1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/if_bridge.h> 7 #include <linux/if_macvlan.h> 8 #include <linux/module.h> 9 #include <net/pkt_cls.h> 10 #include <net/xdp_sock_drv.h> 11 12 /* Local includes */ 13 #include "i40e.h" 14 #include "i40e_devids.h" 15 #include "i40e_diag.h" 16 #include "i40e_lan_hmc.h" 17 #include "i40e_virtchnl_pf.h" 18 #include "i40e_xsk.h" 19 20 /* All i40e tracepoints are defined by the include below, which 21 * must be included exactly once across the whole kernel with 22 * CREATE_TRACE_POINTS defined 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "i40e_trace.h" 26 27 const char i40e_driver_name[] = "i40e"; 28 static const char i40e_driver_string[] = 29 "Intel(R) Ethernet Connection XL710 Network Driver"; 30 31 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 32 33 /* a bit of forward declarations */ 34 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 35 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 36 static int i40e_add_vsi(struct i40e_vsi *vsi); 37 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 38 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 39 static int i40e_setup_misc_vector(struct i40e_pf *pf); 40 static void i40e_determine_queue_usage(struct i40e_pf *pf); 41 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 42 static void i40e_prep_for_reset(struct i40e_pf *pf); 43 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 44 bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 48 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 49 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 50 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 51 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 52 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 53 static int i40e_get_capabilities(struct i40e_pf *pf, 54 enum i40e_admin_queue_opc list_type); 55 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 56 57 /* i40e_pci_tbl - PCI Device ID Table 58 * 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id i40e_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_LICENSE("GPL v2"); 104 105 static struct workqueue_struct *i40e_wq; 106 107 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 108 struct net_device *netdev, int delta) 109 { 110 struct netdev_hw_addr *ha; 111 112 if (!f || !netdev) 113 return; 114 115 netdev_for_each_mc_addr(ha, netdev) { 116 if (ether_addr_equal(ha->addr, f->macaddr)) { 117 ha->refcount += delta; 118 if (ha->refcount <= 0) 119 ha->refcount = 1; 120 break; 121 } 122 } 123 } 124 125 /** 126 * i40e_hw_to_dev - get device pointer from the hardware structure 127 * @hw: pointer to the device HW structure 128 **/ 129 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 130 { 131 struct i40e_pf *pf = i40e_hw_to_pf(hw); 132 133 return &pf->pdev->dev; 134 } 135 136 /** 137 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 138 * @hw: pointer to the HW structure 139 * @mem: ptr to mem struct to fill out 140 * @size: size of memory requested 141 * @alignment: what to align the allocation to 142 **/ 143 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 144 u64 size, u32 alignment) 145 { 146 struct i40e_pf *pf = i40e_hw_to_pf(hw); 147 148 mem->size = ALIGN(size, alignment); 149 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 150 GFP_KERNEL); 151 if (!mem->va) 152 return -ENOMEM; 153 154 return 0; 155 } 156 157 /** 158 * i40e_free_dma_mem - OS specific memory free for shared code 159 * @hw: pointer to the HW structure 160 * @mem: ptr to mem struct to free 161 **/ 162 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 163 { 164 struct i40e_pf *pf = i40e_hw_to_pf(hw); 165 166 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 167 mem->va = NULL; 168 mem->pa = 0; 169 mem->size = 0; 170 171 return 0; 172 } 173 174 /** 175 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 176 * @hw: pointer to the HW structure 177 * @mem: ptr to mem struct to fill out 178 * @size: size of memory requested 179 **/ 180 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 181 u32 size) 182 { 183 mem->size = size; 184 mem->va = kzalloc(size, GFP_KERNEL); 185 186 if (!mem->va) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 /** 193 * i40e_free_virt_mem - OS specific memory free for shared code 194 * @hw: pointer to the HW structure 195 * @mem: ptr to mem struct to free 196 **/ 197 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 198 { 199 /* it's ok to kfree a NULL pointer */ 200 kfree(mem->va); 201 mem->va = NULL; 202 mem->size = 0; 203 204 return 0; 205 } 206 207 /** 208 * i40e_get_lump - find a lump of free generic resource 209 * @pf: board private structure 210 * @pile: the pile of resource to search 211 * @needed: the number of items needed 212 * @id: an owner id to stick on the items assigned 213 * 214 * Returns the base item index of the lump, or negative for error 215 **/ 216 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 217 u16 needed, u16 id) 218 { 219 int ret = -ENOMEM; 220 int i, j; 221 222 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 223 dev_info(&pf->pdev->dev, 224 "param err: pile=%s needed=%d id=0x%04x\n", 225 pile ? "<valid>" : "<null>", needed, id); 226 return -EINVAL; 227 } 228 229 /* Allocate last queue in the pile for FDIR VSI queue 230 * so it doesn't fragment the qp_pile 231 */ 232 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 233 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 234 dev_err(&pf->pdev->dev, 235 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 236 pile->num_entries - 1); 237 return -ENOMEM; 238 } 239 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 240 return pile->num_entries - 1; 241 } 242 243 i = 0; 244 while (i < pile->num_entries) { 245 /* skip already allocated entries */ 246 if (pile->list[i] & I40E_PILE_VALID_BIT) { 247 i++; 248 continue; 249 } 250 251 /* do we have enough in this lump? */ 252 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 253 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 254 break; 255 } 256 257 if (j == needed) { 258 /* there was enough, so assign it to the requestor */ 259 for (j = 0; j < needed; j++) 260 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 261 ret = i; 262 break; 263 } 264 265 /* not enough, so skip over it and continue looking */ 266 i += j; 267 } 268 269 return ret; 270 } 271 272 /** 273 * i40e_put_lump - return a lump of generic resource 274 * @pile: the pile of resource to search 275 * @index: the base item index 276 * @id: the owner id of the items assigned 277 * 278 * Returns the count of items in the lump 279 **/ 280 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 281 { 282 int valid_id = (id | I40E_PILE_VALID_BIT); 283 int count = 0; 284 u16 i; 285 286 if (!pile || index >= pile->num_entries) 287 return -EINVAL; 288 289 for (i = index; 290 i < pile->num_entries && pile->list[i] == valid_id; 291 i++) { 292 pile->list[i] = 0; 293 count++; 294 } 295 296 297 return count; 298 } 299 300 /** 301 * i40e_find_vsi_from_id - searches for the vsi with the given id 302 * @pf: the pf structure to search for the vsi 303 * @id: id of the vsi it is searching for 304 **/ 305 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 306 { 307 int i; 308 309 for (i = 0; i < pf->num_alloc_vsi; i++) 310 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 311 return pf->vsi[i]; 312 313 return NULL; 314 } 315 316 /** 317 * i40e_service_event_schedule - Schedule the service task to wake up 318 * @pf: board private structure 319 * 320 * If not already scheduled, this puts the task into the work queue 321 **/ 322 void i40e_service_event_schedule(struct i40e_pf *pf) 323 { 324 if ((!test_bit(__I40E_DOWN, pf->state) && 325 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 326 test_bit(__I40E_RECOVERY_MODE, pf->state)) 327 queue_work(i40e_wq, &pf->service_task); 328 } 329 330 /** 331 * i40e_tx_timeout - Respond to a Tx Hang 332 * @netdev: network interface device structure 333 * @txqueue: queue number timing out 334 * 335 * If any port has noticed a Tx timeout, it is likely that the whole 336 * device is munged, not just the one netdev port, so go for the full 337 * reset. 338 **/ 339 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 340 { 341 struct i40e_netdev_priv *np = netdev_priv(netdev); 342 struct i40e_vsi *vsi = np->vsi; 343 struct i40e_pf *pf = vsi->back; 344 struct i40e_ring *tx_ring = NULL; 345 unsigned int i; 346 u32 head, val; 347 348 pf->tx_timeout_count++; 349 350 /* with txqueue index, find the tx_ring struct */ 351 for (i = 0; i < vsi->num_queue_pairs; i++) { 352 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 353 if (txqueue == 354 vsi->tx_rings[i]->queue_index) { 355 tx_ring = vsi->tx_rings[i]; 356 break; 357 } 358 } 359 } 360 361 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 362 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 363 else if (time_before(jiffies, 364 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 365 return; /* don't do any new action before the next timeout */ 366 367 /* don't kick off another recovery if one is already pending */ 368 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 369 return; 370 371 if (tx_ring) { 372 head = i40e_get_head(tx_ring); 373 /* Read interrupt register */ 374 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 375 val = rd32(&pf->hw, 376 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 377 tx_ring->vsi->base_vector - 1)); 378 else 379 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 380 381 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 382 vsi->seid, txqueue, tx_ring->next_to_clean, 383 head, tx_ring->next_to_use, 384 readl(tx_ring->tail), val); 385 } 386 387 pf->tx_timeout_last_recovery = jiffies; 388 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 389 pf->tx_timeout_recovery_level, txqueue); 390 391 switch (pf->tx_timeout_recovery_level) { 392 case 1: 393 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 394 break; 395 case 2: 396 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 397 break; 398 case 3: 399 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 400 break; 401 default: 402 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 403 set_bit(__I40E_DOWN_REQUESTED, pf->state); 404 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 405 break; 406 } 407 408 i40e_service_event_schedule(pf); 409 pf->tx_timeout_recovery_level++; 410 } 411 412 /** 413 * i40e_get_vsi_stats_struct - Get System Network Statistics 414 * @vsi: the VSI we care about 415 * 416 * Returns the address of the device statistics structure. 417 * The statistics are actually updated from the service task. 418 **/ 419 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 420 { 421 return &vsi->net_stats; 422 } 423 424 /** 425 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 426 * @ring: Tx ring to get statistics from 427 * @stats: statistics entry to be updated 428 **/ 429 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 430 struct rtnl_link_stats64 *stats) 431 { 432 u64 bytes, packets; 433 unsigned int start; 434 435 do { 436 start = u64_stats_fetch_begin(&ring->syncp); 437 packets = ring->stats.packets; 438 bytes = ring->stats.bytes; 439 } while (u64_stats_fetch_retry(&ring->syncp, start)); 440 441 stats->tx_packets += packets; 442 stats->tx_bytes += bytes; 443 } 444 445 /** 446 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 447 * @netdev: network interface device structure 448 * @stats: data structure to store statistics 449 * 450 * Returns the address of the device statistics structure. 451 * The statistics are actually updated from the service task. 452 **/ 453 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 454 struct rtnl_link_stats64 *stats) 455 { 456 struct i40e_netdev_priv *np = netdev_priv(netdev); 457 struct i40e_vsi *vsi = np->vsi; 458 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 459 struct i40e_ring *ring; 460 int i; 461 462 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 463 return; 464 465 if (!vsi->tx_rings) 466 return; 467 468 rcu_read_lock(); 469 for (i = 0; i < vsi->num_queue_pairs; i++) { 470 u64 bytes, packets; 471 unsigned int start; 472 473 ring = READ_ONCE(vsi->tx_rings[i]); 474 if (!ring) 475 continue; 476 i40e_get_netdev_stats_struct_tx(ring, stats); 477 478 if (i40e_enabled_xdp_vsi(vsi)) { 479 ring = READ_ONCE(vsi->xdp_rings[i]); 480 if (!ring) 481 continue; 482 i40e_get_netdev_stats_struct_tx(ring, stats); 483 } 484 485 ring = READ_ONCE(vsi->rx_rings[i]); 486 if (!ring) 487 continue; 488 do { 489 start = u64_stats_fetch_begin(&ring->syncp); 490 packets = ring->stats.packets; 491 bytes = ring->stats.bytes; 492 } while (u64_stats_fetch_retry(&ring->syncp, start)); 493 494 stats->rx_packets += packets; 495 stats->rx_bytes += bytes; 496 497 } 498 rcu_read_unlock(); 499 500 /* following stats updated by i40e_watchdog_subtask() */ 501 stats->multicast = vsi_stats->multicast; 502 stats->tx_errors = vsi_stats->tx_errors; 503 stats->tx_dropped = vsi_stats->tx_dropped; 504 stats->rx_errors = vsi_stats->rx_errors; 505 stats->rx_dropped = vsi_stats->rx_dropped; 506 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 507 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 508 stats->rx_length_errors = vsi_stats->rx_length_errors; 509 } 510 511 /** 512 * i40e_vsi_reset_stats - Resets all stats of the given vsi 513 * @vsi: the VSI to have its stats reset 514 **/ 515 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 516 { 517 struct rtnl_link_stats64 *ns; 518 int i; 519 520 if (!vsi) 521 return; 522 523 ns = i40e_get_vsi_stats_struct(vsi); 524 memset(ns, 0, sizeof(*ns)); 525 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 526 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 527 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 528 if (vsi->rx_rings && vsi->rx_rings[0]) { 529 for (i = 0; i < vsi->num_queue_pairs; i++) { 530 memset(&vsi->rx_rings[i]->stats, 0, 531 sizeof(vsi->rx_rings[i]->stats)); 532 memset(&vsi->rx_rings[i]->rx_stats, 0, 533 sizeof(vsi->rx_rings[i]->rx_stats)); 534 memset(&vsi->tx_rings[i]->stats, 0, 535 sizeof(vsi->tx_rings[i]->stats)); 536 memset(&vsi->tx_rings[i]->tx_stats, 0, 537 sizeof(vsi->tx_rings[i]->tx_stats)); 538 } 539 } 540 vsi->stat_offsets_loaded = false; 541 } 542 543 /** 544 * i40e_pf_reset_stats - Reset all of the stats for the given PF 545 * @pf: the PF to be reset 546 **/ 547 void i40e_pf_reset_stats(struct i40e_pf *pf) 548 { 549 int i; 550 551 memset(&pf->stats, 0, sizeof(pf->stats)); 552 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 553 pf->stat_offsets_loaded = false; 554 555 for (i = 0; i < I40E_MAX_VEB; i++) { 556 if (pf->veb[i]) { 557 memset(&pf->veb[i]->stats, 0, 558 sizeof(pf->veb[i]->stats)); 559 memset(&pf->veb[i]->stats_offsets, 0, 560 sizeof(pf->veb[i]->stats_offsets)); 561 memset(&pf->veb[i]->tc_stats, 0, 562 sizeof(pf->veb[i]->tc_stats)); 563 memset(&pf->veb[i]->tc_stats_offsets, 0, 564 sizeof(pf->veb[i]->tc_stats_offsets)); 565 pf->veb[i]->stat_offsets_loaded = false; 566 } 567 } 568 pf->hw_csum_rx_error = 0; 569 } 570 571 /** 572 * i40e_compute_pci_to_hw_id - compute index form PCI function. 573 * @vsi: ptr to the VSI to read from. 574 * @hw: ptr to the hardware info. 575 **/ 576 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 577 { 578 int pf_count = i40e_get_pf_count(hw); 579 580 if (vsi->type == I40E_VSI_SRIOV) 581 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 582 583 return hw->port + BIT(7); 584 } 585 586 /** 587 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 588 * @hw: ptr to the hardware info. 589 * @hireg: the high 32 bit reg to read. 590 * @loreg: the low 32 bit reg to read. 591 * @offset_loaded: has the initial offset been loaded yet. 592 * @offset: ptr to current offset value. 593 * @stat: ptr to the stat. 594 * 595 * Since the device stats are not reset at PFReset, they will not 596 * be zeroed when the driver starts. We'll save the first values read 597 * and use them as offsets to be subtracted from the raw values in order 598 * to report stats that count from zero. 599 **/ 600 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 601 bool offset_loaded, u64 *offset, u64 *stat) 602 { 603 u64 new_data; 604 605 new_data = rd64(hw, loreg); 606 607 if (!offset_loaded || new_data < *offset) 608 *offset = new_data; 609 *stat = new_data - *offset; 610 } 611 612 /** 613 * i40e_stat_update48 - read and update a 48 bit stat from the chip 614 * @hw: ptr to the hardware info 615 * @hireg: the high 32 bit reg to read 616 * @loreg: the low 32 bit reg to read 617 * @offset_loaded: has the initial offset been loaded yet 618 * @offset: ptr to current offset value 619 * @stat: ptr to the stat 620 * 621 * Since the device stats are not reset at PFReset, they likely will not 622 * be zeroed when the driver starts. We'll save the first values read 623 * and use them as offsets to be subtracted from the raw values in order 624 * to report stats that count from zero. In the process, we also manage 625 * the potential roll-over. 626 **/ 627 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 628 bool offset_loaded, u64 *offset, u64 *stat) 629 { 630 u64 new_data; 631 632 if (hw->device_id == I40E_DEV_ID_QEMU) { 633 new_data = rd32(hw, loreg); 634 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 635 } else { 636 new_data = rd64(hw, loreg); 637 } 638 if (!offset_loaded) 639 *offset = new_data; 640 if (likely(new_data >= *offset)) 641 *stat = new_data - *offset; 642 else 643 *stat = (new_data + BIT_ULL(48)) - *offset; 644 *stat &= 0xFFFFFFFFFFFFULL; 645 } 646 647 /** 648 * i40e_stat_update32 - read and update a 32 bit stat from the chip 649 * @hw: ptr to the hardware info 650 * @reg: the hw reg to read 651 * @offset_loaded: has the initial offset been loaded yet 652 * @offset: ptr to current offset value 653 * @stat: ptr to the stat 654 **/ 655 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 656 bool offset_loaded, u64 *offset, u64 *stat) 657 { 658 u32 new_data; 659 660 new_data = rd32(hw, reg); 661 if (!offset_loaded) 662 *offset = new_data; 663 if (likely(new_data >= *offset)) 664 *stat = (u32)(new_data - *offset); 665 else 666 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 667 } 668 669 /** 670 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 671 * @hw: ptr to the hardware info 672 * @reg: the hw reg to read and clear 673 * @stat: ptr to the stat 674 **/ 675 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 676 { 677 u32 new_data = rd32(hw, reg); 678 679 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 680 *stat += new_data; 681 } 682 683 /** 684 * i40e_stats_update_rx_discards - update rx_discards. 685 * @vsi: ptr to the VSI to be updated. 686 * @hw: ptr to the hardware info. 687 * @stat_idx: VSI's stat_counter_idx. 688 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 689 * @stat_offset: ptr to stat_offset to store first read of specific register. 690 * @stat: ptr to VSI's stat to be updated. 691 **/ 692 static void 693 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 694 int stat_idx, bool offset_loaded, 695 struct i40e_eth_stats *stat_offset, 696 struct i40e_eth_stats *stat) 697 { 698 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 699 &stat_offset->rx_discards, &stat->rx_discards); 700 i40e_stat_update64(hw, 701 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 702 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 703 offset_loaded, &stat_offset->rx_discards_other, 704 &stat->rx_discards_other); 705 } 706 707 /** 708 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 709 * @vsi: the VSI to be updated 710 **/ 711 void i40e_update_eth_stats(struct i40e_vsi *vsi) 712 { 713 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 714 struct i40e_pf *pf = vsi->back; 715 struct i40e_hw *hw = &pf->hw; 716 struct i40e_eth_stats *oes; 717 struct i40e_eth_stats *es; /* device's eth stats */ 718 719 es = &vsi->eth_stats; 720 oes = &vsi->eth_stats_offsets; 721 722 /* Gather up the stats that the hw collects */ 723 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 724 vsi->stat_offsets_loaded, 725 &oes->tx_errors, &es->tx_errors); 726 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 727 vsi->stat_offsets_loaded, 728 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 729 730 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 731 I40E_GLV_GORCL(stat_idx), 732 vsi->stat_offsets_loaded, 733 &oes->rx_bytes, &es->rx_bytes); 734 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 735 I40E_GLV_UPRCL(stat_idx), 736 vsi->stat_offsets_loaded, 737 &oes->rx_unicast, &es->rx_unicast); 738 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 739 I40E_GLV_MPRCL(stat_idx), 740 vsi->stat_offsets_loaded, 741 &oes->rx_multicast, &es->rx_multicast); 742 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 743 I40E_GLV_BPRCL(stat_idx), 744 vsi->stat_offsets_loaded, 745 &oes->rx_broadcast, &es->rx_broadcast); 746 747 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 748 I40E_GLV_GOTCL(stat_idx), 749 vsi->stat_offsets_loaded, 750 &oes->tx_bytes, &es->tx_bytes); 751 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 752 I40E_GLV_UPTCL(stat_idx), 753 vsi->stat_offsets_loaded, 754 &oes->tx_unicast, &es->tx_unicast); 755 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 756 I40E_GLV_MPTCL(stat_idx), 757 vsi->stat_offsets_loaded, 758 &oes->tx_multicast, &es->tx_multicast); 759 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 760 I40E_GLV_BPTCL(stat_idx), 761 vsi->stat_offsets_loaded, 762 &oes->tx_broadcast, &es->tx_broadcast); 763 764 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 765 vsi->stat_offsets_loaded, oes, es); 766 767 vsi->stat_offsets_loaded = true; 768 } 769 770 /** 771 * i40e_update_veb_stats - Update Switch component statistics 772 * @veb: the VEB being updated 773 **/ 774 void i40e_update_veb_stats(struct i40e_veb *veb) 775 { 776 struct i40e_pf *pf = veb->pf; 777 struct i40e_hw *hw = &pf->hw; 778 struct i40e_eth_stats *oes; 779 struct i40e_eth_stats *es; /* device's eth stats */ 780 struct i40e_veb_tc_stats *veb_oes; 781 struct i40e_veb_tc_stats *veb_es; 782 int i, idx = 0; 783 784 idx = veb->stats_idx; 785 es = &veb->stats; 786 oes = &veb->stats_offsets; 787 veb_es = &veb->tc_stats; 788 veb_oes = &veb->tc_stats_offsets; 789 790 /* Gather up the stats that the hw collects */ 791 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 792 veb->stat_offsets_loaded, 793 &oes->tx_discards, &es->tx_discards); 794 if (hw->revision_id > 0) 795 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 796 veb->stat_offsets_loaded, 797 &oes->rx_unknown_protocol, 798 &es->rx_unknown_protocol); 799 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 800 veb->stat_offsets_loaded, 801 &oes->rx_bytes, &es->rx_bytes); 802 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 803 veb->stat_offsets_loaded, 804 &oes->rx_unicast, &es->rx_unicast); 805 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 806 veb->stat_offsets_loaded, 807 &oes->rx_multicast, &es->rx_multicast); 808 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 809 veb->stat_offsets_loaded, 810 &oes->rx_broadcast, &es->rx_broadcast); 811 812 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 813 veb->stat_offsets_loaded, 814 &oes->tx_bytes, &es->tx_bytes); 815 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 816 veb->stat_offsets_loaded, 817 &oes->tx_unicast, &es->tx_unicast); 818 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 819 veb->stat_offsets_loaded, 820 &oes->tx_multicast, &es->tx_multicast); 821 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 822 veb->stat_offsets_loaded, 823 &oes->tx_broadcast, &es->tx_broadcast); 824 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 825 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 826 I40E_GLVEBTC_RPCL(i, idx), 827 veb->stat_offsets_loaded, 828 &veb_oes->tc_rx_packets[i], 829 &veb_es->tc_rx_packets[i]); 830 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 831 I40E_GLVEBTC_RBCL(i, idx), 832 veb->stat_offsets_loaded, 833 &veb_oes->tc_rx_bytes[i], 834 &veb_es->tc_rx_bytes[i]); 835 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 836 I40E_GLVEBTC_TPCL(i, idx), 837 veb->stat_offsets_loaded, 838 &veb_oes->tc_tx_packets[i], 839 &veb_es->tc_tx_packets[i]); 840 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 841 I40E_GLVEBTC_TBCL(i, idx), 842 veb->stat_offsets_loaded, 843 &veb_oes->tc_tx_bytes[i], 844 &veb_es->tc_tx_bytes[i]); 845 } 846 veb->stat_offsets_loaded = true; 847 } 848 849 /** 850 * i40e_update_vsi_stats - Update the vsi statistics counters. 851 * @vsi: the VSI to be updated 852 * 853 * There are a few instances where we store the same stat in a 854 * couple of different structs. This is partly because we have 855 * the netdev stats that need to be filled out, which is slightly 856 * different from the "eth_stats" defined by the chip and used in 857 * VF communications. We sort it out here. 858 **/ 859 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 860 { 861 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 862 struct i40e_pf *pf = vsi->back; 863 struct rtnl_link_stats64 *ons; 864 struct rtnl_link_stats64 *ns; /* netdev stats */ 865 struct i40e_eth_stats *oes; 866 struct i40e_eth_stats *es; /* device's eth stats */ 867 u64 tx_restart, tx_busy; 868 struct i40e_ring *p; 869 u64 bytes, packets; 870 unsigned int start; 871 u64 tx_linearize; 872 u64 tx_force_wb; 873 u64 tx_stopped; 874 u64 rx_p, rx_b; 875 u64 tx_p, tx_b; 876 u16 q; 877 878 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 879 test_bit(__I40E_CONFIG_BUSY, pf->state)) 880 return; 881 882 ns = i40e_get_vsi_stats_struct(vsi); 883 ons = &vsi->net_stats_offsets; 884 es = &vsi->eth_stats; 885 oes = &vsi->eth_stats_offsets; 886 887 /* Gather up the netdev and vsi stats that the driver collects 888 * on the fly during packet processing 889 */ 890 rx_b = rx_p = 0; 891 tx_b = tx_p = 0; 892 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 893 tx_stopped = 0; 894 rx_page = 0; 895 rx_buf = 0; 896 rx_reuse = 0; 897 rx_alloc = 0; 898 rx_waive = 0; 899 rx_busy = 0; 900 rcu_read_lock(); 901 for (q = 0; q < vsi->num_queue_pairs; q++) { 902 /* locate Tx ring */ 903 p = READ_ONCE(vsi->tx_rings[q]); 904 if (!p) 905 continue; 906 907 do { 908 start = u64_stats_fetch_begin(&p->syncp); 909 packets = p->stats.packets; 910 bytes = p->stats.bytes; 911 } while (u64_stats_fetch_retry(&p->syncp, start)); 912 tx_b += bytes; 913 tx_p += packets; 914 tx_restart += p->tx_stats.restart_queue; 915 tx_busy += p->tx_stats.tx_busy; 916 tx_linearize += p->tx_stats.tx_linearize; 917 tx_force_wb += p->tx_stats.tx_force_wb; 918 tx_stopped += p->tx_stats.tx_stopped; 919 920 /* locate Rx ring */ 921 p = READ_ONCE(vsi->rx_rings[q]); 922 if (!p) 923 continue; 924 925 do { 926 start = u64_stats_fetch_begin(&p->syncp); 927 packets = p->stats.packets; 928 bytes = p->stats.bytes; 929 } while (u64_stats_fetch_retry(&p->syncp, start)); 930 rx_b += bytes; 931 rx_p += packets; 932 rx_buf += p->rx_stats.alloc_buff_failed; 933 rx_page += p->rx_stats.alloc_page_failed; 934 rx_reuse += p->rx_stats.page_reuse_count; 935 rx_alloc += p->rx_stats.page_alloc_count; 936 rx_waive += p->rx_stats.page_waive_count; 937 rx_busy += p->rx_stats.page_busy_count; 938 939 if (i40e_enabled_xdp_vsi(vsi)) { 940 /* locate XDP ring */ 941 p = READ_ONCE(vsi->xdp_rings[q]); 942 if (!p) 943 continue; 944 945 do { 946 start = u64_stats_fetch_begin(&p->syncp); 947 packets = p->stats.packets; 948 bytes = p->stats.bytes; 949 } while (u64_stats_fetch_retry(&p->syncp, start)); 950 tx_b += bytes; 951 tx_p += packets; 952 tx_restart += p->tx_stats.restart_queue; 953 tx_busy += p->tx_stats.tx_busy; 954 tx_linearize += p->tx_stats.tx_linearize; 955 tx_force_wb += p->tx_stats.tx_force_wb; 956 } 957 } 958 rcu_read_unlock(); 959 vsi->tx_restart = tx_restart; 960 vsi->tx_busy = tx_busy; 961 vsi->tx_linearize = tx_linearize; 962 vsi->tx_force_wb = tx_force_wb; 963 vsi->tx_stopped = tx_stopped; 964 vsi->rx_page_failed = rx_page; 965 vsi->rx_buf_failed = rx_buf; 966 vsi->rx_page_reuse = rx_reuse; 967 vsi->rx_page_alloc = rx_alloc; 968 vsi->rx_page_waive = rx_waive; 969 vsi->rx_page_busy = rx_busy; 970 971 ns->rx_packets = rx_p; 972 ns->rx_bytes = rx_b; 973 ns->tx_packets = tx_p; 974 ns->tx_bytes = tx_b; 975 976 /* update netdev stats from eth stats */ 977 i40e_update_eth_stats(vsi); 978 ons->tx_errors = oes->tx_errors; 979 ns->tx_errors = es->tx_errors; 980 ons->multicast = oes->rx_multicast; 981 ns->multicast = es->rx_multicast; 982 ons->rx_dropped = oes->rx_discards_other; 983 ns->rx_dropped = es->rx_discards_other; 984 ons->rx_missed_errors = oes->rx_discards; 985 ns->rx_missed_errors = es->rx_discards; 986 ons->tx_dropped = oes->tx_discards; 987 ns->tx_dropped = es->tx_discards; 988 989 /* pull in a couple PF stats if this is the main vsi */ 990 if (vsi == pf->vsi[pf->lan_vsi]) { 991 ns->rx_crc_errors = pf->stats.crc_errors; 992 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 993 ns->rx_length_errors = pf->stats.rx_length_errors; 994 } 995 } 996 997 /** 998 * i40e_update_pf_stats - Update the PF statistics counters. 999 * @pf: the PF to be updated 1000 **/ 1001 static void i40e_update_pf_stats(struct i40e_pf *pf) 1002 { 1003 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1004 struct i40e_hw_port_stats *nsd = &pf->stats; 1005 struct i40e_hw *hw = &pf->hw; 1006 u32 val; 1007 int i; 1008 1009 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1010 I40E_GLPRT_GORCL(hw->port), 1011 pf->stat_offsets_loaded, 1012 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1013 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1014 I40E_GLPRT_GOTCL(hw->port), 1015 pf->stat_offsets_loaded, 1016 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1017 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1018 pf->stat_offsets_loaded, 1019 &osd->eth.rx_discards, 1020 &nsd->eth.rx_discards); 1021 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1022 I40E_GLPRT_UPRCL(hw->port), 1023 pf->stat_offsets_loaded, 1024 &osd->eth.rx_unicast, 1025 &nsd->eth.rx_unicast); 1026 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1027 I40E_GLPRT_MPRCL(hw->port), 1028 pf->stat_offsets_loaded, 1029 &osd->eth.rx_multicast, 1030 &nsd->eth.rx_multicast); 1031 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1032 I40E_GLPRT_BPRCL(hw->port), 1033 pf->stat_offsets_loaded, 1034 &osd->eth.rx_broadcast, 1035 &nsd->eth.rx_broadcast); 1036 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1037 I40E_GLPRT_UPTCL(hw->port), 1038 pf->stat_offsets_loaded, 1039 &osd->eth.tx_unicast, 1040 &nsd->eth.tx_unicast); 1041 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1042 I40E_GLPRT_MPTCL(hw->port), 1043 pf->stat_offsets_loaded, 1044 &osd->eth.tx_multicast, 1045 &nsd->eth.tx_multicast); 1046 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1047 I40E_GLPRT_BPTCL(hw->port), 1048 pf->stat_offsets_loaded, 1049 &osd->eth.tx_broadcast, 1050 &nsd->eth.tx_broadcast); 1051 1052 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1053 pf->stat_offsets_loaded, 1054 &osd->tx_dropped_link_down, 1055 &nsd->tx_dropped_link_down); 1056 1057 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1058 pf->stat_offsets_loaded, 1059 &osd->crc_errors, &nsd->crc_errors); 1060 1061 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1062 pf->stat_offsets_loaded, 1063 &osd->illegal_bytes, &nsd->illegal_bytes); 1064 1065 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1066 pf->stat_offsets_loaded, 1067 &osd->mac_local_faults, 1068 &nsd->mac_local_faults); 1069 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1070 pf->stat_offsets_loaded, 1071 &osd->mac_remote_faults, 1072 &nsd->mac_remote_faults); 1073 1074 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1075 pf->stat_offsets_loaded, 1076 &osd->rx_length_errors, 1077 &nsd->rx_length_errors); 1078 1079 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1080 pf->stat_offsets_loaded, 1081 &osd->link_xon_rx, &nsd->link_xon_rx); 1082 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1083 pf->stat_offsets_loaded, 1084 &osd->link_xon_tx, &nsd->link_xon_tx); 1085 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1086 pf->stat_offsets_loaded, 1087 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1088 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1089 pf->stat_offsets_loaded, 1090 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1091 1092 for (i = 0; i < 8; i++) { 1093 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1094 pf->stat_offsets_loaded, 1095 &osd->priority_xoff_rx[i], 1096 &nsd->priority_xoff_rx[i]); 1097 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1098 pf->stat_offsets_loaded, 1099 &osd->priority_xon_rx[i], 1100 &nsd->priority_xon_rx[i]); 1101 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1102 pf->stat_offsets_loaded, 1103 &osd->priority_xon_tx[i], 1104 &nsd->priority_xon_tx[i]); 1105 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1106 pf->stat_offsets_loaded, 1107 &osd->priority_xoff_tx[i], 1108 &nsd->priority_xoff_tx[i]); 1109 i40e_stat_update32(hw, 1110 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1111 pf->stat_offsets_loaded, 1112 &osd->priority_xon_2_xoff[i], 1113 &nsd->priority_xon_2_xoff[i]); 1114 } 1115 1116 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1117 I40E_GLPRT_PRC64L(hw->port), 1118 pf->stat_offsets_loaded, 1119 &osd->rx_size_64, &nsd->rx_size_64); 1120 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1121 I40E_GLPRT_PRC127L(hw->port), 1122 pf->stat_offsets_loaded, 1123 &osd->rx_size_127, &nsd->rx_size_127); 1124 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1125 I40E_GLPRT_PRC255L(hw->port), 1126 pf->stat_offsets_loaded, 1127 &osd->rx_size_255, &nsd->rx_size_255); 1128 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1129 I40E_GLPRT_PRC511L(hw->port), 1130 pf->stat_offsets_loaded, 1131 &osd->rx_size_511, &nsd->rx_size_511); 1132 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1133 I40E_GLPRT_PRC1023L(hw->port), 1134 pf->stat_offsets_loaded, 1135 &osd->rx_size_1023, &nsd->rx_size_1023); 1136 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1137 I40E_GLPRT_PRC1522L(hw->port), 1138 pf->stat_offsets_loaded, 1139 &osd->rx_size_1522, &nsd->rx_size_1522); 1140 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1141 I40E_GLPRT_PRC9522L(hw->port), 1142 pf->stat_offsets_loaded, 1143 &osd->rx_size_big, &nsd->rx_size_big); 1144 1145 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1146 I40E_GLPRT_PTC64L(hw->port), 1147 pf->stat_offsets_loaded, 1148 &osd->tx_size_64, &nsd->tx_size_64); 1149 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1150 I40E_GLPRT_PTC127L(hw->port), 1151 pf->stat_offsets_loaded, 1152 &osd->tx_size_127, &nsd->tx_size_127); 1153 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1154 I40E_GLPRT_PTC255L(hw->port), 1155 pf->stat_offsets_loaded, 1156 &osd->tx_size_255, &nsd->tx_size_255); 1157 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1158 I40E_GLPRT_PTC511L(hw->port), 1159 pf->stat_offsets_loaded, 1160 &osd->tx_size_511, &nsd->tx_size_511); 1161 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1162 I40E_GLPRT_PTC1023L(hw->port), 1163 pf->stat_offsets_loaded, 1164 &osd->tx_size_1023, &nsd->tx_size_1023); 1165 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1166 I40E_GLPRT_PTC1522L(hw->port), 1167 pf->stat_offsets_loaded, 1168 &osd->tx_size_1522, &nsd->tx_size_1522); 1169 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1170 I40E_GLPRT_PTC9522L(hw->port), 1171 pf->stat_offsets_loaded, 1172 &osd->tx_size_big, &nsd->tx_size_big); 1173 1174 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1175 pf->stat_offsets_loaded, 1176 &osd->rx_undersize, &nsd->rx_undersize); 1177 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1178 pf->stat_offsets_loaded, 1179 &osd->rx_fragments, &nsd->rx_fragments); 1180 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1181 pf->stat_offsets_loaded, 1182 &osd->rx_oversize, &nsd->rx_oversize); 1183 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1184 pf->stat_offsets_loaded, 1185 &osd->rx_jabber, &nsd->rx_jabber); 1186 1187 /* FDIR stats */ 1188 i40e_stat_update_and_clear32(hw, 1189 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1190 &nsd->fd_atr_match); 1191 i40e_stat_update_and_clear32(hw, 1192 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1193 &nsd->fd_sb_match); 1194 i40e_stat_update_and_clear32(hw, 1195 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1196 &nsd->fd_atr_tunnel_match); 1197 1198 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1199 nsd->tx_lpi_status = 1200 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1201 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1202 nsd->rx_lpi_status = 1203 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1204 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1205 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1206 pf->stat_offsets_loaded, 1207 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1208 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1209 pf->stat_offsets_loaded, 1210 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1211 1212 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1213 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1214 nsd->fd_sb_status = true; 1215 else 1216 nsd->fd_sb_status = false; 1217 1218 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1219 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1220 nsd->fd_atr_status = true; 1221 else 1222 nsd->fd_atr_status = false; 1223 1224 pf->stat_offsets_loaded = true; 1225 } 1226 1227 /** 1228 * i40e_update_stats - Update the various statistics counters. 1229 * @vsi: the VSI to be updated 1230 * 1231 * Update the various stats for this VSI and its related entities. 1232 **/ 1233 void i40e_update_stats(struct i40e_vsi *vsi) 1234 { 1235 struct i40e_pf *pf = vsi->back; 1236 1237 if (vsi == pf->vsi[pf->lan_vsi]) 1238 i40e_update_pf_stats(pf); 1239 1240 i40e_update_vsi_stats(vsi); 1241 } 1242 1243 /** 1244 * i40e_count_filters - counts VSI mac filters 1245 * @vsi: the VSI to be searched 1246 * 1247 * Returns count of mac filters 1248 **/ 1249 int i40e_count_filters(struct i40e_vsi *vsi) 1250 { 1251 struct i40e_mac_filter *f; 1252 struct hlist_node *h; 1253 int bkt; 1254 int cnt = 0; 1255 1256 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1257 ++cnt; 1258 1259 return cnt; 1260 } 1261 1262 /** 1263 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1264 * @vsi: the VSI to be searched 1265 * @macaddr: the MAC address 1266 * @vlan: the vlan 1267 * 1268 * Returns ptr to the filter object or NULL 1269 **/ 1270 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1271 const u8 *macaddr, s16 vlan) 1272 { 1273 struct i40e_mac_filter *f; 1274 u64 key; 1275 1276 if (!vsi || !macaddr) 1277 return NULL; 1278 1279 key = i40e_addr_to_hkey(macaddr); 1280 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1281 if ((ether_addr_equal(macaddr, f->macaddr)) && 1282 (vlan == f->vlan)) 1283 return f; 1284 } 1285 return NULL; 1286 } 1287 1288 /** 1289 * i40e_find_mac - Find a mac addr in the macvlan filters list 1290 * @vsi: the VSI to be searched 1291 * @macaddr: the MAC address we are searching for 1292 * 1293 * Returns the first filter with the provided MAC address or NULL if 1294 * MAC address was not found 1295 **/ 1296 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1297 { 1298 struct i40e_mac_filter *f; 1299 u64 key; 1300 1301 if (!vsi || !macaddr) 1302 return NULL; 1303 1304 key = i40e_addr_to_hkey(macaddr); 1305 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1306 if ((ether_addr_equal(macaddr, f->macaddr))) 1307 return f; 1308 } 1309 return NULL; 1310 } 1311 1312 /** 1313 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1314 * @vsi: the VSI to be searched 1315 * 1316 * Returns true if VSI is in vlan mode or false otherwise 1317 **/ 1318 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1319 { 1320 /* If we have a PVID, always operate in VLAN mode */ 1321 if (vsi->info.pvid) 1322 return true; 1323 1324 /* We need to operate in VLAN mode whenever we have any filters with 1325 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1326 * time, incurring search cost repeatedly. However, we can notice two 1327 * things: 1328 * 1329 * 1) the only place where we can gain a VLAN filter is in 1330 * i40e_add_filter. 1331 * 1332 * 2) the only place where filters are actually removed is in 1333 * i40e_sync_filters_subtask. 1334 * 1335 * Thus, we can simply use a boolean value, has_vlan_filters which we 1336 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1337 * we have to perform the full search after deleting filters in 1338 * i40e_sync_filters_subtask, but we already have to search 1339 * filters here and can perform the check at the same time. This 1340 * results in avoiding embedding a loop for VLAN mode inside another 1341 * loop over all the filters, and should maintain correctness as noted 1342 * above. 1343 */ 1344 return vsi->has_vlan_filter; 1345 } 1346 1347 /** 1348 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1349 * @vsi: the VSI to configure 1350 * @tmp_add_list: list of filters ready to be added 1351 * @tmp_del_list: list of filters ready to be deleted 1352 * @vlan_filters: the number of active VLAN filters 1353 * 1354 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1355 * behave as expected. If we have any active VLAN filters remaining or about 1356 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1357 * so that they only match against untagged traffic. If we no longer have any 1358 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1359 * so that they match against both tagged and untagged traffic. In this way, 1360 * we ensure that we correctly receive the desired traffic. This ensures that 1361 * when we have an active VLAN we will receive only untagged traffic and 1362 * traffic matching active VLANs. If we have no active VLANs then we will 1363 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1364 * 1365 * Finally, in a similar fashion, this function also corrects filters when 1366 * there is an active PVID assigned to this VSI. 1367 * 1368 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1369 * 1370 * This function is only expected to be called from within 1371 * i40e_sync_vsi_filters. 1372 * 1373 * NOTE: This function expects to be called while under the 1374 * mac_filter_hash_lock 1375 */ 1376 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1377 struct hlist_head *tmp_add_list, 1378 struct hlist_head *tmp_del_list, 1379 int vlan_filters) 1380 { 1381 s16 pvid = le16_to_cpu(vsi->info.pvid); 1382 struct i40e_mac_filter *f, *add_head; 1383 struct i40e_new_mac_filter *new; 1384 struct hlist_node *h; 1385 int bkt, new_vlan; 1386 1387 /* To determine if a particular filter needs to be replaced we 1388 * have the three following conditions: 1389 * 1390 * a) if we have a PVID assigned, then all filters which are 1391 * not marked as VLAN=PVID must be replaced with filters that 1392 * are. 1393 * b) otherwise, if we have any active VLANS, all filters 1394 * which are marked as VLAN=-1 must be replaced with 1395 * filters marked as VLAN=0 1396 * c) finally, if we do not have any active VLANS, all filters 1397 * which are marked as VLAN=0 must be replaced with filters 1398 * marked as VLAN=-1 1399 */ 1400 1401 /* Update the filters about to be added in place */ 1402 hlist_for_each_entry(new, tmp_add_list, hlist) { 1403 if (pvid && new->f->vlan != pvid) 1404 new->f->vlan = pvid; 1405 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1406 new->f->vlan = 0; 1407 else if (!vlan_filters && new->f->vlan == 0) 1408 new->f->vlan = I40E_VLAN_ANY; 1409 } 1410 1411 /* Update the remaining active filters */ 1412 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1413 /* Combine the checks for whether a filter needs to be changed 1414 * and then determine the new VLAN inside the if block, in 1415 * order to avoid duplicating code for adding the new filter 1416 * then deleting the old filter. 1417 */ 1418 if ((pvid && f->vlan != pvid) || 1419 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1420 (!vlan_filters && f->vlan == 0)) { 1421 /* Determine the new vlan we will be adding */ 1422 if (pvid) 1423 new_vlan = pvid; 1424 else if (vlan_filters) 1425 new_vlan = 0; 1426 else 1427 new_vlan = I40E_VLAN_ANY; 1428 1429 /* Create the new filter */ 1430 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1431 if (!add_head) 1432 return -ENOMEM; 1433 1434 /* Create a temporary i40e_new_mac_filter */ 1435 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1436 if (!new) 1437 return -ENOMEM; 1438 1439 new->f = add_head; 1440 new->state = add_head->state; 1441 1442 /* Add the new filter to the tmp list */ 1443 hlist_add_head(&new->hlist, tmp_add_list); 1444 1445 /* Put the original filter into the delete list */ 1446 f->state = I40E_FILTER_REMOVE; 1447 hash_del(&f->hlist); 1448 hlist_add_head(&f->hlist, tmp_del_list); 1449 } 1450 } 1451 1452 vsi->has_vlan_filter = !!vlan_filters; 1453 1454 return 0; 1455 } 1456 1457 /** 1458 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1459 * @vsi: the vsi to configure 1460 * @new_mac: new mac filter to be added 1461 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1462 * @vlan_filters: the number of active VLAN filters 1463 * @trusted: flag if the VF is trusted 1464 * 1465 * Get new VLAN id based on current VLAN filters, trust, PVID 1466 * and vf-vlan-prune-disable flag. 1467 * 1468 * Returns the value of the new vlan filter or 1469 * the old value if no new filter is needed. 1470 */ 1471 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1472 struct i40e_new_mac_filter *new_mac, 1473 struct i40e_mac_filter *f, 1474 int vlan_filters, 1475 bool trusted) 1476 { 1477 s16 pvid = le16_to_cpu(vsi->info.pvid); 1478 struct i40e_pf *pf = vsi->back; 1479 bool is_any; 1480 1481 if (new_mac) 1482 f = new_mac->f; 1483 1484 if (pvid && f->vlan != pvid) 1485 return pvid; 1486 1487 is_any = (trusted || 1488 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1489 1490 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1491 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1492 (is_any && !vlan_filters && f->vlan == 0)) { 1493 if (is_any) 1494 return I40E_VLAN_ANY; 1495 else 1496 return 0; 1497 } 1498 1499 return f->vlan; 1500 } 1501 1502 /** 1503 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1504 * @vsi: the vsi to configure 1505 * @tmp_add_list: list of filters ready to be added 1506 * @tmp_del_list: list of filters ready to be deleted 1507 * @vlan_filters: the number of active VLAN filters 1508 * @trusted: flag if the VF is trusted 1509 * 1510 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1511 * and vf-vlan-prune-disable flag. 1512 * 1513 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1514 * 1515 * This function is only expected to be called from within 1516 * i40e_sync_vsi_filters. 1517 * 1518 * NOTE: This function expects to be called while under the 1519 * mac_filter_hash_lock 1520 */ 1521 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1522 struct hlist_head *tmp_add_list, 1523 struct hlist_head *tmp_del_list, 1524 int vlan_filters, 1525 bool trusted) 1526 { 1527 struct i40e_mac_filter *f, *add_head; 1528 struct i40e_new_mac_filter *new_mac; 1529 struct hlist_node *h; 1530 int bkt, new_vlan; 1531 1532 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1533 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1534 vlan_filters, trusted); 1535 } 1536 1537 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1538 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1539 trusted); 1540 if (new_vlan != f->vlan) { 1541 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1542 if (!add_head) 1543 return -ENOMEM; 1544 /* Create a temporary i40e_new_mac_filter */ 1545 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1546 if (!new_mac) 1547 return -ENOMEM; 1548 new_mac->f = add_head; 1549 new_mac->state = add_head->state; 1550 1551 /* Add the new filter to the tmp list */ 1552 hlist_add_head(&new_mac->hlist, tmp_add_list); 1553 1554 /* Put the original filter into the delete list */ 1555 f->state = I40E_FILTER_REMOVE; 1556 hash_del(&f->hlist); 1557 hlist_add_head(&f->hlist, tmp_del_list); 1558 } 1559 } 1560 1561 vsi->has_vlan_filter = !!vlan_filters; 1562 return 0; 1563 } 1564 1565 /** 1566 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1567 * @vsi: the PF Main VSI - inappropriate for any other VSI 1568 * @macaddr: the MAC address 1569 * 1570 * Remove whatever filter the firmware set up so the driver can manage 1571 * its own filtering intelligently. 1572 **/ 1573 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1574 { 1575 struct i40e_aqc_remove_macvlan_element_data element; 1576 struct i40e_pf *pf = vsi->back; 1577 1578 /* Only appropriate for the PF main VSI */ 1579 if (vsi->type != I40E_VSI_MAIN) 1580 return; 1581 1582 memset(&element, 0, sizeof(element)); 1583 ether_addr_copy(element.mac_addr, macaddr); 1584 element.vlan_tag = 0; 1585 /* Ignore error returns, some firmware does it this way... */ 1586 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1587 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1588 1589 memset(&element, 0, sizeof(element)); 1590 ether_addr_copy(element.mac_addr, macaddr); 1591 element.vlan_tag = 0; 1592 /* ...and some firmware does it this way. */ 1593 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1594 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1595 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1596 } 1597 1598 /** 1599 * i40e_add_filter - Add a mac/vlan filter to the VSI 1600 * @vsi: the VSI to be searched 1601 * @macaddr: the MAC address 1602 * @vlan: the vlan 1603 * 1604 * Returns ptr to the filter object or NULL when no memory available. 1605 * 1606 * NOTE: This function is expected to be called with mac_filter_hash_lock 1607 * being held. 1608 **/ 1609 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1610 const u8 *macaddr, s16 vlan) 1611 { 1612 struct i40e_mac_filter *f; 1613 u64 key; 1614 1615 if (!vsi || !macaddr) 1616 return NULL; 1617 1618 f = i40e_find_filter(vsi, macaddr, vlan); 1619 if (!f) { 1620 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1621 if (!f) 1622 return NULL; 1623 1624 /* Update the boolean indicating if we need to function in 1625 * VLAN mode. 1626 */ 1627 if (vlan >= 0) 1628 vsi->has_vlan_filter = true; 1629 1630 ether_addr_copy(f->macaddr, macaddr); 1631 f->vlan = vlan; 1632 f->state = I40E_FILTER_NEW; 1633 INIT_HLIST_NODE(&f->hlist); 1634 1635 key = i40e_addr_to_hkey(macaddr); 1636 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1637 1638 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1639 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1640 } 1641 1642 /* If we're asked to add a filter that has been marked for removal, it 1643 * is safe to simply restore it to active state. __i40e_del_filter 1644 * will have simply deleted any filters which were previously marked 1645 * NEW or FAILED, so if it is currently marked REMOVE it must have 1646 * previously been ACTIVE. Since we haven't yet run the sync filters 1647 * task, just restore this filter to the ACTIVE state so that the 1648 * sync task leaves it in place 1649 */ 1650 if (f->state == I40E_FILTER_REMOVE) 1651 f->state = I40E_FILTER_ACTIVE; 1652 1653 return f; 1654 } 1655 1656 /** 1657 * __i40e_del_filter - Remove a specific filter from the VSI 1658 * @vsi: VSI to remove from 1659 * @f: the filter to remove from the list 1660 * 1661 * This function should be called instead of i40e_del_filter only if you know 1662 * the exact filter you will remove already, such as via i40e_find_filter or 1663 * i40e_find_mac. 1664 * 1665 * NOTE: This function is expected to be called with mac_filter_hash_lock 1666 * being held. 1667 * ANOTHER NOTE: This function MUST be called from within the context of 1668 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1669 * instead of list_for_each_entry(). 1670 **/ 1671 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1672 { 1673 if (!f) 1674 return; 1675 1676 /* If the filter was never added to firmware then we can just delete it 1677 * directly and we don't want to set the status to remove or else an 1678 * admin queue command will unnecessarily fire. 1679 */ 1680 if ((f->state == I40E_FILTER_FAILED) || 1681 (f->state == I40E_FILTER_NEW)) { 1682 hash_del(&f->hlist); 1683 kfree(f); 1684 } else { 1685 f->state = I40E_FILTER_REMOVE; 1686 } 1687 1688 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1689 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1690 } 1691 1692 /** 1693 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1694 * @vsi: the VSI to be searched 1695 * @macaddr: the MAC address 1696 * @vlan: the VLAN 1697 * 1698 * NOTE: This function is expected to be called with mac_filter_hash_lock 1699 * being held. 1700 * ANOTHER NOTE: This function MUST be called from within the context of 1701 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1702 * instead of list_for_each_entry(). 1703 **/ 1704 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1705 { 1706 struct i40e_mac_filter *f; 1707 1708 if (!vsi || !macaddr) 1709 return; 1710 1711 f = i40e_find_filter(vsi, macaddr, vlan); 1712 __i40e_del_filter(vsi, f); 1713 } 1714 1715 /** 1716 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1717 * @vsi: the VSI to be searched 1718 * @macaddr: the mac address to be filtered 1719 * 1720 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1721 * go through all the macvlan filters and add a macvlan filter for each 1722 * unique vlan that already exists. If a PVID has been assigned, instead only 1723 * add the macaddr to that VLAN. 1724 * 1725 * Returns last filter added on success, else NULL 1726 **/ 1727 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1728 const u8 *macaddr) 1729 { 1730 struct i40e_mac_filter *f, *add = NULL; 1731 struct hlist_node *h; 1732 int bkt; 1733 1734 if (vsi->info.pvid) 1735 return i40e_add_filter(vsi, macaddr, 1736 le16_to_cpu(vsi->info.pvid)); 1737 1738 if (!i40e_is_vsi_in_vlan(vsi)) 1739 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1740 1741 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1742 if (f->state == I40E_FILTER_REMOVE) 1743 continue; 1744 add = i40e_add_filter(vsi, macaddr, f->vlan); 1745 if (!add) 1746 return NULL; 1747 } 1748 1749 return add; 1750 } 1751 1752 /** 1753 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1754 * @vsi: the VSI to be searched 1755 * @macaddr: the mac address to be removed 1756 * 1757 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1758 * associated with. 1759 * 1760 * Returns 0 for success, or error 1761 **/ 1762 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1763 { 1764 struct i40e_mac_filter *f; 1765 struct hlist_node *h; 1766 bool found = false; 1767 int bkt; 1768 1769 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1770 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1771 if (ether_addr_equal(macaddr, f->macaddr)) { 1772 __i40e_del_filter(vsi, f); 1773 found = true; 1774 } 1775 } 1776 1777 if (found) 1778 return 0; 1779 else 1780 return -ENOENT; 1781 } 1782 1783 /** 1784 * i40e_set_mac - NDO callback to set mac address 1785 * @netdev: network interface device structure 1786 * @p: pointer to an address structure 1787 * 1788 * Returns 0 on success, negative on failure 1789 **/ 1790 static int i40e_set_mac(struct net_device *netdev, void *p) 1791 { 1792 struct i40e_netdev_priv *np = netdev_priv(netdev); 1793 struct i40e_vsi *vsi = np->vsi; 1794 struct i40e_pf *pf = vsi->back; 1795 struct i40e_hw *hw = &pf->hw; 1796 struct sockaddr *addr = p; 1797 1798 if (!is_valid_ether_addr(addr->sa_data)) 1799 return -EADDRNOTAVAIL; 1800 1801 if (test_bit(__I40E_DOWN, pf->state) || 1802 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1803 return -EADDRNOTAVAIL; 1804 1805 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1806 netdev_info(netdev, "returning to hw mac address %pM\n", 1807 hw->mac.addr); 1808 else 1809 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1810 1811 /* Copy the address first, so that we avoid a possible race with 1812 * .set_rx_mode(). 1813 * - Remove old address from MAC filter 1814 * - Copy new address 1815 * - Add new address to MAC filter 1816 */ 1817 spin_lock_bh(&vsi->mac_filter_hash_lock); 1818 i40e_del_mac_filter(vsi, netdev->dev_addr); 1819 eth_hw_addr_set(netdev, addr->sa_data); 1820 i40e_add_mac_filter(vsi, netdev->dev_addr); 1821 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1822 1823 if (vsi->type == I40E_VSI_MAIN) { 1824 int ret; 1825 1826 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1827 addr->sa_data, NULL); 1828 if (ret) 1829 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1830 ERR_PTR(ret), 1831 i40e_aq_str(hw, hw->aq.asq_last_status)); 1832 } 1833 1834 /* schedule our worker thread which will take care of 1835 * applying the new filter changes 1836 */ 1837 i40e_service_event_schedule(pf); 1838 return 0; 1839 } 1840 1841 /** 1842 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1843 * @vsi: vsi structure 1844 * @seed: RSS hash seed 1845 * @lut: pointer to lookup table of lut_size 1846 * @lut_size: size of the lookup table 1847 **/ 1848 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1849 u8 *lut, u16 lut_size) 1850 { 1851 struct i40e_pf *pf = vsi->back; 1852 struct i40e_hw *hw = &pf->hw; 1853 int ret = 0; 1854 1855 if (seed) { 1856 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1857 (struct i40e_aqc_get_set_rss_key_data *)seed; 1858 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1859 if (ret) { 1860 dev_info(&pf->pdev->dev, 1861 "Cannot set RSS key, err %pe aq_err %s\n", 1862 ERR_PTR(ret), 1863 i40e_aq_str(hw, hw->aq.asq_last_status)); 1864 return ret; 1865 } 1866 } 1867 if (lut) { 1868 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1869 1870 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1871 if (ret) { 1872 dev_info(&pf->pdev->dev, 1873 "Cannot set RSS lut, err %pe aq_err %s\n", 1874 ERR_PTR(ret), 1875 i40e_aq_str(hw, hw->aq.asq_last_status)); 1876 return ret; 1877 } 1878 } 1879 return ret; 1880 } 1881 1882 /** 1883 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1884 * @vsi: VSI structure 1885 **/ 1886 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1887 { 1888 struct i40e_pf *pf = vsi->back; 1889 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1890 u8 *lut; 1891 int ret; 1892 1893 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1894 return 0; 1895 if (!vsi->rss_size) 1896 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1897 vsi->num_queue_pairs); 1898 if (!vsi->rss_size) 1899 return -EINVAL; 1900 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1901 if (!lut) 1902 return -ENOMEM; 1903 1904 /* Use the user configured hash keys and lookup table if there is one, 1905 * otherwise use default 1906 */ 1907 if (vsi->rss_lut_user) 1908 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1909 else 1910 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1911 if (vsi->rss_hkey_user) 1912 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1913 else 1914 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1915 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1916 kfree(lut); 1917 return ret; 1918 } 1919 1920 /** 1921 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1922 * @vsi: the VSI being configured, 1923 * @ctxt: VSI context structure 1924 * @enabled_tc: number of traffic classes to enable 1925 * 1926 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1927 **/ 1928 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1929 struct i40e_vsi_context *ctxt, 1930 u8 enabled_tc) 1931 { 1932 u16 qcount = 0, max_qcount, qmap, sections = 0; 1933 int i, override_q, pow, num_qps, ret; 1934 u8 netdev_tc = 0, offset = 0; 1935 1936 if (vsi->type != I40E_VSI_MAIN) 1937 return -EINVAL; 1938 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1939 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1940 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1941 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1942 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1943 1944 /* find the next higher power-of-2 of num queue pairs */ 1945 pow = ilog2(num_qps); 1946 if (!is_power_of_2(num_qps)) 1947 pow++; 1948 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1949 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1950 1951 /* Setup queue offset/count for all TCs for given VSI */ 1952 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1953 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1954 /* See if the given TC is enabled for the given VSI */ 1955 if (vsi->tc_config.enabled_tc & BIT(i)) { 1956 offset = vsi->mqprio_qopt.qopt.offset[i]; 1957 qcount = vsi->mqprio_qopt.qopt.count[i]; 1958 if (qcount > max_qcount) 1959 max_qcount = qcount; 1960 vsi->tc_config.tc_info[i].qoffset = offset; 1961 vsi->tc_config.tc_info[i].qcount = qcount; 1962 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1963 } else { 1964 /* TC is not enabled so set the offset to 1965 * default queue and allocate one queue 1966 * for the given TC. 1967 */ 1968 vsi->tc_config.tc_info[i].qoffset = 0; 1969 vsi->tc_config.tc_info[i].qcount = 1; 1970 vsi->tc_config.tc_info[i].netdev_tc = 0; 1971 } 1972 } 1973 1974 /* Set actual Tx/Rx queue pairs */ 1975 vsi->num_queue_pairs = offset + qcount; 1976 1977 /* Setup queue TC[0].qmap for given VSI context */ 1978 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1979 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1980 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1981 ctxt->info.valid_sections |= cpu_to_le16(sections); 1982 1983 /* Reconfigure RSS for main VSI with max queue count */ 1984 vsi->rss_size = max_qcount; 1985 ret = i40e_vsi_config_rss(vsi); 1986 if (ret) { 1987 dev_info(&vsi->back->pdev->dev, 1988 "Failed to reconfig rss for num_queues (%u)\n", 1989 max_qcount); 1990 return ret; 1991 } 1992 vsi->reconfig_rss = true; 1993 dev_dbg(&vsi->back->pdev->dev, 1994 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1995 1996 /* Find queue count available for channel VSIs and starting offset 1997 * for channel VSIs 1998 */ 1999 override_q = vsi->mqprio_qopt.qopt.count[0]; 2000 if (override_q && override_q < vsi->num_queue_pairs) { 2001 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 2002 vsi->next_base_queue = override_q; 2003 } 2004 return 0; 2005 } 2006 2007 /** 2008 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 2009 * @vsi: the VSI being setup 2010 * @ctxt: VSI context structure 2011 * @enabled_tc: Enabled TCs bitmap 2012 * @is_add: True if called before Add VSI 2013 * 2014 * Setup VSI queue mapping for enabled traffic classes. 2015 **/ 2016 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2017 struct i40e_vsi_context *ctxt, 2018 u8 enabled_tc, 2019 bool is_add) 2020 { 2021 struct i40e_pf *pf = vsi->back; 2022 u16 num_tc_qps = 0; 2023 u16 sections = 0; 2024 u8 netdev_tc = 0; 2025 u16 numtc = 1; 2026 u16 qcount; 2027 u8 offset; 2028 u16 qmap; 2029 int i; 2030 2031 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2032 offset = 0; 2033 /* zero out queue mapping, it will get updated on the end of the function */ 2034 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2035 2036 if (vsi->type == I40E_VSI_MAIN) { 2037 /* This code helps add more queue to the VSI if we have 2038 * more cores than RSS can support, the higher cores will 2039 * be served by ATR or other filters. Furthermore, the 2040 * non-zero req_queue_pairs says that user requested a new 2041 * queue count via ethtool's set_channels, so use this 2042 * value for queues distribution across traffic classes 2043 * We need at least one queue pair for the interface 2044 * to be usable as we see in else statement. 