346 { 13347 struct i40e_pf *pf = vsi->back; 13348 int timeout = 50; 13349 13350 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13351 timeout--; 13352 if (!timeout) 13353 return -EBUSY; 13354 usleep_range(1000, 2000); 13355 } 13356 13357 return 0; 13358 } 13359 13360 /** 13361 * i40e_exit_busy_conf - Exits busy config state 13362 * @vsi: vsi 13363 **/ 13364 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13365 { 13366 struct i40e_pf *pf = vsi->back; 13367 13368 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13369 } 13370 13371 /** 13372 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13373 * @vsi: vsi 13374 * @queue_pair: queue pair 13375 **/ 13376 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13377 { 13378 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13379 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13380 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13381 sizeof(vsi->tx_rings[queue_pair]->stats)); 13382 if (i40e_enabled_xdp_vsi(vsi)) { 13383 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13384 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13385 } 13386 } 13387 13388 /** 13389 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13390 * @vsi: vsi 13391 * @queue_pair: queue pair 13392 **/ 13393 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13394 { 13395 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13396 if (i40e_enabled_xdp_vsi(vsi)) { 13397 /* Make sure that in-progress ndo_xdp_xmit calls are 13398 * completed. 13399 */ 13400 synchronize_rcu(); 13401 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13402 } 13403 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13404 } 13405 13406 /** 13407 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13408 * @vsi: vsi 13409 * @queue_pair: queue pair 13410 * @enable: true for enable, false for disable 13411 **/ 13412 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13413 bool enable) 13414 { 13415 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13416 struct i40e_q_vector *q_vector = rxr->q_vector; 13417 13418 if (!vsi->netdev) 13419 return; 13420 13421 /* All rings in a qp belong to the same qvector. */ 13422 if (q_vector->rx.ring || q_vector->tx.ring) { 13423 if (enable) 13424 napi_enable(&q_vector->napi); 13425 else 13426 napi_disable(&q_vector->napi); 13427 } 13428 } 13429 13430 /** 13431 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13432 * @vsi: vsi 13433 * @queue_pair: queue pair 13434 * @enable: true for enable, false for disable 13435 * 13436 * Returns 0 on success, <0 on failure. 13437 **/ 13438 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13439 bool enable) 13440 { 13441 struct i40e_pf *pf = vsi->back; 13442 int pf_q, ret = 0; 13443 13444 pf_q = vsi->base_queue + queue_pair; 13445 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13446 false /*is xdp*/, enable); 13447 if (ret) { 13448 dev_info(&pf->pdev->dev, 13449 "VSI seid %d Tx ring %d %sable timeout\n", 13450 vsi->seid, pf_q, (enable ? "en" : "dis")); 13451 return ret; 13452 } 13453 13454 i40e_control_rx_q(pf, pf_q, enable); 13455 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13456 if (ret) { 13457 dev_info(&pf->pdev->dev, 13458 "VSI seid %d Rx ring %d %sable timeout\n", 13459 vsi->seid, pf_q, (enable ? "en" : "dis")); 13460 return ret; 13461 } 13462 13463 /* Due to HW errata, on Rx disable only, the register can 13464 * indicate done before it really is. Needs 50ms to be sure 13465 */ 13466 if (!enable) 13467 mdelay(50); 13468 13469 if (!i40e_enabled_xdp_vsi(vsi)) 13470 return ret; 13471 13472 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13473 pf_q + vsi->alloc_queue_pairs, 13474 true /*is xdp*/, enable); 13475 if (ret) { 13476 dev_info(&pf->pdev->dev, 13477 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13478 vsi->seid, pf_q, (enable ? "en" : "dis")); 13479 } 13480 13481 return ret; 13482 } 13483 13484 /** 13485 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13486 * @vsi: vsi 13487 * @queue_pair: queue_pair 13488 **/ 13489 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13490 { 13491 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13492 struct i40e_pf *pf = vsi->back; 13493 struct i40e_hw *hw = &pf->hw; 13494 13495 /* All rings in a qp belong to the same qvector. */ 13496 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13497 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13498 else 13499 i40e_irq_dynamic_enable_icr0(pf); 13500 13501 i40e_flush(hw); 13502 } 13503 13504 /** 13505 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13506 * @vsi: vsi 13507 * @queue_pair: queue_pair 13508 **/ 13509 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13510 { 13511 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13512 struct i40e_pf *pf = vsi->back; 13513 struct i40e_hw *hw = &pf->hw; 13514 13515 /* For simplicity, instead of removing the qp interrupt causes 13516 * from the interrupt linked list, we simply disable the interrupt, and 13517 * leave the list intact. 13518 * 13519 * All rings in a qp belong to the same qvector. 13520 */ 13521 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13522 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13523 13524 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13525 i40e_flush(hw); 13526 synchronize_irq(pf->msix_entries[intpf].vector); 13527 } else { 13528 /* Legacy and MSI mode - this stops all interrupt handling */ 13529 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13530 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13531 i40e_flush(hw); 13532 synchronize_irq(pf->pdev->irq); 13533 } 13534 } 13535 13536 /** 13537 * i40e_queue_pair_disable - Disables a queue pair 13538 * @vsi: vsi 13539 * @queue_pair: queue pair 13540 * 13541 * Returns 0 on success, <0 on failure. 13542 **/ 13543 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13544 { 13545 int err; 13546 13547 err = i40e_enter_busy_conf(vsi); 13548 if (err) 13549 return err; 13550 13551 i40e_queue_pair_disable_irq(vsi, queue_pair); 13552 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13553 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13554 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13555 i40e_queue_pair_clean_rings(vsi, queue_pair); 13556 i40e_queue_pair_reset_stats(vsi, queue_pair); 13557 13558 return err; 13559 } 13560 13561 /** 13562 * i40e_queue_pair_enable - Enables a queue pair 13563 * @vsi: vsi 13564 * @queue_pair: queue pair 13565 * 13566 * Returns 0 on success, <0 on failure. 13567 **/ 13568 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13569 { 13570 int err; 13571 13572 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13573 if (err) 13574 return err; 13575 13576 if (i40e_enabled_xdp_vsi(vsi)) { 13577 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13578 if (err) 13579 return err; 13580 } 13581 13582 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13583 if (err) 13584 return err; 13585 13586 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13587 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13588 i40e_queue_pair_enable_irq(vsi, queue_pair); 13589 13590 i40e_exit_busy_conf(vsi); 13591 13592 return err; 13593 } 13594 13595 /** 13596 * i40e_xdp - implements ndo_bpf for i40e 13597 * @dev: netdevice 13598 * @xdp: XDP command 13599 **/ 13600 static int i40e_xdp(struct net_device *dev, 13601 struct netdev_bpf *xdp) 13602 { 13603 struct i40e_netdev_priv *np = netdev_priv(dev); 13604 struct i40e_vsi *vsi = np->vsi; 13605 13606 if (vsi->type != I40E_VSI_MAIN) 13607 return -EINVAL; 13608 13609 switch (xdp->command) { 13610 case XDP_SETUP_PROG: 13611 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13612 case XDP_SETUP_XSK_POOL: 13613 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13614 xdp->xsk.queue_id); 13615 default: 13616 return -EINVAL; 13617 } 13618 } 13619 13620 static const struct net_device_ops i40e_netdev_ops = { 13621 .ndo_open = i40e_open, 13622 .ndo_stop = i40e_close, 13623 .ndo_start_xmit = i40e_lan_xmit_frame, 13624 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13625 .ndo_set_rx_mode = i40e_set_rx_mode, 13626 .ndo_validate_addr = eth_validate_addr, 13627 .ndo_set_mac_address = i40e_set_mac, 13628 .ndo_change_mtu = i40e_change_mtu, 13629 .ndo_eth_ioctl = i40e_ioctl, 13630 .ndo_tx_timeout = i40e_tx_timeout, 13631 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13632 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13633 #ifdef CONFIG_NET_POLL_CONTROLLER 13634 .ndo_poll_controller = i40e_netpoll, 13635 #endif 13636 .ndo_setup_tc = __i40e_setup_tc, 13637 .ndo_select_queue = i40e_lan_select_queue, 13638 .ndo_set_features = i40e_set_features, 13639 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13640 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13641 .ndo_get_vf_stats = i40e_get_vf_stats, 13642 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13643 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13644 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13645 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13646 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13647 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13648 .ndo_fdb_add = i40e_ndo_fdb_add, 13649 .ndo_features_check = i40e_features_check, 13650 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13651 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13652 .ndo_bpf = i40e_xdp, 13653 .ndo_xdp_xmit = i40e_xdp_xmit, 13654 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13655 .ndo_dfwd_add_station = i40e_fwd_add, 13656 .ndo_dfwd_del_station = i40e_fwd_del, 13657 }; 13658 13659 /** 13660 * i40e_config_netdev - Setup the netdev flags 13661 * @vsi: the VSI being configured 13662 * 13663 * Returns 0 on success, negative value on failure 13664 **/ 13665 static int i40e_config_netdev(struct i40e_vsi *vsi) 13666 { 13667 struct i40e_pf *pf = vsi->back; 13668 struct i40e_hw *hw = &pf->hw; 13669 struct i40e_netdev_priv *np; 13670 struct net_device *netdev; 13671 u8 broadcast[ETH_ALEN]; 13672 u8 mac_addr[ETH_ALEN]; 13673 int etherdev_size; 13674 netdev_features_t hw_enc_features; 13675 netdev_features_t hw_features; 13676 13677 etherdev_size = sizeof(struct i40e_netdev_priv); 13678 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13679 if (!netdev) 13680 return -ENOMEM; 13681 13682 vsi->netdev = netdev; 13683 np = netdev_priv(netdev); 13684 np->vsi = vsi; 13685 13686 hw_enc_features = NETIF_F_SG | 13687 NETIF_F_HW_CSUM | 13688 NETIF_F_HIGHDMA | 13689 NETIF_F_SOFT_FEATURES | 13690 NETIF_F_TSO | 13691 NETIF_F_TSO_ECN | 13692 NETIF_F_TSO6 | 13693 NETIF_F_GSO_GRE | 13694 NETIF_F_GSO_GRE_CSUM | 13695 NETIF_F_GSO_PARTIAL | 13696 NETIF_F_GSO_IPXIP4 | 13697 NETIF_F_GSO_IPXIP6 | 13698 NETIF_F_GSO_UDP_TUNNEL | 13699 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13700 NETIF_F_GSO_UDP_L4 | 13701 NETIF_F_SCTP_CRC | 13702 NETIF_F_RXHASH | 13703 NETIF_F_RXCSUM | 13704 0; 13705 13706 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13707 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13708 13709 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13710 13711 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13712 13713 netdev->hw_enc_features |= hw_enc_features; 13714 13715 /* record features VLANs can make use of */ 13716 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13717 13718 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13719 NETIF_F_GSO_GRE_CSUM | \ 13720 NETIF_F_GSO_IPXIP4 | \ 13721 NETIF_F_GSO_IPXIP6 | \ 13722 NETIF_F_GSO_UDP_TUNNEL | \ 13723 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13724 13725 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13726 netdev->features |= NETIF_F_GSO_PARTIAL | 13727 I40E_GSO_PARTIAL_FEATURES; 13728 13729 netdev->mpls_features |= NETIF_F_SG; 13730 netdev->mpls_features |= NETIF_F_HW_CSUM; 13731 netdev->mpls_features |= NETIF_F_TSO; 13732 netdev->mpls_features |= NETIF_F_TSO6; 13733 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13734 13735 /* enable macvlan offloads */ 13736 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13737 13738 hw_features = hw_enc_features | 13739 NETIF_F_HW_VLAN_CTAG_TX | 13740 NETIF_F_HW_VLAN_CTAG_RX; 13741 13742 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13743 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13744 13745 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13746 13747 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13748 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13749 13750 netdev->features &= ~NETIF_F_HW_TC; 13751 13752 if (vsi->type == I40E_VSI_MAIN) { 13753 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13754 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13755 /* The following steps are necessary for two reasons. First, 13756 * some older NVM configurations load a default MAC-VLAN 13757 * filter that will accept any tagged packet, and we want to 13758 * replace this with a normal filter. Additionally, it is 13759 * possible our MAC address was provided by the platform using 13760 * Open Firmware or similar. 13761 * 13762 * Thus, we need to remove the default filter and install one 13763 * specific to the MAC address. 