1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/if_bridge.h> 7 #include <linux/if_macvlan.h> 8 #include <linux/module.h> 9 #include <net/pkt_cls.h> 10 #include <net/xdp_sock_drv.h> 11 12 /* Local includes */ 13 #include "i40e.h" 14 #include "i40e_devids.h" 15 #include "i40e_diag.h" 16 #include "i40e_lan_hmc.h" 17 #include "i40e_virtchnl_pf.h" 18 #include "i40e_xsk.h" 19 20 /* All i40e tracepoints are defined by the include below, which 21 * must be included exactly once across the whole kernel with 22 * CREATE_TRACE_POINTS defined 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "i40e_trace.h" 26 27 const char i40e_driver_name[] = "i40e"; 28 static const char i40e_driver_string[] = 29 "Intel(R) Ethernet Connection XL710 Network Driver"; 30 31 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 32 33 /* a bit of forward declarations */ 34 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 35 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 36 static int i40e_add_vsi(struct i40e_vsi *vsi); 37 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 38 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 39 static int i40e_setup_misc_vector(struct i40e_pf *pf); 40 static void i40e_determine_queue_usage(struct i40e_pf *pf); 41 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 42 static void i40e_prep_for_reset(struct i40e_pf *pf); 43 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 44 bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 48 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 49 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 50 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 51 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 52 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 53 static int i40e_get_capabilities(struct i40e_pf *pf, 54 enum i40e_admin_queue_opc list_type); 55 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 56 57 /* i40e_pci_tbl - PCI Device ID Table 58 * 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id i40e_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_LICENSE("GPL v2"); 104 105 static struct workqueue_struct *i40e_wq; 106 107 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 108 struct net_device *netdev, int delta) 109 { 110 struct netdev_hw_addr_list *ha_list; 111 struct netdev_hw_addr *ha; 112 113 if (!f || !netdev) 114 return; 115 116 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr)) 117 ha_list = &netdev->uc; 118 else 119 ha_list = &netdev->mc; 120 121 netdev_hw_addr_list_for_each(ha, ha_list) { 122 if (ether_addr_equal(ha->addr, f->macaddr)) { 123 ha->refcount += delta; 124 if (ha->refcount <= 0) 125 ha->refcount = 1; 126 break; 127 } 128 } 129 } 130 131 /** 132 * i40e_hw_to_dev - get device pointer from the hardware structure 133 * @hw: pointer to the device HW structure 134 **/ 135 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 136 { 137 struct i40e_pf *pf = i40e_hw_to_pf(hw); 138 139 return &pf->pdev->dev; 140 } 141 142 /** 143 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 144 * @hw: pointer to the HW structure 145 * @mem: ptr to mem struct to fill out 146 * @size: size of memory requested 147 * @alignment: what to align the allocation to 148 **/ 149 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 150 u64 size, u32 alignment) 151 { 152 struct i40e_pf *pf = i40e_hw_to_pf(hw); 153 154 mem->size = ALIGN(size, alignment); 155 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 156 GFP_KERNEL); 157 if (!mem->va) 158 return -ENOMEM; 159 160 return 0; 161 } 162 163 /** 164 * i40e_free_dma_mem - OS specific memory free for shared code 165 * @hw: pointer to the HW structure 166 * @mem: ptr to mem struct to free 167 **/ 168 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 169 { 170 struct i40e_pf *pf = i40e_hw_to_pf(hw); 171 172 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 173 mem->va = NULL; 174 mem->pa = 0; 175 mem->size = 0; 176 177 return 0; 178 } 179 180 /** 181 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 182 * @hw: pointer to the HW structure 183 * @mem: ptr to mem struct to fill out 184 * @size: size of memory requested 185 **/ 186 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 187 u32 size) 188 { 189 mem->size = size; 190 mem->va = kzalloc(size, GFP_KERNEL); 191 192 if (!mem->va) 193 return -ENOMEM; 194 195 return 0; 196 } 197 198 /** 199 * i40e_free_virt_mem - OS specific memory free for shared code 200 * @hw: pointer to the HW structure 201 * @mem: ptr to mem struct to free 202 **/ 203 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 204 { 205 /* it's ok to kfree a NULL pointer */ 206 kfree(mem->va); 207 mem->va = NULL; 208 mem->size = 0; 209 210 return 0; 211 } 212 213 /** 214 * i40e_get_lump - find a lump of free generic resource 215 * @pf: board private structure 216 * @pile: the pile of resource to search 217 * @needed: the number of items needed 218 * @id: an owner id to stick on the items assigned 219 * 220 * Returns the base item index of the lump, or negative for error 221 **/ 222 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 223 u16 needed, u16 id) 224 { 225 int ret = -ENOMEM; 226 int i, j; 227 228 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 229 dev_info(&pf->pdev->dev, 230 "param err: pile=%s needed=%d id=0x%04x\n", 231 pile ? "<valid>" : "<null>", needed, id); 232 return -EINVAL; 233 } 234 235 /* Allocate last queue in the pile for FDIR VSI queue 236 * so it doesn't fragment the qp_pile 237 */ 238 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 239 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 240 dev_err(&pf->pdev->dev, 241 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 242 pile->num_entries - 1); 243 return -ENOMEM; 244 } 245 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 246 return pile->num_entries - 1; 247 } 248 249 i = 0; 250 while (i < pile->num_entries) { 251 /* skip already allocated entries */ 252 if (pile->list[i] & I40E_PILE_VALID_BIT) { 253 i++; 254 continue; 255 } 256 257 /* do we have enough in this lump? */ 258 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 259 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 260 break; 261 } 262 263 if (j == needed) { 264 /* there was enough, so assign it to the requestor */ 265 for (j = 0; j < needed; j++) 266 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 267 ret = i; 268 break; 269 } 270 271 /* not enough, so skip over it and continue looking */ 272 i += j; 273 } 274 275 return ret; 276 } 277 278 /** 279 * i40e_put_lump - return a lump of generic resource 280 * @pile: the pile of resource to search 281 * @index: the base item index 282 * @id: the owner id of the items assigned 283 * 284 * Returns the count of items in the lump 285 **/ 286 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 287 { 288 int valid_id = (id | I40E_PILE_VALID_BIT); 289 int count = 0; 290 u16 i; 291 292 if (!pile || index >= pile->num_entries) 293 return -EINVAL; 294 295 for (i = index; 296 i < pile->num_entries && pile->list[i] == valid_id; 297 i++) { 298 pile->list[i] = 0; 299 count++; 300 } 301 302 303 return count; 304 } 305 306 /** 307 * i40e_find_vsi_from_id - searches for the vsi with the given id 308 * @pf: the pf structure to search for the vsi 309 * @id: id of the vsi it is searching for 310 **/ 311 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 312 { 313 int i; 314 315 for (i = 0; i < pf->num_alloc_vsi; i++) 316 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 317 return pf->vsi[i]; 318 319 return NULL; 320 } 321 322 /** 323 * i40e_service_event_schedule - Schedule the service task to wake up 324 * @pf: board private structure 325 * 326 * If not already scheduled, this puts the task into the work queue 327 **/ 328 void i40e_service_event_schedule(struct i40e_pf *pf) 329 { 330 if ((!test_bit(__I40E_DOWN, pf->state) && 331 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 332 test_bit(__I40E_RECOVERY_MODE, pf->state)) 333 queue_work(i40e_wq, &pf->service_task); 334 } 335 336 /** 337 * i40e_tx_timeout - Respond to a Tx Hang 338 * @netdev: network interface device structure 339 * @txqueue: queue number timing out 340 * 341 * If any port has noticed a Tx timeout, it is likely that the whole 342 * device is munged, not just the one netdev port, so go for the full 343 * reset. 344 **/ 345 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 346 { 347 struct i40e_netdev_priv *np = netdev_priv(netdev); 348 struct i40e_vsi *vsi = np->vsi; 349 struct i40e_pf *pf = vsi->back; 350 struct i40e_ring *tx_ring = NULL; 351 unsigned int i; 352 u32 head, val; 353 354 pf->tx_timeout_count++; 355 356 /* with txqueue index, find the tx_ring struct */ 357 for (i = 0; i < vsi->num_queue_pairs; i++) { 358 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 359 if (txqueue == 360 vsi->tx_rings[i]->queue_index) { 361 tx_ring = vsi->tx_rings[i]; 362 break; 363 } 364 } 365 } 366 367 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 368 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 369 else if (time_before(jiffies, 370 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 371 return; /* don't do any new action before the next timeout */ 372 373 /* don't kick off another recovery if one is already pending */ 374 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 375 return; 376 377 if (tx_ring) { 378 head = i40e_get_head(tx_ring); 379 /* Read interrupt register */ 380 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 381 val = rd32(&pf->hw, 382 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 383 tx_ring->vsi->base_vector - 1)); 384 else 385 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 386 387 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 388 vsi->seid, txqueue, tx_ring->next_to_clean, 389 head, tx_ring->next_to_use, 390 readl(tx_ring->tail), val); 391 } 392 393 pf->tx_timeout_last_recovery = jiffies; 394 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 395 pf->tx_timeout_recovery_level, txqueue); 396 397 switch (pf->tx_timeout_recovery_level) { 398 case 1: 399 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 400 break; 401 case 2: 402 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 403 break; 404 case 3: 405 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 406 break; 407 default: 408 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 409 set_bit(__I40E_DOWN_REQUESTED, pf->state); 410 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 411 break; 412 } 413 414 i40e_service_event_schedule(pf); 415 pf->tx_timeout_recovery_level++; 416 } 417 418 /** 419 * i40e_get_vsi_stats_struct - Get System Network Statistics 420 * @vsi: the VSI we care about 421 * 422 * Returns the address of the device statistics structure. 423 * The statistics are actually updated from the service task. 424 **/ 425 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 426 { 427 return &vsi->net_stats; 428 } 429 430 /** 431 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 432 * @ring: Tx ring to get statistics from 433 * @stats: statistics entry to be updated 434 **/ 435 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 436 struct rtnl_link_stats64 *stats) 437 { 438 u64 bytes, packets; 439 unsigned int start; 440 441 do { 442 start = u64_stats_fetch_begin(&ring->syncp); 443 packets = ring->stats.packets; 444 bytes = ring->stats.bytes; 445 } while (u64_stats_fetch_retry(&ring->syncp, start)); 446 447 stats->tx_packets += packets; 448 stats->tx_bytes += bytes; 449 } 450 451 /** 452 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 453 * @netdev: network interface device structure 454 * @stats: data structure to store statistics 455 * 456 * Returns the address of the device statistics structure. 457 * The statistics are actually updated from the service task. 458 **/ 459 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 460 struct rtnl_link_stats64 *stats) 461 { 462 struct i40e_netdev_priv *np = netdev_priv(netdev); 463 struct i40e_vsi *vsi = np->vsi; 464 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 465 struct i40e_ring *ring; 466 int i; 467 468 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 469 return; 470 471 if (!vsi->tx_rings) 472 return; 473 474 rcu_read_lock(); 475 for (i = 0; i < vsi->num_queue_pairs; i++) { 476 u64 bytes, packets; 477 unsigned int start; 478 479 ring = READ_ONCE(vsi->tx_rings[i]); 480 if (!ring) 481 continue; 482 i40e_get_netdev_stats_struct_tx(ring, stats); 483 484 if (i40e_enabled_xdp_vsi(vsi)) { 485 ring = READ_ONCE(vsi->xdp_rings[i]); 486 if (!ring) 487 continue; 488 i40e_get_netdev_stats_struct_tx(ring, stats); 489 } 490 491 ring = READ_ONCE(vsi->rx_rings[i]); 492 if (!ring) 493 continue; 494 do { 495 start = u64_stats_fetch_begin(&ring->syncp); 496 packets = ring->stats.packets; 497 bytes = ring->stats.bytes; 498 } while (u64_stats_fetch_retry(&ring->syncp, start)); 499 500 stats->rx_packets += packets; 501 stats->rx_bytes += bytes; 502 503 } 504 rcu_read_unlock(); 505 506 /* following stats updated by i40e_watchdog_subtask() */ 507 stats->multicast = vsi_stats->multicast; 508 stats->tx_errors = vsi_stats->tx_errors; 509 stats->tx_dropped = vsi_stats->tx_dropped; 510 stats->rx_errors = vsi_stats->rx_errors; 511 stats->rx_dropped = vsi_stats->rx_dropped; 512 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 513 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 514 stats->rx_length_errors = vsi_stats->rx_length_errors; 515 } 516 517 /** 518 * i40e_vsi_reset_stats - Resets all stats of the given vsi 519 * @vsi: the VSI to have its stats reset 520 **/ 521 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 522 { 523 struct rtnl_link_stats64 *ns; 524 int i; 525 526 if (!vsi) 527 return; 528 529 ns = i40e_get_vsi_stats_struct(vsi); 530 memset(ns, 0, sizeof(*ns)); 531 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 532 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 533 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 534 if (vsi->rx_rings && vsi->rx_rings[0]) { 535 for (i = 0; i < vsi->num_queue_pairs; i++) { 536 memset(&vsi->rx_rings[i]->stats, 0, 537 sizeof(vsi->rx_rings[i]->stats)); 538 memset(&vsi->rx_rings[i]->rx_stats, 0, 539 sizeof(vsi->rx_rings[i]->rx_stats)); 540 memset(&vsi->tx_rings[i]->stats, 0, 541 sizeof(vsi->tx_rings[i]->stats)); 542 memset(&vsi->tx_rings[i]->tx_stats, 0, 543 sizeof(vsi->tx_rings[i]->tx_stats)); 544 } 545 } 546 vsi->stat_offsets_loaded = false; 547 } 548 549 /** 550 * i40e_pf_reset_stats - Reset all of the stats for the given PF 551 * @pf: the PF to be reset 552 **/ 553 void i40e_pf_reset_stats(struct i40e_pf *pf) 554 { 555 int i; 556 557 memset(&pf->stats, 0, sizeof(pf->stats)); 558 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 559 pf->stat_offsets_loaded = false; 560 561 for (i = 0; i < I40E_MAX_VEB; i++) { 562 if (pf->veb[i]) { 563 memset(&pf->veb[i]->stats, 0, 564 sizeof(pf->veb[i]->stats)); 565 memset(&pf->veb[i]->stats_offsets, 0, 566 sizeof(pf->veb[i]->stats_offsets)); 567 memset(&pf->veb[i]->tc_stats, 0, 568 sizeof(pf->veb[i]->tc_stats)); 569 memset(&pf->veb[i]->tc_stats_offsets, 0, 570 sizeof(pf->veb[i]->tc_stats_offsets)); 571 pf->veb[i]->stat_offsets_loaded = false; 572 } 573 } 574 pf->hw_csum_rx_error = 0; 575 } 576 577 /** 578 * i40e_compute_pci_to_hw_id - compute index form PCI function. 579 * @vsi: ptr to the VSI to read from. 580 * @hw: ptr to the hardware info. 581 **/ 582 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 583 { 584 int pf_count = i40e_get_pf_count(hw); 585 586 if (vsi->type == I40E_VSI_SRIOV) 587 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 588 589 return hw->port + BIT(7); 590 } 591 592 /** 593 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 594 * @hw: ptr to the hardware info. 595 * @hireg: the high 32 bit reg to read. 596 * @loreg: the low 32 bit reg to read. 597 * @offset_loaded: has the initial offset been loaded yet. 598 * @offset: ptr to current offset value. 599 * @stat: ptr to the stat. 600 * 601 * Since the device stats are not reset at PFReset, they will not 602 * be zeroed when the driver starts. We'll save the first values read 603 * and use them as offsets to be subtracted from the raw values in order 604 * to report stats that count from zero. 605 **/ 606 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 607 bool offset_loaded, u64 *offset, u64 *stat) 608 { 609 u64 new_data; 610 611 new_data = rd64(hw, loreg); 612 613 if (!offset_loaded || new_data < *offset) 614 *offset = new_data; 615 *stat = new_data - *offset; 616 } 617 618 /** 619 * i40e_stat_update48 - read and update a 48 bit stat from the chip 620 * @hw: ptr to the hardware info 621 * @hireg: the high 32 bit reg to read 622 * @loreg: the low 32 bit reg to read 623 * @offset_loaded: has the initial offset been loaded yet 624 * @offset: ptr to current offset value 625 * @stat: ptr to the stat 626 * 627 * Since the device stats are not reset at PFReset, they likely will not 628 * be zeroed when the driver starts. We'll save the first values read 629 * and use them as offsets to be subtracted from the raw values in order 630 * to report stats that count from zero. In the process, we also manage 631 * the potential roll-over. 632 **/ 633 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 634 bool offset_loaded, u64 *offset, u64 *stat) 635 { 636 u64 new_data; 637 638 if (hw->device_id == I40E_DEV_ID_QEMU) { 639 new_data = rd32(hw, loreg); 640 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 641 } else { 642 new_data = rd64(hw, loreg); 643 } 644 if (!offset_loaded) 645 *offset = new_data; 646 if (likely(new_data >= *offset)) 647 *stat = new_data - *offset; 648 else 649 *stat = (new_data + BIT_ULL(48)) - *offset; 650 *stat &= 0xFFFFFFFFFFFFULL; 651 } 652 653 /** 654 * i40e_stat_update32 - read and update a 32 bit stat from the chip 655 * @hw: ptr to the hardware info 656 * @reg: the hw reg to read 657 * @offset_loaded: has the initial offset been loaded yet 658 * @offset: ptr to current offset value 659 * @stat: ptr to the stat 660 **/ 661 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 662 bool offset_loaded, u64 *offset, u64 *stat) 663 { 664 u32 new_data; 665 666 new_data = rd32(hw, reg); 667 if (!offset_loaded) 668 *offset = new_data; 669 if (likely(new_data >= *offset)) 670 *stat = (u32)(new_data - *offset); 671 else 672 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 673 } 674 675 /** 676 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 677 * @hw: ptr to the hardware info 678 * @reg: the hw reg to read and clear 679 * @stat: ptr to the stat 680 **/ 681 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 682 { 683 u32 new_data = rd32(hw, reg); 684 685 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 686 *stat += new_data; 687 } 688 689 /** 690 * i40e_stats_update_rx_discards - update rx_discards. 691 * @vsi: ptr to the VSI to be updated. 692 * @hw: ptr to the hardware info. 693 * @stat_idx: VSI's stat_counter_idx. 694 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 695 * @stat_offset: ptr to stat_offset to store first read of specific register. 696 * @stat: ptr to VSI's stat to be updated. 697 **/ 698 static void 699 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 700 int stat_idx, bool offset_loaded, 701 struct i40e_eth_stats *stat_offset, 702 struct i40e_eth_stats *stat) 703 { 704 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 705 &stat_offset->rx_discards, &stat->rx_discards); 706 i40e_stat_update64(hw, 707 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 708 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 709 offset_loaded, &stat_offset->rx_discards_other, 710 &stat->rx_discards_other); 711 } 712 713 /** 714 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 715 * @vsi: the VSI to be updated 716 **/ 717 void i40e_update_eth_stats(struct i40e_vsi *vsi) 718 { 719 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 720 struct i40e_pf *pf = vsi->back; 721 struct i40e_hw *hw = &pf->hw; 722 struct i40e_eth_stats *oes; 723 struct i40e_eth_stats *es; /* device's eth stats */ 724 725 es = &vsi->eth_stats; 726 oes = &vsi->eth_stats_offsets; 727 728 /* Gather up the stats that the hw collects */ 729 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 730 vsi->stat_offsets_loaded, 731 &oes->tx_errors, &es->tx_errors); 732 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 733 vsi->stat_offsets_loaded, 734 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 735 736 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 737 I40E_GLV_GORCL(stat_idx), 738 vsi->stat_offsets_loaded, 739 &oes->rx_bytes, &es->rx_bytes); 740 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 741 I40E_GLV_UPRCL(stat_idx), 742 vsi->stat_offsets_loaded, 743 &oes->rx_unicast, &es->rx_unicast); 744 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 745 I40E_GLV_MPRCL(stat_idx), 746 vsi->stat_offsets_loaded, 747 &oes->rx_multicast, &es->rx_multicast); 748 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 749 I40E_GLV_BPRCL(stat_idx), 750 vsi->stat_offsets_loaded, 751 &oes->rx_broadcast, &es->rx_broadcast); 752 753 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 754 I40E_GLV_GOTCL(stat_idx), 755 vsi->stat_offsets_loaded, 756 &oes->tx_bytes, &es->tx_bytes); 757 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 758 I40E_GLV_UPTCL(stat_idx), 759 vsi->stat_offsets_loaded, 760 &oes->tx_unicast, &es->tx_unicast); 761 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 762 I40E_GLV_MPTCL(stat_idx), 763 vsi->stat_offsets_loaded, 764 &oes->tx_multicast, &es->tx_multicast); 765 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 766 I40E_GLV_BPTCL(stat_idx), 767 vsi->stat_offsets_loaded, 768 &oes->tx_broadcast, &es->tx_broadcast); 769 770 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 771 vsi->stat_offsets_loaded, oes, es); 772 773 vsi->stat_offsets_loaded = true; 774 } 775 776 /** 777 * i40e_update_veb_stats - Update Switch component statistics 778 * @veb: the VEB being updated 779 **/ 780 void i40e_update_veb_stats(struct i40e_veb *veb) 781 { 782 struct i40e_pf *pf = veb->pf; 783 struct i40e_hw *hw = &pf->hw; 784 struct i40e_eth_stats *oes; 785 struct i40e_eth_stats *es; /* device's eth stats */ 786 struct i40e_veb_tc_stats *veb_oes; 787 struct i40e_veb_tc_stats *veb_es; 788 int i, idx = 0; 789 790 idx = veb->stats_idx; 791 es = &veb->stats; 792 oes = &veb->stats_offsets; 793 veb_es = &veb->tc_stats; 794 veb_oes = &veb->tc_stats_offsets; 795 796 /* Gather up the stats that the hw collects */ 797 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 798 veb->stat_offsets_loaded, 799 &oes->tx_discards, &es->tx_discards); 800 if (hw->revision_id > 0) 801 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 802 veb->stat_offsets_loaded, 803 &oes->rx_unknown_protocol, 804 &es->rx_unknown_protocol); 805 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 806 veb->stat_offsets_loaded, 807 &oes->rx_bytes, &es->rx_bytes); 808 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 809 veb->stat_offsets_loaded, 810 &oes->rx_unicast, &es->rx_unicast); 811 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 812 veb->stat_offsets_loaded, 813 &oes->rx_multicast, &es->rx_multicast); 814 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 815 veb->stat_offsets_loaded, 816 &oes->rx_broadcast, &es->rx_broadcast); 817 818 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 819 veb->stat_offsets_loaded, 820 &oes->tx_bytes, &es->tx_bytes); 821 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 822 veb->stat_offsets_loaded, 823 &oes->tx_unicast, &es->tx_unicast); 824 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 825 veb->stat_offsets_loaded, 826 &oes->tx_multicast, &es->tx_multicast); 827 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 828 veb->stat_offsets_loaded, 829 &oes->tx_broadcast, &es->tx_broadcast); 830 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 831 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 832 I40E_GLVEBTC_RPCL(i, idx), 833 veb->stat_offsets_loaded, 834 &veb_oes->tc_rx_packets[i], 835 &veb_es->tc_rx_packets[i]); 836 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 837 I40E_GLVEBTC_RBCL(i, idx), 838 veb->stat_offsets_loaded, 839 &veb_oes->tc_rx_bytes[i], 840 &veb_es->tc_rx_bytes[i]); 841 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 842 I40E_GLVEBTC_TPCL(i, idx), 843 veb->stat_offsets_loaded, 844 &veb_oes->tc_tx_packets[i], 845 &veb_es->tc_tx_packets[i]); 846 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 847 I40E_GLVEBTC_TBCL(i, idx), 848 veb->stat_offsets_loaded, 849 &veb_oes->tc_tx_bytes[i], 850 &veb_es->tc_tx_bytes[i]); 851 } 852 veb->stat_offsets_loaded = true; 853 } 854 855 /** 856 * i40e_update_vsi_stats - Update the vsi statistics counters. 857 * @vsi: the VSI to be updated 858 * 859 * There are a few instances where we store the same stat in a 860 * couple of different structs. This is partly because we have 861 * the netdev stats that need to be filled out, which is slightly 862 * different from the "eth_stats" defined by the chip and used in 863 * VF communications. We sort it out here. 864 **/ 865 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 866 { 867 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 868 struct i40e_pf *pf = vsi->back; 869 struct rtnl_link_stats64 *ons; 870 struct rtnl_link_stats64 *ns; /* netdev stats */ 871 struct i40e_eth_stats *oes; 872 struct i40e_eth_stats *es; /* device's eth stats */ 873 u64 tx_restart, tx_busy; 874 struct i40e_ring *p; 875 u64 bytes, packets; 876 unsigned int start; 877 u64 tx_linearize; 878 u64 tx_force_wb; 879 u64 tx_stopped; 880 u64 rx_p, rx_b; 881 u64 tx_p, tx_b; 882 u16 q; 883 884 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 885 test_bit(__I40E_CONFIG_BUSY, pf->state)) 886 return; 887 888 ns = i40e_get_vsi_stats_struct(vsi); 889 ons = &vsi->net_stats_offsets; 890 es = &vsi->eth_stats; 891 oes = &vsi->eth_stats_offsets; 892 893 /* Gather up the netdev and vsi stats that the driver collects 894 * on the fly during packet processing 895 */ 896 rx_b = rx_p = 0; 897 tx_b = tx_p = 0; 898 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 899 tx_stopped = 0; 900 rx_page = 0; 901 rx_buf = 0; 902 rx_reuse = 0; 903 rx_alloc = 0; 904 rx_waive = 0; 905 rx_busy = 0; 906 rcu_read_lock(); 907 for (q = 0; q < vsi->num_queue_pairs; q++) { 908 /* locate Tx ring */ 909 p = READ_ONCE(vsi->tx_rings[q]); 910 if (!p) 911 continue; 912 913 do { 914 start = u64_stats_fetch_begin(&p->syncp); 915 packets = p->stats.packets; 916 bytes = p->stats.bytes; 917 } while (u64_stats_fetch_retry(&p->syncp, start)); 918 tx_b += bytes; 919 tx_p += packets; 920 tx_restart += p->tx_stats.restart_queue; 921 tx_busy += p->tx_stats.tx_busy; 922 tx_linearize += p->tx_stats.tx_linearize; 923 tx_force_wb += p->tx_stats.tx_force_wb; 924 tx_stopped += p->tx_stats.tx_stopped; 925 926 /* locate Rx ring */ 927 p = READ_ONCE(vsi->rx_rings[q]); 928 if (!p) 929 continue; 930 931 do { 932 start = u64_stats_fetch_begin(&p->syncp); 933 packets = p->stats.packets; 934 bytes = p->stats.bytes; 935 } while (u64_stats_fetch_retry(&p->syncp, start)); 936 rx_b += bytes; 937 rx_p += packets; 938 rx_buf += p->rx_stats.alloc_buff_failed; 939 rx_page += p->rx_stats.alloc_page_failed; 940 rx_reuse += p->rx_stats.page_reuse_count; 941 rx_alloc += p->rx_stats.page_alloc_count; 942 rx_waive += p->rx_stats.page_waive_count; 943 rx_busy += p->rx_stats.page_busy_count; 944 945 if (i40e_enabled_xdp_vsi(vsi)) { 946 /* locate XDP ring */ 947 p = READ_ONCE(vsi->xdp_rings[q]); 948 if (!p) 949 continue; 950 951 do { 952 start = u64_stats_fetch_begin(&p->syncp); 953 packets = p->stats.packets; 954 bytes = p->stats.bytes; 955 } while (u64_stats_fetch_retry(&p->syncp, start)); 956 tx_b += bytes; 957 tx_p += packets; 958 tx_restart += p->tx_stats.restart_queue; 959 tx_busy += p->tx_stats.tx_busy; 960 tx_linearize += p->tx_stats.tx_linearize; 961 tx_force_wb += p->tx_stats.tx_force_wb; 962 } 963 } 964 rcu_read_unlock(); 965 vsi->tx_restart = tx_restart; 966 vsi->tx_busy = tx_busy; 967 vsi->tx_linearize = tx_linearize; 968 vsi->tx_force_wb = tx_force_wb; 969 vsi->tx_stopped = tx_stopped; 970 vsi->rx_page_failed = rx_page; 971 vsi->rx_buf_failed = rx_buf; 972 vsi->rx_page_reuse = rx_reuse; 973 vsi->rx_page_alloc = rx_alloc; 974 vsi->rx_page_waive = rx_waive; 975 vsi->rx_page_busy = rx_busy; 976 977 ns->rx_packets = rx_p; 978 ns->rx_bytes = rx_b; 979 ns->tx_packets = tx_p; 980 ns->tx_bytes = tx_b; 981 982 /* update netdev stats from eth stats */ 983 i40e_update_eth_stats(vsi); 984 ons->tx_errors = oes->tx_errors; 985 ns->tx_errors = es->tx_errors; 986 ons->multicast = oes->rx_multicast; 987 ns->multicast = es->rx_multicast; 988 ons->rx_dropped = oes->rx_discards_other; 989 ns->rx_dropped = es->rx_discards_other; 990 ons->rx_missed_errors = oes->rx_discards; 991 ns->rx_missed_errors = es->rx_discards; 992 ons->tx_dropped = oes->tx_discards; 993 ns->tx_dropped = es->tx_discards; 994 995 /* pull in a couple PF stats if this is the main vsi */ 996 if (vsi == pf->vsi[pf->lan_vsi]) { 997 ns->rx_crc_errors = pf->stats.crc_errors; 998 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 999 ns->rx_length_errors = pf->stats.rx_length_errors; 1000 } 1001 } 1002 1003 /** 1004 * i40e_update_pf_stats - Update the PF statistics counters. 1005 * @pf: the PF to be updated 1006 **/ 1007 static void i40e_update_pf_stats(struct i40e_pf *pf) 1008 { 1009 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1010 struct i40e_hw_port_stats *nsd = &pf->stats; 1011 struct i40e_hw *hw = &pf->hw; 1012 u32 val; 1013 int i; 1014 1015 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1016 I40E_GLPRT_GORCL(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1019 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1020 I40E_GLPRT_GOTCL(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1023 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1024 pf->stat_offsets_loaded, 1025 &osd->eth.rx_discards, 1026 &nsd->eth.rx_discards); 1027 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1028 I40E_GLPRT_UPRCL(hw->port), 1029 pf->stat_offsets_loaded, 1030 &osd->eth.rx_unicast, 1031 &nsd->eth.rx_unicast); 1032 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1033 I40E_GLPRT_MPRCL(hw->port), 1034 pf->stat_offsets_loaded, 1035 &osd->eth.rx_multicast, 1036 &nsd->eth.rx_multicast); 1037 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1038 I40E_GLPRT_BPRCL(hw->port), 1039 pf->stat_offsets_loaded, 1040 &osd->eth.rx_broadcast, 1041 &nsd->eth.rx_broadcast); 1042 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1043 I40E_GLPRT_UPTCL(hw->port), 1044 pf->stat_offsets_loaded, 1045 &osd->eth.tx_unicast, 1046 &nsd->eth.tx_unicast); 1047 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1048 I40E_GLPRT_MPTCL(hw->port), 1049 pf->stat_offsets_loaded, 1050 &osd->eth.tx_multicast, 1051 &nsd->eth.tx_multicast); 1052 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1053 I40E_GLPRT_BPTCL(hw->port), 1054 pf->stat_offsets_loaded, 1055 &osd->eth.tx_broadcast, 1056 &nsd->eth.tx_broadcast); 1057 1058 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1059 pf->stat_offsets_loaded, 1060 &osd->tx_dropped_link_down, 1061 &nsd->tx_dropped_link_down); 1062 1063 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1064 pf->stat_offsets_loaded, 1065 &osd->crc_errors, &nsd->crc_errors); 1066 1067 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1068 pf->stat_offsets_loaded, 1069 &osd->illegal_bytes, &nsd->illegal_bytes); 1070 1071 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1072 pf->stat_offsets_loaded, 1073 &osd->mac_local_faults, 1074 &nsd->mac_local_faults); 1075 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1076 pf->stat_offsets_loaded, 1077 &osd->mac_remote_faults, 1078 &nsd->mac_remote_faults); 1079 1080 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1081 pf->stat_offsets_loaded, 1082 &osd->rx_length_errors, 1083 &nsd->rx_length_errors); 1084 1085 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1086 pf->stat_offsets_loaded, 1087 &osd->link_xon_rx, &nsd->link_xon_rx); 1088 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1089 pf->stat_offsets_loaded, 1090 &osd->link_xon_tx, &nsd->link_xon_tx); 1091 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1092 pf->stat_offsets_loaded, 1093 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1094 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1095 pf->stat_offsets_loaded, 1096 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1097 1098 for (i = 0; i < 8; i++) { 1099 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1100 pf->stat_offsets_loaded, 1101 &osd->priority_xoff_rx[i], 1102 &nsd->priority_xoff_rx[i]); 1103 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1104 pf->stat_offsets_loaded, 1105 &osd->priority_xon_rx[i], 1106 &nsd->priority_xon_rx[i]); 1107 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1108 pf->stat_offsets_loaded, 1109 &osd->priority_xon_tx[i], 1110 &nsd->priority_xon_tx[i]); 1111 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1112 pf->stat_offsets_loaded, 1113 &osd->priority_xoff_tx[i], 1114 &nsd->priority_xoff_tx[i]); 1115 i40e_stat_update32(hw, 1116 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1117 pf->stat_offsets_loaded, 1118 &osd->priority_xon_2_xoff[i], 1119 &nsd->priority_xon_2_xoff[i]); 1120 } 1121 1122 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1123 I40E_GLPRT_PRC64L(hw->port), 1124 pf->stat_offsets_loaded, 1125 &osd->rx_size_64, &nsd->rx_size_64); 1126 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1127 I40E_GLPRT_PRC127L(hw->port), 1128 pf->stat_offsets_loaded, 1129 &osd->rx_size_127, &nsd->rx_size_127); 1130 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1131 I40E_GLPRT_PRC255L(hw->port), 1132 pf->stat_offsets_loaded, 1133 &osd->rx_size_255, &nsd->rx_size_255); 1134 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1135 I40E_GLPRT_PRC511L(hw->port), 1136 pf->stat_offsets_loaded, 1137 &osd->rx_size_511, &nsd->rx_size_511); 1138 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1139 I40E_GLPRT_PRC1023L(hw->port), 1140 pf->stat_offsets_loaded, 1141 &osd->rx_size_1023, &nsd->rx_size_1023); 1142 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1143 I40E_GLPRT_PRC1522L(hw->port), 1144 pf->stat_offsets_loaded, 1145 &osd->rx_size_1522, &nsd->rx_size_1522); 1146 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1147 I40E_GLPRT_PRC9522L(hw->port), 1148 pf->stat_offsets_loaded, 1149 &osd->rx_size_big, &nsd->rx_size_big); 1150 1151 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1152 I40E_GLPRT_PTC64L(hw->port), 1153 pf->stat_offsets_loaded, 1154 &osd->tx_size_64, &nsd->tx_size_64); 1155 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1156 I40E_GLPRT_PTC127L(hw->port), 1157 pf->stat_offsets_loaded, 1158 &osd->tx_size_127, &nsd->tx_size_127); 1159 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1160 I40E_GLPRT_PTC255L(hw->port), 1161 pf->stat_offsets_loaded, 1162 &osd->tx_size_255, &nsd->tx_size_255); 1163 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1164 I40E_GLPRT_PTC511L(hw->port), 1165 pf->stat_offsets_loaded, 1166 &osd->tx_size_511, &nsd->tx_size_511); 1167 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1168 I40E_GLPRT_PTC1023L(hw->port), 1169 pf->stat_offsets_loaded, 1170 &osd->tx_size_1023, &nsd->tx_size_1023); 1171 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1172 I40E_GLPRT_PTC1522L(hw->port), 1173 pf->stat_offsets_loaded, 1174 &osd->tx_size_1522, &nsd->tx_size_1522); 1175 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1176 I40E_GLPRT_PTC9522L(hw->port), 1177 pf->stat_offsets_loaded, 1178 &osd->tx_size_big, &nsd->tx_size_big); 1179 1180 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1181 pf->stat_offsets_loaded, 1182 &osd->rx_undersize, &nsd->rx_undersize); 1183 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1184 pf->stat_offsets_loaded, 1185 &osd->rx_fragments, &nsd->rx_fragments); 1186 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1187 pf->stat_offsets_loaded, 1188 &osd->rx_oversize, &nsd->rx_oversize); 1189 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1190 pf->stat_offsets_loaded, 1191 &osd->rx_jabber, &nsd->rx_jabber); 1192 1193 /* FDIR stats */ 1194 i40e_stat_update_and_clear32(hw, 1195 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1196 &nsd->fd_atr_match); 1197 i40e_stat_update_and_clear32(hw, 1198 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1199 &nsd->fd_sb_match); 1200 i40e_stat_update_and_clear32(hw, 1201 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1202 &nsd->fd_atr_tunnel_match); 1203 1204 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1205 nsd->tx_lpi_status = 1206 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val); 1207 nsd->rx_lpi_status = 1208 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val); 1209 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1210 pf->stat_offsets_loaded, 1211 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1212 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1213 pf->stat_offsets_loaded, 1214 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1215 1216 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1217 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1218 nsd->fd_sb_status = true; 1219 else 1220 nsd->fd_sb_status = false; 1221 1222 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1223 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1224 nsd->fd_atr_status = true; 1225 else 1226 nsd->fd_atr_status = false; 1227 1228 pf->stat_offsets_loaded = true; 1229 } 1230 1231 /** 1232 * i40e_update_stats - Update the various statistics counters. 1233 * @vsi: the VSI to be updated 1234 * 1235 * Update the various stats for this VSI and its related entities. 1236 **/ 1237 void i40e_update_stats(struct i40e_vsi *vsi) 1238 { 1239 struct i40e_pf *pf = vsi->back; 1240 1241 if (vsi == pf->vsi[pf->lan_vsi]) 1242 i40e_update_pf_stats(pf); 1243 1244 i40e_update_vsi_stats(vsi); 1245 } 1246 1247 /** 1248 * i40e_count_filters - counts VSI mac filters 1249 * @vsi: the VSI to be searched 1250 * 1251 * Returns count of mac filters 1252 **/ 1253 int i40e_count_filters(struct i40e_vsi *vsi) 1254 { 1255 struct i40e_mac_filter *f; 1256 struct hlist_node *h; 1257 int bkt; 1258 int cnt = 0; 1259 1260 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1261 ++cnt; 1262 1263 return cnt; 1264 } 1265 1266 /** 1267 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1268 * @vsi: the VSI to be searched 1269 * @macaddr: the MAC address 1270 * @vlan: the vlan 1271 * 1272 * Returns ptr to the filter object or NULL 1273 **/ 1274 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1275 const u8 *macaddr, s16 vlan) 1276 { 1277 struct i40e_mac_filter *f; 1278 u64 key; 1279 1280 if (!vsi || !macaddr) 1281 return NULL; 1282 1283 key = i40e_addr_to_hkey(macaddr); 1284 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1285 if ((ether_addr_equal(macaddr, f->macaddr)) && 1286 (vlan == f->vlan)) 1287 return f; 1288 } 1289 return NULL; 1290 } 1291 1292 /** 1293 * i40e_find_mac - Find a mac addr in the macvlan filters list 1294 * @vsi: the VSI to be searched 1295 * @macaddr: the MAC address we are searching for 1296 * 1297 * Returns the first filter with the provided MAC address or NULL if 1298 * MAC address was not found 1299 **/ 1300 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1301 { 1302 struct i40e_mac_filter *f; 1303 u64 key; 1304 1305 if (!vsi || !macaddr) 1306 return NULL; 1307 1308 key = i40e_addr_to_hkey(macaddr); 1309 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1310 if ((ether_addr_equal(macaddr, f->macaddr))) 1311 return f; 1312 } 1313 return NULL; 1314 } 1315 1316 /** 1317 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1318 * @vsi: the VSI to be searched 1319 * 1320 * Returns true if VSI is in vlan mode or false otherwise 1321 **/ 1322 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1323 { 1324 /* If we have a PVID, always operate in VLAN mode */ 1325 if (vsi->info.pvid) 1326 return true; 1327 1328 /* We need to operate in VLAN mode whenever we have any filters with 1329 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1330 * time, incurring search cost repeatedly. However, we can notice two 1331 * things: 1332 * 1333 * 1) the only place where we can gain a VLAN filter is in 1334 * i40e_add_filter. 1335 * 1336 * 2) the only place where filters are actually removed is in 1337 * i40e_sync_filters_subtask. 1338 * 1339 * Thus, we can simply use a boolean value, has_vlan_filters which we 1340 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1341 * we have to perform the full search after deleting filters in 1342 * i40e_sync_filters_subtask, but we already have to search 1343 * filters here and can perform the check at the same time. This 1344 * results in avoiding embedding a loop for VLAN mode inside another 1345 * loop over all the filters, and should maintain correctness as noted 1346 * above. 1347 */ 1348 return vsi->has_vlan_filter; 1349 } 1350 1351 /** 1352 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1353 * @vsi: the VSI to configure 1354 * @tmp_add_list: list of filters ready to be added 1355 * @tmp_del_list: list of filters ready to be deleted 1356 * @vlan_filters: the number of active VLAN filters 1357 * 1358 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1359 * behave as expected. If we have any active VLAN filters remaining or about 1360 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1361 * so that they only match against untagged traffic. If we no longer have any 1362 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1363 * so that they match against both tagged and untagged traffic. In this way, 1364 * we ensure that we correctly receive the desired traffic. This ensures that 1365 * when we have an active VLAN we will receive only untagged traffic and 1366 * traffic matching active VLANs. If we have no active VLANs then we will 1367 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1368 * 1369 * Finally, in a similar fashion, this function also corrects filters when 1370 * there is an active PVID assigned to this VSI. 1371 * 1372 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1373 * 1374 * This function is only expected to be called from within 1375 * i40e_sync_vsi_filters. 1376 * 1377 * NOTE: This function expects to be called while under the 1378 * mac_filter_hash_lock 1379 */ 1380 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1381 struct hlist_head *tmp_add_list, 1382 struct hlist_head *tmp_del_list, 1383 int vlan_filters) 1384 { 1385 s16 pvid = le16_to_cpu(vsi->info.pvid); 1386 struct i40e_mac_filter *f, *add_head; 1387 struct i40e_new_mac_filter *new; 1388 struct hlist_node *h; 1389 int bkt, new_vlan; 1390 1391 /* To determine if a particular filter needs to be replaced we 1392 * have the three following conditions: 1393 * 1394 * a) if we have a PVID assigned, then all filters which are 1395 * not marked as VLAN=PVID must be replaced with filters that 1396 * are. 1397 * b) otherwise, if we have any active VLANS, all filters 1398 * which are marked as VLAN=-1 must be replaced with 1399 * filters marked as VLAN=0 1400 * c) finally, if we do not have any active VLANS, all filters 1401 * which are marked as VLAN=0 must be replaced with filters 1402 * marked as VLAN=-1 1403 */ 1404 1405 /* Update the filters about to be added in place */ 1406 hlist_for_each_entry(new, tmp_add_list, hlist) { 1407 if (pvid && new->f->vlan != pvid) 1408 new->f->vlan = pvid; 1409 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1410 new->f->vlan = 0; 1411 else if (!vlan_filters && new->f->vlan == 0) 1412 new->f->vlan = I40E_VLAN_ANY; 1413 } 1414 1415 /* Update the remaining active filters */ 1416 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1417 /* Combine the checks for whether a filter needs to be changed 1418 * and then determine the new VLAN inside the if block, in 1419 * order to avoid duplicating code for adding the new filter 1420 * then deleting the old filter. 