1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/if_bridge.h> 7 #include <linux/if_macvlan.h> 8 #include <linux/module.h> 9 #include <net/pkt_cls.h> 10 #include <net/xdp_sock_drv.h> 11 12 /* Local includes */ 13 #include "i40e.h" 14 #include "i40e_devids.h" 15 #include "i40e_diag.h" 16 #include "i40e_lan_hmc.h" 17 #include "i40e_virtchnl_pf.h" 18 #include "i40e_xsk.h" 19 20 /* All i40e tracepoints are defined by the include below, which 21 * must be included exactly once across the whole kernel with 22 * CREATE_TRACE_POINTS defined 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "i40e_trace.h" 26 27 const char i40e_driver_name[] = "i40e"; 28 static const char i40e_driver_string[] = 29 "Intel(R) Ethernet Connection XL710 Network Driver"; 30 31 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 32 33 /* a bit of forward declarations */ 34 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 35 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 36 static int i40e_add_vsi(struct i40e_vsi *vsi); 37 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 38 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 39 static int i40e_setup_misc_vector(struct i40e_pf *pf); 40 static void i40e_determine_queue_usage(struct i40e_pf *pf); 41 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 42 static void i40e_prep_for_reset(struct i40e_pf *pf); 43 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 44 bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 48 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 49 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 50 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 51 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 52 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 53 static int i40e_get_capabilities(struct i40e_pf *pf, 54 enum i40e_admin_queue_opc list_type); 55 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 56 57 /* i40e_pci_tbl - PCI Device ID Table 58 * 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id i40e_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 102 MODULE_IMPORT_NS(LIBIE); 103 MODULE_LICENSE("GPL v2"); 104 105 static struct workqueue_struct *i40e_wq; 106 107 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 108 struct net_device *netdev, int delta) 109 { 110 struct netdev_hw_addr_list *ha_list; 111 struct netdev_hw_addr *ha; 112 113 if (!f || !netdev) 114 return; 115 116 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr)) 117 ha_list = &netdev->uc; 118 else 119 ha_list = &netdev->mc; 120 121 netdev_hw_addr_list_for_each(ha, ha_list) { 122 if (ether_addr_equal(ha->addr, f->macaddr)) { 123 ha->refcount += delta; 124 if (ha->refcount <= 0) 125 ha->refcount = 1; 126 break; 127 } 128 } 129 } 130 131 /** 132 * i40e_hw_to_dev - get device pointer from the hardware structure 133 * @hw: pointer to the device HW structure 134 **/ 135 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 136 { 137 struct i40e_pf *pf = i40e_hw_to_pf(hw); 138 139 return &pf->pdev->dev; 140 } 141 142 /** 143 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 144 * @hw: pointer to the HW structure 145 * @mem: ptr to mem struct to fill out 146 * @size: size of memory requested 147 * @alignment: what to align the allocation to 148 **/ 149 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 150 u64 size, u32 alignment) 151 { 152 struct i40e_pf *pf = i40e_hw_to_pf(hw); 153 154 mem->size = ALIGN(size, alignment); 155 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 156 GFP_KERNEL); 157 if (!mem->va) 158 return -ENOMEM; 159 160 return 0; 161 } 162 163 /** 164 * i40e_free_dma_mem - OS specific memory free for shared code 165 * @hw: pointer to the HW structure 166 * @mem: ptr to mem struct to free 167 **/ 168 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 169 { 170 struct i40e_pf *pf = i40e_hw_to_pf(hw); 171 172 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 173 mem->va = NULL; 174 mem->pa = 0; 175 mem->size = 0; 176 177 return 0; 178 } 179 180 /** 181 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 182 * @hw: pointer to the HW structure 183 * @mem: ptr to mem struct to fill out 184 * @size: size of memory requested 185 **/ 186 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 187 u32 size) 188 { 189 mem->size = size; 190 mem->va = kzalloc(size, GFP_KERNEL); 191 192 if (!mem->va) 193 return -ENOMEM; 194 195 return 0; 196 } 197 198 /** 199 * i40e_free_virt_mem - OS specific memory free for shared code 200 * @hw: pointer to the HW structure 201 * @mem: ptr to mem struct to free 202 **/ 203 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 204 { 205 /* it's ok to kfree a NULL pointer */ 206 kfree(mem->va); 207 mem->va = NULL; 208 mem->size = 0; 209 210 return 0; 211 } 212 213 /** 214 * i40e_get_lump - find a lump of free generic resource 215 * @pf: board private structure 216 * @pile: the pile of resource to search 217 * @needed: the number of items needed 218 * @id: an owner id to stick on the items assigned 219 * 220 * Returns the base item index of the lump, or negative for error 221 **/ 222 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 223 u16 needed, u16 id) 224 { 225 int ret = -ENOMEM; 226 int i, j; 227 228 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 229 dev_info(&pf->pdev->dev, 230 "param err: pile=%s needed=%d id=0x%04x\n", 231 pile ? "<valid>" : "<null>", needed, id); 232 return -EINVAL; 233 } 234 235 /* Allocate last queue in the pile for FDIR VSI queue 236 * so it doesn't fragment the qp_pile 237 */ 238 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 239 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 240 dev_err(&pf->pdev->dev, 241 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 242 pile->num_entries - 1); 243 return -ENOMEM; 244 } 245 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 246 return pile->num_entries - 1; 247 } 248 249 i = 0; 250 while (i < pile->num_entries) { 251 /* skip already allocated entries */ 252 if (pile->list[i] & I40E_PILE_VALID_BIT) { 253 i++; 254 continue; 255 } 256 257 /* do we have enough in this lump? */ 258 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 259 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 260 break; 261 } 262 263 if (j == needed) { 264 /* there was enough, so assign it to the requestor */ 265 for (j = 0; j < needed; j++) 266 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 267 ret = i; 268 break; 269 } 270 271 /* not enough, so skip over it and continue looking */ 272 i += j; 273 } 274 275 return ret; 276 } 277 278 /** 279 * i40e_put_lump - return a lump of generic resource 280 * @pile: the pile of resource to search 281 * @index: the base item index 282 * @id: the owner id of the items assigned 283 * 284 * Returns the count of items in the lump 285 **/ 286 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 287 { 288 int valid_id = (id | I40E_PILE_VALID_BIT); 289 int count = 0; 290 u16 i; 291 292 if (!pile || index >= pile->num_entries) 293 return -EINVAL; 294 295 for (i = index; 296 i < pile->num_entries && pile->list[i] == valid_id; 297 i++) { 298 pile->list[i] = 0; 299 count++; 300 } 301 302 303 return count; 304 } 305 306 /** 307 * i40e_find_vsi_from_id - searches for the vsi with the given id 308 * @pf: the pf structure to search for the vsi 309 * @id: id of the vsi it is searching for 310 **/ 311 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 312 { 313 struct i40e_vsi *vsi; 314 int i; 315 316 i40e_pf_for_each_vsi(pf, i, vsi) 317 if (vsi->id == id) 318 return vsi; 319 320 return NULL; 321 } 322 323 /** 324 * i40e_service_event_schedule - Schedule the service task to wake up 325 * @pf: board private structure 326 * 327 * If not already scheduled, this puts the task into the work queue 328 **/ 329 void i40e_service_event_schedule(struct i40e_pf *pf) 330 { 331 if ((!test_bit(__I40E_DOWN, pf->state) && 332 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 333 test_bit(__I40E_RECOVERY_MODE, pf->state)) 334 queue_work(i40e_wq, &pf->service_task); 335 } 336 337 /** 338 * i40e_tx_timeout - Respond to a Tx Hang 339 * @netdev: network interface device structure 340 * @txqueue: queue number timing out 341 * 342 * If any port has noticed a Tx timeout, it is likely that the whole 343 * device is munged, not just the one netdev port, so go for the full 344 * reset. 345 **/ 346 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 347 { 348 struct i40e_netdev_priv *np = netdev_priv(netdev); 349 struct i40e_vsi *vsi = np->vsi; 350 struct i40e_pf *pf = vsi->back; 351 struct i40e_ring *tx_ring = NULL; 352 unsigned int i; 353 u32 head, val; 354 355 pf->tx_timeout_count++; 356 357 /* with txqueue index, find the tx_ring struct */ 358 for (i = 0; i < vsi->num_queue_pairs; i++) { 359 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 360 if (txqueue == 361 vsi->tx_rings[i]->queue_index) { 362 tx_ring = vsi->tx_rings[i]; 363 break; 364 } 365 } 366 } 367 368 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 369 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 370 else if (time_before(jiffies, 371 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 372 return; /* don't do any new action before the next timeout */ 373 374 /* don't kick off another recovery if one is already pending */ 375 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 376 return; 377 378 if (tx_ring) { 379 head = i40e_get_head(tx_ring); 380 /* Read interrupt register */ 381 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 382 val = rd32(&pf->hw, 383 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 384 tx_ring->vsi->base_vector - 1)); 385 else 386 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 387 388 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 389 vsi->seid, txqueue, tx_ring->next_to_clean, 390 head, tx_ring->next_to_use, 391 readl(tx_ring->tail), val); 392 } 393 394 pf->tx_timeout_last_recovery = jiffies; 395 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 396 pf->tx_timeout_recovery_level, txqueue); 397 398 switch (pf->tx_timeout_recovery_level) { 399 case 1: 400 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 401 break; 402 case 2: 403 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 404 break; 405 case 3: 406 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 407 break; 408 default: 409 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 410 set_bit(__I40E_DOWN_REQUESTED, pf->state); 411 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 412 break; 413 } 414 415 i40e_service_event_schedule(pf); 416 pf->tx_timeout_recovery_level++; 417 } 418 419 /** 420 * i40e_get_vsi_stats_struct - Get System Network Statistics 421 * @vsi: the VSI we care about 422 * 423 * Returns the address of the device statistics structure. 424 * The statistics are actually updated from the service task. 425 **/ 426 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 427 { 428 return &vsi->net_stats; 429 } 430 431 /** 432 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 433 * @ring: Tx ring to get statistics from 434 * @stats: statistics entry to be updated 435 **/ 436 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 437 struct rtnl_link_stats64 *stats) 438 { 439 u64 bytes, packets; 440 unsigned int start; 441 442 do { 443 start = u64_stats_fetch_begin(&ring->syncp); 444 packets = ring->stats.packets; 445 bytes = ring->stats.bytes; 446 } while (u64_stats_fetch_retry(&ring->syncp, start)); 447 448 stats->tx_packets += packets; 449 stats->tx_bytes += bytes; 450 } 451 452 /** 453 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 454 * @netdev: network interface device structure 455 * @stats: data structure to store statistics 456 * 457 * Returns the address of the device statistics structure. 458 * The statistics are actually updated from the service task. 459 **/ 460 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 461 struct rtnl_link_stats64 *stats) 462 { 463 struct i40e_netdev_priv *np = netdev_priv(netdev); 464 struct i40e_vsi *vsi = np->vsi; 465 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 466 struct i40e_ring *ring; 467 int i; 468 469 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 470 return; 471 472 if (!vsi->tx_rings) 473 return; 474 475 rcu_read_lock(); 476 for (i = 0; i < vsi->num_queue_pairs; i++) { 477 u64 bytes, packets; 478 unsigned int start; 479 480 ring = READ_ONCE(vsi->tx_rings[i]); 481 if (!ring) 482 continue; 483 i40e_get_netdev_stats_struct_tx(ring, stats); 484 485 if (i40e_enabled_xdp_vsi(vsi)) { 486 ring = READ_ONCE(vsi->xdp_rings[i]); 487 if (!ring) 488 continue; 489 i40e_get_netdev_stats_struct_tx(ring, stats); 490 } 491 492 ring = READ_ONCE(vsi->rx_rings[i]); 493 if (!ring) 494 continue; 495 do { 496 start = u64_stats_fetch_begin(&ring->syncp); 497 packets = ring->stats.packets; 498 bytes = ring->stats.bytes; 499 } while (u64_stats_fetch_retry(&ring->syncp, start)); 500 501 stats->rx_packets += packets; 502 stats->rx_bytes += bytes; 503 504 } 505 rcu_read_unlock(); 506 507 /* following stats updated by i40e_watchdog_subtask() */ 508 stats->multicast = vsi_stats->multicast; 509 stats->tx_errors = vsi_stats->tx_errors; 510 stats->tx_dropped = vsi_stats->tx_dropped; 511 stats->rx_errors = vsi_stats->rx_errors; 512 stats->rx_dropped = vsi_stats->rx_dropped; 513 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 514 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 515 stats->rx_length_errors = vsi_stats->rx_length_errors; 516 } 517 518 /** 519 * i40e_vsi_reset_stats - Resets all stats of the given vsi 520 * @vsi: the VSI to have its stats reset 521 **/ 522 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 523 { 524 struct rtnl_link_stats64 *ns; 525 int i; 526 527 if (!vsi) 528 return; 529 530 ns = i40e_get_vsi_stats_struct(vsi); 531 memset(ns, 0, sizeof(*ns)); 532 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 533 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 534 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 535 if (vsi->rx_rings && vsi->rx_rings[0]) { 536 for (i = 0; i < vsi->num_queue_pairs; i++) { 537 memset(&vsi->rx_rings[i]->stats, 0, 538 sizeof(vsi->rx_rings[i]->stats)); 539 memset(&vsi->rx_rings[i]->rx_stats, 0, 540 sizeof(vsi->rx_rings[i]->rx_stats)); 541 memset(&vsi->tx_rings[i]->stats, 0, 542 sizeof(vsi->tx_rings[i]->stats)); 543 memset(&vsi->tx_rings[i]->tx_stats, 0, 544 sizeof(vsi->tx_rings[i]->tx_stats)); 545 } 546 } 547 vsi->stat_offsets_loaded = false; 548 } 549 550 /** 551 * i40e_pf_reset_stats - Reset all of the stats for the given PF 552 * @pf: the PF to be reset 553 **/ 554 void i40e_pf_reset_stats(struct i40e_pf *pf) 555 { 556 struct i40e_veb *veb; 557 int i; 558 559 memset(&pf->stats, 0, sizeof(pf->stats)); 560 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 561 pf->stat_offsets_loaded = false; 562 563 i40e_pf_for_each_veb(pf, i, veb) { 564 memset(&veb->stats, 0, sizeof(veb->stats)); 565 memset(&veb->stats_offsets, 0, sizeof(veb->stats_offsets)); 566 memset(&veb->tc_stats, 0, sizeof(veb->tc_stats)); 567 memset(&veb->tc_stats_offsets, 0, sizeof(veb->tc_stats_offsets)); 568 veb->stat_offsets_loaded = false; 569 } 570 pf->hw_csum_rx_error = 0; 571 } 572 573 /** 574 * i40e_compute_pci_to_hw_id - compute index form PCI function. 575 * @vsi: ptr to the VSI to read from. 576 * @hw: ptr to the hardware info. 577 **/ 578 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 579 { 580 int pf_count = i40e_get_pf_count(hw); 581 582 if (vsi->type == I40E_VSI_SRIOV) 583 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 584 585 return hw->port + BIT(7); 586 } 587 588 /** 589 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 590 * @hw: ptr to the hardware info. 591 * @hireg: the high 32 bit reg to read. 592 * @loreg: the low 32 bit reg to read. 593 * @offset_loaded: has the initial offset been loaded yet. 594 * @offset: ptr to current offset value. 595 * @stat: ptr to the stat. 596 * 597 * Since the device stats are not reset at PFReset, they will not 598 * be zeroed when the driver starts. We'll save the first values read 599 * and use them as offsets to be subtracted from the raw values in order 600 * to report stats that count from zero. 601 **/ 602 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 603 bool offset_loaded, u64 *offset, u64 *stat) 604 { 605 u64 new_data; 606 607 new_data = rd64(hw, loreg); 608 609 if (!offset_loaded || new_data < *offset) 610 *offset = new_data; 611 *stat = new_data - *offset; 612 } 613 614 /** 615 * i40e_stat_update48 - read and update a 48 bit stat from the chip 616 * @hw: ptr to the hardware info 617 * @hireg: the high 32 bit reg to read 618 * @loreg: the low 32 bit reg to read 619 * @offset_loaded: has the initial offset been loaded yet 620 * @offset: ptr to current offset value 621 * @stat: ptr to the stat 622 * 623 * Since the device stats are not reset at PFReset, they likely will not 624 * be zeroed when the driver starts. We'll save the first values read 625 * and use them as offsets to be subtracted from the raw values in order 626 * to report stats that count from zero. In the process, we also manage 627 * the potential roll-over. 628 **/ 629 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 630 bool offset_loaded, u64 *offset, u64 *stat) 631 { 632 u64 new_data; 633 634 if (hw->device_id == I40E_DEV_ID_QEMU) { 635 new_data = rd32(hw, loreg); 636 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 637 } else { 638 new_data = rd64(hw, loreg); 639 } 640 if (!offset_loaded) 641 *offset = new_data; 642 if (likely(new_data >= *offset)) 643 *stat = new_data - *offset; 644 else 645 *stat = (new_data + BIT_ULL(48)) - *offset; 646 *stat &= 0xFFFFFFFFFFFFULL; 647 } 648 649 /** 650 * i40e_stat_update32 - read and update a 32 bit stat from the chip 651 * @hw: ptr to the hardware info 652 * @reg: the hw reg to read 653 * @offset_loaded: has the initial offset been loaded yet 654 * @offset: ptr to current offset value 655 * @stat: ptr to the stat 656 **/ 657 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 658 bool offset_loaded, u64 *offset, u64 *stat) 659 { 660 u32 new_data; 661 662 new_data = rd32(hw, reg); 663 if (!offset_loaded) 664 *offset = new_data; 665 if (likely(new_data >= *offset)) 666 *stat = (u32)(new_data - *offset); 667 else 668 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 669 } 670 671 /** 672 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 673 * @hw: ptr to the hardware info 674 * @reg: the hw reg to read and clear 675 * @stat: ptr to the stat 676 **/ 677 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 678 { 679 u32 new_data = rd32(hw, reg); 680 681 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 682 *stat += new_data; 683 } 684 685 /** 686 * i40e_stats_update_rx_discards - update rx_discards. 687 * @vsi: ptr to the VSI to be updated. 688 * @hw: ptr to the hardware info. 689 * @stat_idx: VSI's stat_counter_idx. 690 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 691 * @stat_offset: ptr to stat_offset to store first read of specific register. 692 * @stat: ptr to VSI's stat to be updated. 693 **/ 694 static void 695 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 696 int stat_idx, bool offset_loaded, 697 struct i40e_eth_stats *stat_offset, 698 struct i40e_eth_stats *stat) 699 { 700 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 701 &stat_offset->rx_discards, &stat->rx_discards); 702 i40e_stat_update64(hw, 703 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 704 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 705 offset_loaded, &stat_offset->rx_discards_other, 706 &stat->rx_discards_other); 707 } 708 709 /** 710 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 711 * @vsi: the VSI to be updated 712 **/ 713 void i40e_update_eth_stats(struct i40e_vsi *vsi) 714 { 715 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 716 struct i40e_pf *pf = vsi->back; 717 struct i40e_hw *hw = &pf->hw; 718 struct i40e_eth_stats *oes; 719 struct i40e_eth_stats *es; /* device's eth stats */ 720 721 es = &vsi->eth_stats; 722 oes = &vsi->eth_stats_offsets; 723 724 /* Gather up the stats that the hw collects */ 725 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 726 vsi->stat_offsets_loaded, 727 &oes->tx_errors, &es->tx_errors); 728 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 729 vsi->stat_offsets_loaded, 730 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 731 732 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 733 I40E_GLV_GORCL(stat_idx), 734 vsi->stat_offsets_loaded, 735 &oes->rx_bytes, &es->rx_bytes); 736 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 737 I40E_GLV_UPRCL(stat_idx), 738 vsi->stat_offsets_loaded, 739 &oes->rx_unicast, &es->rx_unicast); 740 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 741 I40E_GLV_MPRCL(stat_idx), 742 vsi->stat_offsets_loaded, 743 &oes->rx_multicast, &es->rx_multicast); 744 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 745 I40E_GLV_BPRCL(stat_idx), 746 vsi->stat_offsets_loaded, 747 &oes->rx_broadcast, &es->rx_broadcast); 748 749 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 750 I40E_GLV_GOTCL(stat_idx), 751 vsi->stat_offsets_loaded, 752 &oes->tx_bytes, &es->tx_bytes); 753 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 754 I40E_GLV_UPTCL(stat_idx), 755 vsi->stat_offsets_loaded, 756 &oes->tx_unicast, &es->tx_unicast); 757 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 758 I40E_GLV_MPTCL(stat_idx), 759 vsi->stat_offsets_loaded, 760 &oes->tx_multicast, &es->tx_multicast); 761 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 762 I40E_GLV_BPTCL(stat_idx), 763 vsi->stat_offsets_loaded, 764 &oes->tx_broadcast, &es->tx_broadcast); 765 766 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 767 vsi->stat_offsets_loaded, oes, es); 768 769 vsi->stat_offsets_loaded = true; 770 } 771 772 /** 773 * i40e_update_veb_stats - Update Switch component statistics 774 * @veb: the VEB being updated 775 **/ 776 void i40e_update_veb_stats(struct i40e_veb *veb) 777 { 778 struct i40e_pf *pf = veb->pf; 779 struct i40e_hw *hw = &pf->hw; 780 struct i40e_eth_stats *oes; 781 struct i40e_eth_stats *es; /* device's eth stats */ 782 struct i40e_veb_tc_stats *veb_oes; 783 struct i40e_veb_tc_stats *veb_es; 784 int i, idx = 0; 785 786 idx = veb->stats_idx; 787 es = &veb->stats; 788 oes = &veb->stats_offsets; 789 veb_es = &veb->tc_stats; 790 veb_oes = &veb->tc_stats_offsets; 791 792 /* Gather up the stats that the hw collects */ 793 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 794 veb->stat_offsets_loaded, 795 &oes->tx_discards, &es->tx_discards); 796 if (hw->revision_id > 0) 797 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 798 veb->stat_offsets_loaded, 799 &oes->rx_unknown_protocol, 800 &es->rx_unknown_protocol); 801 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 802 veb->stat_offsets_loaded, 803 &oes->rx_bytes, &es->rx_bytes); 804 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 805 veb->stat_offsets_loaded, 806 &oes->rx_unicast, &es->rx_unicast); 807 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 808 veb->stat_offsets_loaded, 809 &oes->rx_multicast, &es->rx_multicast); 810 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 811 veb->stat_offsets_loaded, 812 &oes->rx_broadcast, &es->rx_broadcast); 813 814 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 815 veb->stat_offsets_loaded, 816 &oes->tx_bytes, &es->tx_bytes); 817 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 818 veb->stat_offsets_loaded, 819 &oes->tx_unicast, &es->tx_unicast); 820 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 821 veb->stat_offsets_loaded, 822 &oes->tx_multicast, &es->tx_multicast); 823 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 824 veb->stat_offsets_loaded, 825 &oes->tx_broadcast, &es->tx_broadcast); 826 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 827 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 828 I40E_GLVEBTC_RPCL(i, idx), 829 veb->stat_offsets_loaded, 830 &veb_oes->tc_rx_packets[i], 831 &veb_es->tc_rx_packets[i]); 832 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 833 I40E_GLVEBTC_RBCL(i, idx), 834 veb->stat_offsets_loaded, 835 &veb_oes->tc_rx_bytes[i], 836 &veb_es->tc_rx_bytes[i]); 837 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 838 I40E_GLVEBTC_TPCL(i, idx), 839 veb->stat_offsets_loaded, 840 &veb_oes->tc_tx_packets[i], 841 &veb_es->tc_tx_packets[i]); 842 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 843 I40E_GLVEBTC_TBCL(i, idx), 844 veb->stat_offsets_loaded, 845 &veb_oes->tc_tx_bytes[i], 846 &veb_es->tc_tx_bytes[i]); 847 } 848 veb->stat_offsets_loaded = true; 849 } 850 851 /** 852 * i40e_update_vsi_stats - Update the vsi statistics counters. 853 * @vsi: the VSI to be updated 854 * 855 * There are a few instances where we store the same stat in a 856 * couple of different structs. This is partly because we have 857 * the netdev stats that need to be filled out, which is slightly 858 * different from the "eth_stats" defined by the chip and used in 859 * VF communications. We sort it out here. 860 **/ 861 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 862 { 863 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 864 struct i40e_pf *pf = vsi->back; 865 struct rtnl_link_stats64 *ons; 866 struct rtnl_link_stats64 *ns; /* netdev stats */ 867 struct i40e_eth_stats *oes; 868 struct i40e_eth_stats *es; /* device's eth stats */ 869 u64 tx_restart, tx_busy; 870 struct i40e_ring *p; 871 u64 bytes, packets; 872 unsigned int start; 873 u64 tx_linearize; 874 u64 tx_force_wb; 875 u64 tx_stopped; 876 u64 rx_p, rx_b; 877 u64 tx_p, tx_b; 878 u16 q; 879 880 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 881 test_bit(__I40E_CONFIG_BUSY, pf->state)) 882 return; 883 884 ns = i40e_get_vsi_stats_struct(vsi); 885 ons = &vsi->net_stats_offsets; 886 es = &vsi->eth_stats; 887 oes = &vsi->eth_stats_offsets; 888 889 /* Gather up the netdev and vsi stats that the driver collects 890 * on the fly during packet processing 891 */ 892 rx_b = rx_p = 0; 893 tx_b = tx_p = 0; 894 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 895 tx_stopped = 0; 896 rx_page = 0; 897 rx_buf = 0; 898 rx_reuse = 0; 899 rx_alloc = 0; 900 rx_waive = 0; 901 rx_busy = 0; 902 rcu_read_lock(); 903 for (q = 0; q < vsi->num_queue_pairs; q++) { 904 /* locate Tx ring */ 905 p = READ_ONCE(vsi->tx_rings[q]); 906 if (!p) 907 continue; 908 909 do { 910 start = u64_stats_fetch_begin(&p->syncp); 911 packets = p->stats.packets; 912 bytes = p->stats.bytes; 913 } while (u64_stats_fetch_retry(&p->syncp, start)); 914 tx_b += bytes; 915 tx_p += packets; 916 tx_restart += p->tx_stats.restart_queue; 917 tx_busy += p->tx_stats.tx_busy; 918 tx_linearize += p->tx_stats.tx_linearize; 919 tx_force_wb += p->tx_stats.tx_force_wb; 920 tx_stopped += p->tx_stats.tx_stopped; 921 922 /* locate Rx ring */ 923 p = READ_ONCE(vsi->rx_rings[q]); 924 if (!p) 925 continue; 926 927 do { 928 start = u64_stats_fetch_begin(&p->syncp); 929 packets = p->stats.packets; 930 bytes = p->stats.bytes; 931 } while (u64_stats_fetch_retry(&p->syncp, start)); 932 rx_b += bytes; 933 rx_p += packets; 934 rx_buf += p->rx_stats.alloc_buff_failed; 935 rx_page += p->rx_stats.alloc_page_failed; 936 rx_reuse += p->rx_stats.page_reuse_count; 937 rx_alloc += p->rx_stats.page_alloc_count; 938 rx_waive += p->rx_stats.page_waive_count; 939 rx_busy += p->rx_stats.page_busy_count; 940 941 if (i40e_enabled_xdp_vsi(vsi)) { 942 /* locate XDP ring */ 943 p = READ_ONCE(vsi->xdp_rings[q]); 944 if (!p) 945 continue; 946 947 do { 948 start = u64_stats_fetch_begin(&p->syncp); 949 packets = p->stats.packets; 950 bytes = p->stats.bytes; 951 } while (u64_stats_fetch_retry(&p->syncp, start)); 952 tx_b += bytes; 953 tx_p += packets; 954 tx_restart += p->tx_stats.restart_queue; 955 tx_busy += p->tx_stats.tx_busy; 956 tx_linearize += p->tx_stats.tx_linearize; 957 tx_force_wb += p->tx_stats.tx_force_wb; 958 } 959 } 960 rcu_read_unlock(); 961 vsi->tx_restart = tx_restart; 962 vsi->tx_busy = tx_busy; 963 vsi->tx_linearize = tx_linearize; 964 vsi->tx_force_wb = tx_force_wb; 965 vsi->tx_stopped = tx_stopped; 966 vsi->rx_page_failed = rx_page; 967 vsi->rx_buf_failed = rx_buf; 968 vsi->rx_page_reuse = rx_reuse; 969 vsi->rx_page_alloc = rx_alloc; 970 vsi->rx_page_waive = rx_waive; 971 vsi->rx_page_busy = rx_busy; 972 973 ns->rx_packets = rx_p; 974 ns->rx_bytes = rx_b; 975 ns->tx_packets = tx_p; 976 ns->tx_bytes = tx_b; 977 978 /* update netdev stats from eth stats */ 979 i40e_update_eth_stats(vsi); 980 ons->tx_errors = oes->tx_errors; 981 ns->tx_errors = es->tx_errors; 982 ons->multicast = oes->rx_multicast; 983 ns->multicast = es->rx_multicast; 984 ons->rx_dropped = oes->rx_discards_other; 985 ns->rx_dropped = es->rx_discards_other; 986 ons->rx_missed_errors = oes->rx_discards; 987 ns->rx_missed_errors = es->rx_discards; 988 ons->tx_dropped = oes->tx_discards; 989 ns->tx_dropped = es->tx_discards; 990 991 /* pull in a couple PF stats if this is the main vsi */ 992 if (vsi->type == I40E_VSI_MAIN) { 993 ns->rx_crc_errors = pf->stats.crc_errors; 994 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 995 ns->rx_length_errors = pf->stats.rx_length_errors; 996 } 997 } 998 999 /** 1000 * i40e_update_pf_stats - Update the PF statistics counters. 1001 * @pf: the PF to be updated 1002 **/ 1003 static void i40e_update_pf_stats(struct i40e_pf *pf) 1004 { 1005 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1006 struct i40e_hw_port_stats *nsd = &pf->stats; 1007 struct i40e_hw *hw = &pf->hw; 1008 u32 val; 1009 int i; 1010 1011 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1012 I40E_GLPRT_GORCL(hw->port), 1013 pf->stat_offsets_loaded, 1014 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1015 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1016 I40E_GLPRT_GOTCL(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1019 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->eth.rx_discards, 1022 &nsd->eth.rx_discards); 1023 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1024 I40E_GLPRT_UPRCL(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->eth.rx_unicast, 1027 &nsd->eth.rx_unicast); 1028 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1029 I40E_GLPRT_MPRCL(hw->port), 1030 pf->stat_offsets_loaded, 1031 &osd->eth.rx_multicast, 1032 &nsd->eth.rx_multicast); 1033 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1034 I40E_GLPRT_BPRCL(hw->port), 1035 pf->stat_offsets_loaded, 1036 &osd->eth.rx_broadcast, 1037 &nsd->eth.rx_broadcast); 1038 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1039 I40E_GLPRT_UPTCL(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->eth.tx_unicast, 1042 &nsd->eth.tx_unicast); 1043 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1044 I40E_GLPRT_MPTCL(hw->port), 1045 pf->stat_offsets_loaded, 1046 &osd->eth.tx_multicast, 1047 &nsd->eth.tx_multicast); 1048 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1049 I40E_GLPRT_BPTCL(hw->port), 1050 pf->stat_offsets_loaded, 1051 &osd->eth.tx_broadcast, 1052 &nsd->eth.tx_broadcast); 1053 1054 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1055 pf->stat_offsets_loaded, 1056 &osd->tx_dropped_link_down, 1057 &nsd->tx_dropped_link_down); 1058 1059 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1060 pf->stat_offsets_loaded, 1061 &osd->crc_errors, &nsd->crc_errors); 1062 1063 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1064 pf->stat_offsets_loaded, 1065 &osd->illegal_bytes, &nsd->illegal_bytes); 1066 1067 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1068 pf->stat_offsets_loaded, 1069 &osd->mac_local_faults, 1070 &nsd->mac_local_faults); 1071 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1072 pf->stat_offsets_loaded, 1073 &osd->mac_remote_faults, 1074 &nsd->mac_remote_faults); 1075 1076 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1077 pf->stat_offsets_loaded, 1078 &osd->rx_length_errors, 1079 &nsd->rx_length_errors); 1080 1081 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1082 pf->stat_offsets_loaded, 1083 &osd->link_xon_rx, &nsd->link_xon_rx); 1084 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1085 pf->stat_offsets_loaded, 1086 &osd->link_xon_tx, &nsd->link_xon_tx); 1087 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1088 pf->stat_offsets_loaded, 1089 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1090 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1091 pf->stat_offsets_loaded, 1092 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1093 1094 for (i = 0; i < 8; i++) { 1095 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1096 pf->stat_offsets_loaded, 1097 &osd->priority_xoff_rx[i], 1098 &nsd->priority_xoff_rx[i]); 1099 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1100 pf->stat_offsets_loaded, 1101 &osd->priority_xon_rx[i], 1102 &nsd->priority_xon_rx[i]); 1103 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1104 pf->stat_offsets_loaded, 1105 &osd->priority_xon_tx[i], 1106 &nsd->priority_xon_tx[i]); 1107 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1108 pf->stat_offsets_loaded, 1109 &osd->priority_xoff_tx[i], 1110 &nsd->priority_xoff_tx[i]); 1111 i40e_stat_update32(hw, 1112 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1113 pf->stat_offsets_loaded, 1114 &osd->priority_xon_2_xoff[i], 1115 &nsd->priority_xon_2_xoff[i]); 1116 } 1117 1118 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1119 I40E_GLPRT_PRC64L(hw->port), 1120 pf->stat_offsets_loaded, 1121 &osd->rx_size_64, &nsd->rx_size_64); 1122 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1123 I40E_GLPRT_PRC127L(hw->port), 1124 pf->stat_offsets_loaded, 1125 &osd->rx_size_127, &nsd->rx_size_127); 1126 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1127 I40E_GLPRT_PRC255L(hw->port), 1128 pf->stat_offsets_loaded, 1129 &osd->rx_size_255, &nsd->rx_size_255); 1130 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1131 I40E_GLPRT_PRC511L(hw->port), 1132 pf->stat_offsets_loaded, 1133 &osd->rx_size_511, &nsd->rx_size_511); 1134 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1135 I40E_GLPRT_PRC1023L(hw->port), 1136 pf->stat_offsets_loaded, 1137 &osd->rx_size_1023, &nsd->rx_size_1023); 1138 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1139 I40E_GLPRT_PRC1522L(hw->port), 1140 pf->stat_offsets_loaded, 1141 &osd->rx_size_1522, &nsd->rx_size_1522); 1142 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1143 I40E_GLPRT_PRC9522L(hw->port), 1144 pf->stat_offsets_loaded, 1145 &osd->rx_size_big, &nsd->rx_size_big); 1146 1147 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1148 I40E_GLPRT_PTC64L(hw->port), 1149 pf->stat_offsets_loaded, 1150 &osd->tx_size_64, &nsd->tx_size_64); 1151 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1152 I40E_GLPRT_PTC127L(hw->port), 1153 pf->stat_offsets_loaded, 1154 &osd->tx_size_127, &nsd->tx_size_127); 1155 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1156 I40E_GLPRT_PTC255L(hw->port), 1157 pf->stat_offsets_loaded, 1158 &osd->tx_size_255, &nsd->tx_size_255); 1159 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1160 I40E_GLPRT_PTC511L(hw->port), 1161 pf->stat_offsets_loaded, 1162 &osd->tx_size_511, &nsd->tx_size_511); 1163 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1164 I40E_GLPRT_PTC1023L(hw->port), 1165 pf->stat_offsets_loaded, 1166 &osd->tx_size_1023, &nsd->tx_size_1023); 1167 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1168 I40E_GLPRT_PTC1522L(hw->port), 1169 pf->stat_offsets_loaded, 1170 &osd->tx_size_1522, &nsd->tx_size_1522); 1171 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1172 I40E_GLPRT_PTC9522L(hw->port), 1173 pf->stat_offsets_loaded, 1174 &osd->tx_size_big, &nsd->tx_size_big); 1175 1176 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1177 pf->stat_offsets_loaded, 1178 &osd->rx_undersize, &nsd->rx_undersize); 1179 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1180 pf->stat_offsets_loaded, 1181 &osd->rx_fragments, &nsd->rx_fragments); 1182 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1183 pf->stat_offsets_loaded, 1184 &osd->rx_oversize, &nsd->rx_oversize); 1185 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1186 pf->stat_offsets_loaded, 1187 &osd->rx_jabber, &nsd->rx_jabber); 1188 1189 /* FDIR stats */ 1190 i40e_stat_update_and_clear32(hw, 1191 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1192 &nsd->fd_atr_match); 1193 i40e_stat_update_and_clear32(hw, 1194 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1195 &nsd->fd_sb_match); 1196 i40e_stat_update_and_clear32(hw, 1197 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1198 &nsd->fd_atr_tunnel_match); 1199 1200 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1201 nsd->tx_lpi_status = 1202 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val); 1203 nsd->rx_lpi_status = 1204 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val); 1205 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1206 pf->stat_offsets_loaded, 1207 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1208 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1209 pf->stat_offsets_loaded, 1210 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1211 1212 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1213 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1214 nsd->fd_sb_status = true; 1215 else 1216 nsd->fd_sb_status = false; 1217 1218 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1219 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1220 nsd->fd_atr_status = true; 1221 else 1222 nsd->fd_atr_status = false; 1223 1224 pf->stat_offsets_loaded = true; 1225 } 1226 1227 /** 1228 * i40e_update_stats - Update the various statistics counters. 1229 * @vsi: the VSI to be updated 1230 * 1231 * Update the various stats for this VSI and its related entities. 1232 **/ 1233 void i40e_update_stats(struct i40e_vsi *vsi) 1234 { 1235 struct i40e_pf *pf = vsi->back; 1236 1237 if (vsi->type == I40E_VSI_MAIN) 1238 i40e_update_pf_stats(pf); 1239 1240 i40e_update_vsi_stats(vsi); 1241 } 1242 1243 /** 1244 * i40e_count_filters - counts VSI mac filters 1245 * @vsi: the VSI to be searched 1246 * 1247 * Returns count of mac filters 1248 **/ 1249 int i40e_count_filters(struct i40e_vsi *vsi) 1250 { 1251 struct i40e_mac_filter *f; 1252 struct hlist_node *h; 1253 int bkt; 1254 int cnt = 0; 1255 1256 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1257 if (f->state == I40E_FILTER_NEW || 1258 f->state == I40E_FILTER_NEW_SYNC || 1259 f->state == I40E_FILTER_ACTIVE) 1260 ++cnt; 1261 } 1262 1263 return cnt; 1264 } 1265 1266 /** 1267 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1268 * @vsi: the VSI to be searched 1269 * @macaddr: the MAC address 1270 * @vlan: the vlan 1271 * 1272 * Returns ptr to the filter object or NULL 1273 **/ 1274 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1275 const u8 *macaddr, s16 vlan) 1276 { 1277 struct i40e_mac_filter *f; 1278 u64 key; 1279 1280 if (!vsi || !macaddr) 1281 return NULL; 1282 1283 key = i40e_addr_to_hkey(macaddr); 1284 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1285 if ((ether_addr_equal(macaddr, f->macaddr)) && 1286 (vlan == f->vlan)) 1287 return f; 1288 } 1289 return NULL; 1290 } 1291 1292 /** 1293 * i40e_find_mac - Find a mac addr in the macvlan filters list 1294 * @vsi: the VSI to be searched 1295 * @macaddr: the MAC address we are searching for 1296 * 1297 * Returns the first filter with the provided MAC address or NULL if 1298 * MAC address was not found 1299 **/ 1300 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1301 { 1302 struct i40e_mac_filter *f; 1303 u64 key; 1304 1305 if (!vsi || !macaddr) 1306 return NULL; 1307 1308 key = i40e_addr_to_hkey(macaddr); 1309 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1310 if ((ether_addr_equal(macaddr, f->macaddr))) 1311 return f; 1312 } 1313 return NULL; 1314 } 1315 1316 /** 1317 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1318 * @vsi: the VSI to be searched 1319 * 1320 * Returns true if VSI is in vlan mode or false otherwise 1321 **/ 1322 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1323 { 1324 /* If we have a PVID, always operate in VLAN mode */ 1325 if (vsi->info.pvid) 1326 return true; 1327 1328 /* We need to operate in VLAN mode whenever we have any filters with 1329 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1330 * time, incurring search cost repeatedly. However, we can notice two 1331 * things: 1332 * 1333 * 1) the only place where we can gain a VLAN filter is in 1334 * i40e_add_filter. 1335 * 1336 * 2) the only place where filters are actually removed is in 1337 * i40e_sync_filters_subtask. 1338 * 1339 * Thus, we can simply use a boolean value, has_vlan_filters which we 1340 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1341 * we have to perform the full search after deleting filters in 1342 * i40e_sync_filters_subtask, but we already have to search 1343 * filters here and can perform the check at the same time. This 1344 * results in avoiding embedding a loop for VLAN mode inside another 1345 * loop over all the filters, and should maintain correctness as noted 1346 * above. 1347 */ 1348 return vsi->has_vlan_filter; 1349 } 1350 1351 /** 1352 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1353 * @vsi: the VSI to configure 1354 * @tmp_add_list: list of filters ready to be added 1355 * @tmp_del_list: list of filters ready to be deleted 1356 * @vlan_filters: the number of active VLAN filters 1357 * 1358 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1359 * behave as expected. If we have any active VLAN filters remaining or about 1360 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1361 * so that they only match against untagged traffic. If we no longer have any 1362 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1363 * so that they match against both tagged and untagged traffic. In this way, 1364 * we ensure that we correctly receive the desired traffic. This ensures that 1365 * when we have an active VLAN we will receive only untagged traffic and 1366 * traffic matching active VLANs. If we have no active VLANs then we will 1367 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1368 * 1369 * Finally, in a similar fashion, this function also corrects filters when 1370 * there is an active PVID assigned to this VSI. 1371 * 1372 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1373 * 1374 * This function is only expected to be called from within 1375 * i40e_sync_vsi_filters. 1376 * 1377 * NOTE: This function expects to be called while under the 1378 * mac_filter_hash_lock 1379 */ 1380 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1381 struct hlist_head *tmp_add_list, 1382 struct hlist_head *tmp_del_list, 1383 int vlan_filters) 1384 { 1385 s16 pvid = le16_to_cpu(vsi->info.pvid); 1386 struct i40e_mac_filter *f, *add_head; 1387 struct i40e_new_mac_filter *new; 1388 struct hlist_node *h; 1389 int bkt, new_vlan; 1390 1391 /* To determine if a particular filter needs to be replaced we 1392 * have the three following conditions: 1393 * 1394 * a) if we have a PVID assigned, then all filters which are 1395 * not marked as VLAN=PVID must be replaced with filters that 1396 * are. 1397 * b) otherwise, if we have any active VLANS, all filters 1398 * which are marked as VLAN=-1 must be replaced with 1399 * filters marked as VLAN=0 1400 * c) finally, if we do not have any active VLANS, all filters 1401 * which are marked as VLAN=0 must be replaced with filters 1402 * marked as VLAN=-1 1403 */ 1404 1405 /* Update the filters about to be added in place */ 1406 hlist_for_each_entry(new, tmp_add_list, hlist) { 1407 if (pvid && new->f->vlan != pvid) 1408 new->f->vlan = pvid; 1409 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1410 new->f->vlan = 0; 1411 else if (!vlan_filters && new->f->vlan == 0) 1412 new->f->vlan = I40E_VLAN_ANY; 1413 } 1414 1415 /* Update the remaining active filters */ 1416 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1417 /* Combine the checks for whether a filter needs to be changed 1418 * and then determine the new VLAN inside the if block, in 1419 * order to avoid duplicating code for adding the new filter 1420 * then deleting the old filter. 1421 */ 1422 if ((pvid && f->vlan != pvid) || 1423 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1424 (!vlan_filters && f->vlan == 0)) { 1425 /* Determine the new vlan we will be adding */ 1426 if (pvid) 1427 new_vlan = pvid; 1428 else if (vlan_filters) 1429 new_vlan = 0; 1430 else 1431 new_vlan = I40E_VLAN_ANY; 1432 1433 /* Create the new filter */ 1434 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1435 if (!add_head) 1436 return -ENOMEM; 1437 1438 /* Create a temporary i40e_new_mac_filter */ 1439 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1440 if (!new) 1441 return -ENOMEM; 1442 1443 new->f = add_head; 1444 new->state = add_head->state; 1445 if (add_head->state == I40E_FILTER_NEW) 1446 add_head->state = I40E_FILTER_NEW_SYNC; 1447 1448 /* Add the new filter to the tmp list */ 1449 hlist_add_head(&new->hlist, tmp_add_list); 1450 1451 /* Put the original filter into the delete list */ 1452 f->state = I40E_FILTER_REMOVE; 1453 hash_del(&f->hlist); 1454 hlist_add_head(&f->hlist, tmp_del_list); 1455 } 1456 } 1457 1458 vsi->has_vlan_filter = !!vlan_filters; 1459 1460 return 0; 1461 } 1462 1463 /** 1464 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1465 * @vsi: the vsi to configure 1466 * @new_mac: new mac filter to be added 1467 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1468 * @vlan_filters: the number of active VLAN filters 1469 * @trusted: flag if the VF is trusted 1470 * 1471 * Get new VLAN id based on current VLAN filters, trust, PVID 1472 * and vf-vlan-prune-disable flag. 1473 * 1474 * Returns the value of the new vlan filter or 1475 * the old value if no new filter is needed. 1476 */ 1477 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1478 struct i40e_new_mac_filter *new_mac, 1479 struct i40e_mac_filter *f, 1480 int vlan_filters, 1481 bool trusted) 1482 { 1483 s16 pvid = le16_to_cpu(vsi->info.pvid); 1484 struct i40e_pf *pf = vsi->back; 1485 bool is_any; 1486 1487 if (new_mac) 1488 f = new_mac->f; 1489 1490 if (pvid && f->vlan != pvid) 1491 return pvid; 1492 1493 is_any = (trusted || 1494 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1495 1496 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1497 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1498 (is_any && !vlan_filters && f->vlan == 0)) { 1499 if (is_any) 1500 return I40E_VLAN_ANY; 1501 else 1502 return 0; 1503 } 1504 1505 return f->vlan; 1506 } 1507 1508 /** 1509 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1510 * @vsi: the vsi to configure 1511 * @tmp_add_list: list of filters ready to be added 1512 * @tmp_del_list: list of filters ready to be deleted 1513 * @vlan_filters: the number of active VLAN filters 1514 * @trusted: flag if the VF is trusted 1515 * 1516 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1517 * and vf-vlan-prune-disable flag. 1518 * 1519 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1520 * 1521 * This function is only expected to be called from within 1522 * i40e_sync_vsi_filters. 1523 * 1524 * NOTE: This function expects to be called while under the 1525 * mac_filter_hash_lock 1526 */ 1527 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1528 struct hlist_head *tmp_add_list, 1529 struct hlist_head *tmp_del_list, 1530 int vlan_filters, 1531 bool trusted) 1532 { 1533 struct i40e_mac_filter *f, *add_head; 1534 struct i40e_new_mac_filter *new_mac; 1535 struct hlist_node *h; 1536 int bkt, new_vlan; 1537 1538 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1539 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1540 vlan_filters, trusted); 1541 } 1542 1543 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1544 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1545 trusted); 1546 if (new_vlan != f->vlan) { 1547 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1548 if (!add_head) 1549 return -ENOMEM; 1550 /* Create a temporary i40e_new_mac_filter */ 1551 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1552 if (!new_mac) 1553 return -ENOMEM; 1554 new_mac->f = add_head; 1555 new_mac->state = add_head->state; 1556 if (add_head->state == I40E_FILTER_NEW) 1557 add_head->state = I40E_FILTER_NEW_SYNC; 1558 1559 /* Add the new filter to the tmp list */ 1560 hlist_add_head(&new_mac->hlist, tmp_add_list); 1561 1562 /* Put the original filter into the delete list */ 1563 f->state = I40E_FILTER_REMOVE; 1564 hash_del(&f->hlist); 1565 hlist_add_head(&f->hlist, tmp_del_list); 1566 } 1567 } 1568 1569 vsi->has_vlan_filter = !!vlan_filters; 1570 return 0; 1571 } 1572 1573 /** 1574 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1575 * @vsi: the PF Main VSI - inappropriate for any other VSI 1576 * @macaddr: the MAC address 1577 * 1578 * Remove whatever filter the firmware set up so the driver can manage 1579 * its own filtering intelligently. 1580 **/ 1581 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1582 { 1583 struct i40e_aqc_remove_macvlan_element_data element; 1584 struct i40e_pf *pf = vsi->back; 1585 1586 /* Only appropriate for the PF main VSI */ 1587 if (vsi->type != I40E_VSI_MAIN) 1588 return; 1589 1590 memset(&element, 0, sizeof(element)); 1591 ether_addr_copy(element.mac_addr, macaddr); 1592 element.vlan_tag = 0; 1593 /* Ignore error returns, some firmware does it this way... */ 1594 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1595 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1596 1597 memset(&element, 0, sizeof(element)); 1598 ether_addr_copy(element.mac_addr, macaddr); 1599 element.vlan_tag = 0; 1600 /* ...and some firmware does it this way. */ 1601 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1602 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1603 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1604 } 1605 1606 /** 1607 * i40e_add_filter - Add a mac/vlan filter to the VSI 1608 * @vsi: the VSI to be searched 1609 * @macaddr: the MAC address 1610 * @vlan: the vlan 1611 * 1612 * Returns ptr to the filter object or NULL when no memory available. 1613 * 1614 * NOTE: This function is expected to be called with mac_filter_hash_lock 1615 * being held. 1616 **/ 1617 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1618 const u8 *macaddr, s16 vlan) 1619 { 1620 struct i40e_mac_filter *f; 1621 u64 key; 1622 1623 if (!vsi || !macaddr) 1624 return NULL; 1625 1626 f = i40e_find_filter(vsi, macaddr, vlan); 1627 if (!f) { 1628 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1629 if (!f) 1630 return NULL; 1631 1632 /* Update the boolean indicating if we need to function in 1633 * VLAN mode. 1634 */ 1635 if (vlan >= 0) 1636 vsi->has_vlan_filter = true; 1637 1638 ether_addr_copy(f->macaddr, macaddr); 1639 f->vlan = vlan; 1640 f->state = I40E_FILTER_NEW; 1641 INIT_HLIST_NODE(&f->hlist); 1642 1643 key = i40e_addr_to_hkey(macaddr); 1644 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1645 1646 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1647 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1648 } 1649 1650 /* If we're asked to add a filter that has been marked for removal, it 1651 * is safe to simply restore it to active state. __i40e_del_filter 1652 * will have simply deleted any filters which were previously marked 1653 * NEW or FAILED, so if it is currently marked REMOVE it must have 1654 * previously been ACTIVE. Since we haven't yet run the sync filters 1655 * task, just restore this filter to the ACTIVE state so that the 1656 * sync task leaves it in place 1657 */ 1658 if (f->state == I40E_FILTER_REMOVE) 1659 f->state = I40E_FILTER_ACTIVE; 1660 1661 return f; 1662 } 1663 1664 /** 1665 * __i40e_del_filter - Remove a specific filter from the VSI 1666 * @vsi: VSI to remove from 1667 * @f: the filter to remove from the list 1668 * 1669 * This function should be called instead of i40e_del_filter only if you know 1670 * the exact filter you will remove already, such as via i40e_find_filter or 1671 * i40e_find_mac. 1672 * 1673 * NOTE: This function is expected to be called with mac_filter_hash_lock 1674 * being held. 1675 * ANOTHER NOTE: This function MUST be called from within the context of 1676 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1677 * instead of list_for_each_entry(). 1678 **/ 1679 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1680 { 1681 if (!f) 1682 return; 1683 1684 /* If the filter was never added to firmware then we can just delete it 1685 * directly and we don't want to set the status to remove or else an 1686 * admin queue command will unnecessarily fire. 1687 */ 1688 if ((f->state == I40E_FILTER_FAILED) || 1689 (f->state == I40E_FILTER_NEW)) { 1690 hash_del(&f->hlist); 1691 kfree(f); 1692 } else { 1693 f->state = I40E_FILTER_REMOVE; 1694 } 1695 1696 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1697 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1698 } 1699 1700 /** 1701 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1702 * @vsi: the VSI to be searched 1703 * @macaddr: the MAC address 1704 * @vlan: the VLAN 1705 * 1706 * NOTE: This function is expected to be called with mac_filter_hash_lock 1707 * being held. 1708 * ANOTHER NOTE: This function MUST be called from within the context of 1709 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1710 * instead of list_for_each_entry(). 1711 **/ 1712 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1713 { 1714 struct i40e_mac_filter *f; 1715 1716 if (!vsi || !macaddr) 1717 return; 1718 1719 f = i40e_find_filter(vsi, macaddr, vlan); 1720 __i40e_del_filter(vsi, f); 1721 } 1722 1723 /** 1724 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1725 * @vsi: the VSI to be searched 1726 * @macaddr: the mac address to be filtered 1727 * 1728 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1729 * go through all the macvlan filters and add a macvlan filter for each 1730 * unique vlan that already exists. If a PVID has been assigned, instead only 1731 * add the macaddr to that VLAN. 1732 * 1733 * Returns last filter added on success, else NULL 1734 **/ 1735 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1736 const u8 *macaddr) 1737 { 1738 struct i40e_mac_filter *f, *add = NULL; 1739 struct hlist_node *h; 1740 int bkt; 1741 1742 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1743 if (vsi->info.pvid) 1744 return i40e_add_filter(vsi, macaddr, 1745 le16_to_cpu(vsi->info.pvid)); 1746 1747 if (!i40e_is_vsi_in_vlan(vsi)) 1748 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1749 1750 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1751 if (f->state == I40E_FILTER_REMOVE) 1752 continue; 1753 add = i40e_add_filter(vsi, macaddr, f->vlan); 1754 if (!add) 1755 return NULL; 1756 } 1757 1758 return add; 1759 } 1760 1761 /** 1762 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1763 * @vsi: the VSI to be searched 1764 * @macaddr: the mac address to be removed 1765 * 1766 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1767 * associated with. 1768 * 1769 * Returns 0 for success, or error 1770 **/ 1771 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1772 { 1773 struct i40e_mac_filter *f; 1774 struct hlist_node *h; 1775 bool found = false; 1776 int bkt; 1777 1778 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1779 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1780 if (ether_addr_equal(macaddr, f->macaddr)) { 1781 __i40e_del_filter(vsi, f); 1782 found = true; 1783 } 1784 } 1785 1786 if (found) 1787 return 0; 1788 else 1789 return -ENOENT; 1790 } 1791 1792 /** 1793 * i40e_set_mac - NDO callback to set mac address 1794 * @netdev: network interface device structure 1795 * @p: pointer to an address structure 1796 * 1797 * Returns 0 on success, negative on failure 1798 **/ 1799 static int i40e_set_mac(struct net_device *netdev, void *p) 1800 { 1801 struct i40e_netdev_priv *np = netdev_priv(netdev); 1802 struct i40e_vsi *vsi = np->vsi; 1803 struct i40e_pf *pf = vsi->back; 1804 struct i40e_hw *hw = &pf->hw; 1805 struct sockaddr *addr = p; 1806 1807 if (!is_valid_ether_addr(addr->sa_data)) 1808 return -EADDRNOTAVAIL; 1809 1810 if (test_bit(__I40E_DOWN, pf->state) || 1811 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1812 return -EADDRNOTAVAIL; 1813 1814 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1815 netdev_info(netdev, "returning to hw mac address %pM\n", 1816 hw->mac.addr); 1817 else 1818 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1819 1820 /* Copy the address first, so that we avoid a possible race with 1821 * .set_rx_mode(). 1822 * - Remove old address from MAC filter 1823 * - Copy new address 1824 * - Add new address to MAC filter 1825 */ 1826 spin_lock_bh(&vsi->mac_filter_hash_lock); 1827 i40e_del_mac_filter(vsi, netdev->dev_addr); 1828 eth_hw_addr_set(netdev, addr->sa_data); 1829 i40e_add_mac_filter(vsi, netdev->dev_addr); 1830 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1831 1832 if (vsi->type == I40E_VSI_MAIN) { 1833 int ret; 1834 1835 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1836 addr->sa_data, NULL); 1837 if (ret) 1838 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1839 ERR_PTR(ret), 1840 i40e_aq_str(hw, hw->aq.asq_last_status)); 1841 } 1842 1843 /* schedule our worker thread which will take care of 1844 * applying the new filter changes 1845 */ 1846 i40e_service_event_schedule(pf); 1847 return 0; 1848 } 1849 1850 /** 1851 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1852 * @vsi: vsi structure 1853 * @seed: RSS hash seed 1854 * @lut: pointer to lookup table of lut_size 1855 * @lut_size: size of the lookup table 1856 **/ 1857 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1858 u8 *lut, u16 lut_size) 1859 { 1860 struct i40e_pf *pf = vsi->back; 1861 struct i40e_hw *hw = &pf->hw; 1862 int ret = 0; 1863 1864 if (seed) { 1865 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1866 (struct i40e_aqc_get_set_rss_key_data *)seed; 1867 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1868 if (ret) { 1869 dev_info(&pf->pdev->dev, 1870 "Cannot set RSS key, err %pe aq_err %s\n", 1871 ERR_PTR(ret), 1872 i40e_aq_str(hw, hw->aq.asq_last_status)); 1873 return ret; 1874 } 1875 } 1876 if (lut) { 1877 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1878 1879 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1880 if (ret) { 1881 dev_info(&pf->pdev->dev, 1882 "Cannot set RSS lut, err %pe aq_err %s\n", 1883 ERR_PTR(ret), 1884 i40e_aq_str(hw, hw->aq.asq_last_status)); 1885 return ret; 1886 } 1887 } 1888 return ret; 1889 } 1890 1891 /** 1892 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1893 * @vsi: VSI structure 1894 **/ 1895 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1896 { 1897 struct i40e_pf *pf = vsi->back; 1898 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1899 u8 *lut; 1900 int ret; 1901 1902 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1903 return 0; 1904 if (!vsi->rss_size) 1905 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1906 vsi->num_queue_pairs); 1907 if (!vsi->rss_size) 1908 return -EINVAL; 1909 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1910 if (!lut) 1911 return -ENOMEM; 1912 1913 /* Use the user configured hash keys and lookup table if there is one, 1914 * otherwise use default 1915 */ 1916 if (vsi->rss_lut_user) 1917 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1918 else 1919 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1920 if (vsi->rss_hkey_user) 1921 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1922 else 1923 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1924 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1925 kfree(lut); 1926 return ret; 1927 } 1928 1929 /** 1930 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1931 * @vsi: the VSI being configured, 1932 * @ctxt: VSI context structure 1933 * @enabled_tc: number of traffic classes to enable 1934 * 1935 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1936 **/ 1937 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1938 struct i40e_vsi_context *ctxt, 1939 u8 enabled_tc) 1940 { 1941 u16 qcount = 0, max_qcount, qmap, sections = 0; 1942 int i, override_q, pow, num_qps, ret; 1943 u8 netdev_tc = 0, offset = 0; 1944 1945 if (vsi->type != I40E_VSI_MAIN) 1946 return -EINVAL; 1947 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1948 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1949 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1950 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1951 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1952 1953 /* find the next higher power-of-2 of num queue pairs */ 1954 pow = ilog2(num_qps); 1955 if (!is_power_of_2(num_qps)) 1956 pow++; 1957 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1958 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1959 1960 /* Setup queue offset/count for all TCs for given VSI */ 1961 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1962 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1963 /* See if the given TC is enabled for the given VSI */ 1964 if (vsi->tc_config.enabled_tc & BIT(i)) { 1965 offset = vsi->mqprio_qopt.qopt.offset[i]; 1966 qcount = vsi->mqprio_qopt.qopt.count[i]; 1967 if (qcount > max_qcount) 1968 max_qcount = qcount; 1969 vsi->tc_config.tc_info[i].qoffset = offset; 1970 vsi->tc_config.tc_info[i].qcount = qcount; 1971 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1972 } else { 1973 /* TC is not enabled so set the offset to 1974 * default queue and allocate one queue 1975 * for the given TC. 1976 */ 1977 vsi->tc_config.tc_info[i].qoffset = 0; 1978 vsi->tc_config.tc_info[i].qcount = 1; 1979 vsi->tc_config.tc_info[i].netdev_tc = 0; 1980 } 1981 } 1982 1983 /* Set actual Tx/Rx queue pairs */ 1984 vsi->num_queue_pairs = offset + qcount; 1985 1986 /* Setup queue TC[0].qmap for given VSI context */ 1987 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1988 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1989 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1990 ctxt->info.valid_sections |= cpu_to_le16(sections); 1991 1992 /* Reconfigure RSS for main VSI with max queue count */ 1993 vsi->rss_size = max_qcount; 1994 ret = i40e_vsi_config_rss(vsi); 1995 if (ret) { 1996 dev_info(&vsi->back->pdev->dev, 1997 "Failed to reconfig rss for num_queues (%u)\n", 1998 max_qcount); 1999 return ret; 2000 } 2001 vsi->reconfig_rss = true; 2002 dev_dbg(&vsi->back->pdev->dev, 2003 "Reconfigured rss with num_queues (%u)\n", max_qcount); 2004 2005 /* Find queue count available for channel VSIs and starting offset 2006 * for channel VSIs 2007 */ 2008 override_q = vsi->mqprio_qopt.qopt.count[0]; 2009 if (override_q && override_q < vsi->num_queue_pairs) { 2010 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 2011 vsi->next_base_queue = override_q; 2012 } 2013 return 0; 2014 } 2015 2016 /** 2017 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 2018 * @vsi: the VSI being setup 2019 * @ctxt: VSI context structure 2020 * @enabled_tc: Enabled TCs bitmap 2021 * @is_add: True if called before Add VSI 2022 * 2023 * Setup VSI queue mapping for enabled traffic classes. 2024 **/ 2025 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2026 struct i40e_vsi_context *ctxt, 2027 u8 enabled_tc, 2028 bool is_add) 2029 { 2030 struct i40e_pf *pf = vsi->back; 2031 u16 num_tc_qps = 0; 2032 u16 sections = 0; 2033 u8 netdev_tc = 0; 2034 u16 numtc = 1; 2035 u16 qcount; 2036 u8 offset; 2037 u16 qmap; 2038 int i; 2039 2040 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2041 offset = 0; 2042 /* zero out queue mapping, it will get updated on the end of the function */ 2043 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2044 2045 if (vsi->type == I40E_VSI_MAIN) { 2046 /* This code helps add more queue to the VSI if we have 2047 * more cores than RSS can support, the higher cores will 2048 * be served by ATR or other filters. Furthermore, the 2049 * non-zero req_queue_pairs says that user requested a new 2050 * queue count via ethtool's set_channels, so use this 2051 * value for queues distribution across traffic classes 2052 * We need at least one queue pair for the interface 2053 * to be usable as we see in else statement. 