13764 */ 13765 i40e_rm_default_mac_filter(vsi, mac_addr); 13766 spin_lock_bh(&vsi->mac_filter_hash_lock); 13767 i40e_add_mac_filter(vsi, mac_addr); 13768 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13769 13770 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13771 NETDEV_XDP_ACT_REDIRECT | 13772 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13773 NETDEV_XDP_ACT_RX_SG; 13774 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13775 } else { 13776 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13777 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13778 * the end, which is 4 bytes long, so force truncation of the 13779 * original name by IFNAMSIZ - 4 13780 */ 13781 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 13782 IFNAMSIZ - 4, 13783 pf->vsi[pf->lan_vsi]->netdev->name); 13784 eth_random_addr(mac_addr); 13785 13786 spin_lock_bh(&vsi->mac_filter_hash_lock); 13787 i40e_add_mac_filter(vsi, mac_addr); 13788 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13789 } 13790 13791 /* Add the broadcast filter so that we initially will receive 13792 * broadcast packets. Note that when a new VLAN is first added the 13793 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13794 * specific filters as part of transitioning into "vlan" operation. 13795 * When more VLANs are added, the driver will copy each existing MAC 13796 * filter and add it for the new VLAN. 13797 * 13798 * Broadcast filters are handled specially by 13799 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13800 * promiscuous bit instead of adding this directly as a MAC/VLAN 13801 * filter. The subtask will update the correct broadcast promiscuous 13802 * bits as VLANs become active or inactive. 13803 */ 13804 eth_broadcast_addr(broadcast); 13805 spin_lock_bh(&vsi->mac_filter_hash_lock); 13806 i40e_add_mac_filter(vsi, broadcast); 13807 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13808 13809 eth_hw_addr_set(netdev, mac_addr); 13810 ether_addr_copy(netdev->perm_addr, mac_addr); 13811 13812 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13813 netdev->neigh_priv_len = sizeof(u32) * 4; 13814 13815 netdev->priv_flags |= IFF_UNICAST_FLT; 13816 netdev->priv_flags |= IFF_SUPP_NOFCS; 13817 /* Setup netdev TC information */ 13818 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13819 13820 netdev->netdev_ops = &i40e_netdev_ops; 13821 netdev->watchdog_timeo = 5 * HZ; 13822 i40e_set_ethtool_ops(netdev); 13823 13824 /* MTU range: 68 - 9706 */ 13825 netdev->min_mtu = ETH_MIN_MTU; 13826 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13827 13828 return 0; 13829 } 13830 13831 /** 13832 * i40e_vsi_delete - Delete a VSI from the switch 13833 * @vsi: the VSI being removed 13834 * 13835 * Returns 0 on success, negative value on failure 13836 **/ 13837 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13838 { 13839 /* remove default VSI is not allowed */ 13840 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13841 return; 13842 13843 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13844 } 13845 13846 /** 13847 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13848 * @vsi: the VSI being queried 13849 * 13850 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13851 **/ 13852 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13853 { 13854 struct i40e_veb *veb; 13855 struct i40e_pf *pf = vsi->back; 13856 13857 /* Uplink is not a bridge so default to VEB */ 13858 if (vsi->veb_idx >= I40E_MAX_VEB) 13859 return 1; 13860 13861 veb = pf->veb[vsi->veb_idx]; 13862 if (!veb) { 13863 dev_info(&pf->pdev->dev, 13864 "There is no veb associated with the bridge\n"); 13865 return -ENOENT; 13866 } 13867 13868 /* Uplink is a bridge in VEPA mode */ 13869 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13870 return 0; 13871 } else { 13872 /* Uplink is a bridge in VEB mode */ 13873 return 1; 13874 } 13875 13876 /* VEPA is now default bridge, so return 0 */ 13877 return 0; 13878 } 13879 13880 /** 13881 * i40e_add_vsi - Add a VSI to the switch 13882 * @vsi: the VSI being configured 13883 * 13884 * This initializes a VSI context depending on the VSI type to be added and 13885 * passes it down to the add_vsi aq command. 13886 **/ 13887 static int i40e_add_vsi(struct i40e_vsi *vsi) 13888 { 13889 int ret = -ENODEV; 13890 struct i40e_pf *pf = vsi->back; 13891 struct i40e_hw *hw = &pf->hw; 13892 struct i40e_vsi_context ctxt; 13893 struct i40e_mac_filter *f; 13894 struct hlist_node *h; 13895 int bkt; 13896 13897 u8 enabled_tc = 0x1; /* TC0 enabled */ 13898 int f_count = 0; 13899 13900 memset(&ctxt, 0, sizeof(ctxt)); 13901 switch (vsi->type) { 13902 case I40E_VSI_MAIN: 13903 /* The PF's main VSI is already setup as part of the 13904 * device initialization, so we'll not bother with 13905 * the add_vsi call, but we will retrieve the current 13906 * VSI context. 13907 */ 13908 ctxt.seid = pf->main_vsi_seid; 13909 ctxt.pf_num = pf->hw.pf_id; 13910 ctxt.vf_num = 0; 13911 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13912 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13913 if (ret) { 13914 dev_info(&pf->pdev->dev, 13915 "couldn't get PF vsi config, err %pe aq_err %s\n", 13916 ERR_PTR(ret), 13917 i40e_aq_str(&pf->hw, 13918 pf->hw.aq.asq_last_status)); 13919 return -ENOENT; 13920 } 13921 vsi->info = ctxt.info; 13922 vsi->info.valid_sections = 0; 13923 13924 vsi->seid = ctxt.seid; 13925 vsi->id = ctxt.vsi_number; 13926 13927 enabled_tc = i40e_pf_get_tc_map(pf); 13928 13929 /* Source pruning is enabled by default, so the flag is 13930 * negative logic - if it's set, we need to fiddle with 13931 * the VSI to disable source pruning. 13932 */ 13933 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13934 memset(&ctxt, 0, sizeof(ctxt)); 13935 ctxt.seid = pf->main_vsi_seid; 13936 ctxt.pf_num = pf->hw.pf_id; 13937 ctxt.vf_num = 0; 13938 ctxt.info.valid_sections |= 13939 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13940 ctxt.info.switch_id = 13941 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13942 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13943 if (ret) { 13944 dev_info(&pf->pdev->dev, 13945 "update vsi failed, err %d aq_err %s\n", 13946 ret, 13947 i40e_aq_str(&pf->hw, 13948 pf->hw.aq.asq_last_status)); 13949 ret = -ENOENT; 13950 goto err; 13951 } 13952 } 13953 13954 /* MFP mode setup queue map and update VSI */ 13955 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13956 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13957 memset(&ctxt, 0, sizeof(ctxt)); 13958 ctxt.seid = pf->main_vsi_seid; 13959 ctxt.pf_num = pf->hw.pf_id; 13960 ctxt.vf_num = 0; 13961 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13962 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13963 if (ret) { 13964 dev_info(&pf->pdev->dev, 13965 "update vsi failed, err %pe aq_err %s\n", 13966 ERR_PTR(ret), 13967 i40e_aq_str(&pf->hw, 13968 pf->hw.aq.asq_last_status)); 13969 ret = -ENOENT; 13970 goto err; 13971 } 13972 /* update the local VSI info queue map */ 13973 i40e_vsi_update_queue_map(vsi, &ctxt); 13974 vsi->info.valid_sections = 0; 13975 } else { 13976 /* Default/Main VSI is only enabled for TC0 13977 * reconfigure it to enable all TCs that are 13978 * available on the port in SFP mode. 13979 * For MFP case the iSCSI PF would use this 13980 * flow to enable LAN+iSCSI TC. 13981 */ 13982 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13983 if (ret) { 13984 /* Single TC condition is not fatal, 13985 * message and continue 13986 */ 13987 dev_info(&pf->pdev->dev, 13988 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 13989 enabled_tc, 13990 ERR_PTR(ret), 13991 i40e_aq_str(&pf->hw, 13992 pf->hw.aq.asq_last_status)); 13993 } 13994 } 13995 break; 13996 13997 case I40E_VSI_FDIR: 13998 ctxt.pf_num = hw->pf_id; 13999 ctxt.vf_num = 0; 14000 ctxt.uplink_seid = vsi->uplink_seid; 14001 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14002 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 14003 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 14004 (i40e_is_vsi_uplink_mode_veb(vsi))) { 14005 ctxt.info.valid_sections |= 14006 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14007 ctxt.info.switch_id = 14008 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14009 } 14010 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14011 break; 14012 14013 case I40E_VSI_VMDQ2: 14014 ctxt.pf_num = hw->pf_id; 14015 ctxt.vf_num = 0; 14016 ctxt.uplink_seid = vsi->uplink_seid; 14017 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14018 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 14019 14020 /* This VSI is connected to VEB so the switch_id 14021 * should be set to zero by default. 14022 */ 14023 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14024 ctxt.info.valid_sections |= 14025 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14026 ctxt.info.switch_id = 14027 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14028 } 14029 14030 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14031 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14032 break; 14033 14034 case I40E_VSI_SRIOV: 14035 ctxt.pf_num = hw->pf_id; 14036 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14037 ctxt.uplink_seid = vsi->uplink_seid; 14038 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14039 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14040 14041 /* This VSI is connected to VEB so the switch_id 14042 * should be set to zero by default. 14043 */ 14044 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14045 ctxt.info.valid_sections |= 14046 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14047 ctxt.info.switch_id = 14048 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14049 } 14050 14051 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14052 ctxt.info.valid_sections |= 14053 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14054 ctxt.info.queueing_opt_flags |= 14055 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14056 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14057 } 14058 14059 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14060 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14061 if (pf->vf[vsi->vf_id].spoofchk) { 14062 ctxt.info.valid_sections |= 14063 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14064 ctxt.info.sec_flags |= 14065 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14066 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14067 } 14068 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14069 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14070 break; 14071 14072 case I40E_VSI_IWARP: 14073 /* send down message to iWARP */ 14074 break; 14075 14076 default: 14077 return -ENODEV; 14078 } 14079 14080 if (vsi->type != I40E_VSI_MAIN) { 14081 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14082 if (ret) { 14083 dev_info(&vsi->back->pdev->dev, 14084 "add vsi failed, err %pe aq_err %s\n", 14085 ERR_PTR(ret), 14086 i40e_aq_str(&pf->hw, 14087 pf->hw.aq.asq_last_status)); 14088 ret = -ENOENT; 14089 goto err; 14090 } 14091 vsi->info = ctxt.info; 14092 vsi->info.valid_sections = 0; 14093 vsi->seid = ctxt.seid; 14094 vsi->id = ctxt.vsi_number; 14095 } 14096 14097 spin_lock_bh(&vsi->mac_filter_hash_lock); 14098 vsi->active_filters = 0; 14099 /* If macvlan filters already exist, force them to get loaded */ 14100 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14101 f->state = I40E_FILTER_NEW; 14102 f_count++; 14103 } 14104 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14105 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14106 14107 if (f_count) { 14108 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14109 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14110 } 14111 14112 /* Update VSI BW information */ 14113 ret = i40e_vsi_get_bw_info(vsi); 14114 if (ret) { 14115 dev_info(&pf->pdev->dev, 14116 "couldn't get vsi bw info, err %pe aq_err %s\n", 14117 ERR_PTR(ret), 14118 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14119 /* VSI is already added so not tearing that up */ 14120 ret = 0; 14121 } 14122 14123 err: 14124 return ret; 14125 } 14126 14127 /** 14128 * i40e_vsi_release - Delete a VSI and free its resources 14129 * @vsi: the VSI being removed 14130 * 14131 * Returns 0 on success or < 0 on error 14132 **/ 14133 int i40e_vsi_release(struct i40e_vsi *vsi) 14134 { 14135 struct i40e_mac_filter *f; 14136 struct hlist_node *h; 14137 struct i40e_veb *veb = NULL; 14138 struct i40e_pf *pf; 14139 u16 uplink_seid; 14140 int i, n, bkt; 14141 14142 pf = vsi->back; 14143 14144 /* release of a VEB-owner or last VSI is not allowed */ 14145 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14146 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14147 vsi->seid, vsi->uplink_seid); 14148 return -ENODEV; 14149 } 14150 if (vsi == pf->vsi[pf->lan_vsi] && 14151 !test_bit(__I40E_DOWN, pf->state)) { 14152 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14153 return -ENODEV; 14154 } 14155 set_bit(__I40E_VSI_RELEASING, vsi->state); 14156 uplink_seid = vsi->uplink_seid; 14157 14158 if (vsi->type != I40E_VSI_SRIOV) { 14159 if (vsi->netdev_registered) { 14160 vsi->netdev_registered = false; 14161 if (vsi->netdev) { 14162 /* results in a call to i40e_close() */ 14163 unregister_netdev(vsi->netdev); 14164 } 14165 } else { 14166 i40e_vsi_close(vsi); 14167 } 14168 i40e_vsi_disable_irq(vsi); 14169 } 14170 14171 if (vsi->type == I40E_VSI_MAIN) 14172 i40e_devlink_destroy_port(pf); 14173 14174 spin_lock_bh(&vsi->mac_filter_hash_lock); 14175 14176 /* clear the sync flag on all filters */ 14177 if (vsi->netdev) { 14178 __dev_uc_unsync(vsi->netdev, NULL); 14179 __dev_mc_unsync(vsi->netdev, NULL); 14180 } 14181 14182 /* make sure any remaining filters are marked for deletion */ 14183 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14184 __i40e_del_filter(vsi, f); 14185 14186 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14187 14188 i40e_sync_vsi_filters(vsi); 14189 14190 i40e_vsi_delete(vsi); 14191 i40e_vsi_free_q_vectors(vsi); 14192 if (vsi->netdev) { 14193 free_netdev(vsi->netdev); 14194 vsi->netdev = NULL; 14195 } 14196 i40e_vsi_clear_rings(vsi); 14197 i40e_vsi_clear(vsi); 14198 14199 /* If this was the last thing on the VEB, except for the 14200 * controlling VSI, remove the VEB, which puts the controlling 14201 * VSI onto the next level down in the switch. 