2045 */ 2046 if (vsi->req_queue_pairs > 0) 2047 vsi->num_queue_pairs = vsi->req_queue_pairs; 2048 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2049 vsi->num_queue_pairs = pf->num_lan_msix; 2050 else 2051 vsi->num_queue_pairs = 1; 2052 } 2053 2054 /* Number of queues per enabled TC */ 2055 if (vsi->type == I40E_VSI_MAIN || 2056 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2057 num_tc_qps = vsi->num_queue_pairs; 2058 else 2059 num_tc_qps = vsi->alloc_queue_pairs; 2060 2061 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2062 /* Find numtc from enabled TC bitmap */ 2063 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2064 if (enabled_tc & BIT(i)) /* TC is enabled */ 2065 numtc++; 2066 } 2067 if (!numtc) { 2068 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2069 numtc = 1; 2070 } 2071 num_tc_qps = num_tc_qps / numtc; 2072 num_tc_qps = min_t(int, num_tc_qps, 2073 i40e_pf_get_max_q_per_tc(pf)); 2074 } 2075 2076 vsi->tc_config.numtc = numtc; 2077 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2078 2079 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2080 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2081 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2082 2083 /* Setup queue offset/count for all TCs for given VSI */ 2084 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2085 /* See if the given TC is enabled for the given VSI */ 2086 if (vsi->tc_config.enabled_tc & BIT(i)) { 2087 /* TC is enabled */ 2088 int pow, num_qps; 2089 2090 switch (vsi->type) { 2091 case I40E_VSI_MAIN: 2092 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2093 pf->flags) && 2094 !test_bit(I40E_FLAG_FD_ATR_ENA, 2095 pf->flags)) || 2096 vsi->tc_config.enabled_tc != 1) { 2097 qcount = min_t(int, pf->alloc_rss_size, 2098 num_tc_qps); 2099 break; 2100 } 2101 fallthrough; 2102 case I40E_VSI_FDIR: 2103 case I40E_VSI_SRIOV: 2104 case I40E_VSI_VMDQ2: 2105 default: 2106 qcount = num_tc_qps; 2107 WARN_ON(i != 0); 2108 break; 2109 } 2110 vsi->tc_config.tc_info[i].qoffset = offset; 2111 vsi->tc_config.tc_info[i].qcount = qcount; 2112 2113 /* find the next higher power-of-2 of num queue pairs */ 2114 num_qps = qcount; 2115 pow = 0; 2116 while (num_qps && (BIT_ULL(pow) < qcount)) { 2117 pow++; 2118 num_qps >>= 1; 2119 } 2120 2121 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2122 qmap = 2123 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2124 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2125 2126 offset += qcount; 2127 } else { 2128 /* TC is not enabled so set the offset to 2129 * default queue and allocate one queue 2130 * for the given TC. 2131 */ 2132 vsi->tc_config.tc_info[i].qoffset = 0; 2133 vsi->tc_config.tc_info[i].qcount = 1; 2134 vsi->tc_config.tc_info[i].netdev_tc = 0; 2135 2136 qmap = 0; 2137 } 2138 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2139 } 2140 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2141 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2142 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2143 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2144 vsi->num_queue_pairs = offset; 2145 2146 /* Scheduler section valid can only be set for ADD VSI */ 2147 if (is_add) { 2148 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2149 2150 ctxt->info.up_enable_bits = enabled_tc; 2151 } 2152 if (vsi->type == I40E_VSI_SRIOV) { 2153 ctxt->info.mapping_flags |= 2154 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2155 for (i = 0; i < vsi->num_queue_pairs; i++) 2156 ctxt->info.queue_mapping[i] = 2157 cpu_to_le16(vsi->base_queue + i); 2158 } else { 2159 ctxt->info.mapping_flags |= 2160 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2161 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2162 } 2163 ctxt->info.valid_sections |= cpu_to_le16(sections); 2164 } 2165 2166 /** 2167 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2168 * @netdev: the netdevice 2169 * @addr: address to add 2170 * 2171 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2172 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2173 */ 2174 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2175 { 2176 struct i40e_netdev_priv *np = netdev_priv(netdev); 2177 struct i40e_vsi *vsi = np->vsi; 2178 2179 if (i40e_add_mac_filter(vsi, addr)) 2180 return 0; 2181 else 2182 return -ENOMEM; 2183 } 2184 2185 /** 2186 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2187 * @netdev: the netdevice 2188 * @addr: address to add 2189 * 2190 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2191 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2192 */ 2193 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2194 { 2195 struct i40e_netdev_priv *np = netdev_priv(netdev); 2196 struct i40e_vsi *vsi = np->vsi; 2197 2198 /* Under some circumstances, we might receive a request to delete 2199 * our own device address from our uc list. Because we store the 2200 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2201 * such requests and not delete our device address from this list. 2202 */ 2203 if (ether_addr_equal(addr, netdev->dev_addr)) 2204 return 0; 2205 2206 i40e_del_mac_filter(vsi, addr); 2207 2208 return 0; 2209 } 2210 2211 /** 2212 * i40e_set_rx_mode - NDO callback to set the netdev filters 2213 * @netdev: network interface device structure 2214 **/ 2215 static void i40e_set_rx_mode(struct net_device *netdev) 2216 { 2217 struct i40e_netdev_priv *np = netdev_priv(netdev); 2218 struct i40e_vsi *vsi = np->vsi; 2219 2220 spin_lock_bh(&vsi->mac_filter_hash_lock); 2221 2222 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2223 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2224 2225 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2226 2227 /* check for other flag changes */ 2228 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2229 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2230 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2231 } 2232 } 2233 2234 /** 2235 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2236 * @vsi: Pointer to VSI struct 2237 * @from: Pointer to list which contains MAC filter entries - changes to 2238 * those entries needs to be undone. 2239 * 2240 * MAC filter entries from this list were slated for deletion. 2241 **/ 2242 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2243 struct hlist_head *from) 2244 { 2245 struct i40e_mac_filter *f; 2246 struct hlist_node *h; 2247 2248 hlist_for_each_entry_safe(f, h, from, hlist) { 2249 u64 key = i40e_addr_to_hkey(f->macaddr); 2250 2251 /* Move the element back into MAC filter list*/ 2252 hlist_del(&f->hlist); 2253 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2254 } 2255 } 2256 2257 /** 2258 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2259 * @vsi: Pointer to vsi struct 2260 * @from: Pointer to list which contains MAC filter entries - changes to 2261 * those entries needs to be undone. 2262 * 2263 * MAC filter entries from this list were slated for addition. 2264 **/ 2265 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2266 struct hlist_head *from) 2267 { 2268 struct i40e_new_mac_filter *new; 2269 struct hlist_node *h; 2270 2271 hlist_for_each_entry_safe(new, h, from, hlist) { 2272 /* We can simply free the wrapper structure */ 2273 hlist_del(&new->hlist); 2274 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2275 kfree(new); 2276 } 2277 } 2278 2279 /** 2280 * i40e_next_filter - Get the next non-broadcast filter from a list 2281 * @next: pointer to filter in list 2282 * 2283 * Returns the next non-broadcast filter in the list. Required so that we 2284 * ignore broadcast filters within the list, since these are not handled via 2285 * the normal firmware update path. 2286 */ 2287 static 2288 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2289 { 2290 hlist_for_each_entry_continue(next, hlist) { 2291 if (!is_broadcast_ether_addr(next->f->macaddr)) 2292 return next; 2293 } 2294 2295 return NULL; 2296 } 2297 2298 /** 2299 * i40e_update_filter_state - Update filter state based on return data 2300 * from firmware 2301 * @count: Number of filters added 2302 * @add_list: return data from fw 2303 * @add_head: pointer to first filter in current batch 2304 * 2305 * MAC filter entries from list were slated to be added to device. Returns 2306 * number of successful filters. Note that 0 does NOT mean success! 2307 **/ 2308 static int 2309 i40e_update_filter_state(int count, 2310 struct i40e_aqc_add_macvlan_element_data *add_list, 2311 struct i40e_new_mac_filter *add_head) 2312 { 2313 int retval = 0; 2314 int i; 2315 2316 for (i = 0; i < count; i++) { 2317 /* Always check status of each filter. We don't need to check 2318 * the firmware return status because we pre-set the filter 2319 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2320 * request to the adminq. Thus, if it no longer matches then 2321 * we know the filter is active. 2322 */ 2323 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2324 add_head->state = I40E_FILTER_FAILED; 2325 } else { 2326 add_head->state = I40E_FILTER_ACTIVE; 2327 retval++; 2328 } 2329 2330 add_head = i40e_next_filter(add_head); 2331 if (!add_head) 2332 break; 2333 } 2334 2335 return retval; 2336 } 2337 2338 /** 2339 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2340 * @vsi: ptr to the VSI 2341 * @vsi_name: name to display in messages 2342 * @list: the list of filters to send to firmware 2343 * @num_del: the number of filters to delete 2344 * @retval: Set to -EIO on failure to delete 2345 * 2346 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2347 * *retval instead of a return value so that success does not force ret_val to 2348 * be set to 0. This ensures that a sequence of calls to this function 2349 * preserve the previous value of *retval on successful delete. 2350 */ 2351 static 2352 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2353 struct i40e_aqc_remove_macvlan_element_data *list, 2354 int num_del, int *retval) 2355 { 2356 struct i40e_hw *hw = &vsi->back->hw; 2357 enum i40e_admin_queue_err aq_status; 2358 int aq_ret; 2359 2360 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2361 &aq_status); 2362 2363 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2364 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2365 *retval = -EIO; 2366 dev_info(&vsi->back->pdev->dev, 2367 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2368 vsi_name, ERR_PTR(aq_ret), 2369 i40e_aq_str(hw, aq_status)); 2370 } 2371 } 2372 2373 /** 2374 * i40e_aqc_add_filters - Request firmware to add a set of filters 2375 * @vsi: ptr to the VSI 2376 * @vsi_name: name to display in messages 2377 * @list: the list of filters to send to firmware 2378 * @add_head: Position in the add hlist 2379 * @num_add: the number of filters to add 2380 * 2381 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2382 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2383 * space for more filters. 2384 */ 2385 static 2386 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2387 struct i40e_aqc_add_macvlan_element_data *list, 2388 struct i40e_new_mac_filter *add_head, 2389 int num_add) 2390 { 2391 struct i40e_hw *hw = &vsi->back->hw; 2392 enum i40e_admin_queue_err aq_status; 2393 int fcnt; 2394 2395 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2396 fcnt = i40e_update_filter_state(num_add, list, add_head); 2397 2398 if (fcnt != num_add) { 2399 if (vsi->type == I40E_VSI_MAIN) { 2400 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2401 dev_warn(&vsi->back->pdev->dev, 2402 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2403 i40e_aq_str(hw, aq_status), vsi_name); 2404 } else if (vsi->type == I40E_VSI_SRIOV || 2405 vsi->type == I40E_VSI_VMDQ1 || 2406 vsi->type == I40E_VSI_VMDQ2) { 2407 dev_warn(&vsi->back->pdev->dev, 2408 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2409 i40e_aq_str(hw, aq_status), vsi_name, 2410 vsi_name); 2411 } else { 2412 dev_warn(&vsi->back->pdev->dev, 2413 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2414 i40e_aq_str(hw, aq_status), vsi_name, 2415 vsi->type); 2416 } 2417 } 2418 } 2419 2420 /** 2421 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2422 * @vsi: pointer to the VSI 2423 * @vsi_name: the VSI name 2424 * @f: filter data 2425 * 2426 * This function sets or clears the promiscuous broadcast flags for VLAN 2427 * filters in order to properly receive broadcast frames. Assumes that only 2428 * broadcast filters are passed. 2429 * 2430 * Returns status indicating success or failure; 2431 **/ 2432 static int 2433 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2434 struct i40e_mac_filter *f) 2435 { 2436 bool enable = f->state == I40E_FILTER_NEW; 2437 struct i40e_hw *hw = &vsi->back->hw; 2438 int aq_ret; 2439 2440 if (f->vlan == I40E_VLAN_ANY) { 2441 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2442 vsi->seid, 2443 enable, 2444 NULL); 2445 } else { 2446 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2447 vsi->seid, 2448 enable, 2449 f->vlan, 2450 NULL); 2451 } 2452 2453 if (aq_ret) { 2454 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2455 dev_warn(&vsi->back->pdev->dev, 2456 "Error %s, forcing overflow promiscuous on %s\n", 2457 i40e_aq_str(hw, hw->aq.asq_last_status), 2458 vsi_name); 2459 } 2460 2461 return aq_ret; 2462 } 2463 2464 /** 2465 * i40e_set_promiscuous - set promiscuous mode 2466 * @pf: board private structure 2467 * @promisc: promisc on or off 2468 * 2469 * There are different ways of setting promiscuous mode on a PF depending on 2470 * what state/environment we're in. This identifies and sets it appropriately. 2471 * Returns 0 on success. 2472 **/ 2473 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2474 { 2475 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2476 struct i40e_hw *hw = &pf->hw; 2477 int aq_ret; 2478 2479 if (vsi->type == I40E_VSI_MAIN && 2480 pf->lan_veb != I40E_NO_VEB && 2481 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2482 /* set defport ON for Main VSI instead of true promisc 2483 * this way we will get all unicast/multicast and VLAN 2484 * promisc behavior but will not get VF or VMDq traffic 2485 * replicated on the Main VSI. 2486 */ 2487 if (promisc) 2488 aq_ret = i40e_aq_set_default_vsi(hw, 2489 vsi->seid, 2490 NULL); 2491 else 2492 aq_ret = i40e_aq_clear_default_vsi(hw, 2493 vsi->seid, 2494 NULL); 2495 if (aq_ret) { 2496 dev_info(&pf->pdev->dev, 2497 "Set default VSI failed, err %pe, aq_err %s\n", 2498 ERR_PTR(aq_ret), 2499 i40e_aq_str(hw, hw->aq.asq_last_status)); 2500 } 2501 } else { 2502 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2503 hw, 2504 vsi->seid, 2505 promisc, NULL, 2506 true); 2507 if (aq_ret) { 2508 dev_info(&pf->pdev->dev, 2509 "set unicast promisc failed, err %pe, aq_err %s\n", 2510 ERR_PTR(aq_ret), 2511 i40e_aq_str(hw, hw->aq.asq_last_status)); 2512 } 2513 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2514 hw, 2515 vsi->seid, 2516 promisc, NULL); 2517 if (aq_ret) { 2518 dev_info(&pf->pdev->dev, 2519 "set multicast promisc failed, err %pe, aq_err %s\n", 2520 ERR_PTR(aq_ret), 2521 i40e_aq_str(hw, hw->aq.asq_last_status)); 2522 } 2523 } 2524 2525 if (!aq_ret) 2526 pf->cur_promisc = promisc; 2527 2528 return aq_ret; 2529 } 2530 2531 /** 2532 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2533 * @vsi: ptr to the VSI 2534 * 2535 * Push any outstanding VSI filter changes through the AdminQ. 2536 * 2537 * Returns 0 or error value 2538 **/ 2539 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2540 { 2541 struct hlist_head tmp_add_list, tmp_del_list; 2542 struct i40e_mac_filter *f; 2543 struct i40e_new_mac_filter *new, *add_head = NULL; 2544 struct i40e_hw *hw = &vsi->back->hw; 2545 bool old_overflow, new_overflow; 2546 unsigned int failed_filters = 0; 2547 unsigned int vlan_filters = 0; 2548 char vsi_name[16] = "PF"; 2549 int filter_list_len = 0; 2550 u32 changed_flags = 0; 2551 struct hlist_node *h; 2552 struct i40e_pf *pf; 2553 int num_add = 0; 2554 int num_del = 0; 2555 int aq_ret = 0; 2556 int retval = 0; 2557 u16 cmd_flags; 2558 int list_size; 2559 int bkt; 2560 2561 /* empty array typed pointers, kcalloc later */ 2562 struct i40e_aqc_add_macvlan_element_data *add_list; 2563 struct i40e_aqc_remove_macvlan_element_data *del_list; 2564 2565 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2566 usleep_range(1000, 2000); 2567 pf = vsi->back; 2568 2569 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2570 2571 if (vsi->netdev) { 2572 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2573 vsi->current_netdev_flags = vsi->netdev->flags; 2574 } 2575 2576 INIT_HLIST_HEAD(&tmp_add_list); 2577 INIT_HLIST_HEAD(&tmp_del_list); 2578 2579 if (vsi->type == I40E_VSI_SRIOV) 2580 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2581 else if (vsi->type != I40E_VSI_MAIN) 2582 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2583 2584 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2585 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2586 2587 spin_lock_bh(&vsi->mac_filter_hash_lock); 2588 /* Create a list of filters to delete. */ 2589 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2590 if (f->state == I40E_FILTER_REMOVE) { 2591 /* Move the element into temporary del_list */ 2592 hash_del(&f->hlist); 2593 hlist_add_head(&f->hlist, &tmp_del_list); 2594 2595 /* Avoid counting removed filters */ 2596 continue; 2597 } 2598 if (f->state == I40E_FILTER_NEW) { 2599 /* Create a temporary i40e_new_mac_filter */ 2600 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2601 if (!new) 2602 goto err_no_memory_locked; 2603 2604 /* Store pointer to the real filter */ 2605 new->f = f; 2606 new->state = f->state; 2607 2608 /* Add it to the hash list */ 2609 hlist_add_head(&new->hlist, &tmp_add_list); 2610 } 2611 2612 /* Count the number of active (current and new) VLAN 2613 * filters we have now. Does not count filters which 2614 * are marked for deletion. 2615 */ 2616 if (f->vlan > 0) 2617 vlan_filters++; 2618 } 2619 2620 if (vsi->type != I40E_VSI_SRIOV) 2621 retval = i40e_correct_mac_vlan_filters 2622 (vsi, &tmp_add_list, &tmp_del_list, 2623 vlan_filters); 2624 else if (pf->vf) 2625 retval = i40e_correct_vf_mac_vlan_filters 2626 (vsi, &tmp_add_list, &tmp_del_list, 2627 vlan_filters, pf->vf[vsi->vf_id].trusted); 2628 2629 hlist_for_each_entry(new, &tmp_add_list, hlist) 2630 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2631 2632 if (retval) 2633 goto err_no_memory_locked; 2634 2635 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2636 } 2637 2638 /* Now process 'del_list' outside the lock */ 2639 if (!hlist_empty(&tmp_del_list)) { 2640 filter_list_len = hw->aq.asq_buf_size / 2641 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2642 list_size = filter_list_len * 2643 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2644 del_list = kzalloc(list_size, GFP_ATOMIC); 2645 if (!del_list) 2646 goto err_no_memory; 2647 2648 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2649 cmd_flags = 0; 2650 2651 /* handle broadcast filters by updating the broadcast 2652 * promiscuous flag and release filter list. 2653 */ 2654 if (is_broadcast_ether_addr(f->macaddr)) { 2655 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2656 2657 hlist_del(&f->hlist); 2658 kfree(f); 2659 continue; 2660 } 2661 2662 /* add to delete list */ 2663 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2664 if (f->vlan == I40E_VLAN_ANY) { 2665 del_list[num_del].vlan_tag = 0; 2666 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2667 } else { 2668 del_list[num_del].vlan_tag = 2669 cpu_to_le16((u16)(f->vlan)); 2670 } 2671 2672 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2673 del_list[num_del].flags = cmd_flags; 2674 num_del++; 2675 2676 /* flush a full buffer */ 2677 if (num_del == filter_list_len) { 2678 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2679 num_del, &retval); 2680 memset(del_list, 0, list_size); 2681 num_del = 0; 2682 } 2683 /* Release memory for MAC filter entries which were 2684 * synced up with HW. 2685 */ 2686 hlist_del(&f->hlist); 2687 kfree(f); 2688 } 2689 2690 if (num_del) { 2691 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2692 num_del, &retval); 2693 } 2694 2695 kfree(del_list); 2696 del_list = NULL; 2697 } 2698 2699 if (!hlist_empty(&tmp_add_list)) { 2700 /* Do all the adds now. */ 2701 filter_list_len = hw->aq.asq_buf_size / 2702 sizeof(struct i40e_aqc_add_macvlan_element_data); 2703 list_size = filter_list_len * 2704 sizeof(struct i40e_aqc_add_macvlan_element_data); 2705 add_list = kzalloc(list_size, GFP_ATOMIC); 2706 if (!add_list) 2707 goto err_no_memory; 2708 2709 num_add = 0; 2710 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2711 /* handle broadcast filters by updating the broadcast 2712 * promiscuous flag instead of adding a MAC filter. 2713 */ 2714 if (is_broadcast_ether_addr(new->f->macaddr)) { 2715 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2716 new->f)) 2717 new->state = I40E_FILTER_FAILED; 2718 else 2719 new->state = I40E_FILTER_ACTIVE; 2720 continue; 2721 } 2722 2723 /* add to add array */ 2724 if (num_add == 0) 2725 add_head = new; 2726 cmd_flags = 0; 2727 ether_addr_copy(add_list[num_add].mac_addr, 2728 new->f->macaddr); 2729 if (new->f->vlan == I40E_VLAN_ANY) { 2730 add_list[num_add].vlan_tag = 0; 2731 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2732 } else { 2733 add_list[num_add].vlan_tag = 2734 cpu_to_le16((u16)(new->f->vlan)); 2735 } 2736 add_list[num_add].queue_number = 0; 2737 /* set invalid match method for later detection */ 2738 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2739 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2740 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2741 num_add++; 2742 2743 /* flush a full buffer */ 2744 if (num_add == filter_list_len) { 2745 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2746 add_head, num_add); 2747 memset(add_list, 0, list_size); 2748 num_add = 0; 2749 } 2750 } 2751 if (num_add) { 2752 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2753 num_add); 2754 } 2755 /* Now move all of the filters from the temp add list back to 2756 * the VSI's list. 2757 */ 2758 spin_lock_bh(&vsi->mac_filter_hash_lock); 2759 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2760 /* Only update the state if we're still NEW */ 2761 if (new->f->state == I40E_FILTER_NEW) 2762 new->f->state = new->state; 2763 hlist_del(&new->hlist); 2764 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2765 kfree(new); 2766 } 2767 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2768 kfree(add_list); 2769 add_list = NULL; 2770 } 2771 2772 /* Determine the number of active and failed filters. */ 2773 spin_lock_bh(&vsi->mac_filter_hash_lock); 2774 vsi->active_filters = 0; 2775 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2776 if (f->state == I40E_FILTER_ACTIVE) 2777 vsi->active_filters++; 2778 else if (f->state == I40E_FILTER_FAILED) 2779 failed_filters++; 2780 } 2781 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2782 2783 /* Check if we are able to exit overflow promiscuous mode. We can 2784 * safely exit if we didn't just enter, we no longer have any failed 2785 * filters, and we have reduced filters below the threshold value. 2786 */ 2787 if (old_overflow && !failed_filters && 2788 vsi->active_filters < vsi->promisc_threshold) { 2789 dev_info(&pf->pdev->dev, 2790 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2791 vsi_name); 2792 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2793 vsi->promisc_threshold = 0; 2794 } 2795 2796 /* if the VF is not trusted do not do promisc */ 2797 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2798 !pf->vf[vsi->vf_id].trusted) { 2799 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2800 goto out; 2801 } 2802 2803 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2804 2805 /* If we are entering overflow promiscuous, we need to calculate a new 2806 * threshold for when we are safe to exit 2807 */ 2808 if (!old_overflow && new_overflow) 2809 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2810 2811 /* check for changes in promiscuous modes */ 2812 if (changed_flags & IFF_ALLMULTI) { 2813 bool cur_multipromisc; 2814 2815 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2816 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2817 vsi->seid, 2818 cur_multipromisc, 2819 NULL); 2820 if (aq_ret) { 2821 retval = i40e_aq_rc_to_posix(aq_ret, 2822 hw->aq.asq_last_status); 2823 dev_info(&pf->pdev->dev, 2824 "set multi promisc failed on %s, err %pe aq_err %s\n", 2825 vsi_name, 2826 ERR_PTR(aq_ret), 2827 i40e_aq_str(hw, hw->aq.asq_last_status)); 2828 } else { 2829 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2830 cur_multipromisc ? "entering" : "leaving"); 2831 } 2832 } 2833 2834 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2835 bool cur_promisc; 2836 2837 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2838 new_overflow); 2839 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2840 if (aq_ret) { 2841 retval = i40e_aq_rc_to_posix(aq_ret, 2842 hw->aq.asq_last_status); 2843 dev_info(&pf->pdev->dev, 2844 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2845 cur_promisc ? "on" : "off", 2846 vsi_name, 2847 ERR_PTR(aq_ret), 2848 i40e_aq_str(hw, hw->aq.asq_last_status)); 2849 } 2850 } 2851 out: 2852 /* if something went wrong then set the changed flag so we try again */ 2853 if (retval) 2854 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2855 2856 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2857 return retval; 2858 2859 err_no_memory: 2860 /* Restore elements on the temporary add and delete lists */ 2861 spin_lock_bh(&vsi->mac_filter_hash_lock); 2862 err_no_memory_locked: 2863 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2864 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2865 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2866 2867 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2868 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2869 return -ENOMEM; 2870 } 2871 2872 /** 2873 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2874 * @pf: board private structure 2875 **/ 2876 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2877 { 2878 int v; 2879 2880 if (!pf) 2881 return; 2882 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2883 return; 2884 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2885 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2886 return; 2887 } 2888 2889 for (v = 0; v < pf->num_alloc_vsi; v++) { 2890 if (pf->vsi[v] && 2891 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2892 !test_bit(__I40E_VSI_RELEASING, pf->vsi[v]->state)) { 2893 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2894 2895 if (ret) { 2896 /* come back and try again later */ 2897 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2898 pf->state); 2899 break; 2900 } 2901 } 2902 } 2903 } 2904 2905 /** 2906 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2907 * 2908 * @vsi: VSI to calculate rx_buf_len from 2909 */ 2910 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2911 { 2912 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2913 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2914 2915 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2916 } 2917 2918 /** 2919 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2920 * @vsi: the vsi 2921 * @xdp_prog: XDP program 2922 **/ 2923 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2924 struct bpf_prog *xdp_prog) 2925 { 2926 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2927 u16 chain_len; 2928 2929 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2930 chain_len = 1; 2931 else 2932 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2933 2934 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2935 } 2936 2937 /** 2938 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2939 * @netdev: network interface device structure 2940 * @new_mtu: new value for maximum frame size 2941 * 2942 * Returns 0 on success, negative on failure 2943 **/ 2944 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2945 { 2946 struct i40e_netdev_priv *np = netdev_priv(netdev); 2947 struct i40e_vsi *vsi = np->vsi; 2948 struct i40e_pf *pf = vsi->back; 2949 int frame_size; 2950 2951 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2952 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2953 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2954 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2955 return -EINVAL; 2956 } 2957 2958 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2959 netdev->mtu, new_mtu); 2960 netdev->mtu = new_mtu; 2961 if (netif_running(netdev)) 2962 i40e_vsi_reinit_locked(vsi); 2963 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2964 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2965 return 0; 2966 } 2967 2968 /** 2969 * i40e_ioctl - Access the hwtstamp interface 2970 * @netdev: network interface device structure 2971 * @ifr: interface request data 2972 * @cmd: ioctl command 2973 **/ 2974 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2975 { 2976 struct i40e_netdev_priv *np = netdev_priv(netdev); 2977 struct i40e_pf *pf = np->vsi->back; 2978 2979 switch (cmd) { 2980 case SIOCGHWTSTAMP: 2981 return i40e_ptp_get_ts_config(pf, ifr); 2982 case SIOCSHWTSTAMP: 2983 return i40e_ptp_set_ts_config(pf, ifr); 2984 default: 2985 return -EOPNOTSUPP; 2986 } 2987 } 2988 2989 /** 2990 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2991 * @vsi: the vsi being adjusted 2992 **/ 2993 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2994 { 2995 struct i40e_vsi_context ctxt; 2996 int ret; 2997 2998 /* Don't modify stripping options if a port VLAN is active */ 2999 if (vsi->info.pvid) 3000 return; 3001 3002 if ((vsi->info.valid_sections & 3003 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3004 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 3005 return; /* already enabled */ 3006 3007 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3008 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3009 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 3010 3011 ctxt.seid = vsi->seid; 3012 ctxt.info = vsi->info; 3013 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3014 if (ret) { 3015 dev_info(&vsi->back->pdev->dev, 3016 "update vlan stripping failed, err %pe aq_err %s\n", 3017 ERR_PTR(ret), 3018 i40e_aq_str(&vsi->back->hw, 3019 vsi->back->hw.aq.asq_last_status)); 3020 } 3021 } 3022 3023 /** 3024 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 3025 * @vsi: the vsi being adjusted 3026 **/ 3027 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 3028 { 3029 struct i40e_vsi_context ctxt; 3030 int ret; 3031 3032 /* Don't modify stripping options if a port VLAN is active */ 3033 if (vsi->info.pvid) 3034 return; 3035 3036 if ((vsi->info.valid_sections & 3037 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3038 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3039 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3040 return; /* already disabled */ 3041 3042 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3043 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3044 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3045 3046 ctxt.seid = vsi->seid; 3047 ctxt.info = vsi->info; 3048 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3049 if (ret) { 3050 dev_info(&vsi->back->pdev->dev, 3051 "update vlan stripping failed, err %pe aq_err %s\n", 3052 ERR_PTR(ret), 3053 i40e_aq_str(&vsi->back->hw, 3054 vsi->back->hw.aq.asq_last_status)); 3055 } 3056 } 3057 3058 /** 3059 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3060 * @vsi: the vsi being configured 3061 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3062 * 3063 * This is a helper function for adding a new MAC/VLAN filter with the 3064 * specified VLAN for each existing MAC address already in the hash table. 3065 * This function does *not* perform any accounting to update filters based on 3066 * VLAN mode. 3067 * 3068 * NOTE: this function expects to be called while under the 3069 * mac_filter_hash_lock 3070 **/ 3071 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3072 { 3073 struct i40e_mac_filter *f, *add_f; 3074 struct hlist_node *h; 3075 int bkt; 3076 3077 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3078 /* If we're asked to add a filter that has been marked for 3079 * removal, it is safe to simply restore it to active state. 3080 * __i40e_del_filter will have simply deleted any filters which 3081 * were previously marked NEW or FAILED, so if it is currently 3082 * marked REMOVE it must have previously been ACTIVE. Since we 3083 * haven't yet run the sync filters task, just restore this 3084 * filter to the ACTIVE state so that the sync task leaves it 3085 * in place. 3086 */ 3087 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3088 f->state = I40E_FILTER_ACTIVE; 3089 continue; 3090 } else if (f->state == I40E_FILTER_REMOVE) { 3091 continue; 3092 } 3093 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3094 if (!add_f) { 3095 dev_info(&vsi->back->pdev->dev, 3096 "Could not add vlan filter %d for %pM\n", 3097 vid, f->macaddr); 3098 return -ENOMEM; 3099 } 3100 } 3101 3102 return 0; 3103 } 3104 3105 /** 3106 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3107 * @vsi: the VSI being configured 3108 * @vid: VLAN id to be added 3109 **/ 3110 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3111 { 3112 int err; 3113 3114 if (vsi->info.pvid) 3115 return -EINVAL; 3116 3117 /* The network stack will attempt to add VID=0, with the intention to 3118 * receive priority tagged packets with a VLAN of 0. Our HW receives 3119 * these packets by default when configured to receive untagged 3120 * packets, so we don't need to add a filter for this case. 3121 * Additionally, HW interprets adding a VID=0 filter as meaning to 3122 * receive *only* tagged traffic and stops receiving untagged traffic. 3123 * Thus, we do not want to actually add a filter for VID=0 3124 */ 3125 if (!vid) 3126 return 0; 3127 3128 /* Locked once because all functions invoked below iterates list*/ 3129 spin_lock_bh(&vsi->mac_filter_hash_lock); 3130 err = i40e_add_vlan_all_mac(vsi, vid); 3131 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3132 if (err) 3133 return err; 3134 3135 /* schedule our worker thread which will take care of 3136 * applying the new filter changes 3137 */ 3138 i40e_service_event_schedule(vsi->back); 3139 return 0; 3140 } 3141 3142 /** 3143 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3144 * @vsi: the vsi being configured 3145 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3146 * 3147 * This function should be used to remove all VLAN filters which match the 3148 * given VID. It does not schedule the service event and does not take the 3149 * mac_filter_hash_lock so it may be combined with other operations under 3150 * a single invocation of the mac_filter_hash_lock. 3151 * 3152 * NOTE: this function expects to be called while under the 3153 * mac_filter_hash_lock 3154 */ 3155 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3156 { 3157 struct i40e_mac_filter *f; 3158 struct hlist_node *h; 3159 int bkt; 3160 3161 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3162 if (f->vlan == vid) 3163 __i40e_del_filter(vsi, f); 3164 } 3165 } 3166 3167 /** 3168 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3169 * @vsi: the VSI being configured 3170 * @vid: VLAN id to be removed 3171 **/ 3172 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3173 { 3174 if (!vid || vsi->info.pvid) 3175 return; 3176 3177 spin_lock_bh(&vsi->mac_filter_hash_lock); 3178 i40e_rm_vlan_all_mac(vsi, vid); 3179 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3180 3181 /* schedule our worker thread which will take care of 3182 * applying the new filter changes 3183 */ 3184 i40e_service_event_schedule(vsi->back); 3185 } 3186 3187 /** 3188 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3189 * @netdev: network interface to be adjusted 3190 * @proto: unused protocol value 3191 * @vid: vlan id to be added 3192 * 3193 * net_device_ops implementation for adding vlan ids 3194 **/ 3195 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3196 __always_unused __be16 proto, u16 vid) 3197 { 3198 struct i40e_netdev_priv *np = netdev_priv(netdev); 3199 struct i40e_vsi *vsi = np->vsi; 3200 int ret = 0; 3201 3202 if (vid >= VLAN_N_VID) 3203 return -EINVAL; 3204 3205 ret = i40e_vsi_add_vlan(vsi, vid); 3206 if (!ret) 3207 set_bit(vid, vsi->active_vlans); 3208 3209 return ret; 3210 } 3211 3212 /** 3213 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3214 * @netdev: network interface to be adjusted 3215 * @proto: unused protocol value 3216 * @vid: vlan id to be added 3217 **/ 3218 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3219 __always_unused __be16 proto, u16 vid) 3220 { 3221 struct i40e_netdev_priv *np = netdev_priv(netdev); 3222 struct i40e_vsi *vsi = np->vsi; 3223 3224 if (vid >= VLAN_N_VID) 3225 return; 3226 set_bit(vid, vsi->active_vlans); 3227 } 3228 3229 /** 3230 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3231 * @netdev: network interface to be adjusted 3232 * @proto: unused protocol value 3233 * @vid: vlan id to be removed 3234 * 3235 * net_device_ops implementation for removing vlan ids 3236 **/ 3237 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3238 __always_unused __be16 proto, u16 vid) 3239 { 3240 struct i40e_netdev_priv *np = netdev_priv(netdev); 3241 struct i40e_vsi *vsi = np->vsi; 3242 3243 /* return code is ignored as there is nothing a user 3244 * can do about failure to remove and a log message was 3245 * already printed from the other function 3246 */ 3247 i40e_vsi_kill_vlan(vsi, vid); 3248 3249 clear_bit(vid, vsi->active_vlans); 3250 3251 return 0; 3252 } 3253 3254 /** 3255 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3256 * @vsi: the vsi being brought back up 3257 **/ 3258 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3259 { 3260 u16 vid; 3261 3262 if (!vsi->netdev) 3263 return; 3264 3265 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3266 i40e_vlan_stripping_enable(vsi); 3267 else 3268 i40e_vlan_stripping_disable(vsi); 3269 3270 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3271 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3272 vid); 3273 } 3274 3275 /** 3276 * i40e_vsi_add_pvid - Add pvid for the VSI 3277 * @vsi: the vsi being adjusted 3278 * @vid: the vlan id to set as a PVID 3279 **/ 3280 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3281 { 3282 struct i40e_vsi_context ctxt; 3283 int ret; 3284 3285 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3286 vsi->info.pvid = cpu_to_le16(vid); 3287 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3288 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3289 I40E_AQ_VSI_PVLAN_EMOD_STR; 3290 3291 ctxt.seid = vsi->seid; 3292 ctxt.info = vsi->info; 3293 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3294 if (ret) { 3295 dev_info(&vsi->back->pdev->dev, 3296 "add pvid failed, err %pe aq_err %s\n", 3297 ERR_PTR(ret), 3298 i40e_aq_str(&vsi->back->hw, 3299 vsi->back->hw.aq.asq_last_status)); 3300 return -ENOENT; 3301 } 3302 3303 return 0; 3304 } 3305 3306 /** 3307 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3308 * @vsi: the vsi being adjusted 3309 * 3310 * Just use the vlan_rx_register() service to put it back to normal 3311 **/ 3312 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3313 { 3314 vsi->info.pvid = 0; 3315 3316 i40e_vlan_stripping_disable(vsi); 3317 } 3318 3319 /** 3320 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3321 * @vsi: ptr to the VSI 3322 * 3323 * If this function returns with an error, then it's possible one or 3324 * more of the rings is populated (while the rest are not). It is the 3325 * callers duty to clean those orphaned rings. 3326 * 3327 * Return 0 on success, negative on failure 3328 **/ 3329 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3330 { 3331 int i, err = 0; 3332 3333 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3334 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3335 3336 if (!i40e_enabled_xdp_vsi(vsi)) 3337 return err; 3338 3339 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3340 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3341 3342 return err; 3343 } 3344 3345 /** 3346 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3347 * @vsi: ptr to the VSI 3348 * 3349 * Free VSI's transmit software resources 3350 **/ 3351 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3352 { 3353 int i; 3354 3355 if (vsi->tx_rings) { 3356 for (i = 0; i < vsi->num_queue_pairs; i++) 3357 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3358 i40e_free_tx_resources(vsi->tx_rings[i]); 3359 } 3360 3361 if (vsi->xdp_rings) { 3362 for (i = 0; i < vsi->num_queue_pairs; i++) 3363 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3364 i40e_free_tx_resources(vsi->xdp_rings[i]); 3365 } 3366 } 3367 3368 /** 3369 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3370 * @vsi: ptr to the VSI 3371 * 3372 * If this function returns with an error, then it's possible one or 3373 * more of the rings is populated (while the rest are not). It is the 3374 * callers duty to clean those orphaned rings. 3375 * 3376 * Return 0 on success, negative on failure 3377 **/ 3378 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3379 { 3380 int i, err = 0; 3381 3382 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3383 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3384 return err; 3385 } 3386 3387 /** 3388 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3389 * @vsi: ptr to the VSI 3390 * 3391 * Free all receive software resources 3392 **/ 3393 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3394 { 3395 int i; 3396 3397 if (!vsi->rx_rings) 3398 return; 3399 3400 for (i = 0; i < vsi->num_queue_pairs; i++) 3401 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3402 i40e_free_rx_resources(vsi->rx_rings[i]); 3403 } 3404 3405 /** 3406 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3407 * @ring: The Tx ring to configure 3408 * 3409 * This enables/disables XPS for a given Tx descriptor ring 3410 * based on the TCs enabled for the VSI that ring belongs to. 3411 **/ 3412 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3413 { 3414 int cpu; 3415 3416 if (!ring->q_vector || !ring->netdev || ring->ch) 3417 return; 3418 3419 /* We only initialize XPS once, so as not to overwrite user settings */ 3420 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3421 return; 3422 3423 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3424 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3425 ring->queue_index); 3426 } 3427 3428 /** 3429 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3430 * @ring: The Tx or Rx ring 3431 * 3432 * Returns the AF_XDP buffer pool or NULL. 3433 **/ 3434 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3435 { 3436 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3437 int qid = ring->queue_index; 3438 3439 if (ring_is_xdp(ring)) 3440 qid -= ring->vsi->alloc_queue_pairs; 3441 3442 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3443 return NULL; 3444 3445 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3446 } 3447 3448 /** 3449 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3450 * @ring: The Tx ring to configure 3451 * 3452 * Configure the Tx descriptor ring in the HMC context. 3453 **/ 3454 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3455 { 3456 struct i40e_vsi *vsi = ring->vsi; 3457 u16 pf_q = vsi->base_queue + ring->queue_index; 3458 struct i40e_hw *hw = &vsi->back->hw; 3459 struct i40e_hmc_obj_txq tx_ctx; 3460 u32 qtx_ctl = 0; 3461 int err = 0; 3462 3463 if (ring_is_xdp(ring)) 3464 ring->xsk_pool = i40e_xsk_pool(ring); 3465 3466 /* some ATR related tx ring init */ 3467 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3468 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3469 ring->atr_count = 0; 3470 } else { 3471 ring->atr_sample_rate = 0; 3472 } 3473 3474 /* configure XPS */ 3475 i40e_config_xps_tx_ring(ring); 3476 3477 /* clear the context structure first */ 3478 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3479 3480 tx_ctx.new_context = 1; 3481 tx_ctx.base = (ring->dma / 128); 3482 tx_ctx.qlen = ring->count; 3483 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3484 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3485 tx_ctx.fd_ena = 1; 3486 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3487 tx_ctx.timesync_ena = 1; 3488 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3489 if (vsi->type != I40E_VSI_FDIR) 3490 tx_ctx.head_wb_ena = 1; 3491 tx_ctx.head_wb_addr = ring->dma + 3492 (ring->count * sizeof(struct i40e_tx_desc)); 3493 3494 /* As part of VSI creation/update, FW allocates certain 3495 * Tx arbitration queue sets for each TC enabled for 3496 * the VSI. The FW returns the handles to these queue 3497 * sets as part of the response buffer to Add VSI, 3498 * Update VSI, etc. AQ commands. It is expected that 3499 * these queue set handles be associated with the Tx 3500 * queues by the driver as part of the TX queue context 3501 * initialization. This has to be done regardless of 3502 * DCB as by default everything is mapped to TC0. 3503 */ 3504 3505 if (ring->ch) 3506 tx_ctx.rdylist = 3507 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3508 3509 else 3510 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3511 3512 tx_ctx.rdylist_act = 0; 3513 3514 /* clear the context in the HMC */ 3515 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3516 if (err) { 3517 dev_info(&vsi->back->pdev->dev, 3518 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3519 ring->queue_index, pf_q, err); 3520 return -ENOMEM; 3521 } 3522 3523 /* set the context in the HMC */ 3524 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3525 if (err) { 3526 dev_info(&vsi->back->pdev->dev, 3527 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3528 ring->queue_index, pf_q, err); 3529 return -ENOMEM; 3530 } 3531 3532 /* Now associate this queue with this PCI function */ 3533 if (ring->ch) { 3534 if (ring->ch->type == I40E_VSI_VMDQ2) 3535 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3536 else 3537 return -EINVAL; 3538 3539 qtx_ctl |= (ring->ch->vsi_number << 3540 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3541 I40E_QTX_CTL_VFVM_INDX_MASK; 3542 } else { 3543 if (vsi->type == I40E_VSI_VMDQ2) { 3544 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3545 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3546 I40E_QTX_CTL_VFVM_INDX_MASK; 3547 } else { 3548 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3549 } 3550 } 3551 3552 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3553 I40E_QTX_CTL_PF_INDX_MASK); 3554 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3555 i40e_flush(hw); 3556 3557 /* cache tail off for easier writes later */ 3558 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3559 3560 return 0; 3561 } 3562 3563 /** 3564 * i40e_rx_offset - Return expected offset into page to access data 3565 * @rx_ring: Ring we are requesting offset of 3566 * 3567 * Returns the offset value for ring into the data buffer. 3568 */ 3569 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3570 { 3571 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3572 } 3573 3574 /** 3575 * i40e_configure_rx_ring - Configure a receive ring context 3576 * @ring: The Rx ring to configure 3577 * 3578 * Configure the Rx descriptor ring in the HMC context. 3579 **/ 3580 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3581 { 3582 struct i40e_vsi *vsi = ring->vsi; 3583 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3584 u16 pf_q = vsi->base_queue + ring->queue_index; 3585 struct i40e_hw *hw = &vsi->back->hw; 3586 struct i40e_hmc_obj_rxq rx_ctx; 3587 int err = 0; 3588 bool ok; 3589 int ret; 3590 3591 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3592 3593 /* clear the context structure first */ 3594 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3595 3596 if (ring->vsi->type == I40E_VSI_MAIN) 3597 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3598 3599 ring->xsk_pool = i40e_xsk_pool(ring); 3600 if (ring->xsk_pool) { 3601 ring->rx_buf_len = 3602 xsk_pool_get_rx_frame_size(ring->xsk_pool); 3603 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3604 MEM_TYPE_XSK_BUFF_POOL, 3605 NULL); 3606 if (ret) 3607 return ret; 3608 dev_info(&vsi->back->pdev->dev, 3609 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3610 ring->queue_index); 3611 3612 } else { 3613 ring->rx_buf_len = vsi->rx_buf_len; 3614 if (ring->vsi->type == I40E_VSI_MAIN) { 3615 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3616 MEM_TYPE_PAGE_SHARED, 3617 NULL); 3618 if (ret) 3619 return ret; 3620 } 3621 } 3622 3623 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3624 3625 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3626 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3627 3628 rx_ctx.base = (ring->dma / 128); 3629 rx_ctx.qlen = ring->count; 3630 3631 /* use 16 byte descriptors */ 3632 rx_ctx.dsize = 0; 3633 3634 /* descriptor type is always zero 3635 * rx_ctx.dtype = 0; 3636 */ 3637 rx_ctx.hsplit_0 = 0; 3638 3639 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3640 if (hw->revision_id == 0) 3641 rx_ctx.lrxqthresh = 0; 3642 else 3643 rx_ctx.lrxqthresh = 1; 3644 rx_ctx.crcstrip = 1; 3645 rx_ctx.l2tsel = 1; 3646 /* this controls whether VLAN is stripped from inner headers */ 3647 rx_ctx.showiv = 0; 3648 /* set the prefena field to 1 because the manual says to */ 3649 rx_ctx.prefena = 1; 3650 3651 /* clear the context in the HMC */ 3652 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3653 if (err) { 3654 dev_info(&vsi->back->pdev->dev, 3655 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3656 ring->queue_index, pf_q, err); 3657 return -ENOMEM; 3658 } 3659 3660 /* set the context in the HMC */ 3661 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3662 if (err) { 3663 dev_info(&vsi->back->pdev->dev, 3664 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3665 ring->queue_index, pf_q, err); 3666 return -ENOMEM; 3667 } 3668 3669 /* configure Rx buffer alignment */ 3670 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3671 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3672 dev_info(&vsi->back->pdev->dev, 3673 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3674 return -EOPNOTSUPP; 3675 } 3676 clear_ring_build_skb_enabled(ring); 3677 } else { 3678 set_ring_build_skb_enabled(ring); 3679 } 3680 3681 ring->rx_offset = i40e_rx_offset(ring); 3682 3683 /* cache tail for quicker writes, and clear the reg before use */ 3684 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3685 writel(0, ring->tail); 3686 3687 if (ring->xsk_pool) { 3688 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3689 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3690 } else { 3691 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3692 } 3693 if (!ok) { 3694 /* Log this in case the user has forgotten to give the kernel 3695 * any buffers, even later in the application. 3696 */ 3697 dev_info(&vsi->back->pdev->dev, 3698 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3699 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3700 ring->queue_index, pf_q); 3701 } 3702 3703 return 0; 3704 } 3705 3706 /** 3707 * i40e_vsi_configure_tx - Configure the VSI for Tx 3708 * @vsi: VSI structure describing this set of rings and resources 3709 * 3710 * Configure the Tx VSI for operation. 3711 **/ 3712 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3713 { 3714 int err = 0; 3715 u16 i; 3716 3717 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3718 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3719 3720 if (err || !i40e_enabled_xdp_vsi(vsi)) 3721 return err; 3722 3723 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3724 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3725 3726 return err; 3727 } 3728 3729 /** 3730 * i40e_vsi_configure_rx - Configure the VSI for Rx 3731 * @vsi: the VSI being configured 3732 * 3733 * Configure the Rx VSI for operation. 3734 **/ 3735 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3736 { 3737 int err = 0; 3738 u16 i; 3739 3740 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3741 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3742 3743 #if (PAGE_SIZE < 8192) 3744 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3745 vsi->netdev->mtu <= ETH_DATA_LEN) { 3746 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3747 vsi->max_frame = vsi->rx_buf_len; 3748 } 3749 #endif 3750 3751 /* set up individual rings */ 3752 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3753 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3754 3755 return err; 3756 } 3757 3758 /** 3759 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3760 * @vsi: ptr to the VSI 3761 **/ 3762 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3763 { 3764 struct i40e_ring *tx_ring, *rx_ring; 3765 u16 qoffset, qcount; 3766 int i, n; 3767 3768 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3769 /* Reset the TC information */ 3770 for (i = 0; i < vsi->num_queue_pairs; i++) { 3771 rx_ring = vsi->rx_rings[i]; 3772 tx_ring = vsi->tx_rings[i]; 3773 rx_ring->dcb_tc = 0; 3774 tx_ring->dcb_tc = 0; 3775 } 3776 return; 3777 } 3778 3779 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3780 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3781 continue; 3782 3783 qoffset = vsi->tc_config.tc_info[n].qoffset; 3784 qcount = vsi->tc_config.tc_info[n].qcount; 3785 for (i = qoffset; i < (qoffset + qcount); i++) { 3786 rx_ring = vsi->rx_rings[i]; 3787 tx_ring = vsi->tx_rings[i]; 3788 rx_ring->dcb_tc = n; 3789 tx_ring->dcb_tc = n; 3790 } 3791 } 3792 } 3793 3794 /** 3795 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3796 * @vsi: ptr to the VSI 3797 **/ 3798 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3799 { 3800 if (vsi->netdev) 3801 i40e_set_rx_mode(vsi->netdev); 3802 } 3803 3804 /** 3805 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3806 * @pf: Pointer to the targeted PF 3807 * 3808 * Set all flow director counters to 0. 3809 */ 3810 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3811 { 3812 pf->fd_tcp4_filter_cnt = 0; 3813 pf->fd_udp4_filter_cnt = 0; 3814 pf->fd_sctp4_filter_cnt = 0; 3815 pf->fd_ip4_filter_cnt = 0; 3816 pf->fd_tcp6_filter_cnt = 0; 3817 pf->fd_udp6_filter_cnt = 0; 3818 pf->fd_sctp6_filter_cnt = 0; 3819 pf->fd_ip6_filter_cnt = 0; 3820 } 3821 3822 /** 3823 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3824 * @vsi: Pointer to the targeted VSI 3825 * 3826 * This function replays the hlist on the hw where all the SB Flow Director 3827 * filters were saved. 3828 **/ 3829 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3830 { 3831 struct i40e_fdir_filter *filter; 3832 struct i40e_pf *pf = vsi->back; 3833 struct hlist_node *node; 3834 3835 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3836 return; 3837 3838 /* Reset FDir counters as we're replaying all existing filters */ 3839 i40e_reset_fdir_filter_cnt(pf); 3840 3841 hlist_for_each_entry_safe(filter, node, 3842 &pf->fdir_filter_list, fdir_node) { 3843 i40e_add_del_fdir(vsi, filter, true); 3844 } 3845 } 3846 3847 /** 3848 * i40e_vsi_configure - Set up the VSI for action 3849 * @vsi: the VSI being configured 3850 **/ 3851 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3852 { 3853 int err; 3854 3855 i40e_set_vsi_rx_mode(vsi); 3856 i40e_restore_vlan(vsi); 3857 i40e_vsi_config_dcb_rings(vsi); 3858 err = i40e_vsi_configure_tx(vsi); 3859 if (!err) 3860 err = i40e_vsi_configure_rx(vsi); 3861 3862 return err; 3863 } 3864 3865 /** 3866 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3867 * @vsi: the VSI being configured 3868 **/ 3869 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3870 { 3871 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3872 struct i40e_pf *pf = vsi->back; 3873 struct i40e_hw *hw = &pf->hw; 3874 u16 vector; 3875 int i, q; 3876 u32 qp; 3877 3878 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3879 * and PFINT_LNKLSTn registers, e.g.: 3880 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3881 */ 3882 qp = vsi->base_queue; 3883 vector = vsi->base_vector; 3884 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3885 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3886 3887 q_vector->rx.next_update = jiffies + 1; 3888 q_vector->rx.target_itr = 3889 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3890 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3891 q_vector->rx.target_itr >> 1); 3892 q_vector->rx.current_itr = q_vector->rx.target_itr; 3893 3894 q_vector->tx.next_update = jiffies + 1; 3895 q_vector->tx.target_itr = 3896 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3897 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3898 q_vector->tx.target_itr >> 1); 3899 q_vector->tx.current_itr = q_vector->tx.target_itr; 3900 3901 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3902 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3903 3904 /* begin of linked list for RX queue assigned to this vector */ 3905 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3906 for (q = 0; q < q_vector->num_ringpairs; q++) { 3907 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3908 u32 val; 3909 3910 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3911 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3912 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3913 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3914 (I40E_QUEUE_TYPE_TX << 3915 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3916 3917 wr32(hw, I40E_QINT_RQCTL(qp), val); 3918 3919 if (has_xdp) { 3920 /* TX queue with next queue set to TX */ 3921 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3922 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3923 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3924 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3925 (I40E_QUEUE_TYPE_TX << 3926 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3927 3928 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3929 } 3930 /* TX queue with next RX or end of linked list */ 3931 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3932 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3933 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3934 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3935 (I40E_QUEUE_TYPE_RX << 3936 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3937 3938 /* Terminate the linked list */ 3939 if (q == (q_vector->num_ringpairs - 1)) 3940 val |= (I40E_QUEUE_END_OF_LIST << 3941 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3942 3943 wr32(hw, I40E_QINT_TQCTL(qp), val); 3944 qp++; 3945 } 3946 } 3947 3948 i40e_flush(hw); 3949 } 3950 3951 /** 3952 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3953 * @pf: pointer to private device data structure 3954 **/ 3955 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3956 { 3957 struct i40e_hw *hw = &pf->hw; 3958 u32 val; 3959 3960 /* clear things first */ 3961 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3962 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3963 3964 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3965 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3966 I40E_PFINT_ICR0_ENA_GRST_MASK | 3967 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3968 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3969 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3970 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3971 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3972 3973 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 3974 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3975 3976 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3977 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3978 3979 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3980 3981 /* SW_ITR_IDX = 0, but don't change INTENA */ 3982 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3983 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3984 3985 /* OTHER_ITR_IDX = 0 */ 3986 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3987 } 3988 3989 /** 3990 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3991 * @vsi: the VSI being configured 3992 **/ 3993 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3994 { 3995 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3996 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3997 struct i40e_pf *pf = vsi->back; 3998 struct i40e_hw *hw = &pf->hw; 3999 4000 /* set the ITR configuration */ 4001 q_vector->rx.next_update = jiffies + 1; 4002 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 4003 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 4004 q_vector->rx.current_itr = q_vector->rx.target_itr; 4005 q_vector->tx.next_update = jiffies + 1; 4006 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 4007 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 4008 q_vector->tx.current_itr = q_vector->tx.target_itr; 4009 4010 i40e_enable_misc_int_causes(pf); 4011 4012 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4013 wr32(hw, I40E_PFINT_LNKLST0, 0); 4014 4015 /* Associate the queue pair to the vector and enable the queue 4016 * interrupt RX queue in linked list with next queue set to TX 4017 */ 4018 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4019 4020 if (i40e_enabled_xdp_vsi(vsi)) { 4021 /* TX queue in linked list with next queue set to TX */ 4022 wr32(hw, I40E_QINT_TQCTL(nextqp), 4023 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4024 } 4025 4026 /* last TX queue so the next RX queue doesn't matter */ 4027 wr32(hw, I40E_QINT_TQCTL(0), 4028 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4029 i40e_flush(hw); 4030 } 4031 4032 /** 4033 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4034 * @pf: board private structure 4035 **/ 4036 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4037 { 4038 struct i40e_hw *hw = &pf->hw; 4039 4040 wr32(hw, I40E_PFINT_DYN_CTL0, 4041 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4042 i40e_flush(hw); 4043 } 4044 4045 /** 4046 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4047 * @pf: board private structure 4048 **/ 4049 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4050 { 4051 struct i40e_hw *hw = &pf->hw; 4052 u32 val; 4053 4054 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4055 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4056 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4057 4058 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4059 i40e_flush(hw); 4060 } 4061 4062 /** 4063 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4064 * @irq: interrupt number 4065 * @data: pointer to a q_vector 4066 **/ 4067 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4068 { 4069 struct i40e_q_vector *q_vector = data; 4070 4071 if (!q_vector->tx.ring && !q_vector->rx.ring) 4072 return IRQ_HANDLED; 4073 4074 napi_schedule_irqoff(&q_vector->napi); 4075 4076 return IRQ_HANDLED; 4077 } 4078 4079 /** 4080 * i40e_irq_affinity_notify - Callback for affinity changes 4081 * @notify: context as to what irq was changed 4082 * @mask: the new affinity mask 4083 * 4084 * This is a callback function used by the irq_set_affinity_notifier function 4085 * so that we may register to receive changes to the irq affinity masks. 4086 **/ 4087 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4088 const cpumask_t *mask) 4089 { 4090 struct i40e_q_vector *q_vector = 4091 container_of(notify, struct i40e_q_vector, affinity_notify); 4092 4093 cpumask_copy(&q_vector->affinity_mask, mask); 4094 } 4095 4096 /** 4097 * i40e_irq_affinity_release - Callback for affinity notifier release 4098 * @ref: internal core kernel usage 4099 * 4100 * This is a callback function used by the irq_set_affinity_notifier function 4101 * to inform the current notification subscriber that they will no longer 4102 * receive notifications. 4103 **/ 4104 static void i40e_irq_affinity_release(struct kref *ref) {} 4105 4106 /** 4107 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4108 * @vsi: the VSI being configured 4109 * @basename: name for the vector 4110 * 4111 * Allocates MSI-X vectors and requests interrupts from the kernel. 4112 **/ 4113 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4114 { 4115 int q_vectors = vsi->num_q_vectors; 4116 struct i40e_pf *pf = vsi->back; 4117 int base = vsi->base_vector; 4118 int rx_int_idx = 0; 4119 int tx_int_idx = 0; 4120 int vector, err; 4121 int irq_num; 4122 int cpu; 4123 4124 for (vector = 0; vector < q_vectors; vector++) { 4125 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4126 4127 irq_num = pf->msix_entries[base + vector].vector; 4128 4129 if (q_vector->tx.ring && q_vector->rx.ring) { 4130 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4131 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4132 tx_int_idx++; 4133 } else if (q_vector->rx.ring) { 4134 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4135 "%s-%s-%d", basename, "rx", rx_int_idx++); 4136 } else if (q_vector->tx.ring) { 4137 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4138 "%s-%s-%d", basename, "tx", tx_int_idx++); 4139 } else { 4140 /* skip this unused q_vector */ 4141 continue; 4142 } 4143 err = request_irq(irq_num, 4144 vsi->irq_handler, 4145 0, 4146 q_vector->name, 4147 q_vector); 4148 if (err) { 4149 dev_info(&pf->pdev->dev, 4150 "MSIX request_irq failed, error: %d\n", err); 4151 goto free_queue_irqs; 4152 } 4153 4154 /* register for affinity change notifications */ 4155 q_vector->irq_num = irq_num; 4156 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4157 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4158 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4159 /* Spread affinity hints out across online CPUs. 4160 * 4161 * get_cpu_mask returns a static constant mask with 4162 * a permanent lifetime so it's ok to pass to 4163 * irq_update_affinity_hint without making a copy. 4164 */ 4165 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4166 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4167 } 4168 4169 vsi->irqs_ready = true; 4170 return 0; 4171 4172 free_queue_irqs: 4173 while (vector) { 4174 vector--; 4175 irq_num = pf->msix_entries[base + vector].vector; 4176 irq_set_affinity_notifier(irq_num, NULL); 4177 irq_update_affinity_hint(irq_num, NULL); 4178 free_irq(irq_num, &vsi->q_vectors[vector]); 4179 } 4180 return err; 4181 } 4182 4183 /** 4184 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4185 * @vsi: the VSI being un-configured 4186 **/ 4187 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4188 { 4189 struct i40e_pf *pf = vsi->back; 4190 struct i40e_hw *hw = &pf->hw; 4191 int base = vsi->base_vector; 4192 int i; 4193 4194 /* disable interrupt causation from each queue */ 4195 for (i = 0; i < vsi->num_queue_pairs; i++) { 4196 u32 val; 4197 4198 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4199 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4200 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4201 4202 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4203 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4204 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4205 4206 if (!i40e_enabled_xdp_vsi(vsi)) 4207 continue; 4208 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4209 } 4210 4211 /* disable each interrupt */ 4212 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4213 for (i = vsi->base_vector; 4214 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4215 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4216 4217 i40e_flush(hw); 4218 for (i = 0; i < vsi->num_q_vectors; i++) 4219 synchronize_irq(pf->msix_entries[i + base].vector); 4220 } else { 4221 /* Legacy and MSI mode - this stops all interrupt handling */ 4222 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4223 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4224 i40e_flush(hw); 4225 synchronize_irq(pf->pdev->irq); 4226 } 4227 } 4228 4229 /** 4230 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4231 * @vsi: the VSI being configured 4232 **/ 4233 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4234 { 4235 struct i40e_pf *pf = vsi->back; 4236 int i; 4237 4238 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4239 for (i = 0; i < vsi->num_q_vectors; i++) 4240 i40e_irq_dynamic_enable(vsi, i); 4241 } else { 4242 i40e_irq_dynamic_enable_icr0(pf); 4243 } 4244 4245 i40e_flush(&pf->hw); 4246 return 0; 4247 } 4248 4249 /** 4250 * i40e_free_misc_vector - Free the vector that handles non-queue events 4251 * @pf: board private structure 4252 **/ 4253 static void i40e_free_misc_vector(struct i40e_pf *pf) 4254 { 4255 /* Disable ICR 0 */ 4256 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4257 i40e_flush(&pf->hw); 4258 4259 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4260 free_irq(pf->msix_entries[0].vector, pf); 4261 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4262 } 4263 } 4264 4265 /** 4266 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4267 * @irq: interrupt number 4268 * @data: pointer to a q_vector 4269 * 4270 * This is the handler used for all MSI/Legacy interrupts, and deals 4271 * with both queue and non-queue interrupts. This is also used in 4272 * MSIX mode to handle the non-queue interrupts. 