2054 */ 2055 if (vsi->req_queue_pairs > 0) 2056 vsi->num_queue_pairs = vsi->req_queue_pairs; 2057 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2058 vsi->num_queue_pairs = pf->num_lan_msix; 2059 else 2060 vsi->num_queue_pairs = 1; 2061 } 2062 2063 /* Number of queues per enabled TC */ 2064 if (vsi->type == I40E_VSI_MAIN || 2065 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2066 num_tc_qps = vsi->num_queue_pairs; 2067 else 2068 num_tc_qps = vsi->alloc_queue_pairs; 2069 2070 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2071 /* Find numtc from enabled TC bitmap */ 2072 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2073 if (enabled_tc & BIT(i)) /* TC is enabled */ 2074 numtc++; 2075 } 2076 if (!numtc) { 2077 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2078 numtc = 1; 2079 } 2080 num_tc_qps = num_tc_qps / numtc; 2081 num_tc_qps = min_t(int, num_tc_qps, 2082 i40e_pf_get_max_q_per_tc(pf)); 2083 } 2084 2085 vsi->tc_config.numtc = numtc; 2086 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2087 2088 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2089 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2090 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2091 2092 /* Setup queue offset/count for all TCs for given VSI */ 2093 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2094 /* See if the given TC is enabled for the given VSI */ 2095 if (vsi->tc_config.enabled_tc & BIT(i)) { 2096 /* TC is enabled */ 2097 int pow, num_qps; 2098 2099 switch (vsi->type) { 2100 case I40E_VSI_MAIN: 2101 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2102 pf->flags) && 2103 !test_bit(I40E_FLAG_FD_ATR_ENA, 2104 pf->flags)) || 2105 vsi->tc_config.enabled_tc != 1) { 2106 qcount = min_t(int, pf->alloc_rss_size, 2107 num_tc_qps); 2108 break; 2109 } 2110 fallthrough; 2111 case I40E_VSI_FDIR: 2112 case I40E_VSI_SRIOV: 2113 case I40E_VSI_VMDQ2: 2114 default: 2115 qcount = num_tc_qps; 2116 WARN_ON(i != 0); 2117 break; 2118 } 2119 vsi->tc_config.tc_info[i].qoffset = offset; 2120 vsi->tc_config.tc_info[i].qcount = qcount; 2121 2122 /* find the next higher power-of-2 of num queue pairs */ 2123 num_qps = qcount; 2124 pow = 0; 2125 while (num_qps && (BIT_ULL(pow) < qcount)) { 2126 pow++; 2127 num_qps >>= 1; 2128 } 2129 2130 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2131 qmap = 2132 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2133 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2134 2135 offset += qcount; 2136 } else { 2137 /* TC is not enabled so set the offset to 2138 * default queue and allocate one queue 2139 * for the given TC. 2140 */ 2141 vsi->tc_config.tc_info[i].qoffset = 0; 2142 vsi->tc_config.tc_info[i].qcount = 1; 2143 vsi->tc_config.tc_info[i].netdev_tc = 0; 2144 2145 qmap = 0; 2146 } 2147 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2148 } 2149 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2150 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2151 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2152 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2153 vsi->num_queue_pairs = offset; 2154 2155 /* Scheduler section valid can only be set for ADD VSI */ 2156 if (is_add) { 2157 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2158 2159 ctxt->info.up_enable_bits = enabled_tc; 2160 } 2161 if (vsi->type == I40E_VSI_SRIOV) { 2162 ctxt->info.mapping_flags |= 2163 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2164 for (i = 0; i < vsi->num_queue_pairs; i++) 2165 ctxt->info.queue_mapping[i] = 2166 cpu_to_le16(vsi->base_queue + i); 2167 } else { 2168 ctxt->info.mapping_flags |= 2169 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2170 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2171 } 2172 ctxt->info.valid_sections |= cpu_to_le16(sections); 2173 } 2174 2175 /** 2176 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2177 * @netdev: the netdevice 2178 * @addr: address to add 2179 * 2180 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2181 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2182 */ 2183 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2184 { 2185 struct i40e_netdev_priv *np = netdev_priv(netdev); 2186 struct i40e_vsi *vsi = np->vsi; 2187 2188 if (i40e_add_mac_filter(vsi, addr)) 2189 return 0; 2190 else 2191 return -ENOMEM; 2192 } 2193 2194 /** 2195 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2196 * @netdev: the netdevice 2197 * @addr: address to add 2198 * 2199 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2200 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2201 */ 2202 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2203 { 2204 struct i40e_netdev_priv *np = netdev_priv(netdev); 2205 struct i40e_vsi *vsi = np->vsi; 2206 2207 /* Under some circumstances, we might receive a request to delete 2208 * our own device address from our uc list. Because we store the 2209 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2210 * such requests and not delete our device address from this list. 2211 */ 2212 if (ether_addr_equal(addr, netdev->dev_addr)) 2213 return 0; 2214 2215 i40e_del_mac_filter(vsi, addr); 2216 2217 return 0; 2218 } 2219 2220 /** 2221 * i40e_set_rx_mode - NDO callback to set the netdev filters 2222 * @netdev: network interface device structure 2223 **/ 2224 static void i40e_set_rx_mode(struct net_device *netdev) 2225 { 2226 struct i40e_netdev_priv *np = netdev_priv(netdev); 2227 struct i40e_vsi *vsi = np->vsi; 2228 2229 spin_lock_bh(&vsi->mac_filter_hash_lock); 2230 2231 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2232 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2233 2234 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2235 2236 /* check for other flag changes */ 2237 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2238 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2239 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2240 } 2241 } 2242 2243 /** 2244 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2245 * @vsi: Pointer to VSI struct 2246 * @from: Pointer to list which contains MAC filter entries - changes to 2247 * those entries needs to be undone. 2248 * 2249 * MAC filter entries from this list were slated for deletion. 2250 **/ 2251 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2252 struct hlist_head *from) 2253 { 2254 struct i40e_mac_filter *f; 2255 struct hlist_node *h; 2256 2257 hlist_for_each_entry_safe(f, h, from, hlist) { 2258 u64 key = i40e_addr_to_hkey(f->macaddr); 2259 2260 /* Move the element back into MAC filter list*/ 2261 hlist_del(&f->hlist); 2262 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2263 } 2264 } 2265 2266 /** 2267 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2268 * @vsi: Pointer to vsi struct 2269 * @from: Pointer to list which contains MAC filter entries - changes to 2270 * those entries needs to be undone. 2271 * 2272 * MAC filter entries from this list were slated for addition. 2273 **/ 2274 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2275 struct hlist_head *from) 2276 { 2277 struct i40e_new_mac_filter *new; 2278 struct hlist_node *h; 2279 2280 hlist_for_each_entry_safe(new, h, from, hlist) { 2281 /* We can simply free the wrapper structure */ 2282 hlist_del(&new->hlist); 2283 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2284 kfree(new); 2285 } 2286 } 2287 2288 /** 2289 * i40e_next_filter - Get the next non-broadcast filter from a list 2290 * @next: pointer to filter in list 2291 * 2292 * Returns the next non-broadcast filter in the list. Required so that we 2293 * ignore broadcast filters within the list, since these are not handled via 2294 * the normal firmware update path. 2295 */ 2296 static 2297 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2298 { 2299 hlist_for_each_entry_continue(next, hlist) { 2300 if (!is_broadcast_ether_addr(next->f->macaddr)) 2301 return next; 2302 } 2303 2304 return NULL; 2305 } 2306 2307 /** 2308 * i40e_update_filter_state - Update filter state based on return data 2309 * from firmware 2310 * @count: Number of filters added 2311 * @add_list: return data from fw 2312 * @add_head: pointer to first filter in current batch 2313 * 2314 * MAC filter entries from list were slated to be added to device. Returns 2315 * number of successful filters. Note that 0 does NOT mean success! 2316 **/ 2317 static int 2318 i40e_update_filter_state(int count, 2319 struct i40e_aqc_add_macvlan_element_data *add_list, 2320 struct i40e_new_mac_filter *add_head) 2321 { 2322 int retval = 0; 2323 int i; 2324 2325 for (i = 0; i < count; i++) { 2326 /* Always check status of each filter. We don't need to check 2327 * the firmware return status because we pre-set the filter 2328 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2329 * request to the adminq. Thus, if it no longer matches then 2330 * we know the filter is active. 2331 */ 2332 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2333 add_head->state = I40E_FILTER_FAILED; 2334 } else { 2335 add_head->state = I40E_FILTER_ACTIVE; 2336 retval++; 2337 } 2338 2339 add_head = i40e_next_filter(add_head); 2340 if (!add_head) 2341 break; 2342 } 2343 2344 return retval; 2345 } 2346 2347 /** 2348 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2349 * @vsi: ptr to the VSI 2350 * @vsi_name: name to display in messages 2351 * @list: the list of filters to send to firmware 2352 * @num_del: the number of filters to delete 2353 * @retval: Set to -EIO on failure to delete 2354 * 2355 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2356 * *retval instead of a return value so that success does not force ret_val to 2357 * be set to 0. This ensures that a sequence of calls to this function 2358 * preserve the previous value of *retval on successful delete. 2359 */ 2360 static 2361 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2362 struct i40e_aqc_remove_macvlan_element_data *list, 2363 int num_del, int *retval) 2364 { 2365 struct i40e_hw *hw = &vsi->back->hw; 2366 enum i40e_admin_queue_err aq_status; 2367 int aq_ret; 2368 2369 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2370 &aq_status); 2371 2372 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2373 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2374 *retval = -EIO; 2375 dev_info(&vsi->back->pdev->dev, 2376 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2377 vsi_name, ERR_PTR(aq_ret), 2378 i40e_aq_str(hw, aq_status)); 2379 } 2380 } 2381 2382 /** 2383 * i40e_aqc_add_filters - Request firmware to add a set of filters 2384 * @vsi: ptr to the VSI 2385 * @vsi_name: name to display in messages 2386 * @list: the list of filters to send to firmware 2387 * @add_head: Position in the add hlist 2388 * @num_add: the number of filters to add 2389 * 2390 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2391 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2392 * space for more filters. 2393 */ 2394 static 2395 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2396 struct i40e_aqc_add_macvlan_element_data *list, 2397 struct i40e_new_mac_filter *add_head, 2398 int num_add) 2399 { 2400 struct i40e_hw *hw = &vsi->back->hw; 2401 enum i40e_admin_queue_err aq_status; 2402 int fcnt; 2403 2404 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2405 fcnt = i40e_update_filter_state(num_add, list, add_head); 2406 2407 if (fcnt != num_add) { 2408 if (vsi->type == I40E_VSI_MAIN) { 2409 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2410 dev_warn(&vsi->back->pdev->dev, 2411 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2412 i40e_aq_str(hw, aq_status), vsi_name); 2413 } else if (vsi->type == I40E_VSI_SRIOV || 2414 vsi->type == I40E_VSI_VMDQ1 || 2415 vsi->type == I40E_VSI_VMDQ2) { 2416 dev_warn(&vsi->back->pdev->dev, 2417 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2418 i40e_aq_str(hw, aq_status), vsi_name, 2419 vsi_name); 2420 } else { 2421 dev_warn(&vsi->back->pdev->dev, 2422 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2423 i40e_aq_str(hw, aq_status), vsi_name, 2424 vsi->type); 2425 } 2426 } 2427 } 2428 2429 /** 2430 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2431 * @vsi: pointer to the VSI 2432 * @vsi_name: the VSI name 2433 * @f: filter data 2434 * 2435 * This function sets or clears the promiscuous broadcast flags for VLAN 2436 * filters in order to properly receive broadcast frames. Assumes that only 2437 * broadcast filters are passed. 2438 * 2439 * Returns status indicating success or failure; 2440 **/ 2441 static int 2442 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2443 struct i40e_mac_filter *f) 2444 { 2445 bool enable = f->state == I40E_FILTER_NEW || 2446 f->state == I40E_FILTER_NEW_SYNC; 2447 struct i40e_hw *hw = &vsi->back->hw; 2448 int aq_ret; 2449 2450 if (f->vlan == I40E_VLAN_ANY) { 2451 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2452 vsi->seid, 2453 enable, 2454 NULL); 2455 } else { 2456 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2457 vsi->seid, 2458 enable, 2459 f->vlan, 2460 NULL); 2461 } 2462 2463 if (aq_ret) { 2464 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2465 dev_warn(&vsi->back->pdev->dev, 2466 "Error %s, forcing overflow promiscuous on %s\n", 2467 i40e_aq_str(hw, hw->aq.asq_last_status), 2468 vsi_name); 2469 } 2470 2471 return aq_ret; 2472 } 2473 2474 /** 2475 * i40e_set_promiscuous - set promiscuous mode 2476 * @pf: board private structure 2477 * @promisc: promisc on or off 2478 * 2479 * There are different ways of setting promiscuous mode on a PF depending on 2480 * what state/environment we're in. This identifies and sets it appropriately. 2481 * Returns 0 on success. 2482 **/ 2483 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2484 { 2485 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 2486 struct i40e_hw *hw = &pf->hw; 2487 int aq_ret; 2488 2489 if (vsi->type == I40E_VSI_MAIN && 2490 i40e_pf_get_main_veb(pf) && 2491 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2492 /* set defport ON for Main VSI instead of true promisc 2493 * this way we will get all unicast/multicast and VLAN 2494 * promisc behavior but will not get VF or VMDq traffic 2495 * replicated on the Main VSI. 2496 */ 2497 if (promisc) 2498 aq_ret = i40e_aq_set_default_vsi(hw, 2499 vsi->seid, 2500 NULL); 2501 else 2502 aq_ret = i40e_aq_clear_default_vsi(hw, 2503 vsi->seid, 2504 NULL); 2505 if (aq_ret) { 2506 dev_info(&pf->pdev->dev, 2507 "Set default VSI failed, err %pe, aq_err %s\n", 2508 ERR_PTR(aq_ret), 2509 i40e_aq_str(hw, hw->aq.asq_last_status)); 2510 } 2511 } else { 2512 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2513 hw, 2514 vsi->seid, 2515 promisc, NULL, 2516 true); 2517 if (aq_ret) { 2518 dev_info(&pf->pdev->dev, 2519 "set unicast promisc failed, err %pe, aq_err %s\n", 2520 ERR_PTR(aq_ret), 2521 i40e_aq_str(hw, hw->aq.asq_last_status)); 2522 } 2523 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2524 hw, 2525 vsi->seid, 2526 promisc, NULL); 2527 if (aq_ret) { 2528 dev_info(&pf->pdev->dev, 2529 "set multicast promisc failed, err %pe, aq_err %s\n", 2530 ERR_PTR(aq_ret), 2531 i40e_aq_str(hw, hw->aq.asq_last_status)); 2532 } 2533 } 2534 2535 if (!aq_ret) 2536 pf->cur_promisc = promisc; 2537 2538 return aq_ret; 2539 } 2540 2541 /** 2542 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2543 * @vsi: ptr to the VSI 2544 * 2545 * Push any outstanding VSI filter changes through the AdminQ. 2546 * 2547 * Returns 0 or error value 2548 **/ 2549 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2550 { 2551 struct hlist_head tmp_add_list, tmp_del_list; 2552 struct i40e_mac_filter *f; 2553 struct i40e_new_mac_filter *new, *add_head = NULL; 2554 struct i40e_hw *hw = &vsi->back->hw; 2555 bool old_overflow, new_overflow; 2556 unsigned int failed_filters = 0; 2557 unsigned int vlan_filters = 0; 2558 char vsi_name[16] = "PF"; 2559 int filter_list_len = 0; 2560 u32 changed_flags = 0; 2561 struct hlist_node *h; 2562 struct i40e_pf *pf; 2563 int num_add = 0; 2564 int num_del = 0; 2565 int aq_ret = 0; 2566 int retval = 0; 2567 u16 cmd_flags; 2568 int list_size; 2569 int bkt; 2570 2571 /* empty array typed pointers, kcalloc later */ 2572 struct i40e_aqc_add_macvlan_element_data *add_list; 2573 struct i40e_aqc_remove_macvlan_element_data *del_list; 2574 2575 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2576 usleep_range(1000, 2000); 2577 pf = vsi->back; 2578 2579 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2580 2581 if (vsi->netdev) { 2582 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2583 vsi->current_netdev_flags = vsi->netdev->flags; 2584 } 2585 2586 INIT_HLIST_HEAD(&tmp_add_list); 2587 INIT_HLIST_HEAD(&tmp_del_list); 2588 2589 if (vsi->type == I40E_VSI_SRIOV) 2590 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2591 else if (vsi->type != I40E_VSI_MAIN) 2592 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2593 2594 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2595 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2596 2597 spin_lock_bh(&vsi->mac_filter_hash_lock); 2598 /* Create a list of filters to delete. */ 2599 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2600 if (f->state == I40E_FILTER_REMOVE) { 2601 /* Move the element into temporary del_list */ 2602 hash_del(&f->hlist); 2603 hlist_add_head(&f->hlist, &tmp_del_list); 2604 2605 /* Avoid counting removed filters */ 2606 continue; 2607 } 2608 if (f->state == I40E_FILTER_NEW) { 2609 /* Create a temporary i40e_new_mac_filter */ 2610 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2611 if (!new) 2612 goto err_no_memory_locked; 2613 2614 /* Store pointer to the real filter */ 2615 new->f = f; 2616 new->state = f->state; 2617 2618 /* Add it to the hash list */ 2619 hlist_add_head(&new->hlist, &tmp_add_list); 2620 f->state = I40E_FILTER_NEW_SYNC; 2621 } 2622 2623 /* Count the number of active (current and new) VLAN 2624 * filters we have now. Does not count filters which 2625 * are marked for deletion. 2626 */ 2627 if (f->vlan > 0) 2628 vlan_filters++; 2629 } 2630 2631 if (vsi->type != I40E_VSI_SRIOV) 2632 retval = i40e_correct_mac_vlan_filters 2633 (vsi, &tmp_add_list, &tmp_del_list, 2634 vlan_filters); 2635 else if (pf->vf) 2636 retval = i40e_correct_vf_mac_vlan_filters 2637 (vsi, &tmp_add_list, &tmp_del_list, 2638 vlan_filters, pf->vf[vsi->vf_id].trusted); 2639 2640 hlist_for_each_entry(new, &tmp_add_list, hlist) 2641 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2642 2643 if (retval) 2644 goto err_no_memory_locked; 2645 2646 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2647 } 2648 2649 /* Now process 'del_list' outside the lock */ 2650 if (!hlist_empty(&tmp_del_list)) { 2651 filter_list_len = hw->aq.asq_buf_size / 2652 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2653 list_size = filter_list_len * 2654 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2655 del_list = kzalloc(list_size, GFP_ATOMIC); 2656 if (!del_list) 2657 goto err_no_memory; 2658 2659 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2660 cmd_flags = 0; 2661 2662 /* handle broadcast filters by updating the broadcast 2663 * promiscuous flag and release filter list. 2664 */ 2665 if (is_broadcast_ether_addr(f->macaddr)) { 2666 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2667 2668 hlist_del(&f->hlist); 2669 kfree(f); 2670 continue; 2671 } 2672 2673 /* add to delete list */ 2674 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2675 if (f->vlan == I40E_VLAN_ANY) { 2676 del_list[num_del].vlan_tag = 0; 2677 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2678 } else { 2679 del_list[num_del].vlan_tag = 2680 cpu_to_le16((u16)(f->vlan)); 2681 } 2682 2683 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2684 del_list[num_del].flags = cmd_flags; 2685 num_del++; 2686 2687 /* flush a full buffer */ 2688 if (num_del == filter_list_len) { 2689 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2690 num_del, &retval); 2691 memset(del_list, 0, list_size); 2692 num_del = 0; 2693 } 2694 /* Release memory for MAC filter entries which were 2695 * synced up with HW. 2696 */ 2697 hlist_del(&f->hlist); 2698 kfree(f); 2699 } 2700 2701 if (num_del) { 2702 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2703 num_del, &retval); 2704 } 2705 2706 kfree(del_list); 2707 del_list = NULL; 2708 } 2709 2710 if (!hlist_empty(&tmp_add_list)) { 2711 /* Do all the adds now. */ 2712 filter_list_len = hw->aq.asq_buf_size / 2713 sizeof(struct i40e_aqc_add_macvlan_element_data); 2714 list_size = filter_list_len * 2715 sizeof(struct i40e_aqc_add_macvlan_element_data); 2716 add_list = kzalloc(list_size, GFP_ATOMIC); 2717 if (!add_list) 2718 goto err_no_memory; 2719 2720 num_add = 0; 2721 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2722 /* handle broadcast filters by updating the broadcast 2723 * promiscuous flag instead of adding a MAC filter. 2724 */ 2725 if (is_broadcast_ether_addr(new->f->macaddr)) { 2726 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2727 new->f)) 2728 new->state = I40E_FILTER_FAILED; 2729 else 2730 new->state = I40E_FILTER_ACTIVE; 2731 continue; 2732 } 2733 2734 /* add to add array */ 2735 if (num_add == 0) 2736 add_head = new; 2737 cmd_flags = 0; 2738 ether_addr_copy(add_list[num_add].mac_addr, 2739 new->f->macaddr); 2740 if (new->f->vlan == I40E_VLAN_ANY) { 2741 add_list[num_add].vlan_tag = 0; 2742 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2743 } else { 2744 add_list[num_add].vlan_tag = 2745 cpu_to_le16((u16)(new->f->vlan)); 2746 } 2747 add_list[num_add].queue_number = 0; 2748 /* set invalid match method for later detection */ 2749 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2750 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2751 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2752 num_add++; 2753 2754 /* flush a full buffer */ 2755 if (num_add == filter_list_len) { 2756 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2757 add_head, num_add); 2758 memset(add_list, 0, list_size); 2759 num_add = 0; 2760 } 2761 } 2762 if (num_add) { 2763 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2764 num_add); 2765 } 2766 /* Now move all of the filters from the temp add list back to 2767 * the VSI's list. 2768 */ 2769 spin_lock_bh(&vsi->mac_filter_hash_lock); 2770 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2771 /* Only update the state if we're still NEW */ 2772 if (new->f->state == I40E_FILTER_NEW || 2773 new->f->state == I40E_FILTER_NEW_SYNC) 2774 new->f->state = new->state; 2775 hlist_del(&new->hlist); 2776 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2777 kfree(new); 2778 } 2779 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2780 kfree(add_list); 2781 add_list = NULL; 2782 } 2783 2784 /* Determine the number of active and failed filters. */ 2785 spin_lock_bh(&vsi->mac_filter_hash_lock); 2786 vsi->active_filters = 0; 2787 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2788 if (f->state == I40E_FILTER_ACTIVE) 2789 vsi->active_filters++; 2790 else if (f->state == I40E_FILTER_FAILED) 2791 failed_filters++; 2792 } 2793 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2794 2795 /* Check if we are able to exit overflow promiscuous mode. We can 2796 * safely exit if we didn't just enter, we no longer have any failed 2797 * filters, and we have reduced filters below the threshold value. 2798 */ 2799 if (old_overflow && !failed_filters && 2800 vsi->active_filters < vsi->promisc_threshold) { 2801 dev_info(&pf->pdev->dev, 2802 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2803 vsi_name); 2804 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2805 vsi->promisc_threshold = 0; 2806 } 2807 2808 /* if the VF is not trusted do not do promisc */ 2809 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2810 !pf->vf[vsi->vf_id].trusted) { 2811 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2812 goto out; 2813 } 2814 2815 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2816 2817 /* If we are entering overflow promiscuous, we need to calculate a new 2818 * threshold for when we are safe to exit 2819 */ 2820 if (!old_overflow && new_overflow) 2821 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2822 2823 /* check for changes in promiscuous modes */ 2824 if (changed_flags & IFF_ALLMULTI) { 2825 bool cur_multipromisc; 2826 2827 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2828 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2829 vsi->seid, 2830 cur_multipromisc, 2831 NULL); 2832 if (aq_ret) { 2833 retval = i40e_aq_rc_to_posix(aq_ret, 2834 hw->aq.asq_last_status); 2835 dev_info(&pf->pdev->dev, 2836 "set multi promisc failed on %s, err %pe aq_err %s\n", 2837 vsi_name, 2838 ERR_PTR(aq_ret), 2839 i40e_aq_str(hw, hw->aq.asq_last_status)); 2840 } else { 2841 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2842 cur_multipromisc ? "entering" : "leaving"); 2843 } 2844 } 2845 2846 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2847 bool cur_promisc; 2848 2849 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2850 new_overflow); 2851 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2852 if (aq_ret) { 2853 retval = i40e_aq_rc_to_posix(aq_ret, 2854 hw->aq.asq_last_status); 2855 dev_info(&pf->pdev->dev, 2856 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2857 cur_promisc ? "on" : "off", 2858 vsi_name, 2859 ERR_PTR(aq_ret), 2860 i40e_aq_str(hw, hw->aq.asq_last_status)); 2861 } 2862 } 2863 out: 2864 /* if something went wrong then set the changed flag so we try again */ 2865 if (retval) 2866 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2867 2868 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2869 return retval; 2870 2871 err_no_memory: 2872 /* Restore elements on the temporary add and delete lists */ 2873 spin_lock_bh(&vsi->mac_filter_hash_lock); 2874 err_no_memory_locked: 2875 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2876 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2877 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2878 2879 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2880 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2881 return -ENOMEM; 2882 } 2883 2884 /** 2885 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2886 * @pf: board private structure 2887 **/ 2888 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2889 { 2890 struct i40e_vsi *vsi; 2891 int v; 2892 2893 if (!pf) 2894 return; 2895 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2896 return; 2897 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2898 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2899 return; 2900 } 2901 2902 i40e_pf_for_each_vsi(pf, v, vsi) { 2903 if ((vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2904 !test_bit(__I40E_VSI_RELEASING, vsi->state)) { 2905 int ret = i40e_sync_vsi_filters(vsi); 2906 2907 if (ret) { 2908 /* come back and try again later */ 2909 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2910 pf->state); 2911 break; 2912 } 2913 } 2914 } 2915 } 2916 2917 /** 2918 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2919 * 2920 * @vsi: VSI to calculate rx_buf_len from 2921 */ 2922 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2923 { 2924 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2925 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2926 2927 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2928 } 2929 2930 /** 2931 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2932 * @vsi: the vsi 2933 * @xdp_prog: XDP program 2934 **/ 2935 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2936 struct bpf_prog *xdp_prog) 2937 { 2938 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2939 u16 chain_len; 2940 2941 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2942 chain_len = 1; 2943 else 2944 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2945 2946 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2947 } 2948 2949 /** 2950 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2951 * @netdev: network interface device structure 2952 * @new_mtu: new value for maximum frame size 2953 * 2954 * Returns 0 on success, negative on failure 2955 **/ 2956 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2957 { 2958 struct i40e_netdev_priv *np = netdev_priv(netdev); 2959 struct i40e_vsi *vsi = np->vsi; 2960 struct i40e_pf *pf = vsi->back; 2961 int frame_size; 2962 2963 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2964 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2965 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2966 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2967 return -EINVAL; 2968 } 2969 2970 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2971 netdev->mtu, new_mtu); 2972 WRITE_ONCE(netdev->mtu, new_mtu); 2973 if (netif_running(netdev)) 2974 i40e_vsi_reinit_locked(vsi); 2975 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2976 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2977 return 0; 2978 } 2979 2980 /** 2981 * i40e_ioctl - Access the hwtstamp interface 2982 * @netdev: network interface device structure 2983 * @ifr: interface request data 2984 * @cmd: ioctl command 2985 **/ 2986 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2987 { 2988 struct i40e_netdev_priv *np = netdev_priv(netdev); 2989 struct i40e_pf *pf = np->vsi->back; 2990 2991 switch (cmd) { 2992 case SIOCGHWTSTAMP: 2993 return i40e_ptp_get_ts_config(pf, ifr); 2994 case SIOCSHWTSTAMP: 2995 return i40e_ptp_set_ts_config(pf, ifr); 2996 default: 2997 return -EOPNOTSUPP; 2998 } 2999 } 3000 3001 /** 3002 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 3003 * @vsi: the vsi being adjusted 3004 **/ 3005 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 3006 { 3007 struct i40e_vsi_context ctxt; 3008 int ret; 3009 3010 /* Don't modify stripping options if a port VLAN is active */ 3011 if (vsi->info.pvid) 3012 return; 3013 3014 if ((vsi->info.valid_sections & 3015 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3016 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 3017 return; /* already enabled */ 3018 3019 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3020 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3021 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 3022 3023 ctxt.seid = vsi->seid; 3024 ctxt.info = vsi->info; 3025 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3026 if (ret) { 3027 dev_info(&vsi->back->pdev->dev, 3028 "update vlan stripping failed, err %pe aq_err %s\n", 3029 ERR_PTR(ret), 3030 i40e_aq_str(&vsi->back->hw, 3031 vsi->back->hw.aq.asq_last_status)); 3032 } 3033 } 3034 3035 /** 3036 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 3037 * @vsi: the vsi being adjusted 3038 **/ 3039 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 3040 { 3041 struct i40e_vsi_context ctxt; 3042 int ret; 3043 3044 /* Don't modify stripping options if a port VLAN is active */ 3045 if (vsi->info.pvid) 3046 return; 3047 3048 if ((vsi->info.valid_sections & 3049 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3050 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3051 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3052 return; /* already disabled */ 3053 3054 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3055 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3056 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3057 3058 ctxt.seid = vsi->seid; 3059 ctxt.info = vsi->info; 3060 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3061 if (ret) { 3062 dev_info(&vsi->back->pdev->dev, 3063 "update vlan stripping failed, err %pe aq_err %s\n", 3064 ERR_PTR(ret), 3065 i40e_aq_str(&vsi->back->hw, 3066 vsi->back->hw.aq.asq_last_status)); 3067 } 3068 } 3069 3070 /** 3071 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3072 * @vsi: the vsi being configured 3073 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3074 * 3075 * This is a helper function for adding a new MAC/VLAN filter with the 3076 * specified VLAN for each existing MAC address already in the hash table. 3077 * This function does *not* perform any accounting to update filters based on 3078 * VLAN mode. 3079 * 3080 * NOTE: this function expects to be called while under the 3081 * mac_filter_hash_lock 3082 **/ 3083 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3084 { 3085 struct i40e_mac_filter *f, *add_f; 3086 struct hlist_node *h; 3087 int bkt; 3088 3089 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3090 /* If we're asked to add a filter that has been marked for 3091 * removal, it is safe to simply restore it to active state. 3092 * __i40e_del_filter will have simply deleted any filters which 3093 * were previously marked NEW or FAILED, so if it is currently 3094 * marked REMOVE it must have previously been ACTIVE. Since we 3095 * haven't yet run the sync filters task, just restore this 3096 * filter to the ACTIVE state so that the sync task leaves it 3097 * in place. 3098 */ 3099 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3100 f->state = I40E_FILTER_ACTIVE; 3101 continue; 3102 } else if (f->state == I40E_FILTER_REMOVE) { 3103 continue; 3104 } 3105 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3106 if (!add_f) { 3107 dev_info(&vsi->back->pdev->dev, 3108 "Could not add vlan filter %d for %pM\n", 3109 vid, f->macaddr); 3110 return -ENOMEM; 3111 } 3112 } 3113 3114 return 0; 3115 } 3116 3117 /** 3118 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3119 * @vsi: the VSI being configured 3120 * @vid: VLAN id to be added 3121 **/ 3122 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3123 { 3124 int err; 3125 3126 if (vsi->info.pvid) 3127 return -EINVAL; 3128 3129 /* The network stack will attempt to add VID=0, with the intention to 3130 * receive priority tagged packets with a VLAN of 0. Our HW receives 3131 * these packets by default when configured to receive untagged 3132 * packets, so we don't need to add a filter for this case. 3133 * Additionally, HW interprets adding a VID=0 filter as meaning to 3134 * receive *only* tagged traffic and stops receiving untagged traffic. 3135 * Thus, we do not want to actually add a filter for VID=0 3136 */ 3137 if (!vid) 3138 return 0; 3139 3140 /* Locked once because all functions invoked below iterates list*/ 3141 spin_lock_bh(&vsi->mac_filter_hash_lock); 3142 err = i40e_add_vlan_all_mac(vsi, vid); 3143 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3144 if (err) 3145 return err; 3146 3147 /* schedule our worker thread which will take care of 3148 * applying the new filter changes 3149 */ 3150 i40e_service_event_schedule(vsi->back); 3151 return 0; 3152 } 3153 3154 /** 3155 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3156 * @vsi: the vsi being configured 3157 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3158 * 3159 * This function should be used to remove all VLAN filters which match the 3160 * given VID. It does not schedule the service event and does not take the 3161 * mac_filter_hash_lock so it may be combined with other operations under 3162 * a single invocation of the mac_filter_hash_lock. 3163 * 3164 * NOTE: this function expects to be called while under the 3165 * mac_filter_hash_lock 3166 */ 3167 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3168 { 3169 struct i40e_mac_filter *f; 3170 struct hlist_node *h; 3171 int bkt; 3172 3173 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3174 if (f->vlan == vid) 3175 __i40e_del_filter(vsi, f); 3176 } 3177 } 3178 3179 /** 3180 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3181 * @vsi: the VSI being configured 3182 * @vid: VLAN id to be removed 3183 **/ 3184 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3185 { 3186 if (!vid || vsi->info.pvid) 3187 return; 3188 3189 spin_lock_bh(&vsi->mac_filter_hash_lock); 3190 i40e_rm_vlan_all_mac(vsi, vid); 3191 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3192 3193 /* schedule our worker thread which will take care of 3194 * applying the new filter changes 3195 */ 3196 i40e_service_event_schedule(vsi->back); 3197 } 3198 3199 /** 3200 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3201 * @netdev: network interface to be adjusted 3202 * @proto: unused protocol value 3203 * @vid: vlan id to be added 3204 * 3205 * net_device_ops implementation for adding vlan ids 3206 **/ 3207 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3208 __always_unused __be16 proto, u16 vid) 3209 { 3210 struct i40e_netdev_priv *np = netdev_priv(netdev); 3211 struct i40e_vsi *vsi = np->vsi; 3212 int ret = 0; 3213 3214 if (vid >= VLAN_N_VID) 3215 return -EINVAL; 3216 3217 ret = i40e_vsi_add_vlan(vsi, vid); 3218 if (!ret) 3219 set_bit(vid, vsi->active_vlans); 3220 3221 return ret; 3222 } 3223 3224 /** 3225 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3226 * @netdev: network interface to be adjusted 3227 * @proto: unused protocol value 3228 * @vid: vlan id to be added 3229 **/ 3230 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3231 __always_unused __be16 proto, u16 vid) 3232 { 3233 struct i40e_netdev_priv *np = netdev_priv(netdev); 3234 struct i40e_vsi *vsi = np->vsi; 3235 3236 if (vid >= VLAN_N_VID) 3237 return; 3238 set_bit(vid, vsi->active_vlans); 3239 } 3240 3241 /** 3242 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3243 * @netdev: network interface to be adjusted 3244 * @proto: unused protocol value 3245 * @vid: vlan id to be removed 3246 * 3247 * net_device_ops implementation for removing vlan ids 3248 **/ 3249 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3250 __always_unused __be16 proto, u16 vid) 3251 { 3252 struct i40e_netdev_priv *np = netdev_priv(netdev); 3253 struct i40e_vsi *vsi = np->vsi; 3254 3255 /* return code is ignored as there is nothing a user 3256 * can do about failure to remove and a log message was 3257 * already printed from the other function 3258 */ 3259 i40e_vsi_kill_vlan(vsi, vid); 3260 3261 clear_bit(vid, vsi->active_vlans); 3262 3263 return 0; 3264 } 3265 3266 /** 3267 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3268 * @vsi: the vsi being brought back up 3269 **/ 3270 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3271 { 3272 u16 vid; 3273 3274 if (!vsi->netdev) 3275 return; 3276 3277 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3278 i40e_vlan_stripping_enable(vsi); 3279 else 3280 i40e_vlan_stripping_disable(vsi); 3281 3282 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3283 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3284 vid); 3285 } 3286 3287 /** 3288 * i40e_vsi_add_pvid - Add pvid for the VSI 3289 * @vsi: the vsi being adjusted 3290 * @vid: the vlan id to set as a PVID 3291 **/ 3292 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3293 { 3294 struct i40e_vsi_context ctxt; 3295 int ret; 3296 3297 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3298 vsi->info.pvid = cpu_to_le16(vid); 3299 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3300 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3301 I40E_AQ_VSI_PVLAN_EMOD_STR; 3302 3303 ctxt.seid = vsi->seid; 3304 ctxt.info = vsi->info; 3305 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3306 if (ret) { 3307 dev_info(&vsi->back->pdev->dev, 3308 "add pvid failed, err %pe aq_err %s\n", 3309 ERR_PTR(ret), 3310 i40e_aq_str(&vsi->back->hw, 3311 vsi->back->hw.aq.asq_last_status)); 3312 return -ENOENT; 3313 } 3314 3315 return 0; 3316 } 3317 3318 /** 3319 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3320 * @vsi: the vsi being adjusted 3321 * 3322 * Just use the vlan_rx_register() service to put it back to normal 3323 **/ 3324 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3325 { 3326 vsi->info.pvid = 0; 3327 3328 i40e_vlan_stripping_disable(vsi); 3329 } 3330 3331 /** 3332 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3333 * @vsi: ptr to the VSI 3334 * 3335 * If this function returns with an error, then it's possible one or 3336 * more of the rings is populated (while the rest are not). It is the 3337 * callers duty to clean those orphaned rings. 3338 * 3339 * Return 0 on success, negative on failure 3340 **/ 3341 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3342 { 3343 int i, err = 0; 3344 3345 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3346 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3347 3348 if (!i40e_enabled_xdp_vsi(vsi)) 3349 return err; 3350 3351 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3352 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3353 3354 return err; 3355 } 3356 3357 /** 3358 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3359 * @vsi: ptr to the VSI 3360 * 3361 * Free VSI's transmit software resources 3362 **/ 3363 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3364 { 3365 int i; 3366 3367 if (vsi->tx_rings) { 3368 for (i = 0; i < vsi->num_queue_pairs; i++) 3369 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3370 i40e_free_tx_resources(vsi->tx_rings[i]); 3371 } 3372 3373 if (vsi->xdp_rings) { 3374 for (i = 0; i < vsi->num_queue_pairs; i++) 3375 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3376 i40e_free_tx_resources(vsi->xdp_rings[i]); 3377 } 3378 } 3379 3380 /** 3381 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3382 * @vsi: ptr to the VSI 3383 * 3384 * If this function returns with an error, then it's possible one or 3385 * more of the rings is populated (while the rest are not). It is the 3386 * callers duty to clean those orphaned rings. 3387 * 3388 * Return 0 on success, negative on failure 3389 **/ 3390 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3391 { 3392 int i, err = 0; 3393 3394 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3395 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3396 return err; 3397 } 3398 3399 /** 3400 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3401 * @vsi: ptr to the VSI 3402 * 3403 * Free all receive software resources 3404 **/ 3405 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3406 { 3407 int i; 3408 3409 if (!vsi->rx_rings) 3410 return; 3411 3412 for (i = 0; i < vsi->num_queue_pairs; i++) 3413 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3414 i40e_free_rx_resources(vsi->rx_rings[i]); 3415 } 3416 3417 /** 3418 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3419 * @ring: The Tx ring to configure 3420 * 3421 * This enables/disables XPS for a given Tx descriptor ring 3422 * based on the TCs enabled for the VSI that ring belongs to. 3423 **/ 3424 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3425 { 3426 int cpu; 3427 3428 if (!ring->q_vector || !ring->netdev || ring->ch) 3429 return; 3430 3431 /* We only initialize XPS once, so as not to overwrite user settings */ 3432 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3433 return; 3434 3435 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3436 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3437 ring->queue_index); 3438 } 3439 3440 /** 3441 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3442 * @ring: The Tx or Rx ring 3443 * 3444 * Returns the AF_XDP buffer pool or NULL. 3445 **/ 3446 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3447 { 3448 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3449 int qid = ring->queue_index; 3450 3451 if (ring_is_xdp(ring)) 3452 qid -= ring->vsi->alloc_queue_pairs; 3453 3454 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3455 return NULL; 3456 3457 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3458 } 3459 3460 /** 3461 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3462 * @ring: The Tx ring to configure 3463 * 3464 * Configure the Tx descriptor ring in the HMC context. 3465 **/ 3466 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3467 { 3468 struct i40e_vsi *vsi = ring->vsi; 3469 u16 pf_q = vsi->base_queue + ring->queue_index; 3470 struct i40e_hw *hw = &vsi->back->hw; 3471 struct i40e_hmc_obj_txq tx_ctx; 3472 u32 qtx_ctl = 0; 3473 int err = 0; 3474 3475 if (ring_is_xdp(ring)) 3476 ring->xsk_pool = i40e_xsk_pool(ring); 3477 3478 /* some ATR related tx ring init */ 3479 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3480 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3481 ring->atr_count = 0; 3482 } else { 3483 ring->atr_sample_rate = 0; 3484 } 3485 3486 /* configure XPS */ 3487 i40e_config_xps_tx_ring(ring); 3488 3489 /* clear the context structure first */ 3490 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3491 3492 tx_ctx.new_context = 1; 3493 tx_ctx.base = (ring->dma / 128); 3494 tx_ctx.qlen = ring->count; 3495 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3496 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3497 tx_ctx.fd_ena = 1; 3498 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3499 tx_ctx.timesync_ena = 1; 3500 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3501 if (vsi->type != I40E_VSI_FDIR) 3502 tx_ctx.head_wb_ena = 1; 3503 tx_ctx.head_wb_addr = ring->dma + 3504 (ring->count * sizeof(struct i40e_tx_desc)); 3505 3506 /* As part of VSI creation/update, FW allocates certain 3507 * Tx arbitration queue sets for each TC enabled for 3508 * the VSI. The FW returns the handles to these queue 3509 * sets as part of the response buffer to Add VSI, 3510 * Update VSI, etc. AQ commands. It is expected that 3511 * these queue set handles be associated with the Tx 3512 * queues by the driver as part of the TX queue context 3513 * initialization. This has to be done regardless of 3514 * DCB as by default everything is mapped to TC0. 3515 */ 3516 3517 if (ring->ch) 3518 tx_ctx.rdylist = 3519 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3520 3521 else 3522 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3523 3524 tx_ctx.rdylist_act = 0; 3525 3526 /* clear the context in the HMC */ 3527 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3528 if (err) { 3529 dev_info(&vsi->back->pdev->dev, 3530 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3531 ring->queue_index, pf_q, err); 3532 return -ENOMEM; 3533 } 3534 3535 /* set the context in the HMC */ 3536 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3537 if (err) { 3538 dev_info(&vsi->back->pdev->dev, 3539 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3540 ring->queue_index, pf_q, err); 3541 return -ENOMEM; 3542 } 3543 3544 /* Now associate this queue with this PCI function */ 3545 if (ring->ch) { 3546 if (ring->ch->type == I40E_VSI_VMDQ2) 3547 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3548 else 3549 return -EINVAL; 3550 3551 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3552 ring->ch->vsi_number); 3553 } else { 3554 if (vsi->type == I40E_VSI_VMDQ2) { 3555 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3556 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3557 vsi->id); 3558 } else { 3559 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3560 } 3561 } 3562 3563 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id); 3564 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3565 i40e_flush(hw); 3566 3567 /* cache tail off for easier writes later */ 3568 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3569 3570 return 0; 3571 } 3572 3573 /** 3574 * i40e_rx_offset - Return expected offset into page to access data 3575 * @rx_ring: Ring we are requesting offset of 3576 * 3577 * Returns the offset value for ring into the data buffer. 3578 */ 3579 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3580 { 3581 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3582 } 3583 3584 /** 3585 * i40e_configure_rx_ring - Configure a receive ring context 3586 * @ring: The Rx ring to configure 3587 * 3588 * Configure the Rx descriptor ring in the HMC context. 3589 **/ 3590 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3591 { 3592 struct i40e_vsi *vsi = ring->vsi; 3593 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3594 u16 pf_q = vsi->base_queue + ring->queue_index; 3595 struct i40e_hw *hw = &vsi->back->hw; 3596 struct i40e_hmc_obj_rxq rx_ctx; 3597 int err = 0; 3598 bool ok; 3599 3600 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3601 3602 /* clear the context structure first */ 3603 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3604 3605 ring->rx_buf_len = vsi->rx_buf_len; 3606 3607 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 3608 if (ring->vsi->type != I40E_VSI_MAIN) 3609 goto skip; 3610 3611 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 3612 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3613 ring->queue_index, 3614 ring->q_vector->napi.napi_id, 3615 ring->rx_buf_len); 3616 if (err) 3617 return err; 3618 } 3619 3620 ring->xsk_pool = i40e_xsk_pool(ring); 3621 if (ring->xsk_pool) { 3622 xdp_rxq_info_unreg(&ring->xdp_rxq); 3623 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool); 3624 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3625 ring->queue_index, 3626 ring->q_vector->napi.napi_id, 3627 ring->rx_buf_len); 3628 if (err) 3629 return err; 3630 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3631 MEM_TYPE_XSK_BUFF_POOL, 3632 NULL); 3633 if (err) 3634 return err; 3635 dev_info(&vsi->back->pdev->dev, 3636 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3637 ring->queue_index); 3638 3639 } else { 3640 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3641 MEM_TYPE_PAGE_SHARED, 3642 NULL); 3643 if (err) 3644 return err; 3645 } 3646 3647 skip: 3648 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3649 3650 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3651 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3652 3653 rx_ctx.base = (ring->dma / 128); 3654 rx_ctx.qlen = ring->count; 3655 3656 /* use 16 byte descriptors */ 3657 rx_ctx.dsize = 0; 3658 3659 /* descriptor type is always zero 3660 * rx_ctx.dtype = 0; 3661 */ 3662 rx_ctx.hsplit_0 = 0; 3663 3664 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3665 if (hw->revision_id == 0) 3666 rx_ctx.lrxqthresh = 0; 3667 else 3668 rx_ctx.lrxqthresh = 1; 3669 rx_ctx.crcstrip = 1; 3670 rx_ctx.l2tsel = 1; 3671 /* this controls whether VLAN is stripped from inner headers */ 3672 rx_ctx.showiv = 0; 3673 /* set the prefena field to 1 because the manual says to */ 3674 rx_ctx.prefena = 1; 3675 3676 /* clear the context in the HMC */ 3677 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3678 if (err) { 3679 dev_info(&vsi->back->pdev->dev, 3680 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3681 ring->queue_index, pf_q, err); 3682 return -ENOMEM; 3683 } 3684 3685 /* set the context in the HMC */ 3686 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3687 if (err) { 3688 dev_info(&vsi->back->pdev->dev, 3689 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3690 ring->queue_index, pf_q, err); 3691 return -ENOMEM; 3692 } 3693 3694 /* configure Rx buffer alignment */ 3695 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3696 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3697 dev_info(&vsi->back->pdev->dev, 3698 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3699 return -EOPNOTSUPP; 3700 } 3701 clear_ring_build_skb_enabled(ring); 3702 } else { 3703 set_ring_build_skb_enabled(ring); 3704 } 3705 3706 ring->rx_offset = i40e_rx_offset(ring); 3707 3708 /* cache tail for quicker writes, and clear the reg before use */ 3709 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3710 writel(0, ring->tail); 3711 3712 if (ring->xsk_pool) { 3713 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3714 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3715 } else { 3716 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3717 } 3718 if (!ok) { 3719 /* Log this in case the user has forgotten to give the kernel 3720 * any buffers, even later in the application. 3721 */ 3722 dev_info(&vsi->back->pdev->dev, 3723 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3724 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3725 ring->queue_index, pf_q); 3726 } 3727 3728 return 0; 3729 } 3730 3731 /** 3732 * i40e_vsi_configure_tx - Configure the VSI for Tx 3733 * @vsi: VSI structure describing this set of rings and resources 3734 * 3735 * Configure the Tx VSI for operation. 3736 **/ 3737 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3738 { 3739 int err = 0; 3740 u16 i; 3741 3742 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3743 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3744 3745 if (err || !i40e_enabled_xdp_vsi(vsi)) 3746 return err; 3747 3748 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3749 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3750 3751 return err; 3752 } 3753 3754 /** 3755 * i40e_vsi_configure_rx - Configure the VSI for Rx 3756 * @vsi: the VSI being configured 3757 * 3758 * Configure the Rx VSI for operation. 3759 **/ 3760 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3761 { 3762 int err = 0; 3763 u16 i; 3764 3765 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3766 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3767 3768 #if (PAGE_SIZE < 8192) 3769 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3770 vsi->netdev->mtu <= ETH_DATA_LEN) { 3771 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3772 vsi->max_frame = vsi->rx_buf_len; 3773 } 3774 #endif 3775 3776 /* set up individual rings */ 3777 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3778 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3779 3780 return err; 3781 } 3782 3783 /** 3784 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3785 * @vsi: ptr to the VSI 3786 **/ 3787 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3788 { 3789 struct i40e_ring *tx_ring, *rx_ring; 3790 u16 qoffset, qcount; 3791 int i, n; 3792 3793 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3794 /* Reset the TC information */ 3795 for (i = 0; i < vsi->num_queue_pairs; i++) { 3796 rx_ring = vsi->rx_rings[i]; 3797 tx_ring = vsi->tx_rings[i]; 3798 rx_ring->dcb_tc = 0; 3799 tx_ring->dcb_tc = 0; 3800 } 3801 return; 3802 } 3803 3804 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3805 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3806 continue; 3807 3808 qoffset = vsi->tc_config.tc_info[n].qoffset; 3809 qcount = vsi->tc_config.tc_info[n].qcount; 3810 for (i = qoffset; i < (qoffset + qcount); i++) { 3811 rx_ring = vsi->rx_rings[i]; 3812 tx_ring = vsi->tx_rings[i]; 3813 rx_ring->dcb_tc = n; 3814 tx_ring->dcb_tc = n; 3815 } 3816 } 3817 } 3818 3819 /** 3820 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3821 * @vsi: ptr to the VSI 3822 **/ 3823 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3824 { 3825 if (vsi->netdev) 3826 i40e_set_rx_mode(vsi->netdev); 3827 } 3828 3829 /** 3830 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3831 * @pf: Pointer to the targeted PF 3832 * 3833 * Set all flow director counters to 0. 3834 */ 3835 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3836 { 3837 pf->fd_tcp4_filter_cnt = 0; 3838 pf->fd_udp4_filter_cnt = 0; 3839 pf->fd_sctp4_filter_cnt = 0; 3840 pf->fd_ip4_filter_cnt = 0; 3841 pf->fd_tcp6_filter_cnt = 0; 3842 pf->fd_udp6_filter_cnt = 0; 3843 pf->fd_sctp6_filter_cnt = 0; 3844 pf->fd_ip6_filter_cnt = 0; 3845 } 3846 3847 /** 3848 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3849 * @vsi: Pointer to the targeted VSI 3850 * 3851 * This function replays the hlist on the hw where all the SB Flow Director 3852 * filters were saved. 3853 **/ 3854 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3855 { 3856 struct i40e_fdir_filter *filter; 3857 struct i40e_pf *pf = vsi->back; 3858 struct hlist_node *node; 3859 3860 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3861 return; 3862 3863 /* Reset FDir counters as we're replaying all existing filters */ 3864 i40e_reset_fdir_filter_cnt(pf); 3865 3866 hlist_for_each_entry_safe(filter, node, 3867 &pf->fdir_filter_list, fdir_node) { 3868 i40e_add_del_fdir(vsi, filter, true); 3869 } 3870 } 3871 3872 /** 3873 * i40e_vsi_configure - Set up the VSI for action 3874 * @vsi: the VSI being configured 3875 **/ 3876 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3877 { 3878 int err; 3879 3880 i40e_set_vsi_rx_mode(vsi); 3881 i40e_restore_vlan(vsi); 3882 i40e_vsi_config_dcb_rings(vsi); 3883 err = i40e_vsi_configure_tx(vsi); 3884 if (!err) 3885 err = i40e_vsi_configure_rx(vsi); 3886 3887 return err; 3888 } 3889 3890 /** 3891 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3892 * @vsi: the VSI being configured 3893 **/ 3894 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3895 { 3896 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3897 struct i40e_pf *pf = vsi->back; 3898 struct i40e_hw *hw = &pf->hw; 3899 u16 vector; 3900 int i, q; 3901 u32 qp; 3902 3903 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3904 * and PFINT_LNKLSTn registers, e.g.: 3905 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3906 */ 3907 qp = vsi->base_queue; 3908 vector = vsi->base_vector; 3909 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3910 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3911 3912 q_vector->rx.next_update = jiffies + 1; 3913 q_vector->rx.target_itr = 3914 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3915 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3916 q_vector->rx.target_itr >> 1); 3917 q_vector->rx.current_itr = q_vector->rx.target_itr; 3918 3919 q_vector->tx.next_update = jiffies + 1; 3920 q_vector->tx.target_itr = 3921 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3922 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3923 q_vector->tx.target_itr >> 1); 3924 q_vector->tx.current_itr = q_vector->tx.target_itr; 3925 3926 /* Set ITR for software interrupts triggered after exiting 3927 * busy-loop polling. 3928 */ 3929 wr32(hw, I40E_PFINT_ITRN(I40E_SW_ITR, vector - 1), 3930 I40E_ITR_20K); 3931 3932 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3933 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3934 3935 /* begin of linked list for RX queue assigned to this vector */ 3936 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3937 for (q = 0; q < q_vector->num_ringpairs; q++) { 3938 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3939 u32 val; 3940 3941 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3942 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3943 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3944 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3945 (I40E_QUEUE_TYPE_TX << 3946 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3947 3948 wr32(hw, I40E_QINT_RQCTL(qp), val); 3949 3950 if (has_xdp) { 3951 /* TX queue with next queue set to TX */ 3952 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3953 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3954 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3955 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3956 (I40E_QUEUE_TYPE_TX << 3957 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3958 3959 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3960 } 3961 /* TX queue with next RX or end of linked list */ 3962 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3963 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3964 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3965 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3966 (I40E_QUEUE_TYPE_RX << 3967 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3968 3969 /* Terminate the linked list */ 3970 if (q == (q_vector->num_ringpairs - 1)) 3971 val |= (I40E_QUEUE_END_OF_LIST << 3972 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3973 3974 wr32(hw, I40E_QINT_TQCTL(qp), val); 3975 qp++; 3976 } 3977 } 3978 3979 i40e_flush(hw); 3980 } 3981 3982 /** 3983 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3984 * @pf: pointer to private device data structure 3985 **/ 3986 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3987 { 3988 struct i40e_hw *hw = &pf->hw; 3989 u32 val; 3990 3991 /* clear things first */ 3992 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3993 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3994 3995 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3996 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3997 I40E_PFINT_ICR0_ENA_GRST_MASK | 3998 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3999 I40E_PFINT_ICR0_ENA_GPIO_MASK | 4000 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 4001 I40E_PFINT_ICR0_ENA_VFLR_MASK | 4002 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4003 4004 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 4005 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4006 4007 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 4008 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4009 4010 wr32(hw, I40E_PFINT_ICR0_ENA, val); 4011 4012 /* SW_ITR_IDX = 0, but don't change INTENA */ 4013 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 4014 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 4015 4016 /* OTHER_ITR_IDX = 0 */ 4017 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 4018 } 4019 4020 /** 4021 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 4022 * @vsi: the VSI being configured 4023 **/ 4024 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 4025 { 4026 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 4027 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4028 struct i40e_pf *pf = vsi->back; 4029 struct i40e_hw *hw = &pf->hw; 4030 4031 /* set the ITR configuration */ 4032 q_vector->rx.next_update = jiffies + 1; 4033 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 4034 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 4035 q_vector->rx.current_itr = q_vector->rx.target_itr; 4036 q_vector->tx.next_update = jiffies + 1; 4037 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 4038 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 4039 q_vector->tx.current_itr = q_vector->tx.target_itr; 4040 4041 i40e_enable_misc_int_causes(pf); 4042 4043 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4044 wr32(hw, I40E_PFINT_LNKLST0, 0); 4045 4046 /* Associate the queue pair to the vector and enable the queue 4047 * interrupt RX queue in linked list with next queue set to TX 4048 */ 4049 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4050 4051 if (i40e_enabled_xdp_vsi(vsi)) { 4052 /* TX queue in linked list with next queue set to TX */ 4053 wr32(hw, I40E_QINT_TQCTL(nextqp), 4054 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4055 } 4056 4057 /* last TX queue so the next RX queue doesn't matter */ 4058 wr32(hw, I40E_QINT_TQCTL(0), 4059 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4060 i40e_flush(hw); 4061 } 4062 4063 /** 4064 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4065 * @pf: board private structure 4066 **/ 4067 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4068 { 4069 struct i40e_hw *hw = &pf->hw; 4070 4071 wr32(hw, I40E_PFINT_DYN_CTL0, 4072 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4073 i40e_flush(hw); 4074 } 4075 4076 /** 4077 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4078 * @pf: board private structure 4079 **/ 4080 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4081 { 4082 struct i40e_hw *hw = &pf->hw; 4083 u32 val; 4084 4085 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4086 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4087 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4088 4089 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4090 i40e_flush(hw); 4091 } 4092 4093 /** 4094 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4095 * @irq: interrupt number 4096 * @data: pointer to a q_vector 4097 **/ 4098 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4099 { 4100 struct i40e_q_vector *q_vector = data; 4101 4102 if (!q_vector->tx.ring && !q_vector->rx.ring) 4103 return IRQ_HANDLED; 4104 4105 napi_schedule_irqoff(&q_vector->napi); 4106 4107 return IRQ_HANDLED; 4108 } 4109 4110 /** 4111 * i40e_irq_affinity_notify - Callback for affinity changes 4112 * @notify: context as to what irq was changed 4113 * @mask: the new affinity mask 4114 * 4115 * This is a callback function used by the irq_set_affinity_notifier function 4116 * so that we may register to receive changes to the irq affinity masks. 4117 **/ 4118 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4119 const cpumask_t *mask) 4120 { 4121 struct i40e_q_vector *q_vector = 4122 container_of(notify, struct i40e_q_vector, affinity_notify); 4123 4124 cpumask_copy(&q_vector->affinity_mask, mask); 4125 } 4126 4127 /** 4128 * i40e_irq_affinity_release - Callback for affinity notifier release 4129 * @ref: internal core kernel usage 4130 * 4131 * This is a callback function used by the irq_set_affinity_notifier function 4132 * to inform the current notification subscriber that they will no longer 4133 * receive notifications. 4134 **/ 4135 static void i40e_irq_affinity_release(struct kref *ref) {} 4136 4137 /** 4138 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4139 * @vsi: the VSI being configured 4140 * @basename: name for the vector 4141 * 4142 * Allocates MSI-X vectors and requests interrupts from the kernel. 