1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 9 /* Local includes */ 10 #include "i40e.h" 11 #include "i40e_diag.h" 12 #include "i40e_xsk.h" 13 #include <net/udp_tunnel.h> 14 #include <net/xdp_sock.h> 15 /* All i40e tracepoints are defined by the include below, which 16 * must be included exactly once across the whole kernel with 17 * CREATE_TRACE_POINTS defined 18 */ 19 #define CREATE_TRACE_POINTS 20 #include "i40e_trace.h" 21 22 const char i40e_driver_name[] = "i40e"; 23 static const char i40e_driver_string[] = 24 "Intel(R) Ethernet Connection XL710 Network Driver"; 25 26 #define DRV_KERN "-k" 27 28 #define DRV_VERSION_MAJOR 2 29 #define DRV_VERSION_MINOR 7 30 #define DRV_VERSION_BUILD 6 31 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 32 __stringify(DRV_VERSION_MINOR) "." \ 33 __stringify(DRV_VERSION_BUILD) DRV_KERN 34 const char i40e_driver_version_str[] = DRV_VERSION; 35 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; 36 37 /* a bit of forward declarations */ 38 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 39 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 40 static int i40e_add_vsi(struct i40e_vsi *vsi); 41 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 42 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 43 static int i40e_setup_misc_vector(struct i40e_pf *pf); 44 static void i40e_determine_queue_usage(struct i40e_pf *pf); 45 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 46 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 47 static int i40e_reset(struct i40e_pf *pf); 48 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 49 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 50 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 51 static int i40e_get_capabilities(struct i40e_pf *pf, 52 enum i40e_admin_queue_opc list_type); 53 54 55 /* i40e_pci_tbl - PCI Device ID Table 56 * 57 * Last entry must be all 0s 58 * 59 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 60 * Class, Class Mask, private data (not used) } 61 */ 62 static const struct pci_device_id i40e_pci_tbl[] = { 63 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 64 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 82 /* required last entry */ 83 {0, } 84 }; 85 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 86 87 #define I40E_MAX_VF_COUNT 128 88 static int debug = -1; 89 module_param(debug, uint, 0); 90 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 91 92 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 93 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 94 MODULE_LICENSE("GPL v2"); 95 MODULE_VERSION(DRV_VERSION); 96 97 static struct workqueue_struct *i40e_wq; 98 99 /** 100 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 101 * @hw: pointer to the HW structure 102 * @mem: ptr to mem struct to fill out 103 * @size: size of memory requested 104 * @alignment: what to align the allocation to 105 **/ 106 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 107 u64 size, u32 alignment) 108 { 109 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 110 111 mem->size = ALIGN(size, alignment); 112 mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size, 113 &mem->pa, GFP_KERNEL); 114 if (!mem->va) 115 return -ENOMEM; 116 117 return 0; 118 } 119 120 /** 121 * i40e_free_dma_mem_d - OS specific memory free for shared code 122 * @hw: pointer to the HW structure 123 * @mem: ptr to mem struct to free 124 **/ 125 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 126 { 127 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 128 129 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 130 mem->va = NULL; 131 mem->pa = 0; 132 mem->size = 0; 133 134 return 0; 135 } 136 137 /** 138 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 139 * @hw: pointer to the HW structure 140 * @mem: ptr to mem struct to fill out 141 * @size: size of memory requested 142 **/ 143 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 144 u32 size) 145 { 146 mem->size = size; 147 mem->va = kzalloc(size, GFP_KERNEL); 148 149 if (!mem->va) 150 return -ENOMEM; 151 152 return 0; 153 } 154 155 /** 156 * i40e_free_virt_mem_d - OS specific memory free for shared code 157 * @hw: pointer to the HW structure 158 * @mem: ptr to mem struct to free 159 **/ 160 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 161 { 162 /* it's ok to kfree a NULL pointer */ 163 kfree(mem->va); 164 mem->va = NULL; 165 mem->size = 0; 166 167 return 0; 168 } 169 170 /** 171 * i40e_get_lump - find a lump of free generic resource 172 * @pf: board private structure 173 * @pile: the pile of resource to search 174 * @needed: the number of items needed 175 * @id: an owner id to stick on the items assigned 176 * 177 * Returns the base item index of the lump, or negative for error 178 * 179 * The search_hint trick and lack of advanced fit-finding only work 180 * because we're highly likely to have all the same size lump requests. 181 * Linear search time and any fragmentation should be minimal. 182 **/ 183 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 184 u16 needed, u16 id) 185 { 186 int ret = -ENOMEM; 187 int i, j; 188 189 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 190 dev_info(&pf->pdev->dev, 191 "param err: pile=%s needed=%d id=0x%04x\n", 192 pile ? "<valid>" : "<null>", needed, id); 193 return -EINVAL; 194 } 195 196 /* start the linear search with an imperfect hint */ 197 i = pile->search_hint; 198 while (i < pile->num_entries) { 199 /* skip already allocated entries */ 200 if (pile->list[i] & I40E_PILE_VALID_BIT) { 201 i++; 202 continue; 203 } 204 205 /* do we have enough in this lump? */ 206 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 207 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 208 break; 209 } 210 211 if (j == needed) { 212 /* there was enough, so assign it to the requestor */ 213 for (j = 0; j < needed; j++) 214 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 215 ret = i; 216 pile->search_hint = i + j; 217 break; 218 } 219 220 /* not enough, so skip over it and continue looking */ 221 i += j; 222 } 223 224 return ret; 225 } 226 227 /** 228 * i40e_put_lump - return a lump of generic resource 229 * @pile: the pile of resource to search 230 * @index: the base item index 231 * @id: the owner id of the items assigned 232 * 233 * Returns the count of items in the lump 234 **/ 235 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 236 { 237 int valid_id = (id | I40E_PILE_VALID_BIT); 238 int count = 0; 239 int i; 240 241 if (!pile || index >= pile->num_entries) 242 return -EINVAL; 243 244 for (i = index; 245 i < pile->num_entries && pile->list[i] == valid_id; 246 i++) { 247 pile->list[i] = 0; 248 count++; 249 } 250 251 if (count && index < pile->search_hint) 252 pile->search_hint = index; 253 254 return count; 255 } 256 257 /** 258 * i40e_find_vsi_from_id - searches for the vsi with the given id 259 * @pf: the pf structure to search for the vsi 260 * @id: id of the vsi it is searching for 261 **/ 262 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 263 { 264 int i; 265 266 for (i = 0; i < pf->num_alloc_vsi; i++) 267 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 268 return pf->vsi[i]; 269 270 return NULL; 271 } 272 273 /** 274 * i40e_service_event_schedule - Schedule the service task to wake up 275 * @pf: board private structure 276 * 277 * If not already scheduled, this puts the task into the work queue 278 **/ 279 void i40e_service_event_schedule(struct i40e_pf *pf) 280 { 281 if (!test_bit(__I40E_DOWN, pf->state) && 282 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 283 queue_work(i40e_wq, &pf->service_task); 284 } 285 286 /** 287 * i40e_tx_timeout - Respond to a Tx Hang 288 * @netdev: network interface device structure 289 * 290 * If any port has noticed a Tx timeout, it is likely that the whole 291 * device is munged, not just the one netdev port, so go for the full 292 * reset. 293 **/ 294 static void i40e_tx_timeout(struct net_device *netdev) 295 { 296 struct i40e_netdev_priv *np = netdev_priv(netdev); 297 struct i40e_vsi *vsi = np->vsi; 298 struct i40e_pf *pf = vsi->back; 299 struct i40e_ring *tx_ring = NULL; 300 unsigned int i, hung_queue = 0; 301 u32 head, val; 302 303 pf->tx_timeout_count++; 304 305 /* find the stopped queue the same way the stack does */ 306 for (i = 0; i < netdev->num_tx_queues; i++) { 307 struct netdev_queue *q; 308 unsigned long trans_start; 309 310 q = netdev_get_tx_queue(netdev, i); 311 trans_start = q->trans_start; 312 if (netif_xmit_stopped(q) && 313 time_after(jiffies, 314 (trans_start + netdev->watchdog_timeo))) { 315 hung_queue = i; 316 break; 317 } 318 } 319 320 if (i == netdev->num_tx_queues) { 321 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 322 } else { 323 /* now that we have an index, find the tx_ring struct */ 324 for (i = 0; i < vsi->num_queue_pairs; i++) { 325 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 326 if (hung_queue == 327 vsi->tx_rings[i]->queue_index) { 328 tx_ring = vsi->tx_rings[i]; 329 break; 330 } 331 } 332 } 333 } 334 335 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 336 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 337 else if (time_before(jiffies, 338 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 339 return; /* don't do any new action before the next timeout */ 340 341 /* don't kick off another recovery if one is already pending */ 342 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 343 return; 344 345 if (tx_ring) { 346 head = i40e_get_head(tx_ring); 347 /* Read interrupt register */ 348 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 349 val = rd32(&pf->hw, 350 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 351 tx_ring->vsi->base_vector - 1)); 352 else 353 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 354 355 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 356 vsi->seid, hung_queue, tx_ring->next_to_clean, 357 head, tx_ring->next_to_use, 358 readl(tx_ring->tail), val); 359 } 360 361 pf->tx_timeout_last_recovery = jiffies; 362 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 363 pf->tx_timeout_recovery_level, hung_queue); 364 365 switch (pf->tx_timeout_recovery_level) { 366 case 1: 367 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 368 break; 369 case 2: 370 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 371 break; 372 case 3: 373 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 374 break; 375 default: 376 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 377 break; 378 } 379 380 i40e_service_event_schedule(pf); 381 pf->tx_timeout_recovery_level++; 382 } 383 384 /** 385 * i40e_get_vsi_stats_struct - Get System Network Statistics 386 * @vsi: the VSI we care about 387 * 388 * Returns the address of the device statistics structure. 389 * The statistics are actually updated from the service task. 390 **/ 391 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 392 { 393 return &vsi->net_stats; 394 } 395 396 /** 397 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 398 * @ring: Tx ring to get statistics from 399 * @stats: statistics entry to be updated 400 **/ 401 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 402 struct rtnl_link_stats64 *stats) 403 { 404 u64 bytes, packets; 405 unsigned int start; 406 407 do { 408 start = u64_stats_fetch_begin_irq(&ring->syncp); 409 packets = ring->stats.packets; 410 bytes = ring->stats.bytes; 411 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 412 413 stats->tx_packets += packets; 414 stats->tx_bytes += bytes; 415 } 416 417 /** 418 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 419 * @netdev: network interface device structure 420 * @stats: data structure to store statistics 421 * 422 * Returns the address of the device statistics structure. 423 * The statistics are actually updated from the service task. 424 **/ 425 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 426 struct rtnl_link_stats64 *stats) 427 { 428 struct i40e_netdev_priv *np = netdev_priv(netdev); 429 struct i40e_vsi *vsi = np->vsi; 430 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 431 struct i40e_ring *ring; 432 int i; 433 434 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 435 return; 436 437 if (!vsi->tx_rings) 438 return; 439 440 rcu_read_lock(); 441 for (i = 0; i < vsi->num_queue_pairs; i++) { 442 u64 bytes, packets; 443 unsigned int start; 444 445 ring = READ_ONCE(vsi->tx_rings[i]); 446 if (!ring) 447 continue; 448 i40e_get_netdev_stats_struct_tx(ring, stats); 449 450 if (i40e_enabled_xdp_vsi(vsi)) { 451 ring++; 452 i40e_get_netdev_stats_struct_tx(ring, stats); 453 } 454 455 ring++; 456 do { 457 start = u64_stats_fetch_begin_irq(&ring->syncp); 458 packets = ring->stats.packets; 459 bytes = ring->stats.bytes; 460 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 461 462 stats->rx_packets += packets; 463 stats->rx_bytes += bytes; 464 465 } 466 rcu_read_unlock(); 467 468 /* following stats updated by i40e_watchdog_subtask() */ 469 stats->multicast = vsi_stats->multicast; 470 stats->tx_errors = vsi_stats->tx_errors; 471 stats->tx_dropped = vsi_stats->tx_dropped; 472 stats->rx_errors = vsi_stats->rx_errors; 473 stats->rx_dropped = vsi_stats->rx_dropped; 474 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 475 stats->rx_length_errors = vsi_stats->rx_length_errors; 476 } 477 478 /** 479 * i40e_vsi_reset_stats - Resets all stats of the given vsi 480 * @vsi: the VSI to have its stats reset 481 **/ 482 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 483 { 484 struct rtnl_link_stats64 *ns; 485 int i; 486 487 if (!vsi) 488 return; 489 490 ns = i40e_get_vsi_stats_struct(vsi); 491 memset(ns, 0, sizeof(*ns)); 492 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 493 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 494 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 495 if (vsi->rx_rings && vsi->rx_rings[0]) { 496 for (i = 0; i < vsi->num_queue_pairs; i++) { 497 memset(&vsi->rx_rings[i]->stats, 0, 498 sizeof(vsi->rx_rings[i]->stats)); 499 memset(&vsi->rx_rings[i]->rx_stats, 0, 500 sizeof(vsi->rx_rings[i]->rx_stats)); 501 memset(&vsi->tx_rings[i]->stats, 0, 502 sizeof(vsi->tx_rings[i]->stats)); 503 memset(&vsi->tx_rings[i]->tx_stats, 0, 504 sizeof(vsi->tx_rings[i]->tx_stats)); 505 } 506 } 507 vsi->stat_offsets_loaded = false; 508 } 509 510 /** 511 * i40e_pf_reset_stats - Reset all of the stats for the given PF 512 * @pf: the PF to be reset 513 **/ 514 void i40e_pf_reset_stats(struct i40e_pf *pf) 515 { 516 int i; 517 518 memset(&pf->stats, 0, sizeof(pf->stats)); 519 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 520 pf->stat_offsets_loaded = false; 521 522 for (i = 0; i < I40E_MAX_VEB; i++) { 523 if (pf->veb[i]) { 524 memset(&pf->veb[i]->stats, 0, 525 sizeof(pf->veb[i]->stats)); 526 memset(&pf->veb[i]->stats_offsets, 0, 527 sizeof(pf->veb[i]->stats_offsets)); 528 pf->veb[i]->stat_offsets_loaded = false; 529 } 530 } 531 pf->hw_csum_rx_error = 0; 532 } 533 534 /** 535 * i40e_stat_update48 - read and update a 48 bit stat from the chip 536 * @hw: ptr to the hardware info 537 * @hireg: the high 32 bit reg to read 538 * @loreg: the low 32 bit reg to read 539 * @offset_loaded: has the initial offset been loaded yet 540 * @offset: ptr to current offset value 541 * @stat: ptr to the stat 542 * 543 * Since the device stats are not reset at PFReset, they likely will not 544 * be zeroed when the driver starts. We'll save the first values read 545 * and use them as offsets to be subtracted from the raw values in order 546 * to report stats that count from zero. In the process, we also manage 547 * the potential roll-over. 548 **/ 549 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 550 bool offset_loaded, u64 *offset, u64 *stat) 551 { 552 u64 new_data; 553 554 if (hw->device_id == I40E_DEV_ID_QEMU) { 555 new_data = rd32(hw, loreg); 556 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 557 } else { 558 new_data = rd64(hw, loreg); 559 } 560 if (!offset_loaded) 561 *offset = new_data; 562 if (likely(new_data >= *offset)) 563 *stat = new_data - *offset; 564 else 565 *stat = (new_data + BIT_ULL(48)) - *offset; 566 *stat &= 0xFFFFFFFFFFFFULL; 567 } 568 569 /** 570 * i40e_stat_update32 - read and update a 32 bit stat from the chip 571 * @hw: ptr to the hardware info 572 * @reg: the hw reg to read 573 * @offset_loaded: has the initial offset been loaded yet 574 * @offset: ptr to current offset value 575 * @stat: ptr to the stat 576 **/ 577 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 578 bool offset_loaded, u64 *offset, u64 *stat) 579 { 580 u32 new_data; 581 582 new_data = rd32(hw, reg); 583 if (!offset_loaded) 584 *offset = new_data; 585 if (likely(new_data >= *offset)) 586 *stat = (u32)(new_data - *offset); 587 else 588 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 589 } 590 591 /** 592 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 593 * @hw: ptr to the hardware info 594 * @reg: the hw reg to read and clear 595 * @stat: ptr to the stat 596 **/ 597 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 598 { 599 u32 new_data = rd32(hw, reg); 600 601 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 602 *stat += new_data; 603 } 604 605 /** 606 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 607 * @vsi: the VSI to be updated 608 **/ 609 void i40e_update_eth_stats(struct i40e_vsi *vsi) 610 { 611 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 612 struct i40e_pf *pf = vsi->back; 613 struct i40e_hw *hw = &pf->hw; 614 struct i40e_eth_stats *oes; 615 struct i40e_eth_stats *es; /* device's eth stats */ 616 617 es = &vsi->eth_stats; 618 oes = &vsi->eth_stats_offsets; 619 620 /* Gather up the stats that the hw collects */ 621 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 622 vsi->stat_offsets_loaded, 623 &oes->tx_errors, &es->tx_errors); 624 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 625 vsi->stat_offsets_loaded, 626 &oes->rx_discards, &es->rx_discards); 627 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 628 vsi->stat_offsets_loaded, 629 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 630 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 631 vsi->stat_offsets_loaded, 632 &oes->tx_errors, &es->tx_errors); 633 634 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 635 I40E_GLV_GORCL(stat_idx), 636 vsi->stat_offsets_loaded, 637 &oes->rx_bytes, &es->rx_bytes); 638 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 639 I40E_GLV_UPRCL(stat_idx), 640 vsi->stat_offsets_loaded, 641 &oes->rx_unicast, &es->rx_unicast); 642 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 643 I40E_GLV_MPRCL(stat_idx), 644 vsi->stat_offsets_loaded, 645 &oes->rx_multicast, &es->rx_multicast); 646 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 647 I40E_GLV_BPRCL(stat_idx), 648 vsi->stat_offsets_loaded, 649 &oes->rx_broadcast, &es->rx_broadcast); 650 651 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 652 I40E_GLV_GOTCL(stat_idx), 653 vsi->stat_offsets_loaded, 654 &oes->tx_bytes, &es->tx_bytes); 655 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 656 I40E_GLV_UPTCL(stat_idx), 657 vsi->stat_offsets_loaded, 658 &oes->tx_unicast, &es->tx_unicast); 659 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 660 I40E_GLV_MPTCL(stat_idx), 661 vsi->stat_offsets_loaded, 662 &oes->tx_multicast, &es->tx_multicast); 663 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 664 I40E_GLV_BPTCL(stat_idx), 665 vsi->stat_offsets_loaded, 666 &oes->tx_broadcast, &es->tx_broadcast); 667 vsi->stat_offsets_loaded = true; 668 } 669 670 /** 671 * i40e_update_veb_stats - Update Switch component statistics 672 * @veb: the VEB being updated 673 **/ 674 static void i40e_update_veb_stats(struct i40e_veb *veb) 675 { 676 struct i40e_pf *pf = veb->pf; 677 struct i40e_hw *hw = &pf->hw; 678 struct i40e_eth_stats *oes; 679 struct i40e_eth_stats *es; /* device's eth stats */ 680 struct i40e_veb_tc_stats *veb_oes; 681 struct i40e_veb_tc_stats *veb_es; 682 int i, idx = 0; 683 684 idx = veb->stats_idx; 685 es = &veb->stats; 686 oes = &veb->stats_offsets; 687 veb_es = &veb->tc_stats; 688 veb_oes = &veb->tc_stats_offsets; 689 690 /* Gather up the stats that the hw collects */ 691 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 692 veb->stat_offsets_loaded, 693 &oes->tx_discards, &es->tx_discards); 694 if (hw->revision_id > 0) 695 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 696 veb->stat_offsets_loaded, 697 &oes->rx_unknown_protocol, 698 &es->rx_unknown_protocol); 699 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 700 veb->stat_offsets_loaded, 701 &oes->rx_bytes, &es->rx_bytes); 702 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 703 veb->stat_offsets_loaded, 704 &oes->rx_unicast, &es->rx_unicast); 705 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 706 veb->stat_offsets_loaded, 707 &oes->rx_multicast, &es->rx_multicast); 708 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 709 veb->stat_offsets_loaded, 710 &oes->rx_broadcast, &es->rx_broadcast); 711 712 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 713 veb->stat_offsets_loaded, 714 &oes->tx_bytes, &es->tx_bytes); 715 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 716 veb->stat_offsets_loaded, 717 &oes->tx_unicast, &es->tx_unicast); 718 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 719 veb->stat_offsets_loaded, 720 &oes->tx_multicast, &es->tx_multicast); 721 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 722 veb->stat_offsets_loaded, 723 &oes->tx_broadcast, &es->tx_broadcast); 724 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 725 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 726 I40E_GLVEBTC_RPCL(i, idx), 727 veb->stat_offsets_loaded, 728 &veb_oes->tc_rx_packets[i], 729 &veb_es->tc_rx_packets[i]); 730 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 731 I40E_GLVEBTC_RBCL(i, idx), 732 veb->stat_offsets_loaded, 733 &veb_oes->tc_rx_bytes[i], 734 &veb_es->tc_rx_bytes[i]); 735 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 736 I40E_GLVEBTC_TPCL(i, idx), 737 veb->stat_offsets_loaded, 738 &veb_oes->tc_tx_packets[i], 739 &veb_es->tc_tx_packets[i]); 740 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 741 I40E_GLVEBTC_TBCL(i, idx), 742 veb->stat_offsets_loaded, 743 &veb_oes->tc_tx_bytes[i], 744 &veb_es->tc_tx_bytes[i]); 745 } 746 veb->stat_offsets_loaded = true; 747 } 748 749 /** 750 * i40e_update_vsi_stats - Update the vsi statistics counters. 751 * @vsi: the VSI to be updated 752 * 753 * There are a few instances where we store the same stat in a 754 * couple of different structs. This is partly because we have 755 * the netdev stats that need to be filled out, which is slightly 756 * different from the "eth_stats" defined by the chip and used in 757 * VF communications. We sort it out here. 758 **/ 759 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 760 { 761 struct i40e_pf *pf = vsi->back; 762 struct rtnl_link_stats64 *ons; 763 struct rtnl_link_stats64 *ns; /* netdev stats */ 764 struct i40e_eth_stats *oes; 765 struct i40e_eth_stats *es; /* device's eth stats */ 766 u32 tx_restart, tx_busy; 767 struct i40e_ring *p; 768 u32 rx_page, rx_buf; 769 u64 bytes, packets; 770 unsigned int start; 771 u64 tx_linearize; 772 u64 tx_force_wb; 773 u64 rx_p, rx_b; 774 u64 tx_p, tx_b; 775 u16 q; 776 777 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 778 test_bit(__I40E_CONFIG_BUSY, pf->state)) 779 return; 780 781 ns = i40e_get_vsi_stats_struct(vsi); 782 ons = &vsi->net_stats_offsets; 783 es = &vsi->eth_stats; 784 oes = &vsi->eth_stats_offsets; 785 786 /* Gather up the netdev and vsi stats that the driver collects 787 * on the fly during packet processing 788 */ 789 rx_b = rx_p = 0; 790 tx_b = tx_p = 0; 791 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 792 rx_page = 0; 793 rx_buf = 0; 794 rcu_read_lock(); 795 for (q = 0; q < vsi->num_queue_pairs; q++) { 796 /* locate Tx ring */ 797 p = READ_ONCE(vsi->tx_rings[q]); 798 799 do { 800 start = u64_stats_fetch_begin_irq(&p->syncp); 801 packets = p->stats.packets; 802 bytes = p->stats.bytes; 803 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 804 tx_b += bytes; 805 tx_p += packets; 806 tx_restart += p->tx_stats.restart_queue; 807 tx_busy += p->tx_stats.tx_busy; 808 tx_linearize += p->tx_stats.tx_linearize; 809 tx_force_wb += p->tx_stats.tx_force_wb; 810 811 /* Rx queue is part of the same block as Tx queue */ 812 p = &p[1]; 813 do { 814 start = u64_stats_fetch_begin_irq(&p->syncp); 815 packets = p->stats.packets; 816 bytes = p->stats.bytes; 817 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 818 rx_b += bytes; 819 rx_p += packets; 820 rx_buf += p->rx_stats.alloc_buff_failed; 821 rx_page += p->rx_stats.alloc_page_failed; 822 } 823 rcu_read_unlock(); 824 vsi->tx_restart = tx_restart; 825 vsi->tx_busy = tx_busy; 826 vsi->tx_linearize = tx_linearize; 827 vsi->tx_force_wb = tx_force_wb; 828 vsi->rx_page_failed = rx_page; 829 vsi->rx_buf_failed = rx_buf; 830 831 ns->rx_packets = rx_p; 832 ns->rx_bytes = rx_b; 833 ns->tx_packets = tx_p; 834 ns->tx_bytes = tx_b; 835 836 /* update netdev stats from eth stats */ 837 i40e_update_eth_stats(vsi); 838 ons->tx_errors = oes->tx_errors; 839 ns->tx_errors = es->tx_errors; 840 ons->multicast = oes->rx_multicast; 841 ns->multicast = es->rx_multicast; 842 ons->rx_dropped = oes->rx_discards; 843 ns->rx_dropped = es->rx_discards; 844 ons->tx_dropped = oes->tx_discards; 845 ns->tx_dropped = es->tx_discards; 846 847 /* pull in a couple PF stats if this is the main vsi */ 848 if (vsi == pf->vsi[pf->lan_vsi]) { 849 ns->rx_crc_errors = pf->stats.crc_errors; 850 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 851 ns->rx_length_errors = pf->stats.rx_length_errors; 852 } 853 } 854 855 /** 856 * i40e_update_pf_stats - Update the PF statistics counters. 857 * @pf: the PF to be updated 858 **/ 859 static void i40e_update_pf_stats(struct i40e_pf *pf) 860 { 861 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 862 struct i40e_hw_port_stats *nsd = &pf->stats; 863 struct i40e_hw *hw = &pf->hw; 864 u32 val; 865 int i; 866 867 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 868 I40E_GLPRT_GORCL(hw->port), 869 pf->stat_offsets_loaded, 870 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 871 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 872 I40E_GLPRT_GOTCL(hw->port), 873 pf->stat_offsets_loaded, 874 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 875 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 876 pf->stat_offsets_loaded, 877 &osd->eth.rx_discards, 878 &nsd->eth.rx_discards); 879 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 880 I40E_GLPRT_UPRCL(hw->port), 881 pf->stat_offsets_loaded, 882 &osd->eth.rx_unicast, 883 &nsd->eth.rx_unicast); 884 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 885 I40E_GLPRT_MPRCL(hw->port), 886 pf->stat_offsets_loaded, 887 &osd->eth.rx_multicast, 888 &nsd->eth.rx_multicast); 889 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 890 I40E_GLPRT_BPRCL(hw->port), 891 pf->stat_offsets_loaded, 892 &osd->eth.rx_broadcast, 893 &nsd->eth.rx_broadcast); 894 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 895 I40E_GLPRT_UPTCL(hw->port), 896 pf->stat_offsets_loaded, 897 &osd->eth.tx_unicast, 898 &nsd->eth.tx_unicast); 899 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 900 I40E_GLPRT_MPTCL(hw->port), 901 pf->stat_offsets_loaded, 902 &osd->eth.tx_multicast, 903 &nsd->eth.tx_multicast); 904 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 905 I40E_GLPRT_BPTCL(hw->port), 906 pf->stat_offsets_loaded, 907 &osd->eth.tx_broadcast, 908 &nsd->eth.tx_broadcast); 909 910 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 911 pf->stat_offsets_loaded, 912 &osd->tx_dropped_link_down, 913 &nsd->tx_dropped_link_down); 914 915 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->crc_errors, &nsd->crc_errors); 918 919 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 920 pf->stat_offsets_loaded, 921 &osd->illegal_bytes, &nsd->illegal_bytes); 922 923 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 924 pf->stat_offsets_loaded, 925 &osd->mac_local_faults, 926 &nsd->mac_local_faults); 927 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 928 pf->stat_offsets_loaded, 929 &osd->mac_remote_faults, 930 &nsd->mac_remote_faults); 931 932 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 933 pf->stat_offsets_loaded, 934 &osd->rx_length_errors, 935 &nsd->rx_length_errors); 936 937 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 938 pf->stat_offsets_loaded, 939 &osd->link_xon_rx, &nsd->link_xon_rx); 940 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 941 pf->stat_offsets_loaded, 942 &osd->link_xon_tx, &nsd->link_xon_tx); 943 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 944 pf->stat_offsets_loaded, 945 &osd->link_xoff_rx, &nsd->link_xoff_rx); 946 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 947 pf->stat_offsets_loaded, 948 &osd->link_xoff_tx, &nsd->link_xoff_tx); 949 950 for (i = 0; i < 8; i++) { 951 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 952 pf->stat_offsets_loaded, 953 &osd->priority_xoff_rx[i], 954 &nsd->priority_xoff_rx[i]); 955 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 956 pf->stat_offsets_loaded, 957 &osd->priority_xon_rx[i], 958 &nsd->priority_xon_rx[i]); 959 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 960 pf->stat_offsets_loaded, 961 &osd->priority_xon_tx[i], 962 &nsd->priority_xon_tx[i]); 963 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 964 pf->stat_offsets_loaded, 965 &osd->priority_xoff_tx[i], 966 &nsd->priority_xoff_tx[i]); 967 i40e_stat_update32(hw, 968 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 969 pf->stat_offsets_loaded, 970 &osd->priority_xon_2_xoff[i], 971 &nsd->priority_xon_2_xoff[i]); 972 } 973 974 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 975 I40E_GLPRT_PRC64L(hw->port), 976 pf->stat_offsets_loaded, 977 &osd->rx_size_64, &nsd->rx_size_64); 978 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 979 I40E_GLPRT_PRC127L(hw->port), 980 pf->stat_offsets_loaded, 981 &osd->rx_size_127, &nsd->rx_size_127); 982 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 983 I40E_GLPRT_PRC255L(hw->port), 984 pf->stat_offsets_loaded, 985 &osd->rx_size_255, &nsd->rx_size_255); 986 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 987 I40E_GLPRT_PRC511L(hw->port), 988 pf->stat_offsets_loaded, 989 &osd->rx_size_511, &nsd->rx_size_511); 990 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 991 I40E_GLPRT_PRC1023L(hw->port), 992 pf->stat_offsets_loaded, 993 &osd->rx_size_1023, &nsd->rx_size_1023); 994 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 995 I40E_GLPRT_PRC1522L(hw->port), 996 pf->stat_offsets_loaded, 997 &osd->rx_size_1522, &nsd->rx_size_1522); 998 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 999 I40E_GLPRT_PRC9522L(hw->port), 1000 pf->stat_offsets_loaded, 1001 &osd->rx_size_big, &nsd->rx_size_big); 1002 1003 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1004 I40E_GLPRT_PTC64L(hw->port), 1005 pf->stat_offsets_loaded, 1006 &osd->tx_size_64, &nsd->tx_size_64); 1007 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1008 I40E_GLPRT_PTC127L(hw->port), 1009 pf->stat_offsets_loaded, 1010 &osd->tx_size_127, &nsd->tx_size_127); 1011 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1012 I40E_GLPRT_PTC255L(hw->port), 1013 pf->stat_offsets_loaded, 1014 &osd->tx_size_255, &nsd->tx_size_255); 1015 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1016 I40E_GLPRT_PTC511L(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->tx_size_511, &nsd->tx_size_511); 1019 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1020 I40E_GLPRT_PTC1023L(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->tx_size_1023, &nsd->tx_size_1023); 1023 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1024 I40E_GLPRT_PTC1522L(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->tx_size_1522, &nsd->tx_size_1522); 1027 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1028 I40E_GLPRT_PTC9522L(hw->port), 1029 pf->stat_offsets_loaded, 1030 &osd->tx_size_big, &nsd->tx_size_big); 1031 1032 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1033 pf->stat_offsets_loaded, 1034 &osd->rx_undersize, &nsd->rx_undersize); 1035 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->rx_fragments, &nsd->rx_fragments); 1038 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1039 pf->stat_offsets_loaded, 1040 &osd->rx_oversize, &nsd->rx_oversize); 1041 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1042 pf->stat_offsets_loaded, 1043 &osd->rx_jabber, &nsd->rx_jabber); 1044 1045 /* FDIR stats */ 1046 i40e_stat_update_and_clear32(hw, 1047 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1048 &nsd->fd_atr_match); 1049 i40e_stat_update_and_clear32(hw, 1050 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1051 &nsd->fd_sb_match); 1052 i40e_stat_update_and_clear32(hw, 1053 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1054 &nsd->fd_atr_tunnel_match); 1055 1056 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1057 nsd->tx_lpi_status = 1058 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1059 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1060 nsd->rx_lpi_status = 1061 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1062 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1063 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1064 pf->stat_offsets_loaded, 1065 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1066 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1067 pf->stat_offsets_loaded, 1068 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1069 1070 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1071 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1072 nsd->fd_sb_status = true; 1073 else 1074 nsd->fd_sb_status = false; 1075 1076 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1077 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1078 nsd->fd_atr_status = true; 1079 else 1080 nsd->fd_atr_status = false; 1081 1082 pf->stat_offsets_loaded = true; 1083 } 1084 1085 /** 1086 * i40e_update_stats - Update the various statistics counters. 1087 * @vsi: the VSI to be updated 1088 * 1089 * Update the various stats for this VSI and its related entities. 1090 **/ 1091 void i40e_update_stats(struct i40e_vsi *vsi) 1092 { 1093 struct i40e_pf *pf = vsi->back; 1094 1095 if (vsi == pf->vsi[pf->lan_vsi]) 1096 i40e_update_pf_stats(pf); 1097 1098 i40e_update_vsi_stats(vsi); 1099 } 1100 1101 /** 1102 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1103 * @vsi: the VSI to be searched 1104 * @macaddr: the MAC address 1105 * @vlan: the vlan 1106 * 1107 * Returns ptr to the filter object or NULL 1108 **/ 1109 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1110 const u8 *macaddr, s16 vlan) 1111 { 1112 struct i40e_mac_filter *f; 1113 u64 key; 1114 1115 if (!vsi || !macaddr) 1116 return NULL; 1117 1118 key = i40e_addr_to_hkey(macaddr); 1119 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1120 if ((ether_addr_equal(macaddr, f->macaddr)) && 1121 (vlan == f->vlan)) 1122 return f; 1123 } 1124 return NULL; 1125 } 1126 1127 /** 1128 * i40e_find_mac - Find a mac addr in the macvlan filters list 1129 * @vsi: the VSI to be searched 1130 * @macaddr: the MAC address we are searching for 1131 * 1132 * Returns the first filter with the provided MAC address or NULL if 1133 * MAC address was not found 1134 **/ 1135 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1136 { 1137 struct i40e_mac_filter *f; 1138 u64 key; 1139 1140 if (!vsi || !macaddr) 1141 return NULL; 1142 1143 key = i40e_addr_to_hkey(macaddr); 1144 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1145 if ((ether_addr_equal(macaddr, f->macaddr))) 1146 return f; 1147 } 1148 return NULL; 1149 } 1150 1151 /** 1152 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1153 * @vsi: the VSI to be searched 1154 * 1155 * Returns true if VSI is in vlan mode or false otherwise 1156 **/ 1157 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1158 { 1159 /* If we have a PVID, always operate in VLAN mode */ 1160 if (vsi->info.pvid) 1161 return true; 1162 1163 /* We need to operate in VLAN mode whenever we have any filters with 1164 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1165 * time, incurring search cost repeatedly. However, we can notice two 1166 * things: 1167 * 1168 * 1) the only place where we can gain a VLAN filter is in 1169 * i40e_add_filter. 1170 * 1171 * 2) the only place where filters are actually removed is in 1172 * i40e_sync_filters_subtask. 1173 * 1174 * Thus, we can simply use a boolean value, has_vlan_filters which we 1175 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1176 * we have to perform the full search after deleting filters in 1177 * i40e_sync_filters_subtask, but we already have to search 1178 * filters here and can perform the check at the same time. This 1179 * results in avoiding embedding a loop for VLAN mode inside another 1180 * loop over all the filters, and should maintain correctness as noted 1181 * above. 1182 */ 1183 return vsi->has_vlan_filter; 1184 } 1185 1186 /** 1187 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1188 * @vsi: the VSI to configure 1189 * @tmp_add_list: list of filters ready to be added 1190 * @tmp_del_list: list of filters ready to be deleted 1191 * @vlan_filters: the number of active VLAN filters 1192 * 1193 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1194 * behave as expected. If we have any active VLAN filters remaining or about 1195 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1196 * so that they only match against untagged traffic. If we no longer have any 1197 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1198 * so that they match against both tagged and untagged traffic. In this way, 1199 * we ensure that we correctly receive the desired traffic. This ensures that 1200 * when we have an active VLAN we will receive only untagged traffic and 1201 * traffic matching active VLANs. If we have no active VLANs then we will 1202 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1203 * 1204 * Finally, in a similar fashion, this function also corrects filters when 1205 * there is an active PVID assigned to this VSI. 1206 * 1207 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1208 * 1209 * This function is only expected to be called from within 1210 * i40e_sync_vsi_filters. 1211 * 1212 * NOTE: This function expects to be called while under the 1213 * mac_filter_hash_lock 1214 */ 1215 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1216 struct hlist_head *tmp_add_list, 1217 struct hlist_head *tmp_del_list, 1218 int vlan_filters) 1219 { 1220 s16 pvid = le16_to_cpu(vsi->info.pvid); 1221 struct i40e_mac_filter *f, *add_head; 1222 struct i40e_new_mac_filter *new; 1223 struct hlist_node *h; 1224 int bkt, new_vlan; 1225 1226 /* To determine if a particular filter needs to be replaced we 1227 * have the three following conditions: 1228 * 1229 * a) if we have a PVID assigned, then all filters which are 1230 * not marked as VLAN=PVID must be replaced with filters that 1231 * are. 1232 * b) otherwise, if we have any active VLANS, all filters 1233 * which are marked as VLAN=-1 must be replaced with 1234 * filters marked as VLAN=0 1235 * c) finally, if we do not have any active VLANS, all filters 1236 * which are marked as VLAN=0 must be replaced with filters 1237 * marked as VLAN=-1 1238 */ 1239 1240 /* Update the filters about to be added in place */ 1241 hlist_for_each_entry(new, tmp_add_list, hlist) { 1242 if (pvid && new->f->vlan != pvid) 1243 new->f->vlan = pvid; 1244 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1245 new->f->vlan = 0; 1246 else if (!vlan_filters && new->f->vlan == 0) 1247 new->f->vlan = I40E_VLAN_ANY; 1248 } 1249 1250 /* Update the remaining active filters */ 1251 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1252 /* Combine the checks for whether a filter needs to be changed 1253 * and then determine the new VLAN inside the if block, in 1254 * order to avoid duplicating code for adding the new filter 1255 * then deleting the old filter. 1256 */ 1257 if ((pvid && f->vlan != pvid) || 1258 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1259 (!vlan_filters && f->vlan == 0)) { 1260 /* Determine the new vlan we will be adding */ 1261 if (pvid) 1262 new_vlan = pvid; 1263 else if (vlan_filters) 1264 new_vlan = 0; 1265 else 1266 new_vlan = I40E_VLAN_ANY; 1267 1268 /* Create the new filter */ 1269 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1270 if (!add_head) 1271 return -ENOMEM; 1272 1273 /* Create a temporary i40e_new_mac_filter */ 1274 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1275 if (!new) 1276 return -ENOMEM; 1277 1278 new->f = add_head; 1279 new->state = add_head->state; 1280 1281 /* Add the new filter to the tmp list */ 1282 hlist_add_head(&new->hlist, tmp_add_list); 1283 1284 /* Put the original filter into the delete list */ 1285 f->state = I40E_FILTER_REMOVE; 1286 hash_del(&f->hlist); 1287 hlist_add_head(&f->hlist, tmp_del_list); 1288 } 1289 } 1290 1291 vsi->has_vlan_filter = !!vlan_filters; 1292 1293 return 0; 1294 } 1295 1296 /** 1297 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1298 * @vsi: the PF Main VSI - inappropriate for any other VSI 1299 * @macaddr: the MAC address 1300 * 1301 * Remove whatever filter the firmware set up so the driver can manage 1302 * its own filtering intelligently. 1303 **/ 1304 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1305 { 1306 struct i40e_aqc_remove_macvlan_element_data element; 1307 struct i40e_pf *pf = vsi->back; 1308 1309 /* Only appropriate for the PF main VSI */ 1310 if (vsi->type != I40E_VSI_MAIN) 1311 return; 1312 1313 memset(&element, 0, sizeof(element)); 1314 ether_addr_copy(element.mac_addr, macaddr); 1315 element.vlan_tag = 0; 1316 /* Ignore error returns, some firmware does it this way... */ 1317 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1318 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1319 1320 memset(&element, 0, sizeof(element)); 1321 ether_addr_copy(element.mac_addr, macaddr); 1322 element.vlan_tag = 0; 1323 /* ...and some firmware does it this way. */ 1324 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1325 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1326 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1327 } 1328 1329 /** 1330 * i40e_add_filter - Add a mac/vlan filter to the VSI 1331 * @vsi: the VSI to be searched 1332 * @macaddr: the MAC address 1333 * @vlan: the vlan 1334 * 1335 * Returns ptr to the filter object or NULL when no memory available. 1336 * 1337 * NOTE: This function is expected to be called with mac_filter_hash_lock 1338 * being held. 1339 **/ 1340 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1341 const u8 *macaddr, s16 vlan) 1342 { 1343 struct i40e_mac_filter *f; 1344 u64 key; 1345 1346 if (!vsi || !macaddr) 1347 return NULL; 1348 1349 f = i40e_find_filter(vsi, macaddr, vlan); 1350 if (!f) { 1351 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1352 if (!f) 1353 return NULL; 1354 1355 /* Update the boolean indicating if we need to function in 1356 * VLAN mode. 1357 */ 1358 if (vlan >= 0) 1359 vsi->has_vlan_filter = true; 1360 1361 ether_addr_copy(f->macaddr, macaddr); 1362 f->vlan = vlan; 1363 f->state = I40E_FILTER_NEW; 1364 INIT_HLIST_NODE(&f->hlist); 1365 1366 key = i40e_addr_to_hkey(macaddr); 1367 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1368 1369 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1370 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1371 } 1372 1373 /* If we're asked to add a filter that has been marked for removal, it 1374 * is safe to simply restore it to active state. __i40e_del_filter 1375 * will have simply deleted any filters which were previously marked 1376 * NEW or FAILED, so if it is currently marked REMOVE it must have 1377 * previously been ACTIVE. Since we haven't yet run the sync filters 1378 * task, just restore this filter to the ACTIVE state so that the 1379 * sync task leaves it in place 1380 */ 1381 if (f->state == I40E_FILTER_REMOVE) 1382 f->state = I40E_FILTER_ACTIVE; 1383 1384 return f; 1385 } 1386 1387 /** 1388 * __i40e_del_filter - Remove a specific filter from the VSI 1389 * @vsi: VSI to remove from 1390 * @f: the filter to remove from the list 1391 * 1392 * This function should be called instead of i40e_del_filter only if you know 1393 * the exact filter you will remove already, such as via i40e_find_filter or 1394 * i40e_find_mac. 1395 * 1396 * NOTE: This function is expected to be called with mac_filter_hash_lock 1397 * being held. 1398 * ANOTHER NOTE: This function MUST be called from within the context of 1399 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1400 * instead of list_for_each_entry(). 1401 **/ 1402 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1403 { 1404 if (!f) 1405 return; 1406 1407 /* If the filter was never added to firmware then we can just delete it 1408 * directly and we don't want to set the status to remove or else an 1409 * admin queue command will unnecessarily fire. 1410 */ 1411 if ((f->state == I40E_FILTER_FAILED) || 1412 (f->state == I40E_FILTER_NEW)) { 1413 hash_del(&f->hlist); 1414 kfree(f); 1415 } else { 1416 f->state = I40E_FILTER_REMOVE; 1417 } 1418 1419 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1420 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1421 } 1422 1423 /** 1424 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1425 * @vsi: the VSI to be searched 1426 * @macaddr: the MAC address 1427 * @vlan: the VLAN 1428 * 1429 * NOTE: This function is expected to be called with mac_filter_hash_lock 1430 * being held. 1431 * ANOTHER NOTE: This function MUST be called from within the context of 1432 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1433 * instead of list_for_each_entry(). 1434 **/ 1435 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1436 { 1437 struct i40e_mac_filter *f; 1438 1439 if (!vsi || !macaddr) 1440 return; 1441 1442 f = i40e_find_filter(vsi, macaddr, vlan); 1443 __i40e_del_filter(vsi, f); 1444 } 1445 1446 /** 1447 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1448 * @vsi: the VSI to be searched 1449 * @macaddr: the mac address to be filtered 1450 * 1451 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1452 * go through all the macvlan filters and add a macvlan filter for each 1453 * unique vlan that already exists. If a PVID has been assigned, instead only 1454 * add the macaddr to that VLAN. 1455 * 1456 * Returns last filter added on success, else NULL 1457 **/ 1458 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1459 const u8 *macaddr) 1460 { 1461 struct i40e_mac_filter *f, *add = NULL; 1462 struct hlist_node *h; 1463 int bkt; 1464 1465 if (vsi->info.pvid) 1466 return i40e_add_filter(vsi, macaddr, 1467 le16_to_cpu(vsi->info.pvid)); 1468 1469 if (!i40e_is_vsi_in_vlan(vsi)) 1470 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1471 1472 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1473 if (f->state == I40E_FILTER_REMOVE) 1474 continue; 1475 add = i40e_add_filter(vsi, macaddr, f->vlan); 1476 if (!add) 1477 return NULL; 1478 } 1479 1480 return add; 1481 } 1482 1483 /** 1484 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1485 * @vsi: the VSI to be searched 1486 * @macaddr: the mac address to be removed 1487 * 1488 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1489 * associated with. 1490 * 1491 * Returns 0 for success, or error 1492 **/ 1493 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1494 { 1495 struct i40e_mac_filter *f; 1496 struct hlist_node *h; 1497 bool found = false; 1498 int bkt; 1499 1500 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1501 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1502 if (ether_addr_equal(macaddr, f->macaddr)) { 1503 __i40e_del_filter(vsi, f); 1504 found = true; 1505 } 1506 } 1507 1508 if (found) 1509 return 0; 1510 else 1511 return -ENOENT; 1512 } 1513 1514 /** 1515 * i40e_set_mac - NDO callback to set mac address 1516 * @netdev: network interface device structure 1517 * @p: pointer to an address structure 1518 * 1519 * Returns 0 on success, negative on failure 1520 **/ 1521 static int i40e_set_mac(struct net_device *netdev, void *p) 1522 { 1523 struct i40e_netdev_priv *np = netdev_priv(netdev); 1524 struct i40e_vsi *vsi = np->vsi; 1525 struct i40e_pf *pf = vsi->back; 1526 struct i40e_hw *hw = &pf->hw; 1527 struct sockaddr *addr = p; 1528 1529 if (!is_valid_ether_addr(addr->sa_data)) 1530 return -EADDRNOTAVAIL; 1531 1532 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1533 netdev_info(netdev, "already using mac address %pM\n", 1534 addr->sa_data); 1535 return 0; 1536 } 1537 1538 if (test_bit(__I40E_DOWN, pf->state) || 1539 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1540 return -EADDRNOTAVAIL; 1541 1542 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1543 netdev_info(netdev, "returning to hw mac address %pM\n", 1544 hw->mac.addr); 1545 else 1546 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1547 1548 /* Copy the address first, so that we avoid a possible race with 1549 * .set_rx_mode(). 1550 * - Remove old address from MAC filter 1551 * - Copy new address 1552 * - Add new address to MAC filter 1553 */ 1554 spin_lock_bh(&vsi->mac_filter_hash_lock); 1555 i40e_del_mac_filter(vsi, netdev->dev_addr); 1556 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1557 i40e_add_mac_filter(vsi, netdev->dev_addr); 1558 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1559 1560 if (vsi->type == I40E_VSI_MAIN) { 1561 i40e_status ret; 1562 1563 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1564 addr->sa_data, NULL); 1565 if (ret) 1566 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1567 i40e_stat_str(hw, ret), 1568 i40e_aq_str(hw, hw->aq.asq_last_status)); 1569 } 1570 1571 /* schedule our worker thread which will take care of 1572 * applying the new filter changes 1573 */ 1574 i40e_service_event_schedule(pf); 1575 return 0; 1576 } 1577 1578 /** 1579 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1580 * @vsi: vsi structure 1581 * @seed: RSS hash seed 1582 **/ 1583 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1584 u8 *lut, u16 lut_size) 1585 { 1586 struct i40e_pf *pf = vsi->back; 1587 struct i40e_hw *hw = &pf->hw; 1588 int ret = 0; 1589 1590 if (seed) { 1591 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1592 (struct i40e_aqc_get_set_rss_key_data *)seed; 1593 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1594 if (ret) { 1595 dev_info(&pf->pdev->dev, 1596 "Cannot set RSS key, err %s aq_err %s\n", 1597 i40e_stat_str(hw, ret), 1598 i40e_aq_str(hw, hw->aq.asq_last_status)); 1599 return ret; 1600 } 1601 } 1602 if (lut) { 1603 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1604 1605 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1606 if (ret) { 1607 dev_info(&pf->pdev->dev, 1608 "Cannot set RSS lut, err %s aq_err %s\n", 1609 i40e_stat_str(hw, ret), 1610 i40e_aq_str(hw, hw->aq.asq_last_status)); 1611 return ret; 1612 } 1613 } 1614 return ret; 1615 } 1616 1617 /** 1618 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1619 * @vsi: VSI structure 1620 **/ 1621 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1622 { 1623 struct i40e_pf *pf = vsi->back; 1624 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1625 u8 *lut; 1626 int ret; 1627 1628 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1629 return 0; 1630 if (!vsi->rss_size) 1631 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1632 vsi->num_queue_pairs); 1633 if (!vsi->rss_size) 1634 return -EINVAL; 1635 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1636 if (!lut) 1637 return -ENOMEM; 1638 1639 /* Use the user configured hash keys and lookup table if there is one, 1640 * otherwise use default 1641 */ 1642 if (vsi->rss_lut_user) 1643 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1644 else 1645 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1646 if (vsi->rss_hkey_user) 1647 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1648 else 1649 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1650 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1651 kfree(lut); 1652 return ret; 1653 } 1654 1655 /** 1656 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1657 * @vsi: the VSI being configured, 1658 * @ctxt: VSI context structure 1659 * @enabled_tc: number of traffic classes to enable 1660 * 1661 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1662 **/ 1663 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1664 struct i40e_vsi_context *ctxt, 1665 u8 enabled_tc) 1666 { 1667 u16 qcount = 0, max_qcount, qmap, sections = 0; 1668 int i, override_q, pow, num_qps, ret; 1669 u8 netdev_tc = 0, offset = 0; 1670 1671 if (vsi->type != I40E_VSI_MAIN) 1672 return -EINVAL; 1673 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1674 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1675 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1676 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1677 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1678 1679 /* find the next higher power-of-2 of num queue pairs */ 1680 pow = ilog2(num_qps); 1681 if (!is_power_of_2(num_qps)) 1682 pow++; 1683 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1684 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1685 1686 /* Setup queue offset/count for all TCs for given VSI */ 1687 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1688 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1689 /* See if the given TC is enabled for the given VSI */ 1690 if (vsi->tc_config.enabled_tc & BIT(i)) { 1691 offset = vsi->mqprio_qopt.qopt.offset[i]; 1692 qcount = vsi->mqprio_qopt.qopt.count[i]; 1693 if (qcount > max_qcount) 1694 max_qcount = qcount; 1695 vsi->tc_config.tc_info[i].qoffset = offset; 1696 vsi->tc_config.tc_info[i].qcount = qcount; 1697 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1698 } else { 1699 /* TC is not enabled so set the offset to 1700 * default queue and allocate one queue 1701 * for the given TC. 1702 */ 1703 vsi->tc_config.tc_info[i].qoffset = 0; 1704 vsi->tc_config.tc_info[i].qcount = 1; 1705 vsi->tc_config.tc_info[i].netdev_tc = 0; 1706 } 1707 } 1708 1709 /* Set actual Tx/Rx queue pairs */ 1710 vsi->num_queue_pairs = offset + qcount; 1711 1712 /* Setup queue TC[0].qmap for given VSI context */ 1713 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1714 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1715 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1716 ctxt->info.valid_sections |= cpu_to_le16(sections); 1717 1718 /* Reconfigure RSS for main VSI with max queue count */ 1719 vsi->rss_size = max_qcount; 1720 ret = i40e_vsi_config_rss(vsi); 1721 if (ret) { 1722 dev_info(&vsi->back->pdev->dev, 1723 "Failed to reconfig rss for num_queues (%u)\n", 1724 max_qcount); 1725 return ret; 1726 } 1727 vsi->reconfig_rss = true; 1728 dev_dbg(&vsi->back->pdev->dev, 1729 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1730 1731 /* Find queue count available for channel VSIs and starting offset 1732 * for channel VSIs 1733 */ 1734 override_q = vsi->mqprio_qopt.qopt.count[0]; 1735 if (override_q && override_q < vsi->num_queue_pairs) { 1736 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1737 vsi->next_base_queue = override_q; 1738 } 1739 return 0; 1740 } 1741 1742 /** 1743 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1744 * @vsi: the VSI being setup 1745 * @ctxt: VSI context structure 1746 * @enabled_tc: Enabled TCs bitmap 1747 * @is_add: True if called before Add VSI 1748 * 1749 * Setup VSI queue mapping for enabled traffic classes. 