1421 */ 1422 if ((pvid && f->vlan != pvid) || 1423 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1424 (!vlan_filters && f->vlan == 0)) { 1425 /* Determine the new vlan we will be adding */ 1426 if (pvid) 1427 new_vlan = pvid; 1428 else if (vlan_filters) 1429 new_vlan = 0; 1430 else 1431 new_vlan = I40E_VLAN_ANY; 1432 1433 /* Create the new filter */ 1434 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1435 if (!add_head) 1436 return -ENOMEM; 1437 1438 /* Create a temporary i40e_new_mac_filter */ 1439 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1440 if (!new) 1441 return -ENOMEM; 1442 1443 new->f = add_head; 1444 new->state = add_head->state; 1445 1446 /* Add the new filter to the tmp list */ 1447 hlist_add_head(&new->hlist, tmp_add_list); 1448 1449 /* Put the original filter into the delete list */ 1450 f->state = I40E_FILTER_REMOVE; 1451 hash_del(&f->hlist); 1452 hlist_add_head(&f->hlist, tmp_del_list); 1453 } 1454 } 1455 1456 vsi->has_vlan_filter = !!vlan_filters; 1457 1458 return 0; 1459 } 1460 1461 /** 1462 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1463 * @vsi: the vsi to configure 1464 * @new_mac: new mac filter to be added 1465 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1466 * @vlan_filters: the number of active VLAN filters 1467 * @trusted: flag if the VF is trusted 1468 * 1469 * Get new VLAN id based on current VLAN filters, trust, PVID 1470 * and vf-vlan-prune-disable flag. 1471 * 1472 * Returns the value of the new vlan filter or 1473 * the old value if no new filter is needed. 1474 */ 1475 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1476 struct i40e_new_mac_filter *new_mac, 1477 struct i40e_mac_filter *f, 1478 int vlan_filters, 1479 bool trusted) 1480 { 1481 s16 pvid = le16_to_cpu(vsi->info.pvid); 1482 struct i40e_pf *pf = vsi->back; 1483 bool is_any; 1484 1485 if (new_mac) 1486 f = new_mac->f; 1487 1488 if (pvid && f->vlan != pvid) 1489 return pvid; 1490 1491 is_any = (trusted || 1492 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1493 1494 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1495 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1496 (is_any && !vlan_filters && f->vlan == 0)) { 1497 if (is_any) 1498 return I40E_VLAN_ANY; 1499 else 1500 return 0; 1501 } 1502 1503 return f->vlan; 1504 } 1505 1506 /** 1507 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1508 * @vsi: the vsi to configure 1509 * @tmp_add_list: list of filters ready to be added 1510 * @tmp_del_list: list of filters ready to be deleted 1511 * @vlan_filters: the number of active VLAN filters 1512 * @trusted: flag if the VF is trusted 1513 * 1514 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1515 * and vf-vlan-prune-disable flag. 1516 * 1517 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1518 * 1519 * This function is only expected to be called from within 1520 * i40e_sync_vsi_filters. 1521 * 1522 * NOTE: This function expects to be called while under the 1523 * mac_filter_hash_lock 1524 */ 1525 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1526 struct hlist_head *tmp_add_list, 1527 struct hlist_head *tmp_del_list, 1528 int vlan_filters, 1529 bool trusted) 1530 { 1531 struct i40e_mac_filter *f, *add_head; 1532 struct i40e_new_mac_filter *new_mac; 1533 struct hlist_node *h; 1534 int bkt, new_vlan; 1535 1536 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1537 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1538 vlan_filters, trusted); 1539 } 1540 1541 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1542 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1543 trusted); 1544 if (new_vlan != f->vlan) { 1545 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1546 if (!add_head) 1547 return -ENOMEM; 1548 /* Create a temporary i40e_new_mac_filter */ 1549 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1550 if (!new_mac) 1551 return -ENOMEM; 1552 new_mac->f = add_head; 1553 new_mac->state = add_head->state; 1554 1555 /* Add the new filter to the tmp list */ 1556 hlist_add_head(&new_mac->hlist, tmp_add_list); 1557 1558 /* Put the original filter into the delete list */ 1559 f->state = I40E_FILTER_REMOVE; 1560 hash_del(&f->hlist); 1561 hlist_add_head(&f->hlist, tmp_del_list); 1562 } 1563 } 1564 1565 vsi->has_vlan_filter = !!vlan_filters; 1566 return 0; 1567 } 1568 1569 /** 1570 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1571 * @vsi: the PF Main VSI - inappropriate for any other VSI 1572 * @macaddr: the MAC address 1573 * 1574 * Remove whatever filter the firmware set up so the driver can manage 1575 * its own filtering intelligently. 1576 **/ 1577 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1578 { 1579 struct i40e_aqc_remove_macvlan_element_data element; 1580 struct i40e_pf *pf = vsi->back; 1581 1582 /* Only appropriate for the PF main VSI */ 1583 if (vsi->type != I40E_VSI_MAIN) 1584 return; 1585 1586 memset(&element, 0, sizeof(element)); 1587 ether_addr_copy(element.mac_addr, macaddr); 1588 element.vlan_tag = 0; 1589 /* Ignore error returns, some firmware does it this way... */ 1590 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1591 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1592 1593 memset(&element, 0, sizeof(element)); 1594 ether_addr_copy(element.mac_addr, macaddr); 1595 element.vlan_tag = 0; 1596 /* ...and some firmware does it this way. */ 1597 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1598 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1599 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1600 } 1601 1602 /** 1603 * i40e_add_filter - Add a mac/vlan filter to the VSI 1604 * @vsi: the VSI to be searched 1605 * @macaddr: the MAC address 1606 * @vlan: the vlan 1607 * 1608 * Returns ptr to the filter object or NULL when no memory available. 1609 * 1610 * NOTE: This function is expected to be called with mac_filter_hash_lock 1611 * being held. 1612 **/ 1613 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1614 const u8 *macaddr, s16 vlan) 1615 { 1616 struct i40e_mac_filter *f; 1617 u64 key; 1618 1619 if (!vsi || !macaddr) 1620 return NULL; 1621 1622 f = i40e_find_filter(vsi, macaddr, vlan); 1623 if (!f) { 1624 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1625 if (!f) 1626 return NULL; 1627 1628 /* Update the boolean indicating if we need to function in 1629 * VLAN mode. 1630 */ 1631 if (vlan >= 0) 1632 vsi->has_vlan_filter = true; 1633 1634 ether_addr_copy(f->macaddr, macaddr); 1635 f->vlan = vlan; 1636 f->state = I40E_FILTER_NEW; 1637 INIT_HLIST_NODE(&f->hlist); 1638 1639 key = i40e_addr_to_hkey(macaddr); 1640 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1641 1642 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1643 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1644 } 1645 1646 /* If we're asked to add a filter that has been marked for removal, it 1647 * is safe to simply restore it to active state. __i40e_del_filter 1648 * will have simply deleted any filters which were previously marked 1649 * NEW or FAILED, so if it is currently marked REMOVE it must have 1650 * previously been ACTIVE. Since we haven't yet run the sync filters 1651 * task, just restore this filter to the ACTIVE state so that the 1652 * sync task leaves it in place 1653 */ 1654 if (f->state == I40E_FILTER_REMOVE) 1655 f->state = I40E_FILTER_ACTIVE; 1656 1657 return f; 1658 } 1659 1660 /** 1661 * __i40e_del_filter - Remove a specific filter from the VSI 1662 * @vsi: VSI to remove from 1663 * @f: the filter to remove from the list 1664 * 1665 * This function should be called instead of i40e_del_filter only if you know 1666 * the exact filter you will remove already, such as via i40e_find_filter or 1667 * i40e_find_mac. 1668 * 1669 * NOTE: This function is expected to be called with mac_filter_hash_lock 1670 * being held. 1671 * ANOTHER NOTE: This function MUST be called from within the context of 1672 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1673 * instead of list_for_each_entry(). 1674 **/ 1675 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1676 { 1677 if (!f) 1678 return; 1679 1680 /* If the filter was never added to firmware then we can just delete it 1681 * directly and we don't want to set the status to remove or else an 1682 * admin queue command will unnecessarily fire. 1683 */ 1684 if ((f->state == I40E_FILTER_FAILED) || 1685 (f->state == I40E_FILTER_NEW)) { 1686 hash_del(&f->hlist); 1687 kfree(f); 1688 } else { 1689 f->state = I40E_FILTER_REMOVE; 1690 } 1691 1692 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1693 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1694 } 1695 1696 /** 1697 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1698 * @vsi: the VSI to be searched 1699 * @macaddr: the MAC address 1700 * @vlan: the VLAN 1701 * 1702 * NOTE: This function is expected to be called with mac_filter_hash_lock 1703 * being held. 1704 * ANOTHER NOTE: This function MUST be called from within the context of 1705 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1706 * instead of list_for_each_entry(). 1707 **/ 1708 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1709 { 1710 struct i40e_mac_filter *f; 1711 1712 if (!vsi || !macaddr) 1713 return; 1714 1715 f = i40e_find_filter(vsi, macaddr, vlan); 1716 __i40e_del_filter(vsi, f); 1717 } 1718 1719 /** 1720 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1721 * @vsi: the VSI to be searched 1722 * @macaddr: the mac address to be filtered 1723 * 1724 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1725 * go through all the macvlan filters and add a macvlan filter for each 1726 * unique vlan that already exists. If a PVID has been assigned, instead only 1727 * add the macaddr to that VLAN. 1728 * 1729 * Returns last filter added on success, else NULL 1730 **/ 1731 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1732 const u8 *macaddr) 1733 { 1734 struct i40e_mac_filter *f, *add = NULL; 1735 struct hlist_node *h; 1736 int bkt; 1737 1738 if (vsi->info.pvid) 1739 return i40e_add_filter(vsi, macaddr, 1740 le16_to_cpu(vsi->info.pvid)); 1741 1742 if (!i40e_is_vsi_in_vlan(vsi)) 1743 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1744 1745 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1746 if (f->state == I40E_FILTER_REMOVE) 1747 continue; 1748 add = i40e_add_filter(vsi, macaddr, f->vlan); 1749 if (!add) 1750 return NULL; 1751 } 1752 1753 return add; 1754 } 1755 1756 /** 1757 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1758 * @vsi: the VSI to be searched 1759 * @macaddr: the mac address to be removed 1760 * 1761 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1762 * associated with. 1763 * 1764 * Returns 0 for success, or error 1765 **/ 1766 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1767 { 1768 struct i40e_mac_filter *f; 1769 struct hlist_node *h; 1770 bool found = false; 1771 int bkt; 1772 1773 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1774 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1775 if (ether_addr_equal(macaddr, f->macaddr)) { 1776 __i40e_del_filter(vsi, f); 1777 found = true; 1778 } 1779 } 1780 1781 if (found) 1782 return 0; 1783 else 1784 return -ENOENT; 1785 } 1786 1787 /** 1788 * i40e_set_mac - NDO callback to set mac address 1789 * @netdev: network interface device structure 1790 * @p: pointer to an address structure 1791 * 1792 * Returns 0 on success, negative on failure 1793 **/ 1794 static int i40e_set_mac(struct net_device *netdev, void *p) 1795 { 1796 struct i40e_netdev_priv *np = netdev_priv(netdev); 1797 struct i40e_vsi *vsi = np->vsi; 1798 struct i40e_pf *pf = vsi->back; 1799 struct i40e_hw *hw = &pf->hw; 1800 struct sockaddr *addr = p; 1801 1802 if (!is_valid_ether_addr(addr->sa_data)) 1803 return -EADDRNOTAVAIL; 1804 1805 if (test_bit(__I40E_DOWN, pf->state) || 1806 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1807 return -EADDRNOTAVAIL; 1808 1809 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1810 netdev_info(netdev, "returning to hw mac address %pM\n", 1811 hw->mac.addr); 1812 else 1813 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1814 1815 /* Copy the address first, so that we avoid a possible race with 1816 * .set_rx_mode(). 1817 * - Remove old address from MAC filter 1818 * - Copy new address 1819 * - Add new address to MAC filter 1820 */ 1821 spin_lock_bh(&vsi->mac_filter_hash_lock); 1822 i40e_del_mac_filter(vsi, netdev->dev_addr); 1823 eth_hw_addr_set(netdev, addr->sa_data); 1824 i40e_add_mac_filter(vsi, netdev->dev_addr); 1825 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1826 1827 if (vsi->type == I40E_VSI_MAIN) { 1828 int ret; 1829 1830 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1831 addr->sa_data, NULL); 1832 if (ret) 1833 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1834 ERR_PTR(ret), 1835 i40e_aq_str(hw, hw->aq.asq_last_status)); 1836 } 1837 1838 /* schedule our worker thread which will take care of 1839 * applying the new filter changes 1840 */ 1841 i40e_service_event_schedule(pf); 1842 return 0; 1843 } 1844 1845 /** 1846 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1847 * @vsi: vsi structure 1848 * @seed: RSS hash seed 1849 * @lut: pointer to lookup table of lut_size 1850 * @lut_size: size of the lookup table 1851 **/ 1852 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1853 u8 *lut, u16 lut_size) 1854 { 1855 struct i40e_pf *pf = vsi->back; 1856 struct i40e_hw *hw = &pf->hw; 1857 int ret = 0; 1858 1859 if (seed) { 1860 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1861 (struct i40e_aqc_get_set_rss_key_data *)seed; 1862 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1863 if (ret) { 1864 dev_info(&pf->pdev->dev, 1865 "Cannot set RSS key, err %pe aq_err %s\n", 1866 ERR_PTR(ret), 1867 i40e_aq_str(hw, hw->aq.asq_last_status)); 1868 return ret; 1869 } 1870 } 1871 if (lut) { 1872 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1873 1874 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1875 if (ret) { 1876 dev_info(&pf->pdev->dev, 1877 "Cannot set RSS lut, err %pe aq_err %s\n", 1878 ERR_PTR(ret), 1879 i40e_aq_str(hw, hw->aq.asq_last_status)); 1880 return ret; 1881 } 1882 } 1883 return ret; 1884 } 1885 1886 /** 1887 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1888 * @vsi: VSI structure 1889 **/ 1890 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1891 { 1892 struct i40e_pf *pf = vsi->back; 1893 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1894 u8 *lut; 1895 int ret; 1896 1897 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1898 return 0; 1899 if (!vsi->rss_size) 1900 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1901 vsi->num_queue_pairs); 1902 if (!vsi->rss_size) 1903 return -EINVAL; 1904 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1905 if (!lut) 1906 return -ENOMEM; 1907 1908 /* Use the user configured hash keys and lookup table if there is one, 1909 * otherwise use default 1910 */ 1911 if (vsi->rss_lut_user) 1912 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1913 else 1914 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1915 if (vsi->rss_hkey_user) 1916 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1917 else 1918 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1919 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1920 kfree(lut); 1921 return ret; 1922 } 1923 1924 /** 1925 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1926 * @vsi: the VSI being configured, 1927 * @ctxt: VSI context structure 1928 * @enabled_tc: number of traffic classes to enable 1929 * 1930 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1931 **/ 1932 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1933 struct i40e_vsi_context *ctxt, 1934 u8 enabled_tc) 1935 { 1936 u16 qcount = 0, max_qcount, qmap, sections = 0; 1937 int i, override_q, pow, num_qps, ret; 1938 u8 netdev_tc = 0, offset = 0; 1939 1940 if (vsi->type != I40E_VSI_MAIN) 1941 return -EINVAL; 1942 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1943 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1944 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1945 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1946 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1947 1948 /* find the next higher power-of-2 of num queue pairs */ 1949 pow = ilog2(num_qps); 1950 if (!is_power_of_2(num_qps)) 1951 pow++; 1952 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1953 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1954 1955 /* Setup queue offset/count for all TCs for given VSI */ 1956 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1957 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1958 /* See if the given TC is enabled for the given VSI */ 1959 if (vsi->tc_config.enabled_tc & BIT(i)) { 1960 offset = vsi->mqprio_qopt.qopt.offset[i]; 1961 qcount = vsi->mqprio_qopt.qopt.count[i]; 1962 if (qcount > max_qcount) 1963 max_qcount = qcount; 1964 vsi->tc_config.tc_info[i].qoffset = offset; 1965 vsi->tc_config.tc_info[i].qcount = qcount; 1966 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1967 } else { 1968 /* TC is not enabled so set the offset to 1969 * default queue and allocate one queue 1970 * for the given TC. 1971 */ 1972 vsi->tc_config.tc_info[i].qoffset = 0; 1973 vsi->tc_config.tc_info[i].qcount = 1; 1974 vsi->tc_config.tc_info[i].netdev_tc = 0; 1975 } 1976 } 1977 1978 /* Set actual Tx/Rx queue pairs */ 1979 vsi->num_queue_pairs = offset + qcount; 1980 1981 /* Setup queue TC[0].qmap for given VSI context */ 1982 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1983 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1984 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1985 ctxt->info.valid_sections |= cpu_to_le16(sections); 1986 1987 /* Reconfigure RSS for main VSI with max queue count */ 1988 vsi->rss_size = max_qcount; 1989 ret = i40e_vsi_config_rss(vsi); 1990 if (ret) { 1991 dev_info(&vsi->back->pdev->dev, 1992 "Failed to reconfig rss for num_queues (%u)\n", 1993 max_qcount); 1994 return ret; 1995 } 1996 vsi->reconfig_rss = true; 1997 dev_dbg(&vsi->back->pdev->dev, 1998 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1999 2000 /* Find queue count available for channel VSIs and starting offset 2001 * for channel VSIs 2002 */ 2003 override_q = vsi->mqprio_qopt.qopt.count[0]; 2004 if (override_q && override_q < vsi->num_queue_pairs) { 2005 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 2006 vsi->next_base_queue = override_q; 2007 } 2008 return 0; 2009 } 2010 2011 /** 2012 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 2013 * @vsi: the VSI being setup 2014 * @ctxt: VSI context structure 2015 * @enabled_tc: Enabled TCs bitmap 2016 * @is_add: True if called before Add VSI 2017 * 2018 * Setup VSI queue mapping for enabled traffic classes. 2019 **/ 2020 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2021 struct i40e_vsi_context *ctxt, 2022 u8 enabled_tc, 2023 bool is_add) 2024 { 2025 struct i40e_pf *pf = vsi->back; 2026 u16 num_tc_qps = 0; 2027 u16 sections = 0; 2028 u8 netdev_tc = 0; 2029 u16 numtc = 1; 2030 u16 qcount; 2031 u8 offset; 2032 u16 qmap; 2033 int i; 2034 2035 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2036 offset = 0; 2037 /* zero out queue mapping, it will get updated on the end of the function */ 2038 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2039 2040 if (vsi->type == I40E_VSI_MAIN) { 2041 /* This code helps add more queue to the VSI if we have 2042 * more cores than RSS can support, the higher cores will 2043 * be served by ATR or other filters. Furthermore, the 2044 * non-zero req_queue_pairs says that user requested a new 2045 * queue count via ethtool's set_channels, so use this 2046 * value for queues distribution across traffic classes 2047 * We need at least one queue pair for the interface 2048 * to be usable as we see in else statement. 2049 */ 2050 if (vsi->req_queue_pairs > 0) 2051 vsi->num_queue_pairs = vsi->req_queue_pairs; 2052 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2053 vsi->num_queue_pairs = pf->num_lan_msix; 2054 else 2055 vsi->num_queue_pairs = 1; 2056 } 2057 2058 /* Number of queues per enabled TC */ 2059 if (vsi->type == I40E_VSI_MAIN || 2060 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2061 num_tc_qps = vsi->num_queue_pairs; 2062 else 2063 num_tc_qps = vsi->alloc_queue_pairs; 2064 2065 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2066 /* Find numtc from enabled TC bitmap */ 2067 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2068 if (enabled_tc & BIT(i)) /* TC is enabled */ 2069 numtc++; 2070 } 2071 if (!numtc) { 2072 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2073 numtc = 1; 2074 } 2075 num_tc_qps = num_tc_qps / numtc; 2076 num_tc_qps = min_t(int, num_tc_qps, 2077 i40e_pf_get_max_q_per_tc(pf)); 2078 } 2079 2080 vsi->tc_config.numtc = numtc; 2081 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2082 2083 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2084 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2085 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2086 2087 /* Setup queue offset/count for all TCs for given VSI */ 2088 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2089 /* See if the given TC is enabled for the given VSI */ 2090 if (vsi->tc_config.enabled_tc & BIT(i)) { 2091 /* TC is enabled */ 2092 int pow, num_qps; 2093 2094 switch (vsi->type) { 2095 case I40E_VSI_MAIN: 2096 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2097 pf->flags) && 2098 !test_bit(I40E_FLAG_FD_ATR_ENA, 2099 pf->flags)) || 2100 vsi->tc_config.enabled_tc != 1) { 2101 qcount = min_t(int, pf->alloc_rss_size, 2102 num_tc_qps); 2103 break; 2104 } 2105 fallthrough; 2106 case I40E_VSI_FDIR: 2107 case I40E_VSI_SRIOV: 2108 case I40E_VSI_VMDQ2: 2109 default: 2110 qcount = num_tc_qps; 2111 WARN_ON(i != 0); 2112 break; 2113 } 2114 vsi->tc_config.tc_info[i].qoffset = offset; 2115 vsi->tc_config.tc_info[i].qcount = qcount; 2116 2117 /* find the next higher power-of-2 of num queue pairs */ 2118 num_qps = qcount; 2119 pow = 0; 2120 while (num_qps && (BIT_ULL(pow) < qcount)) { 2121 pow++; 2122 num_qps >>= 1; 2123 } 2124 2125 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2126 qmap = 2127 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2128 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2129 2130 offset += qcount; 2131 } else { 2132 /* TC is not enabled so set the offset to 2133 * default queue and allocate one queue 2134 * for the given TC. 2135 */ 2136 vsi->tc_config.tc_info[i].qoffset = 0; 2137 vsi->tc_config.tc_info[i].qcount = 1; 2138 vsi->tc_config.tc_info[i].netdev_tc = 0; 2139 2140 qmap = 0; 2141 } 2142 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2143 } 2144 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2145 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2146 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2147 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2148 vsi->num_queue_pairs = offset; 2149 2150 /* Scheduler section valid can only be set for ADD VSI */ 2151 if (is_add) { 2152 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2153 2154 ctxt->info.up_enable_bits = enabled_tc; 2155 } 2156 if (vsi->type == I40E_VSI_SRIOV) { 2157 ctxt->info.mapping_flags |= 2158 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2159 for (i = 0; i < vsi->num_queue_pairs; i++) 2160 ctxt->info.queue_mapping[i] = 2161 cpu_to_le16(vsi->base_queue + i); 2162 } else { 2163 ctxt->info.mapping_flags |= 2164 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2165 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2166 } 2167 ctxt->info.valid_sections |= cpu_to_le16(sections); 2168 } 2169 2170 /** 2171 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2172 * @netdev: the netdevice 2173 * @addr: address to add 2174 * 2175 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2176 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2177 */ 2178 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2179 { 2180 struct i40e_netdev_priv *np = netdev_priv(netdev); 2181 struct i40e_vsi *vsi = np->vsi; 2182 2183 if (i40e_add_mac_filter(vsi, addr)) 2184 return 0; 2185 else 2186 return -ENOMEM; 2187 } 2188 2189 /** 2190 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2191 * @netdev: the netdevice 2192 * @addr: address to add 2193 * 2194 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2195 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2196 */ 2197 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2198 { 2199 struct i40e_netdev_priv *np = netdev_priv(netdev); 2200 struct i40e_vsi *vsi = np->vsi; 2201 2202 /* Under some circumstances, we might receive a request to delete 2203 * our own device address from our uc list. Because we store the 2204 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2205 * such requests and not delete our device address from this list. 2206 */ 2207 if (ether_addr_equal(addr, netdev->dev_addr)) 2208 return 0; 2209 2210 i40e_del_mac_filter(vsi, addr); 2211 2212 return 0; 2213 } 2214 2215 /** 2216 * i40e_set_rx_mode - NDO callback to set the netdev filters 2217 * @netdev: network interface device structure 2218 **/ 2219 static void i40e_set_rx_mode(struct net_device *netdev) 2220 { 2221 struct i40e_netdev_priv *np = netdev_priv(netdev); 2222 struct i40e_vsi *vsi = np->vsi; 2223 2224 spin_lock_bh(&vsi->mac_filter_hash_lock); 2225 2226 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2227 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2228 2229 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2230 2231 /* check for other flag changes */ 2232 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2233 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2234 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2235 } 2236 } 2237 2238 /** 2239 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2240 * @vsi: Pointer to VSI struct 2241 * @from: Pointer to list which contains MAC filter entries - changes to 2242 * those entries needs to be undone. 2243 * 2244 * MAC filter entries from this list were slated for deletion. 2245 **/ 2246 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2247 struct hlist_head *from) 2248 { 2249 struct i40e_mac_filter *f; 2250 struct hlist_node *h; 2251 2252 hlist_for_each_entry_safe(f, h, from, hlist) { 2253 u64 key = i40e_addr_to_hkey(f->macaddr); 2254 2255 /* Move the element back into MAC filter list*/ 2256 hlist_del(&f->hlist); 2257 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2258 } 2259 } 2260 2261 /** 2262 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2263 * @vsi: Pointer to vsi struct 2264 * @from: Pointer to list which contains MAC filter entries - changes to 2265 * those entries needs to be undone. 2266 * 2267 * MAC filter entries from this list were slated for addition. 2268 **/ 2269 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2270 struct hlist_head *from) 2271 { 2272 struct i40e_new_mac_filter *new; 2273 struct hlist_node *h; 2274 2275 hlist_for_each_entry_safe(new, h, from, hlist) { 2276 /* We can simply free the wrapper structure */ 2277 hlist_del(&new->hlist); 2278 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2279 kfree(new); 2280 } 2281 } 2282 2283 /** 2284 * i40e_next_filter - Get the next non-broadcast filter from a list 2285 * @next: pointer to filter in list 2286 * 2287 * Returns the next non-broadcast filter in the list. Required so that we 2288 * ignore broadcast filters within the list, since these are not handled via 2289 * the normal firmware update path. 2290 */ 2291 static 2292 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2293 { 2294 hlist_for_each_entry_continue(next, hlist) { 2295 if (!is_broadcast_ether_addr(next->f->macaddr)) 2296 return next; 2297 } 2298 2299 return NULL; 2300 } 2301 2302 /** 2303 * i40e_update_filter_state - Update filter state based on return data 2304 * from firmware 2305 * @count: Number of filters added 2306 * @add_list: return data from fw 2307 * @add_head: pointer to first filter in current batch 2308 * 2309 * MAC filter entries from list were slated to be added to device. Returns 2310 * number of successful filters. Note that 0 does NOT mean success! 2311 **/ 2312 static int 2313 i40e_update_filter_state(int count, 2314 struct i40e_aqc_add_macvlan_element_data *add_list, 2315 struct i40e_new_mac_filter *add_head) 2316 { 2317 int retval = 0; 2318 int i; 2319 2320 for (i = 0; i < count; i++) { 2321 /* Always check status of each filter. We don't need to check 2322 * the firmware return status because we pre-set the filter 2323 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2324 * request to the adminq. Thus, if it no longer matches then 2325 * we know the filter is active. 2326 */ 2327 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2328 add_head->state = I40E_FILTER_FAILED; 2329 } else { 2330 add_head->state = I40E_FILTER_ACTIVE; 2331 retval++; 2332 } 2333 2334 add_head = i40e_next_filter(add_head); 2335 if (!add_head) 2336 break; 2337 } 2338 2339 return retval; 2340 } 2341 2342 /** 2343 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2344 * @vsi: ptr to the VSI 2345 * @vsi_name: name to display in messages 2346 * @list: the list of filters to send to firmware 2347 * @num_del: the number of filters to delete 2348 * @retval: Set to -EIO on failure to delete 2349 * 2350 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2351 * *retval instead of a return value so that success does not force ret_val to 2352 * be set to 0. This ensures that a sequence of calls to this function 2353 * preserve the previous value of *retval on successful delete. 2354 */ 2355 static 2356 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2357 struct i40e_aqc_remove_macvlan_element_data *list, 2358 int num_del, int *retval) 2359 { 2360 struct i40e_hw *hw = &vsi->back->hw; 2361 enum i40e_admin_queue_err aq_status; 2362 int aq_ret; 2363 2364 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2365 &aq_status); 2366 2367 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2368 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2369 *retval = -EIO; 2370 dev_info(&vsi->back->pdev->dev, 2371 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2372 vsi_name, ERR_PTR(aq_ret), 2373 i40e_aq_str(hw, aq_status)); 2374 } 2375 } 2376 2377 /** 2378 * i40e_aqc_add_filters - Request firmware to add a set of filters 2379 * @vsi: ptr to the VSI 2380 * @vsi_name: name to display in messages 2381 * @list: the list of filters to send to firmware 2382 * @add_head: Position in the add hlist 2383 * @num_add: the number of filters to add 2384 * 2385 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2386 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2387 * space for more filters. 2388 */ 2389 static 2390 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2391 struct i40e_aqc_add_macvlan_element_data *list, 2392 struct i40e_new_mac_filter *add_head, 2393 int num_add) 2394 { 2395 struct i40e_hw *hw = &vsi->back->hw; 2396 enum i40e_admin_queue_err aq_status; 2397 int fcnt; 2398 2399 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2400 fcnt = i40e_update_filter_state(num_add, list, add_head); 2401 2402 if (fcnt != num_add) { 2403 if (vsi->type == I40E_VSI_MAIN) { 2404 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2405 dev_warn(&vsi->back->pdev->dev, 2406 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2407 i40e_aq_str(hw, aq_status), vsi_name); 2408 } else if (vsi->type == I40E_VSI_SRIOV || 2409 vsi->type == I40E_VSI_VMDQ1 || 2410 vsi->type == I40E_VSI_VMDQ2) { 2411 dev_warn(&vsi->back->pdev->dev, 2412 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2413 i40e_aq_str(hw, aq_status), vsi_name, 2414 vsi_name); 2415 } else { 2416 dev_warn(&vsi->back->pdev->dev, 2417 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2418 i40e_aq_str(hw, aq_status), vsi_name, 2419 vsi->type); 2420 } 2421 } 2422 } 2423 2424 /** 2425 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2426 * @vsi: pointer to the VSI 2427 * @vsi_name: the VSI name 2428 * @f: filter data 2429 * 2430 * This function sets or clears the promiscuous broadcast flags for VLAN 2431 * filters in order to properly receive broadcast frames. Assumes that only 2432 * broadcast filters are passed. 2433 * 2434 * Returns status indicating success or failure; 2435 **/ 2436 static int 2437 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2438 struct i40e_mac_filter *f) 2439 { 2440 bool enable = f->state == I40E_FILTER_NEW; 2441 struct i40e_hw *hw = &vsi->back->hw; 2442 int aq_ret; 2443 2444 if (f->vlan == I40E_VLAN_ANY) { 2445 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2446 vsi->seid, 2447 enable, 2448 NULL); 2449 } else { 2450 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2451 vsi->seid, 2452 enable, 2453 f->vlan, 2454 NULL); 2455 } 2456 2457 if (aq_ret) { 2458 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2459 dev_warn(&vsi->back->pdev->dev, 2460 "Error %s, forcing overflow promiscuous on %s\n", 2461 i40e_aq_str(hw, hw->aq.asq_last_status), 2462 vsi_name); 2463 } 2464 2465 return aq_ret; 2466 } 2467 2468 /** 2469 * i40e_set_promiscuous - set promiscuous mode 2470 * @pf: board private structure 2471 * @promisc: promisc on or off 2472 * 2473 * There are different ways of setting promiscuous mode on a PF depending on 2474 * what state/environment we're in. This identifies and sets it appropriately. 2475 * Returns 0 on success. 2476 **/ 2477 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2478 { 2479 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2480 struct i40e_hw *hw = &pf->hw; 2481 int aq_ret; 2482 2483 if (vsi->type == I40E_VSI_MAIN && 2484 pf->lan_veb != I40E_NO_VEB && 2485 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2486 /* set defport ON for Main VSI instead of true promisc 2487 * this way we will get all unicast/multicast and VLAN 2488 * promisc behavior but will not get VF or VMDq traffic 2489 * replicated on the Main VSI. 2490 */ 2491 if (promisc) 2492 aq_ret = i40e_aq_set_default_vsi(hw, 2493 vsi->seid, 2494 NULL); 2495 else 2496 aq_ret = i40e_aq_clear_default_vsi(hw, 2497 vsi->seid, 2498 NULL); 2499 if (aq_ret) { 2500 dev_info(&pf->pdev->dev, 2501 "Set default VSI failed, err %pe, aq_err %s\n", 2502 ERR_PTR(aq_ret), 2503 i40e_aq_str(hw, hw->aq.asq_last_status)); 2504 } 2505 } else { 2506 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2507 hw, 2508 vsi->seid, 2509 promisc, NULL, 2510 true); 2511 if (aq_ret) { 2512 dev_info(&pf->pdev->dev, 2513 "set unicast promisc failed, err %pe, aq_err %s\n", 2514 ERR_PTR(aq_ret), 2515 i40e_aq_str(hw, hw->aq.asq_last_status)); 2516 } 2517 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2518 hw, 2519 vsi->seid, 2520 promisc, NULL); 2521 if (aq_ret) { 2522 dev_info(&pf->pdev->dev, 2523 "set multicast promisc failed, err %pe, aq_err %s\n", 2524 ERR_PTR(aq_ret), 2525 i40e_aq_str(hw, hw->aq.asq_last_status)); 2526 } 2527 } 2528 2529 if (!aq_ret) 2530 pf->cur_promisc = promisc; 2531 2532 return aq_ret; 2533 } 2534 2535 /** 2536 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2537 * @vsi: ptr to the VSI 2538 * 2539 * Push any outstanding VSI filter changes through the AdminQ. 2540 * 2541 * Returns 0 or error value 2542 **/ 2543 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2544 { 2545 struct hlist_head tmp_add_list, tmp_del_list; 2546 struct i40e_mac_filter *f; 2547 struct i40e_new_mac_filter *new, *add_head = NULL; 2548 struct i40e_hw *hw = &vsi->back->hw; 2549 bool old_overflow, new_overflow; 2550 unsigned int failed_filters = 0; 2551 unsigned int vlan_filters = 0; 2552 char vsi_name[16] = "PF"; 2553 int filter_list_len = 0; 2554 u32 changed_flags = 0; 2555 struct hlist_node *h; 2556 struct i40e_pf *pf; 2557 int num_add = 0; 2558 int num_del = 0; 2559 int aq_ret = 0; 2560 int retval = 0; 2561 u16 cmd_flags; 2562 int list_size; 2563 int bkt; 2564 2565 /* empty array typed pointers, kcalloc later */ 2566 struct i40e_aqc_add_macvlan_element_data *add_list; 2567 struct i40e_aqc_remove_macvlan_element_data *del_list; 2568 2569 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2570 usleep_range(1000, 2000); 2571 pf = vsi->back; 2572 2573 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2574 2575 if (vsi->netdev) { 2576 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2577 vsi->current_netdev_flags = vsi->netdev->flags; 2578 } 2579 2580 INIT_HLIST_HEAD(&tmp_add_list); 2581 INIT_HLIST_HEAD(&tmp_del_list); 2582 2583 if (vsi->type == I40E_VSI_SRIOV) 2584 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2585 else if (vsi->type != I40E_VSI_MAIN) 2586 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2587 2588 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2589 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2590 2591 spin_lock_bh(&vsi->mac_filter_hash_lock); 2592 /* Create a list of filters to delete. */ 2593 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2594 if (f->state == I40E_FILTER_REMOVE) { 2595 /* Move the element into temporary del_list */ 2596 hash_del(&f->hlist); 2597 hlist_add_head(&f->hlist, &tmp_del_list); 2598 2599 /* Avoid counting removed filters */ 2600 continue; 2601 } 2602 if (f->state == I40E_FILTER_NEW) { 2603 /* Create a temporary i40e_new_mac_filter */ 2604 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2605 if (!new) 2606 goto err_no_memory_locked; 2607 2608 /* Store pointer to the real filter */ 2609 new->f = f; 2610 new->state = f->state; 2611 2612 /* Add it to the hash list */ 2613 hlist_add_head(&new->hlist, &tmp_add_list); 2614 } 2615 2616 /* Count the number of active (current and new) VLAN 2617 * filters we have now. Does not count filters which 2618 * are marked for deletion. 2619 */ 2620 if (f->vlan > 0) 2621 vlan_filters++; 2622 } 2623 2624 if (vsi->type != I40E_VSI_SRIOV) 2625 retval = i40e_correct_mac_vlan_filters 2626 (vsi, &tmp_add_list, &tmp_del_list, 2627 vlan_filters); 2628 else if (pf->vf) 2629 retval = i40e_correct_vf_mac_vlan_filters 2630 (vsi, &tmp_add_list, &tmp_del_list, 2631 vlan_filters, pf->vf[vsi->vf_id].trusted); 2632 2633 hlist_for_each_entry(new, &tmp_add_list, hlist) 2634 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2635 2636 if (retval) 2637 goto err_no_memory_locked; 2638 2639 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2640 } 2641 2642 /* Now process 'del_list' outside the lock */ 2643 if (!hlist_empty(&tmp_del_list)) { 2644 filter_list_len = hw->aq.asq_buf_size / 2645 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2646 list_size = filter_list_len * 2647 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2648 del_list = kzalloc(list_size, GFP_ATOMIC); 2649 if (!del_list) 2650 goto err_no_memory; 2651 2652 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2653 cmd_flags = 0; 2654 2655 /* handle broadcast filters by updating the broadcast 2656 * promiscuous flag and release filter list. 2657 */ 2658 if (is_broadcast_ether_addr(f->macaddr)) { 2659 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2660 2661 hlist_del(&f->hlist); 2662 kfree(f); 2663 continue; 2664 } 2665 2666 /* add to delete list */ 2667 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2668 if (f->vlan == I40E_VLAN_ANY) { 2669 del_list[num_del].vlan_tag = 0; 2670 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2671 } else { 2672 del_list[num_del].vlan_tag = 2673 cpu_to_le16((u16)(f->vlan)); 2674 } 2675 2676 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2677 del_list[num_del].flags = cmd_flags; 2678 num_del++; 2679 2680 /* flush a full buffer */ 2681 if (num_del == filter_list_len) { 2682 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2683 num_del, &retval); 2684 memset(del_list, 0, list_size); 2685 num_del = 0; 2686 } 2687 /* Release memory for MAC filter entries which were 2688 * synced up with HW. 2689 */ 2690 hlist_del(&f->hlist); 2691 kfree(f); 2692 } 2693 2694 if (num_del) { 2695 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2696 num_del, &retval); 2697 } 2698 2699 kfree(del_list); 2700 del_list = NULL; 2701 } 2702 2703 if (!hlist_empty(&tmp_add_list)) { 2704 /* Do all the adds now. */ 2705 filter_list_len = hw->aq.asq_buf_size / 2706 sizeof(struct i40e_aqc_add_macvlan_element_data); 2707 list_size = filter_list_len * 2708 sizeof(struct i40e_aqc_add_macvlan_element_data); 2709 add_list = kzalloc(list_size, GFP_ATOMIC); 2710 if (!add_list) 2711 goto err_no_memory; 2712 2713 num_add = 0; 2714 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2715 /* handle broadcast filters by updating the broadcast 2716 * promiscuous flag instead of adding a MAC filter. 2717 */ 2718 if (is_broadcast_ether_addr(new->f->macaddr)) { 2719 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2720 new->f)) 2721 new->state = I40E_FILTER_FAILED; 2722 else 2723 new->state = I40E_FILTER_ACTIVE; 2724 continue; 2725 } 2726 2727 /* add to add array */ 2728 if (num_add == 0) 2729 add_head = new; 2730 cmd_flags = 0; 2731 ether_addr_copy(add_list[num_add].mac_addr, 2732 new->f->macaddr); 2733 if (new->f->vlan == I40E_VLAN_ANY) { 2734 add_list[num_add].vlan_tag = 0; 2735 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2736 } else { 2737 add_list[num_add].vlan_tag = 2738 cpu_to_le16((u16)(new->f->vlan)); 2739 } 2740 add_list[num_add].queue_number = 0; 2741 /* set invalid match method for later detection */ 2742 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2743 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2744 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2745 num_add++; 2746 2747 /* flush a full buffer */ 2748 if (num_add == filter_list_len) { 2749 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2750 add_head, num_add); 2751 memset(add_list, 0, list_size); 2752 num_add = 0; 2753 } 2754 } 2755 if (num_add) { 2756 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2757 num_add); 2758 } 2759 /* Now move all of the filters from the temp add list back to 2760 * the VSI's list. 2761 */ 2762 spin_lock_bh(&vsi->mac_filter_hash_lock); 2763 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2764 /* Only update the state if we're still NEW */ 2765 if (new->f->state == I40E_FILTER_NEW) 2766 new->f->state = new->state; 2767 hlist_del(&new->hlist); 2768 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2769 kfree(new); 2770 } 2771 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2772 kfree(add_list); 2773 add_list = NULL; 2774 } 2775 2776 /* Determine the number of active and failed filters. */ 2777 spin_lock_bh(&vsi->mac_filter_hash_lock); 2778 vsi->active_filters = 0; 2779 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2780 if (f->state == I40E_FILTER_ACTIVE) 2781 vsi->active_filters++; 2782 else if (f->state == I40E_FILTER_FAILED) 2783 failed_filters++; 2784 } 2785 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2786 2787 /* Check if we are able to exit overflow promiscuous mode. We can 2788 * safely exit if we didn't just enter, we no longer have any failed 2789 * filters, and we have reduced filters below the threshold value. 