14202 * 14203 * Well, okay, there's one more exception here: don't remove 14204 * the orphan VEBs yet. We'll wait for an explicit remove request 14205 * from up the network stack. 14206 */ 14207 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 14208 if (pf->vsi[i] && 14209 pf->vsi[i]->uplink_seid == uplink_seid && 14210 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14211 n++; /* count the VSIs */ 14212 } 14213 } 14214 for (i = 0; i < I40E_MAX_VEB; i++) { 14215 if (!pf->veb[i]) 14216 continue; 14217 if (pf->veb[i]->uplink_seid == uplink_seid) 14218 n++; /* count the VEBs */ 14219 if (pf->veb[i]->seid == uplink_seid) 14220 veb = pf->veb[i]; 14221 } 14222 if (n == 0 && veb && veb->uplink_seid != 0) 14223 i40e_veb_release(veb); 14224 14225 return 0; 14226 } 14227 14228 /** 14229 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14230 * @vsi: ptr to the VSI 14231 * 14232 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14233 * corresponding SW VSI structure and initializes num_queue_pairs for the 14234 * newly allocated VSI. 14235 * 14236 * Returns 0 on success or negative on failure 14237 **/ 14238 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14239 { 14240 int ret = -ENOENT; 14241 struct i40e_pf *pf = vsi->back; 14242 14243 if (vsi->q_vectors[0]) { 14244 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14245 vsi->seid); 14246 return -EEXIST; 14247 } 14248 14249 if (vsi->base_vector) { 14250 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14251 vsi->seid, vsi->base_vector); 14252 return -EEXIST; 14253 } 14254 14255 ret = i40e_vsi_alloc_q_vectors(vsi); 14256 if (ret) { 14257 dev_info(&pf->pdev->dev, 14258 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14259 vsi->num_q_vectors, vsi->seid, ret); 14260 vsi->num_q_vectors = 0; 14261 goto vector_setup_out; 14262 } 14263 14264 /* In Legacy mode, we do not have to get any other vector since we 14265 * piggyback on the misc/ICR0 for queue interrupts. 14266 */ 14267 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14268 return ret; 14269 if (vsi->num_q_vectors) 14270 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14271 vsi->num_q_vectors, vsi->idx); 14272 if (vsi->base_vector < 0) { 14273 dev_info(&pf->pdev->dev, 14274 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14275 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14276 i40e_vsi_free_q_vectors(vsi); 14277 ret = -ENOENT; 14278 goto vector_setup_out; 14279 } 14280 14281 vector_setup_out: 14282 return ret; 14283 } 14284 14285 /** 14286 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14287 * @vsi: pointer to the vsi. 14288 * 14289 * This re-allocates a vsi's queue resources. 14290 * 14291 * Returns pointer to the successfully allocated and configured VSI sw struct 14292 * on success, otherwise returns NULL on failure. 14293 **/ 14294 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14295 { 14296 u16 alloc_queue_pairs; 14297 struct i40e_pf *pf; 14298 u8 enabled_tc; 14299 int ret; 14300 14301 if (!vsi) 14302 return NULL; 14303 14304 pf = vsi->back; 14305 14306 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14307 i40e_vsi_clear_rings(vsi); 14308 14309 i40e_vsi_free_arrays(vsi, false); 14310 i40e_set_num_rings_in_vsi(vsi); 14311 ret = i40e_vsi_alloc_arrays(vsi, false); 14312 if (ret) 14313 goto err_vsi; 14314 14315 alloc_queue_pairs = vsi->alloc_queue_pairs * 14316 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14317 14318 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14319 if (ret < 0) { 14320 dev_info(&pf->pdev->dev, 14321 "failed to get tracking for %d queues for VSI %d err %d\n", 14322 alloc_queue_pairs, vsi->seid, ret); 14323 goto err_vsi; 14324 } 14325 vsi->base_queue = ret; 14326 14327 /* Update the FW view of the VSI. Force a reset of TC and queue 14328 * layout configurations. 14329 */ 14330 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14331 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14332 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14333 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14334 if (vsi->type == I40E_VSI_MAIN) 14335 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14336 14337 /* assign it some queues */ 14338 ret = i40e_alloc_rings(vsi); 14339 if (ret) 14340 goto err_rings; 14341 14342 /* map all of the rings to the q_vectors */ 14343 i40e_vsi_map_rings_to_vectors(vsi); 14344 return vsi; 14345 14346 err_rings: 14347 i40e_vsi_free_q_vectors(vsi); 14348 if (vsi->netdev_registered) { 14349 vsi->netdev_registered = false; 14350 unregister_netdev(vsi->netdev); 14351 free_netdev(vsi->netdev); 14352 vsi->netdev = NULL; 14353 } 14354 if (vsi->type == I40E_VSI_MAIN) 14355 i40e_devlink_destroy_port(pf); 14356 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14357 err_vsi: 14358 i40e_vsi_clear(vsi); 14359 return NULL; 14360 } 14361 14362 /** 14363 * i40e_vsi_setup - Set up a VSI by a given type 14364 * @pf: board private structure 14365 * @type: VSI type 14366 * @uplink_seid: the switch element to link to 14367 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14368 * 14369 * This allocates the sw VSI structure and its queue resources, then add a VSI 14370 * to the identified VEB. 14371 * 14372 * Returns pointer to the successfully allocated and configure VSI sw struct on 14373 * success, otherwise returns NULL on failure. 14374 **/ 14375 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14376 u16 uplink_seid, u32 param1) 14377 { 14378 struct i40e_vsi *vsi = NULL; 14379 struct i40e_veb *veb = NULL; 14380 u16 alloc_queue_pairs; 14381 int ret, i; 14382 int v_idx; 14383 14384 /* The requested uplink_seid must be either 14385 * - the PF's port seid 14386 * no VEB is needed because this is the PF 14387 * or this is a Flow Director special case VSI 14388 * - seid of an existing VEB 14389 * - seid of a VSI that owns an existing VEB 14390 * - seid of a VSI that doesn't own a VEB 14391 * a new VEB is created and the VSI becomes the owner 14392 * - seid of the PF VSI, which is what creates the first VEB 14393 * this is a special case of the previous 14394 * 14395 * Find which uplink_seid we were given and create a new VEB if needed 14396 */ 14397 for (i = 0; i < I40E_MAX_VEB; i++) { 14398 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 14399 veb = pf->veb[i]; 14400 break; 14401 } 14402 } 14403 14404 if (!veb && uplink_seid != pf->mac_seid) { 14405 14406 for (i = 0; i < pf->num_alloc_vsi; i++) { 14407 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 14408 vsi = pf->vsi[i]; 14409 break; 14410 } 14411 } 14412 if (!vsi) { 14413 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14414 uplink_seid); 14415 return NULL; 14416 } 14417 14418 if (vsi->uplink_seid == pf->mac_seid) 14419 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 14420 vsi->tc_config.enabled_tc); 14421 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14422 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 14423 vsi->tc_config.enabled_tc); 14424 if (veb) { 14425 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 14426 dev_info(&vsi->back->pdev->dev, 14427 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14428 return NULL; 14429 } 14430 /* We come up by default in VEPA mode if SRIOV is not 14431 * already enabled, in which case we can't force VEPA 14432 * mode. 14433 */ 14434 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14435 veb->bridge_mode = BRIDGE_MODE_VEPA; 14436 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14437 } 14438 i40e_config_bridge_mode(veb); 14439 } 14440 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 14441 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 14442 veb = pf->veb[i]; 14443 } 14444 if (!veb) { 14445 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14446 return NULL; 14447 } 14448 14449 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14450 uplink_seid = veb->seid; 14451 } 14452 14453 /* get vsi sw struct */ 14454 v_idx = i40e_vsi_mem_alloc(pf, type); 14455 if (v_idx < 0) 14456 goto err_alloc; 14457 vsi = pf->vsi[v_idx]; 14458 if (!vsi) 14459 goto err_alloc; 14460 vsi->type = type; 14461 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14462 14463 if (type == I40E_VSI_MAIN) 14464 pf->lan_vsi = v_idx; 14465 else if (type == I40E_VSI_SRIOV) 14466 vsi->vf_id = param1; 14467 /* assign it some queues */ 14468 alloc_queue_pairs = vsi->alloc_queue_pairs * 14469 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14470 14471 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14472 if (ret < 0) { 14473 dev_info(&pf->pdev->dev, 14474 "failed to get tracking for %d queues for VSI %d err=%d\n", 14475 alloc_queue_pairs, vsi->seid, ret); 14476 goto err_vsi; 14477 } 14478 vsi->base_queue = ret; 14479 14480 /* get a VSI from the hardware */ 14481 vsi->uplink_seid = uplink_seid; 14482 ret = i40e_add_vsi(vsi); 14483 if (ret) 14484 goto err_vsi; 14485 14486 switch (vsi->type) { 14487 /* setup the netdev if needed */ 14488 case I40E_VSI_MAIN: 14489 case I40E_VSI_VMDQ2: 14490 ret = i40e_config_netdev(vsi); 14491 if (ret) 14492 goto err_netdev; 14493 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14494 if (ret) 14495 goto err_netdev; 14496 if (vsi->type == I40E_VSI_MAIN) { 14497 ret = i40e_devlink_create_port(pf); 14498 if (ret) 14499 goto err_netdev; 14500 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14501 } 14502 ret = register_netdev(vsi->netdev); 14503 if (ret) 14504 goto err_dl_port; 14505 vsi->netdev_registered = true; 14506 netif_carrier_off(vsi->netdev); 14507 #ifdef CONFIG_I40E_DCB 14508 /* Setup DCB netlink interface */ 14509 i40e_dcbnl_setup(vsi); 14510 #endif /* CONFIG_I40E_DCB */ 14511 fallthrough; 14512 case I40E_VSI_FDIR: 14513 /* set up vectors and rings if needed */ 14514 ret = i40e_vsi_setup_vectors(vsi); 14515 if (ret) 14516 goto err_msix; 14517 14518 ret = i40e_alloc_rings(vsi); 14519 if (ret) 14520 goto err_rings; 14521 14522 /* map all of the rings to the q_vectors */ 14523 i40e_vsi_map_rings_to_vectors(vsi); 14524 14525 i40e_vsi_reset_stats(vsi); 14526 break; 14527 default: 14528 /* no netdev or rings for the other VSI types */ 14529 break; 14530 } 14531 14532 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14533 vsi->type == I40E_VSI_VMDQ2) { 14534 ret = i40e_vsi_config_rss(vsi); 14535 if (ret) 14536 goto err_config; 14537 } 14538 return vsi; 14539 14540 err_config: 14541 i40e_vsi_clear_rings(vsi); 14542 err_rings: 14543 i40e_vsi_free_q_vectors(vsi); 14544 err_msix: 14545 if (vsi->netdev_registered) { 14546 vsi->netdev_registered = false; 14547 unregister_netdev(vsi->netdev); 14548 free_netdev(vsi->netdev); 14549 vsi->netdev = NULL; 14550 } 14551 err_dl_port: 14552 if (vsi->type == I40E_VSI_MAIN) 14553 i40e_devlink_destroy_port(pf); 14554 err_netdev: 14555 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14556 err_vsi: 14557 i40e_vsi_clear(vsi); 14558 err_alloc: 14559 return NULL; 14560 } 14561 14562 /** 14563 * i40e_veb_get_bw_info - Query VEB BW information 14564 * @veb: the veb to query 14565 * 14566 * Query the Tx scheduler BW configuration data for given VEB 14567 **/ 14568 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14569 { 14570 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14571 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14572 struct i40e_pf *pf = veb->pf; 14573 struct i40e_hw *hw = &pf->hw; 14574 u32 tc_bw_max; 14575 int ret = 0; 14576 int i; 14577 14578 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14579 &bw_data, NULL); 14580 if (ret) { 14581 dev_info(&pf->pdev->dev, 14582 "query veb bw config failed, err %pe aq_err %s\n", 14583 ERR_PTR(ret), 14584 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14585 goto out; 14586 } 14587 14588 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14589 &ets_data, NULL); 14590 if (ret) { 14591 dev_info(&pf->pdev->dev, 14592 "query veb bw ets config failed, err %pe aq_err %s\n", 14593 ERR_PTR(ret), 14594 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14595 goto out; 14596 } 14597 14598 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14599 veb->bw_max_quanta = ets_data.tc_bw_max; 14600 veb->is_abs_credits = bw_data.absolute_credits_enable; 14601 veb->enabled_tc = ets_data.tc_valid_bits; 14602 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14603 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14604 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14605 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14606 veb->bw_tc_limit_credits[i] = 14607 le16_to_cpu(bw_data.tc_bw_limits[i]); 14608 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14609 } 14610 14611 out: 14612 return ret; 14613 } 14614 14615 /** 14616 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14617 * @pf: board private structure 14618 * 14619 * On error: returns error code (negative) 14620 * On success: returns vsi index in PF (positive) 14621 **/ 14622 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14623 { 14624 int ret = -ENOENT; 14625 struct i40e_veb *veb; 14626 int i; 14627 14628 /* Need to protect the allocation of switch elements at the PF level */ 14629 mutex_lock(&pf->switch_mutex); 14630 14631 /* VEB list may be fragmented if VEB creation/destruction has 14632 * been happening. We can afford to do a quick scan to look 14633 * for any free slots in the list. 14634 * 14635 * find next empty veb slot, looping back around if necessary 14636 */ 14637 i = 0; 14638 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14639 i++; 14640 if (i >= I40E_MAX_VEB) { 14641 ret = -ENOMEM; 14642 goto err_alloc_veb; /* out of VEB slots! */ 14643 } 14644 14645 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14646 if (!veb) { 14647 ret = -ENOMEM; 14648 goto err_alloc_veb; 14649 } 14650 veb->pf = pf; 14651 veb->idx = i; 14652 veb->enabled_tc = 1; 14653 14654 pf->veb[i] = veb; 14655 ret = i; 14656 err_alloc_veb: 14657 mutex_unlock(&pf->switch_mutex); 14658 return ret; 14659 } 14660 14661 /** 14662 * i40e_switch_branch_release - Delete a branch of the switch tree 14663 * @branch: where to start deleting 14664 * 14665 * This uses recursion to find the tips of the branch to be 14666 * removed, deleting until we get back to and can delete this VEB. 14667 **/ 14668 static void i40e_switch_branch_release(struct i40e_veb *branch) 14669 { 14670 struct i40e_pf *pf = branch->pf; 14671 u16 branch_seid = branch->seid; 14672 u16 veb_idx = branch->idx; 14673 int i; 14674 14675 /* release any VEBs on this VEB - RECURSION */ 14676 for (i = 0; i < I40E_MAX_VEB; i++) { 14677 if (!pf->veb[i]) 14678 continue; 14679 if (pf->veb[i]->uplink_seid == branch->seid) 14680 i40e_switch_branch_release(pf->veb[i]); 14681 } 14682 14683 /* Release the VSIs on this VEB, but not the owner VSI. 14684 * 14685 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14686 * the VEB itself, so don't use (*branch) after this loop. 14687 */ 14688 for (i = 0; i < pf->num_alloc_vsi; i++) { 14689 if (!pf->vsi[i]) 14690 continue; 14691 if (pf->vsi[i]->uplink_seid == branch_seid && 14692 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14693 i40e_vsi_release(pf->vsi[i]); 14694 } 14695 } 14696 14697 /* There's one corner case where the VEB might not have been 14698 * removed, so double check it here and remove it if needed. 