1750 **/ 1751 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1752 struct i40e_vsi_context *ctxt, 1753 u8 enabled_tc, 1754 bool is_add) 1755 { 1756 struct i40e_pf *pf = vsi->back; 1757 u16 sections = 0; 1758 u8 netdev_tc = 0; 1759 u16 numtc = 1; 1760 u16 qcount; 1761 u8 offset; 1762 u16 qmap; 1763 int i; 1764 u16 num_tc_qps = 0; 1765 1766 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1767 offset = 0; 1768 1769 /* Number of queues per enabled TC */ 1770 num_tc_qps = vsi->alloc_queue_pairs; 1771 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1772 /* Find numtc from enabled TC bitmap */ 1773 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1774 if (enabled_tc & BIT(i)) /* TC is enabled */ 1775 numtc++; 1776 } 1777 if (!numtc) { 1778 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1779 numtc = 1; 1780 } 1781 num_tc_qps = num_tc_qps / numtc; 1782 num_tc_qps = min_t(int, num_tc_qps, 1783 i40e_pf_get_max_q_per_tc(pf)); 1784 } 1785 1786 vsi->tc_config.numtc = numtc; 1787 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1788 1789 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1790 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1791 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1792 1793 /* Setup queue offset/count for all TCs for given VSI */ 1794 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1795 /* See if the given TC is enabled for the given VSI */ 1796 if (vsi->tc_config.enabled_tc & BIT(i)) { 1797 /* TC is enabled */ 1798 int pow, num_qps; 1799 1800 switch (vsi->type) { 1801 case I40E_VSI_MAIN: 1802 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1803 I40E_FLAG_FD_ATR_ENABLED)) || 1804 vsi->tc_config.enabled_tc != 1) { 1805 qcount = min_t(int, pf->alloc_rss_size, 1806 num_tc_qps); 1807 break; 1808 } 1809 /* fall through */ 1810 case I40E_VSI_FDIR: 1811 case I40E_VSI_SRIOV: 1812 case I40E_VSI_VMDQ2: 1813 default: 1814 qcount = num_tc_qps; 1815 WARN_ON(i != 0); 1816 break; 1817 } 1818 vsi->tc_config.tc_info[i].qoffset = offset; 1819 vsi->tc_config.tc_info[i].qcount = qcount; 1820 1821 /* find the next higher power-of-2 of num queue pairs */ 1822 num_qps = qcount; 1823 pow = 0; 1824 while (num_qps && (BIT_ULL(pow) < qcount)) { 1825 pow++; 1826 num_qps >>= 1; 1827 } 1828 1829 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1830 qmap = 1831 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1832 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1833 1834 offset += qcount; 1835 } else { 1836 /* TC is not enabled so set the offset to 1837 * default queue and allocate one queue 1838 * for the given TC. 1839 */ 1840 vsi->tc_config.tc_info[i].qoffset = 0; 1841 vsi->tc_config.tc_info[i].qcount = 1; 1842 vsi->tc_config.tc_info[i].netdev_tc = 0; 1843 1844 qmap = 0; 1845 } 1846 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1847 } 1848 1849 /* Set actual Tx/Rx queue pairs */ 1850 vsi->num_queue_pairs = offset; 1851 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1852 if (vsi->req_queue_pairs > 0) 1853 vsi->num_queue_pairs = vsi->req_queue_pairs; 1854 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1855 vsi->num_queue_pairs = pf->num_lan_msix; 1856 } 1857 1858 /* Scheduler section valid can only be set for ADD VSI */ 1859 if (is_add) { 1860 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1861 1862 ctxt->info.up_enable_bits = enabled_tc; 1863 } 1864 if (vsi->type == I40E_VSI_SRIOV) { 1865 ctxt->info.mapping_flags |= 1866 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1867 for (i = 0; i < vsi->num_queue_pairs; i++) 1868 ctxt->info.queue_mapping[i] = 1869 cpu_to_le16(vsi->base_queue + i); 1870 } else { 1871 ctxt->info.mapping_flags |= 1872 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1873 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1874 } 1875 ctxt->info.valid_sections |= cpu_to_le16(sections); 1876 } 1877 1878 /** 1879 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1880 * @netdev: the netdevice 1881 * @addr: address to add 1882 * 1883 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1884 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1885 */ 1886 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1887 { 1888 struct i40e_netdev_priv *np = netdev_priv(netdev); 1889 struct i40e_vsi *vsi = np->vsi; 1890 1891 if (i40e_add_mac_filter(vsi, addr)) 1892 return 0; 1893 else 1894 return -ENOMEM; 1895 } 1896 1897 /** 1898 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1899 * @netdev: the netdevice 1900 * @addr: address to add 1901 * 1902 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1903 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1904 */ 1905 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1906 { 1907 struct i40e_netdev_priv *np = netdev_priv(netdev); 1908 struct i40e_vsi *vsi = np->vsi; 1909 1910 /* Under some circumstances, we might receive a request to delete 1911 * our own device address from our uc list. Because we store the 1912 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1913 * such requests and not delete our device address from this list. 1914 */ 1915 if (ether_addr_equal(addr, netdev->dev_addr)) 1916 return 0; 1917 1918 i40e_del_mac_filter(vsi, addr); 1919 1920 return 0; 1921 } 1922 1923 /** 1924 * i40e_set_rx_mode - NDO callback to set the netdev filters 1925 * @netdev: network interface device structure 1926 **/ 1927 static void i40e_set_rx_mode(struct net_device *netdev) 1928 { 1929 struct i40e_netdev_priv *np = netdev_priv(netdev); 1930 struct i40e_vsi *vsi = np->vsi; 1931 1932 spin_lock_bh(&vsi->mac_filter_hash_lock); 1933 1934 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1935 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1936 1937 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1938 1939 /* check for other flag changes */ 1940 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1941 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1942 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1943 } 1944 } 1945 1946 /** 1947 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1948 * @vsi: Pointer to VSI struct 1949 * @from: Pointer to list which contains MAC filter entries - changes to 1950 * those entries needs to be undone. 1951 * 1952 * MAC filter entries from this list were slated for deletion. 1953 **/ 1954 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1955 struct hlist_head *from) 1956 { 1957 struct i40e_mac_filter *f; 1958 struct hlist_node *h; 1959 1960 hlist_for_each_entry_safe(f, h, from, hlist) { 1961 u64 key = i40e_addr_to_hkey(f->macaddr); 1962 1963 /* Move the element back into MAC filter list*/ 1964 hlist_del(&f->hlist); 1965 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1966 } 1967 } 1968 1969 /** 1970 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1971 * @vsi: Pointer to vsi struct 1972 * @from: Pointer to list which contains MAC filter entries - changes to 1973 * those entries needs to be undone. 1974 * 1975 * MAC filter entries from this list were slated for addition. 1976 **/ 1977 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 1978 struct hlist_head *from) 1979 { 1980 struct i40e_new_mac_filter *new; 1981 struct hlist_node *h; 1982 1983 hlist_for_each_entry_safe(new, h, from, hlist) { 1984 /* We can simply free the wrapper structure */ 1985 hlist_del(&new->hlist); 1986 kfree(new); 1987 } 1988 } 1989 1990 /** 1991 * i40e_next_entry - Get the next non-broadcast filter from a list 1992 * @next: pointer to filter in list 1993 * 1994 * Returns the next non-broadcast filter in the list. Required so that we 1995 * ignore broadcast filters within the list, since these are not handled via 1996 * the normal firmware update path. 1997 */ 1998 static 1999 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2000 { 2001 hlist_for_each_entry_continue(next, hlist) { 2002 if (!is_broadcast_ether_addr(next->f->macaddr)) 2003 return next; 2004 } 2005 2006 return NULL; 2007 } 2008 2009 /** 2010 * i40e_update_filter_state - Update filter state based on return data 2011 * from firmware 2012 * @count: Number of filters added 2013 * @add_list: return data from fw 2014 * @add_head: pointer to first filter in current batch 2015 * 2016 * MAC filter entries from list were slated to be added to device. Returns 2017 * number of successful filters. Note that 0 does NOT mean success! 2018 **/ 2019 static int 2020 i40e_update_filter_state(int count, 2021 struct i40e_aqc_add_macvlan_element_data *add_list, 2022 struct i40e_new_mac_filter *add_head) 2023 { 2024 int retval = 0; 2025 int i; 2026 2027 for (i = 0; i < count; i++) { 2028 /* Always check status of each filter. We don't need to check 2029 * the firmware return status because we pre-set the filter 2030 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2031 * request to the adminq. Thus, if it no longer matches then 2032 * we know the filter is active. 2033 */ 2034 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2035 add_head->state = I40E_FILTER_FAILED; 2036 } else { 2037 add_head->state = I40E_FILTER_ACTIVE; 2038 retval++; 2039 } 2040 2041 add_head = i40e_next_filter(add_head); 2042 if (!add_head) 2043 break; 2044 } 2045 2046 return retval; 2047 } 2048 2049 /** 2050 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2051 * @vsi: ptr to the VSI 2052 * @vsi_name: name to display in messages 2053 * @list: the list of filters to send to firmware 2054 * @num_del: the number of filters to delete 2055 * @retval: Set to -EIO on failure to delete 2056 * 2057 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2058 * *retval instead of a return value so that success does not force ret_val to 2059 * be set to 0. This ensures that a sequence of calls to this function 2060 * preserve the previous value of *retval on successful delete. 2061 */ 2062 static 2063 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2064 struct i40e_aqc_remove_macvlan_element_data *list, 2065 int num_del, int *retval) 2066 { 2067 struct i40e_hw *hw = &vsi->back->hw; 2068 i40e_status aq_ret; 2069 int aq_err; 2070 2071 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2072 aq_err = hw->aq.asq_last_status; 2073 2074 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2075 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2076 *retval = -EIO; 2077 dev_info(&vsi->back->pdev->dev, 2078 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2079 vsi_name, i40e_stat_str(hw, aq_ret), 2080 i40e_aq_str(hw, aq_err)); 2081 } 2082 } 2083 2084 /** 2085 * i40e_aqc_add_filters - Request firmware to add a set of filters 2086 * @vsi: ptr to the VSI 2087 * @vsi_name: name to display in messages 2088 * @list: the list of filters to send to firmware 2089 * @add_head: Position in the add hlist 2090 * @num_add: the number of filters to add 2091 * 2092 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2093 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2094 * space for more filters. 2095 */ 2096 static 2097 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2098 struct i40e_aqc_add_macvlan_element_data *list, 2099 struct i40e_new_mac_filter *add_head, 2100 int num_add) 2101 { 2102 struct i40e_hw *hw = &vsi->back->hw; 2103 int aq_err, fcnt; 2104 2105 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2106 aq_err = hw->aq.asq_last_status; 2107 fcnt = i40e_update_filter_state(num_add, list, add_head); 2108 2109 if (fcnt != num_add) { 2110 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2111 dev_warn(&vsi->back->pdev->dev, 2112 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2113 i40e_aq_str(hw, aq_err), 2114 vsi_name); 2115 } 2116 } 2117 2118 /** 2119 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2120 * @vsi: pointer to the VSI 2121 * @vsi_name: the VSI name 2122 * @f: filter data 2123 * 2124 * This function sets or clears the promiscuous broadcast flags for VLAN 2125 * filters in order to properly receive broadcast frames. Assumes that only 2126 * broadcast filters are passed. 2127 * 2128 * Returns status indicating success or failure; 2129 **/ 2130 static i40e_status 2131 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2132 struct i40e_mac_filter *f) 2133 { 2134 bool enable = f->state == I40E_FILTER_NEW; 2135 struct i40e_hw *hw = &vsi->back->hw; 2136 i40e_status aq_ret; 2137 2138 if (f->vlan == I40E_VLAN_ANY) { 2139 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2140 vsi->seid, 2141 enable, 2142 NULL); 2143 } else { 2144 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2145 vsi->seid, 2146 enable, 2147 f->vlan, 2148 NULL); 2149 } 2150 2151 if (aq_ret) { 2152 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2153 dev_warn(&vsi->back->pdev->dev, 2154 "Error %s, forcing overflow promiscuous on %s\n", 2155 i40e_aq_str(hw, hw->aq.asq_last_status), 2156 vsi_name); 2157 } 2158 2159 return aq_ret; 2160 } 2161 2162 /** 2163 * i40e_set_promiscuous - set promiscuous mode 2164 * @pf: board private structure 2165 * @promisc: promisc on or off 2166 * 2167 * There are different ways of setting promiscuous mode on a PF depending on 2168 * what state/environment we're in. This identifies and sets it appropriately. 2169 * Returns 0 on success. 2170 **/ 2171 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2172 { 2173 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2174 struct i40e_hw *hw = &pf->hw; 2175 i40e_status aq_ret; 2176 2177 if (vsi->type == I40E_VSI_MAIN && 2178 pf->lan_veb != I40E_NO_VEB && 2179 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2180 /* set defport ON for Main VSI instead of true promisc 2181 * this way we will get all unicast/multicast and VLAN 2182 * promisc behavior but will not get VF or VMDq traffic 2183 * replicated on the Main VSI. 2184 */ 2185 if (promisc) 2186 aq_ret = i40e_aq_set_default_vsi(hw, 2187 vsi->seid, 2188 NULL); 2189 else 2190 aq_ret = i40e_aq_clear_default_vsi(hw, 2191 vsi->seid, 2192 NULL); 2193 if (aq_ret) { 2194 dev_info(&pf->pdev->dev, 2195 "Set default VSI failed, err %s, aq_err %s\n", 2196 i40e_stat_str(hw, aq_ret), 2197 i40e_aq_str(hw, hw->aq.asq_last_status)); 2198 } 2199 } else { 2200 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2201 hw, 2202 vsi->seid, 2203 promisc, NULL, 2204 true); 2205 if (aq_ret) { 2206 dev_info(&pf->pdev->dev, 2207 "set unicast promisc failed, err %s, aq_err %s\n", 2208 i40e_stat_str(hw, aq_ret), 2209 i40e_aq_str(hw, hw->aq.asq_last_status)); 2210 } 2211 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2212 hw, 2213 vsi->seid, 2214 promisc, NULL); 2215 if (aq_ret) { 2216 dev_info(&pf->pdev->dev, 2217 "set multicast promisc failed, err %s, aq_err %s\n", 2218 i40e_stat_str(hw, aq_ret), 2219 i40e_aq_str(hw, hw->aq.asq_last_status)); 2220 } 2221 } 2222 2223 if (!aq_ret) 2224 pf->cur_promisc = promisc; 2225 2226 return aq_ret; 2227 } 2228 2229 /** 2230 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2231 * @vsi: ptr to the VSI 2232 * 2233 * Push any outstanding VSI filter changes through the AdminQ. 2234 * 2235 * Returns 0 or error value 2236 **/ 2237 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2238 { 2239 struct hlist_head tmp_add_list, tmp_del_list; 2240 struct i40e_mac_filter *f; 2241 struct i40e_new_mac_filter *new, *add_head = NULL; 2242 struct i40e_hw *hw = &vsi->back->hw; 2243 bool old_overflow, new_overflow; 2244 unsigned int failed_filters = 0; 2245 unsigned int vlan_filters = 0; 2246 char vsi_name[16] = "PF"; 2247 int filter_list_len = 0; 2248 i40e_status aq_ret = 0; 2249 u32 changed_flags = 0; 2250 struct hlist_node *h; 2251 struct i40e_pf *pf; 2252 int num_add = 0; 2253 int num_del = 0; 2254 int retval = 0; 2255 u16 cmd_flags; 2256 int list_size; 2257 int bkt; 2258 2259 /* empty array typed pointers, kcalloc later */ 2260 struct i40e_aqc_add_macvlan_element_data *add_list; 2261 struct i40e_aqc_remove_macvlan_element_data *del_list; 2262 2263 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2264 usleep_range(1000, 2000); 2265 pf = vsi->back; 2266 2267 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2268 2269 if (vsi->netdev) { 2270 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2271 vsi->current_netdev_flags = vsi->netdev->flags; 2272 } 2273 2274 INIT_HLIST_HEAD(&tmp_add_list); 2275 INIT_HLIST_HEAD(&tmp_del_list); 2276 2277 if (vsi->type == I40E_VSI_SRIOV) 2278 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2279 else if (vsi->type != I40E_VSI_MAIN) 2280 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2281 2282 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2283 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2284 2285 spin_lock_bh(&vsi->mac_filter_hash_lock); 2286 /* Create a list of filters to delete. */ 2287 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2288 if (f->state == I40E_FILTER_REMOVE) { 2289 /* Move the element into temporary del_list */ 2290 hash_del(&f->hlist); 2291 hlist_add_head(&f->hlist, &tmp_del_list); 2292 2293 /* Avoid counting removed filters */ 2294 continue; 2295 } 2296 if (f->state == I40E_FILTER_NEW) { 2297 /* Create a temporary i40e_new_mac_filter */ 2298 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2299 if (!new) 2300 goto err_no_memory_locked; 2301 2302 /* Store pointer to the real filter */ 2303 new->f = f; 2304 new->state = f->state; 2305 2306 /* Add it to the hash list */ 2307 hlist_add_head(&new->hlist, &tmp_add_list); 2308 } 2309 2310 /* Count the number of active (current and new) VLAN 2311 * filters we have now. Does not count filters which 2312 * are marked for deletion. 2313 */ 2314 if (f->vlan > 0) 2315 vlan_filters++; 2316 } 2317 2318 retval = i40e_correct_mac_vlan_filters(vsi, 2319 &tmp_add_list, 2320 &tmp_del_list, 2321 vlan_filters); 2322 if (retval) 2323 goto err_no_memory_locked; 2324 2325 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2326 } 2327 2328 /* Now process 'del_list' outside the lock */ 2329 if (!hlist_empty(&tmp_del_list)) { 2330 filter_list_len = hw->aq.asq_buf_size / 2331 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2332 list_size = filter_list_len * 2333 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2334 del_list = kzalloc(list_size, GFP_ATOMIC); 2335 if (!del_list) 2336 goto err_no_memory; 2337 2338 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2339 cmd_flags = 0; 2340 2341 /* handle broadcast filters by updating the broadcast 2342 * promiscuous flag and release filter list. 2343 */ 2344 if (is_broadcast_ether_addr(f->macaddr)) { 2345 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2346 2347 hlist_del(&f->hlist); 2348 kfree(f); 2349 continue; 2350 } 2351 2352 /* add to delete list */ 2353 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2354 if (f->vlan == I40E_VLAN_ANY) { 2355 del_list[num_del].vlan_tag = 0; 2356 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2357 } else { 2358 del_list[num_del].vlan_tag = 2359 cpu_to_le16((u16)(f->vlan)); 2360 } 2361 2362 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2363 del_list[num_del].flags = cmd_flags; 2364 num_del++; 2365 2366 /* flush a full buffer */ 2367 if (num_del == filter_list_len) { 2368 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2369 num_del, &retval); 2370 memset(del_list, 0, list_size); 2371 num_del = 0; 2372 } 2373 /* Release memory for MAC filter entries which were 2374 * synced up with HW. 2375 */ 2376 hlist_del(&f->hlist); 2377 kfree(f); 2378 } 2379 2380 if (num_del) { 2381 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2382 num_del, &retval); 2383 } 2384 2385 kfree(del_list); 2386 del_list = NULL; 2387 } 2388 2389 if (!hlist_empty(&tmp_add_list)) { 2390 /* Do all the adds now. */ 2391 filter_list_len = hw->aq.asq_buf_size / 2392 sizeof(struct i40e_aqc_add_macvlan_element_data); 2393 list_size = filter_list_len * 2394 sizeof(struct i40e_aqc_add_macvlan_element_data); 2395 add_list = kzalloc(list_size, GFP_ATOMIC); 2396 if (!add_list) 2397 goto err_no_memory; 2398 2399 num_add = 0; 2400 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2401 /* handle broadcast filters by updating the broadcast 2402 * promiscuous flag instead of adding a MAC filter. 2403 */ 2404 if (is_broadcast_ether_addr(new->f->macaddr)) { 2405 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2406 new->f)) 2407 new->state = I40E_FILTER_FAILED; 2408 else 2409 new->state = I40E_FILTER_ACTIVE; 2410 continue; 2411 } 2412 2413 /* add to add array */ 2414 if (num_add == 0) 2415 add_head = new; 2416 cmd_flags = 0; 2417 ether_addr_copy(add_list[num_add].mac_addr, 2418 new->f->macaddr); 2419 if (new->f->vlan == I40E_VLAN_ANY) { 2420 add_list[num_add].vlan_tag = 0; 2421 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2422 } else { 2423 add_list[num_add].vlan_tag = 2424 cpu_to_le16((u16)(new->f->vlan)); 2425 } 2426 add_list[num_add].queue_number = 0; 2427 /* set invalid match method for later detection */ 2428 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2429 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2430 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2431 num_add++; 2432 2433 /* flush a full buffer */ 2434 if (num_add == filter_list_len) { 2435 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2436 add_head, num_add); 2437 memset(add_list, 0, list_size); 2438 num_add = 0; 2439 } 2440 } 2441 if (num_add) { 2442 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2443 num_add); 2444 } 2445 /* Now move all of the filters from the temp add list back to 2446 * the VSI's list. 2447 */ 2448 spin_lock_bh(&vsi->mac_filter_hash_lock); 2449 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2450 /* Only update the state if we're still NEW */ 2451 if (new->f->state == I40E_FILTER_NEW) 2452 new->f->state = new->state; 2453 hlist_del(&new->hlist); 2454 kfree(new); 2455 } 2456 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2457 kfree(add_list); 2458 add_list = NULL; 2459 } 2460 2461 /* Determine the number of active and failed filters. */ 2462 spin_lock_bh(&vsi->mac_filter_hash_lock); 2463 vsi->active_filters = 0; 2464 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2465 if (f->state == I40E_FILTER_ACTIVE) 2466 vsi->active_filters++; 2467 else if (f->state == I40E_FILTER_FAILED) 2468 failed_filters++; 2469 } 2470 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2471 2472 /* Check if we are able to exit overflow promiscuous mode. We can 2473 * safely exit if we didn't just enter, we no longer have any failed 2474 * filters, and we have reduced filters below the threshold value. 2475 */ 2476 if (old_overflow && !failed_filters && 2477 vsi->active_filters < vsi->promisc_threshold) { 2478 dev_info(&pf->pdev->dev, 2479 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2480 vsi_name); 2481 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2482 vsi->promisc_threshold = 0; 2483 } 2484 2485 /* if the VF is not trusted do not do promisc */ 2486 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2487 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2488 goto out; 2489 } 2490 2491 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2492 2493 /* If we are entering overflow promiscuous, we need to calculate a new 2494 * threshold for when we are safe to exit 2495 */ 2496 if (!old_overflow && new_overflow) 2497 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2498 2499 /* check for changes in promiscuous modes */ 2500 if (changed_flags & IFF_ALLMULTI) { 2501 bool cur_multipromisc; 2502 2503 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2504 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2505 vsi->seid, 2506 cur_multipromisc, 2507 NULL); 2508 if (aq_ret) { 2509 retval = i40e_aq_rc_to_posix(aq_ret, 2510 hw->aq.asq_last_status); 2511 dev_info(&pf->pdev->dev, 2512 "set multi promisc failed on %s, err %s aq_err %s\n", 2513 vsi_name, 2514 i40e_stat_str(hw, aq_ret), 2515 i40e_aq_str(hw, hw->aq.asq_last_status)); 2516 } 2517 } 2518 2519 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2520 bool cur_promisc; 2521 2522 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2523 new_overflow); 2524 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2525 if (aq_ret) { 2526 retval = i40e_aq_rc_to_posix(aq_ret, 2527 hw->aq.asq_last_status); 2528 dev_info(&pf->pdev->dev, 2529 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2530 cur_promisc ? "on" : "off", 2531 vsi_name, 2532 i40e_stat_str(hw, aq_ret), 2533 i40e_aq_str(hw, hw->aq.asq_last_status)); 2534 } 2535 } 2536 out: 2537 /* if something went wrong then set the changed flag so we try again */ 2538 if (retval) 2539 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2540 2541 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2542 return retval; 2543 2544 err_no_memory: 2545 /* Restore elements on the temporary add and delete lists */ 2546 spin_lock_bh(&vsi->mac_filter_hash_lock); 2547 err_no_memory_locked: 2548 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2549 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2550 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2551 2552 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2553 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2554 return -ENOMEM; 2555 } 2556 2557 /** 2558 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2559 * @pf: board private structure 2560 **/ 2561 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2562 { 2563 int v; 2564 2565 if (!pf) 2566 return; 2567 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2568 return; 2569 2570 for (v = 0; v < pf->num_alloc_vsi; v++) { 2571 if (pf->vsi[v] && 2572 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2573 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2574 2575 if (ret) { 2576 /* come back and try again later */ 2577 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2578 pf->state); 2579 break; 2580 } 2581 } 2582 } 2583 } 2584 2585 /** 2586 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2587 * @vsi: the vsi 2588 **/ 2589 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2590 { 2591 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2592 return I40E_RXBUFFER_2048; 2593 else 2594 return I40E_RXBUFFER_3072; 2595 } 2596 2597 /** 2598 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2599 * @netdev: network interface device structure 2600 * @new_mtu: new value for maximum frame size 2601 * 2602 * Returns 0 on success, negative on failure 2603 **/ 2604 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2605 { 2606 struct i40e_netdev_priv *np = netdev_priv(netdev); 2607 struct i40e_vsi *vsi = np->vsi; 2608 struct i40e_pf *pf = vsi->back; 2609 2610 if (i40e_enabled_xdp_vsi(vsi)) { 2611 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2612 2613 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2614 return -EINVAL; 2615 } 2616 2617 netdev_info(netdev, "changing MTU from %d to %d\n", 2618 netdev->mtu, new_mtu); 2619 netdev->mtu = new_mtu; 2620 if (netif_running(netdev)) 2621 i40e_vsi_reinit_locked(vsi); 2622 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2623 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2624 return 0; 2625 } 2626 2627 /** 2628 * i40e_ioctl - Access the hwtstamp interface 2629 * @netdev: network interface device structure 2630 * @ifr: interface request data 2631 * @cmd: ioctl command 2632 **/ 2633 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2634 { 2635 struct i40e_netdev_priv *np = netdev_priv(netdev); 2636 struct i40e_pf *pf = np->vsi->back; 2637 2638 switch (cmd) { 2639 case SIOCGHWTSTAMP: 2640 return i40e_ptp_get_ts_config(pf, ifr); 2641 case SIOCSHWTSTAMP: 2642 return i40e_ptp_set_ts_config(pf, ifr); 2643 default: 2644 return -EOPNOTSUPP; 2645 } 2646 } 2647 2648 /** 2649 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2650 * @vsi: the vsi being adjusted 2651 **/ 2652 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2653 { 2654 struct i40e_vsi_context ctxt; 2655 i40e_status ret; 2656 2657 if ((vsi->info.valid_sections & 2658 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2659 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2660 return; /* already enabled */ 2661 2662 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2663 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2664 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2665 2666 ctxt.seid = vsi->seid; 2667 ctxt.info = vsi->info; 2668 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2669 if (ret) { 2670 dev_info(&vsi->back->pdev->dev, 2671 "update vlan stripping failed, err %s aq_err %s\n", 2672 i40e_stat_str(&vsi->back->hw, ret), 2673 i40e_aq_str(&vsi->back->hw, 2674 vsi->back->hw.aq.asq_last_status)); 2675 } 2676 } 2677 2678 /** 2679 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2680 * @vsi: the vsi being adjusted 2681 **/ 2682 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2683 { 2684 struct i40e_vsi_context ctxt; 2685 i40e_status ret; 2686 2687 if ((vsi->info.valid_sections & 2688 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2689 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2690 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2691 return; /* already disabled */ 2692 2693 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2694 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2695 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2696 2697 ctxt.seid = vsi->seid; 2698 ctxt.info = vsi->info; 2699 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2700 if (ret) { 2701 dev_info(&vsi->back->pdev->dev, 2702 "update vlan stripping failed, err %s aq_err %s\n", 2703 i40e_stat_str(&vsi->back->hw, ret), 2704 i40e_aq_str(&vsi->back->hw, 2705 vsi->back->hw.aq.asq_last_status)); 2706 } 2707 } 2708 2709 /** 2710 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2711 * @vsi: the vsi being configured 2712 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2713 * 2714 * This is a helper function for adding a new MAC/VLAN filter with the 2715 * specified VLAN for each existing MAC address already in the hash table. 2716 * This function does *not* perform any accounting to update filters based on 2717 * VLAN mode. 2718 * 2719 * NOTE: this function expects to be called while under the 2720 * mac_filter_hash_lock 2721 **/ 2722 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2723 { 2724 struct i40e_mac_filter *f, *add_f; 2725 struct hlist_node *h; 2726 int bkt; 2727 2728 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2729 if (f->state == I40E_FILTER_REMOVE) 2730 continue; 2731 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2732 if (!add_f) { 2733 dev_info(&vsi->back->pdev->dev, 2734 "Could not add vlan filter %d for %pM\n", 2735 vid, f->macaddr); 2736 return -ENOMEM; 2737 } 2738 } 2739 2740 return 0; 2741 } 2742 2743 /** 2744 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2745 * @vsi: the VSI being configured 2746 * @vid: VLAN id to be added 2747 **/ 2748 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2749 { 2750 int err; 2751 2752 if (vsi->info.pvid) 2753 return -EINVAL; 2754 2755 /* The network stack will attempt to add VID=0, with the intention to 2756 * receive priority tagged packets with a VLAN of 0. Our HW receives 2757 * these packets by default when configured to receive untagged 2758 * packets, so we don't need to add a filter for this case. 2759 * Additionally, HW interprets adding a VID=0 filter as meaning to 2760 * receive *only* tagged traffic and stops receiving untagged traffic. 2761 * Thus, we do not want to actually add a filter for VID=0 2762 */ 2763 if (!vid) 2764 return 0; 2765 2766 /* Locked once because all functions invoked below iterates list*/ 2767 spin_lock_bh(&vsi->mac_filter_hash_lock); 2768 err = i40e_add_vlan_all_mac(vsi, vid); 2769 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2770 if (err) 2771 return err; 2772 2773 /* schedule our worker thread which will take care of 2774 * applying the new filter changes 2775 */ 2776 i40e_service_event_schedule(vsi->back); 2777 return 0; 2778 } 2779 2780 /** 2781 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2782 * @vsi: the vsi being configured 2783 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2784 * 2785 * This function should be used to remove all VLAN filters which match the 2786 * given VID. It does not schedule the service event and does not take the 2787 * mac_filter_hash_lock so it may be combined with other operations under 2788 * a single invocation of the mac_filter_hash_lock. 2789 * 2790 * NOTE: this function expects to be called while under the 2791 * mac_filter_hash_lock 2792 */ 2793 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2794 { 2795 struct i40e_mac_filter *f; 2796 struct hlist_node *h; 2797 int bkt; 2798 2799 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2800 if (f->vlan == vid) 2801 __i40e_del_filter(vsi, f); 2802 } 2803 } 2804 2805 /** 2806 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2807 * @vsi: the VSI being configured 2808 * @vid: VLAN id to be removed 2809 **/ 2810 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2811 { 2812 if (!vid || vsi->info.pvid) 2813 return; 2814 2815 spin_lock_bh(&vsi->mac_filter_hash_lock); 2816 i40e_rm_vlan_all_mac(vsi, vid); 2817 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2818 2819 /* schedule our worker thread which will take care of 2820 * applying the new filter changes 2821 */ 2822 i40e_service_event_schedule(vsi->back); 2823 } 2824 2825 /** 2826 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2827 * @netdev: network interface to be adjusted 2828 * @proto: unused protocol value 2829 * @vid: vlan id to be added 2830 * 2831 * net_device_ops implementation for adding vlan ids 2832 **/ 2833 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2834 __always_unused __be16 proto, u16 vid) 2835 { 2836 struct i40e_netdev_priv *np = netdev_priv(netdev); 2837 struct i40e_vsi *vsi = np->vsi; 2838 int ret = 0; 2839 2840 if (vid >= VLAN_N_VID) 2841 return -EINVAL; 2842 2843 ret = i40e_vsi_add_vlan(vsi, vid); 2844 if (!ret) 2845 set_bit(vid, vsi->active_vlans); 2846 2847 return ret; 2848 } 2849 2850 /** 2851 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2852 * @netdev: network interface to be adjusted 2853 * @proto: unused protocol value 2854 * @vid: vlan id to be added 2855 **/ 2856 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2857 __always_unused __be16 proto, u16 vid) 2858 { 2859 struct i40e_netdev_priv *np = netdev_priv(netdev); 2860 struct i40e_vsi *vsi = np->vsi; 2861 2862 if (vid >= VLAN_N_VID) 2863 return; 2864 set_bit(vid, vsi->active_vlans); 2865 } 2866 2867 /** 2868 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2869 * @netdev: network interface to be adjusted 2870 * @proto: unused protocol value 2871 * @vid: vlan id to be removed 2872 * 2873 * net_device_ops implementation for removing vlan ids 2874 **/ 2875 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2876 __always_unused __be16 proto, u16 vid) 2877 { 2878 struct i40e_netdev_priv *np = netdev_priv(netdev); 2879 struct i40e_vsi *vsi = np->vsi; 2880 2881 /* return code is ignored as there is nothing a user 2882 * can do about failure to remove and a log message was 2883 * already printed from the other function 2884 */ 2885 i40e_vsi_kill_vlan(vsi, vid); 2886 2887 clear_bit(vid, vsi->active_vlans); 2888 2889 return 0; 2890 } 2891 2892 /** 2893 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2894 * @vsi: the vsi being brought back up 2895 **/ 2896 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2897 { 2898 u16 vid; 2899 2900 if (!vsi->netdev) 2901 return; 2902 2903 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2904 i40e_vlan_stripping_enable(vsi); 2905 else 2906 i40e_vlan_stripping_disable(vsi); 2907 2908 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2909 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2910 vid); 2911 } 2912 2913 /** 2914 * i40e_vsi_add_pvid - Add pvid for the VSI 2915 * @vsi: the vsi being adjusted 2916 * @vid: the vlan id to set as a PVID 2917 **/ 2918 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2919 { 2920 struct i40e_vsi_context ctxt; 2921 i40e_status ret; 2922 2923 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2924 vsi->info.pvid = cpu_to_le16(vid); 2925 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2926 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2927 I40E_AQ_VSI_PVLAN_EMOD_STR; 2928 2929 ctxt.seid = vsi->seid; 2930 ctxt.info = vsi->info; 2931 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2932 if (ret) { 2933 dev_info(&vsi->back->pdev->dev, 2934 "add pvid failed, err %s aq_err %s\n", 2935 i40e_stat_str(&vsi->back->hw, ret), 2936 i40e_aq_str(&vsi->back->hw, 2937 vsi->back->hw.aq.asq_last_status)); 2938 return -ENOENT; 2939 } 2940 2941 return 0; 2942 } 2943 2944 /** 2945 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2946 * @vsi: the vsi being adjusted 2947 * 2948 * Just use the vlan_rx_register() service to put it back to normal 2949 **/ 2950 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2951 { 2952 i40e_vlan_stripping_disable(vsi); 2953 2954 vsi->info.pvid = 0; 2955 } 2956 2957 /** 2958 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 2959 * @vsi: ptr to the VSI 2960 * 2961 * If this function returns with an error, then it's possible one or 2962 * more of the rings is populated (while the rest are not). It is the 2963 * callers duty to clean those orphaned rings. 2964 * 2965 * Return 0 on success, negative on failure 2966 **/ 2967 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 2968 { 2969 int i, err = 0; 2970 2971 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2972 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 2973 2974 if (!i40e_enabled_xdp_vsi(vsi)) 2975 return err; 2976 2977 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2978 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 2979 2980 return err; 2981 } 2982 2983 /** 2984 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 2985 * @vsi: ptr to the VSI 2986 * 2987 * Free VSI's transmit software resources 2988 **/ 2989 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 2990 { 2991 int i; 2992 2993 if (vsi->tx_rings) { 2994 for (i = 0; i < vsi->num_queue_pairs; i++) 2995 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2996 i40e_free_tx_resources(vsi->tx_rings[i]); 2997 } 2998 2999 if (vsi->xdp_rings) { 3000 for (i = 0; i < vsi->num_queue_pairs; i++) 3001 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3002 i40e_free_tx_resources(vsi->xdp_rings[i]); 3003 } 3004 } 3005 3006 /** 3007 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3008 * @vsi: ptr to the VSI 3009 * 3010 * If this function returns with an error, then it's possible one or 3011 * more of the rings is populated (while the rest are not). It is the 3012 * callers duty to clean those orphaned rings. 3013 * 3014 * Return 0 on success, negative on failure 3015 **/ 3016 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3017 { 3018 int i, err = 0; 3019 3020 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3021 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3022 return err; 3023 } 3024 3025 /** 3026 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3027 * @vsi: ptr to the VSI 3028 * 3029 * Free all receive software resources 3030 **/ 3031 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3032 { 3033 int i; 3034 3035 if (!vsi->rx_rings) 3036 return; 3037 3038 for (i = 0; i < vsi->num_queue_pairs; i++) 3039 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3040 i40e_free_rx_resources(vsi->rx_rings[i]); 3041 } 3042 3043 /** 3044 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3045 * @ring: The Tx ring to configure 3046 * 3047 * This enables/disables XPS for a given Tx descriptor ring 3048 * based on the TCs enabled for the VSI that ring belongs to. 3049 **/ 3050 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3051 { 3052 int cpu; 3053 3054 if (!ring->q_vector || !ring->netdev || ring->ch) 3055 return; 3056 3057 /* We only initialize XPS once, so as not to overwrite user settings */ 3058 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3059 return; 3060 3061 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3062 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3063 ring->queue_index); 3064 } 3065 3066 /** 3067 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3068 * @ring: The Tx ring to configure 3069 * 3070 * Configure the Tx descriptor ring in the HMC context. 3071 **/ 3072 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3073 { 3074 struct i40e_vsi *vsi = ring->vsi; 3075 u16 pf_q = vsi->base_queue + ring->queue_index; 3076 struct i40e_hw *hw = &vsi->back->hw; 3077 struct i40e_hmc_obj_txq tx_ctx; 3078 i40e_status err = 0; 3079 u32 qtx_ctl = 0; 3080 3081 if (ring_is_xdp(ring)) 3082 ring->xsk_umem = i40e_xsk_umem(ring); 3083 3084 /* some ATR related tx ring init */ 3085 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3086 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3087 ring->atr_count = 0; 3088 } else { 3089 ring->atr_sample_rate = 0; 3090 } 3091 3092 /* configure XPS */ 3093 i40e_config_xps_tx_ring(ring); 3094 3095 /* clear the context structure first */ 3096 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3097 3098 tx_ctx.new_context = 1; 3099 tx_ctx.base = (ring->dma / 128); 3100 tx_ctx.qlen = ring->count; 3101 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3102 I40E_FLAG_FD_ATR_ENABLED)); 3103 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3104 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3105 if (vsi->type != I40E_VSI_FDIR) 3106 tx_ctx.head_wb_ena = 1; 3107 tx_ctx.head_wb_addr = ring->dma + 3108 (ring->count * sizeof(struct i40e_tx_desc)); 3109 3110 /* As part of VSI creation/update, FW allocates certain 3111 * Tx arbitration queue sets for each TC enabled for 3112 * the VSI. The FW returns the handles to these queue 3113 * sets as part of the response buffer to Add VSI, 3114 * Update VSI, etc. AQ commands. It is expected that 3115 * these queue set handles be associated with the Tx 3116 * queues by the driver as part of the TX queue context 3117 * initialization. This has to be done regardless of 3118 * DCB as by default everything is mapped to TC0. 3119 */ 3120 3121 if (ring->ch) 3122 tx_ctx.rdylist = 3123 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3124 3125 else 3126 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3127 3128 tx_ctx.rdylist_act = 0; 3129 3130 /* clear the context in the HMC */ 3131 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3132 if (err) { 3133 dev_info(&vsi->back->pdev->dev, 3134 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3135 ring->queue_index, pf_q, err); 3136 return -ENOMEM; 3137 } 3138 3139 /* set the context in the HMC */ 3140 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3141 if (err) { 3142 dev_info(&vsi->back->pdev->dev, 3143 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3144 ring->queue_index, pf_q, err); 3145 return -ENOMEM; 3146 } 3147 3148 /* Now associate this queue with this PCI function */ 3149 if (ring->ch) { 3150 if (ring->ch->type == I40E_VSI_VMDQ2) 3151 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3152 else 3153 return -EINVAL; 3154 3155 qtx_ctl |= (ring->ch->vsi_number << 3156 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3157 I40E_QTX_CTL_VFVM_INDX_MASK; 3158 } else { 3159 if (vsi->type == I40E_VSI_VMDQ2) { 3160 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3161 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3162 I40E_QTX_CTL_VFVM_INDX_MASK; 3163 } else { 3164 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3165 } 3166 } 3167 3168 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3169 I40E_QTX_CTL_PF_INDX_MASK); 3170 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3171 i40e_flush(hw); 3172 3173 /* cache tail off for easier writes later */ 3174 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3175 3176 return 0; 3177 } 3178 3179 /** 3180 * i40e_configure_rx_ring - Configure a receive ring context 3181 * @ring: The Rx ring to configure 3182 * 3183 * Configure the Rx descriptor ring in the HMC context. 3184 **/ 3185 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3186 { 3187 struct i40e_vsi *vsi = ring->vsi; 3188 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3189 u16 pf_q = vsi->base_queue + ring->queue_index; 3190 struct i40e_hw *hw = &vsi->back->hw; 3191 struct i40e_hmc_obj_rxq rx_ctx; 3192 i40e_status err = 0; 3193 bool ok; 3194 int ret; 3195 3196 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3197 3198 /* clear the context structure first */ 3199 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3200 3201 if (ring->vsi->type == I40E_VSI_MAIN) 3202 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3203 3204 ring->xsk_umem = i40e_xsk_umem(ring); 3205 if (ring->xsk_umem) { 3206 ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr - 3207 XDP_PACKET_HEADROOM; 3208 /* For AF_XDP ZC, we disallow packets to span on 3209 * multiple buffers, thus letting us skip that 3210 * handling in the fast-path. 3211 */ 3212 chain_len = 1; 3213 ring->zca.free = i40e_zca_free; 3214 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3215 MEM_TYPE_ZERO_COPY, 3216 &ring->zca); 3217 if (ret) 3218 return ret; 3219 dev_info(&vsi->back->pdev->dev, 3220 "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n", 3221 ring->queue_index); 3222 3223 } else { 3224 ring->rx_buf_len = vsi->rx_buf_len; 3225 if (ring->vsi->type == I40E_VSI_MAIN) { 3226 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3227 MEM_TYPE_PAGE_SHARED, 3228 NULL); 3229 if (ret) 3230 return ret; 3231 } 3232 } 3233 3234 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3235 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3236 3237 rx_ctx.base = (ring->dma / 128); 3238 rx_ctx.qlen = ring->count; 3239 3240 /* use 32 byte descriptors */ 3241 rx_ctx.dsize = 1; 3242 3243 /* descriptor type is always zero 3244 * rx_ctx.dtype = 0; 3245 */ 3246 rx_ctx.hsplit_0 = 0; 3247 3248 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3249 if (hw->revision_id == 0) 3250 rx_ctx.lrxqthresh = 0; 3251 else 3252 rx_ctx.lrxqthresh = 1; 3253 rx_ctx.crcstrip = 1; 3254 rx_ctx.l2tsel = 1; 3255 /* this controls whether VLAN is stripped from inner headers */ 3256 rx_ctx.showiv = 0; 3257 /* set the prefena field to 1 because the manual says to */ 3258 rx_ctx.prefena = 1; 3259 3260 /* clear the context in the HMC */ 3261 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3262 if (err) { 3263 dev_info(&vsi->back->pdev->dev, 3264 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3265 ring->queue_index, pf_q, err); 3266 return -ENOMEM; 3267 } 3268 3269 /* set the context in the HMC */ 3270 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3271 if (err) { 3272 dev_info(&vsi->back->pdev->dev, 3273 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3274 ring->queue_index, pf_q, err); 3275 return -ENOMEM; 3276 } 3277 3278 /* configure Rx buffer alignment */ 3279 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3280 clear_ring_build_skb_enabled(ring); 3281 else 3282 set_ring_build_skb_enabled(ring); 3283 3284 /* cache tail for quicker writes, and clear the reg before use */ 3285 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3286 writel(0, ring->tail); 3287 3288 ok = ring->xsk_umem ? 3289 i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)) : 3290 !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3291 if (!ok) { 3292 dev_info(&vsi->back->pdev->dev, 3293 "Failed allocate some buffers on %sRx ring %d (pf_q %d)\n", 3294 ring->xsk_umem ? "UMEM enabled " : "", 3295 ring->queue_index, pf_q); 3296 } 3297 3298 return 0; 3299 } 3300 3301 /** 3302 * i40e_vsi_configure_tx - Configure the VSI for Tx 3303 * @vsi: VSI structure describing this set of rings and resources 3304 * 3305 * Configure the Tx VSI for operation. 3306 **/ 3307 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3308 { 3309 int err = 0; 3310 u16 i; 3311 3312 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3313 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3314 3315 if (!i40e_enabled_xdp_vsi(vsi)) 3316 return err; 3317 3318 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3319 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3320 3321 return err; 3322 } 3323 3324 /** 3325 * i40e_vsi_configure_rx - Configure the VSI for Rx 3326 * @vsi: the VSI being configured 3327 * 3328 * Configure the Rx VSI for operation. 3329 **/ 3330 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3331 { 3332 int err = 0; 3333 u16 i; 3334 3335 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3336 vsi->max_frame = I40E_MAX_RXBUFFER; 3337 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3338 #if (PAGE_SIZE < 8192) 3339 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3340 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3341 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3342 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3343 #endif 3344 } else { 3345 vsi->max_frame = I40E_MAX_RXBUFFER; 3346 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3347 I40E_RXBUFFER_2048; 3348 } 3349 3350 /* set up individual rings */ 3351 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3352 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3353 3354 return err; 3355 } 3356 3357 /** 3358 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3359 * @vsi: ptr to the VSI 3360 **/ 3361 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3362 { 3363 struct i40e_ring *tx_ring, *rx_ring; 3364 u16 qoffset, qcount; 3365 int i, n; 3366 3367 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3368 /* Reset the TC information */ 3369 for (i = 0; i < vsi->num_queue_pairs; i++) { 3370 rx_ring = vsi->rx_rings[i]; 3371 tx_ring = vsi->tx_rings[i]; 3372 rx_ring->dcb_tc = 0; 3373 tx_ring->dcb_tc = 0; 3374 } 3375 return; 3376 } 3377 3378 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3379 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3380 continue; 3381 3382 qoffset = vsi->tc_config.tc_info[n].qoffset; 3383 qcount = vsi->tc_config.tc_info[n].qcount; 3384 for (i = qoffset; i < (qoffset + qcount); i++) { 3385 rx_ring = vsi->rx_rings[i]; 3386 tx_ring = vsi->tx_rings[i]; 3387 rx_ring->dcb_tc = n; 3388 tx_ring->dcb_tc = n; 3389 } 3390 } 3391 } 3392 3393 /** 3394 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3395 * @vsi: ptr to the VSI 3396 **/ 3397 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3398 { 3399 if (vsi->netdev) 3400 i40e_set_rx_mode(vsi->netdev); 3401 } 3402 3403 /** 3404 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3405 * @vsi: Pointer to the targeted VSI 3406 * 3407 * This function replays the hlist on the hw where all the SB Flow Director 3408 * filters were saved. 3409 **/ 3410 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3411 { 3412 struct i40e_fdir_filter *filter; 3413 struct i40e_pf *pf = vsi->back; 3414 struct hlist_node *node; 3415 3416 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3417 return; 3418 3419 /* Reset FDir counters as we're replaying all existing filters */ 3420 pf->fd_tcp4_filter_cnt = 0; 3421 pf->fd_udp4_filter_cnt = 0; 3422 pf->fd_sctp4_filter_cnt = 0; 3423 pf->fd_ip4_filter_cnt = 0; 3424 3425 hlist_for_each_entry_safe(filter, node, 3426 &pf->fdir_filter_list, fdir_node) { 3427 i40e_add_del_fdir(vsi, filter, true); 3428 } 3429 } 3430 3431 /** 3432 * i40e_vsi_configure - Set up the VSI for action 3433 * @vsi: the VSI being configured 3434 **/ 3435 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3436 { 3437 int err; 3438 3439 i40e_set_vsi_rx_mode(vsi); 3440 i40e_restore_vlan(vsi); 3441 i40e_vsi_config_dcb_rings(vsi); 3442 err = i40e_vsi_configure_tx(vsi); 3443 if (!err) 3444 err = i40e_vsi_configure_rx(vsi); 3445 3446 return err; 3447 } 3448 3449 /** 3450 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3451 * @vsi: the VSI being configured 3452 **/ 3453 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3454 { 3455 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3456 struct i40e_pf *pf = vsi->back; 3457 struct i40e_hw *hw = &pf->hw; 3458 u16 vector; 3459 int i, q; 3460 u32 qp; 3461 3462 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3463 * and PFINT_LNKLSTn registers, e.g.: 3464 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3465 */ 3466 qp = vsi->base_queue; 3467 vector = vsi->base_vector; 3468 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3469 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3470 3471 q_vector->rx.next_update = jiffies + 1; 3472 q_vector->rx.target_itr = 3473 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3474 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3475 q_vector->rx.target_itr); 3476 q_vector->rx.current_itr = q_vector->rx.target_itr; 3477 3478 q_vector->tx.next_update = jiffies + 1; 3479 q_vector->tx.target_itr = 3480 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3481 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3482 q_vector->tx.target_itr); 3483 q_vector->tx.current_itr = q_vector->tx.target_itr; 3484 3485 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3486 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3487 3488 /* Linked list for the queuepairs assigned to this vector */ 3489 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3490 for (q = 0; q < q_vector->num_ringpairs; q++) { 3491 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3492 u32 val; 3493 3494 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3495 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3496 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3497 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3498 (I40E_QUEUE_TYPE_TX << 3499 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3500 3501 wr32(hw, I40E_QINT_RQCTL(qp), val); 3502 3503 if (has_xdp) { 3504 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3505 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3506 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3507 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3508 (I40E_QUEUE_TYPE_TX << 3509 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3510 3511 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3512 } 3513 3514 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3515 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3516 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3517 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3518 (I40E_QUEUE_TYPE_RX << 3519 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3520 3521 /* Terminate the linked list */ 3522 if (q == (q_vector->num_ringpairs - 1)) 3523 val |= (I40E_QUEUE_END_OF_LIST << 3524 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3525 3526 wr32(hw, I40E_QINT_TQCTL(qp), val); 3527 qp++; 3528 } 3529 } 3530 3531 i40e_flush(hw); 3532 } 3533 3534 /** 3535 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3536 * @pf: pointer to private device data structure 3537 **/ 3538 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3539 { 3540 struct i40e_hw *hw = &pf->hw; 3541 u32 val; 3542 3543 /* clear things first */ 3544 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3545 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3546 3547 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3548 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3549 I40E_PFINT_ICR0_ENA_GRST_MASK | 3550 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3551 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3552 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3553 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3554 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3555 3556 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3557 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3558 3559 if (pf->flags & I40E_FLAG_PTP) 3560 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3561 3562 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3563 3564 /* SW_ITR_IDX = 0, but don't change INTENA */ 3565 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3566 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3567 3568 /* OTHER_ITR_IDX = 0 */ 3569 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3570 } 3571 3572 /** 3573 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3574 * @vsi: the VSI being configured 3575 **/ 3576 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3577 { 3578 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3579 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3580 struct i40e_pf *pf = vsi->back; 3581 struct i40e_hw *hw = &pf->hw; 3582 u32 val; 3583 3584 /* set the ITR configuration */ 3585 q_vector->rx.next_update = jiffies + 1; 3586 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3587 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr); 3588 q_vector->rx.current_itr = q_vector->rx.target_itr; 3589 q_vector->tx.next_update = jiffies + 1; 3590 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3591 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr); 3592 q_vector->tx.current_itr = q_vector->tx.target_itr; 3593 3594 i40e_enable_misc_int_causes(pf); 3595 3596 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3597 wr32(hw, I40E_PFINT_LNKLST0, 0); 3598 3599 /* Associate the queue pair to the vector and enable the queue int */ 3600 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3601 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3602 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3603 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3604 3605 wr32(hw, I40E_QINT_RQCTL(0), val); 3606 3607 if (i40e_enabled_xdp_vsi(vsi)) { 3608 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3609 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3610 (I40E_QUEUE_TYPE_TX 3611 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3612 3613 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3614 } 3615 3616 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3617 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3618 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3619 3620 wr32(hw, I40E_QINT_TQCTL(0), val); 3621 i40e_flush(hw); 3622 } 3623 3624 /** 3625 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3626 * @pf: board private structure 3627 **/ 3628 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3629 { 3630 struct i40e_hw *hw = &pf->hw; 3631 3632 wr32(hw, I40E_PFINT_DYN_CTL0, 3633 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3634 i40e_flush(hw); 3635 } 3636 3637 /** 3638 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3639 * @pf: board private structure 3640 **/ 3641 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3642 { 3643 struct i40e_hw *hw = &pf->hw; 3644 u32 val; 3645 3646 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3647 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3648 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3649 3650 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3651 i40e_flush(hw); 3652 } 3653 3654 /** 3655 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3656 * @irq: interrupt number 3657 * @data: pointer to a q_vector 3658 **/ 3659 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3660 { 3661 struct i40e_q_vector *q_vector = data; 3662 3663 if (!q_vector->tx.ring && !q_vector->rx.ring) 3664 return IRQ_HANDLED; 3665 3666 napi_schedule_irqoff(&q_vector->napi); 3667 3668 return IRQ_HANDLED; 3669 } 3670 3671 /** 3672 * i40e_irq_affinity_notify - Callback for affinity changes 3673 * @notify: context as to what irq was changed 3674 * @mask: the new affinity mask 3675 * 3676 * This is a callback function used by the irq_set_affinity_notifier function 3677 * so that we may register to receive changes to the irq affinity masks. 3678 **/ 3679 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3680 const cpumask_t *mask) 3681 { 3682 struct i40e_q_vector *q_vector = 3683 container_of(notify, struct i40e_q_vector, affinity_notify); 3684 3685 cpumask_copy(&q_vector->affinity_mask, mask); 3686 } 3687 3688 /** 3689 * i40e_irq_affinity_release - Callback for affinity notifier release 3690 * @ref: internal core kernel usage 3691 * 3692 * This is a callback function used by the irq_set_affinity_notifier function 3693 * to inform the current notification subscriber that they will no longer 3694 * receive notifications. 3695 **/ 3696 static void i40e_irq_affinity_release(struct kref *ref) {} 3697 3698 /** 3699 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3700 * @vsi: the VSI being configured 3701 * @basename: name for the vector 3702 * 3703 * Allocates MSI-X vectors and requests interrupts from the kernel. 