4273 **/ 4274 static irqreturn_t i40e_intr(int irq, void *data) 4275 { 4276 struct i40e_pf *pf = (struct i40e_pf *)data; 4277 struct i40e_hw *hw = &pf->hw; 4278 irqreturn_t ret = IRQ_NONE; 4279 u32 icr0, icr0_remaining; 4280 u32 val, ena_mask; 4281 4282 icr0 = rd32(hw, I40E_PFINT_ICR0); 4283 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4284 4285 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4286 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4287 goto enable_intr; 4288 4289 /* if interrupt but no bits showing, must be SWINT */ 4290 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4291 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4292 pf->sw_int_count++; 4293 4294 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4295 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4296 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4297 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4298 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4299 } 4300 4301 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4302 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4303 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4304 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4305 4306 /* We do not have a way to disarm Queue causes while leaving 4307 * interrupt enabled for all other causes, ideally 4308 * interrupt should be disabled while we are in NAPI but 4309 * this is not a performance path and napi_schedule() 4310 * can deal with rescheduling. 4311 */ 4312 if (!test_bit(__I40E_DOWN, pf->state)) 4313 napi_schedule_irqoff(&q_vector->napi); 4314 } 4315 4316 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4317 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4318 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4319 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4320 } 4321 4322 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4323 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4324 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4325 } 4326 4327 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4328 /* disable any further VFLR event notifications */ 4329 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4330 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4331 4332 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4333 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4334 } else { 4335 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4336 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4337 } 4338 } 4339 4340 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4341 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4342 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4343 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4344 val = rd32(hw, I40E_GLGEN_RSTAT); 4345 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 4346 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 4347 if (val == I40E_RESET_CORER) { 4348 pf->corer_count++; 4349 } else if (val == I40E_RESET_GLOBR) { 4350 pf->globr_count++; 4351 } else if (val == I40E_RESET_EMPR) { 4352 pf->empr_count++; 4353 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4354 } 4355 } 4356 4357 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4358 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4359 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4360 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4361 rd32(hw, I40E_PFHMC_ERRORINFO), 4362 rd32(hw, I40E_PFHMC_ERRORDATA)); 4363 } 4364 4365 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4366 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4367 4368 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4369 schedule_work(&pf->ptp_extts0_work); 4370 4371 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4372 i40e_ptp_tx_hwtstamp(pf); 4373 4374 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4375 } 4376 4377 /* If a critical error is pending we have no choice but to reset the 4378 * device. 4379 * Report and mask out any remaining unexpected interrupts. 4380 */ 4381 icr0_remaining = icr0 & ena_mask; 4382 if (icr0_remaining) { 4383 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4384 icr0_remaining); 4385 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4386 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4387 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4388 dev_info(&pf->pdev->dev, "device will be reset\n"); 4389 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4390 i40e_service_event_schedule(pf); 4391 } 4392 ena_mask &= ~icr0_remaining; 4393 } 4394 ret = IRQ_HANDLED; 4395 4396 enable_intr: 4397 /* re-enable interrupt causes */ 4398 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4399 if (!test_bit(__I40E_DOWN, pf->state) || 4400 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4401 i40e_service_event_schedule(pf); 4402 i40e_irq_dynamic_enable_icr0(pf); 4403 } 4404 4405 return ret; 4406 } 4407 4408 /** 4409 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4410 * @tx_ring: tx ring to clean 4411 * @budget: how many cleans we're allowed 4412 * 4413 * Returns true if there's any budget left (e.g. the clean is finished) 4414 **/ 4415 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4416 { 4417 struct i40e_vsi *vsi = tx_ring->vsi; 4418 u16 i = tx_ring->next_to_clean; 4419 struct i40e_tx_buffer *tx_buf; 4420 struct i40e_tx_desc *tx_desc; 4421 4422 tx_buf = &tx_ring->tx_bi[i]; 4423 tx_desc = I40E_TX_DESC(tx_ring, i); 4424 i -= tx_ring->count; 4425 4426 do { 4427 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4428 4429 /* if next_to_watch is not set then there is no work pending */ 4430 if (!eop_desc) 4431 break; 4432 4433 /* prevent any other reads prior to eop_desc */ 4434 smp_rmb(); 4435 4436 /* if the descriptor isn't done, no work yet to do */ 4437 if (!(eop_desc->cmd_type_offset_bsz & 4438 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4439 break; 4440 4441 /* clear next_to_watch to prevent false hangs */ 4442 tx_buf->next_to_watch = NULL; 4443 4444 tx_desc->buffer_addr = 0; 4445 tx_desc->cmd_type_offset_bsz = 0; 4446 /* move past filter desc */ 4447 tx_buf++; 4448 tx_desc++; 4449 i++; 4450 if (unlikely(!i)) { 4451 i -= tx_ring->count; 4452 tx_buf = tx_ring->tx_bi; 4453 tx_desc = I40E_TX_DESC(tx_ring, 0); 4454 } 4455 /* unmap skb header data */ 4456 dma_unmap_single(tx_ring->dev, 4457 dma_unmap_addr(tx_buf, dma), 4458 dma_unmap_len(tx_buf, len), 4459 DMA_TO_DEVICE); 4460 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4461 kfree(tx_buf->raw_buf); 4462 4463 tx_buf->raw_buf = NULL; 4464 tx_buf->tx_flags = 0; 4465 tx_buf->next_to_watch = NULL; 4466 dma_unmap_len_set(tx_buf, len, 0); 4467 tx_desc->buffer_addr = 0; 4468 tx_desc->cmd_type_offset_bsz = 0; 4469 4470 /* move us past the eop_desc for start of next FD desc */ 4471 tx_buf++; 4472 tx_desc++; 4473 i++; 4474 if (unlikely(!i)) { 4475 i -= tx_ring->count; 4476 tx_buf = tx_ring->tx_bi; 4477 tx_desc = I40E_TX_DESC(tx_ring, 0); 4478 } 4479 4480 /* update budget accounting */ 4481 budget--; 4482 } while (likely(budget)); 4483 4484 i += tx_ring->count; 4485 tx_ring->next_to_clean = i; 4486 4487 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4488 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4489 4490 return budget > 0; 4491 } 4492 4493 /** 4494 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4495 * @irq: interrupt number 4496 * @data: pointer to a q_vector 4497 **/ 4498 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4499 { 4500 struct i40e_q_vector *q_vector = data; 4501 struct i40e_vsi *vsi; 4502 4503 if (!q_vector->tx.ring) 4504 return IRQ_HANDLED; 4505 4506 vsi = q_vector->tx.ring->vsi; 4507 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4508 4509 return IRQ_HANDLED; 4510 } 4511 4512 /** 4513 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4514 * @vsi: the VSI being configured 4515 * @v_idx: vector index 4516 * @qp_idx: queue pair index 4517 **/ 4518 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4519 { 4520 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4521 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4522 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4523 4524 tx_ring->q_vector = q_vector; 4525 tx_ring->next = q_vector->tx.ring; 4526 q_vector->tx.ring = tx_ring; 4527 q_vector->tx.count++; 4528 4529 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4530 if (i40e_enabled_xdp_vsi(vsi)) { 4531 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4532 4533 xdp_ring->q_vector = q_vector; 4534 xdp_ring->next = q_vector->tx.ring; 4535 q_vector->tx.ring = xdp_ring; 4536 q_vector->tx.count++; 4537 } 4538 4539 rx_ring->q_vector = q_vector; 4540 rx_ring->next = q_vector->rx.ring; 4541 q_vector->rx.ring = rx_ring; 4542 q_vector->rx.count++; 4543 } 4544 4545 /** 4546 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4547 * @vsi: the VSI being configured 4548 * 4549 * This function maps descriptor rings to the queue-specific vectors 4550 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4551 * one vector per queue pair, but on a constrained vector budget, we 4552 * group the queue pairs as "efficiently" as possible. 4553 **/ 4554 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4555 { 4556 int qp_remaining = vsi->num_queue_pairs; 4557 int q_vectors = vsi->num_q_vectors; 4558 int num_ringpairs; 4559 int v_start = 0; 4560 int qp_idx = 0; 4561 4562 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4563 * group them so there are multiple queues per vector. 4564 * It is also important to go through all the vectors available to be 4565 * sure that if we don't use all the vectors, that the remaining vectors 4566 * are cleared. This is especially important when decreasing the 4567 * number of queues in use. 4568 */ 4569 for (; v_start < q_vectors; v_start++) { 4570 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4571 4572 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4573 4574 q_vector->num_ringpairs = num_ringpairs; 4575 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4576 4577 q_vector->rx.count = 0; 4578 q_vector->tx.count = 0; 4579 q_vector->rx.ring = NULL; 4580 q_vector->tx.ring = NULL; 4581 4582 while (num_ringpairs--) { 4583 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4584 qp_idx++; 4585 qp_remaining--; 4586 } 4587 } 4588 } 4589 4590 /** 4591 * i40e_vsi_request_irq - Request IRQ from the OS 4592 * @vsi: the VSI being configured 4593 * @basename: name for the vector 4594 **/ 4595 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4596 { 4597 struct i40e_pf *pf = vsi->back; 4598 int err; 4599 4600 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4601 err = i40e_vsi_request_irq_msix(vsi, basename); 4602 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4603 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4604 pf->int_name, pf); 4605 else 4606 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4607 pf->int_name, pf); 4608 4609 if (err) 4610 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4611 4612 return err; 4613 } 4614 4615 #ifdef CONFIG_NET_POLL_CONTROLLER 4616 /** 4617 * i40e_netpoll - A Polling 'interrupt' handler 4618 * @netdev: network interface device structure 4619 * 4620 * This is used by netconsole to send skbs without having to re-enable 4621 * interrupts. It's not called while the normal interrupt routine is executing. 4622 **/ 4623 static void i40e_netpoll(struct net_device *netdev) 4624 { 4625 struct i40e_netdev_priv *np = netdev_priv(netdev); 4626 struct i40e_vsi *vsi = np->vsi; 4627 struct i40e_pf *pf = vsi->back; 4628 int i; 4629 4630 /* if interface is down do nothing */ 4631 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4632 return; 4633 4634 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4635 for (i = 0; i < vsi->num_q_vectors; i++) 4636 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4637 } else { 4638 i40e_intr(pf->pdev->irq, netdev); 4639 } 4640 } 4641 #endif 4642 4643 #define I40E_QTX_ENA_WAIT_COUNT 50 4644 4645 /** 4646 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4647 * @pf: the PF being configured 4648 * @pf_q: the PF queue 4649 * @enable: enable or disable state of the queue 4650 * 4651 * This routine will wait for the given Tx queue of the PF to reach the 4652 * enabled or disabled state. 4653 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4654 * multiple retries; else will return 0 in case of success. 4655 **/ 4656 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4657 { 4658 int i; 4659 u32 tx_reg; 4660 4661 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4662 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4663 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4664 break; 4665 4666 usleep_range(10, 20); 4667 } 4668 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4669 return -ETIMEDOUT; 4670 4671 return 0; 4672 } 4673 4674 /** 4675 * i40e_control_tx_q - Start or stop a particular Tx queue 4676 * @pf: the PF structure 4677 * @pf_q: the PF queue to configure 4678 * @enable: start or stop the queue 4679 * 4680 * This function enables or disables a single queue. Note that any delay 4681 * required after the operation is expected to be handled by the caller of 4682 * this function. 4683 **/ 4684 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4685 { 4686 struct i40e_hw *hw = &pf->hw; 4687 u32 tx_reg; 4688 int i; 4689 4690 /* warn the TX unit of coming changes */ 4691 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4692 if (!enable) 4693 usleep_range(10, 20); 4694 4695 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4696 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4697 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4698 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4699 break; 4700 usleep_range(1000, 2000); 4701 } 4702 4703 /* Skip if the queue is already in the requested state */ 4704 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4705 return; 4706 4707 /* turn on/off the queue */ 4708 if (enable) { 4709 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4710 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4711 } else { 4712 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4713 } 4714 4715 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4716 } 4717 4718 /** 4719 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4720 * @seid: VSI SEID 4721 * @pf: the PF structure 4722 * @pf_q: the PF queue to configure 4723 * @is_xdp: true if the queue is used for XDP 4724 * @enable: start or stop the queue 4725 **/ 4726 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4727 bool is_xdp, bool enable) 4728 { 4729 int ret; 4730 4731 i40e_control_tx_q(pf, pf_q, enable); 4732 4733 /* wait for the change to finish */ 4734 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4735 if (ret) { 4736 dev_info(&pf->pdev->dev, 4737 "VSI seid %d %sTx ring %d %sable timeout\n", 4738 seid, (is_xdp ? "XDP " : ""), pf_q, 4739 (enable ? "en" : "dis")); 4740 } 4741 4742 return ret; 4743 } 4744 4745 /** 4746 * i40e_vsi_enable_tx - Start a VSI's rings 4747 * @vsi: the VSI being configured 4748 **/ 4749 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4750 { 4751 struct i40e_pf *pf = vsi->back; 4752 int i, pf_q, ret = 0; 4753 4754 pf_q = vsi->base_queue; 4755 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4756 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4757 pf_q, 4758 false /*is xdp*/, true); 4759 if (ret) 4760 break; 4761 4762 if (!i40e_enabled_xdp_vsi(vsi)) 4763 continue; 4764 4765 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4766 pf_q + vsi->alloc_queue_pairs, 4767 true /*is xdp*/, true); 4768 if (ret) 4769 break; 4770 } 4771 return ret; 4772 } 4773 4774 /** 4775 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4776 * @pf: the PF being configured 4777 * @pf_q: the PF queue 4778 * @enable: enable or disable state of the queue 4779 * 4780 * This routine will wait for the given Rx queue of the PF to reach the 4781 * enabled or disabled state. 4782 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4783 * multiple retries; else will return 0 in case of success. 4784 **/ 4785 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4786 { 4787 int i; 4788 u32 rx_reg; 4789 4790 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4791 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4792 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4793 break; 4794 4795 usleep_range(10, 20); 4796 } 4797 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4798 return -ETIMEDOUT; 4799 4800 return 0; 4801 } 4802 4803 /** 4804 * i40e_control_rx_q - Start or stop a particular Rx queue 4805 * @pf: the PF structure 4806 * @pf_q: the PF queue to configure 4807 * @enable: start or stop the queue 4808 * 4809 * This function enables or disables a single queue. Note that 4810 * any delay required after the operation is expected to be 4811 * handled by the caller of this function. 4812 **/ 4813 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4814 { 4815 struct i40e_hw *hw = &pf->hw; 4816 u32 rx_reg; 4817 int i; 4818 4819 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4820 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4821 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4822 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4823 break; 4824 usleep_range(1000, 2000); 4825 } 4826 4827 /* Skip if the queue is already in the requested state */ 4828 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4829 return; 4830 4831 /* turn on/off the queue */ 4832 if (enable) 4833 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4834 else 4835 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4836 4837 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4838 } 4839 4840 /** 4841 * i40e_control_wait_rx_q 4842 * @pf: the PF structure 4843 * @pf_q: queue being configured 4844 * @enable: start or stop the rings 4845 * 4846 * This function enables or disables a single queue along with waiting 4847 * for the change to finish. The caller of this function should handle 4848 * the delays needed in the case of disabling queues. 4849 **/ 4850 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4851 { 4852 int ret = 0; 4853 4854 i40e_control_rx_q(pf, pf_q, enable); 4855 4856 /* wait for the change to finish */ 4857 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4858 if (ret) 4859 return ret; 4860 4861 return ret; 4862 } 4863 4864 /** 4865 * i40e_vsi_enable_rx - Start a VSI's rings 4866 * @vsi: the VSI being configured 4867 **/ 4868 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4869 { 4870 struct i40e_pf *pf = vsi->back; 4871 int i, pf_q, ret = 0; 4872 4873 pf_q = vsi->base_queue; 4874 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4875 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4876 if (ret) { 4877 dev_info(&pf->pdev->dev, 4878 "VSI seid %d Rx ring %d enable timeout\n", 4879 vsi->seid, pf_q); 4880 break; 4881 } 4882 } 4883 4884 return ret; 4885 } 4886 4887 /** 4888 * i40e_vsi_start_rings - Start a VSI's rings 4889 * @vsi: the VSI being configured 4890 **/ 4891 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4892 { 4893 int ret = 0; 4894 4895 /* do rx first for enable and last for disable */ 4896 ret = i40e_vsi_enable_rx(vsi); 4897 if (ret) 4898 return ret; 4899 ret = i40e_vsi_enable_tx(vsi); 4900 4901 return ret; 4902 } 4903 4904 #define I40E_DISABLE_TX_GAP_MSEC 50 4905 4906 /** 4907 * i40e_vsi_stop_rings - Stop a VSI's rings 4908 * @vsi: the VSI being configured 4909 **/ 4910 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4911 { 4912 struct i40e_pf *pf = vsi->back; 4913 int pf_q, err, q_end; 4914 4915 /* When port TX is suspended, don't wait */ 4916 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4917 return i40e_vsi_stop_rings_no_wait(vsi); 4918 4919 q_end = vsi->base_queue + vsi->num_queue_pairs; 4920 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) 4921 i40e_pre_tx_queue_cfg(&pf->hw, (u32)pf_q, false); 4922 4923 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) { 4924 err = i40e_control_wait_rx_q(pf, pf_q, false); 4925 if (err) 4926 dev_info(&pf->pdev->dev, 4927 "VSI seid %d Rx ring %d disable timeout\n", 4928 vsi->seid, pf_q); 4929 } 4930 4931 msleep(I40E_DISABLE_TX_GAP_MSEC); 4932 pf_q = vsi->base_queue; 4933 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) 4934 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4935 4936 i40e_vsi_wait_queues_disabled(vsi); 4937 } 4938 4939 /** 4940 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4941 * @vsi: the VSI being shutdown 4942 * 4943 * This function stops all the rings for a VSI but does not delay to verify 4944 * that rings have been disabled. It is expected that the caller is shutting 4945 * down multiple VSIs at once and will delay together for all the VSIs after 4946 * initiating the shutdown. This is particularly useful for shutting down lots 4947 * of VFs together. Otherwise, a large delay can be incurred while configuring 4948 * each VSI in serial. 4949 **/ 4950 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4951 { 4952 struct i40e_pf *pf = vsi->back; 4953 int i, pf_q; 4954 4955 pf_q = vsi->base_queue; 4956 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4957 i40e_control_tx_q(pf, pf_q, false); 4958 i40e_control_rx_q(pf, pf_q, false); 4959 } 4960 } 4961 4962 /** 4963 * i40e_vsi_free_irq - Free the irq association with the OS 4964 * @vsi: the VSI being configured 4965 **/ 4966 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4967 { 4968 struct i40e_pf *pf = vsi->back; 4969 struct i40e_hw *hw = &pf->hw; 4970 int base = vsi->base_vector; 4971 u32 val, qp; 4972 int i; 4973 4974 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4975 if (!vsi->q_vectors) 4976 return; 4977 4978 if (!vsi->irqs_ready) 4979 return; 4980 4981 vsi->irqs_ready = false; 4982 for (i = 0; i < vsi->num_q_vectors; i++) { 4983 int irq_num; 4984 u16 vector; 4985 4986 vector = i + base; 4987 irq_num = pf->msix_entries[vector].vector; 4988 4989 /* free only the irqs that were actually requested */ 4990 if (!vsi->q_vectors[i] || 4991 !vsi->q_vectors[i]->num_ringpairs) 4992 continue; 4993 4994 /* clear the affinity notifier in the IRQ descriptor */ 4995 irq_set_affinity_notifier(irq_num, NULL); 4996 /* remove our suggested affinity mask for this IRQ */ 4997 irq_update_affinity_hint(irq_num, NULL); 4998 free_irq(irq_num, vsi->q_vectors[i]); 4999 5000 /* Tear down the interrupt queue link list 5001 * 5002 * We know that they come in pairs and always 5003 * the Rx first, then the Tx. To clear the 5004 * link list, stick the EOL value into the 5005 * next_q field of the registers. 5006 */ 5007 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 5008 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 5009 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5010 val |= I40E_QUEUE_END_OF_LIST 5011 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5012 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 5013 5014 while (qp != I40E_QUEUE_END_OF_LIST) { 5015 u32 next; 5016 5017 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5018 5019 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5020 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5021 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5022 I40E_QINT_RQCTL_INTEVENT_MASK); 5023 5024 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5025 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5026 5027 wr32(hw, I40E_QINT_RQCTL(qp), val); 5028 5029 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5030 5031 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 5032 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 5033 5034 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5035 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5036 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5037 I40E_QINT_TQCTL_INTEVENT_MASK); 5038 5039 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5040 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5041 5042 wr32(hw, I40E_QINT_TQCTL(qp), val); 5043 qp = next; 5044 } 5045 } 5046 } else { 5047 free_irq(pf->pdev->irq, pf); 5048 5049 val = rd32(hw, I40E_PFINT_LNKLST0); 5050 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 5051 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5052 val |= I40E_QUEUE_END_OF_LIST 5053 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5054 wr32(hw, I40E_PFINT_LNKLST0, val); 5055 5056 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5057 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5058 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5059 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5060 I40E_QINT_RQCTL_INTEVENT_MASK); 5061 5062 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5063 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5064 5065 wr32(hw, I40E_QINT_RQCTL(qp), val); 5066 5067 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5068 5069 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5070 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5071 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5072 I40E_QINT_TQCTL_INTEVENT_MASK); 5073 5074 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5075 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5076 5077 wr32(hw, I40E_QINT_TQCTL(qp), val); 5078 } 5079 } 5080 5081 /** 5082 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5083 * @vsi: the VSI being configured 5084 * @v_idx: Index of vector to be freed 5085 * 5086 * This function frees the memory allocated to the q_vector. In addition if 5087 * NAPI is enabled it will delete any references to the NAPI struct prior 5088 * to freeing the q_vector. 5089 **/ 5090 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5091 { 5092 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5093 struct i40e_ring *ring; 5094 5095 if (!q_vector) 5096 return; 5097 5098 /* disassociate q_vector from rings */ 5099 i40e_for_each_ring(ring, q_vector->tx) 5100 ring->q_vector = NULL; 5101 5102 i40e_for_each_ring(ring, q_vector->rx) 5103 ring->q_vector = NULL; 5104 5105 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5106 if (vsi->netdev) 5107 netif_napi_del(&q_vector->napi); 5108 5109 vsi->q_vectors[v_idx] = NULL; 5110 5111 kfree_rcu(q_vector, rcu); 5112 } 5113 5114 /** 5115 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5116 * @vsi: the VSI being un-configured 5117 * 5118 * This frees the memory allocated to the q_vectors and 5119 * deletes references to the NAPI struct. 5120 **/ 5121 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5122 { 5123 int v_idx; 5124 5125 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5126 i40e_free_q_vector(vsi, v_idx); 5127 } 5128 5129 /** 5130 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5131 * @pf: board private structure 5132 **/ 5133 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5134 { 5135 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5136 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5137 pci_disable_msix(pf->pdev); 5138 kfree(pf->msix_entries); 5139 pf->msix_entries = NULL; 5140 kfree(pf->irq_pile); 5141 pf->irq_pile = NULL; 5142 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5143 pci_disable_msi(pf->pdev); 5144 } 5145 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5146 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5147 } 5148 5149 /** 5150 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5151 * @pf: board private structure 5152 * 5153 * We go through and clear interrupt specific resources and reset the structure 5154 * to pre-load conditions 5155 **/ 5156 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5157 { 5158 int i; 5159 5160 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5161 i40e_free_misc_vector(pf); 5162 5163 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5164 I40E_IWARP_IRQ_PILE_ID); 5165 5166 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5167 for (i = 0; i < pf->num_alloc_vsi; i++) 5168 if (pf->vsi[i]) 5169 i40e_vsi_free_q_vectors(pf->vsi[i]); 5170 i40e_reset_interrupt_capability(pf); 5171 } 5172 5173 /** 5174 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5175 * @vsi: the VSI being configured 5176 **/ 5177 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5178 { 5179 int q_idx; 5180 5181 if (!vsi->netdev) 5182 return; 5183 5184 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5185 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5186 5187 if (q_vector->rx.ring || q_vector->tx.ring) 5188 napi_enable(&q_vector->napi); 5189 } 5190 } 5191 5192 /** 5193 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5194 * @vsi: the VSI being configured 5195 **/ 5196 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5197 { 5198 int q_idx; 5199 5200 if (!vsi->netdev) 5201 return; 5202 5203 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5204 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5205 5206 if (q_vector->rx.ring || q_vector->tx.ring) 5207 napi_disable(&q_vector->napi); 5208 } 5209 } 5210 5211 /** 5212 * i40e_vsi_close - Shut down a VSI 5213 * @vsi: the vsi to be quelled 5214 **/ 5215 static void i40e_vsi_close(struct i40e_vsi *vsi) 5216 { 5217 struct i40e_pf *pf = vsi->back; 5218 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5219 i40e_down(vsi); 5220 i40e_vsi_free_irq(vsi); 5221 i40e_vsi_free_tx_resources(vsi); 5222 i40e_vsi_free_rx_resources(vsi); 5223 vsi->current_netdev_flags = 0; 5224 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5225 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5226 set_bit(__I40E_CLIENT_RESET, pf->state); 5227 } 5228 5229 /** 5230 * i40e_quiesce_vsi - Pause a given VSI 5231 * @vsi: the VSI being paused 5232 **/ 5233 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5234 { 5235 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5236 return; 5237 5238 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5239 if (vsi->netdev && netif_running(vsi->netdev)) 5240 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5241 else 5242 i40e_vsi_close(vsi); 5243 } 5244 5245 /** 5246 * i40e_unquiesce_vsi - Resume a given VSI 5247 * @vsi: the VSI being resumed 5248 **/ 5249 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5250 { 5251 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5252 return; 5253 5254 if (vsi->netdev && netif_running(vsi->netdev)) 5255 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5256 else 5257 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5258 } 5259 5260 /** 5261 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5262 * @pf: the PF 5263 **/ 5264 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5265 { 5266 int v; 5267 5268 for (v = 0; v < pf->num_alloc_vsi; v++) { 5269 if (pf->vsi[v]) 5270 i40e_quiesce_vsi(pf->vsi[v]); 5271 } 5272 } 5273 5274 /** 5275 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5276 * @pf: the PF 5277 **/ 5278 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5279 { 5280 int v; 5281 5282 for (v = 0; v < pf->num_alloc_vsi; v++) { 5283 if (pf->vsi[v]) 5284 i40e_unquiesce_vsi(pf->vsi[v]); 5285 } 5286 } 5287 5288 /** 5289 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5290 * @vsi: the VSI being configured 5291 * 5292 * Wait until all queues on a given VSI have been disabled. 5293 **/ 5294 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5295 { 5296 struct i40e_pf *pf = vsi->back; 5297 int i, pf_q, ret; 5298 5299 pf_q = vsi->base_queue; 5300 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5301 /* Check and wait for the Tx queue */ 5302 ret = i40e_pf_txq_wait(pf, pf_q, false); 5303 if (ret) { 5304 dev_info(&pf->pdev->dev, 5305 "VSI seid %d Tx ring %d disable timeout\n", 5306 vsi->seid, pf_q); 5307 return ret; 5308 } 5309 5310 if (!i40e_enabled_xdp_vsi(vsi)) 5311 goto wait_rx; 5312 5313 /* Check and wait for the XDP Tx queue */ 5314 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5315 false); 5316 if (ret) { 5317 dev_info(&pf->pdev->dev, 5318 "VSI seid %d XDP Tx ring %d disable timeout\n", 5319 vsi->seid, pf_q); 5320 return ret; 5321 } 5322 wait_rx: 5323 /* Check and wait for the Rx queue */ 5324 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5325 if (ret) { 5326 dev_info(&pf->pdev->dev, 5327 "VSI seid %d Rx ring %d disable timeout\n", 5328 vsi->seid, pf_q); 5329 return ret; 5330 } 5331 } 5332 5333 return 0; 5334 } 5335 5336 #ifdef CONFIG_I40E_DCB 5337 /** 5338 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5339 * @pf: the PF 5340 * 5341 * This function waits for the queues to be in disabled state for all the 5342 * VSIs that are managed by this PF. 5343 **/ 5344 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5345 { 5346 int v, ret = 0; 5347 5348 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 5349 if (pf->vsi[v]) { 5350 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5351 if (ret) 5352 break; 5353 } 5354 } 5355 5356 return ret; 5357 } 5358 5359 #endif 5360 5361 /** 5362 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5363 * @pf: pointer to PF 5364 * 5365 * Get TC map for ISCSI PF type that will include iSCSI TC 5366 * and LAN TC. 5367 **/ 5368 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5369 { 5370 struct i40e_dcb_app_priority_table app; 5371 struct i40e_hw *hw = &pf->hw; 5372 u8 enabled_tc = 1; /* TC0 is always enabled */ 5373 u8 tc, i; 5374 /* Get the iSCSI APP TLV */ 5375 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5376 5377 for (i = 0; i < dcbcfg->numapps; i++) { 5378 app = dcbcfg->app[i]; 5379 if (app.selector == I40E_APP_SEL_TCPIP && 5380 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5381 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5382 enabled_tc |= BIT(tc); 5383 break; 5384 } 5385 } 5386 5387 return enabled_tc; 5388 } 5389 5390 /** 5391 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5392 * @dcbcfg: the corresponding DCBx configuration structure 5393 * 5394 * Return the number of TCs from given DCBx configuration 5395 **/ 5396 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5397 { 5398 int i, tc_unused = 0; 5399 u8 num_tc = 0; 5400 u8 ret = 0; 5401 5402 /* Scan the ETS Config Priority Table to find 5403 * traffic class enabled for a given priority 5404 * and create a bitmask of enabled TCs 5405 */ 5406 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5407 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5408 5409 /* Now scan the bitmask to check for 5410 * contiguous TCs starting with TC0 5411 */ 5412 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5413 if (num_tc & BIT(i)) { 5414 if (!tc_unused) { 5415 ret++; 5416 } else { 5417 pr_err("Non-contiguous TC - Disabling DCB\n"); 5418 return 1; 5419 } 5420 } else { 5421 tc_unused = 1; 5422 } 5423 } 5424 5425 /* There is always at least TC0 */ 5426 if (!ret) 5427 ret = 1; 5428 5429 return ret; 5430 } 5431 5432 /** 5433 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5434 * @dcbcfg: the corresponding DCBx configuration structure 5435 * 5436 * Query the current DCB configuration and return the number of 5437 * traffic classes enabled from the given DCBX config 5438 **/ 5439 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5440 { 5441 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5442 u8 enabled_tc = 1; 5443 u8 i; 5444 5445 for (i = 0; i < num_tc; i++) 5446 enabled_tc |= BIT(i); 5447 5448 return enabled_tc; 5449 } 5450 5451 /** 5452 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5453 * @pf: PF being queried 5454 * 5455 * Query the current MQPRIO configuration and return the number of 5456 * traffic classes enabled. 5457 **/ 5458 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5459 { 5460 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5461 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5462 u8 enabled_tc = 1, i; 5463 5464 for (i = 1; i < num_tc; i++) 5465 enabled_tc |= BIT(i); 5466 return enabled_tc; 5467 } 5468 5469 /** 5470 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5471 * @pf: PF being queried 5472 * 5473 * Return number of traffic classes enabled for the given PF 5474 **/ 5475 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5476 { 5477 struct i40e_hw *hw = &pf->hw; 5478 u8 i, enabled_tc = 1; 5479 u8 num_tc = 0; 5480 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5481 5482 if (i40e_is_tc_mqprio_enabled(pf)) 5483 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5484 5485 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5486 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5487 return 1; 5488 5489 /* SFP mode will be enabled for all TCs on port */ 5490 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5491 return i40e_dcb_get_num_tc(dcbcfg); 5492 5493 /* MFP mode return count of enabled TCs for this PF */ 5494 if (pf->hw.func_caps.iscsi) 5495 enabled_tc = i40e_get_iscsi_tc_map(pf); 5496 else 5497 return 1; /* Only TC0 */ 5498 5499 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5500 if (enabled_tc & BIT(i)) 5501 num_tc++; 5502 } 5503 return num_tc; 5504 } 5505 5506 /** 5507 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5508 * @pf: PF being queried 5509 * 5510 * Return a bitmap for enabled traffic classes for this PF. 5511 **/ 5512 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5513 { 5514 if (i40e_is_tc_mqprio_enabled(pf)) 5515 return i40e_mqprio_get_enabled_tc(pf); 5516 5517 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5518 * default TC 5519 */ 5520 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5521 return I40E_DEFAULT_TRAFFIC_CLASS; 5522 5523 /* SFP mode we want PF to be enabled for all TCs */ 5524 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5525 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5526 5527 /* MFP enabled and iSCSI PF type */ 5528 if (pf->hw.func_caps.iscsi) 5529 return i40e_get_iscsi_tc_map(pf); 5530 else 5531 return I40E_DEFAULT_TRAFFIC_CLASS; 5532 } 5533 5534 /** 5535 * i40e_vsi_get_bw_info - Query VSI BW Information 5536 * @vsi: the VSI being queried 5537 * 5538 * Returns 0 on success, negative value on failure 5539 **/ 5540 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5541 { 5542 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5543 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5544 struct i40e_pf *pf = vsi->back; 5545 struct i40e_hw *hw = &pf->hw; 5546 u32 tc_bw_max; 5547 int ret; 5548 int i; 5549 5550 /* Get the VSI level BW configuration */ 5551 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5552 if (ret) { 5553 dev_info(&pf->pdev->dev, 5554 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5555 ERR_PTR(ret), 5556 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5557 return -EINVAL; 5558 } 5559 5560 /* Get the VSI level BW configuration per TC */ 5561 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5562 NULL); 5563 if (ret) { 5564 dev_info(&pf->pdev->dev, 5565 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5566 ERR_PTR(ret), 5567 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5568 return -EINVAL; 5569 } 5570 5571 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5572 dev_info(&pf->pdev->dev, 5573 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5574 bw_config.tc_valid_bits, 5575 bw_ets_config.tc_valid_bits); 5576 /* Still continuing */ 5577 } 5578 5579 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5580 vsi->bw_max_quanta = bw_config.max_bw; 5581 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5582 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5583 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5584 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5585 vsi->bw_ets_limit_credits[i] = 5586 le16_to_cpu(bw_ets_config.credits[i]); 5587 /* 3 bits out of 4 for each TC */ 5588 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5589 } 5590 5591 return 0; 5592 } 5593 5594 /** 5595 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5596 * @vsi: the VSI being configured 5597 * @enabled_tc: TC bitmap 5598 * @bw_share: BW shared credits per TC 5599 * 5600 * Returns 0 on success, negative value on failure 5601 **/ 5602 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5603 u8 *bw_share) 5604 { 5605 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5606 struct i40e_pf *pf = vsi->back; 5607 int ret; 5608 int i; 5609 5610 /* There is no need to reset BW when mqprio mode is on. */ 5611 if (i40e_is_tc_mqprio_enabled(pf)) 5612 return 0; 5613 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5614 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5615 if (ret) 5616 dev_info(&pf->pdev->dev, 5617 "Failed to reset tx rate for vsi->seid %u\n", 5618 vsi->seid); 5619 return ret; 5620 } 5621 memset(&bw_data, 0, sizeof(bw_data)); 5622 bw_data.tc_valid_bits = enabled_tc; 5623 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5624 bw_data.tc_bw_credits[i] = bw_share[i]; 5625 5626 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5627 if (ret) { 5628 dev_info(&pf->pdev->dev, 5629 "AQ command Config VSI BW allocation per TC failed = %d\n", 5630 pf->hw.aq.asq_last_status); 5631 return -EINVAL; 5632 } 5633 5634 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5635 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5636 5637 return 0; 5638 } 5639 5640 /** 5641 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5642 * @vsi: the VSI being configured 5643 * @enabled_tc: TC map to be enabled 5644 * 5645 **/ 5646 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5647 { 5648 struct net_device *netdev = vsi->netdev; 5649 struct i40e_pf *pf = vsi->back; 5650 struct i40e_hw *hw = &pf->hw; 5651 u8 netdev_tc = 0; 5652 int i; 5653 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5654 5655 if (!netdev) 5656 return; 5657 5658 if (!enabled_tc) { 5659 netdev_reset_tc(netdev); 5660 return; 5661 } 5662 5663 /* Set up actual enabled TCs on the VSI */ 5664 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5665 return; 5666 5667 /* set per TC queues for the VSI */ 5668 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5669 /* Only set TC queues for enabled tcs 5670 * 5671 * e.g. For a VSI that has TC0 and TC3 enabled the 5672 * enabled_tc bitmap would be 0x00001001; the driver 5673 * will set the numtc for netdev as 2 that will be 5674 * referenced by the netdev layer as TC 0 and 1. 5675 */ 5676 if (vsi->tc_config.enabled_tc & BIT(i)) 5677 netdev_set_tc_queue(netdev, 5678 vsi->tc_config.tc_info[i].netdev_tc, 5679 vsi->tc_config.tc_info[i].qcount, 5680 vsi->tc_config.tc_info[i].qoffset); 5681 } 5682 5683 if (i40e_is_tc_mqprio_enabled(pf)) 5684 return; 5685 5686 /* Assign UP2TC map for the VSI */ 5687 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5688 /* Get the actual TC# for the UP */ 5689 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5690 /* Get the mapped netdev TC# for the UP */ 5691 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5692 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5693 } 5694 } 5695 5696 /** 5697 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5698 * @vsi: the VSI being configured 5699 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5700 **/ 5701 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5702 struct i40e_vsi_context *ctxt) 5703 { 5704 /* copy just the sections touched not the entire info 5705 * since not all sections are valid as returned by 5706 * update vsi params 5707 */ 5708 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5709 memcpy(&vsi->info.queue_mapping, 5710 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5711 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5712 sizeof(vsi->info.tc_mapping)); 5713 } 5714 5715 /** 5716 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5717 * @vsi: the VSI being reconfigured 5718 * @vsi_offset: offset from main VF VSI 5719 */ 5720 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5721 { 5722 struct i40e_vsi_context ctxt = {}; 5723 struct i40e_pf *pf; 5724 struct i40e_hw *hw; 5725 int ret; 5726 5727 if (!vsi) 5728 return -EINVAL; 5729 pf = vsi->back; 5730 hw = &pf->hw; 5731 5732 ctxt.seid = vsi->seid; 5733 ctxt.pf_num = hw->pf_id; 5734 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5735 ctxt.uplink_seid = vsi->uplink_seid; 5736 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5737 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5738 ctxt.info = vsi->info; 5739 5740 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5741 false); 5742 if (vsi->reconfig_rss) { 5743 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5744 vsi->num_queue_pairs); 5745 ret = i40e_vsi_config_rss(vsi); 5746 if (ret) { 5747 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5748 return ret; 5749 } 5750 vsi->reconfig_rss = false; 5751 } 5752 5753 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5754 if (ret) { 5755 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5756 ERR_PTR(ret), 5757 i40e_aq_str(hw, hw->aq.asq_last_status)); 5758 return ret; 5759 } 5760 /* update the local VSI info with updated queue map */ 5761 i40e_vsi_update_queue_map(vsi, &ctxt); 5762 vsi->info.valid_sections = 0; 5763 5764 return ret; 5765 } 5766 5767 /** 5768 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5769 * @vsi: VSI to be configured 5770 * @enabled_tc: TC bitmap 5771 * 5772 * This configures a particular VSI for TCs that are mapped to the 5773 * given TC bitmap. It uses default bandwidth share for TCs across 5774 * VSIs to configure TC for a particular VSI. 5775 * 5776 * NOTE: 5777 * It is expected that the VSI queues have been quisced before calling 5778 * this function. 5779 **/ 5780 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5781 { 5782 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5783 struct i40e_pf *pf = vsi->back; 5784 struct i40e_hw *hw = &pf->hw; 5785 struct i40e_vsi_context ctxt; 5786 int ret = 0; 5787 int i; 5788 5789 /* Check if enabled_tc is same as existing or new TCs */ 5790 if (vsi->tc_config.enabled_tc == enabled_tc && 5791 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5792 return ret; 5793 5794 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5795 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5796 if (enabled_tc & BIT(i)) 5797 bw_share[i] = 1; 5798 } 5799 5800 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5801 if (ret) { 5802 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5803 5804 dev_info(&pf->pdev->dev, 5805 "Failed configuring TC map %d for VSI %d\n", 5806 enabled_tc, vsi->seid); 5807 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5808 &bw_config, NULL); 5809 if (ret) { 5810 dev_info(&pf->pdev->dev, 5811 "Failed querying vsi bw info, err %pe aq_err %s\n", 5812 ERR_PTR(ret), 5813 i40e_aq_str(hw, hw->aq.asq_last_status)); 5814 goto out; 5815 } 5816 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5817 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5818 5819 if (!valid_tc) 5820 valid_tc = bw_config.tc_valid_bits; 5821 /* Always enable TC0, no matter what */ 5822 valid_tc |= 1; 5823 dev_info(&pf->pdev->dev, 5824 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5825 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5826 enabled_tc = valid_tc; 5827 } 5828 5829 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5830 if (ret) { 5831 dev_err(&pf->pdev->dev, 5832 "Unable to configure TC map %d for VSI %d\n", 5833 enabled_tc, vsi->seid); 5834 goto out; 5835 } 5836 } 5837 5838 /* Update Queue Pairs Mapping for currently enabled UPs */ 5839 ctxt.seid = vsi->seid; 5840 ctxt.pf_num = vsi->back->hw.pf_id; 5841 ctxt.vf_num = 0; 5842 ctxt.uplink_seid = vsi->uplink_seid; 5843 ctxt.info = vsi->info; 5844 if (i40e_is_tc_mqprio_enabled(pf)) { 5845 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5846 if (ret) 5847 goto out; 5848 } else { 5849 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5850 } 5851 5852 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5853 * queues changed. 5854 */ 5855 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5856 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5857 vsi->num_queue_pairs); 5858 ret = i40e_vsi_config_rss(vsi); 5859 if (ret) { 5860 dev_info(&vsi->back->pdev->dev, 5861 "Failed to reconfig rss for num_queues\n"); 5862 return ret; 5863 } 5864 vsi->reconfig_rss = false; 5865 } 5866 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5867 ctxt.info.valid_sections |= 5868 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5869 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5870 } 5871 5872 /* Update the VSI after updating the VSI queue-mapping 5873 * information 5874 */ 5875 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5876 if (ret) { 5877 dev_info(&pf->pdev->dev, 5878 "Update vsi tc config failed, err %pe aq_err %s\n", 5879 ERR_PTR(ret), 5880 i40e_aq_str(hw, hw->aq.asq_last_status)); 5881 goto out; 5882 } 5883 /* update the local VSI info with updated queue map */ 5884 i40e_vsi_update_queue_map(vsi, &ctxt); 5885 vsi->info.valid_sections = 0; 5886 5887 /* Update current VSI BW information */ 5888 ret = i40e_vsi_get_bw_info(vsi); 5889 if (ret) { 5890 dev_info(&pf->pdev->dev, 5891 "Failed updating vsi bw info, err %pe aq_err %s\n", 5892 ERR_PTR(ret), 5893 i40e_aq_str(hw, hw->aq.asq_last_status)); 5894 goto out; 5895 } 5896 5897 /* Update the netdev TC setup */ 5898 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5899 out: 5900 return ret; 5901 } 5902 5903 /** 5904 * i40e_get_link_speed - Returns link speed for the interface 5905 * @vsi: VSI to be configured 5906 * 5907 **/ 5908 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5909 { 5910 struct i40e_pf *pf = vsi->back; 5911 5912 switch (pf->hw.phy.link_info.link_speed) { 5913 case I40E_LINK_SPEED_40GB: 5914 return 40000; 5915 case I40E_LINK_SPEED_25GB: 5916 return 25000; 5917 case I40E_LINK_SPEED_20GB: 5918 return 20000; 5919 case I40E_LINK_SPEED_10GB: 5920 return 10000; 5921 case I40E_LINK_SPEED_1GB: 5922 return 1000; 5923 default: 5924 return -EINVAL; 5925 } 5926 } 5927 5928 /** 5929 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5930 * @vsi: Pointer to vsi structure 5931 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5932 * 5933 * Helper function to convert units before send to set BW limit 5934 **/ 5935 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5936 { 5937 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5938 dev_warn(&vsi->back->pdev->dev, 5939 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5940 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5941 } else { 5942 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5943 } 5944 5945 return max_tx_rate; 5946 } 5947 5948 /** 5949 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5950 * @vsi: VSI to be configured 5951 * @seid: seid of the channel/VSI 5952 * @max_tx_rate: max TX rate to be configured as BW limit 5953 * 5954 * Helper function to set BW limit for a given VSI 5955 **/ 5956 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5957 { 5958 struct i40e_pf *pf = vsi->back; 5959 u64 credits = 0; 5960 int speed = 0; 5961 int ret = 0; 5962 5963 speed = i40e_get_link_speed(vsi); 5964 if (max_tx_rate > speed) { 5965 dev_err(&pf->pdev->dev, 5966 "Invalid max tx rate %llu specified for VSI seid %d.", 5967 max_tx_rate, seid); 5968 return -EINVAL; 5969 } 5970 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 5971 dev_warn(&pf->pdev->dev, 5972 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5973 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5974 } 5975 5976 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5977 credits = max_tx_rate; 5978 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5979 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5980 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5981 if (ret) 5982 dev_err(&pf->pdev->dev, 5983 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 5984 max_tx_rate, seid, ERR_PTR(ret), 5985 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5986 return ret; 5987 } 5988 5989 /** 5990 * i40e_remove_queue_channels - Remove queue channels for the TCs 5991 * @vsi: VSI to be configured 5992 * 5993 * Remove queue channels for the TCs 5994 **/ 5995 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5996 { 5997 enum i40e_admin_queue_err last_aq_status; 5998 struct i40e_cloud_filter *cfilter; 5999 struct i40e_channel *ch, *ch_tmp; 6000 struct i40e_pf *pf = vsi->back; 6001 struct hlist_node *node; 6002 int ret, i; 6003 6004 /* Reset rss size that was stored when reconfiguring rss for 6005 * channel VSIs with non-power-of-2 queue count. 6006 */ 6007 vsi->current_rss_size = 0; 6008 6009 /* perform cleanup for channels if they exist */ 6010 if (list_empty(&vsi->ch_list)) 6011 return; 6012 6013 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6014 struct i40e_vsi *p_vsi; 6015 6016 list_del(&ch->list); 6017 p_vsi = ch->parent_vsi; 6018 if (!p_vsi || !ch->initialized) { 6019 kfree(ch); 6020 continue; 6021 } 6022 /* Reset queue contexts */ 6023 for (i = 0; i < ch->num_queue_pairs; i++) { 6024 struct i40e_ring *tx_ring, *rx_ring; 6025 u16 pf_q; 6026 6027 pf_q = ch->base_queue + i; 6028 tx_ring = vsi->tx_rings[pf_q]; 6029 tx_ring->ch = NULL; 6030 6031 rx_ring = vsi->rx_rings[pf_q]; 6032 rx_ring->ch = NULL; 6033 } 6034 6035 /* Reset BW configured for this VSI via mqprio */ 6036 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6037 if (ret) 6038 dev_info(&vsi->back->pdev->dev, 6039 "Failed to reset tx rate for ch->seid %u\n", 6040 ch->seid); 6041 6042 /* delete cloud filters associated with this channel */ 6043 hlist_for_each_entry_safe(cfilter, node, 6044 &pf->cloud_filter_list, cloud_node) { 6045 if (cfilter->seid != ch->seid) 6046 continue; 6047 6048 hash_del(&cfilter->cloud_node); 6049 if (cfilter->dst_port) 6050 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6051 cfilter, 6052 false); 6053 else 6054 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6055 false); 6056 last_aq_status = pf->hw.aq.asq_last_status; 6057 if (ret) 6058 dev_info(&pf->pdev->dev, 6059 "Failed to delete cloud filter, err %pe aq_err %s\n", 6060 ERR_PTR(ret), 6061 i40e_aq_str(&pf->hw, last_aq_status)); 6062 kfree(cfilter); 6063 } 6064 6065 /* delete VSI from FW */ 6066 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6067 NULL); 6068 if (ret) 6069 dev_err(&vsi->back->pdev->dev, 6070 "unable to remove channel (%d) for parent VSI(%d)\n", 6071 ch->seid, p_vsi->seid); 6072 kfree(ch); 6073 } 6074 INIT_LIST_HEAD(&vsi->ch_list); 6075 } 6076 6077 /** 6078 * i40e_get_max_queues_for_channel 6079 * @vsi: ptr to VSI to which channels are associated with 6080 * 6081 * Helper function which returns max value among the queue counts set on the 6082 * channels/TCs created. 6083 **/ 6084 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6085 { 6086 struct i40e_channel *ch, *ch_tmp; 6087 int max = 0; 6088 6089 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6090 if (!ch->initialized) 6091 continue; 6092 if (ch->num_queue_pairs > max) 6093 max = ch->num_queue_pairs; 6094 } 6095 6096 return max; 6097 } 6098 6099 /** 6100 * i40e_validate_num_queues - validate num_queues w.r.t channel 6101 * @pf: ptr to PF device 6102 * @num_queues: number of queues 6103 * @vsi: the parent VSI 6104 * @reconfig_rss: indicates should the RSS be reconfigured or not 6105 * 6106 * This function validates number of queues in the context of new channel 6107 * which is being established and determines if RSS should be reconfigured 6108 * or not for parent VSI. 6109 **/ 6110 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6111 struct i40e_vsi *vsi, bool *reconfig_rss) 6112 { 6113 int max_ch_queues; 6114 6115 if (!reconfig_rss) 6116 return -EINVAL; 6117 6118 *reconfig_rss = false; 6119 if (vsi->current_rss_size) { 6120 if (num_queues > vsi->current_rss_size) { 6121 dev_dbg(&pf->pdev->dev, 6122 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6123 num_queues, vsi->current_rss_size); 6124 return -EINVAL; 6125 } else if ((num_queues < vsi->current_rss_size) && 6126 (!is_power_of_2(num_queues))) { 6127 dev_dbg(&pf->pdev->dev, 6128 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6129 num_queues, vsi->current_rss_size); 6130 return -EINVAL; 6131 } 6132 } 6133 6134 if (!is_power_of_2(num_queues)) { 6135 /* Find the max num_queues configured for channel if channel 6136 * exist. 6137 * if channel exist, then enforce 'num_queues' to be more than 6138 * max ever queues configured for channel. 6139 */ 6140 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6141 if (num_queues < max_ch_queues) { 6142 dev_dbg(&pf->pdev->dev, 6143 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6144 num_queues, max_ch_queues); 6145 return -EINVAL; 6146 } 6147 *reconfig_rss = true; 6148 } 6149 6150 return 0; 6151 } 6152 6153 /** 6154 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6155 * @vsi: the VSI being setup 6156 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6157 * 6158 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6159 **/ 6160 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6161 { 6162 struct i40e_pf *pf = vsi->back; 6163 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6164 struct i40e_hw *hw = &pf->hw; 6165 int local_rss_size; 6166 u8 *lut; 6167 int ret; 6168 6169 if (!vsi->rss_size) 6170 return -EINVAL; 6171 6172 if (rss_size > vsi->rss_size) 6173 return -EINVAL; 6174 6175 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6176 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6177 if (!lut) 6178 return -ENOMEM; 6179 6180 /* Ignoring user configured lut if there is one */ 6181 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6182 6183 /* Use user configured hash key if there is one, otherwise 6184 * use default. 6185 */ 6186 if (vsi->rss_hkey_user) 6187 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6188 else 6189 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6190 6191 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6192 if (ret) { 6193 dev_info(&pf->pdev->dev, 6194 "Cannot set RSS lut, err %pe aq_err %s\n", 6195 ERR_PTR(ret), 6196 i40e_aq_str(hw, hw->aq.asq_last_status)); 6197 kfree(lut); 6198 return ret; 6199 } 6200 kfree(lut); 6201 6202 /* Do the update w.r.t. storing rss_size */ 6203 if (!vsi->orig_rss_size) 6204 vsi->orig_rss_size = vsi->rss_size; 6205 vsi->current_rss_size = local_rss_size; 6206 6207 return ret; 6208 } 6209 6210 /** 6211 * i40e_channel_setup_queue_map - Setup a channel queue map 6212 * @pf: ptr to PF device 6213 * @ctxt: VSI context structure 6214 * @ch: ptr to channel structure 6215 * 6216 * Setup queue map for a specific channel 6217 **/ 6218 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6219 struct i40e_vsi_context *ctxt, 6220 struct i40e_channel *ch) 6221 { 6222 u16 qcount, qmap, sections = 0; 6223 u8 offset = 0; 6224 int pow; 6225 6226 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6227 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6228 6229 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6230 ch->num_queue_pairs = qcount; 6231 6232 /* find the next higher power-of-2 of num queue pairs */ 6233 pow = ilog2(qcount); 6234 if (!is_power_of_2(qcount)) 6235 pow++; 6236 6237 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6238 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6239 6240 /* Setup queue TC[0].qmap for given VSI context */ 6241 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6242 6243 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6244 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6245 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6246 ctxt->info.valid_sections |= cpu_to_le16(sections); 6247 } 6248 6249 /** 6250 * i40e_add_channel - add a channel by adding VSI 6251 * @pf: ptr to PF device 6252 * @uplink_seid: underlying HW switching element (VEB) ID 6253 * @ch: ptr to channel structure 6254 * 6255 * Add a channel (VSI) using add_vsi and queue_map 6256 **/ 6257 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6258 struct i40e_channel *ch) 6259 { 6260 struct i40e_hw *hw = &pf->hw; 6261 struct i40e_vsi_context ctxt; 6262 u8 enabled_tc = 0x1; /* TC0 enabled */ 6263 int ret; 6264 6265 if (ch->type != I40E_VSI_VMDQ2) { 6266 dev_info(&pf->pdev->dev, 6267 "add new vsi failed, ch->type %d\n", ch->type); 6268 return -EINVAL; 6269 } 6270 6271 memset(&ctxt, 0, sizeof(ctxt)); 6272 ctxt.pf_num = hw->pf_id; 6273 ctxt.vf_num = 0; 6274 ctxt.uplink_seid = uplink_seid; 6275 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6276 if (ch->type == I40E_VSI_VMDQ2) 6277 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6278 6279 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6280 ctxt.info.valid_sections |= 6281 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6282 ctxt.info.switch_id = 6283 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6284 } 6285 6286 /* Set queue map for a given VSI context */ 6287 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6288 6289 /* Now time to create VSI */ 6290 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6291 if (ret) { 6292 dev_info(&pf->pdev->dev, 6293 "add new vsi failed, err %pe aq_err %s\n", 6294 ERR_PTR(ret), 6295 i40e_aq_str(&pf->hw, 6296 pf->hw.aq.asq_last_status)); 6297 return -ENOENT; 6298 } 6299 6300 /* Success, update channel, set enabled_tc only if the channel 6301 * is not a macvlan 6302 */ 6303 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6304 ch->seid = ctxt.seid; 6305 ch->vsi_number = ctxt.vsi_number; 6306 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6307 6308 /* copy just the sections touched not the entire info 6309 * since not all sections are valid as returned by 6310 * update vsi params 6311 */ 6312 ch->info.mapping_flags = ctxt.info.mapping_flags; 6313 memcpy(&ch->info.queue_mapping, 6314 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6315 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6316 sizeof(ctxt.info.tc_mapping)); 6317 6318 return 0; 6319 } 6320 6321 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6322 u8 *bw_share) 6323 { 6324 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6325 int ret; 6326 int i; 6327 6328 memset(&bw_data, 0, sizeof(bw_data)); 6329 bw_data.tc_valid_bits = ch->enabled_tc; 6330 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6331 bw_data.tc_bw_credits[i] = bw_share[i]; 6332 6333 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6334 &bw_data, NULL); 6335 if (ret) { 6336 dev_info(&vsi->back->pdev->dev, 6337 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6338 vsi->back->hw.aq.asq_last_status, ch->seid); 6339 return -EINVAL; 6340 } 6341 6342 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6343 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6344 6345 return 0; 6346 } 6347 6348 /** 6349 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6350 * @pf: ptr to PF device 6351 * @vsi: the VSI being setup 6352 * @ch: ptr to channel structure 6353 * 6354 * Configure TX rings associated with channel (VSI) since queues are being 6355 * from parent VSI. 6356 **/ 6357 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6358 struct i40e_vsi *vsi, 6359 struct i40e_channel *ch) 6360 { 6361 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6362 int ret; 6363 int i; 6364 6365 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6366 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6367 if (ch->enabled_tc & BIT(i)) 6368 bw_share[i] = 1; 6369 } 6370 6371 /* configure BW for new VSI */ 6372 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6373 if (ret) { 6374 dev_info(&vsi->back->pdev->dev, 6375 "Failed configuring TC map %d for channel (seid %u)\n", 6376 ch->enabled_tc, ch->seid); 6377 return ret; 6378 } 6379 6380 for (i = 0; i < ch->num_queue_pairs; i++) { 6381 struct i40e_ring *tx_ring, *rx_ring; 6382 u16 pf_q; 6383 6384 pf_q = ch->base_queue + i; 6385 6386 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6387 * context 6388 */ 6389 tx_ring = vsi->tx_rings[pf_q]; 6390 tx_ring->ch = ch; 6391 6392 /* Get the RX ring ptr */ 6393 rx_ring = vsi->rx_rings[pf_q]; 6394 rx_ring->ch = ch; 6395 } 6396 6397 return 0; 6398 } 6399 6400 /** 6401 * i40e_setup_hw_channel - setup new channel 6402 * @pf: ptr to PF device 6403 * @vsi: the VSI being setup 6404 * @ch: ptr to channel structure 6405 * @uplink_seid: underlying HW switching element (VEB) ID 6406 * @type: type of channel to be created (VMDq2/VF) 6407 * 6408 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6409 * and configures TX rings accordingly 6410 **/ 6411 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6412 struct i40e_vsi *vsi, 6413 struct i40e_channel *ch, 6414 u16 uplink_seid, u8 type) 6415 { 6416 int ret; 6417 6418 ch->initialized = false; 6419 ch->base_queue = vsi->next_base_queue; 6420 ch->type = type; 6421 6422 /* Proceed with creation of channel (VMDq2) VSI */ 6423 ret = i40e_add_channel(pf, uplink_seid, ch); 6424 if (ret) { 6425 dev_info(&pf->pdev->dev, 6426 "failed to add_channel using uplink_seid %u\n", 6427 uplink_seid); 6428 return ret; 6429 } 6430 6431 /* Mark the successful creation of channel */ 6432 ch->initialized = true; 6433 6434 /* Reconfigure TX queues using QTX_CTL register */ 6435 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6436 if (ret) { 6437 dev_info(&pf->pdev->dev, 6438 "failed to configure TX rings for channel %u\n", 6439 ch->seid); 6440 return ret; 6441 } 6442 6443 /* update 'next_base_queue' */ 6444 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6445 dev_dbg(&pf->pdev->dev, 6446 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6447 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6448 ch->num_queue_pairs, 6449 vsi->next_base_queue); 6450 return ret; 6451 } 6452 6453 /** 6454 * i40e_setup_channel - setup new channel using uplink element 6455 * @pf: ptr to PF device 6456 * @vsi: pointer to the VSI to set up the channel within 6457 * @ch: ptr to channel structure 6458 * 6459 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6460 * and uplink switching element (uplink_seid) 6461 **/ 6462 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6463 struct i40e_channel *ch) 6464 { 6465 u8 vsi_type; 6466 u16 seid; 6467 int ret; 6468 6469 if (vsi->type == I40E_VSI_MAIN) { 6470 vsi_type = I40E_VSI_VMDQ2; 6471 } else { 6472 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6473 vsi->type); 6474 return false; 6475 } 6476 6477 /* underlying switching element */ 6478 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6479 6480 /* create channel (VSI), configure TX rings */ 6481 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6482 if (ret) { 6483 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6484 return false; 6485 } 6486 6487 return ch->initialized ? true : false; 6488 } 6489 6490 /** 6491 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6492 * @vsi: ptr to VSI which has PF backing 6493 * 6494 * Sets up switch mode correctly if it needs to be changed and perform 6495 * what are allowed modes. 