4143 **/ 4144 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4145 { 4146 int q_vectors = vsi->num_q_vectors; 4147 struct i40e_pf *pf = vsi->back; 4148 int base = vsi->base_vector; 4149 int rx_int_idx = 0; 4150 int tx_int_idx = 0; 4151 int vector, err; 4152 int irq_num; 4153 int cpu; 4154 4155 for (vector = 0; vector < q_vectors; vector++) { 4156 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4157 4158 irq_num = pf->msix_entries[base + vector].vector; 4159 4160 if (q_vector->tx.ring && q_vector->rx.ring) { 4161 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4162 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4163 tx_int_idx++; 4164 } else if (q_vector->rx.ring) { 4165 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4166 "%s-%s-%d", basename, "rx", rx_int_idx++); 4167 } else if (q_vector->tx.ring) { 4168 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4169 "%s-%s-%d", basename, "tx", tx_int_idx++); 4170 } else { 4171 /* skip this unused q_vector */ 4172 continue; 4173 } 4174 err = request_irq(irq_num, 4175 vsi->irq_handler, 4176 0, 4177 q_vector->name, 4178 q_vector); 4179 if (err) { 4180 dev_info(&pf->pdev->dev, 4181 "MSIX request_irq failed, error: %d\n", err); 4182 goto free_queue_irqs; 4183 } 4184 4185 /* register for affinity change notifications */ 4186 q_vector->irq_num = irq_num; 4187 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4188 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4189 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4190 /* Spread affinity hints out across online CPUs. 4191 * 4192 * get_cpu_mask returns a static constant mask with 4193 * a permanent lifetime so it's ok to pass to 4194 * irq_update_affinity_hint without making a copy. 4195 */ 4196 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4197 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4198 } 4199 4200 vsi->irqs_ready = true; 4201 return 0; 4202 4203 free_queue_irqs: 4204 while (vector) { 4205 vector--; 4206 irq_num = pf->msix_entries[base + vector].vector; 4207 irq_set_affinity_notifier(irq_num, NULL); 4208 irq_update_affinity_hint(irq_num, NULL); 4209 free_irq(irq_num, &vsi->q_vectors[vector]); 4210 } 4211 return err; 4212 } 4213 4214 /** 4215 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4216 * @vsi: the VSI being un-configured 4217 **/ 4218 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4219 { 4220 struct i40e_pf *pf = vsi->back; 4221 struct i40e_hw *hw = &pf->hw; 4222 int base = vsi->base_vector; 4223 int i; 4224 4225 /* disable interrupt causation from each queue */ 4226 for (i = 0; i < vsi->num_queue_pairs; i++) { 4227 u32 val; 4228 4229 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4230 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4231 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4232 4233 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4234 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4235 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4236 4237 if (!i40e_enabled_xdp_vsi(vsi)) 4238 continue; 4239 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4240 } 4241 4242 /* disable each interrupt */ 4243 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4244 for (i = vsi->base_vector; 4245 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4246 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4247 4248 i40e_flush(hw); 4249 for (i = 0; i < vsi->num_q_vectors; i++) 4250 synchronize_irq(pf->msix_entries[i + base].vector); 4251 } else { 4252 /* Legacy and MSI mode - this stops all interrupt handling */ 4253 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4254 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4255 i40e_flush(hw); 4256 synchronize_irq(pf->pdev->irq); 4257 } 4258 } 4259 4260 /** 4261 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4262 * @vsi: the VSI being configured 4263 **/ 4264 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4265 { 4266 struct i40e_pf *pf = vsi->back; 4267 int i; 4268 4269 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4270 for (i = 0; i < vsi->num_q_vectors; i++) 4271 i40e_irq_dynamic_enable(vsi, i); 4272 } else { 4273 i40e_irq_dynamic_enable_icr0(pf); 4274 } 4275 4276 i40e_flush(&pf->hw); 4277 return 0; 4278 } 4279 4280 /** 4281 * i40e_free_misc_vector - Free the vector that handles non-queue events 4282 * @pf: board private structure 4283 **/ 4284 static void i40e_free_misc_vector(struct i40e_pf *pf) 4285 { 4286 /* Disable ICR 0 */ 4287 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4288 i40e_flush(&pf->hw); 4289 4290 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4291 free_irq(pf->msix_entries[0].vector, pf); 4292 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4293 } 4294 } 4295 4296 /** 4297 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4298 * @irq: interrupt number 4299 * @data: pointer to a q_vector 4300 * 4301 * This is the handler used for all MSI/Legacy interrupts, and deals 4302 * with both queue and non-queue interrupts. This is also used in 4303 * MSIX mode to handle the non-queue interrupts. 4304 **/ 4305 static irqreturn_t i40e_intr(int irq, void *data) 4306 { 4307 struct i40e_pf *pf = (struct i40e_pf *)data; 4308 struct i40e_hw *hw = &pf->hw; 4309 irqreturn_t ret = IRQ_NONE; 4310 u32 icr0, icr0_remaining; 4311 u32 val, ena_mask; 4312 4313 icr0 = rd32(hw, I40E_PFINT_ICR0); 4314 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4315 4316 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4317 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4318 goto enable_intr; 4319 4320 /* if interrupt but no bits showing, must be SWINT */ 4321 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4322 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4323 pf->sw_int_count++; 4324 4325 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4326 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4327 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4328 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4329 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4330 } 4331 4332 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4333 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4334 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 4335 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4336 4337 /* We do not have a way to disarm Queue causes while leaving 4338 * interrupt enabled for all other causes, ideally 4339 * interrupt should be disabled while we are in NAPI but 4340 * this is not a performance path and napi_schedule() 4341 * can deal with rescheduling. 4342 */ 4343 if (!test_bit(__I40E_DOWN, pf->state)) 4344 napi_schedule_irqoff(&q_vector->napi); 4345 } 4346 4347 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4348 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4349 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4350 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4351 } 4352 4353 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4354 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4355 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4356 } 4357 4358 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4359 /* disable any further VFLR event notifications */ 4360 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4361 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4362 4363 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4364 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4365 } else { 4366 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4367 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4368 } 4369 } 4370 4371 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4372 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4373 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4374 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4375 val = rd32(hw, I40E_GLGEN_RSTAT); 4376 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val); 4377 if (val == I40E_RESET_CORER) { 4378 pf->corer_count++; 4379 } else if (val == I40E_RESET_GLOBR) { 4380 pf->globr_count++; 4381 } else if (val == I40E_RESET_EMPR) { 4382 pf->empr_count++; 4383 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4384 } 4385 } 4386 4387 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4388 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4389 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4390 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4391 rd32(hw, I40E_PFHMC_ERRORINFO), 4392 rd32(hw, I40E_PFHMC_ERRORDATA)); 4393 } 4394 4395 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4396 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4397 4398 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4399 schedule_work(&pf->ptp_extts0_work); 4400 4401 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4402 i40e_ptp_tx_hwtstamp(pf); 4403 4404 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4405 } 4406 4407 /* If a critical error is pending we have no choice but to reset the 4408 * device. 4409 * Report and mask out any remaining unexpected interrupts. 4410 */ 4411 icr0_remaining = icr0 & ena_mask; 4412 if (icr0_remaining) { 4413 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4414 icr0_remaining); 4415 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4416 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4417 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4418 dev_info(&pf->pdev->dev, "device will be reset\n"); 4419 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4420 i40e_service_event_schedule(pf); 4421 } 4422 ena_mask &= ~icr0_remaining; 4423 } 4424 ret = IRQ_HANDLED; 4425 4426 enable_intr: 4427 /* re-enable interrupt causes */ 4428 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4429 if (!test_bit(__I40E_DOWN, pf->state) || 4430 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4431 i40e_service_event_schedule(pf); 4432 i40e_irq_dynamic_enable_icr0(pf); 4433 } 4434 4435 return ret; 4436 } 4437 4438 /** 4439 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4440 * @tx_ring: tx ring to clean 4441 * @budget: how many cleans we're allowed 4442 * 4443 * Returns true if there's any budget left (e.g. the clean is finished) 4444 **/ 4445 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4446 { 4447 struct i40e_vsi *vsi = tx_ring->vsi; 4448 u16 i = tx_ring->next_to_clean; 4449 struct i40e_tx_buffer *tx_buf; 4450 struct i40e_tx_desc *tx_desc; 4451 4452 tx_buf = &tx_ring->tx_bi[i]; 4453 tx_desc = I40E_TX_DESC(tx_ring, i); 4454 i -= tx_ring->count; 4455 4456 do { 4457 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4458 4459 /* if next_to_watch is not set then there is no work pending */ 4460 if (!eop_desc) 4461 break; 4462 4463 /* prevent any other reads prior to eop_desc */ 4464 smp_rmb(); 4465 4466 /* if the descriptor isn't done, no work yet to do */ 4467 if (!(eop_desc->cmd_type_offset_bsz & 4468 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4469 break; 4470 4471 /* clear next_to_watch to prevent false hangs */ 4472 tx_buf->next_to_watch = NULL; 4473 4474 tx_desc->buffer_addr = 0; 4475 tx_desc->cmd_type_offset_bsz = 0; 4476 /* move past filter desc */ 4477 tx_buf++; 4478 tx_desc++; 4479 i++; 4480 if (unlikely(!i)) { 4481 i -= tx_ring->count; 4482 tx_buf = tx_ring->tx_bi; 4483 tx_desc = I40E_TX_DESC(tx_ring, 0); 4484 } 4485 /* unmap skb header data */ 4486 dma_unmap_single(tx_ring->dev, 4487 dma_unmap_addr(tx_buf, dma), 4488 dma_unmap_len(tx_buf, len), 4489 DMA_TO_DEVICE); 4490 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4491 kfree(tx_buf->raw_buf); 4492 4493 tx_buf->raw_buf = NULL; 4494 tx_buf->tx_flags = 0; 4495 tx_buf->next_to_watch = NULL; 4496 dma_unmap_len_set(tx_buf, len, 0); 4497 tx_desc->buffer_addr = 0; 4498 tx_desc->cmd_type_offset_bsz = 0; 4499 4500 /* move us past the eop_desc for start of next FD desc */ 4501 tx_buf++; 4502 tx_desc++; 4503 i++; 4504 if (unlikely(!i)) { 4505 i -= tx_ring->count; 4506 tx_buf = tx_ring->tx_bi; 4507 tx_desc = I40E_TX_DESC(tx_ring, 0); 4508 } 4509 4510 /* update budget accounting */ 4511 budget--; 4512 } while (likely(budget)); 4513 4514 i += tx_ring->count; 4515 tx_ring->next_to_clean = i; 4516 4517 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4518 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4519 4520 return budget > 0; 4521 } 4522 4523 /** 4524 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4525 * @irq: interrupt number 4526 * @data: pointer to a q_vector 4527 **/ 4528 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4529 { 4530 struct i40e_q_vector *q_vector = data; 4531 struct i40e_vsi *vsi; 4532 4533 if (!q_vector->tx.ring) 4534 return IRQ_HANDLED; 4535 4536 vsi = q_vector->tx.ring->vsi; 4537 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4538 4539 return IRQ_HANDLED; 4540 } 4541 4542 /** 4543 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4544 * @vsi: the VSI being configured 4545 * @v_idx: vector index 4546 * @qp_idx: queue pair index 4547 **/ 4548 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4549 { 4550 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4551 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4552 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4553 4554 tx_ring->q_vector = q_vector; 4555 tx_ring->next = q_vector->tx.ring; 4556 q_vector->tx.ring = tx_ring; 4557 q_vector->tx.count++; 4558 4559 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4560 if (i40e_enabled_xdp_vsi(vsi)) { 4561 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4562 4563 xdp_ring->q_vector = q_vector; 4564 xdp_ring->next = q_vector->tx.ring; 4565 q_vector->tx.ring = xdp_ring; 4566 q_vector->tx.count++; 4567 } 4568 4569 rx_ring->q_vector = q_vector; 4570 rx_ring->next = q_vector->rx.ring; 4571 q_vector->rx.ring = rx_ring; 4572 q_vector->rx.count++; 4573 } 4574 4575 /** 4576 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4577 * @vsi: the VSI being configured 4578 * 4579 * This function maps descriptor rings to the queue-specific vectors 4580 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4581 * one vector per queue pair, but on a constrained vector budget, we 4582 * group the queue pairs as "efficiently" as possible. 4583 **/ 4584 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4585 { 4586 int qp_remaining = vsi->num_queue_pairs; 4587 int q_vectors = vsi->num_q_vectors; 4588 int num_ringpairs; 4589 int v_start = 0; 4590 int qp_idx = 0; 4591 4592 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4593 * group them so there are multiple queues per vector. 4594 * It is also important to go through all the vectors available to be 4595 * sure that if we don't use all the vectors, that the remaining vectors 4596 * are cleared. This is especially important when decreasing the 4597 * number of queues in use. 4598 */ 4599 for (; v_start < q_vectors; v_start++) { 4600 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4601 4602 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4603 4604 q_vector->num_ringpairs = num_ringpairs; 4605 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4606 4607 q_vector->rx.count = 0; 4608 q_vector->tx.count = 0; 4609 q_vector->rx.ring = NULL; 4610 q_vector->tx.ring = NULL; 4611 4612 while (num_ringpairs--) { 4613 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4614 qp_idx++; 4615 qp_remaining--; 4616 } 4617 } 4618 } 4619 4620 /** 4621 * i40e_vsi_request_irq - Request IRQ from the OS 4622 * @vsi: the VSI being configured 4623 * @basename: name for the vector 4624 **/ 4625 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4626 { 4627 struct i40e_pf *pf = vsi->back; 4628 int err; 4629 4630 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4631 err = i40e_vsi_request_irq_msix(vsi, basename); 4632 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4633 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4634 pf->int_name, pf); 4635 else 4636 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4637 pf->int_name, pf); 4638 4639 if (err) 4640 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4641 4642 return err; 4643 } 4644 4645 #ifdef CONFIG_NET_POLL_CONTROLLER 4646 /** 4647 * i40e_netpoll - A Polling 'interrupt' handler 4648 * @netdev: network interface device structure 4649 * 4650 * This is used by netconsole to send skbs without having to re-enable 4651 * interrupts. It's not called while the normal interrupt routine is executing. 4652 **/ 4653 static void i40e_netpoll(struct net_device *netdev) 4654 { 4655 struct i40e_netdev_priv *np = netdev_priv(netdev); 4656 struct i40e_vsi *vsi = np->vsi; 4657 struct i40e_pf *pf = vsi->back; 4658 int i; 4659 4660 /* if interface is down do nothing */ 4661 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4662 return; 4663 4664 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4665 for (i = 0; i < vsi->num_q_vectors; i++) 4666 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4667 } else { 4668 i40e_intr(pf->pdev->irq, netdev); 4669 } 4670 } 4671 #endif 4672 4673 #define I40E_QTX_ENA_WAIT_COUNT 50 4674 4675 /** 4676 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4677 * @pf: the PF being configured 4678 * @pf_q: the PF queue 4679 * @enable: enable or disable state of the queue 4680 * 4681 * This routine will wait for the given Tx queue of the PF to reach the 4682 * enabled or disabled state. 4683 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4684 * multiple retries; else will return 0 in case of success. 4685 **/ 4686 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4687 { 4688 int i; 4689 u32 tx_reg; 4690 4691 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4692 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4693 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4694 break; 4695 4696 usleep_range(10, 20); 4697 } 4698 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4699 return -ETIMEDOUT; 4700 4701 return 0; 4702 } 4703 4704 /** 4705 * i40e_control_tx_q - Start or stop a particular Tx queue 4706 * @pf: the PF structure 4707 * @pf_q: the PF queue to configure 4708 * @enable: start or stop the queue 4709 * 4710 * This function enables or disables a single queue. Note that any delay 4711 * required after the operation is expected to be handled by the caller of 4712 * this function. 4713 **/ 4714 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4715 { 4716 struct i40e_hw *hw = &pf->hw; 4717 u32 tx_reg; 4718 int i; 4719 4720 /* warn the TX unit of coming changes */ 4721 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4722 if (!enable) 4723 usleep_range(10, 20); 4724 4725 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4726 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4727 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4728 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4729 break; 4730 usleep_range(1000, 2000); 4731 } 4732 4733 /* Skip if the queue is already in the requested state */ 4734 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4735 return; 4736 4737 /* turn on/off the queue */ 4738 if (enable) { 4739 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4740 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4741 } else { 4742 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4743 } 4744 4745 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4746 } 4747 4748 /** 4749 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4750 * @seid: VSI SEID 4751 * @pf: the PF structure 4752 * @pf_q: the PF queue to configure 4753 * @is_xdp: true if the queue is used for XDP 4754 * @enable: start or stop the queue 4755 **/ 4756 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4757 bool is_xdp, bool enable) 4758 { 4759 int ret; 4760 4761 i40e_control_tx_q(pf, pf_q, enable); 4762 4763 /* wait for the change to finish */ 4764 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4765 if (ret) { 4766 dev_info(&pf->pdev->dev, 4767 "VSI seid %d %sTx ring %d %sable timeout\n", 4768 seid, (is_xdp ? "XDP " : ""), pf_q, 4769 (enable ? "en" : "dis")); 4770 } 4771 4772 return ret; 4773 } 4774 4775 /** 4776 * i40e_vsi_enable_tx - Start a VSI's rings 4777 * @vsi: the VSI being configured 4778 **/ 4779 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4780 { 4781 struct i40e_pf *pf = vsi->back; 4782 int i, pf_q, ret = 0; 4783 4784 pf_q = vsi->base_queue; 4785 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4786 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4787 pf_q, 4788 false /*is xdp*/, true); 4789 if (ret) 4790 break; 4791 4792 if (!i40e_enabled_xdp_vsi(vsi)) 4793 continue; 4794 4795 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4796 pf_q + vsi->alloc_queue_pairs, 4797 true /*is xdp*/, true); 4798 if (ret) 4799 break; 4800 } 4801 return ret; 4802 } 4803 4804 /** 4805 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4806 * @pf: the PF being configured 4807 * @pf_q: the PF queue 4808 * @enable: enable or disable state of the queue 4809 * 4810 * This routine will wait for the given Rx queue of the PF to reach the 4811 * enabled or disabled state. 4812 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4813 * multiple retries; else will return 0 in case of success. 4814 **/ 4815 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4816 { 4817 int i; 4818 u32 rx_reg; 4819 4820 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4821 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4822 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4823 break; 4824 4825 usleep_range(10, 20); 4826 } 4827 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4828 return -ETIMEDOUT; 4829 4830 return 0; 4831 } 4832 4833 /** 4834 * i40e_control_rx_q - Start or stop a particular Rx queue 4835 * @pf: the PF structure 4836 * @pf_q: the PF queue to configure 4837 * @enable: start or stop the queue 4838 * 4839 * This function enables or disables a single queue. Note that 4840 * any delay required after the operation is expected to be 4841 * handled by the caller of this function. 4842 **/ 4843 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4844 { 4845 struct i40e_hw *hw = &pf->hw; 4846 u32 rx_reg; 4847 int i; 4848 4849 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4850 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4851 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4852 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4853 break; 4854 usleep_range(1000, 2000); 4855 } 4856 4857 /* Skip if the queue is already in the requested state */ 4858 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4859 return; 4860 4861 /* turn on/off the queue */ 4862 if (enable) 4863 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4864 else 4865 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4866 4867 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4868 } 4869 4870 /** 4871 * i40e_control_wait_rx_q 4872 * @pf: the PF structure 4873 * @pf_q: queue being configured 4874 * @enable: start or stop the rings 4875 * 4876 * This function enables or disables a single queue along with waiting 4877 * for the change to finish. The caller of this function should handle 4878 * the delays needed in the case of disabling queues. 4879 **/ 4880 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4881 { 4882 int ret = 0; 4883 4884 i40e_control_rx_q(pf, pf_q, enable); 4885 4886 /* wait for the change to finish */ 4887 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4888 if (ret) 4889 return ret; 4890 4891 return ret; 4892 } 4893 4894 /** 4895 * i40e_vsi_enable_rx - Start a VSI's rings 4896 * @vsi: the VSI being configured 4897 **/ 4898 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4899 { 4900 struct i40e_pf *pf = vsi->back; 4901 int i, pf_q, ret = 0; 4902 4903 pf_q = vsi->base_queue; 4904 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4905 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4906 if (ret) { 4907 dev_info(&pf->pdev->dev, 4908 "VSI seid %d Rx ring %d enable timeout\n", 4909 vsi->seid, pf_q); 4910 break; 4911 } 4912 } 4913 4914 return ret; 4915 } 4916 4917 /** 4918 * i40e_vsi_start_rings - Start a VSI's rings 4919 * @vsi: the VSI being configured 4920 **/ 4921 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4922 { 4923 int ret = 0; 4924 4925 /* do rx first for enable and last for disable */ 4926 ret = i40e_vsi_enable_rx(vsi); 4927 if (ret) 4928 return ret; 4929 ret = i40e_vsi_enable_tx(vsi); 4930 4931 return ret; 4932 } 4933 4934 #define I40E_DISABLE_TX_GAP_MSEC 50 4935 4936 /** 4937 * i40e_vsi_stop_rings - Stop a VSI's rings 4938 * @vsi: the VSI being configured 4939 **/ 4940 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4941 { 4942 struct i40e_pf *pf = vsi->back; 4943 u32 pf_q, tx_q_end, rx_q_end; 4944 4945 /* When port TX is suspended, don't wait */ 4946 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4947 return i40e_vsi_stop_rings_no_wait(vsi); 4948 4949 tx_q_end = vsi->base_queue + 4950 vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 4951 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4952 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false); 4953 4954 rx_q_end = vsi->base_queue + vsi->num_queue_pairs; 4955 for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++) 4956 i40e_control_rx_q(pf, pf_q, false); 4957 4958 msleep(I40E_DISABLE_TX_GAP_MSEC); 4959 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4960 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4961 4962 i40e_vsi_wait_queues_disabled(vsi); 4963 } 4964 4965 /** 4966 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4967 * @vsi: the VSI being shutdown 4968 * 4969 * This function stops all the rings for a VSI but does not delay to verify 4970 * that rings have been disabled. It is expected that the caller is shutting 4971 * down multiple VSIs at once and will delay together for all the VSIs after 4972 * initiating the shutdown. This is particularly useful for shutting down lots 4973 * of VFs together. Otherwise, a large delay can be incurred while configuring 4974 * each VSI in serial. 4975 **/ 4976 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4977 { 4978 struct i40e_pf *pf = vsi->back; 4979 int i, pf_q; 4980 4981 pf_q = vsi->base_queue; 4982 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4983 i40e_control_tx_q(pf, pf_q, false); 4984 i40e_control_rx_q(pf, pf_q, false); 4985 } 4986 } 4987 4988 /** 4989 * i40e_vsi_free_irq - Free the irq association with the OS 4990 * @vsi: the VSI being configured 4991 **/ 4992 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4993 { 4994 struct i40e_pf *pf = vsi->back; 4995 struct i40e_hw *hw = &pf->hw; 4996 int base = vsi->base_vector; 4997 u32 val, qp; 4998 int i; 4999 5000 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5001 if (!vsi->q_vectors) 5002 return; 5003 5004 if (!vsi->irqs_ready) 5005 return; 5006 5007 vsi->irqs_ready = false; 5008 for (i = 0; i < vsi->num_q_vectors; i++) { 5009 int irq_num; 5010 u16 vector; 5011 5012 vector = i + base; 5013 irq_num = pf->msix_entries[vector].vector; 5014 5015 /* free only the irqs that were actually requested */ 5016 if (!vsi->q_vectors[i] || 5017 !vsi->q_vectors[i]->num_ringpairs) 5018 continue; 5019 5020 /* clear the affinity notifier in the IRQ descriptor */ 5021 irq_set_affinity_notifier(irq_num, NULL); 5022 /* remove our suggested affinity mask for this IRQ */ 5023 irq_update_affinity_hint(irq_num, NULL); 5024 free_irq(irq_num, vsi->q_vectors[i]); 5025 5026 /* Tear down the interrupt queue link list 5027 * 5028 * We know that they come in pairs and always 5029 * the Rx first, then the Tx. To clear the 5030 * link list, stick the EOL value into the 5031 * next_q field of the registers. 5032 */ 5033 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 5034 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, 5035 val); 5036 val |= I40E_QUEUE_END_OF_LIST 5037 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5038 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 5039 5040 while (qp != I40E_QUEUE_END_OF_LIST) { 5041 u32 next; 5042 5043 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5044 5045 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5046 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5047 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5048 I40E_QINT_RQCTL_INTEVENT_MASK); 5049 5050 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5051 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5052 5053 wr32(hw, I40E_QINT_RQCTL(qp), val); 5054 5055 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5056 5057 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK, 5058 val); 5059 5060 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5061 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5062 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5063 I40E_QINT_TQCTL_INTEVENT_MASK); 5064 5065 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5066 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5067 5068 wr32(hw, I40E_QINT_TQCTL(qp), val); 5069 qp = next; 5070 } 5071 } 5072 } else { 5073 free_irq(pf->pdev->irq, pf); 5074 5075 val = rd32(hw, I40E_PFINT_LNKLST0); 5076 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val); 5077 val |= I40E_QUEUE_END_OF_LIST 5078 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5079 wr32(hw, I40E_PFINT_LNKLST0, val); 5080 5081 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5082 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5083 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5084 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5085 I40E_QINT_RQCTL_INTEVENT_MASK); 5086 5087 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5088 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5089 5090 wr32(hw, I40E_QINT_RQCTL(qp), val); 5091 5092 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5093 5094 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5095 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5096 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5097 I40E_QINT_TQCTL_INTEVENT_MASK); 5098 5099 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5100 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5101 5102 wr32(hw, I40E_QINT_TQCTL(qp), val); 5103 } 5104 } 5105 5106 /** 5107 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5108 * @vsi: the VSI being configured 5109 * @v_idx: Index of vector to be freed 5110 * 5111 * This function frees the memory allocated to the q_vector. In addition if 5112 * NAPI is enabled it will delete any references to the NAPI struct prior 5113 * to freeing the q_vector. 5114 **/ 5115 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5116 { 5117 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5118 struct i40e_ring *ring; 5119 5120 if (!q_vector) 5121 return; 5122 5123 /* disassociate q_vector from rings */ 5124 i40e_for_each_ring(ring, q_vector->tx) 5125 ring->q_vector = NULL; 5126 5127 i40e_for_each_ring(ring, q_vector->rx) 5128 ring->q_vector = NULL; 5129 5130 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5131 if (vsi->netdev) 5132 netif_napi_del(&q_vector->napi); 5133 5134 vsi->q_vectors[v_idx] = NULL; 5135 5136 kfree_rcu(q_vector, rcu); 5137 } 5138 5139 /** 5140 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5141 * @vsi: the VSI being un-configured 5142 * 5143 * This frees the memory allocated to the q_vectors and 5144 * deletes references to the NAPI struct. 5145 **/ 5146 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5147 { 5148 int v_idx; 5149 5150 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5151 i40e_free_q_vector(vsi, v_idx); 5152 } 5153 5154 /** 5155 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5156 * @pf: board private structure 5157 **/ 5158 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5159 { 5160 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5161 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5162 pci_disable_msix(pf->pdev); 5163 kfree(pf->msix_entries); 5164 pf->msix_entries = NULL; 5165 kfree(pf->irq_pile); 5166 pf->irq_pile = NULL; 5167 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5168 pci_disable_msi(pf->pdev); 5169 } 5170 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5171 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5172 } 5173 5174 /** 5175 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5176 * @pf: board private structure 5177 * 5178 * We go through and clear interrupt specific resources and reset the structure 5179 * to pre-load conditions 5180 **/ 5181 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5182 { 5183 struct i40e_vsi *vsi; 5184 int i; 5185 5186 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5187 i40e_free_misc_vector(pf); 5188 5189 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5190 I40E_IWARP_IRQ_PILE_ID); 5191 5192 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5193 5194 i40e_pf_for_each_vsi(pf, i, vsi) 5195 i40e_vsi_free_q_vectors(vsi); 5196 5197 i40e_reset_interrupt_capability(pf); 5198 } 5199 5200 /** 5201 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5202 * @vsi: the VSI being configured 5203 **/ 5204 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5205 { 5206 int q_idx; 5207 5208 if (!vsi->netdev) 5209 return; 5210 5211 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5212 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5213 5214 if (q_vector->rx.ring || q_vector->tx.ring) 5215 napi_enable(&q_vector->napi); 5216 } 5217 } 5218 5219 /** 5220 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5221 * @vsi: the VSI being configured 5222 **/ 5223 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5224 { 5225 int q_idx; 5226 5227 if (!vsi->netdev) 5228 return; 5229 5230 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5231 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5232 5233 if (q_vector->rx.ring || q_vector->tx.ring) 5234 napi_disable(&q_vector->napi); 5235 } 5236 } 5237 5238 /** 5239 * i40e_vsi_close - Shut down a VSI 5240 * @vsi: the vsi to be quelled 5241 **/ 5242 static void i40e_vsi_close(struct i40e_vsi *vsi) 5243 { 5244 struct i40e_pf *pf = vsi->back; 5245 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5246 i40e_down(vsi); 5247 i40e_vsi_free_irq(vsi); 5248 i40e_vsi_free_tx_resources(vsi); 5249 i40e_vsi_free_rx_resources(vsi); 5250 vsi->current_netdev_flags = 0; 5251 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5252 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5253 set_bit(__I40E_CLIENT_RESET, pf->state); 5254 } 5255 5256 /** 5257 * i40e_quiesce_vsi - Pause a given VSI 5258 * @vsi: the VSI being paused 5259 **/ 5260 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5261 { 5262 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5263 return; 5264 5265 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5266 if (vsi->netdev && netif_running(vsi->netdev)) 5267 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5268 else 5269 i40e_vsi_close(vsi); 5270 } 5271 5272 /** 5273 * i40e_unquiesce_vsi - Resume a given VSI 5274 * @vsi: the VSI being resumed 5275 **/ 5276 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5277 { 5278 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5279 return; 5280 5281 if (vsi->netdev && netif_running(vsi->netdev)) 5282 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5283 else 5284 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5285 } 5286 5287 /** 5288 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5289 * @pf: the PF 5290 **/ 5291 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5292 { 5293 struct i40e_vsi *vsi; 5294 int v; 5295 5296 i40e_pf_for_each_vsi(pf, v, vsi) 5297 i40e_quiesce_vsi(vsi); 5298 } 5299 5300 /** 5301 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5302 * @pf: the PF 5303 **/ 5304 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5305 { 5306 struct i40e_vsi *vsi; 5307 int v; 5308 5309 i40e_pf_for_each_vsi(pf, v, vsi) 5310 i40e_unquiesce_vsi(vsi); 5311 } 5312 5313 /** 5314 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5315 * @vsi: the VSI being configured 5316 * 5317 * Wait until all queues on a given VSI have been disabled. 5318 **/ 5319 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5320 { 5321 struct i40e_pf *pf = vsi->back; 5322 int i, pf_q, ret; 5323 5324 pf_q = vsi->base_queue; 5325 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5326 /* Check and wait for the Tx queue */ 5327 ret = i40e_pf_txq_wait(pf, pf_q, false); 5328 if (ret) { 5329 dev_info(&pf->pdev->dev, 5330 "VSI seid %d Tx ring %d disable timeout\n", 5331 vsi->seid, pf_q); 5332 return ret; 5333 } 5334 5335 if (!i40e_enabled_xdp_vsi(vsi)) 5336 goto wait_rx; 5337 5338 /* Check and wait for the XDP Tx queue */ 5339 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5340 false); 5341 if (ret) { 5342 dev_info(&pf->pdev->dev, 5343 "VSI seid %d XDP Tx ring %d disable timeout\n", 5344 vsi->seid, pf_q); 5345 return ret; 5346 } 5347 wait_rx: 5348 /* Check and wait for the Rx queue */ 5349 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5350 if (ret) { 5351 dev_info(&pf->pdev->dev, 5352 "VSI seid %d Rx ring %d disable timeout\n", 5353 vsi->seid, pf_q); 5354 return ret; 5355 } 5356 } 5357 5358 return 0; 5359 } 5360 5361 #ifdef CONFIG_I40E_DCB 5362 /** 5363 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5364 * @pf: the PF 5365 * 5366 * This function waits for the queues to be in disabled state for all the 5367 * VSIs that are managed by this PF. 5368 **/ 5369 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5370 { 5371 struct i40e_vsi *vsi; 5372 int v, ret = 0; 5373 5374 i40e_pf_for_each_vsi(pf, v, vsi) { 5375 ret = i40e_vsi_wait_queues_disabled(vsi); 5376 if (ret) 5377 break; 5378 } 5379 5380 return ret; 5381 } 5382 5383 #endif 5384 5385 /** 5386 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5387 * @pf: pointer to PF 5388 * 5389 * Get TC map for ISCSI PF type that will include iSCSI TC 5390 * and LAN TC. 5391 **/ 5392 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5393 { 5394 struct i40e_dcb_app_priority_table app; 5395 struct i40e_hw *hw = &pf->hw; 5396 u8 enabled_tc = 1; /* TC0 is always enabled */ 5397 u8 tc, i; 5398 /* Get the iSCSI APP TLV */ 5399 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5400 5401 for (i = 0; i < dcbcfg->numapps; i++) { 5402 app = dcbcfg->app[i]; 5403 if (app.selector == I40E_APP_SEL_TCPIP && 5404 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5405 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5406 enabled_tc |= BIT(tc); 5407 break; 5408 } 5409 } 5410 5411 return enabled_tc; 5412 } 5413 5414 /** 5415 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5416 * @dcbcfg: the corresponding DCBx configuration structure 5417 * 5418 * Return the number of TCs from given DCBx configuration 5419 **/ 5420 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5421 { 5422 int i, tc_unused = 0; 5423 u8 num_tc = 0; 5424 u8 ret = 0; 5425 5426 /* Scan the ETS Config Priority Table to find 5427 * traffic class enabled for a given priority 5428 * and create a bitmask of enabled TCs 5429 */ 5430 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5431 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5432 5433 /* Now scan the bitmask to check for 5434 * contiguous TCs starting with TC0 5435 */ 5436 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5437 if (num_tc & BIT(i)) { 5438 if (!tc_unused) { 5439 ret++; 5440 } else { 5441 pr_err("Non-contiguous TC - Disabling DCB\n"); 5442 return 1; 5443 } 5444 } else { 5445 tc_unused = 1; 5446 } 5447 } 5448 5449 /* There is always at least TC0 */ 5450 if (!ret) 5451 ret = 1; 5452 5453 return ret; 5454 } 5455 5456 /** 5457 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5458 * @dcbcfg: the corresponding DCBx configuration structure 5459 * 5460 * Query the current DCB configuration and return the number of 5461 * traffic classes enabled from the given DCBX config 5462 **/ 5463 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5464 { 5465 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5466 u8 enabled_tc = 1; 5467 u8 i; 5468 5469 for (i = 0; i < num_tc; i++) 5470 enabled_tc |= BIT(i); 5471 5472 return enabled_tc; 5473 } 5474 5475 /** 5476 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5477 * @pf: PF being queried 5478 * 5479 * Query the current MQPRIO configuration and return the number of 5480 * traffic classes enabled. 5481 **/ 5482 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5483 { 5484 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5485 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5486 u8 enabled_tc = 1, i; 5487 5488 for (i = 1; i < num_tc; i++) 5489 enabled_tc |= BIT(i); 5490 return enabled_tc; 5491 } 5492 5493 /** 5494 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5495 * @pf: PF being queried 5496 * 5497 * Return number of traffic classes enabled for the given PF 5498 **/ 5499 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5500 { 5501 u8 i, enabled_tc = 1; 5502 u8 num_tc = 0; 5503 5504 if (i40e_is_tc_mqprio_enabled(pf)) { 5505 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5506 5507 return vsi->mqprio_qopt.qopt.num_tc; 5508 } 5509 5510 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5511 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5512 return 1; 5513 5514 /* SFP mode will be enabled for all TCs on port */ 5515 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5516 return i40e_dcb_get_num_tc(&pf->hw.local_dcbx_config); 5517 5518 /* MFP mode return count of enabled TCs for this PF */ 5519 if (pf->hw.func_caps.iscsi) 5520 enabled_tc = i40e_get_iscsi_tc_map(pf); 5521 else 5522 return 1; /* Only TC0 */ 5523 5524 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5525 if (enabled_tc & BIT(i)) 5526 num_tc++; 5527 } 5528 return num_tc; 5529 } 5530 5531 /** 5532 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5533 * @pf: PF being queried 5534 * 5535 * Return a bitmap for enabled traffic classes for this PF. 5536 **/ 5537 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5538 { 5539 if (i40e_is_tc_mqprio_enabled(pf)) 5540 return i40e_mqprio_get_enabled_tc(pf); 5541 5542 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5543 * default TC 5544 */ 5545 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5546 return I40E_DEFAULT_TRAFFIC_CLASS; 5547 5548 /* SFP mode we want PF to be enabled for all TCs */ 5549 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5550 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5551 5552 /* MFP enabled and iSCSI PF type */ 5553 if (pf->hw.func_caps.iscsi) 5554 return i40e_get_iscsi_tc_map(pf); 5555 else 5556 return I40E_DEFAULT_TRAFFIC_CLASS; 5557 } 5558 5559 /** 5560 * i40e_vsi_get_bw_info - Query VSI BW Information 5561 * @vsi: the VSI being queried 5562 * 5563 * Returns 0 on success, negative value on failure 5564 **/ 5565 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5566 { 5567 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5568 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5569 struct i40e_pf *pf = vsi->back; 5570 struct i40e_hw *hw = &pf->hw; 5571 u32 tc_bw_max; 5572 int ret; 5573 int i; 5574 5575 /* Get the VSI level BW configuration */ 5576 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5577 if (ret) { 5578 dev_info(&pf->pdev->dev, 5579 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5580 ERR_PTR(ret), 5581 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5582 return -EINVAL; 5583 } 5584 5585 /* Get the VSI level BW configuration per TC */ 5586 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5587 NULL); 5588 if (ret) { 5589 dev_info(&pf->pdev->dev, 5590 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5591 ERR_PTR(ret), 5592 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5593 return -EINVAL; 5594 } 5595 5596 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5597 dev_info(&pf->pdev->dev, 5598 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5599 bw_config.tc_valid_bits, 5600 bw_ets_config.tc_valid_bits); 5601 /* Still continuing */ 5602 } 5603 5604 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5605 vsi->bw_max_quanta = bw_config.max_bw; 5606 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5607 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5608 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5609 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5610 vsi->bw_ets_limit_credits[i] = 5611 le16_to_cpu(bw_ets_config.credits[i]); 5612 /* 3 bits out of 4 for each TC */ 5613 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5614 } 5615 5616 return 0; 5617 } 5618 5619 /** 5620 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5621 * @vsi: the VSI being configured 5622 * @enabled_tc: TC bitmap 5623 * @bw_share: BW shared credits per TC 5624 * 5625 * Returns 0 on success, negative value on failure 5626 **/ 5627 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5628 u8 *bw_share) 5629 { 5630 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5631 struct i40e_pf *pf = vsi->back; 5632 int ret; 5633 int i; 5634 5635 /* There is no need to reset BW when mqprio mode is on. */ 5636 if (i40e_is_tc_mqprio_enabled(pf)) 5637 return 0; 5638 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5639 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5640 if (ret) 5641 dev_info(&pf->pdev->dev, 5642 "Failed to reset tx rate for vsi->seid %u\n", 5643 vsi->seid); 5644 return ret; 5645 } 5646 memset(&bw_data, 0, sizeof(bw_data)); 5647 bw_data.tc_valid_bits = enabled_tc; 5648 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5649 bw_data.tc_bw_credits[i] = bw_share[i]; 5650 5651 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5652 if (ret) { 5653 dev_info(&pf->pdev->dev, 5654 "AQ command Config VSI BW allocation per TC failed = %d\n", 5655 pf->hw.aq.asq_last_status); 5656 return -EINVAL; 5657 } 5658 5659 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5660 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5661 5662 return 0; 5663 } 5664 5665 /** 5666 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5667 * @vsi: the VSI being configured 5668 * @enabled_tc: TC map to be enabled 5669 * 5670 **/ 5671 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5672 { 5673 struct net_device *netdev = vsi->netdev; 5674 struct i40e_pf *pf = vsi->back; 5675 struct i40e_hw *hw = &pf->hw; 5676 u8 netdev_tc = 0; 5677 int i; 5678 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5679 5680 if (!netdev) 5681 return; 5682 5683 if (!enabled_tc) { 5684 netdev_reset_tc(netdev); 5685 return; 5686 } 5687 5688 /* Set up actual enabled TCs on the VSI */ 5689 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5690 return; 5691 5692 /* set per TC queues for the VSI */ 5693 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5694 /* Only set TC queues for enabled tcs 5695 * 5696 * e.g. For a VSI that has TC0 and TC3 enabled the 5697 * enabled_tc bitmap would be 0x00001001; the driver 5698 * will set the numtc for netdev as 2 that will be 5699 * referenced by the netdev layer as TC 0 and 1. 5700 */ 5701 if (vsi->tc_config.enabled_tc & BIT(i)) 5702 netdev_set_tc_queue(netdev, 5703 vsi->tc_config.tc_info[i].netdev_tc, 5704 vsi->tc_config.tc_info[i].qcount, 5705 vsi->tc_config.tc_info[i].qoffset); 5706 } 5707 5708 if (i40e_is_tc_mqprio_enabled(pf)) 5709 return; 5710 5711 /* Assign UP2TC map for the VSI */ 5712 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5713 /* Get the actual TC# for the UP */ 5714 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5715 /* Get the mapped netdev TC# for the UP */ 5716 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5717 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5718 } 5719 } 5720 5721 /** 5722 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5723 * @vsi: the VSI being configured 5724 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5725 **/ 5726 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5727 struct i40e_vsi_context *ctxt) 5728 { 5729 /* copy just the sections touched not the entire info 5730 * since not all sections are valid as returned by 5731 * update vsi params 5732 */ 5733 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5734 memcpy(&vsi->info.queue_mapping, 5735 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5736 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5737 sizeof(vsi->info.tc_mapping)); 5738 } 5739 5740 /** 5741 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5742 * @vsi: the VSI being reconfigured 5743 * @vsi_offset: offset from main VF VSI 5744 */ 5745 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5746 { 5747 struct i40e_vsi_context ctxt = {}; 5748 struct i40e_pf *pf; 5749 struct i40e_hw *hw; 5750 int ret; 5751 5752 if (!vsi) 5753 return -EINVAL; 5754 pf = vsi->back; 5755 hw = &pf->hw; 5756 5757 ctxt.seid = vsi->seid; 5758 ctxt.pf_num = hw->pf_id; 5759 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5760 ctxt.uplink_seid = vsi->uplink_seid; 5761 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5762 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5763 ctxt.info = vsi->info; 5764 5765 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5766 false); 5767 if (vsi->reconfig_rss) { 5768 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5769 vsi->num_queue_pairs); 5770 ret = i40e_vsi_config_rss(vsi); 5771 if (ret) { 5772 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5773 return ret; 5774 } 5775 vsi->reconfig_rss = false; 5776 } 5777 5778 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5779 if (ret) { 5780 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5781 ERR_PTR(ret), 5782 i40e_aq_str(hw, hw->aq.asq_last_status)); 5783 return ret; 5784 } 5785 /* update the local VSI info with updated queue map */ 5786 i40e_vsi_update_queue_map(vsi, &ctxt); 5787 vsi->info.valid_sections = 0; 5788 5789 return ret; 5790 } 5791 5792 /** 5793 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5794 * @vsi: VSI to be configured 5795 * @enabled_tc: TC bitmap 5796 * 5797 * This configures a particular VSI for TCs that are mapped to the 5798 * given TC bitmap. It uses default bandwidth share for TCs across 5799 * VSIs to configure TC for a particular VSI. 5800 * 5801 * NOTE: 5802 * It is expected that the VSI queues have been quisced before calling 5803 * this function. 5804 **/ 5805 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5806 { 5807 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5808 struct i40e_pf *pf = vsi->back; 5809 struct i40e_hw *hw = &pf->hw; 5810 struct i40e_vsi_context ctxt; 5811 int ret = 0; 5812 int i; 5813 5814 /* Check if enabled_tc is same as existing or new TCs */ 5815 if (vsi->tc_config.enabled_tc == enabled_tc && 5816 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5817 return ret; 5818 5819 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5820 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5821 if (enabled_tc & BIT(i)) 5822 bw_share[i] = 1; 5823 } 5824 5825 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5826 if (ret) { 5827 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5828 5829 dev_info(&pf->pdev->dev, 5830 "Failed configuring TC map %d for VSI %d\n", 5831 enabled_tc, vsi->seid); 5832 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5833 &bw_config, NULL); 5834 if (ret) { 5835 dev_info(&pf->pdev->dev, 5836 "Failed querying vsi bw info, err %pe aq_err %s\n", 5837 ERR_PTR(ret), 5838 i40e_aq_str(hw, hw->aq.asq_last_status)); 5839 goto out; 5840 } 5841 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5842 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5843 5844 if (!valid_tc) 5845 valid_tc = bw_config.tc_valid_bits; 5846 /* Always enable TC0, no matter what */ 5847 valid_tc |= 1; 5848 dev_info(&pf->pdev->dev, 5849 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5850 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5851 enabled_tc = valid_tc; 5852 } 5853 5854 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5855 if (ret) { 5856 dev_err(&pf->pdev->dev, 5857 "Unable to configure TC map %d for VSI %d\n", 5858 enabled_tc, vsi->seid); 5859 goto out; 5860 } 5861 } 5862 5863 /* Update Queue Pairs Mapping for currently enabled UPs */ 5864 ctxt.seid = vsi->seid; 5865 ctxt.pf_num = vsi->back->hw.pf_id; 5866 ctxt.vf_num = 0; 5867 ctxt.uplink_seid = vsi->uplink_seid; 5868 ctxt.info = vsi->info; 5869 if (i40e_is_tc_mqprio_enabled(pf)) { 5870 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5871 if (ret) 5872 goto out; 5873 } else { 5874 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5875 } 5876 5877 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5878 * queues changed. 5879 */ 5880 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5881 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5882 vsi->num_queue_pairs); 5883 ret = i40e_vsi_config_rss(vsi); 5884 if (ret) { 5885 dev_info(&vsi->back->pdev->dev, 5886 "Failed to reconfig rss for num_queues\n"); 5887 return ret; 5888 } 5889 vsi->reconfig_rss = false; 5890 } 5891 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5892 ctxt.info.valid_sections |= 5893 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5894 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5895 } 5896 5897 /* Update the VSI after updating the VSI queue-mapping 5898 * information 5899 */ 5900 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5901 if (ret) { 5902 dev_info(&pf->pdev->dev, 5903 "Update vsi tc config failed, err %pe aq_err %s\n", 5904 ERR_PTR(ret), 5905 i40e_aq_str(hw, hw->aq.asq_last_status)); 5906 goto out; 5907 } 5908 /* update the local VSI info with updated queue map */ 5909 i40e_vsi_update_queue_map(vsi, &ctxt); 5910 vsi->info.valid_sections = 0; 5911 5912 /* Update current VSI BW information */ 5913 ret = i40e_vsi_get_bw_info(vsi); 5914 if (ret) { 5915 dev_info(&pf->pdev->dev, 5916 "Failed updating vsi bw info, err %pe aq_err %s\n", 5917 ERR_PTR(ret), 5918 i40e_aq_str(hw, hw->aq.asq_last_status)); 5919 goto out; 5920 } 5921 5922 /* Update the netdev TC setup */ 5923 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5924 out: 5925 return ret; 5926 } 5927 5928 /** 5929 * i40e_vsi_reconfig_tc - Reconfigure VSI Tx Scheduler for stored TC map 5930 * @vsi: VSI to be reconfigured 5931 * 5932 * This reconfigures a particular VSI for TCs that are mapped to the 5933 * TC bitmap stored previously for the VSI. 5934 * 5935 * Context: It is expected that the VSI queues have been quisced before 5936 * calling this function. 5937 * 5938 * Return: 0 on success, negative value on failure 5939 **/ 5940 static int i40e_vsi_reconfig_tc(struct i40e_vsi *vsi) 5941 { 5942 u8 enabled_tc; 5943 5944 enabled_tc = vsi->tc_config.enabled_tc; 5945 vsi->tc_config.enabled_tc = 0; 5946 5947 return i40e_vsi_config_tc(vsi, enabled_tc); 5948 } 5949 5950 /** 5951 * i40e_get_link_speed - Returns link speed for the interface 5952 * @vsi: VSI to be configured 5953 * 5954 **/ 5955 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5956 { 5957 struct i40e_pf *pf = vsi->back; 5958 5959 switch (pf->hw.phy.link_info.link_speed) { 5960 case I40E_LINK_SPEED_40GB: 5961 return 40000; 5962 case I40E_LINK_SPEED_25GB: 5963 return 25000; 5964 case I40E_LINK_SPEED_20GB: 5965 return 20000; 5966 case I40E_LINK_SPEED_10GB: 5967 return 10000; 5968 case I40E_LINK_SPEED_1GB: 5969 return 1000; 5970 default: 5971 return -EINVAL; 5972 } 5973 } 5974 5975 /** 5976 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5977 * @vsi: Pointer to vsi structure 5978 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5979 * 5980 * Helper function to convert units before send to set BW limit 5981 **/ 5982 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5983 { 5984 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5985 dev_warn(&vsi->back->pdev->dev, 5986 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5987 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5988 } else { 5989 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5990 } 5991 5992 return max_tx_rate; 5993 } 5994 5995 /** 5996 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5997 * @vsi: VSI to be configured 5998 * @seid: seid of the channel/VSI 5999 * @max_tx_rate: max TX rate to be configured as BW limit 6000 * 6001 * Helper function to set BW limit for a given VSI 6002 **/ 6003 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 6004 { 6005 struct i40e_pf *pf = vsi->back; 6006 u64 credits = 0; 6007 int speed = 0; 6008 int ret = 0; 6009 6010 speed = i40e_get_link_speed(vsi); 6011 if (max_tx_rate > speed) { 6012 dev_err(&pf->pdev->dev, 6013 "Invalid max tx rate %llu specified for VSI seid %d.", 6014 max_tx_rate, seid); 6015 return -EINVAL; 6016 } 6017 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 6018 dev_warn(&pf->pdev->dev, 6019 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 6020 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 6021 } 6022 6023 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 6024 credits = max_tx_rate; 6025 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6026 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 6027 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 6028 if (ret) 6029 dev_err(&pf->pdev->dev, 6030 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 6031 max_tx_rate, seid, ERR_PTR(ret), 6032 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6033 return ret; 6034 } 6035 6036 /** 6037 * i40e_remove_queue_channels - Remove queue channels for the TCs 6038 * @vsi: VSI to be configured 6039 * 6040 * Remove queue channels for the TCs 6041 **/ 6042 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 6043 { 6044 enum i40e_admin_queue_err last_aq_status; 6045 struct i40e_cloud_filter *cfilter; 6046 struct i40e_channel *ch, *ch_tmp; 6047 struct i40e_pf *pf = vsi->back; 6048 struct hlist_node *node; 6049 int ret, i; 6050 6051 /* Reset rss size that was stored when reconfiguring rss for 6052 * channel VSIs with non-power-of-2 queue count. 6053 */ 6054 vsi->current_rss_size = 0; 6055 6056 /* perform cleanup for channels if they exist */ 6057 if (list_empty(&vsi->ch_list)) 6058 return; 6059 6060 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6061 struct i40e_vsi *p_vsi; 6062 6063 list_del(&ch->list); 6064 p_vsi = ch->parent_vsi; 6065 if (!p_vsi || !ch->initialized) { 6066 kfree(ch); 6067 continue; 6068 } 6069 /* Reset queue contexts */ 6070 for (i = 0; i < ch->num_queue_pairs; i++) { 6071 struct i40e_ring *tx_ring, *rx_ring; 6072 u16 pf_q; 6073 6074 pf_q = ch->base_queue + i; 6075 tx_ring = vsi->tx_rings[pf_q]; 6076 tx_ring->ch = NULL; 6077 6078 rx_ring = vsi->rx_rings[pf_q]; 6079 rx_ring->ch = NULL; 6080 } 6081 6082 /* Reset BW configured for this VSI via mqprio */ 6083 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6084 if (ret) 6085 dev_info(&vsi->back->pdev->dev, 6086 "Failed to reset tx rate for ch->seid %u\n", 6087 ch->seid); 6088 6089 /* delete cloud filters associated with this channel */ 6090 hlist_for_each_entry_safe(cfilter, node, 6091 &pf->cloud_filter_list, cloud_node) { 6092 if (cfilter->seid != ch->seid) 6093 continue; 6094 6095 hash_del(&cfilter->cloud_node); 6096 if (cfilter->dst_port) 6097 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6098 cfilter, 6099 false); 6100 else 6101 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6102 false); 6103 last_aq_status = pf->hw.aq.asq_last_status; 6104 if (ret) 6105 dev_info(&pf->pdev->dev, 6106 "Failed to delete cloud filter, err %pe aq_err %s\n", 6107 ERR_PTR(ret), 6108 i40e_aq_str(&pf->hw, last_aq_status)); 6109 kfree(cfilter); 6110 } 6111 6112 /* delete VSI from FW */ 6113 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6114 NULL); 6115 if (ret) 6116 dev_err(&vsi->back->pdev->dev, 6117 "unable to remove channel (%d) for parent VSI(%d)\n", 6118 ch->seid, p_vsi->seid); 6119 kfree(ch); 6120 } 6121 INIT_LIST_HEAD(&vsi->ch_list); 6122 } 6123 6124 /** 6125 * i40e_get_max_queues_for_channel 6126 * @vsi: ptr to VSI to which channels are associated with 6127 * 6128 * Helper function which returns max value among the queue counts set on the 6129 * channels/TCs created. 6130 **/ 6131 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6132 { 6133 struct i40e_channel *ch, *ch_tmp; 6134 int max = 0; 6135 6136 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6137 if (!ch->initialized) 6138 continue; 6139 if (ch->num_queue_pairs > max) 6140 max = ch->num_queue_pairs; 6141 } 6142 6143 return max; 6144 } 6145 6146 /** 6147 * i40e_validate_num_queues - validate num_queues w.r.t channel 6148 * @pf: ptr to PF device 6149 * @num_queues: number of queues 6150 * @vsi: the parent VSI 6151 * @reconfig_rss: indicates should the RSS be reconfigured or not 6152 * 6153 * This function validates number of queues in the context of new channel 6154 * which is being established and determines if RSS should be reconfigured 6155 * or not for parent VSI. 6156 **/ 6157 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6158 struct i40e_vsi *vsi, bool *reconfig_rss) 6159 { 6160 int max_ch_queues; 6161 6162 if (!reconfig_rss) 6163 return -EINVAL; 6164 6165 *reconfig_rss = false; 6166 if (vsi->current_rss_size) { 6167 if (num_queues > vsi->current_rss_size) { 6168 dev_dbg(&pf->pdev->dev, 6169 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6170 num_queues, vsi->current_rss_size); 6171 return -EINVAL; 6172 } else if ((num_queues < vsi->current_rss_size) && 6173 (!is_power_of_2(num_queues))) { 6174 dev_dbg(&pf->pdev->dev, 6175 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6176 num_queues, vsi->current_rss_size); 6177 return -EINVAL; 6178 } 6179 } 6180 6181 if (!is_power_of_2(num_queues)) { 6182 /* Find the max num_queues configured for channel if channel 6183 * exist. 6184 * if channel exist, then enforce 'num_queues' to be more than 6185 * max ever queues configured for channel. 6186 */ 6187 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6188 if (num_queues < max_ch_queues) { 6189 dev_dbg(&pf->pdev->dev, 6190 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6191 num_queues, max_ch_queues); 6192 return -EINVAL; 6193 } 6194 *reconfig_rss = true; 6195 } 6196 6197 return 0; 6198 } 6199 6200 /** 6201 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6202 * @vsi: the VSI being setup 6203 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6204 * 6205 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6206 **/ 6207 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6208 { 6209 struct i40e_pf *pf = vsi->back; 6210 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6211 struct i40e_hw *hw = &pf->hw; 6212 int local_rss_size; 6213 u8 *lut; 6214 int ret; 6215 6216 if (!vsi->rss_size) 6217 return -EINVAL; 6218 6219 if (rss_size > vsi->rss_size) 6220 return -EINVAL; 6221 6222 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6223 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6224 if (!lut) 6225 return -ENOMEM; 6226 6227 /* Ignoring user configured lut if there is one */ 6228 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6229 6230 /* Use user configured hash key if there is one, otherwise 6231 * use default. 6232 */ 6233 if (vsi->rss_hkey_user) 6234 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6235 else 6236 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6237 6238 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6239 if (ret) { 6240 dev_info(&pf->pdev->dev, 6241 "Cannot set RSS lut, err %pe aq_err %s\n", 6242 ERR_PTR(ret), 6243 i40e_aq_str(hw, hw->aq.asq_last_status)); 6244 kfree(lut); 6245 return ret; 6246 } 6247 kfree(lut); 6248 6249 /* Do the update w.r.t. storing rss_size */ 6250 if (!vsi->orig_rss_size) 6251 vsi->orig_rss_size = vsi->rss_size; 6252 vsi->current_rss_size = local_rss_size; 6253 6254 return ret; 6255 } 6256 6257 /** 6258 * i40e_channel_setup_queue_map - Setup a channel queue map 6259 * @pf: ptr to PF device 6260 * @ctxt: VSI context structure 6261 * @ch: ptr to channel structure 6262 * 6263 * Setup queue map for a specific channel 6264 **/ 6265 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6266 struct i40e_vsi_context *ctxt, 6267 struct i40e_channel *ch) 6268 { 6269 u16 qcount, qmap, sections = 0; 6270 u8 offset = 0; 6271 int pow; 6272 6273 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6274 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6275 6276 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6277 ch->num_queue_pairs = qcount; 6278 6279 /* find the next higher power-of-2 of num queue pairs */ 6280 pow = ilog2(qcount); 6281 if (!is_power_of_2(qcount)) 6282 pow++; 6283 6284 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6285 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6286 6287 /* Setup queue TC[0].qmap for given VSI context */ 6288 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6289 6290 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6291 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6292 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6293 ctxt->info.valid_sections |= cpu_to_le16(sections); 6294 } 6295 6296 /** 6297 * i40e_add_channel - add a channel by adding VSI 6298 * @pf: ptr to PF device 6299 * @uplink_seid: underlying HW switching element (VEB) ID 6300 * @ch: ptr to channel structure 6301 * 6302 * Add a channel (VSI) using add_vsi and queue_map 6303 **/ 6304 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6305 struct i40e_channel *ch) 6306 { 6307 struct i40e_hw *hw = &pf->hw; 6308 struct i40e_vsi_context ctxt; 6309 u8 enabled_tc = 0x1; /* TC0 enabled */ 6310 int ret; 6311 6312 if (ch->type != I40E_VSI_VMDQ2) { 6313 dev_info(&pf->pdev->dev, 6314 "add new vsi failed, ch->type %d\n", ch->type); 6315 return -EINVAL; 6316 } 6317 6318 memset(&ctxt, 0, sizeof(ctxt)); 6319 ctxt.pf_num = hw->pf_id; 6320 ctxt.vf_num = 0; 6321 ctxt.uplink_seid = uplink_seid; 6322 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6323 if (ch->type == I40E_VSI_VMDQ2) 6324 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6325 6326 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6327 ctxt.info.valid_sections |= 6328 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6329 ctxt.info.switch_id = 6330 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6331 } 6332 6333 /* Set queue map for a given VSI context */ 6334 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6335 6336 /* Now time to create VSI */ 6337 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6338 if (ret) { 6339 dev_info(&pf->pdev->dev, 6340 "add new vsi failed, err %pe aq_err %s\n", 6341 ERR_PTR(ret), 6342 i40e_aq_str(&pf->hw, 6343 pf->hw.aq.asq_last_status)); 6344 return -ENOENT; 6345 } 6346 6347 /* Success, update channel, set enabled_tc only if the channel 6348 * is not a macvlan 6349 */ 6350 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6351 ch->seid = ctxt.seid; 6352 ch->vsi_number = ctxt.vsi_number; 6353 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6354 6355 /* copy just the sections touched not the entire info 6356 * since not all sections are valid as returned by 6357 * update vsi params 6358 */ 6359 ch->info.mapping_flags = ctxt.info.mapping_flags; 6360 memcpy(&ch->info.queue_mapping, 6361 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6362 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6363 sizeof(ctxt.info.tc_mapping)); 6364 6365 return 0; 6366 } 6367 6368 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6369 u8 *bw_share) 6370 { 6371 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6372 int ret; 6373 int i; 6374 6375 memset(&bw_data, 0, sizeof(bw_data)); 6376 bw_data.tc_valid_bits = ch->enabled_tc; 6377 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6378 bw_data.tc_bw_credits[i] = bw_share[i]; 6379 6380 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6381 &bw_data, NULL); 6382 if (ret) { 6383 dev_info(&vsi->back->pdev->dev, 6384 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6385 vsi->back->hw.aq.asq_last_status, ch->seid); 6386 return -EINVAL; 6387 } 6388 6389 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6390 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6391 6392 return 0; 6393 } 6394 6395 /** 6396 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6397 * @pf: ptr to PF device 6398 * @vsi: the VSI being setup 6399 * @ch: ptr to channel structure 6400 * 6401 * Configure TX rings associated with channel (VSI) since queues are being 6402 * from parent VSI. 6403 **/ 6404 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6405 struct i40e_vsi *vsi, 6406 struct i40e_channel *ch) 6407 { 6408 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6409 int ret; 6410 int i; 6411 6412 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6413 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6414 if (ch->enabled_tc & BIT(i)) 6415 bw_share[i] = 1; 6416 } 6417 6418 /* configure BW for new VSI */ 6419 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6420 if (ret) { 6421 dev_info(&vsi->back->pdev->dev, 6422 "Failed configuring TC map %d for channel (seid %u)\n", 6423 ch->enabled_tc, ch->seid); 6424 return ret; 6425 } 6426 6427 for (i = 0; i < ch->num_queue_pairs; i++) { 6428 struct i40e_ring *tx_ring, *rx_ring; 6429 u16 pf_q; 6430 6431 pf_q = ch->base_queue + i; 6432 6433 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6434 * context 6435 */ 6436 tx_ring = vsi->tx_rings[pf_q]; 6437 tx_ring->ch = ch; 6438 6439 /* Get the RX ring ptr */ 6440 rx_ring = vsi->rx_rings[pf_q]; 6441 rx_ring->ch = ch; 6442 } 6443 6444 return 0; 6445 } 6446 6447 /** 6448 * i40e_setup_hw_channel - setup new channel 6449 * @pf: ptr to PF device 6450 * @vsi: the VSI being setup 6451 * @ch: ptr to channel structure 6452 * @uplink_seid: underlying HW switching element (VEB) ID 6453 * @type: type of channel to be created (VMDq2/VF) 6454 * 6455 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6456 * and configures TX rings accordingly 6457 **/ 6458 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6459 struct i40e_vsi *vsi, 6460 struct i40e_channel *ch, 6461 u16 uplink_seid, u8 type) 6462 { 6463 int ret; 6464 6465 ch->initialized = false; 6466 ch->base_queue = vsi->next_base_queue; 6467 ch->type = type; 6468 6469 /* Proceed with creation of channel (VMDq2) VSI */ 6470 ret = i40e_add_channel(pf, uplink_seid, ch); 6471 if (ret) { 6472 dev_info(&pf->pdev->dev, 6473 "failed to add_channel using uplink_seid %u\n", 6474 uplink_seid); 6475 return ret; 6476 } 6477 6478 /* Mark the successful creation of channel */ 6479 ch->initialized = true; 6480 6481 /* Reconfigure TX queues using QTX_CTL register */ 6482 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6483 if (ret) { 6484 dev_info(&pf->pdev->dev, 6485 "failed to configure TX rings for channel %u\n", 6486 ch->seid); 6487 return ret; 6488 } 6489 6490 /* update 'next_base_queue' */ 6491 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6492 dev_dbg(&pf->pdev->dev, 6493 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6494 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6495 ch->num_queue_pairs, 6496 vsi->next_base_queue); 6497 return ret; 6498 } 6499 6500 /** 6501 * i40e_setup_channel - setup new channel using uplink element 6502 * @pf: ptr to PF device 6503 * @vsi: pointer to the VSI to set up the channel within 6504 * @ch: ptr to channel structure 6505 * 6506 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6507 * and uplink switching element (uplink_seid) 6508 **/ 6509 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6510 struct i40e_channel *ch) 6511 { 6512 struct i40e_vsi *main_vsi; 6513 u8 vsi_type; 6514 u16 seid; 6515 int ret; 6516 6517 if (vsi->type == I40E_VSI_MAIN) { 6518 vsi_type = I40E_VSI_VMDQ2; 6519 } else { 6520 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6521 vsi->type); 6522 return false; 6523 } 6524 6525 /* underlying switching element */ 6526 main_vsi = i40e_pf_get_main_vsi(pf); 6527 seid = main_vsi->uplink_seid; 6528 6529 /* create channel (VSI), configure TX rings */ 6530 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6531 if (ret) { 6532 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6533 return false; 6534 } 6535 6536 return ch->initialized ? true : false; 6537 } 6538 6539 /** 6540 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6541 * @vsi: ptr to VSI which has PF backing 6542 * 6543 * Sets up switch mode correctly if it needs to be changed and perform 6544 * what are allowed modes. 