3704 **/ 3705 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3706 { 3707 int q_vectors = vsi->num_q_vectors; 3708 struct i40e_pf *pf = vsi->back; 3709 int base = vsi->base_vector; 3710 int rx_int_idx = 0; 3711 int tx_int_idx = 0; 3712 int vector, err; 3713 int irq_num; 3714 int cpu; 3715 3716 for (vector = 0; vector < q_vectors; vector++) { 3717 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3718 3719 irq_num = pf->msix_entries[base + vector].vector; 3720 3721 if (q_vector->tx.ring && q_vector->rx.ring) { 3722 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3723 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3724 tx_int_idx++; 3725 } else if (q_vector->rx.ring) { 3726 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3727 "%s-%s-%d", basename, "rx", rx_int_idx++); 3728 } else if (q_vector->tx.ring) { 3729 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3730 "%s-%s-%d", basename, "tx", tx_int_idx++); 3731 } else { 3732 /* skip this unused q_vector */ 3733 continue; 3734 } 3735 err = request_irq(irq_num, 3736 vsi->irq_handler, 3737 0, 3738 q_vector->name, 3739 q_vector); 3740 if (err) { 3741 dev_info(&pf->pdev->dev, 3742 "MSIX request_irq failed, error: %d\n", err); 3743 goto free_queue_irqs; 3744 } 3745 3746 /* register for affinity change notifications */ 3747 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3748 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3749 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3750 /* Spread affinity hints out across online CPUs. 3751 * 3752 * get_cpu_mask returns a static constant mask with 3753 * a permanent lifetime so it's ok to pass to 3754 * irq_set_affinity_hint without making a copy. 3755 */ 3756 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3757 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3758 } 3759 3760 vsi->irqs_ready = true; 3761 return 0; 3762 3763 free_queue_irqs: 3764 while (vector) { 3765 vector--; 3766 irq_num = pf->msix_entries[base + vector].vector; 3767 irq_set_affinity_notifier(irq_num, NULL); 3768 irq_set_affinity_hint(irq_num, NULL); 3769 free_irq(irq_num, &vsi->q_vectors[vector]); 3770 } 3771 return err; 3772 } 3773 3774 /** 3775 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3776 * @vsi: the VSI being un-configured 3777 **/ 3778 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3779 { 3780 struct i40e_pf *pf = vsi->back; 3781 struct i40e_hw *hw = &pf->hw; 3782 int base = vsi->base_vector; 3783 int i; 3784 3785 /* disable interrupt causation from each queue */ 3786 for (i = 0; i < vsi->num_queue_pairs; i++) { 3787 u32 val; 3788 3789 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3790 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3791 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3792 3793 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3794 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3795 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3796 3797 if (!i40e_enabled_xdp_vsi(vsi)) 3798 continue; 3799 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3800 } 3801 3802 /* disable each interrupt */ 3803 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3804 for (i = vsi->base_vector; 3805 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3806 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3807 3808 i40e_flush(hw); 3809 for (i = 0; i < vsi->num_q_vectors; i++) 3810 synchronize_irq(pf->msix_entries[i + base].vector); 3811 } else { 3812 /* Legacy and MSI mode - this stops all interrupt handling */ 3813 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3814 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3815 i40e_flush(hw); 3816 synchronize_irq(pf->pdev->irq); 3817 } 3818 } 3819 3820 /** 3821 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3822 * @vsi: the VSI being configured 3823 **/ 3824 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3825 { 3826 struct i40e_pf *pf = vsi->back; 3827 int i; 3828 3829 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3830 for (i = 0; i < vsi->num_q_vectors; i++) 3831 i40e_irq_dynamic_enable(vsi, i); 3832 } else { 3833 i40e_irq_dynamic_enable_icr0(pf); 3834 } 3835 3836 i40e_flush(&pf->hw); 3837 return 0; 3838 } 3839 3840 /** 3841 * i40e_free_misc_vector - Free the vector that handles non-queue events 3842 * @pf: board private structure 3843 **/ 3844 static void i40e_free_misc_vector(struct i40e_pf *pf) 3845 { 3846 /* Disable ICR 0 */ 3847 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3848 i40e_flush(&pf->hw); 3849 3850 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3851 synchronize_irq(pf->msix_entries[0].vector); 3852 free_irq(pf->msix_entries[0].vector, pf); 3853 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3854 } 3855 } 3856 3857 /** 3858 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3859 * @irq: interrupt number 3860 * @data: pointer to a q_vector 3861 * 3862 * This is the handler used for all MSI/Legacy interrupts, and deals 3863 * with both queue and non-queue interrupts. This is also used in 3864 * MSIX mode to handle the non-queue interrupts. 3865 **/ 3866 static irqreturn_t i40e_intr(int irq, void *data) 3867 { 3868 struct i40e_pf *pf = (struct i40e_pf *)data; 3869 struct i40e_hw *hw = &pf->hw; 3870 irqreturn_t ret = IRQ_NONE; 3871 u32 icr0, icr0_remaining; 3872 u32 val, ena_mask; 3873 3874 icr0 = rd32(hw, I40E_PFINT_ICR0); 3875 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3876 3877 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3878 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3879 goto enable_intr; 3880 3881 /* if interrupt but no bits showing, must be SWINT */ 3882 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3883 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3884 pf->sw_int_count++; 3885 3886 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3887 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3888 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3889 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3890 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3891 } 3892 3893 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3894 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3895 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3896 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3897 3898 /* We do not have a way to disarm Queue causes while leaving 3899 * interrupt enabled for all other causes, ideally 3900 * interrupt should be disabled while we are in NAPI but 3901 * this is not a performance path and napi_schedule() 3902 * can deal with rescheduling. 3903 */ 3904 if (!test_bit(__I40E_DOWN, pf->state)) 3905 napi_schedule_irqoff(&q_vector->napi); 3906 } 3907 3908 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3909 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3910 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3911 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3912 } 3913 3914 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3915 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3916 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3917 } 3918 3919 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3920 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 3921 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 3922 } 3923 3924 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 3925 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 3926 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 3927 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 3928 val = rd32(hw, I40E_GLGEN_RSTAT); 3929 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 3930 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 3931 if (val == I40E_RESET_CORER) { 3932 pf->corer_count++; 3933 } else if (val == I40E_RESET_GLOBR) { 3934 pf->globr_count++; 3935 } else if (val == I40E_RESET_EMPR) { 3936 pf->empr_count++; 3937 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 3938 } 3939 } 3940 3941 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 3942 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 3943 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 3944 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 3945 rd32(hw, I40E_PFHMC_ERRORINFO), 3946 rd32(hw, I40E_PFHMC_ERRORDATA)); 3947 } 3948 3949 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 3950 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 3951 3952 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 3953 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3954 i40e_ptp_tx_hwtstamp(pf); 3955 } 3956 } 3957 3958 /* If a critical error is pending we have no choice but to reset the 3959 * device. 3960 * Report and mask out any remaining unexpected interrupts. 3961 */ 3962 icr0_remaining = icr0 & ena_mask; 3963 if (icr0_remaining) { 3964 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 3965 icr0_remaining); 3966 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 3967 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 3968 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 3969 dev_info(&pf->pdev->dev, "device will be reset\n"); 3970 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 3971 i40e_service_event_schedule(pf); 3972 } 3973 ena_mask &= ~icr0_remaining; 3974 } 3975 ret = IRQ_HANDLED; 3976 3977 enable_intr: 3978 /* re-enable interrupt causes */ 3979 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 3980 if (!test_bit(__I40E_DOWN, pf->state)) { 3981 i40e_service_event_schedule(pf); 3982 i40e_irq_dynamic_enable_icr0(pf); 3983 } 3984 3985 return ret; 3986 } 3987 3988 /** 3989 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 3990 * @tx_ring: tx ring to clean 3991 * @budget: how many cleans we're allowed 3992 * 3993 * Returns true if there's any budget left (e.g. the clean is finished) 3994 **/ 3995 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 3996 { 3997 struct i40e_vsi *vsi = tx_ring->vsi; 3998 u16 i = tx_ring->next_to_clean; 3999 struct i40e_tx_buffer *tx_buf; 4000 struct i40e_tx_desc *tx_desc; 4001 4002 tx_buf = &tx_ring->tx_bi[i]; 4003 tx_desc = I40E_TX_DESC(tx_ring, i); 4004 i -= tx_ring->count; 4005 4006 do { 4007 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4008 4009 /* if next_to_watch is not set then there is no work pending */ 4010 if (!eop_desc) 4011 break; 4012 4013 /* prevent any other reads prior to eop_desc */ 4014 smp_rmb(); 4015 4016 /* if the descriptor isn't done, no work yet to do */ 4017 if (!(eop_desc->cmd_type_offset_bsz & 4018 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4019 break; 4020 4021 /* clear next_to_watch to prevent false hangs */ 4022 tx_buf->next_to_watch = NULL; 4023 4024 tx_desc->buffer_addr = 0; 4025 tx_desc->cmd_type_offset_bsz = 0; 4026 /* move past filter desc */ 4027 tx_buf++; 4028 tx_desc++; 4029 i++; 4030 if (unlikely(!i)) { 4031 i -= tx_ring->count; 4032 tx_buf = tx_ring->tx_bi; 4033 tx_desc = I40E_TX_DESC(tx_ring, 0); 4034 } 4035 /* unmap skb header data */ 4036 dma_unmap_single(tx_ring->dev, 4037 dma_unmap_addr(tx_buf, dma), 4038 dma_unmap_len(tx_buf, len), 4039 DMA_TO_DEVICE); 4040 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4041 kfree(tx_buf->raw_buf); 4042 4043 tx_buf->raw_buf = NULL; 4044 tx_buf->tx_flags = 0; 4045 tx_buf->next_to_watch = NULL; 4046 dma_unmap_len_set(tx_buf, len, 0); 4047 tx_desc->buffer_addr = 0; 4048 tx_desc->cmd_type_offset_bsz = 0; 4049 4050 /* move us past the eop_desc for start of next FD desc */ 4051 tx_buf++; 4052 tx_desc++; 4053 i++; 4054 if (unlikely(!i)) { 4055 i -= tx_ring->count; 4056 tx_buf = tx_ring->tx_bi; 4057 tx_desc = I40E_TX_DESC(tx_ring, 0); 4058 } 4059 4060 /* update budget accounting */ 4061 budget--; 4062 } while (likely(budget)); 4063 4064 i += tx_ring->count; 4065 tx_ring->next_to_clean = i; 4066 4067 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4068 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4069 4070 return budget > 0; 4071 } 4072 4073 /** 4074 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4075 * @irq: interrupt number 4076 * @data: pointer to a q_vector 4077 **/ 4078 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4079 { 4080 struct i40e_q_vector *q_vector = data; 4081 struct i40e_vsi *vsi; 4082 4083 if (!q_vector->tx.ring) 4084 return IRQ_HANDLED; 4085 4086 vsi = q_vector->tx.ring->vsi; 4087 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4088 4089 return IRQ_HANDLED; 4090 } 4091 4092 /** 4093 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4094 * @vsi: the VSI being configured 4095 * @v_idx: vector index 4096 * @qp_idx: queue pair index 4097 **/ 4098 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4099 { 4100 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4101 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4102 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4103 4104 tx_ring->q_vector = q_vector; 4105 tx_ring->next = q_vector->tx.ring; 4106 q_vector->tx.ring = tx_ring; 4107 q_vector->tx.count++; 4108 4109 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4110 if (i40e_enabled_xdp_vsi(vsi)) { 4111 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4112 4113 xdp_ring->q_vector = q_vector; 4114 xdp_ring->next = q_vector->tx.ring; 4115 q_vector->tx.ring = xdp_ring; 4116 q_vector->tx.count++; 4117 } 4118 4119 rx_ring->q_vector = q_vector; 4120 rx_ring->next = q_vector->rx.ring; 4121 q_vector->rx.ring = rx_ring; 4122 q_vector->rx.count++; 4123 } 4124 4125 /** 4126 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4127 * @vsi: the VSI being configured 4128 * 4129 * This function maps descriptor rings to the queue-specific vectors 4130 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4131 * one vector per queue pair, but on a constrained vector budget, we 4132 * group the queue pairs as "efficiently" as possible. 4133 **/ 4134 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4135 { 4136 int qp_remaining = vsi->num_queue_pairs; 4137 int q_vectors = vsi->num_q_vectors; 4138 int num_ringpairs; 4139 int v_start = 0; 4140 int qp_idx = 0; 4141 4142 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4143 * group them so there are multiple queues per vector. 4144 * It is also important to go through all the vectors available to be 4145 * sure that if we don't use all the vectors, that the remaining vectors 4146 * are cleared. This is especially important when decreasing the 4147 * number of queues in use. 4148 */ 4149 for (; v_start < q_vectors; v_start++) { 4150 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4151 4152 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4153 4154 q_vector->num_ringpairs = num_ringpairs; 4155 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4156 4157 q_vector->rx.count = 0; 4158 q_vector->tx.count = 0; 4159 q_vector->rx.ring = NULL; 4160 q_vector->tx.ring = NULL; 4161 4162 while (num_ringpairs--) { 4163 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4164 qp_idx++; 4165 qp_remaining--; 4166 } 4167 } 4168 } 4169 4170 /** 4171 * i40e_vsi_request_irq - Request IRQ from the OS 4172 * @vsi: the VSI being configured 4173 * @basename: name for the vector 4174 **/ 4175 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4176 { 4177 struct i40e_pf *pf = vsi->back; 4178 int err; 4179 4180 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4181 err = i40e_vsi_request_irq_msix(vsi, basename); 4182 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4183 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4184 pf->int_name, pf); 4185 else 4186 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4187 pf->int_name, pf); 4188 4189 if (err) 4190 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4191 4192 return err; 4193 } 4194 4195 #ifdef CONFIG_NET_POLL_CONTROLLER 4196 /** 4197 * i40e_netpoll - A Polling 'interrupt' handler 4198 * @netdev: network interface device structure 4199 * 4200 * This is used by netconsole to send skbs without having to re-enable 4201 * interrupts. It's not called while the normal interrupt routine is executing. 4202 **/ 4203 static void i40e_netpoll(struct net_device *netdev) 4204 { 4205 struct i40e_netdev_priv *np = netdev_priv(netdev); 4206 struct i40e_vsi *vsi = np->vsi; 4207 struct i40e_pf *pf = vsi->back; 4208 int i; 4209 4210 /* if interface is down do nothing */ 4211 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4212 return; 4213 4214 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4215 for (i = 0; i < vsi->num_q_vectors; i++) 4216 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4217 } else { 4218 i40e_intr(pf->pdev->irq, netdev); 4219 } 4220 } 4221 #endif 4222 4223 #define I40E_QTX_ENA_WAIT_COUNT 50 4224 4225 /** 4226 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4227 * @pf: the PF being configured 4228 * @pf_q: the PF queue 4229 * @enable: enable or disable state of the queue 4230 * 4231 * This routine will wait for the given Tx queue of the PF to reach the 4232 * enabled or disabled state. 4233 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4234 * multiple retries; else will return 0 in case of success. 4235 **/ 4236 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4237 { 4238 int i; 4239 u32 tx_reg; 4240 4241 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4242 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4243 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4244 break; 4245 4246 usleep_range(10, 20); 4247 } 4248 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4249 return -ETIMEDOUT; 4250 4251 return 0; 4252 } 4253 4254 /** 4255 * i40e_control_tx_q - Start or stop a particular Tx queue 4256 * @pf: the PF structure 4257 * @pf_q: the PF queue to configure 4258 * @enable: start or stop the queue 4259 * 4260 * This function enables or disables a single queue. Note that any delay 4261 * required after the operation is expected to be handled by the caller of 4262 * this function. 4263 **/ 4264 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4265 { 4266 struct i40e_hw *hw = &pf->hw; 4267 u32 tx_reg; 4268 int i; 4269 4270 /* warn the TX unit of coming changes */ 4271 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4272 if (!enable) 4273 usleep_range(10, 20); 4274 4275 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4276 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4277 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4278 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4279 break; 4280 usleep_range(1000, 2000); 4281 } 4282 4283 /* Skip if the queue is already in the requested state */ 4284 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4285 return; 4286 4287 /* turn on/off the queue */ 4288 if (enable) { 4289 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4290 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4291 } else { 4292 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4293 } 4294 4295 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4296 } 4297 4298 /** 4299 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4300 * @seid: VSI SEID 4301 * @pf: the PF structure 4302 * @pf_q: the PF queue to configure 4303 * @is_xdp: true if the queue is used for XDP 4304 * @enable: start or stop the queue 4305 **/ 4306 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4307 bool is_xdp, bool enable) 4308 { 4309 int ret; 4310 4311 i40e_control_tx_q(pf, pf_q, enable); 4312 4313 /* wait for the change to finish */ 4314 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4315 if (ret) { 4316 dev_info(&pf->pdev->dev, 4317 "VSI seid %d %sTx ring %d %sable timeout\n", 4318 seid, (is_xdp ? "XDP " : ""), pf_q, 4319 (enable ? "en" : "dis")); 4320 } 4321 4322 return ret; 4323 } 4324 4325 /** 4326 * i40e_vsi_control_tx - Start or stop a VSI's rings 4327 * @vsi: the VSI being configured 4328 * @enable: start or stop the rings 4329 **/ 4330 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4331 { 4332 struct i40e_pf *pf = vsi->back; 4333 int i, pf_q, ret = 0; 4334 4335 pf_q = vsi->base_queue; 4336 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4337 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4338 pf_q, 4339 false /*is xdp*/, enable); 4340 if (ret) 4341 break; 4342 4343 if (!i40e_enabled_xdp_vsi(vsi)) 4344 continue; 4345 4346 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4347 pf_q + vsi->alloc_queue_pairs, 4348 true /*is xdp*/, enable); 4349 if (ret) 4350 break; 4351 } 4352 return ret; 4353 } 4354 4355 /** 4356 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4357 * @pf: the PF being configured 4358 * @pf_q: the PF queue 4359 * @enable: enable or disable state of the queue 4360 * 4361 * This routine will wait for the given Rx queue of the PF to reach the 4362 * enabled or disabled state. 4363 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4364 * multiple retries; else will return 0 in case of success. 4365 **/ 4366 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4367 { 4368 int i; 4369 u32 rx_reg; 4370 4371 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4372 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4373 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4374 break; 4375 4376 usleep_range(10, 20); 4377 } 4378 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4379 return -ETIMEDOUT; 4380 4381 return 0; 4382 } 4383 4384 /** 4385 * i40e_control_rx_q - Start or stop a particular Rx queue 4386 * @pf: the PF structure 4387 * @pf_q: the PF queue to configure 4388 * @enable: start or stop the queue 4389 * 4390 * This function enables or disables a single queue. Note that 4391 * any delay required after the operation is expected to be 4392 * handled by the caller of this function. 4393 **/ 4394 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4395 { 4396 struct i40e_hw *hw = &pf->hw; 4397 u32 rx_reg; 4398 int i; 4399 4400 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4401 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4402 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4403 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4404 break; 4405 usleep_range(1000, 2000); 4406 } 4407 4408 /* Skip if the queue is already in the requested state */ 4409 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4410 return; 4411 4412 /* turn on/off the queue */ 4413 if (enable) 4414 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4415 else 4416 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4417 4418 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4419 } 4420 4421 /** 4422 * i40e_control_wait_rx_q 4423 * @pf: the PF structure 4424 * @pf_q: queue being configured 4425 * @enable: start or stop the rings 4426 * 4427 * This function enables or disables a single queue along with waiting 4428 * for the change to finish. The caller of this function should handle 4429 * the delays needed in the case of disabling queues. 4430 **/ 4431 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4432 { 4433 int ret = 0; 4434 4435 i40e_control_rx_q(pf, pf_q, enable); 4436 4437 /* wait for the change to finish */ 4438 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4439 if (ret) 4440 return ret; 4441 4442 return ret; 4443 } 4444 4445 /** 4446 * i40e_vsi_control_rx - Start or stop a VSI's rings 4447 * @vsi: the VSI being configured 4448 * @enable: start or stop the rings 4449 **/ 4450 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4451 { 4452 struct i40e_pf *pf = vsi->back; 4453 int i, pf_q, ret = 0; 4454 4455 pf_q = vsi->base_queue; 4456 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4457 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4458 if (ret) { 4459 dev_info(&pf->pdev->dev, 4460 "VSI seid %d Rx ring %d %sable timeout\n", 4461 vsi->seid, pf_q, (enable ? "en" : "dis")); 4462 break; 4463 } 4464 } 4465 4466 /* Due to HW errata, on Rx disable only, the register can indicate done 4467 * before it really is. Needs 50ms to be sure 4468 */ 4469 if (!enable) 4470 mdelay(50); 4471 4472 return ret; 4473 } 4474 4475 /** 4476 * i40e_vsi_start_rings - Start a VSI's rings 4477 * @vsi: the VSI being configured 4478 **/ 4479 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4480 { 4481 int ret = 0; 4482 4483 /* do rx first for enable and last for disable */ 4484 ret = i40e_vsi_control_rx(vsi, true); 4485 if (ret) 4486 return ret; 4487 ret = i40e_vsi_control_tx(vsi, true); 4488 4489 return ret; 4490 } 4491 4492 /** 4493 * i40e_vsi_stop_rings - Stop a VSI's rings 4494 * @vsi: the VSI being configured 4495 **/ 4496 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4497 { 4498 /* When port TX is suspended, don't wait */ 4499 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4500 return i40e_vsi_stop_rings_no_wait(vsi); 4501 4502 /* do rx first for enable and last for disable 4503 * Ignore return value, we need to shutdown whatever we can 4504 */ 4505 i40e_vsi_control_tx(vsi, false); 4506 i40e_vsi_control_rx(vsi, false); 4507 } 4508 4509 /** 4510 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4511 * @vsi: the VSI being shutdown 4512 * 4513 * This function stops all the rings for a VSI but does not delay to verify 4514 * that rings have been disabled. It is expected that the caller is shutting 4515 * down multiple VSIs at once and will delay together for all the VSIs after 4516 * initiating the shutdown. This is particularly useful for shutting down lots 4517 * of VFs together. Otherwise, a large delay can be incurred while configuring 4518 * each VSI in serial. 4519 **/ 4520 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4521 { 4522 struct i40e_pf *pf = vsi->back; 4523 int i, pf_q; 4524 4525 pf_q = vsi->base_queue; 4526 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4527 i40e_control_tx_q(pf, pf_q, false); 4528 i40e_control_rx_q(pf, pf_q, false); 4529 } 4530 } 4531 4532 /** 4533 * i40e_vsi_free_irq - Free the irq association with the OS 4534 * @vsi: the VSI being configured 4535 **/ 4536 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4537 { 4538 struct i40e_pf *pf = vsi->back; 4539 struct i40e_hw *hw = &pf->hw; 4540 int base = vsi->base_vector; 4541 u32 val, qp; 4542 int i; 4543 4544 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4545 if (!vsi->q_vectors) 4546 return; 4547 4548 if (!vsi->irqs_ready) 4549 return; 4550 4551 vsi->irqs_ready = false; 4552 for (i = 0; i < vsi->num_q_vectors; i++) { 4553 int irq_num; 4554 u16 vector; 4555 4556 vector = i + base; 4557 irq_num = pf->msix_entries[vector].vector; 4558 4559 /* free only the irqs that were actually requested */ 4560 if (!vsi->q_vectors[i] || 4561 !vsi->q_vectors[i]->num_ringpairs) 4562 continue; 4563 4564 /* clear the affinity notifier in the IRQ descriptor */ 4565 irq_set_affinity_notifier(irq_num, NULL); 4566 /* remove our suggested affinity mask for this IRQ */ 4567 irq_set_affinity_hint(irq_num, NULL); 4568 synchronize_irq(irq_num); 4569 free_irq(irq_num, vsi->q_vectors[i]); 4570 4571 /* Tear down the interrupt queue link list 4572 * 4573 * We know that they come in pairs and always 4574 * the Rx first, then the Tx. To clear the 4575 * link list, stick the EOL value into the 4576 * next_q field of the registers. 4577 */ 4578 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4579 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4580 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4581 val |= I40E_QUEUE_END_OF_LIST 4582 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4583 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4584 4585 while (qp != I40E_QUEUE_END_OF_LIST) { 4586 u32 next; 4587 4588 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4589 4590 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4591 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4592 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4593 I40E_QINT_RQCTL_INTEVENT_MASK); 4594 4595 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4596 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4597 4598 wr32(hw, I40E_QINT_RQCTL(qp), val); 4599 4600 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4601 4602 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4603 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4604 4605 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4606 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4607 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4608 I40E_QINT_TQCTL_INTEVENT_MASK); 4609 4610 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4611 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4612 4613 wr32(hw, I40E_QINT_TQCTL(qp), val); 4614 qp = next; 4615 } 4616 } 4617 } else { 4618 free_irq(pf->pdev->irq, pf); 4619 4620 val = rd32(hw, I40E_PFINT_LNKLST0); 4621 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4622 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4623 val |= I40E_QUEUE_END_OF_LIST 4624 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4625 wr32(hw, I40E_PFINT_LNKLST0, val); 4626 4627 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4628 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4629 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4630 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4631 I40E_QINT_RQCTL_INTEVENT_MASK); 4632 4633 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4634 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4635 4636 wr32(hw, I40E_QINT_RQCTL(qp), val); 4637 4638 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4639 4640 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4641 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4642 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4643 I40E_QINT_TQCTL_INTEVENT_MASK); 4644 4645 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4646 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4647 4648 wr32(hw, I40E_QINT_TQCTL(qp), val); 4649 } 4650 } 4651 4652 /** 4653 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4654 * @vsi: the VSI being configured 4655 * @v_idx: Index of vector to be freed 4656 * 4657 * This function frees the memory allocated to the q_vector. In addition if 4658 * NAPI is enabled it will delete any references to the NAPI struct prior 4659 * to freeing the q_vector. 4660 **/ 4661 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4662 { 4663 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4664 struct i40e_ring *ring; 4665 4666 if (!q_vector) 4667 return; 4668 4669 /* disassociate q_vector from rings */ 4670 i40e_for_each_ring(ring, q_vector->tx) 4671 ring->q_vector = NULL; 4672 4673 i40e_for_each_ring(ring, q_vector->rx) 4674 ring->q_vector = NULL; 4675 4676 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4677 if (vsi->netdev) 4678 netif_napi_del(&q_vector->napi); 4679 4680 vsi->q_vectors[v_idx] = NULL; 4681 4682 kfree_rcu(q_vector, rcu); 4683 } 4684 4685 /** 4686 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4687 * @vsi: the VSI being un-configured 4688 * 4689 * This frees the memory allocated to the q_vectors and 4690 * deletes references to the NAPI struct. 4691 **/ 4692 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4693 { 4694 int v_idx; 4695 4696 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4697 i40e_free_q_vector(vsi, v_idx); 4698 } 4699 4700 /** 4701 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4702 * @pf: board private structure 4703 **/ 4704 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4705 { 4706 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4707 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4708 pci_disable_msix(pf->pdev); 4709 kfree(pf->msix_entries); 4710 pf->msix_entries = NULL; 4711 kfree(pf->irq_pile); 4712 pf->irq_pile = NULL; 4713 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4714 pci_disable_msi(pf->pdev); 4715 } 4716 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4717 } 4718 4719 /** 4720 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4721 * @pf: board private structure 4722 * 4723 * We go through and clear interrupt specific resources and reset the structure 4724 * to pre-load conditions 4725 **/ 4726 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4727 { 4728 int i; 4729 4730 i40e_free_misc_vector(pf); 4731 4732 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4733 I40E_IWARP_IRQ_PILE_ID); 4734 4735 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4736 for (i = 0; i < pf->num_alloc_vsi; i++) 4737 if (pf->vsi[i]) 4738 i40e_vsi_free_q_vectors(pf->vsi[i]); 4739 i40e_reset_interrupt_capability(pf); 4740 } 4741 4742 /** 4743 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4744 * @vsi: the VSI being configured 4745 **/ 4746 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4747 { 4748 int q_idx; 4749 4750 if (!vsi->netdev) 4751 return; 4752 4753 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4754 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4755 4756 if (q_vector->rx.ring || q_vector->tx.ring) 4757 napi_enable(&q_vector->napi); 4758 } 4759 } 4760 4761 /** 4762 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4763 * @vsi: the VSI being configured 4764 **/ 4765 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4766 { 4767 int q_idx; 4768 4769 if (!vsi->netdev) 4770 return; 4771 4772 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4773 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4774 4775 if (q_vector->rx.ring || q_vector->tx.ring) 4776 napi_disable(&q_vector->napi); 4777 } 4778 } 4779 4780 /** 4781 * i40e_vsi_close - Shut down a VSI 4782 * @vsi: the vsi to be quelled 4783 **/ 4784 static void i40e_vsi_close(struct i40e_vsi *vsi) 4785 { 4786 struct i40e_pf *pf = vsi->back; 4787 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4788 i40e_down(vsi); 4789 i40e_vsi_free_irq(vsi); 4790 i40e_vsi_free_tx_resources(vsi); 4791 i40e_vsi_free_rx_resources(vsi); 4792 vsi->current_netdev_flags = 0; 4793 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4794 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4795 set_bit(__I40E_CLIENT_RESET, pf->state); 4796 } 4797 4798 /** 4799 * i40e_quiesce_vsi - Pause a given VSI 4800 * @vsi: the VSI being paused 4801 **/ 4802 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4803 { 4804 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4805 return; 4806 4807 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4808 if (vsi->netdev && netif_running(vsi->netdev)) 4809 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4810 else 4811 i40e_vsi_close(vsi); 4812 } 4813 4814 /** 4815 * i40e_unquiesce_vsi - Resume a given VSI 4816 * @vsi: the VSI being resumed 4817 **/ 4818 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4819 { 4820 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4821 return; 4822 4823 if (vsi->netdev && netif_running(vsi->netdev)) 4824 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4825 else 4826 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4827 } 4828 4829 /** 4830 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4831 * @pf: the PF 4832 **/ 4833 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4834 { 4835 int v; 4836 4837 for (v = 0; v < pf->num_alloc_vsi; v++) { 4838 if (pf->vsi[v]) 4839 i40e_quiesce_vsi(pf->vsi[v]); 4840 } 4841 } 4842 4843 /** 4844 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4845 * @pf: the PF 4846 **/ 4847 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4848 { 4849 int v; 4850 4851 for (v = 0; v < pf->num_alloc_vsi; v++) { 4852 if (pf->vsi[v]) 4853 i40e_unquiesce_vsi(pf->vsi[v]); 4854 } 4855 } 4856 4857 /** 4858 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4859 * @vsi: the VSI being configured 4860 * 4861 * Wait until all queues on a given VSI have been disabled. 4862 **/ 4863 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4864 { 4865 struct i40e_pf *pf = vsi->back; 4866 int i, pf_q, ret; 4867 4868 pf_q = vsi->base_queue; 4869 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4870 /* Check and wait for the Tx queue */ 4871 ret = i40e_pf_txq_wait(pf, pf_q, false); 4872 if (ret) { 4873 dev_info(&pf->pdev->dev, 4874 "VSI seid %d Tx ring %d disable timeout\n", 4875 vsi->seid, pf_q); 4876 return ret; 4877 } 4878 4879 if (!i40e_enabled_xdp_vsi(vsi)) 4880 goto wait_rx; 4881 4882 /* Check and wait for the XDP Tx queue */ 4883 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4884 false); 4885 if (ret) { 4886 dev_info(&pf->pdev->dev, 4887 "VSI seid %d XDP Tx ring %d disable timeout\n", 4888 vsi->seid, pf_q); 4889 return ret; 4890 } 4891 wait_rx: 4892 /* Check and wait for the Rx queue */ 4893 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4894 if (ret) { 4895 dev_info(&pf->pdev->dev, 4896 "VSI seid %d Rx ring %d disable timeout\n", 4897 vsi->seid, pf_q); 4898 return ret; 4899 } 4900 } 4901 4902 return 0; 4903 } 4904 4905 #ifdef CONFIG_I40E_DCB 4906 /** 4907 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4908 * @pf: the PF 4909 * 4910 * This function waits for the queues to be in disabled state for all the 4911 * VSIs that are managed by this PF. 4912 **/ 4913 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4914 { 4915 int v, ret = 0; 4916 4917 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4918 if (pf->vsi[v]) { 4919 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 4920 if (ret) 4921 break; 4922 } 4923 } 4924 4925 return ret; 4926 } 4927 4928 #endif 4929 4930 /** 4931 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 4932 * @pf: pointer to PF 4933 * 4934 * Get TC map for ISCSI PF type that will include iSCSI TC 4935 * and LAN TC. 4936 **/ 4937 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 4938 { 4939 struct i40e_dcb_app_priority_table app; 4940 struct i40e_hw *hw = &pf->hw; 4941 u8 enabled_tc = 1; /* TC0 is always enabled */ 4942 u8 tc, i; 4943 /* Get the iSCSI APP TLV */ 4944 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 4945 4946 for (i = 0; i < dcbcfg->numapps; i++) { 4947 app = dcbcfg->app[i]; 4948 if (app.selector == I40E_APP_SEL_TCPIP && 4949 app.protocolid == I40E_APP_PROTOID_ISCSI) { 4950 tc = dcbcfg->etscfg.prioritytable[app.priority]; 4951 enabled_tc |= BIT(tc); 4952 break; 4953 } 4954 } 4955 4956 return enabled_tc; 4957 } 4958 4959 /** 4960 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 4961 * @dcbcfg: the corresponding DCBx configuration structure 4962 * 4963 * Return the number of TCs from given DCBx configuration 4964 **/ 4965 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 4966 { 4967 int i, tc_unused = 0; 4968 u8 num_tc = 0; 4969 u8 ret = 0; 4970 4971 /* Scan the ETS Config Priority Table to find 4972 * traffic class enabled for a given priority 4973 * and create a bitmask of enabled TCs 4974 */ 4975 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 4976 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 4977 4978 /* Now scan the bitmask to check for 4979 * contiguous TCs starting with TC0 4980 */ 4981 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 4982 if (num_tc & BIT(i)) { 4983 if (!tc_unused) { 4984 ret++; 4985 } else { 4986 pr_err("Non-contiguous TC - Disabling DCB\n"); 4987 return 1; 4988 } 4989 } else { 4990 tc_unused = 1; 4991 } 4992 } 4993 4994 /* There is always at least TC0 */ 4995 if (!ret) 4996 ret = 1; 4997 4998 return ret; 4999 } 5000 5001 /** 5002 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5003 * @dcbcfg: the corresponding DCBx configuration structure 5004 * 5005 * Query the current DCB configuration and return the number of 5006 * traffic classes enabled from the given DCBX config 5007 **/ 5008 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5009 { 5010 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5011 u8 enabled_tc = 1; 5012 u8 i; 5013 5014 for (i = 0; i < num_tc; i++) 5015 enabled_tc |= BIT(i); 5016 5017 return enabled_tc; 5018 } 5019 5020 /** 5021 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5022 * @pf: PF being queried 5023 * 5024 * Query the current MQPRIO configuration and return the number of 5025 * traffic classes enabled. 5026 **/ 5027 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5028 { 5029 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5030 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5031 u8 enabled_tc = 1, i; 5032 5033 for (i = 1; i < num_tc; i++) 5034 enabled_tc |= BIT(i); 5035 return enabled_tc; 5036 } 5037 5038 /** 5039 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5040 * @pf: PF being queried 5041 * 5042 * Return number of traffic classes enabled for the given PF 5043 **/ 5044 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5045 { 5046 struct i40e_hw *hw = &pf->hw; 5047 u8 i, enabled_tc = 1; 5048 u8 num_tc = 0; 5049 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5050 5051 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5052 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5053 5054 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5055 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5056 return 1; 5057 5058 /* SFP mode will be enabled for all TCs on port */ 5059 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5060 return i40e_dcb_get_num_tc(dcbcfg); 5061 5062 /* MFP mode return count of enabled TCs for this PF */ 5063 if (pf->hw.func_caps.iscsi) 5064 enabled_tc = i40e_get_iscsi_tc_map(pf); 5065 else 5066 return 1; /* Only TC0 */ 5067 5068 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5069 if (enabled_tc & BIT(i)) 5070 num_tc++; 5071 } 5072 return num_tc; 5073 } 5074 5075 /** 5076 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5077 * @pf: PF being queried 5078 * 5079 * Return a bitmap for enabled traffic classes for this PF. 5080 **/ 5081 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5082 { 5083 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5084 return i40e_mqprio_get_enabled_tc(pf); 5085 5086 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5087 * default TC 5088 */ 5089 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5090 return I40E_DEFAULT_TRAFFIC_CLASS; 5091 5092 /* SFP mode we want PF to be enabled for all TCs */ 5093 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5094 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5095 5096 /* MFP enabled and iSCSI PF type */ 5097 if (pf->hw.func_caps.iscsi) 5098 return i40e_get_iscsi_tc_map(pf); 5099 else 5100 return I40E_DEFAULT_TRAFFIC_CLASS; 5101 } 5102 5103 /** 5104 * i40e_vsi_get_bw_info - Query VSI BW Information 5105 * @vsi: the VSI being queried 5106 * 5107 * Returns 0 on success, negative value on failure 5108 **/ 5109 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5110 { 5111 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5112 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5113 struct i40e_pf *pf = vsi->back; 5114 struct i40e_hw *hw = &pf->hw; 5115 i40e_status ret; 5116 u32 tc_bw_max; 5117 int i; 5118 5119 /* Get the VSI level BW configuration */ 5120 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5121 if (ret) { 5122 dev_info(&pf->pdev->dev, 5123 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5124 i40e_stat_str(&pf->hw, ret), 5125 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5126 return -EINVAL; 5127 } 5128 5129 /* Get the VSI level BW configuration per TC */ 5130 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5131 NULL); 5132 if (ret) { 5133 dev_info(&pf->pdev->dev, 5134 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5135 i40e_stat_str(&pf->hw, ret), 5136 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5137 return -EINVAL; 5138 } 5139 5140 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5141 dev_info(&pf->pdev->dev, 5142 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5143 bw_config.tc_valid_bits, 5144 bw_ets_config.tc_valid_bits); 5145 /* Still continuing */ 5146 } 5147 5148 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5149 vsi->bw_max_quanta = bw_config.max_bw; 5150 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5151 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5152 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5153 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5154 vsi->bw_ets_limit_credits[i] = 5155 le16_to_cpu(bw_ets_config.credits[i]); 5156 /* 3 bits out of 4 for each TC */ 5157 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5158 } 5159 5160 return 0; 5161 } 5162 5163 /** 5164 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5165 * @vsi: the VSI being configured 5166 * @enabled_tc: TC bitmap 5167 * @bw_share: BW shared credits per TC 5168 * 5169 * Returns 0 on success, negative value on failure 5170 **/ 5171 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5172 u8 *bw_share) 5173 { 5174 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5175 struct i40e_pf *pf = vsi->back; 5176 i40e_status ret; 5177 int i; 5178 5179 /* There is no need to reset BW when mqprio mode is on. */ 5180 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5181 return 0; 5182 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5183 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5184 if (ret) 5185 dev_info(&pf->pdev->dev, 5186 "Failed to reset tx rate for vsi->seid %u\n", 5187 vsi->seid); 5188 return ret; 5189 } 5190 bw_data.tc_valid_bits = enabled_tc; 5191 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5192 bw_data.tc_bw_credits[i] = bw_share[i]; 5193 5194 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5195 if (ret) { 5196 dev_info(&pf->pdev->dev, 5197 "AQ command Config VSI BW allocation per TC failed = %d\n", 5198 pf->hw.aq.asq_last_status); 5199 return -EINVAL; 5200 } 5201 5202 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5203 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5204 5205 return 0; 5206 } 5207 5208 /** 5209 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5210 * @vsi: the VSI being configured 5211 * @enabled_tc: TC map to be enabled 5212 * 5213 **/ 5214 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5215 { 5216 struct net_device *netdev = vsi->netdev; 5217 struct i40e_pf *pf = vsi->back; 5218 struct i40e_hw *hw = &pf->hw; 5219 u8 netdev_tc = 0; 5220 int i; 5221 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5222 5223 if (!netdev) 5224 return; 5225 5226 if (!enabled_tc) { 5227 netdev_reset_tc(netdev); 5228 return; 5229 } 5230 5231 /* Set up actual enabled TCs on the VSI */ 5232 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5233 return; 5234 5235 /* set per TC queues for the VSI */ 5236 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5237 /* Only set TC queues for enabled tcs 5238 * 5239 * e.g. For a VSI that has TC0 and TC3 enabled the 5240 * enabled_tc bitmap would be 0x00001001; the driver 5241 * will set the numtc for netdev as 2 that will be 5242 * referenced by the netdev layer as TC 0 and 1. 5243 */ 5244 if (vsi->tc_config.enabled_tc & BIT(i)) 5245 netdev_set_tc_queue(netdev, 5246 vsi->tc_config.tc_info[i].netdev_tc, 5247 vsi->tc_config.tc_info[i].qcount, 5248 vsi->tc_config.tc_info[i].qoffset); 5249 } 5250 5251 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5252 return; 5253 5254 /* Assign UP2TC map for the VSI */ 5255 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5256 /* Get the actual TC# for the UP */ 5257 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5258 /* Get the mapped netdev TC# for the UP */ 5259 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5260 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5261 } 5262 } 5263 5264 /** 5265 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5266 * @vsi: the VSI being configured 5267 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5268 **/ 5269 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5270 struct i40e_vsi_context *ctxt) 5271 { 5272 /* copy just the sections touched not the entire info 5273 * since not all sections are valid as returned by 5274 * update vsi params 5275 */ 5276 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5277 memcpy(&vsi->info.queue_mapping, 5278 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5279 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5280 sizeof(vsi->info.tc_mapping)); 5281 } 5282 5283 /** 5284 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5285 * @vsi: VSI to be configured 5286 * @enabled_tc: TC bitmap 5287 * 5288 * This configures a particular VSI for TCs that are mapped to the 5289 * given TC bitmap. It uses default bandwidth share for TCs across 5290 * VSIs to configure TC for a particular VSI. 5291 * 5292 * NOTE: 5293 * It is expected that the VSI queues have been quisced before calling 5294 * this function. 5295 **/ 5296 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5297 { 5298 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5299 struct i40e_pf *pf = vsi->back; 5300 struct i40e_hw *hw = &pf->hw; 5301 struct i40e_vsi_context ctxt; 5302 int ret = 0; 5303 int i; 5304 5305 /* Check if enabled_tc is same as existing or new TCs */ 5306 if (vsi->tc_config.enabled_tc == enabled_tc && 5307 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5308 return ret; 5309 5310 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5311 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5312 if (enabled_tc & BIT(i)) 5313 bw_share[i] = 1; 5314 } 5315 5316 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5317 if (ret) { 5318 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5319 5320 dev_info(&pf->pdev->dev, 5321 "Failed configuring TC map %d for VSI %d\n", 5322 enabled_tc, vsi->seid); 5323 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5324 &bw_config, NULL); 5325 if (ret) { 5326 dev_info(&pf->pdev->dev, 5327 "Failed querying vsi bw info, err %s aq_err %s\n", 5328 i40e_stat_str(hw, ret), 5329 i40e_aq_str(hw, hw->aq.asq_last_status)); 5330 goto out; 5331 } 5332 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5333 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5334 5335 if (!valid_tc) 5336 valid_tc = bw_config.tc_valid_bits; 5337 /* Always enable TC0, no matter what */ 5338 valid_tc |= 1; 5339 dev_info(&pf->pdev->dev, 5340 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5341 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5342 enabled_tc = valid_tc; 5343 } 5344 5345 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5346 if (ret) { 5347 dev_err(&pf->pdev->dev, 5348 "Unable to configure TC map %d for VSI %d\n", 5349 enabled_tc, vsi->seid); 5350 goto out; 5351 } 5352 } 5353 5354 /* Update Queue Pairs Mapping for currently enabled UPs */ 5355 ctxt.seid = vsi->seid; 5356 ctxt.pf_num = vsi->back->hw.pf_id; 5357 ctxt.vf_num = 0; 5358 ctxt.uplink_seid = vsi->uplink_seid; 5359 ctxt.info = vsi->info; 5360 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5361 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5362 if (ret) 5363 goto out; 5364 } else { 5365 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5366 } 5367 5368 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5369 * queues changed. 5370 */ 5371 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5372 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5373 vsi->num_queue_pairs); 5374 ret = i40e_vsi_config_rss(vsi); 5375 if (ret) { 5376 dev_info(&vsi->back->pdev->dev, 5377 "Failed to reconfig rss for num_queues\n"); 5378 return ret; 5379 } 5380 vsi->reconfig_rss = false; 5381 } 5382 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5383 ctxt.info.valid_sections |= 5384 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5385 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5386 } 5387 5388 /* Update the VSI after updating the VSI queue-mapping 5389 * information 5390 */ 5391 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5392 if (ret) { 5393 dev_info(&pf->pdev->dev, 5394 "Update vsi tc config failed, err %s aq_err %s\n", 5395 i40e_stat_str(hw, ret), 5396 i40e_aq_str(hw, hw->aq.asq_last_status)); 5397 goto out; 5398 } 5399 /* update the local VSI info with updated queue map */ 5400 i40e_vsi_update_queue_map(vsi, &ctxt); 5401 vsi->info.valid_sections = 0; 5402 5403 /* Update current VSI BW information */ 5404 ret = i40e_vsi_get_bw_info(vsi); 5405 if (ret) { 5406 dev_info(&pf->pdev->dev, 5407 "Failed updating vsi bw info, err %s aq_err %s\n", 5408 i40e_stat_str(hw, ret), 5409 i40e_aq_str(hw, hw->aq.asq_last_status)); 5410 goto out; 5411 } 5412 5413 /* Update the netdev TC setup */ 5414 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5415 out: 5416 return ret; 5417 } 5418 5419 /** 5420 * i40e_get_link_speed - Returns link speed for the interface 5421 * @vsi: VSI to be configured 5422 * 5423 **/ 5424 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5425 { 5426 struct i40e_pf *pf = vsi->back; 5427 5428 switch (pf->hw.phy.link_info.link_speed) { 5429 case I40E_LINK_SPEED_40GB: 5430 return 40000; 5431 case I40E_LINK_SPEED_25GB: 5432 return 25000; 5433 case I40E_LINK_SPEED_20GB: 5434 return 20000; 5435 case I40E_LINK_SPEED_10GB: 5436 return 10000; 5437 case I40E_LINK_SPEED_1GB: 5438 return 1000; 5439 default: 5440 return -EINVAL; 5441 } 5442 } 5443 5444 /** 5445 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5446 * @vsi: VSI to be configured 5447 * @seid: seid of the channel/VSI 5448 * @max_tx_rate: max TX rate to be configured as BW limit 5449 * 5450 * Helper function to set BW limit for a given VSI 5451 **/ 5452 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5453 { 5454 struct i40e_pf *pf = vsi->back; 5455 u64 credits = 0; 5456 int speed = 0; 5457 int ret = 0; 5458 5459 speed = i40e_get_link_speed(vsi); 5460 if (max_tx_rate > speed) { 5461 dev_err(&pf->pdev->dev, 5462 "Invalid max tx rate %llu specified for VSI seid %d.", 5463 max_tx_rate, seid); 5464 return -EINVAL; 5465 } 5466 if (max_tx_rate && max_tx_rate < 50) { 5467 dev_warn(&pf->pdev->dev, 5468 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5469 max_tx_rate = 50; 5470 } 5471 5472 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5473 credits = max_tx_rate; 5474 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5475 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5476 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5477 if (ret) 5478 dev_err(&pf->pdev->dev, 5479 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5480 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5481 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5482 return ret; 5483 } 5484 5485 /** 5486 * i40e_remove_queue_channels - Remove queue channels for the TCs 5487 * @vsi: VSI to be configured 5488 * 5489 * Remove queue channels for the TCs 5490 **/ 5491 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5492 { 5493 enum i40e_admin_queue_err last_aq_status; 5494 struct i40e_cloud_filter *cfilter; 5495 struct i40e_channel *ch, *ch_tmp; 5496 struct i40e_pf *pf = vsi->back; 5497 struct hlist_node *node; 5498 int ret, i; 5499 5500 /* Reset rss size that was stored when reconfiguring rss for 5501 * channel VSIs with non-power-of-2 queue count. 5502 */ 5503 vsi->current_rss_size = 0; 5504 5505 /* perform cleanup for channels if they exist */ 5506 if (list_empty(&vsi->ch_list)) 5507 return; 5508 5509 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5510 struct i40e_vsi *p_vsi; 5511 5512 list_del(&ch->list); 5513 p_vsi = ch->parent_vsi; 5514 if (!p_vsi || !ch->initialized) { 5515 kfree(ch); 5516 continue; 5517 } 5518 /* Reset queue contexts */ 5519 for (i = 0; i < ch->num_queue_pairs; i++) { 5520 struct i40e_ring *tx_ring, *rx_ring; 5521 u16 pf_q; 5522 5523 pf_q = ch->base_queue + i; 5524 tx_ring = vsi->tx_rings[pf_q]; 5525 tx_ring->ch = NULL; 5526 5527 rx_ring = vsi->rx_rings[pf_q]; 5528 rx_ring->ch = NULL; 5529 } 5530 5531 /* Reset BW configured for this VSI via mqprio */ 5532 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5533 if (ret) 5534 dev_info(&vsi->back->pdev->dev, 5535 "Failed to reset tx rate for ch->seid %u\n", 5536 ch->seid); 5537 5538 /* delete cloud filters associated with this channel */ 5539 hlist_for_each_entry_safe(cfilter, node, 5540 &pf->cloud_filter_list, cloud_node) { 5541 if (cfilter->seid != ch->seid) 5542 continue; 5543 5544 hash_del(&cfilter->cloud_node); 5545 if (cfilter->dst_port) 5546 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5547 cfilter, 5548 false); 5549 else 5550 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5551 false); 5552 last_aq_status = pf->hw.aq.asq_last_status; 5553 if (ret) 5554 dev_info(&pf->pdev->dev, 5555 "Failed to delete cloud filter, err %s aq_err %s\n", 5556 i40e_stat_str(&pf->hw, ret), 5557 i40e_aq_str(&pf->hw, last_aq_status)); 5558 kfree(cfilter); 5559 } 5560 5561 /* delete VSI from FW */ 5562 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5563 NULL); 5564 if (ret) 5565 dev_err(&vsi->back->pdev->dev, 5566 "unable to remove channel (%d) for parent VSI(%d)\n", 5567 ch->seid, p_vsi->seid); 5568 kfree(ch); 5569 } 5570 INIT_LIST_HEAD(&vsi->ch_list); 5571 } 5572 5573 /** 5574 * i40e_is_any_channel - channel exist or not 5575 * @vsi: ptr to VSI to which channels are associated with 5576 * 5577 * Returns true or false if channel(s) exist for associated VSI or not 5578 **/ 5579 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5580 { 5581 struct i40e_channel *ch, *ch_tmp; 5582 5583 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5584 if (ch->initialized) 5585 return true; 5586 } 5587 5588 return false; 5589 } 5590 5591 /** 5592 * i40e_get_max_queues_for_channel 5593 * @vsi: ptr to VSI to which channels are associated with 5594 * 5595 * Helper function which returns max value among the queue counts set on the 5596 * channels/TCs created. 5597 **/ 5598 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5599 { 5600 struct i40e_channel *ch, *ch_tmp; 5601 int max = 0; 5602 5603 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5604 if (!ch->initialized) 5605 continue; 5606 if (ch->num_queue_pairs > max) 5607 max = ch->num_queue_pairs; 5608 } 5609 5610 return max; 5611 } 5612 5613 /** 5614 * i40e_validate_num_queues - validate num_queues w.r.t channel 5615 * @pf: ptr to PF device 5616 * @num_queues: number of queues 5617 * @vsi: the parent VSI 5618 * @reconfig_rss: indicates should the RSS be reconfigured or not 5619 * 5620 * This function validates number of queues in the context of new channel 5621 * which is being established and determines if RSS should be reconfigured 5622 * or not for parent VSI. 5623 **/ 5624 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5625 struct i40e_vsi *vsi, bool *reconfig_rss) 5626 { 5627 int max_ch_queues; 5628 5629 if (!reconfig_rss) 5630 return -EINVAL; 5631 5632 *reconfig_rss = false; 5633 if (vsi->current_rss_size) { 5634 if (num_queues > vsi->current_rss_size) { 5635 dev_dbg(&pf->pdev->dev, 5636 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5637 num_queues, vsi->current_rss_size); 5638 return -EINVAL; 5639 } else if ((num_queues < vsi->current_rss_size) && 5640 (!is_power_of_2(num_queues))) { 5641 dev_dbg(&pf->pdev->dev, 5642 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5643 num_queues, vsi->current_rss_size); 5644 return -EINVAL; 5645 } 5646 } 5647 5648 if (!is_power_of_2(num_queues)) { 5649 /* Find the max num_queues configured for channel if channel 5650 * exist. 