14699 * This case happens if the veb was created from the debugfs 14700 * commands and no VSIs were added to it. 14701 */ 14702 if (pf->veb[veb_idx]) 14703 i40e_veb_release(pf->veb[veb_idx]); 14704 } 14705 14706 /** 14707 * i40e_veb_clear - remove veb struct 14708 * @veb: the veb to remove 14709 **/ 14710 static void i40e_veb_clear(struct i40e_veb *veb) 14711 { 14712 if (!veb) 14713 return; 14714 14715 if (veb->pf) { 14716 struct i40e_pf *pf = veb->pf; 14717 14718 mutex_lock(&pf->switch_mutex); 14719 if (pf->veb[veb->idx] == veb) 14720 pf->veb[veb->idx] = NULL; 14721 mutex_unlock(&pf->switch_mutex); 14722 } 14723 14724 kfree(veb); 14725 } 14726 14727 /** 14728 * i40e_veb_release - Delete a VEB and free its resources 14729 * @veb: the VEB being removed 14730 **/ 14731 void i40e_veb_release(struct i40e_veb *veb) 14732 { 14733 struct i40e_vsi *vsi = NULL; 14734 struct i40e_pf *pf; 14735 int i, n = 0; 14736 14737 pf = veb->pf; 14738 14739 /* find the remaining VSI and check for extras */ 14740 for (i = 0; i < pf->num_alloc_vsi; i++) { 14741 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 14742 n++; 14743 vsi = pf->vsi[i]; 14744 } 14745 } 14746 if (n != 1) { 14747 dev_info(&pf->pdev->dev, 14748 "can't remove VEB %d with %d VSIs left\n", 14749 veb->seid, n); 14750 return; 14751 } 14752 14753 /* move the remaining VSI to uplink veb */ 14754 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14755 if (veb->uplink_seid) { 14756 vsi->uplink_seid = veb->uplink_seid; 14757 if (veb->uplink_seid == pf->mac_seid) 14758 vsi->veb_idx = I40E_NO_VEB; 14759 else 14760 vsi->veb_idx = veb->veb_idx; 14761 } else { 14762 /* floating VEB */ 14763 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 14764 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 14765 } 14766 14767 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14768 i40e_veb_clear(veb); 14769 } 14770 14771 /** 14772 * i40e_add_veb - create the VEB in the switch 14773 * @veb: the VEB to be instantiated 14774 * @vsi: the controlling VSI 14775 **/ 14776 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14777 { 14778 struct i40e_pf *pf = veb->pf; 14779 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14780 int ret; 14781 14782 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 14783 veb->enabled_tc, false, 14784 &veb->seid, enable_stats, NULL); 14785 14786 /* get a VEB from the hardware */ 14787 if (ret) { 14788 dev_info(&pf->pdev->dev, 14789 "couldn't add VEB, err %pe aq_err %s\n", 14790 ERR_PTR(ret), 14791 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14792 return -EPERM; 14793 } 14794 14795 /* get statistics counter */ 14796 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14797 &veb->stats_idx, NULL, NULL, NULL); 14798 if (ret) { 14799 dev_info(&pf->pdev->dev, 14800 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14801 ERR_PTR(ret), 14802 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14803 return -EPERM; 14804 } 14805 ret = i40e_veb_get_bw_info(veb); 14806 if (ret) { 14807 dev_info(&pf->pdev->dev, 14808 "couldn't get VEB bw info, err %pe aq_err %s\n", 14809 ERR_PTR(ret), 14810 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14811 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14812 return -ENOENT; 14813 } 14814 14815 vsi->uplink_seid = veb->seid; 14816 vsi->veb_idx = veb->idx; 14817 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14818 14819 return 0; 14820 } 14821 14822 /** 14823 * i40e_veb_setup - Set up a VEB 14824 * @pf: board private structure 14825 * @flags: VEB setup flags 14826 * @uplink_seid: the switch element to link to 14827 * @vsi_seid: the initial VSI seid 14828 * @enabled_tc: Enabled TC bit-map 14829 * 14830 * This allocates the sw VEB structure and links it into the switch 14831 * It is possible and legal for this to be a duplicate of an already 14832 * existing VEB. It is also possible for both uplink and vsi seids 14833 * to be zero, in order to create a floating VEB. 14834 * 14835 * Returns pointer to the successfully allocated VEB sw struct on 14836 * success, otherwise returns NULL on failure. 14837 **/ 14838 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14839 u16 uplink_seid, u16 vsi_seid, 14840 u8 enabled_tc) 14841 { 14842 struct i40e_veb *veb, *uplink_veb = NULL; 14843 int vsi_idx, veb_idx; 14844 int ret; 14845 14846 /* if one seid is 0, the other must be 0 to create a floating relay */ 14847 if ((uplink_seid == 0 || vsi_seid == 0) && 14848 (uplink_seid + vsi_seid != 0)) { 14849 dev_info(&pf->pdev->dev, 14850 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14851 uplink_seid, vsi_seid); 14852 return NULL; 14853 } 14854 14855 /* make sure there is such a vsi and uplink */ 14856 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14857 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14858 break; 14859 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14860 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14861 vsi_seid); 14862 return NULL; 14863 } 14864 14865 if (uplink_seid && uplink_seid != pf->mac_seid) { 14866 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14867 if (pf->veb[veb_idx] && 14868 pf->veb[veb_idx]->seid == uplink_seid) { 14869 uplink_veb = pf->veb[veb_idx]; 14870 break; 14871 } 14872 } 14873 if (!uplink_veb) { 14874 dev_info(&pf->pdev->dev, 14875 "uplink seid %d not found\n", uplink_seid); 14876 return NULL; 14877 } 14878 } 14879 14880 /* get veb sw struct */ 14881 veb_idx = i40e_veb_mem_alloc(pf); 14882 if (veb_idx < 0) 14883 goto err_alloc; 14884 veb = pf->veb[veb_idx]; 14885 veb->flags = flags; 14886 veb->uplink_seid = uplink_seid; 14887 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14888 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14889 14890 /* create the VEB in the switch */ 14891 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14892 if (ret) 14893 goto err_veb; 14894 if (vsi_idx == pf->lan_vsi) 14895 pf->lan_veb = veb->idx; 14896 14897 return veb; 14898 14899 err_veb: 14900 i40e_veb_clear(veb); 14901 err_alloc: 14902 return NULL; 14903 } 14904 14905 /** 14906 * i40e_setup_pf_switch_element - set PF vars based on switch type 14907 * @pf: board private structure 14908 * @ele: element we are building info from 14909 * @num_reported: total number of elements 14910 * @printconfig: should we print the contents 14911 * 14912 * helper function to assist in extracting a few useful SEID values. 14913 **/ 14914 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14915 struct i40e_aqc_switch_config_element_resp *ele, 14916 u16 num_reported, bool printconfig) 14917 { 14918 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14919 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14920 u8 element_type = ele->element_type; 14921 u16 seid = le16_to_cpu(ele->seid); 14922 14923 if (printconfig) 14924 dev_info(&pf->pdev->dev, 14925 "type=%d seid=%d uplink=%d downlink=%d\n", 14926 element_type, seid, uplink_seid, downlink_seid); 14927 14928 switch (element_type) { 14929 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14930 pf->mac_seid = seid; 14931 break; 14932 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14933 /* Main VEB? */ 14934 if (uplink_seid != pf->mac_seid) 14935 break; 14936 if (pf->lan_veb >= I40E_MAX_VEB) { 14937 int v; 14938 14939 /* find existing or else empty VEB */ 14940 for (v = 0; v < I40E_MAX_VEB; v++) { 14941 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14942 pf->lan_veb = v; 14943 break; 14944 } 14945 } 14946 if (pf->lan_veb >= I40E_MAX_VEB) { 14947 v = i40e_veb_mem_alloc(pf); 14948 if (v < 0) 14949 break; 14950 pf->lan_veb = v; 14951 } 14952 } 14953 if (pf->lan_veb >= I40E_MAX_VEB) 14954 break; 14955 14956 pf->veb[pf->lan_veb]->seid = seid; 14957 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14958 pf->veb[pf->lan_veb]->pf = pf; 14959 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14960 break; 14961 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14962 if (num_reported != 1) 14963 break; 14964 /* This is immediately after a reset so we can assume this is 14965 * the PF's VSI 14966 */ 14967 pf->mac_seid = uplink_seid; 14968 pf->main_vsi_seid = seid; 14969 if (printconfig) 14970 dev_info(&pf->pdev->dev, 14971 "pf_seid=%d main_vsi_seid=%d\n", 14972 downlink_seid, pf->main_vsi_seid); 14973 break; 14974 case I40E_SWITCH_ELEMENT_TYPE_PF: 14975 case I40E_SWITCH_ELEMENT_TYPE_VF: 14976 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14977 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14978 case I40E_SWITCH_ELEMENT_TYPE_PE: 14979 case I40E_SWITCH_ELEMENT_TYPE_PA: 14980 /* ignore these for now */ 14981 break; 14982 default: 14983 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14984 element_type, seid); 14985 break; 14986 } 14987 } 14988 14989 /** 14990 * i40e_fetch_switch_configuration - Get switch config from firmware 14991 * @pf: board private structure 14992 * @printconfig: should we print the contents 14993 * 14994 * Get the current switch configuration from the device and 14995 * extract a few useful SEID values. 14996 **/ 14997 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14998 { 14999 struct i40e_aqc_get_switch_config_resp *sw_config; 15000 u16 next_seid = 0; 15001 int ret = 0; 15002 u8 *aq_buf; 15003 int i; 15004 15005 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 15006 if (!aq_buf) 15007 return -ENOMEM; 15008 15009 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 15010 do { 15011 u16 num_reported, num_total; 15012 15013 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 15014 I40E_AQ_LARGE_BUF, 15015 &next_seid, NULL); 15016 if (ret) { 15017 dev_info(&pf->pdev->dev, 15018 "get switch config failed err %d aq_err %s\n", 15019 ret, 15020 i40e_aq_str(&pf->hw, 15021 pf->hw.aq.asq_last_status)); 15022 kfree(aq_buf); 15023 return -ENOENT; 15024 } 15025 15026 num_reported = le16_to_cpu(sw_config->header.num_reported); 15027 num_total = le16_to_cpu(sw_config->header.num_total); 15028 15029 if (printconfig) 15030 dev_info(&pf->pdev->dev, 15031 "header: %d reported %d total\n", 15032 num_reported, num_total); 15033 15034 for (i = 0; i < num_reported; i++) { 15035 struct i40e_aqc_switch_config_element_resp *ele = 15036 &sw_config->element[i]; 15037 15038 i40e_setup_pf_switch_element(pf, ele, num_reported, 15039 printconfig); 15040 } 15041 } while (next_seid != 0); 15042 15043 kfree(aq_buf); 15044 return ret; 15045 } 15046 15047 /** 15048 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 15049 * @pf: board private structure 15050 * @reinit: if the Main VSI needs to re-initialized. 15051 * @lock_acquired: indicates whether or not the lock has been acquired 15052 * 15053 * Returns 0 on success, negative value on failure 15054 **/ 15055 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 15056 { 15057 u16 flags = 0; 15058 int ret; 15059 15060 /* find out what's out there already */ 15061 ret = i40e_fetch_switch_configuration(pf, false); 15062 if (ret) { 15063 dev_info(&pf->pdev->dev, 15064 "couldn't fetch switch config, err %pe aq_err %s\n", 15065 ERR_PTR(ret), 15066 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15067 return ret; 15068 } 15069 i40e_pf_reset_stats(pf); 15070 15071 /* set the switch config bit for the whole device to 15072 * support limited promisc or true promisc 15073 * when user requests promisc. The default is limited 15074 * promisc. 