2790 */ 2791 if (old_overflow && !failed_filters && 2792 vsi->active_filters < vsi->promisc_threshold) { 2793 dev_info(&pf->pdev->dev, 2794 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2795 vsi_name); 2796 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2797 vsi->promisc_threshold = 0; 2798 } 2799 2800 /* if the VF is not trusted do not do promisc */ 2801 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2802 !pf->vf[vsi->vf_id].trusted) { 2803 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2804 goto out; 2805 } 2806 2807 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2808 2809 /* If we are entering overflow promiscuous, we need to calculate a new 2810 * threshold for when we are safe to exit 2811 */ 2812 if (!old_overflow && new_overflow) 2813 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2814 2815 /* check for changes in promiscuous modes */ 2816 if (changed_flags & IFF_ALLMULTI) { 2817 bool cur_multipromisc; 2818 2819 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2820 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2821 vsi->seid, 2822 cur_multipromisc, 2823 NULL); 2824 if (aq_ret) { 2825 retval = i40e_aq_rc_to_posix(aq_ret, 2826 hw->aq.asq_last_status); 2827 dev_info(&pf->pdev->dev, 2828 "set multi promisc failed on %s, err %pe aq_err %s\n", 2829 vsi_name, 2830 ERR_PTR(aq_ret), 2831 i40e_aq_str(hw, hw->aq.asq_last_status)); 2832 } else { 2833 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2834 cur_multipromisc ? "entering" : "leaving"); 2835 } 2836 } 2837 2838 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2839 bool cur_promisc; 2840 2841 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2842 new_overflow); 2843 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2844 if (aq_ret) { 2845 retval = i40e_aq_rc_to_posix(aq_ret, 2846 hw->aq.asq_last_status); 2847 dev_info(&pf->pdev->dev, 2848 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2849 cur_promisc ? "on" : "off", 2850 vsi_name, 2851 ERR_PTR(aq_ret), 2852 i40e_aq_str(hw, hw->aq.asq_last_status)); 2853 } 2854 } 2855 out: 2856 /* if something went wrong then set the changed flag so we try again */ 2857 if (retval) 2858 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2859 2860 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2861 return retval; 2862 2863 err_no_memory: 2864 /* Restore elements on the temporary add and delete lists */ 2865 spin_lock_bh(&vsi->mac_filter_hash_lock); 2866 err_no_memory_locked: 2867 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2868 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2869 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2870 2871 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2872 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2873 return -ENOMEM; 2874 } 2875 2876 /** 2877 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2878 * @pf: board private structure 2879 **/ 2880 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2881 { 2882 int v; 2883 2884 if (!pf) 2885 return; 2886 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2887 return; 2888 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2889 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2890 return; 2891 } 2892 2893 for (v = 0; v < pf->num_alloc_vsi; v++) { 2894 if (pf->vsi[v] && 2895 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2896 !test_bit(__I40E_VSI_RELEASING, pf->vsi[v]->state)) { 2897 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2898 2899 if (ret) { 2900 /* come back and try again later */ 2901 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2902 pf->state); 2903 break; 2904 } 2905 } 2906 } 2907 } 2908 2909 /** 2910 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2911 * 2912 * @vsi: VSI to calculate rx_buf_len from 2913 */ 2914 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2915 { 2916 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2917 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2918 2919 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2920 } 2921 2922 /** 2923 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2924 * @vsi: the vsi 2925 * @xdp_prog: XDP program 2926 **/ 2927 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2928 struct bpf_prog *xdp_prog) 2929 { 2930 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2931 u16 chain_len; 2932 2933 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2934 chain_len = 1; 2935 else 2936 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2937 2938 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2939 } 2940 2941 /** 2942 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2943 * @netdev: network interface device structure 2944 * @new_mtu: new value for maximum frame size 2945 * 2946 * Returns 0 on success, negative on failure 2947 **/ 2948 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2949 { 2950 struct i40e_netdev_priv *np = netdev_priv(netdev); 2951 struct i40e_vsi *vsi = np->vsi; 2952 struct i40e_pf *pf = vsi->back; 2953 int frame_size; 2954 2955 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2956 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2957 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2958 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2959 return -EINVAL; 2960 } 2961 2962 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2963 netdev->mtu, new_mtu); 2964 netdev->mtu = new_mtu; 2965 if (netif_running(netdev)) 2966 i40e_vsi_reinit_locked(vsi); 2967 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2968 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2969 return 0; 2970 } 2971 2972 /** 2973 * i40e_ioctl - Access the hwtstamp interface 2974 * @netdev: network interface device structure 2975 * @ifr: interface request data 2976 * @cmd: ioctl command 2977 **/ 2978 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2979 { 2980 struct i40e_netdev_priv *np = netdev_priv(netdev); 2981 struct i40e_pf *pf = np->vsi->back; 2982 2983 switch (cmd) { 2984 case SIOCGHWTSTAMP: 2985 return i40e_ptp_get_ts_config(pf, ifr); 2986 case SIOCSHWTSTAMP: 2987 return i40e_ptp_set_ts_config(pf, ifr); 2988 default: 2989 return -EOPNOTSUPP; 2990 } 2991 } 2992 2993 /** 2994 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2995 * @vsi: the vsi being adjusted 2996 **/ 2997 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2998 { 2999 struct i40e_vsi_context ctxt; 3000 int ret; 3001 3002 /* Don't modify stripping options if a port VLAN is active */ 3003 if (vsi->info.pvid) 3004 return; 3005 3006 if ((vsi->info.valid_sections & 3007 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3008 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 3009 return; /* already enabled */ 3010 3011 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3012 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3013 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 3014 3015 ctxt.seid = vsi->seid; 3016 ctxt.info = vsi->info; 3017 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3018 if (ret) { 3019 dev_info(&vsi->back->pdev->dev, 3020 "update vlan stripping failed, err %pe aq_err %s\n", 3021 ERR_PTR(ret), 3022 i40e_aq_str(&vsi->back->hw, 3023 vsi->back->hw.aq.asq_last_status)); 3024 } 3025 } 3026 3027 /** 3028 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 3029 * @vsi: the vsi being adjusted 3030 **/ 3031 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 3032 { 3033 struct i40e_vsi_context ctxt; 3034 int ret; 3035 3036 /* Don't modify stripping options if a port VLAN is active */ 3037 if (vsi->info.pvid) 3038 return; 3039 3040 if ((vsi->info.valid_sections & 3041 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3042 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3043 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3044 return; /* already disabled */ 3045 3046 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3047 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3048 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3049 3050 ctxt.seid = vsi->seid; 3051 ctxt.info = vsi->info; 3052 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3053 if (ret) { 3054 dev_info(&vsi->back->pdev->dev, 3055 "update vlan stripping failed, err %pe aq_err %s\n", 3056 ERR_PTR(ret), 3057 i40e_aq_str(&vsi->back->hw, 3058 vsi->back->hw.aq.asq_last_status)); 3059 } 3060 } 3061 3062 /** 3063 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3064 * @vsi: the vsi being configured 3065 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3066 * 3067 * This is a helper function for adding a new MAC/VLAN filter with the 3068 * specified VLAN for each existing MAC address already in the hash table. 3069 * This function does *not* perform any accounting to update filters based on 3070 * VLAN mode. 3071 * 3072 * NOTE: this function expects to be called while under the 3073 * mac_filter_hash_lock 3074 **/ 3075 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3076 { 3077 struct i40e_mac_filter *f, *add_f; 3078 struct hlist_node *h; 3079 int bkt; 3080 3081 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3082 /* If we're asked to add a filter that has been marked for 3083 * removal, it is safe to simply restore it to active state. 3084 * __i40e_del_filter will have simply deleted any filters which 3085 * were previously marked NEW or FAILED, so if it is currently 3086 * marked REMOVE it must have previously been ACTIVE. Since we 3087 * haven't yet run the sync filters task, just restore this 3088 * filter to the ACTIVE state so that the sync task leaves it 3089 * in place. 3090 */ 3091 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3092 f->state = I40E_FILTER_ACTIVE; 3093 continue; 3094 } else if (f->state == I40E_FILTER_REMOVE) { 3095 continue; 3096 } 3097 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3098 if (!add_f) { 3099 dev_info(&vsi->back->pdev->dev, 3100 "Could not add vlan filter %d for %pM\n", 3101 vid, f->macaddr); 3102 return -ENOMEM; 3103 } 3104 } 3105 3106 return 0; 3107 } 3108 3109 /** 3110 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3111 * @vsi: the VSI being configured 3112 * @vid: VLAN id to be added 3113 **/ 3114 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3115 { 3116 int err; 3117 3118 if (vsi->info.pvid) 3119 return -EINVAL; 3120 3121 /* The network stack will attempt to add VID=0, with the intention to 3122 * receive priority tagged packets with a VLAN of 0. Our HW receives 3123 * these packets by default when configured to receive untagged 3124 * packets, so we don't need to add a filter for this case. 3125 * Additionally, HW interprets adding a VID=0 filter as meaning to 3126 * receive *only* tagged traffic and stops receiving untagged traffic. 3127 * Thus, we do not want to actually add a filter for VID=0 3128 */ 3129 if (!vid) 3130 return 0; 3131 3132 /* Locked once because all functions invoked below iterates list*/ 3133 spin_lock_bh(&vsi->mac_filter_hash_lock); 3134 err = i40e_add_vlan_all_mac(vsi, vid); 3135 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3136 if (err) 3137 return err; 3138 3139 /* schedule our worker thread which will take care of 3140 * applying the new filter changes 3141 */ 3142 i40e_service_event_schedule(vsi->back); 3143 return 0; 3144 } 3145 3146 /** 3147 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3148 * @vsi: the vsi being configured 3149 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3150 * 3151 * This function should be used to remove all VLAN filters which match the 3152 * given VID. It does not schedule the service event and does not take the 3153 * mac_filter_hash_lock so it may be combined with other operations under 3154 * a single invocation of the mac_filter_hash_lock. 3155 * 3156 * NOTE: this function expects to be called while under the 3157 * mac_filter_hash_lock 3158 */ 3159 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3160 { 3161 struct i40e_mac_filter *f; 3162 struct hlist_node *h; 3163 int bkt; 3164 3165 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3166 if (f->vlan == vid) 3167 __i40e_del_filter(vsi, f); 3168 } 3169 } 3170 3171 /** 3172 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3173 * @vsi: the VSI being configured 3174 * @vid: VLAN id to be removed 3175 **/ 3176 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3177 { 3178 if (!vid || vsi->info.pvid) 3179 return; 3180 3181 spin_lock_bh(&vsi->mac_filter_hash_lock); 3182 i40e_rm_vlan_all_mac(vsi, vid); 3183 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3184 3185 /* schedule our worker thread which will take care of 3186 * applying the new filter changes 3187 */ 3188 i40e_service_event_schedule(vsi->back); 3189 } 3190 3191 /** 3192 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3193 * @netdev: network interface to be adjusted 3194 * @proto: unused protocol value 3195 * @vid: vlan id to be added 3196 * 3197 * net_device_ops implementation for adding vlan ids 3198 **/ 3199 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3200 __always_unused __be16 proto, u16 vid) 3201 { 3202 struct i40e_netdev_priv *np = netdev_priv(netdev); 3203 struct i40e_vsi *vsi = np->vsi; 3204 int ret = 0; 3205 3206 if (vid >= VLAN_N_VID) 3207 return -EINVAL; 3208 3209 ret = i40e_vsi_add_vlan(vsi, vid); 3210 if (!ret) 3211 set_bit(vid, vsi->active_vlans); 3212 3213 return ret; 3214 } 3215 3216 /** 3217 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3218 * @netdev: network interface to be adjusted 3219 * @proto: unused protocol value 3220 * @vid: vlan id to be added 3221 **/ 3222 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3223 __always_unused __be16 proto, u16 vid) 3224 { 3225 struct i40e_netdev_priv *np = netdev_priv(netdev); 3226 struct i40e_vsi *vsi = np->vsi; 3227 3228 if (vid >= VLAN_N_VID) 3229 return; 3230 set_bit(vid, vsi->active_vlans); 3231 } 3232 3233 /** 3234 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3235 * @netdev: network interface to be adjusted 3236 * @proto: unused protocol value 3237 * @vid: vlan id to be removed 3238 * 3239 * net_device_ops implementation for removing vlan ids 3240 **/ 3241 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3242 __always_unused __be16 proto, u16 vid) 3243 { 3244 struct i40e_netdev_priv *np = netdev_priv(netdev); 3245 struct i40e_vsi *vsi = np->vsi; 3246 3247 /* return code is ignored as there is nothing a user 3248 * can do about failure to remove and a log message was 3249 * already printed from the other function 3250 */ 3251 i40e_vsi_kill_vlan(vsi, vid); 3252 3253 clear_bit(vid, vsi->active_vlans); 3254 3255 return 0; 3256 } 3257 3258 /** 3259 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3260 * @vsi: the vsi being brought back up 3261 **/ 3262 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3263 { 3264 u16 vid; 3265 3266 if (!vsi->netdev) 3267 return; 3268 3269 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3270 i40e_vlan_stripping_enable(vsi); 3271 else 3272 i40e_vlan_stripping_disable(vsi); 3273 3274 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3275 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3276 vid); 3277 } 3278 3279 /** 3280 * i40e_vsi_add_pvid - Add pvid for the VSI 3281 * @vsi: the vsi being adjusted 3282 * @vid: the vlan id to set as a PVID 3283 **/ 3284 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3285 { 3286 struct i40e_vsi_context ctxt; 3287 int ret; 3288 3289 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3290 vsi->info.pvid = cpu_to_le16(vid); 3291 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3292 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3293 I40E_AQ_VSI_PVLAN_EMOD_STR; 3294 3295 ctxt.seid = vsi->seid; 3296 ctxt.info = vsi->info; 3297 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3298 if (ret) { 3299 dev_info(&vsi->back->pdev->dev, 3300 "add pvid failed, err %pe aq_err %s\n", 3301 ERR_PTR(ret), 3302 i40e_aq_str(&vsi->back->hw, 3303 vsi->back->hw.aq.asq_last_status)); 3304 return -ENOENT; 3305 } 3306 3307 return 0; 3308 } 3309 3310 /** 3311 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3312 * @vsi: the vsi being adjusted 3313 * 3314 * Just use the vlan_rx_register() service to put it back to normal 3315 **/ 3316 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3317 { 3318 vsi->info.pvid = 0; 3319 3320 i40e_vlan_stripping_disable(vsi); 3321 } 3322 3323 /** 3324 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3325 * @vsi: ptr to the VSI 3326 * 3327 * If this function returns with an error, then it's possible one or 3328 * more of the rings is populated (while the rest are not). It is the 3329 * callers duty to clean those orphaned rings. 3330 * 3331 * Return 0 on success, negative on failure 3332 **/ 3333 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3334 { 3335 int i, err = 0; 3336 3337 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3338 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3339 3340 if (!i40e_enabled_xdp_vsi(vsi)) 3341 return err; 3342 3343 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3344 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3345 3346 return err; 3347 } 3348 3349 /** 3350 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3351 * @vsi: ptr to the VSI 3352 * 3353 * Free VSI's transmit software resources 3354 **/ 3355 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3356 { 3357 int i; 3358 3359 if (vsi->tx_rings) { 3360 for (i = 0; i < vsi->num_queue_pairs; i++) 3361 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3362 i40e_free_tx_resources(vsi->tx_rings[i]); 3363 } 3364 3365 if (vsi->xdp_rings) { 3366 for (i = 0; i < vsi->num_queue_pairs; i++) 3367 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3368 i40e_free_tx_resources(vsi->xdp_rings[i]); 3369 } 3370 } 3371 3372 /** 3373 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3374 * @vsi: ptr to the VSI 3375 * 3376 * If this function returns with an error, then it's possible one or 3377 * more of the rings is populated (while the rest are not). It is the 3378 * callers duty to clean those orphaned rings. 3379 * 3380 * Return 0 on success, negative on failure 3381 **/ 3382 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3383 { 3384 int i, err = 0; 3385 3386 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3387 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3388 return err; 3389 } 3390 3391 /** 3392 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3393 * @vsi: ptr to the VSI 3394 * 3395 * Free all receive software resources 3396 **/ 3397 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3398 { 3399 int i; 3400 3401 if (!vsi->rx_rings) 3402 return; 3403 3404 for (i = 0; i < vsi->num_queue_pairs; i++) 3405 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3406 i40e_free_rx_resources(vsi->rx_rings[i]); 3407 } 3408 3409 /** 3410 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3411 * @ring: The Tx ring to configure 3412 * 3413 * This enables/disables XPS for a given Tx descriptor ring 3414 * based on the TCs enabled for the VSI that ring belongs to. 3415 **/ 3416 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3417 { 3418 int cpu; 3419 3420 if (!ring->q_vector || !ring->netdev || ring->ch) 3421 return; 3422 3423 /* We only initialize XPS once, so as not to overwrite user settings */ 3424 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3425 return; 3426 3427 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3428 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3429 ring->queue_index); 3430 } 3431 3432 /** 3433 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3434 * @ring: The Tx or Rx ring 3435 * 3436 * Returns the AF_XDP buffer pool or NULL. 3437 **/ 3438 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3439 { 3440 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3441 int qid = ring->queue_index; 3442 3443 if (ring_is_xdp(ring)) 3444 qid -= ring->vsi->alloc_queue_pairs; 3445 3446 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3447 return NULL; 3448 3449 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3450 } 3451 3452 /** 3453 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3454 * @ring: The Tx ring to configure 3455 * 3456 * Configure the Tx descriptor ring in the HMC context. 3457 **/ 3458 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3459 { 3460 struct i40e_vsi *vsi = ring->vsi; 3461 u16 pf_q = vsi->base_queue + ring->queue_index; 3462 struct i40e_hw *hw = &vsi->back->hw; 3463 struct i40e_hmc_obj_txq tx_ctx; 3464 u32 qtx_ctl = 0; 3465 int err = 0; 3466 3467 if (ring_is_xdp(ring)) 3468 ring->xsk_pool = i40e_xsk_pool(ring); 3469 3470 /* some ATR related tx ring init */ 3471 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3472 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3473 ring->atr_count = 0; 3474 } else { 3475 ring->atr_sample_rate = 0; 3476 } 3477 3478 /* configure XPS */ 3479 i40e_config_xps_tx_ring(ring); 3480 3481 /* clear the context structure first */ 3482 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3483 3484 tx_ctx.new_context = 1; 3485 tx_ctx.base = (ring->dma / 128); 3486 tx_ctx.qlen = ring->count; 3487 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3488 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3489 tx_ctx.fd_ena = 1; 3490 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3491 tx_ctx.timesync_ena = 1; 3492 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3493 if (vsi->type != I40E_VSI_FDIR) 3494 tx_ctx.head_wb_ena = 1; 3495 tx_ctx.head_wb_addr = ring->dma + 3496 (ring->count * sizeof(struct i40e_tx_desc)); 3497 3498 /* As part of VSI creation/update, FW allocates certain 3499 * Tx arbitration queue sets for each TC enabled for 3500 * the VSI. The FW returns the handles to these queue 3501 * sets as part of the response buffer to Add VSI, 3502 * Update VSI, etc. AQ commands. It is expected that 3503 * these queue set handles be associated with the Tx 3504 * queues by the driver as part of the TX queue context 3505 * initialization. This has to be done regardless of 3506 * DCB as by default everything is mapped to TC0. 3507 */ 3508 3509 if (ring->ch) 3510 tx_ctx.rdylist = 3511 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3512 3513 else 3514 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3515 3516 tx_ctx.rdylist_act = 0; 3517 3518 /* clear the context in the HMC */ 3519 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3520 if (err) { 3521 dev_info(&vsi->back->pdev->dev, 3522 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3523 ring->queue_index, pf_q, err); 3524 return -ENOMEM; 3525 } 3526 3527 /* set the context in the HMC */ 3528 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3529 if (err) { 3530 dev_info(&vsi->back->pdev->dev, 3531 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3532 ring->queue_index, pf_q, err); 3533 return -ENOMEM; 3534 } 3535 3536 /* Now associate this queue with this PCI function */ 3537 if (ring->ch) { 3538 if (ring->ch->type == I40E_VSI_VMDQ2) 3539 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3540 else 3541 return -EINVAL; 3542 3543 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3544 ring->ch->vsi_number); 3545 } else { 3546 if (vsi->type == I40E_VSI_VMDQ2) { 3547 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3548 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3549 vsi->id); 3550 } else { 3551 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3552 } 3553 } 3554 3555 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id); 3556 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3557 i40e_flush(hw); 3558 3559 /* cache tail off for easier writes later */ 3560 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3561 3562 return 0; 3563 } 3564 3565 /** 3566 * i40e_rx_offset - Return expected offset into page to access data 3567 * @rx_ring: Ring we are requesting offset of 3568 * 3569 * Returns the offset value for ring into the data buffer. 3570 */ 3571 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3572 { 3573 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3574 } 3575 3576 /** 3577 * i40e_configure_rx_ring - Configure a receive ring context 3578 * @ring: The Rx ring to configure 3579 * 3580 * Configure the Rx descriptor ring in the HMC context. 3581 **/ 3582 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3583 { 3584 struct i40e_vsi *vsi = ring->vsi; 3585 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3586 u16 pf_q = vsi->base_queue + ring->queue_index; 3587 struct i40e_hw *hw = &vsi->back->hw; 3588 struct i40e_hmc_obj_rxq rx_ctx; 3589 int err = 0; 3590 bool ok; 3591 3592 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3593 3594 /* clear the context structure first */ 3595 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3596 3597 ring->rx_buf_len = vsi->rx_buf_len; 3598 3599 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 3600 if (ring->vsi->type != I40E_VSI_MAIN) 3601 goto skip; 3602 3603 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 3604 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3605 ring->queue_index, 3606 ring->q_vector->napi.napi_id, 3607 ring->rx_buf_len); 3608 if (err) 3609 return err; 3610 } 3611 3612 ring->xsk_pool = i40e_xsk_pool(ring); 3613 if (ring->xsk_pool) { 3614 xdp_rxq_info_unreg(&ring->xdp_rxq); 3615 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool); 3616 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3617 ring->queue_index, 3618 ring->q_vector->napi.napi_id, 3619 ring->rx_buf_len); 3620 if (err) 3621 return err; 3622 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3623 MEM_TYPE_XSK_BUFF_POOL, 3624 NULL); 3625 if (err) 3626 return err; 3627 dev_info(&vsi->back->pdev->dev, 3628 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3629 ring->queue_index); 3630 3631 } else { 3632 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3633 MEM_TYPE_PAGE_SHARED, 3634 NULL); 3635 if (err) 3636 return err; 3637 } 3638 3639 skip: 3640 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3641 3642 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3643 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3644 3645 rx_ctx.base = (ring->dma / 128); 3646 rx_ctx.qlen = ring->count; 3647 3648 /* use 16 byte descriptors */ 3649 rx_ctx.dsize = 0; 3650 3651 /* descriptor type is always zero 3652 * rx_ctx.dtype = 0; 3653 */ 3654 rx_ctx.hsplit_0 = 0; 3655 3656 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3657 if (hw->revision_id == 0) 3658 rx_ctx.lrxqthresh = 0; 3659 else 3660 rx_ctx.lrxqthresh = 1; 3661 rx_ctx.crcstrip = 1; 3662 rx_ctx.l2tsel = 1; 3663 /* this controls whether VLAN is stripped from inner headers */ 3664 rx_ctx.showiv = 0; 3665 /* set the prefena field to 1 because the manual says to */ 3666 rx_ctx.prefena = 1; 3667 3668 /* clear the context in the HMC */ 3669 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3670 if (err) { 3671 dev_info(&vsi->back->pdev->dev, 3672 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3673 ring->queue_index, pf_q, err); 3674 return -ENOMEM; 3675 } 3676 3677 /* set the context in the HMC */ 3678 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3679 if (err) { 3680 dev_info(&vsi->back->pdev->dev, 3681 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3682 ring->queue_index, pf_q, err); 3683 return -ENOMEM; 3684 } 3685 3686 /* configure Rx buffer alignment */ 3687 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3688 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3689 dev_info(&vsi->back->pdev->dev, 3690 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3691 return -EOPNOTSUPP; 3692 } 3693 clear_ring_build_skb_enabled(ring); 3694 } else { 3695 set_ring_build_skb_enabled(ring); 3696 } 3697 3698 ring->rx_offset = i40e_rx_offset(ring); 3699 3700 /* cache tail for quicker writes, and clear the reg before use */ 3701 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3702 writel(0, ring->tail); 3703 3704 if (ring->xsk_pool) { 3705 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3706 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3707 } else { 3708 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3709 } 3710 if (!ok) { 3711 /* Log this in case the user has forgotten to give the kernel 3712 * any buffers, even later in the application. 3713 */ 3714 dev_info(&vsi->back->pdev->dev, 3715 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3716 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3717 ring->queue_index, pf_q); 3718 } 3719 3720 return 0; 3721 } 3722 3723 /** 3724 * i40e_vsi_configure_tx - Configure the VSI for Tx 3725 * @vsi: VSI structure describing this set of rings and resources 3726 * 3727 * Configure the Tx VSI for operation. 3728 **/ 3729 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3730 { 3731 int err = 0; 3732 u16 i; 3733 3734 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3735 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3736 3737 if (err || !i40e_enabled_xdp_vsi(vsi)) 3738 return err; 3739 3740 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3741 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3742 3743 return err; 3744 } 3745 3746 /** 3747 * i40e_vsi_configure_rx - Configure the VSI for Rx 3748 * @vsi: the VSI being configured 3749 * 3750 * Configure the Rx VSI for operation. 3751 **/ 3752 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3753 { 3754 int err = 0; 3755 u16 i; 3756 3757 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3758 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3759 3760 #if (PAGE_SIZE < 8192) 3761 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3762 vsi->netdev->mtu <= ETH_DATA_LEN) { 3763 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3764 vsi->max_frame = vsi->rx_buf_len; 3765 } 3766 #endif 3767 3768 /* set up individual rings */ 3769 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3770 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3771 3772 return err; 3773 } 3774 3775 /** 3776 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3777 * @vsi: ptr to the VSI 3778 **/ 3779 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3780 { 3781 struct i40e_ring *tx_ring, *rx_ring; 3782 u16 qoffset, qcount; 3783 int i, n; 3784 3785 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3786 /* Reset the TC information */ 3787 for (i = 0; i < vsi->num_queue_pairs; i++) { 3788 rx_ring = vsi->rx_rings[i]; 3789 tx_ring = vsi->tx_rings[i]; 3790 rx_ring->dcb_tc = 0; 3791 tx_ring->dcb_tc = 0; 3792 } 3793 return; 3794 } 3795 3796 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3797 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3798 continue; 3799 3800 qoffset = vsi->tc_config.tc_info[n].qoffset; 3801 qcount = vsi->tc_config.tc_info[n].qcount; 3802 for (i = qoffset; i < (qoffset + qcount); i++) { 3803 rx_ring = vsi->rx_rings[i]; 3804 tx_ring = vsi->tx_rings[i]; 3805 rx_ring->dcb_tc = n; 3806 tx_ring->dcb_tc = n; 3807 } 3808 } 3809 } 3810 3811 /** 3812 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3813 * @vsi: ptr to the VSI 3814 **/ 3815 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3816 { 3817 if (vsi->netdev) 3818 i40e_set_rx_mode(vsi->netdev); 3819 } 3820 3821 /** 3822 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3823 * @pf: Pointer to the targeted PF 3824 * 3825 * Set all flow director counters to 0. 3826 */ 3827 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3828 { 3829 pf->fd_tcp4_filter_cnt = 0; 3830 pf->fd_udp4_filter_cnt = 0; 3831 pf->fd_sctp4_filter_cnt = 0; 3832 pf->fd_ip4_filter_cnt = 0; 3833 pf->fd_tcp6_filter_cnt = 0; 3834 pf->fd_udp6_filter_cnt = 0; 3835 pf->fd_sctp6_filter_cnt = 0; 3836 pf->fd_ip6_filter_cnt = 0; 3837 } 3838 3839 /** 3840 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3841 * @vsi: Pointer to the targeted VSI 3842 * 3843 * This function replays the hlist on the hw where all the SB Flow Director 3844 * filters were saved. 3845 **/ 3846 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3847 { 3848 struct i40e_fdir_filter *filter; 3849 struct i40e_pf *pf = vsi->back; 3850 struct hlist_node *node; 3851 3852 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3853 return; 3854 3855 /* Reset FDir counters as we're replaying all existing filters */ 3856 i40e_reset_fdir_filter_cnt(pf); 3857 3858 hlist_for_each_entry_safe(filter, node, 3859 &pf->fdir_filter_list, fdir_node) { 3860 i40e_add_del_fdir(vsi, filter, true); 3861 } 3862 } 3863 3864 /** 3865 * i40e_vsi_configure - Set up the VSI for action 3866 * @vsi: the VSI being configured 3867 **/ 3868 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3869 { 3870 int err; 3871 3872 i40e_set_vsi_rx_mode(vsi); 3873 i40e_restore_vlan(vsi); 3874 i40e_vsi_config_dcb_rings(vsi); 3875 err = i40e_vsi_configure_tx(vsi); 3876 if (!err) 3877 err = i40e_vsi_configure_rx(vsi); 3878 3879 return err; 3880 } 3881 3882 /** 3883 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3884 * @vsi: the VSI being configured 3885 **/ 3886 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3887 { 3888 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3889 struct i40e_pf *pf = vsi->back; 3890 struct i40e_hw *hw = &pf->hw; 3891 u16 vector; 3892 int i, q; 3893 u32 qp; 3894 3895 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3896 * and PFINT_LNKLSTn registers, e.g.: 3897 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3898 */ 3899 qp = vsi->base_queue; 3900 vector = vsi->base_vector; 3901 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3902 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3903 3904 q_vector->rx.next_update = jiffies + 1; 3905 q_vector->rx.target_itr = 3906 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3907 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3908 q_vector->rx.target_itr >> 1); 3909 q_vector->rx.current_itr = q_vector->rx.target_itr; 3910 3911 q_vector->tx.next_update = jiffies + 1; 3912 q_vector->tx.target_itr = 3913 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3914 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3915 q_vector->tx.target_itr >> 1); 3916 q_vector->tx.current_itr = q_vector->tx.target_itr; 3917 3918 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3919 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3920 3921 /* begin of linked list for RX queue assigned to this vector */ 3922 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3923 for (q = 0; q < q_vector->num_ringpairs; q++) { 3924 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3925 u32 val; 3926 3927 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3928 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3929 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3930 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3931 (I40E_QUEUE_TYPE_TX << 3932 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3933 3934 wr32(hw, I40E_QINT_RQCTL(qp), val); 3935 3936 if (has_xdp) { 3937 /* TX queue with next queue set to TX */ 3938 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3939 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3940 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3941 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3942 (I40E_QUEUE_TYPE_TX << 3943 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3944 3945 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3946 } 3947 /* TX queue with next RX or end of linked list */ 3948 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3949 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3950 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3951 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3952 (I40E_QUEUE_TYPE_RX << 3953 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3954 3955 /* Terminate the linked list */ 3956 if (q == (q_vector->num_ringpairs - 1)) 3957 val |= (I40E_QUEUE_END_OF_LIST << 3958 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3959 3960 wr32(hw, I40E_QINT_TQCTL(qp), val); 3961 qp++; 3962 } 3963 } 3964 3965 i40e_flush(hw); 3966 } 3967 3968 /** 3969 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3970 * @pf: pointer to private device data structure 3971 **/ 3972 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3973 { 3974 struct i40e_hw *hw = &pf->hw; 3975 u32 val; 3976 3977 /* clear things first */ 3978 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3979 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3980 3981 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3982 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3983 I40E_PFINT_ICR0_ENA_GRST_MASK | 3984 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3985 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3986 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3987 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3988 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3989 3990 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 3991 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3992 3993 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3994 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3995 3996 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3997 3998 /* SW_ITR_IDX = 0, but don't change INTENA */ 3999 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 4000 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 4001 4002 /* OTHER_ITR_IDX = 0 */ 4003 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 4004 } 4005 4006 /** 4007 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 4008 * @vsi: the VSI being configured 4009 **/ 4010 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 4011 { 4012 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 4013 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4014 struct i40e_pf *pf = vsi->back; 4015 struct i40e_hw *hw = &pf->hw; 4016 4017 /* set the ITR configuration */ 4018 q_vector->rx.next_update = jiffies + 1; 4019 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 4020 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 4021 q_vector->rx.current_itr = q_vector->rx.target_itr; 4022 q_vector->tx.next_update = jiffies + 1; 4023 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 4024 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 4025 q_vector->tx.current_itr = q_vector->tx.target_itr; 4026 4027 i40e_enable_misc_int_causes(pf); 4028 4029 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4030 wr32(hw, I40E_PFINT_LNKLST0, 0); 4031 4032 /* Associate the queue pair to the vector and enable the queue 4033 * interrupt RX queue in linked list with next queue set to TX 4034 */ 4035 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4036 4037 if (i40e_enabled_xdp_vsi(vsi)) { 4038 /* TX queue in linked list with next queue set to TX */ 4039 wr32(hw, I40E_QINT_TQCTL(nextqp), 4040 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4041 } 4042 4043 /* last TX queue so the next RX queue doesn't matter */ 4044 wr32(hw, I40E_QINT_TQCTL(0), 4045 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4046 i40e_flush(hw); 4047 } 4048 4049 /** 4050 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4051 * @pf: board private structure 4052 **/ 4053 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4054 { 4055 struct i40e_hw *hw = &pf->hw; 4056 4057 wr32(hw, I40E_PFINT_DYN_CTL0, 4058 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4059 i40e_flush(hw); 4060 } 4061 4062 /** 4063 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4064 * @pf: board private structure 4065 **/ 4066 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4067 { 4068 struct i40e_hw *hw = &pf->hw; 4069 u32 val; 4070 4071 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4072 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4073 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4074 4075 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4076 i40e_flush(hw); 4077 } 4078 4079 /** 4080 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4081 * @irq: interrupt number 4082 * @data: pointer to a q_vector 4083 **/ 4084 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4085 { 4086 struct i40e_q_vector *q_vector = data; 4087 4088 if (!q_vector->tx.ring && !q_vector->rx.ring) 4089 return IRQ_HANDLED; 4090 4091 napi_schedule_irqoff(&q_vector->napi); 4092 4093 return IRQ_HANDLED; 4094 } 4095 4096 /** 4097 * i40e_irq_affinity_notify - Callback for affinity changes 4098 * @notify: context as to what irq was changed 4099 * @mask: the new affinity mask 4100 * 4101 * This is a callback function used by the irq_set_affinity_notifier function 4102 * so that we may register to receive changes to the irq affinity masks. 4103 **/ 4104 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4105 const cpumask_t *mask) 4106 { 4107 struct i40e_q_vector *q_vector = 4108 container_of(notify, struct i40e_q_vector, affinity_notify); 4109 4110 cpumask_copy(&q_vector->affinity_mask, mask); 4111 } 4112 4113 /** 4114 * i40e_irq_affinity_release - Callback for affinity notifier release 4115 * @ref: internal core kernel usage 4116 * 4117 * This is a callback function used by the irq_set_affinity_notifier function 4118 * to inform the current notification subscriber that they will no longer 4119 * receive notifications. 4120 **/ 4121 static void i40e_irq_affinity_release(struct kref *ref) {} 4122 4123 /** 4124 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4125 * @vsi: the VSI being configured 4126 * @basename: name for the vector 4127 * 4128 * Allocates MSI-X vectors and requests interrupts from the kernel. 