5651 * if channel exist, then enforce 'num_queues' to be more than 5652 * max ever queues configured for channel. 5653 */ 5654 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5655 if (num_queues < max_ch_queues) { 5656 dev_dbg(&pf->pdev->dev, 5657 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5658 num_queues, max_ch_queues); 5659 return -EINVAL; 5660 } 5661 *reconfig_rss = true; 5662 } 5663 5664 return 0; 5665 } 5666 5667 /** 5668 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5669 * @vsi: the VSI being setup 5670 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5671 * 5672 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5673 **/ 5674 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5675 { 5676 struct i40e_pf *pf = vsi->back; 5677 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5678 struct i40e_hw *hw = &pf->hw; 5679 int local_rss_size; 5680 u8 *lut; 5681 int ret; 5682 5683 if (!vsi->rss_size) 5684 return -EINVAL; 5685 5686 if (rss_size > vsi->rss_size) 5687 return -EINVAL; 5688 5689 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5690 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5691 if (!lut) 5692 return -ENOMEM; 5693 5694 /* Ignoring user configured lut if there is one */ 5695 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5696 5697 /* Use user configured hash key if there is one, otherwise 5698 * use default. 5699 */ 5700 if (vsi->rss_hkey_user) 5701 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5702 else 5703 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5704 5705 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5706 if (ret) { 5707 dev_info(&pf->pdev->dev, 5708 "Cannot set RSS lut, err %s aq_err %s\n", 5709 i40e_stat_str(hw, ret), 5710 i40e_aq_str(hw, hw->aq.asq_last_status)); 5711 kfree(lut); 5712 return ret; 5713 } 5714 kfree(lut); 5715 5716 /* Do the update w.r.t. storing rss_size */ 5717 if (!vsi->orig_rss_size) 5718 vsi->orig_rss_size = vsi->rss_size; 5719 vsi->current_rss_size = local_rss_size; 5720 5721 return ret; 5722 } 5723 5724 /** 5725 * i40e_channel_setup_queue_map - Setup a channel queue map 5726 * @pf: ptr to PF device 5727 * @vsi: the VSI being setup 5728 * @ctxt: VSI context structure 5729 * @ch: ptr to channel structure 5730 * 5731 * Setup queue map for a specific channel 5732 **/ 5733 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5734 struct i40e_vsi_context *ctxt, 5735 struct i40e_channel *ch) 5736 { 5737 u16 qcount, qmap, sections = 0; 5738 u8 offset = 0; 5739 int pow; 5740 5741 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5742 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5743 5744 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5745 ch->num_queue_pairs = qcount; 5746 5747 /* find the next higher power-of-2 of num queue pairs */ 5748 pow = ilog2(qcount); 5749 if (!is_power_of_2(qcount)) 5750 pow++; 5751 5752 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5753 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5754 5755 /* Setup queue TC[0].qmap for given VSI context */ 5756 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5757 5758 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5759 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5760 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5761 ctxt->info.valid_sections |= cpu_to_le16(sections); 5762 } 5763 5764 /** 5765 * i40e_add_channel - add a channel by adding VSI 5766 * @pf: ptr to PF device 5767 * @uplink_seid: underlying HW switching element (VEB) ID 5768 * @ch: ptr to channel structure 5769 * 5770 * Add a channel (VSI) using add_vsi and queue_map 5771 **/ 5772 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5773 struct i40e_channel *ch) 5774 { 5775 struct i40e_hw *hw = &pf->hw; 5776 struct i40e_vsi_context ctxt; 5777 u8 enabled_tc = 0x1; /* TC0 enabled */ 5778 int ret; 5779 5780 if (ch->type != I40E_VSI_VMDQ2) { 5781 dev_info(&pf->pdev->dev, 5782 "add new vsi failed, ch->type %d\n", ch->type); 5783 return -EINVAL; 5784 } 5785 5786 memset(&ctxt, 0, sizeof(ctxt)); 5787 ctxt.pf_num = hw->pf_id; 5788 ctxt.vf_num = 0; 5789 ctxt.uplink_seid = uplink_seid; 5790 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5791 if (ch->type == I40E_VSI_VMDQ2) 5792 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5793 5794 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5795 ctxt.info.valid_sections |= 5796 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5797 ctxt.info.switch_id = 5798 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5799 } 5800 5801 /* Set queue map for a given VSI context */ 5802 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5803 5804 /* Now time to create VSI */ 5805 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5806 if (ret) { 5807 dev_info(&pf->pdev->dev, 5808 "add new vsi failed, err %s aq_err %s\n", 5809 i40e_stat_str(&pf->hw, ret), 5810 i40e_aq_str(&pf->hw, 5811 pf->hw.aq.asq_last_status)); 5812 return -ENOENT; 5813 } 5814 5815 /* Success, update channel */ 5816 ch->enabled_tc = enabled_tc; 5817 ch->seid = ctxt.seid; 5818 ch->vsi_number = ctxt.vsi_number; 5819 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5820 5821 /* copy just the sections touched not the entire info 5822 * since not all sections are valid as returned by 5823 * update vsi params 5824 */ 5825 ch->info.mapping_flags = ctxt.info.mapping_flags; 5826 memcpy(&ch->info.queue_mapping, 5827 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5828 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5829 sizeof(ctxt.info.tc_mapping)); 5830 5831 return 0; 5832 } 5833 5834 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5835 u8 *bw_share) 5836 { 5837 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5838 i40e_status ret; 5839 int i; 5840 5841 bw_data.tc_valid_bits = ch->enabled_tc; 5842 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5843 bw_data.tc_bw_credits[i] = bw_share[i]; 5844 5845 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5846 &bw_data, NULL); 5847 if (ret) { 5848 dev_info(&vsi->back->pdev->dev, 5849 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5850 vsi->back->hw.aq.asq_last_status, ch->seid); 5851 return -EINVAL; 5852 } 5853 5854 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5855 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5856 5857 return 0; 5858 } 5859 5860 /** 5861 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5862 * @pf: ptr to PF device 5863 * @vsi: the VSI being setup 5864 * @ch: ptr to channel structure 5865 * 5866 * Configure TX rings associated with channel (VSI) since queues are being 5867 * from parent VSI. 5868 **/ 5869 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5870 struct i40e_vsi *vsi, 5871 struct i40e_channel *ch) 5872 { 5873 i40e_status ret; 5874 int i; 5875 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5876 5877 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5878 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5879 if (ch->enabled_tc & BIT(i)) 5880 bw_share[i] = 1; 5881 } 5882 5883 /* configure BW for new VSI */ 5884 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5885 if (ret) { 5886 dev_info(&vsi->back->pdev->dev, 5887 "Failed configuring TC map %d for channel (seid %u)\n", 5888 ch->enabled_tc, ch->seid); 5889 return ret; 5890 } 5891 5892 for (i = 0; i < ch->num_queue_pairs; i++) { 5893 struct i40e_ring *tx_ring, *rx_ring; 5894 u16 pf_q; 5895 5896 pf_q = ch->base_queue + i; 5897 5898 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5899 * context 5900 */ 5901 tx_ring = vsi->tx_rings[pf_q]; 5902 tx_ring->ch = ch; 5903 5904 /* Get the RX ring ptr */ 5905 rx_ring = vsi->rx_rings[pf_q]; 5906 rx_ring->ch = ch; 5907 } 5908 5909 return 0; 5910 } 5911 5912 /** 5913 * i40e_setup_hw_channel - setup new channel 5914 * @pf: ptr to PF device 5915 * @vsi: the VSI being setup 5916 * @ch: ptr to channel structure 5917 * @uplink_seid: underlying HW switching element (VEB) ID 5918 * @type: type of channel to be created (VMDq2/VF) 5919 * 5920 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5921 * and configures TX rings accordingly 5922 **/ 5923 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 5924 struct i40e_vsi *vsi, 5925 struct i40e_channel *ch, 5926 u16 uplink_seid, u8 type) 5927 { 5928 int ret; 5929 5930 ch->initialized = false; 5931 ch->base_queue = vsi->next_base_queue; 5932 ch->type = type; 5933 5934 /* Proceed with creation of channel (VMDq2) VSI */ 5935 ret = i40e_add_channel(pf, uplink_seid, ch); 5936 if (ret) { 5937 dev_info(&pf->pdev->dev, 5938 "failed to add_channel using uplink_seid %u\n", 5939 uplink_seid); 5940 return ret; 5941 } 5942 5943 /* Mark the successful creation of channel */ 5944 ch->initialized = true; 5945 5946 /* Reconfigure TX queues using QTX_CTL register */ 5947 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 5948 if (ret) { 5949 dev_info(&pf->pdev->dev, 5950 "failed to configure TX rings for channel %u\n", 5951 ch->seid); 5952 return ret; 5953 } 5954 5955 /* update 'next_base_queue' */ 5956 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 5957 dev_dbg(&pf->pdev->dev, 5958 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 5959 ch->seid, ch->vsi_number, ch->stat_counter_idx, 5960 ch->num_queue_pairs, 5961 vsi->next_base_queue); 5962 return ret; 5963 } 5964 5965 /** 5966 * i40e_setup_channel - setup new channel using uplink element 5967 * @pf: ptr to PF device 5968 * @type: type of channel to be created (VMDq2/VF) 5969 * @uplink_seid: underlying HW switching element (VEB) ID 5970 * @ch: ptr to channel structure 5971 * 5972 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5973 * and uplink switching element (uplink_seid) 5974 **/ 5975 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 5976 struct i40e_channel *ch) 5977 { 5978 u8 vsi_type; 5979 u16 seid; 5980 int ret; 5981 5982 if (vsi->type == I40E_VSI_MAIN) { 5983 vsi_type = I40E_VSI_VMDQ2; 5984 } else { 5985 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 5986 vsi->type); 5987 return false; 5988 } 5989 5990 /* underlying switching element */ 5991 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 5992 5993 /* create channel (VSI), configure TX rings */ 5994 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 5995 if (ret) { 5996 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 5997 return false; 5998 } 5999 6000 return ch->initialized ? true : false; 6001 } 6002 6003 /** 6004 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6005 * @vsi: ptr to VSI which has PF backing 6006 * 6007 * Sets up switch mode correctly if it needs to be changed and perform 6008 * what are allowed modes. 6009 **/ 6010 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6011 { 6012 u8 mode; 6013 struct i40e_pf *pf = vsi->back; 6014 struct i40e_hw *hw = &pf->hw; 6015 int ret; 6016 6017 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6018 if (ret) 6019 return -EINVAL; 6020 6021 if (hw->dev_caps.switch_mode) { 6022 /* if switch mode is set, support mode2 (non-tunneled for 6023 * cloud filter) for now 6024 */ 6025 u32 switch_mode = hw->dev_caps.switch_mode & 6026 I40E_SWITCH_MODE_MASK; 6027 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6028 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6029 return 0; 6030 dev_err(&pf->pdev->dev, 6031 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6032 hw->dev_caps.switch_mode); 6033 return -EINVAL; 6034 } 6035 } 6036 6037 /* Set Bit 7 to be valid */ 6038 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6039 6040 /* Set L4type for TCP support */ 6041 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6042 6043 /* Set cloud filter mode */ 6044 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6045 6046 /* Prep mode field for set_switch_config */ 6047 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6048 pf->last_sw_conf_valid_flags, 6049 mode, NULL); 6050 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6051 dev_err(&pf->pdev->dev, 6052 "couldn't set switch config bits, err %s aq_err %s\n", 6053 i40e_stat_str(hw, ret), 6054 i40e_aq_str(hw, 6055 hw->aq.asq_last_status)); 6056 6057 return ret; 6058 } 6059 6060 /** 6061 * i40e_create_queue_channel - function to create channel 6062 * @vsi: VSI to be configured 6063 * @ch: ptr to channel (it contains channel specific params) 6064 * 6065 * This function creates channel (VSI) using num_queues specified by user, 6066 * reconfigs RSS if needed. 6067 **/ 6068 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6069 struct i40e_channel *ch) 6070 { 6071 struct i40e_pf *pf = vsi->back; 6072 bool reconfig_rss; 6073 int err; 6074 6075 if (!ch) 6076 return -EINVAL; 6077 6078 if (!ch->num_queue_pairs) { 6079 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6080 ch->num_queue_pairs); 6081 return -EINVAL; 6082 } 6083 6084 /* validate user requested num_queues for channel */ 6085 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6086 &reconfig_rss); 6087 if (err) { 6088 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6089 ch->num_queue_pairs); 6090 return -EINVAL; 6091 } 6092 6093 /* By default we are in VEPA mode, if this is the first VF/VMDq 6094 * VSI to be added switch to VEB mode. 6095 */ 6096 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6097 (!i40e_is_any_channel(vsi))) { 6098 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6099 dev_dbg(&pf->pdev->dev, 6100 "Failed to create channel. Override queues (%u) not power of 2\n", 6101 vsi->tc_config.tc_info[0].qcount); 6102 return -EINVAL; 6103 } 6104 6105 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6106 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6107 6108 if (vsi->type == I40E_VSI_MAIN) { 6109 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6110 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6111 true); 6112 else 6113 i40e_do_reset_safe(pf, 6114 I40E_PF_RESET_FLAG); 6115 } 6116 } 6117 /* now onwards for main VSI, number of queues will be value 6118 * of TC0's queue count 6119 */ 6120 } 6121 6122 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6123 * it should be more than num_queues 6124 */ 6125 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6126 dev_dbg(&pf->pdev->dev, 6127 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6128 vsi->cnt_q_avail, ch->num_queue_pairs); 6129 return -EINVAL; 6130 } 6131 6132 /* reconfig_rss only if vsi type is MAIN_VSI */ 6133 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6134 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6135 if (err) { 6136 dev_info(&pf->pdev->dev, 6137 "Error: unable to reconfig rss for num_queues (%u)\n", 6138 ch->num_queue_pairs); 6139 return -EINVAL; 6140 } 6141 } 6142 6143 if (!i40e_setup_channel(pf, vsi, ch)) { 6144 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6145 return -EINVAL; 6146 } 6147 6148 dev_info(&pf->pdev->dev, 6149 "Setup channel (id:%u) utilizing num_queues %d\n", 6150 ch->seid, ch->num_queue_pairs); 6151 6152 /* configure VSI for BW limit */ 6153 if (ch->max_tx_rate) { 6154 u64 credits = ch->max_tx_rate; 6155 6156 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6157 return -EINVAL; 6158 6159 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6160 dev_dbg(&pf->pdev->dev, 6161 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6162 ch->max_tx_rate, 6163 credits, 6164 ch->seid); 6165 } 6166 6167 /* in case of VF, this will be main SRIOV VSI */ 6168 ch->parent_vsi = vsi; 6169 6170 /* and update main_vsi's count for queue_available to use */ 6171 vsi->cnt_q_avail -= ch->num_queue_pairs; 6172 6173 return 0; 6174 } 6175 6176 /** 6177 * i40e_configure_queue_channels - Add queue channel for the given TCs 6178 * @vsi: VSI to be configured 6179 * 6180 * Configures queue channel mapping to the given TCs 6181 **/ 6182 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6183 { 6184 struct i40e_channel *ch; 6185 u64 max_rate = 0; 6186 int ret = 0, i; 6187 6188 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6189 vsi->tc_seid_map[0] = vsi->seid; 6190 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6191 if (vsi->tc_config.enabled_tc & BIT(i)) { 6192 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6193 if (!ch) { 6194 ret = -ENOMEM; 6195 goto err_free; 6196 } 6197 6198 INIT_LIST_HEAD(&ch->list); 6199 ch->num_queue_pairs = 6200 vsi->tc_config.tc_info[i].qcount; 6201 ch->base_queue = 6202 vsi->tc_config.tc_info[i].qoffset; 6203 6204 /* Bandwidth limit through tc interface is in bytes/s, 6205 * change to Mbit/s 6206 */ 6207 max_rate = vsi->mqprio_qopt.max_rate[i]; 6208 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6209 ch->max_tx_rate = max_rate; 6210 6211 list_add_tail(&ch->list, &vsi->ch_list); 6212 6213 ret = i40e_create_queue_channel(vsi, ch); 6214 if (ret) { 6215 dev_err(&vsi->back->pdev->dev, 6216 "Failed creating queue channel with TC%d: queues %d\n", 6217 i, ch->num_queue_pairs); 6218 goto err_free; 6219 } 6220 vsi->tc_seid_map[i] = ch->seid; 6221 } 6222 } 6223 return ret; 6224 6225 err_free: 6226 i40e_remove_queue_channels(vsi); 6227 return ret; 6228 } 6229 6230 /** 6231 * i40e_veb_config_tc - Configure TCs for given VEB 6232 * @veb: given VEB 6233 * @enabled_tc: TC bitmap 6234 * 6235 * Configures given TC bitmap for VEB (switching) element 6236 **/ 6237 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6238 { 6239 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6240 struct i40e_pf *pf = veb->pf; 6241 int ret = 0; 6242 int i; 6243 6244 /* No TCs or already enabled TCs just return */ 6245 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6246 return ret; 6247 6248 bw_data.tc_valid_bits = enabled_tc; 6249 /* bw_data.absolute_credits is not set (relative) */ 6250 6251 /* Enable ETS TCs with equal BW Share for now */ 6252 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6253 if (enabled_tc & BIT(i)) 6254 bw_data.tc_bw_share_credits[i] = 1; 6255 } 6256 6257 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6258 &bw_data, NULL); 6259 if (ret) { 6260 dev_info(&pf->pdev->dev, 6261 "VEB bw config failed, err %s aq_err %s\n", 6262 i40e_stat_str(&pf->hw, ret), 6263 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6264 goto out; 6265 } 6266 6267 /* Update the BW information */ 6268 ret = i40e_veb_get_bw_info(veb); 6269 if (ret) { 6270 dev_info(&pf->pdev->dev, 6271 "Failed getting veb bw config, err %s aq_err %s\n", 6272 i40e_stat_str(&pf->hw, ret), 6273 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6274 } 6275 6276 out: 6277 return ret; 6278 } 6279 6280 #ifdef CONFIG_I40E_DCB 6281 /** 6282 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6283 * @pf: PF struct 6284 * 6285 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6286 * the caller would've quiesce all the VSIs before calling 6287 * this function 6288 **/ 6289 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6290 { 6291 u8 tc_map = 0; 6292 int ret; 6293 u8 v; 6294 6295 /* Enable the TCs available on PF to all VEBs */ 6296 tc_map = i40e_pf_get_tc_map(pf); 6297 for (v = 0; v < I40E_MAX_VEB; v++) { 6298 if (!pf->veb[v]) 6299 continue; 6300 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6301 if (ret) { 6302 dev_info(&pf->pdev->dev, 6303 "Failed configuring TC for VEB seid=%d\n", 6304 pf->veb[v]->seid); 6305 /* Will try to configure as many components */ 6306 } 6307 } 6308 6309 /* Update each VSI */ 6310 for (v = 0; v < pf->num_alloc_vsi; v++) { 6311 if (!pf->vsi[v]) 6312 continue; 6313 6314 /* - Enable all TCs for the LAN VSI 6315 * - For all others keep them at TC0 for now 6316 */ 6317 if (v == pf->lan_vsi) 6318 tc_map = i40e_pf_get_tc_map(pf); 6319 else 6320 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6321 6322 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6323 if (ret) { 6324 dev_info(&pf->pdev->dev, 6325 "Failed configuring TC for VSI seid=%d\n", 6326 pf->vsi[v]->seid); 6327 /* Will try to configure as many components */ 6328 } else { 6329 /* Re-configure VSI vectors based on updated TC map */ 6330 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6331 if (pf->vsi[v]->netdev) 6332 i40e_dcbnl_set_all(pf->vsi[v]); 6333 } 6334 } 6335 } 6336 6337 /** 6338 * i40e_resume_port_tx - Resume port Tx 6339 * @pf: PF struct 6340 * 6341 * Resume a port's Tx and issue a PF reset in case of failure to 6342 * resume. 6343 **/ 6344 static int i40e_resume_port_tx(struct i40e_pf *pf) 6345 { 6346 struct i40e_hw *hw = &pf->hw; 6347 int ret; 6348 6349 ret = i40e_aq_resume_port_tx(hw, NULL); 6350 if (ret) { 6351 dev_info(&pf->pdev->dev, 6352 "Resume Port Tx failed, err %s aq_err %s\n", 6353 i40e_stat_str(&pf->hw, ret), 6354 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6355 /* Schedule PF reset to recover */ 6356 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6357 i40e_service_event_schedule(pf); 6358 } 6359 6360 return ret; 6361 } 6362 6363 /** 6364 * i40e_init_pf_dcb - Initialize DCB configuration 6365 * @pf: PF being configured 6366 * 6367 * Query the current DCB configuration and cache it 6368 * in the hardware structure 6369 **/ 6370 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6371 { 6372 struct i40e_hw *hw = &pf->hw; 6373 int err = 0; 6374 6375 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6376 * Also do not enable DCBx if FW LLDP agent is disabled 6377 */ 6378 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6379 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) 6380 goto out; 6381 6382 /* Get the initial DCB configuration */ 6383 err = i40e_init_dcb(hw); 6384 if (!err) { 6385 /* Device/Function is not DCBX capable */ 6386 if ((!hw->func_caps.dcb) || 6387 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6388 dev_info(&pf->pdev->dev, 6389 "DCBX offload is not supported or is disabled for this PF.\n"); 6390 } else { 6391 /* When status is not DISABLED then DCBX in FW */ 6392 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6393 DCB_CAP_DCBX_VER_IEEE; 6394 6395 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6396 /* Enable DCB tagging only when more than one TC 6397 * or explicitly disable if only one TC 6398 */ 6399 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6400 pf->flags |= I40E_FLAG_DCB_ENABLED; 6401 else 6402 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6403 dev_dbg(&pf->pdev->dev, 6404 "DCBX offload is supported for this PF.\n"); 6405 } 6406 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6407 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6408 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6409 } else { 6410 dev_info(&pf->pdev->dev, 6411 "Query for DCB configuration failed, err %s aq_err %s\n", 6412 i40e_stat_str(&pf->hw, err), 6413 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6414 } 6415 6416 out: 6417 return err; 6418 } 6419 #endif /* CONFIG_I40E_DCB */ 6420 #define SPEED_SIZE 14 6421 #define FC_SIZE 8 6422 /** 6423 * i40e_print_link_message - print link up or down 6424 * @vsi: the VSI for which link needs a message 6425 * @isup: true of link is up, false otherwise 6426 */ 6427 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6428 { 6429 enum i40e_aq_link_speed new_speed; 6430 struct i40e_pf *pf = vsi->back; 6431 char *speed = "Unknown"; 6432 char *fc = "Unknown"; 6433 char *fec = ""; 6434 char *req_fec = ""; 6435 char *an = ""; 6436 6437 if (isup) 6438 new_speed = pf->hw.phy.link_info.link_speed; 6439 else 6440 new_speed = I40E_LINK_SPEED_UNKNOWN; 6441 6442 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6443 return; 6444 vsi->current_isup = isup; 6445 vsi->current_speed = new_speed; 6446 if (!isup) { 6447 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6448 return; 6449 } 6450 6451 /* Warn user if link speed on NPAR enabled partition is not at 6452 * least 10GB 6453 */ 6454 if (pf->hw.func_caps.npar_enable && 6455 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6456 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6457 netdev_warn(vsi->netdev, 6458 "The partition detected link speed that is less than 10Gbps\n"); 6459 6460 switch (pf->hw.phy.link_info.link_speed) { 6461 case I40E_LINK_SPEED_40GB: 6462 speed = "40 G"; 6463 break; 6464 case I40E_LINK_SPEED_20GB: 6465 speed = "20 G"; 6466 break; 6467 case I40E_LINK_SPEED_25GB: 6468 speed = "25 G"; 6469 break; 6470 case I40E_LINK_SPEED_10GB: 6471 speed = "10 G"; 6472 break; 6473 case I40E_LINK_SPEED_1GB: 6474 speed = "1000 M"; 6475 break; 6476 case I40E_LINK_SPEED_100MB: 6477 speed = "100 M"; 6478 break; 6479 default: 6480 break; 6481 } 6482 6483 switch (pf->hw.fc.current_mode) { 6484 case I40E_FC_FULL: 6485 fc = "RX/TX"; 6486 break; 6487 case I40E_FC_TX_PAUSE: 6488 fc = "TX"; 6489 break; 6490 case I40E_FC_RX_PAUSE: 6491 fc = "RX"; 6492 break; 6493 default: 6494 fc = "None"; 6495 break; 6496 } 6497 6498 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6499 req_fec = ", Requested FEC: None"; 6500 fec = ", FEC: None"; 6501 an = ", Autoneg: False"; 6502 6503 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6504 an = ", Autoneg: True"; 6505 6506 if (pf->hw.phy.link_info.fec_info & 6507 I40E_AQ_CONFIG_FEC_KR_ENA) 6508 fec = ", FEC: CL74 FC-FEC/BASE-R"; 6509 else if (pf->hw.phy.link_info.fec_info & 6510 I40E_AQ_CONFIG_FEC_RS_ENA) 6511 fec = ", FEC: CL108 RS-FEC"; 6512 6513 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6514 * both RS and FC are requested 6515 */ 6516 if (vsi->back->hw.phy.link_info.req_fec_info & 6517 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6518 if (vsi->back->hw.phy.link_info.req_fec_info & 6519 I40E_AQ_REQUEST_FEC_RS) 6520 req_fec = ", Requested FEC: CL108 RS-FEC"; 6521 else 6522 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R"; 6523 } 6524 } 6525 6526 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n", 6527 speed, req_fec, fec, an, fc); 6528 } 6529 6530 /** 6531 * i40e_up_complete - Finish the last steps of bringing up a connection 6532 * @vsi: the VSI being configured 6533 **/ 6534 static int i40e_up_complete(struct i40e_vsi *vsi) 6535 { 6536 struct i40e_pf *pf = vsi->back; 6537 int err; 6538 6539 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6540 i40e_vsi_configure_msix(vsi); 6541 else 6542 i40e_configure_msi_and_legacy(vsi); 6543 6544 /* start rings */ 6545 err = i40e_vsi_start_rings(vsi); 6546 if (err) 6547 return err; 6548 6549 clear_bit(__I40E_VSI_DOWN, vsi->state); 6550 i40e_napi_enable_all(vsi); 6551 i40e_vsi_enable_irq(vsi); 6552 6553 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6554 (vsi->netdev)) { 6555 i40e_print_link_message(vsi, true); 6556 netif_tx_start_all_queues(vsi->netdev); 6557 netif_carrier_on(vsi->netdev); 6558 } 6559 6560 /* replay FDIR SB filters */ 6561 if (vsi->type == I40E_VSI_FDIR) { 6562 /* reset fd counters */ 6563 pf->fd_add_err = 0; 6564 pf->fd_atr_cnt = 0; 6565 i40e_fdir_filter_restore(vsi); 6566 } 6567 6568 /* On the next run of the service_task, notify any clients of the new 6569 * opened netdev 6570 */ 6571 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6572 i40e_service_event_schedule(pf); 6573 6574 return 0; 6575 } 6576 6577 /** 6578 * i40e_vsi_reinit_locked - Reset the VSI 6579 * @vsi: the VSI being configured 6580 * 6581 * Rebuild the ring structs after some configuration 6582 * has changed, e.g. MTU size. 6583 **/ 6584 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6585 { 6586 struct i40e_pf *pf = vsi->back; 6587 6588 WARN_ON(in_interrupt()); 6589 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6590 usleep_range(1000, 2000); 6591 i40e_down(vsi); 6592 6593 i40e_up(vsi); 6594 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6595 } 6596 6597 /** 6598 * i40e_up - Bring the connection back up after being down 6599 * @vsi: the VSI being configured 6600 **/ 6601 int i40e_up(struct i40e_vsi *vsi) 6602 { 6603 int err; 6604 6605 err = i40e_vsi_configure(vsi); 6606 if (!err) 6607 err = i40e_up_complete(vsi); 6608 6609 return err; 6610 } 6611 6612 /** 6613 * i40e_force_link_state - Force the link status 6614 * @pf: board private structure 6615 * @is_up: whether the link state should be forced up or down 6616 **/ 6617 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 6618 { 6619 struct i40e_aq_get_phy_abilities_resp abilities; 6620 struct i40e_aq_set_phy_config config = {0}; 6621 struct i40e_hw *hw = &pf->hw; 6622 i40e_status err; 6623 u64 mask; 6624 u8 speed; 6625 6626 /* Card might've been put in an unstable state by other drivers 6627 * and applications, which causes incorrect speed values being 6628 * set on startup. In order to clear speed registers, we call 6629 * get_phy_capabilities twice, once to get initial state of 6630 * available speeds, and once to get current PHY config. 6631 */ 6632 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 6633 NULL); 6634 if (err) { 6635 dev_err(&pf->pdev->dev, 6636 "failed to get phy cap., ret = %s last_status = %s\n", 6637 i40e_stat_str(hw, err), 6638 i40e_aq_str(hw, hw->aq.asq_last_status)); 6639 return err; 6640 } 6641 speed = abilities.link_speed; 6642 6643 /* Get the current phy config */ 6644 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 6645 NULL); 6646 if (err) { 6647 dev_err(&pf->pdev->dev, 6648 "failed to get phy cap., ret = %s last_status = %s\n", 6649 i40e_stat_str(hw, err), 6650 i40e_aq_str(hw, hw->aq.asq_last_status)); 6651 return err; 6652 } 6653 6654 /* If link needs to go up, but was not forced to go down, 6655 * and its speed values are OK, no need for a flap 6656 */ 6657 if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 6658 return I40E_SUCCESS; 6659 6660 /* To force link we need to set bits for all supported PHY types, 6661 * but there are now more than 32, so we need to split the bitmap 6662 * across two fields. 6663 */ 6664 mask = I40E_PHY_TYPES_BITMASK; 6665 config.phy_type = is_up ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 6666 config.phy_type_ext = is_up ? (u8)((mask >> 32) & 0xff) : 0; 6667 /* Copy the old settings, except of phy_type */ 6668 config.abilities = abilities.abilities; 6669 if (abilities.link_speed != 0) 6670 config.link_speed = abilities.link_speed; 6671 else 6672 config.link_speed = speed; 6673 config.eee_capability = abilities.eee_capability; 6674 config.eeer = abilities.eeer_val; 6675 config.low_power_ctrl = abilities.d3_lpan; 6676 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 6677 I40E_AQ_PHY_FEC_CONFIG_MASK; 6678 err = i40e_aq_set_phy_config(hw, &config, NULL); 6679 6680 if (err) { 6681 dev_err(&pf->pdev->dev, 6682 "set phy config ret = %s last_status = %s\n", 6683 i40e_stat_str(&pf->hw, err), 6684 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6685 return err; 6686 } 6687 6688 /* Update the link info */ 6689 err = i40e_update_link_info(hw); 6690 if (err) { 6691 /* Wait a little bit (on 40G cards it sometimes takes a really 6692 * long time for link to come back from the atomic reset) 6693 * and try once more 6694 */ 6695 msleep(1000); 6696 i40e_update_link_info(hw); 6697 } 6698 6699 i40e_aq_set_link_restart_an(hw, true, NULL); 6700 6701 return I40E_SUCCESS; 6702 } 6703 6704 /** 6705 * i40e_down - Shutdown the connection processing 6706 * @vsi: the VSI being stopped 6707 **/ 6708 void i40e_down(struct i40e_vsi *vsi) 6709 { 6710 int i; 6711 6712 /* It is assumed that the caller of this function 6713 * sets the vsi->state __I40E_VSI_DOWN bit. 6714 */ 6715 if (vsi->netdev) { 6716 netif_carrier_off(vsi->netdev); 6717 netif_tx_disable(vsi->netdev); 6718 } 6719 i40e_vsi_disable_irq(vsi); 6720 i40e_vsi_stop_rings(vsi); 6721 if (vsi->type == I40E_VSI_MAIN && 6722 vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED) 6723 i40e_force_link_state(vsi->back, false); 6724 i40e_napi_disable_all(vsi); 6725 6726 for (i = 0; i < vsi->num_queue_pairs; i++) { 6727 i40e_clean_tx_ring(vsi->tx_rings[i]); 6728 if (i40e_enabled_xdp_vsi(vsi)) 6729 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6730 i40e_clean_rx_ring(vsi->rx_rings[i]); 6731 } 6732 6733 } 6734 6735 /** 6736 * i40e_validate_mqprio_qopt- validate queue mapping info 6737 * @vsi: the VSI being configured 6738 * @mqprio_qopt: queue parametrs 6739 **/ 6740 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6741 struct tc_mqprio_qopt_offload *mqprio_qopt) 6742 { 6743 u64 sum_max_rate = 0; 6744 u64 max_rate = 0; 6745 int i; 6746 6747 if (mqprio_qopt->qopt.offset[0] != 0 || 6748 mqprio_qopt->qopt.num_tc < 1 || 6749 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6750 return -EINVAL; 6751 for (i = 0; ; i++) { 6752 if (!mqprio_qopt->qopt.count[i]) 6753 return -EINVAL; 6754 if (mqprio_qopt->min_rate[i]) { 6755 dev_err(&vsi->back->pdev->dev, 6756 "Invalid min tx rate (greater than 0) specified\n"); 6757 return -EINVAL; 6758 } 6759 max_rate = mqprio_qopt->max_rate[i]; 6760 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6761 sum_max_rate += max_rate; 6762 6763 if (i >= mqprio_qopt->qopt.num_tc - 1) 6764 break; 6765 if (mqprio_qopt->qopt.offset[i + 1] != 6766 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6767 return -EINVAL; 6768 } 6769 if (vsi->num_queue_pairs < 6770 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6771 return -EINVAL; 6772 } 6773 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6774 dev_err(&vsi->back->pdev->dev, 6775 "Invalid max tx rate specified\n"); 6776 return -EINVAL; 6777 } 6778 return 0; 6779 } 6780 6781 /** 6782 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6783 * @vsi: the VSI being configured 6784 **/ 6785 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6786 { 6787 u16 qcount; 6788 int i; 6789 6790 /* Only TC0 is enabled */ 6791 vsi->tc_config.numtc = 1; 6792 vsi->tc_config.enabled_tc = 1; 6793 qcount = min_t(int, vsi->alloc_queue_pairs, 6794 i40e_pf_get_max_q_per_tc(vsi->back)); 6795 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6796 /* For the TC that is not enabled set the offset to to default 6797 * queue and allocate one queue for the given TC. 6798 */ 6799 vsi->tc_config.tc_info[i].qoffset = 0; 6800 if (i == 0) 6801 vsi->tc_config.tc_info[i].qcount = qcount; 6802 else 6803 vsi->tc_config.tc_info[i].qcount = 1; 6804 vsi->tc_config.tc_info[i].netdev_tc = 0; 6805 } 6806 } 6807 6808 /** 6809 * i40e_setup_tc - configure multiple traffic classes 6810 * @netdev: net device to configure 6811 * @type_data: tc offload data 6812 **/ 6813 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 6814 { 6815 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 6816 struct i40e_netdev_priv *np = netdev_priv(netdev); 6817 struct i40e_vsi *vsi = np->vsi; 6818 struct i40e_pf *pf = vsi->back; 6819 u8 enabled_tc = 0, num_tc, hw; 6820 bool need_reset = false; 6821 int ret = -EINVAL; 6822 u16 mode; 6823 int i; 6824 6825 num_tc = mqprio_qopt->qopt.num_tc; 6826 hw = mqprio_qopt->qopt.hw; 6827 mode = mqprio_qopt->mode; 6828 if (!hw) { 6829 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6830 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 6831 goto config_tc; 6832 } 6833 6834 /* Check if MFP enabled */ 6835 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 6836 netdev_info(netdev, 6837 "Configuring TC not supported in MFP mode\n"); 6838 return ret; 6839 } 6840 switch (mode) { 6841 case TC_MQPRIO_MODE_DCB: 6842 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6843 6844 /* Check if DCB enabled to continue */ 6845 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 6846 netdev_info(netdev, 6847 "DCB is not enabled for adapter\n"); 6848 return ret; 6849 } 6850 6851 /* Check whether tc count is within enabled limit */ 6852 if (num_tc > i40e_pf_get_num_tc(pf)) { 6853 netdev_info(netdev, 6854 "TC count greater than enabled on link for adapter\n"); 6855 return ret; 6856 } 6857 break; 6858 case TC_MQPRIO_MODE_CHANNEL: 6859 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 6860 netdev_info(netdev, 6861 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 6862 return ret; 6863 } 6864 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 6865 return ret; 6866 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 6867 if (ret) 6868 return ret; 6869 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 6870 sizeof(*mqprio_qopt)); 6871 pf->flags |= I40E_FLAG_TC_MQPRIO; 6872 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6873 break; 6874 default: 6875 return -EINVAL; 6876 } 6877 6878 config_tc: 6879 /* Generate TC map for number of tc requested */ 6880 for (i = 0; i < num_tc; i++) 6881 enabled_tc |= BIT(i); 6882 6883 /* Requesting same TC configuration as already enabled */ 6884 if (enabled_tc == vsi->tc_config.enabled_tc && 6885 mode != TC_MQPRIO_MODE_CHANNEL) 6886 return 0; 6887 6888 /* Quiesce VSI queues */ 6889 i40e_quiesce_vsi(vsi); 6890 6891 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 6892 i40e_remove_queue_channels(vsi); 6893 6894 /* Configure VSI for enabled TCs */ 6895 ret = i40e_vsi_config_tc(vsi, enabled_tc); 6896 if (ret) { 6897 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 6898 vsi->seid); 6899 need_reset = true; 6900 goto exit; 6901 } 6902 6903 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 6904 if (vsi->mqprio_qopt.max_rate[0]) { 6905 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 6906 6907 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 6908 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 6909 if (!ret) { 6910 u64 credits = max_tx_rate; 6911 6912 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6913 dev_dbg(&vsi->back->pdev->dev, 6914 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6915 max_tx_rate, 6916 credits, 6917 vsi->seid); 6918 } else { 6919 need_reset = true; 6920 goto exit; 6921 } 6922 } 6923 ret = i40e_configure_queue_channels(vsi); 6924 if (ret) { 6925 netdev_info(netdev, 6926 "Failed configuring queue channels\n"); 6927 need_reset = true; 6928 goto exit; 6929 } 6930 } 6931 6932 exit: 6933 /* Reset the configuration data to defaults, only TC0 is enabled */ 6934 if (need_reset) { 6935 i40e_vsi_set_default_tc_config(vsi); 6936 need_reset = false; 6937 } 6938 6939 /* Unquiesce VSI */ 6940 i40e_unquiesce_vsi(vsi); 6941 return ret; 6942 } 6943 6944 /** 6945 * i40e_set_cld_element - sets cloud filter element data 6946 * @filter: cloud filter rule 6947 * @cld: ptr to cloud filter element data 6948 * 6949 * This is helper function to copy data into cloud filter element 6950 **/ 6951 static inline void 6952 i40e_set_cld_element(struct i40e_cloud_filter *filter, 6953 struct i40e_aqc_cloud_filters_element_data *cld) 6954 { 6955 int i, j; 6956 u32 ipa; 6957 6958 memset(cld, 0, sizeof(*cld)); 6959 ether_addr_copy(cld->outer_mac, filter->dst_mac); 6960 ether_addr_copy(cld->inner_mac, filter->src_mac); 6961 6962 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 6963 return; 6964 6965 if (filter->n_proto == ETH_P_IPV6) { 6966 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 6967 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 6968 i++, j += 2) { 6969 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 6970 ipa = cpu_to_le32(ipa); 6971 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 6972 } 6973 } else { 6974 ipa = be32_to_cpu(filter->dst_ipv4); 6975 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 6976 } 6977 6978 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 6979 6980 /* tenant_id is not supported by FW now, once the support is enabled 6981 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 6982 */ 6983 if (filter->tenant_id) 6984 return; 6985 } 6986 6987 /** 6988 * i40e_add_del_cloud_filter - Add/del cloud filter 6989 * @vsi: pointer to VSI 6990 * @filter: cloud filter rule 6991 * @add: if true, add, if false, delete 6992 * 6993 * Add or delete a cloud filter for a specific flow spec. 6994 * Returns 0 if the filter were successfully added. 6995 **/ 6996 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 6997 struct i40e_cloud_filter *filter, bool add) 6998 { 6999 struct i40e_aqc_cloud_filters_element_data cld_filter; 7000 struct i40e_pf *pf = vsi->back; 7001 int ret; 7002 static const u16 flag_table[128] = { 7003 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 7004 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 7005 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 7006 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 7007 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 7008 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 7009 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 7010 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 7011 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 7012 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 7013 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 7014 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 7015 [I40E_CLOUD_FILTER_FLAGS_IIP] = 7016 I40E_AQC_ADD_CLOUD_FILTER_IIP, 7017 }; 7018 7019 if (filter->flags >= ARRAY_SIZE(flag_table)) 7020 return I40E_ERR_CONFIG; 7021 7022 /* copy element needed to add cloud filter from filter */ 7023 i40e_set_cld_element(filter, &cld_filter); 7024 7025 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 7026 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 7027 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 7028 7029 if (filter->n_proto == ETH_P_IPV6) 7030 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7031 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7032 else 7033 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7034 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7035 7036 if (add) 7037 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 7038 &cld_filter, 1); 7039 else 7040 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 7041 &cld_filter, 1); 7042 if (ret) 7043 dev_dbg(&pf->pdev->dev, 7044 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 7045 add ? "add" : "delete", filter->dst_port, ret, 7046 pf->hw.aq.asq_last_status); 7047 else 7048 dev_info(&pf->pdev->dev, 7049 "%s cloud filter for VSI: %d\n", 7050 add ? "Added" : "Deleted", filter->seid); 7051 return ret; 7052 } 7053 7054 /** 7055 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 7056 * @vsi: pointer to VSI 7057 * @filter: cloud filter rule 7058 * @add: if true, add, if false, delete 7059 * 7060 * Add or delete a cloud filter for a specific flow spec using big buffer. 7061 * Returns 0 if the filter were successfully added. 7062 **/ 7063 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 7064 struct i40e_cloud_filter *filter, 7065 bool add) 7066 { 7067 struct i40e_aqc_cloud_filters_element_bb cld_filter; 7068 struct i40e_pf *pf = vsi->back; 7069 int ret; 7070 7071 /* Both (src/dst) valid mac_addr are not supported */ 7072 if ((is_valid_ether_addr(filter->dst_mac) && 7073 is_valid_ether_addr(filter->src_mac)) || 7074 (is_multicast_ether_addr(filter->dst_mac) && 7075 is_multicast_ether_addr(filter->src_mac))) 7076 return -EOPNOTSUPP; 7077 7078 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 7079 * ports are not supported via big buffer now. 7080 */ 7081 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 7082 return -EOPNOTSUPP; 7083 7084 /* adding filter using src_port/src_ip is not supported at this stage */ 7085 if (filter->src_port || filter->src_ipv4 || 7086 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 7087 return -EOPNOTSUPP; 7088 7089 /* copy element needed to add cloud filter from filter */ 7090 i40e_set_cld_element(filter, &cld_filter.element); 7091 7092 if (is_valid_ether_addr(filter->dst_mac) || 7093 is_valid_ether_addr(filter->src_mac) || 7094 is_multicast_ether_addr(filter->dst_mac) || 7095 is_multicast_ether_addr(filter->src_mac)) { 7096 /* MAC + IP : unsupported mode */ 7097 if (filter->dst_ipv4) 7098 return -EOPNOTSUPP; 7099 7100 /* since we validated that L4 port must be valid before 7101 * we get here, start with respective "flags" value 7102 * and update if vlan is present or not 7103 */ 7104 cld_filter.element.flags = 7105 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7106 7107 if (filter->vlan_id) { 7108 cld_filter.element.flags = 7109 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7110 } 7111 7112 } else if (filter->dst_ipv4 || 7113 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7114 cld_filter.element.flags = 7115 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7116 if (filter->n_proto == ETH_P_IPV6) 7117 cld_filter.element.flags |= 7118 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7119 else 7120 cld_filter.element.flags |= 7121 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7122 } else { 7123 dev_err(&pf->pdev->dev, 7124 "either mac or ip has to be valid for cloud filter\n"); 7125 return -EINVAL; 7126 } 7127 7128 /* Now copy L4 port in Byte 6..7 in general fields */ 7129 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7130 be16_to_cpu(filter->dst_port); 7131 7132 if (add) { 7133 /* Validate current device switch mode, change if necessary */ 7134 ret = i40e_validate_and_set_switch_mode(vsi); 7135 if (ret) { 7136 dev_err(&pf->pdev->dev, 7137 "failed to set switch mode, ret %d\n", 7138 ret); 7139 return ret; 7140 } 7141 7142 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7143 &cld_filter, 1); 7144 } else { 7145 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7146 &cld_filter, 1); 7147 } 7148 7149 if (ret) 7150 dev_dbg(&pf->pdev->dev, 7151 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7152 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7153 else 7154 dev_info(&pf->pdev->dev, 7155 "%s cloud filter for VSI: %d, L4 port: %d\n", 7156 add ? "add" : "delete", filter->seid, 7157 ntohs(filter->dst_port)); 7158 return ret; 7159 } 7160 7161 /** 7162 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7163 * @vsi: Pointer to VSI 7164 * @cls_flower: Pointer to struct tc_cls_flower_offload 7165 * @filter: Pointer to cloud filter structure 7166 * 7167 **/ 7168 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7169 struct tc_cls_flower_offload *f, 7170 struct i40e_cloud_filter *filter) 7171 { 7172 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7173 struct i40e_pf *pf = vsi->back; 7174 u8 field_flags = 0; 7175 7176 if (f->dissector->used_keys & 7177 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7178 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7179 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7180 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7181 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7182 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7183 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7184 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7185 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7186 f->dissector->used_keys); 7187 return -EOPNOTSUPP; 7188 } 7189 7190 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7191 struct flow_dissector_key_keyid *key = 7192 skb_flow_dissector_target(f->dissector, 7193 FLOW_DISSECTOR_KEY_ENC_KEYID, 7194 f->key); 7195 7196 struct flow_dissector_key_keyid *mask = 7197 skb_flow_dissector_target(f->dissector, 7198 FLOW_DISSECTOR_KEY_ENC_KEYID, 7199 f->mask); 7200 7201 if (mask->keyid != 0) 7202 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7203 7204 filter->tenant_id = be32_to_cpu(key->keyid); 7205 } 7206 7207 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) { 7208 struct flow_dissector_key_basic *key = 7209 skb_flow_dissector_target(f->dissector, 7210 FLOW_DISSECTOR_KEY_BASIC, 7211 f->key); 7212 7213 struct flow_dissector_key_basic *mask = 7214 skb_flow_dissector_target(f->dissector, 7215 FLOW_DISSECTOR_KEY_BASIC, 7216 f->mask); 7217 7218 n_proto_key = ntohs(key->n_proto); 7219 n_proto_mask = ntohs(mask->n_proto); 7220 7221 if (n_proto_key == ETH_P_ALL) { 7222 n_proto_key = 0; 7223 n_proto_mask = 0; 7224 } 7225 filter->n_proto = n_proto_key & n_proto_mask; 7226 filter->ip_proto = key->ip_proto; 7227 } 7228 7229 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7230 struct flow_dissector_key_eth_addrs *key = 7231 skb_flow_dissector_target(f->dissector, 7232 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7233 f->key); 7234 7235 struct flow_dissector_key_eth_addrs *mask = 7236 skb_flow_dissector_target(f->dissector, 7237 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7238 f->mask); 7239 7240 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7241 if (!is_zero_ether_addr(mask->dst)) { 7242 if (is_broadcast_ether_addr(mask->dst)) { 7243 field_flags |= I40E_CLOUD_FIELD_OMAC; 7244 } else { 7245 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7246 mask->dst); 7247 return I40E_ERR_CONFIG; 7248 } 7249 } 7250 7251 if (!is_zero_ether_addr(mask->src)) { 7252 if (is_broadcast_ether_addr(mask->src)) { 7253 field_flags |= I40E_CLOUD_FIELD_IMAC; 7254 } else { 7255 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7256 mask->src); 7257 return I40E_ERR_CONFIG; 7258 } 7259 } 7260 ether_addr_copy(filter->dst_mac, key->dst); 7261 ether_addr_copy(filter->src_mac, key->src); 7262 } 7263 7264 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) { 7265 struct flow_dissector_key_vlan *key = 7266 skb_flow_dissector_target(f->dissector, 7267 FLOW_DISSECTOR_KEY_VLAN, 7268 f->key); 7269 struct flow_dissector_key_vlan *mask = 7270 skb_flow_dissector_target(f->dissector, 7271 FLOW_DISSECTOR_KEY_VLAN, 7272 f->mask); 7273 7274 if (mask->vlan_id) { 7275 if (mask->vlan_id == VLAN_VID_MASK) { 7276 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7277 7278 } else { 7279 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7280 mask->vlan_id); 7281 return I40E_ERR_CONFIG; 7282 } 7283 } 7284 7285 filter->vlan_id = cpu_to_be16(key->vlan_id); 7286 } 7287 7288 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_CONTROL)) { 7289 struct flow_dissector_key_control *key = 7290 skb_flow_dissector_target(f->dissector, 7291 FLOW_DISSECTOR_KEY_CONTROL, 7292 f->key); 7293 7294 addr_type = key->addr_type; 7295 } 7296 7297 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7298 struct flow_dissector_key_ipv4_addrs *key = 7299 skb_flow_dissector_target(f->dissector, 7300 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7301 f->key); 7302 struct flow_dissector_key_ipv4_addrs *mask = 7303 skb_flow_dissector_target(f->dissector, 7304 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7305 f->mask); 7306 7307 if (mask->dst) { 7308 if (mask->dst == cpu_to_be32(0xffffffff)) { 7309 field_flags |= I40E_CLOUD_FIELD_IIP; 7310 } else { 7311 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 7312 &mask->dst); 7313 return I40E_ERR_CONFIG; 7314 } 7315 } 7316 7317 if (mask->src) { 7318 if (mask->src == cpu_to_be32(0xffffffff)) { 7319 field_flags |= I40E_CLOUD_FIELD_IIP; 7320 } else { 7321 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 7322 &mask->src); 7323 return I40E_ERR_CONFIG; 7324 } 7325 } 7326 7327 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7328 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7329 return I40E_ERR_CONFIG; 7330 } 7331 filter->dst_ipv4 = key->dst; 7332 filter->src_ipv4 = key->src; 7333 } 7334 7335 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7336 struct flow_dissector_key_ipv6_addrs *key = 7337 skb_flow_dissector_target(f->dissector, 7338 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7339 f->key); 7340 struct flow_dissector_key_ipv6_addrs *mask = 7341 skb_flow_dissector_target(f->dissector, 7342 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7343 f->mask); 7344 7345 /* src and dest IPV6 address should not be LOOPBACK 7346 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7347 */ 7348 if (ipv6_addr_loopback(&key->dst) || 7349 ipv6_addr_loopback(&key->src)) { 7350 dev_err(&pf->pdev->dev, 7351 "Bad ipv6, addr is LOOPBACK\n"); 7352 return I40E_ERR_CONFIG; 7353 } 7354 if (!ipv6_addr_any(&mask->dst) || !ipv6_addr_any(&mask->src)) 7355 field_flags |= I40E_CLOUD_FIELD_IIP; 7356 7357 memcpy(&filter->src_ipv6, &key->src.s6_addr32, 7358 sizeof(filter->src_ipv6)); 7359 memcpy(&filter->dst_ipv6, &key->dst.s6_addr32, 7360 sizeof(filter->dst_ipv6)); 7361 } 7362 7363 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS)) { 7364 struct flow_dissector_key_ports *key = 7365 skb_flow_dissector_target(f->dissector, 7366 FLOW_DISSECTOR_KEY_PORTS, 7367 f->key); 7368 struct flow_dissector_key_ports *mask = 7369 skb_flow_dissector_target(f->dissector, 7370 FLOW_DISSECTOR_KEY_PORTS, 7371 f->mask); 7372 7373 if (mask->src) { 7374 if (mask->src == cpu_to_be16(0xffff)) { 7375 field_flags |= I40E_CLOUD_FIELD_IIP; 7376 } else { 7377 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7378 be16_to_cpu(mask->src)); 7379 return I40E_ERR_CONFIG; 7380 } 7381 } 7382 7383 if (mask->dst) { 7384 if (mask->dst == cpu_to_be16(0xffff)) { 7385 field_flags |= I40E_CLOUD_FIELD_IIP; 7386 } else { 7387 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7388 be16_to_cpu(mask->dst)); 7389 return I40E_ERR_CONFIG; 7390 } 7391 } 7392 7393 filter->dst_port = key->dst; 7394 filter->src_port = key->src; 7395 7396 switch (filter->ip_proto) { 7397 case IPPROTO_TCP: 7398 case IPPROTO_UDP: 7399 break; 7400 default: 7401 dev_err(&pf->pdev->dev, 7402 "Only UDP and TCP transport are supported\n"); 7403 return -EINVAL; 7404 } 7405 } 7406 filter->flags = field_flags; 7407 return 0; 7408 } 7409 7410 /** 7411 * i40e_handle_tclass: Forward to a traffic class on the device 7412 * @vsi: Pointer to VSI 7413 * @tc: traffic class index on the device 7414 * @filter: Pointer to cloud filter structure 7415 * 7416 **/ 7417 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7418 struct i40e_cloud_filter *filter) 7419 { 7420 struct i40e_channel *ch, *ch_tmp; 7421 7422 /* direct to a traffic class on the same device */ 7423 if (tc == 0) { 7424 filter->seid = vsi->seid; 7425 return 0; 7426 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7427 if (!filter->dst_port) { 7428 dev_err(&vsi->back->pdev->dev, 7429 "Specify destination port to direct to traffic class that is not default\n"); 7430 return -EINVAL; 7431 } 7432 if (list_empty(&vsi->ch_list)) 7433 return -EINVAL; 7434 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7435 list) { 7436 if (ch->seid == vsi->tc_seid_map[tc]) 7437 filter->seid = ch->seid; 7438 } 7439 return 0; 7440 } 7441 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7442 return -EINVAL; 7443 } 7444 7445 /** 7446 * i40e_configure_clsflower - Configure tc flower filters 7447 * @vsi: Pointer to VSI 7448 * @cls_flower: Pointer to struct tc_cls_flower_offload 7449 * 7450 **/ 7451 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 7452 struct tc_cls_flower_offload *cls_flower) 7453 { 7454 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 7455 struct i40e_cloud_filter *filter = NULL; 7456 struct i40e_pf *pf = vsi->back; 7457 int err = 0; 7458 7459 if (tc < 0) { 7460 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 7461 return -EOPNOTSUPP; 7462 } 7463 7464 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 7465 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 7466 return -EBUSY; 7467 7468 if (pf->fdir_pf_active_filters || 7469 (!hlist_empty(&pf->fdir_filter_list))) { 7470 dev_err(&vsi->back->pdev->dev, 7471 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 7472 return -EINVAL; 7473 } 7474 7475 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 7476 dev_err(&vsi->back->pdev->dev, 7477 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 7478 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 7479 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7480 } 7481 7482 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 7483 if (!filter) 7484 return -ENOMEM; 7485 7486 filter->cookie = cls_flower->cookie; 7487 7488 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 7489 if (err < 0) 7490 goto err; 7491 7492 err = i40e_handle_tclass(vsi, tc, filter); 7493 if (err < 0) 7494 goto err; 7495 7496 /* Add cloud filter */ 7497 if (filter->dst_port) 7498 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 7499 else 7500 err = i40e_add_del_cloud_filter(vsi, filter, true); 7501 7502 if (err) { 7503 dev_err(&pf->pdev->dev, 7504 "Failed to add cloud filter, err %s\n", 7505 i40e_stat_str(&pf->hw, err)); 7506 goto err; 7507 } 7508 7509 /* add filter to the ordered list */ 7510 INIT_HLIST_NODE(&filter->cloud_node); 7511 7512 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 7513 7514 pf->num_cloud_filters++; 7515 7516 return err; 7517 err: 7518 kfree(filter); 7519 return err; 7520 } 7521 7522 /** 7523 * i40e_find_cloud_filter - Find the could filter in the list 7524 * @vsi: Pointer to VSI 7525 * @cookie: filter specific cookie 7526 * 7527 **/ 7528 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 7529 unsigned long *cookie) 7530 { 7531 struct i40e_cloud_filter *filter = NULL; 7532 struct hlist_node *node2; 7533 7534 hlist_for_each_entry_safe(filter, node2, 7535 &vsi->back->cloud_filter_list, cloud_node) 7536 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 7537 return filter; 7538 return NULL; 7539 } 7540 7541 /** 7542 * i40e_delete_clsflower - Remove tc flower filters 7543 * @vsi: Pointer to VSI 7544 * @cls_flower: Pointer to struct tc_cls_flower_offload 7545 * 7546 **/ 7547 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 7548 struct tc_cls_flower_offload *cls_flower) 7549 { 7550 struct i40e_cloud_filter *filter = NULL; 7551 struct i40e_pf *pf = vsi->back; 7552 int err = 0; 7553 7554 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 7555 7556 if (!filter) 7557 return -EINVAL; 7558 7559 hash_del(&filter->cloud_node); 7560 7561 if (filter->dst_port) 7562 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 7563 else 7564 err = i40e_add_del_cloud_filter(vsi, filter, false); 7565 7566 kfree(filter); 7567 if (err) { 7568 dev_err(&pf->pdev->dev, 7569 "Failed to delete cloud filter, err %s\n", 7570 i40e_stat_str(&pf->hw, err)); 7571 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 7572 } 7573 7574 pf->num_cloud_filters--; 7575 if (!pf->num_cloud_filters) 7576 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7577 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7578 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7579 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7580 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7581 } 7582 return 0; 7583 } 7584 7585 /** 7586 * i40e_setup_tc_cls_flower - flower classifier offloads 7587 * @netdev: net device to configure 7588 * @type_data: offload data 7589 **/ 7590 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 7591 struct tc_cls_flower_offload *cls_flower) 7592 { 7593 struct i40e_vsi *vsi = np->vsi; 7594 7595 switch (cls_flower->command) { 7596 case TC_CLSFLOWER_REPLACE: 7597 return i40e_configure_clsflower(vsi, cls_flower); 7598 case TC_CLSFLOWER_DESTROY: 7599 return i40e_delete_clsflower(vsi, cls_flower); 7600 case TC_CLSFLOWER_STATS: 7601 return -EOPNOTSUPP; 7602 default: 7603 return -EOPNOTSUPP; 7604 } 7605 } 7606 7607 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 7608 void *cb_priv) 7609 { 7610 struct i40e_netdev_priv *np = cb_priv; 7611 7612 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 7613 return -EOPNOTSUPP; 7614 7615 switch (type) { 7616 case TC_SETUP_CLSFLOWER: 7617 return i40e_setup_tc_cls_flower(np, type_data); 7618 7619 default: 7620 return -EOPNOTSUPP; 7621 } 7622 } 7623 7624 static int i40e_setup_tc_block(struct net_device *dev, 7625 struct tc_block_offload *f) 7626 { 7627 struct i40e_netdev_priv *np = netdev_priv(dev); 7628 7629 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 7630 return -EOPNOTSUPP; 7631 7632 switch (f->command) { 7633 case TC_BLOCK_BIND: 7634 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb, 7635 np, np, f->extack); 7636 case TC_BLOCK_UNBIND: 7637 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np); 7638 return 0; 7639 default: 7640 return -EOPNOTSUPP; 7641 } 7642 } 7643 7644 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 7645 void *type_data) 7646 { 7647 switch (type) { 7648 case TC_SETUP_QDISC_MQPRIO: 7649 return i40e_setup_tc(netdev, type_data); 7650 case TC_SETUP_BLOCK: 7651 return i40e_setup_tc_block(netdev, type_data); 7652 default: 7653 return -EOPNOTSUPP; 7654 } 7655 } 7656 7657 /** 7658 * i40e_open - Called when a network interface is made active 7659 * @netdev: network interface device structure 7660 * 7661 * The open entry point is called when a network interface is made 7662 * active by the system (IFF_UP). At this point all resources needed 7663 * for transmit and receive operations are allocated, the interrupt 7664 * handler is registered with the OS, the netdev watchdog subtask is 7665 * enabled, and the stack is notified that the interface is ready. 