6496 **/ 6497 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6498 { 6499 u8 mode; 6500 struct i40e_pf *pf = vsi->back; 6501 struct i40e_hw *hw = &pf->hw; 6502 int ret; 6503 6504 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6505 if (ret) 6506 return -EINVAL; 6507 6508 if (hw->dev_caps.switch_mode) { 6509 /* if switch mode is set, support mode2 (non-tunneled for 6510 * cloud filter) for now 6511 */ 6512 u32 switch_mode = hw->dev_caps.switch_mode & 6513 I40E_SWITCH_MODE_MASK; 6514 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6515 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6516 return 0; 6517 dev_err(&pf->pdev->dev, 6518 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6519 hw->dev_caps.switch_mode); 6520 return -EINVAL; 6521 } 6522 } 6523 6524 /* Set Bit 7 to be valid */ 6525 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6526 6527 /* Set L4type for TCP support */ 6528 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6529 6530 /* Set cloud filter mode */ 6531 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6532 6533 /* Prep mode field for set_switch_config */ 6534 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6535 pf->last_sw_conf_valid_flags, 6536 mode, NULL); 6537 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6538 dev_err(&pf->pdev->dev, 6539 "couldn't set switch config bits, err %pe aq_err %s\n", 6540 ERR_PTR(ret), 6541 i40e_aq_str(hw, 6542 hw->aq.asq_last_status)); 6543 6544 return ret; 6545 } 6546 6547 /** 6548 * i40e_create_queue_channel - function to create channel 6549 * @vsi: VSI to be configured 6550 * @ch: ptr to channel (it contains channel specific params) 6551 * 6552 * This function creates channel (VSI) using num_queues specified by user, 6553 * reconfigs RSS if needed. 6554 **/ 6555 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6556 struct i40e_channel *ch) 6557 { 6558 struct i40e_pf *pf = vsi->back; 6559 bool reconfig_rss; 6560 int err; 6561 6562 if (!ch) 6563 return -EINVAL; 6564 6565 if (!ch->num_queue_pairs) { 6566 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6567 ch->num_queue_pairs); 6568 return -EINVAL; 6569 } 6570 6571 /* validate user requested num_queues for channel */ 6572 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6573 &reconfig_rss); 6574 if (err) { 6575 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6576 ch->num_queue_pairs); 6577 return -EINVAL; 6578 } 6579 6580 /* By default we are in VEPA mode, if this is the first VF/VMDq 6581 * VSI to be added switch to VEB mode. 6582 */ 6583 6584 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6585 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6586 6587 if (vsi->type == I40E_VSI_MAIN) { 6588 if (i40e_is_tc_mqprio_enabled(pf)) 6589 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6590 else 6591 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6592 } 6593 /* now onwards for main VSI, number of queues will be value 6594 * of TC0's queue count 6595 */ 6596 } 6597 6598 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6599 * it should be more than num_queues 6600 */ 6601 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6602 dev_dbg(&pf->pdev->dev, 6603 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6604 vsi->cnt_q_avail, ch->num_queue_pairs); 6605 return -EINVAL; 6606 } 6607 6608 /* reconfig_rss only if vsi type is MAIN_VSI */ 6609 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6610 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6611 if (err) { 6612 dev_info(&pf->pdev->dev, 6613 "Error: unable to reconfig rss for num_queues (%u)\n", 6614 ch->num_queue_pairs); 6615 return -EINVAL; 6616 } 6617 } 6618 6619 if (!i40e_setup_channel(pf, vsi, ch)) { 6620 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6621 return -EINVAL; 6622 } 6623 6624 dev_info(&pf->pdev->dev, 6625 "Setup channel (id:%u) utilizing num_queues %d\n", 6626 ch->seid, ch->num_queue_pairs); 6627 6628 /* configure VSI for BW limit */ 6629 if (ch->max_tx_rate) { 6630 u64 credits = ch->max_tx_rate; 6631 6632 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6633 return -EINVAL; 6634 6635 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6636 dev_dbg(&pf->pdev->dev, 6637 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6638 ch->max_tx_rate, 6639 credits, 6640 ch->seid); 6641 } 6642 6643 /* in case of VF, this will be main SRIOV VSI */ 6644 ch->parent_vsi = vsi; 6645 6646 /* and update main_vsi's count for queue_available to use */ 6647 vsi->cnt_q_avail -= ch->num_queue_pairs; 6648 6649 return 0; 6650 } 6651 6652 /** 6653 * i40e_configure_queue_channels - Add queue channel for the given TCs 6654 * @vsi: VSI to be configured 6655 * 6656 * Configures queue channel mapping to the given TCs 6657 **/ 6658 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6659 { 6660 struct i40e_channel *ch; 6661 u64 max_rate = 0; 6662 int ret = 0, i; 6663 6664 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6665 vsi->tc_seid_map[0] = vsi->seid; 6666 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6667 if (vsi->tc_config.enabled_tc & BIT(i)) { 6668 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6669 if (!ch) { 6670 ret = -ENOMEM; 6671 goto err_free; 6672 } 6673 6674 INIT_LIST_HEAD(&ch->list); 6675 ch->num_queue_pairs = 6676 vsi->tc_config.tc_info[i].qcount; 6677 ch->base_queue = 6678 vsi->tc_config.tc_info[i].qoffset; 6679 6680 /* Bandwidth limit through tc interface is in bytes/s, 6681 * change to Mbit/s 6682 */ 6683 max_rate = vsi->mqprio_qopt.max_rate[i]; 6684 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6685 ch->max_tx_rate = max_rate; 6686 6687 list_add_tail(&ch->list, &vsi->ch_list); 6688 6689 ret = i40e_create_queue_channel(vsi, ch); 6690 if (ret) { 6691 dev_err(&vsi->back->pdev->dev, 6692 "Failed creating queue channel with TC%d: queues %d\n", 6693 i, ch->num_queue_pairs); 6694 goto err_free; 6695 } 6696 vsi->tc_seid_map[i] = ch->seid; 6697 } 6698 } 6699 6700 /* reset to reconfigure TX queue contexts */ 6701 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6702 return ret; 6703 6704 err_free: 6705 i40e_remove_queue_channels(vsi); 6706 return ret; 6707 } 6708 6709 /** 6710 * i40e_veb_config_tc - Configure TCs for given VEB 6711 * @veb: given VEB 6712 * @enabled_tc: TC bitmap 6713 * 6714 * Configures given TC bitmap for VEB (switching) element 6715 **/ 6716 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6717 { 6718 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6719 struct i40e_pf *pf = veb->pf; 6720 int ret = 0; 6721 int i; 6722 6723 /* No TCs or already enabled TCs just return */ 6724 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6725 return ret; 6726 6727 bw_data.tc_valid_bits = enabled_tc; 6728 /* bw_data.absolute_credits is not set (relative) */ 6729 6730 /* Enable ETS TCs with equal BW Share for now */ 6731 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6732 if (enabled_tc & BIT(i)) 6733 bw_data.tc_bw_share_credits[i] = 1; 6734 } 6735 6736 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6737 &bw_data, NULL); 6738 if (ret) { 6739 dev_info(&pf->pdev->dev, 6740 "VEB bw config failed, err %pe aq_err %s\n", 6741 ERR_PTR(ret), 6742 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6743 goto out; 6744 } 6745 6746 /* Update the BW information */ 6747 ret = i40e_veb_get_bw_info(veb); 6748 if (ret) { 6749 dev_info(&pf->pdev->dev, 6750 "Failed getting veb bw config, err %pe aq_err %s\n", 6751 ERR_PTR(ret), 6752 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6753 } 6754 6755 out: 6756 return ret; 6757 } 6758 6759 #ifdef CONFIG_I40E_DCB 6760 /** 6761 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6762 * @pf: PF struct 6763 * 6764 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6765 * the caller would've quiesce all the VSIs before calling 6766 * this function 6767 **/ 6768 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6769 { 6770 u8 tc_map = 0; 6771 int ret; 6772 u8 v; 6773 6774 /* Enable the TCs available on PF to all VEBs */ 6775 tc_map = i40e_pf_get_tc_map(pf); 6776 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6777 return; 6778 6779 for (v = 0; v < I40E_MAX_VEB; v++) { 6780 if (!pf->veb[v]) 6781 continue; 6782 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6783 if (ret) { 6784 dev_info(&pf->pdev->dev, 6785 "Failed configuring TC for VEB seid=%d\n", 6786 pf->veb[v]->seid); 6787 /* Will try to configure as many components */ 6788 } 6789 } 6790 6791 /* Update each VSI */ 6792 for (v = 0; v < pf->num_alloc_vsi; v++) { 6793 if (!pf->vsi[v]) 6794 continue; 6795 6796 /* - Enable all TCs for the LAN VSI 6797 * - For all others keep them at TC0 for now 6798 */ 6799 if (v == pf->lan_vsi) 6800 tc_map = i40e_pf_get_tc_map(pf); 6801 else 6802 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6803 6804 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6805 if (ret) { 6806 dev_info(&pf->pdev->dev, 6807 "Failed configuring TC for VSI seid=%d\n", 6808 pf->vsi[v]->seid); 6809 /* Will try to configure as many components */ 6810 } else { 6811 /* Re-configure VSI vectors based on updated TC map */ 6812 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6813 if (pf->vsi[v]->netdev) 6814 i40e_dcbnl_set_all(pf->vsi[v]); 6815 } 6816 } 6817 } 6818 6819 /** 6820 * i40e_resume_port_tx - Resume port Tx 6821 * @pf: PF struct 6822 * 6823 * Resume a port's Tx and issue a PF reset in case of failure to 6824 * resume. 6825 **/ 6826 static int i40e_resume_port_tx(struct i40e_pf *pf) 6827 { 6828 struct i40e_hw *hw = &pf->hw; 6829 int ret; 6830 6831 ret = i40e_aq_resume_port_tx(hw, NULL); 6832 if (ret) { 6833 dev_info(&pf->pdev->dev, 6834 "Resume Port Tx failed, err %pe aq_err %s\n", 6835 ERR_PTR(ret), 6836 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6837 /* Schedule PF reset to recover */ 6838 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6839 i40e_service_event_schedule(pf); 6840 } 6841 6842 return ret; 6843 } 6844 6845 /** 6846 * i40e_suspend_port_tx - Suspend port Tx 6847 * @pf: PF struct 6848 * 6849 * Suspend a port's Tx and issue a PF reset in case of failure. 6850 **/ 6851 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6852 { 6853 struct i40e_hw *hw = &pf->hw; 6854 int ret; 6855 6856 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6857 if (ret) { 6858 dev_info(&pf->pdev->dev, 6859 "Suspend Port Tx failed, err %pe aq_err %s\n", 6860 ERR_PTR(ret), 6861 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6862 /* Schedule PF reset to recover */ 6863 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6864 i40e_service_event_schedule(pf); 6865 } 6866 6867 return ret; 6868 } 6869 6870 /** 6871 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6872 * @pf: PF being configured 6873 * @new_cfg: New DCBX configuration 6874 * 6875 * Program DCB settings into HW and reconfigure VEB/VSIs on 6876 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6877 **/ 6878 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6879 struct i40e_dcbx_config *new_cfg) 6880 { 6881 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6882 int ret; 6883 6884 /* Check if need reconfiguration */ 6885 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6886 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6887 return 0; 6888 } 6889 6890 /* Config change disable all VSIs */ 6891 i40e_pf_quiesce_all_vsi(pf); 6892 6893 /* Copy the new config to the current config */ 6894 *old_cfg = *new_cfg; 6895 old_cfg->etsrec = old_cfg->etscfg; 6896 ret = i40e_set_dcb_config(&pf->hw); 6897 if (ret) { 6898 dev_info(&pf->pdev->dev, 6899 "Set DCB Config failed, err %pe aq_err %s\n", 6900 ERR_PTR(ret), 6901 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6902 goto out; 6903 } 6904 6905 /* Changes in configuration update VEB/VSI */ 6906 i40e_dcb_reconfigure(pf); 6907 out: 6908 /* In case of reset do not try to resume anything */ 6909 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6910 /* Re-start the VSIs if disabled */ 6911 ret = i40e_resume_port_tx(pf); 6912 /* In case of error no point in resuming VSIs */ 6913 if (ret) 6914 goto err; 6915 i40e_pf_unquiesce_all_vsi(pf); 6916 } 6917 err: 6918 return ret; 6919 } 6920 6921 /** 6922 * i40e_hw_dcb_config - Program new DCBX settings into HW 6923 * @pf: PF being configured 6924 * @new_cfg: New DCBX configuration 6925 * 6926 * Program DCB settings into HW and reconfigure VEB/VSIs on 6927 * given PF 6928 **/ 6929 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6930 { 6931 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6932 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6933 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6934 struct i40e_dcbx_config *old_cfg; 6935 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6936 struct i40e_rx_pb_config pb_cfg; 6937 struct i40e_hw *hw = &pf->hw; 6938 u8 num_ports = hw->num_ports; 6939 bool need_reconfig; 6940 int ret = -EINVAL; 6941 u8 lltc_map = 0; 6942 u8 tc_map = 0; 6943 u8 new_numtc; 6944 u8 i; 6945 6946 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6947 /* Un-pack information to Program ETS HW via shared API 6948 * numtc, tcmap 6949 * LLTC map 6950 * ETS/NON-ETS arbiter mode 6951 * max exponent (credit refills) 6952 * Total number of ports 6953 * PFC priority bit-map 6954 * Priority Table 6955 * BW % per TC 6956 * Arbiter mode between UPs sharing same TC 6957 * TSA table (ETS or non-ETS) 6958 * EEE enabled or not 6959 * MFS TC table 6960 */ 6961 6962 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6963 6964 memset(&ets_data, 0, sizeof(ets_data)); 6965 for (i = 0; i < new_numtc; i++) { 6966 tc_map |= BIT(i); 6967 switch (new_cfg->etscfg.tsatable[i]) { 6968 case I40E_IEEE_TSA_ETS: 6969 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6970 ets_data.tc_bw_share_credits[i] = 6971 new_cfg->etscfg.tcbwtable[i]; 6972 break; 6973 case I40E_IEEE_TSA_STRICT: 6974 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6975 lltc_map |= BIT(i); 6976 ets_data.tc_bw_share_credits[i] = 6977 I40E_DCB_STRICT_PRIO_CREDITS; 6978 break; 6979 default: 6980 /* Invalid TSA type */ 6981 need_reconfig = false; 6982 goto out; 6983 } 6984 } 6985 6986 old_cfg = &hw->local_dcbx_config; 6987 /* Check if need reconfiguration */ 6988 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 6989 6990 /* If needed, enable/disable frame tagging, disable all VSIs 6991 * and suspend port tx 6992 */ 6993 if (need_reconfig) { 6994 /* Enable DCB tagging only when more than one TC */ 6995 if (new_numtc > 1) 6996 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 6997 else 6998 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 6999 7000 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7001 /* Reconfiguration needed quiesce all VSIs */ 7002 i40e_pf_quiesce_all_vsi(pf); 7003 ret = i40e_suspend_port_tx(pf); 7004 if (ret) 7005 goto err; 7006 } 7007 7008 /* Configure Port ETS Tx Scheduler */ 7009 ets_data.tc_valid_bits = tc_map; 7010 ets_data.tc_strict_priority_flags = lltc_map; 7011 ret = i40e_aq_config_switch_comp_ets 7012 (hw, pf->mac_seid, &ets_data, 7013 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7014 if (ret) { 7015 dev_info(&pf->pdev->dev, 7016 "Modify Port ETS failed, err %pe aq_err %s\n", 7017 ERR_PTR(ret), 7018 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7019 goto out; 7020 } 7021 7022 /* Configure Rx ETS HW */ 7023 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7024 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7025 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7026 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7027 I40E_DCB_DEFAULT_MAX_EXPONENT, 7028 lltc_map); 7029 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7030 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7031 prio_type); 7032 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7033 new_cfg->etscfg.prioritytable); 7034 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7035 7036 /* Configure Rx Packet Buffers in HW */ 7037 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7038 mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu; 7039 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7040 } 7041 7042 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7043 false, new_cfg->pfc.pfcenable, 7044 mfs_tc, &pb_cfg); 7045 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7046 7047 /* Update the local Rx Packet buffer config */ 7048 pf->pb_cfg = pb_cfg; 7049 7050 /* Inform the FW about changes to DCB configuration */ 7051 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7052 if (ret) { 7053 dev_info(&pf->pdev->dev, 7054 "DCB Updated failed, err %pe aq_err %s\n", 7055 ERR_PTR(ret), 7056 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7057 goto out; 7058 } 7059 7060 /* Update the port DCBx configuration */ 7061 *old_cfg = *new_cfg; 7062 7063 /* Changes in configuration update VEB/VSI */ 7064 i40e_dcb_reconfigure(pf); 7065 out: 7066 /* Re-start the VSIs if disabled */ 7067 if (need_reconfig) { 7068 ret = i40e_resume_port_tx(pf); 7069 7070 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7071 /* In case of error no point in resuming VSIs */ 7072 if (ret) 7073 goto err; 7074 7075 /* Wait for the PF's queues to be disabled */ 7076 ret = i40e_pf_wait_queues_disabled(pf); 7077 if (ret) { 7078 /* Schedule PF reset to recover */ 7079 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7080 i40e_service_event_schedule(pf); 7081 goto err; 7082 } else { 7083 i40e_pf_unquiesce_all_vsi(pf); 7084 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7085 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7086 } 7087 /* registers are set, lets apply */ 7088 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7089 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7090 } 7091 7092 err: 7093 return ret; 7094 } 7095 7096 /** 7097 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7098 * @pf: PF being queried 7099 * 7100 * Set default DCB configuration in case DCB is to be done in SW. 7101 **/ 7102 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7103 { 7104 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7105 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7106 struct i40e_hw *hw = &pf->hw; 7107 int err; 7108 7109 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7110 /* Update the local cached instance with TC0 ETS */ 7111 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7112 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7113 pf->tmp_cfg.etscfg.maxtcs = 0; 7114 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7115 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7116 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7117 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7118 /* FW needs one App to configure HW */ 7119 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7120 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7121 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7122 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7123 7124 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7125 } 7126 7127 memset(&ets_data, 0, sizeof(ets_data)); 7128 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7129 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7130 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7131 7132 /* Enable ETS on the Physical port */ 7133 err = i40e_aq_config_switch_comp_ets 7134 (hw, pf->mac_seid, &ets_data, 7135 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7136 if (err) { 7137 dev_info(&pf->pdev->dev, 7138 "Enable Port ETS failed, err %pe aq_err %s\n", 7139 ERR_PTR(err), 7140 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7141 err = -ENOENT; 7142 goto out; 7143 } 7144 7145 /* Update the local cached instance with TC0 ETS */ 7146 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7147 dcb_cfg->etscfg.cbs = 0; 7148 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7149 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7150 7151 out: 7152 return err; 7153 } 7154 7155 /** 7156 * i40e_init_pf_dcb - Initialize DCB configuration 7157 * @pf: PF being configured 7158 * 7159 * Query the current DCB configuration and cache it 7160 * in the hardware structure 7161 **/ 7162 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7163 { 7164 struct i40e_hw *hw = &pf->hw; 7165 int err; 7166 7167 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7168 * Also do not enable DCBx if FW LLDP agent is disabled 7169 */ 7170 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7171 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7172 err = -EOPNOTSUPP; 7173 goto out; 7174 } 7175 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7176 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7177 err = i40e_dcb_sw_default_config(pf); 7178 if (err) { 7179 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7180 goto out; 7181 } 7182 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7183 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7184 DCB_CAP_DCBX_VER_IEEE; 7185 /* at init capable but disabled */ 7186 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7187 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7188 goto out; 7189 } 7190 err = i40e_init_dcb(hw, true); 7191 if (!err) { 7192 /* Device/Function is not DCBX capable */ 7193 if ((!hw->func_caps.dcb) || 7194 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7195 dev_info(&pf->pdev->dev, 7196 "DCBX offload is not supported or is disabled for this PF.\n"); 7197 } else { 7198 /* When status is not DISABLED then DCBX in FW */ 7199 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7200 DCB_CAP_DCBX_VER_IEEE; 7201 7202 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7203 /* Enable DCB tagging only when more than one TC 7204 * or explicitly disable if only one TC 7205 */ 7206 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7207 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7208 else 7209 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7210 dev_dbg(&pf->pdev->dev, 7211 "DCBX offload is supported for this PF.\n"); 7212 } 7213 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7214 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7215 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7216 } else { 7217 dev_info(&pf->pdev->dev, 7218 "Query for DCB configuration failed, err %pe aq_err %s\n", 7219 ERR_PTR(err), 7220 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7221 } 7222 7223 out: 7224 return err; 7225 } 7226 #endif /* CONFIG_I40E_DCB */ 7227 7228 /** 7229 * i40e_print_link_message - print link up or down 7230 * @vsi: the VSI for which link needs a message 7231 * @isup: true of link is up, false otherwise 7232 */ 7233 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7234 { 7235 enum i40e_aq_link_speed new_speed; 7236 struct i40e_pf *pf = vsi->back; 7237 char *speed = "Unknown"; 7238 char *fc = "Unknown"; 7239 char *fec = ""; 7240 char *req_fec = ""; 7241 char *an = ""; 7242 7243 if (isup) 7244 new_speed = pf->hw.phy.link_info.link_speed; 7245 else 7246 new_speed = I40E_LINK_SPEED_UNKNOWN; 7247 7248 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7249 return; 7250 vsi->current_isup = isup; 7251 vsi->current_speed = new_speed; 7252 if (!isup) { 7253 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7254 return; 7255 } 7256 7257 /* Warn user if link speed on NPAR enabled partition is not at 7258 * least 10GB 7259 */ 7260 if (pf->hw.func_caps.npar_enable && 7261 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7262 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7263 netdev_warn(vsi->netdev, 7264 "The partition detected link speed that is less than 10Gbps\n"); 7265 7266 switch (pf->hw.phy.link_info.link_speed) { 7267 case I40E_LINK_SPEED_40GB: 7268 speed = "40 G"; 7269 break; 7270 case I40E_LINK_SPEED_20GB: 7271 speed = "20 G"; 7272 break; 7273 case I40E_LINK_SPEED_25GB: 7274 speed = "25 G"; 7275 break; 7276 case I40E_LINK_SPEED_10GB: 7277 speed = "10 G"; 7278 break; 7279 case I40E_LINK_SPEED_5GB: 7280 speed = "5 G"; 7281 break; 7282 case I40E_LINK_SPEED_2_5GB: 7283 speed = "2.5 G"; 7284 break; 7285 case I40E_LINK_SPEED_1GB: 7286 speed = "1000 M"; 7287 break; 7288 case I40E_LINK_SPEED_100MB: 7289 speed = "100 M"; 7290 break; 7291 default: 7292 break; 7293 } 7294 7295 switch (pf->hw.fc.current_mode) { 7296 case I40E_FC_FULL: 7297 fc = "RX/TX"; 7298 break; 7299 case I40E_FC_TX_PAUSE: 7300 fc = "TX"; 7301 break; 7302 case I40E_FC_RX_PAUSE: 7303 fc = "RX"; 7304 break; 7305 default: 7306 fc = "None"; 7307 break; 7308 } 7309 7310 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7311 req_fec = "None"; 7312 fec = "None"; 7313 an = "False"; 7314 7315 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7316 an = "True"; 7317 7318 if (pf->hw.phy.link_info.fec_info & 7319 I40E_AQ_CONFIG_FEC_KR_ENA) 7320 fec = "CL74 FC-FEC/BASE-R"; 7321 else if (pf->hw.phy.link_info.fec_info & 7322 I40E_AQ_CONFIG_FEC_RS_ENA) 7323 fec = "CL108 RS-FEC"; 7324 7325 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7326 * both RS and FC are requested 7327 */ 7328 if (vsi->back->hw.phy.link_info.req_fec_info & 7329 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7330 if (vsi->back->hw.phy.link_info.req_fec_info & 7331 I40E_AQ_REQUEST_FEC_RS) 7332 req_fec = "CL108 RS-FEC"; 7333 else 7334 req_fec = "CL74 FC-FEC/BASE-R"; 7335 } 7336 netdev_info(vsi->netdev, 7337 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7338 speed, req_fec, fec, an, fc); 7339 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7340 req_fec = "None"; 7341 fec = "None"; 7342 an = "False"; 7343 7344 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7345 an = "True"; 7346 7347 if (pf->hw.phy.link_info.fec_info & 7348 I40E_AQ_CONFIG_FEC_KR_ENA) 7349 fec = "CL74 FC-FEC/BASE-R"; 7350 7351 if (pf->hw.phy.link_info.req_fec_info & 7352 I40E_AQ_REQUEST_FEC_KR) 7353 req_fec = "CL74 FC-FEC/BASE-R"; 7354 7355 netdev_info(vsi->netdev, 7356 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7357 speed, req_fec, fec, an, fc); 7358 } else { 7359 netdev_info(vsi->netdev, 7360 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7361 speed, fc); 7362 } 7363 7364 } 7365 7366 /** 7367 * i40e_up_complete - Finish the last steps of bringing up a connection 7368 * @vsi: the VSI being configured 7369 **/ 7370 static int i40e_up_complete(struct i40e_vsi *vsi) 7371 { 7372 struct i40e_pf *pf = vsi->back; 7373 int err; 7374 7375 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7376 i40e_vsi_configure_msix(vsi); 7377 else 7378 i40e_configure_msi_and_legacy(vsi); 7379 7380 /* start rings */ 7381 err = i40e_vsi_start_rings(vsi); 7382 if (err) 7383 return err; 7384 7385 clear_bit(__I40E_VSI_DOWN, vsi->state); 7386 i40e_napi_enable_all(vsi); 7387 i40e_vsi_enable_irq(vsi); 7388 7389 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7390 (vsi->netdev)) { 7391 i40e_print_link_message(vsi, true); 7392 netif_tx_start_all_queues(vsi->netdev); 7393 netif_carrier_on(vsi->netdev); 7394 } 7395 7396 /* replay FDIR SB filters */ 7397 if (vsi->type == I40E_VSI_FDIR) { 7398 /* reset fd counters */ 7399 pf->fd_add_err = 0; 7400 pf->fd_atr_cnt = 0; 7401 i40e_fdir_filter_restore(vsi); 7402 } 7403 7404 /* On the next run of the service_task, notify any clients of the new 7405 * opened netdev 7406 */ 7407 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7408 i40e_service_event_schedule(pf); 7409 7410 return 0; 7411 } 7412 7413 /** 7414 * i40e_vsi_reinit_locked - Reset the VSI 7415 * @vsi: the VSI being configured 7416 * 7417 * Rebuild the ring structs after some configuration 7418 * has changed, e.g. MTU size. 7419 **/ 7420 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7421 { 7422 struct i40e_pf *pf = vsi->back; 7423 7424 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7425 usleep_range(1000, 2000); 7426 i40e_down(vsi); 7427 7428 i40e_up(vsi); 7429 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7430 } 7431 7432 /** 7433 * i40e_force_link_state - Force the link status 7434 * @pf: board private structure 7435 * @is_up: whether the link state should be forced up or down 7436 **/ 7437 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7438 { 7439 struct i40e_aq_get_phy_abilities_resp abilities; 7440 struct i40e_aq_set_phy_config config = {0}; 7441 bool non_zero_phy_type = is_up; 7442 struct i40e_hw *hw = &pf->hw; 7443 u64 mask; 7444 u8 speed; 7445 int err; 7446 7447 /* Card might've been put in an unstable state by other drivers 7448 * and applications, which causes incorrect speed values being 7449 * set on startup. In order to clear speed registers, we call 7450 * get_phy_capabilities twice, once to get initial state of 7451 * available speeds, and once to get current PHY config. 7452 */ 7453 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7454 NULL); 7455 if (err) { 7456 dev_err(&pf->pdev->dev, 7457 "failed to get phy cap., ret = %pe last_status = %s\n", 7458 ERR_PTR(err), 7459 i40e_aq_str(hw, hw->aq.asq_last_status)); 7460 return err; 7461 } 7462 speed = abilities.link_speed; 7463 7464 /* Get the current phy config */ 7465 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7466 NULL); 7467 if (err) { 7468 dev_err(&pf->pdev->dev, 7469 "failed to get phy cap., ret = %pe last_status = %s\n", 7470 ERR_PTR(err), 7471 i40e_aq_str(hw, hw->aq.asq_last_status)); 7472 return err; 7473 } 7474 7475 /* If link needs to go up, but was not forced to go down, 7476 * and its speed values are OK, no need for a flap 7477 * if non_zero_phy_type was set, still need to force up 7478 */ 7479 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7480 non_zero_phy_type = true; 7481 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7482 return 0; 7483 7484 /* To force link we need to set bits for all supported PHY types, 7485 * but there are now more than 32, so we need to split the bitmap 7486 * across two fields. 7487 */ 7488 mask = I40E_PHY_TYPES_BITMASK; 7489 config.phy_type = 7490 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7491 config.phy_type_ext = 7492 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7493 /* Copy the old settings, except of phy_type */ 7494 config.abilities = abilities.abilities; 7495 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7496 if (is_up) 7497 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7498 else 7499 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7500 } 7501 if (abilities.link_speed != 0) 7502 config.link_speed = abilities.link_speed; 7503 else 7504 config.link_speed = speed; 7505 config.eee_capability = abilities.eee_capability; 7506 config.eeer = abilities.eeer_val; 7507 config.low_power_ctrl = abilities.d3_lpan; 7508 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7509 I40E_AQ_PHY_FEC_CONFIG_MASK; 7510 err = i40e_aq_set_phy_config(hw, &config, NULL); 7511 7512 if (err) { 7513 dev_err(&pf->pdev->dev, 7514 "set phy config ret = %pe last_status = %s\n", 7515 ERR_PTR(err), 7516 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7517 return err; 7518 } 7519 7520 /* Update the link info */ 7521 err = i40e_update_link_info(hw); 7522 if (err) { 7523 /* Wait a little bit (on 40G cards it sometimes takes a really 7524 * long time for link to come back from the atomic reset) 7525 * and try once more 7526 */ 7527 msleep(1000); 7528 i40e_update_link_info(hw); 7529 } 7530 7531 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7532 7533 return 0; 7534 } 7535 7536 /** 7537 * i40e_up - Bring the connection back up after being down 7538 * @vsi: the VSI being configured 7539 **/ 7540 int i40e_up(struct i40e_vsi *vsi) 7541 { 7542 int err; 7543 7544 if (vsi->type == I40E_VSI_MAIN && 7545 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7546 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7547 i40e_force_link_state(vsi->back, true); 7548 7549 err = i40e_vsi_configure(vsi); 7550 if (!err) 7551 err = i40e_up_complete(vsi); 7552 7553 return err; 7554 } 7555 7556 /** 7557 * i40e_down - Shutdown the connection processing 7558 * @vsi: the VSI being stopped 7559 **/ 7560 void i40e_down(struct i40e_vsi *vsi) 7561 { 7562 int i; 7563 7564 /* It is assumed that the caller of this function 7565 * sets the vsi->state __I40E_VSI_DOWN bit. 7566 */ 7567 if (vsi->netdev) { 7568 netif_carrier_off(vsi->netdev); 7569 netif_tx_disable(vsi->netdev); 7570 } 7571 i40e_vsi_disable_irq(vsi); 7572 i40e_vsi_stop_rings(vsi); 7573 if (vsi->type == I40E_VSI_MAIN && 7574 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7575 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7576 i40e_force_link_state(vsi->back, false); 7577 i40e_napi_disable_all(vsi); 7578 7579 for (i = 0; i < vsi->num_queue_pairs; i++) { 7580 i40e_clean_tx_ring(vsi->tx_rings[i]); 7581 if (i40e_enabled_xdp_vsi(vsi)) { 7582 /* Make sure that in-progress ndo_xdp_xmit and 7583 * ndo_xsk_wakeup calls are completed. 7584 */ 7585 synchronize_rcu(); 7586 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7587 } 7588 i40e_clean_rx_ring(vsi->rx_rings[i]); 7589 } 7590 7591 } 7592 7593 /** 7594 * i40e_validate_mqprio_qopt- validate queue mapping info 7595 * @vsi: the VSI being configured 7596 * @mqprio_qopt: queue parametrs 7597 **/ 7598 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7599 struct tc_mqprio_qopt_offload *mqprio_qopt) 7600 { 7601 u64 sum_max_rate = 0; 7602 u64 max_rate = 0; 7603 int i; 7604 7605 if (mqprio_qopt->qopt.offset[0] != 0 || 7606 mqprio_qopt->qopt.num_tc < 1 || 7607 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7608 return -EINVAL; 7609 for (i = 0; ; i++) { 7610 if (!mqprio_qopt->qopt.count[i]) 7611 return -EINVAL; 7612 if (mqprio_qopt->min_rate[i]) { 7613 dev_err(&vsi->back->pdev->dev, 7614 "Invalid min tx rate (greater than 0) specified\n"); 7615 return -EINVAL; 7616 } 7617 max_rate = mqprio_qopt->max_rate[i]; 7618 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7619 sum_max_rate += max_rate; 7620 7621 if (i >= mqprio_qopt->qopt.num_tc - 1) 7622 break; 7623 if (mqprio_qopt->qopt.offset[i + 1] != 7624 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7625 return -EINVAL; 7626 } 7627 if (vsi->num_queue_pairs < 7628 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7629 dev_err(&vsi->back->pdev->dev, 7630 "Failed to create traffic channel, insufficient number of queues.\n"); 7631 return -EINVAL; 7632 } 7633 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7634 dev_err(&vsi->back->pdev->dev, 7635 "Invalid max tx rate specified\n"); 7636 return -EINVAL; 7637 } 7638 return 0; 7639 } 7640 7641 /** 7642 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7643 * @vsi: the VSI being configured 7644 **/ 7645 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7646 { 7647 u16 qcount; 7648 int i; 7649 7650 /* Only TC0 is enabled */ 7651 vsi->tc_config.numtc = 1; 7652 vsi->tc_config.enabled_tc = 1; 7653 qcount = min_t(int, vsi->alloc_queue_pairs, 7654 i40e_pf_get_max_q_per_tc(vsi->back)); 7655 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7656 /* For the TC that is not enabled set the offset to default 7657 * queue and allocate one queue for the given TC. 7658 */ 7659 vsi->tc_config.tc_info[i].qoffset = 0; 7660 if (i == 0) 7661 vsi->tc_config.tc_info[i].qcount = qcount; 7662 else 7663 vsi->tc_config.tc_info[i].qcount = 1; 7664 vsi->tc_config.tc_info[i].netdev_tc = 0; 7665 } 7666 } 7667 7668 /** 7669 * i40e_del_macvlan_filter 7670 * @hw: pointer to the HW structure 7671 * @seid: seid of the channel VSI 7672 * @macaddr: the mac address to apply as a filter 7673 * @aq_err: store the admin Q error 7674 * 7675 * This function deletes a mac filter on the channel VSI which serves as the 7676 * macvlan. Returns 0 on success. 7677 **/ 7678 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7679 const u8 *macaddr, int *aq_err) 7680 { 7681 struct i40e_aqc_remove_macvlan_element_data element; 7682 int status; 7683 7684 memset(&element, 0, sizeof(element)); 7685 ether_addr_copy(element.mac_addr, macaddr); 7686 element.vlan_tag = 0; 7687 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7688 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7689 *aq_err = hw->aq.asq_last_status; 7690 7691 return status; 7692 } 7693 7694 /** 7695 * i40e_add_macvlan_filter 7696 * @hw: pointer to the HW structure 7697 * @seid: seid of the channel VSI 7698 * @macaddr: the mac address to apply as a filter 7699 * @aq_err: store the admin Q error 7700 * 7701 * This function adds a mac filter on the channel VSI which serves as the 7702 * macvlan. Returns 0 on success. 7703 **/ 7704 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7705 const u8 *macaddr, int *aq_err) 7706 { 7707 struct i40e_aqc_add_macvlan_element_data element; 7708 u16 cmd_flags = 0; 7709 int status; 7710 7711 ether_addr_copy(element.mac_addr, macaddr); 7712 element.vlan_tag = 0; 7713 element.queue_number = 0; 7714 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7715 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7716 element.flags = cpu_to_le16(cmd_flags); 7717 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7718 *aq_err = hw->aq.asq_last_status; 7719 7720 return status; 7721 } 7722 7723 /** 7724 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7725 * @vsi: the VSI we want to access 7726 * @ch: the channel we want to access 7727 */ 7728 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7729 { 7730 struct i40e_ring *tx_ring, *rx_ring; 7731 u16 pf_q; 7732 int i; 7733 7734 for (i = 0; i < ch->num_queue_pairs; i++) { 7735 pf_q = ch->base_queue + i; 7736 tx_ring = vsi->tx_rings[pf_q]; 7737 tx_ring->ch = NULL; 7738 rx_ring = vsi->rx_rings[pf_q]; 7739 rx_ring->ch = NULL; 7740 } 7741 } 7742 7743 /** 7744 * i40e_free_macvlan_channels 7745 * @vsi: the VSI we want to access 7746 * 7747 * This function frees the Qs of the channel VSI from 7748 * the stack and also deletes the channel VSIs which 7749 * serve as macvlans. 7750 */ 7751 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7752 { 7753 struct i40e_channel *ch, *ch_tmp; 7754 int ret; 7755 7756 if (list_empty(&vsi->macvlan_list)) 7757 return; 7758 7759 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7760 struct i40e_vsi *parent_vsi; 7761 7762 if (i40e_is_channel_macvlan(ch)) { 7763 i40e_reset_ch_rings(vsi, ch); 7764 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7765 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7766 netdev_set_sb_channel(ch->fwd->netdev, 0); 7767 kfree(ch->fwd); 7768 ch->fwd = NULL; 7769 } 7770 7771 list_del(&ch->list); 7772 parent_vsi = ch->parent_vsi; 7773 if (!parent_vsi || !ch->initialized) { 7774 kfree(ch); 7775 continue; 7776 } 7777 7778 /* remove the VSI */ 7779 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7780 NULL); 7781 if (ret) 7782 dev_err(&vsi->back->pdev->dev, 7783 "unable to remove channel (%d) for parent VSI(%d)\n", 7784 ch->seid, parent_vsi->seid); 7785 kfree(ch); 7786 } 7787 vsi->macvlan_cnt = 0; 7788 } 7789 7790 /** 7791 * i40e_fwd_ring_up - bring the macvlan device up 7792 * @vsi: the VSI we want to access 7793 * @vdev: macvlan netdevice 7794 * @fwd: the private fwd structure 7795 */ 7796 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7797 struct i40e_fwd_adapter *fwd) 7798 { 7799 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7800 int ret = 0, num_tc = 1, i, aq_err; 7801 struct i40e_pf *pf = vsi->back; 7802 struct i40e_hw *hw = &pf->hw; 7803 7804 /* Go through the list and find an available channel */ 7805 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7806 if (!i40e_is_channel_macvlan(iter)) { 7807 iter->fwd = fwd; 7808 /* record configuration for macvlan interface in vdev */ 7809 for (i = 0; i < num_tc; i++) 7810 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7811 i, 7812 iter->num_queue_pairs, 7813 iter->base_queue); 7814 for (i = 0; i < iter->num_queue_pairs; i++) { 7815 struct i40e_ring *tx_ring, *rx_ring; 7816 u16 pf_q; 7817 7818 pf_q = iter->base_queue + i; 7819 7820 /* Get to TX ring ptr */ 7821 tx_ring = vsi->tx_rings[pf_q]; 7822 tx_ring->ch = iter; 7823 7824 /* Get the RX ring ptr */ 7825 rx_ring = vsi->rx_rings[pf_q]; 7826 rx_ring->ch = iter; 7827 } 7828 ch = iter; 7829 break; 7830 } 7831 } 7832 7833 if (!ch) 7834 return -EINVAL; 7835 7836 /* Guarantee all rings are updated before we update the 7837 * MAC address filter. 7838 */ 7839 wmb(); 7840 7841 /* Add a mac filter */ 7842 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7843 if (ret) { 7844 /* if we cannot add the MAC rule then disable the offload */ 7845 macvlan_release_l2fw_offload(vdev); 7846 for (i = 0; i < ch->num_queue_pairs; i++) { 7847 struct i40e_ring *rx_ring; 7848 u16 pf_q; 7849 7850 pf_q = ch->base_queue + i; 7851 rx_ring = vsi->rx_rings[pf_q]; 7852 rx_ring->netdev = NULL; 7853 } 7854 dev_info(&pf->pdev->dev, 7855 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7856 ERR_PTR(ret), 7857 i40e_aq_str(hw, aq_err)); 7858 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7859 } 7860 7861 return ret; 7862 } 7863 7864 /** 7865 * i40e_setup_macvlans - create the channels which will be macvlans 7866 * @vsi: the VSI we want to access 7867 * @macvlan_cnt: no. of macvlans to be setup 7868 * @qcnt: no. of Qs per macvlan 7869 * @vdev: macvlan netdevice 7870 */ 7871 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7872 struct net_device *vdev) 7873 { 7874 struct i40e_pf *pf = vsi->back; 7875 struct i40e_hw *hw = &pf->hw; 7876 struct i40e_vsi_context ctxt; 7877 u16 sections, qmap, num_qps; 7878 struct i40e_channel *ch; 7879 int i, pow, ret = 0; 7880 u8 offset = 0; 7881 7882 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7883 return -EINVAL; 7884 7885 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7886 7887 /* find the next higher power-of-2 of num queue pairs */ 7888 pow = fls(roundup_pow_of_two(num_qps) - 1); 7889 7890 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7891 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7892 7893 /* Setup context bits for the main VSI */ 7894 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7895 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7896 memset(&ctxt, 0, sizeof(ctxt)); 7897 ctxt.seid = vsi->seid; 7898 ctxt.pf_num = vsi->back->hw.pf_id; 7899 ctxt.vf_num = 0; 7900 ctxt.uplink_seid = vsi->uplink_seid; 7901 ctxt.info = vsi->info; 7902 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7903 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7904 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7905 ctxt.info.valid_sections |= cpu_to_le16(sections); 7906 7907 /* Reconfigure RSS for main VSI with new max queue count */ 7908 vsi->rss_size = max_t(u16, num_qps, qcnt); 7909 ret = i40e_vsi_config_rss(vsi); 7910 if (ret) { 7911 dev_info(&pf->pdev->dev, 7912 "Failed to reconfig RSS for num_queues (%u)\n", 7913 vsi->rss_size); 7914 return ret; 7915 } 7916 vsi->reconfig_rss = true; 7917 dev_dbg(&vsi->back->pdev->dev, 7918 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7919 vsi->next_base_queue = num_qps; 7920 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7921 7922 /* Update the VSI after updating the VSI queue-mapping 7923 * information 7924 */ 7925 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7926 if (ret) { 7927 dev_info(&pf->pdev->dev, 7928 "Update vsi tc config failed, err %pe aq_err %s\n", 7929 ERR_PTR(ret), 7930 i40e_aq_str(hw, hw->aq.asq_last_status)); 7931 return ret; 7932 } 7933 /* update the local VSI info with updated queue map */ 7934 i40e_vsi_update_queue_map(vsi, &ctxt); 7935 vsi->info.valid_sections = 0; 7936 7937 /* Create channels for macvlans */ 7938 INIT_LIST_HEAD(&vsi->macvlan_list); 7939 for (i = 0; i < macvlan_cnt; i++) { 7940 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7941 if (!ch) { 7942 ret = -ENOMEM; 7943 goto err_free; 7944 } 7945 INIT_LIST_HEAD(&ch->list); 7946 ch->num_queue_pairs = qcnt; 7947 if (!i40e_setup_channel(pf, vsi, ch)) { 7948 ret = -EINVAL; 7949 kfree(ch); 7950 goto err_free; 7951 } 7952 ch->parent_vsi = vsi; 7953 vsi->cnt_q_avail -= ch->num_queue_pairs; 7954 vsi->macvlan_cnt++; 7955 list_add_tail(&ch->list, &vsi->macvlan_list); 7956 } 7957 7958 return ret; 7959 7960 err_free: 7961 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7962 i40e_free_macvlan_channels(vsi); 7963 7964 return ret; 7965 } 7966 7967 /** 7968 * i40e_fwd_add - configure macvlans 7969 * @netdev: net device to configure 7970 * @vdev: macvlan netdevice 7971 **/ 7972 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7973 { 7974 struct i40e_netdev_priv *np = netdev_priv(netdev); 7975 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7976 struct i40e_vsi *vsi = np->vsi; 7977 struct i40e_pf *pf = vsi->back; 7978 struct i40e_fwd_adapter *fwd; 7979 int avail_macvlan, ret; 7980 7981 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 7982 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7983 return ERR_PTR(-EINVAL); 7984 } 7985 if (i40e_is_tc_mqprio_enabled(pf)) { 7986 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7987 return ERR_PTR(-EINVAL); 7988 } 7989 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7990 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7991 return ERR_PTR(-EINVAL); 7992 } 7993 7994 /* The macvlan device has to be a single Q device so that the 7995 * tc_to_txq field can be reused to pick the tx queue. 7996 */ 7997 if (netif_is_multiqueue(vdev)) 7998 return ERR_PTR(-ERANGE); 7999 8000 if (!vsi->macvlan_cnt) { 8001 /* reserve bit 0 for the pf device */ 8002 set_bit(0, vsi->fwd_bitmask); 8003 8004 /* Try to reserve as many queues as possible for macvlans. First 8005 * reserve 3/4th of max vectors, then half, then quarter and 8006 * calculate Qs per macvlan as you go 8007 */ 8008 vectors = pf->num_lan_msix; 8009 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8010 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8011 q_per_macvlan = 4; 8012 macvlan_cnt = (vectors - 32) / 4; 8013 } else if (vectors <= 64 && vectors > 32) { 8014 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8015 q_per_macvlan = 2; 8016 macvlan_cnt = (vectors - 16) / 2; 8017 } else if (vectors <= 32 && vectors > 16) { 8018 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8019 q_per_macvlan = 1; 8020 macvlan_cnt = vectors - 16; 8021 } else if (vectors <= 16 && vectors > 8) { 8022 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8023 q_per_macvlan = 1; 8024 macvlan_cnt = vectors - 8; 8025 } else { 8026 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8027 q_per_macvlan = 1; 8028 macvlan_cnt = vectors - 1; 8029 } 8030 8031 if (macvlan_cnt == 0) 8032 return ERR_PTR(-EBUSY); 8033 8034 /* Quiesce VSI queues */ 8035 i40e_quiesce_vsi(vsi); 8036 8037 /* sets up the macvlans but does not "enable" them */ 8038 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8039 vdev); 8040 if (ret) 8041 return ERR_PTR(ret); 8042 8043 /* Unquiesce VSI */ 8044 i40e_unquiesce_vsi(vsi); 8045 } 8046 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8047 vsi->macvlan_cnt); 8048 if (avail_macvlan >= I40E_MAX_MACVLANS) 8049 return ERR_PTR(-EBUSY); 8050 8051 /* create the fwd struct */ 8052 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8053 if (!fwd) 8054 return ERR_PTR(-ENOMEM); 8055 8056 set_bit(avail_macvlan, vsi->fwd_bitmask); 8057 fwd->bit_no = avail_macvlan; 8058 netdev_set_sb_channel(vdev, avail_macvlan); 8059 fwd->netdev = vdev; 8060 8061 if (!netif_running(netdev)) 8062 return fwd; 8063 8064 /* Set fwd ring up */ 8065 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8066 if (ret) { 8067 /* unbind the queues and drop the subordinate channel config */ 8068 netdev_unbind_sb_channel(netdev, vdev); 8069 netdev_set_sb_channel(vdev, 0); 8070 8071 kfree(fwd); 8072 return ERR_PTR(-EINVAL); 8073 } 8074 8075 return fwd; 8076 } 8077 8078 /** 8079 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8080 * @vsi: the VSI we want to access 8081 */ 8082 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8083 { 8084 struct i40e_channel *ch, *ch_tmp; 8085 struct i40e_pf *pf = vsi->back; 8086 struct i40e_hw *hw = &pf->hw; 8087 int aq_err, ret = 0; 8088 8089 if (list_empty(&vsi->macvlan_list)) 8090 return; 8091 8092 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8093 if (i40e_is_channel_macvlan(ch)) { 8094 ret = i40e_del_macvlan_filter(hw, ch->seid, 8095 i40e_channel_mac(ch), 8096 &aq_err); 8097 if (!ret) { 8098 /* Reset queue contexts */ 8099 i40e_reset_ch_rings(vsi, ch); 8100 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8101 netdev_unbind_sb_channel(vsi->netdev, 8102 ch->fwd->netdev); 8103 netdev_set_sb_channel(ch->fwd->netdev, 0); 8104 kfree(ch->fwd); 8105 ch->fwd = NULL; 8106 } 8107 } 8108 } 8109 } 8110 8111 /** 8112 * i40e_fwd_del - delete macvlan interfaces 8113 * @netdev: net device to configure 8114 * @vdev: macvlan netdevice 8115 */ 8116 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8117 { 8118 struct i40e_netdev_priv *np = netdev_priv(netdev); 8119 struct i40e_fwd_adapter *fwd = vdev; 8120 struct i40e_channel *ch, *ch_tmp; 8121 struct i40e_vsi *vsi = np->vsi; 8122 struct i40e_pf *pf = vsi->back; 8123 struct i40e_hw *hw = &pf->hw; 8124 int aq_err, ret = 0; 8125 8126 /* Find the channel associated with the macvlan and del mac filter */ 8127 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8128 if (i40e_is_channel_macvlan(ch) && 8129 ether_addr_equal(i40e_channel_mac(ch), 8130 fwd->netdev->dev_addr)) { 8131 ret = i40e_del_macvlan_filter(hw, ch->seid, 8132 i40e_channel_mac(ch), 8133 &aq_err); 8134 if (!ret) { 8135 /* Reset queue contexts */ 8136 i40e_reset_ch_rings(vsi, ch); 8137 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8138 netdev_unbind_sb_channel(netdev, fwd->netdev); 8139 netdev_set_sb_channel(fwd->netdev, 0); 8140 kfree(ch->fwd); 8141 ch->fwd = NULL; 8142 } else { 8143 dev_info(&pf->pdev->dev, 8144 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8145 ERR_PTR(ret), 8146 i40e_aq_str(hw, aq_err)); 8147 } 8148 break; 8149 } 8150 } 8151 } 8152 8153 /** 8154 * i40e_setup_tc - configure multiple traffic classes 8155 * @netdev: net device to configure 8156 * @type_data: tc offload data 8157 **/ 8158 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8159 { 8160 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8161 struct i40e_netdev_priv *np = netdev_priv(netdev); 8162 struct i40e_vsi *vsi = np->vsi; 8163 struct i40e_pf *pf = vsi->back; 8164 u8 enabled_tc = 0, num_tc, hw; 8165 bool need_reset = false; 8166 int old_queue_pairs; 8167 int ret = -EINVAL; 8168 u16 mode; 8169 int i; 8170 8171 old_queue_pairs = vsi->num_queue_pairs; 8172 num_tc = mqprio_qopt->qopt.num_tc; 8173 hw = mqprio_qopt->qopt.hw; 8174 mode = mqprio_qopt->mode; 8175 if (!hw) { 8176 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8177 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8178 goto config_tc; 8179 } 8180 8181 /* Check if MFP enabled */ 8182 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8183 netdev_info(netdev, 8184 "Configuring TC not supported in MFP mode\n"); 8185 return ret; 8186 } 8187 switch (mode) { 8188 case TC_MQPRIO_MODE_DCB: 8189 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8190 8191 /* Check if DCB enabled to continue */ 8192 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8193 netdev_info(netdev, 8194 "DCB is not enabled for adapter\n"); 8195 return ret; 8196 } 8197 8198 /* Check whether tc count is within enabled limit */ 8199 if (num_tc > i40e_pf_get_num_tc(pf)) { 8200 netdev_info(netdev, 8201 "TC count greater than enabled on link for adapter\n"); 8202 return ret; 8203 } 8204 break; 8205 case TC_MQPRIO_MODE_CHANNEL: 8206 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8207 netdev_info(netdev, 8208 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8209 return ret; 8210 } 8211 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8212 return ret; 8213 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8214 if (ret) 8215 return ret; 8216 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8217 sizeof(*mqprio_qopt)); 8218 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8219 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8220 break; 8221 default: 8222 return -EINVAL; 8223 } 8224 8225 config_tc: 8226 /* Generate TC map for number of tc requested */ 8227 for (i = 0; i < num_tc; i++) 8228 enabled_tc |= BIT(i); 8229 8230 /* Requesting same TC configuration as already enabled */ 8231 if (enabled_tc == vsi->tc_config.enabled_tc && 8232 mode != TC_MQPRIO_MODE_CHANNEL) 8233 return 0; 8234 8235 /* Quiesce VSI queues */ 8236 i40e_quiesce_vsi(vsi); 8237 8238 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8239 i40e_remove_queue_channels(vsi); 8240 8241 /* Configure VSI for enabled TCs */ 8242 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8243 if (ret) { 8244 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8245 vsi->seid); 8246 need_reset = true; 8247 goto exit; 8248 } else if (enabled_tc && 8249 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8250 netdev_info(netdev, 8251 "Failed to create channel. Override queues (%u) not power of 2\n", 8252 vsi->tc_config.tc_info[0].qcount); 8253 ret = -EINVAL; 8254 need_reset = true; 8255 goto exit; 8256 } 8257 8258 dev_info(&vsi->back->pdev->dev, 8259 "Setup channel (id:%u) utilizing num_queues %d\n", 8260 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8261 8262 if (i40e_is_tc_mqprio_enabled(pf)) { 8263 if (vsi->mqprio_qopt.max_rate[0]) { 8264 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8265 vsi->mqprio_qopt.max_rate[0]); 8266 8267 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8268 if (!ret) { 8269 u64 credits = max_tx_rate; 8270 8271 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8272 dev_dbg(&vsi->back->pdev->dev, 8273 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8274 max_tx_rate, 8275 credits, 8276 vsi->seid); 8277 } else { 8278 need_reset = true; 8279 goto exit; 8280 } 8281 } 8282 ret = i40e_configure_queue_channels(vsi); 8283 if (ret) { 8284 vsi->num_queue_pairs = old_queue_pairs; 8285 netdev_info(netdev, 8286 "Failed configuring queue channels\n"); 8287 need_reset = true; 8288 goto exit; 8289 } 8290 } 8291 8292 exit: 8293 /* Reset the configuration data to defaults, only TC0 is enabled */ 8294 if (need_reset) { 8295 i40e_vsi_set_default_tc_config(vsi); 8296 need_reset = false; 8297 } 8298 8299 /* Unquiesce VSI */ 8300 i40e_unquiesce_vsi(vsi); 8301 return ret; 8302 } 8303 8304 /** 8305 * i40e_set_cld_element - sets cloud filter element data 8306 * @filter: cloud filter rule 8307 * @cld: ptr to cloud filter element data 8308 * 8309 * This is helper function to copy data into cloud filter element 8310 **/ 8311 static inline void 8312 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8313 struct i40e_aqc_cloud_filters_element_data *cld) 8314 { 8315 u32 ipa; 8316 int i; 8317 8318 memset(cld, 0, sizeof(*cld)); 8319 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8320 ether_addr_copy(cld->inner_mac, filter->src_mac); 8321 8322 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8323 return; 8324 8325 if (filter->n_proto == ETH_P_IPV6) { 8326 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8327 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8328 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8329 8330 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8331 } 8332 } else { 8333 ipa = be32_to_cpu(filter->dst_ipv4); 8334 8335 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8336 } 8337 8338 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8339 8340 /* tenant_id is not supported by FW now, once the support is enabled 8341 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8342 */ 8343 if (filter->tenant_id) 8344 return; 8345 } 8346 8347 /** 8348 * i40e_add_del_cloud_filter - Add/del cloud filter 8349 * @vsi: pointer to VSI 8350 * @filter: cloud filter rule 8351 * @add: if true, add, if false, delete 8352 * 8353 * Add or delete a cloud filter for a specific flow spec. 8354 * Returns 0 if the filter were successfully added. 8355 **/ 8356 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8357 struct i40e_cloud_filter *filter, bool add) 8358 { 8359 struct i40e_aqc_cloud_filters_element_data cld_filter; 8360 struct i40e_pf *pf = vsi->back; 8361 int ret; 8362 static const u16 flag_table[128] = { 8363 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8364 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8365 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8366 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8367 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8368 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8369 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8370 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8371 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8372 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8373 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8374 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8375 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8376 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8377 }; 8378 8379 if (filter->flags >= ARRAY_SIZE(flag_table)) 8380 return -EIO; 8381 8382 memset(&cld_filter, 0, sizeof(cld_filter)); 8383 8384 /* copy element needed to add cloud filter from filter */ 8385 i40e_set_cld_element(filter, &cld_filter); 8386 8387 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8388 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8389 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8390 8391 if (filter->n_proto == ETH_P_IPV6) 8392 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8393 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8394 else 8395 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8396 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8397 8398 if (add) 8399 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8400 &cld_filter, 1); 8401 else 8402 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8403 &cld_filter, 1); 8404 if (ret) 8405 dev_dbg(&pf->pdev->dev, 8406 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8407 add ? "add" : "delete", filter->dst_port, ret, 8408 pf->hw.aq.asq_last_status); 8409 else 8410 dev_info(&pf->pdev->dev, 8411 "%s cloud filter for VSI: %d\n", 8412 add ? "Added" : "Deleted", filter->seid); 8413 return ret; 8414 } 8415 8416 /** 8417 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8418 * @vsi: pointer to VSI 8419 * @filter: cloud filter rule 8420 * @add: if true, add, if false, delete 8421 * 8422 * Add or delete a cloud filter for a specific flow spec using big buffer. 8423 * Returns 0 if the filter were successfully added. 