15075 */ 15076 15077 if ((pf->hw.pf_id == 0) && 15078 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15079 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15080 pf->last_sw_conf_flags = flags; 15081 } 15082 15083 if (pf->hw.pf_id == 0) { 15084 u16 valid_flags; 15085 15086 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15087 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15088 NULL); 15089 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15090 dev_info(&pf->pdev->dev, 15091 "couldn't set switch config bits, err %pe aq_err %s\n", 15092 ERR_PTR(ret), 15093 i40e_aq_str(&pf->hw, 15094 pf->hw.aq.asq_last_status)); 15095 /* not a fatal problem, just keep going */ 15096 } 15097 pf->last_sw_conf_valid_flags = valid_flags; 15098 } 15099 15100 /* first time setup */ 15101 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 15102 struct i40e_vsi *vsi = NULL; 15103 u16 uplink_seid; 15104 15105 /* Set up the PF VSI associated with the PF's main VSI 15106 * that is already in the HW switch 15107 */ 15108 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 15109 uplink_seid = pf->veb[pf->lan_veb]->seid; 15110 else 15111 uplink_seid = pf->mac_seid; 15112 if (pf->lan_vsi == I40E_NO_VSI) 15113 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 15114 else if (reinit) 15115 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 15116 if (!vsi) { 15117 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15118 i40e_cloud_filter_exit(pf); 15119 i40e_fdir_teardown(pf); 15120 return -EAGAIN; 15121 } 15122 } else { 15123 /* force a reset of TC and queue layout configurations */ 15124 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 15125 15126 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 15127 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 15128 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 15129 } 15130 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 15131 15132 i40e_fdir_sb_setup(pf); 15133 15134 /* Setup static PF queue filter control settings */ 15135 ret = i40e_setup_pf_filter_control(pf); 15136 if (ret) { 15137 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15138 ret); 15139 /* Failure here should not stop continuing other steps */ 15140 } 15141 15142 /* enable RSS in the HW, even for only one queue, as the stack can use 15143 * the hash 15144 */ 15145 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15146 i40e_pf_config_rss(pf); 15147 15148 /* fill in link information and enable LSE reporting */ 15149 i40e_link_event(pf); 15150 15151 i40e_ptp_init(pf); 15152 15153 if (!lock_acquired) 15154 rtnl_lock(); 15155 15156 /* repopulate tunnel port filters */ 15157 udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev); 15158 15159 if (!lock_acquired) 15160 rtnl_unlock(); 15161 15162 return ret; 15163 } 15164 15165 /** 15166 * i40e_determine_queue_usage - Work out queue distribution 15167 * @pf: board private structure 15168 **/ 15169 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15170 { 15171 int queues_left; 15172 int q_max; 15173 15174 pf->num_lan_qps = 0; 15175 15176 /* Find the max queues to be put into basic use. We'll always be 15177 * using TC0, whether or not DCB is running, and TC0 will get the 15178 * big RSS set. 15179 */ 15180 queues_left = pf->hw.func_caps.num_tx_qp; 15181 15182 if ((queues_left == 1) || 15183 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15184 /* one qp for PF, no queues for anything else */ 15185 queues_left = 0; 15186 pf->alloc_rss_size = pf->num_lan_qps = 1; 15187 15188 /* make sure all the fancies are disabled */ 15189 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15190 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15191 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15192 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15193 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15194 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15195 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15196 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15197 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15198 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15199 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15200 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15201 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15202 /* one qp for PF */ 15203 pf->alloc_rss_size = pf->num_lan_qps = 1; 15204 queues_left -= pf->num_lan_qps; 15205 15206 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15207 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15208 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15209 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15210 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15211 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15212 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15213 } else { 15214 /* Not enough queues for all TCs */ 15215 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15216 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15217 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15218 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15219 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15220 } 15221 15222 /* limit lan qps to the smaller of qps, cpus or msix */ 15223 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15224 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15225 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15226 pf->num_lan_qps = q_max; 15227 15228 queues_left -= pf->num_lan_qps; 15229 } 15230 15231 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15232 if (queues_left > 1) { 15233 queues_left -= 1; /* save 1 queue for FD */ 15234 } else { 15235 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15236 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15237 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15238 } 15239 } 15240 15241 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15242 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15243 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15244 (queues_left / pf->num_vf_qps)); 15245 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15246 } 15247 15248 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15249 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15250 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15251 (queues_left / pf->num_vmdq_qps)); 15252 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15253 } 15254 15255 pf->queues_left = queues_left; 15256 dev_dbg(&pf->pdev->dev, 15257 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15258 pf->hw.func_caps.num_tx_qp, 15259 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15260 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15261 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15262 queues_left); 15263 } 15264 15265 /** 15266 * i40e_setup_pf_filter_control - Setup PF static filter control 15267 * @pf: PF to be setup 15268 * 15269 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15270 * settings. If PE/FCoE are enabled then it will also set the per PF 15271 * based filter sizes required for them. It also enables Flow director, 15272 * ethertype and macvlan type filter settings for the pf. 15273 * 15274 * Returns 0 on success, negative on failure 15275 **/ 15276 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15277 { 15278 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15279 15280 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15281 15282 /* Flow Director is enabled */ 15283 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15284 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15285 settings->enable_fdir = true; 15286 15287 /* Ethtype and MACVLAN filters enabled for PF */ 15288 settings->enable_ethtype = true; 15289 settings->enable_macvlan = true; 15290 15291 if (i40e_set_filter_control(&pf->hw, settings)) 15292 return -ENOENT; 15293 15294 return 0; 15295 } 15296 15297 #define INFO_STRING_LEN 255 15298 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15299 static void i40e_print_features(struct i40e_pf *pf) 15300 { 15301 struct i40e_hw *hw = &pf->hw; 15302 char *buf; 15303 int i; 15304 15305 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15306 if (!buf) 15307 return; 15308 15309 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15310 #ifdef CONFIG_PCI_IOV 15311 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15312 #endif 15313 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15314 pf->hw.func_caps.num_vsis, 15315 pf->vsi[pf->lan_vsi]->num_queue_pairs); 15316 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15317 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15318 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15319 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15320 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15321 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15322 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15323 } 15324 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15325 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15326 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15327 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15328 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15329 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15330 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15331 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15332 else 15333 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15334 15335 dev_info(&pf->pdev->dev, "%s\n", buf); 15336 kfree(buf); 15337 WARN_ON(i > INFO_STRING_LEN); 15338 } 15339 15340 /** 15341 * i40e_get_platform_mac_addr - get platform-specific MAC address 15342 * @pdev: PCI device information struct 15343 * @pf: board private structure 15344 * 15345 * Look up the MAC address for the device. First we'll try 15346 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15347 * specific fallback. Otherwise, we'll default to the stored value in 15348 * firmware. 15349 **/ 15350 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15351 { 15352 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15353 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15354 } 15355 15356 /** 15357 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15358 * @fec_cfg: FEC option to set in flags 15359 * @flags: ptr to flags in which we set FEC option 15360 **/ 15361 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15362 { 15363 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15364 set_bit(I40E_FLAG_RS_FEC, flags); 15365 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15366 } 15367 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15368 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15369 set_bit(I40E_FLAG_RS_FEC, flags); 15370 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15371 } 15372 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15373 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15374 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15375 clear_bit(I40E_FLAG_RS_FEC, flags); 15376 } 15377 if (fec_cfg == 0) { 15378 clear_bit(I40E_FLAG_RS_FEC, flags); 15379 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15380 } 15381 } 15382 15383 /** 15384 * i40e_check_recovery_mode - check if we are running transition firmware 15385 * @pf: board private structure 15386 * 15387 * Check registers indicating the firmware runs in recovery mode. Sets the 15388 * appropriate driver state. 15389 * 15390 * Returns true if the recovery mode was detected, false otherwise 15391 **/ 15392 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15393 { 15394 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15395 15396 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15397 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15398 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15399 set_bit(__I40E_RECOVERY_MODE, pf->state); 15400 15401 return true; 15402 } 15403 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15404 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15405 15406 return false; 15407 } 15408 15409 /** 15410 * i40e_pf_loop_reset - perform reset in a loop. 15411 * @pf: board private structure 15412 * 15413 * This function is useful when a NIC is about to enter recovery mode. 15414 * When a NIC's internal data structures are corrupted the NIC's 15415 * firmware is going to enter recovery mode. 15416 * Right after a POR it takes about 7 minutes for firmware to enter 15417 * recovery mode. Until that time a NIC is in some kind of intermediate 15418 * state. After that time period the NIC almost surely enters 15419 * recovery mode. The only way for a driver to detect intermediate 15420 * state is to issue a series of pf-resets and check a return value. 15421 * If a PF reset returns success then the firmware could be in recovery 15422 * mode so the caller of this code needs to check for recovery mode 15423 * if this function returns success. There is a little chance that 15424 * firmware will hang in intermediate state forever. 15425 * Since waiting 7 minutes is quite a lot of time this function waits 15426 * 10 seconds and then gives up by returning an error. 15427 * 15428 * Return 0 on success, negative on failure. 15429 **/ 15430 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15431 { 15432 /* wait max 10 seconds for PF reset to succeed */ 15433 const unsigned long time_end = jiffies + 10 * HZ; 15434 struct i40e_hw *hw = &pf->hw; 15435 int ret; 15436 15437 ret = i40e_pf_reset(hw); 15438 while (ret != 0 && time_before(jiffies, time_end)) { 15439 usleep_range(10000, 20000); 15440 ret = i40e_pf_reset(hw); 15441 } 15442 15443 if (ret == 0) 15444 pf->pfr_count++; 15445 else 15446 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15447 15448 return ret; 15449 } 15450 15451 /** 15452 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15453 * @pf: board private structure 15454 * 15455 * Check FW registers to determine if FW issued unexpected EMP Reset. 15456 * Every time when unexpected EMP Reset occurs the FW increments 15457 * a counter of unexpected EMP Resets. When the counter reaches 10 15458 * the FW should enter the Recovery mode 15459 * 15460 * Returns true if FW issued unexpected EMP Reset 15461 **/ 15462 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15463 { 15464 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15465 I40E_GL_FWSTS_FWS1B_MASK; 15466 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15467 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15468 } 15469 15470 /** 15471 * i40e_handle_resets - handle EMP resets and PF resets 15472 * @pf: board private structure 15473 * 15474 * Handle both EMP resets and PF resets and conclude whether there are 15475 * any issues regarding these resets. If there are any issues then 15476 * generate log entry. 