7666 * 7667 * Returns 0 on success, negative value on failure 7668 **/ 7669 int i40e_open(struct net_device *netdev) 7670 { 7671 struct i40e_netdev_priv *np = netdev_priv(netdev); 7672 struct i40e_vsi *vsi = np->vsi; 7673 struct i40e_pf *pf = vsi->back; 7674 int err; 7675 7676 /* disallow open during test or if eeprom is broken */ 7677 if (test_bit(__I40E_TESTING, pf->state) || 7678 test_bit(__I40E_BAD_EEPROM, pf->state)) 7679 return -EBUSY; 7680 7681 netif_carrier_off(netdev); 7682 7683 if (i40e_force_link_state(pf, true)) 7684 return -EAGAIN; 7685 7686 err = i40e_vsi_open(vsi); 7687 if (err) 7688 return err; 7689 7690 /* configure global TSO hardware offload settings */ 7691 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 7692 TCP_FLAG_FIN) >> 16); 7693 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 7694 TCP_FLAG_FIN | 7695 TCP_FLAG_CWR) >> 16); 7696 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 7697 7698 udp_tunnel_get_rx_info(netdev); 7699 7700 return 0; 7701 } 7702 7703 /** 7704 * i40e_vsi_open - 7705 * @vsi: the VSI to open 7706 * 7707 * Finish initialization of the VSI. 7708 * 7709 * Returns 0 on success, negative value on failure 7710 * 7711 * Note: expects to be called while under rtnl_lock() 7712 **/ 7713 int i40e_vsi_open(struct i40e_vsi *vsi) 7714 { 7715 struct i40e_pf *pf = vsi->back; 7716 char int_name[I40E_INT_NAME_STR_LEN]; 7717 int err; 7718 7719 /* allocate descriptors */ 7720 err = i40e_vsi_setup_tx_resources(vsi); 7721 if (err) 7722 goto err_setup_tx; 7723 err = i40e_vsi_setup_rx_resources(vsi); 7724 if (err) 7725 goto err_setup_rx; 7726 7727 err = i40e_vsi_configure(vsi); 7728 if (err) 7729 goto err_setup_rx; 7730 7731 if (vsi->netdev) { 7732 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7733 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 7734 err = i40e_vsi_request_irq(vsi, int_name); 7735 if (err) 7736 goto err_setup_rx; 7737 7738 /* Notify the stack of the actual queue counts. */ 7739 err = netif_set_real_num_tx_queues(vsi->netdev, 7740 vsi->num_queue_pairs); 7741 if (err) 7742 goto err_set_queues; 7743 7744 err = netif_set_real_num_rx_queues(vsi->netdev, 7745 vsi->num_queue_pairs); 7746 if (err) 7747 goto err_set_queues; 7748 7749 } else if (vsi->type == I40E_VSI_FDIR) { 7750 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 7751 dev_driver_string(&pf->pdev->dev), 7752 dev_name(&pf->pdev->dev)); 7753 err = i40e_vsi_request_irq(vsi, int_name); 7754 7755 } else { 7756 err = -EINVAL; 7757 goto err_setup_rx; 7758 } 7759 7760 err = i40e_up_complete(vsi); 7761 if (err) 7762 goto err_up_complete; 7763 7764 return 0; 7765 7766 err_up_complete: 7767 i40e_down(vsi); 7768 err_set_queues: 7769 i40e_vsi_free_irq(vsi); 7770 err_setup_rx: 7771 i40e_vsi_free_rx_resources(vsi); 7772 err_setup_tx: 7773 i40e_vsi_free_tx_resources(vsi); 7774 if (vsi == pf->vsi[pf->lan_vsi]) 7775 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 7776 7777 return err; 7778 } 7779 7780 /** 7781 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 7782 * @pf: Pointer to PF 7783 * 7784 * This function destroys the hlist where all the Flow Director 7785 * filters were saved. 7786 **/ 7787 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 7788 { 7789 struct i40e_fdir_filter *filter; 7790 struct i40e_flex_pit *pit_entry, *tmp; 7791 struct hlist_node *node2; 7792 7793 hlist_for_each_entry_safe(filter, node2, 7794 &pf->fdir_filter_list, fdir_node) { 7795 hlist_del(&filter->fdir_node); 7796 kfree(filter); 7797 } 7798 7799 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 7800 list_del(&pit_entry->list); 7801 kfree(pit_entry); 7802 } 7803 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 7804 7805 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 7806 list_del(&pit_entry->list); 7807 kfree(pit_entry); 7808 } 7809 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 7810 7811 pf->fdir_pf_active_filters = 0; 7812 pf->fd_tcp4_filter_cnt = 0; 7813 pf->fd_udp4_filter_cnt = 0; 7814 pf->fd_sctp4_filter_cnt = 0; 7815 pf->fd_ip4_filter_cnt = 0; 7816 7817 /* Reprogram the default input set for TCP/IPv4 */ 7818 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 7819 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7820 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7821 7822 /* Reprogram the default input set for UDP/IPv4 */ 7823 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 7824 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7825 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7826 7827 /* Reprogram the default input set for SCTP/IPv4 */ 7828 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 7829 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7830 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7831 7832 /* Reprogram the default input set for Other/IPv4 */ 7833 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 7834 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7835 7836 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 7837 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7838 } 7839 7840 /** 7841 * i40e_cloud_filter_exit - Cleans up the cloud filters 7842 * @pf: Pointer to PF 7843 * 7844 * This function destroys the hlist where all the cloud filters 7845 * were saved. 7846 **/ 7847 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 7848 { 7849 struct i40e_cloud_filter *cfilter; 7850 struct hlist_node *node; 7851 7852 hlist_for_each_entry_safe(cfilter, node, 7853 &pf->cloud_filter_list, cloud_node) { 7854 hlist_del(&cfilter->cloud_node); 7855 kfree(cfilter); 7856 } 7857 pf->num_cloud_filters = 0; 7858 7859 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7860 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7861 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7862 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7863 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7864 } 7865 } 7866 7867 /** 7868 * i40e_close - Disables a network interface 7869 * @netdev: network interface device structure 7870 * 7871 * The close entry point is called when an interface is de-activated 7872 * by the OS. The hardware is still under the driver's control, but 7873 * this netdev interface is disabled. 7874 * 7875 * Returns 0, this is not allowed to fail 7876 **/ 7877 int i40e_close(struct net_device *netdev) 7878 { 7879 struct i40e_netdev_priv *np = netdev_priv(netdev); 7880 struct i40e_vsi *vsi = np->vsi; 7881 7882 i40e_vsi_close(vsi); 7883 7884 return 0; 7885 } 7886 7887 /** 7888 * i40e_do_reset - Start a PF or Core Reset sequence 7889 * @pf: board private structure 7890 * @reset_flags: which reset is requested 7891 * @lock_acquired: indicates whether or not the lock has been acquired 7892 * before this function was called. 7893 * 7894 * The essential difference in resets is that the PF Reset 7895 * doesn't clear the packet buffers, doesn't reset the PE 7896 * firmware, and doesn't bother the other PFs on the chip. 7897 **/ 7898 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 7899 { 7900 u32 val; 7901 7902 WARN_ON(in_interrupt()); 7903 7904 7905 /* do the biggest reset indicated */ 7906 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 7907 7908 /* Request a Global Reset 7909 * 7910 * This will start the chip's countdown to the actual full 7911 * chip reset event, and a warning interrupt to be sent 7912 * to all PFs, including the requestor. Our handler 7913 * for the warning interrupt will deal with the shutdown 7914 * and recovery of the switch setup. 7915 */ 7916 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 7917 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7918 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 7919 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7920 7921 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 7922 7923 /* Request a Core Reset 7924 * 7925 * Same as Global Reset, except does *not* include the MAC/PHY 7926 */ 7927 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 7928 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7929 val |= I40E_GLGEN_RTRIG_CORER_MASK; 7930 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7931 i40e_flush(&pf->hw); 7932 7933 } else if (reset_flags & I40E_PF_RESET_FLAG) { 7934 7935 /* Request a PF Reset 7936 * 7937 * Resets only the PF-specific registers 7938 * 7939 * This goes directly to the tear-down and rebuild of 7940 * the switch, since we need to do all the recovery as 7941 * for the Core Reset. 7942 */ 7943 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 7944 i40e_handle_reset_warning(pf, lock_acquired); 7945 7946 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 7947 int v; 7948 7949 /* Find the VSI(s) that requested a re-init */ 7950 dev_info(&pf->pdev->dev, 7951 "VSI reinit requested\n"); 7952 for (v = 0; v < pf->num_alloc_vsi; v++) { 7953 struct i40e_vsi *vsi = pf->vsi[v]; 7954 7955 if (vsi != NULL && 7956 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 7957 vsi->state)) 7958 i40e_vsi_reinit_locked(pf->vsi[v]); 7959 } 7960 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 7961 int v; 7962 7963 /* Find the VSI(s) that needs to be brought down */ 7964 dev_info(&pf->pdev->dev, "VSI down requested\n"); 7965 for (v = 0; v < pf->num_alloc_vsi; v++) { 7966 struct i40e_vsi *vsi = pf->vsi[v]; 7967 7968 if (vsi != NULL && 7969 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 7970 vsi->state)) { 7971 set_bit(__I40E_VSI_DOWN, vsi->state); 7972 i40e_down(vsi); 7973 } 7974 } 7975 } else { 7976 dev_info(&pf->pdev->dev, 7977 "bad reset request 0x%08x\n", reset_flags); 7978 } 7979 } 7980 7981 #ifdef CONFIG_I40E_DCB 7982 /** 7983 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 7984 * @pf: board private structure 7985 * @old_cfg: current DCB config 7986 * @new_cfg: new DCB config 7987 **/ 7988 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 7989 struct i40e_dcbx_config *old_cfg, 7990 struct i40e_dcbx_config *new_cfg) 7991 { 7992 bool need_reconfig = false; 7993 7994 /* Check if ETS configuration has changed */ 7995 if (memcmp(&new_cfg->etscfg, 7996 &old_cfg->etscfg, 7997 sizeof(new_cfg->etscfg))) { 7998 /* If Priority Table has changed reconfig is needed */ 7999 if (memcmp(&new_cfg->etscfg.prioritytable, 8000 &old_cfg->etscfg.prioritytable, 8001 sizeof(new_cfg->etscfg.prioritytable))) { 8002 need_reconfig = true; 8003 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 8004 } 8005 8006 if (memcmp(&new_cfg->etscfg.tcbwtable, 8007 &old_cfg->etscfg.tcbwtable, 8008 sizeof(new_cfg->etscfg.tcbwtable))) 8009 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 8010 8011 if (memcmp(&new_cfg->etscfg.tsatable, 8012 &old_cfg->etscfg.tsatable, 8013 sizeof(new_cfg->etscfg.tsatable))) 8014 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 8015 } 8016 8017 /* Check if PFC configuration has changed */ 8018 if (memcmp(&new_cfg->pfc, 8019 &old_cfg->pfc, 8020 sizeof(new_cfg->pfc))) { 8021 need_reconfig = true; 8022 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 8023 } 8024 8025 /* Check if APP Table has changed */ 8026 if (memcmp(&new_cfg->app, 8027 &old_cfg->app, 8028 sizeof(new_cfg->app))) { 8029 need_reconfig = true; 8030 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 8031 } 8032 8033 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 8034 return need_reconfig; 8035 } 8036 8037 /** 8038 * i40e_handle_lldp_event - Handle LLDP Change MIB event 8039 * @pf: board private structure 8040 * @e: event info posted on ARQ 8041 **/ 8042 static int i40e_handle_lldp_event(struct i40e_pf *pf, 8043 struct i40e_arq_event_info *e) 8044 { 8045 struct i40e_aqc_lldp_get_mib *mib = 8046 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 8047 struct i40e_hw *hw = &pf->hw; 8048 struct i40e_dcbx_config tmp_dcbx_cfg; 8049 bool need_reconfig = false; 8050 int ret = 0; 8051 u8 type; 8052 8053 /* Not DCB capable or capability disabled */ 8054 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 8055 return ret; 8056 8057 /* Ignore if event is not for Nearest Bridge */ 8058 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 8059 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 8060 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 8061 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 8062 return ret; 8063 8064 /* Check MIB Type and return if event for Remote MIB update */ 8065 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 8066 dev_dbg(&pf->pdev->dev, 8067 "LLDP event mib type %s\n", type ? "remote" : "local"); 8068 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 8069 /* Update the remote cached instance and return */ 8070 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 8071 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 8072 &hw->remote_dcbx_config); 8073 goto exit; 8074 } 8075 8076 /* Store the old configuration */ 8077 tmp_dcbx_cfg = hw->local_dcbx_config; 8078 8079 /* Reset the old DCBx configuration data */ 8080 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 8081 /* Get updated DCBX data from firmware */ 8082 ret = i40e_get_dcb_config(&pf->hw); 8083 if (ret) { 8084 dev_info(&pf->pdev->dev, 8085 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 8086 i40e_stat_str(&pf->hw, ret), 8087 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8088 goto exit; 8089 } 8090 8091 /* No change detected in DCBX configs */ 8092 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 8093 sizeof(tmp_dcbx_cfg))) { 8094 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 8095 goto exit; 8096 } 8097 8098 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 8099 &hw->local_dcbx_config); 8100 8101 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 8102 8103 if (!need_reconfig) 8104 goto exit; 8105 8106 /* Enable DCB tagging only when more than one TC */ 8107 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8108 pf->flags |= I40E_FLAG_DCB_ENABLED; 8109 else 8110 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8111 8112 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8113 /* Reconfiguration needed quiesce all VSIs */ 8114 i40e_pf_quiesce_all_vsi(pf); 8115 8116 /* Changes in configuration update VEB/VSI */ 8117 i40e_dcb_reconfigure(pf); 8118 8119 ret = i40e_resume_port_tx(pf); 8120 8121 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8122 /* In case of error no point in resuming VSIs */ 8123 if (ret) 8124 goto exit; 8125 8126 /* Wait for the PF's queues to be disabled */ 8127 ret = i40e_pf_wait_queues_disabled(pf); 8128 if (ret) { 8129 /* Schedule PF reset to recover */ 8130 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8131 i40e_service_event_schedule(pf); 8132 } else { 8133 i40e_pf_unquiesce_all_vsi(pf); 8134 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 8135 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 8136 } 8137 8138 exit: 8139 return ret; 8140 } 8141 #endif /* CONFIG_I40E_DCB */ 8142 8143 /** 8144 * i40e_do_reset_safe - Protected reset path for userland calls. 8145 * @pf: board private structure 8146 * @reset_flags: which reset is requested 8147 * 8148 **/ 8149 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8150 { 8151 rtnl_lock(); 8152 i40e_do_reset(pf, reset_flags, true); 8153 rtnl_unlock(); 8154 } 8155 8156 /** 8157 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8158 * @pf: board private structure 8159 * @e: event info posted on ARQ 8160 * 8161 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8162 * and VF queues 8163 **/ 8164 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8165 struct i40e_arq_event_info *e) 8166 { 8167 struct i40e_aqc_lan_overflow *data = 8168 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8169 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8170 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8171 struct i40e_hw *hw = &pf->hw; 8172 struct i40e_vf *vf; 8173 u16 vf_id; 8174 8175 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8176 queue, qtx_ctl); 8177 8178 /* Queue belongs to VF, find the VF and issue VF reset */ 8179 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8180 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8181 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8182 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8183 vf_id -= hw->func_caps.vf_base_id; 8184 vf = &pf->vf[vf_id]; 8185 i40e_vc_notify_vf_reset(vf); 8186 /* Allow VF to process pending reset notification */ 8187 msleep(20); 8188 i40e_reset_vf(vf, false); 8189 } 8190 } 8191 8192 /** 8193 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8194 * @pf: board private structure 8195 **/ 8196 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8197 { 8198 u32 val, fcnt_prog; 8199 8200 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8201 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8202 return fcnt_prog; 8203 } 8204 8205 /** 8206 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8207 * @pf: board private structure 8208 **/ 8209 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8210 { 8211 u32 val, fcnt_prog; 8212 8213 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8214 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8215 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8216 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8217 return fcnt_prog; 8218 } 8219 8220 /** 8221 * i40e_get_global_fd_count - Get total FD filters programmed on device 8222 * @pf: board private structure 8223 **/ 8224 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8225 { 8226 u32 val, fcnt_prog; 8227 8228 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8229 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8230 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8231 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8232 return fcnt_prog; 8233 } 8234 8235 /** 8236 * i40e_reenable_fdir_sb - Restore FDir SB capability 8237 * @pf: board private structure 8238 **/ 8239 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 8240 { 8241 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 8242 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8243 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8244 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8245 } 8246 8247 /** 8248 * i40e_reenable_fdir_atr - Restore FDir ATR capability 8249 * @pf: board private structure 8250 **/ 8251 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 8252 { 8253 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 8254 /* ATR uses the same filtering logic as SB rules. It only 8255 * functions properly if the input set mask is at the default 8256 * settings. It is safe to restore the default input set 8257 * because there are no active TCPv4 filter rules. 8258 */ 8259 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8260 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8261 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8262 8263 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8264 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8265 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8266 } 8267 } 8268 8269 /** 8270 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 8271 * @pf: board private structure 8272 * @filter: FDir filter to remove 8273 */ 8274 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 8275 struct i40e_fdir_filter *filter) 8276 { 8277 /* Update counters */ 8278 pf->fdir_pf_active_filters--; 8279 pf->fd_inv = 0; 8280 8281 switch (filter->flow_type) { 8282 case TCP_V4_FLOW: 8283 pf->fd_tcp4_filter_cnt--; 8284 break; 8285 case UDP_V4_FLOW: 8286 pf->fd_udp4_filter_cnt--; 8287 break; 8288 case SCTP_V4_FLOW: 8289 pf->fd_sctp4_filter_cnt--; 8290 break; 8291 case IP_USER_FLOW: 8292 switch (filter->ip4_proto) { 8293 case IPPROTO_TCP: 8294 pf->fd_tcp4_filter_cnt--; 8295 break; 8296 case IPPROTO_UDP: 8297 pf->fd_udp4_filter_cnt--; 8298 break; 8299 case IPPROTO_SCTP: 8300 pf->fd_sctp4_filter_cnt--; 8301 break; 8302 case IPPROTO_IP: 8303 pf->fd_ip4_filter_cnt--; 8304 break; 8305 } 8306 break; 8307 } 8308 8309 /* Remove the filter from the list and free memory */ 8310 hlist_del(&filter->fdir_node); 8311 kfree(filter); 8312 } 8313 8314 /** 8315 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8316 * @pf: board private structure 8317 **/ 8318 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8319 { 8320 struct i40e_fdir_filter *filter; 8321 u32 fcnt_prog, fcnt_avail; 8322 struct hlist_node *node; 8323 8324 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8325 return; 8326 8327 /* Check if we have enough room to re-enable FDir SB capability. */ 8328 fcnt_prog = i40e_get_global_fd_count(pf); 8329 fcnt_avail = pf->fdir_pf_filter_count; 8330 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8331 (pf->fd_add_err == 0) || 8332 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 8333 i40e_reenable_fdir_sb(pf); 8334 8335 /* We should wait for even more space before re-enabling ATR. 8336 * Additionally, we cannot enable ATR as long as we still have TCP SB 8337 * rules active. 8338 */ 8339 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8340 (pf->fd_tcp4_filter_cnt == 0)) 8341 i40e_reenable_fdir_atr(pf); 8342 8343 /* if hw had a problem adding a filter, delete it */ 8344 if (pf->fd_inv > 0) { 8345 hlist_for_each_entry_safe(filter, node, 8346 &pf->fdir_filter_list, fdir_node) 8347 if (filter->fd_id == pf->fd_inv) 8348 i40e_delete_invalid_filter(pf, filter); 8349 } 8350 } 8351 8352 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8353 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8354 /** 8355 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8356 * @pf: board private structure 8357 **/ 8358 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8359 { 8360 unsigned long min_flush_time; 8361 int flush_wait_retry = 50; 8362 bool disable_atr = false; 8363 int fd_room; 8364 int reg; 8365 8366 if (!time_after(jiffies, pf->fd_flush_timestamp + 8367 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8368 return; 8369 8370 /* If the flush is happening too quick and we have mostly SB rules we 8371 * should not re-enable ATR for some time. 8372 */ 8373 min_flush_time = pf->fd_flush_timestamp + 8374 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8375 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8376 8377 if (!(time_after(jiffies, min_flush_time)) && 8378 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8379 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8380 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8381 disable_atr = true; 8382 } 8383 8384 pf->fd_flush_timestamp = jiffies; 8385 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8386 /* flush all filters */ 8387 wr32(&pf->hw, I40E_PFQF_CTL_1, 8388 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8389 i40e_flush(&pf->hw); 8390 pf->fd_flush_cnt++; 8391 pf->fd_add_err = 0; 8392 do { 8393 /* Check FD flush status every 5-6msec */ 8394 usleep_range(5000, 6000); 8395 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8396 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8397 break; 8398 } while (flush_wait_retry--); 8399 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8400 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8401 } else { 8402 /* replay sideband filters */ 8403 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8404 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8405 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8406 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8407 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8408 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8409 } 8410 } 8411 8412 /** 8413 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8414 * @pf: board private structure 8415 **/ 8416 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8417 { 8418 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8419 } 8420 8421 /* We can see up to 256 filter programming desc in transit if the filters are 8422 * being applied really fast; before we see the first 8423 * filter miss error on Rx queue 0. Accumulating enough error messages before 8424 * reacting will make sure we don't cause flush too often. 8425 */ 8426 #define I40E_MAX_FD_PROGRAM_ERROR 256 8427 8428 /** 8429 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8430 * @pf: board private structure 8431 **/ 8432 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8433 { 8434 8435 /* if interface is down do nothing */ 8436 if (test_bit(__I40E_DOWN, pf->state)) 8437 return; 8438 8439 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8440 i40e_fdir_flush_and_replay(pf); 8441 8442 i40e_fdir_check_and_reenable(pf); 8443 8444 } 8445 8446 /** 8447 * i40e_vsi_link_event - notify VSI of a link event 8448 * @vsi: vsi to be notified 8449 * @link_up: link up or down 8450 **/ 8451 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8452 { 8453 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8454 return; 8455 8456 switch (vsi->type) { 8457 case I40E_VSI_MAIN: 8458 if (!vsi->netdev || !vsi->netdev_registered) 8459 break; 8460 8461 if (link_up) { 8462 netif_carrier_on(vsi->netdev); 8463 netif_tx_wake_all_queues(vsi->netdev); 8464 } else { 8465 netif_carrier_off(vsi->netdev); 8466 netif_tx_stop_all_queues(vsi->netdev); 8467 } 8468 break; 8469 8470 case I40E_VSI_SRIOV: 8471 case I40E_VSI_VMDQ2: 8472 case I40E_VSI_CTRL: 8473 case I40E_VSI_IWARP: 8474 case I40E_VSI_MIRROR: 8475 default: 8476 /* there is no notification for other VSIs */ 8477 break; 8478 } 8479 } 8480 8481 /** 8482 * i40e_veb_link_event - notify elements on the veb of a link event 8483 * @veb: veb to be notified 8484 * @link_up: link up or down 8485 **/ 8486 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 8487 { 8488 struct i40e_pf *pf; 8489 int i; 8490 8491 if (!veb || !veb->pf) 8492 return; 8493 pf = veb->pf; 8494 8495 /* depth first... */ 8496 for (i = 0; i < I40E_MAX_VEB; i++) 8497 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 8498 i40e_veb_link_event(pf->veb[i], link_up); 8499 8500 /* ... now the local VSIs */ 8501 for (i = 0; i < pf->num_alloc_vsi; i++) 8502 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 8503 i40e_vsi_link_event(pf->vsi[i], link_up); 8504 } 8505 8506 /** 8507 * i40e_link_event - Update netif_carrier status 8508 * @pf: board private structure 8509 **/ 8510 static void i40e_link_event(struct i40e_pf *pf) 8511 { 8512 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8513 u8 new_link_speed, old_link_speed; 8514 i40e_status status; 8515 bool new_link, old_link; 8516 8517 /* set this to force the get_link_status call to refresh state */ 8518 pf->hw.phy.get_link_info = true; 8519 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 8520 status = i40e_get_link_status(&pf->hw, &new_link); 8521 8522 /* On success, disable temp link polling */ 8523 if (status == I40E_SUCCESS) { 8524 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8525 } else { 8526 /* Enable link polling temporarily until i40e_get_link_status 8527 * returns I40E_SUCCESS 8528 */ 8529 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8530 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 8531 status); 8532 return; 8533 } 8534 8535 old_link_speed = pf->hw.phy.link_info_old.link_speed; 8536 new_link_speed = pf->hw.phy.link_info.link_speed; 8537 8538 if (new_link == old_link && 8539 new_link_speed == old_link_speed && 8540 (test_bit(__I40E_VSI_DOWN, vsi->state) || 8541 new_link == netif_carrier_ok(vsi->netdev))) 8542 return; 8543 8544 i40e_print_link_message(vsi, new_link); 8545 8546 /* Notify the base of the switch tree connected to 8547 * the link. Floating VEBs are not notified. 8548 */ 8549 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 8550 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 8551 else 8552 i40e_vsi_link_event(vsi, new_link); 8553 8554 if (pf->vf) 8555 i40e_vc_notify_link_state(pf); 8556 8557 if (pf->flags & I40E_FLAG_PTP) 8558 i40e_ptp_set_increment(pf); 8559 } 8560 8561 /** 8562 * i40e_watchdog_subtask - periodic checks not using event driven response 8563 * @pf: board private structure 8564 **/ 8565 static void i40e_watchdog_subtask(struct i40e_pf *pf) 8566 { 8567 int i; 8568 8569 /* if interface is down do nothing */ 8570 if (test_bit(__I40E_DOWN, pf->state) || 8571 test_bit(__I40E_CONFIG_BUSY, pf->state)) 8572 return; 8573 8574 /* make sure we don't do these things too often */ 8575 if (time_before(jiffies, (pf->service_timer_previous + 8576 pf->service_timer_period))) 8577 return; 8578 pf->service_timer_previous = jiffies; 8579 8580 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 8581 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 8582 i40e_link_event(pf); 8583 8584 /* Update the stats for active netdevs so the network stack 8585 * can look at updated numbers whenever it cares to 8586 */ 8587 for (i = 0; i < pf->num_alloc_vsi; i++) 8588 if (pf->vsi[i] && pf->vsi[i]->netdev) 8589 i40e_update_stats(pf->vsi[i]); 8590 8591 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 8592 /* Update the stats for the active switching components */ 8593 for (i = 0; i < I40E_MAX_VEB; i++) 8594 if (pf->veb[i]) 8595 i40e_update_veb_stats(pf->veb[i]); 8596 } 8597 8598 i40e_ptp_rx_hang(pf); 8599 i40e_ptp_tx_hang(pf); 8600 } 8601 8602 /** 8603 * i40e_reset_subtask - Set up for resetting the device and driver 8604 * @pf: board private structure 8605 **/ 8606 static void i40e_reset_subtask(struct i40e_pf *pf) 8607 { 8608 u32 reset_flags = 0; 8609 8610 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 8611 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 8612 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 8613 } 8614 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 8615 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 8616 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8617 } 8618 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 8619 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 8620 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 8621 } 8622 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 8623 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 8624 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 8625 } 8626 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 8627 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 8628 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 8629 } 8630 8631 /* If there's a recovery already waiting, it takes 8632 * precedence before starting a new reset sequence. 8633 */ 8634 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 8635 i40e_prep_for_reset(pf, false); 8636 i40e_reset(pf); 8637 i40e_rebuild(pf, false, false); 8638 } 8639 8640 /* If we're already down or resetting, just bail */ 8641 if (reset_flags && 8642 !test_bit(__I40E_DOWN, pf->state) && 8643 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 8644 i40e_do_reset(pf, reset_flags, false); 8645 } 8646 } 8647 8648 /** 8649 * i40e_handle_link_event - Handle link event 8650 * @pf: board private structure 8651 * @e: event info posted on ARQ 8652 **/ 8653 static void i40e_handle_link_event(struct i40e_pf *pf, 8654 struct i40e_arq_event_info *e) 8655 { 8656 struct i40e_aqc_get_link_status *status = 8657 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 8658 8659 /* Do a new status request to re-enable LSE reporting 8660 * and load new status information into the hw struct 8661 * This completely ignores any state information 8662 * in the ARQ event info, instead choosing to always 8663 * issue the AQ update link status command. 8664 */ 8665 i40e_link_event(pf); 8666 8667 /* Check if module meets thermal requirements */ 8668 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 8669 dev_err(&pf->pdev->dev, 8670 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 8671 dev_err(&pf->pdev->dev, 8672 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8673 } else { 8674 /* check for unqualified module, if link is down, suppress 8675 * the message if link was forced to be down. 8676 */ 8677 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 8678 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 8679 (!(status->link_info & I40E_AQ_LINK_UP)) && 8680 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 8681 dev_err(&pf->pdev->dev, 8682 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 8683 dev_err(&pf->pdev->dev, 8684 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8685 } 8686 } 8687 } 8688 8689 /** 8690 * i40e_clean_adminq_subtask - Clean the AdminQ rings 8691 * @pf: board private structure 8692 **/ 8693 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 8694 { 8695 struct i40e_arq_event_info event; 8696 struct i40e_hw *hw = &pf->hw; 8697 u16 pending, i = 0; 8698 i40e_status ret; 8699 u16 opcode; 8700 u32 oldval; 8701 u32 val; 8702 8703 /* Do not run clean AQ when PF reset fails */ 8704 if (test_bit(__I40E_RESET_FAILED, pf->state)) 8705 return; 8706 8707 /* check for error indications */ 8708 val = rd32(&pf->hw, pf->hw.aq.arq.len); 8709 oldval = val; 8710 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 8711 if (hw->debug_mask & I40E_DEBUG_AQ) 8712 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 8713 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 8714 } 8715 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 8716 if (hw->debug_mask & I40E_DEBUG_AQ) 8717 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 8718 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 8719 pf->arq_overflows++; 8720 } 8721 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 8722 if (hw->debug_mask & I40E_DEBUG_AQ) 8723 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 8724 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 8725 } 8726 if (oldval != val) 8727 wr32(&pf->hw, pf->hw.aq.arq.len, val); 8728 8729 val = rd32(&pf->hw, pf->hw.aq.asq.len); 8730 oldval = val; 8731 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 8732 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8733 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 8734 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 8735 } 8736 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 8737 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8738 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 8739 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 8740 } 8741 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 8742 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8743 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 8744 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 8745 } 8746 if (oldval != val) 8747 wr32(&pf->hw, pf->hw.aq.asq.len, val); 8748 8749 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 8750 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 8751 if (!event.msg_buf) 8752 return; 8753 8754 do { 8755 ret = i40e_clean_arq_element(hw, &event, &pending); 8756 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 8757 break; 8758 else if (ret) { 8759 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 8760 break; 8761 } 8762 8763 opcode = le16_to_cpu(event.desc.opcode); 8764 switch (opcode) { 8765 8766 case i40e_aqc_opc_get_link_status: 8767 i40e_handle_link_event(pf, &event); 8768 break; 8769 case i40e_aqc_opc_send_msg_to_pf: 8770 ret = i40e_vc_process_vf_msg(pf, 8771 le16_to_cpu(event.desc.retval), 8772 le32_to_cpu(event.desc.cookie_high), 8773 le32_to_cpu(event.desc.cookie_low), 8774 event.msg_buf, 8775 event.msg_len); 8776 break; 8777 case i40e_aqc_opc_lldp_update_mib: 8778 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 8779 #ifdef CONFIG_I40E_DCB 8780 rtnl_lock(); 8781 ret = i40e_handle_lldp_event(pf, &event); 8782 rtnl_unlock(); 8783 #endif /* CONFIG_I40E_DCB */ 8784 break; 8785 case i40e_aqc_opc_event_lan_overflow: 8786 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 8787 i40e_handle_lan_overflow_event(pf, &event); 8788 break; 8789 case i40e_aqc_opc_send_msg_to_peer: 8790 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 8791 break; 8792 case i40e_aqc_opc_nvm_erase: 8793 case i40e_aqc_opc_nvm_update: 8794 case i40e_aqc_opc_oem_post_update: 8795 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 8796 "ARQ NVM operation 0x%04x completed\n", 8797 opcode); 8798 break; 8799 default: 8800 dev_info(&pf->pdev->dev, 8801 "ARQ: Unknown event 0x%04x ignored\n", 8802 opcode); 8803 break; 8804 } 8805 } while (i++ < pf->adminq_work_limit); 8806 8807 if (i < pf->adminq_work_limit) 8808 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 8809 8810 /* re-enable Admin queue interrupt cause */ 8811 val = rd32(hw, I40E_PFINT_ICR0_ENA); 8812 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 8813 wr32(hw, I40E_PFINT_ICR0_ENA, val); 8814 i40e_flush(hw); 8815 8816 kfree(event.msg_buf); 8817 } 8818 8819 /** 8820 * i40e_verify_eeprom - make sure eeprom is good to use 8821 * @pf: board private structure 8822 **/ 8823 static void i40e_verify_eeprom(struct i40e_pf *pf) 8824 { 8825 int err; 8826 8827 err = i40e_diag_eeprom_test(&pf->hw); 8828 if (err) { 8829 /* retry in case of garbage read */ 8830 err = i40e_diag_eeprom_test(&pf->hw); 8831 if (err) { 8832 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 8833 err); 8834 set_bit(__I40E_BAD_EEPROM, pf->state); 8835 } 8836 } 8837 8838 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 8839 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 8840 clear_bit(__I40E_BAD_EEPROM, pf->state); 8841 } 8842 } 8843 8844 /** 8845 * i40e_enable_pf_switch_lb 8846 * @pf: pointer to the PF structure 8847 * 8848 * enable switch loop back or die - no point in a return value 8849 **/ 8850 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 8851 { 8852 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8853 struct i40e_vsi_context ctxt; 8854 int ret; 8855 8856 ctxt.seid = pf->main_vsi_seid; 8857 ctxt.pf_num = pf->hw.pf_id; 8858 ctxt.vf_num = 0; 8859 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8860 if (ret) { 8861 dev_info(&pf->pdev->dev, 8862 "couldn't get PF vsi config, err %s aq_err %s\n", 8863 i40e_stat_str(&pf->hw, ret), 8864 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8865 return; 8866 } 8867 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8868 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8869 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8870 8871 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8872 if (ret) { 8873 dev_info(&pf->pdev->dev, 8874 "update vsi switch failed, err %s aq_err %s\n", 8875 i40e_stat_str(&pf->hw, ret), 8876 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8877 } 8878 } 8879 8880 /** 8881 * i40e_disable_pf_switch_lb 8882 * @pf: pointer to the PF structure 8883 * 8884 * disable switch loop back or die - no point in a return value 8885 **/ 8886 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 8887 { 8888 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8889 struct i40e_vsi_context ctxt; 8890 int ret; 8891 8892 ctxt.seid = pf->main_vsi_seid; 8893 ctxt.pf_num = pf->hw.pf_id; 8894 ctxt.vf_num = 0; 8895 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8896 if (ret) { 8897 dev_info(&pf->pdev->dev, 8898 "couldn't get PF vsi config, err %s aq_err %s\n", 8899 i40e_stat_str(&pf->hw, ret), 8900 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8901 return; 8902 } 8903 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8904 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8905 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8906 8907 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8908 if (ret) { 8909 dev_info(&pf->pdev->dev, 8910 "update vsi switch failed, err %s aq_err %s\n", 8911 i40e_stat_str(&pf->hw, ret), 8912 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8913 } 8914 } 8915 8916 /** 8917 * i40e_config_bridge_mode - Configure the HW bridge mode 8918 * @veb: pointer to the bridge instance 8919 * 8920 * Configure the loop back mode for the LAN VSI that is downlink to the 8921 * specified HW bridge instance. It is expected this function is called 8922 * when a new HW bridge is instantiated. 8923 **/ 8924 static void i40e_config_bridge_mode(struct i40e_veb *veb) 8925 { 8926 struct i40e_pf *pf = veb->pf; 8927 8928 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 8929 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 8930 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 8931 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 8932 i40e_disable_pf_switch_lb(pf); 8933 else 8934 i40e_enable_pf_switch_lb(pf); 8935 } 8936 8937 /** 8938 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 8939 * @veb: pointer to the VEB instance 8940 * 8941 * This is a recursive function that first builds the attached VSIs then 8942 * recurses in to build the next layer of VEB. We track the connections 8943 * through our own index numbers because the seid's from the HW could 8944 * change across the reset. 8945 **/ 8946 static int i40e_reconstitute_veb(struct i40e_veb *veb) 8947 { 8948 struct i40e_vsi *ctl_vsi = NULL; 8949 struct i40e_pf *pf = veb->pf; 8950 int v, veb_idx; 8951 int ret; 8952 8953 /* build VSI that owns this VEB, temporarily attached to base VEB */ 8954 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 8955 if (pf->vsi[v] && 8956 pf->vsi[v]->veb_idx == veb->idx && 8957 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 8958 ctl_vsi = pf->vsi[v]; 8959 break; 8960 } 8961 } 8962 if (!ctl_vsi) { 8963 dev_info(&pf->pdev->dev, 8964 "missing owner VSI for veb_idx %d\n", veb->idx); 8965 ret = -ENOENT; 8966 goto end_reconstitute; 8967 } 8968 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 8969 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 8970 ret = i40e_add_vsi(ctl_vsi); 8971 if (ret) { 8972 dev_info(&pf->pdev->dev, 8973 "rebuild of veb_idx %d owner VSI failed: %d\n", 8974 veb->idx, ret); 8975 goto end_reconstitute; 8976 } 8977 i40e_vsi_reset_stats(ctl_vsi); 8978 8979 /* create the VEB in the switch and move the VSI onto the VEB */ 8980 ret = i40e_add_veb(veb, ctl_vsi); 8981 if (ret) 8982 goto end_reconstitute; 8983 8984 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 8985 veb->bridge_mode = BRIDGE_MODE_VEB; 8986 else 8987 veb->bridge_mode = BRIDGE_MODE_VEPA; 8988 i40e_config_bridge_mode(veb); 8989 8990 /* create the remaining VSIs attached to this VEB */ 8991 for (v = 0; v < pf->num_alloc_vsi; v++) { 8992 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 8993 continue; 8994 8995 if (pf->vsi[v]->veb_idx == veb->idx) { 8996 struct i40e_vsi *vsi = pf->vsi[v]; 8997 8998 vsi->uplink_seid = veb->seid; 8999 ret = i40e_add_vsi(vsi); 9000 if (ret) { 9001 dev_info(&pf->pdev->dev, 9002 "rebuild of vsi_idx %d failed: %d\n", 9003 v, ret); 9004 goto end_reconstitute; 9005 } 9006 i40e_vsi_reset_stats(vsi); 9007 } 9008 } 9009 9010 /* create any VEBs attached to this VEB - RECURSION */ 9011 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 9012 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 9013 pf->veb[veb_idx]->uplink_seid = veb->seid; 9014 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 9015 if (ret) 9016 break; 9017 } 9018 } 9019 9020 end_reconstitute: 9021 return ret; 9022 } 9023 9024 /** 9025 * i40e_get_capabilities - get info about the HW 9026 * @pf: the PF struct 9027 **/ 9028 static int i40e_get_capabilities(struct i40e_pf *pf, 9029 enum i40e_admin_queue_opc list_type) 9030 { 9031 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 9032 u16 data_size; 9033 int buf_len; 9034 int err; 9035 9036 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 9037 do { 9038 cap_buf = kzalloc(buf_len, GFP_KERNEL); 9039 if (!cap_buf) 9040 return -ENOMEM; 9041 9042 /* this loads the data into the hw struct for us */ 9043 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 9044 &data_size, list_type, 9045 NULL); 9046 /* data loaded, buffer no longer needed */ 9047 kfree(cap_buf); 9048 9049 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 9050 /* retry with a larger buffer */ 9051 buf_len = data_size; 9052 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 9053 dev_info(&pf->pdev->dev, 9054 "capability discovery failed, err %s aq_err %s\n", 9055 i40e_stat_str(&pf->hw, err), 9056 i40e_aq_str(&pf->hw, 9057 pf->hw.aq.asq_last_status)); 9058 return -ENODEV; 9059 } 9060 } while (err); 9061 9062 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 9063 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9064 dev_info(&pf->pdev->dev, 9065 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 9066 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 9067 pf->hw.func_caps.num_msix_vectors, 9068 pf->hw.func_caps.num_msix_vectors_vf, 9069 pf->hw.func_caps.fd_filters_guaranteed, 9070 pf->hw.func_caps.fd_filters_best_effort, 9071 pf->hw.func_caps.num_tx_qp, 9072 pf->hw.func_caps.num_vsis); 9073 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 9074 dev_info(&pf->pdev->dev, 9075 "switch_mode=0x%04x, function_valid=0x%08x\n", 9076 pf->hw.dev_caps.switch_mode, 9077 pf->hw.dev_caps.valid_functions); 9078 dev_info(&pf->pdev->dev, 9079 "SR-IOV=%d, num_vfs for all function=%u\n", 9080 pf->hw.dev_caps.sr_iov_1_1, 9081 pf->hw.dev_caps.num_vfs); 9082 dev_info(&pf->pdev->dev, 9083 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 9084 pf->hw.dev_caps.num_vsis, 9085 pf->hw.dev_caps.num_rx_qp, 9086 pf->hw.dev_caps.num_tx_qp); 9087 } 9088 } 9089 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9090 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 9091 + pf->hw.func_caps.num_vfs) 9092 if (pf->hw.revision_id == 0 && 9093 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 9094 dev_info(&pf->pdev->dev, 9095 "got num_vsis %d, setting num_vsis to %d\n", 9096 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 9097 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 9098 } 9099 } 9100 return 0; 9101 } 9102 9103 static int i40e_vsi_clear(struct i40e_vsi *vsi); 9104 9105 /** 9106 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 9107 * @pf: board private structure 9108 **/ 9109 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 9110 { 9111 struct i40e_vsi *vsi; 9112 9113 /* quick workaround for an NVM issue that leaves a critical register 9114 * uninitialized 9115 */ 9116 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 9117 static const u32 hkey[] = { 9118 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 9119 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 9120 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 9121 0x95b3a76d}; 9122 int i; 9123 9124 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 9125 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 9126 } 9127 9128 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 9129 return; 9130 9131 /* find existing VSI and see if it needs configuring */ 9132 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9133 9134 /* create a new VSI if none exists */ 9135 if (!vsi) { 9136 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 9137 pf->vsi[pf->lan_vsi]->seid, 0); 9138 if (!vsi) { 9139 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 9140 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 9141 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 9142 return; 9143 } 9144 } 9145 9146 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 9147 } 9148 9149 /** 9150 * i40e_fdir_teardown - release the Flow Director resources 9151 * @pf: board private structure 9152 **/ 9153 static void i40e_fdir_teardown(struct i40e_pf *pf) 9154 { 9155 struct i40e_vsi *vsi; 9156 9157 i40e_fdir_filter_exit(pf); 9158 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9159 if (vsi) 9160 i40e_vsi_release(vsi); 9161 } 9162 9163 /** 9164 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9165 * @vsi: PF main vsi 9166 * @seid: seid of main or channel VSIs 9167 * 9168 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9169 * existed before reset 9170 **/ 9171 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9172 { 9173 struct i40e_cloud_filter *cfilter; 9174 struct i40e_pf *pf = vsi->back; 9175 struct hlist_node *node; 9176 i40e_status ret; 9177 9178 /* Add cloud filters back if they exist */ 9179 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9180 cloud_node) { 9181 if (cfilter->seid != seid) 9182 continue; 9183 9184 if (cfilter->dst_port) 9185 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9186 true); 9187 else 9188 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9189 9190 if (ret) { 9191 dev_dbg(&pf->pdev->dev, 9192 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9193 i40e_stat_str(&pf->hw, ret), 9194 i40e_aq_str(&pf->hw, 9195 pf->hw.aq.asq_last_status)); 9196 return ret; 9197 } 9198 } 9199 return 0; 9200 } 9201 9202 /** 9203 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9204 * @vsi: PF main vsi 9205 * 9206 * Rebuilds channel VSIs if they existed before reset 9207 **/ 9208 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9209 { 9210 struct i40e_channel *ch, *ch_tmp; 9211 i40e_status ret; 9212 9213 if (list_empty(&vsi->ch_list)) 9214 return 0; 9215 9216 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9217 if (!ch->initialized) 9218 break; 9219 /* Proceed with creation of channel (VMDq2) VSI */ 9220 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9221 if (ret) { 9222 dev_info(&vsi->back->pdev->dev, 9223 "failed to rebuild channels using uplink_seid %u\n", 9224 vsi->uplink_seid); 9225 return ret; 9226 } 9227 /* Reconfigure TX queues using QTX_CTL register */ 9228 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9229 if (ret) { 9230 dev_info(&vsi->back->pdev->dev, 9231 "failed to configure TX rings for channel %u\n", 9232 ch->seid); 9233 return ret; 9234 } 9235 /* update 'next_base_queue' */ 9236 vsi->next_base_queue = vsi->next_base_queue + 9237 ch->num_queue_pairs; 9238 if (ch->max_tx_rate) { 9239 u64 credits = ch->max_tx_rate; 9240 9241 if (i40e_set_bw_limit(vsi, ch->seid, 9242 ch->max_tx_rate)) 9243 return -EINVAL; 9244 9245 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9246 dev_dbg(&vsi->back->pdev->dev, 9247 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9248 ch->max_tx_rate, 9249 credits, 9250 ch->seid); 9251 } 9252 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9253 if (ret) { 9254 dev_dbg(&vsi->back->pdev->dev, 9255 "Failed to rebuild cloud filters for channel VSI %u\n", 9256 ch->seid); 9257 return ret; 9258 } 9259 } 9260 return 0; 9261 } 9262 9263 /** 9264 * i40e_prep_for_reset - prep for the core to reset 9265 * @pf: board private structure 9266 * @lock_acquired: indicates whether or not the lock has been acquired 9267 * before this function was called. 9268 * 9269 * Close up the VFs and other things in prep for PF Reset. 9270 **/ 9271 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9272 { 9273 struct i40e_hw *hw = &pf->hw; 9274 i40e_status ret = 0; 9275 u32 v; 9276 9277 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9278 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9279 return; 9280 if (i40e_check_asq_alive(&pf->hw)) 9281 i40e_vc_notify_reset(pf); 9282 9283 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9284 9285 /* quiesce the VSIs and their queues that are not already DOWN */ 9286 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9287 if (!lock_acquired) 9288 rtnl_lock(); 9289 i40e_pf_quiesce_all_vsi(pf); 9290 if (!lock_acquired) 9291 rtnl_unlock(); 9292 9293 for (v = 0; v < pf->num_alloc_vsi; v++) { 9294 if (pf->vsi[v]) 9295 pf->vsi[v]->seid = 0; 9296 } 9297 9298 i40e_shutdown_adminq(&pf->hw); 9299 9300 /* call shutdown HMC */ 9301 if (hw->hmc.hmc_obj) { 9302 ret = i40e_shutdown_lan_hmc(hw); 9303 if (ret) 9304 dev_warn(&pf->pdev->dev, 9305 "shutdown_lan_hmc failed: %d\n", ret); 9306 } 9307 } 9308 9309 /** 9310 * i40e_send_version - update firmware with driver version 9311 * @pf: PF struct 9312 */ 9313 static void i40e_send_version(struct i40e_pf *pf) 9314 { 9315 struct i40e_driver_version dv; 9316 9317 dv.major_version = DRV_VERSION_MAJOR; 9318 dv.minor_version = DRV_VERSION_MINOR; 9319 dv.build_version = DRV_VERSION_BUILD; 9320 dv.subbuild_version = 0; 9321 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9322 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9323 } 9324 9325 /** 9326 * i40e_get_oem_version - get OEM specific version information 9327 * @hw: pointer to the hardware structure 9328 **/ 9329 static void i40e_get_oem_version(struct i40e_hw *hw) 9330 { 9331 u16 block_offset = 0xffff; 9332 u16 block_length = 0; 9333 u16 capabilities = 0; 9334 u16 gen_snap = 0; 9335 u16 release = 0; 9336 9337 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9338 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9339 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9340 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9341 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9342 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9343 #define I40E_NVM_OEM_LENGTH 3 9344 9345 /* Check if pointer to OEM version block is valid. */ 9346 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9347 if (block_offset == 0xffff) 9348 return; 9349 9350 /* Check if OEM version block has correct length. */ 9351 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9352 &block_length); 9353 if (block_length < I40E_NVM_OEM_LENGTH) 9354 return; 9355 9356 /* Check if OEM version format is as expected. */ 9357 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9358 &capabilities); 9359 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9360 return; 9361 9362 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9363 &gen_snap); 9364 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9365 &release); 9366 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9367 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9368 } 9369 9370 /** 9371 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9372 * @pf: board private structure 9373 **/ 9374 static int i40e_reset(struct i40e_pf *pf) 9375 { 9376 struct i40e_hw *hw = &pf->hw; 9377 i40e_status ret; 9378 9379 ret = i40e_pf_reset(hw); 9380 if (ret) { 9381 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9382 set_bit(__I40E_RESET_FAILED, pf->state); 9383 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9384 } else { 9385 pf->pfr_count++; 9386 } 9387 return ret; 9388 } 9389 9390 /** 9391 * i40e_rebuild - rebuild using a saved config 9392 * @pf: board private structure 9393 * @reinit: if the Main VSI needs to re-initialized. 9394 * @lock_acquired: indicates whether or not the lock has been acquired 9395 * before this function was called. 9396 **/ 9397 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9398 { 9399 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9400 struct i40e_hw *hw = &pf->hw; 9401 u8 set_fc_aq_fail = 0; 9402 i40e_status ret; 9403 u32 val; 9404 int v; 9405 9406 if (test_bit(__I40E_DOWN, pf->state)) 9407 goto clear_recovery; 9408 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9409 9410 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9411 ret = i40e_init_adminq(&pf->hw); 9412 if (ret) { 9413 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9414 i40e_stat_str(&pf->hw, ret), 9415 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9416 goto clear_recovery; 9417 } 9418 i40e_get_oem_version(&pf->hw); 9419 9420 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9421 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 9422 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 9423 /* The following delay is necessary for 4.33 firmware and older 9424 * to recover after EMP reset. 200 ms should suffice but we 9425 * put here 300 ms to be sure that FW is ready to operate 9426 * after reset. 