8424 **/ 8425 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8426 struct i40e_cloud_filter *filter, 8427 bool add) 8428 { 8429 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8430 struct i40e_pf *pf = vsi->back; 8431 int ret; 8432 8433 /* Both (src/dst) valid mac_addr are not supported */ 8434 if ((is_valid_ether_addr(filter->dst_mac) && 8435 is_valid_ether_addr(filter->src_mac)) || 8436 (is_multicast_ether_addr(filter->dst_mac) && 8437 is_multicast_ether_addr(filter->src_mac))) 8438 return -EOPNOTSUPP; 8439 8440 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8441 * ports are not supported via big buffer now. 8442 */ 8443 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8444 return -EOPNOTSUPP; 8445 8446 /* adding filter using src_port/src_ip is not supported at this stage */ 8447 if (filter->src_port || 8448 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8449 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8450 return -EOPNOTSUPP; 8451 8452 memset(&cld_filter, 0, sizeof(cld_filter)); 8453 8454 /* copy element needed to add cloud filter from filter */ 8455 i40e_set_cld_element(filter, &cld_filter.element); 8456 8457 if (is_valid_ether_addr(filter->dst_mac) || 8458 is_valid_ether_addr(filter->src_mac) || 8459 is_multicast_ether_addr(filter->dst_mac) || 8460 is_multicast_ether_addr(filter->src_mac)) { 8461 /* MAC + IP : unsupported mode */ 8462 if (filter->dst_ipv4) 8463 return -EOPNOTSUPP; 8464 8465 /* since we validated that L4 port must be valid before 8466 * we get here, start with respective "flags" value 8467 * and update if vlan is present or not 8468 */ 8469 cld_filter.element.flags = 8470 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8471 8472 if (filter->vlan_id) { 8473 cld_filter.element.flags = 8474 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8475 } 8476 8477 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8478 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8479 cld_filter.element.flags = 8480 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8481 if (filter->n_proto == ETH_P_IPV6) 8482 cld_filter.element.flags |= 8483 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8484 else 8485 cld_filter.element.flags |= 8486 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8487 } else { 8488 dev_err(&pf->pdev->dev, 8489 "either mac or ip has to be valid for cloud filter\n"); 8490 return -EINVAL; 8491 } 8492 8493 /* Now copy L4 port in Byte 6..7 in general fields */ 8494 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8495 be16_to_cpu(filter->dst_port); 8496 8497 if (add) { 8498 /* Validate current device switch mode, change if necessary */ 8499 ret = i40e_validate_and_set_switch_mode(vsi); 8500 if (ret) { 8501 dev_err(&pf->pdev->dev, 8502 "failed to set switch mode, ret %d\n", 8503 ret); 8504 return ret; 8505 } 8506 8507 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8508 &cld_filter, 1); 8509 } else { 8510 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8511 &cld_filter, 1); 8512 } 8513 8514 if (ret) 8515 dev_dbg(&pf->pdev->dev, 8516 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8517 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8518 else 8519 dev_info(&pf->pdev->dev, 8520 "%s cloud filter for VSI: %d, L4 port: %d\n", 8521 add ? "add" : "delete", filter->seid, 8522 ntohs(filter->dst_port)); 8523 return ret; 8524 } 8525 8526 /** 8527 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8528 * @vsi: Pointer to VSI 8529 * @f: Pointer to struct flow_cls_offload 8530 * @filter: Pointer to cloud filter structure 8531 * 8532 **/ 8533 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8534 struct flow_cls_offload *f, 8535 struct i40e_cloud_filter *filter) 8536 { 8537 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8538 struct flow_dissector *dissector = rule->match.dissector; 8539 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8540 struct i40e_pf *pf = vsi->back; 8541 u8 field_flags = 0; 8542 8543 if (dissector->used_keys & 8544 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8545 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8546 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8547 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8548 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8549 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8550 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8551 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8552 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8553 dissector->used_keys); 8554 return -EOPNOTSUPP; 8555 } 8556 8557 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8558 struct flow_match_enc_keyid match; 8559 8560 flow_rule_match_enc_keyid(rule, &match); 8561 if (match.mask->keyid != 0) 8562 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8563 8564 filter->tenant_id = be32_to_cpu(match.key->keyid); 8565 } 8566 8567 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8568 struct flow_match_basic match; 8569 8570 flow_rule_match_basic(rule, &match); 8571 n_proto_key = ntohs(match.key->n_proto); 8572 n_proto_mask = ntohs(match.mask->n_proto); 8573 8574 if (n_proto_key == ETH_P_ALL) { 8575 n_proto_key = 0; 8576 n_proto_mask = 0; 8577 } 8578 filter->n_proto = n_proto_key & n_proto_mask; 8579 filter->ip_proto = match.key->ip_proto; 8580 } 8581 8582 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8583 struct flow_match_eth_addrs match; 8584 8585 flow_rule_match_eth_addrs(rule, &match); 8586 8587 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8588 if (!is_zero_ether_addr(match.mask->dst)) { 8589 if (is_broadcast_ether_addr(match.mask->dst)) { 8590 field_flags |= I40E_CLOUD_FIELD_OMAC; 8591 } else { 8592 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8593 match.mask->dst); 8594 return -EIO; 8595 } 8596 } 8597 8598 if (!is_zero_ether_addr(match.mask->src)) { 8599 if (is_broadcast_ether_addr(match.mask->src)) { 8600 field_flags |= I40E_CLOUD_FIELD_IMAC; 8601 } else { 8602 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8603 match.mask->src); 8604 return -EIO; 8605 } 8606 } 8607 ether_addr_copy(filter->dst_mac, match.key->dst); 8608 ether_addr_copy(filter->src_mac, match.key->src); 8609 } 8610 8611 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8612 struct flow_match_vlan match; 8613 8614 flow_rule_match_vlan(rule, &match); 8615 if (match.mask->vlan_id) { 8616 if (match.mask->vlan_id == VLAN_VID_MASK) { 8617 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8618 8619 } else { 8620 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8621 match.mask->vlan_id); 8622 return -EIO; 8623 } 8624 } 8625 8626 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8627 } 8628 8629 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8630 struct flow_match_control match; 8631 8632 flow_rule_match_control(rule, &match); 8633 addr_type = match.key->addr_type; 8634 } 8635 8636 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8637 struct flow_match_ipv4_addrs match; 8638 8639 flow_rule_match_ipv4_addrs(rule, &match); 8640 if (match.mask->dst) { 8641 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8642 field_flags |= I40E_CLOUD_FIELD_IIP; 8643 } else { 8644 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8645 &match.mask->dst); 8646 return -EIO; 8647 } 8648 } 8649 8650 if (match.mask->src) { 8651 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8652 field_flags |= I40E_CLOUD_FIELD_IIP; 8653 } else { 8654 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8655 &match.mask->src); 8656 return -EIO; 8657 } 8658 } 8659 8660 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8661 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8662 return -EIO; 8663 } 8664 filter->dst_ipv4 = match.key->dst; 8665 filter->src_ipv4 = match.key->src; 8666 } 8667 8668 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8669 struct flow_match_ipv6_addrs match; 8670 8671 flow_rule_match_ipv6_addrs(rule, &match); 8672 8673 /* src and dest IPV6 address should not be LOOPBACK 8674 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8675 */ 8676 if (ipv6_addr_loopback(&match.key->dst) || 8677 ipv6_addr_loopback(&match.key->src)) { 8678 dev_err(&pf->pdev->dev, 8679 "Bad ipv6, addr is LOOPBACK\n"); 8680 return -EIO; 8681 } 8682 if (!ipv6_addr_any(&match.mask->dst) || 8683 !ipv6_addr_any(&match.mask->src)) 8684 field_flags |= I40E_CLOUD_FIELD_IIP; 8685 8686 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8687 sizeof(filter->src_ipv6)); 8688 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8689 sizeof(filter->dst_ipv6)); 8690 } 8691 8692 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8693 struct flow_match_ports match; 8694 8695 flow_rule_match_ports(rule, &match); 8696 if (match.mask->src) { 8697 if (match.mask->src == cpu_to_be16(0xffff)) { 8698 field_flags |= I40E_CLOUD_FIELD_IIP; 8699 } else { 8700 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8701 be16_to_cpu(match.mask->src)); 8702 return -EIO; 8703 } 8704 } 8705 8706 if (match.mask->dst) { 8707 if (match.mask->dst == cpu_to_be16(0xffff)) { 8708 field_flags |= I40E_CLOUD_FIELD_IIP; 8709 } else { 8710 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8711 be16_to_cpu(match.mask->dst)); 8712 return -EIO; 8713 } 8714 } 8715 8716 filter->dst_port = match.key->dst; 8717 filter->src_port = match.key->src; 8718 8719 switch (filter->ip_proto) { 8720 case IPPROTO_TCP: 8721 case IPPROTO_UDP: 8722 break; 8723 default: 8724 dev_err(&pf->pdev->dev, 8725 "Only UDP and TCP transport are supported\n"); 8726 return -EINVAL; 8727 } 8728 } 8729 filter->flags = field_flags; 8730 return 0; 8731 } 8732 8733 /** 8734 * i40e_handle_tclass: Forward to a traffic class on the device 8735 * @vsi: Pointer to VSI 8736 * @tc: traffic class index on the device 8737 * @filter: Pointer to cloud filter structure 8738 * 8739 **/ 8740 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8741 struct i40e_cloud_filter *filter) 8742 { 8743 struct i40e_channel *ch, *ch_tmp; 8744 8745 /* direct to a traffic class on the same device */ 8746 if (tc == 0) { 8747 filter->seid = vsi->seid; 8748 return 0; 8749 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8750 if (!filter->dst_port) { 8751 dev_err(&vsi->back->pdev->dev, 8752 "Specify destination port to direct to traffic class that is not default\n"); 8753 return -EINVAL; 8754 } 8755 if (list_empty(&vsi->ch_list)) 8756 return -EINVAL; 8757 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8758 list) { 8759 if (ch->seid == vsi->tc_seid_map[tc]) 8760 filter->seid = ch->seid; 8761 } 8762 return 0; 8763 } 8764 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8765 return -EINVAL; 8766 } 8767 8768 /** 8769 * i40e_configure_clsflower - Configure tc flower filters 8770 * @vsi: Pointer to VSI 8771 * @cls_flower: Pointer to struct flow_cls_offload 8772 * 8773 **/ 8774 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8775 struct flow_cls_offload *cls_flower) 8776 { 8777 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8778 struct i40e_cloud_filter *filter = NULL; 8779 struct i40e_pf *pf = vsi->back; 8780 int err = 0; 8781 8782 if (tc < 0) { 8783 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8784 return -EOPNOTSUPP; 8785 } 8786 8787 if (!tc) { 8788 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8789 return -EINVAL; 8790 } 8791 8792 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8793 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8794 return -EBUSY; 8795 8796 if (pf->fdir_pf_active_filters || 8797 (!hlist_empty(&pf->fdir_filter_list))) { 8798 dev_err(&vsi->back->pdev->dev, 8799 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8800 return -EINVAL; 8801 } 8802 8803 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8804 dev_err(&vsi->back->pdev->dev, 8805 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8806 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8807 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8808 } 8809 8810 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8811 if (!filter) 8812 return -ENOMEM; 8813 8814 filter->cookie = cls_flower->cookie; 8815 8816 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8817 if (err < 0) 8818 goto err; 8819 8820 err = i40e_handle_tclass(vsi, tc, filter); 8821 if (err < 0) 8822 goto err; 8823 8824 /* Add cloud filter */ 8825 if (filter->dst_port) 8826 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8827 else 8828 err = i40e_add_del_cloud_filter(vsi, filter, true); 8829 8830 if (err) { 8831 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8832 err); 8833 goto err; 8834 } 8835 8836 /* add filter to the ordered list */ 8837 INIT_HLIST_NODE(&filter->cloud_node); 8838 8839 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8840 8841 pf->num_cloud_filters++; 8842 8843 return err; 8844 err: 8845 kfree(filter); 8846 return err; 8847 } 8848 8849 /** 8850 * i40e_find_cloud_filter - Find the could filter in the list 8851 * @vsi: Pointer to VSI 8852 * @cookie: filter specific cookie 8853 * 8854 **/ 8855 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8856 unsigned long *cookie) 8857 { 8858 struct i40e_cloud_filter *filter = NULL; 8859 struct hlist_node *node2; 8860 8861 hlist_for_each_entry_safe(filter, node2, 8862 &vsi->back->cloud_filter_list, cloud_node) 8863 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8864 return filter; 8865 return NULL; 8866 } 8867 8868 /** 8869 * i40e_delete_clsflower - Remove tc flower filters 8870 * @vsi: Pointer to VSI 8871 * @cls_flower: Pointer to struct flow_cls_offload 8872 * 8873 **/ 8874 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8875 struct flow_cls_offload *cls_flower) 8876 { 8877 struct i40e_cloud_filter *filter = NULL; 8878 struct i40e_pf *pf = vsi->back; 8879 int err = 0; 8880 8881 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8882 8883 if (!filter) 8884 return -EINVAL; 8885 8886 hash_del(&filter->cloud_node); 8887 8888 if (filter->dst_port) 8889 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8890 else 8891 err = i40e_add_del_cloud_filter(vsi, filter, false); 8892 8893 kfree(filter); 8894 if (err) { 8895 dev_err(&pf->pdev->dev, 8896 "Failed to delete cloud filter, err %pe\n", 8897 ERR_PTR(err)); 8898 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8899 } 8900 8901 pf->num_cloud_filters--; 8902 if (!pf->num_cloud_filters) 8903 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8904 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8905 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8906 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8907 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8908 } 8909 return 0; 8910 } 8911 8912 /** 8913 * i40e_setup_tc_cls_flower - flower classifier offloads 8914 * @np: net device to configure 8915 * @cls_flower: offload data 8916 **/ 8917 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8918 struct flow_cls_offload *cls_flower) 8919 { 8920 struct i40e_vsi *vsi = np->vsi; 8921 8922 switch (cls_flower->command) { 8923 case FLOW_CLS_REPLACE: 8924 return i40e_configure_clsflower(vsi, cls_flower); 8925 case FLOW_CLS_DESTROY: 8926 return i40e_delete_clsflower(vsi, cls_flower); 8927 case FLOW_CLS_STATS: 8928 return -EOPNOTSUPP; 8929 default: 8930 return -EOPNOTSUPP; 8931 } 8932 } 8933 8934 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8935 void *cb_priv) 8936 { 8937 struct i40e_netdev_priv *np = cb_priv; 8938 8939 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8940 return -EOPNOTSUPP; 8941 8942 switch (type) { 8943 case TC_SETUP_CLSFLOWER: 8944 return i40e_setup_tc_cls_flower(np, type_data); 8945 8946 default: 8947 return -EOPNOTSUPP; 8948 } 8949 } 8950 8951 static LIST_HEAD(i40e_block_cb_list); 8952 8953 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8954 void *type_data) 8955 { 8956 struct i40e_netdev_priv *np = netdev_priv(netdev); 8957 8958 switch (type) { 8959 case TC_SETUP_QDISC_MQPRIO: 8960 return i40e_setup_tc(netdev, type_data); 8961 case TC_SETUP_BLOCK: 8962 return flow_block_cb_setup_simple(type_data, 8963 &i40e_block_cb_list, 8964 i40e_setup_tc_block_cb, 8965 np, np, true); 8966 default: 8967 return -EOPNOTSUPP; 8968 } 8969 } 8970 8971 /** 8972 * i40e_open - Called when a network interface is made active 8973 * @netdev: network interface device structure 8974 * 8975 * The open entry point is called when a network interface is made 8976 * active by the system (IFF_UP). At this point all resources needed 8977 * for transmit and receive operations are allocated, the interrupt 8978 * handler is registered with the OS, the netdev watchdog subtask is 8979 * enabled, and the stack is notified that the interface is ready. 8980 * 8981 * Returns 0 on success, negative value on failure 8982 **/ 8983 int i40e_open(struct net_device *netdev) 8984 { 8985 struct i40e_netdev_priv *np = netdev_priv(netdev); 8986 struct i40e_vsi *vsi = np->vsi; 8987 struct i40e_pf *pf = vsi->back; 8988 int err; 8989 8990 /* disallow open during test or if eeprom is broken */ 8991 if (test_bit(__I40E_TESTING, pf->state) || 8992 test_bit(__I40E_BAD_EEPROM, pf->state)) 8993 return -EBUSY; 8994 8995 netif_carrier_off(netdev); 8996 8997 if (i40e_force_link_state(pf, true)) 8998 return -EAGAIN; 8999 9000 err = i40e_vsi_open(vsi); 9001 if (err) 9002 return err; 9003 9004 /* configure global TSO hardware offload settings */ 9005 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9006 TCP_FLAG_FIN) >> 16); 9007 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9008 TCP_FLAG_FIN | 9009 TCP_FLAG_CWR) >> 16); 9010 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9011 udp_tunnel_get_rx_info(netdev); 9012 9013 return 0; 9014 } 9015 9016 /** 9017 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9018 * @vsi: vsi structure 9019 * 9020 * This updates netdev's number of tx/rx queues 9021 * 9022 * Returns status of setting tx/rx queues 9023 **/ 9024 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9025 { 9026 int ret; 9027 9028 ret = netif_set_real_num_rx_queues(vsi->netdev, 9029 vsi->num_queue_pairs); 9030 if (ret) 9031 return ret; 9032 9033 return netif_set_real_num_tx_queues(vsi->netdev, 9034 vsi->num_queue_pairs); 9035 } 9036 9037 /** 9038 * i40e_vsi_open - 9039 * @vsi: the VSI to open 9040 * 9041 * Finish initialization of the VSI. 9042 * 9043 * Returns 0 on success, negative value on failure 9044 * 9045 * Note: expects to be called while under rtnl_lock() 9046 **/ 9047 int i40e_vsi_open(struct i40e_vsi *vsi) 9048 { 9049 struct i40e_pf *pf = vsi->back; 9050 char int_name[I40E_INT_NAME_STR_LEN]; 9051 int err; 9052 9053 /* allocate descriptors */ 9054 err = i40e_vsi_setup_tx_resources(vsi); 9055 if (err) 9056 goto err_setup_tx; 9057 err = i40e_vsi_setup_rx_resources(vsi); 9058 if (err) 9059 goto err_setup_rx; 9060 9061 err = i40e_vsi_configure(vsi); 9062 if (err) 9063 goto err_setup_rx; 9064 9065 if (vsi->netdev) { 9066 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9067 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9068 err = i40e_vsi_request_irq(vsi, int_name); 9069 if (err) 9070 goto err_setup_rx; 9071 9072 /* Notify the stack of the actual queue counts. */ 9073 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9074 if (err) 9075 goto err_set_queues; 9076 9077 } else if (vsi->type == I40E_VSI_FDIR) { 9078 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9079 dev_driver_string(&pf->pdev->dev), 9080 dev_name(&pf->pdev->dev)); 9081 err = i40e_vsi_request_irq(vsi, int_name); 9082 if (err) 9083 goto err_setup_rx; 9084 9085 } else { 9086 err = -EINVAL; 9087 goto err_setup_rx; 9088 } 9089 9090 err = i40e_up_complete(vsi); 9091 if (err) 9092 goto err_up_complete; 9093 9094 return 0; 9095 9096 err_up_complete: 9097 i40e_down(vsi); 9098 err_set_queues: 9099 i40e_vsi_free_irq(vsi); 9100 err_setup_rx: 9101 i40e_vsi_free_rx_resources(vsi); 9102 err_setup_tx: 9103 i40e_vsi_free_tx_resources(vsi); 9104 if (vsi == pf->vsi[pf->lan_vsi]) 9105 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9106 9107 return err; 9108 } 9109 9110 /** 9111 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9112 * @pf: Pointer to PF 9113 * 9114 * This function destroys the hlist where all the Flow Director 9115 * filters were saved. 9116 **/ 9117 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9118 { 9119 struct i40e_fdir_filter *filter; 9120 struct i40e_flex_pit *pit_entry, *tmp; 9121 struct hlist_node *node2; 9122 9123 hlist_for_each_entry_safe(filter, node2, 9124 &pf->fdir_filter_list, fdir_node) { 9125 hlist_del(&filter->fdir_node); 9126 kfree(filter); 9127 } 9128 9129 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9130 list_del(&pit_entry->list); 9131 kfree(pit_entry); 9132 } 9133 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9134 9135 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9136 list_del(&pit_entry->list); 9137 kfree(pit_entry); 9138 } 9139 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9140 9141 pf->fdir_pf_active_filters = 0; 9142 i40e_reset_fdir_filter_cnt(pf); 9143 9144 /* Reprogram the default input set for TCP/IPv4 */ 9145 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9146 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9147 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9148 9149 /* Reprogram the default input set for TCP/IPv6 */ 9150 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 9151 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9152 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9153 9154 /* Reprogram the default input set for UDP/IPv4 */ 9155 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 9156 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9157 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9158 9159 /* Reprogram the default input set for UDP/IPv6 */ 9160 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 9161 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9162 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9163 9164 /* Reprogram the default input set for SCTP/IPv4 */ 9165 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 9166 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9167 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9168 9169 /* Reprogram the default input set for SCTP/IPv6 */ 9170 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 9171 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9172 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9173 9174 /* Reprogram the default input set for Other/IPv4 */ 9175 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 9176 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9177 9178 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 9179 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9180 9181 /* Reprogram the default input set for Other/IPv6 */ 9182 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 9183 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9184 9185 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 9186 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9187 } 9188 9189 /** 9190 * i40e_cloud_filter_exit - Cleans up the cloud filters 9191 * @pf: Pointer to PF 9192 * 9193 * This function destroys the hlist where all the cloud filters 9194 * were saved. 9195 **/ 9196 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9197 { 9198 struct i40e_cloud_filter *cfilter; 9199 struct hlist_node *node; 9200 9201 hlist_for_each_entry_safe(cfilter, node, 9202 &pf->cloud_filter_list, cloud_node) { 9203 hlist_del(&cfilter->cloud_node); 9204 kfree(cfilter); 9205 } 9206 pf->num_cloud_filters = 0; 9207 9208 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9209 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9210 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9211 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9212 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9213 } 9214 } 9215 9216 /** 9217 * i40e_close - Disables a network interface 9218 * @netdev: network interface device structure 9219 * 9220 * The close entry point is called when an interface is de-activated 9221 * by the OS. The hardware is still under the driver's control, but 9222 * this netdev interface is disabled. 9223 * 9224 * Returns 0, this is not allowed to fail 9225 **/ 9226 int i40e_close(struct net_device *netdev) 9227 { 9228 struct i40e_netdev_priv *np = netdev_priv(netdev); 9229 struct i40e_vsi *vsi = np->vsi; 9230 9231 i40e_vsi_close(vsi); 9232 9233 return 0; 9234 } 9235 9236 /** 9237 * i40e_do_reset - Start a PF or Core Reset sequence 9238 * @pf: board private structure 9239 * @reset_flags: which reset is requested 9240 * @lock_acquired: indicates whether or not the lock has been acquired 9241 * before this function was called. 9242 * 9243 * The essential difference in resets is that the PF Reset 9244 * doesn't clear the packet buffers, doesn't reset the PE 9245 * firmware, and doesn't bother the other PFs on the chip. 9246 **/ 9247 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9248 { 9249 u32 val; 9250 9251 /* do the biggest reset indicated */ 9252 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9253 9254 /* Request a Global Reset 9255 * 9256 * This will start the chip's countdown to the actual full 9257 * chip reset event, and a warning interrupt to be sent 9258 * to all PFs, including the requestor. Our handler 9259 * for the warning interrupt will deal with the shutdown 9260 * and recovery of the switch setup. 9261 */ 9262 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9263 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9264 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9265 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9266 9267 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9268 9269 /* Request a Core Reset 9270 * 9271 * Same as Global Reset, except does *not* include the MAC/PHY 9272 */ 9273 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9274 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9275 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9276 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9277 i40e_flush(&pf->hw); 9278 9279 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9280 9281 /* Request a PF Reset 9282 * 9283 * Resets only the PF-specific registers 9284 * 9285 * This goes directly to the tear-down and rebuild of 9286 * the switch, since we need to do all the recovery as 9287 * for the Core Reset. 9288 */ 9289 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9290 i40e_handle_reset_warning(pf, lock_acquired); 9291 9292 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9293 /* Request a PF Reset 9294 * 9295 * Resets PF and reinitializes PFs VSI. 9296 */ 9297 i40e_prep_for_reset(pf); 9298 i40e_reset_and_rebuild(pf, true, lock_acquired); 9299 dev_info(&pf->pdev->dev, 9300 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9301 "FW LLDP is disabled\n" : 9302 "FW LLDP is enabled\n"); 9303 9304 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9305 int v; 9306 9307 /* Find the VSI(s) that requested a re-init */ 9308 dev_info(&pf->pdev->dev, 9309 "VSI reinit requested\n"); 9310 for (v = 0; v < pf->num_alloc_vsi; v++) { 9311 struct i40e_vsi *vsi = pf->vsi[v]; 9312 9313 if (vsi != NULL && 9314 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9315 vsi->state)) 9316 i40e_vsi_reinit_locked(pf->vsi[v]); 9317 } 9318 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9319 int v; 9320 9321 /* Find the VSI(s) that needs to be brought down */ 9322 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9323 for (v = 0; v < pf->num_alloc_vsi; v++) { 9324 struct i40e_vsi *vsi = pf->vsi[v]; 9325 9326 if (vsi != NULL && 9327 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9328 vsi->state)) { 9329 set_bit(__I40E_VSI_DOWN, vsi->state); 9330 i40e_down(vsi); 9331 } 9332 } 9333 } else { 9334 dev_info(&pf->pdev->dev, 9335 "bad reset request 0x%08x\n", reset_flags); 9336 } 9337 } 9338 9339 #ifdef CONFIG_I40E_DCB 9340 /** 9341 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9342 * @pf: board private structure 9343 * @old_cfg: current DCB config 9344 * @new_cfg: new DCB config 9345 **/ 9346 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9347 struct i40e_dcbx_config *old_cfg, 9348 struct i40e_dcbx_config *new_cfg) 9349 { 9350 bool need_reconfig = false; 9351 9352 /* Check if ETS configuration has changed */ 9353 if (memcmp(&new_cfg->etscfg, 9354 &old_cfg->etscfg, 9355 sizeof(new_cfg->etscfg))) { 9356 /* If Priority Table has changed reconfig is needed */ 9357 if (memcmp(&new_cfg->etscfg.prioritytable, 9358 &old_cfg->etscfg.prioritytable, 9359 sizeof(new_cfg->etscfg.prioritytable))) { 9360 need_reconfig = true; 9361 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9362 } 9363 9364 if (memcmp(&new_cfg->etscfg.tcbwtable, 9365 &old_cfg->etscfg.tcbwtable, 9366 sizeof(new_cfg->etscfg.tcbwtable))) 9367 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9368 9369 if (memcmp(&new_cfg->etscfg.tsatable, 9370 &old_cfg->etscfg.tsatable, 9371 sizeof(new_cfg->etscfg.tsatable))) 9372 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9373 } 9374 9375 /* Check if PFC configuration has changed */ 9376 if (memcmp(&new_cfg->pfc, 9377 &old_cfg->pfc, 9378 sizeof(new_cfg->pfc))) { 9379 need_reconfig = true; 9380 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9381 } 9382 9383 /* Check if APP Table has changed */ 9384 if (memcmp(&new_cfg->app, 9385 &old_cfg->app, 9386 sizeof(new_cfg->app))) { 9387 need_reconfig = true; 9388 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9389 } 9390 9391 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9392 return need_reconfig; 9393 } 9394 9395 /** 9396 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9397 * @pf: board private structure 9398 * @e: event info posted on ARQ 9399 **/ 9400 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9401 struct i40e_arq_event_info *e) 9402 { 9403 struct i40e_aqc_lldp_get_mib *mib = 9404 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9405 struct i40e_hw *hw = &pf->hw; 9406 struct i40e_dcbx_config tmp_dcbx_cfg; 9407 bool need_reconfig = false; 9408 int ret = 0; 9409 u8 type; 9410 9411 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9412 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9413 (hw->phy.link_info.link_speed & 9414 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9415 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9416 /* let firmware decide if the DCB should be disabled */ 9417 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9418 9419 /* Not DCB capable or capability disabled */ 9420 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9421 return ret; 9422 9423 /* Ignore if event is not for Nearest Bridge */ 9424 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9425 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9426 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9427 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9428 return ret; 9429 9430 /* Check MIB Type and return if event for Remote MIB update */ 9431 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9432 dev_dbg(&pf->pdev->dev, 9433 "LLDP event mib type %s\n", type ? "remote" : "local"); 9434 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9435 /* Update the remote cached instance and return */ 9436 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9437 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9438 &hw->remote_dcbx_config); 9439 goto exit; 9440 } 9441 9442 /* Store the old configuration */ 9443 tmp_dcbx_cfg = hw->local_dcbx_config; 9444 9445 /* Reset the old DCBx configuration data */ 9446 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9447 /* Get updated DCBX data from firmware */ 9448 ret = i40e_get_dcb_config(&pf->hw); 9449 if (ret) { 9450 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9451 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9452 (hw->phy.link_info.link_speed & 9453 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9454 dev_warn(&pf->pdev->dev, 9455 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9456 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9457 } else { 9458 dev_info(&pf->pdev->dev, 9459 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9460 ERR_PTR(ret), 9461 i40e_aq_str(&pf->hw, 9462 pf->hw.aq.asq_last_status)); 9463 } 9464 goto exit; 9465 } 9466 9467 /* No change detected in DCBX configs */ 9468 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9469 sizeof(tmp_dcbx_cfg))) { 9470 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9471 goto exit; 9472 } 9473 9474 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9475 &hw->local_dcbx_config); 9476 9477 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9478 9479 if (!need_reconfig) 9480 goto exit; 9481 9482 /* Enable DCB tagging only when more than one TC */ 9483 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9484 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9485 else 9486 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9487 9488 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9489 /* Reconfiguration needed quiesce all VSIs */ 9490 i40e_pf_quiesce_all_vsi(pf); 9491 9492 /* Changes in configuration update VEB/VSI */ 9493 i40e_dcb_reconfigure(pf); 9494 9495 ret = i40e_resume_port_tx(pf); 9496 9497 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9498 /* In case of error no point in resuming VSIs */ 9499 if (ret) 9500 goto exit; 9501 9502 /* Wait for the PF's queues to be disabled */ 9503 ret = i40e_pf_wait_queues_disabled(pf); 9504 if (ret) { 9505 /* Schedule PF reset to recover */ 9506 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9507 i40e_service_event_schedule(pf); 9508 } else { 9509 i40e_pf_unquiesce_all_vsi(pf); 9510 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9511 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9512 } 9513 9514 exit: 9515 return ret; 9516 } 9517 #endif /* CONFIG_I40E_DCB */ 9518 9519 /** 9520 * i40e_do_reset_safe - Protected reset path for userland calls. 9521 * @pf: board private structure 9522 * @reset_flags: which reset is requested 9523 * 9524 **/ 9525 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9526 { 9527 rtnl_lock(); 9528 i40e_do_reset(pf, reset_flags, true); 9529 rtnl_unlock(); 9530 } 9531 9532 /** 9533 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9534 * @pf: board private structure 9535 * @e: event info posted on ARQ 9536 * 9537 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9538 * and VF queues 9539 **/ 9540 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9541 struct i40e_arq_event_info *e) 9542 { 9543 struct i40e_aqc_lan_overflow *data = 9544 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9545 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9546 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9547 struct i40e_hw *hw = &pf->hw; 9548 struct i40e_vf *vf; 9549 u16 vf_id; 9550 9551 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9552 queue, qtx_ctl); 9553 9554 /* Queue belongs to VF, find the VF and issue VF reset */ 9555 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 9556 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 9557 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 9558 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 9559 vf_id -= hw->func_caps.vf_base_id; 9560 vf = &pf->vf[vf_id]; 9561 i40e_vc_notify_vf_reset(vf); 9562 /* Allow VF to process pending reset notification */ 9563 msleep(20); 9564 i40e_reset_vf(vf, false); 9565 } 9566 } 9567 9568 /** 9569 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9570 * @pf: board private structure 9571 **/ 9572 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9573 { 9574 u32 val, fcnt_prog; 9575 9576 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9577 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9578 return fcnt_prog; 9579 } 9580 9581 /** 9582 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9583 * @pf: board private structure 9584 **/ 9585 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9586 { 9587 u32 val, fcnt_prog; 9588 9589 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9590 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9591 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 9592 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 9593 return fcnt_prog; 9594 } 9595 9596 /** 9597 * i40e_get_global_fd_count - Get total FD filters programmed on device 9598 * @pf: board private structure 9599 **/ 9600 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9601 { 9602 u32 val, fcnt_prog; 9603 9604 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9605 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9606 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 9607 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 9608 return fcnt_prog; 9609 } 9610 9611 /** 9612 * i40e_reenable_fdir_sb - Restore FDir SB capability 9613 * @pf: board private structure 9614 **/ 9615 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9616 { 9617 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9618 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9619 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9620 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9621 } 9622 9623 /** 9624 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9625 * @pf: board private structure 9626 **/ 9627 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9628 { 9629 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9630 /* ATR uses the same filtering logic as SB rules. It only 9631 * functions properly if the input set mask is at the default 9632 * settings. It is safe to restore the default input set 9633 * because there are no active TCPv4 filter rules. 9634 */ 9635 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9636 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9637 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9638 9639 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9640 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9641 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9642 } 9643 } 9644 9645 /** 9646 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9647 * @pf: board private structure 9648 * @filter: FDir filter to remove 9649 */ 9650 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9651 struct i40e_fdir_filter *filter) 9652 { 9653 /* Update counters */ 9654 pf->fdir_pf_active_filters--; 9655 pf->fd_inv = 0; 9656 9657 switch (filter->flow_type) { 9658 case TCP_V4_FLOW: 9659 pf->fd_tcp4_filter_cnt--; 9660 break; 9661 case UDP_V4_FLOW: 9662 pf->fd_udp4_filter_cnt--; 9663 break; 9664 case SCTP_V4_FLOW: 9665 pf->fd_sctp4_filter_cnt--; 9666 break; 9667 case TCP_V6_FLOW: 9668 pf->fd_tcp6_filter_cnt--; 9669 break; 9670 case UDP_V6_FLOW: 9671 pf->fd_udp6_filter_cnt--; 9672 break; 9673 case SCTP_V6_FLOW: 9674 pf->fd_udp6_filter_cnt--; 9675 break; 9676 case IP_USER_FLOW: 9677 switch (filter->ipl4_proto) { 9678 case IPPROTO_TCP: 9679 pf->fd_tcp4_filter_cnt--; 9680 break; 9681 case IPPROTO_UDP: 9682 pf->fd_udp4_filter_cnt--; 9683 break; 9684 case IPPROTO_SCTP: 9685 pf->fd_sctp4_filter_cnt--; 9686 break; 9687 case IPPROTO_IP: 9688 pf->fd_ip4_filter_cnt--; 9689 break; 9690 } 9691 break; 9692 case IPV6_USER_FLOW: 9693 switch (filter->ipl4_proto) { 9694 case IPPROTO_TCP: 9695 pf->fd_tcp6_filter_cnt--; 9696 break; 9697 case IPPROTO_UDP: 9698 pf->fd_udp6_filter_cnt--; 9699 break; 9700 case IPPROTO_SCTP: 9701 pf->fd_sctp6_filter_cnt--; 9702 break; 9703 case IPPROTO_IP: 9704 pf->fd_ip6_filter_cnt--; 9705 break; 9706 } 9707 break; 9708 } 9709 9710 /* Remove the filter from the list and free memory */ 9711 hlist_del(&filter->fdir_node); 9712 kfree(filter); 9713 } 9714 9715 /** 9716 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9717 * @pf: board private structure 9718 **/ 9719 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9720 { 9721 struct i40e_fdir_filter *filter; 9722 u32 fcnt_prog, fcnt_avail; 9723 struct hlist_node *node; 9724 9725 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9726 return; 9727 9728 /* Check if we have enough room to re-enable FDir SB capability. */ 9729 fcnt_prog = i40e_get_global_fd_count(pf); 9730 fcnt_avail = pf->fdir_pf_filter_count; 9731 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9732 (pf->fd_add_err == 0) || 9733 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9734 i40e_reenable_fdir_sb(pf); 9735 9736 /* We should wait for even more space before re-enabling ATR. 9737 * Additionally, we cannot enable ATR as long as we still have TCP SB 9738 * rules active. 9739 */ 9740 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9741 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9742 i40e_reenable_fdir_atr(pf); 9743 9744 /* if hw had a problem adding a filter, delete it */ 9745 if (pf->fd_inv > 0) { 9746 hlist_for_each_entry_safe(filter, node, 9747 &pf->fdir_filter_list, fdir_node) 9748 if (filter->fd_id == pf->fd_inv) 9749 i40e_delete_invalid_filter(pf, filter); 9750 } 9751 } 9752 9753 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9754 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9755 /** 9756 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9757 * @pf: board private structure 9758 **/ 9759 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9760 { 9761 unsigned long min_flush_time; 9762 int flush_wait_retry = 50; 9763 bool disable_atr = false; 9764 int fd_room; 9765 int reg; 9766 9767 if (!time_after(jiffies, pf->fd_flush_timestamp + 9768 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9769 return; 9770 9771 /* If the flush is happening too quick and we have mostly SB rules we 9772 * should not re-enable ATR for some time. 9773 */ 9774 min_flush_time = pf->fd_flush_timestamp + 9775 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9776 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9777 9778 if (!(time_after(jiffies, min_flush_time)) && 9779 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9780 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9781 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9782 disable_atr = true; 9783 } 9784 9785 pf->fd_flush_timestamp = jiffies; 9786 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9787 /* flush all filters */ 9788 wr32(&pf->hw, I40E_PFQF_CTL_1, 9789 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9790 i40e_flush(&pf->hw); 9791 pf->fd_flush_cnt++; 9792 pf->fd_add_err = 0; 9793 do { 9794 /* Check FD flush status every 5-6msec */ 9795 usleep_range(5000, 6000); 9796 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9797 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9798 break; 9799 } while (flush_wait_retry--); 9800 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9801 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9802 } else { 9803 /* replay sideband filters */ 9804 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 9805 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9806 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9807 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9808 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9809 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9810 } 9811 } 9812 9813 /** 9814 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9815 * @pf: board private structure 9816 **/ 9817 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9818 { 9819 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9820 } 9821 9822 /** 9823 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9824 * @pf: board private structure 9825 **/ 9826 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9827 { 9828 9829 /* if interface is down do nothing */ 9830 if (test_bit(__I40E_DOWN, pf->state)) 9831 return; 9832 9833 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9834 i40e_fdir_flush_and_replay(pf); 9835 9836 i40e_fdir_check_and_reenable(pf); 9837 9838 } 9839 9840 /** 9841 * i40e_vsi_link_event - notify VSI of a link event 9842 * @vsi: vsi to be notified 9843 * @link_up: link up or down 9844 **/ 9845 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9846 { 9847 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9848 return; 9849 9850 switch (vsi->type) { 9851 case I40E_VSI_MAIN: 9852 if (!vsi->netdev || !vsi->netdev_registered) 9853 break; 9854 9855 if (link_up) { 9856 netif_carrier_on(vsi->netdev); 9857 netif_tx_wake_all_queues(vsi->netdev); 9858 } else { 9859 netif_carrier_off(vsi->netdev); 9860 netif_tx_stop_all_queues(vsi->netdev); 9861 } 9862 break; 9863 9864 case I40E_VSI_SRIOV: 9865 case I40E_VSI_VMDQ2: 9866 case I40E_VSI_CTRL: 9867 case I40E_VSI_IWARP: 9868 case I40E_VSI_MIRROR: 9869 default: 9870 /* there is no notification for other VSIs */ 9871 break; 9872 } 9873 } 9874 9875 /** 9876 * i40e_veb_link_event - notify elements on the veb of a link event 9877 * @veb: veb to be notified 9878 * @link_up: link up or down 9879 **/ 9880 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9881 { 9882 struct i40e_pf *pf; 9883 int i; 9884 9885 if (!veb || !veb->pf) 9886 return; 9887 pf = veb->pf; 9888 9889 /* depth first... */ 9890 for (i = 0; i < I40E_MAX_VEB; i++) 9891 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9892 i40e_veb_link_event(pf->veb[i], link_up); 9893 9894 /* ... now the local VSIs */ 9895 for (i = 0; i < pf->num_alloc_vsi; i++) 9896 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9897 i40e_vsi_link_event(pf->vsi[i], link_up); 9898 } 9899 9900 /** 9901 * i40e_link_event - Update netif_carrier status 9902 * @pf: board private structure 9903 **/ 9904 static void i40e_link_event(struct i40e_pf *pf) 9905 { 9906 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9907 u8 new_link_speed, old_link_speed; 9908 bool new_link, old_link; 9909 int status; 9910 #ifdef CONFIG_I40E_DCB 9911 int err; 9912 #endif /* CONFIG_I40E_DCB */ 9913 9914 /* set this to force the get_link_status call to refresh state */ 9915 pf->hw.phy.get_link_info = true; 9916 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9917 status = i40e_get_link_status(&pf->hw, &new_link); 9918 9919 /* On success, disable temp link polling */ 9920 if (status == 0) { 9921 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9922 } else { 9923 /* Enable link polling temporarily until i40e_get_link_status 9924 * returns 0 9925 */ 9926 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9927 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9928 status); 9929 return; 9930 } 9931 9932 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9933 new_link_speed = pf->hw.phy.link_info.link_speed; 9934 9935 if (new_link == old_link && 9936 new_link_speed == old_link_speed && 9937 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9938 new_link == netif_carrier_ok(vsi->netdev))) 9939 return; 9940 9941 i40e_print_link_message(vsi, new_link); 9942 9943 /* Notify the base of the switch tree connected to 9944 * the link. Floating VEBs are not notified. 9945 */ 9946 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9947 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9948 else 9949 i40e_vsi_link_event(vsi, new_link); 9950 9951 if (pf->vf) 9952 i40e_vc_notify_link_state(pf); 9953 9954 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 9955 i40e_ptp_set_increment(pf); 9956 #ifdef CONFIG_I40E_DCB 9957 if (new_link == old_link) 9958 return; 9959 /* Not SW DCB so firmware will take care of default settings */ 9960 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9961 return; 9962 9963 /* We cover here only link down, as after link up in case of SW DCB 9964 * SW LLDP agent will take care of setting it up 9965 */ 9966 if (!new_link) { 9967 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9968 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9969 err = i40e_dcb_sw_default_config(pf); 9970 if (err) { 9971 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9972 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9973 } else { 9974 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9975 DCB_CAP_DCBX_VER_IEEE; 9976 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9977 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9978 } 9979 } 9980 #endif /* CONFIG_I40E_DCB */ 9981 } 9982 9983 /** 9984 * i40e_watchdog_subtask - periodic checks not using event driven response 9985 * @pf: board private structure 9986 **/ 9987 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9988 { 9989 int i; 9990 9991 /* if interface is down do nothing */ 9992 if (test_bit(__I40E_DOWN, pf->state) || 9993 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9994 return; 9995 9996 /* make sure we don't do these things too often */ 9997 if (time_before(jiffies, (pf->service_timer_previous + 9998 pf->service_timer_period))) 9999 return; 10000 pf->service_timer_previous = jiffies; 10001 10002 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 10003 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 10004 i40e_link_event(pf); 10005 10006 /* Update the stats for active netdevs so the network stack 10007 * can look at updated numbers whenever it cares to 10008 */ 10009 for (i = 0; i < pf->num_alloc_vsi; i++) 10010 if (pf->vsi[i] && pf->vsi[i]->netdev) 10011 i40e_update_stats(pf->vsi[i]); 10012 10013 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10014 /* Update the stats for the active switching components */ 10015 for (i = 0; i < I40E_MAX_VEB; i++) 10016 if (pf->veb[i]) 10017 i40e_update_veb_stats(pf->veb[i]); 10018 } 10019 10020 i40e_ptp_rx_hang(pf); 10021 i40e_ptp_tx_hang(pf); 10022 } 10023 10024 /** 10025 * i40e_reset_subtask - Set up for resetting the device and driver 10026 * @pf: board private structure 10027 **/ 10028 static void i40e_reset_subtask(struct i40e_pf *pf) 10029 { 10030 u32 reset_flags = 0; 10031 10032 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10033 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10034 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10035 } 10036 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10037 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10038 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10039 } 10040 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10041 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10042 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10043 } 10044 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10045 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10046 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10047 } 10048 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10049 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10050 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10051 } 10052 10053 /* If there's a recovery already waiting, it takes 10054 * precedence before starting a new reset sequence. 10055 */ 10056 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10057 i40e_prep_for_reset(pf); 10058 i40e_reset(pf); 10059 i40e_rebuild(pf, false, false); 10060 } 10061 10062 /* If we're already down or resetting, just bail */ 10063 if (reset_flags && 10064 !test_bit(__I40E_DOWN, pf->state) && 10065 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10066 i40e_do_reset(pf, reset_flags, false); 10067 } 10068 } 10069 10070 /** 10071 * i40e_handle_link_event - Handle link event 10072 * @pf: board private structure 10073 * @e: event info posted on ARQ 10074 **/ 10075 static void i40e_handle_link_event(struct i40e_pf *pf, 10076 struct i40e_arq_event_info *e) 10077 { 10078 struct i40e_aqc_get_link_status *status = 10079 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10080 10081 /* Do a new status request to re-enable LSE reporting 10082 * and load new status information into the hw struct 10083 * This completely ignores any state information 10084 * in the ARQ event info, instead choosing to always 10085 * issue the AQ update link status command. 10086 */ 10087 i40e_link_event(pf); 10088 10089 /* Check if module meets thermal requirements */ 10090 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10091 dev_err(&pf->pdev->dev, 10092 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10093 dev_err(&pf->pdev->dev, 10094 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10095 } else { 10096 /* check for unqualified module, if link is down, suppress 10097 * the message if link was forced to be down. 10098 */ 10099 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10100 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10101 (!(status->link_info & I40E_AQ_LINK_UP)) && 10102 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10103 dev_err(&pf->pdev->dev, 10104 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10105 dev_err(&pf->pdev->dev, 10106 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10107 } 10108 } 10109 } 10110 10111 /** 10112 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10113 * @pf: board private structure 10114 **/ 10115 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10116 { 10117 struct i40e_arq_event_info event; 10118 struct i40e_hw *hw = &pf->hw; 10119 u16 pending, i = 0; 10120 u16 opcode; 10121 u32 oldval; 10122 int ret; 10123 u32 val; 10124 10125 /* Do not run clean AQ when PF reset fails */ 10126 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10127 return; 10128 10129 /* check for error indications */ 10130 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10131 oldval = val; 10132 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10133 if (hw->debug_mask & I40E_DEBUG_AQ) 10134 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10135 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10136 } 10137 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10138 if (hw->debug_mask & I40E_DEBUG_AQ) 10139 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10140 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10141 pf->arq_overflows++; 10142 } 10143 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10144 if (hw->debug_mask & I40E_DEBUG_AQ) 10145 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10146 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10147 } 10148 if (oldval != val) 10149 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10150 10151 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10152 oldval = val; 10153 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10154 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10155 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10156 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10157 } 10158 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10159 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10160 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10161 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10162 } 10163 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10164 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10165 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10166 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10167 } 10168 if (oldval != val) 10169 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10170 10171 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10172 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10173 if (!event.msg_buf) 10174 return; 10175 10176 do { 10177 ret = i40e_clean_arq_element(hw, &event, &pending); 10178 if (ret == -EALREADY) 10179 break; 10180 else if (ret) { 10181 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10182 break; 10183 } 10184 10185 opcode = le16_to_cpu(event.desc.opcode); 10186 switch (opcode) { 10187 10188 case i40e_aqc_opc_get_link_status: 10189 rtnl_lock(); 10190 i40e_handle_link_event(pf, &event); 10191 rtnl_unlock(); 10192 break; 10193 case i40e_aqc_opc_send_msg_to_pf: 10194 ret = i40e_vc_process_vf_msg(pf, 10195 le16_to_cpu(event.desc.retval), 10196 le32_to_cpu(event.desc.cookie_high), 10197 le32_to_cpu(event.desc.cookie_low), 10198 event.msg_buf, 10199 event.msg_len); 10200 break; 10201 case i40e_aqc_opc_lldp_update_mib: 10202 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10203 #ifdef CONFIG_I40E_DCB 10204 rtnl_lock(); 10205 i40e_handle_lldp_event(pf, &event); 10206 rtnl_unlock(); 10207 #endif /* CONFIG_I40E_DCB */ 10208 break; 10209 case i40e_aqc_opc_event_lan_overflow: 10210 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10211 i40e_handle_lan_overflow_event(pf, &event); 10212 break; 10213 case i40e_aqc_opc_send_msg_to_peer: 10214 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10215 break; 10216 case i40e_aqc_opc_nvm_erase: 10217 case i40e_aqc_opc_nvm_update: 10218 case i40e_aqc_opc_oem_post_update: 10219 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10220 "ARQ NVM operation 0x%04x completed\n", 10221 opcode); 10222 break; 10223 default: 10224 dev_info(&pf->pdev->dev, 10225 "ARQ: Unknown event 0x%04x ignored\n", 10226 opcode); 10227 break; 10228 } 10229 } while (i++ < I40E_AQ_WORK_LIMIT); 10230 10231 if (i < I40E_AQ_WORK_LIMIT) 10232 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10233 10234 /* re-enable Admin queue interrupt cause */ 10235 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10236 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10237 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10238 i40e_flush(hw); 10239 10240 kfree(event.msg_buf); 10241 } 10242 10243 /** 10244 * i40e_verify_eeprom - make sure eeprom is good to use 10245 * @pf: board private structure 10246 **/ 10247 static void i40e_verify_eeprom(struct i40e_pf *pf) 10248 { 10249 int err; 10250 10251 err = i40e_diag_eeprom_test(&pf->hw); 10252 if (err) { 10253 /* retry in case of garbage read */ 10254 err = i40e_diag_eeprom_test(&pf->hw); 10255 if (err) { 10256 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10257 err); 10258 set_bit(__I40E_BAD_EEPROM, pf->state); 10259 } 10260 } 10261 10262 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10263 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10264 clear_bit(__I40E_BAD_EEPROM, pf->state); 10265 } 10266 } 10267 10268 /** 10269 * i40e_enable_pf_switch_lb 10270 * @pf: pointer to the PF structure 10271 * 10272 * enable switch loop back or die - no point in a return value 10273 **/ 10274 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10275 { 10276 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10277 struct i40e_vsi_context ctxt; 10278 int ret; 10279 10280 ctxt.seid = pf->main_vsi_seid; 10281 ctxt.pf_num = pf->hw.pf_id; 10282 ctxt.vf_num = 0; 10283 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10284 if (ret) { 10285 dev_info(&pf->pdev->dev, 10286 "couldn't get PF vsi config, err %pe aq_err %s\n", 10287 ERR_PTR(ret), 10288 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10289 return; 10290 } 10291 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10292 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10293 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10294 10295 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10296 if (ret) { 10297 dev_info(&pf->pdev->dev, 10298 "update vsi switch failed, err %pe aq_err %s\n", 10299 ERR_PTR(ret), 10300 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10301 } 10302 } 10303 10304 /** 10305 * i40e_disable_pf_switch_lb 10306 * @pf: pointer to the PF structure 10307 * 10308 * disable switch loop back or die - no point in a return value 10309 **/ 10310 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10311 { 10312 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10313 struct i40e_vsi_context ctxt; 10314 int ret; 10315 10316 ctxt.seid = pf->main_vsi_seid; 10317 ctxt.pf_num = pf->hw.pf_id; 10318 ctxt.vf_num = 0; 10319 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10320 if (ret) { 10321 dev_info(&pf->pdev->dev, 10322 "couldn't get PF vsi config, err %pe aq_err %s\n", 10323 ERR_PTR(ret), 10324 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10325 return; 10326 } 10327 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10328 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10329 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10330 10331 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10332 if (ret) { 10333 dev_info(&pf->pdev->dev, 10334 "update vsi switch failed, err %pe aq_err %s\n", 10335 ERR_PTR(ret), 10336 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10337 } 10338 } 10339 10340 /** 10341 * i40e_config_bridge_mode - Configure the HW bridge mode 10342 * @veb: pointer to the bridge instance 10343 * 10344 * Configure the loop back mode for the LAN VSI that is downlink to the 10345 * specified HW bridge instance. It is expected this function is called 10346 * when a new HW bridge is instantiated. 10347 **/ 10348 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10349 { 10350 struct i40e_pf *pf = veb->pf; 10351 10352 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10353 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10354 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10355 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10356 i40e_disable_pf_switch_lb(pf); 10357 else 10358 i40e_enable_pf_switch_lb(pf); 10359 } 10360 10361 /** 10362 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 10363 * @veb: pointer to the VEB instance 10364 * 10365 * This is a recursive function that first builds the attached VSIs then 10366 * recurses in to build the next layer of VEB. We track the connections 10367 * through our own index numbers because the seid's from the HW could 10368 * change across the reset. 10369 **/ 10370 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10371 { 10372 struct i40e_vsi *ctl_vsi = NULL; 10373 struct i40e_pf *pf = veb->pf; 10374 int v, veb_idx; 10375 int ret; 10376 10377 /* build VSI that owns this VEB, temporarily attached to base VEB */ 10378 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 10379 if (pf->vsi[v] && 10380 pf->vsi[v]->veb_idx == veb->idx && 10381 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 10382 ctl_vsi = pf->vsi[v]; 10383 break; 10384 } 10385 } 10386 if (!ctl_vsi) { 10387 dev_info(&pf->pdev->dev, 10388 "missing owner VSI for veb_idx %d\n", veb->idx); 10389 ret = -ENOENT; 10390 goto end_reconstitute; 10391 } 10392 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 10393 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 10394 ret = i40e_add_vsi(ctl_vsi); 10395 if (ret) { 10396 dev_info(&pf->pdev->dev, 10397 "rebuild of veb_idx %d owner VSI failed: %d\n", 10398 veb->idx, ret); 10399 goto end_reconstitute; 10400 } 10401 i40e_vsi_reset_stats(ctl_vsi); 10402 10403 /* create the VEB in the switch and move the VSI onto the VEB */ 10404 ret = i40e_add_veb(veb, ctl_vsi); 10405 if (ret) 10406 goto end_reconstitute; 10407 10408 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10409 veb->bridge_mode = BRIDGE_MODE_VEB; 10410 else 10411 veb->bridge_mode = BRIDGE_MODE_VEPA; 10412 i40e_config_bridge_mode(veb); 10413 10414 /* create the remaining VSIs attached to this VEB */ 10415 for (v = 0; v < pf->num_alloc_vsi; v++) { 10416 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 10417 continue; 10418 10419 if (pf->vsi[v]->veb_idx == veb->idx) { 10420 struct i40e_vsi *vsi = pf->vsi[v]; 10421 10422 vsi->uplink_seid = veb->seid; 10423 ret = i40e_add_vsi(vsi); 10424 if (ret) { 10425 dev_info(&pf->pdev->dev, 10426 "rebuild of vsi_idx %d failed: %d\n", 10427 v, ret); 10428 goto end_reconstitute; 10429 } 10430 i40e_vsi_reset_stats(vsi); 10431 } 10432 } 10433 10434 /* create any VEBs attached to this VEB - RECURSION */ 10435 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 10436 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 10437 pf->veb[veb_idx]->uplink_seid = veb->seid; 10438 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 10439 if (ret) 10440 break; 10441 } 10442 } 10443 10444 end_reconstitute: 10445 return ret; 10446 } 10447 10448 /** 10449 * i40e_get_capabilities - get info about the HW 10450 * @pf: the PF struct 10451 * @list_type: AQ capability to be queried 10452 **/ 10453 static int i40e_get_capabilities(struct i40e_pf *pf, 10454 enum i40e_admin_queue_opc list_type) 10455 { 10456 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10457 u16 data_size; 10458 int buf_len; 10459 int err; 10460 10461 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10462 do { 10463 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10464 if (!cap_buf) 10465 return -ENOMEM; 10466 10467 /* this loads the data into the hw struct for us */ 10468 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10469 &data_size, list_type, 10470 NULL); 10471 /* data loaded, buffer no longer needed */ 10472 kfree(cap_buf); 10473 10474 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10475 /* retry with a larger buffer */ 10476 buf_len = data_size; 10477 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10478 dev_info(&pf->pdev->dev, 10479 "capability discovery failed, err %pe aq_err %s\n", 10480 ERR_PTR(err), 10481 i40e_aq_str(&pf->hw, 10482 pf->hw.aq.asq_last_status)); 10483 return -ENODEV; 10484 } 10485 } while (err); 10486 10487 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10488 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10489 dev_info(&pf->pdev->dev, 10490 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10491 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10492 pf->hw.func_caps.num_msix_vectors, 10493 pf->hw.func_caps.num_msix_vectors_vf, 10494 pf->hw.func_caps.fd_filters_guaranteed, 10495 pf->hw.func_caps.fd_filters_best_effort, 10496 pf->hw.func_caps.num_tx_qp, 10497 pf->hw.func_caps.num_vsis); 10498 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10499 dev_info(&pf->pdev->dev, 10500 "switch_mode=0x%04x, function_valid=0x%08x\n", 10501 pf->hw.dev_caps.switch_mode, 10502 pf->hw.dev_caps.valid_functions); 10503 dev_info(&pf->pdev->dev, 10504 "SR-IOV=%d, num_vfs for all function=%u\n", 10505 pf->hw.dev_caps.sr_iov_1_1, 10506 pf->hw.dev_caps.num_vfs); 10507 dev_info(&pf->pdev->dev, 10508 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10509 pf->hw.dev_caps.num_vsis, 10510 pf->hw.dev_caps.num_rx_qp, 10511 pf->hw.dev_caps.num_tx_qp); 10512 } 10513 } 10514 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10515 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10516 + pf->hw.func_caps.num_vfs) 10517 if (pf->hw.revision_id == 0 && 10518 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10519 dev_info(&pf->pdev->dev, 10520 "got num_vsis %d, setting num_vsis to %d\n", 10521 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10522 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10523 } 10524 } 10525 return 0; 10526 } 10527 10528 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10529 10530 /** 10531 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10532 * @pf: board private structure 10533 **/ 10534 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10535 { 10536 struct i40e_vsi *vsi; 10537 10538 /* quick workaround for an NVM issue that leaves a critical register 10539 * uninitialized 10540 */ 10541 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10542 static const u32 hkey[] = { 10543 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10544 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10545 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10546 0x95b3a76d}; 10547 int i; 10548 10549 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10550 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10551 } 10552 10553 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10554 return; 10555 10556 /* find existing VSI and see if it needs configuring */ 10557 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10558 10559 /* create a new VSI if none exists */ 10560 if (!vsi) { 10561 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 10562 pf->vsi[pf->lan_vsi]->seid, 0); 10563 if (!vsi) { 10564 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10565 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10566 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10567 return; 10568 } 10569 } 10570 10571 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10572 } 10573 10574 /** 10575 * i40e_fdir_teardown - release the Flow Director resources 10576 * @pf: board private structure 10577 **/ 10578 static void i40e_fdir_teardown(struct i40e_pf *pf) 10579 { 10580 struct i40e_vsi *vsi; 10581 10582 i40e_fdir_filter_exit(pf); 10583 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10584 if (vsi) 10585 i40e_vsi_release(vsi); 10586 } 10587 10588 /** 10589 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10590 * @vsi: PF main vsi 10591 * @seid: seid of main or channel VSIs 10592 * 10593 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10594 * existed before reset 10595 **/ 10596 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10597 { 10598 struct i40e_cloud_filter *cfilter; 10599 struct i40e_pf *pf = vsi->back; 10600 struct hlist_node *node; 10601 int ret; 10602 10603 /* Add cloud filters back if they exist */ 10604 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10605 cloud_node) { 10606 if (cfilter->seid != seid) 10607 continue; 10608 10609 if (cfilter->dst_port) 10610 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10611 true); 10612 else 10613 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10614 10615 if (ret) { 10616 dev_dbg(&pf->pdev->dev, 10617 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10618 ERR_PTR(ret), 10619 i40e_aq_str(&pf->hw, 10620 pf->hw.aq.asq_last_status)); 10621 return ret; 10622 } 10623 } 10624 return 0; 10625 } 10626 10627 /** 10628 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10629 * @vsi: PF main vsi 10630 * 10631 * Rebuilds channel VSIs if they existed before reset 10632 **/ 10633 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10634 { 10635 struct i40e_channel *ch, *ch_tmp; 10636 int ret; 10637 10638 if (list_empty(&vsi->ch_list)) 10639 return 0; 10640 10641 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10642 if (!ch->initialized) 10643 break; 10644 /* Proceed with creation of channel (VMDq2) VSI */ 10645 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10646 if (ret) { 10647 dev_info(&vsi->back->pdev->dev, 10648 "failed to rebuild channels using uplink_seid %u\n", 10649 vsi->uplink_seid); 10650 return ret; 10651 } 10652 /* Reconfigure TX queues using QTX_CTL register */ 10653 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10654 if (ret) { 10655 dev_info(&vsi->back->pdev->dev, 10656 "failed to configure TX rings for channel %u\n", 10657 ch->seid); 10658 return ret; 10659 } 10660 /* update 'next_base_queue' */ 10661 vsi->next_base_queue = vsi->next_base_queue + 10662 ch->num_queue_pairs; 10663 if (ch->max_tx_rate) { 10664 u64 credits = ch->max_tx_rate; 10665 10666 if (i40e_set_bw_limit(vsi, ch->seid, 10667 ch->max_tx_rate)) 10668 return -EINVAL; 10669 10670 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10671 dev_dbg(&vsi->back->pdev->dev, 10672 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10673 ch->max_tx_rate, 10674 credits, 10675 ch->seid); 10676 } 10677 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10678 if (ret) { 10679 dev_dbg(&vsi->back->pdev->dev, 10680 "Failed to rebuild cloud filters for channel VSI %u\n", 10681 ch->seid); 10682 return ret; 10683 } 10684 } 10685 return 0; 10686 } 10687 10688 /** 10689 * i40e_clean_xps_state - clean xps state for every tx_ring 10690 * @vsi: ptr to the VSI 10691 **/ 10692 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10693 { 10694 int i; 10695 10696 if (vsi->tx_rings) 10697 for (i = 0; i < vsi->num_queue_pairs; i++) 10698 if (vsi->tx_rings[i]) 10699 clear_bit(__I40E_TX_XPS_INIT_DONE, 10700 vsi->tx_rings[i]->state); 10701 } 10702 10703 /** 10704 * i40e_prep_for_reset - prep for the core to reset 10705 * @pf: board private structure 10706 * 10707 * Close up the VFs and other things in prep for PF Reset. 