6545 **/ 6546 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6547 { 6548 u8 mode; 6549 struct i40e_pf *pf = vsi->back; 6550 struct i40e_hw *hw = &pf->hw; 6551 int ret; 6552 6553 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6554 if (ret) 6555 return -EINVAL; 6556 6557 if (hw->dev_caps.switch_mode) { 6558 /* if switch mode is set, support mode2 (non-tunneled for 6559 * cloud filter) for now 6560 */ 6561 u32 switch_mode = hw->dev_caps.switch_mode & 6562 I40E_SWITCH_MODE_MASK; 6563 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6564 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6565 return 0; 6566 dev_err(&pf->pdev->dev, 6567 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6568 hw->dev_caps.switch_mode); 6569 return -EINVAL; 6570 } 6571 } 6572 6573 /* Set Bit 7 to be valid */ 6574 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6575 6576 /* Set L4type for TCP support */ 6577 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6578 6579 /* Set cloud filter mode */ 6580 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6581 6582 /* Prep mode field for set_switch_config */ 6583 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6584 pf->last_sw_conf_valid_flags, 6585 mode, NULL); 6586 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6587 dev_err(&pf->pdev->dev, 6588 "couldn't set switch config bits, err %pe aq_err %s\n", 6589 ERR_PTR(ret), 6590 i40e_aq_str(hw, 6591 hw->aq.asq_last_status)); 6592 6593 return ret; 6594 } 6595 6596 /** 6597 * i40e_create_queue_channel - function to create channel 6598 * @vsi: VSI to be configured 6599 * @ch: ptr to channel (it contains channel specific params) 6600 * 6601 * This function creates channel (VSI) using num_queues specified by user, 6602 * reconfigs RSS if needed. 6603 **/ 6604 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6605 struct i40e_channel *ch) 6606 { 6607 struct i40e_pf *pf = vsi->back; 6608 bool reconfig_rss; 6609 int err; 6610 6611 if (!ch) 6612 return -EINVAL; 6613 6614 if (!ch->num_queue_pairs) { 6615 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6616 ch->num_queue_pairs); 6617 return -EINVAL; 6618 } 6619 6620 /* validate user requested num_queues for channel */ 6621 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6622 &reconfig_rss); 6623 if (err) { 6624 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6625 ch->num_queue_pairs); 6626 return -EINVAL; 6627 } 6628 6629 /* By default we are in VEPA mode, if this is the first VF/VMDq 6630 * VSI to be added switch to VEB mode. 6631 */ 6632 6633 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6634 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6635 6636 if (vsi->type == I40E_VSI_MAIN) { 6637 if (i40e_is_tc_mqprio_enabled(pf)) 6638 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6639 else 6640 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6641 } 6642 /* now onwards for main VSI, number of queues will be value 6643 * of TC0's queue count 6644 */ 6645 } 6646 6647 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6648 * it should be more than num_queues 6649 */ 6650 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6651 dev_dbg(&pf->pdev->dev, 6652 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6653 vsi->cnt_q_avail, ch->num_queue_pairs); 6654 return -EINVAL; 6655 } 6656 6657 /* reconfig_rss only if vsi type is MAIN_VSI */ 6658 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6659 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6660 if (err) { 6661 dev_info(&pf->pdev->dev, 6662 "Error: unable to reconfig rss for num_queues (%u)\n", 6663 ch->num_queue_pairs); 6664 return -EINVAL; 6665 } 6666 } 6667 6668 if (!i40e_setup_channel(pf, vsi, ch)) { 6669 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6670 return -EINVAL; 6671 } 6672 6673 dev_info(&pf->pdev->dev, 6674 "Setup channel (id:%u) utilizing num_queues %d\n", 6675 ch->seid, ch->num_queue_pairs); 6676 6677 /* configure VSI for BW limit */ 6678 if (ch->max_tx_rate) { 6679 u64 credits = ch->max_tx_rate; 6680 6681 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6682 return -EINVAL; 6683 6684 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6685 dev_dbg(&pf->pdev->dev, 6686 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6687 ch->max_tx_rate, 6688 credits, 6689 ch->seid); 6690 } 6691 6692 /* in case of VF, this will be main SRIOV VSI */ 6693 ch->parent_vsi = vsi; 6694 6695 /* and update main_vsi's count for queue_available to use */ 6696 vsi->cnt_q_avail -= ch->num_queue_pairs; 6697 6698 return 0; 6699 } 6700 6701 /** 6702 * i40e_configure_queue_channels - Add queue channel for the given TCs 6703 * @vsi: VSI to be configured 6704 * 6705 * Configures queue channel mapping to the given TCs 6706 **/ 6707 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6708 { 6709 struct i40e_channel *ch; 6710 u64 max_rate = 0; 6711 int ret = 0, i; 6712 6713 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6714 vsi->tc_seid_map[0] = vsi->seid; 6715 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6716 if (vsi->tc_config.enabled_tc & BIT(i)) { 6717 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6718 if (!ch) { 6719 ret = -ENOMEM; 6720 goto err_free; 6721 } 6722 6723 INIT_LIST_HEAD(&ch->list); 6724 ch->num_queue_pairs = 6725 vsi->tc_config.tc_info[i].qcount; 6726 ch->base_queue = 6727 vsi->tc_config.tc_info[i].qoffset; 6728 6729 /* Bandwidth limit through tc interface is in bytes/s, 6730 * change to Mbit/s 6731 */ 6732 max_rate = vsi->mqprio_qopt.max_rate[i]; 6733 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6734 ch->max_tx_rate = max_rate; 6735 6736 list_add_tail(&ch->list, &vsi->ch_list); 6737 6738 ret = i40e_create_queue_channel(vsi, ch); 6739 if (ret) { 6740 dev_err(&vsi->back->pdev->dev, 6741 "Failed creating queue channel with TC%d: queues %d\n", 6742 i, ch->num_queue_pairs); 6743 goto err_free; 6744 } 6745 vsi->tc_seid_map[i] = ch->seid; 6746 } 6747 } 6748 6749 /* reset to reconfigure TX queue contexts */ 6750 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6751 return ret; 6752 6753 err_free: 6754 i40e_remove_queue_channels(vsi); 6755 return ret; 6756 } 6757 6758 /** 6759 * i40e_veb_config_tc - Configure TCs for given VEB 6760 * @veb: given VEB 6761 * @enabled_tc: TC bitmap 6762 * 6763 * Configures given TC bitmap for VEB (switching) element 6764 **/ 6765 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6766 { 6767 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6768 struct i40e_pf *pf = veb->pf; 6769 int ret = 0; 6770 int i; 6771 6772 /* No TCs or already enabled TCs just return */ 6773 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6774 return ret; 6775 6776 bw_data.tc_valid_bits = enabled_tc; 6777 /* bw_data.absolute_credits is not set (relative) */ 6778 6779 /* Enable ETS TCs with equal BW Share for now */ 6780 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6781 if (enabled_tc & BIT(i)) 6782 bw_data.tc_bw_share_credits[i] = 1; 6783 } 6784 6785 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6786 &bw_data, NULL); 6787 if (ret) { 6788 dev_info(&pf->pdev->dev, 6789 "VEB bw config failed, err %pe aq_err %s\n", 6790 ERR_PTR(ret), 6791 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6792 goto out; 6793 } 6794 6795 /* Update the BW information */ 6796 ret = i40e_veb_get_bw_info(veb); 6797 if (ret) { 6798 dev_info(&pf->pdev->dev, 6799 "Failed getting veb bw config, err %pe aq_err %s\n", 6800 ERR_PTR(ret), 6801 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6802 } 6803 6804 out: 6805 return ret; 6806 } 6807 6808 #ifdef CONFIG_I40E_DCB 6809 /** 6810 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6811 * @pf: PF struct 6812 * 6813 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6814 * the caller would've quiesce all the VSIs before calling 6815 * this function 6816 **/ 6817 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6818 { 6819 struct i40e_vsi *vsi; 6820 struct i40e_veb *veb; 6821 u8 tc_map = 0; 6822 int ret; 6823 int v; 6824 6825 /* Enable the TCs available on PF to all VEBs */ 6826 tc_map = i40e_pf_get_tc_map(pf); 6827 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6828 return; 6829 6830 i40e_pf_for_each_veb(pf, v, veb) { 6831 ret = i40e_veb_config_tc(veb, tc_map); 6832 if (ret) { 6833 dev_info(&pf->pdev->dev, 6834 "Failed configuring TC for VEB seid=%d\n", 6835 veb->seid); 6836 /* Will try to configure as many components */ 6837 } 6838 } 6839 6840 /* Update each VSI */ 6841 i40e_pf_for_each_vsi(pf, v, vsi) { 6842 /* - Enable all TCs for the LAN VSI 6843 * - For all others keep them at TC0 for now 6844 */ 6845 if (vsi->type == I40E_VSI_MAIN) 6846 tc_map = i40e_pf_get_tc_map(pf); 6847 else 6848 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6849 6850 ret = i40e_vsi_config_tc(vsi, tc_map); 6851 if (ret) { 6852 dev_info(&pf->pdev->dev, 6853 "Failed configuring TC for VSI seid=%d\n", 6854 vsi->seid); 6855 /* Will try to configure as many components */ 6856 } else { 6857 /* Re-configure VSI vectors based on updated TC map */ 6858 i40e_vsi_map_rings_to_vectors(vsi); 6859 if (vsi->netdev) 6860 i40e_dcbnl_set_all(vsi); 6861 } 6862 } 6863 } 6864 6865 /** 6866 * i40e_resume_port_tx - Resume port Tx 6867 * @pf: PF struct 6868 * 6869 * Resume a port's Tx and issue a PF reset in case of failure to 6870 * resume. 6871 **/ 6872 static int i40e_resume_port_tx(struct i40e_pf *pf) 6873 { 6874 struct i40e_hw *hw = &pf->hw; 6875 int ret; 6876 6877 ret = i40e_aq_resume_port_tx(hw, NULL); 6878 if (ret) { 6879 dev_info(&pf->pdev->dev, 6880 "Resume Port Tx failed, err %pe aq_err %s\n", 6881 ERR_PTR(ret), 6882 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6883 /* Schedule PF reset to recover */ 6884 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6885 i40e_service_event_schedule(pf); 6886 } 6887 6888 return ret; 6889 } 6890 6891 /** 6892 * i40e_suspend_port_tx - Suspend port Tx 6893 * @pf: PF struct 6894 * 6895 * Suspend a port's Tx and issue a PF reset in case of failure. 6896 **/ 6897 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6898 { 6899 struct i40e_hw *hw = &pf->hw; 6900 int ret; 6901 6902 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6903 if (ret) { 6904 dev_info(&pf->pdev->dev, 6905 "Suspend Port Tx failed, err %pe aq_err %s\n", 6906 ERR_PTR(ret), 6907 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6908 /* Schedule PF reset to recover */ 6909 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6910 i40e_service_event_schedule(pf); 6911 } 6912 6913 return ret; 6914 } 6915 6916 /** 6917 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6918 * @pf: PF being configured 6919 * @new_cfg: New DCBX configuration 6920 * 6921 * Program DCB settings into HW and reconfigure VEB/VSIs on 6922 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6923 **/ 6924 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6925 struct i40e_dcbx_config *new_cfg) 6926 { 6927 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6928 int ret; 6929 6930 /* Check if need reconfiguration */ 6931 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6932 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6933 return 0; 6934 } 6935 6936 /* Config change disable all VSIs */ 6937 i40e_pf_quiesce_all_vsi(pf); 6938 6939 /* Copy the new config to the current config */ 6940 *old_cfg = *new_cfg; 6941 old_cfg->etsrec = old_cfg->etscfg; 6942 ret = i40e_set_dcb_config(&pf->hw); 6943 if (ret) { 6944 dev_info(&pf->pdev->dev, 6945 "Set DCB Config failed, err %pe aq_err %s\n", 6946 ERR_PTR(ret), 6947 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6948 goto out; 6949 } 6950 6951 /* Changes in configuration update VEB/VSI */ 6952 i40e_dcb_reconfigure(pf); 6953 out: 6954 /* In case of reset do not try to resume anything */ 6955 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6956 /* Re-start the VSIs if disabled */ 6957 ret = i40e_resume_port_tx(pf); 6958 /* In case of error no point in resuming VSIs */ 6959 if (ret) 6960 goto err; 6961 i40e_pf_unquiesce_all_vsi(pf); 6962 } 6963 err: 6964 return ret; 6965 } 6966 6967 /** 6968 * i40e_hw_dcb_config - Program new DCBX settings into HW 6969 * @pf: PF being configured 6970 * @new_cfg: New DCBX configuration 6971 * 6972 * Program DCB settings into HW and reconfigure VEB/VSIs on 6973 * given PF 6974 **/ 6975 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6976 { 6977 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6978 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6979 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6980 struct i40e_dcbx_config *old_cfg; 6981 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6982 struct i40e_rx_pb_config pb_cfg; 6983 struct i40e_hw *hw = &pf->hw; 6984 u8 num_ports = hw->num_ports; 6985 bool need_reconfig; 6986 int ret = -EINVAL; 6987 u8 lltc_map = 0; 6988 u8 tc_map = 0; 6989 u8 new_numtc; 6990 u8 i; 6991 6992 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6993 /* Un-pack information to Program ETS HW via shared API 6994 * numtc, tcmap 6995 * LLTC map 6996 * ETS/NON-ETS arbiter mode 6997 * max exponent (credit refills) 6998 * Total number of ports 6999 * PFC priority bit-map 7000 * Priority Table 7001 * BW % per TC 7002 * Arbiter mode between UPs sharing same TC 7003 * TSA table (ETS or non-ETS) 7004 * EEE enabled or not 7005 * MFS TC table 7006 */ 7007 7008 new_numtc = i40e_dcb_get_num_tc(new_cfg); 7009 7010 memset(&ets_data, 0, sizeof(ets_data)); 7011 for (i = 0; i < new_numtc; i++) { 7012 tc_map |= BIT(i); 7013 switch (new_cfg->etscfg.tsatable[i]) { 7014 case I40E_IEEE_TSA_ETS: 7015 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 7016 ets_data.tc_bw_share_credits[i] = 7017 new_cfg->etscfg.tcbwtable[i]; 7018 break; 7019 case I40E_IEEE_TSA_STRICT: 7020 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 7021 lltc_map |= BIT(i); 7022 ets_data.tc_bw_share_credits[i] = 7023 I40E_DCB_STRICT_PRIO_CREDITS; 7024 break; 7025 default: 7026 /* Invalid TSA type */ 7027 need_reconfig = false; 7028 goto out; 7029 } 7030 } 7031 7032 old_cfg = &hw->local_dcbx_config; 7033 /* Check if need reconfiguration */ 7034 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 7035 7036 /* If needed, enable/disable frame tagging, disable all VSIs 7037 * and suspend port tx 7038 */ 7039 if (need_reconfig) { 7040 /* Enable DCB tagging only when more than one TC */ 7041 if (new_numtc > 1) 7042 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7043 else 7044 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7045 7046 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7047 /* Reconfiguration needed quiesce all VSIs */ 7048 i40e_pf_quiesce_all_vsi(pf); 7049 ret = i40e_suspend_port_tx(pf); 7050 if (ret) 7051 goto err; 7052 } 7053 7054 /* Configure Port ETS Tx Scheduler */ 7055 ets_data.tc_valid_bits = tc_map; 7056 ets_data.tc_strict_priority_flags = lltc_map; 7057 ret = i40e_aq_config_switch_comp_ets 7058 (hw, pf->mac_seid, &ets_data, 7059 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7060 if (ret) { 7061 dev_info(&pf->pdev->dev, 7062 "Modify Port ETS failed, err %pe aq_err %s\n", 7063 ERR_PTR(ret), 7064 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7065 goto out; 7066 } 7067 7068 /* Configure Rx ETS HW */ 7069 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7070 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7071 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7072 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7073 I40E_DCB_DEFAULT_MAX_EXPONENT, 7074 lltc_map); 7075 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7076 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7077 prio_type); 7078 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7079 new_cfg->etscfg.prioritytable); 7080 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7081 7082 /* Configure Rx Packet Buffers in HW */ 7083 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7084 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 7085 7086 mfs_tc[i] = main_vsi->netdev->mtu; 7087 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7088 } 7089 7090 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7091 false, new_cfg->pfc.pfcenable, 7092 mfs_tc, &pb_cfg); 7093 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7094 7095 /* Update the local Rx Packet buffer config */ 7096 pf->pb_cfg = pb_cfg; 7097 7098 /* Inform the FW about changes to DCB configuration */ 7099 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7100 if (ret) { 7101 dev_info(&pf->pdev->dev, 7102 "DCB Updated failed, err %pe aq_err %s\n", 7103 ERR_PTR(ret), 7104 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7105 goto out; 7106 } 7107 7108 /* Update the port DCBx configuration */ 7109 *old_cfg = *new_cfg; 7110 7111 /* Changes in configuration update VEB/VSI */ 7112 i40e_dcb_reconfigure(pf); 7113 out: 7114 /* Re-start the VSIs if disabled */ 7115 if (need_reconfig) { 7116 ret = i40e_resume_port_tx(pf); 7117 7118 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7119 /* In case of error no point in resuming VSIs */ 7120 if (ret) 7121 goto err; 7122 7123 /* Wait for the PF's queues to be disabled */ 7124 ret = i40e_pf_wait_queues_disabled(pf); 7125 if (ret) { 7126 /* Schedule PF reset to recover */ 7127 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7128 i40e_service_event_schedule(pf); 7129 goto err; 7130 } else { 7131 i40e_pf_unquiesce_all_vsi(pf); 7132 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7133 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7134 } 7135 /* registers are set, lets apply */ 7136 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7137 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7138 } 7139 7140 err: 7141 return ret; 7142 } 7143 7144 /** 7145 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7146 * @pf: PF being queried 7147 * 7148 * Set default DCB configuration in case DCB is to be done in SW. 7149 **/ 7150 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7151 { 7152 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7153 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7154 struct i40e_hw *hw = &pf->hw; 7155 int err; 7156 7157 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7158 /* Update the local cached instance with TC0 ETS */ 7159 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7160 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7161 pf->tmp_cfg.etscfg.maxtcs = 0; 7162 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7163 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7164 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7165 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7166 /* FW needs one App to configure HW */ 7167 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7168 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7169 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7170 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7171 7172 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7173 } 7174 7175 memset(&ets_data, 0, sizeof(ets_data)); 7176 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7177 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7178 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7179 7180 /* Enable ETS on the Physical port */ 7181 err = i40e_aq_config_switch_comp_ets 7182 (hw, pf->mac_seid, &ets_data, 7183 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7184 if (err) { 7185 dev_info(&pf->pdev->dev, 7186 "Enable Port ETS failed, err %pe aq_err %s\n", 7187 ERR_PTR(err), 7188 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7189 err = -ENOENT; 7190 goto out; 7191 } 7192 7193 /* Update the local cached instance with TC0 ETS */ 7194 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7195 dcb_cfg->etscfg.cbs = 0; 7196 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7197 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7198 7199 out: 7200 return err; 7201 } 7202 7203 /** 7204 * i40e_init_pf_dcb - Initialize DCB configuration 7205 * @pf: PF being configured 7206 * 7207 * Query the current DCB configuration and cache it 7208 * in the hardware structure 7209 **/ 7210 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7211 { 7212 struct i40e_hw *hw = &pf->hw; 7213 int err; 7214 7215 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7216 * Also do not enable DCBx if FW LLDP agent is disabled 7217 */ 7218 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7219 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7220 err = -EOPNOTSUPP; 7221 goto out; 7222 } 7223 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7224 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7225 err = i40e_dcb_sw_default_config(pf); 7226 if (err) { 7227 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7228 goto out; 7229 } 7230 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7231 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7232 DCB_CAP_DCBX_VER_IEEE; 7233 /* at init capable but disabled */ 7234 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7235 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7236 goto out; 7237 } 7238 err = i40e_init_dcb(hw, true); 7239 if (!err) { 7240 /* Device/Function is not DCBX capable */ 7241 if ((!hw->func_caps.dcb) || 7242 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7243 dev_info(&pf->pdev->dev, 7244 "DCBX offload is not supported or is disabled for this PF.\n"); 7245 } else { 7246 /* When status is not DISABLED then DCBX in FW */ 7247 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7248 DCB_CAP_DCBX_VER_IEEE; 7249 7250 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7251 /* Enable DCB tagging only when more than one TC 7252 * or explicitly disable if only one TC 7253 */ 7254 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7255 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7256 else 7257 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7258 dev_dbg(&pf->pdev->dev, 7259 "DCBX offload is supported for this PF.\n"); 7260 } 7261 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7262 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7263 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7264 } else { 7265 dev_info(&pf->pdev->dev, 7266 "Query for DCB configuration failed, err %pe aq_err %s\n", 7267 ERR_PTR(err), 7268 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7269 } 7270 7271 out: 7272 return err; 7273 } 7274 #endif /* CONFIG_I40E_DCB */ 7275 7276 static void i40e_print_link_message_eee(struct i40e_vsi *vsi, 7277 const char *speed, const char *fc) 7278 { 7279 struct ethtool_keee kedata; 7280 7281 memzero_explicit(&kedata, sizeof(kedata)); 7282 if (vsi->netdev->ethtool_ops->get_eee) 7283 vsi->netdev->ethtool_ops->get_eee(vsi->netdev, &kedata); 7284 7285 if (!linkmode_empty(kedata.supported)) 7286 netdev_info(vsi->netdev, 7287 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s, EEE: %s\n", 7288 speed, fc, 7289 kedata.eee_enabled ? "Enabled" : "Disabled"); 7290 else 7291 netdev_info(vsi->netdev, 7292 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7293 speed, fc); 7294 } 7295 7296 /** 7297 * i40e_print_link_message - print link up or down 7298 * @vsi: the VSI for which link needs a message 7299 * @isup: true of link is up, false otherwise 7300 */ 7301 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7302 { 7303 enum i40e_aq_link_speed new_speed; 7304 struct i40e_pf *pf = vsi->back; 7305 char *speed = "Unknown"; 7306 char *fc = "Unknown"; 7307 char *fec = ""; 7308 char *req_fec = ""; 7309 char *an = ""; 7310 7311 if (isup) 7312 new_speed = pf->hw.phy.link_info.link_speed; 7313 else 7314 new_speed = I40E_LINK_SPEED_UNKNOWN; 7315 7316 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7317 return; 7318 vsi->current_isup = isup; 7319 vsi->current_speed = new_speed; 7320 if (!isup) { 7321 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7322 return; 7323 } 7324 7325 /* Warn user if link speed on NPAR enabled partition is not at 7326 * least 10GB 7327 */ 7328 if (pf->hw.func_caps.npar_enable && 7329 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7330 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7331 netdev_warn(vsi->netdev, 7332 "The partition detected link speed that is less than 10Gbps\n"); 7333 7334 switch (pf->hw.phy.link_info.link_speed) { 7335 case I40E_LINK_SPEED_40GB: 7336 speed = "40 G"; 7337 break; 7338 case I40E_LINK_SPEED_20GB: 7339 speed = "20 G"; 7340 break; 7341 case I40E_LINK_SPEED_25GB: 7342 speed = "25 G"; 7343 break; 7344 case I40E_LINK_SPEED_10GB: 7345 speed = "10 G"; 7346 break; 7347 case I40E_LINK_SPEED_5GB: 7348 speed = "5 G"; 7349 break; 7350 case I40E_LINK_SPEED_2_5GB: 7351 speed = "2.5 G"; 7352 break; 7353 case I40E_LINK_SPEED_1GB: 7354 speed = "1000 M"; 7355 break; 7356 case I40E_LINK_SPEED_100MB: 7357 speed = "100 M"; 7358 break; 7359 default: 7360 break; 7361 } 7362 7363 switch (pf->hw.fc.current_mode) { 7364 case I40E_FC_FULL: 7365 fc = "RX/TX"; 7366 break; 7367 case I40E_FC_TX_PAUSE: 7368 fc = "TX"; 7369 break; 7370 case I40E_FC_RX_PAUSE: 7371 fc = "RX"; 7372 break; 7373 default: 7374 fc = "None"; 7375 break; 7376 } 7377 7378 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7379 req_fec = "None"; 7380 fec = "None"; 7381 an = "False"; 7382 7383 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7384 an = "True"; 7385 7386 if (pf->hw.phy.link_info.fec_info & 7387 I40E_AQ_CONFIG_FEC_KR_ENA) 7388 fec = "CL74 FC-FEC/BASE-R"; 7389 else if (pf->hw.phy.link_info.fec_info & 7390 I40E_AQ_CONFIG_FEC_RS_ENA) 7391 fec = "CL108 RS-FEC"; 7392 7393 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7394 * both RS and FC are requested 7395 */ 7396 if (vsi->back->hw.phy.link_info.req_fec_info & 7397 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7398 if (vsi->back->hw.phy.link_info.req_fec_info & 7399 I40E_AQ_REQUEST_FEC_RS) 7400 req_fec = "CL108 RS-FEC"; 7401 else 7402 req_fec = "CL74 FC-FEC/BASE-R"; 7403 } 7404 netdev_info(vsi->netdev, 7405 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7406 speed, req_fec, fec, an, fc); 7407 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7408 req_fec = "None"; 7409 fec = "None"; 7410 an = "False"; 7411 7412 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7413 an = "True"; 7414 7415 if (pf->hw.phy.link_info.fec_info & 7416 I40E_AQ_CONFIG_FEC_KR_ENA) 7417 fec = "CL74 FC-FEC/BASE-R"; 7418 7419 if (pf->hw.phy.link_info.req_fec_info & 7420 I40E_AQ_REQUEST_FEC_KR) 7421 req_fec = "CL74 FC-FEC/BASE-R"; 7422 7423 netdev_info(vsi->netdev, 7424 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7425 speed, req_fec, fec, an, fc); 7426 } else { 7427 i40e_print_link_message_eee(vsi, speed, fc); 7428 } 7429 7430 } 7431 7432 /** 7433 * i40e_up_complete - Finish the last steps of bringing up a connection 7434 * @vsi: the VSI being configured 7435 **/ 7436 static int i40e_up_complete(struct i40e_vsi *vsi) 7437 { 7438 struct i40e_pf *pf = vsi->back; 7439 int err; 7440 7441 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7442 i40e_vsi_configure_msix(vsi); 7443 else 7444 i40e_configure_msi_and_legacy(vsi); 7445 7446 /* start rings */ 7447 err = i40e_vsi_start_rings(vsi); 7448 if (err) 7449 return err; 7450 7451 clear_bit(__I40E_VSI_DOWN, vsi->state); 7452 i40e_napi_enable_all(vsi); 7453 i40e_vsi_enable_irq(vsi); 7454 7455 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7456 (vsi->netdev)) { 7457 i40e_print_link_message(vsi, true); 7458 netif_tx_start_all_queues(vsi->netdev); 7459 netif_carrier_on(vsi->netdev); 7460 } 7461 7462 /* replay FDIR SB filters */ 7463 if (vsi->type == I40E_VSI_FDIR) { 7464 /* reset fd counters */ 7465 pf->fd_add_err = 0; 7466 pf->fd_atr_cnt = 0; 7467 i40e_fdir_filter_restore(vsi); 7468 } 7469 7470 /* On the next run of the service_task, notify any clients of the new 7471 * opened netdev 7472 */ 7473 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7474 i40e_service_event_schedule(pf); 7475 7476 return 0; 7477 } 7478 7479 /** 7480 * i40e_vsi_reinit_locked - Reset the VSI 7481 * @vsi: the VSI being configured 7482 * 7483 * Rebuild the ring structs after some configuration 7484 * has changed, e.g. MTU size. 7485 **/ 7486 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7487 { 7488 struct i40e_pf *pf = vsi->back; 7489 7490 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7491 usleep_range(1000, 2000); 7492 i40e_down(vsi); 7493 7494 i40e_up(vsi); 7495 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7496 } 7497 7498 /** 7499 * i40e_force_link_state - Force the link status 7500 * @pf: board private structure 7501 * @is_up: whether the link state should be forced up or down 7502 **/ 7503 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7504 { 7505 struct i40e_aq_get_phy_abilities_resp abilities; 7506 struct i40e_aq_set_phy_config config = {0}; 7507 bool non_zero_phy_type = is_up; 7508 struct i40e_hw *hw = &pf->hw; 7509 u64 mask; 7510 u8 speed; 7511 int err; 7512 7513 /* Card might've been put in an unstable state by other drivers 7514 * and applications, which causes incorrect speed values being 7515 * set on startup. In order to clear speed registers, we call 7516 * get_phy_capabilities twice, once to get initial state of 7517 * available speeds, and once to get current PHY config. 7518 */ 7519 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7520 NULL); 7521 if (err) { 7522 dev_err(&pf->pdev->dev, 7523 "failed to get phy cap., ret = %pe last_status = %s\n", 7524 ERR_PTR(err), 7525 i40e_aq_str(hw, hw->aq.asq_last_status)); 7526 return err; 7527 } 7528 speed = abilities.link_speed; 7529 7530 /* Get the current phy config */ 7531 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7532 NULL); 7533 if (err) { 7534 dev_err(&pf->pdev->dev, 7535 "failed to get phy cap., ret = %pe last_status = %s\n", 7536 ERR_PTR(err), 7537 i40e_aq_str(hw, hw->aq.asq_last_status)); 7538 return err; 7539 } 7540 7541 /* If link needs to go up, but was not forced to go down, 7542 * and its speed values are OK, no need for a flap 7543 * if non_zero_phy_type was set, still need to force up 7544 */ 7545 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7546 non_zero_phy_type = true; 7547 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7548 return 0; 7549 7550 /* To force link we need to set bits for all supported PHY types, 7551 * but there are now more than 32, so we need to split the bitmap 7552 * across two fields. 7553 */ 7554 mask = I40E_PHY_TYPES_BITMASK; 7555 config.phy_type = 7556 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7557 config.phy_type_ext = 7558 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7559 /* Copy the old settings, except of phy_type */ 7560 config.abilities = abilities.abilities; 7561 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7562 if (is_up) 7563 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7564 else 7565 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7566 } 7567 if (abilities.link_speed != 0) 7568 config.link_speed = abilities.link_speed; 7569 else 7570 config.link_speed = speed; 7571 config.eee_capability = abilities.eee_capability; 7572 config.eeer = abilities.eeer_val; 7573 config.low_power_ctrl = abilities.d3_lpan; 7574 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7575 I40E_AQ_PHY_FEC_CONFIG_MASK; 7576 err = i40e_aq_set_phy_config(hw, &config, NULL); 7577 7578 if (err) { 7579 dev_err(&pf->pdev->dev, 7580 "set phy config ret = %pe last_status = %s\n", 7581 ERR_PTR(err), 7582 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7583 return err; 7584 } 7585 7586 /* Update the link info */ 7587 err = i40e_update_link_info(hw); 7588 if (err) { 7589 /* Wait a little bit (on 40G cards it sometimes takes a really 7590 * long time for link to come back from the atomic reset) 7591 * and try once more 7592 */ 7593 msleep(1000); 7594 i40e_update_link_info(hw); 7595 } 7596 7597 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7598 7599 return 0; 7600 } 7601 7602 /** 7603 * i40e_up - Bring the connection back up after being down 7604 * @vsi: the VSI being configured 7605 **/ 7606 int i40e_up(struct i40e_vsi *vsi) 7607 { 7608 int err; 7609 7610 if (vsi->type == I40E_VSI_MAIN && 7611 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7612 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7613 i40e_force_link_state(vsi->back, true); 7614 7615 err = i40e_vsi_configure(vsi); 7616 if (!err) 7617 err = i40e_up_complete(vsi); 7618 7619 return err; 7620 } 7621 7622 /** 7623 * i40e_down - Shutdown the connection processing 7624 * @vsi: the VSI being stopped 7625 **/ 7626 void i40e_down(struct i40e_vsi *vsi) 7627 { 7628 int i; 7629 7630 /* It is assumed that the caller of this function 7631 * sets the vsi->state __I40E_VSI_DOWN bit. 7632 */ 7633 if (vsi->netdev) { 7634 netif_carrier_off(vsi->netdev); 7635 netif_tx_disable(vsi->netdev); 7636 } 7637 i40e_vsi_disable_irq(vsi); 7638 i40e_vsi_stop_rings(vsi); 7639 if (vsi->type == I40E_VSI_MAIN && 7640 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7641 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7642 i40e_force_link_state(vsi->back, false); 7643 i40e_napi_disable_all(vsi); 7644 7645 for (i = 0; i < vsi->num_queue_pairs; i++) { 7646 i40e_clean_tx_ring(vsi->tx_rings[i]); 7647 if (i40e_enabled_xdp_vsi(vsi)) { 7648 /* Make sure that in-progress ndo_xdp_xmit and 7649 * ndo_xsk_wakeup calls are completed. 7650 */ 7651 synchronize_rcu(); 7652 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7653 } 7654 i40e_clean_rx_ring(vsi->rx_rings[i]); 7655 } 7656 7657 } 7658 7659 /** 7660 * i40e_validate_mqprio_qopt- validate queue mapping info 7661 * @vsi: the VSI being configured 7662 * @mqprio_qopt: queue parametrs 7663 **/ 7664 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7665 struct tc_mqprio_qopt_offload *mqprio_qopt) 7666 { 7667 u64 sum_max_rate = 0; 7668 u64 max_rate = 0; 7669 int i; 7670 7671 if (mqprio_qopt->qopt.offset[0] != 0 || 7672 mqprio_qopt->qopt.num_tc < 1 || 7673 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7674 return -EINVAL; 7675 for (i = 0; ; i++) { 7676 if (!mqprio_qopt->qopt.count[i]) 7677 return -EINVAL; 7678 if (mqprio_qopt->min_rate[i]) { 7679 dev_err(&vsi->back->pdev->dev, 7680 "Invalid min tx rate (greater than 0) specified\n"); 7681 return -EINVAL; 7682 } 7683 max_rate = mqprio_qopt->max_rate[i]; 7684 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7685 sum_max_rate += max_rate; 7686 7687 if (i >= mqprio_qopt->qopt.num_tc - 1) 7688 break; 7689 if (mqprio_qopt->qopt.offset[i + 1] != 7690 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7691 return -EINVAL; 7692 } 7693 if (vsi->num_queue_pairs < 7694 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7695 dev_err(&vsi->back->pdev->dev, 7696 "Failed to create traffic channel, insufficient number of queues.\n"); 7697 return -EINVAL; 7698 } 7699 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7700 dev_err(&vsi->back->pdev->dev, 7701 "Invalid max tx rate specified\n"); 7702 return -EINVAL; 7703 } 7704 return 0; 7705 } 7706 7707 /** 7708 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7709 * @vsi: the VSI being configured 7710 **/ 7711 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7712 { 7713 u16 qcount; 7714 int i; 7715 7716 /* Only TC0 is enabled */ 7717 vsi->tc_config.numtc = 1; 7718 vsi->tc_config.enabled_tc = 1; 7719 qcount = min_t(int, vsi->alloc_queue_pairs, 7720 i40e_pf_get_max_q_per_tc(vsi->back)); 7721 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7722 /* For the TC that is not enabled set the offset to default 7723 * queue and allocate one queue for the given TC. 7724 */ 7725 vsi->tc_config.tc_info[i].qoffset = 0; 7726 if (i == 0) 7727 vsi->tc_config.tc_info[i].qcount = qcount; 7728 else 7729 vsi->tc_config.tc_info[i].qcount = 1; 7730 vsi->tc_config.tc_info[i].netdev_tc = 0; 7731 } 7732 } 7733 7734 /** 7735 * i40e_del_macvlan_filter 7736 * @hw: pointer to the HW structure 7737 * @seid: seid of the channel VSI 7738 * @macaddr: the mac address to apply as a filter 7739 * @aq_err: store the admin Q error 7740 * 7741 * This function deletes a mac filter on the channel VSI which serves as the 7742 * macvlan. Returns 0 on success. 7743 **/ 7744 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7745 const u8 *macaddr, int *aq_err) 7746 { 7747 struct i40e_aqc_remove_macvlan_element_data element; 7748 int status; 7749 7750 memset(&element, 0, sizeof(element)); 7751 ether_addr_copy(element.mac_addr, macaddr); 7752 element.vlan_tag = 0; 7753 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7754 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7755 *aq_err = hw->aq.asq_last_status; 7756 7757 return status; 7758 } 7759 7760 /** 7761 * i40e_add_macvlan_filter 7762 * @hw: pointer to the HW structure 7763 * @seid: seid of the channel VSI 7764 * @macaddr: the mac address to apply as a filter 7765 * @aq_err: store the admin Q error 7766 * 7767 * This function adds a mac filter on the channel VSI which serves as the 7768 * macvlan. Returns 0 on success. 7769 **/ 7770 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7771 const u8 *macaddr, int *aq_err) 7772 { 7773 struct i40e_aqc_add_macvlan_element_data element; 7774 u16 cmd_flags = 0; 7775 int status; 7776 7777 ether_addr_copy(element.mac_addr, macaddr); 7778 element.vlan_tag = 0; 7779 element.queue_number = 0; 7780 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7781 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7782 element.flags = cpu_to_le16(cmd_flags); 7783 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7784 *aq_err = hw->aq.asq_last_status; 7785 7786 return status; 7787 } 7788 7789 /** 7790 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7791 * @vsi: the VSI we want to access 7792 * @ch: the channel we want to access 7793 */ 7794 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7795 { 7796 struct i40e_ring *tx_ring, *rx_ring; 7797 u16 pf_q; 7798 int i; 7799 7800 for (i = 0; i < ch->num_queue_pairs; i++) { 7801 pf_q = ch->base_queue + i; 7802 tx_ring = vsi->tx_rings[pf_q]; 7803 tx_ring->ch = NULL; 7804 rx_ring = vsi->rx_rings[pf_q]; 7805 rx_ring->ch = NULL; 7806 } 7807 } 7808 7809 /** 7810 * i40e_free_macvlan_channels 7811 * @vsi: the VSI we want to access 7812 * 7813 * This function frees the Qs of the channel VSI from 7814 * the stack and also deletes the channel VSIs which 7815 * serve as macvlans. 7816 */ 7817 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7818 { 7819 struct i40e_channel *ch, *ch_tmp; 7820 int ret; 7821 7822 if (list_empty(&vsi->macvlan_list)) 7823 return; 7824 7825 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7826 struct i40e_vsi *parent_vsi; 7827 7828 if (i40e_is_channel_macvlan(ch)) { 7829 i40e_reset_ch_rings(vsi, ch); 7830 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7831 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7832 netdev_set_sb_channel(ch->fwd->netdev, 0); 7833 kfree(ch->fwd); 7834 ch->fwd = NULL; 7835 } 7836 7837 list_del(&ch->list); 7838 parent_vsi = ch->parent_vsi; 7839 if (!parent_vsi || !ch->initialized) { 7840 kfree(ch); 7841 continue; 7842 } 7843 7844 /* remove the VSI */ 7845 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7846 NULL); 7847 if (ret) 7848 dev_err(&vsi->back->pdev->dev, 7849 "unable to remove channel (%d) for parent VSI(%d)\n", 7850 ch->seid, parent_vsi->seid); 7851 kfree(ch); 7852 } 7853 vsi->macvlan_cnt = 0; 7854 } 7855 7856 /** 7857 * i40e_fwd_ring_up - bring the macvlan device up 7858 * @vsi: the VSI we want to access 7859 * @vdev: macvlan netdevice 7860 * @fwd: the private fwd structure 7861 */ 7862 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7863 struct i40e_fwd_adapter *fwd) 7864 { 7865 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7866 int ret = 0, num_tc = 1, i, aq_err; 7867 struct i40e_pf *pf = vsi->back; 7868 struct i40e_hw *hw = &pf->hw; 7869 7870 /* Go through the list and find an available channel */ 7871 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7872 if (!i40e_is_channel_macvlan(iter)) { 7873 iter->fwd = fwd; 7874 /* record configuration for macvlan interface in vdev */ 7875 for (i = 0; i < num_tc; i++) 7876 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7877 i, 7878 iter->num_queue_pairs, 7879 iter->base_queue); 7880 for (i = 0; i < iter->num_queue_pairs; i++) { 7881 struct i40e_ring *tx_ring, *rx_ring; 7882 u16 pf_q; 7883 7884 pf_q = iter->base_queue + i; 7885 7886 /* Get to TX ring ptr */ 7887 tx_ring = vsi->tx_rings[pf_q]; 7888 tx_ring->ch = iter; 7889 7890 /* Get the RX ring ptr */ 7891 rx_ring = vsi->rx_rings[pf_q]; 7892 rx_ring->ch = iter; 7893 } 7894 ch = iter; 7895 break; 7896 } 7897 } 7898 7899 if (!ch) 7900 return -EINVAL; 7901 7902 /* Guarantee all rings are updated before we update the 7903 * MAC address filter. 7904 */ 7905 wmb(); 7906 7907 /* Add a mac filter */ 7908 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7909 if (ret) { 7910 /* if we cannot add the MAC rule then disable the offload */ 7911 macvlan_release_l2fw_offload(vdev); 7912 for (i = 0; i < ch->num_queue_pairs; i++) { 7913 struct i40e_ring *rx_ring; 7914 u16 pf_q; 7915 7916 pf_q = ch->base_queue + i; 7917 rx_ring = vsi->rx_rings[pf_q]; 7918 rx_ring->netdev = NULL; 7919 } 7920 dev_info(&pf->pdev->dev, 7921 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7922 ERR_PTR(ret), 7923 i40e_aq_str(hw, aq_err)); 7924 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7925 } 7926 7927 return ret; 7928 } 7929 7930 /** 7931 * i40e_setup_macvlans - create the channels which will be macvlans 7932 * @vsi: the VSI we want to access 7933 * @macvlan_cnt: no. of macvlans to be setup 7934 * @qcnt: no. of Qs per macvlan 7935 * @vdev: macvlan netdevice 7936 */ 7937 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7938 struct net_device *vdev) 7939 { 7940 struct i40e_pf *pf = vsi->back; 7941 struct i40e_hw *hw = &pf->hw; 7942 struct i40e_vsi_context ctxt; 7943 u16 sections, qmap, num_qps; 7944 struct i40e_channel *ch; 7945 int i, pow, ret = 0; 7946 u8 offset = 0; 7947 7948 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7949 return -EINVAL; 7950 7951 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7952 7953 /* find the next higher power-of-2 of num queue pairs */ 7954 pow = fls(roundup_pow_of_two(num_qps) - 1); 7955 7956 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7957 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7958 7959 /* Setup context bits for the main VSI */ 7960 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7961 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7962 memset(&ctxt, 0, sizeof(ctxt)); 7963 ctxt.seid = vsi->seid; 7964 ctxt.pf_num = vsi->back->hw.pf_id; 7965 ctxt.vf_num = 0; 7966 ctxt.uplink_seid = vsi->uplink_seid; 7967 ctxt.info = vsi->info; 7968 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7969 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7970 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7971 ctxt.info.valid_sections |= cpu_to_le16(sections); 7972 7973 /* Reconfigure RSS for main VSI with new max queue count */ 7974 vsi->rss_size = max_t(u16, num_qps, qcnt); 7975 ret = i40e_vsi_config_rss(vsi); 7976 if (ret) { 7977 dev_info(&pf->pdev->dev, 7978 "Failed to reconfig RSS for num_queues (%u)\n", 7979 vsi->rss_size); 7980 return ret; 7981 } 7982 vsi->reconfig_rss = true; 7983 dev_dbg(&vsi->back->pdev->dev, 7984 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7985 vsi->next_base_queue = num_qps; 7986 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7987 7988 /* Update the VSI after updating the VSI queue-mapping 7989 * information 7990 */ 7991 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7992 if (ret) { 7993 dev_info(&pf->pdev->dev, 7994 "Update vsi tc config failed, err %pe aq_err %s\n", 7995 ERR_PTR(ret), 7996 i40e_aq_str(hw, hw->aq.asq_last_status)); 7997 return ret; 7998 } 7999 /* update the local VSI info with updated queue map */ 8000 i40e_vsi_update_queue_map(vsi, &ctxt); 8001 vsi->info.valid_sections = 0; 8002 8003 /* Create channels for macvlans */ 8004 INIT_LIST_HEAD(&vsi->macvlan_list); 8005 for (i = 0; i < macvlan_cnt; i++) { 8006 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8007 if (!ch) { 8008 ret = -ENOMEM; 8009 goto err_free; 8010 } 8011 INIT_LIST_HEAD(&ch->list); 8012 ch->num_queue_pairs = qcnt; 8013 if (!i40e_setup_channel(pf, vsi, ch)) { 8014 ret = -EINVAL; 8015 kfree(ch); 8016 goto err_free; 8017 } 8018 ch->parent_vsi = vsi; 8019 vsi->cnt_q_avail -= ch->num_queue_pairs; 8020 vsi->macvlan_cnt++; 8021 list_add_tail(&ch->list, &vsi->macvlan_list); 8022 } 8023 8024 return ret; 8025 8026 err_free: 8027 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 8028 i40e_free_macvlan_channels(vsi); 8029 8030 return ret; 8031 } 8032 8033 /** 8034 * i40e_fwd_add - configure macvlans 8035 * @netdev: net device to configure 8036 * @vdev: macvlan netdevice 8037 **/ 8038 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 8039 { 8040 struct i40e_netdev_priv *np = netdev_priv(netdev); 8041 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 8042 struct i40e_vsi *vsi = np->vsi; 8043 struct i40e_pf *pf = vsi->back; 8044 struct i40e_fwd_adapter *fwd; 8045 int avail_macvlan, ret; 8046 8047 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8048 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 8049 return ERR_PTR(-EINVAL); 8050 } 8051 if (i40e_is_tc_mqprio_enabled(pf)) { 8052 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 8053 return ERR_PTR(-EINVAL); 8054 } 8055 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 8056 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 8057 return ERR_PTR(-EINVAL); 8058 } 8059 8060 /* The macvlan device has to be a single Q device so that the 8061 * tc_to_txq field can be reused to pick the tx queue. 8062 */ 8063 if (netif_is_multiqueue(vdev)) 8064 return ERR_PTR(-ERANGE); 8065 8066 if (!vsi->macvlan_cnt) { 8067 /* reserve bit 0 for the pf device */ 8068 set_bit(0, vsi->fwd_bitmask); 8069 8070 /* Try to reserve as many queues as possible for macvlans. First 8071 * reserve 3/4th of max vectors, then half, then quarter and 8072 * calculate Qs per macvlan as you go 8073 */ 8074 vectors = pf->num_lan_msix; 8075 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8076 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8077 q_per_macvlan = 4; 8078 macvlan_cnt = (vectors - 32) / 4; 8079 } else if (vectors <= 64 && vectors > 32) { 8080 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8081 q_per_macvlan = 2; 8082 macvlan_cnt = (vectors - 16) / 2; 8083 } else if (vectors <= 32 && vectors > 16) { 8084 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8085 q_per_macvlan = 1; 8086 macvlan_cnt = vectors - 16; 8087 } else if (vectors <= 16 && vectors > 8) { 8088 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8089 q_per_macvlan = 1; 8090 macvlan_cnt = vectors - 8; 8091 } else { 8092 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8093 q_per_macvlan = 1; 8094 macvlan_cnt = vectors - 1; 8095 } 8096 8097 if (macvlan_cnt == 0) 8098 return ERR_PTR(-EBUSY); 8099 8100 /* Quiesce VSI queues */ 8101 i40e_quiesce_vsi(vsi); 8102 8103 /* sets up the macvlans but does not "enable" them */ 8104 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8105 vdev); 8106 if (ret) 8107 return ERR_PTR(ret); 8108 8109 /* Unquiesce VSI */ 8110 i40e_unquiesce_vsi(vsi); 8111 } 8112 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8113 vsi->macvlan_cnt); 8114 if (avail_macvlan >= I40E_MAX_MACVLANS) 8115 return ERR_PTR(-EBUSY); 8116 8117 /* create the fwd struct */ 8118 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8119 if (!fwd) 8120 return ERR_PTR(-ENOMEM); 8121 8122 set_bit(avail_macvlan, vsi->fwd_bitmask); 8123 fwd->bit_no = avail_macvlan; 8124 netdev_set_sb_channel(vdev, avail_macvlan); 8125 fwd->netdev = vdev; 8126 8127 if (!netif_running(netdev)) 8128 return fwd; 8129 8130 /* Set fwd ring up */ 8131 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8132 if (ret) { 8133 /* unbind the queues and drop the subordinate channel config */ 8134 netdev_unbind_sb_channel(netdev, vdev); 8135 netdev_set_sb_channel(vdev, 0); 8136 8137 kfree(fwd); 8138 return ERR_PTR(-EINVAL); 8139 } 8140 8141 return fwd; 8142 } 8143 8144 /** 8145 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8146 * @vsi: the VSI we want to access 8147 */ 8148 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8149 { 8150 struct i40e_channel *ch, *ch_tmp; 8151 struct i40e_pf *pf = vsi->back; 8152 struct i40e_hw *hw = &pf->hw; 8153 int aq_err, ret = 0; 8154 8155 if (list_empty(&vsi->macvlan_list)) 8156 return; 8157 8158 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8159 if (i40e_is_channel_macvlan(ch)) { 8160 ret = i40e_del_macvlan_filter(hw, ch->seid, 8161 i40e_channel_mac(ch), 8162 &aq_err); 8163 if (!ret) { 8164 /* Reset queue contexts */ 8165 i40e_reset_ch_rings(vsi, ch); 8166 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8167 netdev_unbind_sb_channel(vsi->netdev, 8168 ch->fwd->netdev); 8169 netdev_set_sb_channel(ch->fwd->netdev, 0); 8170 kfree(ch->fwd); 8171 ch->fwd = NULL; 8172 } 8173 } 8174 } 8175 } 8176 8177 /** 8178 * i40e_fwd_del - delete macvlan interfaces 8179 * @netdev: net device to configure 8180 * @vdev: macvlan netdevice 8181 */ 8182 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8183 { 8184 struct i40e_netdev_priv *np = netdev_priv(netdev); 8185 struct i40e_fwd_adapter *fwd = vdev; 8186 struct i40e_channel *ch, *ch_tmp; 8187 struct i40e_vsi *vsi = np->vsi; 8188 struct i40e_pf *pf = vsi->back; 8189 struct i40e_hw *hw = &pf->hw; 8190 int aq_err, ret = 0; 8191 8192 /* Find the channel associated with the macvlan and del mac filter */ 8193 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8194 if (i40e_is_channel_macvlan(ch) && 8195 ether_addr_equal(i40e_channel_mac(ch), 8196 fwd->netdev->dev_addr)) { 8197 ret = i40e_del_macvlan_filter(hw, ch->seid, 8198 i40e_channel_mac(ch), 8199 &aq_err); 8200 if (!ret) { 8201 /* Reset queue contexts */ 8202 i40e_reset_ch_rings(vsi, ch); 8203 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8204 netdev_unbind_sb_channel(netdev, fwd->netdev); 8205 netdev_set_sb_channel(fwd->netdev, 0); 8206 kfree(ch->fwd); 8207 ch->fwd = NULL; 8208 } else { 8209 dev_info(&pf->pdev->dev, 8210 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8211 ERR_PTR(ret), 8212 i40e_aq_str(hw, aq_err)); 8213 } 8214 break; 8215 } 8216 } 8217 } 8218 8219 /** 8220 * i40e_setup_tc - configure multiple traffic classes 8221 * @netdev: net device to configure 8222 * @type_data: tc offload data 8223 **/ 8224 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8225 { 8226 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8227 struct i40e_netdev_priv *np = netdev_priv(netdev); 8228 struct i40e_vsi *vsi = np->vsi; 8229 struct i40e_pf *pf = vsi->back; 8230 u8 enabled_tc = 0, num_tc, hw; 8231 bool need_reset = false; 8232 int old_queue_pairs; 8233 int ret = -EINVAL; 8234 u16 mode; 8235 int i; 8236 8237 old_queue_pairs = vsi->num_queue_pairs; 8238 num_tc = mqprio_qopt->qopt.num_tc; 8239 hw = mqprio_qopt->qopt.hw; 8240 mode = mqprio_qopt->mode; 8241 if (!hw) { 8242 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8243 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8244 goto config_tc; 8245 } 8246 8247 /* Check if MFP enabled */ 8248 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8249 netdev_info(netdev, 8250 "Configuring TC not supported in MFP mode\n"); 8251 return ret; 8252 } 8253 switch (mode) { 8254 case TC_MQPRIO_MODE_DCB: 8255 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8256 8257 /* Check if DCB enabled to continue */ 8258 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8259 netdev_info(netdev, 8260 "DCB is not enabled for adapter\n"); 8261 return ret; 8262 } 8263 8264 /* Check whether tc count is within enabled limit */ 8265 if (num_tc > i40e_pf_get_num_tc(pf)) { 8266 netdev_info(netdev, 8267 "TC count greater than enabled on link for adapter\n"); 8268 return ret; 8269 } 8270 break; 8271 case TC_MQPRIO_MODE_CHANNEL: 8272 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8273 netdev_info(netdev, 8274 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8275 return ret; 8276 } 8277 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8278 return ret; 8279 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8280 if (ret) 8281 return ret; 8282 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8283 sizeof(*mqprio_qopt)); 8284 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8285 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8286 break; 8287 default: 8288 return -EINVAL; 8289 } 8290 8291 config_tc: 8292 /* Generate TC map for number of tc requested */ 8293 for (i = 0; i < num_tc; i++) 8294 enabled_tc |= BIT(i); 8295 8296 /* Requesting same TC configuration as already enabled */ 8297 if (enabled_tc == vsi->tc_config.enabled_tc && 8298 mode != TC_MQPRIO_MODE_CHANNEL) 8299 return 0; 8300 8301 /* Quiesce VSI queues */ 8302 i40e_quiesce_vsi(vsi); 8303 8304 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8305 i40e_remove_queue_channels(vsi); 8306 8307 /* Configure VSI for enabled TCs */ 8308 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8309 if (ret) { 8310 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8311 vsi->seid); 8312 need_reset = true; 8313 goto exit; 8314 } else if (enabled_tc && 8315 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8316 netdev_info(netdev, 8317 "Failed to create channel. Override queues (%u) not power of 2\n", 8318 vsi->tc_config.tc_info[0].qcount); 8319 ret = -EINVAL; 8320 need_reset = true; 8321 goto exit; 8322 } 8323 8324 dev_info(&vsi->back->pdev->dev, 8325 "Setup channel (id:%u) utilizing num_queues %d\n", 8326 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8327 8328 if (i40e_is_tc_mqprio_enabled(pf)) { 8329 if (vsi->mqprio_qopt.max_rate[0]) { 8330 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8331 vsi->mqprio_qopt.max_rate[0]); 8332 8333 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8334 if (!ret) { 8335 u64 credits = max_tx_rate; 8336 8337 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8338 dev_dbg(&vsi->back->pdev->dev, 8339 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8340 max_tx_rate, 8341 credits, 8342 vsi->seid); 8343 } else { 8344 need_reset = true; 8345 goto exit; 8346 } 8347 } 8348 ret = i40e_configure_queue_channels(vsi); 8349 if (ret) { 8350 vsi->num_queue_pairs = old_queue_pairs; 8351 netdev_info(netdev, 8352 "Failed configuring queue channels\n"); 8353 need_reset = true; 8354 goto exit; 8355 } 8356 } 8357 8358 exit: 8359 /* Reset the configuration data to defaults, only TC0 is enabled */ 8360 if (need_reset) { 8361 i40e_vsi_set_default_tc_config(vsi); 8362 need_reset = false; 8363 } 8364 8365 /* Unquiesce VSI */ 8366 i40e_unquiesce_vsi(vsi); 8367 return ret; 8368 } 8369 8370 /** 8371 * i40e_set_cld_element - sets cloud filter element data 8372 * @filter: cloud filter rule 8373 * @cld: ptr to cloud filter element data 8374 * 8375 * This is helper function to copy data into cloud filter element 8376 **/ 8377 static inline void 8378 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8379 struct i40e_aqc_cloud_filters_element_data *cld) 8380 { 8381 u32 ipa; 8382 int i; 8383 8384 memset(cld, 0, sizeof(*cld)); 8385 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8386 ether_addr_copy(cld->inner_mac, filter->src_mac); 8387 8388 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8389 return; 8390 8391 if (filter->n_proto == ETH_P_IPV6) { 8392 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8393 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8394 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8395 8396 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8397 } 8398 } else { 8399 ipa = be32_to_cpu(filter->dst_ipv4); 8400 8401 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8402 } 8403 8404 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8405 8406 /* tenant_id is not supported by FW now, once the support is enabled 8407 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8408 */ 8409 if (filter->tenant_id) 8410 return; 8411 } 8412 8413 /** 8414 * i40e_add_del_cloud_filter - Add/del cloud filter 8415 * @vsi: pointer to VSI 8416 * @filter: cloud filter rule 8417 * @add: if true, add, if false, delete 8418 * 8419 * Add or delete a cloud filter for a specific flow spec. 8420 * Returns 0 if the filter were successfully added. 8421 **/ 8422 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8423 struct i40e_cloud_filter *filter, bool add) 8424 { 8425 struct i40e_aqc_cloud_filters_element_data cld_filter; 8426 struct i40e_pf *pf = vsi->back; 8427 int ret; 8428 static const u16 flag_table[128] = { 8429 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8430 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8431 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8432 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8433 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8434 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8435 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8436 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8437 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8438 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8439 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8440 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8441 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8442 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8443 }; 8444 8445 if (filter->flags >= ARRAY_SIZE(flag_table)) 8446 return -EIO; 8447 8448 memset(&cld_filter, 0, sizeof(cld_filter)); 8449 8450 /* copy element needed to add cloud filter from filter */ 8451 i40e_set_cld_element(filter, &cld_filter); 8452 8453 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8454 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8455 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8456 8457 if (filter->n_proto == ETH_P_IPV6) 8458 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8459 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8460 else 8461 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8462 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8463 8464 if (add) 8465 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8466 &cld_filter, 1); 8467 else 8468 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8469 &cld_filter, 1); 8470 if (ret) 8471 dev_dbg(&pf->pdev->dev, 8472 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8473 add ? "add" : "delete", filter->dst_port, ret, 8474 pf->hw.aq.asq_last_status); 8475 else 8476 dev_info(&pf->pdev->dev, 8477 "%s cloud filter for VSI: %d\n", 8478 add ? "Added" : "Deleted", filter->seid); 8479 return ret; 8480 } 8481 8482 /** 8483 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8484 * @vsi: pointer to VSI 8485 * @filter: cloud filter rule 8486 * @add: if true, add, if false, delete 8487 * 8488 * Add or delete a cloud filter for a specific flow spec using big buffer. 8489 * Returns 0 if the filter were successfully added. 