15477 * 15478 * Return 0 if NIC is healthy or negative value when there are issues 15479 * with resets 15480 **/ 15481 static int i40e_handle_resets(struct i40e_pf *pf) 15482 { 15483 const int pfr = i40e_pf_loop_reset(pf); 15484 const bool is_empr = i40e_check_fw_empr(pf); 15485 15486 if (is_empr || pfr != 0) 15487 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15488 15489 return is_empr ? -EIO : pfr; 15490 } 15491 15492 /** 15493 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15494 * @pf: board private structure 15495 * @hw: ptr to the hardware info 15496 * 15497 * This function does a minimal setup of all subsystems needed for running 15498 * recovery mode. 15499 * 15500 * Returns 0 on success, negative on failure 15501 **/ 15502 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15503 { 15504 struct i40e_vsi *vsi; 15505 int err; 15506 int v_idx; 15507 15508 pci_set_drvdata(pf->pdev, pf); 15509 pci_save_state(pf->pdev); 15510 15511 /* set up periodic task facility */ 15512 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15513 pf->service_timer_period = HZ; 15514 15515 INIT_WORK(&pf->service_task, i40e_service_task); 15516 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15517 15518 err = i40e_init_interrupt_scheme(pf); 15519 if (err) 15520 goto err_switch_setup; 15521 15522 /* The number of VSIs reported by the FW is the minimum guaranteed 15523 * to us; HW supports far more and we share the remaining pool with 15524 * the other PFs. We allocate space for more than the guarantee with 15525 * the understanding that we might not get them all later. 15526 */ 15527 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15528 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15529 else 15530 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15531 15532 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15533 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15534 GFP_KERNEL); 15535 if (!pf->vsi) { 15536 err = -ENOMEM; 15537 goto err_switch_setup; 15538 } 15539 15540 /* We allocate one VSI which is needed as absolute minimum 15541 * in order to register the netdev 15542 */ 15543 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15544 if (v_idx < 0) { 15545 err = v_idx; 15546 goto err_switch_setup; 15547 } 15548 pf->lan_vsi = v_idx; 15549 vsi = pf->vsi[v_idx]; 15550 if (!vsi) { 15551 err = -EFAULT; 15552 goto err_switch_setup; 15553 } 15554 vsi->alloc_queue_pairs = 1; 15555 err = i40e_config_netdev(vsi); 15556 if (err) 15557 goto err_switch_setup; 15558 err = register_netdev(vsi->netdev); 15559 if (err) 15560 goto err_switch_setup; 15561 vsi->netdev_registered = true; 15562 i40e_dbg_pf_init(pf); 15563 15564 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15565 if (err) 15566 goto err_switch_setup; 15567 15568 /* tell the firmware that we're starting */ 15569 i40e_send_version(pf); 15570 15571 /* since everything's happy, start the service_task timer */ 15572 mod_timer(&pf->service_timer, 15573 round_jiffies(jiffies + pf->service_timer_period)); 15574 15575 return 0; 15576 15577 err_switch_setup: 15578 i40e_reset_interrupt_capability(pf); 15579 timer_shutdown_sync(&pf->service_timer); 15580 i40e_shutdown_adminq(hw); 15581 iounmap(hw->hw_addr); 15582 pci_release_mem_regions(pf->pdev); 15583 pci_disable_device(pf->pdev); 15584 i40e_free_pf(pf); 15585 15586 return err; 15587 } 15588 15589 /** 15590 * i40e_set_subsystem_device_id - set subsystem device id 15591 * @hw: pointer to the hardware info 15592 * 15593 * Set PCI subsystem device id either from a pci_dev structure or 15594 * a specific FW register. 15595 **/ 15596 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15597 { 15598 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15599 15600 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15601 pf->pdev->subsystem_device : 15602 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15603 } 15604 15605 /** 15606 * i40e_probe - Device initialization routine 15607 * @pdev: PCI device information struct 15608 * @ent: entry in i40e_pci_tbl 15609 * 15610 * i40e_probe initializes a PF identified by a pci_dev structure. 15611 * The OS initialization, configuring of the PF private structure, 15612 * and a hardware reset occur. 15613 * 15614 * Returns 0 on success, negative on failure 15615 **/ 15616 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15617 { 15618 struct i40e_aq_get_phy_abilities_resp abilities; 15619 #ifdef CONFIG_I40E_DCB 15620 enum i40e_get_fw_lldp_status_resp lldp_status; 15621 #endif /* CONFIG_I40E_DCB */ 15622 struct i40e_pf *pf; 15623 struct i40e_hw *hw; 15624 u16 wol_nvm_bits; 15625 char nvm_ver[32]; 15626 u16 link_status; 15627 #ifdef CONFIG_I40E_DCB 15628 int status; 15629 #endif /* CONFIG_I40E_DCB */ 15630 int err; 15631 u32 val; 15632 u32 i; 15633 15634 err = pci_enable_device_mem(pdev); 15635 if (err) 15636 return err; 15637 15638 /* set up for high or low dma */ 15639 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15640 if (err) { 15641 dev_err(&pdev->dev, 15642 "DMA configuration failed: 0x%x\n", err); 15643 goto err_dma; 15644 } 15645 15646 /* set up pci connections */ 15647 err = pci_request_mem_regions(pdev, i40e_driver_name); 15648 if (err) { 15649 dev_info(&pdev->dev, 15650 "pci_request_selected_regions failed %d\n", err); 15651 goto err_pci_reg; 15652 } 15653 15654 pci_set_master(pdev); 15655 15656 /* Now that we have a PCI connection, we need to do the 15657 * low level device setup. This is primarily setting up 15658 * the Admin Queue structures and then querying for the 15659 * device's current profile information. 15660 */ 15661 pf = i40e_alloc_pf(&pdev->dev); 15662 if (!pf) { 15663 err = -ENOMEM; 15664 goto err_pf_alloc; 15665 } 15666 pf->next_vsi = 0; 15667 pf->pdev = pdev; 15668 set_bit(__I40E_DOWN, pf->state); 15669 15670 hw = &pf->hw; 15671 15672 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15673 I40E_MAX_CSR_SPACE); 15674 /* We believe that the highest register to read is 15675 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15676 * is not less than that before mapping to prevent a 15677 * kernel panic. 15678 */ 15679 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15680 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15681 pf->ioremap_len); 15682 err = -ENOMEM; 15683 goto err_ioremap; 15684 } 15685 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15686 if (!hw->hw_addr) { 15687 err = -EIO; 15688 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15689 (unsigned int)pci_resource_start(pdev, 0), 15690 pf->ioremap_len, err); 15691 goto err_ioremap; 15692 } 15693 hw->vendor_id = pdev->vendor; 15694 hw->device_id = pdev->device; 15695 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15696 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15697 i40e_set_subsystem_device_id(hw); 15698 hw->bus.device = PCI_SLOT(pdev->devfn); 15699 hw->bus.func = PCI_FUNC(pdev->devfn); 15700 hw->bus.bus_id = pdev->bus->number; 15701 15702 /* Select something other than the 802.1ad ethertype for the 15703 * switch to use internally and drop on ingress. 15704 */ 15705 hw->switch_tag = 0xffff; 15706 hw->first_tag = ETH_P_8021AD; 15707 hw->second_tag = ETH_P_8021Q; 15708 15709 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15710 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15711 INIT_LIST_HEAD(&pf->ddp_old_prof); 15712 15713 /* set up the locks for the AQ, do this only once in probe 15714 * and destroy them only once in remove 15715 */ 15716 mutex_init(&hw->aq.asq_mutex); 15717 mutex_init(&hw->aq.arq_mutex); 15718 15719 pf->msg_enable = netif_msg_init(debug, 15720 NETIF_MSG_DRV | 15721 NETIF_MSG_PROBE | 15722 NETIF_MSG_LINK); 15723 if (debug < -1) 15724 pf->hw.debug_mask = debug; 15725 15726 /* do a special CORER for clearing PXE mode once at init */ 15727 if (hw->revision_id == 0 && 15728 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15729 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15730 i40e_flush(hw); 15731 msleep(200); 15732 pf->corer_count++; 15733 15734 i40e_clear_pxe_mode(hw); 15735 } 15736 15737 /* Reset here to make sure all is clean and to define PF 'n' */ 15738 i40e_clear_hw(hw); 15739 15740 err = i40e_set_mac_type(hw); 15741 if (err) { 15742 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15743 err); 15744 goto err_pf_reset; 15745 } 15746 15747 err = i40e_handle_resets(pf); 15748 if (err) 15749 goto err_pf_reset; 15750 15751 i40e_check_recovery_mode(pf); 15752 15753 if (is_kdump_kernel()) { 15754 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15755 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15756 } else { 15757 hw->aq.num_arq_entries = I40E_AQ_LEN; 15758 hw->aq.num_asq_entries = I40E_AQ_LEN; 15759 } 15760 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15761 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15762 15763 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15764 "%s-%s:misc", 15765 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15766 15767 err = i40e_init_shared_code(hw); 15768 if (err) { 15769 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15770 err); 15771 goto err_pf_reset; 15772 } 15773 15774 /* set up a default setting for link flow control */ 15775 pf->hw.fc.requested_mode = I40E_FC_NONE; 15776 15777 err = i40e_init_adminq(hw); 15778 if (err) { 15779 if (err == -EIO) 15780 dev_info(&pdev->dev, 15781 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15782 hw->aq.api_maj_ver, 15783 hw->aq.api_min_ver, 15784 I40E_FW_API_VERSION_MAJOR, 15785 I40E_FW_MINOR_VERSION(hw)); 15786 else 15787 dev_info(&pdev->dev, 15788 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15789 15790 goto err_pf_reset; 15791 } 15792 i40e_get_oem_version(hw); 15793 i40e_get_pba_string(hw); 15794 15795 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15796 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15797 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15798 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15799 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15800 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15801 hw->subsystem_device_id); 15802 15803 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15804 I40E_FW_MINOR_VERSION(hw) + 1)) 15805 dev_dbg(&pdev->dev, 15806 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15807 hw->aq.api_maj_ver, 15808 hw->aq.api_min_ver, 15809 I40E_FW_API_VERSION_MAJOR, 15810 I40E_FW_MINOR_VERSION(hw)); 15811 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15812 dev_info(&pdev->dev, 15813 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15814 hw->aq.api_maj_ver, 15815 hw->aq.api_min_ver, 15816 I40E_FW_API_VERSION_MAJOR, 15817 I40E_FW_MINOR_VERSION(hw)); 15818 15819 i40e_verify_eeprom(pf); 15820 15821 /* Rev 0 hardware was never productized */ 15822 if (hw->revision_id < 1) 15823 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15824 15825 i40e_clear_pxe_mode(hw); 15826 15827 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15828 if (err) 15829 goto err_adminq_setup; 15830 15831 err = i40e_sw_init(pf); 15832 if (err) { 15833 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15834 goto err_sw_init; 15835 } 15836 15837 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15838 return i40e_init_recovery_mode(pf, hw); 15839 15840 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15841 hw->func_caps.num_rx_qp, 0, 0); 15842 if (err) { 15843 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15844 goto err_init_lan_hmc; 15845 } 15846 15847 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15848 if (err) { 15849 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15850 err = -ENOENT; 15851 goto err_configure_lan_hmc; 15852 } 15853 15854 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15855 * Ignore error return codes because if it was already disabled via 15856 * hardware settings this will fail 15857 */ 15858 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15859 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15860 i40e_aq_stop_lldp(hw, true, false, NULL); 15861 } 15862 15863 /* allow a platform config to override the HW addr */ 15864 i40e_get_platform_mac_addr(pdev, pf); 15865 15866 if (!is_valid_ether_addr(hw->mac.addr)) { 15867 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15868 err = -EIO; 15869 goto err_mac_addr; 15870 } 15871 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15872 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15873 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15874 if (is_valid_ether_addr(hw->mac.port_addr)) 15875 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15876 15877 i40e_ptp_alloc_pins(pf); 15878 pci_set_drvdata(pdev, pf); 15879 pci_save_state(pdev); 15880 15881 #ifdef CONFIG_I40E_DCB 15882 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15883 (!status && 15884 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15885 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15886 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15887 dev_info(&pdev->dev, 15888 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15889 "FW LLDP is disabled\n" : 15890 "FW LLDP is enabled\n"); 15891 15892 /* Enable FW to write default DCB config on link-up */ 15893 i40e_aq_set_dcb_parameters(hw, true, NULL); 15894 15895 err = i40e_init_pf_dcb(pf); 15896 if (err) { 15897 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15898 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15899 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15900 /* Continue without DCB enabled */ 15901 } 15902 #endif /* CONFIG_I40E_DCB */ 15903 15904 /* set up periodic task facility */ 15905 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15906 pf->service_timer_period = HZ; 15907 15908 INIT_WORK(&pf->service_task, i40e_service_task); 15909 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15910 15911 /* NVM bit on means WoL disabled for the port */ 15912 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15913 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15914 pf->wol_en = false; 15915 else 15916 pf->wol_en = true; 15917 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15918 15919 /* set up the main switch operations */ 15920 i40e_determine_queue_usage(pf); 15921 err = i40e_init_interrupt_scheme(pf); 15922 if (err) 15923 goto err_switch_setup; 15924 15925 /* Reduce Tx and Rx pairs for kdump 15926 * When MSI-X is enabled, it's not allowed to use more TC queue 15927 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15928 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15929 */ 15930 if (is_kdump_kernel()) 15931 pf->num_lan_msix = 1; 15932 15933 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15934 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15935 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15936 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15937 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15938 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15939 UDP_TUNNEL_TYPE_GENEVE; 15940 15941 /* The number of VSIs reported by the FW is the minimum guaranteed 15942 * to us; HW supports far more and we share the remaining pool with 15943 * the other PFs. We allocate space for more than the guarantee with 15944 * the understanding that we might not get them all later. 