9427 */ 9428 mdelay(300); 9429 } 9430 9431 /* re-verify the eeprom if we just had an EMP reset */ 9432 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9433 i40e_verify_eeprom(pf); 9434 9435 i40e_clear_pxe_mode(hw); 9436 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 9437 if (ret) 9438 goto end_core_reset; 9439 9440 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 9441 hw->func_caps.num_rx_qp, 0, 0); 9442 if (ret) { 9443 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 9444 goto end_core_reset; 9445 } 9446 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 9447 if (ret) { 9448 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 9449 goto end_core_reset; 9450 } 9451 9452 /* Enable FW to write a default DCB config on link-up */ 9453 i40e_aq_set_dcb_parameters(hw, true, NULL); 9454 9455 #ifdef CONFIG_I40E_DCB 9456 ret = i40e_init_pf_dcb(pf); 9457 if (ret) { 9458 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 9459 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9460 /* Continue without DCB enabled */ 9461 } 9462 #endif /* CONFIG_I40E_DCB */ 9463 /* do basic switch setup */ 9464 if (!lock_acquired) 9465 rtnl_lock(); 9466 ret = i40e_setup_pf_switch(pf, reinit); 9467 if (ret) 9468 goto end_unlock; 9469 9470 /* The driver only wants link up/down and module qualification 9471 * reports from firmware. Note the negative logic. 9472 */ 9473 ret = i40e_aq_set_phy_int_mask(&pf->hw, 9474 ~(I40E_AQ_EVENT_LINK_UPDOWN | 9475 I40E_AQ_EVENT_MEDIA_NA | 9476 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 9477 if (ret) 9478 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 9479 i40e_stat_str(&pf->hw, ret), 9480 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9481 9482 /* make sure our flow control settings are restored */ 9483 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 9484 if (ret) 9485 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 9486 i40e_stat_str(&pf->hw, ret), 9487 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9488 9489 /* Rebuild the VSIs and VEBs that existed before reset. 9490 * They are still in our local switch element arrays, so only 9491 * need to rebuild the switch model in the HW. 9492 * 9493 * If there were VEBs but the reconstitution failed, we'll try 9494 * try to recover minimal use by getting the basic PF VSI working. 9495 */ 9496 if (vsi->uplink_seid != pf->mac_seid) { 9497 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 9498 /* find the one VEB connected to the MAC, and find orphans */ 9499 for (v = 0; v < I40E_MAX_VEB; v++) { 9500 if (!pf->veb[v]) 9501 continue; 9502 9503 if (pf->veb[v]->uplink_seid == pf->mac_seid || 9504 pf->veb[v]->uplink_seid == 0) { 9505 ret = i40e_reconstitute_veb(pf->veb[v]); 9506 9507 if (!ret) 9508 continue; 9509 9510 /* If Main VEB failed, we're in deep doodoo, 9511 * so give up rebuilding the switch and set up 9512 * for minimal rebuild of PF VSI. 9513 * If orphan failed, we'll report the error 9514 * but try to keep going. 9515 */ 9516 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 9517 dev_info(&pf->pdev->dev, 9518 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 9519 ret); 9520 vsi->uplink_seid = pf->mac_seid; 9521 break; 9522 } else if (pf->veb[v]->uplink_seid == 0) { 9523 dev_info(&pf->pdev->dev, 9524 "rebuild of orphan VEB failed: %d\n", 9525 ret); 9526 } 9527 } 9528 } 9529 } 9530 9531 if (vsi->uplink_seid == pf->mac_seid) { 9532 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 9533 /* no VEB, so rebuild only the Main VSI */ 9534 ret = i40e_add_vsi(vsi); 9535 if (ret) { 9536 dev_info(&pf->pdev->dev, 9537 "rebuild of Main VSI failed: %d\n", ret); 9538 goto end_unlock; 9539 } 9540 } 9541 9542 if (vsi->mqprio_qopt.max_rate[0]) { 9543 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9544 u64 credits = 0; 9545 9546 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 9547 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 9548 if (ret) 9549 goto end_unlock; 9550 9551 credits = max_tx_rate; 9552 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9553 dev_dbg(&vsi->back->pdev->dev, 9554 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9555 max_tx_rate, 9556 credits, 9557 vsi->seid); 9558 } 9559 9560 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 9561 if (ret) 9562 goto end_unlock; 9563 9564 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 9565 * for this main VSI if they exist 9566 */ 9567 ret = i40e_rebuild_channels(vsi); 9568 if (ret) 9569 goto end_unlock; 9570 9571 /* Reconfigure hardware for allowing smaller MSS in the case 9572 * of TSO, so that we avoid the MDD being fired and causing 9573 * a reset in the case of small MSS+TSO. 9574 */ 9575 #define I40E_REG_MSS 0x000E64DC 9576 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 9577 #define I40E_64BYTE_MSS 0x400000 9578 val = rd32(hw, I40E_REG_MSS); 9579 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 9580 val &= ~I40E_REG_MSS_MIN_MASK; 9581 val |= I40E_64BYTE_MSS; 9582 wr32(hw, I40E_REG_MSS, val); 9583 } 9584 9585 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 9586 msleep(75); 9587 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 9588 if (ret) 9589 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 9590 i40e_stat_str(&pf->hw, ret), 9591 i40e_aq_str(&pf->hw, 9592 pf->hw.aq.asq_last_status)); 9593 } 9594 /* reinit the misc interrupt */ 9595 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9596 ret = i40e_setup_misc_vector(pf); 9597 9598 /* Add a filter to drop all Flow control frames from any VSI from being 9599 * transmitted. By doing so we stop a malicious VF from sending out 9600 * PAUSE or PFC frames and potentially controlling traffic for other 9601 * PF/VF VSIs. 9602 * The FW can still send Flow control frames if enabled. 9603 */ 9604 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 9605 pf->main_vsi_seid); 9606 9607 /* restart the VSIs that were rebuilt and running before the reset */ 9608 i40e_pf_unquiesce_all_vsi(pf); 9609 9610 /* Release the RTNL lock before we start resetting VFs */ 9611 if (!lock_acquired) 9612 rtnl_unlock(); 9613 9614 /* Restore promiscuous settings */ 9615 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 9616 if (ret) 9617 dev_warn(&pf->pdev->dev, 9618 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 9619 pf->cur_promisc ? "on" : "off", 9620 i40e_stat_str(&pf->hw, ret), 9621 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9622 9623 i40e_reset_all_vfs(pf, true); 9624 9625 /* tell the firmware that we're starting */ 9626 i40e_send_version(pf); 9627 9628 /* We've already released the lock, so don't do it again */ 9629 goto end_core_reset; 9630 9631 end_unlock: 9632 if (!lock_acquired) 9633 rtnl_unlock(); 9634 end_core_reset: 9635 clear_bit(__I40E_RESET_FAILED, pf->state); 9636 clear_recovery: 9637 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9638 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 9639 } 9640 9641 /** 9642 * i40e_reset_and_rebuild - reset and rebuild using a saved config 9643 * @pf: board private structure 9644 * @reinit: if the Main VSI needs to re-initialized. 9645 * @lock_acquired: indicates whether or not the lock has been acquired 9646 * before this function was called. 9647 **/ 9648 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 9649 bool lock_acquired) 9650 { 9651 int ret; 9652 /* Now we wait for GRST to settle out. 9653 * We don't have to delete the VEBs or VSIs from the hw switch 9654 * because the reset will make them disappear. 9655 */ 9656 ret = i40e_reset(pf); 9657 if (!ret) 9658 i40e_rebuild(pf, reinit, lock_acquired); 9659 } 9660 9661 /** 9662 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 9663 * @pf: board private structure 9664 * 9665 * Close up the VFs and other things in prep for a Core Reset, 9666 * then get ready to rebuild the world. 9667 * @lock_acquired: indicates whether or not the lock has been acquired 9668 * before this function was called. 9669 **/ 9670 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 9671 { 9672 i40e_prep_for_reset(pf, lock_acquired); 9673 i40e_reset_and_rebuild(pf, false, lock_acquired); 9674 } 9675 9676 /** 9677 * i40e_handle_mdd_event 9678 * @pf: pointer to the PF structure 9679 * 9680 * Called from the MDD irq handler to identify possibly malicious vfs 9681 **/ 9682 static void i40e_handle_mdd_event(struct i40e_pf *pf) 9683 { 9684 struct i40e_hw *hw = &pf->hw; 9685 bool mdd_detected = false; 9686 bool pf_mdd_detected = false; 9687 struct i40e_vf *vf; 9688 u32 reg; 9689 int i; 9690 9691 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 9692 return; 9693 9694 /* find what triggered the MDD event */ 9695 reg = rd32(hw, I40E_GL_MDET_TX); 9696 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 9697 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 9698 I40E_GL_MDET_TX_PF_NUM_SHIFT; 9699 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 9700 I40E_GL_MDET_TX_VF_NUM_SHIFT; 9701 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 9702 I40E_GL_MDET_TX_EVENT_SHIFT; 9703 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 9704 I40E_GL_MDET_TX_QUEUE_SHIFT) - 9705 pf->hw.func_caps.base_queue; 9706 if (netif_msg_tx_err(pf)) 9707 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 9708 event, queue, pf_num, vf_num); 9709 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 9710 mdd_detected = true; 9711 } 9712 reg = rd32(hw, I40E_GL_MDET_RX); 9713 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 9714 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 9715 I40E_GL_MDET_RX_FUNCTION_SHIFT; 9716 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 9717 I40E_GL_MDET_RX_EVENT_SHIFT; 9718 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 9719 I40E_GL_MDET_RX_QUEUE_SHIFT) - 9720 pf->hw.func_caps.base_queue; 9721 if (netif_msg_rx_err(pf)) 9722 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 9723 event, queue, func); 9724 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 9725 mdd_detected = true; 9726 } 9727 9728 if (mdd_detected) { 9729 reg = rd32(hw, I40E_PF_MDET_TX); 9730 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 9731 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 9732 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 9733 pf_mdd_detected = true; 9734 } 9735 reg = rd32(hw, I40E_PF_MDET_RX); 9736 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 9737 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 9738 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 9739 pf_mdd_detected = true; 9740 } 9741 /* Queue belongs to the PF, initiate a reset */ 9742 if (pf_mdd_detected) { 9743 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9744 i40e_service_event_schedule(pf); 9745 } 9746 } 9747 9748 /* see if one of the VFs needs its hand slapped */ 9749 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 9750 vf = &(pf->vf[i]); 9751 reg = rd32(hw, I40E_VP_MDET_TX(i)); 9752 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 9753 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 9754 vf->num_mdd_events++; 9755 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 9756 i); 9757 } 9758 9759 reg = rd32(hw, I40E_VP_MDET_RX(i)); 9760 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 9761 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 9762 vf->num_mdd_events++; 9763 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 9764 i); 9765 } 9766 9767 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) { 9768 dev_info(&pf->pdev->dev, 9769 "Too many MDD events on VF %d, disabled\n", i); 9770 dev_info(&pf->pdev->dev, 9771 "Use PF Control I/F to re-enable the VF\n"); 9772 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 9773 } 9774 } 9775 9776 /* re-enable mdd interrupt cause */ 9777 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 9778 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 9779 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 9780 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 9781 i40e_flush(hw); 9782 } 9783 9784 static const char *i40e_tunnel_name(u8 type) 9785 { 9786 switch (type) { 9787 case UDP_TUNNEL_TYPE_VXLAN: 9788 return "vxlan"; 9789 case UDP_TUNNEL_TYPE_GENEVE: 9790 return "geneve"; 9791 default: 9792 return "unknown"; 9793 } 9794 } 9795 9796 /** 9797 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 9798 * @pf: board private structure 9799 **/ 9800 static void i40e_sync_udp_filters(struct i40e_pf *pf) 9801 { 9802 int i; 9803 9804 /* loop through and set pending bit for all active UDP filters */ 9805 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9806 if (pf->udp_ports[i].port) 9807 pf->pending_udp_bitmap |= BIT_ULL(i); 9808 } 9809 9810 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 9811 } 9812 9813 /** 9814 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 9815 * @pf: board private structure 9816 **/ 9817 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 9818 { 9819 struct i40e_hw *hw = &pf->hw; 9820 u8 filter_index, type; 9821 u16 port; 9822 int i; 9823 9824 if (!test_and_clear_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state)) 9825 return; 9826 9827 /* acquire RTNL to maintain state of flags and port requests */ 9828 rtnl_lock(); 9829 9830 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9831 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 9832 struct i40e_udp_port_config *udp_port; 9833 i40e_status ret = 0; 9834 9835 udp_port = &pf->udp_ports[i]; 9836 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9837 9838 port = READ_ONCE(udp_port->port); 9839 type = READ_ONCE(udp_port->type); 9840 filter_index = READ_ONCE(udp_port->filter_index); 9841 9842 /* release RTNL while we wait on AQ command */ 9843 rtnl_unlock(); 9844 9845 if (port) 9846 ret = i40e_aq_add_udp_tunnel(hw, port, 9847 type, 9848 &filter_index, 9849 NULL); 9850 else if (filter_index != I40E_UDP_PORT_INDEX_UNUSED) 9851 ret = i40e_aq_del_udp_tunnel(hw, filter_index, 9852 NULL); 9853 9854 /* reacquire RTNL so we can update filter_index */ 9855 rtnl_lock(); 9856 9857 if (ret) { 9858 dev_info(&pf->pdev->dev, 9859 "%s %s port %d, index %d failed, err %s aq_err %s\n", 9860 i40e_tunnel_name(type), 9861 port ? "add" : "delete", 9862 port, 9863 filter_index, 9864 i40e_stat_str(&pf->hw, ret), 9865 i40e_aq_str(&pf->hw, 9866 pf->hw.aq.asq_last_status)); 9867 if (port) { 9868 /* failed to add, just reset port, 9869 * drop pending bit for any deletion 9870 */ 9871 udp_port->port = 0; 9872 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9873 } 9874 } else if (port) { 9875 /* record filter index on success */ 9876 udp_port->filter_index = filter_index; 9877 } 9878 } 9879 } 9880 9881 rtnl_unlock(); 9882 } 9883 9884 /** 9885 * i40e_service_task - Run the driver's async subtasks 9886 * @work: pointer to work_struct containing our data 9887 **/ 9888 static void i40e_service_task(struct work_struct *work) 9889 { 9890 struct i40e_pf *pf = container_of(work, 9891 struct i40e_pf, 9892 service_task); 9893 unsigned long start_time = jiffies; 9894 9895 /* don't bother with service tasks if a reset is in progress */ 9896 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9897 return; 9898 9899 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 9900 return; 9901 9902 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 9903 i40e_sync_filters_subtask(pf); 9904 i40e_reset_subtask(pf); 9905 i40e_handle_mdd_event(pf); 9906 i40e_vc_process_vflr_event(pf); 9907 i40e_watchdog_subtask(pf); 9908 i40e_fdir_reinit_subtask(pf); 9909 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 9910 /* Client subtask will reopen next time through. */ 9911 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true); 9912 } else { 9913 i40e_client_subtask(pf); 9914 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 9915 pf->state)) 9916 i40e_notify_client_of_l2_param_changes( 9917 pf->vsi[pf->lan_vsi]); 9918 } 9919 i40e_sync_filters_subtask(pf); 9920 i40e_sync_udp_filters_subtask(pf); 9921 i40e_clean_adminq_subtask(pf); 9922 9923 /* flush memory to make sure state is correct before next watchdog */ 9924 smp_mb__before_atomic(); 9925 clear_bit(__I40E_SERVICE_SCHED, pf->state); 9926 9927 /* If the tasks have taken longer than one timer cycle or there 9928 * is more work to be done, reschedule the service task now 9929 * rather than wait for the timer to tick again. 9930 */ 9931 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 9932 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 9933 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 9934 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 9935 i40e_service_event_schedule(pf); 9936 } 9937 9938 /** 9939 * i40e_service_timer - timer callback 9940 * @data: pointer to PF struct 9941 **/ 9942 static void i40e_service_timer(struct timer_list *t) 9943 { 9944 struct i40e_pf *pf = from_timer(pf, t, service_timer); 9945 9946 mod_timer(&pf->service_timer, 9947 round_jiffies(jiffies + pf->service_timer_period)); 9948 i40e_service_event_schedule(pf); 9949 } 9950 9951 /** 9952 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 9953 * @vsi: the VSI being configured 9954 **/ 9955 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 9956 { 9957 struct i40e_pf *pf = vsi->back; 9958 9959 switch (vsi->type) { 9960 case I40E_VSI_MAIN: 9961 vsi->alloc_queue_pairs = pf->num_lan_qps; 9962 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9963 I40E_REQ_DESCRIPTOR_MULTIPLE); 9964 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9965 vsi->num_q_vectors = pf->num_lan_msix; 9966 else 9967 vsi->num_q_vectors = 1; 9968 9969 break; 9970 9971 case I40E_VSI_FDIR: 9972 vsi->alloc_queue_pairs = 1; 9973 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT, 9974 I40E_REQ_DESCRIPTOR_MULTIPLE); 9975 vsi->num_q_vectors = pf->num_fdsb_msix; 9976 break; 9977 9978 case I40E_VSI_VMDQ2: 9979 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 9980 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9981 I40E_REQ_DESCRIPTOR_MULTIPLE); 9982 vsi->num_q_vectors = pf->num_vmdq_msix; 9983 break; 9984 9985 case I40E_VSI_SRIOV: 9986 vsi->alloc_queue_pairs = pf->num_vf_qps; 9987 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9988 I40E_REQ_DESCRIPTOR_MULTIPLE); 9989 break; 9990 9991 default: 9992 WARN_ON(1); 9993 return -ENODATA; 9994 } 9995 9996 return 0; 9997 } 9998 9999 /** 10000 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 10001 * @vsi: VSI pointer 10002 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 10003 * 10004 * On error: returns error code (negative) 10005 * On success: returns 0 10006 **/ 10007 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 10008 { 10009 struct i40e_ring **next_rings; 10010 int size; 10011 int ret = 0; 10012 10013 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 10014 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 10015 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 10016 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 10017 if (!vsi->tx_rings) 10018 return -ENOMEM; 10019 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 10020 if (i40e_enabled_xdp_vsi(vsi)) { 10021 vsi->xdp_rings = next_rings; 10022 next_rings += vsi->alloc_queue_pairs; 10023 } 10024 vsi->rx_rings = next_rings; 10025 10026 if (alloc_qvectors) { 10027 /* allocate memory for q_vector pointers */ 10028 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 10029 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 10030 if (!vsi->q_vectors) { 10031 ret = -ENOMEM; 10032 goto err_vectors; 10033 } 10034 } 10035 return ret; 10036 10037 err_vectors: 10038 kfree(vsi->tx_rings); 10039 return ret; 10040 } 10041 10042 /** 10043 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 10044 * @pf: board private structure 10045 * @type: type of VSI 10046 * 10047 * On error: returns error code (negative) 10048 * On success: returns vsi index in PF (positive) 10049 **/ 10050 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 10051 { 10052 int ret = -ENODEV; 10053 struct i40e_vsi *vsi; 10054 int vsi_idx; 10055 int i; 10056 10057 /* Need to protect the allocation of the VSIs at the PF level */ 10058 mutex_lock(&pf->switch_mutex); 10059 10060 /* VSI list may be fragmented if VSI creation/destruction has 10061 * been happening. We can afford to do a quick scan to look 10062 * for any free VSIs in the list. 10063 * 10064 * find next empty vsi slot, looping back around if necessary 10065 */ 10066 i = pf->next_vsi; 10067 while (i < pf->num_alloc_vsi && pf->vsi[i]) 10068 i++; 10069 if (i >= pf->num_alloc_vsi) { 10070 i = 0; 10071 while (i < pf->next_vsi && pf->vsi[i]) 10072 i++; 10073 } 10074 10075 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 10076 vsi_idx = i; /* Found one! */ 10077 } else { 10078 ret = -ENODEV; 10079 goto unlock_pf; /* out of VSI slots! */ 10080 } 10081 pf->next_vsi = ++i; 10082 10083 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 10084 if (!vsi) { 10085 ret = -ENOMEM; 10086 goto unlock_pf; 10087 } 10088 vsi->type = type; 10089 vsi->back = pf; 10090 set_bit(__I40E_VSI_DOWN, vsi->state); 10091 vsi->flags = 0; 10092 vsi->idx = vsi_idx; 10093 vsi->int_rate_limit = 0; 10094 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 10095 pf->rss_table_size : 64; 10096 vsi->netdev_registered = false; 10097 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 10098 hash_init(vsi->mac_filter_hash); 10099 vsi->irqs_ready = false; 10100 10101 ret = i40e_set_num_rings_in_vsi(vsi); 10102 if (ret) 10103 goto err_rings; 10104 10105 ret = i40e_vsi_alloc_arrays(vsi, true); 10106 if (ret) 10107 goto err_rings; 10108 10109 /* Setup default MSIX irq handler for VSI */ 10110 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 10111 10112 /* Initialize VSI lock */ 10113 spin_lock_init(&vsi->mac_filter_hash_lock); 10114 pf->vsi[vsi_idx] = vsi; 10115 ret = vsi_idx; 10116 goto unlock_pf; 10117 10118 err_rings: 10119 pf->next_vsi = i - 1; 10120 kfree(vsi); 10121 unlock_pf: 10122 mutex_unlock(&pf->switch_mutex); 10123 return ret; 10124 } 10125 10126 /** 10127 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 10128 * @vsi: VSI pointer 10129 * @free_qvectors: a bool to specify if q_vectors need to be freed. 10130 * 10131 * On error: returns error code (negative) 10132 * On success: returns 0 10133 **/ 10134 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 10135 { 10136 /* free the ring and vector containers */ 10137 if (free_qvectors) { 10138 kfree(vsi->q_vectors); 10139 vsi->q_vectors = NULL; 10140 } 10141 kfree(vsi->tx_rings); 10142 vsi->tx_rings = NULL; 10143 vsi->rx_rings = NULL; 10144 vsi->xdp_rings = NULL; 10145 } 10146 10147 /** 10148 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 10149 * and lookup table 10150 * @vsi: Pointer to VSI structure 10151 */ 10152 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 10153 { 10154 if (!vsi) 10155 return; 10156 10157 kfree(vsi->rss_hkey_user); 10158 vsi->rss_hkey_user = NULL; 10159 10160 kfree(vsi->rss_lut_user); 10161 vsi->rss_lut_user = NULL; 10162 } 10163 10164 /** 10165 * i40e_vsi_clear - Deallocate the VSI provided 10166 * @vsi: the VSI being un-configured 10167 **/ 10168 static int i40e_vsi_clear(struct i40e_vsi *vsi) 10169 { 10170 struct i40e_pf *pf; 10171 10172 if (!vsi) 10173 return 0; 10174 10175 if (!vsi->back) 10176 goto free_vsi; 10177 pf = vsi->back; 10178 10179 mutex_lock(&pf->switch_mutex); 10180 if (!pf->vsi[vsi->idx]) { 10181 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 10182 vsi->idx, vsi->idx, vsi->type); 10183 goto unlock_vsi; 10184 } 10185 10186 if (pf->vsi[vsi->idx] != vsi) { 10187 dev_err(&pf->pdev->dev, 10188 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 10189 pf->vsi[vsi->idx]->idx, 10190 pf->vsi[vsi->idx]->type, 10191 vsi->idx, vsi->type); 10192 goto unlock_vsi; 10193 } 10194 10195 /* updates the PF for this cleared vsi */ 10196 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 10197 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 10198 10199 i40e_vsi_free_arrays(vsi, true); 10200 i40e_clear_rss_config_user(vsi); 10201 10202 pf->vsi[vsi->idx] = NULL; 10203 if (vsi->idx < pf->next_vsi) 10204 pf->next_vsi = vsi->idx; 10205 10206 unlock_vsi: 10207 mutex_unlock(&pf->switch_mutex); 10208 free_vsi: 10209 kfree(vsi); 10210 10211 return 0; 10212 } 10213 10214 /** 10215 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10216 * @vsi: the VSI being cleaned 10217 **/ 10218 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10219 { 10220 int i; 10221 10222 if (vsi->tx_rings && vsi->tx_rings[0]) { 10223 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10224 kfree_rcu(vsi->tx_rings[i], rcu); 10225 vsi->tx_rings[i] = NULL; 10226 vsi->rx_rings[i] = NULL; 10227 if (vsi->xdp_rings) 10228 vsi->xdp_rings[i] = NULL; 10229 } 10230 } 10231 } 10232 10233 /** 10234 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10235 * @vsi: the VSI being configured 10236 **/ 10237 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10238 { 10239 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10240 struct i40e_pf *pf = vsi->back; 10241 struct i40e_ring *ring; 10242 10243 /* Set basic values in the rings to be used later during open() */ 10244 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10245 /* allocate space for both Tx and Rx in one shot */ 10246 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10247 if (!ring) 10248 goto err_out; 10249 10250 ring->queue_index = i; 10251 ring->reg_idx = vsi->base_queue + i; 10252 ring->ring_active = false; 10253 ring->vsi = vsi; 10254 ring->netdev = vsi->netdev; 10255 ring->dev = &pf->pdev->dev; 10256 ring->count = vsi->num_desc; 10257 ring->size = 0; 10258 ring->dcb_tc = 0; 10259 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10260 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10261 ring->itr_setting = pf->tx_itr_default; 10262 vsi->tx_rings[i] = ring++; 10263 10264 if (!i40e_enabled_xdp_vsi(vsi)) 10265 goto setup_rx; 10266 10267 ring->queue_index = vsi->alloc_queue_pairs + i; 10268 ring->reg_idx = vsi->base_queue + ring->queue_index; 10269 ring->ring_active = false; 10270 ring->vsi = vsi; 10271 ring->netdev = NULL; 10272 ring->dev = &pf->pdev->dev; 10273 ring->count = vsi->num_desc; 10274 ring->size = 0; 10275 ring->dcb_tc = 0; 10276 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10277 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10278 set_ring_xdp(ring); 10279 ring->itr_setting = pf->tx_itr_default; 10280 vsi->xdp_rings[i] = ring++; 10281 10282 setup_rx: 10283 ring->queue_index = i; 10284 ring->reg_idx = vsi->base_queue + i; 10285 ring->ring_active = false; 10286 ring->vsi = vsi; 10287 ring->netdev = vsi->netdev; 10288 ring->dev = &pf->pdev->dev; 10289 ring->count = vsi->num_desc; 10290 ring->size = 0; 10291 ring->dcb_tc = 0; 10292 ring->itr_setting = pf->rx_itr_default; 10293 vsi->rx_rings[i] = ring; 10294 } 10295 10296 return 0; 10297 10298 err_out: 10299 i40e_vsi_clear_rings(vsi); 10300 return -ENOMEM; 10301 } 10302 10303 /** 10304 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10305 * @pf: board private structure 10306 * @vectors: the number of MSI-X vectors to request 10307 * 10308 * Returns the number of vectors reserved, or error 10309 **/ 10310 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10311 { 10312 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10313 I40E_MIN_MSIX, vectors); 10314 if (vectors < 0) { 10315 dev_info(&pf->pdev->dev, 10316 "MSI-X vector reservation failed: %d\n", vectors); 10317 vectors = 0; 10318 } 10319 10320 return vectors; 10321 } 10322 10323 /** 10324 * i40e_init_msix - Setup the MSIX capability 10325 * @pf: board private structure 10326 * 10327 * Work with the OS to set up the MSIX vectors needed. 10328 * 10329 * Returns the number of vectors reserved or negative on failure 10330 **/ 10331 static int i40e_init_msix(struct i40e_pf *pf) 10332 { 10333 struct i40e_hw *hw = &pf->hw; 10334 int cpus, extra_vectors; 10335 int vectors_left; 10336 int v_budget, i; 10337 int v_actual; 10338 int iwarp_requested = 0; 10339 10340 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10341 return -ENODEV; 10342 10343 /* The number of vectors we'll request will be comprised of: 10344 * - Add 1 for "other" cause for Admin Queue events, etc. 10345 * - The number of LAN queue pairs 10346 * - Queues being used for RSS. 10347 * We don't need as many as max_rss_size vectors. 10348 * use rss_size instead in the calculation since that 10349 * is governed by number of cpus in the system. 10350 * - assumes symmetric Tx/Rx pairing 10351 * - The number of VMDq pairs 10352 * - The CPU count within the NUMA node if iWARP is enabled 10353 * Once we count this up, try the request. 10354 * 10355 * If we can't get what we want, we'll simplify to nearly nothing 10356 * and try again. If that still fails, we punt. 10357 */ 10358 vectors_left = hw->func_caps.num_msix_vectors; 10359 v_budget = 0; 10360 10361 /* reserve one vector for miscellaneous handler */ 10362 if (vectors_left) { 10363 v_budget++; 10364 vectors_left--; 10365 } 10366 10367 /* reserve some vectors for the main PF traffic queues. Initially we 10368 * only reserve at most 50% of the available vectors, in the case that 10369 * the number of online CPUs is large. This ensures that we can enable 10370 * extra features as well. Once we've enabled the other features, we 10371 * will use any remaining vectors to reach as close as we can to the 10372 * number of online CPUs. 10373 */ 10374 cpus = num_online_cpus(); 10375 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10376 vectors_left -= pf->num_lan_msix; 10377 10378 /* reserve one vector for sideband flow director */ 10379 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10380 if (vectors_left) { 10381 pf->num_fdsb_msix = 1; 10382 v_budget++; 10383 vectors_left--; 10384 } else { 10385 pf->num_fdsb_msix = 0; 10386 } 10387 } 10388 10389 /* can we reserve enough for iWARP? */ 10390 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10391 iwarp_requested = pf->num_iwarp_msix; 10392 10393 if (!vectors_left) 10394 pf->num_iwarp_msix = 0; 10395 else if (vectors_left < pf->num_iwarp_msix) 10396 pf->num_iwarp_msix = 1; 10397 v_budget += pf->num_iwarp_msix; 10398 vectors_left -= pf->num_iwarp_msix; 10399 } 10400 10401 /* any vectors left over go for VMDq support */ 10402 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 10403 if (!vectors_left) { 10404 pf->num_vmdq_msix = 0; 10405 pf->num_vmdq_qps = 0; 10406 } else { 10407 int vmdq_vecs_wanted = 10408 pf->num_vmdq_vsis * pf->num_vmdq_qps; 10409 int vmdq_vecs = 10410 min_t(int, vectors_left, vmdq_vecs_wanted); 10411 10412 /* if we're short on vectors for what's desired, we limit 10413 * the queues per vmdq. If this is still more than are 10414 * available, the user will need to change the number of 10415 * queues/vectors used by the PF later with the ethtool 10416 * channels command 10417 */ 10418 if (vectors_left < vmdq_vecs_wanted) { 10419 pf->num_vmdq_qps = 1; 10420 vmdq_vecs_wanted = pf->num_vmdq_vsis; 10421 vmdq_vecs = min_t(int, 10422 vectors_left, 10423 vmdq_vecs_wanted); 10424 } 10425 pf->num_vmdq_msix = pf->num_vmdq_qps; 10426 10427 v_budget += vmdq_vecs; 10428 vectors_left -= vmdq_vecs; 10429 } 10430 } 10431 10432 /* On systems with a large number of SMP cores, we previously limited 10433 * the number of vectors for num_lan_msix to be at most 50% of the 10434 * available vectors, to allow for other features. Now, we add back 10435 * the remaining vectors. However, we ensure that the total 10436 * num_lan_msix will not exceed num_online_cpus(). To do this, we 10437 * calculate the number of vectors we can add without going over the 10438 * cap of CPUs. For systems with a small number of CPUs this will be 10439 * zero. 10440 */ 10441 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 10442 pf->num_lan_msix += extra_vectors; 10443 vectors_left -= extra_vectors; 10444 10445 WARN(vectors_left < 0, 10446 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 10447 10448 v_budget += pf->num_lan_msix; 10449 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 10450 GFP_KERNEL); 10451 if (!pf->msix_entries) 10452 return -ENOMEM; 10453 10454 for (i = 0; i < v_budget; i++) 10455 pf->msix_entries[i].entry = i; 10456 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 10457 10458 if (v_actual < I40E_MIN_MSIX) { 10459 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 10460 kfree(pf->msix_entries); 10461 pf->msix_entries = NULL; 10462 pci_disable_msix(pf->pdev); 10463 return -ENODEV; 10464 10465 } else if (v_actual == I40E_MIN_MSIX) { 10466 /* Adjust for minimal MSIX use */ 10467 pf->num_vmdq_vsis = 0; 10468 pf->num_vmdq_qps = 0; 10469 pf->num_lan_qps = 1; 10470 pf->num_lan_msix = 1; 10471 10472 } else if (v_actual != v_budget) { 10473 /* If we have limited resources, we will start with no vectors 10474 * for the special features and then allocate vectors to some 10475 * of these features based on the policy and at the end disable 10476 * the features that did not get any vectors. 10477 */ 10478 int vec; 10479 10480 dev_info(&pf->pdev->dev, 10481 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 10482 v_actual, v_budget); 10483 /* reserve the misc vector */ 10484 vec = v_actual - 1; 10485 10486 /* Scale vector usage down */ 10487 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 10488 pf->num_vmdq_vsis = 1; 10489 pf->num_vmdq_qps = 1; 10490 10491 /* partition out the remaining vectors */ 10492 switch (vec) { 10493 case 2: 10494 pf->num_lan_msix = 1; 10495 break; 10496 case 3: 10497 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10498 pf->num_lan_msix = 1; 10499 pf->num_iwarp_msix = 1; 10500 } else { 10501 pf->num_lan_msix = 2; 10502 } 10503 break; 10504 default: 10505 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10506 pf->num_iwarp_msix = min_t(int, (vec / 3), 10507 iwarp_requested); 10508 pf->num_vmdq_vsis = min_t(int, (vec / 3), 10509 I40E_DEFAULT_NUM_VMDQ_VSI); 10510 } else { 10511 pf->num_vmdq_vsis = min_t(int, (vec / 2), 10512 I40E_DEFAULT_NUM_VMDQ_VSI); 10513 } 10514 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10515 pf->num_fdsb_msix = 1; 10516 vec--; 10517 } 10518 pf->num_lan_msix = min_t(int, 10519 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 10520 pf->num_lan_msix); 10521 pf->num_lan_qps = pf->num_lan_msix; 10522 break; 10523 } 10524 } 10525 10526 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 10527 (pf->num_fdsb_msix == 0)) { 10528 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 10529 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10530 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10531 } 10532 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 10533 (pf->num_vmdq_msix == 0)) { 10534 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 10535 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 10536 } 10537 10538 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 10539 (pf->num_iwarp_msix == 0)) { 10540 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 10541 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 10542 } 10543 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 10544 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 10545 pf->num_lan_msix, 10546 pf->num_vmdq_msix * pf->num_vmdq_vsis, 10547 pf->num_fdsb_msix, 10548 pf->num_iwarp_msix); 10549 10550 return v_actual; 10551 } 10552 10553 /** 10554 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 10555 * @vsi: the VSI being configured 10556 * @v_idx: index of the vector in the vsi struct 10557 * @cpu: cpu to be used on affinity_mask 10558 * 10559 * We allocate one q_vector. If allocation fails we return -ENOMEM. 10560 **/ 10561 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 10562 { 10563 struct i40e_q_vector *q_vector; 10564 10565 /* allocate q_vector */ 10566 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 10567 if (!q_vector) 10568 return -ENOMEM; 10569 10570 q_vector->vsi = vsi; 10571 q_vector->v_idx = v_idx; 10572 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 10573 10574 if (vsi->netdev) 10575 netif_napi_add(vsi->netdev, &q_vector->napi, 10576 i40e_napi_poll, NAPI_POLL_WEIGHT); 10577 10578 /* tie q_vector and vsi together */ 10579 vsi->q_vectors[v_idx] = q_vector; 10580 10581 return 0; 10582 } 10583 10584 /** 10585 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 10586 * @vsi: the VSI being configured 10587 * 10588 * We allocate one q_vector per queue interrupt. If allocation fails we 10589 * return -ENOMEM. 10590 **/ 10591 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 10592 { 10593 struct i40e_pf *pf = vsi->back; 10594 int err, v_idx, num_q_vectors, current_cpu; 10595 10596 /* if not MSIX, give the one vector only to the LAN VSI */ 10597 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10598 num_q_vectors = vsi->num_q_vectors; 10599 else if (vsi == pf->vsi[pf->lan_vsi]) 10600 num_q_vectors = 1; 10601 else 10602 return -EINVAL; 10603 10604 current_cpu = cpumask_first(cpu_online_mask); 10605 10606 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 10607 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 10608 if (err) 10609 goto err_out; 10610 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 10611 if (unlikely(current_cpu >= nr_cpu_ids)) 10612 current_cpu = cpumask_first(cpu_online_mask); 10613 } 10614 10615 return 0; 10616 10617 err_out: 10618 while (v_idx--) 10619 i40e_free_q_vector(vsi, v_idx); 10620 10621 return err; 10622 } 10623 10624 /** 10625 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 10626 * @pf: board private structure to initialize 10627 **/ 10628 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 10629 { 10630 int vectors = 0; 10631 ssize_t size; 10632 10633 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 10634 vectors = i40e_init_msix(pf); 10635 if (vectors < 0) { 10636 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 10637 I40E_FLAG_IWARP_ENABLED | 10638 I40E_FLAG_RSS_ENABLED | 10639 I40E_FLAG_DCB_CAPABLE | 10640 I40E_FLAG_DCB_ENABLED | 10641 I40E_FLAG_SRIOV_ENABLED | 10642 I40E_FLAG_FD_SB_ENABLED | 10643 I40E_FLAG_FD_ATR_ENABLED | 10644 I40E_FLAG_VMDQ_ENABLED); 10645 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10646 10647 /* rework the queue expectations without MSIX */ 10648 i40e_determine_queue_usage(pf); 10649 } 10650 } 10651 10652 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 10653 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 10654 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 10655 vectors = pci_enable_msi(pf->pdev); 10656 if (vectors < 0) { 10657 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 10658 vectors); 10659 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 10660 } 10661 vectors = 1; /* one MSI or Legacy vector */ 10662 } 10663 10664 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 10665 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 10666 10667 /* set up vector assignment tracking */ 10668 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 10669 pf->irq_pile = kzalloc(size, GFP_KERNEL); 10670 if (!pf->irq_pile) 10671 return -ENOMEM; 10672 10673 pf->irq_pile->num_entries = vectors; 10674 pf->irq_pile->search_hint = 0; 10675 10676 /* track first vector for misc interrupts, ignore return */ 10677 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 10678 10679 return 0; 10680 } 10681 10682 /** 10683 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 10684 * @pf: private board data structure 10685 * 10686 * Restore the interrupt scheme that was cleared when we suspended the 10687 * device. This should be called during resume to re-allocate the q_vectors 10688 * and reacquire IRQs. 10689 */ 10690 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 10691 { 10692 int err, i; 10693 10694 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 10695 * scheme. We need to re-enabled them here in order to attempt to 10696 * re-acquire the MSI or MSI-X vectors 10697 */ 10698 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 10699 10700 err = i40e_init_interrupt_scheme(pf); 10701 if (err) 10702 return err; 10703 10704 /* Now that we've re-acquired IRQs, we need to remap the vectors and 10705 * rings together again. 10706 */ 10707 for (i = 0; i < pf->num_alloc_vsi; i++) { 10708 if (pf->vsi[i]) { 10709 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 10710 if (err) 10711 goto err_unwind; 10712 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 10713 } 10714 } 10715 10716 err = i40e_setup_misc_vector(pf); 10717 if (err) 10718 goto err_unwind; 10719 10720 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 10721 i40e_client_update_msix_info(pf); 10722 10723 return 0; 10724 10725 err_unwind: 10726 while (i--) { 10727 if (pf->vsi[i]) 10728 i40e_vsi_free_q_vectors(pf->vsi[i]); 10729 } 10730 10731 return err; 10732 } 10733 10734 /** 10735 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 10736 * @pf: board private structure 10737 * 10738 * This sets up the handler for MSIX 0, which is used to manage the 10739 * non-queue interrupts, e.g. AdminQ and errors. This is not used 10740 * when in MSI or Legacy interrupt mode. 10741 **/ 10742 static int i40e_setup_misc_vector(struct i40e_pf *pf) 10743 { 10744 struct i40e_hw *hw = &pf->hw; 10745 int err = 0; 10746 10747 /* Only request the IRQ once, the first time through. */ 10748 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 10749 err = request_irq(pf->msix_entries[0].vector, 10750 i40e_intr, 0, pf->int_name, pf); 10751 if (err) { 10752 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 10753 dev_info(&pf->pdev->dev, 10754 "request_irq for %s failed: %d\n", 10755 pf->int_name, err); 10756 return -EFAULT; 10757 } 10758 } 10759 10760 i40e_enable_misc_int_causes(pf); 10761 10762 /* associate no queues to the misc vector */ 10763 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 10764 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); 10765 10766 i40e_flush(hw); 10767 10768 i40e_irq_dynamic_enable_icr0(pf); 10769 10770 return err; 10771 } 10772 10773 /** 10774 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 10775 * @vsi: Pointer to vsi structure 10776 * @seed: Buffter to store the hash keys 10777 * @lut: Buffer to store the lookup table entries 10778 * @lut_size: Size of buffer to store the lookup table entries 10779 * 10780 * Return 0 on success, negative on failure 10781 */ 10782 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 10783 u8 *lut, u16 lut_size) 10784 { 10785 struct i40e_pf *pf = vsi->back; 10786 struct i40e_hw *hw = &pf->hw; 10787 int ret = 0; 10788 10789 if (seed) { 10790 ret = i40e_aq_get_rss_key(hw, vsi->id, 10791 (struct i40e_aqc_get_set_rss_key_data *)seed); 10792 if (ret) { 10793 dev_info(&pf->pdev->dev, 10794 "Cannot get RSS key, err %s aq_err %s\n", 10795 i40e_stat_str(&pf->hw, ret), 10796 i40e_aq_str(&pf->hw, 10797 pf->hw.aq.asq_last_status)); 10798 return ret; 10799 } 10800 } 10801 10802 if (lut) { 10803 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 10804 10805 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 10806 if (ret) { 10807 dev_info(&pf->pdev->dev, 10808 "Cannot get RSS lut, err %s aq_err %s\n", 10809 i40e_stat_str(&pf->hw, ret), 10810 i40e_aq_str(&pf->hw, 10811 pf->hw.aq.asq_last_status)); 10812 return ret; 10813 } 10814 } 10815 10816 return ret; 10817 } 10818 10819 /** 10820 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 10821 * @vsi: Pointer to vsi structure 10822 * @seed: RSS hash seed 10823 * @lut: Lookup table 10824 * @lut_size: Lookup table size 10825 * 10826 * Returns 0 on success, negative on failure 10827 **/ 10828 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 10829 const u8 *lut, u16 lut_size) 10830 { 10831 struct i40e_pf *pf = vsi->back; 10832 struct i40e_hw *hw = &pf->hw; 10833 u16 vf_id = vsi->vf_id; 10834 u8 i; 10835 10836 /* Fill out hash function seed */ 10837 if (seed) { 10838 u32 *seed_dw = (u32 *)seed; 10839 10840 if (vsi->type == I40E_VSI_MAIN) { 10841 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10842 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 10843 } else if (vsi->type == I40E_VSI_SRIOV) { 10844 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 10845 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 10846 } else { 10847 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 10848 } 10849 } 10850 10851 if (lut) { 10852 u32 *lut_dw = (u32 *)lut; 10853 10854 if (vsi->type == I40E_VSI_MAIN) { 10855 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10856 return -EINVAL; 10857 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10858 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 10859 } else if (vsi->type == I40E_VSI_SRIOV) { 10860 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 10861 return -EINVAL; 10862 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 10863 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 10864 } else { 10865 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 10866 } 10867 } 10868 i40e_flush(hw); 10869 10870 return 0; 10871 } 10872 10873 /** 10874 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 10875 * @vsi: Pointer to VSI structure 10876 * @seed: Buffer to store the keys 10877 * @lut: Buffer to store the lookup table entries 10878 * @lut_size: Size of buffer to store the lookup table entries 10879 * 10880 * Returns 0 on success, negative on failure 10881 */ 10882 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 10883 u8 *lut, u16 lut_size) 10884 { 10885 struct i40e_pf *pf = vsi->back; 10886 struct i40e_hw *hw = &pf->hw; 10887 u16 i; 10888 10889 if (seed) { 10890 u32 *seed_dw = (u32 *)seed; 10891 10892 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10893 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 10894 } 10895 if (lut) { 10896 u32 *lut_dw = (u32 *)lut; 10897 10898 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10899 return -EINVAL; 10900 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10901 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 10902 } 10903 10904 return 0; 10905 } 10906 10907 /** 10908 * i40e_config_rss - Configure RSS keys and lut 10909 * @vsi: Pointer to VSI structure 10910 * @seed: RSS hash seed 10911 * @lut: Lookup table 10912 * @lut_size: Lookup table size 10913 * 10914 * Returns 0 on success, negative on failure 10915 */ 10916 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10917 { 10918 struct i40e_pf *pf = vsi->back; 10919 10920 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10921 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 10922 else 10923 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 10924 } 10925 10926 /** 10927 * i40e_get_rss - Get RSS keys and lut 10928 * @vsi: Pointer to VSI structure 10929 * @seed: Buffer to store the keys 10930 * @lut: Buffer to store the lookup table entries 10931 * @lut_size: Size of buffer to store the lookup table entries 10932 * 10933 * Returns 0 on success, negative on failure 10934 */ 10935 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10936 { 10937 struct i40e_pf *pf = vsi->back; 10938 10939 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10940 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 10941 else 10942 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 10943 } 10944 10945 /** 10946 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 10947 * @pf: Pointer to board private structure 10948 * @lut: Lookup table 10949 * @rss_table_size: Lookup table size 10950 * @rss_size: Range of queue number for hashing 10951 */ 10952 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 10953 u16 rss_table_size, u16 rss_size) 10954 { 10955 u16 i; 10956 10957 for (i = 0; i < rss_table_size; i++) 10958 lut[i] = i % rss_size; 10959 } 10960 10961 /** 10962 * i40e_pf_config_rss - Prepare for RSS if used 10963 * @pf: board private structure 10964 **/ 10965 static int i40e_pf_config_rss(struct i40e_pf *pf) 10966 { 10967 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10968 u8 seed[I40E_HKEY_ARRAY_SIZE]; 10969 u8 *lut; 10970 struct i40e_hw *hw = &pf->hw; 10971 u32 reg_val; 10972 u64 hena; 10973 int ret; 10974 10975 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 10976 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 10977 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 10978 hena |= i40e_pf_get_default_rss_hena(pf); 10979 10980 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 10981 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 10982 10983 /* Determine the RSS table size based on the hardware capabilities */ 10984 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 10985 reg_val = (pf->rss_table_size == 512) ? 10986 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 10987 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 10988 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 10989 10990 /* Determine the RSS size of the VSI */ 10991 if (!vsi->rss_size) { 10992 u16 qcount; 10993 /* If the firmware does something weird during VSI init, we 10994 * could end up with zero TCs. Check for that to avoid 10995 * divide-by-zero. It probably won't pass traffic, but it also 10996 * won't panic. 10997 */ 10998 qcount = vsi->num_queue_pairs / 10999 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 11000 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11001 } 11002 if (!vsi->rss_size) 11003 return -EINVAL; 11004 11005 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 11006 if (!lut) 11007 return -ENOMEM; 11008 11009 /* Use user configured lut if there is one, otherwise use default */ 11010 if (vsi->rss_lut_user) 11011 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 11012 else 11013 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 11014 11015 /* Use user configured hash key if there is one, otherwise 11016 * use default. 11017 */ 11018 if (vsi->rss_hkey_user) 11019 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 11020 else 11021 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 11022 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 11023 kfree(lut); 11024 11025 return ret; 11026 } 11027 11028 /** 11029 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 11030 * @pf: board private structure 11031 * @queue_count: the requested queue count for rss. 11032 * 11033 * returns 0 if rss is not enabled, if enabled returns the final rss queue 11034 * count which may be different from the requested queue count. 11035 * Note: expects to be called while under rtnl_lock() 11036 **/ 11037 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 11038 { 11039 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11040 int new_rss_size; 11041 11042 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 11043 return 0; 11044 11045 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 11046 11047 if (queue_count != vsi->num_queue_pairs) { 11048 u16 qcount; 11049 11050 vsi->req_queue_pairs = queue_count; 11051 i40e_prep_for_reset(pf, true); 11052 11053 pf->alloc_rss_size = new_rss_size; 11054 11055 i40e_reset_and_rebuild(pf, true, true); 11056 11057 /* Discard the user configured hash keys and lut, if less 11058 * queues are enabled. 11059 */ 11060 if (queue_count < vsi->rss_size) { 11061 i40e_clear_rss_config_user(vsi); 11062 dev_dbg(&pf->pdev->dev, 11063 "discard user configured hash keys and lut\n"); 11064 } 11065 11066 /* Reset vsi->rss_size, as number of enabled queues changed */ 11067 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 11068 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11069 11070 i40e_pf_config_rss(pf); 11071 } 11072 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 11073 vsi->req_queue_pairs, pf->rss_size_max); 11074 return pf->alloc_rss_size; 11075 } 11076 11077 /** 11078 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 11079 * @pf: board private structure 11080 **/ 11081 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 11082 { 11083 i40e_status status; 11084 bool min_valid, max_valid; 11085 u32 max_bw, min_bw; 11086 11087 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 11088 &min_valid, &max_valid); 11089 11090 if (!status) { 11091 if (min_valid) 11092 pf->min_bw = min_bw; 11093 if (max_valid) 11094 pf->max_bw = max_bw; 11095 } 11096 11097 return status; 11098 } 11099 11100 /** 11101 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 11102 * @pf: board private structure 11103 **/ 11104 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 11105 { 11106 struct i40e_aqc_configure_partition_bw_data bw_data; 11107 i40e_status status; 11108 11109 /* Set the valid bit for this PF */ 11110 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 11111 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 11112 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 11113 11114 /* Set the new bandwidths */ 11115 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 11116 11117 return status; 11118 } 11119 11120 /** 11121 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 11122 * @pf: board private structure 11123 **/ 11124 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 11125 { 11126 /* Commit temporary BW setting to permanent NVM image */ 11127 enum i40e_admin_queue_err last_aq_status; 11128 i40e_status ret; 11129 u16 nvm_word; 11130 11131 if (pf->hw.partition_id != 1) { 11132 dev_info(&pf->pdev->dev, 11133 "Commit BW only works on partition 1! This is partition %d", 11134 pf->hw.partition_id); 11135 ret = I40E_NOT_SUPPORTED; 11136 goto bw_commit_out; 11137 } 11138 11139 /* Acquire NVM for read access */ 11140 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 11141 last_aq_status = pf->hw.aq.asq_last_status; 11142 if (ret) { 11143 dev_info(&pf->pdev->dev, 11144 "Cannot acquire NVM for read access, err %s aq_err %s\n", 11145 i40e_stat_str(&pf->hw, ret), 11146 i40e_aq_str(&pf->hw, last_aq_status)); 11147 goto bw_commit_out; 11148 } 11149 11150 /* Read word 0x10 of NVM - SW compatibility word 1 */ 11151 ret = i40e_aq_read_nvm(&pf->hw, 11152 I40E_SR_NVM_CONTROL_WORD, 11153 0x10, sizeof(nvm_word), &nvm_word, 11154 false, NULL); 11155 /* Save off last admin queue command status before releasing 11156 * the NVM 11157 */ 11158 last_aq_status = pf->hw.aq.asq_last_status; 11159 i40e_release_nvm(&pf->hw); 11160 if (ret) { 11161 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 11162 i40e_stat_str(&pf->hw, ret), 11163 i40e_aq_str(&pf->hw, last_aq_status)); 11164 goto bw_commit_out; 11165 } 11166 11167 /* Wait a bit for NVM release to complete */ 11168 msleep(50); 11169 11170 /* Acquire NVM for write access */ 11171 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 11172 last_aq_status = pf->hw.aq.asq_last_status; 11173 if (ret) { 11174 dev_info(&pf->pdev->dev, 11175 "Cannot acquire NVM for write access, err %s aq_err %s\n", 11176 i40e_stat_str(&pf->hw, ret), 11177 i40e_aq_str(&pf->hw, last_aq_status)); 11178 goto bw_commit_out; 11179 } 11180 /* Write it back out unchanged to initiate update NVM, 11181 * which will force a write of the shadow (alt) RAM to 11182 * the NVM - thus storing the bandwidth values permanently. 11183 */ 11184 ret = i40e_aq_update_nvm(&pf->hw, 11185 I40E_SR_NVM_CONTROL_WORD, 11186 0x10, sizeof(nvm_word), 11187 &nvm_word, true, 0, NULL); 11188 /* Save off last admin queue command status before releasing 11189 * the NVM 11190 */ 11191 last_aq_status = pf->hw.aq.asq_last_status; 11192 i40e_release_nvm(&pf->hw); 11193 if (ret) 11194 dev_info(&pf->pdev->dev, 11195 "BW settings NOT SAVED, err %s aq_err %s\n", 11196 i40e_stat_str(&pf->hw, ret), 11197 i40e_aq_str(&pf->hw, last_aq_status)); 11198 bw_commit_out: 11199 11200 return ret; 11201 } 11202 11203 /** 11204 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 11205 * @pf: board private structure to initialize 11206 * 11207 * i40e_sw_init initializes the Adapter private data structure. 11208 * Fields are initialized based on PCI device information and 11209 * OS network device settings (MTU size). 11210 **/ 11211 static int i40e_sw_init(struct i40e_pf *pf) 11212 { 11213 int err = 0; 11214 int size; 11215 11216 /* Set default capability flags */ 11217 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 11218 I40E_FLAG_MSI_ENABLED | 11219 I40E_FLAG_MSIX_ENABLED; 11220 11221 /* Set default ITR */ 11222 pf->rx_itr_default = I40E_ITR_RX_DEF; 11223 pf->tx_itr_default = I40E_ITR_TX_DEF; 11224 11225 /* Depending on PF configurations, it is possible that the RSS 11226 * maximum might end up larger than the available queues 11227 */ 11228 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11229 pf->alloc_rss_size = 1; 11230 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11231 pf->rss_size_max = min_t(int, pf->rss_size_max, 11232 pf->hw.func_caps.num_tx_qp); 11233 if (pf->hw.func_caps.rss) { 11234 pf->flags |= I40E_FLAG_RSS_ENABLED; 11235 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11236 num_online_cpus()); 11237 } 11238 11239 /* MFP mode enabled */ 11240 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11241 pf->flags |= I40E_FLAG_MFP_ENABLED; 11242 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11243 if (i40e_get_partition_bw_setting(pf)) { 11244 dev_warn(&pf->pdev->dev, 11245 "Could not get partition bw settings\n"); 11246 } else { 11247 dev_info(&pf->pdev->dev, 11248 "Partition BW Min = %8.8x, Max = %8.8x\n", 11249 pf->min_bw, pf->max_bw); 11250 11251 /* nudge the Tx scheduler */ 11252 i40e_set_partition_bw_setting(pf); 11253 } 11254 } 11255 11256 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11257 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11258 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11259 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11260 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11261 pf->hw.num_partitions > 1) 11262 dev_info(&pf->pdev->dev, 11263 "Flow Director Sideband mode Disabled in MFP mode\n"); 11264 else 11265 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11266 pf->fdir_pf_filter_count = 11267 pf->hw.func_caps.fd_filters_guaranteed; 11268 pf->hw.fdir_shared_filter_count = 11269 pf->hw.func_caps.fd_filters_best_effort; 11270 } 11271 11272 if (pf->hw.mac.type == I40E_MAC_X722) { 11273 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11274 I40E_HW_128_QP_RSS_CAPABLE | 11275 I40E_HW_ATR_EVICT_CAPABLE | 11276 I40E_HW_WB_ON_ITR_CAPABLE | 11277 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11278 I40E_HW_NO_PCI_LINK_CHECK | 11279 I40E_HW_USE_SET_LLDP_MIB | 11280 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11281 I40E_HW_PTP_L4_CAPABLE | 11282 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11283 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11284 11285 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11286 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11287 I40E_FDEVICT_PCTYPE_DEFAULT) { 11288 dev_warn(&pf->pdev->dev, 11289 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11290 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11291 } 11292 } else if ((pf->hw.aq.api_maj_ver > 1) || 11293 ((pf->hw.aq.api_maj_ver == 1) && 11294 (pf->hw.aq.api_min_ver > 4))) { 11295 /* Supported in FW API version higher than 1.4 */ 11296 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11297 } 11298 11299 /* Enable HW ATR eviction if possible */ 11300 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11301 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11302 11303 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11304 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11305 (pf->hw.aq.fw_maj_ver < 4))) { 11306 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11307 /* No DCB support for FW < v4.33 */ 11308 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11309 } 11310 11311 /* Disable FW LLDP if FW < v4.3 */ 11312 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11313 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11314 (pf->hw.aq.fw_maj_ver < 4))) 11315 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11316 11317 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11318 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11319 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11320 (pf->hw.aq.fw_maj_ver >= 5))) 11321 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11322 11323 /* Enable PTP L4 if FW > v6.0 */ 11324 if (pf->hw.mac.type == I40E_MAC_XL710 && 11325 pf->hw.aq.fw_maj_ver >= 6) 11326 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11327 11328 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11329 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11330 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11331 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11332 } 11333 11334 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11335 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11336 /* IWARP needs one extra vector for CQP just like MISC.