8490 **/ 8491 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8492 struct i40e_cloud_filter *filter, 8493 bool add) 8494 { 8495 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8496 struct i40e_pf *pf = vsi->back; 8497 int ret; 8498 8499 /* Both (src/dst) valid mac_addr are not supported */ 8500 if ((is_valid_ether_addr(filter->dst_mac) && 8501 is_valid_ether_addr(filter->src_mac)) || 8502 (is_multicast_ether_addr(filter->dst_mac) && 8503 is_multicast_ether_addr(filter->src_mac))) 8504 return -EOPNOTSUPP; 8505 8506 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8507 * ports are not supported via big buffer now. 8508 */ 8509 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8510 return -EOPNOTSUPP; 8511 8512 /* adding filter using src_port/src_ip is not supported at this stage */ 8513 if (filter->src_port || 8514 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8515 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8516 return -EOPNOTSUPP; 8517 8518 memset(&cld_filter, 0, sizeof(cld_filter)); 8519 8520 /* copy element needed to add cloud filter from filter */ 8521 i40e_set_cld_element(filter, &cld_filter.element); 8522 8523 if (is_valid_ether_addr(filter->dst_mac) || 8524 is_valid_ether_addr(filter->src_mac) || 8525 is_multicast_ether_addr(filter->dst_mac) || 8526 is_multicast_ether_addr(filter->src_mac)) { 8527 /* MAC + IP : unsupported mode */ 8528 if (filter->dst_ipv4) 8529 return -EOPNOTSUPP; 8530 8531 /* since we validated that L4 port must be valid before 8532 * we get here, start with respective "flags" value 8533 * and update if vlan is present or not 8534 */ 8535 cld_filter.element.flags = 8536 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8537 8538 if (filter->vlan_id) { 8539 cld_filter.element.flags = 8540 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8541 } 8542 8543 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8544 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8545 cld_filter.element.flags = 8546 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8547 if (filter->n_proto == ETH_P_IPV6) 8548 cld_filter.element.flags |= 8549 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8550 else 8551 cld_filter.element.flags |= 8552 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8553 } else { 8554 dev_err(&pf->pdev->dev, 8555 "either mac or ip has to be valid for cloud filter\n"); 8556 return -EINVAL; 8557 } 8558 8559 /* Now copy L4 port in Byte 6..7 in general fields */ 8560 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8561 be16_to_cpu(filter->dst_port); 8562 8563 if (add) { 8564 /* Validate current device switch mode, change if necessary */ 8565 ret = i40e_validate_and_set_switch_mode(vsi); 8566 if (ret) { 8567 dev_err(&pf->pdev->dev, 8568 "failed to set switch mode, ret %d\n", 8569 ret); 8570 return ret; 8571 } 8572 8573 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8574 &cld_filter, 1); 8575 } else { 8576 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8577 &cld_filter, 1); 8578 } 8579 8580 if (ret) 8581 dev_dbg(&pf->pdev->dev, 8582 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8583 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8584 else 8585 dev_info(&pf->pdev->dev, 8586 "%s cloud filter for VSI: %d, L4 port: %d\n", 8587 add ? "add" : "delete", filter->seid, 8588 ntohs(filter->dst_port)); 8589 return ret; 8590 } 8591 8592 /** 8593 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8594 * @vsi: Pointer to VSI 8595 * @f: Pointer to struct flow_cls_offload 8596 * @filter: Pointer to cloud filter structure 8597 * 8598 **/ 8599 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8600 struct flow_cls_offload *f, 8601 struct i40e_cloud_filter *filter) 8602 { 8603 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8604 struct flow_dissector *dissector = rule->match.dissector; 8605 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8606 struct i40e_pf *pf = vsi->back; 8607 u8 field_flags = 0; 8608 8609 if (dissector->used_keys & 8610 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8611 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8612 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8613 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8614 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8615 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8616 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8617 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8618 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8619 dissector->used_keys); 8620 return -EOPNOTSUPP; 8621 } 8622 8623 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8624 struct flow_match_enc_keyid match; 8625 8626 flow_rule_match_enc_keyid(rule, &match); 8627 if (match.mask->keyid != 0) 8628 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8629 8630 filter->tenant_id = be32_to_cpu(match.key->keyid); 8631 } 8632 8633 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8634 struct flow_match_basic match; 8635 8636 flow_rule_match_basic(rule, &match); 8637 n_proto_key = ntohs(match.key->n_proto); 8638 n_proto_mask = ntohs(match.mask->n_proto); 8639 8640 if (n_proto_key == ETH_P_ALL) { 8641 n_proto_key = 0; 8642 n_proto_mask = 0; 8643 } 8644 filter->n_proto = n_proto_key & n_proto_mask; 8645 filter->ip_proto = match.key->ip_proto; 8646 } 8647 8648 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8649 struct flow_match_eth_addrs match; 8650 8651 flow_rule_match_eth_addrs(rule, &match); 8652 8653 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8654 if (!is_zero_ether_addr(match.mask->dst)) { 8655 if (is_broadcast_ether_addr(match.mask->dst)) { 8656 field_flags |= I40E_CLOUD_FIELD_OMAC; 8657 } else { 8658 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8659 match.mask->dst); 8660 return -EIO; 8661 } 8662 } 8663 8664 if (!is_zero_ether_addr(match.mask->src)) { 8665 if (is_broadcast_ether_addr(match.mask->src)) { 8666 field_flags |= I40E_CLOUD_FIELD_IMAC; 8667 } else { 8668 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8669 match.mask->src); 8670 return -EIO; 8671 } 8672 } 8673 ether_addr_copy(filter->dst_mac, match.key->dst); 8674 ether_addr_copy(filter->src_mac, match.key->src); 8675 } 8676 8677 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8678 struct flow_match_vlan match; 8679 8680 flow_rule_match_vlan(rule, &match); 8681 if (match.mask->vlan_id) { 8682 if (match.mask->vlan_id == VLAN_VID_MASK) { 8683 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8684 8685 } else { 8686 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8687 match.mask->vlan_id); 8688 return -EIO; 8689 } 8690 } 8691 8692 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8693 } 8694 8695 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8696 struct flow_match_control match; 8697 8698 flow_rule_match_control(rule, &match); 8699 addr_type = match.key->addr_type; 8700 8701 if (flow_rule_has_control_flags(match.mask->flags, 8702 f->common.extack)) 8703 return -EOPNOTSUPP; 8704 } 8705 8706 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8707 struct flow_match_ipv4_addrs match; 8708 8709 flow_rule_match_ipv4_addrs(rule, &match); 8710 if (match.mask->dst) { 8711 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8712 field_flags |= I40E_CLOUD_FIELD_IIP; 8713 } else { 8714 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8715 &match.mask->dst); 8716 return -EIO; 8717 } 8718 } 8719 8720 if (match.mask->src) { 8721 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8722 field_flags |= I40E_CLOUD_FIELD_IIP; 8723 } else { 8724 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8725 &match.mask->src); 8726 return -EIO; 8727 } 8728 } 8729 8730 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8731 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8732 return -EIO; 8733 } 8734 filter->dst_ipv4 = match.key->dst; 8735 filter->src_ipv4 = match.key->src; 8736 } 8737 8738 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8739 struct flow_match_ipv6_addrs match; 8740 8741 flow_rule_match_ipv6_addrs(rule, &match); 8742 8743 /* src and dest IPV6 address should not be LOOPBACK 8744 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8745 */ 8746 if (ipv6_addr_loopback(&match.key->dst) || 8747 ipv6_addr_loopback(&match.key->src)) { 8748 dev_err(&pf->pdev->dev, 8749 "Bad ipv6, addr is LOOPBACK\n"); 8750 return -EIO; 8751 } 8752 if (!ipv6_addr_any(&match.mask->dst) || 8753 !ipv6_addr_any(&match.mask->src)) 8754 field_flags |= I40E_CLOUD_FIELD_IIP; 8755 8756 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8757 sizeof(filter->src_ipv6)); 8758 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8759 sizeof(filter->dst_ipv6)); 8760 } 8761 8762 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8763 struct flow_match_ports match; 8764 8765 flow_rule_match_ports(rule, &match); 8766 if (match.mask->src) { 8767 if (match.mask->src == cpu_to_be16(0xffff)) { 8768 field_flags |= I40E_CLOUD_FIELD_IIP; 8769 } else { 8770 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8771 be16_to_cpu(match.mask->src)); 8772 return -EIO; 8773 } 8774 } 8775 8776 if (match.mask->dst) { 8777 if (match.mask->dst == cpu_to_be16(0xffff)) { 8778 field_flags |= I40E_CLOUD_FIELD_IIP; 8779 } else { 8780 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8781 be16_to_cpu(match.mask->dst)); 8782 return -EIO; 8783 } 8784 } 8785 8786 filter->dst_port = match.key->dst; 8787 filter->src_port = match.key->src; 8788 8789 switch (filter->ip_proto) { 8790 case IPPROTO_TCP: 8791 case IPPROTO_UDP: 8792 break; 8793 default: 8794 dev_err(&pf->pdev->dev, 8795 "Only UDP and TCP transport are supported\n"); 8796 return -EINVAL; 8797 } 8798 } 8799 filter->flags = field_flags; 8800 return 0; 8801 } 8802 8803 /** 8804 * i40e_handle_tclass: Forward to a traffic class on the device 8805 * @vsi: Pointer to VSI 8806 * @tc: traffic class index on the device 8807 * @filter: Pointer to cloud filter structure 8808 * 8809 **/ 8810 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8811 struct i40e_cloud_filter *filter) 8812 { 8813 struct i40e_channel *ch, *ch_tmp; 8814 8815 /* direct to a traffic class on the same device */ 8816 if (tc == 0) { 8817 filter->seid = vsi->seid; 8818 return 0; 8819 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8820 if (!filter->dst_port) { 8821 dev_err(&vsi->back->pdev->dev, 8822 "Specify destination port to direct to traffic class that is not default\n"); 8823 return -EINVAL; 8824 } 8825 if (list_empty(&vsi->ch_list)) 8826 return -EINVAL; 8827 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8828 list) { 8829 if (ch->seid == vsi->tc_seid_map[tc]) 8830 filter->seid = ch->seid; 8831 } 8832 return 0; 8833 } 8834 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8835 return -EINVAL; 8836 } 8837 8838 /** 8839 * i40e_configure_clsflower - Configure tc flower filters 8840 * @vsi: Pointer to VSI 8841 * @cls_flower: Pointer to struct flow_cls_offload 8842 * 8843 **/ 8844 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8845 struct flow_cls_offload *cls_flower) 8846 { 8847 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8848 struct i40e_cloud_filter *filter = NULL; 8849 struct i40e_pf *pf = vsi->back; 8850 int err = 0; 8851 8852 if (tc < 0) { 8853 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8854 return -EOPNOTSUPP; 8855 } 8856 8857 if (!tc) { 8858 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8859 return -EINVAL; 8860 } 8861 8862 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8863 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8864 return -EBUSY; 8865 8866 if (pf->fdir_pf_active_filters || 8867 (!hlist_empty(&pf->fdir_filter_list))) { 8868 dev_err(&vsi->back->pdev->dev, 8869 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8870 return -EINVAL; 8871 } 8872 8873 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8874 dev_err(&vsi->back->pdev->dev, 8875 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8876 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8877 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8878 } 8879 8880 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8881 if (!filter) 8882 return -ENOMEM; 8883 8884 filter->cookie = cls_flower->cookie; 8885 8886 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8887 if (err < 0) 8888 goto err; 8889 8890 err = i40e_handle_tclass(vsi, tc, filter); 8891 if (err < 0) 8892 goto err; 8893 8894 /* Add cloud filter */ 8895 if (filter->dst_port) 8896 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8897 else 8898 err = i40e_add_del_cloud_filter(vsi, filter, true); 8899 8900 if (err) { 8901 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8902 err); 8903 goto err; 8904 } 8905 8906 /* add filter to the ordered list */ 8907 INIT_HLIST_NODE(&filter->cloud_node); 8908 8909 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8910 8911 pf->num_cloud_filters++; 8912 8913 return err; 8914 err: 8915 kfree(filter); 8916 return err; 8917 } 8918 8919 /** 8920 * i40e_find_cloud_filter - Find the could filter in the list 8921 * @vsi: Pointer to VSI 8922 * @cookie: filter specific cookie 8923 * 8924 **/ 8925 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8926 unsigned long *cookie) 8927 { 8928 struct i40e_cloud_filter *filter = NULL; 8929 struct hlist_node *node2; 8930 8931 hlist_for_each_entry_safe(filter, node2, 8932 &vsi->back->cloud_filter_list, cloud_node) 8933 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8934 return filter; 8935 return NULL; 8936 } 8937 8938 /** 8939 * i40e_delete_clsflower - Remove tc flower filters 8940 * @vsi: Pointer to VSI 8941 * @cls_flower: Pointer to struct flow_cls_offload 8942 * 8943 **/ 8944 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8945 struct flow_cls_offload *cls_flower) 8946 { 8947 struct i40e_cloud_filter *filter = NULL; 8948 struct i40e_pf *pf = vsi->back; 8949 int err = 0; 8950 8951 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8952 8953 if (!filter) 8954 return -EINVAL; 8955 8956 hash_del(&filter->cloud_node); 8957 8958 if (filter->dst_port) 8959 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8960 else 8961 err = i40e_add_del_cloud_filter(vsi, filter, false); 8962 8963 kfree(filter); 8964 if (err) { 8965 dev_err(&pf->pdev->dev, 8966 "Failed to delete cloud filter, err %pe\n", 8967 ERR_PTR(err)); 8968 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8969 } 8970 8971 pf->num_cloud_filters--; 8972 if (!pf->num_cloud_filters) 8973 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8974 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8975 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8976 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8977 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8978 } 8979 return 0; 8980 } 8981 8982 /** 8983 * i40e_setup_tc_cls_flower - flower classifier offloads 8984 * @np: net device to configure 8985 * @cls_flower: offload data 8986 **/ 8987 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8988 struct flow_cls_offload *cls_flower) 8989 { 8990 struct i40e_vsi *vsi = np->vsi; 8991 8992 switch (cls_flower->command) { 8993 case FLOW_CLS_REPLACE: 8994 return i40e_configure_clsflower(vsi, cls_flower); 8995 case FLOW_CLS_DESTROY: 8996 return i40e_delete_clsflower(vsi, cls_flower); 8997 case FLOW_CLS_STATS: 8998 return -EOPNOTSUPP; 8999 default: 9000 return -EOPNOTSUPP; 9001 } 9002 } 9003 9004 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 9005 void *cb_priv) 9006 { 9007 struct i40e_netdev_priv *np = cb_priv; 9008 9009 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 9010 return -EOPNOTSUPP; 9011 9012 switch (type) { 9013 case TC_SETUP_CLSFLOWER: 9014 return i40e_setup_tc_cls_flower(np, type_data); 9015 9016 default: 9017 return -EOPNOTSUPP; 9018 } 9019 } 9020 9021 static LIST_HEAD(i40e_block_cb_list); 9022 9023 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9024 void *type_data) 9025 { 9026 struct i40e_netdev_priv *np = netdev_priv(netdev); 9027 9028 switch (type) { 9029 case TC_SETUP_QDISC_MQPRIO: 9030 return i40e_setup_tc(netdev, type_data); 9031 case TC_SETUP_BLOCK: 9032 return flow_block_cb_setup_simple(type_data, 9033 &i40e_block_cb_list, 9034 i40e_setup_tc_block_cb, 9035 np, np, true); 9036 default: 9037 return -EOPNOTSUPP; 9038 } 9039 } 9040 9041 /** 9042 * i40e_open - Called when a network interface is made active 9043 * @netdev: network interface device structure 9044 * 9045 * The open entry point is called when a network interface is made 9046 * active by the system (IFF_UP). At this point all resources needed 9047 * for transmit and receive operations are allocated, the interrupt 9048 * handler is registered with the OS, the netdev watchdog subtask is 9049 * enabled, and the stack is notified that the interface is ready. 9050 * 9051 * Returns 0 on success, negative value on failure 9052 **/ 9053 int i40e_open(struct net_device *netdev) 9054 { 9055 struct i40e_netdev_priv *np = netdev_priv(netdev); 9056 struct i40e_vsi *vsi = np->vsi; 9057 struct i40e_pf *pf = vsi->back; 9058 int err; 9059 9060 /* disallow open during test or if eeprom is broken */ 9061 if (test_bit(__I40E_TESTING, pf->state) || 9062 test_bit(__I40E_BAD_EEPROM, pf->state)) 9063 return -EBUSY; 9064 9065 netif_carrier_off(netdev); 9066 9067 if (i40e_force_link_state(pf, true)) 9068 return -EAGAIN; 9069 9070 err = i40e_vsi_open(vsi); 9071 if (err) 9072 return err; 9073 9074 /* configure global TSO hardware offload settings */ 9075 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9076 TCP_FLAG_FIN) >> 16); 9077 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9078 TCP_FLAG_FIN | 9079 TCP_FLAG_CWR) >> 16); 9080 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9081 udp_tunnel_get_rx_info(netdev); 9082 9083 return 0; 9084 } 9085 9086 /** 9087 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9088 * @vsi: vsi structure 9089 * 9090 * This updates netdev's number of tx/rx queues 9091 * 9092 * Returns status of setting tx/rx queues 9093 **/ 9094 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9095 { 9096 int ret; 9097 9098 ret = netif_set_real_num_rx_queues(vsi->netdev, 9099 vsi->num_queue_pairs); 9100 if (ret) 9101 return ret; 9102 9103 return netif_set_real_num_tx_queues(vsi->netdev, 9104 vsi->num_queue_pairs); 9105 } 9106 9107 /** 9108 * i40e_vsi_open - 9109 * @vsi: the VSI to open 9110 * 9111 * Finish initialization of the VSI. 9112 * 9113 * Returns 0 on success, negative value on failure 9114 * 9115 * Note: expects to be called while under rtnl_lock() 9116 **/ 9117 int i40e_vsi_open(struct i40e_vsi *vsi) 9118 { 9119 struct i40e_pf *pf = vsi->back; 9120 char int_name[I40E_INT_NAME_STR_LEN]; 9121 int err; 9122 9123 /* allocate descriptors */ 9124 err = i40e_vsi_setup_tx_resources(vsi); 9125 if (err) 9126 goto err_setup_tx; 9127 err = i40e_vsi_setup_rx_resources(vsi); 9128 if (err) 9129 goto err_setup_rx; 9130 9131 err = i40e_vsi_configure(vsi); 9132 if (err) 9133 goto err_setup_rx; 9134 9135 if (vsi->netdev) { 9136 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9137 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9138 err = i40e_vsi_request_irq(vsi, int_name); 9139 if (err) 9140 goto err_setup_rx; 9141 9142 /* Notify the stack of the actual queue counts. */ 9143 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9144 if (err) 9145 goto err_set_queues; 9146 9147 } else if (vsi->type == I40E_VSI_FDIR) { 9148 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9149 dev_driver_string(&pf->pdev->dev), 9150 dev_name(&pf->pdev->dev)); 9151 err = i40e_vsi_request_irq(vsi, int_name); 9152 if (err) 9153 goto err_setup_rx; 9154 9155 } else { 9156 err = -EINVAL; 9157 goto err_setup_rx; 9158 } 9159 9160 err = i40e_up_complete(vsi); 9161 if (err) 9162 goto err_up_complete; 9163 9164 return 0; 9165 9166 err_up_complete: 9167 i40e_down(vsi); 9168 err_set_queues: 9169 i40e_vsi_free_irq(vsi); 9170 err_setup_rx: 9171 i40e_vsi_free_rx_resources(vsi); 9172 err_setup_tx: 9173 i40e_vsi_free_tx_resources(vsi); 9174 if (vsi->type == I40E_VSI_MAIN) 9175 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9176 9177 return err; 9178 } 9179 9180 /** 9181 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9182 * @pf: Pointer to PF 9183 * 9184 * This function destroys the hlist where all the Flow Director 9185 * filters were saved. 9186 **/ 9187 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9188 { 9189 struct i40e_fdir_filter *filter; 9190 struct i40e_flex_pit *pit_entry, *tmp; 9191 struct hlist_node *node2; 9192 9193 hlist_for_each_entry_safe(filter, node2, 9194 &pf->fdir_filter_list, fdir_node) { 9195 hlist_del(&filter->fdir_node); 9196 kfree(filter); 9197 } 9198 9199 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9200 list_del(&pit_entry->list); 9201 kfree(pit_entry); 9202 } 9203 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9204 9205 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9206 list_del(&pit_entry->list); 9207 kfree(pit_entry); 9208 } 9209 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9210 9211 pf->fdir_pf_active_filters = 0; 9212 i40e_reset_fdir_filter_cnt(pf); 9213 9214 /* Reprogram the default input set for TCP/IPv4 */ 9215 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9216 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9217 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9218 9219 /* Reprogram the default input set for TCP/IPv6 */ 9220 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 9221 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9222 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9223 9224 /* Reprogram the default input set for UDP/IPv4 */ 9225 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 9226 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9227 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9228 9229 /* Reprogram the default input set for UDP/IPv6 */ 9230 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 9231 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9232 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9233 9234 /* Reprogram the default input set for SCTP/IPv4 */ 9235 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 9236 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9237 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9238 9239 /* Reprogram the default input set for SCTP/IPv6 */ 9240 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 9241 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9242 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9243 9244 /* Reprogram the default input set for Other/IPv4 */ 9245 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 9246 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9247 9248 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 9249 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9250 9251 /* Reprogram the default input set for Other/IPv6 */ 9252 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 9253 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9254 9255 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 9256 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9257 } 9258 9259 /** 9260 * i40e_cloud_filter_exit - Cleans up the cloud filters 9261 * @pf: Pointer to PF 9262 * 9263 * This function destroys the hlist where all the cloud filters 9264 * were saved. 9265 **/ 9266 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9267 { 9268 struct i40e_cloud_filter *cfilter; 9269 struct hlist_node *node; 9270 9271 hlist_for_each_entry_safe(cfilter, node, 9272 &pf->cloud_filter_list, cloud_node) { 9273 hlist_del(&cfilter->cloud_node); 9274 kfree(cfilter); 9275 } 9276 pf->num_cloud_filters = 0; 9277 9278 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9279 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9280 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9281 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9282 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9283 } 9284 } 9285 9286 /** 9287 * i40e_close - Disables a network interface 9288 * @netdev: network interface device structure 9289 * 9290 * The close entry point is called when an interface is de-activated 9291 * by the OS. The hardware is still under the driver's control, but 9292 * this netdev interface is disabled. 9293 * 9294 * Returns 0, this is not allowed to fail 9295 **/ 9296 int i40e_close(struct net_device *netdev) 9297 { 9298 struct i40e_netdev_priv *np = netdev_priv(netdev); 9299 struct i40e_vsi *vsi = np->vsi; 9300 9301 i40e_vsi_close(vsi); 9302 9303 return 0; 9304 } 9305 9306 /** 9307 * i40e_do_reset - Start a PF or Core Reset sequence 9308 * @pf: board private structure 9309 * @reset_flags: which reset is requested 9310 * @lock_acquired: indicates whether or not the lock has been acquired 9311 * before this function was called. 9312 * 9313 * The essential difference in resets is that the PF Reset 9314 * doesn't clear the packet buffers, doesn't reset the PE 9315 * firmware, and doesn't bother the other PFs on the chip. 9316 **/ 9317 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9318 { 9319 struct i40e_vsi *vsi; 9320 u32 val; 9321 int i; 9322 9323 /* do the biggest reset indicated */ 9324 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9325 9326 /* Request a Global Reset 9327 * 9328 * This will start the chip's countdown to the actual full 9329 * chip reset event, and a warning interrupt to be sent 9330 * to all PFs, including the requestor. Our handler 9331 * for the warning interrupt will deal with the shutdown 9332 * and recovery of the switch setup. 9333 */ 9334 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9335 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9336 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9337 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9338 9339 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9340 9341 /* Request a Core Reset 9342 * 9343 * Same as Global Reset, except does *not* include the MAC/PHY 9344 */ 9345 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9346 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9347 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9348 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9349 i40e_flush(&pf->hw); 9350 9351 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9352 9353 /* Request a PF Reset 9354 * 9355 * Resets only the PF-specific registers 9356 * 9357 * This goes directly to the tear-down and rebuild of 9358 * the switch, since we need to do all the recovery as 9359 * for the Core Reset. 9360 */ 9361 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9362 i40e_handle_reset_warning(pf, lock_acquired); 9363 9364 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9365 /* Request a PF Reset 9366 * 9367 * Resets PF and reinitializes PFs VSI. 9368 */ 9369 i40e_prep_for_reset(pf); 9370 i40e_reset_and_rebuild(pf, true, lock_acquired); 9371 dev_info(&pf->pdev->dev, 9372 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9373 "FW LLDP is disabled\n" : 9374 "FW LLDP is enabled\n"); 9375 9376 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9377 /* Find the VSI(s) that requested a re-init */ 9378 dev_info(&pf->pdev->dev, "VSI reinit requested\n"); 9379 9380 i40e_pf_for_each_vsi(pf, i, vsi) { 9381 if (test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9382 vsi->state)) 9383 i40e_vsi_reinit_locked(vsi); 9384 } 9385 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9386 /* Find the VSI(s) that needs to be brought down */ 9387 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9388 9389 i40e_pf_for_each_vsi(pf, i, vsi) { 9390 if (test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9391 vsi->state)) { 9392 set_bit(__I40E_VSI_DOWN, vsi->state); 9393 i40e_down(vsi); 9394 } 9395 } 9396 } else { 9397 dev_info(&pf->pdev->dev, 9398 "bad reset request 0x%08x\n", reset_flags); 9399 } 9400 } 9401 9402 #ifdef CONFIG_I40E_DCB 9403 /** 9404 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9405 * @pf: board private structure 9406 * @old_cfg: current DCB config 9407 * @new_cfg: new DCB config 9408 **/ 9409 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9410 struct i40e_dcbx_config *old_cfg, 9411 struct i40e_dcbx_config *new_cfg) 9412 { 9413 bool need_reconfig = false; 9414 9415 /* Check if ETS configuration has changed */ 9416 if (memcmp(&new_cfg->etscfg, 9417 &old_cfg->etscfg, 9418 sizeof(new_cfg->etscfg))) { 9419 /* If Priority Table has changed reconfig is needed */ 9420 if (memcmp(&new_cfg->etscfg.prioritytable, 9421 &old_cfg->etscfg.prioritytable, 9422 sizeof(new_cfg->etscfg.prioritytable))) { 9423 need_reconfig = true; 9424 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9425 } 9426 9427 if (memcmp(&new_cfg->etscfg.tcbwtable, 9428 &old_cfg->etscfg.tcbwtable, 9429 sizeof(new_cfg->etscfg.tcbwtable))) 9430 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9431 9432 if (memcmp(&new_cfg->etscfg.tsatable, 9433 &old_cfg->etscfg.tsatable, 9434 sizeof(new_cfg->etscfg.tsatable))) 9435 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9436 } 9437 9438 /* Check if PFC configuration has changed */ 9439 if (memcmp(&new_cfg->pfc, 9440 &old_cfg->pfc, 9441 sizeof(new_cfg->pfc))) { 9442 need_reconfig = true; 9443 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9444 } 9445 9446 /* Check if APP Table has changed */ 9447 if (memcmp(&new_cfg->app, 9448 &old_cfg->app, 9449 sizeof(new_cfg->app))) { 9450 need_reconfig = true; 9451 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9452 } 9453 9454 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9455 return need_reconfig; 9456 } 9457 9458 /** 9459 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9460 * @pf: board private structure 9461 * @e: event info posted on ARQ 9462 **/ 9463 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9464 struct i40e_arq_event_info *e) 9465 { 9466 struct i40e_aqc_lldp_get_mib *mib = 9467 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9468 struct i40e_hw *hw = &pf->hw; 9469 struct i40e_dcbx_config tmp_dcbx_cfg; 9470 bool need_reconfig = false; 9471 int ret = 0; 9472 u8 type; 9473 9474 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9475 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9476 (hw->phy.link_info.link_speed & 9477 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9478 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9479 /* let firmware decide if the DCB should be disabled */ 9480 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9481 9482 /* Not DCB capable or capability disabled */ 9483 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9484 return ret; 9485 9486 /* Ignore if event is not for Nearest Bridge */ 9487 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9488 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9489 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9490 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9491 return ret; 9492 9493 /* Check MIB Type and return if event for Remote MIB update */ 9494 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9495 dev_dbg(&pf->pdev->dev, 9496 "LLDP event mib type %s\n", type ? "remote" : "local"); 9497 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9498 /* Update the remote cached instance and return */ 9499 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9500 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9501 &hw->remote_dcbx_config); 9502 goto exit; 9503 } 9504 9505 /* Store the old configuration */ 9506 tmp_dcbx_cfg = hw->local_dcbx_config; 9507 9508 /* Reset the old DCBx configuration data */ 9509 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9510 /* Get updated DCBX data from firmware */ 9511 ret = i40e_get_dcb_config(&pf->hw); 9512 if (ret) { 9513 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9514 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9515 (hw->phy.link_info.link_speed & 9516 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9517 dev_warn(&pf->pdev->dev, 9518 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9519 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9520 } else { 9521 dev_info(&pf->pdev->dev, 9522 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9523 ERR_PTR(ret), 9524 i40e_aq_str(&pf->hw, 9525 pf->hw.aq.asq_last_status)); 9526 } 9527 goto exit; 9528 } 9529 9530 /* No change detected in DCBX configs */ 9531 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9532 sizeof(tmp_dcbx_cfg))) { 9533 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9534 goto exit; 9535 } 9536 9537 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9538 &hw->local_dcbx_config); 9539 9540 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9541 9542 if (!need_reconfig) 9543 goto exit; 9544 9545 /* Enable DCB tagging only when more than one TC */ 9546 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9547 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9548 else 9549 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9550 9551 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9552 /* Reconfiguration needed quiesce all VSIs */ 9553 i40e_pf_quiesce_all_vsi(pf); 9554 9555 /* Changes in configuration update VEB/VSI */ 9556 i40e_dcb_reconfigure(pf); 9557 9558 ret = i40e_resume_port_tx(pf); 9559 9560 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9561 /* In case of error no point in resuming VSIs */ 9562 if (ret) 9563 goto exit; 9564 9565 /* Wait for the PF's queues to be disabled */ 9566 ret = i40e_pf_wait_queues_disabled(pf); 9567 if (ret) { 9568 /* Schedule PF reset to recover */ 9569 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9570 i40e_service_event_schedule(pf); 9571 } else { 9572 i40e_pf_unquiesce_all_vsi(pf); 9573 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9574 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9575 } 9576 9577 exit: 9578 return ret; 9579 } 9580 #endif /* CONFIG_I40E_DCB */ 9581 9582 /** 9583 * i40e_do_reset_safe - Protected reset path for userland calls. 9584 * @pf: board private structure 9585 * @reset_flags: which reset is requested 9586 * 9587 **/ 9588 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9589 { 9590 rtnl_lock(); 9591 i40e_do_reset(pf, reset_flags, true); 9592 rtnl_unlock(); 9593 } 9594 9595 /** 9596 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9597 * @pf: board private structure 9598 * @e: event info posted on ARQ 9599 * 9600 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9601 * and VF queues 9602 **/ 9603 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9604 struct i40e_arq_event_info *e) 9605 { 9606 struct i40e_aqc_lan_overflow *data = 9607 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9608 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9609 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9610 struct i40e_hw *hw = &pf->hw; 9611 struct i40e_vf *vf; 9612 u16 vf_id; 9613 9614 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9615 queue, qtx_ctl); 9616 9617 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) != 9618 I40E_QTX_CTL_VF_QUEUE) 9619 return; 9620 9621 /* Queue belongs to VF, find the VF and issue VF reset */ 9622 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl); 9623 vf_id -= hw->func_caps.vf_base_id; 9624 vf = &pf->vf[vf_id]; 9625 i40e_vc_notify_vf_reset(vf); 9626 /* Allow VF to process pending reset notification */ 9627 msleep(20); 9628 i40e_reset_vf(vf, false); 9629 } 9630 9631 /** 9632 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9633 * @pf: board private structure 9634 **/ 9635 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9636 { 9637 u32 val, fcnt_prog; 9638 9639 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9640 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9641 return fcnt_prog; 9642 } 9643 9644 /** 9645 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9646 * @pf: board private structure 9647 **/ 9648 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9649 { 9650 u32 val, fcnt_prog; 9651 9652 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9653 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9654 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val); 9655 return fcnt_prog; 9656 } 9657 9658 /** 9659 * i40e_get_global_fd_count - Get total FD filters programmed on device 9660 * @pf: board private structure 9661 **/ 9662 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9663 { 9664 u32 val, fcnt_prog; 9665 9666 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9667 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9668 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val); 9669 return fcnt_prog; 9670 } 9671 9672 /** 9673 * i40e_reenable_fdir_sb - Restore FDir SB capability 9674 * @pf: board private structure 9675 **/ 9676 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9677 { 9678 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9679 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9680 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9681 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9682 } 9683 9684 /** 9685 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9686 * @pf: board private structure 9687 **/ 9688 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9689 { 9690 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9691 /* ATR uses the same filtering logic as SB rules. It only 9692 * functions properly if the input set mask is at the default 9693 * settings. It is safe to restore the default input set 9694 * because there are no active TCPv4 filter rules. 9695 */ 9696 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9697 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9698 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9699 9700 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9701 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9702 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9703 } 9704 } 9705 9706 /** 9707 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9708 * @pf: board private structure 9709 * @filter: FDir filter to remove 9710 */ 9711 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9712 struct i40e_fdir_filter *filter) 9713 { 9714 /* Update counters */ 9715 pf->fdir_pf_active_filters--; 9716 pf->fd_inv = 0; 9717 9718 switch (filter->flow_type) { 9719 case TCP_V4_FLOW: 9720 pf->fd_tcp4_filter_cnt--; 9721 break; 9722 case UDP_V4_FLOW: 9723 pf->fd_udp4_filter_cnt--; 9724 break; 9725 case SCTP_V4_FLOW: 9726 pf->fd_sctp4_filter_cnt--; 9727 break; 9728 case TCP_V6_FLOW: 9729 pf->fd_tcp6_filter_cnt--; 9730 break; 9731 case UDP_V6_FLOW: 9732 pf->fd_udp6_filter_cnt--; 9733 break; 9734 case SCTP_V6_FLOW: 9735 pf->fd_udp6_filter_cnt--; 9736 break; 9737 case IP_USER_FLOW: 9738 switch (filter->ipl4_proto) { 9739 case IPPROTO_TCP: 9740 pf->fd_tcp4_filter_cnt--; 9741 break; 9742 case IPPROTO_UDP: 9743 pf->fd_udp4_filter_cnt--; 9744 break; 9745 case IPPROTO_SCTP: 9746 pf->fd_sctp4_filter_cnt--; 9747 break; 9748 case IPPROTO_IP: 9749 pf->fd_ip4_filter_cnt--; 9750 break; 9751 } 9752 break; 9753 case IPV6_USER_FLOW: 9754 switch (filter->ipl4_proto) { 9755 case IPPROTO_TCP: 9756 pf->fd_tcp6_filter_cnt--; 9757 break; 9758 case IPPROTO_UDP: 9759 pf->fd_udp6_filter_cnt--; 9760 break; 9761 case IPPROTO_SCTP: 9762 pf->fd_sctp6_filter_cnt--; 9763 break; 9764 case IPPROTO_IP: 9765 pf->fd_ip6_filter_cnt--; 9766 break; 9767 } 9768 break; 9769 } 9770 9771 /* Remove the filter from the list and free memory */ 9772 hlist_del(&filter->fdir_node); 9773 kfree(filter); 9774 } 9775 9776 /** 9777 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9778 * @pf: board private structure 9779 **/ 9780 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9781 { 9782 struct i40e_fdir_filter *filter; 9783 u32 fcnt_prog, fcnt_avail; 9784 struct hlist_node *node; 9785 9786 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9787 return; 9788 9789 /* Check if we have enough room to re-enable FDir SB capability. */ 9790 fcnt_prog = i40e_get_global_fd_count(pf); 9791 fcnt_avail = pf->fdir_pf_filter_count; 9792 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9793 (pf->fd_add_err == 0) || 9794 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9795 i40e_reenable_fdir_sb(pf); 9796 9797 /* We should wait for even more space before re-enabling ATR. 9798 * Additionally, we cannot enable ATR as long as we still have TCP SB 9799 * rules active. 9800 */ 9801 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9802 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9803 i40e_reenable_fdir_atr(pf); 9804 9805 /* if hw had a problem adding a filter, delete it */ 9806 if (pf->fd_inv > 0) { 9807 hlist_for_each_entry_safe(filter, node, 9808 &pf->fdir_filter_list, fdir_node) 9809 if (filter->fd_id == pf->fd_inv) 9810 i40e_delete_invalid_filter(pf, filter); 9811 } 9812 } 9813 9814 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9815 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9816 /** 9817 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9818 * @pf: board private structure 9819 **/ 9820 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9821 { 9822 unsigned long min_flush_time; 9823 int flush_wait_retry = 50; 9824 bool disable_atr = false; 9825 int fd_room; 9826 int reg; 9827 9828 if (!time_after(jiffies, pf->fd_flush_timestamp + 9829 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9830 return; 9831 9832 /* If the flush is happening too quick and we have mostly SB rules we 9833 * should not re-enable ATR for some time. 9834 */ 9835 min_flush_time = pf->fd_flush_timestamp + 9836 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9837 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9838 9839 if (!(time_after(jiffies, min_flush_time)) && 9840 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9841 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9842 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9843 disable_atr = true; 9844 } 9845 9846 pf->fd_flush_timestamp = jiffies; 9847 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9848 /* flush all filters */ 9849 wr32(&pf->hw, I40E_PFQF_CTL_1, 9850 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9851 i40e_flush(&pf->hw); 9852 pf->fd_flush_cnt++; 9853 pf->fd_add_err = 0; 9854 do { 9855 /* Check FD flush status every 5-6msec */ 9856 usleep_range(5000, 6000); 9857 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9858 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9859 break; 9860 } while (flush_wait_retry--); 9861 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9862 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9863 } else { 9864 /* replay sideband filters */ 9865 i40e_fdir_filter_restore(i40e_pf_get_main_vsi(pf)); 9866 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9867 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9868 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9869 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9870 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9871 } 9872 } 9873 9874 /** 9875 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9876 * @pf: board private structure 9877 **/ 9878 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9879 { 9880 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9881 } 9882 9883 /** 9884 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9885 * @pf: board private structure 9886 **/ 9887 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9888 { 9889 9890 /* if interface is down do nothing */ 9891 if (test_bit(__I40E_DOWN, pf->state)) 9892 return; 9893 9894 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9895 i40e_fdir_flush_and_replay(pf); 9896 9897 i40e_fdir_check_and_reenable(pf); 9898 9899 } 9900 9901 /** 9902 * i40e_vsi_link_event - notify VSI of a link event 9903 * @vsi: vsi to be notified 9904 * @link_up: link up or down 9905 **/ 9906 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9907 { 9908 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9909 return; 9910 9911 switch (vsi->type) { 9912 case I40E_VSI_MAIN: 9913 if (!vsi->netdev || !vsi->netdev_registered) 9914 break; 9915 9916 if (link_up) { 9917 netif_carrier_on(vsi->netdev); 9918 netif_tx_wake_all_queues(vsi->netdev); 9919 } else { 9920 netif_carrier_off(vsi->netdev); 9921 netif_tx_stop_all_queues(vsi->netdev); 9922 } 9923 break; 9924 9925 case I40E_VSI_SRIOV: 9926 case I40E_VSI_VMDQ2: 9927 case I40E_VSI_CTRL: 9928 case I40E_VSI_IWARP: 9929 case I40E_VSI_MIRROR: 9930 default: 9931 /* there is no notification for other VSIs */ 9932 break; 9933 } 9934 } 9935 9936 /** 9937 * i40e_veb_link_event - notify elements on the veb of a link event 9938 * @veb: veb to be notified 9939 * @link_up: link up or down 9940 **/ 9941 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9942 { 9943 struct i40e_vsi *vsi; 9944 struct i40e_pf *pf; 9945 int i; 9946 9947 if (!veb || !veb->pf) 9948 return; 9949 pf = veb->pf; 9950 9951 /* Send link event to contained VSIs */ 9952 i40e_pf_for_each_vsi(pf, i, vsi) 9953 if (vsi->uplink_seid == veb->seid) 9954 i40e_vsi_link_event(vsi, link_up); 9955 } 9956 9957 /** 9958 * i40e_link_event - Update netif_carrier status 9959 * @pf: board private structure 9960 **/ 9961 static void i40e_link_event(struct i40e_pf *pf) 9962 { 9963 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 9964 struct i40e_veb *veb = i40e_pf_get_main_veb(pf); 9965 u8 new_link_speed, old_link_speed; 9966 bool new_link, old_link; 9967 int status; 9968 #ifdef CONFIG_I40E_DCB 9969 int err; 9970 #endif /* CONFIG_I40E_DCB */ 9971 9972 /* set this to force the get_link_status call to refresh state */ 9973 pf->hw.phy.get_link_info = true; 9974 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9975 status = i40e_get_link_status(&pf->hw, &new_link); 9976 9977 /* On success, disable temp link polling */ 9978 if (status == 0) { 9979 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9980 } else { 9981 /* Enable link polling temporarily until i40e_get_link_status 9982 * returns 0 9983 */ 9984 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9985 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9986 status); 9987 return; 9988 } 9989 9990 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9991 new_link_speed = pf->hw.phy.link_info.link_speed; 9992 9993 if (new_link == old_link && 9994 new_link_speed == old_link_speed && 9995 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9996 new_link == netif_carrier_ok(vsi->netdev))) 9997 return; 9998 9999 i40e_print_link_message(vsi, new_link); 10000 10001 /* Notify the base of the switch tree connected to 10002 * the link. Floating VEBs are not notified. 10003 */ 10004 if (veb) 10005 i40e_veb_link_event(veb, new_link); 10006 else 10007 i40e_vsi_link_event(vsi, new_link); 10008 10009 if (pf->vf) 10010 i40e_vc_notify_link_state(pf); 10011 10012 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 10013 i40e_ptp_set_increment(pf); 10014 #ifdef CONFIG_I40E_DCB 10015 if (new_link == old_link) 10016 return; 10017 /* Not SW DCB so firmware will take care of default settings */ 10018 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 10019 return; 10020 10021 /* We cover here only link down, as after link up in case of SW DCB 10022 * SW LLDP agent will take care of setting it up 10023 */ 10024 if (!new_link) { 10025 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 10026 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 10027 err = i40e_dcb_sw_default_config(pf); 10028 if (err) { 10029 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10030 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 10031 } else { 10032 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 10033 DCB_CAP_DCBX_VER_IEEE; 10034 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10035 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 10036 } 10037 } 10038 #endif /* CONFIG_I40E_DCB */ 10039 } 10040 10041 /** 10042 * i40e_watchdog_subtask - periodic checks not using event driven response 10043 * @pf: board private structure 10044 **/ 10045 static void i40e_watchdog_subtask(struct i40e_pf *pf) 10046 { 10047 struct i40e_vsi *vsi; 10048 struct i40e_veb *veb; 10049 int i; 10050 10051 /* if interface is down do nothing */ 10052 if (test_bit(__I40E_DOWN, pf->state) || 10053 test_bit(__I40E_CONFIG_BUSY, pf->state)) 10054 return; 10055 10056 /* make sure we don't do these things too often */ 10057 if (time_before(jiffies, (pf->service_timer_previous + 10058 pf->service_timer_period))) 10059 return; 10060 pf->service_timer_previous = jiffies; 10061 10062 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 10063 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 10064 i40e_link_event(pf); 10065 10066 /* Update the stats for active netdevs so the network stack 10067 * can look at updated numbers whenever it cares to 10068 */ 10069 i40e_pf_for_each_vsi(pf, i, vsi) 10070 if (vsi->netdev) 10071 i40e_update_stats(vsi); 10072 10073 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10074 /* Update the stats for the active switching components */ 10075 i40e_pf_for_each_veb(pf, i, veb) 10076 i40e_update_veb_stats(veb); 10077 } 10078 10079 i40e_ptp_rx_hang(pf); 10080 i40e_ptp_tx_hang(pf); 10081 } 10082 10083 /** 10084 * i40e_reset_subtask - Set up for resetting the device and driver 10085 * @pf: board private structure 10086 **/ 10087 static void i40e_reset_subtask(struct i40e_pf *pf) 10088 { 10089 u32 reset_flags = 0; 10090 10091 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10092 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10093 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10094 } 10095 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10096 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10097 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10098 } 10099 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10100 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10101 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10102 } 10103 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10104 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10105 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10106 } 10107 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10108 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10109 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10110 } 10111 10112 /* If there's a recovery already waiting, it takes 10113 * precedence before starting a new reset sequence. 10114 */ 10115 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10116 i40e_prep_for_reset(pf); 10117 i40e_reset(pf); 10118 i40e_rebuild(pf, false, false); 10119 } 10120 10121 /* If we're already down or resetting, just bail */ 10122 if (reset_flags && 10123 !test_bit(__I40E_DOWN, pf->state) && 10124 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10125 i40e_do_reset(pf, reset_flags, false); 10126 } 10127 } 10128 10129 /** 10130 * i40e_handle_link_event - Handle link event 10131 * @pf: board private structure 10132 * @e: event info posted on ARQ 10133 **/ 10134 static void i40e_handle_link_event(struct i40e_pf *pf, 10135 struct i40e_arq_event_info *e) 10136 { 10137 struct i40e_aqc_get_link_status *status = 10138 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10139 10140 /* Do a new status request to re-enable LSE reporting 10141 * and load new status information into the hw struct 10142 * This completely ignores any state information 10143 * in the ARQ event info, instead choosing to always 10144 * issue the AQ update link status command. 10145 */ 10146 i40e_link_event(pf); 10147 10148 /* Check if module meets thermal requirements */ 10149 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10150 dev_err(&pf->pdev->dev, 10151 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10152 dev_err(&pf->pdev->dev, 10153 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10154 } else { 10155 /* check for unqualified module, if link is down, suppress 10156 * the message if link was forced to be down. 10157 */ 10158 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10159 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10160 (!(status->link_info & I40E_AQ_LINK_UP)) && 10161 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10162 dev_err(&pf->pdev->dev, 10163 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10164 dev_err(&pf->pdev->dev, 10165 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10166 } 10167 } 10168 } 10169 10170 /** 10171 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10172 * @pf: board private structure 10173 **/ 10174 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10175 { 10176 struct i40e_arq_event_info event; 10177 struct i40e_hw *hw = &pf->hw; 10178 u16 pending, i = 0; 10179 u16 opcode; 10180 u32 oldval; 10181 int ret; 10182 u32 val; 10183 10184 /* Do not run clean AQ when PF reset fails */ 10185 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10186 return; 10187 10188 /* check for error indications */ 10189 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10190 oldval = val; 10191 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10192 if (hw->debug_mask & I40E_DEBUG_AQ) 10193 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10194 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10195 } 10196 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10197 if (hw->debug_mask & I40E_DEBUG_AQ) 10198 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10199 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10200 pf->arq_overflows++; 10201 } 10202 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10203 if (hw->debug_mask & I40E_DEBUG_AQ) 10204 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10205 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10206 } 10207 if (oldval != val) 10208 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10209 10210 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10211 oldval = val; 10212 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10213 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10214 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10215 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10216 } 10217 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10218 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10219 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10220 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10221 } 10222 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10223 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10224 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10225 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10226 } 10227 if (oldval != val) 10228 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10229 10230 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10231 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10232 if (!event.msg_buf) 10233 return; 10234 10235 do { 10236 ret = i40e_clean_arq_element(hw, &event, &pending); 10237 if (ret == -EALREADY) 10238 break; 10239 else if (ret) { 10240 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10241 break; 10242 } 10243 10244 opcode = le16_to_cpu(event.desc.opcode); 10245 switch (opcode) { 10246 10247 case i40e_aqc_opc_get_link_status: 10248 rtnl_lock(); 10249 i40e_handle_link_event(pf, &event); 10250 rtnl_unlock(); 10251 break; 10252 case i40e_aqc_opc_send_msg_to_pf: 10253 ret = i40e_vc_process_vf_msg(pf, 10254 le16_to_cpu(event.desc.retval), 10255 le32_to_cpu(event.desc.cookie_high), 10256 le32_to_cpu(event.desc.cookie_low), 10257 event.msg_buf, 10258 event.msg_len); 10259 break; 10260 case i40e_aqc_opc_lldp_update_mib: 10261 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10262 #ifdef CONFIG_I40E_DCB 10263 rtnl_lock(); 10264 i40e_handle_lldp_event(pf, &event); 10265 rtnl_unlock(); 10266 #endif /* CONFIG_I40E_DCB */ 10267 break; 10268 case i40e_aqc_opc_event_lan_overflow: 10269 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10270 i40e_handle_lan_overflow_event(pf, &event); 10271 break; 10272 case i40e_aqc_opc_send_msg_to_peer: 10273 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10274 break; 10275 case i40e_aqc_opc_nvm_erase: 10276 case i40e_aqc_opc_nvm_update: 10277 case i40e_aqc_opc_oem_post_update: 10278 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10279 "ARQ NVM operation 0x%04x completed\n", 10280 opcode); 10281 break; 10282 default: 10283 dev_info(&pf->pdev->dev, 10284 "ARQ: Unknown event 0x%04x ignored\n", 10285 opcode); 10286 break; 10287 } 10288 } while (i++ < I40E_AQ_WORK_LIMIT); 10289 10290 if (i < I40E_AQ_WORK_LIMIT) 10291 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10292 10293 /* re-enable Admin queue interrupt cause */ 10294 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10295 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10296 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10297 i40e_flush(hw); 10298 10299 kfree(event.msg_buf); 10300 } 10301 10302 /** 10303 * i40e_verify_eeprom - make sure eeprom is good to use 10304 * @pf: board private structure 10305 **/ 10306 static void i40e_verify_eeprom(struct i40e_pf *pf) 10307 { 10308 int err; 10309 10310 err = i40e_diag_eeprom_test(&pf->hw); 10311 if (err) { 10312 /* retry in case of garbage read */ 10313 err = i40e_diag_eeprom_test(&pf->hw); 10314 if (err) { 10315 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10316 err); 10317 set_bit(__I40E_BAD_EEPROM, pf->state); 10318 } 10319 } 10320 10321 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10322 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10323 clear_bit(__I40E_BAD_EEPROM, pf->state); 10324 } 10325 } 10326 10327 /** 10328 * i40e_enable_pf_switch_lb 10329 * @pf: pointer to the PF structure 10330 * 10331 * enable switch loop back or die - no point in a return value 10332 **/ 10333 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10334 { 10335 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10336 struct i40e_vsi_context ctxt; 10337 int ret; 10338 10339 ctxt.seid = pf->main_vsi_seid; 10340 ctxt.pf_num = pf->hw.pf_id; 10341 ctxt.vf_num = 0; 10342 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10343 if (ret) { 10344 dev_info(&pf->pdev->dev, 10345 "couldn't get PF vsi config, err %pe aq_err %s\n", 10346 ERR_PTR(ret), 10347 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10348 return; 10349 } 10350 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10351 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10352 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10353 10354 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10355 if (ret) { 10356 dev_info(&pf->pdev->dev, 10357 "update vsi switch failed, err %pe aq_err %s\n", 10358 ERR_PTR(ret), 10359 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10360 } 10361 } 10362 10363 /** 10364 * i40e_disable_pf_switch_lb 10365 * @pf: pointer to the PF structure 10366 * 10367 * disable switch loop back or die - no point in a return value 10368 **/ 10369 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10370 { 10371 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10372 struct i40e_vsi_context ctxt; 10373 int ret; 10374 10375 ctxt.seid = pf->main_vsi_seid; 10376 ctxt.pf_num = pf->hw.pf_id; 10377 ctxt.vf_num = 0; 10378 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10379 if (ret) { 10380 dev_info(&pf->pdev->dev, 10381 "couldn't get PF vsi config, err %pe aq_err %s\n", 10382 ERR_PTR(ret), 10383 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10384 return; 10385 } 10386 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10387 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10388 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10389 10390 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10391 if (ret) { 10392 dev_info(&pf->pdev->dev, 10393 "update vsi switch failed, err %pe aq_err %s\n", 10394 ERR_PTR(ret), 10395 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10396 } 10397 } 10398 10399 /** 10400 * i40e_config_bridge_mode - Configure the HW bridge mode 10401 * @veb: pointer to the bridge instance 10402 * 10403 * Configure the loop back mode for the LAN VSI that is downlink to the 10404 * specified HW bridge instance. It is expected this function is called 10405 * when a new HW bridge is instantiated. 10406 **/ 10407 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10408 { 10409 struct i40e_pf *pf = veb->pf; 10410 10411 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10412 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10413 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10414 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10415 i40e_disable_pf_switch_lb(pf); 10416 else 10417 i40e_enable_pf_switch_lb(pf); 10418 } 10419 10420 /** 10421 * i40e_reconstitute_veb - rebuild the VEB and VSIs connected to it 10422 * @veb: pointer to the VEB instance 10423 * 10424 * This is a function that builds the attached VSIs. We track the connections 10425 * through our own index numbers because the seid's from the HW could change 10426 * across the reset. 10427 **/ 10428 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10429 { 10430 struct i40e_vsi *ctl_vsi = NULL; 10431 struct i40e_pf *pf = veb->pf; 10432 struct i40e_vsi *vsi; 10433 int v, ret; 10434 10435 /* As we do not maintain PV (port virtualizer) switch element then 10436 * there can be only one non-floating VEB that have uplink to MAC SEID 10437 * and its control VSI is the main one. 10438 */ 10439 if (WARN_ON(veb->uplink_seid && veb->uplink_seid != pf->mac_seid)) { 10440 dev_err(&pf->pdev->dev, 10441 "Invalid uplink SEID for VEB %d\n", veb->idx); 10442 return -ENOENT; 10443 } 10444 10445 if (veb->uplink_seid == pf->mac_seid) { 10446 /* Check that the LAN VSI has VEB owning flag set */ 10447 ctl_vsi = i40e_pf_get_main_vsi(pf); 10448 10449 if (WARN_ON(ctl_vsi->veb_idx != veb->idx || 10450 !(ctl_vsi->flags & I40E_VSI_FLAG_VEB_OWNER))) { 10451 dev_err(&pf->pdev->dev, 10452 "Invalid control VSI for VEB %d\n", veb->idx); 10453 return -ENOENT; 10454 } 10455 10456 /* Add the control VSI to switch */ 10457 ret = i40e_add_vsi(ctl_vsi); 10458 if (ret) { 10459 dev_err(&pf->pdev->dev, 10460 "Rebuild of owner VSI for VEB %d failed: %d\n", 10461 veb->idx, ret); 10462 return ret; 10463 } 10464 10465 i40e_vsi_reset_stats(ctl_vsi); 10466 } 10467 10468 /* create the VEB in the switch and move the VSI onto the VEB */ 10469 ret = i40e_add_veb(veb, ctl_vsi); 10470 if (ret) 10471 return ret; 10472 10473 if (veb->uplink_seid) { 10474 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10475 veb->bridge_mode = BRIDGE_MODE_VEB; 10476 else 10477 veb->bridge_mode = BRIDGE_MODE_VEPA; 10478 i40e_config_bridge_mode(veb); 10479 } 10480 10481 /* create the remaining VSIs attached to this VEB */ 10482 i40e_pf_for_each_vsi(pf, v, vsi) { 10483 if (vsi == ctl_vsi) 10484 continue; 10485 10486 if (vsi->veb_idx == veb->idx) { 10487 vsi->uplink_seid = veb->seid; 10488 ret = i40e_add_vsi(vsi); 10489 if (ret) { 10490 dev_info(&pf->pdev->dev, 10491 "rebuild of vsi_idx %d failed: %d\n", 10492 v, ret); 10493 return ret; 10494 } 10495 i40e_vsi_reset_stats(vsi); 10496 } 10497 } 10498 10499 return ret; 10500 } 10501 10502 /** 10503 * i40e_get_capabilities - get info about the HW 10504 * @pf: the PF struct 10505 * @list_type: AQ capability to be queried 10506 **/ 10507 static int i40e_get_capabilities(struct i40e_pf *pf, 10508 enum i40e_admin_queue_opc list_type) 10509 { 10510 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10511 u16 data_size; 10512 int buf_len; 10513 int err; 10514 10515 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10516 do { 10517 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10518 if (!cap_buf) 10519 return -ENOMEM; 10520 10521 /* this loads the data into the hw struct for us */ 10522 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10523 &data_size, list_type, 10524 NULL); 10525 /* data loaded, buffer no longer needed */ 10526 kfree(cap_buf); 10527 10528 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10529 /* retry with a larger buffer */ 10530 buf_len = data_size; 10531 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10532 dev_info(&pf->pdev->dev, 10533 "capability discovery failed, err %pe aq_err %s\n", 10534 ERR_PTR(err), 10535 i40e_aq_str(&pf->hw, 10536 pf->hw.aq.asq_last_status)); 10537 return -ENODEV; 10538 } 10539 } while (err); 10540 10541 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10542 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10543 dev_info(&pf->pdev->dev, 10544 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10545 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10546 pf->hw.func_caps.num_msix_vectors, 10547 pf->hw.func_caps.num_msix_vectors_vf, 10548 pf->hw.func_caps.fd_filters_guaranteed, 10549 pf->hw.func_caps.fd_filters_best_effort, 10550 pf->hw.func_caps.num_tx_qp, 10551 pf->hw.func_caps.num_vsis); 10552 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10553 dev_info(&pf->pdev->dev, 10554 "switch_mode=0x%04x, function_valid=0x%08x\n", 10555 pf->hw.dev_caps.switch_mode, 10556 pf->hw.dev_caps.valid_functions); 10557 dev_info(&pf->pdev->dev, 10558 "SR-IOV=%d, num_vfs for all function=%u\n", 10559 pf->hw.dev_caps.sr_iov_1_1, 10560 pf->hw.dev_caps.num_vfs); 10561 dev_info(&pf->pdev->dev, 10562 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10563 pf->hw.dev_caps.num_vsis, 10564 pf->hw.dev_caps.num_rx_qp, 10565 pf->hw.dev_caps.num_tx_qp); 10566 } 10567 } 10568 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10569 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10570 + pf->hw.func_caps.num_vfs) 10571 if (pf->hw.revision_id == 0 && 10572 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10573 dev_info(&pf->pdev->dev, 10574 "got num_vsis %d, setting num_vsis to %d\n", 10575 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10576 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10577 } 10578 } 10579 return 0; 10580 } 10581 10582 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10583 10584 /** 10585 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10586 * @pf: board private structure 10587 **/ 10588 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10589 { 10590 struct i40e_vsi *main_vsi, *vsi; 10591 10592 /* quick workaround for an NVM issue that leaves a critical register 10593 * uninitialized 10594 */ 10595 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10596 static const u32 hkey[] = { 10597 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10598 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10599 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10600 0x95b3a76d}; 10601 int i; 10602 10603 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10604 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10605 } 10606 10607 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10608 return; 10609 10610 /* find existing VSI and see if it needs configuring */ 10611 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10612 10613 /* create a new VSI if none exists */ 10614 if (!vsi) { 10615 main_vsi = i40e_pf_get_main_vsi(pf); 10616 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, main_vsi->seid, 0); 10617 if (!vsi) { 10618 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10619 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10620 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10621 return; 10622 } 10623 } 10624 10625 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10626 } 10627 10628 /** 10629 * i40e_fdir_teardown - release the Flow Director resources 10630 * @pf: board private structure 10631 **/ 10632 static void i40e_fdir_teardown(struct i40e_pf *pf) 10633 { 10634 struct i40e_vsi *vsi; 10635 10636 i40e_fdir_filter_exit(pf); 10637 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10638 if (vsi) 10639 i40e_vsi_release(vsi); 10640 } 10641 10642 /** 10643 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10644 * @vsi: PF main vsi 10645 * @seid: seid of main or channel VSIs 10646 * 10647 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10648 * existed before reset 10649 **/ 10650 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10651 { 10652 struct i40e_cloud_filter *cfilter; 10653 struct i40e_pf *pf = vsi->back; 10654 struct hlist_node *node; 10655 int ret; 10656 10657 /* Add cloud filters back if they exist */ 10658 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10659 cloud_node) { 10660 if (cfilter->seid != seid) 10661 continue; 10662 10663 if (cfilter->dst_port) 10664 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10665 true); 10666 else 10667 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10668 10669 if (ret) { 10670 dev_dbg(&pf->pdev->dev, 10671 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10672 ERR_PTR(ret), 10673 i40e_aq_str(&pf->hw, 10674 pf->hw.aq.asq_last_status)); 10675 return ret; 10676 } 10677 } 10678 return 0; 10679 } 10680 10681 /** 10682 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10683 * @vsi: PF main vsi 10684 * 10685 * Rebuilds channel VSIs if they existed before reset 10686 **/ 10687 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10688 { 10689 struct i40e_channel *ch, *ch_tmp; 10690 int ret; 10691 10692 if (list_empty(&vsi->ch_list)) 10693 return 0; 10694 10695 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10696 if (!ch->initialized) 10697 break; 10698 /* Proceed with creation of channel (VMDq2) VSI */ 10699 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10700 if (ret) { 10701 dev_info(&vsi->back->pdev->dev, 10702 "failed to rebuild channels using uplink_seid %u\n", 10703 vsi->uplink_seid); 10704 return ret; 10705 } 10706 /* Reconfigure TX queues using QTX_CTL register */ 10707 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10708 if (ret) { 10709 dev_info(&vsi->back->pdev->dev, 10710 "failed to configure TX rings for channel %u\n", 10711 ch->seid); 10712 return ret; 10713 } 10714 /* update 'next_base_queue' */ 10715 vsi->next_base_queue = vsi->next_base_queue + 10716 ch->num_queue_pairs; 10717 if (ch->max_tx_rate) { 10718 u64 credits = ch->max_tx_rate; 10719 10720 if (i40e_set_bw_limit(vsi, ch->seid, 10721 ch->max_tx_rate)) 10722 return -EINVAL; 10723 10724 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10725 dev_dbg(&vsi->back->pdev->dev, 10726 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10727 ch->max_tx_rate, 10728 credits, 10729 ch->seid); 10730 } 10731 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10732 if (ret) { 10733 dev_dbg(&vsi->back->pdev->dev, 10734 "Failed to rebuild cloud filters for channel VSI %u\n", 10735 ch->seid); 10736 return ret; 10737 } 10738 } 10739 return 0; 10740 } 10741 10742 /** 10743 * i40e_clean_xps_state - clean xps state for every tx_ring 10744 * @vsi: ptr to the VSI 10745 **/ 10746 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10747 { 10748 int i; 10749 10750 if (vsi->tx_rings) 10751 for (i = 0; i < vsi->num_queue_pairs; i++) 10752 if (vsi->tx_rings[i]) 10753 clear_bit(__I40E_TX_XPS_INIT_DONE, 10754 vsi->tx_rings[i]->state); 10755 } 10756 10757 /** 10758 * i40e_prep_for_reset - prep for the core to reset 10759 * @pf: board private structure 10760 * 10761 * Close up the VFs and other things in prep for PF Reset. 