15945 */ 15946 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15947 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15948 else 15949 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15950 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15951 dev_warn(&pf->pdev->dev, 15952 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15953 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15954 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15955 } 15956 15957 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15958 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15959 GFP_KERNEL); 15960 if (!pf->vsi) { 15961 err = -ENOMEM; 15962 goto err_switch_setup; 15963 } 15964 15965 #ifdef CONFIG_PCI_IOV 15966 /* prep for VF support */ 15967 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15968 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15969 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15970 if (pci_num_vf(pdev)) 15971 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15972 } 15973 #endif 15974 err = i40e_setup_pf_switch(pf, false, false); 15975 if (err) { 15976 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15977 goto err_vsis; 15978 } 15979 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15980 15981 /* if FDIR VSI was set up, start it now */ 15982 for (i = 0; i < pf->num_alloc_vsi; i++) { 15983 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15984 i40e_vsi_open(pf->vsi[i]); 15985 break; 15986 } 15987 } 15988 15989 /* The driver only wants link up/down and module qualification 15990 * reports from firmware. Note the negative logic. 15991 */ 15992 err = i40e_aq_set_phy_int_mask(&pf->hw, 15993 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15994 I40E_AQ_EVENT_MEDIA_NA | 15995 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15996 if (err) 15997 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 15998 ERR_PTR(err), 15999 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16000 16001 /* Reconfigure hardware for allowing smaller MSS in the case 16002 * of TSO, so that we avoid the MDD being fired and causing 16003 * a reset in the case of small MSS+TSO. 16004 */ 16005 val = rd32(hw, I40E_REG_MSS); 16006 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 16007 val &= ~I40E_REG_MSS_MIN_MASK; 16008 val |= I40E_64BYTE_MSS; 16009 wr32(hw, I40E_REG_MSS, val); 16010 } 16011 16012 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 16013 msleep(75); 16014 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 16015 if (err) 16016 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 16017 ERR_PTR(err), 16018 i40e_aq_str(&pf->hw, 16019 pf->hw.aq.asq_last_status)); 16020 } 16021 /* The main driver is (mostly) up and happy. We need to set this state 16022 * before setting up the misc vector or we get a race and the vector 16023 * ends up disabled forever. 16024 */ 16025 clear_bit(__I40E_DOWN, pf->state); 16026 16027 /* In case of MSIX we are going to setup the misc vector right here 16028 * to handle admin queue events etc. In case of legacy and MSI 16029 * the misc functionality and queue processing is combined in 16030 * the same vector and that gets setup at open. 16031 */ 16032 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 16033 err = i40e_setup_misc_vector(pf); 16034 if (err) { 16035 dev_info(&pdev->dev, 16036 "setup of misc vector failed: %d\n", err); 16037 i40e_cloud_filter_exit(pf); 16038 i40e_fdir_teardown(pf); 16039 goto err_vsis; 16040 } 16041 } 16042 16043 #ifdef CONFIG_PCI_IOV 16044 /* prep for VF support */ 16045 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 16046 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 16047 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 16048 /* disable link interrupts for VFs */ 16049 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 16050 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 16051 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 16052 i40e_flush(hw); 16053 16054 if (pci_num_vf(pdev)) { 16055 dev_info(&pdev->dev, 16056 "Active VFs found, allocating resources.\n"); 16057 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 16058 if (err) 16059 dev_info(&pdev->dev, 16060 "Error %d allocating resources for existing VFs\n", 16061 err); 16062 } 16063 } 16064 #endif /* CONFIG_PCI_IOV */ 16065 16066 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16067 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16068 pf->num_iwarp_msix, 16069 I40E_IWARP_IRQ_PILE_ID); 16070 if (pf->iwarp_base_vector < 0) { 16071 dev_info(&pdev->dev, 16072 "failed to get tracking for %d vectors for IWARP err=%d\n", 16073 pf->num_iwarp_msix, pf->iwarp_base_vector); 16074 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16075 } 16076 } 16077 16078 i40e_dbg_pf_init(pf); 16079 16080 /* tell the firmware that we're starting */ 16081 i40e_send_version(pf); 16082 16083 /* since everything's happy, start the service_task timer */ 16084 mod_timer(&pf->service_timer, 16085 round_jiffies(jiffies + pf->service_timer_period)); 16086 16087 /* add this PF to client device list and launch a client service task */ 16088 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16089 err = i40e_lan_add_device(pf); 16090 if (err) 16091 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16092 err); 16093 } 16094 16095 #define PCI_SPEED_SIZE 8 16096 #define PCI_WIDTH_SIZE 8 16097 /* Devices on the IOSF bus do not have this information 16098 * and will report PCI Gen 1 x 1 by default so don't bother 16099 * checking them. 16100 */ 16101 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16102 char speed[PCI_SPEED_SIZE] = "Unknown"; 16103 char width[PCI_WIDTH_SIZE] = "Unknown"; 16104 16105 /* Get the negotiated link width and speed from PCI config 16106 * space 16107 */ 16108 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16109 &link_status); 16110 16111 i40e_set_pci_config_data(hw, link_status); 16112 16113 switch (hw->bus.speed) { 16114 case i40e_bus_speed_8000: 16115 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16116 case i40e_bus_speed_5000: 16117 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16118 case i40e_bus_speed_2500: 16119 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16120 default: 16121 break; 16122 } 16123 switch (hw->bus.width) { 16124 case i40e_bus_width_pcie_x8: 16125 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16126 case i40e_bus_width_pcie_x4: 16127 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16128 case i40e_bus_width_pcie_x2: 16129 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16130 case i40e_bus_width_pcie_x1: 16131 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16132 default: 16133 break; 16134 } 16135 16136 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16137 speed, width); 16138 16139 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16140 hw->bus.speed < i40e_bus_speed_8000) { 16141 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16142 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16143 } 16144 } 16145 16146 /* get the requested speeds from the fw */ 16147 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16148 if (err) 16149 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16150 ERR_PTR(err), 16151 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16152 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16153 16154 /* set the FEC config due to the board capabilities */ 16155 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16156 16157 /* get the supported phy types from the fw */ 16158 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16159 if (err) 16160 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16161 ERR_PTR(err), 16162 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16163 16164 /* make sure the MFS hasn't been set lower than the default */ 16165 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16166 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK, 16167 rd32(&pf->hw, I40E_PRTGL_SAH)); 16168 if (val < MAX_FRAME_SIZE_DEFAULT) 16169 dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n", 16170 pf->hw.port, val); 16171 16172 /* Add a filter to drop all Flow control frames from any VSI from being 16173 * transmitted. By doing so we stop a malicious VF from sending out 16174 * PAUSE or PFC frames and potentially controlling traffic for other 16175 * PF/VF VSIs. 16176 * The FW can still send Flow control frames if enabled. 16177 */ 16178 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16179 pf->main_vsi_seid); 16180 16181 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16182 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16183 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16184 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16185 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16186 /* print a string summarizing features */ 16187 i40e_print_features(pf); 16188 16189 i40e_devlink_register(pf); 16190 16191 return 0; 16192 16193 /* Unwind what we've done if something failed in the setup */ 16194 err_vsis: 16195 set_bit(__I40E_DOWN, pf->state); 16196 i40e_clear_interrupt_scheme(pf); 16197 kfree(pf->vsi); 16198 err_switch_setup: 16199 i40e_reset_interrupt_capability(pf); 16200 timer_shutdown_sync(&pf->service_timer); 16201 err_mac_addr: 16202 err_configure_lan_hmc: 16203 (void)i40e_shutdown_lan_hmc(hw); 16204 err_init_lan_hmc: 16205 kfree(pf->qp_pile); 16206 err_sw_init: 16207 err_adminq_setup: 16208 err_pf_reset: 16209 iounmap(hw->hw_addr); 16210 err_ioremap: 16211 i40e_free_pf(pf); 16212 err_pf_alloc: 16213 pci_release_mem_regions(pdev); 16214 err_pci_reg: 16215 err_dma: 16216 pci_disable_device(pdev); 16217 return err; 16218 } 16219 16220 /** 16221 * i40e_remove - Device removal routine 16222 * @pdev: PCI device information struct 16223 * 16224 * i40e_remove is called by the PCI subsystem to alert the driver 16225 * that is should release a PCI device. This could be caused by a 16226 * Hot-Plug event, or because the driver is going to be removed from 16227 * memory. 16228 **/ 16229 static void i40e_remove(struct pci_dev *pdev) 16230 { 16231 struct i40e_pf *pf = pci_get_drvdata(pdev); 16232 struct i40e_hw *hw = &pf->hw; 16233 int ret_code; 16234 int i; 16235 16236 i40e_devlink_unregister(pf); 16237 16238 i40e_dbg_pf_exit(pf); 16239 16240 i40e_ptp_stop(pf); 16241 16242 /* Disable RSS in hw */ 16243 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16244 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16245 16246 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16247 * flags, once they are set, i40e_rebuild should not be called as 16248 * i40e_prep_for_reset always returns early. 16249 */ 16250 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16251 usleep_range(1000, 2000); 16252 set_bit(__I40E_IN_REMOVE, pf->state); 16253 16254 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16255 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16256 i40e_free_vfs(pf); 16257 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16258 } 16259 /* no more scheduling of any task */ 16260 set_bit(__I40E_SUSPENDED, pf->state); 16261 set_bit(__I40E_DOWN, pf->state); 16262 if (pf->service_timer.function) 16263 timer_shutdown_sync(&pf->service_timer); 16264 if (pf->service_task.func) 16265 cancel_work_sync(&pf->service_task); 16266 16267 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16268 struct i40e_vsi *vsi = pf->vsi[0]; 16269 16270 /* We know that we have allocated only one vsi for this PF, 16271 * it was just for registering netdevice, so the interface 16272 * could be visible in the 'ifconfig' output 16273 */ 16274 unregister_netdev(vsi->netdev); 16275 free_netdev(vsi->netdev); 16276 16277 goto unmap; 16278 } 16279 16280 /* Client close must be called explicitly here because the timer 16281 * has been stopped. 16282 */ 16283 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16284 16285 i40e_fdir_teardown(pf); 16286 16287 /* If there is a switch structure or any orphans, remove them. 16288 * This will leave only the PF's VSI remaining. 