4129 **/ 4130 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4131 { 4132 int q_vectors = vsi->num_q_vectors; 4133 struct i40e_pf *pf = vsi->back; 4134 int base = vsi->base_vector; 4135 int rx_int_idx = 0; 4136 int tx_int_idx = 0; 4137 int vector, err; 4138 int irq_num; 4139 int cpu; 4140 4141 for (vector = 0; vector < q_vectors; vector++) { 4142 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4143 4144 irq_num = pf->msix_entries[base + vector].vector; 4145 4146 if (q_vector->tx.ring && q_vector->rx.ring) { 4147 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4148 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4149 tx_int_idx++; 4150 } else if (q_vector->rx.ring) { 4151 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4152 "%s-%s-%d", basename, "rx", rx_int_idx++); 4153 } else if (q_vector->tx.ring) { 4154 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4155 "%s-%s-%d", basename, "tx", tx_int_idx++); 4156 } else { 4157 /* skip this unused q_vector */ 4158 continue; 4159 } 4160 err = request_irq(irq_num, 4161 vsi->irq_handler, 4162 0, 4163 q_vector->name, 4164 q_vector); 4165 if (err) { 4166 dev_info(&pf->pdev->dev, 4167 "MSIX request_irq failed, error: %d\n", err); 4168 goto free_queue_irqs; 4169 } 4170 4171 /* register for affinity change notifications */ 4172 q_vector->irq_num = irq_num; 4173 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4174 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4175 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4176 /* Spread affinity hints out across online CPUs. 4177 * 4178 * get_cpu_mask returns a static constant mask with 4179 * a permanent lifetime so it's ok to pass to 4180 * irq_update_affinity_hint without making a copy. 4181 */ 4182 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4183 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4184 } 4185 4186 vsi->irqs_ready = true; 4187 return 0; 4188 4189 free_queue_irqs: 4190 while (vector) { 4191 vector--; 4192 irq_num = pf->msix_entries[base + vector].vector; 4193 irq_set_affinity_notifier(irq_num, NULL); 4194 irq_update_affinity_hint(irq_num, NULL); 4195 free_irq(irq_num, &vsi->q_vectors[vector]); 4196 } 4197 return err; 4198 } 4199 4200 /** 4201 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4202 * @vsi: the VSI being un-configured 4203 **/ 4204 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4205 { 4206 struct i40e_pf *pf = vsi->back; 4207 struct i40e_hw *hw = &pf->hw; 4208 int base = vsi->base_vector; 4209 int i; 4210 4211 /* disable interrupt causation from each queue */ 4212 for (i = 0; i < vsi->num_queue_pairs; i++) { 4213 u32 val; 4214 4215 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4216 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4217 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4218 4219 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4220 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4221 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4222 4223 if (!i40e_enabled_xdp_vsi(vsi)) 4224 continue; 4225 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4226 } 4227 4228 /* disable each interrupt */ 4229 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4230 for (i = vsi->base_vector; 4231 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4232 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4233 4234 i40e_flush(hw); 4235 for (i = 0; i < vsi->num_q_vectors; i++) 4236 synchronize_irq(pf->msix_entries[i + base].vector); 4237 } else { 4238 /* Legacy and MSI mode - this stops all interrupt handling */ 4239 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4240 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4241 i40e_flush(hw); 4242 synchronize_irq(pf->pdev->irq); 4243 } 4244 } 4245 4246 /** 4247 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4248 * @vsi: the VSI being configured 4249 **/ 4250 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4251 { 4252 struct i40e_pf *pf = vsi->back; 4253 int i; 4254 4255 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4256 for (i = 0; i < vsi->num_q_vectors; i++) 4257 i40e_irq_dynamic_enable(vsi, i); 4258 } else { 4259 i40e_irq_dynamic_enable_icr0(pf); 4260 } 4261 4262 i40e_flush(&pf->hw); 4263 return 0; 4264 } 4265 4266 /** 4267 * i40e_free_misc_vector - Free the vector that handles non-queue events 4268 * @pf: board private structure 4269 **/ 4270 static void i40e_free_misc_vector(struct i40e_pf *pf) 4271 { 4272 /* Disable ICR 0 */ 4273 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4274 i40e_flush(&pf->hw); 4275 4276 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4277 free_irq(pf->msix_entries[0].vector, pf); 4278 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4279 } 4280 } 4281 4282 /** 4283 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4284 * @irq: interrupt number 4285 * @data: pointer to a q_vector 4286 * 4287 * This is the handler used for all MSI/Legacy interrupts, and deals 4288 * with both queue and non-queue interrupts. This is also used in 4289 * MSIX mode to handle the non-queue interrupts. 4290 **/ 4291 static irqreturn_t i40e_intr(int irq, void *data) 4292 { 4293 struct i40e_pf *pf = (struct i40e_pf *)data; 4294 struct i40e_hw *hw = &pf->hw; 4295 irqreturn_t ret = IRQ_NONE; 4296 u32 icr0, icr0_remaining; 4297 u32 val, ena_mask; 4298 4299 icr0 = rd32(hw, I40E_PFINT_ICR0); 4300 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4301 4302 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4303 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4304 goto enable_intr; 4305 4306 /* if interrupt but no bits showing, must be SWINT */ 4307 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4308 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4309 pf->sw_int_count++; 4310 4311 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4312 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4313 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4314 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4315 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4316 } 4317 4318 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4319 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4320 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4321 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4322 4323 /* We do not have a way to disarm Queue causes while leaving 4324 * interrupt enabled for all other causes, ideally 4325 * interrupt should be disabled while we are in NAPI but 4326 * this is not a performance path and napi_schedule() 4327 * can deal with rescheduling. 4328 */ 4329 if (!test_bit(__I40E_DOWN, pf->state)) 4330 napi_schedule_irqoff(&q_vector->napi); 4331 } 4332 4333 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4334 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4335 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4336 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4337 } 4338 4339 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4340 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4341 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4342 } 4343 4344 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4345 /* disable any further VFLR event notifications */ 4346 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4347 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4348 4349 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4350 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4351 } else { 4352 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4353 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4354 } 4355 } 4356 4357 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4358 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4359 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4360 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4361 val = rd32(hw, I40E_GLGEN_RSTAT); 4362 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val); 4363 if (val == I40E_RESET_CORER) { 4364 pf->corer_count++; 4365 } else if (val == I40E_RESET_GLOBR) { 4366 pf->globr_count++; 4367 } else if (val == I40E_RESET_EMPR) { 4368 pf->empr_count++; 4369 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4370 } 4371 } 4372 4373 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4374 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4375 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4376 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4377 rd32(hw, I40E_PFHMC_ERRORINFO), 4378 rd32(hw, I40E_PFHMC_ERRORDATA)); 4379 } 4380 4381 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4382 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4383 4384 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4385 schedule_work(&pf->ptp_extts0_work); 4386 4387 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4388 i40e_ptp_tx_hwtstamp(pf); 4389 4390 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4391 } 4392 4393 /* If a critical error is pending we have no choice but to reset the 4394 * device. 4395 * Report and mask out any remaining unexpected interrupts. 4396 */ 4397 icr0_remaining = icr0 & ena_mask; 4398 if (icr0_remaining) { 4399 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4400 icr0_remaining); 4401 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4402 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4403 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4404 dev_info(&pf->pdev->dev, "device will be reset\n"); 4405 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4406 i40e_service_event_schedule(pf); 4407 } 4408 ena_mask &= ~icr0_remaining; 4409 } 4410 ret = IRQ_HANDLED; 4411 4412 enable_intr: 4413 /* re-enable interrupt causes */ 4414 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4415 if (!test_bit(__I40E_DOWN, pf->state) || 4416 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4417 i40e_service_event_schedule(pf); 4418 i40e_irq_dynamic_enable_icr0(pf); 4419 } 4420 4421 return ret; 4422 } 4423 4424 /** 4425 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4426 * @tx_ring: tx ring to clean 4427 * @budget: how many cleans we're allowed 4428 * 4429 * Returns true if there's any budget left (e.g. the clean is finished) 4430 **/ 4431 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4432 { 4433 struct i40e_vsi *vsi = tx_ring->vsi; 4434 u16 i = tx_ring->next_to_clean; 4435 struct i40e_tx_buffer *tx_buf; 4436 struct i40e_tx_desc *tx_desc; 4437 4438 tx_buf = &tx_ring->tx_bi[i]; 4439 tx_desc = I40E_TX_DESC(tx_ring, i); 4440 i -= tx_ring->count; 4441 4442 do { 4443 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4444 4445 /* if next_to_watch is not set then there is no work pending */ 4446 if (!eop_desc) 4447 break; 4448 4449 /* prevent any other reads prior to eop_desc */ 4450 smp_rmb(); 4451 4452 /* if the descriptor isn't done, no work yet to do */ 4453 if (!(eop_desc->cmd_type_offset_bsz & 4454 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4455 break; 4456 4457 /* clear next_to_watch to prevent false hangs */ 4458 tx_buf->next_to_watch = NULL; 4459 4460 tx_desc->buffer_addr = 0; 4461 tx_desc->cmd_type_offset_bsz = 0; 4462 /* move past filter desc */ 4463 tx_buf++; 4464 tx_desc++; 4465 i++; 4466 if (unlikely(!i)) { 4467 i -= tx_ring->count; 4468 tx_buf = tx_ring->tx_bi; 4469 tx_desc = I40E_TX_DESC(tx_ring, 0); 4470 } 4471 /* unmap skb header data */ 4472 dma_unmap_single(tx_ring->dev, 4473 dma_unmap_addr(tx_buf, dma), 4474 dma_unmap_len(tx_buf, len), 4475 DMA_TO_DEVICE); 4476 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4477 kfree(tx_buf->raw_buf); 4478 4479 tx_buf->raw_buf = NULL; 4480 tx_buf->tx_flags = 0; 4481 tx_buf->next_to_watch = NULL; 4482 dma_unmap_len_set(tx_buf, len, 0); 4483 tx_desc->buffer_addr = 0; 4484 tx_desc->cmd_type_offset_bsz = 0; 4485 4486 /* move us past the eop_desc for start of next FD desc */ 4487 tx_buf++; 4488 tx_desc++; 4489 i++; 4490 if (unlikely(!i)) { 4491 i -= tx_ring->count; 4492 tx_buf = tx_ring->tx_bi; 4493 tx_desc = I40E_TX_DESC(tx_ring, 0); 4494 } 4495 4496 /* update budget accounting */ 4497 budget--; 4498 } while (likely(budget)); 4499 4500 i += tx_ring->count; 4501 tx_ring->next_to_clean = i; 4502 4503 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4504 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4505 4506 return budget > 0; 4507 } 4508 4509 /** 4510 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4511 * @irq: interrupt number 4512 * @data: pointer to a q_vector 4513 **/ 4514 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4515 { 4516 struct i40e_q_vector *q_vector = data; 4517 struct i40e_vsi *vsi; 4518 4519 if (!q_vector->tx.ring) 4520 return IRQ_HANDLED; 4521 4522 vsi = q_vector->tx.ring->vsi; 4523 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4524 4525 return IRQ_HANDLED; 4526 } 4527 4528 /** 4529 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4530 * @vsi: the VSI being configured 4531 * @v_idx: vector index 4532 * @qp_idx: queue pair index 4533 **/ 4534 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4535 { 4536 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4537 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4538 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4539 4540 tx_ring->q_vector = q_vector; 4541 tx_ring->next = q_vector->tx.ring; 4542 q_vector->tx.ring = tx_ring; 4543 q_vector->tx.count++; 4544 4545 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4546 if (i40e_enabled_xdp_vsi(vsi)) { 4547 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4548 4549 xdp_ring->q_vector = q_vector; 4550 xdp_ring->next = q_vector->tx.ring; 4551 q_vector->tx.ring = xdp_ring; 4552 q_vector->tx.count++; 4553 } 4554 4555 rx_ring->q_vector = q_vector; 4556 rx_ring->next = q_vector->rx.ring; 4557 q_vector->rx.ring = rx_ring; 4558 q_vector->rx.count++; 4559 } 4560 4561 /** 4562 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4563 * @vsi: the VSI being configured 4564 * 4565 * This function maps descriptor rings to the queue-specific vectors 4566 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4567 * one vector per queue pair, but on a constrained vector budget, we 4568 * group the queue pairs as "efficiently" as possible. 4569 **/ 4570 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4571 { 4572 int qp_remaining = vsi->num_queue_pairs; 4573 int q_vectors = vsi->num_q_vectors; 4574 int num_ringpairs; 4575 int v_start = 0; 4576 int qp_idx = 0; 4577 4578 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4579 * group them so there are multiple queues per vector. 4580 * It is also important to go through all the vectors available to be 4581 * sure that if we don't use all the vectors, that the remaining vectors 4582 * are cleared. This is especially important when decreasing the 4583 * number of queues in use. 4584 */ 4585 for (; v_start < q_vectors; v_start++) { 4586 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4587 4588 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4589 4590 q_vector->num_ringpairs = num_ringpairs; 4591 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4592 4593 q_vector->rx.count = 0; 4594 q_vector->tx.count = 0; 4595 q_vector->rx.ring = NULL; 4596 q_vector->tx.ring = NULL; 4597 4598 while (num_ringpairs--) { 4599 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4600 qp_idx++; 4601 qp_remaining--; 4602 } 4603 } 4604 } 4605 4606 /** 4607 * i40e_vsi_request_irq - Request IRQ from the OS 4608 * @vsi: the VSI being configured 4609 * @basename: name for the vector 4610 **/ 4611 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4612 { 4613 struct i40e_pf *pf = vsi->back; 4614 int err; 4615 4616 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4617 err = i40e_vsi_request_irq_msix(vsi, basename); 4618 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4619 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4620 pf->int_name, pf); 4621 else 4622 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4623 pf->int_name, pf); 4624 4625 if (err) 4626 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4627 4628 return err; 4629 } 4630 4631 #ifdef CONFIG_NET_POLL_CONTROLLER 4632 /** 4633 * i40e_netpoll - A Polling 'interrupt' handler 4634 * @netdev: network interface device structure 4635 * 4636 * This is used by netconsole to send skbs without having to re-enable 4637 * interrupts. It's not called while the normal interrupt routine is executing. 4638 **/ 4639 static void i40e_netpoll(struct net_device *netdev) 4640 { 4641 struct i40e_netdev_priv *np = netdev_priv(netdev); 4642 struct i40e_vsi *vsi = np->vsi; 4643 struct i40e_pf *pf = vsi->back; 4644 int i; 4645 4646 /* if interface is down do nothing */ 4647 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4648 return; 4649 4650 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4651 for (i = 0; i < vsi->num_q_vectors; i++) 4652 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4653 } else { 4654 i40e_intr(pf->pdev->irq, netdev); 4655 } 4656 } 4657 #endif 4658 4659 #define I40E_QTX_ENA_WAIT_COUNT 50 4660 4661 /** 4662 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4663 * @pf: the PF being configured 4664 * @pf_q: the PF queue 4665 * @enable: enable or disable state of the queue 4666 * 4667 * This routine will wait for the given Tx queue of the PF to reach the 4668 * enabled or disabled state. 4669 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4670 * multiple retries; else will return 0 in case of success. 4671 **/ 4672 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4673 { 4674 int i; 4675 u32 tx_reg; 4676 4677 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4678 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4679 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4680 break; 4681 4682 usleep_range(10, 20); 4683 } 4684 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4685 return -ETIMEDOUT; 4686 4687 return 0; 4688 } 4689 4690 /** 4691 * i40e_control_tx_q - Start or stop a particular Tx queue 4692 * @pf: the PF structure 4693 * @pf_q: the PF queue to configure 4694 * @enable: start or stop the queue 4695 * 4696 * This function enables or disables a single queue. Note that any delay 4697 * required after the operation is expected to be handled by the caller of 4698 * this function. 4699 **/ 4700 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4701 { 4702 struct i40e_hw *hw = &pf->hw; 4703 u32 tx_reg; 4704 int i; 4705 4706 /* warn the TX unit of coming changes */ 4707 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4708 if (!enable) 4709 usleep_range(10, 20); 4710 4711 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4712 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4713 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4714 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4715 break; 4716 usleep_range(1000, 2000); 4717 } 4718 4719 /* Skip if the queue is already in the requested state */ 4720 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4721 return; 4722 4723 /* turn on/off the queue */ 4724 if (enable) { 4725 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4726 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4727 } else { 4728 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4729 } 4730 4731 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4732 } 4733 4734 /** 4735 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4736 * @seid: VSI SEID 4737 * @pf: the PF structure 4738 * @pf_q: the PF queue to configure 4739 * @is_xdp: true if the queue is used for XDP 4740 * @enable: start or stop the queue 4741 **/ 4742 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4743 bool is_xdp, bool enable) 4744 { 4745 int ret; 4746 4747 i40e_control_tx_q(pf, pf_q, enable); 4748 4749 /* wait for the change to finish */ 4750 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4751 if (ret) { 4752 dev_info(&pf->pdev->dev, 4753 "VSI seid %d %sTx ring %d %sable timeout\n", 4754 seid, (is_xdp ? "XDP " : ""), pf_q, 4755 (enable ? "en" : "dis")); 4756 } 4757 4758 return ret; 4759 } 4760 4761 /** 4762 * i40e_vsi_enable_tx - Start a VSI's rings 4763 * @vsi: the VSI being configured 4764 **/ 4765 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4766 { 4767 struct i40e_pf *pf = vsi->back; 4768 int i, pf_q, ret = 0; 4769 4770 pf_q = vsi->base_queue; 4771 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4772 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4773 pf_q, 4774 false /*is xdp*/, true); 4775 if (ret) 4776 break; 4777 4778 if (!i40e_enabled_xdp_vsi(vsi)) 4779 continue; 4780 4781 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4782 pf_q + vsi->alloc_queue_pairs, 4783 true /*is xdp*/, true); 4784 if (ret) 4785 break; 4786 } 4787 return ret; 4788 } 4789 4790 /** 4791 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4792 * @pf: the PF being configured 4793 * @pf_q: the PF queue 4794 * @enable: enable or disable state of the queue 4795 * 4796 * This routine will wait for the given Rx queue of the PF to reach the 4797 * enabled or disabled state. 4798 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4799 * multiple retries; else will return 0 in case of success. 4800 **/ 4801 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4802 { 4803 int i; 4804 u32 rx_reg; 4805 4806 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4807 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4808 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4809 break; 4810 4811 usleep_range(10, 20); 4812 } 4813 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4814 return -ETIMEDOUT; 4815 4816 return 0; 4817 } 4818 4819 /** 4820 * i40e_control_rx_q - Start or stop a particular Rx queue 4821 * @pf: the PF structure 4822 * @pf_q: the PF queue to configure 4823 * @enable: start or stop the queue 4824 * 4825 * This function enables or disables a single queue. Note that 4826 * any delay required after the operation is expected to be 4827 * handled by the caller of this function. 4828 **/ 4829 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4830 { 4831 struct i40e_hw *hw = &pf->hw; 4832 u32 rx_reg; 4833 int i; 4834 4835 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4836 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4837 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4838 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4839 break; 4840 usleep_range(1000, 2000); 4841 } 4842 4843 /* Skip if the queue is already in the requested state */ 4844 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4845 return; 4846 4847 /* turn on/off the queue */ 4848 if (enable) 4849 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4850 else 4851 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4852 4853 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4854 } 4855 4856 /** 4857 * i40e_control_wait_rx_q 4858 * @pf: the PF structure 4859 * @pf_q: queue being configured 4860 * @enable: start or stop the rings 4861 * 4862 * This function enables or disables a single queue along with waiting 4863 * for the change to finish. The caller of this function should handle 4864 * the delays needed in the case of disabling queues. 4865 **/ 4866 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4867 { 4868 int ret = 0; 4869 4870 i40e_control_rx_q(pf, pf_q, enable); 4871 4872 /* wait for the change to finish */ 4873 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4874 if (ret) 4875 return ret; 4876 4877 return ret; 4878 } 4879 4880 /** 4881 * i40e_vsi_enable_rx - Start a VSI's rings 4882 * @vsi: the VSI being configured 4883 **/ 4884 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4885 { 4886 struct i40e_pf *pf = vsi->back; 4887 int i, pf_q, ret = 0; 4888 4889 pf_q = vsi->base_queue; 4890 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4891 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4892 if (ret) { 4893 dev_info(&pf->pdev->dev, 4894 "VSI seid %d Rx ring %d enable timeout\n", 4895 vsi->seid, pf_q); 4896 break; 4897 } 4898 } 4899 4900 return ret; 4901 } 4902 4903 /** 4904 * i40e_vsi_start_rings - Start a VSI's rings 4905 * @vsi: the VSI being configured 4906 **/ 4907 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4908 { 4909 int ret = 0; 4910 4911 /* do rx first for enable and last for disable */ 4912 ret = i40e_vsi_enable_rx(vsi); 4913 if (ret) 4914 return ret; 4915 ret = i40e_vsi_enable_tx(vsi); 4916 4917 return ret; 4918 } 4919 4920 #define I40E_DISABLE_TX_GAP_MSEC 50 4921 4922 /** 4923 * i40e_vsi_stop_rings - Stop a VSI's rings 4924 * @vsi: the VSI being configured 4925 **/ 4926 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4927 { 4928 struct i40e_pf *pf = vsi->back; 4929 u32 pf_q, tx_q_end, rx_q_end; 4930 4931 /* When port TX is suspended, don't wait */ 4932 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4933 return i40e_vsi_stop_rings_no_wait(vsi); 4934 4935 tx_q_end = vsi->base_queue + 4936 vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 4937 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4938 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false); 4939 4940 rx_q_end = vsi->base_queue + vsi->num_queue_pairs; 4941 for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++) 4942 i40e_control_rx_q(pf, pf_q, false); 4943 4944 msleep(I40E_DISABLE_TX_GAP_MSEC); 4945 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4946 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4947 4948 i40e_vsi_wait_queues_disabled(vsi); 4949 } 4950 4951 /** 4952 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4953 * @vsi: the VSI being shutdown 4954 * 4955 * This function stops all the rings for a VSI but does not delay to verify 4956 * that rings have been disabled. It is expected that the caller is shutting 4957 * down multiple VSIs at once and will delay together for all the VSIs after 4958 * initiating the shutdown. This is particularly useful for shutting down lots 4959 * of VFs together. Otherwise, a large delay can be incurred while configuring 4960 * each VSI in serial. 4961 **/ 4962 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4963 { 4964 struct i40e_pf *pf = vsi->back; 4965 int i, pf_q; 4966 4967 pf_q = vsi->base_queue; 4968 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4969 i40e_control_tx_q(pf, pf_q, false); 4970 i40e_control_rx_q(pf, pf_q, false); 4971 } 4972 } 4973 4974 /** 4975 * i40e_vsi_free_irq - Free the irq association with the OS 4976 * @vsi: the VSI being configured 4977 **/ 4978 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4979 { 4980 struct i40e_pf *pf = vsi->back; 4981 struct i40e_hw *hw = &pf->hw; 4982 int base = vsi->base_vector; 4983 u32 val, qp; 4984 int i; 4985 4986 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4987 if (!vsi->q_vectors) 4988 return; 4989 4990 if (!vsi->irqs_ready) 4991 return; 4992 4993 vsi->irqs_ready = false; 4994 for (i = 0; i < vsi->num_q_vectors; i++) { 4995 int irq_num; 4996 u16 vector; 4997 4998 vector = i + base; 4999 irq_num = pf->msix_entries[vector].vector; 5000 5001 /* free only the irqs that were actually requested */ 5002 if (!vsi->q_vectors[i] || 5003 !vsi->q_vectors[i]->num_ringpairs) 5004 continue; 5005 5006 /* clear the affinity notifier in the IRQ descriptor */ 5007 irq_set_affinity_notifier(irq_num, NULL); 5008 /* remove our suggested affinity mask for this IRQ */ 5009 irq_update_affinity_hint(irq_num, NULL); 5010 free_irq(irq_num, vsi->q_vectors[i]); 5011 5012 /* Tear down the interrupt queue link list 5013 * 5014 * We know that they come in pairs and always 5015 * the Rx first, then the Tx. To clear the 5016 * link list, stick the EOL value into the 5017 * next_q field of the registers. 5018 */ 5019 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 5020 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, 5021 val); 5022 val |= I40E_QUEUE_END_OF_LIST 5023 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5024 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 5025 5026 while (qp != I40E_QUEUE_END_OF_LIST) { 5027 u32 next; 5028 5029 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5030 5031 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5032 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5033 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5034 I40E_QINT_RQCTL_INTEVENT_MASK); 5035 5036 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5037 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5038 5039 wr32(hw, I40E_QINT_RQCTL(qp), val); 5040 5041 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5042 5043 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK, 5044 val); 5045 5046 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5047 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5048 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5049 I40E_QINT_TQCTL_INTEVENT_MASK); 5050 5051 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5052 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5053 5054 wr32(hw, I40E_QINT_TQCTL(qp), val); 5055 qp = next; 5056 } 5057 } 5058 } else { 5059 free_irq(pf->pdev->irq, pf); 5060 5061 val = rd32(hw, I40E_PFINT_LNKLST0); 5062 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val); 5063 val |= I40E_QUEUE_END_OF_LIST 5064 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5065 wr32(hw, I40E_PFINT_LNKLST0, val); 5066 5067 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5068 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5069 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5070 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5071 I40E_QINT_RQCTL_INTEVENT_MASK); 5072 5073 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5074 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5075 5076 wr32(hw, I40E_QINT_RQCTL(qp), val); 5077 5078 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5079 5080 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5081 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5082 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5083 I40E_QINT_TQCTL_INTEVENT_MASK); 5084 5085 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5086 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5087 5088 wr32(hw, I40E_QINT_TQCTL(qp), val); 5089 } 5090 } 5091 5092 /** 5093 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5094 * @vsi: the VSI being configured 5095 * @v_idx: Index of vector to be freed 5096 * 5097 * This function frees the memory allocated to the q_vector. In addition if 5098 * NAPI is enabled it will delete any references to the NAPI struct prior 5099 * to freeing the q_vector. 5100 **/ 5101 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5102 { 5103 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5104 struct i40e_ring *ring; 5105 5106 if (!q_vector) 5107 return; 5108 5109 /* disassociate q_vector from rings */ 5110 i40e_for_each_ring(ring, q_vector->tx) 5111 ring->q_vector = NULL; 5112 5113 i40e_for_each_ring(ring, q_vector->rx) 5114 ring->q_vector = NULL; 5115 5116 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5117 if (vsi->netdev) 5118 netif_napi_del(&q_vector->napi); 5119 5120 vsi->q_vectors[v_idx] = NULL; 5121 5122 kfree_rcu(q_vector, rcu); 5123 } 5124 5125 /** 5126 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5127 * @vsi: the VSI being un-configured 5128 * 5129 * This frees the memory allocated to the q_vectors and 5130 * deletes references to the NAPI struct. 5131 **/ 5132 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5133 { 5134 int v_idx; 5135 5136 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5137 i40e_free_q_vector(vsi, v_idx); 5138 } 5139 5140 /** 5141 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5142 * @pf: board private structure 5143 **/ 5144 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5145 { 5146 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5147 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5148 pci_disable_msix(pf->pdev); 5149 kfree(pf->msix_entries); 5150 pf->msix_entries = NULL; 5151 kfree(pf->irq_pile); 5152 pf->irq_pile = NULL; 5153 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5154 pci_disable_msi(pf->pdev); 5155 } 5156 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5157 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5158 } 5159 5160 /** 5161 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5162 * @pf: board private structure 5163 * 5164 * We go through and clear interrupt specific resources and reset the structure 5165 * to pre-load conditions 5166 **/ 5167 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5168 { 5169 int i; 5170 5171 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5172 i40e_free_misc_vector(pf); 5173 5174 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5175 I40E_IWARP_IRQ_PILE_ID); 5176 5177 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5178 for (i = 0; i < pf->num_alloc_vsi; i++) 5179 if (pf->vsi[i]) 5180 i40e_vsi_free_q_vectors(pf->vsi[i]); 5181 i40e_reset_interrupt_capability(pf); 5182 } 5183 5184 /** 5185 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5186 * @vsi: the VSI being configured 5187 **/ 5188 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5189 { 5190 int q_idx; 5191 5192 if (!vsi->netdev) 5193 return; 5194 5195 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5196 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5197 5198 if (q_vector->rx.ring || q_vector->tx.ring) 5199 napi_enable(&q_vector->napi); 5200 } 5201 } 5202 5203 /** 5204 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5205 * @vsi: the VSI being configured 5206 **/ 5207 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5208 { 5209 int q_idx; 5210 5211 if (!vsi->netdev) 5212 return; 5213 5214 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5215 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5216 5217 if (q_vector->rx.ring || q_vector->tx.ring) 5218 napi_disable(&q_vector->napi); 5219 } 5220 } 5221 5222 /** 5223 * i40e_vsi_close - Shut down a VSI 5224 * @vsi: the vsi to be quelled 5225 **/ 5226 static void i40e_vsi_close(struct i40e_vsi *vsi) 5227 { 5228 struct i40e_pf *pf = vsi->back; 5229 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5230 i40e_down(vsi); 5231 i40e_vsi_free_irq(vsi); 5232 i40e_vsi_free_tx_resources(vsi); 5233 i40e_vsi_free_rx_resources(vsi); 5234 vsi->current_netdev_flags = 0; 5235 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5236 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5237 set_bit(__I40E_CLIENT_RESET, pf->state); 5238 } 5239 5240 /** 5241 * i40e_quiesce_vsi - Pause a given VSI 5242 * @vsi: the VSI being paused 5243 **/ 5244 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5245 { 5246 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5247 return; 5248 5249 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5250 if (vsi->netdev && netif_running(vsi->netdev)) 5251 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5252 else 5253 i40e_vsi_close(vsi); 5254 } 5255 5256 /** 5257 * i40e_unquiesce_vsi - Resume a given VSI 5258 * @vsi: the VSI being resumed 5259 **/ 5260 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5261 { 5262 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5263 return; 5264 5265 if (vsi->netdev && netif_running(vsi->netdev)) 5266 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5267 else 5268 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5269 } 5270 5271 /** 5272 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5273 * @pf: the PF 5274 **/ 5275 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5276 { 5277 int v; 5278 5279 for (v = 0; v < pf->num_alloc_vsi; v++) { 5280 if (pf->vsi[v]) 5281 i40e_quiesce_vsi(pf->vsi[v]); 5282 } 5283 } 5284 5285 /** 5286 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5287 * @pf: the PF 5288 **/ 5289 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5290 { 5291 int v; 5292 5293 for (v = 0; v < pf->num_alloc_vsi; v++) { 5294 if (pf->vsi[v]) 5295 i40e_unquiesce_vsi(pf->vsi[v]); 5296 } 5297 } 5298 5299 /** 5300 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5301 * @vsi: the VSI being configured 5302 * 5303 * Wait until all queues on a given VSI have been disabled. 5304 **/ 5305 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5306 { 5307 struct i40e_pf *pf = vsi->back; 5308 int i, pf_q, ret; 5309 5310 pf_q = vsi->base_queue; 5311 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5312 /* Check and wait for the Tx queue */ 5313 ret = i40e_pf_txq_wait(pf, pf_q, false); 5314 if (ret) { 5315 dev_info(&pf->pdev->dev, 5316 "VSI seid %d Tx ring %d disable timeout\n", 5317 vsi->seid, pf_q); 5318 return ret; 5319 } 5320 5321 if (!i40e_enabled_xdp_vsi(vsi)) 5322 goto wait_rx; 5323 5324 /* Check and wait for the XDP Tx queue */ 5325 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5326 false); 5327 if (ret) { 5328 dev_info(&pf->pdev->dev, 5329 "VSI seid %d XDP Tx ring %d disable timeout\n", 5330 vsi->seid, pf_q); 5331 return ret; 5332 } 5333 wait_rx: 5334 /* Check and wait for the Rx queue */ 5335 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5336 if (ret) { 5337 dev_info(&pf->pdev->dev, 5338 "VSI seid %d Rx ring %d disable timeout\n", 5339 vsi->seid, pf_q); 5340 return ret; 5341 } 5342 } 5343 5344 return 0; 5345 } 5346 5347 #ifdef CONFIG_I40E_DCB 5348 /** 5349 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5350 * @pf: the PF 5351 * 5352 * This function waits for the queues to be in disabled state for all the 5353 * VSIs that are managed by this PF. 5354 **/ 5355 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5356 { 5357 int v, ret = 0; 5358 5359 for (v = 0; v < pf->num_alloc_vsi; v++) { 5360 if (pf->vsi[v]) { 5361 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5362 if (ret) 5363 break; 5364 } 5365 } 5366 5367 return ret; 5368 } 5369 5370 #endif 5371 5372 /** 5373 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5374 * @pf: pointer to PF 5375 * 5376 * Get TC map for ISCSI PF type that will include iSCSI TC 5377 * and LAN TC. 5378 **/ 5379 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5380 { 5381 struct i40e_dcb_app_priority_table app; 5382 struct i40e_hw *hw = &pf->hw; 5383 u8 enabled_tc = 1; /* TC0 is always enabled */ 5384 u8 tc, i; 5385 /* Get the iSCSI APP TLV */ 5386 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5387 5388 for (i = 0; i < dcbcfg->numapps; i++) { 5389 app = dcbcfg->app[i]; 5390 if (app.selector == I40E_APP_SEL_TCPIP && 5391 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5392 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5393 enabled_tc |= BIT(tc); 5394 break; 5395 } 5396 } 5397 5398 return enabled_tc; 5399 } 5400 5401 /** 5402 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5403 * @dcbcfg: the corresponding DCBx configuration structure 5404 * 5405 * Return the number of TCs from given DCBx configuration 5406 **/ 5407 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5408 { 5409 int i, tc_unused = 0; 5410 u8 num_tc = 0; 5411 u8 ret = 0; 5412 5413 /* Scan the ETS Config Priority Table to find 5414 * traffic class enabled for a given priority 5415 * and create a bitmask of enabled TCs 5416 */ 5417 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5418 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5419 5420 /* Now scan the bitmask to check for 5421 * contiguous TCs starting with TC0 5422 */ 5423 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5424 if (num_tc & BIT(i)) { 5425 if (!tc_unused) { 5426 ret++; 5427 } else { 5428 pr_err("Non-contiguous TC - Disabling DCB\n"); 5429 return 1; 5430 } 5431 } else { 5432 tc_unused = 1; 5433 } 5434 } 5435 5436 /* There is always at least TC0 */ 5437 if (!ret) 5438 ret = 1; 5439 5440 return ret; 5441 } 5442 5443 /** 5444 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5445 * @dcbcfg: the corresponding DCBx configuration structure 5446 * 5447 * Query the current DCB configuration and return the number of 5448 * traffic classes enabled from the given DCBX config 5449 **/ 5450 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5451 { 5452 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5453 u8 enabled_tc = 1; 5454 u8 i; 5455 5456 for (i = 0; i < num_tc; i++) 5457 enabled_tc |= BIT(i); 5458 5459 return enabled_tc; 5460 } 5461 5462 /** 5463 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5464 * @pf: PF being queried 5465 * 5466 * Query the current MQPRIO configuration and return the number of 5467 * traffic classes enabled. 5468 **/ 5469 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5470 { 5471 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5472 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5473 u8 enabled_tc = 1, i; 5474 5475 for (i = 1; i < num_tc; i++) 5476 enabled_tc |= BIT(i); 5477 return enabled_tc; 5478 } 5479 5480 /** 5481 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5482 * @pf: PF being queried 5483 * 5484 * Return number of traffic classes enabled for the given PF 5485 **/ 5486 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5487 { 5488 struct i40e_hw *hw = &pf->hw; 5489 u8 i, enabled_tc = 1; 5490 u8 num_tc = 0; 5491 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5492 5493 if (i40e_is_tc_mqprio_enabled(pf)) 5494 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5495 5496 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5497 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5498 return 1; 5499 5500 /* SFP mode will be enabled for all TCs on port */ 5501 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5502 return i40e_dcb_get_num_tc(dcbcfg); 5503 5504 /* MFP mode return count of enabled TCs for this PF */ 5505 if (pf->hw.func_caps.iscsi) 5506 enabled_tc = i40e_get_iscsi_tc_map(pf); 5507 else 5508 return 1; /* Only TC0 */ 5509 5510 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5511 if (enabled_tc & BIT(i)) 5512 num_tc++; 5513 } 5514 return num_tc; 5515 } 5516 5517 /** 5518 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5519 * @pf: PF being queried 5520 * 5521 * Return a bitmap for enabled traffic classes for this PF. 5522 **/ 5523 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5524 { 5525 if (i40e_is_tc_mqprio_enabled(pf)) 5526 return i40e_mqprio_get_enabled_tc(pf); 5527 5528 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5529 * default TC 5530 */ 5531 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5532 return I40E_DEFAULT_TRAFFIC_CLASS; 5533 5534 /* SFP mode we want PF to be enabled for all TCs */ 5535 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5536 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5537 5538 /* MFP enabled and iSCSI PF type */ 5539 if (pf->hw.func_caps.iscsi) 5540 return i40e_get_iscsi_tc_map(pf); 5541 else 5542 return I40E_DEFAULT_TRAFFIC_CLASS; 5543 } 5544 5545 /** 5546 * i40e_vsi_get_bw_info - Query VSI BW Information 5547 * @vsi: the VSI being queried 5548 * 5549 * Returns 0 on success, negative value on failure 5550 **/ 5551 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5552 { 5553 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5554 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5555 struct i40e_pf *pf = vsi->back; 5556 struct i40e_hw *hw = &pf->hw; 5557 u32 tc_bw_max; 5558 int ret; 5559 int i; 5560 5561 /* Get the VSI level BW configuration */ 5562 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5563 if (ret) { 5564 dev_info(&pf->pdev->dev, 5565 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5566 ERR_PTR(ret), 5567 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5568 return -EINVAL; 5569 } 5570 5571 /* Get the VSI level BW configuration per TC */ 5572 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5573 NULL); 5574 if (ret) { 5575 dev_info(&pf->pdev->dev, 5576 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5577 ERR_PTR(ret), 5578 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5579 return -EINVAL; 5580 } 5581 5582 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5583 dev_info(&pf->pdev->dev, 5584 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5585 bw_config.tc_valid_bits, 5586 bw_ets_config.tc_valid_bits); 5587 /* Still continuing */ 5588 } 5589 5590 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5591 vsi->bw_max_quanta = bw_config.max_bw; 5592 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5593 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5594 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5595 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5596 vsi->bw_ets_limit_credits[i] = 5597 le16_to_cpu(bw_ets_config.credits[i]); 5598 /* 3 bits out of 4 for each TC */ 5599 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5600 } 5601 5602 return 0; 5603 } 5604 5605 /** 5606 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5607 * @vsi: the VSI being configured 5608 * @enabled_tc: TC bitmap 5609 * @bw_share: BW shared credits per TC 5610 * 5611 * Returns 0 on success, negative value on failure 5612 **/ 5613 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5614 u8 *bw_share) 5615 { 5616 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5617 struct i40e_pf *pf = vsi->back; 5618 int ret; 5619 int i; 5620 5621 /* There is no need to reset BW when mqprio mode is on. */ 5622 if (i40e_is_tc_mqprio_enabled(pf)) 5623 return 0; 5624 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5625 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5626 if (ret) 5627 dev_info(&pf->pdev->dev, 5628 "Failed to reset tx rate for vsi->seid %u\n", 5629 vsi->seid); 5630 return ret; 5631 } 5632 memset(&bw_data, 0, sizeof(bw_data)); 5633 bw_data.tc_valid_bits = enabled_tc; 5634 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5635 bw_data.tc_bw_credits[i] = bw_share[i]; 5636 5637 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5638 if (ret) { 5639 dev_info(&pf->pdev->dev, 5640 "AQ command Config VSI BW allocation per TC failed = %d\n", 5641 pf->hw.aq.asq_last_status); 5642 return -EINVAL; 5643 } 5644 5645 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5646 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5647 5648 return 0; 5649 } 5650 5651 /** 5652 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5653 * @vsi: the VSI being configured 5654 * @enabled_tc: TC map to be enabled 5655 * 5656 **/ 5657 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5658 { 5659 struct net_device *netdev = vsi->netdev; 5660 struct i40e_pf *pf = vsi->back; 5661 struct i40e_hw *hw = &pf->hw; 5662 u8 netdev_tc = 0; 5663 int i; 5664 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5665 5666 if (!netdev) 5667 return; 5668 5669 if (!enabled_tc) { 5670 netdev_reset_tc(netdev); 5671 return; 5672 } 5673 5674 /* Set up actual enabled TCs on the VSI */ 5675 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5676 return; 5677 5678 /* set per TC queues for the VSI */ 5679 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5680 /* Only set TC queues for enabled tcs 5681 * 5682 * e.g. For a VSI that has TC0 and TC3 enabled the 5683 * enabled_tc bitmap would be 0x00001001; the driver 5684 * will set the numtc for netdev as 2 that will be 5685 * referenced by the netdev layer as TC 0 and 1. 