10708 **/ 10709 static void i40e_prep_for_reset(struct i40e_pf *pf) 10710 { 10711 struct i40e_hw *hw = &pf->hw; 10712 int ret = 0; 10713 u32 v; 10714 10715 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10716 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10717 return; 10718 if (i40e_check_asq_alive(&pf->hw)) 10719 i40e_vc_notify_reset(pf); 10720 10721 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10722 10723 /* quiesce the VSIs and their queues that are not already DOWN */ 10724 i40e_pf_quiesce_all_vsi(pf); 10725 10726 for (v = 0; v < pf->num_alloc_vsi; v++) { 10727 if (pf->vsi[v]) { 10728 i40e_clean_xps_state(pf->vsi[v]); 10729 pf->vsi[v]->seid = 0; 10730 } 10731 } 10732 10733 i40e_shutdown_adminq(&pf->hw); 10734 10735 /* call shutdown HMC */ 10736 if (hw->hmc.hmc_obj) { 10737 ret = i40e_shutdown_lan_hmc(hw); 10738 if (ret) 10739 dev_warn(&pf->pdev->dev, 10740 "shutdown_lan_hmc failed: %d\n", ret); 10741 } 10742 10743 /* Save the current PTP time so that we can restore the time after the 10744 * reset completes. 10745 */ 10746 i40e_ptp_save_hw_time(pf); 10747 } 10748 10749 /** 10750 * i40e_send_version - update firmware with driver version 10751 * @pf: PF struct 10752 */ 10753 static void i40e_send_version(struct i40e_pf *pf) 10754 { 10755 struct i40e_driver_version dv; 10756 10757 dv.major_version = 0xff; 10758 dv.minor_version = 0xff; 10759 dv.build_version = 0xff; 10760 dv.subbuild_version = 0; 10761 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10762 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10763 } 10764 10765 /** 10766 * i40e_get_oem_version - get OEM specific version information 10767 * @hw: pointer to the hardware structure 10768 **/ 10769 static void i40e_get_oem_version(struct i40e_hw *hw) 10770 { 10771 u16 block_offset = 0xffff; 10772 u16 block_length = 0; 10773 u16 capabilities = 0; 10774 u16 gen_snap = 0; 10775 u16 release = 0; 10776 10777 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10778 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10779 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10780 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10781 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10782 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10783 #define I40E_NVM_OEM_LENGTH 3 10784 10785 /* Check if pointer to OEM version block is valid. */ 10786 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10787 if (block_offset == 0xffff) 10788 return; 10789 10790 /* Check if OEM version block has correct length. */ 10791 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10792 &block_length); 10793 if (block_length < I40E_NVM_OEM_LENGTH) 10794 return; 10795 10796 /* Check if OEM version format is as expected. */ 10797 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10798 &capabilities); 10799 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10800 return; 10801 10802 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10803 &gen_snap); 10804 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10805 &release); 10806 hw->nvm.oem_ver = 10807 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10808 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10809 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10810 } 10811 10812 /** 10813 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10814 * @pf: board private structure 10815 **/ 10816 static int i40e_reset(struct i40e_pf *pf) 10817 { 10818 struct i40e_hw *hw = &pf->hw; 10819 int ret; 10820 10821 ret = i40e_pf_reset(hw); 10822 if (ret) { 10823 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10824 set_bit(__I40E_RESET_FAILED, pf->state); 10825 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10826 } else { 10827 pf->pfr_count++; 10828 } 10829 return ret; 10830 } 10831 10832 /** 10833 * i40e_rebuild - rebuild using a saved config 10834 * @pf: board private structure 10835 * @reinit: if the Main VSI needs to re-initialized. 10836 * @lock_acquired: indicates whether or not the lock has been acquired 10837 * before this function was called. 10838 **/ 10839 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10840 { 10841 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10842 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10843 struct i40e_hw *hw = &pf->hw; 10844 int ret; 10845 u32 val; 10846 int v; 10847 10848 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10849 is_recovery_mode_reported) 10850 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 10851 10852 if (test_bit(__I40E_DOWN, pf->state) && 10853 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10854 goto clear_recovery; 10855 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10856 10857 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10858 ret = i40e_init_adminq(&pf->hw); 10859 if (ret) { 10860 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10861 ERR_PTR(ret), 10862 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10863 goto clear_recovery; 10864 } 10865 i40e_get_oem_version(&pf->hw); 10866 10867 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10868 /* The following delay is necessary for firmware update. */ 10869 mdelay(1000); 10870 } 10871 10872 /* re-verify the eeprom if we just had an EMP reset */ 10873 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10874 i40e_verify_eeprom(pf); 10875 10876 /* if we are going out of or into recovery mode we have to act 10877 * accordingly with regard to resources initialization 10878 * and deinitialization 10879 */ 10880 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10881 if (i40e_get_capabilities(pf, 10882 i40e_aqc_opc_list_func_capabilities)) 10883 goto end_unlock; 10884 10885 if (is_recovery_mode_reported) { 10886 /* we're staying in recovery mode so we'll reinitialize 10887 * misc vector here 10888 */ 10889 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10890 goto end_unlock; 10891 } else { 10892 if (!lock_acquired) 10893 rtnl_lock(); 10894 /* we're going out of recovery mode so we'll free 10895 * the IRQ allocated specifically for recovery mode 10896 * and restore the interrupt scheme 10897 */ 10898 free_irq(pf->pdev->irq, pf); 10899 i40e_clear_interrupt_scheme(pf); 10900 if (i40e_restore_interrupt_scheme(pf)) 10901 goto end_unlock; 10902 } 10903 10904 /* tell the firmware that we're starting */ 10905 i40e_send_version(pf); 10906 10907 /* bail out in case recovery mode was detected, as there is 10908 * no need for further configuration. 10909 */ 10910 goto end_unlock; 10911 } 10912 10913 i40e_clear_pxe_mode(hw); 10914 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10915 if (ret) 10916 goto end_core_reset; 10917 10918 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10919 hw->func_caps.num_rx_qp, 0, 0); 10920 if (ret) { 10921 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10922 goto end_core_reset; 10923 } 10924 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10925 if (ret) { 10926 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10927 goto end_core_reset; 10928 } 10929 10930 #ifdef CONFIG_I40E_DCB 10931 /* Enable FW to write a default DCB config on link-up 10932 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10933 * is not supported with new link speed 10934 */ 10935 if (i40e_is_tc_mqprio_enabled(pf)) { 10936 i40e_aq_set_dcb_parameters(hw, false, NULL); 10937 } else { 10938 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10939 (hw->phy.link_info.link_speed & 10940 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10941 i40e_aq_set_dcb_parameters(hw, false, NULL); 10942 dev_warn(&pf->pdev->dev, 10943 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10944 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10945 } else { 10946 i40e_aq_set_dcb_parameters(hw, true, NULL); 10947 ret = i40e_init_pf_dcb(pf); 10948 if (ret) { 10949 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10950 ret); 10951 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10952 /* Continue without DCB enabled */ 10953 } 10954 } 10955 } 10956 10957 #endif /* CONFIG_I40E_DCB */ 10958 if (!lock_acquired) 10959 rtnl_lock(); 10960 ret = i40e_setup_pf_switch(pf, reinit, true); 10961 if (ret) 10962 goto end_unlock; 10963 10964 /* The driver only wants link up/down and module qualification 10965 * reports from firmware. Note the negative logic. 10966 */ 10967 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10968 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10969 I40E_AQ_EVENT_MEDIA_NA | 10970 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10971 if (ret) 10972 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 10973 ERR_PTR(ret), 10974 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10975 10976 /* Rebuild the VSIs and VEBs that existed before reset. 10977 * They are still in our local switch element arrays, so only 10978 * need to rebuild the switch model in the HW. 10979 * 10980 * If there were VEBs but the reconstitution failed, we'll try 10981 * to recover minimal use by getting the basic PF VSI working. 10982 */ 10983 if (vsi->uplink_seid != pf->mac_seid) { 10984 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10985 /* find the one VEB connected to the MAC, and find orphans */ 10986 for (v = 0; v < I40E_MAX_VEB; v++) { 10987 if (!pf->veb[v]) 10988 continue; 10989 10990 if (pf->veb[v]->uplink_seid == pf->mac_seid || 10991 pf->veb[v]->uplink_seid == 0) { 10992 ret = i40e_reconstitute_veb(pf->veb[v]); 10993 10994 if (!ret) 10995 continue; 10996 10997 /* If Main VEB failed, we're in deep doodoo, 10998 * so give up rebuilding the switch and set up 10999 * for minimal rebuild of PF VSI. 11000 * If orphan failed, we'll report the error 11001 * but try to keep going. 11002 */ 11003 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 11004 dev_info(&pf->pdev->dev, 11005 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 11006 ret); 11007 vsi->uplink_seid = pf->mac_seid; 11008 break; 11009 } else if (pf->veb[v]->uplink_seid == 0) { 11010 dev_info(&pf->pdev->dev, 11011 "rebuild of orphan VEB failed: %d\n", 11012 ret); 11013 } 11014 } 11015 } 11016 } 11017 11018 if (vsi->uplink_seid == pf->mac_seid) { 11019 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11020 /* no VEB, so rebuild only the Main VSI */ 11021 ret = i40e_add_vsi(vsi); 11022 if (ret) { 11023 dev_info(&pf->pdev->dev, 11024 "rebuild of Main VSI failed: %d\n", ret); 11025 goto end_unlock; 11026 } 11027 } 11028 11029 if (vsi->mqprio_qopt.max_rate[0]) { 11030 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11031 vsi->mqprio_qopt.max_rate[0]); 11032 u64 credits = 0; 11033 11034 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11035 if (ret) 11036 goto end_unlock; 11037 11038 credits = max_tx_rate; 11039 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11040 dev_dbg(&vsi->back->pdev->dev, 11041 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11042 max_tx_rate, 11043 credits, 11044 vsi->seid); 11045 } 11046 11047 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11048 if (ret) 11049 goto end_unlock; 11050 11051 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11052 * for this main VSI if they exist 11053 */ 11054 ret = i40e_rebuild_channels(vsi); 11055 if (ret) 11056 goto end_unlock; 11057 11058 /* Reconfigure hardware for allowing smaller MSS in the case 11059 * of TSO, so that we avoid the MDD being fired and causing 11060 * a reset in the case of small MSS+TSO. 11061 */ 11062 #define I40E_REG_MSS 0x000E64DC 11063 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11064 #define I40E_64BYTE_MSS 0x400000 11065 val = rd32(hw, I40E_REG_MSS); 11066 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11067 val &= ~I40E_REG_MSS_MIN_MASK; 11068 val |= I40E_64BYTE_MSS; 11069 wr32(hw, I40E_REG_MSS, val); 11070 } 11071 11072 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11073 msleep(75); 11074 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11075 if (ret) 11076 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11077 ERR_PTR(ret), 11078 i40e_aq_str(&pf->hw, 11079 pf->hw.aq.asq_last_status)); 11080 } 11081 /* reinit the misc interrupt */ 11082 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11083 ret = i40e_setup_misc_vector(pf); 11084 if (ret) 11085 goto end_unlock; 11086 } 11087 11088 /* Add a filter to drop all Flow control frames from any VSI from being 11089 * transmitted. By doing so we stop a malicious VF from sending out 11090 * PAUSE or PFC frames and potentially controlling traffic for other 11091 * PF/VF VSIs. 11092 * The FW can still send Flow control frames if enabled. 11093 */ 11094 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11095 pf->main_vsi_seid); 11096 11097 /* restart the VSIs that were rebuilt and running before the reset */ 11098 i40e_pf_unquiesce_all_vsi(pf); 11099 11100 /* Release the RTNL lock before we start resetting VFs */ 11101 if (!lock_acquired) 11102 rtnl_unlock(); 11103 11104 /* Restore promiscuous settings */ 11105 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11106 if (ret) 11107 dev_warn(&pf->pdev->dev, 11108 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11109 pf->cur_promisc ? "on" : "off", 11110 ERR_PTR(ret), 11111 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11112 11113 i40e_reset_all_vfs(pf, true); 11114 11115 /* tell the firmware that we're starting */ 11116 i40e_send_version(pf); 11117 11118 /* We've already released the lock, so don't do it again */ 11119 goto end_core_reset; 11120 11121 end_unlock: 11122 if (!lock_acquired) 11123 rtnl_unlock(); 11124 end_core_reset: 11125 clear_bit(__I40E_RESET_FAILED, pf->state); 11126 clear_recovery: 11127 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11128 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11129 } 11130 11131 /** 11132 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11133 * @pf: board private structure 11134 * @reinit: if the Main VSI needs to re-initialized. 11135 * @lock_acquired: indicates whether or not the lock has been acquired 11136 * before this function was called. 11137 **/ 11138 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11139 bool lock_acquired) 11140 { 11141 int ret; 11142 11143 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11144 return; 11145 /* Now we wait for GRST to settle out. 11146 * We don't have to delete the VEBs or VSIs from the hw switch 11147 * because the reset will make them disappear. 11148 */ 11149 ret = i40e_reset(pf); 11150 if (!ret) 11151 i40e_rebuild(pf, reinit, lock_acquired); 11152 } 11153 11154 /** 11155 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11156 * @pf: board private structure 11157 * 11158 * Close up the VFs and other things in prep for a Core Reset, 11159 * then get ready to rebuild the world. 11160 * @lock_acquired: indicates whether or not the lock has been acquired 11161 * before this function was called. 11162 **/ 11163 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11164 { 11165 i40e_prep_for_reset(pf); 11166 i40e_reset_and_rebuild(pf, false, lock_acquired); 11167 } 11168 11169 /** 11170 * i40e_handle_mdd_event 11171 * @pf: pointer to the PF structure 11172 * 11173 * Called from the MDD irq handler to identify possibly malicious vfs 11174 **/ 11175 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11176 { 11177 struct i40e_hw *hw = &pf->hw; 11178 bool mdd_detected = false; 11179 struct i40e_vf *vf; 11180 u32 reg; 11181 int i; 11182 11183 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 11184 return; 11185 11186 /* find what triggered the MDD event */ 11187 reg = rd32(hw, I40E_GL_MDET_TX); 11188 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11189 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 11190 I40E_GL_MDET_TX_PF_NUM_SHIFT; 11191 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 11192 I40E_GL_MDET_TX_VF_NUM_SHIFT; 11193 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 11194 I40E_GL_MDET_TX_EVENT_SHIFT; 11195 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 11196 I40E_GL_MDET_TX_QUEUE_SHIFT) - 11197 pf->hw.func_caps.base_queue; 11198 if (netif_msg_tx_err(pf)) 11199 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11200 event, queue, pf_num, vf_num); 11201 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11202 mdd_detected = true; 11203 } 11204 reg = rd32(hw, I40E_GL_MDET_RX); 11205 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11206 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 11207 I40E_GL_MDET_RX_FUNCTION_SHIFT; 11208 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 11209 I40E_GL_MDET_RX_EVENT_SHIFT; 11210 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 11211 I40E_GL_MDET_RX_QUEUE_SHIFT) - 11212 pf->hw.func_caps.base_queue; 11213 if (netif_msg_rx_err(pf)) 11214 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11215 event, queue, func); 11216 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11217 mdd_detected = true; 11218 } 11219 11220 if (mdd_detected) { 11221 reg = rd32(hw, I40E_PF_MDET_TX); 11222 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11223 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11224 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11225 } 11226 reg = rd32(hw, I40E_PF_MDET_RX); 11227 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11228 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11229 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11230 } 11231 } 11232 11233 /* see if one of the VFs needs its hand slapped */ 11234 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11235 vf = &(pf->vf[i]); 11236 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11237 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11238 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11239 vf->num_mdd_events++; 11240 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 11241 i); 11242 dev_info(&pf->pdev->dev, 11243 "Use PF Control I/F to re-enable the VF\n"); 11244 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11245 } 11246 11247 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11248 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11249 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11250 vf->num_mdd_events++; 11251 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 11252 i); 11253 dev_info(&pf->pdev->dev, 11254 "Use PF Control I/F to re-enable the VF\n"); 11255 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11256 } 11257 } 11258 11259 /* re-enable mdd interrupt cause */ 11260 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 11261 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11262 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11263 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11264 i40e_flush(hw); 11265 } 11266 11267 /** 11268 * i40e_service_task - Run the driver's async subtasks 11269 * @work: pointer to work_struct containing our data 11270 **/ 11271 static void i40e_service_task(struct work_struct *work) 11272 { 11273 struct i40e_pf *pf = container_of(work, 11274 struct i40e_pf, 11275 service_task); 11276 unsigned long start_time = jiffies; 11277 11278 /* don't bother with service tasks if a reset is in progress */ 11279 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11280 test_bit(__I40E_SUSPENDED, pf->state)) 11281 return; 11282 11283 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11284 return; 11285 11286 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11287 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 11288 i40e_sync_filters_subtask(pf); 11289 i40e_reset_subtask(pf); 11290 i40e_handle_mdd_event(pf); 11291 i40e_vc_process_vflr_event(pf); 11292 i40e_watchdog_subtask(pf); 11293 i40e_fdir_reinit_subtask(pf); 11294 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11295 /* Client subtask will reopen next time through. */ 11296 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 11297 true); 11298 } else { 11299 i40e_client_subtask(pf); 11300 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11301 pf->state)) 11302 i40e_notify_client_of_l2_param_changes( 11303 pf->vsi[pf->lan_vsi]); 11304 } 11305 i40e_sync_filters_subtask(pf); 11306 } else { 11307 i40e_reset_subtask(pf); 11308 } 11309 11310 i40e_clean_adminq_subtask(pf); 11311 11312 /* flush memory to make sure state is correct before next watchdog */ 11313 smp_mb__before_atomic(); 11314 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11315 11316 /* If the tasks have taken longer than one timer cycle or there 11317 * is more work to be done, reschedule the service task now 11318 * rather than wait for the timer to tick again. 11319 */ 11320 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11321 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11322 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11323 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11324 i40e_service_event_schedule(pf); 11325 } 11326 11327 /** 11328 * i40e_service_timer - timer callback 11329 * @t: timer list pointer 11330 **/ 11331 static void i40e_service_timer(struct timer_list *t) 11332 { 11333 struct i40e_pf *pf = from_timer(pf, t, service_timer); 11334 11335 mod_timer(&pf->service_timer, 11336 round_jiffies(jiffies + pf->service_timer_period)); 11337 i40e_service_event_schedule(pf); 11338 } 11339 11340 /** 11341 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11342 * @vsi: the VSI being configured 11343 **/ 11344 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11345 { 11346 struct i40e_pf *pf = vsi->back; 11347 11348 switch (vsi->type) { 11349 case I40E_VSI_MAIN: 11350 vsi->alloc_queue_pairs = pf->num_lan_qps; 11351 if (!vsi->num_tx_desc) 11352 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11353 I40E_REQ_DESCRIPTOR_MULTIPLE); 11354 if (!vsi->num_rx_desc) 11355 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11356 I40E_REQ_DESCRIPTOR_MULTIPLE); 11357 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11358 vsi->num_q_vectors = pf->num_lan_msix; 11359 else 11360 vsi->num_q_vectors = 1; 11361 11362 break; 11363 11364 case I40E_VSI_FDIR: 11365 vsi->alloc_queue_pairs = 1; 11366 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11367 I40E_REQ_DESCRIPTOR_MULTIPLE); 11368 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11369 I40E_REQ_DESCRIPTOR_MULTIPLE); 11370 vsi->num_q_vectors = pf->num_fdsb_msix; 11371 break; 11372 11373 case I40E_VSI_VMDQ2: 11374 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11375 if (!vsi->num_tx_desc) 11376 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11377 I40E_REQ_DESCRIPTOR_MULTIPLE); 11378 if (!vsi->num_rx_desc) 11379 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11380 I40E_REQ_DESCRIPTOR_MULTIPLE); 11381 vsi->num_q_vectors = pf->num_vmdq_msix; 11382 break; 11383 11384 case I40E_VSI_SRIOV: 11385 vsi->alloc_queue_pairs = pf->num_vf_qps; 11386 if (!vsi->num_tx_desc) 11387 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11388 I40E_REQ_DESCRIPTOR_MULTIPLE); 11389 if (!vsi->num_rx_desc) 11390 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11391 I40E_REQ_DESCRIPTOR_MULTIPLE); 11392 break; 11393 11394 default: 11395 WARN_ON(1); 11396 return -ENODATA; 11397 } 11398 11399 if (is_kdump_kernel()) { 11400 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11401 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11402 } 11403 11404 return 0; 11405 } 11406 11407 /** 11408 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11409 * @vsi: VSI pointer 11410 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11411 * 11412 * On error: returns error code (negative) 11413 * On success: returns 0 11414 **/ 11415 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11416 { 11417 struct i40e_ring **next_rings; 11418 int size; 11419 int ret = 0; 11420 11421 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11422 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11423 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11424 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11425 if (!vsi->tx_rings) 11426 return -ENOMEM; 11427 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11428 if (i40e_enabled_xdp_vsi(vsi)) { 11429 vsi->xdp_rings = next_rings; 11430 next_rings += vsi->alloc_queue_pairs; 11431 } 11432 vsi->rx_rings = next_rings; 11433 11434 if (alloc_qvectors) { 11435 /* allocate memory for q_vector pointers */ 11436 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11437 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11438 if (!vsi->q_vectors) { 11439 ret = -ENOMEM; 11440 goto err_vectors; 11441 } 11442 } 11443 return ret; 11444 11445 err_vectors: 11446 kfree(vsi->tx_rings); 11447 return ret; 11448 } 11449 11450 /** 11451 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11452 * @pf: board private structure 11453 * @type: type of VSI 11454 * 11455 * On error: returns error code (negative) 11456 * On success: returns vsi index in PF (positive) 11457 **/ 11458 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11459 { 11460 int ret = -ENODEV; 11461 struct i40e_vsi *vsi; 11462 int vsi_idx; 11463 int i; 11464 11465 /* Need to protect the allocation of the VSIs at the PF level */ 11466 mutex_lock(&pf->switch_mutex); 11467 11468 /* VSI list may be fragmented if VSI creation/destruction has 11469 * been happening. We can afford to do a quick scan to look 11470 * for any free VSIs in the list. 11471 * 11472 * find next empty vsi slot, looping back around if necessary 11473 */ 11474 i = pf->next_vsi; 11475 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11476 i++; 11477 if (i >= pf->num_alloc_vsi) { 11478 i = 0; 11479 while (i < pf->next_vsi && pf->vsi[i]) 11480 i++; 11481 } 11482 11483 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11484 vsi_idx = i; /* Found one! */ 11485 } else { 11486 ret = -ENODEV; 11487 goto unlock_pf; /* out of VSI slots! */ 11488 } 11489 pf->next_vsi = ++i; 11490 11491 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11492 if (!vsi) { 11493 ret = -ENOMEM; 11494 goto unlock_pf; 11495 } 11496 vsi->type = type; 11497 vsi->back = pf; 11498 set_bit(__I40E_VSI_DOWN, vsi->state); 11499 vsi->flags = 0; 11500 vsi->idx = vsi_idx; 11501 vsi->int_rate_limit = 0; 11502 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11503 pf->rss_table_size : 64; 11504 vsi->netdev_registered = false; 11505 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11506 hash_init(vsi->mac_filter_hash); 11507 vsi->irqs_ready = false; 11508 11509 if (type == I40E_VSI_MAIN) { 11510 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11511 if (!vsi->af_xdp_zc_qps) 11512 goto err_rings; 11513 } 11514 11515 ret = i40e_set_num_rings_in_vsi(vsi); 11516 if (ret) 11517 goto err_rings; 11518 11519 ret = i40e_vsi_alloc_arrays(vsi, true); 11520 if (ret) 11521 goto err_rings; 11522 11523 /* Setup default MSIX irq handler for VSI */ 11524 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11525 11526 /* Initialize VSI lock */ 11527 spin_lock_init(&vsi->mac_filter_hash_lock); 11528 pf->vsi[vsi_idx] = vsi; 11529 ret = vsi_idx; 11530 goto unlock_pf; 11531 11532 err_rings: 11533 bitmap_free(vsi->af_xdp_zc_qps); 11534 pf->next_vsi = i - 1; 11535 kfree(vsi); 11536 unlock_pf: 11537 mutex_unlock(&pf->switch_mutex); 11538 return ret; 11539 } 11540 11541 /** 11542 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11543 * @vsi: VSI pointer 11544 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11545 * 11546 * On error: returns error code (negative) 11547 * On success: returns 0 11548 **/ 11549 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11550 { 11551 /* free the ring and vector containers */ 11552 if (free_qvectors) { 11553 kfree(vsi->q_vectors); 11554 vsi->q_vectors = NULL; 11555 } 11556 kfree(vsi->tx_rings); 11557 vsi->tx_rings = NULL; 11558 vsi->rx_rings = NULL; 11559 vsi->xdp_rings = NULL; 11560 } 11561 11562 /** 11563 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11564 * and lookup table 11565 * @vsi: Pointer to VSI structure 11566 */ 11567 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11568 { 11569 if (!vsi) 11570 return; 11571 11572 kfree(vsi->rss_hkey_user); 11573 vsi->rss_hkey_user = NULL; 11574 11575 kfree(vsi->rss_lut_user); 11576 vsi->rss_lut_user = NULL; 11577 } 11578 11579 /** 11580 * i40e_vsi_clear - Deallocate the VSI provided 11581 * @vsi: the VSI being un-configured 11582 **/ 11583 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11584 { 11585 struct i40e_pf *pf; 11586 11587 if (!vsi) 11588 return 0; 11589 11590 if (!vsi->back) 11591 goto free_vsi; 11592 pf = vsi->back; 11593 11594 mutex_lock(&pf->switch_mutex); 11595 if (!pf->vsi[vsi->idx]) { 11596 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11597 vsi->idx, vsi->idx, vsi->type); 11598 goto unlock_vsi; 11599 } 11600 11601 if (pf->vsi[vsi->idx] != vsi) { 11602 dev_err(&pf->pdev->dev, 11603 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11604 pf->vsi[vsi->idx]->idx, 11605 pf->vsi[vsi->idx]->type, 11606 vsi->idx, vsi->type); 11607 goto unlock_vsi; 11608 } 11609 11610 /* updates the PF for this cleared vsi */ 11611 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11612 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11613 11614 bitmap_free(vsi->af_xdp_zc_qps); 11615 i40e_vsi_free_arrays(vsi, true); 11616 i40e_clear_rss_config_user(vsi); 11617 11618 pf->vsi[vsi->idx] = NULL; 11619 if (vsi->idx < pf->next_vsi) 11620 pf->next_vsi = vsi->idx; 11621 11622 unlock_vsi: 11623 mutex_unlock(&pf->switch_mutex); 11624 free_vsi: 11625 kfree(vsi); 11626 11627 return 0; 11628 } 11629 11630 /** 11631 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11632 * @vsi: the VSI being cleaned 11633 **/ 11634 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11635 { 11636 int i; 11637 11638 if (vsi->tx_rings && vsi->tx_rings[0]) { 11639 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11640 kfree_rcu(vsi->tx_rings[i], rcu); 11641 WRITE_ONCE(vsi->tx_rings[i], NULL); 11642 WRITE_ONCE(vsi->rx_rings[i], NULL); 11643 if (vsi->xdp_rings) 11644 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11645 } 11646 } 11647 } 11648 11649 /** 11650 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11651 * @vsi: the VSI being configured 11652 **/ 11653 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11654 { 11655 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11656 struct i40e_pf *pf = vsi->back; 11657 struct i40e_ring *ring; 11658 11659 /* Set basic values in the rings to be used later during open() */ 11660 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11661 /* allocate space for both Tx and Rx in one shot */ 11662 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11663 if (!ring) 11664 goto err_out; 11665 11666 ring->queue_index = i; 11667 ring->reg_idx = vsi->base_queue + i; 11668 ring->ring_active = false; 11669 ring->vsi = vsi; 11670 ring->netdev = vsi->netdev; 11671 ring->dev = &pf->pdev->dev; 11672 ring->count = vsi->num_tx_desc; 11673 ring->size = 0; 11674 ring->dcb_tc = 0; 11675 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11676 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11677 ring->itr_setting = pf->tx_itr_default; 11678 WRITE_ONCE(vsi->tx_rings[i], ring++); 11679 11680 if (!i40e_enabled_xdp_vsi(vsi)) 11681 goto setup_rx; 11682 11683 ring->queue_index = vsi->alloc_queue_pairs + i; 11684 ring->reg_idx = vsi->base_queue + ring->queue_index; 11685 ring->ring_active = false; 11686 ring->vsi = vsi; 11687 ring->netdev = NULL; 11688 ring->dev = &pf->pdev->dev; 11689 ring->count = vsi->num_tx_desc; 11690 ring->size = 0; 11691 ring->dcb_tc = 0; 11692 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11693 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11694 set_ring_xdp(ring); 11695 ring->itr_setting = pf->tx_itr_default; 11696 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11697 11698 setup_rx: 11699 ring->queue_index = i; 11700 ring->reg_idx = vsi->base_queue + i; 11701 ring->ring_active = false; 11702 ring->vsi = vsi; 11703 ring->netdev = vsi->netdev; 11704 ring->dev = &pf->pdev->dev; 11705 ring->count = vsi->num_rx_desc; 11706 ring->size = 0; 11707 ring->dcb_tc = 0; 11708 ring->itr_setting = pf->rx_itr_default; 11709 WRITE_ONCE(vsi->rx_rings[i], ring); 11710 } 11711 11712 return 0; 11713 11714 err_out: 11715 i40e_vsi_clear_rings(vsi); 11716 return -ENOMEM; 11717 } 11718 11719 /** 11720 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11721 * @pf: board private structure 11722 * @vectors: the number of MSI-X vectors to request 11723 * 11724 * Returns the number of vectors reserved, or error 11725 **/ 11726 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11727 { 11728 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11729 I40E_MIN_MSIX, vectors); 11730 if (vectors < 0) { 11731 dev_info(&pf->pdev->dev, 11732 "MSI-X vector reservation failed: %d\n", vectors); 11733 vectors = 0; 11734 } 11735 11736 return vectors; 11737 } 11738 11739 /** 11740 * i40e_init_msix - Setup the MSIX capability 11741 * @pf: board private structure 11742 * 11743 * Work with the OS to set up the MSIX vectors needed. 11744 * 11745 * Returns the number of vectors reserved or negative on failure 11746 **/ 11747 static int i40e_init_msix(struct i40e_pf *pf) 11748 { 11749 struct i40e_hw *hw = &pf->hw; 11750 int cpus, extra_vectors; 11751 int vectors_left; 11752 int v_budget, i; 11753 int v_actual; 11754 int iwarp_requested = 0; 11755 11756 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11757 return -ENODEV; 11758 11759 /* The number of vectors we'll request will be comprised of: 11760 * - Add 1 for "other" cause for Admin Queue events, etc. 11761 * - The number of LAN queue pairs 11762 * - Queues being used for RSS. 11763 * We don't need as many as max_rss_size vectors. 11764 * use rss_size instead in the calculation since that 11765 * is governed by number of cpus in the system. 11766 * - assumes symmetric Tx/Rx pairing 11767 * - The number of VMDq pairs 11768 * - The CPU count within the NUMA node if iWARP is enabled 11769 * Once we count this up, try the request. 11770 * 11771 * If we can't get what we want, we'll simplify to nearly nothing 11772 * and try again. If that still fails, we punt. 11773 */ 11774 vectors_left = hw->func_caps.num_msix_vectors; 11775 v_budget = 0; 11776 11777 /* reserve one vector for miscellaneous handler */ 11778 if (vectors_left) { 11779 v_budget++; 11780 vectors_left--; 11781 } 11782 11783 /* reserve some vectors for the main PF traffic queues. Initially we 11784 * only reserve at most 50% of the available vectors, in the case that 11785 * the number of online CPUs is large. This ensures that we can enable 11786 * extra features as well. Once we've enabled the other features, we 11787 * will use any remaining vectors to reach as close as we can to the 11788 * number of online CPUs. 11789 */ 11790 cpus = num_online_cpus(); 11791 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11792 vectors_left -= pf->num_lan_msix; 11793 11794 /* reserve one vector for sideband flow director */ 11795 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11796 if (vectors_left) { 11797 pf->num_fdsb_msix = 1; 11798 v_budget++; 11799 vectors_left--; 11800 } else { 11801 pf->num_fdsb_msix = 0; 11802 } 11803 } 11804 11805 /* can we reserve enough for iWARP? */ 11806 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11807 iwarp_requested = pf->num_iwarp_msix; 11808 11809 if (!vectors_left) 11810 pf->num_iwarp_msix = 0; 11811 else if (vectors_left < pf->num_iwarp_msix) 11812 pf->num_iwarp_msix = 1; 11813 v_budget += pf->num_iwarp_msix; 11814 vectors_left -= pf->num_iwarp_msix; 11815 } 11816 11817 /* any vectors left over go for VMDq support */ 11818 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11819 if (!vectors_left) { 11820 pf->num_vmdq_msix = 0; 11821 pf->num_vmdq_qps = 0; 11822 } else { 11823 int vmdq_vecs_wanted = 11824 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11825 int vmdq_vecs = 11826 min_t(int, vectors_left, vmdq_vecs_wanted); 11827 11828 /* if we're short on vectors for what's desired, we limit 11829 * the queues per vmdq. If this is still more than are 11830 * available, the user will need to change the number of 11831 * queues/vectors used by the PF later with the ethtool 11832 * channels command 11833 */ 11834 if (vectors_left < vmdq_vecs_wanted) { 11835 pf->num_vmdq_qps = 1; 11836 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11837 vmdq_vecs = min_t(int, 11838 vectors_left, 11839 vmdq_vecs_wanted); 11840 } 11841 pf->num_vmdq_msix = pf->num_vmdq_qps; 11842 11843 v_budget += vmdq_vecs; 11844 vectors_left -= vmdq_vecs; 11845 } 11846 } 11847 11848 /* On systems with a large number of SMP cores, we previously limited 11849 * the number of vectors for num_lan_msix to be at most 50% of the 11850 * available vectors, to allow for other features. Now, we add back 11851 * the remaining vectors. However, we ensure that the total 11852 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11853 * calculate the number of vectors we can add without going over the 11854 * cap of CPUs. For systems with a small number of CPUs this will be 11855 * zero. 11856 */ 11857 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11858 pf->num_lan_msix += extra_vectors; 11859 vectors_left -= extra_vectors; 11860 11861 WARN(vectors_left < 0, 11862 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11863 11864 v_budget += pf->num_lan_msix; 11865 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11866 GFP_KERNEL); 11867 if (!pf->msix_entries) 11868 return -ENOMEM; 11869 11870 for (i = 0; i < v_budget; i++) 11871 pf->msix_entries[i].entry = i; 11872 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11873 11874 if (v_actual < I40E_MIN_MSIX) { 11875 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11876 kfree(pf->msix_entries); 11877 pf->msix_entries = NULL; 11878 pci_disable_msix(pf->pdev); 11879 return -ENODEV; 11880 11881 } else if (v_actual == I40E_MIN_MSIX) { 11882 /* Adjust for minimal MSIX use */ 11883 pf->num_vmdq_vsis = 0; 11884 pf->num_vmdq_qps = 0; 11885 pf->num_lan_qps = 1; 11886 pf->num_lan_msix = 1; 11887 11888 } else if (v_actual != v_budget) { 11889 /* If we have limited resources, we will start with no vectors 11890 * for the special features and then allocate vectors to some 11891 * of these features based on the policy and at the end disable 11892 * the features that did not get any vectors. 11893 */ 11894 int vec; 11895 11896 dev_info(&pf->pdev->dev, 11897 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11898 v_actual, v_budget); 11899 /* reserve the misc vector */ 11900 vec = v_actual - 1; 11901 11902 /* Scale vector usage down */ 11903 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11904 pf->num_vmdq_vsis = 1; 11905 pf->num_vmdq_qps = 1; 11906 11907 /* partition out the remaining vectors */ 11908 switch (vec) { 11909 case 2: 11910 pf->num_lan_msix = 1; 11911 break; 11912 case 3: 11913 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11914 pf->num_lan_msix = 1; 11915 pf->num_iwarp_msix = 1; 11916 } else { 11917 pf->num_lan_msix = 2; 11918 } 11919 break; 11920 default: 11921 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11922 pf->num_iwarp_msix = min_t(int, (vec / 3), 11923 iwarp_requested); 11924 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11925 I40E_DEFAULT_NUM_VMDQ_VSI); 11926 } else { 11927 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11928 I40E_DEFAULT_NUM_VMDQ_VSI); 11929 } 11930 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11931 pf->num_fdsb_msix = 1; 11932 vec--; 11933 } 11934 pf->num_lan_msix = min_t(int, 11935 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11936 pf->num_lan_msix); 11937 pf->num_lan_qps = pf->num_lan_msix; 11938 break; 11939 } 11940 } 11941 11942 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 11943 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11944 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 11945 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 11946 } 11947 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 11948 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11949 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 11950 } 11951 11952 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 11953 pf->num_iwarp_msix == 0) { 11954 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11955 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 11956 } 11957 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11958 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11959 pf->num_lan_msix, 11960 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11961 pf->num_fdsb_msix, 11962 pf->num_iwarp_msix); 11963 11964 return v_actual; 11965 } 11966 11967 /** 11968 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11969 * @vsi: the VSI being configured 11970 * @v_idx: index of the vector in the vsi struct 11971 * 11972 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11973 **/ 11974 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 11975 { 11976 struct i40e_q_vector *q_vector; 11977 11978 /* allocate q_vector */ 11979 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11980 if (!q_vector) 11981 return -ENOMEM; 11982 11983 q_vector->vsi = vsi; 11984 q_vector->v_idx = v_idx; 11985 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11986 11987 if (vsi->netdev) 11988 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 11989 11990 /* tie q_vector and vsi together */ 11991 vsi->q_vectors[v_idx] = q_vector; 11992 11993 return 0; 11994 } 11995 11996 /** 11997 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11998 * @vsi: the VSI being configured 11999 * 12000 * We allocate one q_vector per queue interrupt. If allocation fails we 12001 * return -ENOMEM. 12002 **/ 12003 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 12004 { 12005 struct i40e_pf *pf = vsi->back; 12006 int err, v_idx, num_q_vectors; 12007 12008 /* if not MSIX, give the one vector only to the LAN VSI */ 12009 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12010 num_q_vectors = vsi->num_q_vectors; 12011 else if (vsi == pf->vsi[pf->lan_vsi]) 12012 num_q_vectors = 1; 12013 else 12014 return -EINVAL; 12015 12016 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 12017 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 12018 if (err) 12019 goto err_out; 12020 } 12021 12022 return 0; 12023 12024 err_out: 12025 while (v_idx--) 12026 i40e_free_q_vector(vsi, v_idx); 12027 12028 return err; 12029 } 12030 12031 /** 12032 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12033 * @pf: board private structure to initialize 12034 **/ 12035 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12036 { 12037 int vectors = 0; 12038 ssize_t size; 12039 12040 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12041 vectors = i40e_init_msix(pf); 12042 if (vectors < 0) { 12043 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12044 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12045 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12046 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12047 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12048 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12049 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12050 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12051 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12052 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12053 12054 /* rework the queue expectations without MSIX */ 12055 i40e_determine_queue_usage(pf); 12056 } 12057 } 12058 12059 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12060 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12061 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12062 vectors = pci_enable_msi(pf->pdev); 12063 if (vectors < 0) { 12064 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12065 vectors); 12066 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12067 } 12068 vectors = 1; /* one MSI or Legacy vector */ 12069 } 12070 12071 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12072 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12073 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12074 12075 /* set up vector assignment tracking */ 12076 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12077 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12078 if (!pf->irq_pile) 12079 return -ENOMEM; 12080 12081 pf->irq_pile->num_entries = vectors; 12082 12083 /* track first vector for misc interrupts, ignore return */ 12084 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12085 12086 return 0; 12087 } 12088 12089 /** 12090 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12091 * @pf: private board data structure 12092 * 12093 * Restore the interrupt scheme that was cleared when we suspended the 12094 * device. This should be called during resume to re-allocate the q_vectors 12095 * and reacquire IRQs. 12096 */ 12097 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12098 { 12099 int err, i; 12100 12101 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12102 * scheme. We need to re-enabled them here in order to attempt to 12103 * re-acquire the MSI or MSI-X vectors 12104 */ 12105 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12106 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12107 12108 err = i40e_init_interrupt_scheme(pf); 12109 if (err) 12110 return err; 12111 12112 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12113 * rings together again. 12114 */ 12115 for (i = 0; i < pf->num_alloc_vsi; i++) { 12116 if (pf->vsi[i]) { 12117 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 12118 if (err) 12119 goto err_unwind; 12120 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 12121 } 12122 } 12123 12124 err = i40e_setup_misc_vector(pf); 12125 if (err) 12126 goto err_unwind; 12127 12128 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12129 i40e_client_update_msix_info(pf); 12130 12131 return 0; 12132 12133 err_unwind: 12134 while (i--) { 12135 if (pf->vsi[i]) 12136 i40e_vsi_free_q_vectors(pf->vsi[i]); 12137 } 12138 12139 return err; 12140 } 12141 12142 /** 12143 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12144 * non queue events in recovery mode 12145 * @pf: board private structure 12146 * 12147 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12148 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12149 * This is handled differently than in recovery mode since no Tx/Rx resources 12150 * are being allocated. 12151 **/ 12152 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12153 { 12154 int err; 12155 12156 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12157 err = i40e_setup_misc_vector(pf); 12158 12159 if (err) { 12160 dev_info(&pf->pdev->dev, 12161 "MSI-X misc vector request failed, error %d\n", 12162 err); 12163 return err; 12164 } 12165 } else { 12166 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12167 12168 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12169 pf->int_name, pf); 12170 12171 if (err) { 12172 dev_info(&pf->pdev->dev, 12173 "MSI/legacy misc vector request failed, error %d\n", 12174 err); 12175 return err; 12176 } 12177 i40e_enable_misc_int_causes(pf); 12178 i40e_irq_dynamic_enable_icr0(pf); 12179 } 12180 12181 return 0; 12182 } 12183 12184 /** 12185 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12186 * @pf: board private structure 12187 * 12188 * This sets up the handler for MSIX 0, which is used to manage the 12189 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12190 * when in MSI or Legacy interrupt mode. 12191 **/ 12192 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12193 { 12194 struct i40e_hw *hw = &pf->hw; 12195 int err = 0; 12196 12197 /* Only request the IRQ once, the first time through. */ 12198 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12199 err = request_irq(pf->msix_entries[0].vector, 12200 i40e_intr, 0, pf->int_name, pf); 12201 if (err) { 12202 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12203 dev_info(&pf->pdev->dev, 12204 "request_irq for %s failed: %d\n", 12205 pf->int_name, err); 12206 return -EFAULT; 12207 } 12208 } 12209 12210 i40e_enable_misc_int_causes(pf); 12211 12212 /* associate no queues to the misc vector */ 12213 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12214 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12215 12216 i40e_flush(hw); 12217 12218 i40e_irq_dynamic_enable_icr0(pf); 12219 12220 return err; 12221 } 12222 12223 /** 12224 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12225 * @vsi: Pointer to vsi structure 12226 * @seed: Buffter to store the hash keys 12227 * @lut: Buffer to store the lookup table entries 12228 * @lut_size: Size of buffer to store the lookup table entries 12229 * 12230 * Return 0 on success, negative on failure 12231 */ 12232 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12233 u8 *lut, u16 lut_size) 12234 { 12235 struct i40e_pf *pf = vsi->back; 12236 struct i40e_hw *hw = &pf->hw; 12237 int ret = 0; 12238 12239 if (seed) { 12240 ret = i40e_aq_get_rss_key(hw, vsi->id, 12241 (struct i40e_aqc_get_set_rss_key_data *)seed); 12242 if (ret) { 12243 dev_info(&pf->pdev->dev, 12244 "Cannot get RSS key, err %pe aq_err %s\n", 12245 ERR_PTR(ret), 12246 i40e_aq_str(&pf->hw, 12247 pf->hw.aq.asq_last_status)); 12248 return ret; 12249 } 12250 } 12251 12252 if (lut) { 12253 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12254 12255 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12256 if (ret) { 12257 dev_info(&pf->pdev->dev, 12258 "Cannot get RSS lut, err %pe aq_err %s\n", 12259 ERR_PTR(ret), 12260 i40e_aq_str(&pf->hw, 12261 pf->hw.aq.asq_last_status)); 12262 return ret; 12263 } 12264 } 12265 12266 return ret; 12267 } 12268 12269 /** 12270 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12271 * @vsi: Pointer to vsi structure 12272 * @seed: RSS hash seed 12273 * @lut: Lookup table 12274 * @lut_size: Lookup table size 12275 * 12276 * Returns 0 on success, negative on failure 12277 **/ 12278 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12279 const u8 *lut, u16 lut_size) 12280 { 12281 struct i40e_pf *pf = vsi->back; 12282 struct i40e_hw *hw = &pf->hw; 12283 u16 vf_id = vsi->vf_id; 12284 u8 i; 12285 12286 /* Fill out hash function seed */ 12287 if (seed) { 12288 u32 *seed_dw = (u32 *)seed; 12289 12290 if (vsi->type == I40E_VSI_MAIN) { 12291 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12292 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12293 } else if (vsi->type == I40E_VSI_SRIOV) { 12294 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12295 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12296 } else { 12297 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12298 } 12299 } 12300 12301 if (lut) { 12302 u32 *lut_dw = (u32 *)lut; 12303 12304 if (vsi->type == I40E_VSI_MAIN) { 12305 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12306 return -EINVAL; 12307 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12308 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12309 } else if (vsi->type == I40E_VSI_SRIOV) { 12310 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12311 return -EINVAL; 12312 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12313 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12314 } else { 12315 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12316 } 12317 } 12318 i40e_flush(hw); 12319 12320 return 0; 12321 } 12322 12323 /** 12324 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12325 * @vsi: Pointer to VSI structure 12326 * @seed: Buffer to store the keys 12327 * @lut: Buffer to store the lookup table entries 12328 * @lut_size: Size of buffer to store the lookup table entries 12329 * 12330 * Returns 0 on success, negative on failure 12331 */ 12332 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12333 u8 *lut, u16 lut_size) 12334 { 12335 struct i40e_pf *pf = vsi->back; 12336 struct i40e_hw *hw = &pf->hw; 12337 u16 i; 12338 12339 if (seed) { 12340 u32 *seed_dw = (u32 *)seed; 12341 12342 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12343 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12344 } 12345 if (lut) { 12346 u32 *lut_dw = (u32 *)lut; 12347 12348 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12349 return -EINVAL; 12350 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12351 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12352 } 12353 12354 return 0; 12355 } 12356 12357 /** 12358 * i40e_config_rss - Configure RSS keys and lut 12359 * @vsi: Pointer to VSI structure 12360 * @seed: RSS hash seed 12361 * @lut: Lookup table 12362 * @lut_size: Lookup table size 12363 * 12364 * Returns 0 on success, negative on failure 12365 */ 12366 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12367 { 12368 struct i40e_pf *pf = vsi->back; 12369 12370 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12371 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12372 else 12373 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12374 } 12375 12376 /** 12377 * i40e_get_rss - Get RSS keys and lut 12378 * @vsi: Pointer to VSI structure 12379 * @seed: Buffer to store the keys 12380 * @lut: Buffer to store the lookup table entries 12381 * @lut_size: Size of buffer to store the lookup table entries 12382 * 12383 * Returns 0 on success, negative on failure 12384 */ 12385 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12386 { 12387 struct i40e_pf *pf = vsi->back; 12388 12389 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12390 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12391 else 12392 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12393 } 12394 12395 /** 12396 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12397 * @pf: Pointer to board private structure 12398 * @lut: Lookup table 12399 * @rss_table_size: Lookup table size 12400 * @rss_size: Range of queue number for hashing 12401 */ 12402 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12403 u16 rss_table_size, u16 rss_size) 12404 { 12405 u16 i; 12406 12407 for (i = 0; i < rss_table_size; i++) 12408 lut[i] = i % rss_size; 12409 } 12410 12411 /** 12412 * i40e_pf_config_rss - Prepare for RSS if used 12413 * @pf: board private structure 12414 **/ 12415 static int i40e_pf_config_rss(struct i40e_pf *pf) 12416 { 12417 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12418 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12419 u8 *lut; 12420 struct i40e_hw *hw = &pf->hw; 12421 u32 reg_val; 12422 u64 hena; 12423 int ret; 12424 12425 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12426 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12427 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12428 hena |= i40e_pf_get_default_rss_hena(pf); 12429 12430 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12431 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12432 12433 /* Determine the RSS table size based on the hardware capabilities */ 12434 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12435 reg_val = (pf->rss_table_size == 512) ? 12436 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12437 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12438 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12439 12440 /* Determine the RSS size of the VSI */ 12441 if (!vsi->rss_size) { 12442 u16 qcount; 12443 /* If the firmware does something weird during VSI init, we 12444 * could end up with zero TCs. Check for that to avoid 12445 * divide-by-zero. It probably won't pass traffic, but it also 12446 * won't panic. 12447 */ 12448 qcount = vsi->num_queue_pairs / 12449 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12450 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12451 } 12452 if (!vsi->rss_size) 12453 return -EINVAL; 12454 12455 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12456 if (!lut) 12457 return -ENOMEM; 12458 12459 /* Use user configured lut if there is one, otherwise use default */ 12460 if (vsi->rss_lut_user) 12461 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12462 else 12463 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12464 12465 /* Use user configured hash key if there is one, otherwise 12466 * use default. 12467 */ 12468 if (vsi->rss_hkey_user) 12469 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12470 else 12471 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12472 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12473 kfree(lut); 12474 12475 return ret; 12476 } 12477 12478 /** 12479 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12480 * @pf: board private structure 12481 * @queue_count: the requested queue count for rss. 12482 * 12483 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12484 * count which may be different from the requested queue count. 12485 * Note: expects to be called while under rtnl_lock() 12486 **/ 12487 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12488 { 12489 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12490 int new_rss_size; 12491 12492 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12493 return 0; 12494 12495 queue_count = min_t(int, queue_count, num_online_cpus()); 12496 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12497 12498 if (queue_count != vsi->num_queue_pairs) { 12499 u16 qcount; 12500 12501 vsi->req_queue_pairs = queue_count; 12502 i40e_prep_for_reset(pf); 12503 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12504 return pf->alloc_rss_size; 12505 12506 pf->alloc_rss_size = new_rss_size; 12507 12508 i40e_reset_and_rebuild(pf, true, true); 12509 12510 /* Discard the user configured hash keys and lut, if less 12511 * queues are enabled. 12512 */ 12513 if (queue_count < vsi->rss_size) { 12514 i40e_clear_rss_config_user(vsi); 12515 dev_dbg(&pf->pdev->dev, 12516 "discard user configured hash keys and lut\n"); 12517 } 12518 12519 /* Reset vsi->rss_size, as number of enabled queues changed */ 12520 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12521 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12522 12523 i40e_pf_config_rss(pf); 12524 } 12525 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12526 vsi->req_queue_pairs, pf->rss_size_max); 12527 return pf->alloc_rss_size; 12528 } 12529 12530 /** 12531 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12532 * @pf: board private structure 12533 **/ 12534 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12535 { 12536 bool min_valid, max_valid; 12537 u32 max_bw, min_bw; 12538 int status; 12539 12540 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12541 &min_valid, &max_valid); 12542 12543 if (!status) { 12544 if (min_valid) 12545 pf->min_bw = min_bw; 12546 if (max_valid) 12547 pf->max_bw = max_bw; 12548 } 12549 12550 return status; 12551 } 12552 12553 /** 12554 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12555 * @pf: board private structure 12556 **/ 12557 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12558 { 12559 struct i40e_aqc_configure_partition_bw_data bw_data; 12560 int status; 12561 12562 memset(&bw_data, 0, sizeof(bw_data)); 12563 12564 /* Set the valid bit for this PF */ 12565 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12566 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12567 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12568 12569 /* Set the new bandwidths */ 12570 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12571 12572 return status; 12573 } 12574 12575 /** 12576 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12577 * @pf: board private structure 12578 **/ 12579 int i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12580 { 12581 /* Commit temporary BW setting to permanent NVM image */ 12582 enum i40e_admin_queue_err last_aq_status; 12583 u16 nvm_word; 12584 int ret; 12585 12586 if (pf->hw.partition_id != 1) { 12587 dev_info(&pf->pdev->dev, 12588 "Commit BW only works on partition 1! This is partition %d", 12589 pf->hw.partition_id); 12590 ret = -EOPNOTSUPP; 12591 goto bw_commit_out; 12592 } 12593 12594 /* Acquire NVM for read access */ 12595 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12596 last_aq_status = pf->hw.aq.asq_last_status; 12597 if (ret) { 12598 dev_info(&pf->pdev->dev, 12599 "Cannot acquire NVM for read access, err %pe aq_err %s\n", 12600 ERR_PTR(ret), 12601 i40e_aq_str(&pf->hw, last_aq_status)); 12602 goto bw_commit_out; 12603 } 12604 12605 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12606 ret = i40e_aq_read_nvm(&pf->hw, 12607 I40E_SR_NVM_CONTROL_WORD, 12608 0x10, sizeof(nvm_word), &nvm_word, 12609 false, NULL); 12610 /* Save off last admin queue command status before releasing 12611 * the NVM 12612 */ 12613 last_aq_status = pf->hw.aq.asq_last_status; 12614 i40e_release_nvm(&pf->hw); 12615 if (ret) { 12616 dev_info(&pf->pdev->dev, "NVM read error, err %pe aq_err %s\n", 12617 ERR_PTR(ret), 12618 i40e_aq_str(&pf->hw, last_aq_status)); 12619 goto bw_commit_out; 12620 } 12621 12622 /* Wait a bit for NVM release to complete */ 12623 msleep(50); 12624 12625 /* Acquire NVM for write access */ 12626 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12627 last_aq_status = pf->hw.aq.asq_last_status; 12628 if (ret) { 12629 dev_info(&pf->pdev->dev, 12630 "Cannot acquire NVM for write access, err %pe aq_err %s\n", 12631 ERR_PTR(ret), 12632 i40e_aq_str(&pf->hw, last_aq_status)); 12633 goto bw_commit_out; 12634 } 12635 /* Write it back out unchanged to initiate update NVM, 12636 * which will force a write of the shadow (alt) RAM to 12637 * the NVM - thus storing the bandwidth values permanently. 12638 */ 12639 ret = i40e_aq_update_nvm(&pf->hw, 12640 I40E_SR_NVM_CONTROL_WORD, 12641 0x10, sizeof(nvm_word), 12642 &nvm_word, true, 0, NULL); 12643 /* Save off last admin queue command status before releasing 12644 * the NVM 12645 */ 12646 last_aq_status = pf->hw.aq.asq_last_status; 12647 i40e_release_nvm(&pf->hw); 12648 if (ret) 12649 dev_info(&pf->pdev->dev, 12650 "BW settings NOT SAVED, err %pe aq_err %s\n", 12651 ERR_PTR(ret), 12652 i40e_aq_str(&pf->hw, last_aq_status)); 12653 bw_commit_out: 12654 12655 return ret; 12656 } 12657 12658 /** 12659 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12660 * if total port shutdown feature is enabled for this PF 12661 * @pf: board private structure 12662 **/ 12663 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12664 { 12665 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12666 #define I40E_FEATURES_ENABLE_PTR 0x2A 12667 #define I40E_CURRENT_SETTING_PTR 0x2B 12668 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12669 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12670 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12671 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12672 u16 sr_emp_sr_settings_ptr = 0; 12673 u16 features_enable = 0; 12674 u16 link_behavior = 0; 12675 int read_status = 0; 12676 bool ret = false; 12677 12678 read_status = i40e_read_nvm_word(&pf->hw, 12679 I40E_SR_EMP_SR_SETTINGS_PTR, 12680 &sr_emp_sr_settings_ptr); 12681 if (read_status) 12682 goto err_nvm; 12683 read_status = i40e_read_nvm_word(&pf->hw, 12684 sr_emp_sr_settings_ptr + 12685 I40E_FEATURES_ENABLE_PTR, 12686 &features_enable); 12687 if (read_status) 12688 goto err_nvm; 12689 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12690 read_status = i40e_read_nvm_module_data(&pf->hw, 12691 I40E_SR_EMP_SR_SETTINGS_PTR, 12692 I40E_CURRENT_SETTING_PTR, 12693 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12694 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12695 &link_behavior); 12696 if (read_status) 12697 goto err_nvm; 12698 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12699 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12700 } 12701 return ret; 12702 12703 err_nvm: 12704 dev_warn(&pf->pdev->dev, 12705 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12706 ERR_PTR(read_status)); 12707 return ret; 12708 } 12709 12710 /** 12711 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12712 * @pf: board private structure to initialize 12713 * 12714 * i40e_sw_init initializes the Adapter private data structure. 