16289 */ 16290 for (i = 0; i < I40E_MAX_VEB; i++) { 16291 if (!pf->veb[i]) 16292 continue; 16293 16294 if (pf->veb[i]->uplink_seid == pf->mac_seid || 16295 pf->veb[i]->uplink_seid == 0) 16296 i40e_switch_branch_release(pf->veb[i]); 16297 } 16298 16299 /* Now we can shutdown the PF's VSIs, just before we kill 16300 * adminq and hmc. 16301 */ 16302 for (i = pf->num_alloc_vsi; i--;) 16303 if (pf->vsi[i]) { 16304 i40e_vsi_close(pf->vsi[i]); 16305 i40e_vsi_release(pf->vsi[i]); 16306 pf->vsi[i] = NULL; 16307 } 16308 16309 i40e_cloud_filter_exit(pf); 16310 16311 /* remove attached clients */ 16312 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16313 ret_code = i40e_lan_del_device(pf); 16314 if (ret_code) 16315 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16316 ret_code); 16317 } 16318 16319 /* shutdown and destroy the HMC */ 16320 if (hw->hmc.hmc_obj) { 16321 ret_code = i40e_shutdown_lan_hmc(hw); 16322 if (ret_code) 16323 dev_warn(&pdev->dev, 16324 "Failed to destroy the HMC resources: %d\n", 16325 ret_code); 16326 } 16327 16328 unmap: 16329 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16330 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16331 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16332 free_irq(pf->pdev->irq, pf); 16333 16334 /* shutdown the adminq */ 16335 i40e_shutdown_adminq(hw); 16336 16337 /* destroy the locks only once, here */ 16338 mutex_destroy(&hw->aq.arq_mutex); 16339 mutex_destroy(&hw->aq.asq_mutex); 16340 16341 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16342 rtnl_lock(); 16343 i40e_clear_interrupt_scheme(pf); 16344 for (i = 0; i < pf->num_alloc_vsi; i++) { 16345 if (pf->vsi[i]) { 16346 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16347 i40e_vsi_clear_rings(pf->vsi[i]); 16348 i40e_vsi_clear(pf->vsi[i]); 16349 pf->vsi[i] = NULL; 16350 } 16351 } 16352 rtnl_unlock(); 16353 16354 for (i = 0; i < I40E_MAX_VEB; i++) { 16355 kfree(pf->veb[i]); 16356 pf->veb[i] = NULL; 16357 } 16358 16359 kfree(pf->qp_pile); 16360 kfree(pf->vsi); 16361 16362 iounmap(hw->hw_addr); 16363 i40e_free_pf(pf); 16364 pci_release_mem_regions(pdev); 16365 16366 pci_disable_device(pdev); 16367 } 16368 16369 /** 16370 * i40e_pci_error_detected - warning that something funky happened in PCI land 16371 * @pdev: PCI device information struct 16372 * @error: the type of PCI error 16373 * 16374 * Called to warn that something happened and the error handling steps 16375 * are in progress. Allows the driver to quiesce things, be ready for 16376 * remediation. 16377 **/ 16378 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16379 pci_channel_state_t error) 16380 { 16381 struct i40e_pf *pf = pci_get_drvdata(pdev); 16382 16383 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16384 16385 if (!pf) { 16386 dev_info(&pdev->dev, 16387 "Cannot recover - error happened during device probe\n"); 16388 return PCI_ERS_RESULT_DISCONNECT; 16389 } 16390 16391 /* shutdown all operations */ 16392 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16393 i40e_prep_for_reset(pf); 16394 16395 /* Request a slot reset */ 16396 return PCI_ERS_RESULT_NEED_RESET; 16397 } 16398 16399 /** 16400 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16401 * @pdev: PCI device information struct 16402 * 16403 * Called to find if the driver can work with the device now that 16404 * the pci slot has been reset. If a basic connection seems good 16405 * (registers are readable and have sane content) then return a 16406 * happy little PCI_ERS_RESULT_xxx. 16407 **/ 16408 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16409 { 16410 struct i40e_pf *pf = pci_get_drvdata(pdev); 16411 pci_ers_result_t result; 16412 u32 reg; 16413 16414 dev_dbg(&pdev->dev, "%s\n", __func__); 16415 if (pci_enable_device_mem(pdev)) { 16416 dev_info(&pdev->dev, 16417 "Cannot re-enable PCI device after reset.\n"); 16418 result = PCI_ERS_RESULT_DISCONNECT; 16419 } else { 16420 pci_set_master(pdev); 16421 pci_restore_state(pdev); 16422 pci_save_state(pdev); 16423 pci_wake_from_d3(pdev, false); 16424 16425 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16426 if (reg == 0) 16427 result = PCI_ERS_RESULT_RECOVERED; 16428 else 16429 result = PCI_ERS_RESULT_DISCONNECT; 16430 } 16431 16432 return result; 16433 } 16434 16435 /** 16436 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16437 * @pdev: PCI device information struct 16438 */ 16439 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16440 { 16441 struct i40e_pf *pf = pci_get_drvdata(pdev); 16442 16443 i40e_prep_for_reset(pf); 16444 } 16445 16446 /** 16447 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16448 * @pdev: PCI device information struct 16449 */ 16450 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16451 { 16452 struct i40e_pf *pf = pci_get_drvdata(pdev); 16453 16454 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16455 return; 16456 16457 i40e_reset_and_rebuild(pf, false, false); 16458 #ifdef CONFIG_PCI_IOV 16459 i40e_restore_all_vfs_msi_state(pdev); 16460 #endif /* CONFIG_PCI_IOV */ 16461 } 16462 16463 /** 16464 * i40e_pci_error_resume - restart operations after PCI error recovery 16465 * @pdev: PCI device information struct 16466 * 16467 * Called to allow the driver to bring things back up after PCI error 16468 * and/or reset recovery has finished. 16469 **/ 16470 static void i40e_pci_error_resume(struct pci_dev *pdev) 16471 { 16472 struct i40e_pf *pf = pci_get_drvdata(pdev); 16473 16474 dev_dbg(&pdev->dev, "%s\n", __func__); 16475 if (test_bit(__I40E_SUSPENDED, pf->state)) 16476 return; 16477 16478 i40e_handle_reset_warning(pf, false); 16479 } 16480 16481 /** 16482 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16483 * using the mac_address_write admin q function 16484 * @pf: pointer to i40e_pf struct 16485 **/ 16486 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16487 { 16488 struct i40e_hw *hw = &pf->hw; 16489 u8 mac_addr[6]; 16490 u16 flags = 0; 16491 int ret; 16492 16493 /* Get current MAC address in case it's an LAA */ 16494 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 16495 ether_addr_copy(mac_addr, 16496 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 16497 } else { 16498 dev_err(&pf->pdev->dev, 16499 "Failed to retrieve MAC address; using default\n"); 16500 ether_addr_copy(mac_addr, hw->mac.addr); 16501 } 16502 16503 /* The FW expects the mac address write cmd to first be called with 16504 * one of these flags before calling it again with the multicast 16505 * enable flags. 16506 */ 16507 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16508 16509 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16510 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16511 16512 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16513 if (ret) { 16514 dev_err(&pf->pdev->dev, 16515 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16516 return; 16517 } 16518 16519 flags = I40E_AQC_MC_MAG_EN 16520 | I40E_AQC_WOL_PRESERVE_ON_PFR 16521 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16522 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16523 if (ret) 16524 dev_err(&pf->pdev->dev, 16525 "Failed to enable Multicast Magic Packet wake up\n"); 16526 } 16527 16528 /** 16529 * i40e_shutdown - PCI callback for shutting down 16530 * @pdev: PCI device information struct 16531 **/ 16532 static void i40e_shutdown(struct pci_dev *pdev) 16533 { 16534 struct i40e_pf *pf = pci_get_drvdata(pdev); 16535 struct i40e_hw *hw = &pf->hw; 16536 16537 set_bit(__I40E_SUSPENDED, pf->state); 16538 set_bit(__I40E_DOWN, pf->state); 16539 16540 del_timer_sync(&pf->service_timer); 16541 cancel_work_sync(&pf->service_task); 16542 i40e_cloud_filter_exit(pf); 16543 i40e_fdir_teardown(pf); 16544 16545 /* Client close must be called explicitly here because the timer 16546 * has been stopped. 16547 */ 16548 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16549 16550 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16551 pf->wol_en) 16552 i40e_enable_mc_magic_wake(pf); 16553 16554 i40e_prep_for_reset(pf); 16555 16556 wr32(hw, I40E_PFPM_APM, 16557 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16558 wr32(hw, I40E_PFPM_WUFC, 16559 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16560 16561 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16562 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16563 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16564 free_irq(pf->pdev->irq, pf); 16565 16566 /* Since we're going to destroy queues during the 16567 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16568 * whole section 16569 */ 16570 rtnl_lock(); 16571 i40e_clear_interrupt_scheme(pf); 16572 rtnl_unlock(); 16573 16574 if (system_state == SYSTEM_POWER_OFF) { 16575 pci_wake_from_d3(pdev, pf->wol_en); 16576 pci_set_power_state(pdev, PCI_D3hot); 16577 } 16578 } 16579 16580 /** 16581 * i40e_suspend - PM callback for moving to D3 16582 * @dev: generic device information structure 16583 **/ 16584 static int __maybe_unused i40e_suspend(struct device *dev) 16585 { 16586 struct i40e_pf *pf = dev_get_drvdata(dev); 16587 struct i40e_hw *hw = &pf->hw; 16588 16589 /* If we're already suspended, then there is nothing to do */ 16590 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16591 return 0; 16592 16593 set_bit(__I40E_DOWN, pf->state); 16594 16595 /* Ensure service task will not be running */ 16596 del_timer_sync(&pf->service_timer); 16597 cancel_work_sync(&pf->service_task); 16598 16599 /* Client close must be called explicitly here because the timer 16600 * has been stopped. 16601 */ 16602 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16603 16604 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16605 pf->wol_en) 16606 i40e_enable_mc_magic_wake(pf); 16607 16608 /* Since we're going to destroy queues during the 16609 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16610 * whole section 16611 */ 16612 rtnl_lock(); 16613 16614 i40e_prep_for_reset(pf); 16615 16616 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16617 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16618 16619 /* Clear the interrupt scheme and release our IRQs so that the system 16620 * can safely hibernate even when there are a large number of CPUs. 16621 * Otherwise hibernation might fail when mapping all the vectors back 16622 * to CPU0. 16623 */ 16624 i40e_clear_interrupt_scheme(pf); 16625 16626 rtnl_unlock(); 16627 16628 return 0; 16629 } 16630 16631 /** 16632 * i40e_resume - PM callback for waking up from D3 16633 * @dev: generic device information structure 16634 **/ 16635 static int __maybe_unused i40e_resume(struct device *dev) 16636 { 16637 struct i40e_pf *pf = dev_get_drvdata(dev); 16638 int err; 16639 16640 /* If we're not suspended, then there is nothing to do */ 16641 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16642 return 0; 16643 16644 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16645 * since we're going to be restoring queues 16646 */ 16647 rtnl_lock(); 16648 16649 /* We cleared the interrupt scheme when we suspended, so we need to 16650 * restore it now to resume device functionality. 16651 */ 16652 err = i40e_restore_interrupt_scheme(pf); 16653 if (err) { 16654 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16655 err); 16656 } 16657 16658 clear_bit(__I40E_DOWN, pf->state); 16659 i40e_reset_and_rebuild(pf, false, true); 16660 16661 rtnl_unlock(); 16662 16663 /* Clear suspended state last after everything is recovered */ 16664 clear_bit(__I40E_SUSPENDED, pf->state); 16665 16666 /* Restart the service task */ 16667 mod_timer(&pf->service_timer, 16668 round_jiffies(jiffies + pf->service_timer_period)); 16669 16670 return 0; 16671 } 16672 16673 static const struct pci_error_handlers i40e_err_handler = { 16674 .error_detected = i40e_pci_error_detected, 16675 .slot_reset = i40e_pci_error_slot_reset, 16676 .reset_prepare = i40e_pci_error_reset_prepare, 16677 .reset_done = i40e_pci_error_reset_done, 16678 .resume = i40e_pci_error_resume, 16679 }; 16680 16681 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16682 16683 static struct pci_driver i40e_driver = { 16684 .name = i40e_driver_name, 16685 .id_table = i40e_pci_tbl, 16686 .probe = i40e_probe, 16687 .remove = i40e_remove, 16688 .driver = { 16689 .pm = &i40e_pm_ops, 16690 }, 16691 .shutdown = i40e_shutdown, 16692 .err_handler = &i40e_err_handler, 16693 .sriov_configure = i40e_pci_sriov_configure, 16694 }; 16695 16696 /** 16697 * i40e_init_module - Driver registration routine 16698 * 16699 * i40e_init_module is the first routine called when the driver is 16700 * loaded. All it does is register with the PCI subsystem. 16701 **/ 16702 static int __init i40e_init_module(void) 16703 { 16704 int err; 16705 16706 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16707 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16708 16709 /* There is no need to throttle the number of active tasks because 16710 * each device limits its own task using a state bit for scheduling 16711 * the service task, and the device tasks do not interfere with each 16712 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16713 * since we need to be able to guarantee forward progress even under 16714 * memory pressure. 16715 */ 16716 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 16717 if (!i40e_wq) { 16718 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16719 return -ENOMEM; 16720 } 16721 16722 i40e_dbg_init(); 16723 err = pci_register_driver(&i40e_driver); 16724 if (err) { 16725 destroy_workqueue(i40e_wq); 16726 i40e_dbg_exit(); 16727 return err; 16728 } 16729 16730 return 0; 16731 } 16732 module_init(i40e_init_module); 16733 16734 /** 16735 * i40e_exit_module - Driver exit cleanup routine 16736 * 16737 * i40e_exit_module is called just before the driver is removed 16738 * from memory. 16739 **/ 16740 static void __exit i40e_exit_module(void) 16741 { 16742 pci_unregister_driver(&i40e_driver); 16743 destroy_workqueue(i40e_wq); 16744 ida_destroy(&i40e_client_ida); 16745 i40e_dbg_exit(); 16746 } 16747 module_exit(i40e_exit_module); 16748