5686 */ 5687 if (vsi->tc_config.enabled_tc & BIT(i)) 5688 netdev_set_tc_queue(netdev, 5689 vsi->tc_config.tc_info[i].netdev_tc, 5690 vsi->tc_config.tc_info[i].qcount, 5691 vsi->tc_config.tc_info[i].qoffset); 5692 } 5693 5694 if (i40e_is_tc_mqprio_enabled(pf)) 5695 return; 5696 5697 /* Assign UP2TC map for the VSI */ 5698 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5699 /* Get the actual TC# for the UP */ 5700 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5701 /* Get the mapped netdev TC# for the UP */ 5702 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5703 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5704 } 5705 } 5706 5707 /** 5708 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5709 * @vsi: the VSI being configured 5710 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5711 **/ 5712 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5713 struct i40e_vsi_context *ctxt) 5714 { 5715 /* copy just the sections touched not the entire info 5716 * since not all sections are valid as returned by 5717 * update vsi params 5718 */ 5719 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5720 memcpy(&vsi->info.queue_mapping, 5721 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5722 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5723 sizeof(vsi->info.tc_mapping)); 5724 } 5725 5726 /** 5727 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5728 * @vsi: the VSI being reconfigured 5729 * @vsi_offset: offset from main VF VSI 5730 */ 5731 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5732 { 5733 struct i40e_vsi_context ctxt = {}; 5734 struct i40e_pf *pf; 5735 struct i40e_hw *hw; 5736 int ret; 5737 5738 if (!vsi) 5739 return -EINVAL; 5740 pf = vsi->back; 5741 hw = &pf->hw; 5742 5743 ctxt.seid = vsi->seid; 5744 ctxt.pf_num = hw->pf_id; 5745 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5746 ctxt.uplink_seid = vsi->uplink_seid; 5747 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5748 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5749 ctxt.info = vsi->info; 5750 5751 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5752 false); 5753 if (vsi->reconfig_rss) { 5754 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5755 vsi->num_queue_pairs); 5756 ret = i40e_vsi_config_rss(vsi); 5757 if (ret) { 5758 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5759 return ret; 5760 } 5761 vsi->reconfig_rss = false; 5762 } 5763 5764 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5765 if (ret) { 5766 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5767 ERR_PTR(ret), 5768 i40e_aq_str(hw, hw->aq.asq_last_status)); 5769 return ret; 5770 } 5771 /* update the local VSI info with updated queue map */ 5772 i40e_vsi_update_queue_map(vsi, &ctxt); 5773 vsi->info.valid_sections = 0; 5774 5775 return ret; 5776 } 5777 5778 /** 5779 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5780 * @vsi: VSI to be configured 5781 * @enabled_tc: TC bitmap 5782 * 5783 * This configures a particular VSI for TCs that are mapped to the 5784 * given TC bitmap. It uses default bandwidth share for TCs across 5785 * VSIs to configure TC for a particular VSI. 5786 * 5787 * NOTE: 5788 * It is expected that the VSI queues have been quisced before calling 5789 * this function. 5790 **/ 5791 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5792 { 5793 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5794 struct i40e_pf *pf = vsi->back; 5795 struct i40e_hw *hw = &pf->hw; 5796 struct i40e_vsi_context ctxt; 5797 int ret = 0; 5798 int i; 5799 5800 /* Check if enabled_tc is same as existing or new TCs */ 5801 if (vsi->tc_config.enabled_tc == enabled_tc && 5802 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5803 return ret; 5804 5805 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5806 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5807 if (enabled_tc & BIT(i)) 5808 bw_share[i] = 1; 5809 } 5810 5811 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5812 if (ret) { 5813 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5814 5815 dev_info(&pf->pdev->dev, 5816 "Failed configuring TC map %d for VSI %d\n", 5817 enabled_tc, vsi->seid); 5818 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5819 &bw_config, NULL); 5820 if (ret) { 5821 dev_info(&pf->pdev->dev, 5822 "Failed querying vsi bw info, err %pe aq_err %s\n", 5823 ERR_PTR(ret), 5824 i40e_aq_str(hw, hw->aq.asq_last_status)); 5825 goto out; 5826 } 5827 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5828 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5829 5830 if (!valid_tc) 5831 valid_tc = bw_config.tc_valid_bits; 5832 /* Always enable TC0, no matter what */ 5833 valid_tc |= 1; 5834 dev_info(&pf->pdev->dev, 5835 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5836 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5837 enabled_tc = valid_tc; 5838 } 5839 5840 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5841 if (ret) { 5842 dev_err(&pf->pdev->dev, 5843 "Unable to configure TC map %d for VSI %d\n", 5844 enabled_tc, vsi->seid); 5845 goto out; 5846 } 5847 } 5848 5849 /* Update Queue Pairs Mapping for currently enabled UPs */ 5850 ctxt.seid = vsi->seid; 5851 ctxt.pf_num = vsi->back->hw.pf_id; 5852 ctxt.vf_num = 0; 5853 ctxt.uplink_seid = vsi->uplink_seid; 5854 ctxt.info = vsi->info; 5855 if (i40e_is_tc_mqprio_enabled(pf)) { 5856 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5857 if (ret) 5858 goto out; 5859 } else { 5860 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5861 } 5862 5863 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5864 * queues changed. 5865 */ 5866 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5867 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5868 vsi->num_queue_pairs); 5869 ret = i40e_vsi_config_rss(vsi); 5870 if (ret) { 5871 dev_info(&vsi->back->pdev->dev, 5872 "Failed to reconfig rss for num_queues\n"); 5873 return ret; 5874 } 5875 vsi->reconfig_rss = false; 5876 } 5877 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5878 ctxt.info.valid_sections |= 5879 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5880 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5881 } 5882 5883 /* Update the VSI after updating the VSI queue-mapping 5884 * information 5885 */ 5886 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5887 if (ret) { 5888 dev_info(&pf->pdev->dev, 5889 "Update vsi tc config failed, err %pe aq_err %s\n", 5890 ERR_PTR(ret), 5891 i40e_aq_str(hw, hw->aq.asq_last_status)); 5892 goto out; 5893 } 5894 /* update the local VSI info with updated queue map */ 5895 i40e_vsi_update_queue_map(vsi, &ctxt); 5896 vsi->info.valid_sections = 0; 5897 5898 /* Update current VSI BW information */ 5899 ret = i40e_vsi_get_bw_info(vsi); 5900 if (ret) { 5901 dev_info(&pf->pdev->dev, 5902 "Failed updating vsi bw info, err %pe aq_err %s\n", 5903 ERR_PTR(ret), 5904 i40e_aq_str(hw, hw->aq.asq_last_status)); 5905 goto out; 5906 } 5907 5908 /* Update the netdev TC setup */ 5909 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5910 out: 5911 return ret; 5912 } 5913 5914 /** 5915 * i40e_get_link_speed - Returns link speed for the interface 5916 * @vsi: VSI to be configured 5917 * 5918 **/ 5919 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5920 { 5921 struct i40e_pf *pf = vsi->back; 5922 5923 switch (pf->hw.phy.link_info.link_speed) { 5924 case I40E_LINK_SPEED_40GB: 5925 return 40000; 5926 case I40E_LINK_SPEED_25GB: 5927 return 25000; 5928 case I40E_LINK_SPEED_20GB: 5929 return 20000; 5930 case I40E_LINK_SPEED_10GB: 5931 return 10000; 5932 case I40E_LINK_SPEED_1GB: 5933 return 1000; 5934 default: 5935 return -EINVAL; 5936 } 5937 } 5938 5939 /** 5940 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5941 * @vsi: Pointer to vsi structure 5942 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5943 * 5944 * Helper function to convert units before send to set BW limit 5945 **/ 5946 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5947 { 5948 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5949 dev_warn(&vsi->back->pdev->dev, 5950 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5951 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5952 } else { 5953 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5954 } 5955 5956 return max_tx_rate; 5957 } 5958 5959 /** 5960 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5961 * @vsi: VSI to be configured 5962 * @seid: seid of the channel/VSI 5963 * @max_tx_rate: max TX rate to be configured as BW limit 5964 * 5965 * Helper function to set BW limit for a given VSI 5966 **/ 5967 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5968 { 5969 struct i40e_pf *pf = vsi->back; 5970 u64 credits = 0; 5971 int speed = 0; 5972 int ret = 0; 5973 5974 speed = i40e_get_link_speed(vsi); 5975 if (max_tx_rate > speed) { 5976 dev_err(&pf->pdev->dev, 5977 "Invalid max tx rate %llu specified for VSI seid %d.", 5978 max_tx_rate, seid); 5979 return -EINVAL; 5980 } 5981 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 5982 dev_warn(&pf->pdev->dev, 5983 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5984 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5985 } 5986 5987 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5988 credits = max_tx_rate; 5989 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5990 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5991 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5992 if (ret) 5993 dev_err(&pf->pdev->dev, 5994 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 5995 max_tx_rate, seid, ERR_PTR(ret), 5996 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5997 return ret; 5998 } 5999 6000 /** 6001 * i40e_remove_queue_channels - Remove queue channels for the TCs 6002 * @vsi: VSI to be configured 6003 * 6004 * Remove queue channels for the TCs 6005 **/ 6006 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 6007 { 6008 enum i40e_admin_queue_err last_aq_status; 6009 struct i40e_cloud_filter *cfilter; 6010 struct i40e_channel *ch, *ch_tmp; 6011 struct i40e_pf *pf = vsi->back; 6012 struct hlist_node *node; 6013 int ret, i; 6014 6015 /* Reset rss size that was stored when reconfiguring rss for 6016 * channel VSIs with non-power-of-2 queue count. 6017 */ 6018 vsi->current_rss_size = 0; 6019 6020 /* perform cleanup for channels if they exist */ 6021 if (list_empty(&vsi->ch_list)) 6022 return; 6023 6024 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6025 struct i40e_vsi *p_vsi; 6026 6027 list_del(&ch->list); 6028 p_vsi = ch->parent_vsi; 6029 if (!p_vsi || !ch->initialized) { 6030 kfree(ch); 6031 continue; 6032 } 6033 /* Reset queue contexts */ 6034 for (i = 0; i < ch->num_queue_pairs; i++) { 6035 struct i40e_ring *tx_ring, *rx_ring; 6036 u16 pf_q; 6037 6038 pf_q = ch->base_queue + i; 6039 tx_ring = vsi->tx_rings[pf_q]; 6040 tx_ring->ch = NULL; 6041 6042 rx_ring = vsi->rx_rings[pf_q]; 6043 rx_ring->ch = NULL; 6044 } 6045 6046 /* Reset BW configured for this VSI via mqprio */ 6047 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6048 if (ret) 6049 dev_info(&vsi->back->pdev->dev, 6050 "Failed to reset tx rate for ch->seid %u\n", 6051 ch->seid); 6052 6053 /* delete cloud filters associated with this channel */ 6054 hlist_for_each_entry_safe(cfilter, node, 6055 &pf->cloud_filter_list, cloud_node) { 6056 if (cfilter->seid != ch->seid) 6057 continue; 6058 6059 hash_del(&cfilter->cloud_node); 6060 if (cfilter->dst_port) 6061 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6062 cfilter, 6063 false); 6064 else 6065 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6066 false); 6067 last_aq_status = pf->hw.aq.asq_last_status; 6068 if (ret) 6069 dev_info(&pf->pdev->dev, 6070 "Failed to delete cloud filter, err %pe aq_err %s\n", 6071 ERR_PTR(ret), 6072 i40e_aq_str(&pf->hw, last_aq_status)); 6073 kfree(cfilter); 6074 } 6075 6076 /* delete VSI from FW */ 6077 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6078 NULL); 6079 if (ret) 6080 dev_err(&vsi->back->pdev->dev, 6081 "unable to remove channel (%d) for parent VSI(%d)\n", 6082 ch->seid, p_vsi->seid); 6083 kfree(ch); 6084 } 6085 INIT_LIST_HEAD(&vsi->ch_list); 6086 } 6087 6088 /** 6089 * i40e_get_max_queues_for_channel 6090 * @vsi: ptr to VSI to which channels are associated with 6091 * 6092 * Helper function which returns max value among the queue counts set on the 6093 * channels/TCs created. 6094 **/ 6095 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6096 { 6097 struct i40e_channel *ch, *ch_tmp; 6098 int max = 0; 6099 6100 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6101 if (!ch->initialized) 6102 continue; 6103 if (ch->num_queue_pairs > max) 6104 max = ch->num_queue_pairs; 6105 } 6106 6107 return max; 6108 } 6109 6110 /** 6111 * i40e_validate_num_queues - validate num_queues w.r.t channel 6112 * @pf: ptr to PF device 6113 * @num_queues: number of queues 6114 * @vsi: the parent VSI 6115 * @reconfig_rss: indicates should the RSS be reconfigured or not 6116 * 6117 * This function validates number of queues in the context of new channel 6118 * which is being established and determines if RSS should be reconfigured 6119 * or not for parent VSI. 6120 **/ 6121 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6122 struct i40e_vsi *vsi, bool *reconfig_rss) 6123 { 6124 int max_ch_queues; 6125 6126 if (!reconfig_rss) 6127 return -EINVAL; 6128 6129 *reconfig_rss = false; 6130 if (vsi->current_rss_size) { 6131 if (num_queues > vsi->current_rss_size) { 6132 dev_dbg(&pf->pdev->dev, 6133 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6134 num_queues, vsi->current_rss_size); 6135 return -EINVAL; 6136 } else if ((num_queues < vsi->current_rss_size) && 6137 (!is_power_of_2(num_queues))) { 6138 dev_dbg(&pf->pdev->dev, 6139 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6140 num_queues, vsi->current_rss_size); 6141 return -EINVAL; 6142 } 6143 } 6144 6145 if (!is_power_of_2(num_queues)) { 6146 /* Find the max num_queues configured for channel if channel 6147 * exist. 6148 * if channel exist, then enforce 'num_queues' to be more than 6149 * max ever queues configured for channel. 6150 */ 6151 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6152 if (num_queues < max_ch_queues) { 6153 dev_dbg(&pf->pdev->dev, 6154 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6155 num_queues, max_ch_queues); 6156 return -EINVAL; 6157 } 6158 *reconfig_rss = true; 6159 } 6160 6161 return 0; 6162 } 6163 6164 /** 6165 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6166 * @vsi: the VSI being setup 6167 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6168 * 6169 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6170 **/ 6171 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6172 { 6173 struct i40e_pf *pf = vsi->back; 6174 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6175 struct i40e_hw *hw = &pf->hw; 6176 int local_rss_size; 6177 u8 *lut; 6178 int ret; 6179 6180 if (!vsi->rss_size) 6181 return -EINVAL; 6182 6183 if (rss_size > vsi->rss_size) 6184 return -EINVAL; 6185 6186 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6187 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6188 if (!lut) 6189 return -ENOMEM; 6190 6191 /* Ignoring user configured lut if there is one */ 6192 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6193 6194 /* Use user configured hash key if there is one, otherwise 6195 * use default. 6196 */ 6197 if (vsi->rss_hkey_user) 6198 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6199 else 6200 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6201 6202 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6203 if (ret) { 6204 dev_info(&pf->pdev->dev, 6205 "Cannot set RSS lut, err %pe aq_err %s\n", 6206 ERR_PTR(ret), 6207 i40e_aq_str(hw, hw->aq.asq_last_status)); 6208 kfree(lut); 6209 return ret; 6210 } 6211 kfree(lut); 6212 6213 /* Do the update w.r.t. storing rss_size */ 6214 if (!vsi->orig_rss_size) 6215 vsi->orig_rss_size = vsi->rss_size; 6216 vsi->current_rss_size = local_rss_size; 6217 6218 return ret; 6219 } 6220 6221 /** 6222 * i40e_channel_setup_queue_map - Setup a channel queue map 6223 * @pf: ptr to PF device 6224 * @ctxt: VSI context structure 6225 * @ch: ptr to channel structure 6226 * 6227 * Setup queue map for a specific channel 6228 **/ 6229 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6230 struct i40e_vsi_context *ctxt, 6231 struct i40e_channel *ch) 6232 { 6233 u16 qcount, qmap, sections = 0; 6234 u8 offset = 0; 6235 int pow; 6236 6237 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6238 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6239 6240 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6241 ch->num_queue_pairs = qcount; 6242 6243 /* find the next higher power-of-2 of num queue pairs */ 6244 pow = ilog2(qcount); 6245 if (!is_power_of_2(qcount)) 6246 pow++; 6247 6248 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6249 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6250 6251 /* Setup queue TC[0].qmap for given VSI context */ 6252 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6253 6254 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6255 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6256 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6257 ctxt->info.valid_sections |= cpu_to_le16(sections); 6258 } 6259 6260 /** 6261 * i40e_add_channel - add a channel by adding VSI 6262 * @pf: ptr to PF device 6263 * @uplink_seid: underlying HW switching element (VEB) ID 6264 * @ch: ptr to channel structure 6265 * 6266 * Add a channel (VSI) using add_vsi and queue_map 6267 **/ 6268 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6269 struct i40e_channel *ch) 6270 { 6271 struct i40e_hw *hw = &pf->hw; 6272 struct i40e_vsi_context ctxt; 6273 u8 enabled_tc = 0x1; /* TC0 enabled */ 6274 int ret; 6275 6276 if (ch->type != I40E_VSI_VMDQ2) { 6277 dev_info(&pf->pdev->dev, 6278 "add new vsi failed, ch->type %d\n", ch->type); 6279 return -EINVAL; 6280 } 6281 6282 memset(&ctxt, 0, sizeof(ctxt)); 6283 ctxt.pf_num = hw->pf_id; 6284 ctxt.vf_num = 0; 6285 ctxt.uplink_seid = uplink_seid; 6286 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6287 if (ch->type == I40E_VSI_VMDQ2) 6288 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6289 6290 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6291 ctxt.info.valid_sections |= 6292 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6293 ctxt.info.switch_id = 6294 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6295 } 6296 6297 /* Set queue map for a given VSI context */ 6298 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6299 6300 /* Now time to create VSI */ 6301 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6302 if (ret) { 6303 dev_info(&pf->pdev->dev, 6304 "add new vsi failed, err %pe aq_err %s\n", 6305 ERR_PTR(ret), 6306 i40e_aq_str(&pf->hw, 6307 pf->hw.aq.asq_last_status)); 6308 return -ENOENT; 6309 } 6310 6311 /* Success, update channel, set enabled_tc only if the channel 6312 * is not a macvlan 6313 */ 6314 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6315 ch->seid = ctxt.seid; 6316 ch->vsi_number = ctxt.vsi_number; 6317 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6318 6319 /* copy just the sections touched not the entire info 6320 * since not all sections are valid as returned by 6321 * update vsi params 6322 */ 6323 ch->info.mapping_flags = ctxt.info.mapping_flags; 6324 memcpy(&ch->info.queue_mapping, 6325 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6326 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6327 sizeof(ctxt.info.tc_mapping)); 6328 6329 return 0; 6330 } 6331 6332 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6333 u8 *bw_share) 6334 { 6335 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6336 int ret; 6337 int i; 6338 6339 memset(&bw_data, 0, sizeof(bw_data)); 6340 bw_data.tc_valid_bits = ch->enabled_tc; 6341 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6342 bw_data.tc_bw_credits[i] = bw_share[i]; 6343 6344 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6345 &bw_data, NULL); 6346 if (ret) { 6347 dev_info(&vsi->back->pdev->dev, 6348 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6349 vsi->back->hw.aq.asq_last_status, ch->seid); 6350 return -EINVAL; 6351 } 6352 6353 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6354 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6355 6356 return 0; 6357 } 6358 6359 /** 6360 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6361 * @pf: ptr to PF device 6362 * @vsi: the VSI being setup 6363 * @ch: ptr to channel structure 6364 * 6365 * Configure TX rings associated with channel (VSI) since queues are being 6366 * from parent VSI. 6367 **/ 6368 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6369 struct i40e_vsi *vsi, 6370 struct i40e_channel *ch) 6371 { 6372 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6373 int ret; 6374 int i; 6375 6376 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6377 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6378 if (ch->enabled_tc & BIT(i)) 6379 bw_share[i] = 1; 6380 } 6381 6382 /* configure BW for new VSI */ 6383 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6384 if (ret) { 6385 dev_info(&vsi->back->pdev->dev, 6386 "Failed configuring TC map %d for channel (seid %u)\n", 6387 ch->enabled_tc, ch->seid); 6388 return ret; 6389 } 6390 6391 for (i = 0; i < ch->num_queue_pairs; i++) { 6392 struct i40e_ring *tx_ring, *rx_ring; 6393 u16 pf_q; 6394 6395 pf_q = ch->base_queue + i; 6396 6397 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6398 * context 6399 */ 6400 tx_ring = vsi->tx_rings[pf_q]; 6401 tx_ring->ch = ch; 6402 6403 /* Get the RX ring ptr */ 6404 rx_ring = vsi->rx_rings[pf_q]; 6405 rx_ring->ch = ch; 6406 } 6407 6408 return 0; 6409 } 6410 6411 /** 6412 * i40e_setup_hw_channel - setup new channel 6413 * @pf: ptr to PF device 6414 * @vsi: the VSI being setup 6415 * @ch: ptr to channel structure 6416 * @uplink_seid: underlying HW switching element (VEB) ID 6417 * @type: type of channel to be created (VMDq2/VF) 6418 * 6419 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6420 * and configures TX rings accordingly 6421 **/ 6422 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6423 struct i40e_vsi *vsi, 6424 struct i40e_channel *ch, 6425 u16 uplink_seid, u8 type) 6426 { 6427 int ret; 6428 6429 ch->initialized = false; 6430 ch->base_queue = vsi->next_base_queue; 6431 ch->type = type; 6432 6433 /* Proceed with creation of channel (VMDq2) VSI */ 6434 ret = i40e_add_channel(pf, uplink_seid, ch); 6435 if (ret) { 6436 dev_info(&pf->pdev->dev, 6437 "failed to add_channel using uplink_seid %u\n", 6438 uplink_seid); 6439 return ret; 6440 } 6441 6442 /* Mark the successful creation of channel */ 6443 ch->initialized = true; 6444 6445 /* Reconfigure TX queues using QTX_CTL register */ 6446 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6447 if (ret) { 6448 dev_info(&pf->pdev->dev, 6449 "failed to configure TX rings for channel %u\n", 6450 ch->seid); 6451 return ret; 6452 } 6453 6454 /* update 'next_base_queue' */ 6455 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6456 dev_dbg(&pf->pdev->dev, 6457 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6458 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6459 ch->num_queue_pairs, 6460 vsi->next_base_queue); 6461 return ret; 6462 } 6463 6464 /** 6465 * i40e_setup_channel - setup new channel using uplink element 6466 * @pf: ptr to PF device 6467 * @vsi: pointer to the VSI to set up the channel within 6468 * @ch: ptr to channel structure 6469 * 6470 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6471 * and uplink switching element (uplink_seid) 6472 **/ 6473 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6474 struct i40e_channel *ch) 6475 { 6476 u8 vsi_type; 6477 u16 seid; 6478 int ret; 6479 6480 if (vsi->type == I40E_VSI_MAIN) { 6481 vsi_type = I40E_VSI_VMDQ2; 6482 } else { 6483 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6484 vsi->type); 6485 return false; 6486 } 6487 6488 /* underlying switching element */ 6489 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6490 6491 /* create channel (VSI), configure TX rings */ 6492 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6493 if (ret) { 6494 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6495 return false; 6496 } 6497 6498 return ch->initialized ? true : false; 6499 } 6500 6501 /** 6502 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6503 * @vsi: ptr to VSI which has PF backing 6504 * 6505 * Sets up switch mode correctly if it needs to be changed and perform 6506 * what are allowed modes. 6507 **/ 6508 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6509 { 6510 u8 mode; 6511 struct i40e_pf *pf = vsi->back; 6512 struct i40e_hw *hw = &pf->hw; 6513 int ret; 6514 6515 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6516 if (ret) 6517 return -EINVAL; 6518 6519 if (hw->dev_caps.switch_mode) { 6520 /* if switch mode is set, support mode2 (non-tunneled for 6521 * cloud filter) for now 6522 */ 6523 u32 switch_mode = hw->dev_caps.switch_mode & 6524 I40E_SWITCH_MODE_MASK; 6525 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6526 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6527 return 0; 6528 dev_err(&pf->pdev->dev, 6529 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6530 hw->dev_caps.switch_mode); 6531 return -EINVAL; 6532 } 6533 } 6534 6535 /* Set Bit 7 to be valid */ 6536 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6537 6538 /* Set L4type for TCP support */ 6539 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6540 6541 /* Set cloud filter mode */ 6542 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6543 6544 /* Prep mode field for set_switch_config */ 6545 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6546 pf->last_sw_conf_valid_flags, 6547 mode, NULL); 6548 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6549 dev_err(&pf->pdev->dev, 6550 "couldn't set switch config bits, err %pe aq_err %s\n", 6551 ERR_PTR(ret), 6552 i40e_aq_str(hw, 6553 hw->aq.asq_last_status)); 6554 6555 return ret; 6556 } 6557 6558 /** 6559 * i40e_create_queue_channel - function to create channel 6560 * @vsi: VSI to be configured 6561 * @ch: ptr to channel (it contains channel specific params) 6562 * 6563 * This function creates channel (VSI) using num_queues specified by user, 6564 * reconfigs RSS if needed. 6565 **/ 6566 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6567 struct i40e_channel *ch) 6568 { 6569 struct i40e_pf *pf = vsi->back; 6570 bool reconfig_rss; 6571 int err; 6572 6573 if (!ch) 6574 return -EINVAL; 6575 6576 if (!ch->num_queue_pairs) { 6577 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6578 ch->num_queue_pairs); 6579 return -EINVAL; 6580 } 6581 6582 /* validate user requested num_queues for channel */ 6583 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6584 &reconfig_rss); 6585 if (err) { 6586 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6587 ch->num_queue_pairs); 6588 return -EINVAL; 6589 } 6590 6591 /* By default we are in VEPA mode, if this is the first VF/VMDq 6592 * VSI to be added switch to VEB mode. 6593 */ 6594 6595 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6596 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6597 6598 if (vsi->type == I40E_VSI_MAIN) { 6599 if (i40e_is_tc_mqprio_enabled(pf)) 6600 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6601 else 6602 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6603 } 6604 /* now onwards for main VSI, number of queues will be value 6605 * of TC0's queue count 6606 */ 6607 } 6608 6609 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6610 * it should be more than num_queues 6611 */ 6612 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6613 dev_dbg(&pf->pdev->dev, 6614 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6615 vsi->cnt_q_avail, ch->num_queue_pairs); 6616 return -EINVAL; 6617 } 6618 6619 /* reconfig_rss only if vsi type is MAIN_VSI */ 6620 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6621 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6622 if (err) { 6623 dev_info(&pf->pdev->dev, 6624 "Error: unable to reconfig rss for num_queues (%u)\n", 6625 ch->num_queue_pairs); 6626 return -EINVAL; 6627 } 6628 } 6629 6630 if (!i40e_setup_channel(pf, vsi, ch)) { 6631 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6632 return -EINVAL; 6633 } 6634 6635 dev_info(&pf->pdev->dev, 6636 "Setup channel (id:%u) utilizing num_queues %d\n", 6637 ch->seid, ch->num_queue_pairs); 6638 6639 /* configure VSI for BW limit */ 6640 if (ch->max_tx_rate) { 6641 u64 credits = ch->max_tx_rate; 6642 6643 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6644 return -EINVAL; 6645 6646 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6647 dev_dbg(&pf->pdev->dev, 6648 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6649 ch->max_tx_rate, 6650 credits, 6651 ch->seid); 6652 } 6653 6654 /* in case of VF, this will be main SRIOV VSI */ 6655 ch->parent_vsi = vsi; 6656 6657 /* and update main_vsi's count for queue_available to use */ 6658 vsi->cnt_q_avail -= ch->num_queue_pairs; 6659 6660 return 0; 6661 } 6662 6663 /** 6664 * i40e_configure_queue_channels - Add queue channel for the given TCs 6665 * @vsi: VSI to be configured 6666 * 6667 * Configures queue channel mapping to the given TCs 6668 **/ 6669 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6670 { 6671 struct i40e_channel *ch; 6672 u64 max_rate = 0; 6673 int ret = 0, i; 6674 6675 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6676 vsi->tc_seid_map[0] = vsi->seid; 6677 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6678 if (vsi->tc_config.enabled_tc & BIT(i)) { 6679 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6680 if (!ch) { 6681 ret = -ENOMEM; 6682 goto err_free; 6683 } 6684 6685 INIT_LIST_HEAD(&ch->list); 6686 ch->num_queue_pairs = 6687 vsi->tc_config.tc_info[i].qcount; 6688 ch->base_queue = 6689 vsi->tc_config.tc_info[i].qoffset; 6690 6691 /* Bandwidth limit through tc interface is in bytes/s, 6692 * change to Mbit/s 6693 */ 6694 max_rate = vsi->mqprio_qopt.max_rate[i]; 6695 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6696 ch->max_tx_rate = max_rate; 6697 6698 list_add_tail(&ch->list, &vsi->ch_list); 6699 6700 ret = i40e_create_queue_channel(vsi, ch); 6701 if (ret) { 6702 dev_err(&vsi->back->pdev->dev, 6703 "Failed creating queue channel with TC%d: queues %d\n", 6704 i, ch->num_queue_pairs); 6705 goto err_free; 6706 } 6707 vsi->tc_seid_map[i] = ch->seid; 6708 } 6709 } 6710 6711 /* reset to reconfigure TX queue contexts */ 6712 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6713 return ret; 6714 6715 err_free: 6716 i40e_remove_queue_channels(vsi); 6717 return ret; 6718 } 6719 6720 /** 6721 * i40e_veb_config_tc - Configure TCs for given VEB 6722 * @veb: given VEB 6723 * @enabled_tc: TC bitmap 6724 * 6725 * Configures given TC bitmap for VEB (switching) element 6726 **/ 6727 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6728 { 6729 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6730 struct i40e_pf *pf = veb->pf; 6731 int ret = 0; 6732 int i; 6733 6734 /* No TCs or already enabled TCs just return */ 6735 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6736 return ret; 6737 6738 bw_data.tc_valid_bits = enabled_tc; 6739 /* bw_data.absolute_credits is not set (relative) */ 6740 6741 /* Enable ETS TCs with equal BW Share for now */ 6742 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6743 if (enabled_tc & BIT(i)) 6744 bw_data.tc_bw_share_credits[i] = 1; 6745 } 6746 6747 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6748 &bw_data, NULL); 6749 if (ret) { 6750 dev_info(&pf->pdev->dev, 6751 "VEB bw config failed, err %pe aq_err %s\n", 6752 ERR_PTR(ret), 6753 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6754 goto out; 6755 } 6756 6757 /* Update the BW information */ 6758 ret = i40e_veb_get_bw_info(veb); 6759 if (ret) { 6760 dev_info(&pf->pdev->dev, 6761 "Failed getting veb bw config, err %pe aq_err %s\n", 6762 ERR_PTR(ret), 6763 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6764 } 6765 6766 out: 6767 return ret; 6768 } 6769 6770 #ifdef CONFIG_I40E_DCB 6771 /** 6772 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6773 * @pf: PF struct 6774 * 6775 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6776 * the caller would've quiesce all the VSIs before calling 6777 * this function 6778 **/ 6779 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6780 { 6781 u8 tc_map = 0; 6782 int ret; 6783 u8 v; 6784 6785 /* Enable the TCs available on PF to all VEBs */ 6786 tc_map = i40e_pf_get_tc_map(pf); 6787 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6788 return; 6789 6790 for (v = 0; v < I40E_MAX_VEB; v++) { 6791 if (!pf->veb[v]) 6792 continue; 6793 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6794 if (ret) { 6795 dev_info(&pf->pdev->dev, 6796 "Failed configuring TC for VEB seid=%d\n", 6797 pf->veb[v]->seid); 6798 /* Will try to configure as many components */ 6799 } 6800 } 6801 6802 /* Update each VSI */ 6803 for (v = 0; v < pf->num_alloc_vsi; v++) { 6804 if (!pf->vsi[v]) 6805 continue; 6806 6807 /* - Enable all TCs for the LAN VSI 6808 * - For all others keep them at TC0 for now 6809 */ 6810 if (v == pf->lan_vsi) 6811 tc_map = i40e_pf_get_tc_map(pf); 6812 else 6813 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6814 6815 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6816 if (ret) { 6817 dev_info(&pf->pdev->dev, 6818 "Failed configuring TC for VSI seid=%d\n", 6819 pf->vsi[v]->seid); 6820 /* Will try to configure as many components */ 6821 } else { 6822 /* Re-configure VSI vectors based on updated TC map */ 6823 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6824 if (pf->vsi[v]->netdev) 6825 i40e_dcbnl_set_all(pf->vsi[v]); 6826 } 6827 } 6828 } 6829 6830 /** 6831 * i40e_resume_port_tx - Resume port Tx 6832 * @pf: PF struct 6833 * 6834 * Resume a port's Tx and issue a PF reset in case of failure to 6835 * resume. 6836 **/ 6837 static int i40e_resume_port_tx(struct i40e_pf *pf) 6838 { 6839 struct i40e_hw *hw = &pf->hw; 6840 int ret; 6841 6842 ret = i40e_aq_resume_port_tx(hw, NULL); 6843 if (ret) { 6844 dev_info(&pf->pdev->dev, 6845 "Resume Port Tx failed, err %pe aq_err %s\n", 6846 ERR_PTR(ret), 6847 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6848 /* Schedule PF reset to recover */ 6849 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6850 i40e_service_event_schedule(pf); 6851 } 6852 6853 return ret; 6854 } 6855 6856 /** 6857 * i40e_suspend_port_tx - Suspend port Tx 6858 * @pf: PF struct 6859 * 6860 * Suspend a port's Tx and issue a PF reset in case of failure. 6861 **/ 6862 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6863 { 6864 struct i40e_hw *hw = &pf->hw; 6865 int ret; 6866 6867 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6868 if (ret) { 6869 dev_info(&pf->pdev->dev, 6870 "Suspend Port Tx failed, err %pe aq_err %s\n", 6871 ERR_PTR(ret), 6872 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6873 /* Schedule PF reset to recover */ 6874 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6875 i40e_service_event_schedule(pf); 6876 } 6877 6878 return ret; 6879 } 6880 6881 /** 6882 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6883 * @pf: PF being configured 6884 * @new_cfg: New DCBX configuration 6885 * 6886 * Program DCB settings into HW and reconfigure VEB/VSIs on 6887 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6888 **/ 6889 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6890 struct i40e_dcbx_config *new_cfg) 6891 { 6892 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6893 int ret; 6894 6895 /* Check if need reconfiguration */ 6896 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6897 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6898 return 0; 6899 } 6900 6901 /* Config change disable all VSIs */ 6902 i40e_pf_quiesce_all_vsi(pf); 6903 6904 /* Copy the new config to the current config */ 6905 *old_cfg = *new_cfg; 6906 old_cfg->etsrec = old_cfg->etscfg; 6907 ret = i40e_set_dcb_config(&pf->hw); 6908 if (ret) { 6909 dev_info(&pf->pdev->dev, 6910 "Set DCB Config failed, err %pe aq_err %s\n", 6911 ERR_PTR(ret), 6912 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6913 goto out; 6914 } 6915 6916 /* Changes in configuration update VEB/VSI */ 6917 i40e_dcb_reconfigure(pf); 6918 out: 6919 /* In case of reset do not try to resume anything */ 6920 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6921 /* Re-start the VSIs if disabled */ 6922 ret = i40e_resume_port_tx(pf); 6923 /* In case of error no point in resuming VSIs */ 6924 if (ret) 6925 goto err; 6926 i40e_pf_unquiesce_all_vsi(pf); 6927 } 6928 err: 6929 return ret; 6930 } 6931 6932 /** 6933 * i40e_hw_dcb_config - Program new DCBX settings into HW 6934 * @pf: PF being configured 6935 * @new_cfg: New DCBX configuration 6936 * 6937 * Program DCB settings into HW and reconfigure VEB/VSIs on 6938 * given PF 6939 **/ 6940 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6941 { 6942 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6943 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6944 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6945 struct i40e_dcbx_config *old_cfg; 6946 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6947 struct i40e_rx_pb_config pb_cfg; 6948 struct i40e_hw *hw = &pf->hw; 6949 u8 num_ports = hw->num_ports; 6950 bool need_reconfig; 6951 int ret = -EINVAL; 6952 u8 lltc_map = 0; 6953 u8 tc_map = 0; 6954 u8 new_numtc; 6955 u8 i; 6956 6957 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6958 /* Un-pack information to Program ETS HW via shared API 6959 * numtc, tcmap 6960 * LLTC map 6961 * ETS/NON-ETS arbiter mode 6962 * max exponent (credit refills) 6963 * Total number of ports 6964 * PFC priority bit-map 6965 * Priority Table 6966 * BW % per TC 6967 * Arbiter mode between UPs sharing same TC 6968 * TSA table (ETS or non-ETS) 6969 * EEE enabled or not 6970 * MFS TC table 6971 */ 6972 6973 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6974 6975 memset(&ets_data, 0, sizeof(ets_data)); 6976 for (i = 0; i < new_numtc; i++) { 6977 tc_map |= BIT(i); 6978 switch (new_cfg->etscfg.tsatable[i]) { 6979 case I40E_IEEE_TSA_ETS: 6980 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6981 ets_data.tc_bw_share_credits[i] = 6982 new_cfg->etscfg.tcbwtable[i]; 6983 break; 6984 case I40E_IEEE_TSA_STRICT: 6985 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6986 lltc_map |= BIT(i); 6987 ets_data.tc_bw_share_credits[i] = 6988 I40E_DCB_STRICT_PRIO_CREDITS; 6989 break; 6990 default: 6991 /* Invalid TSA type */ 6992 need_reconfig = false; 6993 goto out; 6994 } 6995 } 6996 6997 old_cfg = &hw->local_dcbx_config; 6998 /* Check if need reconfiguration */ 6999 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 7000 7001 /* If needed, enable/disable frame tagging, disable all VSIs 7002 * and suspend port tx 7003 */ 7004 if (need_reconfig) { 7005 /* Enable DCB tagging only when more than one TC */ 7006 if (new_numtc > 1) 7007 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7008 else 7009 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7010 7011 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7012 /* Reconfiguration needed quiesce all VSIs */ 7013 i40e_pf_quiesce_all_vsi(pf); 7014 ret = i40e_suspend_port_tx(pf); 7015 if (ret) 7016 goto err; 7017 } 7018 7019 /* Configure Port ETS Tx Scheduler */ 7020 ets_data.tc_valid_bits = tc_map; 7021 ets_data.tc_strict_priority_flags = lltc_map; 7022 ret = i40e_aq_config_switch_comp_ets 7023 (hw, pf->mac_seid, &ets_data, 7024 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7025 if (ret) { 7026 dev_info(&pf->pdev->dev, 7027 "Modify Port ETS failed, err %pe aq_err %s\n", 7028 ERR_PTR(ret), 7029 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7030 goto out; 7031 } 7032 7033 /* Configure Rx ETS HW */ 7034 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7035 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7036 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7037 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7038 I40E_DCB_DEFAULT_MAX_EXPONENT, 7039 lltc_map); 7040 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7041 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7042 prio_type); 7043 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7044 new_cfg->etscfg.prioritytable); 7045 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7046 7047 /* Configure Rx Packet Buffers in HW */ 7048 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7049 mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu; 7050 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7051 } 7052 7053 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7054 false, new_cfg->pfc.pfcenable, 7055 mfs_tc, &pb_cfg); 7056 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7057 7058 /* Update the local Rx Packet buffer config */ 7059 pf->pb_cfg = pb_cfg; 7060 7061 /* Inform the FW about changes to DCB configuration */ 7062 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7063 if (ret) { 7064 dev_info(&pf->pdev->dev, 7065 "DCB Updated failed, err %pe aq_err %s\n", 7066 ERR_PTR(ret), 7067 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7068 goto out; 7069 } 7070 7071 /* Update the port DCBx configuration */ 7072 *old_cfg = *new_cfg; 7073 7074 /* Changes in configuration update VEB/VSI */ 7075 i40e_dcb_reconfigure(pf); 7076 out: 7077 /* Re-start the VSIs if disabled */ 7078 if (need_reconfig) { 7079 ret = i40e_resume_port_tx(pf); 7080 7081 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7082 /* In case of error no point in resuming VSIs */ 7083 if (ret) 7084 goto err; 7085 7086 /* Wait for the PF's queues to be disabled */ 7087 ret = i40e_pf_wait_queues_disabled(pf); 7088 if (ret) { 7089 /* Schedule PF reset to recover */ 7090 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7091 i40e_service_event_schedule(pf); 7092 goto err; 7093 } else { 7094 i40e_pf_unquiesce_all_vsi(pf); 7095 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7096 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7097 } 7098 /* registers are set, lets apply */ 7099 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7100 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7101 } 7102 7103 err: 7104 return ret; 7105 } 7106 7107 /** 7108 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7109 * @pf: PF being queried 7110 * 7111 * Set default DCB configuration in case DCB is to be done in SW. 7112 **/ 7113 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7114 { 7115 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7116 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7117 struct i40e_hw *hw = &pf->hw; 7118 int err; 7119 7120 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7121 /* Update the local cached instance with TC0 ETS */ 7122 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7123 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7124 pf->tmp_cfg.etscfg.maxtcs = 0; 7125 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7126 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7127 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7128 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7129 /* FW needs one App to configure HW */ 7130 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7131 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7132 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7133 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7134 7135 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7136 } 7137 7138 memset(&ets_data, 0, sizeof(ets_data)); 7139 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7140 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7141 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7142 7143 /* Enable ETS on the Physical port */ 7144 err = i40e_aq_config_switch_comp_ets 7145 (hw, pf->mac_seid, &ets_data, 7146 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7147 if (err) { 7148 dev_info(&pf->pdev->dev, 7149 "Enable Port ETS failed, err %pe aq_err %s\n", 7150 ERR_PTR(err), 7151 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7152 err = -ENOENT; 7153 goto out; 7154 } 7155 7156 /* Update the local cached instance with TC0 ETS */ 7157 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7158 dcb_cfg->etscfg.cbs = 0; 7159 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7160 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7161 7162 out: 7163 return err; 7164 } 7165 7166 /** 7167 * i40e_init_pf_dcb - Initialize DCB configuration 7168 * @pf: PF being configured 7169 * 7170 * Query the current DCB configuration and cache it 7171 * in the hardware structure 7172 **/ 7173 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7174 { 7175 struct i40e_hw *hw = &pf->hw; 7176 int err; 7177 7178 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7179 * Also do not enable DCBx if FW LLDP agent is disabled 7180 */ 7181 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7182 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7183 err = -EOPNOTSUPP; 7184 goto out; 7185 } 7186 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7187 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7188 err = i40e_dcb_sw_default_config(pf); 7189 if (err) { 7190 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7191 goto out; 7192 } 7193 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7194 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7195 DCB_CAP_DCBX_VER_IEEE; 7196 /* at init capable but disabled */ 7197 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7198 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7199 goto out; 7200 } 7201 err = i40e_init_dcb(hw, true); 7202 if (!err) { 7203 /* Device/Function is not DCBX capable */ 7204 if ((!hw->func_caps.dcb) || 7205 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7206 dev_info(&pf->pdev->dev, 7207 "DCBX offload is not supported or is disabled for this PF.