10762 **/ 10763 static void i40e_prep_for_reset(struct i40e_pf *pf) 10764 { 10765 struct i40e_hw *hw = &pf->hw; 10766 struct i40e_vsi *vsi; 10767 int ret = 0; 10768 u32 v; 10769 10770 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10771 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10772 return; 10773 if (i40e_check_asq_alive(&pf->hw)) 10774 i40e_vc_notify_reset(pf); 10775 10776 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10777 10778 /* quiesce the VSIs and their queues that are not already DOWN */ 10779 i40e_pf_quiesce_all_vsi(pf); 10780 10781 i40e_pf_for_each_vsi(pf, v, vsi) { 10782 i40e_clean_xps_state(vsi); 10783 vsi->seid = 0; 10784 } 10785 10786 i40e_shutdown_adminq(&pf->hw); 10787 10788 /* call shutdown HMC */ 10789 if (hw->hmc.hmc_obj) { 10790 ret = i40e_shutdown_lan_hmc(hw); 10791 if (ret) 10792 dev_warn(&pf->pdev->dev, 10793 "shutdown_lan_hmc failed: %d\n", ret); 10794 } 10795 10796 /* Save the current PTP time so that we can restore the time after the 10797 * reset completes. 10798 */ 10799 i40e_ptp_save_hw_time(pf); 10800 } 10801 10802 /** 10803 * i40e_send_version - update firmware with driver version 10804 * @pf: PF struct 10805 */ 10806 static void i40e_send_version(struct i40e_pf *pf) 10807 { 10808 struct i40e_driver_version dv; 10809 10810 dv.major_version = 0xff; 10811 dv.minor_version = 0xff; 10812 dv.build_version = 0xff; 10813 dv.subbuild_version = 0; 10814 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10815 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10816 } 10817 10818 /** 10819 * i40e_get_oem_version - get OEM specific version information 10820 * @hw: pointer to the hardware structure 10821 **/ 10822 static void i40e_get_oem_version(struct i40e_hw *hw) 10823 { 10824 u16 block_offset = 0xffff; 10825 u16 block_length = 0; 10826 u16 capabilities = 0; 10827 u16 gen_snap = 0; 10828 u16 release = 0; 10829 10830 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10831 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10832 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10833 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10834 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10835 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10836 #define I40E_NVM_OEM_LENGTH 3 10837 10838 /* Check if pointer to OEM version block is valid. */ 10839 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10840 if (block_offset == 0xffff) 10841 return; 10842 10843 /* Check if OEM version block has correct length. */ 10844 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10845 &block_length); 10846 if (block_length < I40E_NVM_OEM_LENGTH) 10847 return; 10848 10849 /* Check if OEM version format is as expected. */ 10850 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10851 &capabilities); 10852 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10853 return; 10854 10855 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10856 &gen_snap); 10857 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10858 &release); 10859 hw->nvm.oem_ver = 10860 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10861 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10862 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10863 } 10864 10865 /** 10866 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10867 * @pf: board private structure 10868 **/ 10869 static int i40e_reset(struct i40e_pf *pf) 10870 { 10871 struct i40e_hw *hw = &pf->hw; 10872 int ret; 10873 10874 ret = i40e_pf_reset(hw); 10875 if (ret) { 10876 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10877 set_bit(__I40E_RESET_FAILED, pf->state); 10878 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10879 } else { 10880 pf->pfr_count++; 10881 } 10882 return ret; 10883 } 10884 10885 /** 10886 * i40e_rebuild - rebuild using a saved config 10887 * @pf: board private structure 10888 * @reinit: if the Main VSI needs to re-initialized. 10889 * @lock_acquired: indicates whether or not the lock has been acquired 10890 * before this function was called. 10891 **/ 10892 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10893 { 10894 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10895 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10896 struct i40e_hw *hw = &pf->hw; 10897 struct i40e_veb *veb; 10898 int ret; 10899 u32 val; 10900 int v; 10901 10902 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10903 is_recovery_mode_reported) 10904 i40e_set_ethtool_ops(vsi->netdev); 10905 10906 if (test_bit(__I40E_DOWN, pf->state) && 10907 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10908 goto clear_recovery; 10909 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10910 10911 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10912 ret = i40e_init_adminq(&pf->hw); 10913 if (ret) { 10914 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10915 ERR_PTR(ret), 10916 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10917 goto clear_recovery; 10918 } 10919 i40e_get_oem_version(&pf->hw); 10920 10921 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10922 /* The following delay is necessary for firmware update. */ 10923 mdelay(1000); 10924 } 10925 10926 /* re-verify the eeprom if we just had an EMP reset */ 10927 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10928 i40e_verify_eeprom(pf); 10929 10930 /* if we are going out of or into recovery mode we have to act 10931 * accordingly with regard to resources initialization 10932 * and deinitialization 10933 */ 10934 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10935 if (i40e_get_capabilities(pf, 10936 i40e_aqc_opc_list_func_capabilities)) 10937 goto end_unlock; 10938 10939 if (is_recovery_mode_reported) { 10940 /* we're staying in recovery mode so we'll reinitialize 10941 * misc vector here 10942 */ 10943 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10944 goto end_unlock; 10945 } else { 10946 if (!lock_acquired) 10947 rtnl_lock(); 10948 /* we're going out of recovery mode so we'll free 10949 * the IRQ allocated specifically for recovery mode 10950 * and restore the interrupt scheme 10951 */ 10952 free_irq(pf->pdev->irq, pf); 10953 i40e_clear_interrupt_scheme(pf); 10954 if (i40e_restore_interrupt_scheme(pf)) 10955 goto end_unlock; 10956 } 10957 10958 /* tell the firmware that we're starting */ 10959 i40e_send_version(pf); 10960 10961 /* bail out in case recovery mode was detected, as there is 10962 * no need for further configuration. 10963 */ 10964 goto end_unlock; 10965 } 10966 10967 i40e_clear_pxe_mode(hw); 10968 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10969 if (ret) 10970 goto end_core_reset; 10971 10972 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10973 hw->func_caps.num_rx_qp, 0, 0); 10974 if (ret) { 10975 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10976 goto end_core_reset; 10977 } 10978 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10979 if (ret) { 10980 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10981 goto end_core_reset; 10982 } 10983 10984 #ifdef CONFIG_I40E_DCB 10985 /* Enable FW to write a default DCB config on link-up 10986 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10987 * is not supported with new link speed 10988 */ 10989 if (i40e_is_tc_mqprio_enabled(pf)) { 10990 i40e_aq_set_dcb_parameters(hw, false, NULL); 10991 } else { 10992 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10993 (hw->phy.link_info.link_speed & 10994 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10995 i40e_aq_set_dcb_parameters(hw, false, NULL); 10996 dev_warn(&pf->pdev->dev, 10997 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10998 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10999 } else { 11000 i40e_aq_set_dcb_parameters(hw, true, NULL); 11001 ret = i40e_init_pf_dcb(pf); 11002 if (ret) { 11003 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 11004 ret); 11005 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 11006 /* Continue without DCB enabled */ 11007 } 11008 } 11009 } 11010 11011 #endif /* CONFIG_I40E_DCB */ 11012 if (!lock_acquired) 11013 rtnl_lock(); 11014 ret = i40e_setup_pf_switch(pf, reinit, true); 11015 if (ret) 11016 goto end_unlock; 11017 11018 /* The driver only wants link up/down and module qualification 11019 * reports from firmware. Note the negative logic. 11020 */ 11021 ret = i40e_aq_set_phy_int_mask(&pf->hw, 11022 ~(I40E_AQ_EVENT_LINK_UPDOWN | 11023 I40E_AQ_EVENT_MEDIA_NA | 11024 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 11025 if (ret) 11026 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 11027 ERR_PTR(ret), 11028 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11029 11030 /* Rebuild the VSIs and VEBs that existed before reset. 11031 * They are still in our local switch element arrays, so only 11032 * need to rebuild the switch model in the HW. 11033 * 11034 * If there were VEBs but the reconstitution failed, we'll try 11035 * to recover minimal use by getting the basic PF VSI working. 11036 */ 11037 if (vsi->uplink_seid != pf->mac_seid) { 11038 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 11039 11040 /* Rebuild VEBs */ 11041 i40e_pf_for_each_veb(pf, v, veb) { 11042 ret = i40e_reconstitute_veb(veb); 11043 if (!ret) 11044 continue; 11045 11046 /* If Main VEB failed, we're in deep doodoo, 11047 * so give up rebuilding the switch and set up 11048 * for minimal rebuild of PF VSI. 11049 * If orphan failed, we'll report the error 11050 * but try to keep going. 11051 */ 11052 if (veb->uplink_seid == pf->mac_seid) { 11053 dev_info(&pf->pdev->dev, 11054 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 11055 ret); 11056 vsi->uplink_seid = pf->mac_seid; 11057 break; 11058 } else if (veb->uplink_seid == 0) { 11059 dev_info(&pf->pdev->dev, 11060 "rebuild of orphan VEB failed: %d\n", 11061 ret); 11062 } 11063 } 11064 } 11065 11066 if (vsi->uplink_seid == pf->mac_seid) { 11067 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11068 /* no VEB, so rebuild only the Main VSI */ 11069 ret = i40e_add_vsi(vsi); 11070 if (ret) { 11071 dev_info(&pf->pdev->dev, 11072 "rebuild of Main VSI failed: %d\n", ret); 11073 goto end_unlock; 11074 } 11075 } 11076 11077 if (vsi->mqprio_qopt.max_rate[0]) { 11078 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11079 vsi->mqprio_qopt.max_rate[0]); 11080 u64 credits = 0; 11081 11082 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11083 if (ret) 11084 goto end_unlock; 11085 11086 credits = max_tx_rate; 11087 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11088 dev_dbg(&vsi->back->pdev->dev, 11089 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11090 max_tx_rate, 11091 credits, 11092 vsi->seid); 11093 } 11094 11095 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11096 if (ret) 11097 goto end_unlock; 11098 11099 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11100 * for this main VSI if they exist 11101 */ 11102 ret = i40e_rebuild_channels(vsi); 11103 if (ret) 11104 goto end_unlock; 11105 11106 /* Reconfigure hardware for allowing smaller MSS in the case 11107 * of TSO, so that we avoid the MDD being fired and causing 11108 * a reset in the case of small MSS+TSO. 11109 */ 11110 #define I40E_REG_MSS 0x000E64DC 11111 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11112 #define I40E_64BYTE_MSS 0x400000 11113 val = rd32(hw, I40E_REG_MSS); 11114 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11115 val &= ~I40E_REG_MSS_MIN_MASK; 11116 val |= I40E_64BYTE_MSS; 11117 wr32(hw, I40E_REG_MSS, val); 11118 } 11119 11120 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11121 msleep(75); 11122 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11123 if (ret) 11124 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11125 ERR_PTR(ret), 11126 i40e_aq_str(&pf->hw, 11127 pf->hw.aq.asq_last_status)); 11128 } 11129 /* reinit the misc interrupt */ 11130 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11131 ret = i40e_setup_misc_vector(pf); 11132 if (ret) 11133 goto end_unlock; 11134 } 11135 11136 /* Add a filter to drop all Flow control frames from any VSI from being 11137 * transmitted. By doing so we stop a malicious VF from sending out 11138 * PAUSE or PFC frames and potentially controlling traffic for other 11139 * PF/VF VSIs. 11140 * The FW can still send Flow control frames if enabled. 11141 */ 11142 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11143 pf->main_vsi_seid); 11144 11145 /* restart the VSIs that were rebuilt and running before the reset */ 11146 i40e_pf_unquiesce_all_vsi(pf); 11147 11148 /* Release the RTNL lock before we start resetting VFs */ 11149 if (!lock_acquired) 11150 rtnl_unlock(); 11151 11152 /* Restore promiscuous settings */ 11153 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11154 if (ret) 11155 dev_warn(&pf->pdev->dev, 11156 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11157 pf->cur_promisc ? "on" : "off", 11158 ERR_PTR(ret), 11159 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11160 11161 i40e_reset_all_vfs(pf, true); 11162 11163 /* tell the firmware that we're starting */ 11164 i40e_send_version(pf); 11165 11166 /* We've already released the lock, so don't do it again */ 11167 goto end_core_reset; 11168 11169 end_unlock: 11170 if (!lock_acquired) 11171 rtnl_unlock(); 11172 end_core_reset: 11173 clear_bit(__I40E_RESET_FAILED, pf->state); 11174 clear_recovery: 11175 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11176 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11177 } 11178 11179 /** 11180 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11181 * @pf: board private structure 11182 * @reinit: if the Main VSI needs to re-initialized. 11183 * @lock_acquired: indicates whether or not the lock has been acquired 11184 * before this function was called. 11185 **/ 11186 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11187 bool lock_acquired) 11188 { 11189 int ret; 11190 11191 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11192 return; 11193 /* Now we wait for GRST to settle out. 11194 * We don't have to delete the VEBs or VSIs from the hw switch 11195 * because the reset will make them disappear. 11196 */ 11197 ret = i40e_reset(pf); 11198 if (!ret) 11199 i40e_rebuild(pf, reinit, lock_acquired); 11200 else 11201 dev_err(&pf->pdev->dev, "%s: i40e_reset() FAILED", __func__); 11202 } 11203 11204 /** 11205 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11206 * @pf: board private structure 11207 * 11208 * Close up the VFs and other things in prep for a Core Reset, 11209 * then get ready to rebuild the world. 11210 * @lock_acquired: indicates whether or not the lock has been acquired 11211 * before this function was called. 11212 **/ 11213 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11214 { 11215 i40e_prep_for_reset(pf); 11216 i40e_reset_and_rebuild(pf, false, lock_acquired); 11217 } 11218 11219 /** 11220 * i40e_handle_mdd_event 11221 * @pf: pointer to the PF structure 11222 * 11223 * Called from the MDD irq handler to identify possibly malicious vfs 11224 **/ 11225 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11226 { 11227 struct i40e_hw *hw = &pf->hw; 11228 bool mdd_detected = false; 11229 struct i40e_vf *vf; 11230 u32 reg; 11231 int i; 11232 11233 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 11234 return; 11235 11236 /* find what triggered the MDD event */ 11237 reg = rd32(hw, I40E_GL_MDET_TX); 11238 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11239 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg); 11240 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg); 11241 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg); 11242 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) - 11243 pf->hw.func_caps.base_queue; 11244 if (netif_msg_tx_err(pf)) 11245 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11246 event, queue, pf_num, vf_num); 11247 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11248 mdd_detected = true; 11249 } 11250 reg = rd32(hw, I40E_GL_MDET_RX); 11251 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11252 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg); 11253 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg); 11254 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) - 11255 pf->hw.func_caps.base_queue; 11256 if (netif_msg_rx_err(pf)) 11257 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11258 event, queue, func); 11259 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11260 mdd_detected = true; 11261 } 11262 11263 if (mdd_detected) { 11264 reg = rd32(hw, I40E_PF_MDET_TX); 11265 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11266 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11267 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11268 } 11269 reg = rd32(hw, I40E_PF_MDET_RX); 11270 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11271 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11272 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11273 } 11274 } 11275 11276 /* see if one of the VFs needs its hand slapped */ 11277 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11278 vf = &(pf->vf[i]); 11279 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11280 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11281 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11282 vf->num_mdd_events++; 11283 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 11284 i); 11285 dev_info(&pf->pdev->dev, 11286 "Use PF Control I/F to re-enable the VF\n"); 11287 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11288 } 11289 11290 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11291 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11292 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11293 vf->num_mdd_events++; 11294 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 11295 i); 11296 dev_info(&pf->pdev->dev, 11297 "Use PF Control I/F to re-enable the VF\n"); 11298 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11299 } 11300 } 11301 11302 /* re-enable mdd interrupt cause */ 11303 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 11304 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11305 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11306 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11307 i40e_flush(hw); 11308 } 11309 11310 /** 11311 * i40e_service_task - Run the driver's async subtasks 11312 * @work: pointer to work_struct containing our data 11313 **/ 11314 static void i40e_service_task(struct work_struct *work) 11315 { 11316 struct i40e_pf *pf = container_of(work, 11317 struct i40e_pf, 11318 service_task); 11319 unsigned long start_time = jiffies; 11320 11321 /* don't bother with service tasks if a reset is in progress */ 11322 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11323 test_bit(__I40E_SUSPENDED, pf->state)) 11324 return; 11325 11326 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11327 return; 11328 11329 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11330 i40e_detect_recover_hung(pf); 11331 i40e_sync_filters_subtask(pf); 11332 i40e_reset_subtask(pf); 11333 i40e_handle_mdd_event(pf); 11334 i40e_vc_process_vflr_event(pf); 11335 i40e_watchdog_subtask(pf); 11336 i40e_fdir_reinit_subtask(pf); 11337 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11338 /* Client subtask will reopen next time through. */ 11339 i40e_notify_client_of_netdev_close(pf, true); 11340 } else { 11341 i40e_client_subtask(pf); 11342 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11343 pf->state)) 11344 i40e_notify_client_of_l2_param_changes(pf); 11345 } 11346 i40e_sync_filters_subtask(pf); 11347 } else { 11348 i40e_reset_subtask(pf); 11349 } 11350 11351 i40e_clean_adminq_subtask(pf); 11352 11353 /* flush memory to make sure state is correct before next watchdog */ 11354 smp_mb__before_atomic(); 11355 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11356 11357 /* If the tasks have taken longer than one timer cycle or there 11358 * is more work to be done, reschedule the service task now 11359 * rather than wait for the timer to tick again. 11360 */ 11361 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11362 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11363 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11364 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11365 i40e_service_event_schedule(pf); 11366 } 11367 11368 /** 11369 * i40e_service_timer - timer callback 11370 * @t: timer list pointer 11371 **/ 11372 static void i40e_service_timer(struct timer_list *t) 11373 { 11374 struct i40e_pf *pf = from_timer(pf, t, service_timer); 11375 11376 mod_timer(&pf->service_timer, 11377 round_jiffies(jiffies + pf->service_timer_period)); 11378 i40e_service_event_schedule(pf); 11379 } 11380 11381 /** 11382 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11383 * @vsi: the VSI being configured 11384 **/ 11385 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11386 { 11387 struct i40e_pf *pf = vsi->back; 11388 11389 switch (vsi->type) { 11390 case I40E_VSI_MAIN: 11391 vsi->alloc_queue_pairs = pf->num_lan_qps; 11392 if (!vsi->num_tx_desc) 11393 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11394 I40E_REQ_DESCRIPTOR_MULTIPLE); 11395 if (!vsi->num_rx_desc) 11396 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11397 I40E_REQ_DESCRIPTOR_MULTIPLE); 11398 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11399 vsi->num_q_vectors = pf->num_lan_msix; 11400 else 11401 vsi->num_q_vectors = 1; 11402 11403 break; 11404 11405 case I40E_VSI_FDIR: 11406 vsi->alloc_queue_pairs = 1; 11407 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11408 I40E_REQ_DESCRIPTOR_MULTIPLE); 11409 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11410 I40E_REQ_DESCRIPTOR_MULTIPLE); 11411 vsi->num_q_vectors = pf->num_fdsb_msix; 11412 break; 11413 11414 case I40E_VSI_VMDQ2: 11415 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11416 if (!vsi->num_tx_desc) 11417 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11418 I40E_REQ_DESCRIPTOR_MULTIPLE); 11419 if (!vsi->num_rx_desc) 11420 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11421 I40E_REQ_DESCRIPTOR_MULTIPLE); 11422 vsi->num_q_vectors = pf->num_vmdq_msix; 11423 break; 11424 11425 case I40E_VSI_SRIOV: 11426 vsi->alloc_queue_pairs = pf->num_vf_qps; 11427 if (!vsi->num_tx_desc) 11428 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11429 I40E_REQ_DESCRIPTOR_MULTIPLE); 11430 if (!vsi->num_rx_desc) 11431 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11432 I40E_REQ_DESCRIPTOR_MULTIPLE); 11433 break; 11434 11435 default: 11436 WARN_ON(1); 11437 return -ENODATA; 11438 } 11439 11440 if (is_kdump_kernel()) { 11441 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11442 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11443 } 11444 11445 return 0; 11446 } 11447 11448 /** 11449 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11450 * @vsi: VSI pointer 11451 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11452 * 11453 * On error: returns error code (negative) 11454 * On success: returns 0 11455 **/ 11456 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11457 { 11458 struct i40e_ring **next_rings; 11459 int size; 11460 int ret = 0; 11461 11462 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11463 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11464 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11465 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11466 if (!vsi->tx_rings) 11467 return -ENOMEM; 11468 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11469 if (i40e_enabled_xdp_vsi(vsi)) { 11470 vsi->xdp_rings = next_rings; 11471 next_rings += vsi->alloc_queue_pairs; 11472 } 11473 vsi->rx_rings = next_rings; 11474 11475 if (alloc_qvectors) { 11476 /* allocate memory for q_vector pointers */ 11477 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11478 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11479 if (!vsi->q_vectors) { 11480 ret = -ENOMEM; 11481 goto err_vectors; 11482 } 11483 } 11484 return ret; 11485 11486 err_vectors: 11487 kfree(vsi->tx_rings); 11488 return ret; 11489 } 11490 11491 /** 11492 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11493 * @pf: board private structure 11494 * @type: type of VSI 11495 * 11496 * On error: returns error code (negative) 11497 * On success: returns vsi index in PF (positive) 11498 **/ 11499 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11500 { 11501 int ret = -ENODEV; 11502 struct i40e_vsi *vsi; 11503 int vsi_idx; 11504 int i; 11505 11506 /* Need to protect the allocation of the VSIs at the PF level */ 11507 mutex_lock(&pf->switch_mutex); 11508 11509 /* VSI list may be fragmented if VSI creation/destruction has 11510 * been happening. We can afford to do a quick scan to look 11511 * for any free VSIs in the list. 11512 * 11513 * find next empty vsi slot, looping back around if necessary 11514 */ 11515 i = pf->next_vsi; 11516 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11517 i++; 11518 if (i >= pf->num_alloc_vsi) { 11519 i = 0; 11520 while (i < pf->next_vsi && pf->vsi[i]) 11521 i++; 11522 } 11523 11524 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11525 vsi_idx = i; /* Found one! */ 11526 } else { 11527 ret = -ENODEV; 11528 goto unlock_pf; /* out of VSI slots! */ 11529 } 11530 pf->next_vsi = ++i; 11531 11532 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11533 if (!vsi) { 11534 ret = -ENOMEM; 11535 goto unlock_pf; 11536 } 11537 vsi->type = type; 11538 vsi->back = pf; 11539 set_bit(__I40E_VSI_DOWN, vsi->state); 11540 vsi->flags = 0; 11541 vsi->idx = vsi_idx; 11542 vsi->int_rate_limit = 0; 11543 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11544 pf->rss_table_size : 64; 11545 vsi->netdev_registered = false; 11546 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11547 hash_init(vsi->mac_filter_hash); 11548 vsi->irqs_ready = false; 11549 11550 if (type == I40E_VSI_MAIN) { 11551 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11552 if (!vsi->af_xdp_zc_qps) 11553 goto err_rings; 11554 } 11555 11556 ret = i40e_set_num_rings_in_vsi(vsi); 11557 if (ret) 11558 goto err_rings; 11559 11560 ret = i40e_vsi_alloc_arrays(vsi, true); 11561 if (ret) 11562 goto err_rings; 11563 11564 /* Setup default MSIX irq handler for VSI */ 11565 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11566 11567 /* Initialize VSI lock */ 11568 spin_lock_init(&vsi->mac_filter_hash_lock); 11569 pf->vsi[vsi_idx] = vsi; 11570 ret = vsi_idx; 11571 goto unlock_pf; 11572 11573 err_rings: 11574 bitmap_free(vsi->af_xdp_zc_qps); 11575 pf->next_vsi = i - 1; 11576 kfree(vsi); 11577 unlock_pf: 11578 mutex_unlock(&pf->switch_mutex); 11579 return ret; 11580 } 11581 11582 /** 11583 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11584 * @vsi: VSI pointer 11585 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11586 * 11587 * On error: returns error code (negative) 11588 * On success: returns 0 11589 **/ 11590 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11591 { 11592 /* free the ring and vector containers */ 11593 if (free_qvectors) { 11594 kfree(vsi->q_vectors); 11595 vsi->q_vectors = NULL; 11596 } 11597 kfree(vsi->tx_rings); 11598 vsi->tx_rings = NULL; 11599 vsi->rx_rings = NULL; 11600 vsi->xdp_rings = NULL; 11601 } 11602 11603 /** 11604 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11605 * and lookup table 11606 * @vsi: Pointer to VSI structure 11607 */ 11608 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11609 { 11610 if (!vsi) 11611 return; 11612 11613 kfree(vsi->rss_hkey_user); 11614 vsi->rss_hkey_user = NULL; 11615 11616 kfree(vsi->rss_lut_user); 11617 vsi->rss_lut_user = NULL; 11618 } 11619 11620 /** 11621 * i40e_vsi_clear - Deallocate the VSI provided 11622 * @vsi: the VSI being un-configured 11623 **/ 11624 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11625 { 11626 struct i40e_pf *pf; 11627 11628 if (!vsi) 11629 return 0; 11630 11631 if (!vsi->back) 11632 goto free_vsi; 11633 pf = vsi->back; 11634 11635 mutex_lock(&pf->switch_mutex); 11636 if (!pf->vsi[vsi->idx]) { 11637 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11638 vsi->idx, vsi->idx, vsi->type); 11639 goto unlock_vsi; 11640 } 11641 11642 if (pf->vsi[vsi->idx] != vsi) { 11643 dev_err(&pf->pdev->dev, 11644 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11645 pf->vsi[vsi->idx]->idx, 11646 pf->vsi[vsi->idx]->type, 11647 vsi->idx, vsi->type); 11648 goto unlock_vsi; 11649 } 11650 11651 /* updates the PF for this cleared vsi */ 11652 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11653 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11654 11655 bitmap_free(vsi->af_xdp_zc_qps); 11656 i40e_vsi_free_arrays(vsi, true); 11657 i40e_clear_rss_config_user(vsi); 11658 11659 pf->vsi[vsi->idx] = NULL; 11660 if (vsi->idx < pf->next_vsi) 11661 pf->next_vsi = vsi->idx; 11662 11663 unlock_vsi: 11664 mutex_unlock(&pf->switch_mutex); 11665 free_vsi: 11666 kfree(vsi); 11667 11668 return 0; 11669 } 11670 11671 /** 11672 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11673 * @vsi: the VSI being cleaned 11674 **/ 11675 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11676 { 11677 int i; 11678 11679 if (vsi->tx_rings && vsi->tx_rings[0]) { 11680 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11681 kfree_rcu(vsi->tx_rings[i], rcu); 11682 WRITE_ONCE(vsi->tx_rings[i], NULL); 11683 WRITE_ONCE(vsi->rx_rings[i], NULL); 11684 if (vsi->xdp_rings) 11685 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11686 } 11687 } 11688 } 11689 11690 /** 11691 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11692 * @vsi: the VSI being configured 11693 **/ 11694 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11695 { 11696 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11697 struct i40e_pf *pf = vsi->back; 11698 struct i40e_ring *ring; 11699 11700 /* Set basic values in the rings to be used later during open() */ 11701 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11702 /* allocate space for both Tx and Rx in one shot */ 11703 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11704 if (!ring) 11705 goto err_out; 11706 11707 ring->queue_index = i; 11708 ring->reg_idx = vsi->base_queue + i; 11709 ring->ring_active = false; 11710 ring->vsi = vsi; 11711 ring->netdev = vsi->netdev; 11712 ring->dev = &pf->pdev->dev; 11713 ring->count = vsi->num_tx_desc; 11714 ring->size = 0; 11715 ring->dcb_tc = 0; 11716 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11717 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11718 ring->itr_setting = pf->tx_itr_default; 11719 WRITE_ONCE(vsi->tx_rings[i], ring++); 11720 11721 if (!i40e_enabled_xdp_vsi(vsi)) 11722 goto setup_rx; 11723 11724 ring->queue_index = vsi->alloc_queue_pairs + i; 11725 ring->reg_idx = vsi->base_queue + ring->queue_index; 11726 ring->ring_active = false; 11727 ring->vsi = vsi; 11728 ring->netdev = NULL; 11729 ring->dev = &pf->pdev->dev; 11730 ring->count = vsi->num_tx_desc; 11731 ring->size = 0; 11732 ring->dcb_tc = 0; 11733 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11734 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11735 set_ring_xdp(ring); 11736 ring->itr_setting = pf->tx_itr_default; 11737 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11738 11739 setup_rx: 11740 ring->queue_index = i; 11741 ring->reg_idx = vsi->base_queue + i; 11742 ring->ring_active = false; 11743 ring->vsi = vsi; 11744 ring->netdev = vsi->netdev; 11745 ring->dev = &pf->pdev->dev; 11746 ring->count = vsi->num_rx_desc; 11747 ring->size = 0; 11748 ring->dcb_tc = 0; 11749 ring->itr_setting = pf->rx_itr_default; 11750 WRITE_ONCE(vsi->rx_rings[i], ring); 11751 } 11752 11753 return 0; 11754 11755 err_out: 11756 i40e_vsi_clear_rings(vsi); 11757 return -ENOMEM; 11758 } 11759 11760 /** 11761 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11762 * @pf: board private structure 11763 * @vectors: the number of MSI-X vectors to request 11764 * 11765 * Returns the number of vectors reserved, or error 11766 **/ 11767 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11768 { 11769 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11770 I40E_MIN_MSIX, vectors); 11771 if (vectors < 0) { 11772 dev_info(&pf->pdev->dev, 11773 "MSI-X vector reservation failed: %d\n", vectors); 11774 vectors = 0; 11775 } 11776 11777 return vectors; 11778 } 11779 11780 /** 11781 * i40e_init_msix - Setup the MSIX capability 11782 * @pf: board private structure 11783 * 11784 * Work with the OS to set up the MSIX vectors needed. 11785 * 11786 * Returns the number of vectors reserved or negative on failure 11787 **/ 11788 static int i40e_init_msix(struct i40e_pf *pf) 11789 { 11790 struct i40e_hw *hw = &pf->hw; 11791 int cpus, extra_vectors; 11792 int vectors_left; 11793 int v_budget, i; 11794 int v_actual; 11795 int iwarp_requested = 0; 11796 11797 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11798 return -ENODEV; 11799 11800 /* The number of vectors we'll request will be comprised of: 11801 * - Add 1 for "other" cause for Admin Queue events, etc. 11802 * - The number of LAN queue pairs 11803 * - Queues being used for RSS. 11804 * We don't need as many as max_rss_size vectors. 11805 * use rss_size instead in the calculation since that 11806 * is governed by number of cpus in the system. 11807 * - assumes symmetric Tx/Rx pairing 11808 * - The number of VMDq pairs 11809 * - The CPU count within the NUMA node if iWARP is enabled 11810 * Once we count this up, try the request. 11811 * 11812 * If we can't get what we want, we'll simplify to nearly nothing 11813 * and try again. If that still fails, we punt. 11814 */ 11815 vectors_left = hw->func_caps.num_msix_vectors; 11816 v_budget = 0; 11817 11818 /* reserve one vector for miscellaneous handler */ 11819 if (vectors_left) { 11820 v_budget++; 11821 vectors_left--; 11822 } 11823 11824 /* reserve some vectors for the main PF traffic queues. Initially we 11825 * only reserve at most 50% of the available vectors, in the case that 11826 * the number of online CPUs is large. This ensures that we can enable 11827 * extra features as well. Once we've enabled the other features, we 11828 * will use any remaining vectors to reach as close as we can to the 11829 * number of online CPUs. 11830 */ 11831 cpus = num_online_cpus(); 11832 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11833 vectors_left -= pf->num_lan_msix; 11834 11835 /* reserve one vector for sideband flow director */ 11836 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11837 if (vectors_left) { 11838 pf->num_fdsb_msix = 1; 11839 v_budget++; 11840 vectors_left--; 11841 } else { 11842 pf->num_fdsb_msix = 0; 11843 } 11844 } 11845 11846 /* can we reserve enough for iWARP? */ 11847 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11848 iwarp_requested = pf->num_iwarp_msix; 11849 11850 if (!vectors_left) 11851 pf->num_iwarp_msix = 0; 11852 else if (vectors_left < pf->num_iwarp_msix) 11853 pf->num_iwarp_msix = 1; 11854 v_budget += pf->num_iwarp_msix; 11855 vectors_left -= pf->num_iwarp_msix; 11856 } 11857 11858 /* any vectors left over go for VMDq support */ 11859 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11860 if (!vectors_left) { 11861 pf->num_vmdq_msix = 0; 11862 pf->num_vmdq_qps = 0; 11863 } else { 11864 int vmdq_vecs_wanted = 11865 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11866 int vmdq_vecs = 11867 min_t(int, vectors_left, vmdq_vecs_wanted); 11868 11869 /* if we're short on vectors for what's desired, we limit 11870 * the queues per vmdq. If this is still more than are 11871 * available, the user will need to change the number of 11872 * queues/vectors used by the PF later with the ethtool 11873 * channels command 11874 */ 11875 if (vectors_left < vmdq_vecs_wanted) { 11876 pf->num_vmdq_qps = 1; 11877 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11878 vmdq_vecs = min_t(int, 11879 vectors_left, 11880 vmdq_vecs_wanted); 11881 } 11882 pf->num_vmdq_msix = pf->num_vmdq_qps; 11883 11884 v_budget += vmdq_vecs; 11885 vectors_left -= vmdq_vecs; 11886 } 11887 } 11888 11889 /* On systems with a large number of SMP cores, we previously limited 11890 * the number of vectors for num_lan_msix to be at most 50% of the 11891 * available vectors, to allow for other features. Now, we add back 11892 * the remaining vectors. However, we ensure that the total 11893 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11894 * calculate the number of vectors we can add without going over the 11895 * cap of CPUs. For systems with a small number of CPUs this will be 11896 * zero. 11897 */ 11898 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11899 pf->num_lan_msix += extra_vectors; 11900 vectors_left -= extra_vectors; 11901 11902 WARN(vectors_left < 0, 11903 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11904 11905 v_budget += pf->num_lan_msix; 11906 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11907 GFP_KERNEL); 11908 if (!pf->msix_entries) 11909 return -ENOMEM; 11910 11911 for (i = 0; i < v_budget; i++) 11912 pf->msix_entries[i].entry = i; 11913 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11914 11915 if (v_actual < I40E_MIN_MSIX) { 11916 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11917 kfree(pf->msix_entries); 11918 pf->msix_entries = NULL; 11919 pci_disable_msix(pf->pdev); 11920 return -ENODEV; 11921 11922 } else if (v_actual == I40E_MIN_MSIX) { 11923 /* Adjust for minimal MSIX use */ 11924 pf->num_vmdq_vsis = 0; 11925 pf->num_vmdq_qps = 0; 11926 pf->num_lan_qps = 1; 11927 pf->num_lan_msix = 1; 11928 11929 } else if (v_actual != v_budget) { 11930 /* If we have limited resources, we will start with no vectors 11931 * for the special features and then allocate vectors to some 11932 * of these features based on the policy and at the end disable 11933 * the features that did not get any vectors. 11934 */ 11935 int vec; 11936 11937 dev_info(&pf->pdev->dev, 11938 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11939 v_actual, v_budget); 11940 /* reserve the misc vector */ 11941 vec = v_actual - 1; 11942 11943 /* Scale vector usage down */ 11944 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11945 pf->num_vmdq_vsis = 1; 11946 pf->num_vmdq_qps = 1; 11947 11948 /* partition out the remaining vectors */ 11949 switch (vec) { 11950 case 2: 11951 pf->num_lan_msix = 1; 11952 break; 11953 case 3: 11954 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11955 pf->num_lan_msix = 1; 11956 pf->num_iwarp_msix = 1; 11957 } else { 11958 pf->num_lan_msix = 2; 11959 } 11960 break; 11961 default: 11962 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11963 pf->num_iwarp_msix = min_t(int, (vec / 3), 11964 iwarp_requested); 11965 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11966 I40E_DEFAULT_NUM_VMDQ_VSI); 11967 } else { 11968 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11969 I40E_DEFAULT_NUM_VMDQ_VSI); 11970 } 11971 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11972 pf->num_fdsb_msix = 1; 11973 vec--; 11974 } 11975 pf->num_lan_msix = min_t(int, 11976 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11977 pf->num_lan_msix); 11978 pf->num_lan_qps = pf->num_lan_msix; 11979 break; 11980 } 11981 } 11982 11983 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 11984 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11985 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 11986 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 11987 } 11988 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 11989 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11990 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 11991 } 11992 11993 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 11994 pf->num_iwarp_msix == 0) { 11995 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11996 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 11997 } 11998 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11999 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 12000 pf->num_lan_msix, 12001 pf->num_vmdq_msix * pf->num_vmdq_vsis, 12002 pf->num_fdsb_msix, 12003 pf->num_iwarp_msix); 12004 12005 return v_actual; 12006 } 12007 12008 /** 12009 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 12010 * @vsi: the VSI being configured 12011 * @v_idx: index of the vector in the vsi struct 12012 * 12013 * We allocate one q_vector. If allocation fails we return -ENOMEM. 12014 **/ 12015 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 12016 { 12017 struct i40e_q_vector *q_vector; 12018 12019 /* allocate q_vector */ 12020 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 12021 if (!q_vector) 12022 return -ENOMEM; 12023 12024 q_vector->vsi = vsi; 12025 q_vector->v_idx = v_idx; 12026 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 12027 12028 if (vsi->netdev) 12029 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 12030 12031 /* tie q_vector and vsi together */ 12032 vsi->q_vectors[v_idx] = q_vector; 12033 12034 return 0; 12035 } 12036 12037 /** 12038 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 12039 * @vsi: the VSI being configured 12040 * 12041 * We allocate one q_vector per queue interrupt. If allocation fails we 12042 * return -ENOMEM. 12043 **/ 12044 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 12045 { 12046 struct i40e_pf *pf = vsi->back; 12047 int err, v_idx, num_q_vectors; 12048 12049 /* if not MSIX, give the one vector only to the LAN VSI */ 12050 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12051 num_q_vectors = vsi->num_q_vectors; 12052 else if (vsi->type == I40E_VSI_MAIN) 12053 num_q_vectors = 1; 12054 else 12055 return -EINVAL; 12056 12057 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 12058 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 12059 if (err) 12060 goto err_out; 12061 } 12062 12063 return 0; 12064 12065 err_out: 12066 while (v_idx--) 12067 i40e_free_q_vector(vsi, v_idx); 12068 12069 return err; 12070 } 12071 12072 /** 12073 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12074 * @pf: board private structure to initialize 12075 **/ 12076 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12077 { 12078 int vectors = 0; 12079 ssize_t size; 12080 12081 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12082 vectors = i40e_init_msix(pf); 12083 if (vectors < 0) { 12084 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12085 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12086 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12087 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12088 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12089 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12090 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12091 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12092 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12093 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12094 12095 /* rework the queue expectations without MSIX */ 12096 i40e_determine_queue_usage(pf); 12097 } 12098 } 12099 12100 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12101 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12102 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12103 vectors = pci_enable_msi(pf->pdev); 12104 if (vectors < 0) { 12105 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12106 vectors); 12107 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12108 } 12109 vectors = 1; /* one MSI or Legacy vector */ 12110 } 12111 12112 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12113 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12114 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12115 12116 /* set up vector assignment tracking */ 12117 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12118 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12119 if (!pf->irq_pile) 12120 return -ENOMEM; 12121 12122 pf->irq_pile->num_entries = vectors; 12123 12124 /* track first vector for misc interrupts, ignore return */ 12125 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12126 12127 return 0; 12128 } 12129 12130 /** 12131 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12132 * @pf: private board data structure 12133 * 12134 * Restore the interrupt scheme that was cleared when we suspended the 12135 * device. This should be called during resume to re-allocate the q_vectors 12136 * and reacquire IRQs. 12137 */ 12138 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12139 { 12140 struct i40e_vsi *vsi; 12141 int err, i; 12142 12143 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12144 * scheme. We need to re-enabled them here in order to attempt to 12145 * re-acquire the MSI or MSI-X vectors 12146 */ 12147 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12148 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12149 12150 err = i40e_init_interrupt_scheme(pf); 12151 if (err) 12152 return err; 12153 12154 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12155 * rings together again. 12156 */ 12157 i40e_pf_for_each_vsi(pf, i, vsi) { 12158 err = i40e_vsi_alloc_q_vectors(vsi); 12159 if (err) 12160 goto err_unwind; 12161 12162 i40e_vsi_map_rings_to_vectors(vsi); 12163 } 12164 12165 err = i40e_setup_misc_vector(pf); 12166 if (err) 12167 goto err_unwind; 12168 12169 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12170 i40e_client_update_msix_info(pf); 12171 12172 return 0; 12173 12174 err_unwind: 12175 while (i--) { 12176 if (pf->vsi[i]) 12177 i40e_vsi_free_q_vectors(pf->vsi[i]); 12178 } 12179 12180 return err; 12181 } 12182 12183 /** 12184 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12185 * non queue events in recovery mode 12186 * @pf: board private structure 12187 * 12188 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12189 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12190 * This is handled differently than in recovery mode since no Tx/Rx resources 12191 * are being allocated. 12192 **/ 12193 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12194 { 12195 int err; 12196 12197 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12198 err = i40e_setup_misc_vector(pf); 12199 12200 if (err) { 12201 dev_info(&pf->pdev->dev, 12202 "MSI-X misc vector request failed, error %d\n", 12203 err); 12204 return err; 12205 } 12206 } else { 12207 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12208 12209 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12210 pf->int_name, pf); 12211 12212 if (err) { 12213 dev_info(&pf->pdev->dev, 12214 "MSI/legacy misc vector request failed, error %d\n", 12215 err); 12216 return err; 12217 } 12218 i40e_enable_misc_int_causes(pf); 12219 i40e_irq_dynamic_enable_icr0(pf); 12220 } 12221 12222 return 0; 12223 } 12224 12225 /** 12226 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12227 * @pf: board private structure 12228 * 12229 * This sets up the handler for MSIX 0, which is used to manage the 12230 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12231 * when in MSI or Legacy interrupt mode. 12232 **/ 12233 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12234 { 12235 struct i40e_hw *hw = &pf->hw; 12236 int err = 0; 12237 12238 /* Only request the IRQ once, the first time through. */ 12239 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12240 err = request_irq(pf->msix_entries[0].vector, 12241 i40e_intr, 0, pf->int_name, pf); 12242 if (err) { 12243 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12244 dev_info(&pf->pdev->dev, 12245 "request_irq for %s failed: %d\n", 12246 pf->int_name, err); 12247 return -EFAULT; 12248 } 12249 } 12250 12251 i40e_enable_misc_int_causes(pf); 12252 12253 /* associate no queues to the misc vector */ 12254 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12255 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12256 12257 i40e_flush(hw); 12258 12259 i40e_irq_dynamic_enable_icr0(pf); 12260 12261 return err; 12262 } 12263 12264 /** 12265 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12266 * @vsi: Pointer to vsi structure 12267 * @seed: Buffter to store the hash keys 12268 * @lut: Buffer to store the lookup table entries 12269 * @lut_size: Size of buffer to store the lookup table entries 12270 * 12271 * Return 0 on success, negative on failure 12272 */ 12273 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12274 u8 *lut, u16 lut_size) 12275 { 12276 struct i40e_pf *pf = vsi->back; 12277 struct i40e_hw *hw = &pf->hw; 12278 int ret = 0; 12279 12280 if (seed) { 12281 ret = i40e_aq_get_rss_key(hw, vsi->id, 12282 (struct i40e_aqc_get_set_rss_key_data *)seed); 12283 if (ret) { 12284 dev_info(&pf->pdev->dev, 12285 "Cannot get RSS key, err %pe aq_err %s\n", 12286 ERR_PTR(ret), 12287 i40e_aq_str(&pf->hw, 12288 pf->hw.aq.asq_last_status)); 12289 return ret; 12290 } 12291 } 12292 12293 if (lut) { 12294 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12295 12296 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12297 if (ret) { 12298 dev_info(&pf->pdev->dev, 12299 "Cannot get RSS lut, err %pe aq_err %s\n", 12300 ERR_PTR(ret), 12301 i40e_aq_str(&pf->hw, 12302 pf->hw.aq.asq_last_status)); 12303 return ret; 12304 } 12305 } 12306 12307 return ret; 12308 } 12309 12310 /** 12311 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12312 * @vsi: Pointer to vsi structure 12313 * @seed: RSS hash seed 12314 * @lut: Lookup table 12315 * @lut_size: Lookup table size 12316 * 12317 * Returns 0 on success, negative on failure 12318 **/ 12319 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12320 const u8 *lut, u16 lut_size) 12321 { 12322 struct i40e_pf *pf = vsi->back; 12323 struct i40e_hw *hw = &pf->hw; 12324 u16 vf_id = vsi->vf_id; 12325 u8 i; 12326 12327 /* Fill out hash function seed */ 12328 if (seed) { 12329 u32 *seed_dw = (u32 *)seed; 12330 12331 if (vsi->type == I40E_VSI_MAIN) { 12332 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12333 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12334 } else if (vsi->type == I40E_VSI_SRIOV) { 12335 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12336 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12337 } else { 12338 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12339 } 12340 } 12341 12342 if (lut) { 12343 u32 *lut_dw = (u32 *)lut; 12344 12345 if (vsi->type == I40E_VSI_MAIN) { 12346 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12347 return -EINVAL; 12348 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12349 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12350 } else if (vsi->type == I40E_VSI_SRIOV) { 12351 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12352 return -EINVAL; 12353 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12354 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12355 } else { 12356 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12357 } 12358 } 12359 i40e_flush(hw); 12360 12361 return 0; 12362 } 12363 12364 /** 12365 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12366 * @vsi: Pointer to VSI structure 12367 * @seed: Buffer to store the keys 12368 * @lut: Buffer to store the lookup table entries 12369 * @lut_size: Size of buffer to store the lookup table entries 12370 * 12371 * Returns 0 on success, negative on failure 12372 */ 12373 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12374 u8 *lut, u16 lut_size) 12375 { 12376 struct i40e_pf *pf = vsi->back; 12377 struct i40e_hw *hw = &pf->hw; 12378 u16 i; 12379 12380 if (seed) { 12381 u32 *seed_dw = (u32 *)seed; 12382 12383 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12384 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12385 } 12386 if (lut) { 12387 u32 *lut_dw = (u32 *)lut; 12388 12389 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12390 return -EINVAL; 12391 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12392 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12393 } 12394 12395 return 0; 12396 } 12397 12398 /** 12399 * i40e_config_rss - Configure RSS keys and lut 12400 * @vsi: Pointer to VSI structure 12401 * @seed: RSS hash seed 12402 * @lut: Lookup table 12403 * @lut_size: Lookup table size 12404 * 12405 * Returns 0 on success, negative on failure 12406 */ 12407 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12408 { 12409 struct i40e_pf *pf = vsi->back; 12410 12411 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12412 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12413 else 12414 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12415 } 12416 12417 /** 12418 * i40e_get_rss - Get RSS keys and lut 12419 * @vsi: Pointer to VSI structure 12420 * @seed: Buffer to store the keys 12421 * @lut: Buffer to store the lookup table entries 12422 * @lut_size: Size of buffer to store the lookup table entries 12423 * 12424 * Returns 0 on success, negative on failure 12425 */ 12426 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12427 { 12428 struct i40e_pf *pf = vsi->back; 12429 12430 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12431 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12432 else 12433 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12434 } 12435 12436 /** 12437 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12438 * @pf: Pointer to board private structure 12439 * @lut: Lookup table 12440 * @rss_table_size: Lookup table size 12441 * @rss_size: Range of queue number for hashing 12442 */ 12443 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12444 u16 rss_table_size, u16 rss_size) 12445 { 12446 u16 i; 12447 12448 for (i = 0; i < rss_table_size; i++) 12449 lut[i] = i % rss_size; 12450 } 12451 12452 /** 12453 * i40e_pf_config_rss - Prepare for RSS if used 12454 * @pf: board private structure 12455 **/ 12456 static int i40e_pf_config_rss(struct i40e_pf *pf) 12457 { 12458 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12459 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12460 u8 *lut; 12461 struct i40e_hw *hw = &pf->hw; 12462 u32 reg_val; 12463 u64 hena; 12464 int ret; 12465 12466 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12467 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12468 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12469 hena |= i40e_pf_get_default_rss_hena(pf); 12470 12471 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12472 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12473 12474 /* Determine the RSS table size based on the hardware capabilities */ 12475 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12476 reg_val = (pf->rss_table_size == 512) ? 12477 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12478 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12479 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12480 12481 /* Determine the RSS size of the VSI */ 12482 if (!vsi->rss_size) { 12483 u16 qcount; 12484 /* If the firmware does something weird during VSI init, we 12485 * could end up with zero TCs. Check for that to avoid 12486 * divide-by-zero. It probably won't pass traffic, but it also 12487 * won't panic. 12488 */ 12489 qcount = vsi->num_queue_pairs / 12490 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12491 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12492 } 12493 if (!vsi->rss_size) 12494 return -EINVAL; 12495 12496 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12497 if (!lut) 12498 return -ENOMEM; 12499 12500 /* Use user configured lut if there is one, otherwise use default */ 12501 if (vsi->rss_lut_user) 12502 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12503 else 12504 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12505 12506 /* Use user configured hash key if there is one, otherwise 12507 * use default. 12508 */ 12509 if (vsi->rss_hkey_user) 12510 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12511 else 12512 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12513 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12514 kfree(lut); 12515 12516 return ret; 12517 } 12518 12519 /** 12520 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12521 * @pf: board private structure 12522 * @queue_count: the requested queue count for rss. 12523 * 12524 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12525 * count which may be different from the requested queue count. 12526 * Note: expects to be called while under rtnl_lock() 12527 **/ 12528 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12529 { 12530 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12531 int new_rss_size; 12532 12533 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12534 return 0; 12535 12536 queue_count = min_t(int, queue_count, num_online_cpus()); 12537 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12538 12539 if (queue_count != vsi->num_queue_pairs) { 12540 u16 qcount; 12541 12542 vsi->req_queue_pairs = queue_count; 12543 i40e_prep_for_reset(pf); 12544 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12545 return pf->alloc_rss_size; 12546 12547 pf->alloc_rss_size = new_rss_size; 12548 12549 i40e_reset_and_rebuild(pf, true, true); 12550 12551 /* Discard the user configured hash keys and lut, if less 12552 * queues are enabled. 12553 */ 12554 if (queue_count < vsi->rss_size) { 12555 i40e_clear_rss_config_user(vsi); 12556 dev_dbg(&pf->pdev->dev, 12557 "discard user configured hash keys and lut\n"); 12558 } 12559 12560 /* Reset vsi->rss_size, as number of enabled queues changed */ 12561 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12562 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12563 12564 i40e_pf_config_rss(pf); 12565 } 12566 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12567 vsi->req_queue_pairs, pf->rss_size_max); 12568 return pf->alloc_rss_size; 12569 } 12570 12571 /** 12572 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12573 * @pf: board private structure 12574 **/ 12575 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12576 { 12577 bool min_valid, max_valid; 12578 u32 max_bw, min_bw; 12579 int status; 12580 12581 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12582 &min_valid, &max_valid); 12583 12584 if (!status) { 12585 if (min_valid) 12586 pf->min_bw = min_bw; 12587 if (max_valid) 12588 pf->max_bw = max_bw; 12589 } 12590 12591 return status; 12592 } 12593 12594 /** 12595 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12596 * @pf: board private structure 12597 **/ 12598 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12599 { 12600 struct i40e_aqc_configure_partition_bw_data bw_data; 12601 int status; 12602 12603 memset(&bw_data, 0, sizeof(bw_data)); 12604 12605 /* Set the valid bit for this PF */ 12606 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12607 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12608 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12609 12610 /* Set the new bandwidths */ 12611 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12612 12613 return status; 12614 } 12615 12616 /** 12617 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12618 * @pf: board private structure 12619 **/ 12620 int i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12621 { 12622 /* Commit temporary BW setting to permanent NVM image */ 12623 enum i40e_admin_queue_err last_aq_status; 12624 u16 nvm_word; 12625 int ret; 12626 12627 if (pf->hw.partition_id != 1) { 12628 dev_info(&pf->pdev->dev, 12629 "Commit BW only works on partition 1! This is partition %d", 12630 pf->hw.partition_id); 12631 ret = -EOPNOTSUPP; 12632 goto bw_commit_out; 12633 } 12634 12635 /* Acquire NVM for read access */ 12636 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12637 last_aq_status = pf->hw.aq.asq_last_status; 12638 if (ret) { 12639 dev_info(&pf->pdev->dev, 12640 "Cannot acquire NVM for read access, err %pe aq_err %s\n", 12641 ERR_PTR(ret), 12642 i40e_aq_str(&pf->hw, last_aq_status)); 12643 goto bw_commit_out; 12644 } 12645 12646 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12647 ret = i40e_aq_read_nvm(&pf->hw, 12648 I40E_SR_NVM_CONTROL_WORD, 12649 0x10, sizeof(nvm_word), &nvm_word, 12650 false, NULL); 12651 /* Save off last admin queue command status before releasing 12652 * the NVM 12653 */ 12654 last_aq_status = pf->hw.aq.asq_last_status; 12655 i40e_release_nvm(&pf->hw); 12656 if (ret) { 12657 dev_info(&pf->pdev->dev, "NVM read error, err %pe aq_err %s\n", 12658 ERR_PTR(ret), 12659 i40e_aq_str(&pf->hw, last_aq_status)); 12660 goto bw_commit_out; 12661 } 12662 12663 /* Wait a bit for NVM release to complete */ 12664 msleep(50); 12665 12666 /* Acquire NVM for write access */ 12667 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12668 last_aq_status = pf->hw.aq.asq_last_status; 12669 if (ret) { 12670 dev_info(&pf->pdev->dev, 12671 "Cannot acquire NVM for write access, err %pe aq_err %s\n", 12672 ERR_PTR(ret), 12673 i40e_aq_str(&pf->hw, last_aq_status)); 12674 goto bw_commit_out; 12675 } 12676 /* Write it back out unchanged to initiate update NVM, 12677 * which will force a write of the shadow (alt) RAM to 12678 * the NVM - thus storing the bandwidth values permanently. 12679 */ 12680 ret = i40e_aq_update_nvm(&pf->hw, 12681 I40E_SR_NVM_CONTROL_WORD, 12682 0x10, sizeof(nvm_word), 12683 &nvm_word, true, 0, NULL); 12684 /* Save off last admin queue command status before releasing 12685 * the NVM 12686 */ 12687 last_aq_status = pf->hw.aq.asq_last_status; 12688 i40e_release_nvm(&pf->hw); 12689 if (ret) 12690 dev_info(&pf->pdev->dev, 12691 "BW settings NOT SAVED, err %pe aq_err %s\n", 12692 ERR_PTR(ret), 12693 i40e_aq_str(&pf->hw, last_aq_status)); 12694 bw_commit_out: 12695 12696 return ret; 12697 } 12698 12699 /** 12700 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12701 * if total port shutdown feature is enabled for this PF 12702 * @pf: board private structure 12703 **/ 12704 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12705 { 12706 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12707 #define I40E_FEATURES_ENABLE_PTR 0x2A 12708 #define I40E_CURRENT_SETTING_PTR 0x2B 12709 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12710 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12711 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12712 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12713 u16 sr_emp_sr_settings_ptr = 0; 12714 u16 features_enable = 0; 12715 u16 link_behavior = 0; 12716 int read_status = 0; 12717 bool ret = false; 12718 12719 read_status = i40e_read_nvm_word(&pf->hw, 12720 I40E_SR_EMP_SR_SETTINGS_PTR, 12721 &sr_emp_sr_settings_ptr); 12722 if (read_status) 12723 goto err_nvm; 12724 read_status = i40e_read_nvm_word(&pf->hw, 12725 sr_emp_sr_settings_ptr + 12726 I40E_FEATURES_ENABLE_PTR, 12727 &features_enable); 12728 if (read_status) 12729 goto err_nvm; 12730 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12731 read_status = i40e_read_nvm_module_data(&pf->hw, 12732 I40E_SR_EMP_SR_SETTINGS_PTR, 12733 I40E_CURRENT_SETTING_PTR, 12734 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12735 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12736 &link_behavior); 12737 if (read_status) 12738 goto err_nvm; 12739 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12740 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12741 } 12742 return ret; 12743 12744 err_nvm: 12745 dev_warn(&pf->pdev->dev, 12746 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12747 ERR_PTR(read_status)); 12748 return ret; 12749 } 12750 12751 /** 12752 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12753 * @pf: board private structure to initialize 12754 * 12755 * i40e_sw_init initializes the Adapter private data structure. 