*/ 11337 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11338 } 11339 /* Stopping FW LLDP engine is supported on XL710 and X722 11340 * starting from FW versions determined in i40e_init_adminq. 11341 * Stopping the FW LLDP engine is not supported on XL710 11342 * if NPAR is functioning so unset this hw flag in this case. 11343 */ 11344 if (pf->hw.mac.type == I40E_MAC_XL710 && 11345 pf->hw.func_caps.npar_enable && 11346 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 11347 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 11348 11349 #ifdef CONFIG_PCI_IOV 11350 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 11351 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 11352 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 11353 pf->num_req_vfs = min_t(int, 11354 pf->hw.func_caps.num_vfs, 11355 I40E_MAX_VF_COUNT); 11356 } 11357 #endif /* CONFIG_PCI_IOV */ 11358 pf->eeprom_version = 0xDEAD; 11359 pf->lan_veb = I40E_NO_VEB; 11360 pf->lan_vsi = I40E_NO_VSI; 11361 11362 /* By default FW has this off for performance reasons */ 11363 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 11364 11365 /* set up queue assignment tracking */ 11366 size = sizeof(struct i40e_lump_tracking) 11367 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 11368 pf->qp_pile = kzalloc(size, GFP_KERNEL); 11369 if (!pf->qp_pile) { 11370 err = -ENOMEM; 11371 goto sw_init_done; 11372 } 11373 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 11374 pf->qp_pile->search_hint = 0; 11375 11376 pf->tx_timeout_recovery_level = 1; 11377 11378 mutex_init(&pf->switch_mutex); 11379 11380 sw_init_done: 11381 return err; 11382 } 11383 11384 /** 11385 * i40e_set_ntuple - set the ntuple feature flag and take action 11386 * @pf: board private structure to initialize 11387 * @features: the feature set that the stack is suggesting 11388 * 11389 * returns a bool to indicate if reset needs to happen 11390 **/ 11391 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 11392 { 11393 bool need_reset = false; 11394 11395 /* Check if Flow Director n-tuple support was enabled or disabled. If 11396 * the state changed, we need to reset. 11397 */ 11398 if (features & NETIF_F_NTUPLE) { 11399 /* Enable filters and mark for reset */ 11400 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 11401 need_reset = true; 11402 /* enable FD_SB only if there is MSI-X vector and no cloud 11403 * filters exist 11404 */ 11405 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 11406 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11407 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 11408 } 11409 } else { 11410 /* turn off filters, mark for reset and clear SW filter list */ 11411 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11412 need_reset = true; 11413 i40e_fdir_filter_exit(pf); 11414 } 11415 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11416 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 11417 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11418 11419 /* reset fd counters */ 11420 pf->fd_add_err = 0; 11421 pf->fd_atr_cnt = 0; 11422 /* if ATR was auto disabled it can be re-enabled. */ 11423 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 11424 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 11425 (I40E_DEBUG_FD & pf->hw.debug_mask)) 11426 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 11427 } 11428 return need_reset; 11429 } 11430 11431 /** 11432 * i40e_clear_rss_lut - clear the rx hash lookup table 11433 * @vsi: the VSI being configured 11434 **/ 11435 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 11436 { 11437 struct i40e_pf *pf = vsi->back; 11438 struct i40e_hw *hw = &pf->hw; 11439 u16 vf_id = vsi->vf_id; 11440 u8 i; 11441 11442 if (vsi->type == I40E_VSI_MAIN) { 11443 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11444 wr32(hw, I40E_PFQF_HLUT(i), 0); 11445 } else if (vsi->type == I40E_VSI_SRIOV) { 11446 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11447 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 11448 } else { 11449 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11450 } 11451 } 11452 11453 /** 11454 * i40e_set_features - set the netdev feature flags 11455 * @netdev: ptr to the netdev being adjusted 11456 * @features: the feature set that the stack is suggesting 11457 * Note: expects to be called while under rtnl_lock() 11458 **/ 11459 static int i40e_set_features(struct net_device *netdev, 11460 netdev_features_t features) 11461 { 11462 struct i40e_netdev_priv *np = netdev_priv(netdev); 11463 struct i40e_vsi *vsi = np->vsi; 11464 struct i40e_pf *pf = vsi->back; 11465 bool need_reset; 11466 11467 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 11468 i40e_pf_config_rss(pf); 11469 else if (!(features & NETIF_F_RXHASH) && 11470 netdev->features & NETIF_F_RXHASH) 11471 i40e_clear_rss_lut(vsi); 11472 11473 if (features & NETIF_F_HW_VLAN_CTAG_RX) 11474 i40e_vlan_stripping_enable(vsi); 11475 else 11476 i40e_vlan_stripping_disable(vsi); 11477 11478 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 11479 dev_err(&pf->pdev->dev, 11480 "Offloaded tc filters active, can't turn hw_tc_offload off"); 11481 return -EINVAL; 11482 } 11483 11484 need_reset = i40e_set_ntuple(pf, features); 11485 11486 if (need_reset) 11487 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11488 11489 return 0; 11490 } 11491 11492 /** 11493 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 11494 * @pf: board private structure 11495 * @port: The UDP port to look up 11496 * 11497 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 11498 **/ 11499 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 11500 { 11501 u8 i; 11502 11503 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 11504 /* Do not report ports with pending deletions as 11505 * being available. 11506 */ 11507 if (!port && (pf->pending_udp_bitmap & BIT_ULL(i))) 11508 continue; 11509 if (pf->udp_ports[i].port == port) 11510 return i; 11511 } 11512 11513 return i; 11514 } 11515 11516 /** 11517 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 11518 * @netdev: This physical port's netdev 11519 * @ti: Tunnel endpoint information 11520 **/ 11521 static void i40e_udp_tunnel_add(struct net_device *netdev, 11522 struct udp_tunnel_info *ti) 11523 { 11524 struct i40e_netdev_priv *np = netdev_priv(netdev); 11525 struct i40e_vsi *vsi = np->vsi; 11526 struct i40e_pf *pf = vsi->back; 11527 u16 port = ntohs(ti->port); 11528 u8 next_idx; 11529 u8 idx; 11530 11531 idx = i40e_get_udp_port_idx(pf, port); 11532 11533 /* Check if port already exists */ 11534 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11535 netdev_info(netdev, "port %d already offloaded\n", port); 11536 return; 11537 } 11538 11539 /* Now check if there is space to add the new port */ 11540 next_idx = i40e_get_udp_port_idx(pf, 0); 11541 11542 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11543 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 11544 port); 11545 return; 11546 } 11547 11548 switch (ti->type) { 11549 case UDP_TUNNEL_TYPE_VXLAN: 11550 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 11551 break; 11552 case UDP_TUNNEL_TYPE_GENEVE: 11553 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 11554 return; 11555 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 11556 break; 11557 default: 11558 return; 11559 } 11560 11561 /* New port: add it and mark its index in the bitmap */ 11562 pf->udp_ports[next_idx].port = port; 11563 pf->udp_ports[next_idx].filter_index = I40E_UDP_PORT_INDEX_UNUSED; 11564 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 11565 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11566 } 11567 11568 /** 11569 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 11570 * @netdev: This physical port's netdev 11571 * @ti: Tunnel endpoint information 11572 **/ 11573 static void i40e_udp_tunnel_del(struct net_device *netdev, 11574 struct udp_tunnel_info *ti) 11575 { 11576 struct i40e_netdev_priv *np = netdev_priv(netdev); 11577 struct i40e_vsi *vsi = np->vsi; 11578 struct i40e_pf *pf = vsi->back; 11579 u16 port = ntohs(ti->port); 11580 u8 idx; 11581 11582 idx = i40e_get_udp_port_idx(pf, port); 11583 11584 /* Check if port already exists */ 11585 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 11586 goto not_found; 11587 11588 switch (ti->type) { 11589 case UDP_TUNNEL_TYPE_VXLAN: 11590 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 11591 goto not_found; 11592 break; 11593 case UDP_TUNNEL_TYPE_GENEVE: 11594 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 11595 goto not_found; 11596 break; 11597 default: 11598 goto not_found; 11599 } 11600 11601 /* if port exists, set it to 0 (mark for deletion) 11602 * and make it pending 11603 */ 11604 pf->udp_ports[idx].port = 0; 11605 11606 /* Toggle pending bit instead of setting it. This way if we are 11607 * deleting a port that has yet to be added we just clear the pending 11608 * bit and don't have to worry about it. 11609 */ 11610 pf->pending_udp_bitmap ^= BIT_ULL(idx); 11611 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11612 11613 return; 11614 not_found: 11615 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 11616 port); 11617 } 11618 11619 static int i40e_get_phys_port_id(struct net_device *netdev, 11620 struct netdev_phys_item_id *ppid) 11621 { 11622 struct i40e_netdev_priv *np = netdev_priv(netdev); 11623 struct i40e_pf *pf = np->vsi->back; 11624 struct i40e_hw *hw = &pf->hw; 11625 11626 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 11627 return -EOPNOTSUPP; 11628 11629 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 11630 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 11631 11632 return 0; 11633 } 11634 11635 /** 11636 * i40e_ndo_fdb_add - add an entry to the hardware database 11637 * @ndm: the input from the stack 11638 * @tb: pointer to array of nladdr (unused) 11639 * @dev: the net device pointer 11640 * @addr: the MAC address entry being added 11641 * @vid: VLAN ID 11642 * @flags: instructions from stack about fdb operation 11643 */ 11644 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 11645 struct net_device *dev, 11646 const unsigned char *addr, u16 vid, 11647 u16 flags) 11648 { 11649 struct i40e_netdev_priv *np = netdev_priv(dev); 11650 struct i40e_pf *pf = np->vsi->back; 11651 int err = 0; 11652 11653 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 11654 return -EOPNOTSUPP; 11655 11656 if (vid) { 11657 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 11658 return -EINVAL; 11659 } 11660 11661 /* Hardware does not support aging addresses so if a 11662 * ndm_state is given only allow permanent addresses 11663 */ 11664 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 11665 netdev_info(dev, "FDB only supports static addresses\n"); 11666 return -EINVAL; 11667 } 11668 11669 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 11670 err = dev_uc_add_excl(dev, addr); 11671 else if (is_multicast_ether_addr(addr)) 11672 err = dev_mc_add_excl(dev, addr); 11673 else 11674 err = -EINVAL; 11675 11676 /* Only return duplicate errors if NLM_F_EXCL is set */ 11677 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 11678 err = 0; 11679 11680 return err; 11681 } 11682 11683 /** 11684 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 11685 * @dev: the netdev being configured 11686 * @nlh: RTNL message 11687 * @flags: bridge flags 11688 * @extack: netlink extended ack 11689 * 11690 * Inserts a new hardware bridge if not already created and 11691 * enables the bridging mode requested (VEB or VEPA). If the 11692 * hardware bridge has already been inserted and the request 11693 * is to change the mode then that requires a PF reset to 11694 * allow rebuild of the components with required hardware 11695 * bridge mode enabled. 11696 * 11697 * Note: expects to be called while under rtnl_lock() 11698 **/ 11699 static int i40e_ndo_bridge_setlink(struct net_device *dev, 11700 struct nlmsghdr *nlh, 11701 u16 flags, 11702 struct netlink_ext_ack *extack) 11703 { 11704 struct i40e_netdev_priv *np = netdev_priv(dev); 11705 struct i40e_vsi *vsi = np->vsi; 11706 struct i40e_pf *pf = vsi->back; 11707 struct i40e_veb *veb = NULL; 11708 struct nlattr *attr, *br_spec; 11709 int i, rem; 11710 11711 /* Only for PF VSI for now */ 11712 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11713 return -EOPNOTSUPP; 11714 11715 /* Find the HW bridge for PF VSI */ 11716 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11717 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11718 veb = pf->veb[i]; 11719 } 11720 11721 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 11722 11723 nla_for_each_nested(attr, br_spec, rem) { 11724 __u16 mode; 11725 11726 if (nla_type(attr) != IFLA_BRIDGE_MODE) 11727 continue; 11728 11729 mode = nla_get_u16(attr); 11730 if ((mode != BRIDGE_MODE_VEPA) && 11731 (mode != BRIDGE_MODE_VEB)) 11732 return -EINVAL; 11733 11734 /* Insert a new HW bridge */ 11735 if (!veb) { 11736 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 11737 vsi->tc_config.enabled_tc); 11738 if (veb) { 11739 veb->bridge_mode = mode; 11740 i40e_config_bridge_mode(veb); 11741 } else { 11742 /* No Bridge HW offload available */ 11743 return -ENOENT; 11744 } 11745 break; 11746 } else if (mode != veb->bridge_mode) { 11747 /* Existing HW bridge but different mode needs reset */ 11748 veb->bridge_mode = mode; 11749 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 11750 if (mode == BRIDGE_MODE_VEB) 11751 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 11752 else 11753 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 11754 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11755 break; 11756 } 11757 } 11758 11759 return 0; 11760 } 11761 11762 /** 11763 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 11764 * @skb: skb buff 11765 * @pid: process id 11766 * @seq: RTNL message seq # 11767 * @dev: the netdev being configured 11768 * @filter_mask: unused 11769 * @nlflags: netlink flags passed in 11770 * 11771 * Return the mode in which the hardware bridge is operating in 11772 * i.e VEB or VEPA. 11773 **/ 11774 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11775 struct net_device *dev, 11776 u32 __always_unused filter_mask, 11777 int nlflags) 11778 { 11779 struct i40e_netdev_priv *np = netdev_priv(dev); 11780 struct i40e_vsi *vsi = np->vsi; 11781 struct i40e_pf *pf = vsi->back; 11782 struct i40e_veb *veb = NULL; 11783 int i; 11784 11785 /* Only for PF VSI for now */ 11786 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11787 return -EOPNOTSUPP; 11788 11789 /* Find the HW bridge for the PF VSI */ 11790 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11791 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11792 veb = pf->veb[i]; 11793 } 11794 11795 if (!veb) 11796 return 0; 11797 11798 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 11799 0, 0, nlflags, filter_mask, NULL); 11800 } 11801 11802 /** 11803 * i40e_features_check - Validate encapsulated packet conforms to limits 11804 * @skb: skb buff 11805 * @dev: This physical port's netdev 11806 * @features: Offload features that the stack believes apply 11807 **/ 11808 static netdev_features_t i40e_features_check(struct sk_buff *skb, 11809 struct net_device *dev, 11810 netdev_features_t features) 11811 { 11812 size_t len; 11813 11814 /* No point in doing any of this if neither checksum nor GSO are 11815 * being requested for this frame. We can rule out both by just 11816 * checking for CHECKSUM_PARTIAL 11817 */ 11818 if (skb->ip_summed != CHECKSUM_PARTIAL) 11819 return features; 11820 11821 /* We cannot support GSO if the MSS is going to be less than 11822 * 64 bytes. If it is then we need to drop support for GSO. 11823 */ 11824 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 11825 features &= ~NETIF_F_GSO_MASK; 11826 11827 /* MACLEN can support at most 63 words */ 11828 len = skb_network_header(skb) - skb->data; 11829 if (len & ~(63 * 2)) 11830 goto out_err; 11831 11832 /* IPLEN and EIPLEN can support at most 127 dwords */ 11833 len = skb_transport_header(skb) - skb_network_header(skb); 11834 if (len & ~(127 * 4)) 11835 goto out_err; 11836 11837 if (skb->encapsulation) { 11838 /* L4TUNLEN can support 127 words */ 11839 len = skb_inner_network_header(skb) - skb_transport_header(skb); 11840 if (len & ~(127 * 2)) 11841 goto out_err; 11842 11843 /* IPLEN can support at most 127 dwords */ 11844 len = skb_inner_transport_header(skb) - 11845 skb_inner_network_header(skb); 11846 if (len & ~(127 * 4)) 11847 goto out_err; 11848 } 11849 11850 /* No need to validate L4LEN as TCP is the only protocol with a 11851 * a flexible value and we support all possible values supported 11852 * by TCP, which is at most 15 dwords 11853 */ 11854 11855 return features; 11856 out_err: 11857 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11858 } 11859 11860 /** 11861 * i40e_xdp_setup - add/remove an XDP program 11862 * @vsi: VSI to changed 11863 * @prog: XDP program 11864 **/ 11865 static int i40e_xdp_setup(struct i40e_vsi *vsi, 11866 struct bpf_prog *prog) 11867 { 11868 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 11869 struct i40e_pf *pf = vsi->back; 11870 struct bpf_prog *old_prog; 11871 bool need_reset; 11872 int i; 11873 11874 /* Don't allow frames that span over multiple buffers */ 11875 if (frame_size > vsi->rx_buf_len) 11876 return -EINVAL; 11877 11878 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 11879 return 0; 11880 11881 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 11882 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 11883 11884 if (need_reset) 11885 i40e_prep_for_reset(pf, true); 11886 11887 old_prog = xchg(&vsi->xdp_prog, prog); 11888 11889 if (need_reset) 11890 i40e_reset_and_rebuild(pf, true, true); 11891 11892 for (i = 0; i < vsi->num_queue_pairs; i++) 11893 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 11894 11895 if (old_prog) 11896 bpf_prog_put(old_prog); 11897 11898 return 0; 11899 } 11900 11901 /** 11902 * i40e_enter_busy_conf - Enters busy config state 11903 * @vsi: vsi 11904 * 11905 * Returns 0 on success, <0 for failure. 11906 **/ 11907 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 11908 { 11909 struct i40e_pf *pf = vsi->back; 11910 int timeout = 50; 11911 11912 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 11913 timeout--; 11914 if (!timeout) 11915 return -EBUSY; 11916 usleep_range(1000, 2000); 11917 } 11918 11919 return 0; 11920 } 11921 11922 /** 11923 * i40e_exit_busy_conf - Exits busy config state 11924 * @vsi: vsi 11925 **/ 11926 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 11927 { 11928 struct i40e_pf *pf = vsi->back; 11929 11930 clear_bit(__I40E_CONFIG_BUSY, pf->state); 11931 } 11932 11933 /** 11934 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 11935 * @vsi: vsi 11936 * @queue_pair: queue pair 11937 **/ 11938 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 11939 { 11940 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 11941 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 11942 memset(&vsi->tx_rings[queue_pair]->stats, 0, 11943 sizeof(vsi->tx_rings[queue_pair]->stats)); 11944 if (i40e_enabled_xdp_vsi(vsi)) { 11945 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 11946 sizeof(vsi->xdp_rings[queue_pair]->stats)); 11947 } 11948 } 11949 11950 /** 11951 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 11952 * @vsi: vsi 11953 * @queue_pair: queue pair 11954 **/ 11955 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 11956 { 11957 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 11958 if (i40e_enabled_xdp_vsi(vsi)) 11959 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 11960 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 11961 } 11962 11963 /** 11964 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 11965 * @vsi: vsi 11966 * @queue_pair: queue pair 11967 * @enable: true for enable, false for disable 11968 **/ 11969 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 11970 bool enable) 11971 { 11972 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 11973 struct i40e_q_vector *q_vector = rxr->q_vector; 11974 11975 if (!vsi->netdev) 11976 return; 11977 11978 /* All rings in a qp belong to the same qvector. */ 11979 if (q_vector->rx.ring || q_vector->tx.ring) { 11980 if (enable) 11981 napi_enable(&q_vector->napi); 11982 else 11983 napi_disable(&q_vector->napi); 11984 } 11985 } 11986 11987 /** 11988 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 11989 * @vsi: vsi 11990 * @queue_pair: queue pair 11991 * @enable: true for enable, false for disable 11992 * 11993 * Returns 0 on success, <0 on failure. 11994 **/ 11995 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 11996 bool enable) 11997 { 11998 struct i40e_pf *pf = vsi->back; 11999 int pf_q, ret = 0; 12000 12001 pf_q = vsi->base_queue + queue_pair; 12002 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 12003 false /*is xdp*/, enable); 12004 if (ret) { 12005 dev_info(&pf->pdev->dev, 12006 "VSI seid %d Tx ring %d %sable timeout\n", 12007 vsi->seid, pf_q, (enable ? "en" : "dis")); 12008 return ret; 12009 } 12010 12011 i40e_control_rx_q(pf, pf_q, enable); 12012 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 12013 if (ret) { 12014 dev_info(&pf->pdev->dev, 12015 "VSI seid %d Rx ring %d %sable timeout\n", 12016 vsi->seid, pf_q, (enable ? "en" : "dis")); 12017 return ret; 12018 } 12019 12020 /* Due to HW errata, on Rx disable only, the register can 12021 * indicate done before it really is. Needs 50ms to be sure 12022 */ 12023 if (!enable) 12024 mdelay(50); 12025 12026 if (!i40e_enabled_xdp_vsi(vsi)) 12027 return ret; 12028 12029 ret = i40e_control_wait_tx_q(vsi->seid, pf, 12030 pf_q + vsi->alloc_queue_pairs, 12031 true /*is xdp*/, enable); 12032 if (ret) { 12033 dev_info(&pf->pdev->dev, 12034 "VSI seid %d XDP Tx ring %d %sable timeout\n", 12035 vsi->seid, pf_q, (enable ? "en" : "dis")); 12036 } 12037 12038 return ret; 12039 } 12040 12041 /** 12042 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 12043 * @vsi: vsi 12044 * @queue_pair: queue_pair 12045 **/ 12046 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 12047 { 12048 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12049 struct i40e_pf *pf = vsi->back; 12050 struct i40e_hw *hw = &pf->hw; 12051 12052 /* All rings in a qp belong to the same qvector. */ 12053 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 12054 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 12055 else 12056 i40e_irq_dynamic_enable_icr0(pf); 12057 12058 i40e_flush(hw); 12059 } 12060 12061 /** 12062 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 12063 * @vsi: vsi 12064 * @queue_pair: queue_pair 12065 **/ 12066 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 12067 { 12068 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12069 struct i40e_pf *pf = vsi->back; 12070 struct i40e_hw *hw = &pf->hw; 12071 12072 /* For simplicity, instead of removing the qp interrupt causes 12073 * from the interrupt linked list, we simply disable the interrupt, and 12074 * leave the list intact. 12075 * 12076 * All rings in a qp belong to the same qvector. 12077 */ 12078 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 12079 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 12080 12081 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 12082 i40e_flush(hw); 12083 synchronize_irq(pf->msix_entries[intpf].vector); 12084 } else { 12085 /* Legacy and MSI mode - this stops all interrupt handling */ 12086 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 12087 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 12088 i40e_flush(hw); 12089 synchronize_irq(pf->pdev->irq); 12090 } 12091 } 12092 12093 /** 12094 * i40e_queue_pair_disable - Disables a queue pair 12095 * @vsi: vsi 12096 * @queue_pair: queue pair 12097 * 12098 * Returns 0 on success, <0 on failure. 12099 **/ 12100 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 12101 { 12102 int err; 12103 12104 err = i40e_enter_busy_conf(vsi); 12105 if (err) 12106 return err; 12107 12108 i40e_queue_pair_disable_irq(vsi, queue_pair); 12109 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 12110 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 12111 i40e_queue_pair_clean_rings(vsi, queue_pair); 12112 i40e_queue_pair_reset_stats(vsi, queue_pair); 12113 12114 return err; 12115 } 12116 12117 /** 12118 * i40e_queue_pair_enable - Enables a queue pair 12119 * @vsi: vsi 12120 * @queue_pair: queue pair 12121 * 12122 * Returns 0 on success, <0 on failure. 12123 **/ 12124 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 12125 { 12126 int err; 12127 12128 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 12129 if (err) 12130 return err; 12131 12132 if (i40e_enabled_xdp_vsi(vsi)) { 12133 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 12134 if (err) 12135 return err; 12136 } 12137 12138 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 12139 if (err) 12140 return err; 12141 12142 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 12143 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 12144 i40e_queue_pair_enable_irq(vsi, queue_pair); 12145 12146 i40e_exit_busy_conf(vsi); 12147 12148 return err; 12149 } 12150 12151 /** 12152 * i40e_xdp - implements ndo_bpf for i40e 12153 * @dev: netdevice 12154 * @xdp: XDP command 12155 **/ 12156 static int i40e_xdp(struct net_device *dev, 12157 struct netdev_bpf *xdp) 12158 { 12159 struct i40e_netdev_priv *np = netdev_priv(dev); 12160 struct i40e_vsi *vsi = np->vsi; 12161 12162 if (vsi->type != I40E_VSI_MAIN) 12163 return -EINVAL; 12164 12165 switch (xdp->command) { 12166 case XDP_SETUP_PROG: 12167 return i40e_xdp_setup(vsi, xdp->prog); 12168 case XDP_QUERY_PROG: 12169 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 12170 return 0; 12171 case XDP_QUERY_XSK_UMEM: 12172 return i40e_xsk_umem_query(vsi, &xdp->xsk.umem, 12173 xdp->xsk.queue_id); 12174 case XDP_SETUP_XSK_UMEM: 12175 return i40e_xsk_umem_setup(vsi, xdp->xsk.umem, 12176 xdp->xsk.queue_id); 12177 default: 12178 return -EINVAL; 12179 } 12180 } 12181 12182 static const struct net_device_ops i40e_netdev_ops = { 12183 .ndo_open = i40e_open, 12184 .ndo_stop = i40e_close, 12185 .ndo_start_xmit = i40e_lan_xmit_frame, 12186 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 12187 .ndo_set_rx_mode = i40e_set_rx_mode, 12188 .ndo_validate_addr = eth_validate_addr, 12189 .ndo_set_mac_address = i40e_set_mac, 12190 .ndo_change_mtu = i40e_change_mtu, 12191 .ndo_do_ioctl = i40e_ioctl, 12192 .ndo_tx_timeout = i40e_tx_timeout, 12193 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 12194 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 12195 #ifdef CONFIG_NET_POLL_CONTROLLER 12196 .ndo_poll_controller = i40e_netpoll, 12197 #endif 12198 .ndo_setup_tc = __i40e_setup_tc, 12199 .ndo_set_features = i40e_set_features, 12200 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 12201 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 12202 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 12203 .ndo_get_vf_config = i40e_ndo_get_vf_config, 12204 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 12205 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 12206 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 12207 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 12208 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 12209 .ndo_get_phys_port_id = i40e_get_phys_port_id, 12210 .ndo_fdb_add = i40e_ndo_fdb_add, 12211 .ndo_features_check = i40e_features_check, 12212 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 12213 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 12214 .ndo_bpf = i40e_xdp, 12215 .ndo_xdp_xmit = i40e_xdp_xmit, 12216 .ndo_xsk_async_xmit = i40e_xsk_async_xmit, 12217 }; 12218 12219 /** 12220 * i40e_config_netdev - Setup the netdev flags 12221 * @vsi: the VSI being configured 12222 * 12223 * Returns 0 on success, negative value on failure 12224 **/ 12225 static int i40e_config_netdev(struct i40e_vsi *vsi) 12226 { 12227 struct i40e_pf *pf = vsi->back; 12228 struct i40e_hw *hw = &pf->hw; 12229 struct i40e_netdev_priv *np; 12230 struct net_device *netdev; 12231 u8 broadcast[ETH_ALEN]; 12232 u8 mac_addr[ETH_ALEN]; 12233 int etherdev_size; 12234 netdev_features_t hw_enc_features; 12235 netdev_features_t hw_features; 12236 12237 etherdev_size = sizeof(struct i40e_netdev_priv); 12238 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 12239 if (!netdev) 12240 return -ENOMEM; 12241 12242 vsi->netdev = netdev; 12243 np = netdev_priv(netdev); 12244 np->vsi = vsi; 12245 12246 hw_enc_features = NETIF_F_SG | 12247 NETIF_F_IP_CSUM | 12248 NETIF_F_IPV6_CSUM | 12249 NETIF_F_HIGHDMA | 12250 NETIF_F_SOFT_FEATURES | 12251 NETIF_F_TSO | 12252 NETIF_F_TSO_ECN | 12253 NETIF_F_TSO6 | 12254 NETIF_F_GSO_GRE | 12255 NETIF_F_GSO_GRE_CSUM | 12256 NETIF_F_GSO_PARTIAL | 12257 NETIF_F_GSO_IPXIP4 | 12258 NETIF_F_GSO_IPXIP6 | 12259 NETIF_F_GSO_UDP_TUNNEL | 12260 NETIF_F_GSO_UDP_TUNNEL_CSUM | 12261 NETIF_F_SCTP_CRC | 12262 NETIF_F_RXHASH | 12263 NETIF_F_RXCSUM | 12264 0; 12265 12266 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 12267 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 12268 12269 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 12270 12271 netdev->hw_enc_features |= hw_enc_features; 12272 12273 /* record features VLANs can make use of */ 12274 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 12275 12276 hw_features = hw_enc_features | 12277 NETIF_F_HW_VLAN_CTAG_TX | 12278 NETIF_F_HW_VLAN_CTAG_RX; 12279 12280 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 12281 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 12282 12283 netdev->hw_features |= hw_features; 12284 12285 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 12286 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 12287 12288 if (vsi->type == I40E_VSI_MAIN) { 12289 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 12290 ether_addr_copy(mac_addr, hw->mac.perm_addr); 12291 /* The following steps are necessary for two reasons. First, 12292 * some older NVM configurations load a default MAC-VLAN 12293 * filter that will accept any tagged packet, and we want to 12294 * replace this with a normal filter. Additionally, it is 12295 * possible our MAC address was provided by the platform using 12296 * Open Firmware or similar. 12297 * 12298 * Thus, we need to remove the default filter and install one 12299 * specific to the MAC address. 12300 */ 12301 i40e_rm_default_mac_filter(vsi, mac_addr); 12302 spin_lock_bh(&vsi->mac_filter_hash_lock); 12303 i40e_add_mac_filter(vsi, mac_addr); 12304 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12305 } else { 12306 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 12307 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 12308 * the end, which is 4 bytes long, so force truncation of the 12309 * original name by IFNAMSIZ - 4 12310 */ 12311 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 12312 IFNAMSIZ - 4, 12313 pf->vsi[pf->lan_vsi]->netdev->name); 12314 eth_random_addr(mac_addr); 12315 12316 spin_lock_bh(&vsi->mac_filter_hash_lock); 12317 i40e_add_mac_filter(vsi, mac_addr); 12318 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12319 } 12320 12321 /* Add the broadcast filter so that we initially will receive 12322 * broadcast packets. Note that when a new VLAN is first added the 12323 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 12324 * specific filters as part of transitioning into "vlan" operation. 12325 * When more VLANs are added, the driver will copy each existing MAC 12326 * filter and add it for the new VLAN. 12327 * 12328 * Broadcast filters are handled specially by 12329 * i40e_sync_filters_subtask, as the driver must to set the broadcast 12330 * promiscuous bit instead of adding this directly as a MAC/VLAN 12331 * filter. The subtask will update the correct broadcast promiscuous 12332 * bits as VLANs become active or inactive. 12333 */ 12334 eth_broadcast_addr(broadcast); 12335 spin_lock_bh(&vsi->mac_filter_hash_lock); 12336 i40e_add_mac_filter(vsi, broadcast); 12337 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12338 12339 ether_addr_copy(netdev->dev_addr, mac_addr); 12340 ether_addr_copy(netdev->perm_addr, mac_addr); 12341 12342 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 12343 netdev->neigh_priv_len = sizeof(u32) * 4; 12344 12345 netdev->priv_flags |= IFF_UNICAST_FLT; 12346 netdev->priv_flags |= IFF_SUPP_NOFCS; 12347 /* Setup netdev TC information */ 12348 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 12349 12350 netdev->netdev_ops = &i40e_netdev_ops; 12351 netdev->watchdog_timeo = 5 * HZ; 12352 i40e_set_ethtool_ops(netdev); 12353 12354 /* MTU range: 68 - 9706 */ 12355 netdev->min_mtu = ETH_MIN_MTU; 12356 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 12357 12358 return 0; 12359 } 12360 12361 /** 12362 * i40e_vsi_delete - Delete a VSI from the switch 12363 * @vsi: the VSI being removed 12364 * 12365 * Returns 0 on success, negative value on failure 12366 **/ 12367 static void i40e_vsi_delete(struct i40e_vsi *vsi) 12368 { 12369 /* remove default VSI is not allowed */ 12370 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 12371 return; 12372 12373 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 12374 } 12375 12376 /** 12377 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 12378 * @vsi: the VSI being queried 12379 * 12380 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 12381 **/ 12382 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 12383 { 12384 struct i40e_veb *veb; 12385 struct i40e_pf *pf = vsi->back; 12386 12387 /* Uplink is not a bridge so default to VEB */ 12388 if (vsi->veb_idx == I40E_NO_VEB) 12389 return 1; 12390 12391 veb = pf->veb[vsi->veb_idx]; 12392 if (!veb) { 12393 dev_info(&pf->pdev->dev, 12394 "There is no veb associated with the bridge\n"); 12395 return -ENOENT; 12396 } 12397 12398 /* Uplink is a bridge in VEPA mode */ 12399 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 12400 return 0; 12401 } else { 12402 /* Uplink is a bridge in VEB mode */ 12403 return 1; 12404 } 12405 12406 /* VEPA is now default bridge, so return 0 */ 12407 return 0; 12408 } 12409 12410 /** 12411 * i40e_add_vsi - Add a VSI to the switch 12412 * @vsi: the VSI being configured 12413 * 12414 * This initializes a VSI context depending on the VSI type to be added and 12415 * passes it down to the add_vsi aq command. 12416 **/ 12417 static int i40e_add_vsi(struct i40e_vsi *vsi) 12418 { 12419 int ret = -ENODEV; 12420 struct i40e_pf *pf = vsi->back; 12421 struct i40e_hw *hw = &pf->hw; 12422 struct i40e_vsi_context ctxt; 12423 struct i40e_mac_filter *f; 12424 struct hlist_node *h; 12425 int bkt; 12426 12427 u8 enabled_tc = 0x1; /* TC0 enabled */ 12428 int f_count = 0; 12429 12430 memset(&ctxt, 0, sizeof(ctxt)); 12431 switch (vsi->type) { 12432 case I40E_VSI_MAIN: 12433 /* The PF's main VSI is already setup as part of the 12434 * device initialization, so we'll not bother with 12435 * the add_vsi call, but we will retrieve the current 12436 * VSI context. 12437 */ 12438 ctxt.seid = pf->main_vsi_seid; 12439 ctxt.pf_num = pf->hw.pf_id; 12440 ctxt.vf_num = 0; 12441 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 12442 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12443 if (ret) { 12444 dev_info(&pf->pdev->dev, 12445 "couldn't get PF vsi config, err %s aq_err %s\n", 12446 i40e_stat_str(&pf->hw, ret), 12447 i40e_aq_str(&pf->hw, 12448 pf->hw.aq.asq_last_status)); 12449 return -ENOENT; 12450 } 12451 vsi->info = ctxt.info; 12452 vsi->info.valid_sections = 0; 12453 12454 vsi->seid = ctxt.seid; 12455 vsi->id = ctxt.vsi_number; 12456 12457 enabled_tc = i40e_pf_get_tc_map(pf); 12458 12459 /* Source pruning is enabled by default, so the flag is 12460 * negative logic - if it's set, we need to fiddle with 12461 * the VSI to disable source pruning. 12462 */ 12463 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 12464 memset(&ctxt, 0, sizeof(ctxt)); 12465 ctxt.seid = pf->main_vsi_seid; 12466 ctxt.pf_num = pf->hw.pf_id; 12467 ctxt.vf_num = 0; 12468 ctxt.info.valid_sections |= 12469 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12470 ctxt.info.switch_id = 12471 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 12472 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12473 if (ret) { 12474 dev_info(&pf->pdev->dev, 12475 "update vsi failed, err %s aq_err %s\n", 12476 i40e_stat_str(&pf->hw, ret), 12477 i40e_aq_str(&pf->hw, 12478 pf->hw.aq.asq_last_status)); 12479 ret = -ENOENT; 12480 goto err; 12481 } 12482 } 12483 12484 /* MFP mode setup queue map and update VSI */ 12485 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 12486 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 12487 memset(&ctxt, 0, sizeof(ctxt)); 12488 ctxt.seid = pf->main_vsi_seid; 12489 ctxt.pf_num = pf->hw.pf_id; 12490 ctxt.vf_num = 0; 12491 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 12492 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12493 if (ret) { 12494 dev_info(&pf->pdev->dev, 12495 "update vsi failed, err %s aq_err %s\n", 12496 i40e_stat_str(&pf->hw, ret), 12497 i40e_aq_str(&pf->hw, 12498 pf->hw.aq.asq_last_status)); 12499 ret = -ENOENT; 12500 goto err; 12501 } 12502 /* update the local VSI info queue map */ 12503 i40e_vsi_update_queue_map(vsi, &ctxt); 12504 vsi->info.valid_sections = 0; 12505 } else { 12506 /* Default/Main VSI is only enabled for TC0 12507 * reconfigure it to enable all TCs that are 12508 * available on the port in SFP mode. 12509 * For MFP case the iSCSI PF would use this 12510 * flow to enable LAN+iSCSI TC. 12511 */ 12512 ret = i40e_vsi_config_tc(vsi, enabled_tc); 12513 if (ret) { 12514 /* Single TC condition is not fatal, 12515 * message and continue 12516 */ 12517 dev_info(&pf->pdev->dev, 12518 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 12519 enabled_tc, 12520 i40e_stat_str(&pf->hw, ret), 12521 i40e_aq_str(&pf->hw, 12522 pf->hw.aq.asq_last_status)); 12523 } 12524 } 12525 break; 12526 12527 case I40E_VSI_FDIR: 12528 ctxt.pf_num = hw->pf_id; 12529 ctxt.vf_num = 0; 12530 ctxt.uplink_seid = vsi->uplink_seid; 12531 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12532 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12533 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 12534 (i40e_is_vsi_uplink_mode_veb(vsi))) { 12535 ctxt.info.valid_sections |= 12536 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12537 ctxt.info.switch_id = 12538 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12539 } 12540 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12541 break; 12542 12543 case I40E_VSI_VMDQ2: 12544 ctxt.pf_num = hw->pf_id; 12545 ctxt.vf_num = 0; 12546 ctxt.uplink_seid = vsi->uplink_seid; 12547 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12548 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 12549 12550 /* This VSI is connected to VEB so the switch_id 12551 * should be set to zero by default. 12552 */ 12553 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12554 ctxt.info.valid_sections |= 12555 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12556 ctxt.info.switch_id = 12557 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12558 } 12559 12560 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12561 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12562 break; 12563 12564 case I40E_VSI_SRIOV: 12565 ctxt.pf_num = hw->pf_id; 12566 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 12567 ctxt.uplink_seid = vsi->uplink_seid; 12568 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12569 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 12570 12571 /* This VSI is connected to VEB so the switch_id 12572 * should be set to zero by default. 12573 */ 12574 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12575 ctxt.info.valid_sections |= 12576 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12577 ctxt.info.switch_id = 12578 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12579 } 12580 12581 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 12582 ctxt.info.valid_sections |= 12583 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 12584 ctxt.info.queueing_opt_flags |= 12585 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 12586 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 12587 } 12588 12589 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 12590 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 12591 if (pf->vf[vsi->vf_id].spoofchk) { 12592 ctxt.info.valid_sections |= 12593 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 12594 ctxt.info.sec_flags |= 12595 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 12596 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 12597 } 12598 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12599 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12600 break; 12601 12602 case I40E_VSI_IWARP: 12603 /* send down message to iWARP */ 12604 break; 12605 12606 default: 12607 return -ENODEV; 12608 } 12609 12610 if (vsi->type != I40E_VSI_MAIN) { 12611 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 12612 if (ret) { 12613 dev_info(&vsi->back->pdev->dev, 12614 "add vsi failed, err %s aq_err %s\n", 12615 i40e_stat_str(&pf->hw, ret), 12616 i40e_aq_str(&pf->hw, 12617 pf->hw.aq.asq_last_status)); 12618 ret = -ENOENT; 12619 goto err; 12620 } 12621 vsi->info = ctxt.info; 12622 vsi->info.valid_sections = 0; 12623 vsi->seid = ctxt.seid; 12624 vsi->id = ctxt.vsi_number; 12625 } 12626 12627 vsi->active_filters = 0; 12628 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 12629 spin_lock_bh(&vsi->mac_filter_hash_lock); 12630 /* If macvlan filters already exist, force them to get loaded */ 12631 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 12632 f->state = I40E_FILTER_NEW; 12633 f_count++; 12634 } 12635 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12636 12637 if (f_count) { 12638 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 12639 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 12640 } 12641 12642 /* Update VSI BW information */ 12643 ret = i40e_vsi_get_bw_info(vsi); 12644 if (ret) { 12645 dev_info(&pf->pdev->dev, 12646 "couldn't get vsi bw info, err %s aq_err %s\n", 12647 i40e_stat_str(&pf->hw, ret), 12648 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12649 /* VSI is already added so not tearing that up */ 12650 ret = 0; 12651 } 12652 12653 err: 12654 return ret; 12655 } 12656 12657 /** 12658 * i40e_vsi_release - Delete a VSI and free its resources 12659 * @vsi: the VSI being removed 12660 * 12661 * Returns 0 on success or < 0 on error 12662 **/ 12663 int i40e_vsi_release(struct i40e_vsi *vsi) 12664 { 12665 struct i40e_mac_filter *f; 12666 struct hlist_node *h; 12667 struct i40e_veb *veb = NULL; 12668 struct i40e_pf *pf; 12669 u16 uplink_seid; 12670 int i, n, bkt; 12671 12672 pf = vsi->back; 12673 12674 /* release of a VEB-owner or last VSI is not allowed */ 12675 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 12676 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 12677 vsi->seid, vsi->uplink_seid); 12678 return -ENODEV; 12679 } 12680 if (vsi == pf->vsi[pf->lan_vsi] && 12681 !test_bit(__I40E_DOWN, pf->state)) { 12682 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 12683 return -ENODEV; 12684 } 12685 12686 uplink_seid = vsi->uplink_seid; 12687 if (vsi->type != I40E_VSI_SRIOV) { 12688 if (vsi->netdev_registered) { 12689 vsi->netdev_registered = false; 12690 if (vsi->netdev) { 12691 /* results in a call to i40e_close() */ 12692 unregister_netdev(vsi->netdev); 12693 } 12694 } else { 12695 i40e_vsi_close(vsi); 12696 } 12697 i40e_vsi_disable_irq(vsi); 12698 } 12699 12700 spin_lock_bh(&vsi->mac_filter_hash_lock); 12701 12702 /* clear the sync flag on all filters */ 12703 if (vsi->netdev) { 12704 __dev_uc_unsync(vsi->netdev, NULL); 12705 __dev_mc_unsync(vsi->netdev, NULL); 12706 } 12707 12708 /* make sure any remaining filters are marked for deletion */ 12709 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 12710 __i40e_del_filter(vsi, f); 12711 12712 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12713 12714 i40e_sync_vsi_filters(vsi); 12715 12716 i40e_vsi_delete(vsi); 12717 i40e_vsi_free_q_vectors(vsi); 12718 if (vsi->netdev) { 12719 free_netdev(vsi->netdev); 12720 vsi->netdev = NULL; 12721 } 12722 i40e_vsi_clear_rings(vsi); 12723 i40e_vsi_clear(vsi); 12724 12725 /* If this was the last thing on the VEB, except for the 12726 * controlling VSI, remove the VEB, which puts the controlling 12727 * VSI onto the next level down in the switch. 12728 * 12729 * Well, okay, there's one more exception here: don't remove 12730 * the orphan VEBs yet. We'll wait for an explicit remove request 12731 * from up the network stack. 12732 */ 12733 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 12734 if (pf->vsi[i] && 12735 pf->vsi[i]->uplink_seid == uplink_seid && 12736 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12737 n++; /* count the VSIs */ 12738 } 12739 } 12740 for (i = 0; i < I40E_MAX_VEB; i++) { 12741 if (!pf->veb[i]) 12742 continue; 12743 if (pf->veb[i]->uplink_seid == uplink_seid) 12744 n++; /* count the VEBs */ 12745 if (pf->veb[i]->seid == uplink_seid) 12746 veb = pf->veb[i]; 12747 } 12748 if (n == 0 && veb && veb->uplink_seid != 0) 12749 i40e_veb_release(veb); 12750 12751 return 0; 12752 } 12753 12754 /** 12755 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 12756 * @vsi: ptr to the VSI 12757 * 12758 * This should only be called after i40e_vsi_mem_alloc() which allocates the 12759 * corresponding SW VSI structure and initializes num_queue_pairs for the 12760 * newly allocated VSI. 12761 * 12762 * Returns 0 on success or negative on failure 12763 **/ 12764 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 12765 { 12766 int ret = -ENOENT; 12767 struct i40e_pf *pf = vsi->back; 12768 12769 if (vsi->q_vectors[0]) { 12770 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 12771 vsi->seid); 12772 return -EEXIST; 12773 } 12774 12775 if (vsi->base_vector) { 12776 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 12777 vsi->seid, vsi->base_vector); 12778 return -EEXIST; 12779 } 12780 12781 ret = i40e_vsi_alloc_q_vectors(vsi); 12782 if (ret) { 12783 dev_info(&pf->pdev->dev, 12784 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 12785 vsi->num_q_vectors, vsi->seid, ret); 12786 vsi->num_q_vectors = 0; 12787 goto vector_setup_out; 12788 } 12789 12790 /* In Legacy mode, we do not have to get any other vector since we 12791 * piggyback on the misc/ICR0 for queue interrupts. 12792 */ 12793 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 12794 return ret; 12795 if (vsi->num_q_vectors) 12796 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 12797 vsi->num_q_vectors, vsi->idx); 12798 if (vsi->base_vector < 0) { 12799 dev_info(&pf->pdev->dev, 12800 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 12801 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 12802 i40e_vsi_free_q_vectors(vsi); 12803 ret = -ENOENT; 12804 goto vector_setup_out; 12805 } 12806 12807 vector_setup_out: 12808 return ret; 12809 } 12810 12811 /** 12812 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 12813 * @vsi: pointer to the vsi. 12814 * 12815 * This re-allocates a vsi's queue resources. 12816 * 12817 * Returns pointer to the successfully allocated and configured VSI sw struct 12818 * on success, otherwise returns NULL on failure. 12819 **/ 12820 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 12821 { 12822 u16 alloc_queue_pairs; 12823 struct i40e_pf *pf; 12824 u8 enabled_tc; 12825 int ret; 12826 12827 if (!vsi) 12828 return NULL; 12829 12830 pf = vsi->back; 12831 12832 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 12833 i40e_vsi_clear_rings(vsi); 12834 12835 i40e_vsi_free_arrays(vsi, false); 12836 i40e_set_num_rings_in_vsi(vsi); 12837 ret = i40e_vsi_alloc_arrays(vsi, false); 12838 if (ret) 12839 goto err_vsi; 12840 12841 alloc_queue_pairs = vsi->alloc_queue_pairs * 12842 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12843 12844 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12845 if (ret < 0) { 12846 dev_info(&pf->pdev->dev, 12847 "failed to get tracking for %d queues for VSI %d err %d\n", 12848 alloc_queue_pairs, vsi->seid, ret); 12849 goto err_vsi; 12850 } 12851 vsi->base_queue = ret; 12852 12853 /* Update the FW view of the VSI. Force a reset of TC and queue 12854 * layout configurations. 12855 */ 12856 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 12857 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 12858 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 12859 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 12860 if (vsi->type == I40E_VSI_MAIN) 12861 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 12862 12863 /* assign it some queues */ 12864 ret = i40e_alloc_rings(vsi); 12865 if (ret) 12866 goto err_rings; 12867 12868 /* map all of the rings to the q_vectors */ 12869 i40e_vsi_map_rings_to_vectors(vsi); 12870 return vsi; 12871 12872 err_rings: 12873 i40e_vsi_free_q_vectors(vsi); 12874 if (vsi->netdev_registered) { 12875 vsi->netdev_registered = false; 12876 unregister_netdev(vsi->netdev); 12877 free_netdev(vsi->netdev); 12878 vsi->netdev = NULL; 12879 } 12880 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12881 err_vsi: 12882 i40e_vsi_clear(vsi); 12883 return NULL; 12884 } 12885 12886 /** 12887 * i40e_vsi_setup - Set up a VSI by a given type 12888 * @pf: board private structure 12889 * @type: VSI type 12890 * @uplink_seid: the switch element to link to 12891 * @param1: usage depends upon VSI type. For VF types, indicates VF id 12892 * 12893 * This allocates the sw VSI structure and its queue resources, then add a VSI 12894 * to the identified VEB. 12895 * 12896 * Returns pointer to the successfully allocated and configure VSI sw struct on 12897 * success, otherwise returns NULL on failure. 12898 **/ 12899 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 12900 u16 uplink_seid, u32 param1) 12901 { 12902 struct i40e_vsi *vsi = NULL; 12903 struct i40e_veb *veb = NULL; 12904 u16 alloc_queue_pairs; 12905 int ret, i; 12906 int v_idx; 12907 12908 /* The requested uplink_seid must be either 12909 * - the PF's port seid 12910 * no VEB is needed because this is the PF 12911 * or this is a Flow Director special case VSI 12912 * - seid of an existing VEB 12913 * - seid of a VSI that owns an existing VEB 12914 * - seid of a VSI that doesn't own a VEB 12915 * a new VEB is created and the VSI becomes the owner 12916 * - seid of the PF VSI, which is what creates the first VEB 12917 * this is a special case of the previous 12918 * 12919 * Find which uplink_seid we were given and create a new VEB if needed 12920 */ 12921 for (i = 0; i < I40E_MAX_VEB; i++) { 12922 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 12923 veb = pf->veb[i]; 12924 break; 12925 } 12926 } 12927 12928 if (!veb && uplink_seid != pf->mac_seid) { 12929 12930 for (i = 0; i < pf->num_alloc_vsi; i++) { 12931 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 12932 vsi = pf->vsi[i]; 12933 break; 12934 } 12935 } 12936 if (!vsi) { 12937 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 12938 uplink_seid); 12939 return NULL; 12940 } 12941 12942 if (vsi->uplink_seid == pf->mac_seid) 12943 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 12944 vsi->tc_config.enabled_tc); 12945 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 12946 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12947 vsi->tc_config.enabled_tc); 12948 if (veb) { 12949 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 12950 dev_info(&vsi->back->pdev->dev, 12951 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 12952 return NULL; 12953 } 12954 /* We come up by default in VEPA mode if SRIOV is not 12955 * already enabled, in which case we can't force VEPA 12956 * mode. 12957 */ 12958 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 12959 veb->bridge_mode = BRIDGE_MODE_VEPA; 12960 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12961 } 12962 i40e_config_bridge_mode(veb); 12963 } 12964 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12965 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12966 veb = pf->veb[i]; 12967 } 12968 if (!veb) { 12969 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 12970 return NULL; 12971 } 12972 12973 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12974 uplink_seid = veb->seid; 12975 } 12976 12977 /* get vsi sw struct */ 12978 v_idx = i40e_vsi_mem_alloc(pf, type); 12979 if (v_idx < 0) 12980 goto err_alloc; 12981 vsi = pf->vsi[v_idx]; 12982 if (!vsi) 12983 goto err_alloc; 12984 vsi->type = type; 12985 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 12986 12987 if (type == I40E_VSI_MAIN) 12988 pf->lan_vsi = v_idx; 12989 else if (type == I40E_VSI_SRIOV) 12990 vsi->vf_id = param1; 12991 /* assign it some queues */ 12992 alloc_queue_pairs = vsi->alloc_queue_pairs * 12993 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12994 12995 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12996 if (ret < 0) { 12997 dev_info(&pf->pdev->dev, 12998 "failed to get tracking for %d queues for VSI %d err=%d\n", 12999 alloc_queue_pairs, vsi->seid, ret); 13000 goto err_vsi; 13001 } 13002 vsi->base_queue = ret; 13003 13004 /* get a VSI from the hardware */ 13005 vsi->uplink_seid = uplink_seid; 13006 ret = i40e_add_vsi(vsi); 13007 if (ret) 13008 goto err_vsi; 13009 13010 switch (vsi->type) { 13011 /* setup the netdev if needed */ 13012 case I40E_VSI_MAIN: 13013 case I40E_VSI_VMDQ2: 13014 ret = i40e_config_netdev(vsi); 13015 if (ret) 13016 goto err_netdev; 13017 ret = register_netdev(vsi->netdev); 13018 if (ret) 13019 goto err_netdev; 13020 vsi->netdev_registered = true; 13021 netif_carrier_off(vsi->netdev); 13022 #ifdef CONFIG_I40E_DCB 13023 /* Setup DCB netlink interface */ 13024 i40e_dcbnl_setup(vsi); 13025 #endif /* CONFIG_I40E_DCB */ 13026 /* fall through */ 13027 13028 case I40E_VSI_FDIR: 13029 /* set up vectors and rings if needed */ 13030 ret = i40e_vsi_setup_vectors(vsi); 13031 if (ret) 13032 goto err_msix; 13033 13034 ret = i40e_alloc_rings(vsi); 13035 if (ret) 13036 goto err_rings; 13037 13038 /* map all of the rings to the q_vectors */ 13039 i40e_vsi_map_rings_to_vectors(vsi); 13040 13041 i40e_vsi_reset_stats(vsi); 13042 break; 13043 13044 default: 13045 /* no netdev or rings for the other VSI types */ 13046 break; 13047 } 13048 13049 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 13050 (vsi->type == I40E_VSI_VMDQ2)) { 13051 ret = i40e_vsi_config_rss(vsi); 13052 } 13053 return vsi; 13054 13055 err_rings: 13056 i40e_vsi_free_q_vectors(vsi); 13057 err_msix: 13058 if (vsi->netdev_registered) { 13059 vsi->netdev_registered = false; 13060 unregister_netdev(vsi->netdev); 13061 free_netdev(vsi->netdev); 13062 vsi->netdev = NULL; 13063 } 13064 err_netdev: 13065 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13066 err_vsi: 13067 i40e_vsi_clear(vsi); 13068 err_alloc: 13069 return NULL; 13070 } 13071 13072 /** 13073 * i40e_veb_get_bw_info - Query VEB BW information 13074 * @veb: the veb to query 13075 * 13076 * Query the Tx scheduler BW configuration data for given VEB 13077 **/ 13078 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 13079 { 13080 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 13081 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 13082 struct i40e_pf *pf = veb->pf; 13083 struct i40e_hw *hw = &pf->hw; 13084 u32 tc_bw_max; 13085 int ret = 0; 13086 int i; 13087 13088 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 13089 &bw_data, NULL); 13090 if (ret) { 13091 dev_info(&pf->pdev->dev, 13092 "query veb bw config failed, err %s aq_err %s\n", 13093 i40e_stat_str(&pf->hw, ret), 13094 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13095 goto out; 13096 } 13097 13098 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 13099 &ets_data, NULL); 13100 if (ret) { 13101 dev_info(&pf->pdev->dev, 13102 "query veb bw ets config failed, err %s aq_err %s\n", 13103 i40e_stat_str(&pf->hw, ret), 13104 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13105 goto out; 13106 } 13107 13108 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 13109 veb->bw_max_quanta = ets_data.tc_bw_max; 13110 veb->is_abs_credits = bw_data.absolute_credits_enable; 13111 veb->enabled_tc = ets_data.tc_valid_bits; 13112 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 13113 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 13114 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 13115 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 13116 veb->bw_tc_limit_credits[i] = 13117 le16_to_cpu(bw_data.tc_bw_limits[i]); 13118 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 13119 } 13120 13121 out: 13122 return ret; 13123 } 13124 13125 /** 13126 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 13127 * @pf: board private structure 13128 * 13129 * On error: returns error code (negative) 13130 * On success: returns vsi index in PF (positive) 13131 **/ 13132 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 13133 { 13134 int ret = -ENOENT; 13135 struct i40e_veb *veb; 13136 int i; 13137 13138 /* Need to protect the allocation of switch elements at the PF level */ 13139 mutex_lock(&pf->switch_mutex); 13140 13141 /* VEB list may be fragmented if VEB creation/destruction has 13142 * been happening. We can afford to do a quick scan to look 13143 * for any free slots in the list. 13144 * 13145 * find next empty veb slot, looping back around if necessary 13146 */ 13147 i = 0; 13148 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 13149 i++; 13150 if (i >= I40E_MAX_VEB) { 13151 ret = -ENOMEM; 13152 goto err_alloc_veb; /* out of VEB slots! */ 13153 } 13154 13155 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 13156 if (!veb) { 13157 ret = -ENOMEM; 13158 goto err_alloc_veb; 13159 } 13160 veb->pf = pf; 13161 veb->idx = i; 13162 veb->enabled_tc = 1; 13163 13164 pf->veb[i] = veb; 13165 ret = i; 13166 err_alloc_veb: 13167 mutex_unlock(&pf->switch_mutex); 13168 return ret; 13169 } 13170 13171 /** 13172 * i40e_switch_branch_release - Delete a branch of the switch tree 13173 * @branch: where to start deleting 13174 * 13175 * This uses recursion to find the tips of the branch to be 13176 * removed, deleting until we get back to and can delete this VEB. 13177 **/ 13178 static void i40e_switch_branch_release(struct i40e_veb *branch) 13179 { 13180 struct i40e_pf *pf = branch->pf; 13181 u16 branch_seid = branch->seid; 13182 u16 veb_idx = branch->idx; 13183 int i; 13184 13185 /* release any VEBs on this VEB - RECURSION */ 13186 for (i = 0; i < I40E_MAX_VEB; i++) { 13187 if (!pf->veb[i]) 13188 continue; 13189 if (pf->veb[i]->uplink_seid == branch->seid) 13190 i40e_switch_branch_release(pf->veb[i]); 13191 } 13192 13193 /* Release the VSIs on this VEB, but not the owner VSI. 13194 * 13195 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 13196 * the VEB itself, so don't use (*branch) after this loop. 13197 */ 13198 for (i = 0; i < pf->num_alloc_vsi; i++) { 13199 if (!pf->vsi[i]) 13200 continue; 13201 if (pf->vsi[i]->uplink_seid == branch_seid && 13202 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13203 i40e_vsi_release(pf->vsi[i]); 13204 } 13205 } 13206 13207 /* There's one corner case where the VEB might not have been 13208 * removed, so double check it here and remove it if needed. 