\n"); 7208 } else { 7209 /* When status is not DISABLED then DCBX in FW */ 7210 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7211 DCB_CAP_DCBX_VER_IEEE; 7212 7213 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7214 /* Enable DCB tagging only when more than one TC 7215 * or explicitly disable if only one TC 7216 */ 7217 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7218 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7219 else 7220 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7221 dev_dbg(&pf->pdev->dev, 7222 "DCBX offload is supported for this PF.\n"); 7223 } 7224 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7225 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7226 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7227 } else { 7228 dev_info(&pf->pdev->dev, 7229 "Query for DCB configuration failed, err %pe aq_err %s\n", 7230 ERR_PTR(err), 7231 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7232 } 7233 7234 out: 7235 return err; 7236 } 7237 #endif /* CONFIG_I40E_DCB */ 7238 7239 /** 7240 * i40e_print_link_message - print link up or down 7241 * @vsi: the VSI for which link needs a message 7242 * @isup: true of link is up, false otherwise 7243 */ 7244 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7245 { 7246 enum i40e_aq_link_speed new_speed; 7247 struct i40e_pf *pf = vsi->back; 7248 char *speed = "Unknown"; 7249 char *fc = "Unknown"; 7250 char *fec = ""; 7251 char *req_fec = ""; 7252 char *an = ""; 7253 7254 if (isup) 7255 new_speed = pf->hw.phy.link_info.link_speed; 7256 else 7257 new_speed = I40E_LINK_SPEED_UNKNOWN; 7258 7259 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7260 return; 7261 vsi->current_isup = isup; 7262 vsi->current_speed = new_speed; 7263 if (!isup) { 7264 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7265 return; 7266 } 7267 7268 /* Warn user if link speed on NPAR enabled partition is not at 7269 * least 10GB 7270 */ 7271 if (pf->hw.func_caps.npar_enable && 7272 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7273 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7274 netdev_warn(vsi->netdev, 7275 "The partition detected link speed that is less than 10Gbps\n"); 7276 7277 switch (pf->hw.phy.link_info.link_speed) { 7278 case I40E_LINK_SPEED_40GB: 7279 speed = "40 G"; 7280 break; 7281 case I40E_LINK_SPEED_20GB: 7282 speed = "20 G"; 7283 break; 7284 case I40E_LINK_SPEED_25GB: 7285 speed = "25 G"; 7286 break; 7287 case I40E_LINK_SPEED_10GB: 7288 speed = "10 G"; 7289 break; 7290 case I40E_LINK_SPEED_5GB: 7291 speed = "5 G"; 7292 break; 7293 case I40E_LINK_SPEED_2_5GB: 7294 speed = "2.5 G"; 7295 break; 7296 case I40E_LINK_SPEED_1GB: 7297 speed = "1000 M"; 7298 break; 7299 case I40E_LINK_SPEED_100MB: 7300 speed = "100 M"; 7301 break; 7302 default: 7303 break; 7304 } 7305 7306 switch (pf->hw.fc.current_mode) { 7307 case I40E_FC_FULL: 7308 fc = "RX/TX"; 7309 break; 7310 case I40E_FC_TX_PAUSE: 7311 fc = "TX"; 7312 break; 7313 case I40E_FC_RX_PAUSE: 7314 fc = "RX"; 7315 break; 7316 default: 7317 fc = "None"; 7318 break; 7319 } 7320 7321 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7322 req_fec = "None"; 7323 fec = "None"; 7324 an = "False"; 7325 7326 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7327 an = "True"; 7328 7329 if (pf->hw.phy.link_info.fec_info & 7330 I40E_AQ_CONFIG_FEC_KR_ENA) 7331 fec = "CL74 FC-FEC/BASE-R"; 7332 else if (pf->hw.phy.link_info.fec_info & 7333 I40E_AQ_CONFIG_FEC_RS_ENA) 7334 fec = "CL108 RS-FEC"; 7335 7336 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7337 * both RS and FC are requested 7338 */ 7339 if (vsi->back->hw.phy.link_info.req_fec_info & 7340 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7341 if (vsi->back->hw.phy.link_info.req_fec_info & 7342 I40E_AQ_REQUEST_FEC_RS) 7343 req_fec = "CL108 RS-FEC"; 7344 else 7345 req_fec = "CL74 FC-FEC/BASE-R"; 7346 } 7347 netdev_info(vsi->netdev, 7348 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7349 speed, req_fec, fec, an, fc); 7350 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7351 req_fec = "None"; 7352 fec = "None"; 7353 an = "False"; 7354 7355 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7356 an = "True"; 7357 7358 if (pf->hw.phy.link_info.fec_info & 7359 I40E_AQ_CONFIG_FEC_KR_ENA) 7360 fec = "CL74 FC-FEC/BASE-R"; 7361 7362 if (pf->hw.phy.link_info.req_fec_info & 7363 I40E_AQ_REQUEST_FEC_KR) 7364 req_fec = "CL74 FC-FEC/BASE-R"; 7365 7366 netdev_info(vsi->netdev, 7367 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7368 speed, req_fec, fec, an, fc); 7369 } else { 7370 netdev_info(vsi->netdev, 7371 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7372 speed, fc); 7373 } 7374 7375 } 7376 7377 /** 7378 * i40e_up_complete - Finish the last steps of bringing up a connection 7379 * @vsi: the VSI being configured 7380 **/ 7381 static int i40e_up_complete(struct i40e_vsi *vsi) 7382 { 7383 struct i40e_pf *pf = vsi->back; 7384 int err; 7385 7386 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7387 i40e_vsi_configure_msix(vsi); 7388 else 7389 i40e_configure_msi_and_legacy(vsi); 7390 7391 /* start rings */ 7392 err = i40e_vsi_start_rings(vsi); 7393 if (err) 7394 return err; 7395 7396 clear_bit(__I40E_VSI_DOWN, vsi->state); 7397 i40e_napi_enable_all(vsi); 7398 i40e_vsi_enable_irq(vsi); 7399 7400 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7401 (vsi->netdev)) { 7402 i40e_print_link_message(vsi, true); 7403 netif_tx_start_all_queues(vsi->netdev); 7404 netif_carrier_on(vsi->netdev); 7405 } 7406 7407 /* replay FDIR SB filters */ 7408 if (vsi->type == I40E_VSI_FDIR) { 7409 /* reset fd counters */ 7410 pf->fd_add_err = 0; 7411 pf->fd_atr_cnt = 0; 7412 i40e_fdir_filter_restore(vsi); 7413 } 7414 7415 /* On the next run of the service_task, notify any clients of the new 7416 * opened netdev 7417 */ 7418 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7419 i40e_service_event_schedule(pf); 7420 7421 return 0; 7422 } 7423 7424 /** 7425 * i40e_vsi_reinit_locked - Reset the VSI 7426 * @vsi: the VSI being configured 7427 * 7428 * Rebuild the ring structs after some configuration 7429 * has changed, e.g. MTU size. 7430 **/ 7431 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7432 { 7433 struct i40e_pf *pf = vsi->back; 7434 7435 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7436 usleep_range(1000, 2000); 7437 i40e_down(vsi); 7438 7439 i40e_up(vsi); 7440 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7441 } 7442 7443 /** 7444 * i40e_force_link_state - Force the link status 7445 * @pf: board private structure 7446 * @is_up: whether the link state should be forced up or down 7447 **/ 7448 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7449 { 7450 struct i40e_aq_get_phy_abilities_resp abilities; 7451 struct i40e_aq_set_phy_config config = {0}; 7452 bool non_zero_phy_type = is_up; 7453 struct i40e_hw *hw = &pf->hw; 7454 u64 mask; 7455 u8 speed; 7456 int err; 7457 7458 /* Card might've been put in an unstable state by other drivers 7459 * and applications, which causes incorrect speed values being 7460 * set on startup. In order to clear speed registers, we call 7461 * get_phy_capabilities twice, once to get initial state of 7462 * available speeds, and once to get current PHY config. 7463 */ 7464 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7465 NULL); 7466 if (err) { 7467 dev_err(&pf->pdev->dev, 7468 "failed to get phy cap., ret = %pe last_status = %s\n", 7469 ERR_PTR(err), 7470 i40e_aq_str(hw, hw->aq.asq_last_status)); 7471 return err; 7472 } 7473 speed = abilities.link_speed; 7474 7475 /* Get the current phy config */ 7476 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7477 NULL); 7478 if (err) { 7479 dev_err(&pf->pdev->dev, 7480 "failed to get phy cap., ret = %pe last_status = %s\n", 7481 ERR_PTR(err), 7482 i40e_aq_str(hw, hw->aq.asq_last_status)); 7483 return err; 7484 } 7485 7486 /* If link needs to go up, but was not forced to go down, 7487 * and its speed values are OK, no need for a flap 7488 * if non_zero_phy_type was set, still need to force up 7489 */ 7490 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7491 non_zero_phy_type = true; 7492 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7493 return 0; 7494 7495 /* To force link we need to set bits for all supported PHY types, 7496 * but there are now more than 32, so we need to split the bitmap 7497 * across two fields. 7498 */ 7499 mask = I40E_PHY_TYPES_BITMASK; 7500 config.phy_type = 7501 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7502 config.phy_type_ext = 7503 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7504 /* Copy the old settings, except of phy_type */ 7505 config.abilities = abilities.abilities; 7506 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7507 if (is_up) 7508 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7509 else 7510 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7511 } 7512 if (abilities.link_speed != 0) 7513 config.link_speed = abilities.link_speed; 7514 else 7515 config.link_speed = speed; 7516 config.eee_capability = abilities.eee_capability; 7517 config.eeer = abilities.eeer_val; 7518 config.low_power_ctrl = abilities.d3_lpan; 7519 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7520 I40E_AQ_PHY_FEC_CONFIG_MASK; 7521 err = i40e_aq_set_phy_config(hw, &config, NULL); 7522 7523 if (err) { 7524 dev_err(&pf->pdev->dev, 7525 "set phy config ret = %pe last_status = %s\n", 7526 ERR_PTR(err), 7527 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7528 return err; 7529 } 7530 7531 /* Update the link info */ 7532 err = i40e_update_link_info(hw); 7533 if (err) { 7534 /* Wait a little bit (on 40G cards it sometimes takes a really 7535 * long time for link to come back from the atomic reset) 7536 * and try once more 7537 */ 7538 msleep(1000); 7539 i40e_update_link_info(hw); 7540 } 7541 7542 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7543 7544 return 0; 7545 } 7546 7547 /** 7548 * i40e_up - Bring the connection back up after being down 7549 * @vsi: the VSI being configured 7550 **/ 7551 int i40e_up(struct i40e_vsi *vsi) 7552 { 7553 int err; 7554 7555 if (vsi->type == I40E_VSI_MAIN && 7556 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7557 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7558 i40e_force_link_state(vsi->back, true); 7559 7560 err = i40e_vsi_configure(vsi); 7561 if (!err) 7562 err = i40e_up_complete(vsi); 7563 7564 return err; 7565 } 7566 7567 /** 7568 * i40e_down - Shutdown the connection processing 7569 * @vsi: the VSI being stopped 7570 **/ 7571 void i40e_down(struct i40e_vsi *vsi) 7572 { 7573 int i; 7574 7575 /* It is assumed that the caller of this function 7576 * sets the vsi->state __I40E_VSI_DOWN bit. 7577 */ 7578 if (vsi->netdev) { 7579 netif_carrier_off(vsi->netdev); 7580 netif_tx_disable(vsi->netdev); 7581 } 7582 i40e_vsi_disable_irq(vsi); 7583 i40e_vsi_stop_rings(vsi); 7584 if (vsi->type == I40E_VSI_MAIN && 7585 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7586 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7587 i40e_force_link_state(vsi->back, false); 7588 i40e_napi_disable_all(vsi); 7589 7590 for (i = 0; i < vsi->num_queue_pairs; i++) { 7591 i40e_clean_tx_ring(vsi->tx_rings[i]); 7592 if (i40e_enabled_xdp_vsi(vsi)) { 7593 /* Make sure that in-progress ndo_xdp_xmit and 7594 * ndo_xsk_wakeup calls are completed. 7595 */ 7596 synchronize_rcu(); 7597 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7598 } 7599 i40e_clean_rx_ring(vsi->rx_rings[i]); 7600 } 7601 7602 } 7603 7604 /** 7605 * i40e_validate_mqprio_qopt- validate queue mapping info 7606 * @vsi: the VSI being configured 7607 * @mqprio_qopt: queue parametrs 7608 **/ 7609 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7610 struct tc_mqprio_qopt_offload *mqprio_qopt) 7611 { 7612 u64 sum_max_rate = 0; 7613 u64 max_rate = 0; 7614 int i; 7615 7616 if (mqprio_qopt->qopt.offset[0] != 0 || 7617 mqprio_qopt->qopt.num_tc < 1 || 7618 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7619 return -EINVAL; 7620 for (i = 0; ; i++) { 7621 if (!mqprio_qopt->qopt.count[i]) 7622 return -EINVAL; 7623 if (mqprio_qopt->min_rate[i]) { 7624 dev_err(&vsi->back->pdev->dev, 7625 "Invalid min tx rate (greater than 0) specified\n"); 7626 return -EINVAL; 7627 } 7628 max_rate = mqprio_qopt->max_rate[i]; 7629 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7630 sum_max_rate += max_rate; 7631 7632 if (i >= mqprio_qopt->qopt.num_tc - 1) 7633 break; 7634 if (mqprio_qopt->qopt.offset[i + 1] != 7635 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7636 return -EINVAL; 7637 } 7638 if (vsi->num_queue_pairs < 7639 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7640 dev_err(&vsi->back->pdev->dev, 7641 "Failed to create traffic channel, insufficient number of queues.\n"); 7642 return -EINVAL; 7643 } 7644 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7645 dev_err(&vsi->back->pdev->dev, 7646 "Invalid max tx rate specified\n"); 7647 return -EINVAL; 7648 } 7649 return 0; 7650 } 7651 7652 /** 7653 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7654 * @vsi: the VSI being configured 7655 **/ 7656 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7657 { 7658 u16 qcount; 7659 int i; 7660 7661 /* Only TC0 is enabled */ 7662 vsi->tc_config.numtc = 1; 7663 vsi->tc_config.enabled_tc = 1; 7664 qcount = min_t(int, vsi->alloc_queue_pairs, 7665 i40e_pf_get_max_q_per_tc(vsi->back)); 7666 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7667 /* For the TC that is not enabled set the offset to default 7668 * queue and allocate one queue for the given TC. 7669 */ 7670 vsi->tc_config.tc_info[i].qoffset = 0; 7671 if (i == 0) 7672 vsi->tc_config.tc_info[i].qcount = qcount; 7673 else 7674 vsi->tc_config.tc_info[i].qcount = 1; 7675 vsi->tc_config.tc_info[i].netdev_tc = 0; 7676 } 7677 } 7678 7679 /** 7680 * i40e_del_macvlan_filter 7681 * @hw: pointer to the HW structure 7682 * @seid: seid of the channel VSI 7683 * @macaddr: the mac address to apply as a filter 7684 * @aq_err: store the admin Q error 7685 * 7686 * This function deletes a mac filter on the channel VSI which serves as the 7687 * macvlan. Returns 0 on success. 7688 **/ 7689 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7690 const u8 *macaddr, int *aq_err) 7691 { 7692 struct i40e_aqc_remove_macvlan_element_data element; 7693 int status; 7694 7695 memset(&element, 0, sizeof(element)); 7696 ether_addr_copy(element.mac_addr, macaddr); 7697 element.vlan_tag = 0; 7698 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7699 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7700 *aq_err = hw->aq.asq_last_status; 7701 7702 return status; 7703 } 7704 7705 /** 7706 * i40e_add_macvlan_filter 7707 * @hw: pointer to the HW structure 7708 * @seid: seid of the channel VSI 7709 * @macaddr: the mac address to apply as a filter 7710 * @aq_err: store the admin Q error 7711 * 7712 * This function adds a mac filter on the channel VSI which serves as the 7713 * macvlan. Returns 0 on success. 7714 **/ 7715 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7716 const u8 *macaddr, int *aq_err) 7717 { 7718 struct i40e_aqc_add_macvlan_element_data element; 7719 u16 cmd_flags = 0; 7720 int status; 7721 7722 ether_addr_copy(element.mac_addr, macaddr); 7723 element.vlan_tag = 0; 7724 element.queue_number = 0; 7725 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7726 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7727 element.flags = cpu_to_le16(cmd_flags); 7728 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7729 *aq_err = hw->aq.asq_last_status; 7730 7731 return status; 7732 } 7733 7734 /** 7735 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7736 * @vsi: the VSI we want to access 7737 * @ch: the channel we want to access 7738 */ 7739 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7740 { 7741 struct i40e_ring *tx_ring, *rx_ring; 7742 u16 pf_q; 7743 int i; 7744 7745 for (i = 0; i < ch->num_queue_pairs; i++) { 7746 pf_q = ch->base_queue + i; 7747 tx_ring = vsi->tx_rings[pf_q]; 7748 tx_ring->ch = NULL; 7749 rx_ring = vsi->rx_rings[pf_q]; 7750 rx_ring->ch = NULL; 7751 } 7752 } 7753 7754 /** 7755 * i40e_free_macvlan_channels 7756 * @vsi: the VSI we want to access 7757 * 7758 * This function frees the Qs of the channel VSI from 7759 * the stack and also deletes the channel VSIs which 7760 * serve as macvlans. 7761 */ 7762 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7763 { 7764 struct i40e_channel *ch, *ch_tmp; 7765 int ret; 7766 7767 if (list_empty(&vsi->macvlan_list)) 7768 return; 7769 7770 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7771 struct i40e_vsi *parent_vsi; 7772 7773 if (i40e_is_channel_macvlan(ch)) { 7774 i40e_reset_ch_rings(vsi, ch); 7775 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7776 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7777 netdev_set_sb_channel(ch->fwd->netdev, 0); 7778 kfree(ch->fwd); 7779 ch->fwd = NULL; 7780 } 7781 7782 list_del(&ch->list); 7783 parent_vsi = ch->parent_vsi; 7784 if (!parent_vsi || !ch->initialized) { 7785 kfree(ch); 7786 continue; 7787 } 7788 7789 /* remove the VSI */ 7790 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7791 NULL); 7792 if (ret) 7793 dev_err(&vsi->back->pdev->dev, 7794 "unable to remove channel (%d) for parent VSI(%d)\n", 7795 ch->seid, parent_vsi->seid); 7796 kfree(ch); 7797 } 7798 vsi->macvlan_cnt = 0; 7799 } 7800 7801 /** 7802 * i40e_fwd_ring_up - bring the macvlan device up 7803 * @vsi: the VSI we want to access 7804 * @vdev: macvlan netdevice 7805 * @fwd: the private fwd structure 7806 */ 7807 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7808 struct i40e_fwd_adapter *fwd) 7809 { 7810 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7811 int ret = 0, num_tc = 1, i, aq_err; 7812 struct i40e_pf *pf = vsi->back; 7813 struct i40e_hw *hw = &pf->hw; 7814 7815 /* Go through the list and find an available channel */ 7816 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7817 if (!i40e_is_channel_macvlan(iter)) { 7818 iter->fwd = fwd; 7819 /* record configuration for macvlan interface in vdev */ 7820 for (i = 0; i < num_tc; i++) 7821 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7822 i, 7823 iter->num_queue_pairs, 7824 iter->base_queue); 7825 for (i = 0; i < iter->num_queue_pairs; i++) { 7826 struct i40e_ring *tx_ring, *rx_ring; 7827 u16 pf_q; 7828 7829 pf_q = iter->base_queue + i; 7830 7831 /* Get to TX ring ptr */ 7832 tx_ring = vsi->tx_rings[pf_q]; 7833 tx_ring->ch = iter; 7834 7835 /* Get the RX ring ptr */ 7836 rx_ring = vsi->rx_rings[pf_q]; 7837 rx_ring->ch = iter; 7838 } 7839 ch = iter; 7840 break; 7841 } 7842 } 7843 7844 if (!ch) 7845 return -EINVAL; 7846 7847 /* Guarantee all rings are updated before we update the 7848 * MAC address filter. 7849 */ 7850 wmb(); 7851 7852 /* Add a mac filter */ 7853 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7854 if (ret) { 7855 /* if we cannot add the MAC rule then disable the offload */ 7856 macvlan_release_l2fw_offload(vdev); 7857 for (i = 0; i < ch->num_queue_pairs; i++) { 7858 struct i40e_ring *rx_ring; 7859 u16 pf_q; 7860 7861 pf_q = ch->base_queue + i; 7862 rx_ring = vsi->rx_rings[pf_q]; 7863 rx_ring->netdev = NULL; 7864 } 7865 dev_info(&pf->pdev->dev, 7866 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7867 ERR_PTR(ret), 7868 i40e_aq_str(hw, aq_err)); 7869 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7870 } 7871 7872 return ret; 7873 } 7874 7875 /** 7876 * i40e_setup_macvlans - create the channels which will be macvlans 7877 * @vsi: the VSI we want to access 7878 * @macvlan_cnt: no. of macvlans to be setup 7879 * @qcnt: no. of Qs per macvlan 7880 * @vdev: macvlan netdevice 7881 */ 7882 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7883 struct net_device *vdev) 7884 { 7885 struct i40e_pf *pf = vsi->back; 7886 struct i40e_hw *hw = &pf->hw; 7887 struct i40e_vsi_context ctxt; 7888 u16 sections, qmap, num_qps; 7889 struct i40e_channel *ch; 7890 int i, pow, ret = 0; 7891 u8 offset = 0; 7892 7893 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7894 return -EINVAL; 7895 7896 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7897 7898 /* find the next higher power-of-2 of num queue pairs */ 7899 pow = fls(roundup_pow_of_two(num_qps) - 1); 7900 7901 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7902 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7903 7904 /* Setup context bits for the main VSI */ 7905 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7906 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7907 memset(&ctxt, 0, sizeof(ctxt)); 7908 ctxt.seid = vsi->seid; 7909 ctxt.pf_num = vsi->back->hw.pf_id; 7910 ctxt.vf_num = 0; 7911 ctxt.uplink_seid = vsi->uplink_seid; 7912 ctxt.info = vsi->info; 7913 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7914 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7915 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7916 ctxt.info.valid_sections |= cpu_to_le16(sections); 7917 7918 /* Reconfigure RSS for main VSI with new max queue count */ 7919 vsi->rss_size = max_t(u16, num_qps, qcnt); 7920 ret = i40e_vsi_config_rss(vsi); 7921 if (ret) { 7922 dev_info(&pf->pdev->dev, 7923 "Failed to reconfig RSS for num_queues (%u)\n", 7924 vsi->rss_size); 7925 return ret; 7926 } 7927 vsi->reconfig_rss = true; 7928 dev_dbg(&vsi->back->pdev->dev, 7929 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7930 vsi->next_base_queue = num_qps; 7931 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7932 7933 /* Update the VSI after updating the VSI queue-mapping 7934 * information 7935 */ 7936 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7937 if (ret) { 7938 dev_info(&pf->pdev->dev, 7939 "Update vsi tc config failed, err %pe aq_err %s\n", 7940 ERR_PTR(ret), 7941 i40e_aq_str(hw, hw->aq.asq_last_status)); 7942 return ret; 7943 } 7944 /* update the local VSI info with updated queue map */ 7945 i40e_vsi_update_queue_map(vsi, &ctxt); 7946 vsi->info.valid_sections = 0; 7947 7948 /* Create channels for macvlans */ 7949 INIT_LIST_HEAD(&vsi->macvlan_list); 7950 for (i = 0; i < macvlan_cnt; i++) { 7951 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7952 if (!ch) { 7953 ret = -ENOMEM; 7954 goto err_free; 7955 } 7956 INIT_LIST_HEAD(&ch->list); 7957 ch->num_queue_pairs = qcnt; 7958 if (!i40e_setup_channel(pf, vsi, ch)) { 7959 ret = -EINVAL; 7960 kfree(ch); 7961 goto err_free; 7962 } 7963 ch->parent_vsi = vsi; 7964 vsi->cnt_q_avail -= ch->num_queue_pairs; 7965 vsi->macvlan_cnt++; 7966 list_add_tail(&ch->list, &vsi->macvlan_list); 7967 } 7968 7969 return ret; 7970 7971 err_free: 7972 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7973 i40e_free_macvlan_channels(vsi); 7974 7975 return ret; 7976 } 7977 7978 /** 7979 * i40e_fwd_add - configure macvlans 7980 * @netdev: net device to configure 7981 * @vdev: macvlan netdevice 7982 **/ 7983 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7984 { 7985 struct i40e_netdev_priv *np = netdev_priv(netdev); 7986 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7987 struct i40e_vsi *vsi = np->vsi; 7988 struct i40e_pf *pf = vsi->back; 7989 struct i40e_fwd_adapter *fwd; 7990 int avail_macvlan, ret; 7991 7992 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 7993 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7994 return ERR_PTR(-EINVAL); 7995 } 7996 if (i40e_is_tc_mqprio_enabled(pf)) { 7997 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7998 return ERR_PTR(-EINVAL); 7999 } 8000 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 8001 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 8002 return ERR_PTR(-EINVAL); 8003 } 8004 8005 /* The macvlan device has to be a single Q device so that the 8006 * tc_to_txq field can be reused to pick the tx queue. 8007 */ 8008 if (netif_is_multiqueue(vdev)) 8009 return ERR_PTR(-ERANGE); 8010 8011 if (!vsi->macvlan_cnt) { 8012 /* reserve bit 0 for the pf device */ 8013 set_bit(0, vsi->fwd_bitmask); 8014 8015 /* Try to reserve as many queues as possible for macvlans. First 8016 * reserve 3/4th of max vectors, then half, then quarter and 8017 * calculate Qs per macvlan as you go 8018 */ 8019 vectors = pf->num_lan_msix; 8020 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8021 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8022 q_per_macvlan = 4; 8023 macvlan_cnt = (vectors - 32) / 4; 8024 } else if (vectors <= 64 && vectors > 32) { 8025 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8026 q_per_macvlan = 2; 8027 macvlan_cnt = (vectors - 16) / 2; 8028 } else if (vectors <= 32 && vectors > 16) { 8029 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8030 q_per_macvlan = 1; 8031 macvlan_cnt = vectors - 16; 8032 } else if (vectors <= 16 && vectors > 8) { 8033 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8034 q_per_macvlan = 1; 8035 macvlan_cnt = vectors - 8; 8036 } else { 8037 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8038 q_per_macvlan = 1; 8039 macvlan_cnt = vectors - 1; 8040 } 8041 8042 if (macvlan_cnt == 0) 8043 return ERR_PTR(-EBUSY); 8044 8045 /* Quiesce VSI queues */ 8046 i40e_quiesce_vsi(vsi); 8047 8048 /* sets up the macvlans but does not "enable" them */ 8049 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8050 vdev); 8051 if (ret) 8052 return ERR_PTR(ret); 8053 8054 /* Unquiesce VSI */ 8055 i40e_unquiesce_vsi(vsi); 8056 } 8057 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8058 vsi->macvlan_cnt); 8059 if (avail_macvlan >= I40E_MAX_MACVLANS) 8060 return ERR_PTR(-EBUSY); 8061 8062 /* create the fwd struct */ 8063 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8064 if (!fwd) 8065 return ERR_PTR(-ENOMEM); 8066 8067 set_bit(avail_macvlan, vsi->fwd_bitmask); 8068 fwd->bit_no = avail_macvlan; 8069 netdev_set_sb_channel(vdev, avail_macvlan); 8070 fwd->netdev = vdev; 8071 8072 if (!netif_running(netdev)) 8073 return fwd; 8074 8075 /* Set fwd ring up */ 8076 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8077 if (ret) { 8078 /* unbind the queues and drop the subordinate channel config */ 8079 netdev_unbind_sb_channel(netdev, vdev); 8080 netdev_set_sb_channel(vdev, 0); 8081 8082 kfree(fwd); 8083 return ERR_PTR(-EINVAL); 8084 } 8085 8086 return fwd; 8087 } 8088 8089 /** 8090 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8091 * @vsi: the VSI we want to access 8092 */ 8093 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8094 { 8095 struct i40e_channel *ch, *ch_tmp; 8096 struct i40e_pf *pf = vsi->back; 8097 struct i40e_hw *hw = &pf->hw; 8098 int aq_err, ret = 0; 8099 8100 if (list_empty(&vsi->macvlan_list)) 8101 return; 8102 8103 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8104 if (i40e_is_channel_macvlan(ch)) { 8105 ret = i40e_del_macvlan_filter(hw, ch->seid, 8106 i40e_channel_mac(ch), 8107 &aq_err); 8108 if (!ret) { 8109 /* Reset queue contexts */ 8110 i40e_reset_ch_rings(vsi, ch); 8111 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8112 netdev_unbind_sb_channel(vsi->netdev, 8113 ch->fwd->netdev); 8114 netdev_set_sb_channel(ch->fwd->netdev, 0); 8115 kfree(ch->fwd); 8116 ch->fwd = NULL; 8117 } 8118 } 8119 } 8120 } 8121 8122 /** 8123 * i40e_fwd_del - delete macvlan interfaces 8124 * @netdev: net device to configure 8125 * @vdev: macvlan netdevice 8126 */ 8127 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8128 { 8129 struct i40e_netdev_priv *np = netdev_priv(netdev); 8130 struct i40e_fwd_adapter *fwd = vdev; 8131 struct i40e_channel *ch, *ch_tmp; 8132 struct i40e_vsi *vsi = np->vsi; 8133 struct i40e_pf *pf = vsi->back; 8134 struct i40e_hw *hw = &pf->hw; 8135 int aq_err, ret = 0; 8136 8137 /* Find the channel associated with the macvlan and del mac filter */ 8138 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8139 if (i40e_is_channel_macvlan(ch) && 8140 ether_addr_equal(i40e_channel_mac(ch), 8141 fwd->netdev->dev_addr)) { 8142 ret = i40e_del_macvlan_filter(hw, ch->seid, 8143 i40e_channel_mac(ch), 8144 &aq_err); 8145 if (!ret) { 8146 /* Reset queue contexts */ 8147 i40e_reset_ch_rings(vsi, ch); 8148 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8149 netdev_unbind_sb_channel(netdev, fwd->netdev); 8150 netdev_set_sb_channel(fwd->netdev, 0); 8151 kfree(ch->fwd); 8152 ch->fwd = NULL; 8153 } else { 8154 dev_info(&pf->pdev->dev, 8155 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8156 ERR_PTR(ret), 8157 i40e_aq_str(hw, aq_err)); 8158 } 8159 break; 8160 } 8161 } 8162 } 8163 8164 /** 8165 * i40e_setup_tc - configure multiple traffic classes 8166 * @netdev: net device to configure 8167 * @type_data: tc offload data 8168 **/ 8169 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8170 { 8171 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8172 struct i40e_netdev_priv *np = netdev_priv(netdev); 8173 struct i40e_vsi *vsi = np->vsi; 8174 struct i40e_pf *pf = vsi->back; 8175 u8 enabled_tc = 0, num_tc, hw; 8176 bool need_reset = false; 8177 int old_queue_pairs; 8178 int ret = -EINVAL; 8179 u16 mode; 8180 int i; 8181 8182 old_queue_pairs = vsi->num_queue_pairs; 8183 num_tc = mqprio_qopt->qopt.num_tc; 8184 hw = mqprio_qopt->qopt.hw; 8185 mode = mqprio_qopt->mode; 8186 if (!hw) { 8187 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8188 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8189 goto config_tc; 8190 } 8191 8192 /* Check if MFP enabled */ 8193 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8194 netdev_info(netdev, 8195 "Configuring TC not supported in MFP mode\n"); 8196 return ret; 8197 } 8198 switch (mode) { 8199 case TC_MQPRIO_MODE_DCB: 8200 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8201 8202 /* Check if DCB enabled to continue */ 8203 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8204 netdev_info(netdev, 8205 "DCB is not enabled for adapter\n"); 8206 return ret; 8207 } 8208 8209 /* Check whether tc count is within enabled limit */ 8210 if (num_tc > i40e_pf_get_num_tc(pf)) { 8211 netdev_info(netdev, 8212 "TC count greater than enabled on link for adapter\n"); 8213 return ret; 8214 } 8215 break; 8216 case TC_MQPRIO_MODE_CHANNEL: 8217 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8218 netdev_info(netdev, 8219 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8220 return ret; 8221 } 8222 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8223 return ret; 8224 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8225 if (ret) 8226 return ret; 8227 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8228 sizeof(*mqprio_qopt)); 8229 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8230 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8231 break; 8232 default: 8233 return -EINVAL; 8234 } 8235 8236 config_tc: 8237 /* Generate TC map for number of tc requested */ 8238 for (i = 0; i < num_tc; i++) 8239 enabled_tc |= BIT(i); 8240 8241 /* Requesting same TC configuration as already enabled */ 8242 if (enabled_tc == vsi->tc_config.enabled_tc && 8243 mode != TC_MQPRIO_MODE_CHANNEL) 8244 return 0; 8245 8246 /* Quiesce VSI queues */ 8247 i40e_quiesce_vsi(vsi); 8248 8249 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8250 i40e_remove_queue_channels(vsi); 8251 8252 /* Configure VSI for enabled TCs */ 8253 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8254 if (ret) { 8255 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8256 vsi->seid); 8257 need_reset = true; 8258 goto exit; 8259 } else if (enabled_tc && 8260 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8261 netdev_info(netdev, 8262 "Failed to create channel. Override queues (%u) not power of 2\n", 8263 vsi->tc_config.tc_info[0].qcount); 8264 ret = -EINVAL; 8265 need_reset = true; 8266 goto exit; 8267 } 8268 8269 dev_info(&vsi->back->pdev->dev, 8270 "Setup channel (id:%u) utilizing num_queues %d\n", 8271 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8272 8273 if (i40e_is_tc_mqprio_enabled(pf)) { 8274 if (vsi->mqprio_qopt.max_rate[0]) { 8275 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8276 vsi->mqprio_qopt.max_rate[0]); 8277 8278 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8279 if (!ret) { 8280 u64 credits = max_tx_rate; 8281 8282 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8283 dev_dbg(&vsi->back->pdev->dev, 8284 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8285 max_tx_rate, 8286 credits, 8287 vsi->seid); 8288 } else { 8289 need_reset = true; 8290 goto exit; 8291 } 8292 } 8293 ret = i40e_configure_queue_channels(vsi); 8294 if (ret) { 8295 vsi->num_queue_pairs = old_queue_pairs; 8296 netdev_info(netdev, 8297 "Failed configuring queue channels\n"); 8298 need_reset = true; 8299 goto exit; 8300 } 8301 } 8302 8303 exit: 8304 /* Reset the configuration data to defaults, only TC0 is enabled */ 8305 if (need_reset) { 8306 i40e_vsi_set_default_tc_config(vsi); 8307 need_reset = false; 8308 } 8309 8310 /* Unquiesce VSI */ 8311 i40e_unquiesce_vsi(vsi); 8312 return ret; 8313 } 8314 8315 /** 8316 * i40e_set_cld_element - sets cloud filter element data 8317 * @filter: cloud filter rule 8318 * @cld: ptr to cloud filter element data 8319 * 8320 * This is helper function to copy data into cloud filter element 8321 **/ 8322 static inline void 8323 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8324 struct i40e_aqc_cloud_filters_element_data *cld) 8325 { 8326 u32 ipa; 8327 int i; 8328 8329 memset(cld, 0, sizeof(*cld)); 8330 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8331 ether_addr_copy(cld->inner_mac, filter->src_mac); 8332 8333 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8334 return; 8335 8336 if (filter->n_proto == ETH_P_IPV6) { 8337 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8338 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8339 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8340 8341 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8342 } 8343 } else { 8344 ipa = be32_to_cpu(filter->dst_ipv4); 8345 8346 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8347 } 8348 8349 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8350 8351 /* tenant_id is not supported by FW now, once the support is enabled 8352 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8353 */ 8354 if (filter->tenant_id) 8355 return; 8356 } 8357 8358 /** 8359 * i40e_add_del_cloud_filter - Add/del cloud filter 8360 * @vsi: pointer to VSI 8361 * @filter: cloud filter rule 8362 * @add: if true, add, if false, delete 8363 * 8364 * Add or delete a cloud filter for a specific flow spec. 8365 * Returns 0 if the filter were successfully added. 8366 **/ 8367 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8368 struct i40e_cloud_filter *filter, bool add) 8369 { 8370 struct i40e_aqc_cloud_filters_element_data cld_filter; 8371 struct i40e_pf *pf = vsi->back; 8372 int ret; 8373 static const u16 flag_table[128] = { 8374 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8375 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8376 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8377 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8378 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8379 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8380 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8381 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8382 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8383 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8384 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8385 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8386 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8387 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8388 }; 8389 8390 if (filter->flags >= ARRAY_SIZE(flag_table)) 8391 return -EIO; 8392 8393 memset(&cld_filter, 0, sizeof(cld_filter)); 8394 8395 /* copy element needed to add cloud filter from filter */ 8396 i40e_set_cld_element(filter, &cld_filter); 8397 8398 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8399 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8400 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8401 8402 if (filter->n_proto == ETH_P_IPV6) 8403 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8404 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8405 else 8406 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8407 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8408 8409 if (add) 8410 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8411 &cld_filter, 1); 8412 else 8413 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8414 &cld_filter, 1); 8415 if (ret) 8416 dev_dbg(&pf->pdev->dev, 8417 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8418 add ? "add" : "delete", filter->dst_port, ret, 8419 pf->hw.aq.asq_last_status); 8420 else 8421 dev_info(&pf->pdev->dev, 8422 "%s cloud filter for VSI: %d\n", 8423 add ? "Added" : "Deleted", filter->seid); 8424 return ret; 8425 } 8426 8427 /** 8428 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8429 * @vsi: pointer to VSI 8430 * @filter: cloud filter rule 8431 * @add: if true, add, if false, delete 8432 * 8433 * Add or delete a cloud filter for a specific flow spec using big buffer. 8434 * Returns 0 if the filter were successfully added. 