12756 * Fields are initialized based on PCI device information and 12757 * OS network device settings (MTU size). 12758 **/ 12759 static int i40e_sw_init(struct i40e_pf *pf) 12760 { 12761 int err = 0; 12762 int size; 12763 u16 pow; 12764 12765 /* Set default capability flags */ 12766 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12767 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12768 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12769 12770 /* Set default ITR */ 12771 pf->rx_itr_default = I40E_ITR_RX_DEF; 12772 pf->tx_itr_default = I40E_ITR_TX_DEF; 12773 12774 /* Depending on PF configurations, it is possible that the RSS 12775 * maximum might end up larger than the available queues 12776 */ 12777 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12778 pf->alloc_rss_size = 1; 12779 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12780 pf->rss_size_max = min_t(int, pf->rss_size_max, 12781 pf->hw.func_caps.num_tx_qp); 12782 12783 /* find the next higher power-of-2 of num cpus */ 12784 pow = roundup_pow_of_two(num_online_cpus()); 12785 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12786 12787 if (pf->hw.func_caps.rss) { 12788 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12789 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12790 num_online_cpus()); 12791 } 12792 12793 /* MFP mode enabled */ 12794 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12795 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12796 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12797 if (i40e_get_partition_bw_setting(pf)) { 12798 dev_warn(&pf->pdev->dev, 12799 "Could not get partition bw settings\n"); 12800 } else { 12801 dev_info(&pf->pdev->dev, 12802 "Partition BW Min = %8.8x, Max = %8.8x\n", 12803 pf->min_bw, pf->max_bw); 12804 12805 /* nudge the Tx scheduler */ 12806 i40e_set_partition_bw_setting(pf); 12807 } 12808 } 12809 12810 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12811 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12812 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12813 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12814 pf->hw.num_partitions > 1) 12815 dev_info(&pf->pdev->dev, 12816 "Flow Director Sideband mode Disabled in MFP mode\n"); 12817 else 12818 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12819 pf->fdir_pf_filter_count = 12820 pf->hw.func_caps.fd_filters_guaranteed; 12821 pf->hw.fdir_shared_filter_count = 12822 pf->hw.func_caps.fd_filters_best_effort; 12823 } 12824 12825 /* Enable HW ATR eviction if possible */ 12826 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12827 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12828 12829 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12830 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12831 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12832 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12833 } 12834 12835 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12836 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12837 /* IWARP needs one extra vector for CQP just like MISC.*/ 12838 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12839 } 12840 /* Stopping FW LLDP engine is supported on XL710 and X722 12841 * starting from FW versions determined in i40e_init_adminq. 12842 * Stopping the FW LLDP engine is not supported on XL710 12843 * if NPAR is functioning so unset this hw flag in this case. 12844 */ 12845 if (pf->hw.mac.type == I40E_MAC_XL710 && 12846 pf->hw.func_caps.npar_enable) 12847 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12848 12849 #ifdef CONFIG_PCI_IOV 12850 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12851 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12852 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12853 pf->num_req_vfs = min_t(int, 12854 pf->hw.func_caps.num_vfs, 12855 I40E_MAX_VF_COUNT); 12856 } 12857 #endif /* CONFIG_PCI_IOV */ 12858 pf->lan_veb = I40E_NO_VEB; 12859 pf->lan_vsi = I40E_NO_VSI; 12860 12861 /* By default FW has this off for performance reasons */ 12862 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12863 12864 /* set up queue assignment tracking */ 12865 size = sizeof(struct i40e_lump_tracking) 12866 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12867 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12868 if (!pf->qp_pile) { 12869 err = -ENOMEM; 12870 goto sw_init_done; 12871 } 12872 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12873 12874 pf->tx_timeout_recovery_level = 1; 12875 12876 if (pf->hw.mac.type != I40E_MAC_X722 && 12877 i40e_is_total_port_shutdown_enabled(pf)) { 12878 /* Link down on close must be on when total port shutdown 12879 * is enabled for a given port 12880 */ 12881 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12882 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12883 dev_info(&pf->pdev->dev, 12884 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12885 } 12886 mutex_init(&pf->switch_mutex); 12887 12888 sw_init_done: 12889 return err; 12890 } 12891 12892 /** 12893 * i40e_set_ntuple - set the ntuple feature flag and take action 12894 * @pf: board private structure to initialize 12895 * @features: the feature set that the stack is suggesting 12896 * 12897 * returns a bool to indicate if reset needs to happen 12898 **/ 12899 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12900 { 12901 bool need_reset = false; 12902 12903 /* Check if Flow Director n-tuple support was enabled or disabled. If 12904 * the state changed, we need to reset. 12905 */ 12906 if (features & NETIF_F_NTUPLE) { 12907 /* Enable filters and mark for reset */ 12908 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12909 need_reset = true; 12910 /* enable FD_SB only if there is MSI-X vector and no cloud 12911 * filters exist 12912 */ 12913 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12914 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12915 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12916 } 12917 } else { 12918 /* turn off filters, mark for reset and clear SW filter list */ 12919 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12920 need_reset = true; 12921 i40e_fdir_filter_exit(pf); 12922 } 12923 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12924 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12925 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12926 12927 /* reset fd counters */ 12928 pf->fd_add_err = 0; 12929 pf->fd_atr_cnt = 0; 12930 /* if ATR was auto disabled it can be re-enabled. */ 12931 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12932 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12933 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12934 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12935 } 12936 return need_reset; 12937 } 12938 12939 /** 12940 * i40e_clear_rss_lut - clear the rx hash lookup table 12941 * @vsi: the VSI being configured 12942 **/ 12943 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12944 { 12945 struct i40e_pf *pf = vsi->back; 12946 struct i40e_hw *hw = &pf->hw; 12947 u16 vf_id = vsi->vf_id; 12948 u8 i; 12949 12950 if (vsi->type == I40E_VSI_MAIN) { 12951 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12952 wr32(hw, I40E_PFQF_HLUT(i), 0); 12953 } else if (vsi->type == I40E_VSI_SRIOV) { 12954 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12955 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12956 } else { 12957 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12958 } 12959 } 12960 12961 /** 12962 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12963 * @vsi: ptr to VSI 12964 * @ena: flag to indicate the on/off setting 12965 */ 12966 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12967 { 12968 bool if_running = netif_running(vsi->netdev) && 12969 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12970 int ret; 12971 12972 if (if_running) 12973 i40e_down(vsi); 12974 12975 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12976 if (ret) 12977 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12978 if (if_running) 12979 i40e_up(vsi); 12980 12981 return ret; 12982 } 12983 12984 /** 12985 * i40e_set_features - set the netdev feature flags 12986 * @netdev: ptr to the netdev being adjusted 12987 * @features: the feature set that the stack is suggesting 12988 * Note: expects to be called while under rtnl_lock() 12989 **/ 12990 static int i40e_set_features(struct net_device *netdev, 12991 netdev_features_t features) 12992 { 12993 struct i40e_netdev_priv *np = netdev_priv(netdev); 12994 struct i40e_vsi *vsi = np->vsi; 12995 struct i40e_pf *pf = vsi->back; 12996 bool need_reset; 12997 12998 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12999 i40e_pf_config_rss(pf); 13000 else if (!(features & NETIF_F_RXHASH) && 13001 netdev->features & NETIF_F_RXHASH) 13002 i40e_clear_rss_lut(vsi); 13003 13004 if (features & NETIF_F_HW_VLAN_CTAG_RX) 13005 i40e_vlan_stripping_enable(vsi); 13006 else 13007 i40e_vlan_stripping_disable(vsi); 13008 13009 if (!(features & NETIF_F_HW_TC) && 13010 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 13011 dev_err(&pf->pdev->dev, 13012 "Offloaded tc filters active, can't turn hw_tc_offload off"); 13013 return -EINVAL; 13014 } 13015 13016 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 13017 i40e_del_all_macvlans(vsi); 13018 13019 need_reset = i40e_set_ntuple(pf, features); 13020 13021 if (need_reset) 13022 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13023 13024 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 13025 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 13026 13027 return 0; 13028 } 13029 13030 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 13031 unsigned int table, unsigned int idx, 13032 struct udp_tunnel_info *ti) 13033 { 13034 struct i40e_netdev_priv *np = netdev_priv(netdev); 13035 struct i40e_hw *hw = &np->vsi->back->hw; 13036 u8 type, filter_index; 13037 int ret; 13038 13039 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 13040 I40E_AQC_TUNNEL_TYPE_NGE; 13041 13042 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 13043 NULL); 13044 if (ret) { 13045 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 13046 ERR_PTR(ret), 13047 i40e_aq_str(hw, hw->aq.asq_last_status)); 13048 return -EIO; 13049 } 13050 13051 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 13052 return 0; 13053 } 13054 13055 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 13056 unsigned int table, unsigned int idx, 13057 struct udp_tunnel_info *ti) 13058 { 13059 struct i40e_netdev_priv *np = netdev_priv(netdev); 13060 struct i40e_hw *hw = &np->vsi->back->hw; 13061 int ret; 13062 13063 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 13064 if (ret) { 13065 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 13066 ERR_PTR(ret), 13067 i40e_aq_str(hw, hw->aq.asq_last_status)); 13068 return -EIO; 13069 } 13070 13071 return 0; 13072 } 13073 13074 static int i40e_get_phys_port_id(struct net_device *netdev, 13075 struct netdev_phys_item_id *ppid) 13076 { 13077 struct i40e_netdev_priv *np = netdev_priv(netdev); 13078 struct i40e_pf *pf = np->vsi->back; 13079 struct i40e_hw *hw = &pf->hw; 13080 13081 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13082 return -EOPNOTSUPP; 13083 13084 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13085 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13086 13087 return 0; 13088 } 13089 13090 /** 13091 * i40e_ndo_fdb_add - add an entry to the hardware database 13092 * @ndm: the input from the stack 13093 * @tb: pointer to array of nladdr (unused) 13094 * @dev: the net device pointer 13095 * @addr: the MAC address entry being added 13096 * @vid: VLAN ID 13097 * @flags: instructions from stack about fdb operation 13098 * @extack: netlink extended ack, unused currently 13099 */ 13100 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13101 struct net_device *dev, 13102 const unsigned char *addr, u16 vid, 13103 u16 flags, 13104 struct netlink_ext_ack *extack) 13105 { 13106 struct i40e_netdev_priv *np = netdev_priv(dev); 13107 struct i40e_pf *pf = np->vsi->back; 13108 int err = 0; 13109 13110 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13111 return -EOPNOTSUPP; 13112 13113 if (vid) { 13114 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13115 return -EINVAL; 13116 } 13117 13118 /* Hardware does not support aging addresses so if a 13119 * ndm_state is given only allow permanent addresses 13120 */ 13121 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13122 netdev_info(dev, "FDB only supports static addresses\n"); 13123 return -EINVAL; 13124 } 13125 13126 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13127 err = dev_uc_add_excl(dev, addr); 13128 else if (is_multicast_ether_addr(addr)) 13129 err = dev_mc_add_excl(dev, addr); 13130 else 13131 err = -EINVAL; 13132 13133 /* Only return duplicate errors if NLM_F_EXCL is set */ 13134 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13135 err = 0; 13136 13137 return err; 13138 } 13139 13140 /** 13141 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13142 * @dev: the netdev being configured 13143 * @nlh: RTNL message 13144 * @flags: bridge flags 13145 * @extack: netlink extended ack 13146 * 13147 * Inserts a new hardware bridge if not already created and 13148 * enables the bridging mode requested (VEB or VEPA). If the 13149 * hardware bridge has already been inserted and the request 13150 * is to change the mode then that requires a PF reset to 13151 * allow rebuild of the components with required hardware 13152 * bridge mode enabled. 13153 * 13154 * Note: expects to be called while under rtnl_lock() 13155 **/ 13156 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13157 struct nlmsghdr *nlh, 13158 u16 flags, 13159 struct netlink_ext_ack *extack) 13160 { 13161 struct i40e_netdev_priv *np = netdev_priv(dev); 13162 struct i40e_vsi *vsi = np->vsi; 13163 struct i40e_pf *pf = vsi->back; 13164 struct nlattr *attr, *br_spec; 13165 struct i40e_veb *veb; 13166 int rem; 13167 13168 /* Only for PF VSI for now */ 13169 if (vsi->type != I40E_VSI_MAIN) 13170 return -EOPNOTSUPP; 13171 13172 /* Find the HW bridge for PF VSI */ 13173 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13174 13175 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13176 if (!br_spec) 13177 return -EINVAL; 13178 13179 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 13180 __u16 mode = nla_get_u16(attr); 13181 13182 if ((mode != BRIDGE_MODE_VEPA) && 13183 (mode != BRIDGE_MODE_VEB)) 13184 return -EINVAL; 13185 13186 /* Insert a new HW bridge */ 13187 if (!veb) { 13188 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 13189 vsi->tc_config.enabled_tc); 13190 if (veb) { 13191 veb->bridge_mode = mode; 13192 i40e_config_bridge_mode(veb); 13193 } else { 13194 /* No Bridge HW offload available */ 13195 return -ENOENT; 13196 } 13197 break; 13198 } else if (mode != veb->bridge_mode) { 13199 /* Existing HW bridge but different mode needs reset */ 13200 veb->bridge_mode = mode; 13201 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13202 if (mode == BRIDGE_MODE_VEB) 13203 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13204 else 13205 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13206 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13207 break; 13208 } 13209 } 13210 13211 return 0; 13212 } 13213 13214 /** 13215 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13216 * @skb: skb buff 13217 * @pid: process id 13218 * @seq: RTNL message seq # 13219 * @dev: the netdev being configured 13220 * @filter_mask: unused 13221 * @nlflags: netlink flags passed in 13222 * 13223 * Return the mode in which the hardware bridge is operating in 13224 * i.e VEB or VEPA. 13225 **/ 13226 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13227 struct net_device *dev, 13228 u32 __always_unused filter_mask, 13229 int nlflags) 13230 { 13231 struct i40e_netdev_priv *np = netdev_priv(dev); 13232 struct i40e_vsi *vsi = np->vsi; 13233 struct i40e_pf *pf = vsi->back; 13234 struct i40e_veb *veb; 13235 13236 /* Only for PF VSI for now */ 13237 if (vsi->type != I40E_VSI_MAIN) 13238 return -EOPNOTSUPP; 13239 13240 /* Find the HW bridge for the PF VSI */ 13241 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13242 if (!veb) 13243 return 0; 13244 13245 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13246 0, 0, nlflags, filter_mask, NULL); 13247 } 13248 13249 /** 13250 * i40e_features_check - Validate encapsulated packet conforms to limits 13251 * @skb: skb buff 13252 * @dev: This physical port's netdev 13253 * @features: Offload features that the stack believes apply 13254 **/ 13255 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13256 struct net_device *dev, 13257 netdev_features_t features) 13258 { 13259 size_t len; 13260 13261 /* No point in doing any of this if neither checksum nor GSO are 13262 * being requested for this frame. We can rule out both by just 13263 * checking for CHECKSUM_PARTIAL 13264 */ 13265 if (skb->ip_summed != CHECKSUM_PARTIAL) 13266 return features; 13267 13268 /* We cannot support GSO if the MSS is going to be less than 13269 * 64 bytes. If it is then we need to drop support for GSO. 13270 */ 13271 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13272 features &= ~NETIF_F_GSO_MASK; 13273 13274 /* MACLEN can support at most 63 words */ 13275 len = skb_network_offset(skb); 13276 if (len & ~(63 * 2)) 13277 goto out_err; 13278 13279 /* IPLEN and EIPLEN can support at most 127 dwords */ 13280 len = skb_network_header_len(skb); 13281 if (len & ~(127 * 4)) 13282 goto out_err; 13283 13284 if (skb->encapsulation) { 13285 /* L4TUNLEN can support 127 words */ 13286 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13287 if (len & ~(127 * 2)) 13288 goto out_err; 13289 13290 /* IPLEN can support at most 127 dwords */ 13291 len = skb_inner_transport_header(skb) - 13292 skb_inner_network_header(skb); 13293 if (len & ~(127 * 4)) 13294 goto out_err; 13295 } 13296 13297 /* No need to validate L4LEN as TCP is the only protocol with a 13298 * flexible value and we support all possible values supported 13299 * by TCP, which is at most 15 dwords 13300 */ 13301 13302 return features; 13303 out_err: 13304 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13305 } 13306 13307 /** 13308 * i40e_xdp_setup - add/remove an XDP program 13309 * @vsi: VSI to changed 13310 * @prog: XDP program 13311 * @extack: netlink extended ack 13312 **/ 13313 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13314 struct netlink_ext_ack *extack) 13315 { 13316 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13317 struct i40e_pf *pf = vsi->back; 13318 struct bpf_prog *old_prog; 13319 bool need_reset; 13320 int i; 13321 13322 /* VSI shall be deleted in a moment, block loading new programs */ 13323 if (prog && test_bit(__I40E_IN_REMOVE, pf->state)) 13324 return -EINVAL; 13325 13326 /* Don't allow frames that span over multiple buffers */ 13327 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13328 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13329 return -EINVAL; 13330 } 13331 13332 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13333 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13334 if (need_reset) 13335 i40e_prep_for_reset(pf); 13336 13337 old_prog = xchg(&vsi->xdp_prog, prog); 13338 13339 if (need_reset) { 13340 if (!prog) { 13341 xdp_features_clear_redirect_target(vsi->netdev); 13342 /* Wait until ndo_xsk_wakeup completes. */ 13343 synchronize_rcu(); 13344 } 13345 i40e_reset_and_rebuild(pf, true, true); 13346 } 13347 13348 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13349 if (i40e_realloc_rx_bi_zc(vsi, true)) 13350 return -ENOMEM; 13351 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13352 if (i40e_realloc_rx_bi_zc(vsi, false)) 13353 return -ENOMEM; 13354 } 13355 13356 for (i = 0; i < vsi->num_queue_pairs; i++) 13357 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13358 13359 if (old_prog) 13360 bpf_prog_put(old_prog); 13361 13362 /* Kick start the NAPI context if there is an AF_XDP socket open 13363 * on that queue id. This so that receiving will start. 13364 */ 13365 if (need_reset && prog) { 13366 for (i = 0; i < vsi->num_queue_pairs; i++) 13367 if (vsi->xdp_rings[i]->xsk_pool) 13368 (void)i40e_xsk_wakeup(vsi->netdev, i, 13369 XDP_WAKEUP_RX); 13370 xdp_features_set_redirect_target(vsi->netdev, true); 13371 } 13372 13373 return 0; 13374 } 13375 13376 /** 13377 * i40e_enter_busy_conf - Enters busy config state 13378 * @vsi: vsi 13379 * 13380 * Returns 0 on success, <0 for failure. 13381 **/ 13382 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13383 { 13384 struct i40e_pf *pf = vsi->back; 13385 int timeout = 50; 13386 13387 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13388 timeout--; 13389 if (!timeout) 13390 return -EBUSY; 13391 usleep_range(1000, 2000); 13392 } 13393 13394 return 0; 13395 } 13396 13397 /** 13398 * i40e_exit_busy_conf - Exits busy config state 13399 * @vsi: vsi 13400 **/ 13401 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13402 { 13403 struct i40e_pf *pf = vsi->back; 13404 13405 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13406 } 13407 13408 /** 13409 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13410 * @vsi: vsi 13411 * @queue_pair: queue pair 13412 **/ 13413 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13414 { 13415 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13416 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13417 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13418 sizeof(vsi->tx_rings[queue_pair]->stats)); 13419 if (i40e_enabled_xdp_vsi(vsi)) { 13420 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13421 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13422 } 13423 } 13424 13425 /** 13426 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13427 * @vsi: vsi 13428 * @queue_pair: queue pair 13429 **/ 13430 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13431 { 13432 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13433 if (i40e_enabled_xdp_vsi(vsi)) { 13434 /* Make sure that in-progress ndo_xdp_xmit calls are 13435 * completed. 13436 */ 13437 synchronize_rcu(); 13438 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13439 } 13440 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13441 } 13442 13443 /** 13444 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13445 * @vsi: vsi 13446 * @queue_pair: queue pair 13447 * @enable: true for enable, false for disable 13448 **/ 13449 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13450 bool enable) 13451 { 13452 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13453 struct i40e_q_vector *q_vector = rxr->q_vector; 13454 13455 if (!vsi->netdev) 13456 return; 13457 13458 /* All rings in a qp belong to the same qvector. */ 13459 if (q_vector->rx.ring || q_vector->tx.ring) { 13460 if (enable) 13461 napi_enable(&q_vector->napi); 13462 else 13463 napi_disable(&q_vector->napi); 13464 } 13465 } 13466 13467 /** 13468 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13469 * @vsi: vsi 13470 * @queue_pair: queue pair 13471 * @enable: true for enable, false for disable 13472 * 13473 * Returns 0 on success, <0 on failure. 13474 **/ 13475 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13476 bool enable) 13477 { 13478 struct i40e_pf *pf = vsi->back; 13479 int pf_q, ret = 0; 13480 13481 pf_q = vsi->base_queue + queue_pair; 13482 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13483 false /*is xdp*/, enable); 13484 if (ret) { 13485 dev_info(&pf->pdev->dev, 13486 "VSI seid %d Tx ring %d %sable timeout\n", 13487 vsi->seid, pf_q, (enable ? "en" : "dis")); 13488 return ret; 13489 } 13490 13491 i40e_control_rx_q(pf, pf_q, enable); 13492 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13493 if (ret) { 13494 dev_info(&pf->pdev->dev, 13495 "VSI seid %d Rx ring %d %sable timeout\n", 13496 vsi->seid, pf_q, (enable ? "en" : "dis")); 13497 return ret; 13498 } 13499 13500 /* Due to HW errata, on Rx disable only, the register can 13501 * indicate done before it really is. Needs 50ms to be sure 13502 */ 13503 if (!enable) 13504 mdelay(50); 13505 13506 if (!i40e_enabled_xdp_vsi(vsi)) 13507 return ret; 13508 13509 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13510 pf_q + vsi->alloc_queue_pairs, 13511 true /*is xdp*/, enable); 13512 if (ret) { 13513 dev_info(&pf->pdev->dev, 13514 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13515 vsi->seid, pf_q, (enable ? "en" : "dis")); 13516 } 13517 13518 return ret; 13519 } 13520 13521 /** 13522 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13523 * @vsi: vsi 13524 * @queue_pair: queue_pair 13525 **/ 13526 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13527 { 13528 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13529 struct i40e_pf *pf = vsi->back; 13530 struct i40e_hw *hw = &pf->hw; 13531 13532 /* All rings in a qp belong to the same qvector. */ 13533 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13534 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13535 else 13536 i40e_irq_dynamic_enable_icr0(pf); 13537 13538 i40e_flush(hw); 13539 } 13540 13541 /** 13542 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13543 * @vsi: vsi 13544 * @queue_pair: queue_pair 13545 **/ 13546 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13547 { 13548 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13549 struct i40e_pf *pf = vsi->back; 13550 struct i40e_hw *hw = &pf->hw; 13551 13552 /* For simplicity, instead of removing the qp interrupt causes 13553 * from the interrupt linked list, we simply disable the interrupt, and 13554 * leave the list intact. 13555 * 13556 * All rings in a qp belong to the same qvector. 13557 */ 13558 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13559 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13560 13561 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13562 i40e_flush(hw); 13563 synchronize_irq(pf->msix_entries[intpf].vector); 13564 } else { 13565 /* Legacy and MSI mode - this stops all interrupt handling */ 13566 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13567 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13568 i40e_flush(hw); 13569 synchronize_irq(pf->pdev->irq); 13570 } 13571 } 13572 13573 /** 13574 * i40e_queue_pair_disable - Disables a queue pair 13575 * @vsi: vsi 13576 * @queue_pair: queue pair 13577 * 13578 * Returns 0 on success, <0 on failure. 13579 **/ 13580 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13581 { 13582 int err; 13583 13584 err = i40e_enter_busy_conf(vsi); 13585 if (err) 13586 return err; 13587 13588 i40e_queue_pair_disable_irq(vsi, queue_pair); 13589 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13590 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13591 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13592 i40e_queue_pair_clean_rings(vsi, queue_pair); 13593 i40e_queue_pair_reset_stats(vsi, queue_pair); 13594 13595 return err; 13596 } 13597 13598 /** 13599 * i40e_queue_pair_enable - Enables a queue pair 13600 * @vsi: vsi 13601 * @queue_pair: queue pair 13602 * 13603 * Returns 0 on success, <0 on failure. 13604 **/ 13605 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13606 { 13607 int err; 13608 13609 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13610 if (err) 13611 return err; 13612 13613 if (i40e_enabled_xdp_vsi(vsi)) { 13614 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13615 if (err) 13616 return err; 13617 } 13618 13619 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13620 if (err) 13621 return err; 13622 13623 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13624 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13625 i40e_queue_pair_enable_irq(vsi, queue_pair); 13626 13627 i40e_exit_busy_conf(vsi); 13628 13629 return err; 13630 } 13631 13632 /** 13633 * i40e_xdp - implements ndo_bpf for i40e 13634 * @dev: netdevice 13635 * @xdp: XDP command 13636 **/ 13637 static int i40e_xdp(struct net_device *dev, 13638 struct netdev_bpf *xdp) 13639 { 13640 struct i40e_netdev_priv *np = netdev_priv(dev); 13641 struct i40e_vsi *vsi = np->vsi; 13642 13643 if (vsi->type != I40E_VSI_MAIN) 13644 return -EINVAL; 13645 13646 switch (xdp->command) { 13647 case XDP_SETUP_PROG: 13648 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13649 case XDP_SETUP_XSK_POOL: 13650 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13651 xdp->xsk.queue_id); 13652 default: 13653 return -EINVAL; 13654 } 13655 } 13656 13657 static const struct net_device_ops i40e_netdev_ops = { 13658 .ndo_open = i40e_open, 13659 .ndo_stop = i40e_close, 13660 .ndo_start_xmit = i40e_lan_xmit_frame, 13661 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13662 .ndo_set_rx_mode = i40e_set_rx_mode, 13663 .ndo_validate_addr = eth_validate_addr, 13664 .ndo_set_mac_address = i40e_set_mac, 13665 .ndo_change_mtu = i40e_change_mtu, 13666 .ndo_eth_ioctl = i40e_ioctl, 13667 .ndo_tx_timeout = i40e_tx_timeout, 13668 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13669 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13670 #ifdef CONFIG_NET_POLL_CONTROLLER 13671 .ndo_poll_controller = i40e_netpoll, 13672 #endif 13673 .ndo_setup_tc = __i40e_setup_tc, 13674 .ndo_select_queue = i40e_lan_select_queue, 13675 .ndo_set_features = i40e_set_features, 13676 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13677 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13678 .ndo_get_vf_stats = i40e_get_vf_stats, 13679 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13680 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13681 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13682 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13683 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13684 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13685 .ndo_fdb_add = i40e_ndo_fdb_add, 13686 .ndo_features_check = i40e_features_check, 13687 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13688 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13689 .ndo_bpf = i40e_xdp, 13690 .ndo_xdp_xmit = i40e_xdp_xmit, 13691 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13692 .ndo_dfwd_add_station = i40e_fwd_add, 13693 .ndo_dfwd_del_station = i40e_fwd_del, 13694 }; 13695 13696 /** 13697 * i40e_config_netdev - Setup the netdev flags 13698 * @vsi: the VSI being configured 13699 * 13700 * Returns 0 on success, negative value on failure 13701 **/ 13702 static int i40e_config_netdev(struct i40e_vsi *vsi) 13703 { 13704 struct i40e_pf *pf = vsi->back; 13705 struct i40e_hw *hw = &pf->hw; 13706 struct i40e_netdev_priv *np; 13707 struct net_device *netdev; 13708 u8 broadcast[ETH_ALEN]; 13709 u8 mac_addr[ETH_ALEN]; 13710 int etherdev_size; 13711 netdev_features_t hw_enc_features; 13712 netdev_features_t hw_features; 13713 13714 etherdev_size = sizeof(struct i40e_netdev_priv); 13715 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13716 if (!netdev) 13717 return -ENOMEM; 13718 13719 vsi->netdev = netdev; 13720 np = netdev_priv(netdev); 13721 np->vsi = vsi; 13722 13723 hw_enc_features = NETIF_F_SG | 13724 NETIF_F_HW_CSUM | 13725 NETIF_F_HIGHDMA | 13726 NETIF_F_SOFT_FEATURES | 13727 NETIF_F_TSO | 13728 NETIF_F_TSO_ECN | 13729 NETIF_F_TSO6 | 13730 NETIF_F_GSO_GRE | 13731 NETIF_F_GSO_GRE_CSUM | 13732 NETIF_F_GSO_PARTIAL | 13733 NETIF_F_GSO_IPXIP4 | 13734 NETIF_F_GSO_IPXIP6 | 13735 NETIF_F_GSO_UDP_TUNNEL | 13736 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13737 NETIF_F_GSO_UDP_L4 | 13738 NETIF_F_SCTP_CRC | 13739 NETIF_F_RXHASH | 13740 NETIF_F_RXCSUM | 13741 0; 13742 13743 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13744 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13745 13746 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13747 13748 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13749 13750 netdev->hw_enc_features |= hw_enc_features; 13751 13752 /* record features VLANs can make use of */ 13753 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13754 13755 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13756 NETIF_F_GSO_GRE_CSUM | \ 13757 NETIF_F_GSO_IPXIP4 | \ 13758 NETIF_F_GSO_IPXIP6 | \ 13759 NETIF_F_GSO_UDP_TUNNEL | \ 13760 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13761 13762 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13763 netdev->features |= NETIF_F_GSO_PARTIAL | 13764 I40E_GSO_PARTIAL_FEATURES; 13765 13766 netdev->mpls_features |= NETIF_F_SG; 13767 netdev->mpls_features |= NETIF_F_HW_CSUM; 13768 netdev->mpls_features |= NETIF_F_TSO; 13769 netdev->mpls_features |= NETIF_F_TSO6; 13770 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13771 13772 /* enable macvlan offloads */ 13773 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13774 13775 hw_features = hw_enc_features | 13776 NETIF_F_HW_VLAN_CTAG_TX | 13777 NETIF_F_HW_VLAN_CTAG_RX; 13778 13779 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13780 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13781 13782 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13783 13784 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13785 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13786 13787 netdev->features &= ~NETIF_F_HW_TC; 13788 13789 if (vsi->type == I40E_VSI_MAIN) { 13790 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13791 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13792 /* The following steps are necessary for two reasons. First, 13793 * some older NVM configurations load a default MAC-VLAN 13794 * filter that will accept any tagged packet, and we want to 13795 * replace this with a normal filter. Additionally, it is 13796 * possible our MAC address was provided by the platform using 13797 * Open Firmware or similar. 13798 * 13799 * Thus, we need to remove the default filter and install one 13800 * specific to the MAC address. 13801 */ 13802 i40e_rm_default_mac_filter(vsi, mac_addr); 13803 spin_lock_bh(&vsi->mac_filter_hash_lock); 13804 i40e_add_mac_filter(vsi, mac_addr); 13805 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13806 13807 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13808 NETDEV_XDP_ACT_REDIRECT | 13809 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13810 NETDEV_XDP_ACT_RX_SG; 13811 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13812 } else { 13813 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13814 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13815 * the end, which is 4 bytes long, so force truncation of the 13816 * original name by IFNAMSIZ - 4 13817 */ 13818 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 13819 13820 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", IFNAMSIZ - 4, 13821 main_vsi->netdev->name); 13822 eth_random_addr(mac_addr); 13823 13824 spin_lock_bh(&vsi->mac_filter_hash_lock); 13825 i40e_add_mac_filter(vsi, mac_addr); 13826 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13827 } 13828 13829 /* Add the broadcast filter so that we initially will receive 13830 * broadcast packets. Note that when a new VLAN is first added the 13831 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13832 * specific filters as part of transitioning into "vlan" operation. 13833 * When more VLANs are added, the driver will copy each existing MAC 13834 * filter and add it for the new VLAN. 13835 * 13836 * Broadcast filters are handled specially by 13837 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13838 * promiscuous bit instead of adding this directly as a MAC/VLAN 13839 * filter. The subtask will update the correct broadcast promiscuous 13840 * bits as VLANs become active or inactive. 13841 */ 13842 eth_broadcast_addr(broadcast); 13843 spin_lock_bh(&vsi->mac_filter_hash_lock); 13844 i40e_add_mac_filter(vsi, broadcast); 13845 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13846 13847 eth_hw_addr_set(netdev, mac_addr); 13848 ether_addr_copy(netdev->perm_addr, mac_addr); 13849 13850 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13851 netdev->neigh_priv_len = sizeof(u32) * 4; 13852 13853 netdev->priv_flags |= IFF_UNICAST_FLT; 13854 netdev->priv_flags |= IFF_SUPP_NOFCS; 13855 /* Setup netdev TC information */ 13856 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13857 13858 netdev->netdev_ops = &i40e_netdev_ops; 13859 netdev->watchdog_timeo = 5 * HZ; 13860 i40e_set_ethtool_ops(netdev); 13861 13862 /* MTU range: 68 - 9706 */ 13863 netdev->min_mtu = ETH_MIN_MTU; 13864 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13865 13866 return 0; 13867 } 13868 13869 /** 13870 * i40e_vsi_delete - Delete a VSI from the switch 13871 * @vsi: the VSI being removed 13872 * 13873 * Returns 0 on success, negative value on failure 13874 **/ 13875 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13876 { 13877 /* remove default VSI is not allowed */ 13878 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13879 return; 13880 13881 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13882 } 13883 13884 /** 13885 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13886 * @vsi: the VSI being queried 13887 * 13888 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13889 **/ 13890 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13891 { 13892 struct i40e_veb *veb; 13893 struct i40e_pf *pf = vsi->back; 13894 13895 /* Uplink is not a bridge so default to VEB */ 13896 if (vsi->veb_idx >= I40E_MAX_VEB) 13897 return 1; 13898 13899 veb = pf->veb[vsi->veb_idx]; 13900 if (!veb) { 13901 dev_info(&pf->pdev->dev, 13902 "There is no veb associated with the bridge\n"); 13903 return -ENOENT; 13904 } 13905 13906 /* Uplink is a bridge in VEPA mode */ 13907 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13908 return 0; 13909 } else { 13910 /* Uplink is a bridge in VEB mode */ 13911 return 1; 13912 } 13913 13914 /* VEPA is now default bridge, so return 0 */ 13915 return 0; 13916 } 13917 13918 /** 13919 * i40e_add_vsi - Add a VSI to the switch 13920 * @vsi: the VSI being configured 13921 * 13922 * This initializes a VSI context depending on the VSI type to be added and 13923 * passes it down to the add_vsi aq command. 13924 **/ 13925 static int i40e_add_vsi(struct i40e_vsi *vsi) 13926 { 13927 int ret = -ENODEV; 13928 struct i40e_pf *pf = vsi->back; 13929 struct i40e_hw *hw = &pf->hw; 13930 struct i40e_vsi_context ctxt; 13931 struct i40e_mac_filter *f; 13932 struct hlist_node *h; 13933 int bkt; 13934 13935 u8 enabled_tc = 0x1; /* TC0 enabled */ 13936 int f_count = 0; 13937 13938 memset(&ctxt, 0, sizeof(ctxt)); 13939 switch (vsi->type) { 13940 case I40E_VSI_MAIN: 13941 /* The PF's main VSI is already setup as part of the 13942 * device initialization, so we'll not bother with 13943 * the add_vsi call, but we will retrieve the current 13944 * VSI context. 13945 */ 13946 ctxt.seid = pf->main_vsi_seid; 13947 ctxt.pf_num = pf->hw.pf_id; 13948 ctxt.vf_num = 0; 13949 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13950 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13951 if (ret) { 13952 dev_info(&pf->pdev->dev, 13953 "couldn't get PF vsi config, err %pe aq_err %s\n", 13954 ERR_PTR(ret), 13955 i40e_aq_str(&pf->hw, 13956 pf->hw.aq.asq_last_status)); 13957 return -ENOENT; 13958 } 13959 vsi->info = ctxt.info; 13960 vsi->info.valid_sections = 0; 13961 13962 vsi->seid = ctxt.seid; 13963 vsi->id = ctxt.vsi_number; 13964 13965 enabled_tc = i40e_pf_get_tc_map(pf); 13966 13967 /* Source pruning is enabled by default, so the flag is 13968 * negative logic - if it's set, we need to fiddle with 13969 * the VSI to disable source pruning. 13970 */ 13971 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13972 memset(&ctxt, 0, sizeof(ctxt)); 13973 ctxt.seid = pf->main_vsi_seid; 13974 ctxt.pf_num = pf->hw.pf_id; 13975 ctxt.vf_num = 0; 13976 ctxt.info.valid_sections |= 13977 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13978 ctxt.info.switch_id = 13979 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13980 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13981 if (ret) { 13982 dev_info(&pf->pdev->dev, 13983 "update vsi failed, err %d aq_err %s\n", 13984 ret, 13985 i40e_aq_str(&pf->hw, 13986 pf->hw.aq.asq_last_status)); 13987 ret = -ENOENT; 13988 goto err; 13989 } 13990 } 13991 13992 /* MFP mode setup queue map and update VSI */ 13993 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13994 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13995 memset(&ctxt, 0, sizeof(ctxt)); 13996 ctxt.seid = pf->main_vsi_seid; 13997 ctxt.pf_num = pf->hw.pf_id; 13998 ctxt.vf_num = 0; 13999 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 14000 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 14001 if (ret) { 14002 dev_info(&pf->pdev->dev, 14003 "update vsi failed, err %pe aq_err %s\n", 14004 ERR_PTR(ret), 14005 i40e_aq_str(&pf->hw, 14006 pf->hw.aq.asq_last_status)); 14007 ret = -ENOENT; 14008 goto err; 14009 } 14010 /* update the local VSI info queue map */ 14011 i40e_vsi_update_queue_map(vsi, &ctxt); 14012 vsi->info.valid_sections = 0; 14013 } else { 14014 /* Default/Main VSI is only enabled for TC0 14015 * reconfigure it to enable all TCs that are 14016 * available on the port in SFP mode. 14017 * For MFP case the iSCSI PF would use this 14018 * flow to enable LAN+iSCSI TC. 14019 */ 14020 ret = i40e_vsi_config_tc(vsi, enabled_tc); 14021 if (ret) { 14022 /* Single TC condition is not fatal, 14023 * message and continue 14024 */ 14025 dev_info(&pf->pdev->dev, 14026 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 14027 enabled_tc, 14028 ERR_PTR(ret), 14029 i40e_aq_str(&pf->hw, 14030 pf->hw.aq.asq_last_status)); 14031 } 14032 } 14033 break; 14034 14035 case I40E_VSI_FDIR: 14036 ctxt.pf_num = hw->pf_id; 14037 ctxt.vf_num = 0; 14038 ctxt.uplink_seid = vsi->uplink_seid; 14039 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14040 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 14041 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 14042 (i40e_is_vsi_uplink_mode_veb(vsi))) { 14043 ctxt.info.valid_sections |= 14044 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14045 ctxt.info.switch_id = 14046 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14047 } 14048 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14049 break; 14050 14051 case I40E_VSI_VMDQ2: 14052 ctxt.pf_num = hw->pf_id; 14053 ctxt.vf_num = 0; 14054 ctxt.uplink_seid = vsi->uplink_seid; 14055 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14056 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 14057 14058 /* This VSI is connected to VEB so the switch_id 14059 * should be set to zero by default. 14060 */ 14061 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14062 ctxt.info.valid_sections |= 14063 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14064 ctxt.info.switch_id = 14065 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14066 } 14067 14068 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14069 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14070 break; 14071 14072 case I40E_VSI_SRIOV: 14073 ctxt.pf_num = hw->pf_id; 14074 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14075 ctxt.uplink_seid = vsi->uplink_seid; 14076 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14077 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14078 14079 /* This VSI is connected to VEB so the switch_id 14080 * should be set to zero by default. 14081 */ 14082 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14083 ctxt.info.valid_sections |= 14084 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14085 ctxt.info.switch_id = 14086 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14087 } 14088 14089 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14090 ctxt.info.valid_sections |= 14091 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14092 ctxt.info.queueing_opt_flags |= 14093 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14094 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14095 } 14096 14097 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14098 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14099 if (pf->vf[vsi->vf_id].spoofchk) { 14100 ctxt.info.valid_sections |= 14101 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14102 ctxt.info.sec_flags |= 14103 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14104 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14105 } 14106 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14107 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14108 break; 14109 14110 case I40E_VSI_IWARP: 14111 /* send down message to iWARP */ 14112 break; 14113 14114 default: 14115 return -ENODEV; 14116 } 14117 14118 if (vsi->type != I40E_VSI_MAIN) { 14119 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14120 if (ret) { 14121 dev_info(&vsi->back->pdev->dev, 14122 "add vsi failed, err %pe aq_err %s\n", 14123 ERR_PTR(ret), 14124 i40e_aq_str(&pf->hw, 14125 pf->hw.aq.asq_last_status)); 14126 ret = -ENOENT; 14127 goto err; 14128 } 14129 vsi->info = ctxt.info; 14130 vsi->info.valid_sections = 0; 14131 vsi->seid = ctxt.seid; 14132 vsi->id = ctxt.vsi_number; 14133 } 14134 14135 spin_lock_bh(&vsi->mac_filter_hash_lock); 14136 vsi->active_filters = 0; 14137 /* If macvlan filters already exist, force them to get loaded */ 14138 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14139 f->state = I40E_FILTER_NEW; 14140 f_count++; 14141 } 14142 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14143 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14144 14145 if (f_count) { 14146 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14147 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14148 } 14149 14150 /* Update VSI BW information */ 14151 ret = i40e_vsi_get_bw_info(vsi); 14152 if (ret) { 14153 dev_info(&pf->pdev->dev, 14154 "couldn't get vsi bw info, err %pe aq_err %s\n", 14155 ERR_PTR(ret), 14156 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14157 /* VSI is already added so not tearing that up */ 14158 ret = 0; 14159 } 14160 14161 err: 14162 return ret; 14163 } 14164 14165 /** 14166 * i40e_vsi_release - Delete a VSI and free its resources 14167 * @vsi: the VSI being removed 14168 * 14169 * Returns 0 on success or < 0 on error 14170 **/ 14171 int i40e_vsi_release(struct i40e_vsi *vsi) 14172 { 14173 struct i40e_mac_filter *f; 14174 struct hlist_node *h; 14175 struct i40e_veb *veb; 14176 struct i40e_pf *pf; 14177 u16 uplink_seid; 14178 int i, n, bkt; 14179 14180 pf = vsi->back; 14181 14182 /* release of a VEB-owner or last VSI is not allowed */ 14183 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14184 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14185 vsi->seid, vsi->uplink_seid); 14186 return -ENODEV; 14187 } 14188 if (vsi->type == I40E_VSI_MAIN && !test_bit(__I40E_DOWN, pf->state)) { 14189 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14190 return -ENODEV; 14191 } 14192 set_bit(__I40E_VSI_RELEASING, vsi->state); 14193 uplink_seid = vsi->uplink_seid; 14194 14195 if (vsi->type != I40E_VSI_SRIOV) { 14196 if (vsi->netdev_registered) { 14197 vsi->netdev_registered = false; 14198 if (vsi->netdev) { 14199 /* results in a call to i40e_close() */ 14200 unregister_netdev(vsi->netdev); 14201 } 14202 } else { 14203 i40e_vsi_close(vsi); 14204 } 14205 i40e_vsi_disable_irq(vsi); 14206 } 14207 14208 if (vsi->type == I40E_VSI_MAIN) 14209 i40e_devlink_destroy_port(pf); 14210 14211 spin_lock_bh(&vsi->mac_filter_hash_lock); 14212 14213 /* clear the sync flag on all filters */ 14214 if (vsi->netdev) { 14215 __dev_uc_unsync(vsi->netdev, NULL); 14216 __dev_mc_unsync(vsi->netdev, NULL); 14217 } 14218 14219 /* make sure any remaining filters are marked for deletion */ 14220 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14221 __i40e_del_filter(vsi, f); 14222 14223 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14224 14225 i40e_sync_vsi_filters(vsi); 14226 14227 i40e_vsi_delete(vsi); 14228 i40e_vsi_free_q_vectors(vsi); 14229 if (vsi->netdev) { 14230 free_netdev(vsi->netdev); 14231 vsi->netdev = NULL; 14232 } 14233 i40e_vsi_clear_rings(vsi); 14234 i40e_vsi_clear(vsi); 14235 14236 /* If this was the last thing on the VEB, except for the 14237 * controlling VSI, remove the VEB, which puts the controlling 14238 * VSI onto the uplink port. 14239 * 14240 * Well, okay, there's one more exception here: don't remove 14241 * the floating VEBs yet. We'll wait for an explicit remove request 14242 * from up the network stack. 14243 */ 14244 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14245 if (veb && veb->uplink_seid) { 14246 n = 0; 14247 14248 /* Count non-controlling VSIs present on the VEB */ 14249 i40e_pf_for_each_vsi(pf, i, vsi) 14250 if (vsi->uplink_seid == uplink_seid && 14251 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14252 n++; 14253 14254 /* If there is no VSI except the control one then release 14255 * the VEB and put the control VSI onto VEB uplink. 14256 */ 14257 if (!n) 14258 i40e_veb_release(veb); 14259 } 14260 14261 return 0; 14262 } 14263 14264 /** 14265 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14266 * @vsi: ptr to the VSI 14267 * 14268 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14269 * corresponding SW VSI structure and initializes num_queue_pairs for the 14270 * newly allocated VSI. 14271 * 14272 * Returns 0 on success or negative on failure 14273 **/ 14274 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14275 { 14276 int ret = -ENOENT; 14277 struct i40e_pf *pf = vsi->back; 14278 14279 if (vsi->q_vectors[0]) { 14280 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14281 vsi->seid); 14282 return -EEXIST; 14283 } 14284 14285 if (vsi->base_vector) { 14286 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14287 vsi->seid, vsi->base_vector); 14288 return -EEXIST; 14289 } 14290 14291 ret = i40e_vsi_alloc_q_vectors(vsi); 14292 if (ret) { 14293 dev_info(&pf->pdev->dev, 14294 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14295 vsi->num_q_vectors, vsi->seid, ret); 14296 vsi->num_q_vectors = 0; 14297 goto vector_setup_out; 14298 } 14299 14300 /* In Legacy mode, we do not have to get any other vector since we 14301 * piggyback on the misc/ICR0 for queue interrupts. 14302 */ 14303 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14304 return ret; 14305 if (vsi->num_q_vectors) 14306 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14307 vsi->num_q_vectors, vsi->idx); 14308 if (vsi->base_vector < 0) { 14309 dev_info(&pf->pdev->dev, 14310 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14311 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14312 i40e_vsi_free_q_vectors(vsi); 14313 ret = -ENOENT; 14314 goto vector_setup_out; 14315 } 14316 14317 vector_setup_out: 14318 return ret; 14319 } 14320 14321 /** 14322 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14323 * @vsi: pointer to the vsi. 14324 * 14325 * This re-allocates a vsi's queue resources. 14326 * 14327 * Returns pointer to the successfully allocated and configured VSI sw struct 14328 * on success, otherwise returns NULL on failure. 14329 **/ 14330 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14331 { 14332 struct i40e_vsi *main_vsi; 14333 u16 alloc_queue_pairs; 14334 struct i40e_pf *pf; 14335 int ret; 14336 14337 if (!vsi) 14338 return NULL; 14339 14340 pf = vsi->back; 14341 14342 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14343 i40e_vsi_clear_rings(vsi); 14344 14345 i40e_vsi_free_arrays(vsi, false); 14346 i40e_set_num_rings_in_vsi(vsi); 14347 ret = i40e_vsi_alloc_arrays(vsi, false); 14348 if (ret) 14349 goto err_vsi; 14350 14351 alloc_queue_pairs = vsi->alloc_queue_pairs * 14352 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14353 14354 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14355 if (ret < 0) { 14356 dev_info(&pf->pdev->dev, 14357 "failed to get tracking for %d queues for VSI %d err %d\n", 14358 alloc_queue_pairs, vsi->seid, ret); 14359 goto err_vsi; 14360 } 14361 vsi->base_queue = ret; 14362 14363 /* Update the FW view of the VSI. Force a reset of TC and queue 14364 * layout configurations. 14365 */ 14366 main_vsi = i40e_pf_get_main_vsi(pf); 14367 main_vsi->seid = pf->main_vsi_seid; 14368 i40e_vsi_reconfig_tc(main_vsi); 14369 14370 if (vsi->type == I40E_VSI_MAIN) 14371 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14372 14373 /* assign it some queues */ 14374 ret = i40e_alloc_rings(vsi); 14375 if (ret) 14376 goto err_rings; 14377 14378 /* map all of the rings to the q_vectors */ 14379 i40e_vsi_map_rings_to_vectors(vsi); 14380 return vsi; 14381 14382 err_rings: 14383 i40e_vsi_free_q_vectors(vsi); 14384 if (vsi->netdev_registered) { 14385 vsi->netdev_registered = false; 14386 unregister_netdev(vsi->netdev); 14387 free_netdev(vsi->netdev); 14388 vsi->netdev = NULL; 14389 } 14390 if (vsi->type == I40E_VSI_MAIN) 14391 i40e_devlink_destroy_port(pf); 14392 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14393 err_vsi: 14394 i40e_vsi_clear(vsi); 14395 return NULL; 14396 } 14397 14398 /** 14399 * i40e_vsi_setup - Set up a VSI by a given type 14400 * @pf: board private structure 14401 * @type: VSI type 14402 * @uplink_seid: the switch element to link to 14403 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14404 * 14405 * This allocates the sw VSI structure and its queue resources, then add a VSI 14406 * to the identified VEB. 14407 * 14408 * Returns pointer to the successfully allocated and configure VSI sw struct on 14409 * success, otherwise returns NULL on failure. 14410 **/ 14411 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14412 u16 uplink_seid, u32 param1) 14413 { 14414 struct i40e_vsi *vsi = NULL; 14415 struct i40e_veb *veb = NULL; 14416 u16 alloc_queue_pairs; 14417 int v_idx; 14418 int ret; 14419 14420 /* The requested uplink_seid must be either 14421 * - the PF's port seid 14422 * no VEB is needed because this is the PF 14423 * or this is a Flow Director special case VSI 14424 * - seid of an existing VEB 14425 * - seid of a VSI that owns an existing VEB 14426 * - seid of a VSI that doesn't own a VEB 14427 * a new VEB is created and the VSI becomes the owner 14428 * - seid of the PF VSI, which is what creates the first VEB 14429 * this is a special case of the previous 14430 * 14431 * Find which uplink_seid we were given and create a new VEB if needed 14432 */ 14433 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14434 if (!veb && uplink_seid != pf->mac_seid) { 14435 vsi = i40e_pf_get_vsi_by_seid(pf, uplink_seid); 14436 if (!vsi) { 14437 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14438 uplink_seid); 14439 return NULL; 14440 } 14441 14442 if (vsi->uplink_seid == pf->mac_seid) 14443 veb = i40e_veb_setup(pf, pf->mac_seid, vsi->seid, 14444 vsi->tc_config.enabled_tc); 14445 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14446 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 14447 vsi->tc_config.enabled_tc); 14448 if (veb) { 14449 if (vsi->type != I40E_VSI_MAIN) { 14450 dev_info(&vsi->back->pdev->dev, 14451 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14452 return NULL; 14453 } 14454 /* We come up by default in VEPA mode if SRIOV is not 14455 * already enabled, in which case we can't force VEPA 14456 * mode. 14457 */ 14458 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14459 veb->bridge_mode = BRIDGE_MODE_VEPA; 14460 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14461 } 14462 i40e_config_bridge_mode(veb); 14463 } 14464 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 14465 if (!veb) { 14466 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14467 return NULL; 14468 } 14469 14470 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14471 uplink_seid = veb->seid; 14472 } 14473 14474 /* get vsi sw struct */ 14475 v_idx = i40e_vsi_mem_alloc(pf, type); 14476 if (v_idx < 0) 14477 goto err_alloc; 14478 vsi = pf->vsi[v_idx]; 14479 if (!vsi) 14480 goto err_alloc; 14481 vsi->type = type; 14482 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14483 14484 if (type == I40E_VSI_MAIN) 14485 pf->lan_vsi = v_idx; 14486 else if (type == I40E_VSI_SRIOV) 14487 vsi->vf_id = param1; 14488 /* assign it some queues */ 14489 alloc_queue_pairs = vsi->alloc_queue_pairs * 14490 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14491 14492 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14493 if (ret < 0) { 14494 dev_info(&pf->pdev->dev, 14495 "failed to get tracking for %d queues for VSI %d err=%d\n", 14496 alloc_queue_pairs, vsi->seid, ret); 14497 goto err_vsi; 14498 } 14499 vsi->base_queue = ret; 14500 14501 /* get a VSI from the hardware */ 14502 vsi->uplink_seid = uplink_seid; 14503 ret = i40e_add_vsi(vsi); 14504 if (ret) 14505 goto err_vsi; 14506 14507 switch (vsi->type) { 14508 /* setup the netdev if needed */ 14509 case I40E_VSI_MAIN: 14510 case I40E_VSI_VMDQ2: 14511 ret = i40e_config_netdev(vsi); 14512 if (ret) 14513 goto err_netdev; 14514 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14515 if (ret) 14516 goto err_netdev; 14517 if (vsi->type == I40E_VSI_MAIN) { 14518 ret = i40e_devlink_create_port(pf); 14519 if (ret) 14520 goto err_netdev; 14521 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14522 } 14523 ret = register_netdev(vsi->netdev); 14524 if (ret) 14525 goto err_dl_port; 14526 vsi->netdev_registered = true; 14527 netif_carrier_off(vsi->netdev); 14528 #ifdef CONFIG_I40E_DCB 14529 /* Setup DCB netlink interface */ 14530 i40e_dcbnl_setup(vsi); 14531 #endif /* CONFIG_I40E_DCB */ 14532 fallthrough; 14533 case I40E_VSI_FDIR: 14534 /* set up vectors and rings if needed */ 14535 ret = i40e_vsi_setup_vectors(vsi); 14536 if (ret) 14537 goto err_msix; 14538 14539 ret = i40e_alloc_rings(vsi); 14540 if (ret) 14541 goto err_rings; 14542 14543 /* map all of the rings to the q_vectors */ 14544 i40e_vsi_map_rings_to_vectors(vsi); 14545 14546 i40e_vsi_reset_stats(vsi); 14547 break; 14548 default: 14549 /* no netdev or rings for the other VSI types */ 14550 break; 14551 } 14552 14553 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14554 vsi->type == I40E_VSI_VMDQ2) { 14555 ret = i40e_vsi_config_rss(vsi); 14556 if (ret) 14557 goto err_config; 14558 } 14559 return vsi; 14560 14561 err_config: 14562 i40e_vsi_clear_rings(vsi); 14563 err_rings: 14564 i40e_vsi_free_q_vectors(vsi); 14565 err_msix: 14566 if (vsi->netdev_registered) { 14567 vsi->netdev_registered = false; 14568 unregister_netdev(vsi->netdev); 14569 free_netdev(vsi->netdev); 14570 vsi->netdev = NULL; 14571 } 14572 err_dl_port: 14573 if (vsi->type == I40E_VSI_MAIN) 14574 i40e_devlink_destroy_port(pf); 14575 err_netdev: 14576 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14577 err_vsi: 14578 i40e_vsi_clear(vsi); 14579 err_alloc: 14580 return NULL; 14581 } 14582 14583 /** 14584 * i40e_veb_get_bw_info - Query VEB BW information 14585 * @veb: the veb to query 14586 * 14587 * Query the Tx scheduler BW configuration data for given VEB 14588 **/ 14589 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14590 { 14591 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14592 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14593 struct i40e_pf *pf = veb->pf; 14594 struct i40e_hw *hw = &pf->hw; 14595 u32 tc_bw_max; 14596 int ret = 0; 14597 int i; 14598 14599 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14600 &bw_data, NULL); 14601 if (ret) { 14602 dev_info(&pf->pdev->dev, 14603 "query veb bw config failed, err %pe aq_err %s\n", 14604 ERR_PTR(ret), 14605 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14606 goto out; 14607 } 14608 14609 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14610 &ets_data, NULL); 14611 if (ret) { 14612 dev_info(&pf->pdev->dev, 14613 "query veb bw ets config failed, err %pe aq_err %s\n", 14614 ERR_PTR(ret), 14615 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14616 goto out; 14617 } 14618 14619 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14620 veb->bw_max_quanta = ets_data.tc_bw_max; 14621 veb->is_abs_credits = bw_data.absolute_credits_enable; 14622 veb->enabled_tc = ets_data.tc_valid_bits; 14623 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14624 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14625 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14626 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14627 veb->bw_tc_limit_credits[i] = 14628 le16_to_cpu(bw_data.tc_bw_limits[i]); 14629 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14630 } 14631 14632 out: 14633 return ret; 14634 } 14635 14636 /** 14637 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14638 * @pf: board private structure 14639 * 14640 * On error: returns error code (negative) 14641 * On success: returns vsi index in PF (positive) 14642 **/ 14643 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14644 { 14645 int ret = -ENOENT; 14646 struct i40e_veb *veb; 14647 int i; 14648 14649 /* Need to protect the allocation of switch elements at the PF level */ 14650 mutex_lock(&pf->switch_mutex); 14651 14652 /* VEB list may be fragmented if VEB creation/destruction has 14653 * been happening. We can afford to do a quick scan to look 14654 * for any free slots in the list. 14655 * 14656 * find next empty veb slot, looping back around if necessary 14657 */ 14658 i = 0; 14659 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14660 i++; 14661 if (i >= I40E_MAX_VEB) { 14662 ret = -ENOMEM; 14663 goto err_alloc_veb; /* out of VEB slots! */ 14664 } 14665 14666 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14667 if (!veb) { 14668 ret = -ENOMEM; 14669 goto err_alloc_veb; 14670 } 14671 veb->pf = pf; 14672 veb->idx = i; 14673 veb->enabled_tc = 1; 14674 14675 pf->veb[i] = veb; 14676 ret = i; 14677 err_alloc_veb: 14678 mutex_unlock(&pf->switch_mutex); 14679 return ret; 14680 } 14681 14682 /** 14683 * i40e_switch_branch_release - Delete a branch of the switch tree 14684 * @branch: where to start deleting 14685 * 14686 * This uses recursion to find the tips of the branch to be 14687 * removed, deleting until we get back to and can delete this VEB. 14688 **/ 14689 static void i40e_switch_branch_release(struct i40e_veb *branch) 14690 { 14691 struct i40e_pf *pf = branch->pf; 14692 u16 branch_seid = branch->seid; 14693 u16 veb_idx = branch->idx; 14694 struct i40e_vsi *vsi; 14695 struct i40e_veb *veb; 14696 int i; 14697 14698 /* release any VEBs on this VEB - RECURSION */ 14699 i40e_pf_for_each_veb(pf, i, veb) 14700 if (veb->uplink_seid == branch->seid) 14701 i40e_switch_branch_release(veb); 14702 14703 /* Release the VSIs on this VEB, but not the owner VSI. 14704 * 14705 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14706 * the VEB itself, so don't use (*branch) after this loop. 14707 */ 14708 i40e_pf_for_each_vsi(pf, i, vsi) 14709 if (vsi->uplink_seid == branch_seid && 14710 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14711 i40e_vsi_release(vsi); 14712 14713 /* There's one corner case where the VEB might not have been 14714 * removed, so double check it here and remove it if needed. 