12715 * Fields are initialized based on PCI device information and 12716 * OS network device settings (MTU size). 12717 **/ 12718 static int i40e_sw_init(struct i40e_pf *pf) 12719 { 12720 int err = 0; 12721 int size; 12722 u16 pow; 12723 12724 /* Set default capability flags */ 12725 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12726 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12727 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12728 12729 /* Set default ITR */ 12730 pf->rx_itr_default = I40E_ITR_RX_DEF; 12731 pf->tx_itr_default = I40E_ITR_TX_DEF; 12732 12733 /* Depending on PF configurations, it is possible that the RSS 12734 * maximum might end up larger than the available queues 12735 */ 12736 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12737 pf->alloc_rss_size = 1; 12738 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12739 pf->rss_size_max = min_t(int, pf->rss_size_max, 12740 pf->hw.func_caps.num_tx_qp); 12741 12742 /* find the next higher power-of-2 of num cpus */ 12743 pow = roundup_pow_of_two(num_online_cpus()); 12744 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12745 12746 if (pf->hw.func_caps.rss) { 12747 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12748 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12749 num_online_cpus()); 12750 } 12751 12752 /* MFP mode enabled */ 12753 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12754 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12755 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12756 if (i40e_get_partition_bw_setting(pf)) { 12757 dev_warn(&pf->pdev->dev, 12758 "Could not get partition bw settings\n"); 12759 } else { 12760 dev_info(&pf->pdev->dev, 12761 "Partition BW Min = %8.8x, Max = %8.8x\n", 12762 pf->min_bw, pf->max_bw); 12763 12764 /* nudge the Tx scheduler */ 12765 i40e_set_partition_bw_setting(pf); 12766 } 12767 } 12768 12769 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12770 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12771 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12772 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12773 pf->hw.num_partitions > 1) 12774 dev_info(&pf->pdev->dev, 12775 "Flow Director Sideband mode Disabled in MFP mode\n"); 12776 else 12777 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12778 pf->fdir_pf_filter_count = 12779 pf->hw.func_caps.fd_filters_guaranteed; 12780 pf->hw.fdir_shared_filter_count = 12781 pf->hw.func_caps.fd_filters_best_effort; 12782 } 12783 12784 /* Enable HW ATR eviction if possible */ 12785 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12786 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12787 12788 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12789 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12790 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12791 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12792 } 12793 12794 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12795 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12796 /* IWARP needs one extra vector for CQP just like MISC.*/ 12797 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12798 } 12799 /* Stopping FW LLDP engine is supported on XL710 and X722 12800 * starting from FW versions determined in i40e_init_adminq. 12801 * Stopping the FW LLDP engine is not supported on XL710 12802 * if NPAR is functioning so unset this hw flag in this case. 12803 */ 12804 if (pf->hw.mac.type == I40E_MAC_XL710 && 12805 pf->hw.func_caps.npar_enable) 12806 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12807 12808 #ifdef CONFIG_PCI_IOV 12809 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12810 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12811 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12812 pf->num_req_vfs = min_t(int, 12813 pf->hw.func_caps.num_vfs, 12814 I40E_MAX_VF_COUNT); 12815 } 12816 #endif /* CONFIG_PCI_IOV */ 12817 pf->lan_veb = I40E_NO_VEB; 12818 pf->lan_vsi = I40E_NO_VSI; 12819 12820 /* By default FW has this off for performance reasons */ 12821 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12822 12823 /* set up queue assignment tracking */ 12824 size = sizeof(struct i40e_lump_tracking) 12825 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12826 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12827 if (!pf->qp_pile) { 12828 err = -ENOMEM; 12829 goto sw_init_done; 12830 } 12831 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12832 12833 pf->tx_timeout_recovery_level = 1; 12834 12835 if (pf->hw.mac.type != I40E_MAC_X722 && 12836 i40e_is_total_port_shutdown_enabled(pf)) { 12837 /* Link down on close must be on when total port shutdown 12838 * is enabled for a given port 12839 */ 12840 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12841 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12842 dev_info(&pf->pdev->dev, 12843 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12844 } 12845 mutex_init(&pf->switch_mutex); 12846 12847 sw_init_done: 12848 return err; 12849 } 12850 12851 /** 12852 * i40e_set_ntuple - set the ntuple feature flag and take action 12853 * @pf: board private structure to initialize 12854 * @features: the feature set that the stack is suggesting 12855 * 12856 * returns a bool to indicate if reset needs to happen 12857 **/ 12858 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12859 { 12860 bool need_reset = false; 12861 12862 /* Check if Flow Director n-tuple support was enabled or disabled. If 12863 * the state changed, we need to reset. 12864 */ 12865 if (features & NETIF_F_NTUPLE) { 12866 /* Enable filters and mark for reset */ 12867 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12868 need_reset = true; 12869 /* enable FD_SB only if there is MSI-X vector and no cloud 12870 * filters exist 12871 */ 12872 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12873 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12874 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12875 } 12876 } else { 12877 /* turn off filters, mark for reset and clear SW filter list */ 12878 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12879 need_reset = true; 12880 i40e_fdir_filter_exit(pf); 12881 } 12882 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12883 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12884 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12885 12886 /* reset fd counters */ 12887 pf->fd_add_err = 0; 12888 pf->fd_atr_cnt = 0; 12889 /* if ATR was auto disabled it can be re-enabled. */ 12890 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12891 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12892 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12893 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12894 } 12895 return need_reset; 12896 } 12897 12898 /** 12899 * i40e_clear_rss_lut - clear the rx hash lookup table 12900 * @vsi: the VSI being configured 12901 **/ 12902 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12903 { 12904 struct i40e_pf *pf = vsi->back; 12905 struct i40e_hw *hw = &pf->hw; 12906 u16 vf_id = vsi->vf_id; 12907 u8 i; 12908 12909 if (vsi->type == I40E_VSI_MAIN) { 12910 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12911 wr32(hw, I40E_PFQF_HLUT(i), 0); 12912 } else if (vsi->type == I40E_VSI_SRIOV) { 12913 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12914 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12915 } else { 12916 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12917 } 12918 } 12919 12920 /** 12921 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12922 * @vsi: ptr to VSI 12923 * @ena: flag to indicate the on/off setting 12924 */ 12925 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12926 { 12927 bool if_running = netif_running(vsi->netdev) && 12928 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12929 int ret; 12930 12931 if (if_running) 12932 i40e_down(vsi); 12933 12934 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12935 if (ret) 12936 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12937 if (if_running) 12938 i40e_up(vsi); 12939 12940 return ret; 12941 } 12942 12943 /** 12944 * i40e_set_features - set the netdev feature flags 12945 * @netdev: ptr to the netdev being adjusted 12946 * @features: the feature set that the stack is suggesting 12947 * Note: expects to be called while under rtnl_lock() 12948 **/ 12949 static int i40e_set_features(struct net_device *netdev, 12950 netdev_features_t features) 12951 { 12952 struct i40e_netdev_priv *np = netdev_priv(netdev); 12953 struct i40e_vsi *vsi = np->vsi; 12954 struct i40e_pf *pf = vsi->back; 12955 bool need_reset; 12956 12957 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12958 i40e_pf_config_rss(pf); 12959 else if (!(features & NETIF_F_RXHASH) && 12960 netdev->features & NETIF_F_RXHASH) 12961 i40e_clear_rss_lut(vsi); 12962 12963 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12964 i40e_vlan_stripping_enable(vsi); 12965 else 12966 i40e_vlan_stripping_disable(vsi); 12967 12968 if (!(features & NETIF_F_HW_TC) && 12969 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12970 dev_err(&pf->pdev->dev, 12971 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12972 return -EINVAL; 12973 } 12974 12975 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12976 i40e_del_all_macvlans(vsi); 12977 12978 need_reset = i40e_set_ntuple(pf, features); 12979 12980 if (need_reset) 12981 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12982 12983 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 12984 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 12985 12986 return 0; 12987 } 12988 12989 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12990 unsigned int table, unsigned int idx, 12991 struct udp_tunnel_info *ti) 12992 { 12993 struct i40e_netdev_priv *np = netdev_priv(netdev); 12994 struct i40e_hw *hw = &np->vsi->back->hw; 12995 u8 type, filter_index; 12996 int ret; 12997 12998 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 12999 I40E_AQC_TUNNEL_TYPE_NGE; 13000 13001 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 13002 NULL); 13003 if (ret) { 13004 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 13005 ERR_PTR(ret), 13006 i40e_aq_str(hw, hw->aq.asq_last_status)); 13007 return -EIO; 13008 } 13009 13010 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 13011 return 0; 13012 } 13013 13014 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 13015 unsigned int table, unsigned int idx, 13016 struct udp_tunnel_info *ti) 13017 { 13018 struct i40e_netdev_priv *np = netdev_priv(netdev); 13019 struct i40e_hw *hw = &np->vsi->back->hw; 13020 int ret; 13021 13022 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 13023 if (ret) { 13024 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 13025 ERR_PTR(ret), 13026 i40e_aq_str(hw, hw->aq.asq_last_status)); 13027 return -EIO; 13028 } 13029 13030 return 0; 13031 } 13032 13033 static int i40e_get_phys_port_id(struct net_device *netdev, 13034 struct netdev_phys_item_id *ppid) 13035 { 13036 struct i40e_netdev_priv *np = netdev_priv(netdev); 13037 struct i40e_pf *pf = np->vsi->back; 13038 struct i40e_hw *hw = &pf->hw; 13039 13040 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13041 return -EOPNOTSUPP; 13042 13043 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13044 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13045 13046 return 0; 13047 } 13048 13049 /** 13050 * i40e_ndo_fdb_add - add an entry to the hardware database 13051 * @ndm: the input from the stack 13052 * @tb: pointer to array of nladdr (unused) 13053 * @dev: the net device pointer 13054 * @addr: the MAC address entry being added 13055 * @vid: VLAN ID 13056 * @flags: instructions from stack about fdb operation 13057 * @extack: netlink extended ack, unused currently 13058 */ 13059 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13060 struct net_device *dev, 13061 const unsigned char *addr, u16 vid, 13062 u16 flags, 13063 struct netlink_ext_ack *extack) 13064 { 13065 struct i40e_netdev_priv *np = netdev_priv(dev); 13066 struct i40e_pf *pf = np->vsi->back; 13067 int err = 0; 13068 13069 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13070 return -EOPNOTSUPP; 13071 13072 if (vid) { 13073 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13074 return -EINVAL; 13075 } 13076 13077 /* Hardware does not support aging addresses so if a 13078 * ndm_state is given only allow permanent addresses 13079 */ 13080 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13081 netdev_info(dev, "FDB only supports static addresses\n"); 13082 return -EINVAL; 13083 } 13084 13085 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13086 err = dev_uc_add_excl(dev, addr); 13087 else if (is_multicast_ether_addr(addr)) 13088 err = dev_mc_add_excl(dev, addr); 13089 else 13090 err = -EINVAL; 13091 13092 /* Only return duplicate errors if NLM_F_EXCL is set */ 13093 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13094 err = 0; 13095 13096 return err; 13097 } 13098 13099 /** 13100 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13101 * @dev: the netdev being configured 13102 * @nlh: RTNL message 13103 * @flags: bridge flags 13104 * @extack: netlink extended ack 13105 * 13106 * Inserts a new hardware bridge if not already created and 13107 * enables the bridging mode requested (VEB or VEPA). If the 13108 * hardware bridge has already been inserted and the request 13109 * is to change the mode then that requires a PF reset to 13110 * allow rebuild of the components with required hardware 13111 * bridge mode enabled. 13112 * 13113 * Note: expects to be called while under rtnl_lock() 13114 **/ 13115 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13116 struct nlmsghdr *nlh, 13117 u16 flags, 13118 struct netlink_ext_ack *extack) 13119 { 13120 struct i40e_netdev_priv *np = netdev_priv(dev); 13121 struct i40e_vsi *vsi = np->vsi; 13122 struct i40e_pf *pf = vsi->back; 13123 struct i40e_veb *veb = NULL; 13124 struct nlattr *attr, *br_spec; 13125 int i, rem; 13126 13127 /* Only for PF VSI for now */ 13128 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13129 return -EOPNOTSUPP; 13130 13131 /* Find the HW bridge for PF VSI */ 13132 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13133 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13134 veb = pf->veb[i]; 13135 } 13136 13137 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13138 if (!br_spec) 13139 return -EINVAL; 13140 13141 nla_for_each_nested(attr, br_spec, rem) { 13142 __u16 mode; 13143 13144 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13145 continue; 13146 13147 mode = nla_get_u16(attr); 13148 if ((mode != BRIDGE_MODE_VEPA) && 13149 (mode != BRIDGE_MODE_VEB)) 13150 return -EINVAL; 13151 13152 /* Insert a new HW bridge */ 13153 if (!veb) { 13154 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 13155 vsi->tc_config.enabled_tc); 13156 if (veb) { 13157 veb->bridge_mode = mode; 13158 i40e_config_bridge_mode(veb); 13159 } else { 13160 /* No Bridge HW offload available */ 13161 return -ENOENT; 13162 } 13163 break; 13164 } else if (mode != veb->bridge_mode) { 13165 /* Existing HW bridge but different mode needs reset */ 13166 veb->bridge_mode = mode; 13167 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13168 if (mode == BRIDGE_MODE_VEB) 13169 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13170 else 13171 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13172 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13173 break; 13174 } 13175 } 13176 13177 return 0; 13178 } 13179 13180 /** 13181 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13182 * @skb: skb buff 13183 * @pid: process id 13184 * @seq: RTNL message seq # 13185 * @dev: the netdev being configured 13186 * @filter_mask: unused 13187 * @nlflags: netlink flags passed in 13188 * 13189 * Return the mode in which the hardware bridge is operating in 13190 * i.e VEB or VEPA. 13191 **/ 13192 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13193 struct net_device *dev, 13194 u32 __always_unused filter_mask, 13195 int nlflags) 13196 { 13197 struct i40e_netdev_priv *np = netdev_priv(dev); 13198 struct i40e_vsi *vsi = np->vsi; 13199 struct i40e_pf *pf = vsi->back; 13200 struct i40e_veb *veb = NULL; 13201 int i; 13202 13203 /* Only for PF VSI for now */ 13204 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13205 return -EOPNOTSUPP; 13206 13207 /* Find the HW bridge for the PF VSI */ 13208 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13209 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13210 veb = pf->veb[i]; 13211 } 13212 13213 if (!veb) 13214 return 0; 13215 13216 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13217 0, 0, nlflags, filter_mask, NULL); 13218 } 13219 13220 /** 13221 * i40e_features_check - Validate encapsulated packet conforms to limits 13222 * @skb: skb buff 13223 * @dev: This physical port's netdev 13224 * @features: Offload features that the stack believes apply 13225 **/ 13226 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13227 struct net_device *dev, 13228 netdev_features_t features) 13229 { 13230 size_t len; 13231 13232 /* No point in doing any of this if neither checksum nor GSO are 13233 * being requested for this frame. We can rule out both by just 13234 * checking for CHECKSUM_PARTIAL 13235 */ 13236 if (skb->ip_summed != CHECKSUM_PARTIAL) 13237 return features; 13238 13239 /* We cannot support GSO if the MSS is going to be less than 13240 * 64 bytes. If it is then we need to drop support for GSO. 13241 */ 13242 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13243 features &= ~NETIF_F_GSO_MASK; 13244 13245 /* MACLEN can support at most 63 words */ 13246 len = skb_network_header(skb) - skb->data; 13247 if (len & ~(63 * 2)) 13248 goto out_err; 13249 13250 /* IPLEN and EIPLEN can support at most 127 dwords */ 13251 len = skb_transport_header(skb) - skb_network_header(skb); 13252 if (len & ~(127 * 4)) 13253 goto out_err; 13254 13255 if (skb->encapsulation) { 13256 /* L4TUNLEN can support 127 words */ 13257 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13258 if (len & ~(127 * 2)) 13259 goto out_err; 13260 13261 /* IPLEN can support at most 127 dwords */ 13262 len = skb_inner_transport_header(skb) - 13263 skb_inner_network_header(skb); 13264 if (len & ~(127 * 4)) 13265 goto out_err; 13266 } 13267 13268 /* No need to validate L4LEN as TCP is the only protocol with a 13269 * flexible value and we support all possible values supported 13270 * by TCP, which is at most 15 dwords 13271 */ 13272 13273 return features; 13274 out_err: 13275 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13276 } 13277 13278 /** 13279 * i40e_xdp_setup - add/remove an XDP program 13280 * @vsi: VSI to changed 13281 * @prog: XDP program 13282 * @extack: netlink extended ack 13283 **/ 13284 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13285 struct netlink_ext_ack *extack) 13286 { 13287 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13288 struct i40e_pf *pf = vsi->back; 13289 struct bpf_prog *old_prog; 13290 bool need_reset; 13291 int i; 13292 13293 /* Don't allow frames that span over multiple buffers */ 13294 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13295 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13296 return -EINVAL; 13297 } 13298 13299 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13300 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13301 13302 if (need_reset) 13303 i40e_prep_for_reset(pf); 13304 13305 /* VSI shall be deleted in a moment, just return EINVAL */ 13306 if (test_bit(__I40E_IN_REMOVE, pf->state)) 13307 return -EINVAL; 13308 13309 old_prog = xchg(&vsi->xdp_prog, prog); 13310 13311 if (need_reset) { 13312 if (!prog) { 13313 xdp_features_clear_redirect_target(vsi->netdev); 13314 /* Wait until ndo_xsk_wakeup completes. */ 13315 synchronize_rcu(); 13316 } 13317 i40e_reset_and_rebuild(pf, true, true); 13318 } 13319 13320 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13321 if (i40e_realloc_rx_bi_zc(vsi, true)) 13322 return -ENOMEM; 13323 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13324 if (i40e_realloc_rx_bi_zc(vsi, false)) 13325 return -ENOMEM; 13326 } 13327 13328 for (i = 0; i < vsi->num_queue_pairs; i++) 13329 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13330 13331 if (old_prog) 13332 bpf_prog_put(old_prog); 13333 13334 /* Kick start the NAPI context if there is an AF_XDP socket open 13335 * on that queue id. This so that receiving will start. 13336 */ 13337 if (need_reset && prog) { 13338 for (i = 0; i < vsi->num_queue_pairs; i++) 13339 if (vsi->xdp_rings[i]->xsk_pool) 13340 (void)i40e_xsk_wakeup(vsi->netdev, i, 13341 XDP_WAKEUP_RX); 13342 xdp_features_set_redirect_target(vsi->netdev, true); 13343 } 13344 13345 return 0; 13346 } 13347 13348 /** 13349 * i40e_enter_busy_conf - Enters busy config state 13350 * @vsi: vsi 13351 * 13352 * Returns 0 on success, <0 for failure. 13353 **/ 13354 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13355 { 13356 struct i40e_pf *pf = vsi->back; 13357 int timeout = 50; 13358 13359 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13360 timeout--; 13361 if (!timeout) 13362 return -EBUSY; 13363 usleep_range(1000, 2000); 13364 } 13365 13366 return 0; 13367 } 13368 13369 /** 13370 * i40e_exit_busy_conf - Exits busy config state 13371 * @vsi: vsi 13372 **/ 13373 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13374 { 13375 struct i40e_pf *pf = vsi->back; 13376 13377 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13378 } 13379 13380 /** 13381 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13382 * @vsi: vsi 13383 * @queue_pair: queue pair 13384 **/ 13385 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13386 { 13387 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13388 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13389 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13390 sizeof(vsi->tx_rings[queue_pair]->stats)); 13391 if (i40e_enabled_xdp_vsi(vsi)) { 13392 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13393 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13394 } 13395 } 13396 13397 /** 13398 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13399 * @vsi: vsi 13400 * @queue_pair: queue pair 13401 **/ 13402 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13403 { 13404 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13405 if (i40e_enabled_xdp_vsi(vsi)) { 13406 /* Make sure that in-progress ndo_xdp_xmit calls are 13407 * completed. 13408 */ 13409 synchronize_rcu(); 13410 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13411 } 13412 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13413 } 13414 13415 /** 13416 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13417 * @vsi: vsi 13418 * @queue_pair: queue pair 13419 * @enable: true for enable, false for disable 13420 **/ 13421 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13422 bool enable) 13423 { 13424 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13425 struct i40e_q_vector *q_vector = rxr->q_vector; 13426 13427 if (!vsi->netdev) 13428 return; 13429 13430 /* All rings in a qp belong to the same qvector. */ 13431 if (q_vector->rx.ring || q_vector->tx.ring) { 13432 if (enable) 13433 napi_enable(&q_vector->napi); 13434 else 13435 napi_disable(&q_vector->napi); 13436 } 13437 } 13438 13439 /** 13440 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13441 * @vsi: vsi 13442 * @queue_pair: queue pair 13443 * @enable: true for enable, false for disable 13444 * 13445 * Returns 0 on success, <0 on failure. 13446 **/ 13447 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13448 bool enable) 13449 { 13450 struct i40e_pf *pf = vsi->back; 13451 int pf_q, ret = 0; 13452 13453 pf_q = vsi->base_queue + queue_pair; 13454 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13455 false /*is xdp*/, enable); 13456 if (ret) { 13457 dev_info(&pf->pdev->dev, 13458 "VSI seid %d Tx ring %d %sable timeout\n", 13459 vsi->seid, pf_q, (enable ? "en" : "dis")); 13460 return ret; 13461 } 13462 13463 i40e_control_rx_q(pf, pf_q, enable); 13464 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13465 if (ret) { 13466 dev_info(&pf->pdev->dev, 13467 "VSI seid %d Rx ring %d %sable timeout\n", 13468 vsi->seid, pf_q, (enable ? "en" : "dis")); 13469 return ret; 13470 } 13471 13472 /* Due to HW errata, on Rx disable only, the register can 13473 * indicate done before it really is. Needs 50ms to be sure 13474 */ 13475 if (!enable) 13476 mdelay(50); 13477 13478 if (!i40e_enabled_xdp_vsi(vsi)) 13479 return ret; 13480 13481 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13482 pf_q + vsi->alloc_queue_pairs, 13483 true /*is xdp*/, enable); 13484 if (ret) { 13485 dev_info(&pf->pdev->dev, 13486 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13487 vsi->seid, pf_q, (enable ? "en" : "dis")); 13488 } 13489 13490 return ret; 13491 } 13492 13493 /** 13494 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13495 * @vsi: vsi 13496 * @queue_pair: queue_pair 13497 **/ 13498 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13499 { 13500 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13501 struct i40e_pf *pf = vsi->back; 13502 struct i40e_hw *hw = &pf->hw; 13503 13504 /* All rings in a qp belong to the same qvector. */ 13505 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13506 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13507 else 13508 i40e_irq_dynamic_enable_icr0(pf); 13509 13510 i40e_flush(hw); 13511 } 13512 13513 /** 13514 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13515 * @vsi: vsi 13516 * @queue_pair: queue_pair 13517 **/ 13518 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13519 { 13520 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13521 struct i40e_pf *pf = vsi->back; 13522 struct i40e_hw *hw = &pf->hw; 13523 13524 /* For simplicity, instead of removing the qp interrupt causes 13525 * from the interrupt linked list, we simply disable the interrupt, and 13526 * leave the list intact. 13527 * 13528 * All rings in a qp belong to the same qvector. 13529 */ 13530 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13531 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13532 13533 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13534 i40e_flush(hw); 13535 synchronize_irq(pf->msix_entries[intpf].vector); 13536 } else { 13537 /* Legacy and MSI mode - this stops all interrupt handling */ 13538 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13539 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13540 i40e_flush(hw); 13541 synchronize_irq(pf->pdev->irq); 13542 } 13543 } 13544 13545 /** 13546 * i40e_queue_pair_disable - Disables a queue pair 13547 * @vsi: vsi 13548 * @queue_pair: queue pair 13549 * 13550 * Returns 0 on success, <0 on failure. 13551 **/ 13552 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13553 { 13554 int err; 13555 13556 err = i40e_enter_busy_conf(vsi); 13557 if (err) 13558 return err; 13559 13560 i40e_queue_pair_disable_irq(vsi, queue_pair); 13561 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13562 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13563 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13564 i40e_queue_pair_clean_rings(vsi, queue_pair); 13565 i40e_queue_pair_reset_stats(vsi, queue_pair); 13566 13567 return err; 13568 } 13569 13570 /** 13571 * i40e_queue_pair_enable - Enables a queue pair 13572 * @vsi: vsi 13573 * @queue_pair: queue pair 13574 * 13575 * Returns 0 on success, <0 on failure. 13576 **/ 13577 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13578 { 13579 int err; 13580 13581 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13582 if (err) 13583 return err; 13584 13585 if (i40e_enabled_xdp_vsi(vsi)) { 13586 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13587 if (err) 13588 return err; 13589 } 13590 13591 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13592 if (err) 13593 return err; 13594 13595 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13596 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13597 i40e_queue_pair_enable_irq(vsi, queue_pair); 13598 13599 i40e_exit_busy_conf(vsi); 13600 13601 return err; 13602 } 13603 13604 /** 13605 * i40e_xdp - implements ndo_bpf for i40e 13606 * @dev: netdevice 13607 * @xdp: XDP command 13608 **/ 13609 static int i40e_xdp(struct net_device *dev, 13610 struct netdev_bpf *xdp) 13611 { 13612 struct i40e_netdev_priv *np = netdev_priv(dev); 13613 struct i40e_vsi *vsi = np->vsi; 13614 13615 if (vsi->type != I40E_VSI_MAIN) 13616 return -EINVAL; 13617 13618 switch (xdp->command) { 13619 case XDP_SETUP_PROG: 13620 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13621 case XDP_SETUP_XSK_POOL: 13622 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13623 xdp->xsk.queue_id); 13624 default: 13625 return -EINVAL; 13626 } 13627 } 13628 13629 static const struct net_device_ops i40e_netdev_ops = { 13630 .ndo_open = i40e_open, 13631 .ndo_stop = i40e_close, 13632 .ndo_start_xmit = i40e_lan_xmit_frame, 13633 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13634 .ndo_set_rx_mode = i40e_set_rx_mode, 13635 .ndo_validate_addr = eth_validate_addr, 13636 .ndo_set_mac_address = i40e_set_mac, 13637 .ndo_change_mtu = i40e_change_mtu, 13638 .ndo_eth_ioctl = i40e_ioctl, 13639 .ndo_tx_timeout = i40e_tx_timeout, 13640 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13641 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13642 #ifdef CONFIG_NET_POLL_CONTROLLER 13643 .ndo_poll_controller = i40e_netpoll, 13644 #endif 13645 .ndo_setup_tc = __i40e_setup_tc, 13646 .ndo_select_queue = i40e_lan_select_queue, 13647 .ndo_set_features = i40e_set_features, 13648 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13649 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13650 .ndo_get_vf_stats = i40e_get_vf_stats, 13651 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13652 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13653 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13654 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13655 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13656 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13657 .ndo_fdb_add = i40e_ndo_fdb_add, 13658 .ndo_features_check = i40e_features_check, 13659 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13660 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13661 .ndo_bpf = i40e_xdp, 13662 .ndo_xdp_xmit = i40e_xdp_xmit, 13663 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13664 .ndo_dfwd_add_station = i40e_fwd_add, 13665 .ndo_dfwd_del_station = i40e_fwd_del, 13666 }; 13667 13668 /** 13669 * i40e_config_netdev - Setup the netdev flags 13670 * @vsi: the VSI being configured 13671 * 13672 * Returns 0 on success, negative value on failure 13673 **/ 13674 static int i40e_config_netdev(struct i40e_vsi *vsi) 13675 { 13676 struct i40e_pf *pf = vsi->back; 13677 struct i40e_hw *hw = &pf->hw; 13678 struct i40e_netdev_priv *np; 13679 struct net_device *netdev; 13680 u8 broadcast[ETH_ALEN]; 13681 u8 mac_addr[ETH_ALEN]; 13682 int etherdev_size; 13683 netdev_features_t hw_enc_features; 13684 netdev_features_t hw_features; 13685 13686 etherdev_size = sizeof(struct i40e_netdev_priv); 13687 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13688 if (!netdev) 13689 return -ENOMEM; 13690 13691 vsi->netdev = netdev; 13692 np = netdev_priv(netdev); 13693 np->vsi = vsi; 13694 13695 hw_enc_features = NETIF_F_SG | 13696 NETIF_F_HW_CSUM | 13697 NETIF_F_HIGHDMA | 13698 NETIF_F_SOFT_FEATURES | 13699 NETIF_F_TSO | 13700 NETIF_F_TSO_ECN | 13701 NETIF_F_TSO6 | 13702 NETIF_F_GSO_GRE | 13703 NETIF_F_GSO_GRE_CSUM | 13704 NETIF_F_GSO_PARTIAL | 13705 NETIF_F_GSO_IPXIP4 | 13706 NETIF_F_GSO_IPXIP6 | 13707 NETIF_F_GSO_UDP_TUNNEL | 13708 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13709 NETIF_F_GSO_UDP_L4 | 13710 NETIF_F_SCTP_CRC | 13711 NETIF_F_RXHASH | 13712 NETIF_F_RXCSUM | 13713 0; 13714 13715 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13716 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13717 13718 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13719 13720 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13721 13722 netdev->hw_enc_features |= hw_enc_features; 13723 13724 /* record features VLANs can make use of */ 13725 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13726 13727 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13728 NETIF_F_GSO_GRE_CSUM | \ 13729 NETIF_F_GSO_IPXIP4 | \ 13730 NETIF_F_GSO_IPXIP6 | \ 13731 NETIF_F_GSO_UDP_TUNNEL | \ 13732 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13733 13734 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13735 netdev->features |= NETIF_F_GSO_PARTIAL | 13736 I40E_GSO_PARTIAL_FEATURES; 13737 13738 netdev->mpls_features |= NETIF_F_SG; 13739 netdev->mpls_features |= NETIF_F_HW_CSUM; 13740 netdev->mpls_features |= NETIF_F_TSO; 13741 netdev->mpls_features |= NETIF_F_TSO6; 13742 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13743 13744 /* enable macvlan offloads */ 13745 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13746 13747 hw_features = hw_enc_features | 13748 NETIF_F_HW_VLAN_CTAG_TX | 13749 NETIF_F_HW_VLAN_CTAG_RX; 13750 13751 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13752 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13753 13754 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13755 13756 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13757 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13758 13759 netdev->features &= ~NETIF_F_HW_TC; 13760 13761 if (vsi->type == I40E_VSI_MAIN) { 13762 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13763 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13764 /* The following steps are necessary for two reasons. First, 13765 * some older NVM configurations load a default MAC-VLAN 13766 * filter that will accept any tagged packet, and we want to 13767 * replace this with a normal filter. Additionally, it is 13768 * possible our MAC address was provided by the platform using 13769 * Open Firmware or similar. 13770 * 13771 * Thus, we need to remove the default filter and install one 13772 * specific to the MAC address. 13773 */ 13774 i40e_rm_default_mac_filter(vsi, mac_addr); 13775 spin_lock_bh(&vsi->mac_filter_hash_lock); 13776 i40e_add_mac_filter(vsi, mac_addr); 13777 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13778 13779 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13780 NETDEV_XDP_ACT_REDIRECT | 13781 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13782 NETDEV_XDP_ACT_RX_SG; 13783 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13784 } else { 13785 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13786 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13787 * the end, which is 4 bytes long, so force truncation of the 13788 * original name by IFNAMSIZ - 4 13789 */ 13790 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 13791 IFNAMSIZ - 4, 13792 pf->vsi[pf->lan_vsi]->netdev->name); 13793 eth_random_addr(mac_addr); 13794 13795 spin_lock_bh(&vsi->mac_filter_hash_lock); 13796 i40e_add_mac_filter(vsi, mac_addr); 13797 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13798 } 13799 13800 /* Add the broadcast filter so that we initially will receive 13801 * broadcast packets. Note that when a new VLAN is first added the 13802 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13803 * specific filters as part of transitioning into "vlan" operation. 13804 * When more VLANs are added, the driver will copy each existing MAC 13805 * filter and add it for the new VLAN. 13806 * 13807 * Broadcast filters are handled specially by 13808 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13809 * promiscuous bit instead of adding this directly as a MAC/VLAN 13810 * filter. The subtask will update the correct broadcast promiscuous 13811 * bits as VLANs become active or inactive. 13812 */ 13813 eth_broadcast_addr(broadcast); 13814 spin_lock_bh(&vsi->mac_filter_hash_lock); 13815 i40e_add_mac_filter(vsi, broadcast); 13816 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13817 13818 eth_hw_addr_set(netdev, mac_addr); 13819 ether_addr_copy(netdev->perm_addr, mac_addr); 13820 13821 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13822 netdev->neigh_priv_len = sizeof(u32) * 4; 13823 13824 netdev->priv_flags |= IFF_UNICAST_FLT; 13825 netdev->priv_flags |= IFF_SUPP_NOFCS; 13826 /* Setup netdev TC information */ 13827 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13828 13829 netdev->netdev_ops = &i40e_netdev_ops; 13830 netdev->watchdog_timeo = 5 * HZ; 13831 i40e_set_ethtool_ops(netdev); 13832 13833 /* MTU range: 68 - 9706 */ 13834 netdev->min_mtu = ETH_MIN_MTU; 13835 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13836 13837 return 0; 13838 } 13839 13840 /** 13841 * i40e_vsi_delete - Delete a VSI from the switch 13842 * @vsi: the VSI being removed 13843 * 13844 * Returns 0 on success, negative value on failure 13845 **/ 13846 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13847 { 13848 /* remove default VSI is not allowed */ 13849 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13850 return; 13851 13852 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13853 } 13854 13855 /** 13856 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13857 * @vsi: the VSI being queried 13858 * 13859 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13860 **/ 13861 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13862 { 13863 struct i40e_veb *veb; 13864 struct i40e_pf *pf = vsi->back; 13865 13866 /* Uplink is not a bridge so default to VEB */ 13867 if (vsi->veb_idx >= I40E_MAX_VEB) 13868 return 1; 13869 13870 veb = pf->veb[vsi->veb_idx]; 13871 if (!veb) { 13872 dev_info(&pf->pdev->dev, 13873 "There is no veb associated with the bridge\n"); 13874 return -ENOENT; 13875 } 13876 13877 /* Uplink is a bridge in VEPA mode */ 13878 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13879 return 0; 13880 } else { 13881 /* Uplink is a bridge in VEB mode */ 13882 return 1; 13883 } 13884 13885 /* VEPA is now default bridge, so return 0 */ 13886 return 0; 13887 } 13888 13889 /** 13890 * i40e_add_vsi - Add a VSI to the switch 13891 * @vsi: the VSI being configured 13892 * 13893 * This initializes a VSI context depending on the VSI type to be added and 13894 * passes it down to the add_vsi aq command. 13895 **/ 13896 static int i40e_add_vsi(struct i40e_vsi *vsi) 13897 { 13898 int ret = -ENODEV; 13899 struct i40e_pf *pf = vsi->back; 13900 struct i40e_hw *hw = &pf->hw; 13901 struct i40e_vsi_context ctxt; 13902 struct i40e_mac_filter *f; 13903 struct hlist_node *h; 13904 int bkt; 13905 13906 u8 enabled_tc = 0x1; /* TC0 enabled */ 13907 int f_count = 0; 13908 13909 memset(&ctxt, 0, sizeof(ctxt)); 13910 switch (vsi->type) { 13911 case I40E_VSI_MAIN: 13912 /* The PF's main VSI is already setup as part of the 13913 * device initialization, so we'll not bother with 13914 * the add_vsi call, but we will retrieve the current 13915 * VSI context. 13916 */ 13917 ctxt.seid = pf->main_vsi_seid; 13918 ctxt.pf_num = pf->hw.pf_id; 13919 ctxt.vf_num = 0; 13920 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13921 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13922 if (ret) { 13923 dev_info(&pf->pdev->dev, 13924 "couldn't get PF vsi config, err %pe aq_err %s\n", 13925 ERR_PTR(ret), 13926 i40e_aq_str(&pf->hw, 13927 pf->hw.aq.asq_last_status)); 13928 return -ENOENT; 13929 } 13930 vsi->info = ctxt.info; 13931 vsi->info.valid_sections = 0; 13932 13933 vsi->seid = ctxt.seid; 13934 vsi->id = ctxt.vsi_number; 13935 13936 enabled_tc = i40e_pf_get_tc_map(pf); 13937 13938 /* Source pruning is enabled by default, so the flag is 13939 * negative logic - if it's set, we need to fiddle with 13940 * the VSI to disable source pruning. 13941 */ 13942 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13943 memset(&ctxt, 0, sizeof(ctxt)); 13944 ctxt.seid = pf->main_vsi_seid; 13945 ctxt.pf_num = pf->hw.pf_id; 13946 ctxt.vf_num = 0; 13947 ctxt.info.valid_sections |= 13948 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13949 ctxt.info.switch_id = 13950 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13951 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13952 if (ret) { 13953 dev_info(&pf->pdev->dev, 13954 "update vsi failed, err %d aq_err %s\n", 13955 ret, 13956 i40e_aq_str(&pf->hw, 13957 pf->hw.aq.asq_last_status)); 13958 ret = -ENOENT; 13959 goto err; 13960 } 13961 } 13962 13963 /* MFP mode setup queue map and update VSI */ 13964 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13965 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13966 memset(&ctxt, 0, sizeof(ctxt)); 13967 ctxt.seid = pf->main_vsi_seid; 13968 ctxt.pf_num = pf->hw.pf_id; 13969 ctxt.vf_num = 0; 13970 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13971 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13972 if (ret) { 13973 dev_info(&pf->pdev->dev, 13974 "update vsi failed, err %pe aq_err %s\n", 13975 ERR_PTR(ret), 13976 i40e_aq_str(&pf->hw, 13977 pf->hw.aq.asq_last_status)); 13978 ret = -ENOENT; 13979 goto err; 13980 } 13981 /* update the local VSI info queue map */ 13982 i40e_vsi_update_queue_map(vsi, &ctxt); 13983 vsi->info.valid_sections = 0; 13984 } else { 13985 /* Default/Main VSI is only enabled for TC0 13986 * reconfigure it to enable all TCs that are 13987 * available on the port in SFP mode. 13988 * For MFP case the iSCSI PF would use this 13989 * flow to enable LAN+iSCSI TC. 13990 */ 13991 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13992 if (ret) { 13993 /* Single TC condition is not fatal, 13994 * message and continue 13995 */ 13996 dev_info(&pf->pdev->dev, 13997 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 13998 enabled_tc, 13999 ERR_PTR(ret), 14000 i40e_aq_str(&pf->hw, 14001 pf->hw.aq.asq_last_status)); 14002 } 14003 } 14004 break; 14005 14006 case I40E_VSI_FDIR: 14007 ctxt.pf_num = hw->pf_id; 14008 ctxt.vf_num = 0; 14009 ctxt.uplink_seid = vsi->uplink_seid; 14010 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14011 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 14012 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 14013 (i40e_is_vsi_uplink_mode_veb(vsi))) { 14014 ctxt.info.valid_sections |= 14015 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14016 ctxt.info.switch_id = 14017 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14018 } 14019 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14020 break; 14021 14022 case I40E_VSI_VMDQ2: 14023 ctxt.pf_num = hw->pf_id; 14024 ctxt.vf_num = 0; 14025 ctxt.uplink_seid = vsi->uplink_seid; 14026 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14027 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 14028 14029 /* This VSI is connected to VEB so the switch_id 14030 * should be set to zero by default. 14031 */ 14032 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14033 ctxt.info.valid_sections |= 14034 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14035 ctxt.info.switch_id = 14036 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14037 } 14038 14039 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14040 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14041 break; 14042 14043 case I40E_VSI_SRIOV: 14044 ctxt.pf_num = hw->pf_id; 14045 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14046 ctxt.uplink_seid = vsi->uplink_seid; 14047 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14048 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14049 14050 /* This VSI is connected to VEB so the switch_id 14051 * should be set to zero by default. 14052 */ 14053 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14054 ctxt.info.valid_sections |= 14055 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14056 ctxt.info.switch_id = 14057 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14058 } 14059 14060 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14061 ctxt.info.valid_sections |= 14062 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14063 ctxt.info.queueing_opt_flags |= 14064 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14065 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14066 } 14067 14068 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14069 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14070 if (pf->vf[vsi->vf_id].spoofchk) { 14071 ctxt.info.valid_sections |= 14072 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14073 ctxt.info.sec_flags |= 14074 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14075 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14076 } 14077 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14078 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14079 break; 14080 14081 case I40E_VSI_IWARP: 14082 /* send down message to iWARP */ 14083 break; 14084 14085 default: 14086 return -ENODEV; 14087 } 14088 14089 if (vsi->type != I40E_VSI_MAIN) { 14090 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14091 if (ret) { 14092 dev_info(&vsi->back->pdev->dev, 14093 "add vsi failed, err %pe aq_err %s\n", 14094 ERR_PTR(ret), 14095 i40e_aq_str(&pf->hw, 14096 pf->hw.aq.asq_last_status)); 14097 ret = -ENOENT; 14098 goto err; 14099 } 14100 vsi->info = ctxt.info; 14101 vsi->info.valid_sections = 0; 14102 vsi->seid = ctxt.seid; 14103 vsi->id = ctxt.vsi_number; 14104 } 14105 14106 spin_lock_bh(&vsi->mac_filter_hash_lock); 14107 vsi->active_filters = 0; 14108 /* If macvlan filters already exist, force them to get loaded */ 14109 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14110 f->state = I40E_FILTER_NEW; 14111 f_count++; 14112 } 14113 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14114 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14115 14116 if (f_count) { 14117 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14118 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14119 } 14120 14121 /* Update VSI BW information */ 14122 ret = i40e_vsi_get_bw_info(vsi); 14123 if (ret) { 14124 dev_info(&pf->pdev->dev, 14125 "couldn't get vsi bw info, err %pe aq_err %s\n", 14126 ERR_PTR(ret), 14127 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14128 /* VSI is already added so not tearing that up */ 14129 ret = 0; 14130 } 14131 14132 err: 14133 return ret; 14134 } 14135 14136 /** 14137 * i40e_vsi_release - Delete a VSI and free its resources 14138 * @vsi: the VSI being removed 14139 * 14140 * Returns 0 on success or < 0 on error 14141 **/ 14142 int i40e_vsi_release(struct i40e_vsi *vsi) 14143 { 14144 struct i40e_mac_filter *f; 14145 struct hlist_node *h; 14146 struct i40e_veb *veb = NULL; 14147 struct i40e_pf *pf; 14148 u16 uplink_seid; 14149 int i, n, bkt; 14150 14151 pf = vsi->back; 14152 14153 /* release of a VEB-owner or last VSI is not allowed */ 14154 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14155 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14156 vsi->seid, vsi->uplink_seid); 14157 return -ENODEV; 14158 } 14159 if (vsi == pf->vsi[pf->lan_vsi] && 14160 !test_bit(__I40E_DOWN, pf->state)) { 14161 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14162 return -ENODEV; 14163 } 14164 set_bit(__I40E_VSI_RELEASING, vsi->state); 14165 uplink_seid = vsi->uplink_seid; 14166 14167 if (vsi->type != I40E_VSI_SRIOV) { 14168 if (vsi->netdev_registered) { 14169 vsi->netdev_registered = false; 14170 if (vsi->netdev) { 14171 /* results in a call to i40e_close() */ 14172 unregister_netdev(vsi->netdev); 14173 } 14174 } else { 14175 i40e_vsi_close(vsi); 14176 } 14177 i40e_vsi_disable_irq(vsi); 14178 } 14179 14180 if (vsi->type == I40E_VSI_MAIN) 14181 i40e_devlink_destroy_port(pf); 14182 14183 spin_lock_bh(&vsi->mac_filter_hash_lock); 14184 14185 /* clear the sync flag on all filters */ 14186 if (vsi->netdev) { 14187 __dev_uc_unsync(vsi->netdev, NULL); 14188 __dev_mc_unsync(vsi->netdev, NULL); 14189 } 14190 14191 /* make sure any remaining filters are marked for deletion */ 14192 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14193 __i40e_del_filter(vsi, f); 14194 14195 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14196 14197 i40e_sync_vsi_filters(vsi); 14198 14199 i40e_vsi_delete(vsi); 14200 i40e_vsi_free_q_vectors(vsi); 14201 if (vsi->netdev) { 14202 free_netdev(vsi->netdev); 14203 vsi->netdev = NULL; 14204 } 14205 i40e_vsi_clear_rings(vsi); 14206 i40e_vsi_clear(vsi); 14207 14208 /* If this was the last thing on the VEB, except for the 14209 * controlling VSI, remove the VEB, which puts the controlling 14210 * VSI onto the next level down in the switch. 14211 * 14212 * Well, okay, there's one more exception here: don't remove 14213 * the orphan VEBs yet. We'll wait for an explicit remove request 14214 * from up the network stack. 14215 */ 14216 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 14217 if (pf->vsi[i] && 14218 pf->vsi[i]->uplink_seid == uplink_seid && 14219 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14220 n++; /* count the VSIs */ 14221 } 14222 } 14223 for (i = 0; i < I40E_MAX_VEB; i++) { 14224 if (!pf->veb[i]) 14225 continue; 14226 if (pf->veb[i]->uplink_seid == uplink_seid) 14227 n++; /* count the VEBs */ 14228 if (pf->veb[i]->seid == uplink_seid) 14229 veb = pf->veb[i]; 14230 } 14231 if (n == 0 && veb && veb->uplink_seid != 0) 14232 i40e_veb_release(veb); 14233 14234 return 0; 14235 } 14236 14237 /** 14238 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14239 * @vsi: ptr to the VSI 14240 * 14241 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14242 * corresponding SW VSI structure and initializes num_queue_pairs for the 14243 * newly allocated VSI. 14244 * 14245 * Returns 0 on success or negative on failure 14246 **/ 14247 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14248 { 14249 int ret = -ENOENT; 14250 struct i40e_pf *pf = vsi->back; 14251 14252 if (vsi->q_vectors[0]) { 14253 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14254 vsi->seid); 14255 return -EEXIST; 14256 } 14257 14258 if (vsi->base_vector) { 14259 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14260 vsi->seid, vsi->base_vector); 14261 return -EEXIST; 14262 } 14263 14264 ret = i40e_vsi_alloc_q_vectors(vsi); 14265 if (ret) { 14266 dev_info(&pf->pdev->dev, 14267 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14268 vsi->num_q_vectors, vsi->seid, ret); 14269 vsi->num_q_vectors = 0; 14270 goto vector_setup_out; 14271 } 14272 14273 /* In Legacy mode, we do not have to get any other vector since we 14274 * piggyback on the misc/ICR0 for queue interrupts. 14275 */ 14276 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14277 return ret; 14278 if (vsi->num_q_vectors) 14279 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14280 vsi->num_q_vectors, vsi->idx); 14281 if (vsi->base_vector < 0) { 14282 dev_info(&pf->pdev->dev, 14283 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14284 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14285 i40e_vsi_free_q_vectors(vsi); 14286 ret = -ENOENT; 14287 goto vector_setup_out; 14288 } 14289 14290 vector_setup_out: 14291 return ret; 14292 } 14293 14294 /** 14295 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14296 * @vsi: pointer to the vsi. 14297 * 14298 * This re-allocates a vsi's queue resources. 14299 * 14300 * Returns pointer to the successfully allocated and configured VSI sw struct 14301 * on success, otherwise returns NULL on failure. 14302 **/ 14303 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14304 { 14305 u16 alloc_queue_pairs; 14306 struct i40e_pf *pf; 14307 u8 enabled_tc; 14308 int ret; 14309 14310 if (!vsi) 14311 return NULL; 14312 14313 pf = vsi->back; 14314 14315 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14316 i40e_vsi_clear_rings(vsi); 14317 14318 i40e_vsi_free_arrays(vsi, false); 14319 i40e_set_num_rings_in_vsi(vsi); 14320 ret = i40e_vsi_alloc_arrays(vsi, false); 14321 if (ret) 14322 goto err_vsi; 14323 14324 alloc_queue_pairs = vsi->alloc_queue_pairs * 14325 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14326 14327 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14328 if (ret < 0) { 14329 dev_info(&pf->pdev->dev, 14330 "failed to get tracking for %d queues for VSI %d err %d\n", 14331 alloc_queue_pairs, vsi->seid, ret); 14332 goto err_vsi; 14333 } 14334 vsi->base_queue = ret; 14335 14336 /* Update the FW view of the VSI. Force a reset of TC and queue 14337 * layout configurations. 14338 */ 14339 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14340 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14341 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14342 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14343 if (vsi->type == I40E_VSI_MAIN) 14344 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14345 14346 /* assign it some queues */ 14347 ret = i40e_alloc_rings(vsi); 14348 if (ret) 14349 goto err_rings; 14350 14351 /* map all of the rings to the q_vectors */ 14352 i40e_vsi_map_rings_to_vectors(vsi); 14353 return vsi; 14354 14355 err_rings: 14356 i40e_vsi_free_q_vectors(vsi); 14357 if (vsi->netdev_registered) { 14358 vsi->netdev_registered = false; 14359 unregister_netdev(vsi->netdev); 14360 free_netdev(vsi->netdev); 14361 vsi->netdev = NULL; 14362 } 14363 if (vsi->type == I40E_VSI_MAIN) 14364 i40e_devlink_destroy_port(pf); 14365 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14366 err_vsi: 14367 i40e_vsi_clear(vsi); 14368 return NULL; 14369 } 14370 14371 /** 14372 * i40e_vsi_setup - Set up a VSI by a given type 14373 * @pf: board private structure 14374 * @type: VSI type 14375 * @uplink_seid: the switch element to link to 14376 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14377 * 14378 * This allocates the sw VSI structure and its queue resources, then add a VSI 14379 * to the identified VEB. 14380 * 14381 * Returns pointer to the successfully allocated and configure VSI sw struct on 14382 * success, otherwise returns NULL on failure. 14383 **/ 14384 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14385 u16 uplink_seid, u32 param1) 14386 { 14387 struct i40e_vsi *vsi = NULL; 14388 struct i40e_veb *veb = NULL; 14389 u16 alloc_queue_pairs; 14390 int ret, i; 14391 int v_idx; 14392 14393 /* The requested uplink_seid must be either 14394 * - the PF's port seid 14395 * no VEB is needed because this is the PF 14396 * or this is a Flow Director special case VSI 14397 * - seid of an existing VEB 14398 * - seid of a VSI that owns an existing VEB 14399 * - seid of a VSI that doesn't own a VEB 14400 * a new VEB is created and the VSI becomes the owner 14401 * - seid of the PF VSI, which is what creates the first VEB 14402 * this is a special case of the previous 14403 * 14404 * Find which uplink_seid we were given and create a new VEB if needed 14405 */ 14406 for (i = 0; i < I40E_MAX_VEB; i++) { 14407 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 14408 veb = pf->veb[i]; 14409 break; 14410 } 14411 } 14412 14413 if (!veb && uplink_seid != pf->mac_seid) { 14414 14415 for (i = 0; i < pf->num_alloc_vsi; i++) { 14416 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 14417 vsi = pf->vsi[i]; 14418 break; 14419 } 14420 } 14421 if (!vsi) { 14422 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14423 uplink_seid); 14424 return NULL; 14425 } 14426 14427 if (vsi->uplink_seid == pf->mac_seid) 14428 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 14429 vsi->tc_config.enabled_tc); 14430 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14431 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 14432 vsi->tc_config.enabled_tc); 14433 if (veb) { 14434 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 14435 dev_info(&vsi->back->pdev->dev, 14436 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14437 return NULL; 14438 } 14439 /* We come up by default in VEPA mode if SRIOV is not 14440 * already enabled, in which case we can't force VEPA 14441 * mode. 14442 */ 14443 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14444 veb->bridge_mode = BRIDGE_MODE_VEPA; 14445 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14446 } 14447 i40e_config_bridge_mode(veb); 14448 } 14449 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 14450 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 14451 veb = pf->veb[i]; 14452 } 14453 if (!veb) { 14454 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14455 return NULL; 14456 } 14457 14458 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14459 uplink_seid = veb->seid; 14460 } 14461 14462 /* get vsi sw struct */ 14463 v_idx = i40e_vsi_mem_alloc(pf, type); 14464 if (v_idx < 0) 14465 goto err_alloc; 14466 vsi = pf->vsi[v_idx]; 14467 if (!vsi) 14468 goto err_alloc; 14469 vsi->type = type; 14470 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14471 14472 if (type == I40E_VSI_MAIN) 14473 pf->lan_vsi = v_idx; 14474 else if (type == I40E_VSI_SRIOV) 14475 vsi->vf_id = param1; 14476 /* assign it some queues */ 14477 alloc_queue_pairs = vsi->alloc_queue_pairs * 14478 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14479 14480 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14481 if (ret < 0) { 14482 dev_info(&pf->pdev->dev, 14483 "failed to get tracking for %d queues for VSI %d err=%d\n", 14484 alloc_queue_pairs, vsi->seid, ret); 14485 goto err_vsi; 14486 } 14487 vsi->base_queue = ret; 14488 14489 /* get a VSI from the hardware */ 14490 vsi->uplink_seid = uplink_seid; 14491 ret = i40e_add_vsi(vsi); 14492 if (ret) 14493 goto err_vsi; 14494 14495 switch (vsi->type) { 14496 /* setup the netdev if needed */ 14497 case I40E_VSI_MAIN: 14498 case I40E_VSI_VMDQ2: 14499 ret = i40e_config_netdev(vsi); 14500 if (ret) 14501 goto err_netdev; 14502 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14503 if (ret) 14504 goto err_netdev; 14505 if (vsi->type == I40E_VSI_MAIN) { 14506 ret = i40e_devlink_create_port(pf); 14507 if (ret) 14508 goto err_netdev; 14509 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14510 } 14511 ret = register_netdev(vsi->netdev); 14512 if (ret) 14513 goto err_dl_port; 14514 vsi->netdev_registered = true; 14515 netif_carrier_off(vsi->netdev); 14516 #ifdef CONFIG_I40E_DCB 14517 /* Setup DCB netlink interface */ 14518 i40e_dcbnl_setup(vsi); 14519 #endif /* CONFIG_I40E_DCB */ 14520 fallthrough; 14521 case I40E_VSI_FDIR: 14522 /* set up vectors and rings if needed */ 14523 ret = i40e_vsi_setup_vectors(vsi); 14524 if (ret) 14525 goto err_msix; 14526 14527 ret = i40e_alloc_rings(vsi); 14528 if (ret) 14529 goto err_rings; 14530 14531 /* map all of the rings to the q_vectors */ 14532 i40e_vsi_map_rings_to_vectors(vsi); 14533 14534 i40e_vsi_reset_stats(vsi); 14535 break; 14536 default: 14537 /* no netdev or rings for the other VSI types */ 14538 break; 14539 } 14540 14541 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14542 vsi->type == I40E_VSI_VMDQ2) { 14543 ret = i40e_vsi_config_rss(vsi); 14544 if (ret) 14545 goto err_config; 14546 } 14547 return vsi; 14548 14549 err_config: 14550 i40e_vsi_clear_rings(vsi); 14551 err_rings: 14552 i40e_vsi_free_q_vectors(vsi); 14553 err_msix: 14554 if (vsi->netdev_registered) { 14555 vsi->netdev_registered = false; 14556 unregister_netdev(vsi->netdev); 14557 free_netdev(vsi->netdev); 14558 vsi->netdev = NULL; 14559 } 14560 err_dl_port: 14561 if (vsi->type == I40E_VSI_MAIN) 14562 i40e_devlink_destroy_port(pf); 14563 err_netdev: 14564 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14565 err_vsi: 14566 i40e_vsi_clear(vsi); 14567 err_alloc: 14568 return NULL; 14569 } 14570 14571 /** 14572 * i40e_veb_get_bw_info - Query VEB BW information 14573 * @veb: the veb to query 14574 * 14575 * Query the Tx scheduler BW configuration data for given VEB 14576 **/ 14577 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14578 { 14579 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14580 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14581 struct i40e_pf *pf = veb->pf; 14582 struct i40e_hw *hw = &pf->hw; 14583 u32 tc_bw_max; 14584 int ret = 0; 14585 int i; 14586 14587 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14588 &bw_data, NULL); 14589 if (ret) { 14590 dev_info(&pf->pdev->dev, 14591 "query veb bw config failed, err %pe aq_err %s\n", 14592 ERR_PTR(ret), 14593 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14594 goto out; 14595 } 14596 14597 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14598 &ets_data, NULL); 14599 if (ret) { 14600 dev_info(&pf->pdev->dev, 14601 "query veb bw ets config failed, err %pe aq_err %s\n", 14602 ERR_PTR(ret), 14603 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14604 goto out; 14605 } 14606 14607 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14608 veb->bw_max_quanta = ets_data.tc_bw_max; 14609 veb->is_abs_credits = bw_data.absolute_credits_enable; 14610 veb->enabled_tc = ets_data.tc_valid_bits; 14611 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14612 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14613 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14614 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14615 veb->bw_tc_limit_credits[i] = 14616 le16_to_cpu(bw_data.tc_bw_limits[i]); 14617 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14618 } 14619 14620 out: 14621 return ret; 14622 } 14623 14624 /** 14625 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14626 * @pf: board private structure 14627 * 14628 * On error: returns error code (negative) 14629 * On success: returns vsi index in PF (positive) 14630 **/ 14631 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14632 { 14633 int ret = -ENOENT; 14634 struct i40e_veb *veb; 14635 int i; 14636 14637 /* Need to protect the allocation of switch elements at the PF level */ 14638 mutex_lock(&pf->switch_mutex); 14639 14640 /* VEB list may be fragmented if VEB creation/destruction has 14641 * been happening. We can afford to do a quick scan to look 14642 * for any free slots in the list. 14643 * 14644 * find next empty veb slot, looping back around if necessary 14645 */ 14646 i = 0; 14647 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14648 i++; 14649 if (i >= I40E_MAX_VEB) { 14650 ret = -ENOMEM; 14651 goto err_alloc_veb; /* out of VEB slots! */ 14652 } 14653 14654 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14655 if (!veb) { 14656 ret = -ENOMEM; 14657 goto err_alloc_veb; 14658 } 14659 veb->pf = pf; 14660 veb->idx = i; 14661 veb->enabled_tc = 1; 14662 14663 pf->veb[i] = veb; 14664 ret = i; 14665 err_alloc_veb: 14666 mutex_unlock(&pf->switch_mutex); 14667 return ret; 14668 } 14669 14670 /** 14671 * i40e_switch_branch_release - Delete a branch of the switch tree 14672 * @branch: where to start deleting 14673 * 14674 * This uses recursion to find the tips of the branch to be 14675 * removed, deleting until we get back to and can delete this VEB. 14676 **/ 14677 static void i40e_switch_branch_release(struct i40e_veb *branch) 14678 { 14679 struct i40e_pf *pf = branch->pf; 14680 u16 branch_seid = branch->seid; 14681 u16 veb_idx = branch->idx; 14682 int i; 14683 14684 /* release any VEBs on this VEB - RECURSION */ 14685 for (i = 0; i < I40E_MAX_VEB; i++) { 14686 if (!pf->veb[i]) 14687 continue; 14688 if (pf->veb[i]->uplink_seid == branch->seid) 14689 i40e_switch_branch_release(pf->veb[i]); 14690 } 14691 14692 /* Release the VSIs on this VEB, but not the owner VSI. 14693 * 14694 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14695 * the VEB itself, so don't use (*branch) after this loop. 14696 */ 14697 for (i = 0; i < pf->num_alloc_vsi; i++) { 14698 if (!pf->vsi[i]) 14699 continue; 14700 if (pf->vsi[i]->uplink_seid == branch_seid && 14701 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14702 i40e_vsi_release(pf->vsi[i]); 14703 } 14704 } 14705 14706 /* There's one corner case where the VEB might not have been 14707 * removed, so double check it here and remove it if needed. 