8435 **/ 8436 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8437 struct i40e_cloud_filter *filter, 8438 bool add) 8439 { 8440 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8441 struct i40e_pf *pf = vsi->back; 8442 int ret; 8443 8444 /* Both (src/dst) valid mac_addr are not supported */ 8445 if ((is_valid_ether_addr(filter->dst_mac) && 8446 is_valid_ether_addr(filter->src_mac)) || 8447 (is_multicast_ether_addr(filter->dst_mac) && 8448 is_multicast_ether_addr(filter->src_mac))) 8449 return -EOPNOTSUPP; 8450 8451 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8452 * ports are not supported via big buffer now. 8453 */ 8454 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8455 return -EOPNOTSUPP; 8456 8457 /* adding filter using src_port/src_ip is not supported at this stage */ 8458 if (filter->src_port || 8459 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8460 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8461 return -EOPNOTSUPP; 8462 8463 memset(&cld_filter, 0, sizeof(cld_filter)); 8464 8465 /* copy element needed to add cloud filter from filter */ 8466 i40e_set_cld_element(filter, &cld_filter.element); 8467 8468 if (is_valid_ether_addr(filter->dst_mac) || 8469 is_valid_ether_addr(filter->src_mac) || 8470 is_multicast_ether_addr(filter->dst_mac) || 8471 is_multicast_ether_addr(filter->src_mac)) { 8472 /* MAC + IP : unsupported mode */ 8473 if (filter->dst_ipv4) 8474 return -EOPNOTSUPP; 8475 8476 /* since we validated that L4 port must be valid before 8477 * we get here, start with respective "flags" value 8478 * and update if vlan is present or not 8479 */ 8480 cld_filter.element.flags = 8481 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8482 8483 if (filter->vlan_id) { 8484 cld_filter.element.flags = 8485 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8486 } 8487 8488 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8489 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8490 cld_filter.element.flags = 8491 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8492 if (filter->n_proto == ETH_P_IPV6) 8493 cld_filter.element.flags |= 8494 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8495 else 8496 cld_filter.element.flags |= 8497 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8498 } else { 8499 dev_err(&pf->pdev->dev, 8500 "either mac or ip has to be valid for cloud filter\n"); 8501 return -EINVAL; 8502 } 8503 8504 /* Now copy L4 port in Byte 6..7 in general fields */ 8505 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8506 be16_to_cpu(filter->dst_port); 8507 8508 if (add) { 8509 /* Validate current device switch mode, change if necessary */ 8510 ret = i40e_validate_and_set_switch_mode(vsi); 8511 if (ret) { 8512 dev_err(&pf->pdev->dev, 8513 "failed to set switch mode, ret %d\n", 8514 ret); 8515 return ret; 8516 } 8517 8518 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8519 &cld_filter, 1); 8520 } else { 8521 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8522 &cld_filter, 1); 8523 } 8524 8525 if (ret) 8526 dev_dbg(&pf->pdev->dev, 8527 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8528 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8529 else 8530 dev_info(&pf->pdev->dev, 8531 "%s cloud filter for VSI: %d, L4 port: %d\n", 8532 add ? "add" : "delete", filter->seid, 8533 ntohs(filter->dst_port)); 8534 return ret; 8535 } 8536 8537 /** 8538 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8539 * @vsi: Pointer to VSI 8540 * @f: Pointer to struct flow_cls_offload 8541 * @filter: Pointer to cloud filter structure 8542 * 8543 **/ 8544 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8545 struct flow_cls_offload *f, 8546 struct i40e_cloud_filter *filter) 8547 { 8548 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8549 struct flow_dissector *dissector = rule->match.dissector; 8550 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8551 struct i40e_pf *pf = vsi->back; 8552 u8 field_flags = 0; 8553 8554 if (dissector->used_keys & 8555 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8556 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8557 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8558 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8559 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8560 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8561 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8562 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8563 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8564 dissector->used_keys); 8565 return -EOPNOTSUPP; 8566 } 8567 8568 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8569 struct flow_match_enc_keyid match; 8570 8571 flow_rule_match_enc_keyid(rule, &match); 8572 if (match.mask->keyid != 0) 8573 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8574 8575 filter->tenant_id = be32_to_cpu(match.key->keyid); 8576 } 8577 8578 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8579 struct flow_match_basic match; 8580 8581 flow_rule_match_basic(rule, &match); 8582 n_proto_key = ntohs(match.key->n_proto); 8583 n_proto_mask = ntohs(match.mask->n_proto); 8584 8585 if (n_proto_key == ETH_P_ALL) { 8586 n_proto_key = 0; 8587 n_proto_mask = 0; 8588 } 8589 filter->n_proto = n_proto_key & n_proto_mask; 8590 filter->ip_proto = match.key->ip_proto; 8591 } 8592 8593 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8594 struct flow_match_eth_addrs match; 8595 8596 flow_rule_match_eth_addrs(rule, &match); 8597 8598 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8599 if (!is_zero_ether_addr(match.mask->dst)) { 8600 if (is_broadcast_ether_addr(match.mask->dst)) { 8601 field_flags |= I40E_CLOUD_FIELD_OMAC; 8602 } else { 8603 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8604 match.mask->dst); 8605 return -EIO; 8606 } 8607 } 8608 8609 if (!is_zero_ether_addr(match.mask->src)) { 8610 if (is_broadcast_ether_addr(match.mask->src)) { 8611 field_flags |= I40E_CLOUD_FIELD_IMAC; 8612 } else { 8613 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8614 match.mask->src); 8615 return -EIO; 8616 } 8617 } 8618 ether_addr_copy(filter->dst_mac, match.key->dst); 8619 ether_addr_copy(filter->src_mac, match.key->src); 8620 } 8621 8622 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8623 struct flow_match_vlan match; 8624 8625 flow_rule_match_vlan(rule, &match); 8626 if (match.mask->vlan_id) { 8627 if (match.mask->vlan_id == VLAN_VID_MASK) { 8628 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8629 8630 } else { 8631 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8632 match.mask->vlan_id); 8633 return -EIO; 8634 } 8635 } 8636 8637 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8638 } 8639 8640 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8641 struct flow_match_control match; 8642 8643 flow_rule_match_control(rule, &match); 8644 addr_type = match.key->addr_type; 8645 } 8646 8647 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8648 struct flow_match_ipv4_addrs match; 8649 8650 flow_rule_match_ipv4_addrs(rule, &match); 8651 if (match.mask->dst) { 8652 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8653 field_flags |= I40E_CLOUD_FIELD_IIP; 8654 } else { 8655 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8656 &match.mask->dst); 8657 return -EIO; 8658 } 8659 } 8660 8661 if (match.mask->src) { 8662 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8663 field_flags |= I40E_CLOUD_FIELD_IIP; 8664 } else { 8665 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8666 &match.mask->src); 8667 return -EIO; 8668 } 8669 } 8670 8671 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8672 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8673 return -EIO; 8674 } 8675 filter->dst_ipv4 = match.key->dst; 8676 filter->src_ipv4 = match.key->src; 8677 } 8678 8679 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8680 struct flow_match_ipv6_addrs match; 8681 8682 flow_rule_match_ipv6_addrs(rule, &match); 8683 8684 /* src and dest IPV6 address should not be LOOPBACK 8685 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8686 */ 8687 if (ipv6_addr_loopback(&match.key->dst) || 8688 ipv6_addr_loopback(&match.key->src)) { 8689 dev_err(&pf->pdev->dev, 8690 "Bad ipv6, addr is LOOPBACK\n"); 8691 return -EIO; 8692 } 8693 if (!ipv6_addr_any(&match.mask->dst) || 8694 !ipv6_addr_any(&match.mask->src)) 8695 field_flags |= I40E_CLOUD_FIELD_IIP; 8696 8697 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8698 sizeof(filter->src_ipv6)); 8699 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8700 sizeof(filter->dst_ipv6)); 8701 } 8702 8703 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8704 struct flow_match_ports match; 8705 8706 flow_rule_match_ports(rule, &match); 8707 if (match.mask->src) { 8708 if (match.mask->src == cpu_to_be16(0xffff)) { 8709 field_flags |= I40E_CLOUD_FIELD_IIP; 8710 } else { 8711 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8712 be16_to_cpu(match.mask->src)); 8713 return -EIO; 8714 } 8715 } 8716 8717 if (match.mask->dst) { 8718 if (match.mask->dst == cpu_to_be16(0xffff)) { 8719 field_flags |= I40E_CLOUD_FIELD_IIP; 8720 } else { 8721 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8722 be16_to_cpu(match.mask->dst)); 8723 return -EIO; 8724 } 8725 } 8726 8727 filter->dst_port = match.key->dst; 8728 filter->src_port = match.key->src; 8729 8730 switch (filter->ip_proto) { 8731 case IPPROTO_TCP: 8732 case IPPROTO_UDP: 8733 break; 8734 default: 8735 dev_err(&pf->pdev->dev, 8736 "Only UDP and TCP transport are supported\n"); 8737 return -EINVAL; 8738 } 8739 } 8740 filter->flags = field_flags; 8741 return 0; 8742 } 8743 8744 /** 8745 * i40e_handle_tclass: Forward to a traffic class on the device 8746 * @vsi: Pointer to VSI 8747 * @tc: traffic class index on the device 8748 * @filter: Pointer to cloud filter structure 8749 * 8750 **/ 8751 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8752 struct i40e_cloud_filter *filter) 8753 { 8754 struct i40e_channel *ch, *ch_tmp; 8755 8756 /* direct to a traffic class on the same device */ 8757 if (tc == 0) { 8758 filter->seid = vsi->seid; 8759 return 0; 8760 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8761 if (!filter->dst_port) { 8762 dev_err(&vsi->back->pdev->dev, 8763 "Specify destination port to direct to traffic class that is not default\n"); 8764 return -EINVAL; 8765 } 8766 if (list_empty(&vsi->ch_list)) 8767 return -EINVAL; 8768 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8769 list) { 8770 if (ch->seid == vsi->tc_seid_map[tc]) 8771 filter->seid = ch->seid; 8772 } 8773 return 0; 8774 } 8775 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8776 return -EINVAL; 8777 } 8778 8779 /** 8780 * i40e_configure_clsflower - Configure tc flower filters 8781 * @vsi: Pointer to VSI 8782 * @cls_flower: Pointer to struct flow_cls_offload 8783 * 8784 **/ 8785 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8786 struct flow_cls_offload *cls_flower) 8787 { 8788 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8789 struct i40e_cloud_filter *filter = NULL; 8790 struct i40e_pf *pf = vsi->back; 8791 int err = 0; 8792 8793 if (tc < 0) { 8794 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8795 return -EOPNOTSUPP; 8796 } 8797 8798 if (!tc) { 8799 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8800 return -EINVAL; 8801 } 8802 8803 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8804 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8805 return -EBUSY; 8806 8807 if (pf->fdir_pf_active_filters || 8808 (!hlist_empty(&pf->fdir_filter_list))) { 8809 dev_err(&vsi->back->pdev->dev, 8810 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8811 return -EINVAL; 8812 } 8813 8814 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8815 dev_err(&vsi->back->pdev->dev, 8816 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8817 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8818 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8819 } 8820 8821 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8822 if (!filter) 8823 return -ENOMEM; 8824 8825 filter->cookie = cls_flower->cookie; 8826 8827 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8828 if (err < 0) 8829 goto err; 8830 8831 err = i40e_handle_tclass(vsi, tc, filter); 8832 if (err < 0) 8833 goto err; 8834 8835 /* Add cloud filter */ 8836 if (filter->dst_port) 8837 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8838 else 8839 err = i40e_add_del_cloud_filter(vsi, filter, true); 8840 8841 if (err) { 8842 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8843 err); 8844 goto err; 8845 } 8846 8847 /* add filter to the ordered list */ 8848 INIT_HLIST_NODE(&filter->cloud_node); 8849 8850 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8851 8852 pf->num_cloud_filters++; 8853 8854 return err; 8855 err: 8856 kfree(filter); 8857 return err; 8858 } 8859 8860 /** 8861 * i40e_find_cloud_filter - Find the could filter in the list 8862 * @vsi: Pointer to VSI 8863 * @cookie: filter specific cookie 8864 * 8865 **/ 8866 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8867 unsigned long *cookie) 8868 { 8869 struct i40e_cloud_filter *filter = NULL; 8870 struct hlist_node *node2; 8871 8872 hlist_for_each_entry_safe(filter, node2, 8873 &vsi->back->cloud_filter_list, cloud_node) 8874 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8875 return filter; 8876 return NULL; 8877 } 8878 8879 /** 8880 * i40e_delete_clsflower - Remove tc flower filters 8881 * @vsi: Pointer to VSI 8882 * @cls_flower: Pointer to struct flow_cls_offload 8883 * 8884 **/ 8885 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8886 struct flow_cls_offload *cls_flower) 8887 { 8888 struct i40e_cloud_filter *filter = NULL; 8889 struct i40e_pf *pf = vsi->back; 8890 int err = 0; 8891 8892 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8893 8894 if (!filter) 8895 return -EINVAL; 8896 8897 hash_del(&filter->cloud_node); 8898 8899 if (filter->dst_port) 8900 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8901 else 8902 err = i40e_add_del_cloud_filter(vsi, filter, false); 8903 8904 kfree(filter); 8905 if (err) { 8906 dev_err(&pf->pdev->dev, 8907 "Failed to delete cloud filter, err %pe\n", 8908 ERR_PTR(err)); 8909 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8910 } 8911 8912 pf->num_cloud_filters--; 8913 if (!pf->num_cloud_filters) 8914 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8915 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8916 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8917 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8918 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8919 } 8920 return 0; 8921 } 8922 8923 /** 8924 * i40e_setup_tc_cls_flower - flower classifier offloads 8925 * @np: net device to configure 8926 * @cls_flower: offload data 8927 **/ 8928 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8929 struct flow_cls_offload *cls_flower) 8930 { 8931 struct i40e_vsi *vsi = np->vsi; 8932 8933 switch (cls_flower->command) { 8934 case FLOW_CLS_REPLACE: 8935 return i40e_configure_clsflower(vsi, cls_flower); 8936 case FLOW_CLS_DESTROY: 8937 return i40e_delete_clsflower(vsi, cls_flower); 8938 case FLOW_CLS_STATS: 8939 return -EOPNOTSUPP; 8940 default: 8941 return -EOPNOTSUPP; 8942 } 8943 } 8944 8945 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8946 void *cb_priv) 8947 { 8948 struct i40e_netdev_priv *np = cb_priv; 8949 8950 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8951 return -EOPNOTSUPP; 8952 8953 switch (type) { 8954 case TC_SETUP_CLSFLOWER: 8955 return i40e_setup_tc_cls_flower(np, type_data); 8956 8957 default: 8958 return -EOPNOTSUPP; 8959 } 8960 } 8961 8962 static LIST_HEAD(i40e_block_cb_list); 8963 8964 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8965 void *type_data) 8966 { 8967 struct i40e_netdev_priv *np = netdev_priv(netdev); 8968 8969 switch (type) { 8970 case TC_SETUP_QDISC_MQPRIO: 8971 return i40e_setup_tc(netdev, type_data); 8972 case TC_SETUP_BLOCK: 8973 return flow_block_cb_setup_simple(type_data, 8974 &i40e_block_cb_list, 8975 i40e_setup_tc_block_cb, 8976 np, np, true); 8977 default: 8978 return -EOPNOTSUPP; 8979 } 8980 } 8981 8982 /** 8983 * i40e_open - Called when a network interface is made active 8984 * @netdev: network interface device structure 8985 * 8986 * The open entry point is called when a network interface is made 8987 * active by the system (IFF_UP). At this point all resources needed 8988 * for transmit and receive operations are allocated, the interrupt 8989 * handler is registered with the OS, the netdev watchdog subtask is 8990 * enabled, and the stack is notified that the interface is ready. 8991 * 8992 * Returns 0 on success, negative value on failure 8993 **/ 8994 int i40e_open(struct net_device *netdev) 8995 { 8996 struct i40e_netdev_priv *np = netdev_priv(netdev); 8997 struct i40e_vsi *vsi = np->vsi; 8998 struct i40e_pf *pf = vsi->back; 8999 int err; 9000 9001 /* disallow open during test or if eeprom is broken */ 9002 if (test_bit(__I40E_TESTING, pf->state) || 9003 test_bit(__I40E_BAD_EEPROM, pf->state)) 9004 return -EBUSY; 9005 9006 netif_carrier_off(netdev); 9007 9008 if (i40e_force_link_state(pf, true)) 9009 return -EAGAIN; 9010 9011 err = i40e_vsi_open(vsi); 9012 if (err) 9013 return err; 9014 9015 /* configure global TSO hardware offload settings */ 9016 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9017 TCP_FLAG_FIN) >> 16); 9018 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9019 TCP_FLAG_FIN | 9020 TCP_FLAG_CWR) >> 16); 9021 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9022 udp_tunnel_get_rx_info(netdev); 9023 9024 return 0; 9025 } 9026 9027 /** 9028 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9029 * @vsi: vsi structure 9030 * 9031 * This updates netdev's number of tx/rx queues 9032 * 9033 * Returns status of setting tx/rx queues 9034 **/ 9035 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9036 { 9037 int ret; 9038 9039 ret = netif_set_real_num_rx_queues(vsi->netdev, 9040 vsi->num_queue_pairs); 9041 if (ret) 9042 return ret; 9043 9044 return netif_set_real_num_tx_queues(vsi->netdev, 9045 vsi->num_queue_pairs); 9046 } 9047 9048 /** 9049 * i40e_vsi_open - 9050 * @vsi: the VSI to open 9051 * 9052 * Finish initialization of the VSI. 9053 * 9054 * Returns 0 on success, negative value on failure 9055 * 9056 * Note: expects to be called while under rtnl_lock() 9057 **/ 9058 int i40e_vsi_open(struct i40e_vsi *vsi) 9059 { 9060 struct i40e_pf *pf = vsi->back; 9061 char int_name[I40E_INT_NAME_STR_LEN]; 9062 int err; 9063 9064 /* allocate descriptors */ 9065 err = i40e_vsi_setup_tx_resources(vsi); 9066 if (err) 9067 goto err_setup_tx; 9068 err = i40e_vsi_setup_rx_resources(vsi); 9069 if (err) 9070 goto err_setup_rx; 9071 9072 err = i40e_vsi_configure(vsi); 9073 if (err) 9074 goto err_setup_rx; 9075 9076 if (vsi->netdev) { 9077 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9078 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9079 err = i40e_vsi_request_irq(vsi, int_name); 9080 if (err) 9081 goto err_setup_rx; 9082 9083 /* Notify the stack of the actual queue counts. */ 9084 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9085 if (err) 9086 goto err_set_queues; 9087 9088 } else if (vsi->type == I40E_VSI_FDIR) { 9089 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9090 dev_driver_string(&pf->pdev->dev), 9091 dev_name(&pf->pdev->dev)); 9092 err = i40e_vsi_request_irq(vsi, int_name); 9093 if (err) 9094 goto err_setup_rx; 9095 9096 } else { 9097 err = -EINVAL; 9098 goto err_setup_rx; 9099 } 9100 9101 err = i40e_up_complete(vsi); 9102 if (err) 9103 goto err_up_complete; 9104 9105 return 0; 9106 9107 err_up_complete: 9108 i40e_down(vsi); 9109 err_set_queues: 9110 i40e_vsi_free_irq(vsi); 9111 err_setup_rx: 9112 i40e_vsi_free_rx_resources(vsi); 9113 err_setup_tx: 9114 i40e_vsi_free_tx_resources(vsi); 9115 if (vsi == pf->vsi[pf->lan_vsi]) 9116 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9117 9118 return err; 9119 } 9120 9121 /** 9122 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9123 * @pf: Pointer to PF 9124 * 9125 * This function destroys the hlist where all the Flow Director 9126 * filters were saved. 9127 **/ 9128 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9129 { 9130 struct i40e_fdir_filter *filter; 9131 struct i40e_flex_pit *pit_entry, *tmp; 9132 struct hlist_node *node2; 9133 9134 hlist_for_each_entry_safe(filter, node2, 9135 &pf->fdir_filter_list, fdir_node) { 9136 hlist_del(&filter->fdir_node); 9137 kfree(filter); 9138 } 9139 9140 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9141 list_del(&pit_entry->list); 9142 kfree(pit_entry); 9143 } 9144 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9145 9146 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9147 list_del(&pit_entry->list); 9148 kfree(pit_entry); 9149 } 9150 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9151 9152 pf->fdir_pf_active_filters = 0; 9153 i40e_reset_fdir_filter_cnt(pf); 9154 9155 /* Reprogram the default input set for TCP/IPv4 */ 9156 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9157 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9158 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9159 9160 /* Reprogram the default input set for TCP/IPv6 */ 9161 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 9162 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9163 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9164 9165 /* Reprogram the default input set for UDP/IPv4 */ 9166 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 9167 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9168 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9169 9170 /* Reprogram the default input set for UDP/IPv6 */ 9171 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 9172 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9173 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9174 9175 /* Reprogram the default input set for SCTP/IPv4 */ 9176 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 9177 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9178 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9179 9180 /* Reprogram the default input set for SCTP/IPv6 */ 9181 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 9182 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9183 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9184 9185 /* Reprogram the default input set for Other/IPv4 */ 9186 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 9187 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9188 9189 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 9190 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9191 9192 /* Reprogram the default input set for Other/IPv6 */ 9193 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 9194 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9195 9196 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 9197 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9198 } 9199 9200 /** 9201 * i40e_cloud_filter_exit - Cleans up the cloud filters 9202 * @pf: Pointer to PF 9203 * 9204 * This function destroys the hlist where all the cloud filters 9205 * were saved. 9206 **/ 9207 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9208 { 9209 struct i40e_cloud_filter *cfilter; 9210 struct hlist_node *node; 9211 9212 hlist_for_each_entry_safe(cfilter, node, 9213 &pf->cloud_filter_list, cloud_node) { 9214 hlist_del(&cfilter->cloud_node); 9215 kfree(cfilter); 9216 } 9217 pf->num_cloud_filters = 0; 9218 9219 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9220 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9221 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9222 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9223 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9224 } 9225 } 9226 9227 /** 9228 * i40e_close - Disables a network interface 9229 * @netdev: network interface device structure 9230 * 9231 * The close entry point is called when an interface is de-activated 9232 * by the OS. The hardware is still under the driver's control, but 9233 * this netdev interface is disabled. 9234 * 9235 * Returns 0, this is not allowed to fail 9236 **/ 9237 int i40e_close(struct net_device *netdev) 9238 { 9239 struct i40e_netdev_priv *np = netdev_priv(netdev); 9240 struct i40e_vsi *vsi = np->vsi; 9241 9242 i40e_vsi_close(vsi); 9243 9244 return 0; 9245 } 9246 9247 /** 9248 * i40e_do_reset - Start a PF or Core Reset sequence 9249 * @pf: board private structure 9250 * @reset_flags: which reset is requested 9251 * @lock_acquired: indicates whether or not the lock has been acquired 9252 * before this function was called. 9253 * 9254 * The essential difference in resets is that the PF Reset 9255 * doesn't clear the packet buffers, doesn't reset the PE 9256 * firmware, and doesn't bother the other PFs on the chip. 9257 **/ 9258 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9259 { 9260 u32 val; 9261 9262 /* do the biggest reset indicated */ 9263 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9264 9265 /* Request a Global Reset 9266 * 9267 * This will start the chip's countdown to the actual full 9268 * chip reset event, and a warning interrupt to be sent 9269 * to all PFs, including the requestor. Our handler 9270 * for the warning interrupt will deal with the shutdown 9271 * and recovery of the switch setup. 9272 */ 9273 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9274 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9275 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9276 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9277 9278 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9279 9280 /* Request a Core Reset 9281 * 9282 * Same as Global Reset, except does *not* include the MAC/PHY 9283 */ 9284 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9285 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9286 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9287 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9288 i40e_flush(&pf->hw); 9289 9290 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9291 9292 /* Request a PF Reset 9293 * 9294 * Resets only the PF-specific registers 9295 * 9296 * This goes directly to the tear-down and rebuild of 9297 * the switch, since we need to do all the recovery as 9298 * for the Core Reset. 9299 */ 9300 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9301 i40e_handle_reset_warning(pf, lock_acquired); 9302 9303 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9304 /* Request a PF Reset 9305 * 9306 * Resets PF and reinitializes PFs VSI. 9307 */ 9308 i40e_prep_for_reset(pf); 9309 i40e_reset_and_rebuild(pf, true, lock_acquired); 9310 dev_info(&pf->pdev->dev, 9311 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9312 "FW LLDP is disabled\n" : 9313 "FW LLDP is enabled\n"); 9314 9315 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9316 int v; 9317 9318 /* Find the VSI(s) that requested a re-init */ 9319 dev_info(&pf->pdev->dev, 9320 "VSI reinit requested\n"); 9321 for (v = 0; v < pf->num_alloc_vsi; v++) { 9322 struct i40e_vsi *vsi = pf->vsi[v]; 9323 9324 if (vsi != NULL && 9325 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9326 vsi->state)) 9327 i40e_vsi_reinit_locked(pf->vsi[v]); 9328 } 9329 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9330 int v; 9331 9332 /* Find the VSI(s) that needs to be brought down */ 9333 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9334 for (v = 0; v < pf->num_alloc_vsi; v++) { 9335 struct i40e_vsi *vsi = pf->vsi[v]; 9336 9337 if (vsi != NULL && 9338 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9339 vsi->state)) { 9340 set_bit(__I40E_VSI_DOWN, vsi->state); 9341 i40e_down(vsi); 9342 } 9343 } 9344 } else { 9345 dev_info(&pf->pdev->dev, 9346 "bad reset request 0x%08x\n", reset_flags); 9347 } 9348 } 9349 9350 #ifdef CONFIG_I40E_DCB 9351 /** 9352 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9353 * @pf: board private structure 9354 * @old_cfg: current DCB config 9355 * @new_cfg: new DCB config 9356 **/ 9357 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9358 struct i40e_dcbx_config *old_cfg, 9359 struct i40e_dcbx_config *new_cfg) 9360 { 9361 bool need_reconfig = false; 9362 9363 /* Check if ETS configuration has changed */ 9364 if (memcmp(&new_cfg->etscfg, 9365 &old_cfg->etscfg, 9366 sizeof(new_cfg->etscfg))) { 9367 /* If Priority Table has changed reconfig is needed */ 9368 if (memcmp(&new_cfg->etscfg.prioritytable, 9369 &old_cfg->etscfg.prioritytable, 9370 sizeof(new_cfg->etscfg.prioritytable))) { 9371 need_reconfig = true; 9372 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9373 } 9374 9375 if (memcmp(&new_cfg->etscfg.tcbwtable, 9376 &old_cfg->etscfg.tcbwtable, 9377 sizeof(new_cfg->etscfg.tcbwtable))) 9378 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9379 9380 if (memcmp(&new_cfg->etscfg.tsatable, 9381 &old_cfg->etscfg.tsatable, 9382 sizeof(new_cfg->etscfg.tsatable))) 9383 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9384 } 9385 9386 /* Check if PFC configuration has changed */ 9387 if (memcmp(&new_cfg->pfc, 9388 &old_cfg->pfc, 9389 sizeof(new_cfg->pfc))) { 9390 need_reconfig = true; 9391 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9392 } 9393 9394 /* Check if APP Table has changed */ 9395 if (memcmp(&new_cfg->app, 9396 &old_cfg->app, 9397 sizeof(new_cfg->app))) { 9398 need_reconfig = true; 9399 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9400 } 9401 9402 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9403 return need_reconfig; 9404 } 9405 9406 /** 9407 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9408 * @pf: board private structure 9409 * @e: event info posted on ARQ 9410 **/ 9411 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9412 struct i40e_arq_event_info *e) 9413 { 9414 struct i40e_aqc_lldp_get_mib *mib = 9415 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9416 struct i40e_hw *hw = &pf->hw; 9417 struct i40e_dcbx_config tmp_dcbx_cfg; 9418 bool need_reconfig = false; 9419 int ret = 0; 9420 u8 type; 9421 9422 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9423 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9424 (hw->phy.link_info.link_speed & 9425 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9426 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9427 /* let firmware decide if the DCB should be disabled */ 9428 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9429 9430 /* Not DCB capable or capability disabled */ 9431 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9432 return ret; 9433 9434 /* Ignore if event is not for Nearest Bridge */ 9435 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9436 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9437 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9438 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9439 return ret; 9440 9441 /* Check MIB Type and return if event for Remote MIB update */ 9442 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9443 dev_dbg(&pf->pdev->dev, 9444 "LLDP event mib type %s\n", type ? "remote" : "local"); 9445 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9446 /* Update the remote cached instance and return */ 9447 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9448 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9449 &hw->remote_dcbx_config); 9450 goto exit; 9451 } 9452 9453 /* Store the old configuration */ 9454 tmp_dcbx_cfg = hw->local_dcbx_config; 9455 9456 /* Reset the old DCBx configuration data */ 9457 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9458 /* Get updated DCBX data from firmware */ 9459 ret = i40e_get_dcb_config(&pf->hw); 9460 if (ret) { 9461 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9462 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9463 (hw->phy.link_info.link_speed & 9464 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9465 dev_warn(&pf->pdev->dev, 9466 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9467 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9468 } else { 9469 dev_info(&pf->pdev->dev, 9470 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9471 ERR_PTR(ret), 9472 i40e_aq_str(&pf->hw, 9473 pf->hw.aq.asq_last_status)); 9474 } 9475 goto exit; 9476 } 9477 9478 /* No change detected in DCBX configs */ 9479 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9480 sizeof(tmp_dcbx_cfg))) { 9481 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9482 goto exit; 9483 } 9484 9485 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9486 &hw->local_dcbx_config); 9487 9488 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9489 9490 if (!need_reconfig) 9491 goto exit; 9492 9493 /* Enable DCB tagging only when more than one TC */ 9494 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9495 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9496 else 9497 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9498 9499 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9500 /* Reconfiguration needed quiesce all VSIs */ 9501 i40e_pf_quiesce_all_vsi(pf); 9502 9503 /* Changes in configuration update VEB/VSI */ 9504 i40e_dcb_reconfigure(pf); 9505 9506 ret = i40e_resume_port_tx(pf); 9507 9508 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9509 /* In case of error no point in resuming VSIs */ 9510 if (ret) 9511 goto exit; 9512 9513 /* Wait for the PF's queues to be disabled */ 9514 ret = i40e_pf_wait_queues_disabled(pf); 9515 if (ret) { 9516 /* Schedule PF reset to recover */ 9517 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9518 i40e_service_event_schedule(pf); 9519 } else { 9520 i40e_pf_unquiesce_all_vsi(pf); 9521 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9522 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9523 } 9524 9525 exit: 9526 return ret; 9527 } 9528 #endif /* CONFIG_I40E_DCB */ 9529 9530 /** 9531 * i40e_do_reset_safe - Protected reset path for userland calls. 9532 * @pf: board private structure 9533 * @reset_flags: which reset is requested 9534 * 9535 **/ 9536 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9537 { 9538 rtnl_lock(); 9539 i40e_do_reset(pf, reset_flags, true); 9540 rtnl_unlock(); 9541 } 9542 9543 /** 9544 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9545 * @pf: board private structure 9546 * @e: event info posted on ARQ 9547 * 9548 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9549 * and VF queues 9550 **/ 9551 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9552 struct i40e_arq_event_info *e) 9553 { 9554 struct i40e_aqc_lan_overflow *data = 9555 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9556 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9557 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9558 struct i40e_hw *hw = &pf->hw; 9559 struct i40e_vf *vf; 9560 u16 vf_id; 9561 9562 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9563 queue, qtx_ctl); 9564 9565 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) != 9566 I40E_QTX_CTL_VF_QUEUE) 9567 return; 9568 9569 /* Queue belongs to VF, find the VF and issue VF reset */ 9570 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl); 9571 vf_id -= hw->func_caps.vf_base_id; 9572 vf = &pf->vf[vf_id]; 9573 i40e_vc_notify_vf_reset(vf); 9574 /* Allow VF to process pending reset notification */ 9575 msleep(20); 9576 i40e_reset_vf(vf, false); 9577 } 9578 9579 /** 9580 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9581 * @pf: board private structure 9582 **/ 9583 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9584 { 9585 u32 val, fcnt_prog; 9586 9587 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9588 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9589 return fcnt_prog; 9590 } 9591 9592 /** 9593 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9594 * @pf: board private structure 9595 **/ 9596 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9597 { 9598 u32 val, fcnt_prog; 9599 9600 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9601 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9602 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val); 9603 return fcnt_prog; 9604 } 9605 9606 /** 9607 * i40e_get_global_fd_count - Get total FD filters programmed on device 9608 * @pf: board private structure 9609 **/ 9610 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9611 { 9612 u32 val, fcnt_prog; 9613 9614 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9615 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9616 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val); 9617 return fcnt_prog; 9618 } 9619 9620 /** 9621 * i40e_reenable_fdir_sb - Restore FDir SB capability 9622 * @pf: board private structure 9623 **/ 9624 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9625 { 9626 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9627 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9628 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9629 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9630 } 9631 9632 /** 9633 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9634 * @pf: board private structure 9635 **/ 9636 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9637 { 9638 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9639 /* ATR uses the same filtering logic as SB rules. It only 9640 * functions properly if the input set mask is at the default 9641 * settings. It is safe to restore the default input set 9642 * because there are no active TCPv4 filter rules. 9643 */ 9644 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9645 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9646 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9647 9648 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9649 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9650 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9651 } 9652 } 9653 9654 /** 9655 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9656 * @pf: board private structure 9657 * @filter: FDir filter to remove 9658 */ 9659 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9660 struct i40e_fdir_filter *filter) 9661 { 9662 /* Update counters */ 9663 pf->fdir_pf_active_filters--; 9664 pf->fd_inv = 0; 9665 9666 switch (filter->flow_type) { 9667 case TCP_V4_FLOW: 9668 pf->fd_tcp4_filter_cnt--; 9669 break; 9670 case UDP_V4_FLOW: 9671 pf->fd_udp4_filter_cnt--; 9672 break; 9673 case SCTP_V4_FLOW: 9674 pf->fd_sctp4_filter_cnt--; 9675 break; 9676 case TCP_V6_FLOW: 9677 pf->fd_tcp6_filter_cnt--; 9678 break; 9679 case UDP_V6_FLOW: 9680 pf->fd_udp6_filter_cnt--; 9681 break; 9682 case SCTP_V6_FLOW: 9683 pf->fd_udp6_filter_cnt--; 9684 break; 9685 case IP_USER_FLOW: 9686 switch (filter->ipl4_proto) { 9687 case IPPROTO_TCP: 9688 pf->fd_tcp4_filter_cnt--; 9689 break; 9690 case IPPROTO_UDP: 9691 pf->fd_udp4_filter_cnt--; 9692 break; 9693 case IPPROTO_SCTP: 9694 pf->fd_sctp4_filter_cnt--; 9695 break; 9696 case IPPROTO_IP: 9697 pf->fd_ip4_filter_cnt--; 9698 break; 9699 } 9700 break; 9701 case IPV6_USER_FLOW: 9702 switch (filter->ipl4_proto) { 9703 case IPPROTO_TCP: 9704 pf->fd_tcp6_filter_cnt--; 9705 break; 9706 case IPPROTO_UDP: 9707 pf->fd_udp6_filter_cnt--; 9708 break; 9709 case IPPROTO_SCTP: 9710 pf->fd_sctp6_filter_cnt--; 9711 break; 9712 case IPPROTO_IP: 9713 pf->fd_ip6_filter_cnt--; 9714 break; 9715 } 9716 break; 9717 } 9718 9719 /* Remove the filter from the list and free memory */ 9720 hlist_del(&filter->fdir_node); 9721 kfree(filter); 9722 } 9723 9724 /** 9725 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9726 * @pf: board private structure 9727 **/ 9728 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9729 { 9730 struct i40e_fdir_filter *filter; 9731 u32 fcnt_prog, fcnt_avail; 9732 struct hlist_node *node; 9733 9734 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9735 return; 9736 9737 /* Check if we have enough room to re-enable FDir SB capability. */ 9738 fcnt_prog = i40e_get_global_fd_count(pf); 9739 fcnt_avail = pf->fdir_pf_filter_count; 9740 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9741 (pf->fd_add_err == 0) || 9742 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9743 i40e_reenable_fdir_sb(pf); 9744 9745 /* We should wait for even more space before re-enabling ATR. 9746 * Additionally, we cannot enable ATR as long as we still have TCP SB 9747 * rules active. 9748 */ 9749 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9750 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9751 i40e_reenable_fdir_atr(pf); 9752 9753 /* if hw had a problem adding a filter, delete it */ 9754 if (pf->fd_inv > 0) { 9755 hlist_for_each_entry_safe(filter, node, 9756 &pf->fdir_filter_list, fdir_node) 9757 if (filter->fd_id == pf->fd_inv) 9758 i40e_delete_invalid_filter(pf, filter); 9759 } 9760 } 9761 9762 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9763 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9764 /** 9765 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9766 * @pf: board private structure 9767 **/ 9768 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9769 { 9770 unsigned long min_flush_time; 9771 int flush_wait_retry = 50; 9772 bool disable_atr = false; 9773 int fd_room; 9774 int reg; 9775 9776 if (!time_after(jiffies, pf->fd_flush_timestamp + 9777 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9778 return; 9779 9780 /* If the flush is happening too quick and we have mostly SB rules we 9781 * should not re-enable ATR for some time. 9782 */ 9783 min_flush_time = pf->fd_flush_timestamp + 9784 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9785 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9786 9787 if (!(time_after(jiffies, min_flush_time)) && 9788 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9789 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9790 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9791 disable_atr = true; 9792 } 9793 9794 pf->fd_flush_timestamp = jiffies; 9795 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9796 /* flush all filters */ 9797 wr32(&pf->hw, I40E_PFQF_CTL_1, 9798 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9799 i40e_flush(&pf->hw); 9800 pf->fd_flush_cnt++; 9801 pf->fd_add_err = 0; 9802 do { 9803 /* Check FD flush status every 5-6msec */ 9804 usleep_range(5000, 6000); 9805 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9806 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9807 break; 9808 } while (flush_wait_retry--); 9809 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9810 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9811 } else { 9812 /* replay sideband filters */ 9813 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 9814 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9815 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9816 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9817 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9818 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9819 } 9820 } 9821 9822 /** 9823 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9824 * @pf: board private structure 9825 **/ 9826 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9827 { 9828 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9829 } 9830 9831 /** 9832 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9833 * @pf: board private structure 9834 **/ 9835 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9836 { 9837 9838 /* if interface is down do nothing */ 9839 if (test_bit(__I40E_DOWN, pf->state)) 9840 return; 9841 9842 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9843 i40e_fdir_flush_and_replay(pf); 9844 9845 i40e_fdir_check_and_reenable(pf); 9846 9847 } 9848 9849 /** 9850 * i40e_vsi_link_event - notify VSI of a link event 9851 * @vsi: vsi to be notified 9852 * @link_up: link up or down 9853 **/ 9854 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9855 { 9856 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9857 return; 9858 9859 switch (vsi->type) { 9860 case I40E_VSI_MAIN: 9861 if (!vsi->netdev || !vsi->netdev_registered) 9862 break; 9863 9864 if (link_up) { 9865 netif_carrier_on(vsi->netdev); 9866 netif_tx_wake_all_queues(vsi->netdev); 9867 } else { 9868 netif_carrier_off(vsi->netdev); 9869 netif_tx_stop_all_queues(vsi->netdev); 9870 } 9871 break; 9872 9873 case I40E_VSI_SRIOV: 9874 case I40E_VSI_VMDQ2: 9875 case I40E_VSI_CTRL: 9876 case I40E_VSI_IWARP: 9877 case I40E_VSI_MIRROR: 9878 default: 9879 /* there is no notification for other VSIs */ 9880 break; 9881 } 9882 } 9883 9884 /** 9885 * i40e_veb_link_event - notify elements on the veb of a link event 9886 * @veb: veb to be notified 9887 * @link_up: link up or down 9888 **/ 9889 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9890 { 9891 struct i40e_pf *pf; 9892 int i; 9893 9894 if (!veb || !veb->pf) 9895 return; 9896 pf = veb->pf; 9897 9898 /* depth first... */ 9899 for (i = 0; i < I40E_MAX_VEB; i++) 9900 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9901 i40e_veb_link_event(pf->veb[i], link_up); 9902 9903 /* ... now the local VSIs */ 9904 for (i = 0; i < pf->num_alloc_vsi; i++) 9905 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9906 i40e_vsi_link_event(pf->vsi[i], link_up); 9907 } 9908 9909 /** 9910 * i40e_link_event - Update netif_carrier status 9911 * @pf: board private structure 9912 **/ 9913 static void i40e_link_event(struct i40e_pf *pf) 9914 { 9915 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9916 u8 new_link_speed, old_link_speed; 9917 bool new_link, old_link; 9918 int status; 9919 #ifdef CONFIG_I40E_DCB 9920 int err; 9921 #endif /* CONFIG_I40E_DCB */ 9922 9923 /* set this to force the get_link_status call to refresh state */ 9924 pf->hw.phy.get_link_info = true; 9925 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9926 status = i40e_get_link_status(&pf->hw, &new_link); 9927 9928 /* On success, disable temp link polling */ 9929 if (status == 0) { 9930 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9931 } else { 9932 /* Enable link polling temporarily until i40e_get_link_status 9933 * returns 0 9934 */ 9935 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9936 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9937 status); 9938 return; 9939 } 9940 9941 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9942 new_link_speed = pf->hw.phy.link_info.link_speed; 9943 9944 if (new_link == old_link && 9945 new_link_speed == old_link_speed && 9946 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9947 new_link == netif_carrier_ok(vsi->netdev))) 9948 return; 9949 9950 i40e_print_link_message(vsi, new_link); 9951 9952 /* Notify the base of the switch tree connected to 9953 * the link. Floating VEBs are not notified. 