13209 * This case happens if the veb was created from the debugfs 13210 * commands and no VSIs were added to it. 13211 */ 13212 if (pf->veb[veb_idx]) 13213 i40e_veb_release(pf->veb[veb_idx]); 13214 } 13215 13216 /** 13217 * i40e_veb_clear - remove veb struct 13218 * @veb: the veb to remove 13219 **/ 13220 static void i40e_veb_clear(struct i40e_veb *veb) 13221 { 13222 if (!veb) 13223 return; 13224 13225 if (veb->pf) { 13226 struct i40e_pf *pf = veb->pf; 13227 13228 mutex_lock(&pf->switch_mutex); 13229 if (pf->veb[veb->idx] == veb) 13230 pf->veb[veb->idx] = NULL; 13231 mutex_unlock(&pf->switch_mutex); 13232 } 13233 13234 kfree(veb); 13235 } 13236 13237 /** 13238 * i40e_veb_release - Delete a VEB and free its resources 13239 * @veb: the VEB being removed 13240 **/ 13241 void i40e_veb_release(struct i40e_veb *veb) 13242 { 13243 struct i40e_vsi *vsi = NULL; 13244 struct i40e_pf *pf; 13245 int i, n = 0; 13246 13247 pf = veb->pf; 13248 13249 /* find the remaining VSI and check for extras */ 13250 for (i = 0; i < pf->num_alloc_vsi; i++) { 13251 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 13252 n++; 13253 vsi = pf->vsi[i]; 13254 } 13255 } 13256 if (n != 1) { 13257 dev_info(&pf->pdev->dev, 13258 "can't remove VEB %d with %d VSIs left\n", 13259 veb->seid, n); 13260 return; 13261 } 13262 13263 /* move the remaining VSI to uplink veb */ 13264 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 13265 if (veb->uplink_seid) { 13266 vsi->uplink_seid = veb->uplink_seid; 13267 if (veb->uplink_seid == pf->mac_seid) 13268 vsi->veb_idx = I40E_NO_VEB; 13269 else 13270 vsi->veb_idx = veb->veb_idx; 13271 } else { 13272 /* floating VEB */ 13273 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 13274 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 13275 } 13276 13277 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13278 i40e_veb_clear(veb); 13279 } 13280 13281 /** 13282 * i40e_add_veb - create the VEB in the switch 13283 * @veb: the VEB to be instantiated 13284 * @vsi: the controlling VSI 13285 **/ 13286 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 13287 { 13288 struct i40e_pf *pf = veb->pf; 13289 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 13290 int ret; 13291 13292 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 13293 veb->enabled_tc, false, 13294 &veb->seid, enable_stats, NULL); 13295 13296 /* get a VEB from the hardware */ 13297 if (ret) { 13298 dev_info(&pf->pdev->dev, 13299 "couldn't add VEB, err %s aq_err %s\n", 13300 i40e_stat_str(&pf->hw, ret), 13301 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13302 return -EPERM; 13303 } 13304 13305 /* get statistics counter */ 13306 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 13307 &veb->stats_idx, NULL, NULL, NULL); 13308 if (ret) { 13309 dev_info(&pf->pdev->dev, 13310 "couldn't get VEB statistics idx, err %s aq_err %s\n", 13311 i40e_stat_str(&pf->hw, ret), 13312 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13313 return -EPERM; 13314 } 13315 ret = i40e_veb_get_bw_info(veb); 13316 if (ret) { 13317 dev_info(&pf->pdev->dev, 13318 "couldn't get VEB bw info, err %s aq_err %s\n", 13319 i40e_stat_str(&pf->hw, ret), 13320 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13321 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13322 return -ENOENT; 13323 } 13324 13325 vsi->uplink_seid = veb->seid; 13326 vsi->veb_idx = veb->idx; 13327 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13328 13329 return 0; 13330 } 13331 13332 /** 13333 * i40e_veb_setup - Set up a VEB 13334 * @pf: board private structure 13335 * @flags: VEB setup flags 13336 * @uplink_seid: the switch element to link to 13337 * @vsi_seid: the initial VSI seid 13338 * @enabled_tc: Enabled TC bit-map 13339 * 13340 * This allocates the sw VEB structure and links it into the switch 13341 * It is possible and legal for this to be a duplicate of an already 13342 * existing VEB. It is also possible for both uplink and vsi seids 13343 * to be zero, in order to create a floating VEB. 13344 * 13345 * Returns pointer to the successfully allocated VEB sw struct on 13346 * success, otherwise returns NULL on failure. 13347 **/ 13348 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 13349 u16 uplink_seid, u16 vsi_seid, 13350 u8 enabled_tc) 13351 { 13352 struct i40e_veb *veb, *uplink_veb = NULL; 13353 int vsi_idx, veb_idx; 13354 int ret; 13355 13356 /* if one seid is 0, the other must be 0 to create a floating relay */ 13357 if ((uplink_seid == 0 || vsi_seid == 0) && 13358 (uplink_seid + vsi_seid != 0)) { 13359 dev_info(&pf->pdev->dev, 13360 "one, not both seid's are 0: uplink=%d vsi=%d\n", 13361 uplink_seid, vsi_seid); 13362 return NULL; 13363 } 13364 13365 /* make sure there is such a vsi and uplink */ 13366 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 13367 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 13368 break; 13369 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 13370 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 13371 vsi_seid); 13372 return NULL; 13373 } 13374 13375 if (uplink_seid && uplink_seid != pf->mac_seid) { 13376 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 13377 if (pf->veb[veb_idx] && 13378 pf->veb[veb_idx]->seid == uplink_seid) { 13379 uplink_veb = pf->veb[veb_idx]; 13380 break; 13381 } 13382 } 13383 if (!uplink_veb) { 13384 dev_info(&pf->pdev->dev, 13385 "uplink seid %d not found\n", uplink_seid); 13386 return NULL; 13387 } 13388 } 13389 13390 /* get veb sw struct */ 13391 veb_idx = i40e_veb_mem_alloc(pf); 13392 if (veb_idx < 0) 13393 goto err_alloc; 13394 veb = pf->veb[veb_idx]; 13395 veb->flags = flags; 13396 veb->uplink_seid = uplink_seid; 13397 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 13398 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 13399 13400 /* create the VEB in the switch */ 13401 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 13402 if (ret) 13403 goto err_veb; 13404 if (vsi_idx == pf->lan_vsi) 13405 pf->lan_veb = veb->idx; 13406 13407 return veb; 13408 13409 err_veb: 13410 i40e_veb_clear(veb); 13411 err_alloc: 13412 return NULL; 13413 } 13414 13415 /** 13416 * i40e_setup_pf_switch_element - set PF vars based on switch type 13417 * @pf: board private structure 13418 * @ele: element we are building info from 13419 * @num_reported: total number of elements 13420 * @printconfig: should we print the contents 13421 * 13422 * helper function to assist in extracting a few useful SEID values. 13423 **/ 13424 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 13425 struct i40e_aqc_switch_config_element_resp *ele, 13426 u16 num_reported, bool printconfig) 13427 { 13428 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 13429 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 13430 u8 element_type = ele->element_type; 13431 u16 seid = le16_to_cpu(ele->seid); 13432 13433 if (printconfig) 13434 dev_info(&pf->pdev->dev, 13435 "type=%d seid=%d uplink=%d downlink=%d\n", 13436 element_type, seid, uplink_seid, downlink_seid); 13437 13438 switch (element_type) { 13439 case I40E_SWITCH_ELEMENT_TYPE_MAC: 13440 pf->mac_seid = seid; 13441 break; 13442 case I40E_SWITCH_ELEMENT_TYPE_VEB: 13443 /* Main VEB? */ 13444 if (uplink_seid != pf->mac_seid) 13445 break; 13446 if (pf->lan_veb == I40E_NO_VEB) { 13447 int v; 13448 13449 /* find existing or else empty VEB */ 13450 for (v = 0; v < I40E_MAX_VEB; v++) { 13451 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 13452 pf->lan_veb = v; 13453 break; 13454 } 13455 } 13456 if (pf->lan_veb == I40E_NO_VEB) { 13457 v = i40e_veb_mem_alloc(pf); 13458 if (v < 0) 13459 break; 13460 pf->lan_veb = v; 13461 } 13462 } 13463 13464 pf->veb[pf->lan_veb]->seid = seid; 13465 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 13466 pf->veb[pf->lan_veb]->pf = pf; 13467 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 13468 break; 13469 case I40E_SWITCH_ELEMENT_TYPE_VSI: 13470 if (num_reported != 1) 13471 break; 13472 /* This is immediately after a reset so we can assume this is 13473 * the PF's VSI 13474 */ 13475 pf->mac_seid = uplink_seid; 13476 pf->pf_seid = downlink_seid; 13477 pf->main_vsi_seid = seid; 13478 if (printconfig) 13479 dev_info(&pf->pdev->dev, 13480 "pf_seid=%d main_vsi_seid=%d\n", 13481 pf->pf_seid, pf->main_vsi_seid); 13482 break; 13483 case I40E_SWITCH_ELEMENT_TYPE_PF: 13484 case I40E_SWITCH_ELEMENT_TYPE_VF: 13485 case I40E_SWITCH_ELEMENT_TYPE_EMP: 13486 case I40E_SWITCH_ELEMENT_TYPE_BMC: 13487 case I40E_SWITCH_ELEMENT_TYPE_PE: 13488 case I40E_SWITCH_ELEMENT_TYPE_PA: 13489 /* ignore these for now */ 13490 break; 13491 default: 13492 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 13493 element_type, seid); 13494 break; 13495 } 13496 } 13497 13498 /** 13499 * i40e_fetch_switch_configuration - Get switch config from firmware 13500 * @pf: board private structure 13501 * @printconfig: should we print the contents 13502 * 13503 * Get the current switch configuration from the device and 13504 * extract a few useful SEID values. 13505 **/ 13506 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 13507 { 13508 struct i40e_aqc_get_switch_config_resp *sw_config; 13509 u16 next_seid = 0; 13510 int ret = 0; 13511 u8 *aq_buf; 13512 int i; 13513 13514 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 13515 if (!aq_buf) 13516 return -ENOMEM; 13517 13518 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 13519 do { 13520 u16 num_reported, num_total; 13521 13522 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 13523 I40E_AQ_LARGE_BUF, 13524 &next_seid, NULL); 13525 if (ret) { 13526 dev_info(&pf->pdev->dev, 13527 "get switch config failed err %s aq_err %s\n", 13528 i40e_stat_str(&pf->hw, ret), 13529 i40e_aq_str(&pf->hw, 13530 pf->hw.aq.asq_last_status)); 13531 kfree(aq_buf); 13532 return -ENOENT; 13533 } 13534 13535 num_reported = le16_to_cpu(sw_config->header.num_reported); 13536 num_total = le16_to_cpu(sw_config->header.num_total); 13537 13538 if (printconfig) 13539 dev_info(&pf->pdev->dev, 13540 "header: %d reported %d total\n", 13541 num_reported, num_total); 13542 13543 for (i = 0; i < num_reported; i++) { 13544 struct i40e_aqc_switch_config_element_resp *ele = 13545 &sw_config->element[i]; 13546 13547 i40e_setup_pf_switch_element(pf, ele, num_reported, 13548 printconfig); 13549 } 13550 } while (next_seid != 0); 13551 13552 kfree(aq_buf); 13553 return ret; 13554 } 13555 13556 /** 13557 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 13558 * @pf: board private structure 13559 * @reinit: if the Main VSI needs to re-initialized. 13560 * 13561 * Returns 0 on success, negative value on failure 13562 **/ 13563 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 13564 { 13565 u16 flags = 0; 13566 int ret; 13567 13568 /* find out what's out there already */ 13569 ret = i40e_fetch_switch_configuration(pf, false); 13570 if (ret) { 13571 dev_info(&pf->pdev->dev, 13572 "couldn't fetch switch config, err %s aq_err %s\n", 13573 i40e_stat_str(&pf->hw, ret), 13574 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13575 return ret; 13576 } 13577 i40e_pf_reset_stats(pf); 13578 13579 /* set the switch config bit for the whole device to 13580 * support limited promisc or true promisc 13581 * when user requests promisc. The default is limited 13582 * promisc. 13583 */ 13584 13585 if ((pf->hw.pf_id == 0) && 13586 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 13587 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13588 pf->last_sw_conf_flags = flags; 13589 } 13590 13591 if (pf->hw.pf_id == 0) { 13592 u16 valid_flags; 13593 13594 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13595 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 13596 NULL); 13597 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 13598 dev_info(&pf->pdev->dev, 13599 "couldn't set switch config bits, err %s aq_err %s\n", 13600 i40e_stat_str(&pf->hw, ret), 13601 i40e_aq_str(&pf->hw, 13602 pf->hw.aq.asq_last_status)); 13603 /* not a fatal problem, just keep going */ 13604 } 13605 pf->last_sw_conf_valid_flags = valid_flags; 13606 } 13607 13608 /* first time setup */ 13609 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 13610 struct i40e_vsi *vsi = NULL; 13611 u16 uplink_seid; 13612 13613 /* Set up the PF VSI associated with the PF's main VSI 13614 * that is already in the HW switch 13615 */ 13616 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 13617 uplink_seid = pf->veb[pf->lan_veb]->seid; 13618 else 13619 uplink_seid = pf->mac_seid; 13620 if (pf->lan_vsi == I40E_NO_VSI) 13621 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 13622 else if (reinit) 13623 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 13624 if (!vsi) { 13625 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 13626 i40e_cloud_filter_exit(pf); 13627 i40e_fdir_teardown(pf); 13628 return -EAGAIN; 13629 } 13630 } else { 13631 /* force a reset of TC and queue layout configurations */ 13632 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13633 13634 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13635 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13636 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13637 } 13638 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 13639 13640 i40e_fdir_sb_setup(pf); 13641 13642 /* Setup static PF queue filter control settings */ 13643 ret = i40e_setup_pf_filter_control(pf); 13644 if (ret) { 13645 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 13646 ret); 13647 /* Failure here should not stop continuing other steps */ 13648 } 13649 13650 /* enable RSS in the HW, even for only one queue, as the stack can use 13651 * the hash 13652 */ 13653 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 13654 i40e_pf_config_rss(pf); 13655 13656 /* fill in link information and enable LSE reporting */ 13657 i40e_link_event(pf); 13658 13659 /* Initialize user-specific link properties */ 13660 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 13661 I40E_AQ_AN_COMPLETED) ? true : false); 13662 13663 i40e_ptp_init(pf); 13664 13665 /* repopulate tunnel port filters */ 13666 i40e_sync_udp_filters(pf); 13667 13668 return ret; 13669 } 13670 13671 /** 13672 * i40e_determine_queue_usage - Work out queue distribution 13673 * @pf: board private structure 13674 **/ 13675 static void i40e_determine_queue_usage(struct i40e_pf *pf) 13676 { 13677 int queues_left; 13678 int q_max; 13679 13680 pf->num_lan_qps = 0; 13681 13682 /* Find the max queues to be put into basic use. We'll always be 13683 * using TC0, whether or not DCB is running, and TC0 will get the 13684 * big RSS set. 13685 */ 13686 queues_left = pf->hw.func_caps.num_tx_qp; 13687 13688 if ((queues_left == 1) || 13689 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 13690 /* one qp for PF, no queues for anything else */ 13691 queues_left = 0; 13692 pf->alloc_rss_size = pf->num_lan_qps = 1; 13693 13694 /* make sure all the fancies are disabled */ 13695 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13696 I40E_FLAG_IWARP_ENABLED | 13697 I40E_FLAG_FD_SB_ENABLED | 13698 I40E_FLAG_FD_ATR_ENABLED | 13699 I40E_FLAG_DCB_CAPABLE | 13700 I40E_FLAG_DCB_ENABLED | 13701 I40E_FLAG_SRIOV_ENABLED | 13702 I40E_FLAG_VMDQ_ENABLED); 13703 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13704 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 13705 I40E_FLAG_FD_SB_ENABLED | 13706 I40E_FLAG_FD_ATR_ENABLED | 13707 I40E_FLAG_DCB_CAPABLE))) { 13708 /* one qp for PF */ 13709 pf->alloc_rss_size = pf->num_lan_qps = 1; 13710 queues_left -= pf->num_lan_qps; 13711 13712 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13713 I40E_FLAG_IWARP_ENABLED | 13714 I40E_FLAG_FD_SB_ENABLED | 13715 I40E_FLAG_FD_ATR_ENABLED | 13716 I40E_FLAG_DCB_ENABLED | 13717 I40E_FLAG_VMDQ_ENABLED); 13718 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13719 } else { 13720 /* Not enough queues for all TCs */ 13721 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 13722 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 13723 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 13724 I40E_FLAG_DCB_ENABLED); 13725 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 13726 } 13727 13728 /* limit lan qps to the smaller of qps, cpus or msix */ 13729 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 13730 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 13731 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 13732 pf->num_lan_qps = q_max; 13733 13734 queues_left -= pf->num_lan_qps; 13735 } 13736 13737 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13738 if (queues_left > 1) { 13739 queues_left -= 1; /* save 1 queue for FD */ 13740 } else { 13741 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 13742 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13743 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 13744 } 13745 } 13746 13747 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13748 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 13749 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 13750 (queues_left / pf->num_vf_qps)); 13751 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 13752 } 13753 13754 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 13755 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 13756 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 13757 (queues_left / pf->num_vmdq_qps)); 13758 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 13759 } 13760 13761 pf->queues_left = queues_left; 13762 dev_dbg(&pf->pdev->dev, 13763 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 13764 pf->hw.func_caps.num_tx_qp, 13765 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 13766 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 13767 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 13768 queues_left); 13769 } 13770 13771 /** 13772 * i40e_setup_pf_filter_control - Setup PF static filter control 13773 * @pf: PF to be setup 13774 * 13775 * i40e_setup_pf_filter_control sets up a PF's initial filter control 13776 * settings. If PE/FCoE are enabled then it will also set the per PF 13777 * based filter sizes required for them. It also enables Flow director, 13778 * ethertype and macvlan type filter settings for the pf. 13779 * 13780 * Returns 0 on success, negative on failure 13781 **/ 13782 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 13783 { 13784 struct i40e_filter_control_settings *settings = &pf->filter_settings; 13785 13786 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 13787 13788 /* Flow Director is enabled */ 13789 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 13790 settings->enable_fdir = true; 13791 13792 /* Ethtype and MACVLAN filters enabled for PF */ 13793 settings->enable_ethtype = true; 13794 settings->enable_macvlan = true; 13795 13796 if (i40e_set_filter_control(&pf->hw, settings)) 13797 return -ENOENT; 13798 13799 return 0; 13800 } 13801 13802 #define INFO_STRING_LEN 255 13803 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 13804 static void i40e_print_features(struct i40e_pf *pf) 13805 { 13806 struct i40e_hw *hw = &pf->hw; 13807 char *buf; 13808 int i; 13809 13810 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 13811 if (!buf) 13812 return; 13813 13814 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 13815 #ifdef CONFIG_PCI_IOV 13816 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 13817 #endif 13818 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 13819 pf->hw.func_caps.num_vsis, 13820 pf->vsi[pf->lan_vsi]->num_queue_pairs); 13821 if (pf->flags & I40E_FLAG_RSS_ENABLED) 13822 i += snprintf(&buf[i], REMAIN(i), " RSS"); 13823 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 13824 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 13825 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13826 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 13827 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 13828 } 13829 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 13830 i += snprintf(&buf[i], REMAIN(i), " DCB"); 13831 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 13832 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 13833 if (pf->flags & I40E_FLAG_PTP) 13834 i += snprintf(&buf[i], REMAIN(i), " PTP"); 13835 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 13836 i += snprintf(&buf[i], REMAIN(i), " VEB"); 13837 else 13838 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 13839 13840 dev_info(&pf->pdev->dev, "%s\n", buf); 13841 kfree(buf); 13842 WARN_ON(i > INFO_STRING_LEN); 13843 } 13844 13845 /** 13846 * i40e_get_platform_mac_addr - get platform-specific MAC address 13847 * @pdev: PCI device information struct 13848 * @pf: board private structure 13849 * 13850 * Look up the MAC address for the device. First we'll try 13851 * eth_platform_get_mac_address, which will check Open Firmware, or arch 13852 * specific fallback. Otherwise, we'll default to the stored value in 13853 * firmware. 13854 **/ 13855 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 13856 { 13857 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 13858 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 13859 } 13860 13861 /** 13862 * i40e_probe - Device initialization routine 13863 * @pdev: PCI device information struct 13864 * @ent: entry in i40e_pci_tbl 13865 * 13866 * i40e_probe initializes a PF identified by a pci_dev structure. 13867 * The OS initialization, configuring of the PF private structure, 13868 * and a hardware reset occur. 13869 * 13870 * Returns 0 on success, negative on failure 13871 **/ 13872 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 13873 { 13874 struct i40e_aq_get_phy_abilities_resp abilities; 13875 struct i40e_pf *pf; 13876 struct i40e_hw *hw; 13877 static u16 pfs_found; 13878 u16 wol_nvm_bits; 13879 u16 link_status; 13880 int err; 13881 u32 val; 13882 u32 i; 13883 u8 set_fc_aq_fail; 13884 13885 err = pci_enable_device_mem(pdev); 13886 if (err) 13887 return err; 13888 13889 /* set up for high or low dma */ 13890 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 13891 if (err) { 13892 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 13893 if (err) { 13894 dev_err(&pdev->dev, 13895 "DMA configuration failed: 0x%x\n", err); 13896 goto err_dma; 13897 } 13898 } 13899 13900 /* set up pci connections */ 13901 err = pci_request_mem_regions(pdev, i40e_driver_name); 13902 if (err) { 13903 dev_info(&pdev->dev, 13904 "pci_request_selected_regions failed %d\n", err); 13905 goto err_pci_reg; 13906 } 13907 13908 pci_enable_pcie_error_reporting(pdev); 13909 pci_set_master(pdev); 13910 13911 /* Now that we have a PCI connection, we need to do the 13912 * low level device setup. This is primarily setting up 13913 * the Admin Queue structures and then querying for the 13914 * device's current profile information. 13915 */ 13916 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 13917 if (!pf) { 13918 err = -ENOMEM; 13919 goto err_pf_alloc; 13920 } 13921 pf->next_vsi = 0; 13922 pf->pdev = pdev; 13923 set_bit(__I40E_DOWN, pf->state); 13924 13925 hw = &pf->hw; 13926 hw->back = pf; 13927 13928 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 13929 I40E_MAX_CSR_SPACE); 13930 13931 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 13932 if (!hw->hw_addr) { 13933 err = -EIO; 13934 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 13935 (unsigned int)pci_resource_start(pdev, 0), 13936 pf->ioremap_len, err); 13937 goto err_ioremap; 13938 } 13939 hw->vendor_id = pdev->vendor; 13940 hw->device_id = pdev->device; 13941 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 13942 hw->subsystem_vendor_id = pdev->subsystem_vendor; 13943 hw->subsystem_device_id = pdev->subsystem_device; 13944 hw->bus.device = PCI_SLOT(pdev->devfn); 13945 hw->bus.func = PCI_FUNC(pdev->devfn); 13946 hw->bus.bus_id = pdev->bus->number; 13947 pf->instance = pfs_found; 13948 13949 /* Select something other than the 802.1ad ethertype for the 13950 * switch to use internally and drop on ingress. 13951 */ 13952 hw->switch_tag = 0xffff; 13953 hw->first_tag = ETH_P_8021AD; 13954 hw->second_tag = ETH_P_8021Q; 13955 13956 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 13957 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 13958 13959 /* set up the locks for the AQ, do this only once in probe 13960 * and destroy them only once in remove 13961 */ 13962 mutex_init(&hw->aq.asq_mutex); 13963 mutex_init(&hw->aq.arq_mutex); 13964 13965 pf->msg_enable = netif_msg_init(debug, 13966 NETIF_MSG_DRV | 13967 NETIF_MSG_PROBE | 13968 NETIF_MSG_LINK); 13969 if (debug < -1) 13970 pf->hw.debug_mask = debug; 13971 13972 /* do a special CORER for clearing PXE mode once at init */ 13973 if (hw->revision_id == 0 && 13974 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 13975 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 13976 i40e_flush(hw); 13977 msleep(200); 13978 pf->corer_count++; 13979 13980 i40e_clear_pxe_mode(hw); 13981 } 13982 13983 /* Reset here to make sure all is clean and to define PF 'n' */ 13984 i40e_clear_hw(hw); 13985 err = i40e_pf_reset(hw); 13986 if (err) { 13987 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 13988 goto err_pf_reset; 13989 } 13990 pf->pfr_count++; 13991 13992 hw->aq.num_arq_entries = I40E_AQ_LEN; 13993 hw->aq.num_asq_entries = I40E_AQ_LEN; 13994 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13995 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13996 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 13997 13998 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 13999 "%s-%s:misc", 14000 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 14001 14002 err = i40e_init_shared_code(hw); 14003 if (err) { 14004 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14005 err); 14006 goto err_pf_reset; 14007 } 14008 14009 /* set up a default setting for link flow control */ 14010 pf->hw.fc.requested_mode = I40E_FC_NONE; 14011 14012 err = i40e_init_adminq(hw); 14013 if (err) { 14014 if (err == I40E_ERR_FIRMWARE_API_VERSION) 14015 dev_info(&pdev->dev, 14016 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n"); 14017 else 14018 dev_info(&pdev->dev, 14019 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 14020 14021 goto err_pf_reset; 14022 } 14023 i40e_get_oem_version(hw); 14024 14025 /* provide nvm, fw, api versions */ 14026 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n", 14027 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 14028 hw->aq.api_maj_ver, hw->aq.api_min_ver, 14029 i40e_nvm_version_str(hw)); 14030 14031 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 14032 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 14033 dev_info(&pdev->dev, 14034 "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n"); 14035 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 14036 dev_info(&pdev->dev, 14037 "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n"); 14038 14039 i40e_verify_eeprom(pf); 14040 14041 /* Rev 0 hardware was never productized */ 14042 if (hw->revision_id < 1) 14043 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 14044 14045 i40e_clear_pxe_mode(hw); 14046 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 14047 if (err) 14048 goto err_adminq_setup; 14049 14050 err = i40e_sw_init(pf); 14051 if (err) { 14052 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 14053 goto err_sw_init; 14054 } 14055 14056 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 14057 hw->func_caps.num_rx_qp, 0, 0); 14058 if (err) { 14059 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 14060 goto err_init_lan_hmc; 14061 } 14062 14063 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 14064 if (err) { 14065 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 14066 err = -ENOENT; 14067 goto err_configure_lan_hmc; 14068 } 14069 14070 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 14071 * Ignore error return codes because if it was already disabled via 14072 * hardware settings this will fail 14073 */ 14074 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 14075 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 14076 i40e_aq_stop_lldp(hw, true, NULL); 14077 } 14078 14079 /* allow a platform config to override the HW addr */ 14080 i40e_get_platform_mac_addr(pdev, pf); 14081 14082 if (!is_valid_ether_addr(hw->mac.addr)) { 14083 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 14084 err = -EIO; 14085 goto err_mac_addr; 14086 } 14087 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 14088 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 14089 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 14090 if (is_valid_ether_addr(hw->mac.port_addr)) 14091 pf->hw_features |= I40E_HW_PORT_ID_VALID; 14092 14093 pci_set_drvdata(pdev, pf); 14094 pci_save_state(pdev); 14095 14096 /* Enable FW to write default DCB config on link-up */ 14097 i40e_aq_set_dcb_parameters(hw, true, NULL); 14098 14099 #ifdef CONFIG_I40E_DCB 14100 err = i40e_init_pf_dcb(pf); 14101 if (err) { 14102 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 14103 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 14104 /* Continue without DCB enabled */ 14105 } 14106 #endif /* CONFIG_I40E_DCB */ 14107 14108 /* set up periodic task facility */ 14109 timer_setup(&pf->service_timer, i40e_service_timer, 0); 14110 pf->service_timer_period = HZ; 14111 14112 INIT_WORK(&pf->service_task, i40e_service_task); 14113 clear_bit(__I40E_SERVICE_SCHED, pf->state); 14114 14115 /* NVM bit on means WoL disabled for the port */ 14116 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 14117 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 14118 pf->wol_en = false; 14119 else 14120 pf->wol_en = true; 14121 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 14122 14123 /* set up the main switch operations */ 14124 i40e_determine_queue_usage(pf); 14125 err = i40e_init_interrupt_scheme(pf); 14126 if (err) 14127 goto err_switch_setup; 14128 14129 /* The number of VSIs reported by the FW is the minimum guaranteed 14130 * to us; HW supports far more and we share the remaining pool with 14131 * the other PFs. We allocate space for more than the guarantee with 14132 * the understanding that we might not get them all later. 14133 */ 14134 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 14135 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 14136 else 14137 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 14138 14139 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 14140 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 14141 GFP_KERNEL); 14142 if (!pf->vsi) { 14143 err = -ENOMEM; 14144 goto err_switch_setup; 14145 } 14146 14147 #ifdef CONFIG_PCI_IOV 14148 /* prep for VF support */ 14149 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14150 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 14151 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 14152 if (pci_num_vf(pdev)) 14153 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 14154 } 14155 #endif 14156 err = i40e_setup_pf_switch(pf, false); 14157 if (err) { 14158 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 14159 goto err_vsis; 14160 } 14161 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 14162 14163 /* Make sure flow control is set according to current settings */ 14164 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 14165 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 14166 dev_dbg(&pf->pdev->dev, 14167 "Set fc with err %s aq_err %s on get_phy_cap\n", 14168 i40e_stat_str(hw, err), 14169 i40e_aq_str(hw, hw->aq.asq_last_status)); 14170 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 14171 dev_dbg(&pf->pdev->dev, 14172 "Set fc with err %s aq_err %s on set_phy_config\n", 14173 i40e_stat_str(hw, err), 14174 i40e_aq_str(hw, hw->aq.asq_last_status)); 14175 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 14176 dev_dbg(&pf->pdev->dev, 14177 "Set fc with err %s aq_err %s on get_link_info\n", 14178 i40e_stat_str(hw, err), 14179 i40e_aq_str(hw, hw->aq.asq_last_status)); 14180 14181 /* if FDIR VSI was set up, start it now */ 14182 for (i = 0; i < pf->num_alloc_vsi; i++) { 14183 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 14184 i40e_vsi_open(pf->vsi[i]); 14185 break; 14186 } 14187 } 14188 14189 /* The driver only wants link up/down and module qualification 14190 * reports from firmware. Note the negative logic. 14191 */ 14192 err = i40e_aq_set_phy_int_mask(&pf->hw, 14193 ~(I40E_AQ_EVENT_LINK_UPDOWN | 14194 I40E_AQ_EVENT_MEDIA_NA | 14195 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 14196 if (err) 14197 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 14198 i40e_stat_str(&pf->hw, err), 14199 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14200 14201 /* Reconfigure hardware for allowing smaller MSS in the case 14202 * of TSO, so that we avoid the MDD being fired and causing 14203 * a reset in the case of small MSS+TSO. 14204 */ 14205 val = rd32(hw, I40E_REG_MSS); 14206 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 14207 val &= ~I40E_REG_MSS_MIN_MASK; 14208 val |= I40E_64BYTE_MSS; 14209 wr32(hw, I40E_REG_MSS, val); 14210 } 14211 14212 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 14213 msleep(75); 14214 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 14215 if (err) 14216 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 14217 i40e_stat_str(&pf->hw, err), 14218 i40e_aq_str(&pf->hw, 14219 pf->hw.aq.asq_last_status)); 14220 } 14221 /* The main driver is (mostly) up and happy. We need to set this state 14222 * before setting up the misc vector or we get a race and the vector 14223 * ends up disabled forever. 14224 */ 14225 clear_bit(__I40E_DOWN, pf->state); 14226 14227 /* In case of MSIX we are going to setup the misc vector right here 14228 * to handle admin queue events etc. In case of legacy and MSI 14229 * the misc functionality and queue processing is combined in 14230 * the same vector and that gets setup at open. 14231 */ 14232 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 14233 err = i40e_setup_misc_vector(pf); 14234 if (err) { 14235 dev_info(&pdev->dev, 14236 "setup of misc vector failed: %d\n", err); 14237 goto err_vsis; 14238 } 14239 } 14240 14241 #ifdef CONFIG_PCI_IOV 14242 /* prep for VF support */ 14243 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14244 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 14245 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 14246 /* disable link interrupts for VFs */ 14247 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 14248 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 14249 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 14250 i40e_flush(hw); 14251 14252 if (pci_num_vf(pdev)) { 14253 dev_info(&pdev->dev, 14254 "Active VFs found, allocating resources.\n"); 14255 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 14256 if (err) 14257 dev_info(&pdev->dev, 14258 "Error %d allocating resources for existing VFs\n", 14259 err); 14260 } 14261 } 14262 #endif /* CONFIG_PCI_IOV */ 14263 14264 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14265 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 14266 pf->num_iwarp_msix, 14267 I40E_IWARP_IRQ_PILE_ID); 14268 if (pf->iwarp_base_vector < 0) { 14269 dev_info(&pdev->dev, 14270 "failed to get tracking for %d vectors for IWARP err=%d\n", 14271 pf->num_iwarp_msix, pf->iwarp_base_vector); 14272 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 14273 } 14274 } 14275 14276 i40e_dbg_pf_init(pf); 14277 14278 /* tell the firmware that we're starting */ 14279 i40e_send_version(pf); 14280 14281 /* since everything's happy, start the service_task timer */ 14282 mod_timer(&pf->service_timer, 14283 round_jiffies(jiffies + pf->service_timer_period)); 14284 14285 /* add this PF to client device list and launch a client service task */ 14286 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14287 err = i40e_lan_add_device(pf); 14288 if (err) 14289 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 14290 err); 14291 } 14292 14293 #define PCI_SPEED_SIZE 8 14294 #define PCI_WIDTH_SIZE 8 14295 /* Devices on the IOSF bus do not have this information 14296 * and will report PCI Gen 1 x 1 by default so don't bother 14297 * checking them. 14298 */ 14299 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 14300 char speed[PCI_SPEED_SIZE] = "Unknown"; 14301 char width[PCI_WIDTH_SIZE] = "Unknown"; 14302 14303 /* Get the negotiated link width and speed from PCI config 14304 * space 14305 */ 14306 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 14307 &link_status); 14308 14309 i40e_set_pci_config_data(hw, link_status); 14310 14311 switch (hw->bus.speed) { 14312 case i40e_bus_speed_8000: 14313 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 14314 case i40e_bus_speed_5000: 14315 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 14316 case i40e_bus_speed_2500: 14317 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 14318 default: 14319 break; 14320 } 14321 switch (hw->bus.width) { 14322 case i40e_bus_width_pcie_x8: 14323 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 14324 case i40e_bus_width_pcie_x4: 14325 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 14326 case i40e_bus_width_pcie_x2: 14327 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 14328 case i40e_bus_width_pcie_x1: 14329 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 14330 default: 14331 break; 14332 } 14333 14334 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 14335 speed, width); 14336 14337 if (hw->bus.width < i40e_bus_width_pcie_x8 || 14338 hw->bus.speed < i40e_bus_speed_8000) { 14339 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 14340 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 14341 } 14342 } 14343 14344 /* get the requested speeds from the fw */ 14345 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 14346 if (err) 14347 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 14348 i40e_stat_str(&pf->hw, err), 14349 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14350 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 14351 14352 /* get the supported phy types from the fw */ 14353 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 14354 if (err) 14355 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 14356 i40e_stat_str(&pf->hw, err), 14357 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14358 14359 /* Add a filter to drop all Flow control frames from any VSI from being 14360 * transmitted. By doing so we stop a malicious VF from sending out 14361 * PAUSE or PFC frames and potentially controlling traffic for other 14362 * PF/VF VSIs. 14363 * The FW can still send Flow control frames if enabled. 14364 */ 14365 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 14366 pf->main_vsi_seid); 14367 14368 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 14369 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 14370 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 14371 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 14372 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 14373 /* print a string summarizing features */ 14374 i40e_print_features(pf); 14375 14376 return 0; 14377 14378 /* Unwind what we've done if something failed in the setup */ 14379 err_vsis: 14380 set_bit(__I40E_DOWN, pf->state); 14381 i40e_clear_interrupt_scheme(pf); 14382 kfree(pf->vsi); 14383 err_switch_setup: 14384 i40e_reset_interrupt_capability(pf); 14385 del_timer_sync(&pf->service_timer); 14386 err_mac_addr: 14387 err_configure_lan_hmc: 14388 (void)i40e_shutdown_lan_hmc(hw); 14389 err_init_lan_hmc: 14390 kfree(pf->qp_pile); 14391 err_sw_init: 14392 err_adminq_setup: 14393 err_pf_reset: 14394 iounmap(hw->hw_addr); 14395 err_ioremap: 14396 kfree(pf); 14397 err_pf_alloc: 14398 pci_disable_pcie_error_reporting(pdev); 14399 pci_release_mem_regions(pdev); 14400 err_pci_reg: 14401 err_dma: 14402 pci_disable_device(pdev); 14403 return err; 14404 } 14405 14406 /** 14407 * i40e_remove - Device removal routine 14408 * @pdev: PCI device information struct 14409 * 14410 * i40e_remove is called by the PCI subsystem to alert the driver 14411 * that is should release a PCI device. This could be caused by a 14412 * Hot-Plug event, or because the driver is going to be removed from 14413 * memory. 14414 **/ 14415 static void i40e_remove(struct pci_dev *pdev) 14416 { 14417 struct i40e_pf *pf = pci_get_drvdata(pdev); 14418 struct i40e_hw *hw = &pf->hw; 14419 i40e_status ret_code; 14420 int i; 14421 14422 i40e_dbg_pf_exit(pf); 14423 14424 i40e_ptp_stop(pf); 14425 14426 /* Disable RSS in hw */ 14427 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 14428 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 14429 14430 /* no more scheduling of any task */ 14431 set_bit(__I40E_SUSPENDED, pf->state); 14432 set_bit(__I40E_DOWN, pf->state); 14433 if (pf->service_timer.function) 14434 del_timer_sync(&pf->service_timer); 14435 if (pf->service_task.func) 14436 cancel_work_sync(&pf->service_task); 14437 14438 /* Client close must be called explicitly here because the timer 14439 * has been stopped. 14440 */ 14441 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14442 14443 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 14444 i40e_free_vfs(pf); 14445 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 14446 } 14447 14448 i40e_fdir_teardown(pf); 14449 14450 /* If there is a switch structure or any orphans, remove them. 14451 * This will leave only the PF's VSI remaining. 14452 */ 14453 for (i = 0; i < I40E_MAX_VEB; i++) { 14454 if (!pf->veb[i]) 14455 continue; 14456 14457 if (pf->veb[i]->uplink_seid == pf->mac_seid || 14458 pf->veb[i]->uplink_seid == 0) 14459 i40e_switch_branch_release(pf->veb[i]); 14460 } 14461 14462 /* Now we can shutdown the PF's VSI, just before we kill 14463 * adminq and hmc. 14464 */ 14465 if (pf->vsi[pf->lan_vsi]) 14466 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 14467 14468 i40e_cloud_filter_exit(pf); 14469 14470 /* remove attached clients */ 14471 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14472 ret_code = i40e_lan_del_device(pf); 14473 if (ret_code) 14474 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 14475 ret_code); 14476 } 14477 14478 /* shutdown and destroy the HMC */ 14479 if (hw->hmc.hmc_obj) { 14480 ret_code = i40e_shutdown_lan_hmc(hw); 14481 if (ret_code) 14482 dev_warn(&pdev->dev, 14483 "Failed to destroy the HMC resources: %d\n", 14484 ret_code); 14485 } 14486 14487 /* shutdown the adminq */ 14488 i40e_shutdown_adminq(hw); 14489 14490 /* destroy the locks only once, here */ 14491 mutex_destroy(&hw->aq.arq_mutex); 14492 mutex_destroy(&hw->aq.asq_mutex); 14493 14494 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 14495 rtnl_lock(); 14496 i40e_clear_interrupt_scheme(pf); 14497 for (i = 0; i < pf->num_alloc_vsi; i++) { 14498 if (pf->vsi[i]) { 14499 i40e_vsi_clear_rings(pf->vsi[i]); 14500 i40e_vsi_clear(pf->vsi[i]); 14501 pf->vsi[i] = NULL; 14502 } 14503 } 14504 rtnl_unlock(); 14505 14506 for (i = 0; i < I40E_MAX_VEB; i++) { 14507 kfree(pf->veb[i]); 14508 pf->veb[i] = NULL; 14509 } 14510 14511 kfree(pf->qp_pile); 14512 kfree(pf->vsi); 14513 14514 iounmap(hw->hw_addr); 14515 kfree(pf); 14516 pci_release_mem_regions(pdev); 14517 14518 pci_disable_pcie_error_reporting(pdev); 14519 pci_disable_device(pdev); 14520 } 14521 14522 /** 14523 * i40e_pci_error_detected - warning that something funky happened in PCI land 14524 * @pdev: PCI device information struct 14525 * @error: the type of PCI error 14526 * 14527 * Called to warn that something happened and the error handling steps 14528 * are in progress. Allows the driver to quiesce things, be ready for 14529 * remediation. 14530 **/ 14531 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 14532 enum pci_channel_state error) 14533 { 14534 struct i40e_pf *pf = pci_get_drvdata(pdev); 14535 14536 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 14537 14538 if (!pf) { 14539 dev_info(&pdev->dev, 14540 "Cannot recover - error happened during device probe\n"); 14541 return PCI_ERS_RESULT_DISCONNECT; 14542 } 14543 14544 /* shutdown all operations */ 14545 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14546 i40e_prep_for_reset(pf, false); 14547 14548 /* Request a slot reset */ 14549 return PCI_ERS_RESULT_NEED_RESET; 14550 } 14551 14552 /** 14553 * i40e_pci_error_slot_reset - a PCI slot reset just happened 14554 * @pdev: PCI device information struct 14555 * 14556 * Called to find if the driver can work with the device now that 14557 * the pci slot has been reset. If a basic connection seems good 14558 * (registers are readable and have sane content) then return a 14559 * happy little PCI_ERS_RESULT_xxx. 14560 **/ 14561 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 14562 { 14563 struct i40e_pf *pf = pci_get_drvdata(pdev); 14564 pci_ers_result_t result; 14565 u32 reg; 14566 14567 dev_dbg(&pdev->dev, "%s\n", __func__); 14568 if (pci_enable_device_mem(pdev)) { 14569 dev_info(&pdev->dev, 14570 "Cannot re-enable PCI device after reset.\n"); 14571 result = PCI_ERS_RESULT_DISCONNECT; 14572 } else { 14573 pci_set_master(pdev); 14574 pci_restore_state(pdev); 14575 pci_save_state(pdev); 14576 pci_wake_from_d3(pdev, false); 14577 14578 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 14579 if (reg == 0) 14580 result = PCI_ERS_RESULT_RECOVERED; 14581 else 14582 result = PCI_ERS_RESULT_DISCONNECT; 14583 } 14584 14585 return result; 14586 } 14587 14588 /** 14589 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 14590 * @pdev: PCI device information struct 14591 */ 14592 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 14593 { 14594 struct i40e_pf *pf = pci_get_drvdata(pdev); 14595 14596 i40e_prep_for_reset(pf, false); 14597 } 14598 14599 /** 14600 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 14601 * @pdev: PCI device information struct 14602 */ 14603 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 14604 { 14605 struct i40e_pf *pf = pci_get_drvdata(pdev); 14606 14607 i40e_reset_and_rebuild(pf, false, false); 14608 } 14609 14610 /** 14611 * i40e_pci_error_resume - restart operations after PCI error recovery 14612 * @pdev: PCI device information struct 14613 * 14614 * Called to allow the driver to bring things back up after PCI error 14615 * and/or reset recovery has finished. 14616 **/ 14617 static void i40e_pci_error_resume(struct pci_dev *pdev) 14618 { 14619 struct i40e_pf *pf = pci_get_drvdata(pdev); 14620 14621 dev_dbg(&pdev->dev, "%s\n", __func__); 14622 if (test_bit(__I40E_SUSPENDED, pf->state)) 14623 return; 14624 14625 i40e_handle_reset_warning(pf, false); 14626 } 14627 14628 /** 14629 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 14630 * using the mac_address_write admin q function 14631 * @pf: pointer to i40e_pf struct 14632 **/ 14633 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 14634 { 14635 struct i40e_hw *hw = &pf->hw; 14636 i40e_status ret; 14637 u8 mac_addr[6]; 14638 u16 flags = 0; 14639 14640 /* Get current MAC address in case it's an LAA */ 14641 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 14642 ether_addr_copy(mac_addr, 14643 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 14644 } else { 14645 dev_err(&pf->pdev->dev, 14646 "Failed to retrieve MAC address; using default\n"); 14647 ether_addr_copy(mac_addr, hw->mac.addr); 14648 } 14649 14650 /* The FW expects the mac address write cmd to first be called with 14651 * one of these flags before calling it again with the multicast 14652 * enable flags. 14653 */ 14654 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 14655 14656 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 14657 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 14658 14659 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14660 if (ret) { 14661 dev_err(&pf->pdev->dev, 14662 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 14663 return; 14664 } 14665 14666 flags = I40E_AQC_MC_MAG_EN 14667 | I40E_AQC_WOL_PRESERVE_ON_PFR 14668 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 14669 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14670 if (ret) 14671 dev_err(&pf->pdev->dev, 14672 "Failed to enable Multicast Magic Packet wake up\n"); 14673 } 14674 14675 /** 14676 * i40e_shutdown - PCI callback for shutting down 14677 * @pdev: PCI device information struct 14678 **/ 14679 static void i40e_shutdown(struct pci_dev *pdev) 14680 { 14681 struct i40e_pf *pf = pci_get_drvdata(pdev); 14682 struct i40e_hw *hw = &pf->hw; 14683 14684 set_bit(__I40E_SUSPENDED, pf->state); 14685 set_bit(__I40E_DOWN, pf->state); 14686 14687 del_timer_sync(&pf->service_timer); 14688 cancel_work_sync(&pf->service_task); 14689 i40e_cloud_filter_exit(pf); 14690 i40e_fdir_teardown(pf); 14691 14692 /* Client close must be called explicitly here because the timer 14693 * has been stopped. 14694 */ 14695 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14696 14697 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14698 i40e_enable_mc_magic_wake(pf); 14699 14700 i40e_prep_for_reset(pf, false); 14701 14702 wr32(hw, I40E_PFPM_APM, 14703 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14704 wr32(hw, I40E_PFPM_WUFC, 14705 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14706 14707 /* Since we're going to destroy queues during the 14708 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 14709 * whole section 14710 */ 14711 rtnl_lock(); 14712 i40e_clear_interrupt_scheme(pf); 14713 rtnl_unlock(); 14714 14715 if (system_state == SYSTEM_POWER_OFF) { 14716 pci_wake_from_d3(pdev, pf->wol_en); 14717 pci_set_power_state(pdev, PCI_D3hot); 14718 } 14719 } 14720 14721 /** 14722 * i40e_suspend - PM callback for moving to D3 14723 * @dev: generic device information structure 14724 **/ 14725 static int __maybe_unused i40e_suspend(struct device *dev) 14726 { 14727 struct pci_dev *pdev = to_pci_dev(dev); 14728 struct i40e_pf *pf = pci_get_drvdata(pdev); 14729 struct i40e_hw *hw = &pf->hw; 14730 14731 /* If we're already suspended, then there is nothing to do */ 14732 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 14733 return 0; 14734 14735 set_bit(__I40E_DOWN, pf->state); 14736 14737 /* Ensure service task will not be running */ 14738 del_timer_sync(&pf->service_timer); 14739 cancel_work_sync(&pf->service_task); 14740 14741 /* Client close must be called explicitly here because the timer 14742 * has been stopped. 14743 */ 14744 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14745 14746 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14747 i40e_enable_mc_magic_wake(pf); 14748 14749 /* Since we're going to destroy queues during the 14750 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 14751 * whole section 14752 */ 14753 rtnl_lock(); 14754 14755 i40e_prep_for_reset(pf, true); 14756 14757 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14758 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14759 14760 /* Clear the interrupt scheme and release our IRQs so that the system 14761 * can safely hibernate even when there are a large number of CPUs. 14762 * Otherwise hibernation might fail when mapping all the vectors back 14763 * to CPU0. 14764 */ 14765 i40e_clear_interrupt_scheme(pf); 14766 14767 rtnl_unlock(); 14768 14769 return 0; 14770 } 14771 14772 /** 14773 * i40e_resume - PM callback for waking up from D3 14774 * @dev: generic device information structure 14775 **/ 14776 static int __maybe_unused i40e_resume(struct device *dev) 14777 { 14778 struct pci_dev *pdev = to_pci_dev(dev); 14779 struct i40e_pf *pf = pci_get_drvdata(pdev); 14780 int err; 14781 14782 /* If we're not suspended, then there is nothing to do */ 14783 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14784 return 0; 14785 14786 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 14787 * since we're going to be restoring queues 14788 */ 14789 rtnl_lock(); 14790 14791 /* We cleared the interrupt scheme when we suspended, so we need to 14792 * restore it now to resume device functionality. 14793 */ 14794 err = i40e_restore_interrupt_scheme(pf); 14795 if (err) { 14796 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n", 14797 err); 14798 } 14799 14800 clear_bit(__I40E_DOWN, pf->state); 14801 i40e_reset_and_rebuild(pf, false, true); 14802 14803 rtnl_unlock(); 14804 14805 /* Clear suspended state last after everything is recovered */ 14806 clear_bit(__I40E_SUSPENDED, pf->state); 14807 14808 /* Restart the service task */ 14809 mod_timer(&pf->service_timer, 14810 round_jiffies(jiffies + pf->service_timer_period)); 14811 14812 return 0; 14813 } 14814 14815 static const struct pci_error_handlers i40e_err_handler = { 14816 .error_detected = i40e_pci_error_detected, 14817 .slot_reset = i40e_pci_error_slot_reset, 14818 .reset_prepare = i40e_pci_error_reset_prepare, 14819 .reset_done = i40e_pci_error_reset_done, 14820 .resume = i40e_pci_error_resume, 14821 }; 14822 14823 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 14824 14825 static struct pci_driver i40e_driver = { 14826 .name = i40e_driver_name, 14827 .id_table = i40e_pci_tbl, 14828 .probe = i40e_probe, 14829 .remove = i40e_remove, 14830 .driver = { 14831 .pm = &i40e_pm_ops, 14832 }, 14833 .shutdown = i40e_shutdown, 14834 .err_handler = &i40e_err_handler, 14835 .sriov_configure = i40e_pci_sriov_configure, 14836 }; 14837 14838 /** 14839 * i40e_init_module - Driver registration routine 14840 * 14841 * i40e_init_module is the first routine called when the driver is 14842 * loaded. All it does is register with the PCI subsystem. 14843 **/ 14844 static int __init i40e_init_module(void) 14845 { 14846 pr_info("%s: %s - version %s\n", i40e_driver_name, 14847 i40e_driver_string, i40e_driver_version_str); 14848 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 14849 14850 /* There is no need to throttle the number of active tasks because 14851 * each device limits its own task using a state bit for scheduling 14852 * the service task, and the device tasks do not interfere with each 14853 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 14854 * since we need to be able to guarantee forward progress even under 14855 * memory pressure. 14856 */ 14857 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 14858 if (!i40e_wq) { 14859 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 14860 return -ENOMEM; 14861 } 14862 14863 i40e_dbg_init(); 14864 return pci_register_driver(&i40e_driver); 14865 } 14866 module_init(i40e_init_module); 14867 14868 /** 14869 * i40e_exit_module - Driver exit cleanup routine 14870 * 14871 * i40e_exit_module is called just before the driver is removed 14872 * from memory. 14873 **/ 14874 static void __exit i40e_exit_module(void) 14875 { 14876 pci_unregister_driver(&i40e_driver); 14877 destroy_workqueue(i40e_wq); 14878 i40e_dbg_exit(); 14879 } 14880 module_exit(i40e_exit_module); 14881