14715 * This case happens if the veb was created from the debugfs 14716 * commands and no VSIs were added to it. 14717 */ 14718 if (pf->veb[veb_idx]) 14719 i40e_veb_release(pf->veb[veb_idx]); 14720 } 14721 14722 /** 14723 * i40e_veb_clear - remove veb struct 14724 * @veb: the veb to remove 14725 **/ 14726 static void i40e_veb_clear(struct i40e_veb *veb) 14727 { 14728 if (!veb) 14729 return; 14730 14731 if (veb->pf) { 14732 struct i40e_pf *pf = veb->pf; 14733 14734 mutex_lock(&pf->switch_mutex); 14735 if (pf->veb[veb->idx] == veb) 14736 pf->veb[veb->idx] = NULL; 14737 mutex_unlock(&pf->switch_mutex); 14738 } 14739 14740 kfree(veb); 14741 } 14742 14743 /** 14744 * i40e_veb_release - Delete a VEB and free its resources 14745 * @veb: the VEB being removed 14746 **/ 14747 void i40e_veb_release(struct i40e_veb *veb) 14748 { 14749 struct i40e_vsi *vsi, *vsi_it; 14750 struct i40e_pf *pf; 14751 int i, n = 0; 14752 14753 pf = veb->pf; 14754 14755 /* find the remaining VSI and check for extras */ 14756 i40e_pf_for_each_vsi(pf, i, vsi_it) 14757 if (vsi_it->uplink_seid == veb->seid) { 14758 if (vsi_it->flags & I40E_VSI_FLAG_VEB_OWNER) 14759 vsi = vsi_it; 14760 n++; 14761 } 14762 14763 /* Floating VEB has to be empty and regular one must have 14764 * single owner VSI. 14765 */ 14766 if ((veb->uplink_seid && n != 1) || (!veb->uplink_seid && n != 0)) { 14767 dev_info(&pf->pdev->dev, 14768 "can't remove VEB %d with %d VSIs left\n", 14769 veb->seid, n); 14770 return; 14771 } 14772 14773 /* For regular VEB move the owner VSI to uplink port */ 14774 if (veb->uplink_seid) { 14775 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14776 vsi->uplink_seid = veb->uplink_seid; 14777 vsi->veb_idx = I40E_NO_VEB; 14778 } 14779 14780 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14781 i40e_veb_clear(veb); 14782 } 14783 14784 /** 14785 * i40e_add_veb - create the VEB in the switch 14786 * @veb: the VEB to be instantiated 14787 * @vsi: the controlling VSI 14788 **/ 14789 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14790 { 14791 struct i40e_pf *pf = veb->pf; 14792 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14793 int ret; 14794 14795 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi ? vsi->seid : 0, 14796 veb->enabled_tc, vsi ? false : true, 14797 &veb->seid, enable_stats, NULL); 14798 14799 /* get a VEB from the hardware */ 14800 if (ret) { 14801 dev_info(&pf->pdev->dev, 14802 "couldn't add VEB, err %pe aq_err %s\n", 14803 ERR_PTR(ret), 14804 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14805 return -EPERM; 14806 } 14807 14808 /* get statistics counter */ 14809 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14810 &veb->stats_idx, NULL, NULL, NULL); 14811 if (ret) { 14812 dev_info(&pf->pdev->dev, 14813 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14814 ERR_PTR(ret), 14815 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14816 return -EPERM; 14817 } 14818 ret = i40e_veb_get_bw_info(veb); 14819 if (ret) { 14820 dev_info(&pf->pdev->dev, 14821 "couldn't get VEB bw info, err %pe aq_err %s\n", 14822 ERR_PTR(ret), 14823 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14824 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14825 return -ENOENT; 14826 } 14827 14828 if (vsi) { 14829 vsi->uplink_seid = veb->seid; 14830 vsi->veb_idx = veb->idx; 14831 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14832 } 14833 14834 return 0; 14835 } 14836 14837 /** 14838 * i40e_veb_setup - Set up a VEB 14839 * @pf: board private structure 14840 * @uplink_seid: the switch element to link to 14841 * @vsi_seid: the initial VSI seid 14842 * @enabled_tc: Enabled TC bit-map 14843 * 14844 * This allocates the sw VEB structure and links it into the switch 14845 * It is possible and legal for this to be a duplicate of an already 14846 * existing VEB. It is also possible for both uplink and vsi seids 14847 * to be zero, in order to create a floating VEB. 14848 * 14849 * Returns pointer to the successfully allocated VEB sw struct on 14850 * success, otherwise returns NULL on failure. 14851 **/ 14852 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 uplink_seid, 14853 u16 vsi_seid, u8 enabled_tc) 14854 { 14855 struct i40e_vsi *vsi = NULL; 14856 struct i40e_veb *veb; 14857 int veb_idx; 14858 int ret; 14859 14860 /* if one seid is 0, the other must be 0 to create a floating relay */ 14861 if ((uplink_seid == 0 || vsi_seid == 0) && 14862 (uplink_seid + vsi_seid != 0)) { 14863 dev_info(&pf->pdev->dev, 14864 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14865 uplink_seid, vsi_seid); 14866 return NULL; 14867 } 14868 14869 /* make sure there is such a vsi and uplink */ 14870 if (vsi_seid) { 14871 vsi = i40e_pf_get_vsi_by_seid(pf, vsi_seid); 14872 if (!vsi) { 14873 dev_err(&pf->pdev->dev, "vsi seid %d not found\n", 14874 vsi_seid); 14875 return NULL; 14876 } 14877 } 14878 14879 /* get veb sw struct */ 14880 veb_idx = i40e_veb_mem_alloc(pf); 14881 if (veb_idx < 0) 14882 goto err_alloc; 14883 veb = pf->veb[veb_idx]; 14884 veb->uplink_seid = uplink_seid; 14885 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14886 14887 /* create the VEB in the switch */ 14888 ret = i40e_add_veb(veb, vsi); 14889 if (ret) 14890 goto err_veb; 14891 14892 if (vsi && vsi->idx == pf->lan_vsi) 14893 pf->lan_veb = veb->idx; 14894 14895 return veb; 14896 14897 err_veb: 14898 i40e_veb_clear(veb); 14899 err_alloc: 14900 return NULL; 14901 } 14902 14903 /** 14904 * i40e_setup_pf_switch_element - set PF vars based on switch type 14905 * @pf: board private structure 14906 * @ele: element we are building info from 14907 * @num_reported: total number of elements 14908 * @printconfig: should we print the contents 14909 * 14910 * helper function to assist in extracting a few useful SEID values. 14911 **/ 14912 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14913 struct i40e_aqc_switch_config_element_resp *ele, 14914 u16 num_reported, bool printconfig) 14915 { 14916 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14917 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14918 u8 element_type = ele->element_type; 14919 u16 seid = le16_to_cpu(ele->seid); 14920 struct i40e_veb *veb; 14921 14922 if (printconfig) 14923 dev_info(&pf->pdev->dev, 14924 "type=%d seid=%d uplink=%d downlink=%d\n", 14925 element_type, seid, uplink_seid, downlink_seid); 14926 14927 switch (element_type) { 14928 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14929 pf->mac_seid = seid; 14930 break; 14931 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14932 /* Main VEB? */ 14933 if (uplink_seid != pf->mac_seid) 14934 break; 14935 veb = i40e_pf_get_main_veb(pf); 14936 if (!veb) { 14937 int v; 14938 14939 /* find existing or else empty VEB */ 14940 veb = i40e_pf_get_veb_by_seid(pf, seid); 14941 if (veb) { 14942 pf->lan_veb = veb->idx; 14943 } else { 14944 v = i40e_veb_mem_alloc(pf); 14945 if (v < 0) 14946 break; 14947 pf->lan_veb = v; 14948 } 14949 } 14950 14951 /* Try to get again main VEB as pf->lan_veb may have changed */ 14952 veb = i40e_pf_get_main_veb(pf); 14953 if (!veb) 14954 break; 14955 14956 veb->seid = seid; 14957 veb->uplink_seid = pf->mac_seid; 14958 veb->pf = pf; 14959 break; 14960 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14961 if (num_reported != 1) 14962 break; 14963 /* This is immediately after a reset so we can assume this is 14964 * the PF's VSI 14965 */ 14966 pf->mac_seid = uplink_seid; 14967 pf->main_vsi_seid = seid; 14968 if (printconfig) 14969 dev_info(&pf->pdev->dev, 14970 "pf_seid=%d main_vsi_seid=%d\n", 14971 downlink_seid, pf->main_vsi_seid); 14972 break; 14973 case I40E_SWITCH_ELEMENT_TYPE_PF: 14974 case I40E_SWITCH_ELEMENT_TYPE_VF: 14975 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14976 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14977 case I40E_SWITCH_ELEMENT_TYPE_PE: 14978 case I40E_SWITCH_ELEMENT_TYPE_PA: 14979 /* ignore these for now */ 14980 break; 14981 default: 14982 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14983 element_type, seid); 14984 break; 14985 } 14986 } 14987 14988 /** 14989 * i40e_fetch_switch_configuration - Get switch config from firmware 14990 * @pf: board private structure 14991 * @printconfig: should we print the contents 14992 * 14993 * Get the current switch configuration from the device and 14994 * extract a few useful SEID values. 14995 **/ 14996 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14997 { 14998 struct i40e_aqc_get_switch_config_resp *sw_config; 14999 u16 next_seid = 0; 15000 int ret = 0; 15001 u8 *aq_buf; 15002 int i; 15003 15004 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 15005 if (!aq_buf) 15006 return -ENOMEM; 15007 15008 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 15009 do { 15010 u16 num_reported, num_total; 15011 15012 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 15013 I40E_AQ_LARGE_BUF, 15014 &next_seid, NULL); 15015 if (ret) { 15016 dev_info(&pf->pdev->dev, 15017 "get switch config failed err %d aq_err %s\n", 15018 ret, 15019 i40e_aq_str(&pf->hw, 15020 pf->hw.aq.asq_last_status)); 15021 kfree(aq_buf); 15022 return -ENOENT; 15023 } 15024 15025 num_reported = le16_to_cpu(sw_config->header.num_reported); 15026 num_total = le16_to_cpu(sw_config->header.num_total); 15027 15028 if (printconfig) 15029 dev_info(&pf->pdev->dev, 15030 "header: %d reported %d total\n", 15031 num_reported, num_total); 15032 15033 for (i = 0; i < num_reported; i++) { 15034 struct i40e_aqc_switch_config_element_resp *ele = 15035 &sw_config->element[i]; 15036 15037 i40e_setup_pf_switch_element(pf, ele, num_reported, 15038 printconfig); 15039 } 15040 } while (next_seid != 0); 15041 15042 kfree(aq_buf); 15043 return ret; 15044 } 15045 15046 /** 15047 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 15048 * @pf: board private structure 15049 * @reinit: if the Main VSI needs to re-initialized. 15050 * @lock_acquired: indicates whether or not the lock has been acquired 15051 * 15052 * Returns 0 on success, negative value on failure 15053 **/ 15054 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 15055 { 15056 struct i40e_vsi *main_vsi; 15057 u16 flags = 0; 15058 int ret; 15059 15060 /* find out what's out there already */ 15061 ret = i40e_fetch_switch_configuration(pf, false); 15062 if (ret) { 15063 dev_info(&pf->pdev->dev, 15064 "couldn't fetch switch config, err %pe aq_err %s\n", 15065 ERR_PTR(ret), 15066 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15067 return ret; 15068 } 15069 i40e_pf_reset_stats(pf); 15070 15071 /* set the switch config bit for the whole device to 15072 * support limited promisc or true promisc 15073 * when user requests promisc. The default is limited 15074 * promisc. 15075 */ 15076 15077 if ((pf->hw.pf_id == 0) && 15078 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15079 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15080 pf->last_sw_conf_flags = flags; 15081 } 15082 15083 if (pf->hw.pf_id == 0) { 15084 u16 valid_flags; 15085 15086 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15087 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15088 NULL); 15089 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15090 dev_info(&pf->pdev->dev, 15091 "couldn't set switch config bits, err %pe aq_err %s\n", 15092 ERR_PTR(ret), 15093 i40e_aq_str(&pf->hw, 15094 pf->hw.aq.asq_last_status)); 15095 /* not a fatal problem, just keep going */ 15096 } 15097 pf->last_sw_conf_valid_flags = valid_flags; 15098 } 15099 15100 /* first time setup */ 15101 main_vsi = i40e_pf_get_main_vsi(pf); 15102 if (!main_vsi || reinit) { 15103 struct i40e_veb *veb; 15104 u16 uplink_seid; 15105 15106 /* Set up the PF VSI associated with the PF's main VSI 15107 * that is already in the HW switch 15108 */ 15109 veb = i40e_pf_get_main_veb(pf); 15110 if (veb) 15111 uplink_seid = veb->seid; 15112 else 15113 uplink_seid = pf->mac_seid; 15114 if (!main_vsi) 15115 main_vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, 15116 uplink_seid, 0); 15117 else if (reinit) 15118 main_vsi = i40e_vsi_reinit_setup(main_vsi); 15119 if (!main_vsi) { 15120 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15121 i40e_cloud_filter_exit(pf); 15122 i40e_fdir_teardown(pf); 15123 return -EAGAIN; 15124 } 15125 } else { 15126 /* force a reset of TC and queue layout configurations */ 15127 main_vsi->seid = pf->main_vsi_seid; 15128 i40e_vsi_reconfig_tc(main_vsi); 15129 } 15130 i40e_vlan_stripping_disable(main_vsi); 15131 15132 i40e_fdir_sb_setup(pf); 15133 15134 /* Setup static PF queue filter control settings */ 15135 ret = i40e_setup_pf_filter_control(pf); 15136 if (ret) { 15137 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15138 ret); 15139 /* Failure here should not stop continuing other steps */ 15140 } 15141 15142 /* enable RSS in the HW, even for only one queue, as the stack can use 15143 * the hash 15144 */ 15145 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15146 i40e_pf_config_rss(pf); 15147 15148 /* fill in link information and enable LSE reporting */ 15149 i40e_link_event(pf); 15150 15151 i40e_ptp_init(pf); 15152 15153 if (!lock_acquired) 15154 rtnl_lock(); 15155 15156 /* repopulate tunnel port filters */ 15157 udp_tunnel_nic_reset_ntf(main_vsi->netdev); 15158 15159 if (!lock_acquired) 15160 rtnl_unlock(); 15161 15162 return ret; 15163 } 15164 15165 /** 15166 * i40e_determine_queue_usage - Work out queue distribution 15167 * @pf: board private structure 15168 **/ 15169 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15170 { 15171 int queues_left; 15172 int q_max; 15173 15174 pf->num_lan_qps = 0; 15175 15176 /* Find the max queues to be put into basic use. We'll always be 15177 * using TC0, whether or not DCB is running, and TC0 will get the 15178 * big RSS set. 15179 */ 15180 queues_left = pf->hw.func_caps.num_tx_qp; 15181 15182 if ((queues_left == 1) || 15183 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15184 /* one qp for PF, no queues for anything else */ 15185 queues_left = 0; 15186 pf->alloc_rss_size = pf->num_lan_qps = 1; 15187 15188 /* make sure all the fancies are disabled */ 15189 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15190 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15191 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15192 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15193 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15194 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15195 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15196 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15197 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15198 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15199 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15200 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15201 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15202 /* one qp for PF */ 15203 pf->alloc_rss_size = pf->num_lan_qps = 1; 15204 queues_left -= pf->num_lan_qps; 15205 15206 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15207 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15208 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15209 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15210 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15211 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15212 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15213 } else { 15214 /* Not enough queues for all TCs */ 15215 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15216 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15217 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15218 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15219 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15220 } 15221 15222 /* limit lan qps to the smaller of qps, cpus or msix */ 15223 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15224 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15225 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15226 pf->num_lan_qps = q_max; 15227 15228 queues_left -= pf->num_lan_qps; 15229 } 15230 15231 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15232 if (queues_left > 1) { 15233 queues_left -= 1; /* save 1 queue for FD */ 15234 } else { 15235 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15236 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15237 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15238 } 15239 } 15240 15241 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15242 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15243 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15244 (queues_left / pf->num_vf_qps)); 15245 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15246 } 15247 15248 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15249 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15250 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15251 (queues_left / pf->num_vmdq_qps)); 15252 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15253 } 15254 15255 pf->queues_left = queues_left; 15256 dev_dbg(&pf->pdev->dev, 15257 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15258 pf->hw.func_caps.num_tx_qp, 15259 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15260 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15261 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15262 queues_left); 15263 } 15264 15265 /** 15266 * i40e_setup_pf_filter_control - Setup PF static filter control 15267 * @pf: PF to be setup 15268 * 15269 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15270 * settings. If PE/FCoE are enabled then it will also set the per PF 15271 * based filter sizes required for them. It also enables Flow director, 15272 * ethertype and macvlan type filter settings for the pf. 15273 * 15274 * Returns 0 on success, negative on failure 15275 **/ 15276 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15277 { 15278 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15279 15280 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15281 15282 /* Flow Director is enabled */ 15283 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15284 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15285 settings->enable_fdir = true; 15286 15287 /* Ethtype and MACVLAN filters enabled for PF */ 15288 settings->enable_ethtype = true; 15289 settings->enable_macvlan = true; 15290 15291 if (i40e_set_filter_control(&pf->hw, settings)) 15292 return -ENOENT; 15293 15294 return 0; 15295 } 15296 15297 #define INFO_STRING_LEN 255 15298 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15299 static void i40e_print_features(struct i40e_pf *pf) 15300 { 15301 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 15302 struct i40e_hw *hw = &pf->hw; 15303 char *buf; 15304 int i; 15305 15306 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15307 if (!buf) 15308 return; 15309 15310 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15311 #ifdef CONFIG_PCI_IOV 15312 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15313 #endif 15314 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15315 pf->hw.func_caps.num_vsis, main_vsi->num_queue_pairs); 15316 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15317 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15318 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15319 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15320 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15321 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15322 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15323 } 15324 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15325 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15326 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15327 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15328 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15329 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15330 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15331 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15332 else 15333 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15334 15335 dev_info(&pf->pdev->dev, "%s\n", buf); 15336 kfree(buf); 15337 WARN_ON(i > INFO_STRING_LEN); 15338 } 15339 15340 /** 15341 * i40e_get_platform_mac_addr - get platform-specific MAC address 15342 * @pdev: PCI device information struct 15343 * @pf: board private structure 15344 * 15345 * Look up the MAC address for the device. First we'll try 15346 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15347 * specific fallback. Otherwise, we'll default to the stored value in 15348 * firmware. 15349 **/ 15350 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15351 { 15352 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15353 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15354 } 15355 15356 /** 15357 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15358 * @fec_cfg: FEC option to set in flags 15359 * @flags: ptr to flags in which we set FEC option 15360 **/ 15361 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15362 { 15363 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15364 set_bit(I40E_FLAG_RS_FEC, flags); 15365 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15366 } 15367 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15368 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15369 set_bit(I40E_FLAG_RS_FEC, flags); 15370 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15371 } 15372 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15373 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15374 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15375 clear_bit(I40E_FLAG_RS_FEC, flags); 15376 } 15377 if (fec_cfg == 0) { 15378 clear_bit(I40E_FLAG_RS_FEC, flags); 15379 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15380 } 15381 } 15382 15383 /** 15384 * i40e_check_recovery_mode - check if we are running transition firmware 15385 * @pf: board private structure 15386 * 15387 * Check registers indicating the firmware runs in recovery mode. Sets the 15388 * appropriate driver state. 15389 * 15390 * Returns true if the recovery mode was detected, false otherwise 15391 **/ 15392 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15393 { 15394 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15395 15396 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15397 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15398 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15399 set_bit(__I40E_RECOVERY_MODE, pf->state); 15400 15401 return true; 15402 } 15403 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15404 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15405 15406 return false; 15407 } 15408 15409 /** 15410 * i40e_pf_loop_reset - perform reset in a loop. 15411 * @pf: board private structure 15412 * 15413 * This function is useful when a NIC is about to enter recovery mode. 15414 * When a NIC's internal data structures are corrupted the NIC's 15415 * firmware is going to enter recovery mode. 15416 * Right after a POR it takes about 7 minutes for firmware to enter 15417 * recovery mode. Until that time a NIC is in some kind of intermediate 15418 * state. After that time period the NIC almost surely enters 15419 * recovery mode. The only way for a driver to detect intermediate 15420 * state is to issue a series of pf-resets and check a return value. 15421 * If a PF reset returns success then the firmware could be in recovery 15422 * mode so the caller of this code needs to check for recovery mode 15423 * if this function returns success. There is a little chance that 15424 * firmware will hang in intermediate state forever. 15425 * Since waiting 7 minutes is quite a lot of time this function waits 15426 * 10 seconds and then gives up by returning an error. 15427 * 15428 * Return 0 on success, negative on failure. 15429 **/ 15430 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15431 { 15432 /* wait max 10 seconds for PF reset to succeed */ 15433 const unsigned long time_end = jiffies + 10 * HZ; 15434 struct i40e_hw *hw = &pf->hw; 15435 int ret; 15436 15437 ret = i40e_pf_reset(hw); 15438 while (ret != 0 && time_before(jiffies, time_end)) { 15439 usleep_range(10000, 20000); 15440 ret = i40e_pf_reset(hw); 15441 } 15442 15443 if (ret == 0) 15444 pf->pfr_count++; 15445 else 15446 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15447 15448 return ret; 15449 } 15450 15451 /** 15452 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15453 * @pf: board private structure 15454 * 15455 * Check FW registers to determine if FW issued unexpected EMP Reset. 15456 * Every time when unexpected EMP Reset occurs the FW increments 15457 * a counter of unexpected EMP Resets. When the counter reaches 10 15458 * the FW should enter the Recovery mode 15459 * 15460 * Returns true if FW issued unexpected EMP Reset 15461 **/ 15462 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15463 { 15464 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15465 I40E_GL_FWSTS_FWS1B_MASK; 15466 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15467 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15468 } 15469 15470 /** 15471 * i40e_handle_resets - handle EMP resets and PF resets 15472 * @pf: board private structure 15473 * 15474 * Handle both EMP resets and PF resets and conclude whether there are 15475 * any issues regarding these resets. If there are any issues then 15476 * generate log entry. 15477 * 15478 * Return 0 if NIC is healthy or negative value when there are issues 15479 * with resets 15480 **/ 15481 static int i40e_handle_resets(struct i40e_pf *pf) 15482 { 15483 const int pfr = i40e_pf_loop_reset(pf); 15484 const bool is_empr = i40e_check_fw_empr(pf); 15485 15486 if (is_empr || pfr != 0) 15487 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15488 15489 return is_empr ? -EIO : pfr; 15490 } 15491 15492 /** 15493 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15494 * @pf: board private structure 15495 * @hw: ptr to the hardware info 15496 * 15497 * This function does a minimal setup of all subsystems needed for running 15498 * recovery mode. 15499 * 15500 * Returns 0 on success, negative on failure 15501 **/ 15502 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15503 { 15504 struct i40e_vsi *vsi; 15505 int err; 15506 int v_idx; 15507 15508 pci_set_drvdata(pf->pdev, pf); 15509 pci_save_state(pf->pdev); 15510 15511 /* set up periodic task facility */ 15512 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15513 pf->service_timer_period = HZ; 15514 15515 INIT_WORK(&pf->service_task, i40e_service_task); 15516 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15517 15518 err = i40e_init_interrupt_scheme(pf); 15519 if (err) 15520 goto err_switch_setup; 15521 15522 /* The number of VSIs reported by the FW is the minimum guaranteed 15523 * to us; HW supports far more and we share the remaining pool with 15524 * the other PFs. We allocate space for more than the guarantee with 15525 * the understanding that we might not get them all later. 15526 */ 15527 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15528 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15529 else 15530 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15531 15532 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15533 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15534 GFP_KERNEL); 15535 if (!pf->vsi) { 15536 err = -ENOMEM; 15537 goto err_switch_setup; 15538 } 15539 15540 /* We allocate one VSI which is needed as absolute minimum 15541 * in order to register the netdev 15542 */ 15543 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15544 if (v_idx < 0) { 15545 err = v_idx; 15546 goto err_switch_setup; 15547 } 15548 pf->lan_vsi = v_idx; 15549 vsi = pf->vsi[v_idx]; 15550 if (!vsi) { 15551 err = -EFAULT; 15552 goto err_switch_setup; 15553 } 15554 vsi->alloc_queue_pairs = 1; 15555 err = i40e_config_netdev(vsi); 15556 if (err) 15557 goto err_switch_setup; 15558 err = register_netdev(vsi->netdev); 15559 if (err) 15560 goto err_switch_setup; 15561 vsi->netdev_registered = true; 15562 i40e_dbg_pf_init(pf); 15563 15564 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15565 if (err) 15566 goto err_switch_setup; 15567 15568 /* tell the firmware that we're starting */ 15569 i40e_send_version(pf); 15570 15571 /* since everything's happy, start the service_task timer */ 15572 mod_timer(&pf->service_timer, 15573 round_jiffies(jiffies + pf->service_timer_period)); 15574 15575 return 0; 15576 15577 err_switch_setup: 15578 i40e_reset_interrupt_capability(pf); 15579 timer_shutdown_sync(&pf->service_timer); 15580 i40e_shutdown_adminq(hw); 15581 iounmap(hw->hw_addr); 15582 pci_release_mem_regions(pf->pdev); 15583 pci_disable_device(pf->pdev); 15584 i40e_free_pf(pf); 15585 15586 return err; 15587 } 15588 15589 /** 15590 * i40e_set_subsystem_device_id - set subsystem device id 15591 * @hw: pointer to the hardware info 15592 * 15593 * Set PCI subsystem device id either from a pci_dev structure or 15594 * a specific FW register. 15595 **/ 15596 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15597 { 15598 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15599 15600 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15601 pf->pdev->subsystem_device : 15602 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15603 } 15604 15605 /** 15606 * i40e_probe - Device initialization routine 15607 * @pdev: PCI device information struct 15608 * @ent: entry in i40e_pci_tbl 15609 * 15610 * i40e_probe initializes a PF identified by a pci_dev structure. 15611 * The OS initialization, configuring of the PF private structure, 15612 * and a hardware reset occur. 15613 * 15614 * Returns 0 on success, negative on failure 15615 **/ 15616 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15617 { 15618 struct i40e_aq_get_phy_abilities_resp abilities; 15619 #ifdef CONFIG_I40E_DCB 15620 enum i40e_get_fw_lldp_status_resp lldp_status; 15621 #endif /* CONFIG_I40E_DCB */ 15622 struct i40e_vsi *vsi; 15623 struct i40e_pf *pf; 15624 struct i40e_hw *hw; 15625 u16 wol_nvm_bits; 15626 char nvm_ver[32]; 15627 u16 link_status; 15628 #ifdef CONFIG_I40E_DCB 15629 int status; 15630 #endif /* CONFIG_I40E_DCB */ 15631 int err; 15632 u32 val; 15633 15634 err = pci_enable_device_mem(pdev); 15635 if (err) 15636 return err; 15637 15638 /* set up for high or low dma */ 15639 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15640 if (err) { 15641 dev_err(&pdev->dev, 15642 "DMA configuration failed: 0x%x\n", err); 15643 goto err_dma; 15644 } 15645 15646 /* set up pci connections */ 15647 err = pci_request_mem_regions(pdev, i40e_driver_name); 15648 if (err) { 15649 dev_info(&pdev->dev, 15650 "pci_request_selected_regions failed %d\n", err); 15651 goto err_pci_reg; 15652 } 15653 15654 pci_set_master(pdev); 15655 15656 /* Now that we have a PCI connection, we need to do the 15657 * low level device setup. This is primarily setting up 15658 * the Admin Queue structures and then querying for the 15659 * device's current profile information. 15660 */ 15661 pf = i40e_alloc_pf(&pdev->dev); 15662 if (!pf) { 15663 err = -ENOMEM; 15664 goto err_pf_alloc; 15665 } 15666 pf->next_vsi = 0; 15667 pf->pdev = pdev; 15668 set_bit(__I40E_DOWN, pf->state); 15669 15670 hw = &pf->hw; 15671 15672 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15673 I40E_MAX_CSR_SPACE); 15674 /* We believe that the highest register to read is 15675 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15676 * is not less than that before mapping to prevent a 15677 * kernel panic. 15678 */ 15679 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15680 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15681 pf->ioremap_len); 15682 err = -ENOMEM; 15683 goto err_ioremap; 15684 } 15685 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15686 if (!hw->hw_addr) { 15687 err = -EIO; 15688 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15689 (unsigned int)pci_resource_start(pdev, 0), 15690 pf->ioremap_len, err); 15691 goto err_ioremap; 15692 } 15693 hw->vendor_id = pdev->vendor; 15694 hw->device_id = pdev->device; 15695 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15696 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15697 i40e_set_subsystem_device_id(hw); 15698 hw->bus.device = PCI_SLOT(pdev->devfn); 15699 hw->bus.func = PCI_FUNC(pdev->devfn); 15700 hw->bus.bus_id = pdev->bus->number; 15701 15702 /* Select something other than the 802.1ad ethertype for the 15703 * switch to use internally and drop on ingress. 15704 */ 15705 hw->switch_tag = 0xffff; 15706 hw->first_tag = ETH_P_8021AD; 15707 hw->second_tag = ETH_P_8021Q; 15708 15709 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15710 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15711 INIT_LIST_HEAD(&pf->ddp_old_prof); 15712 15713 /* set up the locks for the AQ, do this only once in probe 15714 * and destroy them only once in remove 15715 */ 15716 mutex_init(&hw->aq.asq_mutex); 15717 mutex_init(&hw->aq.arq_mutex); 15718 15719 pf->msg_enable = netif_msg_init(debug, 15720 NETIF_MSG_DRV | 15721 NETIF_MSG_PROBE | 15722 NETIF_MSG_LINK); 15723 if (debug < -1) 15724 pf->hw.debug_mask = debug; 15725 15726 /* do a special CORER for clearing PXE mode once at init */ 15727 if (hw->revision_id == 0 && 15728 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15729 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15730 i40e_flush(hw); 15731 msleep(200); 15732 pf->corer_count++; 15733 15734 i40e_clear_pxe_mode(hw); 15735 } 15736 15737 /* Reset here to make sure all is clean and to define PF 'n' */ 15738 i40e_clear_hw(hw); 15739 15740 err = i40e_set_mac_type(hw); 15741 if (err) { 15742 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15743 err); 15744 goto err_pf_reset; 15745 } 15746 15747 err = i40e_handle_resets(pf); 15748 if (err) 15749 goto err_pf_reset; 15750 15751 i40e_check_recovery_mode(pf); 15752 15753 if (is_kdump_kernel()) { 15754 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15755 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15756 } else { 15757 hw->aq.num_arq_entries = I40E_AQ_LEN; 15758 hw->aq.num_asq_entries = I40E_AQ_LEN; 15759 } 15760 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15761 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15762 15763 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15764 "%s-%s:misc", 15765 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15766 15767 err = i40e_init_shared_code(hw); 15768 if (err) { 15769 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15770 err); 15771 goto err_pf_reset; 15772 } 15773 15774 /* set up a default setting for link flow control */ 15775 pf->hw.fc.requested_mode = I40E_FC_NONE; 15776 15777 err = i40e_init_adminq(hw); 15778 if (err) { 15779 if (err == -EIO) 15780 dev_info(&pdev->dev, 15781 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15782 hw->aq.api_maj_ver, 15783 hw->aq.api_min_ver, 15784 I40E_FW_API_VERSION_MAJOR, 15785 I40E_FW_MINOR_VERSION(hw)); 15786 else 15787 dev_info(&pdev->dev, 15788 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15789 15790 goto err_pf_reset; 15791 } 15792 i40e_get_oem_version(hw); 15793 i40e_get_pba_string(hw); 15794 15795 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15796 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15797 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15798 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15799 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15800 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15801 hw->subsystem_device_id); 15802 15803 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15804 I40E_FW_MINOR_VERSION(hw) + 1)) 15805 dev_dbg(&pdev->dev, 15806 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15807 hw->aq.api_maj_ver, 15808 hw->aq.api_min_ver, 15809 I40E_FW_API_VERSION_MAJOR, 15810 I40E_FW_MINOR_VERSION(hw)); 15811 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15812 dev_info(&pdev->dev, 15813 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15814 hw->aq.api_maj_ver, 15815 hw->aq.api_min_ver, 15816 I40E_FW_API_VERSION_MAJOR, 15817 I40E_FW_MINOR_VERSION(hw)); 15818 15819 i40e_verify_eeprom(pf); 15820 15821 /* Rev 0 hardware was never productized */ 15822 if (hw->revision_id < 1) 15823 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15824 15825 i40e_clear_pxe_mode(hw); 15826 15827 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15828 if (err) 15829 goto err_adminq_setup; 15830 15831 err = i40e_sw_init(pf); 15832 if (err) { 15833 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15834 goto err_sw_init; 15835 } 15836 15837 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15838 return i40e_init_recovery_mode(pf, hw); 15839 15840 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15841 hw->func_caps.num_rx_qp, 0, 0); 15842 if (err) { 15843 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15844 goto err_init_lan_hmc; 15845 } 15846 15847 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15848 if (err) { 15849 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15850 err = -ENOENT; 15851 goto err_configure_lan_hmc; 15852 } 15853 15854 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15855 * Ignore error return codes because if it was already disabled via 15856 * hardware settings this will fail 15857 */ 15858 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15859 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15860 i40e_aq_stop_lldp(hw, true, false, NULL); 15861 } 15862 15863 /* allow a platform config to override the HW addr */ 15864 i40e_get_platform_mac_addr(pdev, pf); 15865 15866 if (!is_valid_ether_addr(hw->mac.addr)) { 15867 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15868 err = -EIO; 15869 goto err_mac_addr; 15870 } 15871 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15872 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15873 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15874 if (is_valid_ether_addr(hw->mac.port_addr)) 15875 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15876 15877 i40e_ptp_alloc_pins(pf); 15878 pci_set_drvdata(pdev, pf); 15879 pci_save_state(pdev); 15880 15881 #ifdef CONFIG_I40E_DCB 15882 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15883 (!status && 15884 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15885 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15886 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15887 dev_info(&pdev->dev, 15888 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15889 "FW LLDP is disabled\n" : 15890 "FW LLDP is enabled\n"); 15891 15892 /* Enable FW to write default DCB config on link-up */ 15893 i40e_aq_set_dcb_parameters(hw, true, NULL); 15894 15895 err = i40e_init_pf_dcb(pf); 15896 if (err) { 15897 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15898 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15899 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15900 /* Continue without DCB enabled */ 15901 } 15902 #endif /* CONFIG_I40E_DCB */ 15903 15904 /* set up periodic task facility */ 15905 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15906 pf->service_timer_period = HZ; 15907 15908 INIT_WORK(&pf->service_task, i40e_service_task); 15909 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15910 15911 /* NVM bit on means WoL disabled for the port */ 15912 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15913 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15914 pf->wol_en = false; 15915 else 15916 pf->wol_en = true; 15917 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15918 15919 /* set up the main switch operations */ 15920 i40e_determine_queue_usage(pf); 15921 err = i40e_init_interrupt_scheme(pf); 15922 if (err) 15923 goto err_switch_setup; 15924 15925 /* Reduce Tx and Rx pairs for kdump 15926 * When MSI-X is enabled, it's not allowed to use more TC queue 15927 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15928 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15929 */ 15930 if (is_kdump_kernel()) 15931 pf->num_lan_msix = 1; 15932 15933 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15934 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15935 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15936 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15937 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15938 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15939 UDP_TUNNEL_TYPE_GENEVE; 15940 15941 /* The number of VSIs reported by the FW is the minimum guaranteed 15942 * to us; HW supports far more and we share the remaining pool with 15943 * the other PFs. We allocate space for more than the guarantee with 15944 * the understanding that we might not get them all later. 15945 */ 15946 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15947 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15948 else 15949 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15950 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15951 dev_warn(&pf->pdev->dev, 15952 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15953 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15954 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15955 } 15956 15957 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15958 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15959 GFP_KERNEL); 15960 if (!pf->vsi) { 15961 err = -ENOMEM; 15962 goto err_switch_setup; 15963 } 15964 15965 #ifdef CONFIG_PCI_IOV 15966 /* prep for VF support */ 15967 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15968 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15969 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15970 if (pci_num_vf(pdev)) 15971 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15972 } 15973 #endif 15974 err = i40e_setup_pf_switch(pf, false, false); 15975 if (err) { 15976 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15977 goto err_vsis; 15978 } 15979 15980 vsi = i40e_pf_get_main_vsi(pf); 15981 INIT_LIST_HEAD(&vsi->ch_list); 15982 15983 /* if FDIR VSI was set up, start it now */ 15984 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 15985 if (vsi) 15986 i40e_vsi_open(vsi); 15987 15988 /* The driver only wants link up/down and module qualification 15989 * reports from firmware. Note the negative logic. 15990 */ 15991 err = i40e_aq_set_phy_int_mask(&pf->hw, 15992 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15993 I40E_AQ_EVENT_MEDIA_NA | 15994 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15995 if (err) 15996 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 15997 ERR_PTR(err), 15998 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15999 16000 /* Reconfigure hardware for allowing smaller MSS in the case 16001 * of TSO, so that we avoid the MDD being fired and causing 16002 * a reset in the case of small MSS+TSO. 16003 */ 16004 val = rd32(hw, I40E_REG_MSS); 16005 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 16006 val &= ~I40E_REG_MSS_MIN_MASK; 16007 val |= I40E_64BYTE_MSS; 16008 wr32(hw, I40E_REG_MSS, val); 16009 } 16010 16011 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 16012 msleep(75); 16013 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 16014 if (err) 16015 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 16016 ERR_PTR(err), 16017 i40e_aq_str(&pf->hw, 16018 pf->hw.aq.asq_last_status)); 16019 } 16020 /* The main driver is (mostly) up and happy. We need to set this state 16021 * before setting up the misc vector or we get a race and the vector 16022 * ends up disabled forever. 16023 */ 16024 clear_bit(__I40E_DOWN, pf->state); 16025 16026 /* In case of MSIX we are going to setup the misc vector right here 16027 * to handle admin queue events etc. In case of legacy and MSI 16028 * the misc functionality and queue processing is combined in 16029 * the same vector and that gets setup at open. 16030 */ 16031 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 16032 err = i40e_setup_misc_vector(pf); 16033 if (err) { 16034 dev_info(&pdev->dev, 16035 "setup of misc vector failed: %d\n", err); 16036 i40e_cloud_filter_exit(pf); 16037 i40e_fdir_teardown(pf); 16038 goto err_vsis; 16039 } 16040 } 16041 16042 #ifdef CONFIG_PCI_IOV 16043 /* prep for VF support */ 16044 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 16045 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 16046 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 16047 /* disable link interrupts for VFs */ 16048 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 16049 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 16050 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 16051 i40e_flush(hw); 16052 16053 if (pci_num_vf(pdev)) { 16054 dev_info(&pdev->dev, 16055 "Active VFs found, allocating resources.\n"); 16056 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 16057 if (err) 16058 dev_info(&pdev->dev, 16059 "Error %d allocating resources for existing VFs\n", 16060 err); 16061 } 16062 } 16063 #endif /* CONFIG_PCI_IOV */ 16064 16065 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16066 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16067 pf->num_iwarp_msix, 16068 I40E_IWARP_IRQ_PILE_ID); 16069 if (pf->iwarp_base_vector < 0) { 16070 dev_info(&pdev->dev, 16071 "failed to get tracking for %d vectors for IWARP err=%d\n", 16072 pf->num_iwarp_msix, pf->iwarp_base_vector); 16073 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16074 } 16075 } 16076 16077 i40e_dbg_pf_init(pf); 16078 16079 /* tell the firmware that we're starting */ 16080 i40e_send_version(pf); 16081 16082 /* since everything's happy, start the service_task timer */ 16083 mod_timer(&pf->service_timer, 16084 round_jiffies(jiffies + pf->service_timer_period)); 16085 16086 /* add this PF to client device list and launch a client service task */ 16087 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16088 err = i40e_lan_add_device(pf); 16089 if (err) 16090 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16091 err); 16092 } 16093 16094 #define PCI_SPEED_SIZE 8 16095 #define PCI_WIDTH_SIZE 8 16096 /* Devices on the IOSF bus do not have this information 16097 * and will report PCI Gen 1 x 1 by default so don't bother 16098 * checking them. 16099 */ 16100 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16101 char speed[PCI_SPEED_SIZE] = "Unknown"; 16102 char width[PCI_WIDTH_SIZE] = "Unknown"; 16103 16104 /* Get the negotiated link width and speed from PCI config 16105 * space 16106 */ 16107 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16108 &link_status); 16109 16110 i40e_set_pci_config_data(hw, link_status); 16111 16112 switch (hw->bus.speed) { 16113 case i40e_bus_speed_8000: 16114 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16115 case i40e_bus_speed_5000: 16116 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16117 case i40e_bus_speed_2500: 16118 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16119 default: 16120 break; 16121 } 16122 switch (hw->bus.width) { 16123 case i40e_bus_width_pcie_x8: 16124 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16125 case i40e_bus_width_pcie_x4: 16126 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16127 case i40e_bus_width_pcie_x2: 16128 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16129 case i40e_bus_width_pcie_x1: 16130 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16131 default: 16132 break; 16133 } 16134 16135 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16136 speed, width); 16137 16138 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16139 hw->bus.speed < i40e_bus_speed_8000) { 16140 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16141 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16142 } 16143 } 16144 16145 /* get the requested speeds from the fw */ 16146 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16147 if (err) 16148 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16149 ERR_PTR(err), 16150 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16151 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16152 16153 /* set the FEC config due to the board capabilities */ 16154 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16155 16156 /* get the supported phy types from the fw */ 16157 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16158 if (err) 16159 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16160 ERR_PTR(err), 16161 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16162 16163 /* make sure the MFS hasn't been set lower than the default */ 16164 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16165 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK, 16166 rd32(&pf->hw, I40E_PRTGL_SAH)); 16167 if (val < MAX_FRAME_SIZE_DEFAULT) 16168 dev_warn(&pdev->dev, "MFS for port %x (%d) has been set below the default (%d)\n", 16169 pf->hw.port, val, MAX_FRAME_SIZE_DEFAULT); 16170 16171 /* Add a filter to drop all Flow control frames from any VSI from being 16172 * transmitted. By doing so we stop a malicious VF from sending out 16173 * PAUSE or PFC frames and potentially controlling traffic for other 16174 * PF/VF VSIs. 16175 * The FW can still send Flow control frames if enabled. 16176 */ 16177 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16178 pf->main_vsi_seid); 16179 16180 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16181 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16182 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16183 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16184 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16185 /* print a string summarizing features */ 16186 i40e_print_features(pf); 16187 16188 i40e_devlink_register(pf); 16189 16190 return 0; 16191 16192 /* Unwind what we've done if something failed in the setup */ 16193 err_vsis: 16194 set_bit(__I40E_DOWN, pf->state); 16195 i40e_clear_interrupt_scheme(pf); 16196 kfree(pf->vsi); 16197 err_switch_setup: 16198 i40e_reset_interrupt_capability(pf); 16199 timer_shutdown_sync(&pf->service_timer); 16200 err_mac_addr: 16201 err_configure_lan_hmc: 16202 (void)i40e_shutdown_lan_hmc(hw); 16203 err_init_lan_hmc: 16204 kfree(pf->qp_pile); 16205 err_sw_init: 16206 err_adminq_setup: 16207 err_pf_reset: 16208 iounmap(hw->hw_addr); 16209 err_ioremap: 16210 i40e_free_pf(pf); 16211 err_pf_alloc: 16212 pci_release_mem_regions(pdev); 16213 err_pci_reg: 16214 err_dma: 16215 pci_disable_device(pdev); 16216 return err; 16217 } 16218 16219 /** 16220 * i40e_remove - Device removal routine 16221 * @pdev: PCI device information struct 16222 * 16223 * i40e_remove is called by the PCI subsystem to alert the driver 16224 * that is should release a PCI device. This could be caused by a 16225 * Hot-Plug event, or because the driver is going to be removed from 16226 * memory. 16227 **/ 16228 static void i40e_remove(struct pci_dev *pdev) 16229 { 16230 struct i40e_pf *pf = pci_get_drvdata(pdev); 16231 struct i40e_hw *hw = &pf->hw; 16232 struct i40e_vsi *vsi; 16233 struct i40e_veb *veb; 16234 int ret_code; 16235 int i; 16236 16237 i40e_devlink_unregister(pf); 16238 16239 i40e_dbg_pf_exit(pf); 16240 16241 i40e_ptp_stop(pf); 16242 16243 /* Disable RSS in hw */ 16244 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16245 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16246 16247 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16248 * flags, once they are set, i40e_rebuild should not be called as 16249 * i40e_prep_for_reset always returns early. 16250 */ 16251 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16252 usleep_range(1000, 2000); 16253 set_bit(__I40E_IN_REMOVE, pf->state); 16254 16255 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16256 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16257 i40e_free_vfs(pf); 16258 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16259 } 16260 /* no more scheduling of any task */ 16261 set_bit(__I40E_SUSPENDED, pf->state); 16262 set_bit(__I40E_DOWN, pf->state); 16263 if (pf->service_timer.function) 16264 timer_shutdown_sync(&pf->service_timer); 16265 if (pf->service_task.func) 16266 cancel_work_sync(&pf->service_task); 16267 16268 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16269 struct i40e_vsi *vsi = pf->vsi[0]; 16270 16271 /* We know that we have allocated only one vsi for this PF, 16272 * it was just for registering netdevice, so the interface 16273 * could be visible in the 'ifconfig' output 16274 */ 16275 unregister_netdev(vsi->netdev); 16276 free_netdev(vsi->netdev); 16277 16278 goto unmap; 16279 } 16280 16281 /* Client close must be called explicitly here because the timer 16282 * has been stopped. 16283 */ 16284 i40e_notify_client_of_netdev_close(pf, false); 16285 16286 i40e_fdir_teardown(pf); 16287 16288 /* If there is a switch structure or any orphans, remove them. 16289 * This will leave only the PF's VSI remaining. 16290 */ 16291 i40e_pf_for_each_veb(pf, i, veb) 16292 if (veb->uplink_seid == pf->mac_seid || 16293 veb->uplink_seid == 0) 16294 i40e_switch_branch_release(veb); 16295 16296 /* Now we can shutdown the PF's VSIs, just before we kill 16297 * adminq and hmc. 16298 */ 16299 i40e_pf_for_each_vsi(pf, i, vsi) { 16300 i40e_vsi_close(vsi); 16301 i40e_vsi_release(vsi); 16302 pf->vsi[i] = NULL; 16303 } 16304 16305 i40e_cloud_filter_exit(pf); 16306 16307 /* remove attached clients */ 16308 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16309 ret_code = i40e_lan_del_device(pf); 16310 if (ret_code) 16311 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16312 ret_code); 16313 } 16314 16315 /* shutdown and destroy the HMC */ 16316 if (hw->hmc.hmc_obj) { 16317 ret_code = i40e_shutdown_lan_hmc(hw); 16318 if (ret_code) 16319 dev_warn(&pdev->dev, 16320 "Failed to destroy the HMC resources: %d\n", 16321 ret_code); 16322 } 16323 16324 unmap: 16325 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16326 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16327 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16328 free_irq(pf->pdev->irq, pf); 16329 16330 /* shutdown the adminq */ 16331 i40e_shutdown_adminq(hw); 16332 16333 /* destroy the locks only once, here */ 16334 mutex_destroy(&hw->aq.arq_mutex); 16335 mutex_destroy(&hw->aq.asq_mutex); 16336 16337 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16338 rtnl_lock(); 16339 i40e_clear_interrupt_scheme(pf); 16340 i40e_pf_for_each_vsi(pf, i, vsi) { 16341 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16342 i40e_vsi_clear_rings(vsi); 16343 16344 i40e_vsi_clear(vsi); 16345 pf->vsi[i] = NULL; 16346 } 16347 rtnl_unlock(); 16348 16349 i40e_pf_for_each_veb(pf, i, veb) { 16350 kfree(veb); 16351 pf->veb[i] = NULL; 16352 } 16353 16354 kfree(pf->qp_pile); 16355 kfree(pf->vsi); 16356 16357 iounmap(hw->hw_addr); 16358 i40e_free_pf(pf); 16359 pci_release_mem_regions(pdev); 16360 16361 pci_disable_device(pdev); 16362 } 16363 16364 /** 16365 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16366 * using the mac_address_write admin q function 16367 * @pf: pointer to i40e_pf struct 16368 **/ 16369 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16370 { 16371 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 16372 struct i40e_hw *hw = &pf->hw; 16373 u8 mac_addr[6]; 16374 u16 flags = 0; 16375 int ret; 16376 16377 /* Get current MAC address in case it's an LAA */ 16378 if (main_vsi && main_vsi->netdev) { 16379 ether_addr_copy(mac_addr, main_vsi->netdev->dev_addr); 16380 } else { 16381 dev_err(&pf->pdev->dev, 16382 "Failed to retrieve MAC address; using default\n"); 16383 ether_addr_copy(mac_addr, hw->mac.addr); 16384 } 16385 16386 /* The FW expects the mac address write cmd to first be called with 16387 * one of these flags before calling it again with the multicast 16388 * enable flags. 16389 */ 16390 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16391 16392 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16393 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16394 16395 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16396 if (ret) { 16397 dev_err(&pf->pdev->dev, 16398 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16399 return; 16400 } 16401 16402 flags = I40E_AQC_MC_MAG_EN 16403 | I40E_AQC_WOL_PRESERVE_ON_PFR 16404 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16405 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16406 if (ret) 16407 dev_err(&pf->pdev->dev, 16408 "Failed to enable Multicast Magic Packet wake up\n"); 16409 } 16410 16411 /** 16412 * i40e_io_suspend - suspend all IO operations 16413 * @pf: pointer to i40e_pf struct 16414 * 16415 **/ 16416 static int i40e_io_suspend(struct i40e_pf *pf) 16417 { 16418 struct i40e_hw *hw = &pf->hw; 16419 16420 set_bit(__I40E_DOWN, pf->state); 16421 16422 /* Ensure service task will not be running */ 16423 del_timer_sync(&pf->service_timer); 16424 cancel_work_sync(&pf->service_task); 16425 16426 /* Client close must be called explicitly here because the timer 16427 * has been stopped. 16428 */ 16429 i40e_notify_client_of_netdev_close(pf, false); 16430 16431 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16432 pf->wol_en) 16433 i40e_enable_mc_magic_wake(pf); 16434 16435 /* Since we're going to destroy queues during the 16436 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16437 * whole section 16438 */ 16439 rtnl_lock(); 16440 16441 i40e_prep_for_reset(pf); 16442 16443 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16444 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16445 16446 /* Clear the interrupt scheme and release our IRQs so that the system 16447 * can safely hibernate even when there are a large number of CPUs. 16448 * Otherwise hibernation might fail when mapping all the vectors back 16449 * to CPU0. 16450 */ 16451 i40e_clear_interrupt_scheme(pf); 16452 16453 rtnl_unlock(); 16454 16455 return 0; 16456 } 16457 16458 /** 16459 * i40e_io_resume - resume IO operations 16460 * @pf: pointer to i40e_pf struct 16461 * 16462 **/ 16463 static int i40e_io_resume(struct i40e_pf *pf) 16464 { 16465 struct device *dev = &pf->pdev->dev; 16466 int err; 16467 16468 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16469 * since we're going to be restoring queues 16470 */ 16471 rtnl_lock(); 16472 16473 /* We cleared the interrupt scheme when we suspended, so we need to 16474 * restore it now to resume device functionality. 16475 */ 16476 err = i40e_restore_interrupt_scheme(pf); 16477 if (err) { 16478 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16479 err); 16480 } 16481 16482 clear_bit(__I40E_DOWN, pf->state); 16483 i40e_reset_and_rebuild(pf, false, true); 16484 16485 rtnl_unlock(); 16486 16487 /* Clear suspended state last after everything is recovered */ 16488 clear_bit(__I40E_SUSPENDED, pf->state); 16489 16490 /* Restart the service task */ 16491 mod_timer(&pf->service_timer, 16492 round_jiffies(jiffies + pf->service_timer_period)); 16493 16494 return 0; 16495 } 16496 16497 /** 16498 * i40e_pci_error_detected - warning that something funky happened in PCI land 16499 * @pdev: PCI device information struct 16500 * @error: the type of PCI error 16501 * 16502 * Called to warn that something happened and the error handling steps 16503 * are in progress. Allows the driver to quiesce things, be ready for 16504 * remediation. 16505 **/ 16506 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16507 pci_channel_state_t error) 16508 { 16509 struct i40e_pf *pf = pci_get_drvdata(pdev); 16510 16511 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16512 16513 if (!pf) { 16514 dev_info(&pdev->dev, 16515 "Cannot recover - error happened during device probe\n"); 16516 return PCI_ERS_RESULT_DISCONNECT; 16517 } 16518 16519 /* shutdown all operations */ 16520 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16521 i40e_io_suspend(pf); 16522 16523 /* Request a slot reset */ 16524 return PCI_ERS_RESULT_NEED_RESET; 16525 } 16526 16527 /** 16528 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16529 * @pdev: PCI device information struct 16530 * 16531 * Called to find if the driver can work with the device now that 16532 * the pci slot has been reset. If a basic connection seems good 16533 * (registers are readable and have sane content) then return a 16534 * happy little PCI_ERS_RESULT_xxx. 16535 **/ 16536 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16537 { 16538 struct i40e_pf *pf = pci_get_drvdata(pdev); 16539 pci_ers_result_t result; 16540 u32 reg; 16541 16542 dev_dbg(&pdev->dev, "%s\n", __func__); 16543 /* enable I/O and memory of the device */ 16544 if (pci_enable_device(pdev)) { 16545 dev_info(&pdev->dev, 16546 "Cannot re-enable PCI device after reset.\n"); 16547 result = PCI_ERS_RESULT_DISCONNECT; 16548 } else { 16549 pci_set_master(pdev); 16550 pci_restore_state(pdev); 16551 pci_save_state(pdev); 16552 pci_wake_from_d3(pdev, false); 16553 16554 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16555 if (reg == 0) 16556 result = PCI_ERS_RESULT_RECOVERED; 16557 else 16558 result = PCI_ERS_RESULT_DISCONNECT; 16559 } 16560 16561 return result; 16562 } 16563 16564 /** 16565 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16566 * @pdev: PCI device information struct 16567 */ 16568 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16569 { 16570 struct i40e_pf *pf = pci_get_drvdata(pdev); 16571 16572 i40e_prep_for_reset(pf); 16573 } 16574 16575 /** 16576 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16577 * @pdev: PCI device information struct 16578 */ 16579 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16580 { 16581 struct i40e_pf *pf = pci_get_drvdata(pdev); 16582 16583 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16584 return; 16585 16586 i40e_reset_and_rebuild(pf, false, false); 16587 #ifdef CONFIG_PCI_IOV 16588 i40e_restore_all_vfs_msi_state(pdev); 16589 #endif /* CONFIG_PCI_IOV */ 16590 } 16591 16592 /** 16593 * i40e_pci_error_resume - restart operations after PCI error recovery 16594 * @pdev: PCI device information struct 16595 * 16596 * Called to allow the driver to bring things back up after PCI error 16597 * and/or reset recovery has finished. 16598 **/ 16599 static void i40e_pci_error_resume(struct pci_dev *pdev) 16600 { 16601 struct i40e_pf *pf = pci_get_drvdata(pdev); 16602 16603 dev_dbg(&pdev->dev, "%s\n", __func__); 16604 if (test_bit(__I40E_SUSPENDED, pf->state)) 16605 return; 16606 16607 i40e_io_resume(pf); 16608 } 16609 16610 /** 16611 * i40e_shutdown - PCI callback for shutting down 16612 * @pdev: PCI device information struct 16613 **/ 16614 static void i40e_shutdown(struct pci_dev *pdev) 16615 { 16616 struct i40e_pf *pf = pci_get_drvdata(pdev); 16617 struct i40e_hw *hw = &pf->hw; 16618 16619 set_bit(__I40E_SUSPENDED, pf->state); 16620 set_bit(__I40E_DOWN, pf->state); 16621 16622 del_timer_sync(&pf->service_timer); 16623 cancel_work_sync(&pf->service_task); 16624 i40e_cloud_filter_exit(pf); 16625 i40e_fdir_teardown(pf); 16626 16627 /* Client close must be called explicitly here because the timer 16628 * has been stopped. 16629 */ 16630 i40e_notify_client_of_netdev_close(pf, false); 16631 16632 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16633 pf->wol_en) 16634 i40e_enable_mc_magic_wake(pf); 16635 16636 i40e_prep_for_reset(pf); 16637 16638 wr32(hw, I40E_PFPM_APM, 16639 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16640 wr32(hw, I40E_PFPM_WUFC, 16641 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16642 16643 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16644 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16645 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16646 free_irq(pf->pdev->irq, pf); 16647 16648 /* Since we're going to destroy queues during the 16649 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16650 * whole section 16651 */ 16652 rtnl_lock(); 16653 i40e_clear_interrupt_scheme(pf); 16654 rtnl_unlock(); 16655 16656 if (system_state == SYSTEM_POWER_OFF) { 16657 pci_wake_from_d3(pdev, pf->wol_en); 16658 pci_set_power_state(pdev, PCI_D3hot); 16659 } 16660 } 16661 16662 /** 16663 * i40e_suspend - PM callback for moving to D3 16664 * @dev: generic device information structure 16665 **/ 16666 static int i40e_suspend(struct device *dev) 16667 { 16668 struct i40e_pf *pf = dev_get_drvdata(dev); 16669 16670 /* If we're already suspended, then there is nothing to do */ 16671 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16672 return 0; 16673 return i40e_io_suspend(pf); 16674 } 16675 16676 /** 16677 * i40e_resume - PM callback for waking up from D3 16678 * @dev: generic device information structure 16679 **/ 16680 static int i40e_resume(struct device *dev) 16681 { 16682 struct i40e_pf *pf = dev_get_drvdata(dev); 16683 16684 /* If we're not suspended, then there is nothing to do */ 16685 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16686 return 0; 16687 return i40e_io_resume(pf); 16688 } 16689 16690 static const struct pci_error_handlers i40e_err_handler = { 16691 .error_detected = i40e_pci_error_detected, 16692 .slot_reset = i40e_pci_error_slot_reset, 16693 .reset_prepare = i40e_pci_error_reset_prepare, 16694 .reset_done = i40e_pci_error_reset_done, 16695 .resume = i40e_pci_error_resume, 16696 }; 16697 16698 static DEFINE_SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16699 16700 static struct pci_driver i40e_driver = { 16701 .name = i40e_driver_name, 16702 .id_table = i40e_pci_tbl, 16703 .probe = i40e_probe, 16704 .remove = i40e_remove, 16705 .driver.pm = pm_sleep_ptr(&i40e_pm_ops), 16706 .shutdown = i40e_shutdown, 16707 .err_handler = &i40e_err_handler, 16708 .sriov_configure = i40e_pci_sriov_configure, 16709 }; 16710 16711 /** 16712 * i40e_init_module - Driver registration routine 16713 * 16714 * i40e_init_module is the first routine called when the driver is 16715 * loaded. All it does is register with the PCI subsystem. 16716 **/ 16717 static int __init i40e_init_module(void) 16718 { 16719 int err; 16720 16721 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16722 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16723 16724 /* There is no need to throttle the number of active tasks because 16725 * each device limits its own task using a state bit for scheduling 16726 * the service task, and the device tasks do not interfere with each 16727 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16728 * since we need to be able to guarantee forward progress even under 16729 * memory pressure. 16730 */ 16731 i40e_wq = alloc_workqueue("%s", 0, 0, i40e_driver_name); 16732 if (!i40e_wq) { 16733 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16734 return -ENOMEM; 16735 } 16736 16737 i40e_dbg_init(); 16738 err = pci_register_driver(&i40e_driver); 16739 if (err) { 16740 destroy_workqueue(i40e_wq); 16741 i40e_dbg_exit(); 16742 return err; 16743 } 16744 16745 return 0; 16746 } 16747 module_init(i40e_init_module); 16748 16749 /** 16750 * i40e_exit_module - Driver exit cleanup routine 16751 * 16752 * i40e_exit_module is called just before the driver is removed 16753 * from memory. 16754 **/ 16755 static void __exit i40e_exit_module(void) 16756 { 16757 pci_unregister_driver(&i40e_driver); 16758 destroy_workqueue(i40e_wq); 16759 ida_destroy(&i40e_client_ida); 16760 i40e_dbg_exit(); 16761 } 16762 module_exit(i40e_exit_module); 16763