14708 * This case happens if the veb was created from the debugfs 14709 * commands and no VSIs were added to it. 14710 */ 14711 if (pf->veb[veb_idx]) 14712 i40e_veb_release(pf->veb[veb_idx]); 14713 } 14714 14715 /** 14716 * i40e_veb_clear - remove veb struct 14717 * @veb: the veb to remove 14718 **/ 14719 static void i40e_veb_clear(struct i40e_veb *veb) 14720 { 14721 if (!veb) 14722 return; 14723 14724 if (veb->pf) { 14725 struct i40e_pf *pf = veb->pf; 14726 14727 mutex_lock(&pf->switch_mutex); 14728 if (pf->veb[veb->idx] == veb) 14729 pf->veb[veb->idx] = NULL; 14730 mutex_unlock(&pf->switch_mutex); 14731 } 14732 14733 kfree(veb); 14734 } 14735 14736 /** 14737 * i40e_veb_release - Delete a VEB and free its resources 14738 * @veb: the VEB being removed 14739 **/ 14740 void i40e_veb_release(struct i40e_veb *veb) 14741 { 14742 struct i40e_vsi *vsi = NULL; 14743 struct i40e_pf *pf; 14744 int i, n = 0; 14745 14746 pf = veb->pf; 14747 14748 /* find the remaining VSI and check for extras */ 14749 for (i = 0; i < pf->num_alloc_vsi; i++) { 14750 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 14751 n++; 14752 vsi = pf->vsi[i]; 14753 } 14754 } 14755 if (n != 1) { 14756 dev_info(&pf->pdev->dev, 14757 "can't remove VEB %d with %d VSIs left\n", 14758 veb->seid, n); 14759 return; 14760 } 14761 14762 /* move the remaining VSI to uplink veb */ 14763 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14764 if (veb->uplink_seid) { 14765 vsi->uplink_seid = veb->uplink_seid; 14766 if (veb->uplink_seid == pf->mac_seid) 14767 vsi->veb_idx = I40E_NO_VEB; 14768 else 14769 vsi->veb_idx = veb->veb_idx; 14770 } else { 14771 /* floating VEB */ 14772 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 14773 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 14774 } 14775 14776 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14777 i40e_veb_clear(veb); 14778 } 14779 14780 /** 14781 * i40e_add_veb - create the VEB in the switch 14782 * @veb: the VEB to be instantiated 14783 * @vsi: the controlling VSI 14784 **/ 14785 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14786 { 14787 struct i40e_pf *pf = veb->pf; 14788 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14789 int ret; 14790 14791 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 14792 veb->enabled_tc, false, 14793 &veb->seid, enable_stats, NULL); 14794 14795 /* get a VEB from the hardware */ 14796 if (ret) { 14797 dev_info(&pf->pdev->dev, 14798 "couldn't add VEB, err %pe aq_err %s\n", 14799 ERR_PTR(ret), 14800 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14801 return -EPERM; 14802 } 14803 14804 /* get statistics counter */ 14805 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14806 &veb->stats_idx, NULL, NULL, NULL); 14807 if (ret) { 14808 dev_info(&pf->pdev->dev, 14809 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14810 ERR_PTR(ret), 14811 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14812 return -EPERM; 14813 } 14814 ret = i40e_veb_get_bw_info(veb); 14815 if (ret) { 14816 dev_info(&pf->pdev->dev, 14817 "couldn't get VEB bw info, err %pe aq_err %s\n", 14818 ERR_PTR(ret), 14819 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14820 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14821 return -ENOENT; 14822 } 14823 14824 vsi->uplink_seid = veb->seid; 14825 vsi->veb_idx = veb->idx; 14826 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14827 14828 return 0; 14829 } 14830 14831 /** 14832 * i40e_veb_setup - Set up a VEB 14833 * @pf: board private structure 14834 * @flags: VEB setup flags 14835 * @uplink_seid: the switch element to link to 14836 * @vsi_seid: the initial VSI seid 14837 * @enabled_tc: Enabled TC bit-map 14838 * 14839 * This allocates the sw VEB structure and links it into the switch 14840 * It is possible and legal for this to be a duplicate of an already 14841 * existing VEB. It is also possible for both uplink and vsi seids 14842 * to be zero, in order to create a floating VEB. 14843 * 14844 * Returns pointer to the successfully allocated VEB sw struct on 14845 * success, otherwise returns NULL on failure. 14846 **/ 14847 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14848 u16 uplink_seid, u16 vsi_seid, 14849 u8 enabled_tc) 14850 { 14851 struct i40e_veb *veb, *uplink_veb = NULL; 14852 int vsi_idx, veb_idx; 14853 int ret; 14854 14855 /* if one seid is 0, the other must be 0 to create a floating relay */ 14856 if ((uplink_seid == 0 || vsi_seid == 0) && 14857 (uplink_seid + vsi_seid != 0)) { 14858 dev_info(&pf->pdev->dev, 14859 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14860 uplink_seid, vsi_seid); 14861 return NULL; 14862 } 14863 14864 /* make sure there is such a vsi and uplink */ 14865 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14866 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14867 break; 14868 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14869 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14870 vsi_seid); 14871 return NULL; 14872 } 14873 14874 if (uplink_seid && uplink_seid != pf->mac_seid) { 14875 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14876 if (pf->veb[veb_idx] && 14877 pf->veb[veb_idx]->seid == uplink_seid) { 14878 uplink_veb = pf->veb[veb_idx]; 14879 break; 14880 } 14881 } 14882 if (!uplink_veb) { 14883 dev_info(&pf->pdev->dev, 14884 "uplink seid %d not found\n", uplink_seid); 14885 return NULL; 14886 } 14887 } 14888 14889 /* get veb sw struct */ 14890 veb_idx = i40e_veb_mem_alloc(pf); 14891 if (veb_idx < 0) 14892 goto err_alloc; 14893 veb = pf->veb[veb_idx]; 14894 veb->flags = flags; 14895 veb->uplink_seid = uplink_seid; 14896 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14897 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14898 14899 /* create the VEB in the switch */ 14900 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14901 if (ret) 14902 goto err_veb; 14903 if (vsi_idx == pf->lan_vsi) 14904 pf->lan_veb = veb->idx; 14905 14906 return veb; 14907 14908 err_veb: 14909 i40e_veb_clear(veb); 14910 err_alloc: 14911 return NULL; 14912 } 14913 14914 /** 14915 * i40e_setup_pf_switch_element - set PF vars based on switch type 14916 * @pf: board private structure 14917 * @ele: element we are building info from 14918 * @num_reported: total number of elements 14919 * @printconfig: should we print the contents 14920 * 14921 * helper function to assist in extracting a few useful SEID values. 14922 **/ 14923 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14924 struct i40e_aqc_switch_config_element_resp *ele, 14925 u16 num_reported, bool printconfig) 14926 { 14927 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14928 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14929 u8 element_type = ele->element_type; 14930 u16 seid = le16_to_cpu(ele->seid); 14931 14932 if (printconfig) 14933 dev_info(&pf->pdev->dev, 14934 "type=%d seid=%d uplink=%d downlink=%d\n", 14935 element_type, seid, uplink_seid, downlink_seid); 14936 14937 switch (element_type) { 14938 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14939 pf->mac_seid = seid; 14940 break; 14941 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14942 /* Main VEB? */ 14943 if (uplink_seid != pf->mac_seid) 14944 break; 14945 if (pf->lan_veb >= I40E_MAX_VEB) { 14946 int v; 14947 14948 /* find existing or else empty VEB */ 14949 for (v = 0; v < I40E_MAX_VEB; v++) { 14950 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14951 pf->lan_veb = v; 14952 break; 14953 } 14954 } 14955 if (pf->lan_veb >= I40E_MAX_VEB) { 14956 v = i40e_veb_mem_alloc(pf); 14957 if (v < 0) 14958 break; 14959 pf->lan_veb = v; 14960 } 14961 } 14962 if (pf->lan_veb >= I40E_MAX_VEB) 14963 break; 14964 14965 pf->veb[pf->lan_veb]->seid = seid; 14966 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14967 pf->veb[pf->lan_veb]->pf = pf; 14968 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14969 break; 14970 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14971 if (num_reported != 1) 14972 break; 14973 /* This is immediately after a reset so we can assume this is 14974 * the PF's VSI 14975 */ 14976 pf->mac_seid = uplink_seid; 14977 pf->main_vsi_seid = seid; 14978 if (printconfig) 14979 dev_info(&pf->pdev->dev, 14980 "pf_seid=%d main_vsi_seid=%d\n", 14981 downlink_seid, pf->main_vsi_seid); 14982 break; 14983 case I40E_SWITCH_ELEMENT_TYPE_PF: 14984 case I40E_SWITCH_ELEMENT_TYPE_VF: 14985 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14986 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14987 case I40E_SWITCH_ELEMENT_TYPE_PE: 14988 case I40E_SWITCH_ELEMENT_TYPE_PA: 14989 /* ignore these for now */ 14990 break; 14991 default: 14992 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14993 element_type, seid); 14994 break; 14995 } 14996 } 14997 14998 /** 14999 * i40e_fetch_switch_configuration - Get switch config from firmware 15000 * @pf: board private structure 15001 * @printconfig: should we print the contents 15002 * 15003 * Get the current switch configuration from the device and 15004 * extract a few useful SEID values. 15005 **/ 15006 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 15007 { 15008 struct i40e_aqc_get_switch_config_resp *sw_config; 15009 u16 next_seid = 0; 15010 int ret = 0; 15011 u8 *aq_buf; 15012 int i; 15013 15014 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 15015 if (!aq_buf) 15016 return -ENOMEM; 15017 15018 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 15019 do { 15020 u16 num_reported, num_total; 15021 15022 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 15023 I40E_AQ_LARGE_BUF, 15024 &next_seid, NULL); 15025 if (ret) { 15026 dev_info(&pf->pdev->dev, 15027 "get switch config failed err %d aq_err %s\n", 15028 ret, 15029 i40e_aq_str(&pf->hw, 15030 pf->hw.aq.asq_last_status)); 15031 kfree(aq_buf); 15032 return -ENOENT; 15033 } 15034 15035 num_reported = le16_to_cpu(sw_config->header.num_reported); 15036 num_total = le16_to_cpu(sw_config->header.num_total); 15037 15038 if (printconfig) 15039 dev_info(&pf->pdev->dev, 15040 "header: %d reported %d total\n", 15041 num_reported, num_total); 15042 15043 for (i = 0; i < num_reported; i++) { 15044 struct i40e_aqc_switch_config_element_resp *ele = 15045 &sw_config->element[i]; 15046 15047 i40e_setup_pf_switch_element(pf, ele, num_reported, 15048 printconfig); 15049 } 15050 } while (next_seid != 0); 15051 15052 kfree(aq_buf); 15053 return ret; 15054 } 15055 15056 /** 15057 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 15058 * @pf: board private structure 15059 * @reinit: if the Main VSI needs to re-initialized. 15060 * @lock_acquired: indicates whether or not the lock has been acquired 15061 * 15062 * Returns 0 on success, negative value on failure 15063 **/ 15064 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 15065 { 15066 u16 flags = 0; 15067 int ret; 15068 15069 /* find out what's out there already */ 15070 ret = i40e_fetch_switch_configuration(pf, false); 15071 if (ret) { 15072 dev_info(&pf->pdev->dev, 15073 "couldn't fetch switch config, err %pe aq_err %s\n", 15074 ERR_PTR(ret), 15075 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15076 return ret; 15077 } 15078 i40e_pf_reset_stats(pf); 15079 15080 /* set the switch config bit for the whole device to 15081 * support limited promisc or true promisc 15082 * when user requests promisc. The default is limited 15083 * promisc. 15084 */ 15085 15086 if ((pf->hw.pf_id == 0) && 15087 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15088 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15089 pf->last_sw_conf_flags = flags; 15090 } 15091 15092 if (pf->hw.pf_id == 0) { 15093 u16 valid_flags; 15094 15095 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15096 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15097 NULL); 15098 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15099 dev_info(&pf->pdev->dev, 15100 "couldn't set switch config bits, err %pe aq_err %s\n", 15101 ERR_PTR(ret), 15102 i40e_aq_str(&pf->hw, 15103 pf->hw.aq.asq_last_status)); 15104 /* not a fatal problem, just keep going */ 15105 } 15106 pf->last_sw_conf_valid_flags = valid_flags; 15107 } 15108 15109 /* first time setup */ 15110 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 15111 struct i40e_vsi *vsi = NULL; 15112 u16 uplink_seid; 15113 15114 /* Set up the PF VSI associated with the PF's main VSI 15115 * that is already in the HW switch 15116 */ 15117 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 15118 uplink_seid = pf->veb[pf->lan_veb]->seid; 15119 else 15120 uplink_seid = pf->mac_seid; 15121 if (pf->lan_vsi == I40E_NO_VSI) 15122 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 15123 else if (reinit) 15124 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 15125 if (!vsi) { 15126 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15127 i40e_cloud_filter_exit(pf); 15128 i40e_fdir_teardown(pf); 15129 return -EAGAIN; 15130 } 15131 } else { 15132 /* force a reset of TC and queue layout configurations */ 15133 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 15134 15135 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 15136 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 15137 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 15138 } 15139 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 15140 15141 i40e_fdir_sb_setup(pf); 15142 15143 /* Setup static PF queue filter control settings */ 15144 ret = i40e_setup_pf_filter_control(pf); 15145 if (ret) { 15146 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15147 ret); 15148 /* Failure here should not stop continuing other steps */ 15149 } 15150 15151 /* enable RSS in the HW, even for only one queue, as the stack can use 15152 * the hash 15153 */ 15154 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15155 i40e_pf_config_rss(pf); 15156 15157 /* fill in link information and enable LSE reporting */ 15158 i40e_link_event(pf); 15159 15160 i40e_ptp_init(pf); 15161 15162 if (!lock_acquired) 15163 rtnl_lock(); 15164 15165 /* repopulate tunnel port filters */ 15166 udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev); 15167 15168 if (!lock_acquired) 15169 rtnl_unlock(); 15170 15171 return ret; 15172 } 15173 15174 /** 15175 * i40e_determine_queue_usage - Work out queue distribution 15176 * @pf: board private structure 15177 **/ 15178 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15179 { 15180 int queues_left; 15181 int q_max; 15182 15183 pf->num_lan_qps = 0; 15184 15185 /* Find the max queues to be put into basic use. We'll always be 15186 * using TC0, whether or not DCB is running, and TC0 will get the 15187 * big RSS set. 15188 */ 15189 queues_left = pf->hw.func_caps.num_tx_qp; 15190 15191 if ((queues_left == 1) || 15192 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15193 /* one qp for PF, no queues for anything else */ 15194 queues_left = 0; 15195 pf->alloc_rss_size = pf->num_lan_qps = 1; 15196 15197 /* make sure all the fancies are disabled */ 15198 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15199 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15200 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15201 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15202 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15203 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15204 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15205 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15206 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15207 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15208 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15209 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15210 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15211 /* one qp for PF */ 15212 pf->alloc_rss_size = pf->num_lan_qps = 1; 15213 queues_left -= pf->num_lan_qps; 15214 15215 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15216 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15217 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15218 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15219 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15220 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15221 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15222 } else { 15223 /* Not enough queues for all TCs */ 15224 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15225 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15226 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15227 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15228 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15229 } 15230 15231 /* limit lan qps to the smaller of qps, cpus or msix */ 15232 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15233 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15234 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15235 pf->num_lan_qps = q_max; 15236 15237 queues_left -= pf->num_lan_qps; 15238 } 15239 15240 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15241 if (queues_left > 1) { 15242 queues_left -= 1; /* save 1 queue for FD */ 15243 } else { 15244 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15245 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15246 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15247 } 15248 } 15249 15250 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15251 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15252 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15253 (queues_left / pf->num_vf_qps)); 15254 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15255 } 15256 15257 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15258 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15259 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15260 (queues_left / pf->num_vmdq_qps)); 15261 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15262 } 15263 15264 pf->queues_left = queues_left; 15265 dev_dbg(&pf->pdev->dev, 15266 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15267 pf->hw.func_caps.num_tx_qp, 15268 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15269 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15270 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15271 queues_left); 15272 } 15273 15274 /** 15275 * i40e_setup_pf_filter_control - Setup PF static filter control 15276 * @pf: PF to be setup 15277 * 15278 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15279 * settings. If PE/FCoE are enabled then it will also set the per PF 15280 * based filter sizes required for them. It also enables Flow director, 15281 * ethertype and macvlan type filter settings for the pf. 15282 * 15283 * Returns 0 on success, negative on failure 15284 **/ 15285 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15286 { 15287 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15288 15289 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15290 15291 /* Flow Director is enabled */ 15292 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15293 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15294 settings->enable_fdir = true; 15295 15296 /* Ethtype and MACVLAN filters enabled for PF */ 15297 settings->enable_ethtype = true; 15298 settings->enable_macvlan = true; 15299 15300 if (i40e_set_filter_control(&pf->hw, settings)) 15301 return -ENOENT; 15302 15303 return 0; 15304 } 15305 15306 #define INFO_STRING_LEN 255 15307 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15308 static void i40e_print_features(struct i40e_pf *pf) 15309 { 15310 struct i40e_hw *hw = &pf->hw; 15311 char *buf; 15312 int i; 15313 15314 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15315 if (!buf) 15316 return; 15317 15318 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15319 #ifdef CONFIG_PCI_IOV 15320 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15321 #endif 15322 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15323 pf->hw.func_caps.num_vsis, 15324 pf->vsi[pf->lan_vsi]->num_queue_pairs); 15325 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15326 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15327 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15328 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15329 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15330 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15331 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15332 } 15333 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15334 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15335 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15336 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15337 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15338 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15339 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15340 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15341 else 15342 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15343 15344 dev_info(&pf->pdev->dev, "%s\n", buf); 15345 kfree(buf); 15346 WARN_ON(i > INFO_STRING_LEN); 15347 } 15348 15349 /** 15350 * i40e_get_platform_mac_addr - get platform-specific MAC address 15351 * @pdev: PCI device information struct 15352 * @pf: board private structure 15353 * 15354 * Look up the MAC address for the device. First we'll try 15355 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15356 * specific fallback. Otherwise, we'll default to the stored value in 15357 * firmware. 15358 **/ 15359 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15360 { 15361 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15362 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15363 } 15364 15365 /** 15366 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15367 * @fec_cfg: FEC option to set in flags 15368 * @flags: ptr to flags in which we set FEC option 15369 **/ 15370 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15371 { 15372 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15373 set_bit(I40E_FLAG_RS_FEC, flags); 15374 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15375 } 15376 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15377 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15378 set_bit(I40E_FLAG_RS_FEC, flags); 15379 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15380 } 15381 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15382 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15383 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15384 clear_bit(I40E_FLAG_RS_FEC, flags); 15385 } 15386 if (fec_cfg == 0) { 15387 clear_bit(I40E_FLAG_RS_FEC, flags); 15388 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15389 } 15390 } 15391 15392 /** 15393 * i40e_check_recovery_mode - check if we are running transition firmware 15394 * @pf: board private structure 15395 * 15396 * Check registers indicating the firmware runs in recovery mode. Sets the 15397 * appropriate driver state. 15398 * 15399 * Returns true if the recovery mode was detected, false otherwise 15400 **/ 15401 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15402 { 15403 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15404 15405 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15406 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15407 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15408 set_bit(__I40E_RECOVERY_MODE, pf->state); 15409 15410 return true; 15411 } 15412 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15413 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15414 15415 return false; 15416 } 15417 15418 /** 15419 * i40e_pf_loop_reset - perform reset in a loop. 15420 * @pf: board private structure 15421 * 15422 * This function is useful when a NIC is about to enter recovery mode. 15423 * When a NIC's internal data structures are corrupted the NIC's 15424 * firmware is going to enter recovery mode. 15425 * Right after a POR it takes about 7 minutes for firmware to enter 15426 * recovery mode. Until that time a NIC is in some kind of intermediate 15427 * state. After that time period the NIC almost surely enters 15428 * recovery mode. The only way for a driver to detect intermediate 15429 * state is to issue a series of pf-resets and check a return value. 15430 * If a PF reset returns success then the firmware could be in recovery 15431 * mode so the caller of this code needs to check for recovery mode 15432 * if this function returns success. There is a little chance that 15433 * firmware will hang in intermediate state forever. 15434 * Since waiting 7 minutes is quite a lot of time this function waits 15435 * 10 seconds and then gives up by returning an error. 15436 * 15437 * Return 0 on success, negative on failure. 15438 **/ 15439 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15440 { 15441 /* wait max 10 seconds for PF reset to succeed */ 15442 const unsigned long time_end = jiffies + 10 * HZ; 15443 struct i40e_hw *hw = &pf->hw; 15444 int ret; 15445 15446 ret = i40e_pf_reset(hw); 15447 while (ret != 0 && time_before(jiffies, time_end)) { 15448 usleep_range(10000, 20000); 15449 ret = i40e_pf_reset(hw); 15450 } 15451 15452 if (ret == 0) 15453 pf->pfr_count++; 15454 else 15455 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15456 15457 return ret; 15458 } 15459 15460 /** 15461 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15462 * @pf: board private structure 15463 * 15464 * Check FW registers to determine if FW issued unexpected EMP Reset. 15465 * Every time when unexpected EMP Reset occurs the FW increments 15466 * a counter of unexpected EMP Resets. When the counter reaches 10 15467 * the FW should enter the Recovery mode 15468 * 15469 * Returns true if FW issued unexpected EMP Reset 15470 **/ 15471 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15472 { 15473 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15474 I40E_GL_FWSTS_FWS1B_MASK; 15475 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15476 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15477 } 15478 15479 /** 15480 * i40e_handle_resets - handle EMP resets and PF resets 15481 * @pf: board private structure 15482 * 15483 * Handle both EMP resets and PF resets and conclude whether there are 15484 * any issues regarding these resets. If there are any issues then 15485 * generate log entry. 15486 * 15487 * Return 0 if NIC is healthy or negative value when there are issues 15488 * with resets 15489 **/ 15490 static int i40e_handle_resets(struct i40e_pf *pf) 15491 { 15492 const int pfr = i40e_pf_loop_reset(pf); 15493 const bool is_empr = i40e_check_fw_empr(pf); 15494 15495 if (is_empr || pfr != 0) 15496 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15497 15498 return is_empr ? -EIO : pfr; 15499 } 15500 15501 /** 15502 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15503 * @pf: board private structure 15504 * @hw: ptr to the hardware info 15505 * 15506 * This function does a minimal setup of all subsystems needed for running 15507 * recovery mode. 15508 * 15509 * Returns 0 on success, negative on failure 15510 **/ 15511 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15512 { 15513 struct i40e_vsi *vsi; 15514 int err; 15515 int v_idx; 15516 15517 pci_set_drvdata(pf->pdev, pf); 15518 pci_save_state(pf->pdev); 15519 15520 /* set up periodic task facility */ 15521 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15522 pf->service_timer_period = HZ; 15523 15524 INIT_WORK(&pf->service_task, i40e_service_task); 15525 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15526 15527 err = i40e_init_interrupt_scheme(pf); 15528 if (err) 15529 goto err_switch_setup; 15530 15531 /* The number of VSIs reported by the FW is the minimum guaranteed 15532 * to us; HW supports far more and we share the remaining pool with 15533 * the other PFs. We allocate space for more than the guarantee with 15534 * the understanding that we might not get them all later. 15535 */ 15536 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15537 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15538 else 15539 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15540 15541 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15542 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15543 GFP_KERNEL); 15544 if (!pf->vsi) { 15545 err = -ENOMEM; 15546 goto err_switch_setup; 15547 } 15548 15549 /* We allocate one VSI which is needed as absolute minimum 15550 * in order to register the netdev 15551 */ 15552 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15553 if (v_idx < 0) { 15554 err = v_idx; 15555 goto err_switch_setup; 15556 } 15557 pf->lan_vsi = v_idx; 15558 vsi = pf->vsi[v_idx]; 15559 if (!vsi) { 15560 err = -EFAULT; 15561 goto err_switch_setup; 15562 } 15563 vsi->alloc_queue_pairs = 1; 15564 err = i40e_config_netdev(vsi); 15565 if (err) 15566 goto err_switch_setup; 15567 err = register_netdev(vsi->netdev); 15568 if (err) 15569 goto err_switch_setup; 15570 vsi->netdev_registered = true; 15571 i40e_dbg_pf_init(pf); 15572 15573 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15574 if (err) 15575 goto err_switch_setup; 15576 15577 /* tell the firmware that we're starting */ 15578 i40e_send_version(pf); 15579 15580 /* since everything's happy, start the service_task timer */ 15581 mod_timer(&pf->service_timer, 15582 round_jiffies(jiffies + pf->service_timer_period)); 15583 15584 return 0; 15585 15586 err_switch_setup: 15587 i40e_reset_interrupt_capability(pf); 15588 timer_shutdown_sync(&pf->service_timer); 15589 i40e_shutdown_adminq(hw); 15590 iounmap(hw->hw_addr); 15591 pci_release_mem_regions(pf->pdev); 15592 pci_disable_device(pf->pdev); 15593 i40e_free_pf(pf); 15594 15595 return err; 15596 } 15597 15598 /** 15599 * i40e_set_subsystem_device_id - set subsystem device id 15600 * @hw: pointer to the hardware info 15601 * 15602 * Set PCI subsystem device id either from a pci_dev structure or 15603 * a specific FW register. 15604 **/ 15605 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15606 { 15607 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15608 15609 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15610 pf->pdev->subsystem_device : 15611 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15612 } 15613 15614 /** 15615 * i40e_probe - Device initialization routine 15616 * @pdev: PCI device information struct 15617 * @ent: entry in i40e_pci_tbl 15618 * 15619 * i40e_probe initializes a PF identified by a pci_dev structure. 15620 * The OS initialization, configuring of the PF private structure, 15621 * and a hardware reset occur. 15622 * 15623 * Returns 0 on success, negative on failure 15624 **/ 15625 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15626 { 15627 struct i40e_aq_get_phy_abilities_resp abilities; 15628 #ifdef CONFIG_I40E_DCB 15629 enum i40e_get_fw_lldp_status_resp lldp_status; 15630 #endif /* CONFIG_I40E_DCB */ 15631 struct i40e_pf *pf; 15632 struct i40e_hw *hw; 15633 u16 wol_nvm_bits; 15634 char nvm_ver[32]; 15635 u16 link_status; 15636 #ifdef CONFIG_I40E_DCB 15637 int status; 15638 #endif /* CONFIG_I40E_DCB */ 15639 int err; 15640 u32 val; 15641 u32 i; 15642 15643 err = pci_enable_device_mem(pdev); 15644 if (err) 15645 return err; 15646 15647 /* set up for high or low dma */ 15648 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15649 if (err) { 15650 dev_err(&pdev->dev, 15651 "DMA configuration failed: 0x%x\n", err); 15652 goto err_dma; 15653 } 15654 15655 /* set up pci connections */ 15656 err = pci_request_mem_regions(pdev, i40e_driver_name); 15657 if (err) { 15658 dev_info(&pdev->dev, 15659 "pci_request_selected_regions failed %d\n", err); 15660 goto err_pci_reg; 15661 } 15662 15663 pci_set_master(pdev); 15664 15665 /* Now that we have a PCI connection, we need to do the 15666 * low level device setup. This is primarily setting up 15667 * the Admin Queue structures and then querying for the 15668 * device's current profile information. 15669 */ 15670 pf = i40e_alloc_pf(&pdev->dev); 15671 if (!pf) { 15672 err = -ENOMEM; 15673 goto err_pf_alloc; 15674 } 15675 pf->next_vsi = 0; 15676 pf->pdev = pdev; 15677 set_bit(__I40E_DOWN, pf->state); 15678 15679 hw = &pf->hw; 15680 15681 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15682 I40E_MAX_CSR_SPACE); 15683 /* We believe that the highest register to read is 15684 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15685 * is not less than that before mapping to prevent a 15686 * kernel panic. 15687 */ 15688 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15689 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15690 pf->ioremap_len); 15691 err = -ENOMEM; 15692 goto err_ioremap; 15693 } 15694 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15695 if (!hw->hw_addr) { 15696 err = -EIO; 15697 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15698 (unsigned int)pci_resource_start(pdev, 0), 15699 pf->ioremap_len, err); 15700 goto err_ioremap; 15701 } 15702 hw->vendor_id = pdev->vendor; 15703 hw->device_id = pdev->device; 15704 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15705 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15706 i40e_set_subsystem_device_id(hw); 15707 hw->bus.device = PCI_SLOT(pdev->devfn); 15708 hw->bus.func = PCI_FUNC(pdev->devfn); 15709 hw->bus.bus_id = pdev->bus->number; 15710 15711 /* Select something other than the 802.1ad ethertype for the 15712 * switch to use internally and drop on ingress. 15713 */ 15714 hw->switch_tag = 0xffff; 15715 hw->first_tag = ETH_P_8021AD; 15716 hw->second_tag = ETH_P_8021Q; 15717 15718 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15719 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15720 INIT_LIST_HEAD(&pf->ddp_old_prof); 15721 15722 /* set up the locks for the AQ, do this only once in probe 15723 * and destroy them only once in remove 15724 */ 15725 mutex_init(&hw->aq.asq_mutex); 15726 mutex_init(&hw->aq.arq_mutex); 15727 15728 pf->msg_enable = netif_msg_init(debug, 15729 NETIF_MSG_DRV | 15730 NETIF_MSG_PROBE | 15731 NETIF_MSG_LINK); 15732 if (debug < -1) 15733 pf->hw.debug_mask = debug; 15734 15735 /* do a special CORER for clearing PXE mode once at init */ 15736 if (hw->revision_id == 0 && 15737 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15738 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15739 i40e_flush(hw); 15740 msleep(200); 15741 pf->corer_count++; 15742 15743 i40e_clear_pxe_mode(hw); 15744 } 15745 15746 /* Reset here to make sure all is clean and to define PF 'n' */ 15747 i40e_clear_hw(hw); 15748 15749 err = i40e_set_mac_type(hw); 15750 if (err) { 15751 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15752 err); 15753 goto err_pf_reset; 15754 } 15755 15756 err = i40e_handle_resets(pf); 15757 if (err) 15758 goto err_pf_reset; 15759 15760 i40e_check_recovery_mode(pf); 15761 15762 if (is_kdump_kernel()) { 15763 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15764 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15765 } else { 15766 hw->aq.num_arq_entries = I40E_AQ_LEN; 15767 hw->aq.num_asq_entries = I40E_AQ_LEN; 15768 } 15769 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15770 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15771 15772 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15773 "%s-%s:misc", 15774 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15775 15776 err = i40e_init_shared_code(hw); 15777 if (err) { 15778 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15779 err); 15780 goto err_pf_reset; 15781 } 15782 15783 /* set up a default setting for link flow control */ 15784 pf->hw.fc.requested_mode = I40E_FC_NONE; 15785 15786 err = i40e_init_adminq(hw); 15787 if (err) { 15788 if (err == -EIO) 15789 dev_info(&pdev->dev, 15790 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15791 hw->aq.api_maj_ver, 15792 hw->aq.api_min_ver, 15793 I40E_FW_API_VERSION_MAJOR, 15794 I40E_FW_MINOR_VERSION(hw)); 15795 else 15796 dev_info(&pdev->dev, 15797 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15798 15799 goto err_pf_reset; 15800 } 15801 i40e_get_oem_version(hw); 15802 i40e_get_pba_string(hw); 15803 15804 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15805 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15806 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15807 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15808 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15809 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15810 hw->subsystem_device_id); 15811 15812 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15813 I40E_FW_MINOR_VERSION(hw) + 1)) 15814 dev_dbg(&pdev->dev, 15815 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15816 hw->aq.api_maj_ver, 15817 hw->aq.api_min_ver, 15818 I40E_FW_API_VERSION_MAJOR, 15819 I40E_FW_MINOR_VERSION(hw)); 15820 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15821 dev_info(&pdev->dev, 15822 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15823 hw->aq.api_maj_ver, 15824 hw->aq.api_min_ver, 15825 I40E_FW_API_VERSION_MAJOR, 15826 I40E_FW_MINOR_VERSION(hw)); 15827 15828 i40e_verify_eeprom(pf); 15829 15830 /* Rev 0 hardware was never productized */ 15831 if (hw->revision_id < 1) 15832 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15833 15834 i40e_clear_pxe_mode(hw); 15835 15836 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15837 if (err) 15838 goto err_adminq_setup; 15839 15840 err = i40e_sw_init(pf); 15841 if (err) { 15842 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15843 goto err_sw_init; 15844 } 15845 15846 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15847 return i40e_init_recovery_mode(pf, hw); 15848 15849 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15850 hw->func_caps.num_rx_qp, 0, 0); 15851 if (err) { 15852 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15853 goto err_init_lan_hmc; 15854 } 15855 15856 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15857 if (err) { 15858 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15859 err = -ENOENT; 15860 goto err_configure_lan_hmc; 15861 } 15862 15863 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15864 * Ignore error return codes because if it was already disabled via 15865 * hardware settings this will fail 15866 */ 15867 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15868 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15869 i40e_aq_stop_lldp(hw, true, false, NULL); 15870 } 15871 15872 /* allow a platform config to override the HW addr */ 15873 i40e_get_platform_mac_addr(pdev, pf); 15874 15875 if (!is_valid_ether_addr(hw->mac.addr)) { 15876 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15877 err = -EIO; 15878 goto err_mac_addr; 15879 } 15880 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15881 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15882 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15883 if (is_valid_ether_addr(hw->mac.port_addr)) 15884 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15885 15886 i40e_ptp_alloc_pins(pf); 15887 pci_set_drvdata(pdev, pf); 15888 pci_save_state(pdev); 15889 15890 #ifdef CONFIG_I40E_DCB 15891 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15892 (!status && 15893 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15894 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15895 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15896 dev_info(&pdev->dev, 15897 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15898 "FW LLDP is disabled\n" : 15899 "FW LLDP is enabled\n"); 15900 15901 /* Enable FW to write default DCB config on link-up */ 15902 i40e_aq_set_dcb_parameters(hw, true, NULL); 15903 15904 err = i40e_init_pf_dcb(pf); 15905 if (err) { 15906 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15907 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15908 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15909 /* Continue without DCB enabled */ 15910 } 15911 #endif /* CONFIG_I40E_DCB */ 15912 15913 /* set up periodic task facility */ 15914 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15915 pf->service_timer_period = HZ; 15916 15917 INIT_WORK(&pf->service_task, i40e_service_task); 15918 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15919 15920 /* NVM bit on means WoL disabled for the port */ 15921 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15922 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15923 pf->wol_en = false; 15924 else 15925 pf->wol_en = true; 15926 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15927 15928 /* set up the main switch operations */ 15929 i40e_determine_queue_usage(pf); 15930 err = i40e_init_interrupt_scheme(pf); 15931 if (err) 15932 goto err_switch_setup; 15933 15934 /* Reduce Tx and Rx pairs for kdump 15935 * When MSI-X is enabled, it's not allowed to use more TC queue 15936 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15937 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15938 */ 15939 if (is_kdump_kernel()) 15940 pf->num_lan_msix = 1; 15941 15942 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15943 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15944 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15945 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15946 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15947 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15948 UDP_TUNNEL_TYPE_GENEVE; 15949 15950 /* The number of VSIs reported by the FW is the minimum guaranteed 15951 * to us; HW supports far more and we share the remaining pool with 15952 * the other PFs. We allocate space for more than the guarantee with 15953 * the understanding that we might not get them all later. 15954 */ 15955 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15956 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15957 else 15958 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15959 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15960 dev_warn(&pf->pdev->dev, 15961 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15962 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15963 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15964 } 15965 15966 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15967 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15968 GFP_KERNEL); 15969 if (!pf->vsi) { 15970 err = -ENOMEM; 15971 goto err_switch_setup; 15972 } 15973 15974 #ifdef CONFIG_PCI_IOV 15975 /* prep for VF support */ 15976 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15977 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15978 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15979 if (pci_num_vf(pdev)) 15980 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15981 } 15982 #endif 15983 err = i40e_setup_pf_switch(pf, false, false); 15984 if (err) { 15985 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15986 goto err_vsis; 15987 } 15988 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15989 15990 /* if FDIR VSI was set up, start it now */ 15991 for (i = 0; i < pf->num_alloc_vsi; i++) { 15992 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15993 i40e_vsi_open(pf->vsi[i]); 15994 break; 15995 } 15996 } 15997 15998 /* The driver only wants link up/down and module qualification 15999 * reports from firmware. Note the negative logic. 16000 */ 16001 err = i40e_aq_set_phy_int_mask(&pf->hw, 16002 ~(I40E_AQ_EVENT_LINK_UPDOWN | 16003 I40E_AQ_EVENT_MEDIA_NA | 16004 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 16005 if (err) 16006 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 16007 ERR_PTR(err), 16008 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16009 16010 /* Reconfigure hardware for allowing smaller MSS in the case 16011 * of TSO, so that we avoid the MDD being fired and causing 16012 * a reset in the case of small MSS+TSO. 16013 */ 16014 val = rd32(hw, I40E_REG_MSS); 16015 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 16016 val &= ~I40E_REG_MSS_MIN_MASK; 16017 val |= I40E_64BYTE_MSS; 16018 wr32(hw, I40E_REG_MSS, val); 16019 } 16020 16021 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 16022 msleep(75); 16023 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 16024 if (err) 16025 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 16026 ERR_PTR(err), 16027 i40e_aq_str(&pf->hw, 16028 pf->hw.aq.asq_last_status)); 16029 } 16030 /* The main driver is (mostly) up and happy. We need to set this state 16031 * before setting up the misc vector or we get a race and the vector 16032 * ends up disabled forever. 16033 */ 16034 clear_bit(__I40E_DOWN, pf->state); 16035 16036 /* In case of MSIX we are going to setup the misc vector right here 16037 * to handle admin queue events etc. In case of legacy and MSI 16038 * the misc functionality and queue processing is combined in 16039 * the same vector and that gets setup at open. 16040 */ 16041 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 16042 err = i40e_setup_misc_vector(pf); 16043 if (err) { 16044 dev_info(&pdev->dev, 16045 "setup of misc vector failed: %d\n", err); 16046 i40e_cloud_filter_exit(pf); 16047 i40e_fdir_teardown(pf); 16048 goto err_vsis; 16049 } 16050 } 16051 16052 #ifdef CONFIG_PCI_IOV 16053 /* prep for VF support */ 16054 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 16055 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 16056 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 16057 /* disable link interrupts for VFs */ 16058 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 16059 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 16060 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 16061 i40e_flush(hw); 16062 16063 if (pci_num_vf(pdev)) { 16064 dev_info(&pdev->dev, 16065 "Active VFs found, allocating resources.\n"); 16066 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 16067 if (err) 16068 dev_info(&pdev->dev, 16069 "Error %d allocating resources for existing VFs\n", 16070 err); 16071 } 16072 } 16073 #endif /* CONFIG_PCI_IOV */ 16074 16075 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16076 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16077 pf->num_iwarp_msix, 16078 I40E_IWARP_IRQ_PILE_ID); 16079 if (pf->iwarp_base_vector < 0) { 16080 dev_info(&pdev->dev, 16081 "failed to get tracking for %d vectors for IWARP err=%d\n", 16082 pf->num_iwarp_msix, pf->iwarp_base_vector); 16083 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16084 } 16085 } 16086 16087 i40e_dbg_pf_init(pf); 16088 16089 /* tell the firmware that we're starting */ 16090 i40e_send_version(pf); 16091 16092 /* since everything's happy, start the service_task timer */ 16093 mod_timer(&pf->service_timer, 16094 round_jiffies(jiffies + pf->service_timer_period)); 16095 16096 /* add this PF to client device list and launch a client service task */ 16097 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16098 err = i40e_lan_add_device(pf); 16099 if (err) 16100 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16101 err); 16102 } 16103 16104 #define PCI_SPEED_SIZE 8 16105 #define PCI_WIDTH_SIZE 8 16106 /* Devices on the IOSF bus do not have this information 16107 * and will report PCI Gen 1 x 1 by default so don't bother 16108 * checking them. 16109 */ 16110 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16111 char speed[PCI_SPEED_SIZE] = "Unknown"; 16112 char width[PCI_WIDTH_SIZE] = "Unknown"; 16113 16114 /* Get the negotiated link width and speed from PCI config 16115 * space 16116 */ 16117 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16118 &link_status); 16119 16120 i40e_set_pci_config_data(hw, link_status); 16121 16122 switch (hw->bus.speed) { 16123 case i40e_bus_speed_8000: 16124 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16125 case i40e_bus_speed_5000: 16126 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16127 case i40e_bus_speed_2500: 16128 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16129 default: 16130 break; 16131 } 16132 switch (hw->bus.width) { 16133 case i40e_bus_width_pcie_x8: 16134 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16135 case i40e_bus_width_pcie_x4: 16136 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16137 case i40e_bus_width_pcie_x2: 16138 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16139 case i40e_bus_width_pcie_x1: 16140 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16141 default: 16142 break; 16143 } 16144 16145 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16146 speed, width); 16147 16148 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16149 hw->bus.speed < i40e_bus_speed_8000) { 16150 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16151 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16152 } 16153 } 16154 16155 /* get the requested speeds from the fw */ 16156 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16157 if (err) 16158 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16159 ERR_PTR(err), 16160 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16161 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16162 16163 /* set the FEC config due to the board capabilities */ 16164 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16165 16166 /* get the supported phy types from the fw */ 16167 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16168 if (err) 16169 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16170 ERR_PTR(err), 16171 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16172 16173 /* make sure the MFS hasn't been set lower than the default */ 16174 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16175 val = (rd32(&pf->hw, I40E_PRTGL_SAH) & 16176 I40E_PRTGL_SAH_MFS_MASK) >> I40E_PRTGL_SAH_MFS_SHIFT; 16177 if (val < MAX_FRAME_SIZE_DEFAULT) 16178 dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n", 16179 i, val); 16180 16181 /* Add a filter to drop all Flow control frames from any VSI from being 16182 * transmitted. By doing so we stop a malicious VF from sending out 16183 * PAUSE or PFC frames and potentially controlling traffic for other 16184 * PF/VF VSIs. 16185 * The FW can still send Flow control frames if enabled. 16186 */ 16187 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16188 pf->main_vsi_seid); 16189 16190 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16191 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16192 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16193 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16194 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16195 /* print a string summarizing features */ 16196 i40e_print_features(pf); 16197 16198 i40e_devlink_register(pf); 16199 16200 return 0; 16201 16202 /* Unwind what we've done if something failed in the setup */ 16203 err_vsis: 16204 set_bit(__I40E_DOWN, pf->state); 16205 i40e_clear_interrupt_scheme(pf); 16206 kfree(pf->vsi); 16207 err_switch_setup: 16208 i40e_reset_interrupt_capability(pf); 16209 timer_shutdown_sync(&pf->service_timer); 16210 err_mac_addr: 16211 err_configure_lan_hmc: 16212 (void)i40e_shutdown_lan_hmc(hw); 16213 err_init_lan_hmc: 16214 kfree(pf->qp_pile); 16215 err_sw_init: 16216 err_adminq_setup: 16217 err_pf_reset: 16218 iounmap(hw->hw_addr); 16219 err_ioremap: 16220 i40e_free_pf(pf); 16221 err_pf_alloc: 16222 pci_release_mem_regions(pdev); 16223 err_pci_reg: 16224 err_dma: 16225 pci_disable_device(pdev); 16226 return err; 16227 } 16228 16229 /** 16230 * i40e_remove - Device removal routine 16231 * @pdev: PCI device information struct 16232 * 16233 * i40e_remove is called by the PCI subsystem to alert the driver 16234 * that is should release a PCI device. This could be caused by a 16235 * Hot-Plug event, or because the driver is going to be removed from 16236 * memory. 16237 **/ 16238 static void i40e_remove(struct pci_dev *pdev) 16239 { 16240 struct i40e_pf *pf = pci_get_drvdata(pdev); 16241 struct i40e_hw *hw = &pf->hw; 16242 int ret_code; 16243 int i; 16244 16245 i40e_devlink_unregister(pf); 16246 16247 i40e_dbg_pf_exit(pf); 16248 16249 i40e_ptp_stop(pf); 16250 16251 /* Disable RSS in hw */ 16252 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16253 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16254 16255 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16256 * flags, once they are set, i40e_rebuild should not be called as 16257 * i40e_prep_for_reset always returns early. 16258 */ 16259 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16260 usleep_range(1000, 2000); 16261 set_bit(__I40E_IN_REMOVE, pf->state); 16262 16263 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16264 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16265 i40e_free_vfs(pf); 16266 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16267 } 16268 /* no more scheduling of any task */ 16269 set_bit(__I40E_SUSPENDED, pf->state); 16270 set_bit(__I40E_DOWN, pf->state); 16271 if (pf->service_timer.function) 16272 timer_shutdown_sync(&pf->service_timer); 16273 if (pf->service_task.func) 16274 cancel_work_sync(&pf->service_task); 16275 16276 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16277 struct i40e_vsi *vsi = pf->vsi[0]; 16278 16279 /* We know that we have allocated only one vsi for this PF, 16280 * it was just for registering netdevice, so the interface 16281 * could be visible in the 'ifconfig' output 16282 */ 16283 unregister_netdev(vsi->netdev); 16284 free_netdev(vsi->netdev); 16285 16286 goto unmap; 16287 } 16288 16289 /* Client close must be called explicitly here because the timer 16290 * has been stopped. 16291 */ 16292 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16293 16294 i40e_fdir_teardown(pf); 16295 16296 /* If there is a switch structure or any orphans, remove them. 16297 * This will leave only the PF's VSI remaining. 16298 */ 16299 for (i = 0; i < I40E_MAX_VEB; i++) { 16300 if (!pf->veb[i]) 16301 continue; 16302 16303 if (pf->veb[i]->uplink_seid == pf->mac_seid || 16304 pf->veb[i]->uplink_seid == 0) 16305 i40e_switch_branch_release(pf->veb[i]); 16306 } 16307 16308 /* Now we can shutdown the PF's VSIs, just before we kill 16309 * adminq and hmc. 16310 */ 16311 for (i = pf->num_alloc_vsi; i--;) 16312 if (pf->vsi[i]) { 16313 i40e_vsi_close(pf->vsi[i]); 16314 i40e_vsi_release(pf->vsi[i]); 16315 pf->vsi[i] = NULL; 16316 } 16317 16318 i40e_cloud_filter_exit(pf); 16319 16320 /* remove attached clients */ 16321 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16322 ret_code = i40e_lan_del_device(pf); 16323 if (ret_code) 16324 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16325 ret_code); 16326 } 16327 16328 /* shutdown and destroy the HMC */ 16329 if (hw->hmc.hmc_obj) { 16330 ret_code = i40e_shutdown_lan_hmc(hw); 16331 if (ret_code) 16332 dev_warn(&pdev->dev, 16333 "Failed to destroy the HMC resources: %d\n", 16334 ret_code); 16335 } 16336 16337 unmap: 16338 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16339 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16340 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16341 free_irq(pf->pdev->irq, pf); 16342 16343 /* shutdown the adminq */ 16344 i40e_shutdown_adminq(hw); 16345 16346 /* destroy the locks only once, here */ 16347 mutex_destroy(&hw->aq.arq_mutex); 16348 mutex_destroy(&hw->aq.asq_mutex); 16349 16350 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16351 rtnl_lock(); 16352 i40e_clear_interrupt_scheme(pf); 16353 for (i = 0; i < pf->num_alloc_vsi; i++) { 16354 if (pf->vsi[i]) { 16355 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16356 i40e_vsi_clear_rings(pf->vsi[i]); 16357 i40e_vsi_clear(pf->vsi[i]); 16358 pf->vsi[i] = NULL; 16359 } 16360 } 16361 rtnl_unlock(); 16362 16363 for (i = 0; i < I40E_MAX_VEB; i++) { 16364 kfree(pf->veb[i]); 16365 pf->veb[i] = NULL; 16366 } 16367 16368 kfree(pf->qp_pile); 16369 kfree(pf->vsi); 16370 16371 iounmap(hw->hw_addr); 16372 i40e_free_pf(pf); 16373 pci_release_mem_regions(pdev); 16374 16375 pci_disable_device(pdev); 16376 } 16377 16378 /** 16379 * i40e_pci_error_detected - warning that something funky happened in PCI land 16380 * @pdev: PCI device information struct 16381 * @error: the type of PCI error 16382 * 16383 * Called to warn that something happened and the error handling steps 16384 * are in progress. Allows the driver to quiesce things, be ready for 16385 * remediation. 16386 **/ 16387 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16388 pci_channel_state_t error) 16389 { 16390 struct i40e_pf *pf = pci_get_drvdata(pdev); 16391 16392 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16393 16394 if (!pf) { 16395 dev_info(&pdev->dev, 16396 "Cannot recover - error happened during device probe\n"); 16397 return PCI_ERS_RESULT_DISCONNECT; 16398 } 16399 16400 /* shutdown all operations */ 16401 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16402 i40e_prep_for_reset(pf); 16403 16404 /* Request a slot reset */ 16405 return PCI_ERS_RESULT_NEED_RESET; 16406 } 16407 16408 /** 16409 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16410 * @pdev: PCI device information struct 16411 * 16412 * Called to find if the driver can work with the device now that 16413 * the pci slot has been reset. If a basic connection seems good 16414 * (registers are readable and have sane content) then return a 16415 * happy little PCI_ERS_RESULT_xxx. 16416 **/ 16417 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16418 { 16419 struct i40e_pf *pf = pci_get_drvdata(pdev); 16420 pci_ers_result_t result; 16421 u32 reg; 16422 16423 dev_dbg(&pdev->dev, "%s\n", __func__); 16424 if (pci_enable_device_mem(pdev)) { 16425 dev_info(&pdev->dev, 16426 "Cannot re-enable PCI device after reset.\n"); 16427 result = PCI_ERS_RESULT_DISCONNECT; 16428 } else { 16429 pci_set_master(pdev); 16430 pci_restore_state(pdev); 16431 pci_save_state(pdev); 16432 pci_wake_from_d3(pdev, false); 16433 16434 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16435 if (reg == 0) 16436 result = PCI_ERS_RESULT_RECOVERED; 16437 else 16438 result = PCI_ERS_RESULT_DISCONNECT; 16439 } 16440 16441 return result; 16442 } 16443 16444 /** 16445 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16446 * @pdev: PCI device information struct 16447 */ 16448 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16449 { 16450 struct i40e_pf *pf = pci_get_drvdata(pdev); 16451 16452 i40e_prep_for_reset(pf); 16453 } 16454 16455 /** 16456 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16457 * @pdev: PCI device information struct 16458 */ 16459 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16460 { 16461 struct i40e_pf *pf = pci_get_drvdata(pdev); 16462 16463 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16464 return; 16465 16466 i40e_reset_and_rebuild(pf, false, false); 16467 } 16468 16469 /** 16470 * i40e_pci_error_resume - restart operations after PCI error recovery 16471 * @pdev: PCI device information struct 16472 * 16473 * Called to allow the driver to bring things back up after PCI error 16474 * and/or reset recovery has finished. 16475 **/ 16476 static void i40e_pci_error_resume(struct pci_dev *pdev) 16477 { 16478 struct i40e_pf *pf = pci_get_drvdata(pdev); 16479 16480 dev_dbg(&pdev->dev, "%s\n", __func__); 16481 if (test_bit(__I40E_SUSPENDED, pf->state)) 16482 return; 16483 16484 i40e_handle_reset_warning(pf, false); 16485 } 16486 16487 /** 16488 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16489 * using the mac_address_write admin q function 16490 * @pf: pointer to i40e_pf struct 16491 **/ 16492 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16493 { 16494 struct i40e_hw *hw = &pf->hw; 16495 u8 mac_addr[6]; 16496 u16 flags = 0; 16497 int ret; 16498 16499 /* Get current MAC address in case it's an LAA */ 16500 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 16501 ether_addr_copy(mac_addr, 16502 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 16503 } else { 16504 dev_err(&pf->pdev->dev, 16505 "Failed to retrieve MAC address; using default\n"); 16506 ether_addr_copy(mac_addr, hw->mac.addr); 16507 } 16508 16509 /* The FW expects the mac address write cmd to first be called with 16510 * one of these flags before calling it again with the multicast 16511 * enable flags. 16512 */ 16513 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16514 16515 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16516 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16517 16518 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16519 if (ret) { 16520 dev_err(&pf->pdev->dev, 16521 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16522 return; 16523 } 16524 16525 flags = I40E_AQC_MC_MAG_EN 16526 | I40E_AQC_WOL_PRESERVE_ON_PFR 16527 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16528 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16529 if (ret) 16530 dev_err(&pf->pdev->dev, 16531 "Failed to enable Multicast Magic Packet wake up\n"); 16532 } 16533 16534 /** 16535 * i40e_shutdown - PCI callback for shutting down 16536 * @pdev: PCI device information struct 16537 **/ 16538 static void i40e_shutdown(struct pci_dev *pdev) 16539 { 16540 struct i40e_pf *pf = pci_get_drvdata(pdev); 16541 struct i40e_hw *hw = &pf->hw; 16542 16543 set_bit(__I40E_SUSPENDED, pf->state); 16544 set_bit(__I40E_DOWN, pf->state); 16545 16546 del_timer_sync(&pf->service_timer); 16547 cancel_work_sync(&pf->service_task); 16548 i40e_cloud_filter_exit(pf); 16549 i40e_fdir_teardown(pf); 16550 16551 /* Client close must be called explicitly here because the timer 16552 * has been stopped. 16553 */ 16554 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16555 16556 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16557 pf->wol_en) 16558 i40e_enable_mc_magic_wake(pf); 16559 16560 i40e_prep_for_reset(pf); 16561 16562 wr32(hw, I40E_PFPM_APM, 16563 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16564 wr32(hw, I40E_PFPM_WUFC, 16565 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16566 16567 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16568 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16569 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16570 free_irq(pf->pdev->irq, pf); 16571 16572 /* Since we're going to destroy queues during the 16573 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16574 * whole section 16575 */ 16576 rtnl_lock(); 16577 i40e_clear_interrupt_scheme(pf); 16578 rtnl_unlock(); 16579 16580 if (system_state == SYSTEM_POWER_OFF) { 16581 pci_wake_from_d3(pdev, pf->wol_en); 16582 pci_set_power_state(pdev, PCI_D3hot); 16583 } 16584 } 16585 16586 /** 16587 * i40e_suspend - PM callback for moving to D3 16588 * @dev: generic device information structure 16589 **/ 16590 static int __maybe_unused i40e_suspend(struct device *dev) 16591 { 16592 struct i40e_pf *pf = dev_get_drvdata(dev); 16593 struct i40e_hw *hw = &pf->hw; 16594 16595 /* If we're already suspended, then there is nothing to do */ 16596 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16597 return 0; 16598 16599 set_bit(__I40E_DOWN, pf->state); 16600 16601 /* Ensure service task will not be running */ 16602 del_timer_sync(&pf->service_timer); 16603 cancel_work_sync(&pf->service_task); 16604 16605 /* Client close must be called explicitly here because the timer 16606 * has been stopped. 16607 */ 16608 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16609 16610 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16611 pf->wol_en) 16612 i40e_enable_mc_magic_wake(pf); 16613 16614 /* Since we're going to destroy queues during the 16615 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16616 * whole section 16617 */ 16618 rtnl_lock(); 16619 16620 i40e_prep_for_reset(pf); 16621 16622 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16623 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16624 16625 /* Clear the interrupt scheme and release our IRQs so that the system 16626 * can safely hibernate even when there are a large number of CPUs. 16627 * Otherwise hibernation might fail when mapping all the vectors back 16628 * to CPU0. 16629 */ 16630 i40e_clear_interrupt_scheme(pf); 16631 16632 rtnl_unlock(); 16633 16634 return 0; 16635 } 16636 16637 /** 16638 * i40e_resume - PM callback for waking up from D3 16639 * @dev: generic device information structure 16640 **/ 16641 static int __maybe_unused i40e_resume(struct device *dev) 16642 { 16643 struct i40e_pf *pf = dev_get_drvdata(dev); 16644 int err; 16645 16646 /* If we're not suspended, then there is nothing to do */ 16647 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16648 return 0; 16649 16650 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16651 * since we're going to be restoring queues 16652 */ 16653 rtnl_lock(); 16654 16655 /* We cleared the interrupt scheme when we suspended, so we need to 16656 * restore it now to resume device functionality. 16657 */ 16658 err = i40e_restore_interrupt_scheme(pf); 16659 if (err) { 16660 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16661 err); 16662 } 16663 16664 clear_bit(__I40E_DOWN, pf->state); 16665 i40e_reset_and_rebuild(pf, false, true); 16666 16667 rtnl_unlock(); 16668 16669 /* Clear suspended state last after everything is recovered */ 16670 clear_bit(__I40E_SUSPENDED, pf->state); 16671 16672 /* Restart the service task */ 16673 mod_timer(&pf->service_timer, 16674 round_jiffies(jiffies + pf->service_timer_period)); 16675 16676 return 0; 16677 } 16678 16679 static const struct pci_error_handlers i40e_err_handler = { 16680 .error_detected = i40e_pci_error_detected, 16681 .slot_reset = i40e_pci_error_slot_reset, 16682 .reset_prepare = i40e_pci_error_reset_prepare, 16683 .reset_done = i40e_pci_error_reset_done, 16684 .resume = i40e_pci_error_resume, 16685 }; 16686 16687 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16688 16689 static struct pci_driver i40e_driver = { 16690 .name = i40e_driver_name, 16691 .id_table = i40e_pci_tbl, 16692 .probe = i40e_probe, 16693 .remove = i40e_remove, 16694 .driver = { 16695 .pm = &i40e_pm_ops, 16696 }, 16697 .shutdown = i40e_shutdown, 16698 .err_handler = &i40e_err_handler, 16699 .sriov_configure = i40e_pci_sriov_configure, 16700 }; 16701 16702 /** 16703 * i40e_init_module - Driver registration routine 16704 * 16705 * i40e_init_module is the first routine called when the driver is 16706 * loaded. All it does is register with the PCI subsystem. 16707 **/ 16708 static int __init i40e_init_module(void) 16709 { 16710 int err; 16711 16712 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16713 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16714 16715 /* There is no need to throttle the number of active tasks because 16716 * each device limits its own task using a state bit for scheduling 16717 * the service task, and the device tasks do not interfere with each 16718 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16719 * since we need to be able to guarantee forward progress even under 16720 * memory pressure. 16721 */ 16722 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 16723 if (!i40e_wq) { 16724 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16725 return -ENOMEM; 16726 } 16727 16728 i40e_dbg_init(); 16729 err = pci_register_driver(&i40e_driver); 16730 if (err) { 16731 destroy_workqueue(i40e_wq); 16732 i40e_dbg_exit(); 16733 return err; 16734 } 16735 16736 return 0; 16737 } 16738 module_init(i40e_init_module); 16739 16740 /** 16741 * i40e_exit_module - Driver exit cleanup routine 16742 * 16743 * i40e_exit_module is called just before the driver is removed 16744 * from memory. 16745 **/ 16746 static void __exit i40e_exit_module(void) 16747 { 16748 pci_unregister_driver(&i40e_driver); 16749 destroy_workqueue(i40e_wq); 16750 ida_destroy(&i40e_client_ida); 16751 i40e_dbg_exit(); 16752 } 16753 module_exit(i40e_exit_module); 16754