9954 */ 9955 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9956 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9957 else 9958 i40e_vsi_link_event(vsi, new_link); 9959 9960 if (pf->vf) 9961 i40e_vc_notify_link_state(pf); 9962 9963 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 9964 i40e_ptp_set_increment(pf); 9965 #ifdef CONFIG_I40E_DCB 9966 if (new_link == old_link) 9967 return; 9968 /* Not SW DCB so firmware will take care of default settings */ 9969 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9970 return; 9971 9972 /* We cover here only link down, as after link up in case of SW DCB 9973 * SW LLDP agent will take care of setting it up 9974 */ 9975 if (!new_link) { 9976 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9977 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9978 err = i40e_dcb_sw_default_config(pf); 9979 if (err) { 9980 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9981 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9982 } else { 9983 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9984 DCB_CAP_DCBX_VER_IEEE; 9985 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9986 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9987 } 9988 } 9989 #endif /* CONFIG_I40E_DCB */ 9990 } 9991 9992 /** 9993 * i40e_watchdog_subtask - periodic checks not using event driven response 9994 * @pf: board private structure 9995 **/ 9996 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9997 { 9998 int i; 9999 10000 /* if interface is down do nothing */ 10001 if (test_bit(__I40E_DOWN, pf->state) || 10002 test_bit(__I40E_CONFIG_BUSY, pf->state)) 10003 return; 10004 10005 /* make sure we don't do these things too often */ 10006 if (time_before(jiffies, (pf->service_timer_previous + 10007 pf->service_timer_period))) 10008 return; 10009 pf->service_timer_previous = jiffies; 10010 10011 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 10012 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 10013 i40e_link_event(pf); 10014 10015 /* Update the stats for active netdevs so the network stack 10016 * can look at updated numbers whenever it cares to 10017 */ 10018 for (i = 0; i < pf->num_alloc_vsi; i++) 10019 if (pf->vsi[i] && pf->vsi[i]->netdev) 10020 i40e_update_stats(pf->vsi[i]); 10021 10022 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10023 /* Update the stats for the active switching components */ 10024 for (i = 0; i < I40E_MAX_VEB; i++) 10025 if (pf->veb[i]) 10026 i40e_update_veb_stats(pf->veb[i]); 10027 } 10028 10029 i40e_ptp_rx_hang(pf); 10030 i40e_ptp_tx_hang(pf); 10031 } 10032 10033 /** 10034 * i40e_reset_subtask - Set up for resetting the device and driver 10035 * @pf: board private structure 10036 **/ 10037 static void i40e_reset_subtask(struct i40e_pf *pf) 10038 { 10039 u32 reset_flags = 0; 10040 10041 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10042 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10043 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10044 } 10045 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10046 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10047 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10048 } 10049 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10050 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10051 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10052 } 10053 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10054 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10055 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10056 } 10057 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10058 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10059 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10060 } 10061 10062 /* If there's a recovery already waiting, it takes 10063 * precedence before starting a new reset sequence. 10064 */ 10065 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10066 i40e_prep_for_reset(pf); 10067 i40e_reset(pf); 10068 i40e_rebuild(pf, false, false); 10069 } 10070 10071 /* If we're already down or resetting, just bail */ 10072 if (reset_flags && 10073 !test_bit(__I40E_DOWN, pf->state) && 10074 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10075 i40e_do_reset(pf, reset_flags, false); 10076 } 10077 } 10078 10079 /** 10080 * i40e_handle_link_event - Handle link event 10081 * @pf: board private structure 10082 * @e: event info posted on ARQ 10083 **/ 10084 static void i40e_handle_link_event(struct i40e_pf *pf, 10085 struct i40e_arq_event_info *e) 10086 { 10087 struct i40e_aqc_get_link_status *status = 10088 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10089 10090 /* Do a new status request to re-enable LSE reporting 10091 * and load new status information into the hw struct 10092 * This completely ignores any state information 10093 * in the ARQ event info, instead choosing to always 10094 * issue the AQ update link status command. 10095 */ 10096 i40e_link_event(pf); 10097 10098 /* Check if module meets thermal requirements */ 10099 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10100 dev_err(&pf->pdev->dev, 10101 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10102 dev_err(&pf->pdev->dev, 10103 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10104 } else { 10105 /* check for unqualified module, if link is down, suppress 10106 * the message if link was forced to be down. 10107 */ 10108 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10109 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10110 (!(status->link_info & I40E_AQ_LINK_UP)) && 10111 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10112 dev_err(&pf->pdev->dev, 10113 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10114 dev_err(&pf->pdev->dev, 10115 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10116 } 10117 } 10118 } 10119 10120 /** 10121 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10122 * @pf: board private structure 10123 **/ 10124 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10125 { 10126 struct i40e_arq_event_info event; 10127 struct i40e_hw *hw = &pf->hw; 10128 u16 pending, i = 0; 10129 u16 opcode; 10130 u32 oldval; 10131 int ret; 10132 u32 val; 10133 10134 /* Do not run clean AQ when PF reset fails */ 10135 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10136 return; 10137 10138 /* check for error indications */ 10139 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10140 oldval = val; 10141 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10142 if (hw->debug_mask & I40E_DEBUG_AQ) 10143 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10144 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10145 } 10146 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10147 if (hw->debug_mask & I40E_DEBUG_AQ) 10148 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10149 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10150 pf->arq_overflows++; 10151 } 10152 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10153 if (hw->debug_mask & I40E_DEBUG_AQ) 10154 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10155 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10156 } 10157 if (oldval != val) 10158 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10159 10160 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10161 oldval = val; 10162 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10163 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10164 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10165 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10166 } 10167 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10168 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10169 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10170 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10171 } 10172 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10173 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10174 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10175 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10176 } 10177 if (oldval != val) 10178 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10179 10180 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10181 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10182 if (!event.msg_buf) 10183 return; 10184 10185 do { 10186 ret = i40e_clean_arq_element(hw, &event, &pending); 10187 if (ret == -EALREADY) 10188 break; 10189 else if (ret) { 10190 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10191 break; 10192 } 10193 10194 opcode = le16_to_cpu(event.desc.opcode); 10195 switch (opcode) { 10196 10197 case i40e_aqc_opc_get_link_status: 10198 rtnl_lock(); 10199 i40e_handle_link_event(pf, &event); 10200 rtnl_unlock(); 10201 break; 10202 case i40e_aqc_opc_send_msg_to_pf: 10203 ret = i40e_vc_process_vf_msg(pf, 10204 le16_to_cpu(event.desc.retval), 10205 le32_to_cpu(event.desc.cookie_high), 10206 le32_to_cpu(event.desc.cookie_low), 10207 event.msg_buf, 10208 event.msg_len); 10209 break; 10210 case i40e_aqc_opc_lldp_update_mib: 10211 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10212 #ifdef CONFIG_I40E_DCB 10213 rtnl_lock(); 10214 i40e_handle_lldp_event(pf, &event); 10215 rtnl_unlock(); 10216 #endif /* CONFIG_I40E_DCB */ 10217 break; 10218 case i40e_aqc_opc_event_lan_overflow: 10219 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10220 i40e_handle_lan_overflow_event(pf, &event); 10221 break; 10222 case i40e_aqc_opc_send_msg_to_peer: 10223 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10224 break; 10225 case i40e_aqc_opc_nvm_erase: 10226 case i40e_aqc_opc_nvm_update: 10227 case i40e_aqc_opc_oem_post_update: 10228 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10229 "ARQ NVM operation 0x%04x completed\n", 10230 opcode); 10231 break; 10232 default: 10233 dev_info(&pf->pdev->dev, 10234 "ARQ: Unknown event 0x%04x ignored\n", 10235 opcode); 10236 break; 10237 } 10238 } while (i++ < I40E_AQ_WORK_LIMIT); 10239 10240 if (i < I40E_AQ_WORK_LIMIT) 10241 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10242 10243 /* re-enable Admin queue interrupt cause */ 10244 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10245 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10246 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10247 i40e_flush(hw); 10248 10249 kfree(event.msg_buf); 10250 } 10251 10252 /** 10253 * i40e_verify_eeprom - make sure eeprom is good to use 10254 * @pf: board private structure 10255 **/ 10256 static void i40e_verify_eeprom(struct i40e_pf *pf) 10257 { 10258 int err; 10259 10260 err = i40e_diag_eeprom_test(&pf->hw); 10261 if (err) { 10262 /* retry in case of garbage read */ 10263 err = i40e_diag_eeprom_test(&pf->hw); 10264 if (err) { 10265 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10266 err); 10267 set_bit(__I40E_BAD_EEPROM, pf->state); 10268 } 10269 } 10270 10271 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10272 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10273 clear_bit(__I40E_BAD_EEPROM, pf->state); 10274 } 10275 } 10276 10277 /** 10278 * i40e_enable_pf_switch_lb 10279 * @pf: pointer to the PF structure 10280 * 10281 * enable switch loop back or die - no point in a return value 10282 **/ 10283 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10284 { 10285 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10286 struct i40e_vsi_context ctxt; 10287 int ret; 10288 10289 ctxt.seid = pf->main_vsi_seid; 10290 ctxt.pf_num = pf->hw.pf_id; 10291 ctxt.vf_num = 0; 10292 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10293 if (ret) { 10294 dev_info(&pf->pdev->dev, 10295 "couldn't get PF vsi config, err %pe aq_err %s\n", 10296 ERR_PTR(ret), 10297 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10298 return; 10299 } 10300 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10301 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10302 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10303 10304 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10305 if (ret) { 10306 dev_info(&pf->pdev->dev, 10307 "update vsi switch failed, err %pe aq_err %s\n", 10308 ERR_PTR(ret), 10309 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10310 } 10311 } 10312 10313 /** 10314 * i40e_disable_pf_switch_lb 10315 * @pf: pointer to the PF structure 10316 * 10317 * disable switch loop back or die - no point in a return value 10318 **/ 10319 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10320 { 10321 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10322 struct i40e_vsi_context ctxt; 10323 int ret; 10324 10325 ctxt.seid = pf->main_vsi_seid; 10326 ctxt.pf_num = pf->hw.pf_id; 10327 ctxt.vf_num = 0; 10328 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10329 if (ret) { 10330 dev_info(&pf->pdev->dev, 10331 "couldn't get PF vsi config, err %pe aq_err %s\n", 10332 ERR_PTR(ret), 10333 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10334 return; 10335 } 10336 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10337 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10338 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10339 10340 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10341 if (ret) { 10342 dev_info(&pf->pdev->dev, 10343 "update vsi switch failed, err %pe aq_err %s\n", 10344 ERR_PTR(ret), 10345 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10346 } 10347 } 10348 10349 /** 10350 * i40e_config_bridge_mode - Configure the HW bridge mode 10351 * @veb: pointer to the bridge instance 10352 * 10353 * Configure the loop back mode for the LAN VSI that is downlink to the 10354 * specified HW bridge instance. It is expected this function is called 10355 * when a new HW bridge is instantiated. 10356 **/ 10357 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10358 { 10359 struct i40e_pf *pf = veb->pf; 10360 10361 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10362 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10363 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10364 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10365 i40e_disable_pf_switch_lb(pf); 10366 else 10367 i40e_enable_pf_switch_lb(pf); 10368 } 10369 10370 /** 10371 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 10372 * @veb: pointer to the VEB instance 10373 * 10374 * This is a recursive function that first builds the attached VSIs then 10375 * recurses in to build the next layer of VEB. We track the connections 10376 * through our own index numbers because the seid's from the HW could 10377 * change across the reset. 10378 **/ 10379 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10380 { 10381 struct i40e_vsi *ctl_vsi = NULL; 10382 struct i40e_pf *pf = veb->pf; 10383 int v, veb_idx; 10384 int ret; 10385 10386 /* build VSI that owns this VEB, temporarily attached to base VEB */ 10387 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 10388 if (pf->vsi[v] && 10389 pf->vsi[v]->veb_idx == veb->idx && 10390 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 10391 ctl_vsi = pf->vsi[v]; 10392 break; 10393 } 10394 } 10395 if (!ctl_vsi) { 10396 dev_info(&pf->pdev->dev, 10397 "missing owner VSI for veb_idx %d\n", veb->idx); 10398 ret = -ENOENT; 10399 goto end_reconstitute; 10400 } 10401 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 10402 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 10403 ret = i40e_add_vsi(ctl_vsi); 10404 if (ret) { 10405 dev_info(&pf->pdev->dev, 10406 "rebuild of veb_idx %d owner VSI failed: %d\n", 10407 veb->idx, ret); 10408 goto end_reconstitute; 10409 } 10410 i40e_vsi_reset_stats(ctl_vsi); 10411 10412 /* create the VEB in the switch and move the VSI onto the VEB */ 10413 ret = i40e_add_veb(veb, ctl_vsi); 10414 if (ret) 10415 goto end_reconstitute; 10416 10417 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10418 veb->bridge_mode = BRIDGE_MODE_VEB; 10419 else 10420 veb->bridge_mode = BRIDGE_MODE_VEPA; 10421 i40e_config_bridge_mode(veb); 10422 10423 /* create the remaining VSIs attached to this VEB */ 10424 for (v = 0; v < pf->num_alloc_vsi; v++) { 10425 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 10426 continue; 10427 10428 if (pf->vsi[v]->veb_idx == veb->idx) { 10429 struct i40e_vsi *vsi = pf->vsi[v]; 10430 10431 vsi->uplink_seid = veb->seid; 10432 ret = i40e_add_vsi(vsi); 10433 if (ret) { 10434 dev_info(&pf->pdev->dev, 10435 "rebuild of vsi_idx %d failed: %d\n", 10436 v, ret); 10437 goto end_reconstitute; 10438 } 10439 i40e_vsi_reset_stats(vsi); 10440 } 10441 } 10442 10443 /* create any VEBs attached to this VEB - RECURSION */ 10444 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 10445 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 10446 pf->veb[veb_idx]->uplink_seid = veb->seid; 10447 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 10448 if (ret) 10449 break; 10450 } 10451 } 10452 10453 end_reconstitute: 10454 return ret; 10455 } 10456 10457 /** 10458 * i40e_get_capabilities - get info about the HW 10459 * @pf: the PF struct 10460 * @list_type: AQ capability to be queried 10461 **/ 10462 static int i40e_get_capabilities(struct i40e_pf *pf, 10463 enum i40e_admin_queue_opc list_type) 10464 { 10465 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10466 u16 data_size; 10467 int buf_len; 10468 int err; 10469 10470 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10471 do { 10472 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10473 if (!cap_buf) 10474 return -ENOMEM; 10475 10476 /* this loads the data into the hw struct for us */ 10477 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10478 &data_size, list_type, 10479 NULL); 10480 /* data loaded, buffer no longer needed */ 10481 kfree(cap_buf); 10482 10483 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10484 /* retry with a larger buffer */ 10485 buf_len = data_size; 10486 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10487 dev_info(&pf->pdev->dev, 10488 "capability discovery failed, err %pe aq_err %s\n", 10489 ERR_PTR(err), 10490 i40e_aq_str(&pf->hw, 10491 pf->hw.aq.asq_last_status)); 10492 return -ENODEV; 10493 } 10494 } while (err); 10495 10496 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10497 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10498 dev_info(&pf->pdev->dev, 10499 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10500 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10501 pf->hw.func_caps.num_msix_vectors, 10502 pf->hw.func_caps.num_msix_vectors_vf, 10503 pf->hw.func_caps.fd_filters_guaranteed, 10504 pf->hw.func_caps.fd_filters_best_effort, 10505 pf->hw.func_caps.num_tx_qp, 10506 pf->hw.func_caps.num_vsis); 10507 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10508 dev_info(&pf->pdev->dev, 10509 "switch_mode=0x%04x, function_valid=0x%08x\n", 10510 pf->hw.dev_caps.switch_mode, 10511 pf->hw.dev_caps.valid_functions); 10512 dev_info(&pf->pdev->dev, 10513 "SR-IOV=%d, num_vfs for all function=%u\n", 10514 pf->hw.dev_caps.sr_iov_1_1, 10515 pf->hw.dev_caps.num_vfs); 10516 dev_info(&pf->pdev->dev, 10517 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10518 pf->hw.dev_caps.num_vsis, 10519 pf->hw.dev_caps.num_rx_qp, 10520 pf->hw.dev_caps.num_tx_qp); 10521 } 10522 } 10523 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10524 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10525 + pf->hw.func_caps.num_vfs) 10526 if (pf->hw.revision_id == 0 && 10527 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10528 dev_info(&pf->pdev->dev, 10529 "got num_vsis %d, setting num_vsis to %d\n", 10530 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10531 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10532 } 10533 } 10534 return 0; 10535 } 10536 10537 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10538 10539 /** 10540 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10541 * @pf: board private structure 10542 **/ 10543 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10544 { 10545 struct i40e_vsi *vsi; 10546 10547 /* quick workaround for an NVM issue that leaves a critical register 10548 * uninitialized 10549 */ 10550 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10551 static const u32 hkey[] = { 10552 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10553 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10554 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10555 0x95b3a76d}; 10556 int i; 10557 10558 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10559 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10560 } 10561 10562 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10563 return; 10564 10565 /* find existing VSI and see if it needs configuring */ 10566 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10567 10568 /* create a new VSI if none exists */ 10569 if (!vsi) { 10570 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 10571 pf->vsi[pf->lan_vsi]->seid, 0); 10572 if (!vsi) { 10573 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10574 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10575 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10576 return; 10577 } 10578 } 10579 10580 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10581 } 10582 10583 /** 10584 * i40e_fdir_teardown - release the Flow Director resources 10585 * @pf: board private structure 10586 **/ 10587 static void i40e_fdir_teardown(struct i40e_pf *pf) 10588 { 10589 struct i40e_vsi *vsi; 10590 10591 i40e_fdir_filter_exit(pf); 10592 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10593 if (vsi) 10594 i40e_vsi_release(vsi); 10595 } 10596 10597 /** 10598 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10599 * @vsi: PF main vsi 10600 * @seid: seid of main or channel VSIs 10601 * 10602 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10603 * existed before reset 10604 **/ 10605 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10606 { 10607 struct i40e_cloud_filter *cfilter; 10608 struct i40e_pf *pf = vsi->back; 10609 struct hlist_node *node; 10610 int ret; 10611 10612 /* Add cloud filters back if they exist */ 10613 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10614 cloud_node) { 10615 if (cfilter->seid != seid) 10616 continue; 10617 10618 if (cfilter->dst_port) 10619 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10620 true); 10621 else 10622 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10623 10624 if (ret) { 10625 dev_dbg(&pf->pdev->dev, 10626 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10627 ERR_PTR(ret), 10628 i40e_aq_str(&pf->hw, 10629 pf->hw.aq.asq_last_status)); 10630 return ret; 10631 } 10632 } 10633 return 0; 10634 } 10635 10636 /** 10637 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10638 * @vsi: PF main vsi 10639 * 10640 * Rebuilds channel VSIs if they existed before reset 10641 **/ 10642 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10643 { 10644 struct i40e_channel *ch, *ch_tmp; 10645 int ret; 10646 10647 if (list_empty(&vsi->ch_list)) 10648 return 0; 10649 10650 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10651 if (!ch->initialized) 10652 break; 10653 /* Proceed with creation of channel (VMDq2) VSI */ 10654 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10655 if (ret) { 10656 dev_info(&vsi->back->pdev->dev, 10657 "failed to rebuild channels using uplink_seid %u\n", 10658 vsi->uplink_seid); 10659 return ret; 10660 } 10661 /* Reconfigure TX queues using QTX_CTL register */ 10662 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10663 if (ret) { 10664 dev_info(&vsi->back->pdev->dev, 10665 "failed to configure TX rings for channel %u\n", 10666 ch->seid); 10667 return ret; 10668 } 10669 /* update 'next_base_queue' */ 10670 vsi->next_base_queue = vsi->next_base_queue + 10671 ch->num_queue_pairs; 10672 if (ch->max_tx_rate) { 10673 u64 credits = ch->max_tx_rate; 10674 10675 if (i40e_set_bw_limit(vsi, ch->seid, 10676 ch->max_tx_rate)) 10677 return -EINVAL; 10678 10679 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10680 dev_dbg(&vsi->back->pdev->dev, 10681 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10682 ch->max_tx_rate, 10683 credits, 10684 ch->seid); 10685 } 10686 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10687 if (ret) { 10688 dev_dbg(&vsi->back->pdev->dev, 10689 "Failed to rebuild cloud filters for channel VSI %u\n", 10690 ch->seid); 10691 return ret; 10692 } 10693 } 10694 return 0; 10695 } 10696 10697 /** 10698 * i40e_clean_xps_state - clean xps state for every tx_ring 10699 * @vsi: ptr to the VSI 10700 **/ 10701 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10702 { 10703 int i; 10704 10705 if (vsi->tx_rings) 10706 for (i = 0; i < vsi->num_queue_pairs; i++) 10707 if (vsi->tx_rings[i]) 10708 clear_bit(__I40E_TX_XPS_INIT_DONE, 10709 vsi->tx_rings[i]->state); 10710 } 10711 10712 /** 10713 * i40e_prep_for_reset - prep for the core to reset 10714 * @pf: board private structure 10715 * 10716 * Close up the VFs and other things in prep for PF Reset. 10717 **/ 10718 static void i40e_prep_for_reset(struct i40e_pf *pf) 10719 { 10720 struct i40e_hw *hw = &pf->hw; 10721 int ret = 0; 10722 u32 v; 10723 10724 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10725 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10726 return; 10727 if (i40e_check_asq_alive(&pf->hw)) 10728 i40e_vc_notify_reset(pf); 10729 10730 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10731 10732 /* quiesce the VSIs and their queues that are not already DOWN */ 10733 i40e_pf_quiesce_all_vsi(pf); 10734 10735 for (v = 0; v < pf->num_alloc_vsi; v++) { 10736 if (pf->vsi[v]) { 10737 i40e_clean_xps_state(pf->vsi[v]); 10738 pf->vsi[v]->seid = 0; 10739 } 10740 } 10741 10742 i40e_shutdown_adminq(&pf->hw); 10743 10744 /* call shutdown HMC */ 10745 if (hw->hmc.hmc_obj) { 10746 ret = i40e_shutdown_lan_hmc(hw); 10747 if (ret) 10748 dev_warn(&pf->pdev->dev, 10749 "shutdown_lan_hmc failed: %d\n", ret); 10750 } 10751 10752 /* Save the current PTP time so that we can restore the time after the 10753 * reset completes. 10754 */ 10755 i40e_ptp_save_hw_time(pf); 10756 } 10757 10758 /** 10759 * i40e_send_version - update firmware with driver version 10760 * @pf: PF struct 10761 */ 10762 static void i40e_send_version(struct i40e_pf *pf) 10763 { 10764 struct i40e_driver_version dv; 10765 10766 dv.major_version = 0xff; 10767 dv.minor_version = 0xff; 10768 dv.build_version = 0xff; 10769 dv.subbuild_version = 0; 10770 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10771 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10772 } 10773 10774 /** 10775 * i40e_get_oem_version - get OEM specific version information 10776 * @hw: pointer to the hardware structure 10777 **/ 10778 static void i40e_get_oem_version(struct i40e_hw *hw) 10779 { 10780 u16 block_offset = 0xffff; 10781 u16 block_length = 0; 10782 u16 capabilities = 0; 10783 u16 gen_snap = 0; 10784 u16 release = 0; 10785 10786 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10787 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10788 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10789 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10790 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10791 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10792 #define I40E_NVM_OEM_LENGTH 3 10793 10794 /* Check if pointer to OEM version block is valid. */ 10795 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10796 if (block_offset == 0xffff) 10797 return; 10798 10799 /* Check if OEM version block has correct length. */ 10800 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10801 &block_length); 10802 if (block_length < I40E_NVM_OEM_LENGTH) 10803 return; 10804 10805 /* Check if OEM version format is as expected. */ 10806 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10807 &capabilities); 10808 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10809 return; 10810 10811 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10812 &gen_snap); 10813 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10814 &release); 10815 hw->nvm.oem_ver = 10816 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10817 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10818 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10819 } 10820 10821 /** 10822 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10823 * @pf: board private structure 10824 **/ 10825 static int i40e_reset(struct i40e_pf *pf) 10826 { 10827 struct i40e_hw *hw = &pf->hw; 10828 int ret; 10829 10830 ret = i40e_pf_reset(hw); 10831 if (ret) { 10832 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10833 set_bit(__I40E_RESET_FAILED, pf->state); 10834 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10835 } else { 10836 pf->pfr_count++; 10837 } 10838 return ret; 10839 } 10840 10841 /** 10842 * i40e_rebuild - rebuild using a saved config 10843 * @pf: board private structure 10844 * @reinit: if the Main VSI needs to re-initialized. 10845 * @lock_acquired: indicates whether or not the lock has been acquired 10846 * before this function was called. 10847 **/ 10848 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10849 { 10850 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10851 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10852 struct i40e_hw *hw = &pf->hw; 10853 int ret; 10854 u32 val; 10855 int v; 10856 10857 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10858 is_recovery_mode_reported) 10859 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 10860 10861 if (test_bit(__I40E_DOWN, pf->state) && 10862 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10863 goto clear_recovery; 10864 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10865 10866 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10867 ret = i40e_init_adminq(&pf->hw); 10868 if (ret) { 10869 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10870 ERR_PTR(ret), 10871 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10872 goto clear_recovery; 10873 } 10874 i40e_get_oem_version(&pf->hw); 10875 10876 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10877 /* The following delay is necessary for firmware update. */ 10878 mdelay(1000); 10879 } 10880 10881 /* re-verify the eeprom if we just had an EMP reset */ 10882 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10883 i40e_verify_eeprom(pf); 10884 10885 /* if we are going out of or into recovery mode we have to act 10886 * accordingly with regard to resources initialization 10887 * and deinitialization 10888 */ 10889 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10890 if (i40e_get_capabilities(pf, 10891 i40e_aqc_opc_list_func_capabilities)) 10892 goto end_unlock; 10893 10894 if (is_recovery_mode_reported) { 10895 /* we're staying in recovery mode so we'll reinitialize 10896 * misc vector here 10897 */ 10898 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10899 goto end_unlock; 10900 } else { 10901 if (!lock_acquired) 10902 rtnl_lock(); 10903 /* we're going out of recovery mode so we'll free 10904 * the IRQ allocated specifically for recovery mode 10905 * and restore the interrupt scheme 10906 */ 10907 free_irq(pf->pdev->irq, pf); 10908 i40e_clear_interrupt_scheme(pf); 10909 if (i40e_restore_interrupt_scheme(pf)) 10910 goto end_unlock; 10911 } 10912 10913 /* tell the firmware that we're starting */ 10914 i40e_send_version(pf); 10915 10916 /* bail out in case recovery mode was detected, as there is 10917 * no need for further configuration. 10918 */ 10919 goto end_unlock; 10920 } 10921 10922 i40e_clear_pxe_mode(hw); 10923 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10924 if (ret) 10925 goto end_core_reset; 10926 10927 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10928 hw->func_caps.num_rx_qp, 0, 0); 10929 if (ret) { 10930 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10931 goto end_core_reset; 10932 } 10933 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10934 if (ret) { 10935 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10936 goto end_core_reset; 10937 } 10938 10939 #ifdef CONFIG_I40E_DCB 10940 /* Enable FW to write a default DCB config on link-up 10941 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10942 * is not supported with new link speed 10943 */ 10944 if (i40e_is_tc_mqprio_enabled(pf)) { 10945 i40e_aq_set_dcb_parameters(hw, false, NULL); 10946 } else { 10947 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10948 (hw->phy.link_info.link_speed & 10949 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10950 i40e_aq_set_dcb_parameters(hw, false, NULL); 10951 dev_warn(&pf->pdev->dev, 10952 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10953 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10954 } else { 10955 i40e_aq_set_dcb_parameters(hw, true, NULL); 10956 ret = i40e_init_pf_dcb(pf); 10957 if (ret) { 10958 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10959 ret); 10960 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10961 /* Continue without DCB enabled */ 10962 } 10963 } 10964 } 10965 10966 #endif /* CONFIG_I40E_DCB */ 10967 if (!lock_acquired) 10968 rtnl_lock(); 10969 ret = i40e_setup_pf_switch(pf, reinit, true); 10970 if (ret) 10971 goto end_unlock; 10972 10973 /* The driver only wants link up/down and module qualification 10974 * reports from firmware. Note the negative logic. 10975 */ 10976 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10977 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10978 I40E_AQ_EVENT_MEDIA_NA | 10979 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10980 if (ret) 10981 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 10982 ERR_PTR(ret), 10983 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10984 10985 /* Rebuild the VSIs and VEBs that existed before reset. 10986 * They are still in our local switch element arrays, so only 10987 * need to rebuild the switch model in the HW. 10988 * 10989 * If there were VEBs but the reconstitution failed, we'll try 10990 * to recover minimal use by getting the basic PF VSI working. 10991 */ 10992 if (vsi->uplink_seid != pf->mac_seid) { 10993 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10994 /* find the one VEB connected to the MAC, and find orphans */ 10995 for (v = 0; v < I40E_MAX_VEB; v++) { 10996 if (!pf->veb[v]) 10997 continue; 10998 10999 if (pf->veb[v]->uplink_seid == pf->mac_seid || 11000 pf->veb[v]->uplink_seid == 0) { 11001 ret = i40e_reconstitute_veb(pf->veb[v]); 11002 11003 if (!ret) 11004 continue; 11005 11006 /* If Main VEB failed, we're in deep doodoo, 11007 * so give up rebuilding the switch and set up 11008 * for minimal rebuild of PF VSI. 11009 * If orphan failed, we'll report the error 11010 * but try to keep going. 11011 */ 11012 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 11013 dev_info(&pf->pdev->dev, 11014 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 11015 ret); 11016 vsi->uplink_seid = pf->mac_seid; 11017 break; 11018 } else if (pf->veb[v]->uplink_seid == 0) { 11019 dev_info(&pf->pdev->dev, 11020 "rebuild of orphan VEB failed: %d\n", 11021 ret); 11022 } 11023 } 11024 } 11025 } 11026 11027 if (vsi->uplink_seid == pf->mac_seid) { 11028 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11029 /* no VEB, so rebuild only the Main VSI */ 11030 ret = i40e_add_vsi(vsi); 11031 if (ret) { 11032 dev_info(&pf->pdev->dev, 11033 "rebuild of Main VSI failed: %d\n", ret); 11034 goto end_unlock; 11035 } 11036 } 11037 11038 if (vsi->mqprio_qopt.max_rate[0]) { 11039 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11040 vsi->mqprio_qopt.max_rate[0]); 11041 u64 credits = 0; 11042 11043 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11044 if (ret) 11045 goto end_unlock; 11046 11047 credits = max_tx_rate; 11048 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11049 dev_dbg(&vsi->back->pdev->dev, 11050 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11051 max_tx_rate, 11052 credits, 11053 vsi->seid); 11054 } 11055 11056 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11057 if (ret) 11058 goto end_unlock; 11059 11060 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11061 * for this main VSI if they exist 11062 */ 11063 ret = i40e_rebuild_channels(vsi); 11064 if (ret) 11065 goto end_unlock; 11066 11067 /* Reconfigure hardware for allowing smaller MSS in the case 11068 * of TSO, so that we avoid the MDD being fired and causing 11069 * a reset in the case of small MSS+TSO. 11070 */ 11071 #define I40E_REG_MSS 0x000E64DC 11072 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11073 #define I40E_64BYTE_MSS 0x400000 11074 val = rd32(hw, I40E_REG_MSS); 11075 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11076 val &= ~I40E_REG_MSS_MIN_MASK; 11077 val |= I40E_64BYTE_MSS; 11078 wr32(hw, I40E_REG_MSS, val); 11079 } 11080 11081 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11082 msleep(75); 11083 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11084 if (ret) 11085 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11086 ERR_PTR(ret), 11087 i40e_aq_str(&pf->hw, 11088 pf->hw.aq.asq_last_status)); 11089 } 11090 /* reinit the misc interrupt */ 11091 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11092 ret = i40e_setup_misc_vector(pf); 11093 if (ret) 11094 goto end_unlock; 11095 } 11096 11097 /* Add a filter to drop all Flow control frames from any VSI from being 11098 * transmitted. By doing so we stop a malicious VF from sending out 11099 * PAUSE or PFC frames and potentially controlling traffic for other 11100 * PF/VF VSIs. 11101 * The FW can still send Flow control frames if enabled. 11102 */ 11103 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11104 pf->main_vsi_seid); 11105 11106 /* restart the VSIs that were rebuilt and running before the reset */ 11107 i40e_pf_unquiesce_all_vsi(pf); 11108 11109 /* Release the RTNL lock before we start resetting VFs */ 11110 if (!lock_acquired) 11111 rtnl_unlock(); 11112 11113 /* Restore promiscuous settings */ 11114 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11115 if (ret) 11116 dev_warn(&pf->pdev->dev, 11117 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11118 pf->cur_promisc ? "on" : "off", 11119 ERR_PTR(ret), 11120 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11121 11122 i40e_reset_all_vfs(pf, true); 11123 11124 /* tell the firmware that we're starting */ 11125 i40e_send_version(pf); 11126 11127 /* We've already released the lock, so don't do it again */ 11128 goto end_core_reset; 11129 11130 end_unlock: 11131 if (!lock_acquired) 11132 rtnl_unlock(); 11133 end_core_reset: 11134 clear_bit(__I40E_RESET_FAILED, pf->state); 11135 clear_recovery: 11136 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11137 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11138 } 11139 11140 /** 11141 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11142 * @pf: board private structure 11143 * @reinit: if the Main VSI needs to re-initialized. 11144 * @lock_acquired: indicates whether or not the lock has been acquired 11145 * before this function was called. 11146 **/ 11147 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11148 bool lock_acquired) 11149 { 11150 int ret; 11151 11152 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11153 return; 11154 /* Now we wait for GRST to settle out. 11155 * We don't have to delete the VEBs or VSIs from the hw switch 11156 * because the reset will make them disappear. 11157 */ 11158 ret = i40e_reset(pf); 11159 if (!ret) 11160 i40e_rebuild(pf, reinit, lock_acquired); 11161 } 11162 11163 /** 11164 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11165 * @pf: board private structure 11166 * 11167 * Close up the VFs and other things in prep for a Core Reset, 11168 * then get ready to rebuild the world. 11169 * @lock_acquired: indicates whether or not the lock has been acquired 11170 * before this function was called. 11171 **/ 11172 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11173 { 11174 i40e_prep_for_reset(pf); 11175 i40e_reset_and_rebuild(pf, false, lock_acquired); 11176 } 11177 11178 /** 11179 * i40e_handle_mdd_event 11180 * @pf: pointer to the PF structure 11181 * 11182 * Called from the MDD irq handler to identify possibly malicious vfs 11183 **/ 11184 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11185 { 11186 struct i40e_hw *hw = &pf->hw; 11187 bool mdd_detected = false; 11188 struct i40e_vf *vf; 11189 u32 reg; 11190 int i; 11191 11192 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 11193 return; 11194 11195 /* find what triggered the MDD event */ 11196 reg = rd32(hw, I40E_GL_MDET_TX); 11197 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11198 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg); 11199 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg); 11200 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg); 11201 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) - 11202 pf->hw.func_caps.base_queue; 11203 if (netif_msg_tx_err(pf)) 11204 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11205 event, queue, pf_num, vf_num); 11206 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11207 mdd_detected = true; 11208 } 11209 reg = rd32(hw, I40E_GL_MDET_RX); 11210 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11211 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg); 11212 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg); 11213 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) - 11214 pf->hw.func_caps.base_queue; 11215 if (netif_msg_rx_err(pf)) 11216 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11217 event, queue, func); 11218 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11219 mdd_detected = true; 11220 } 11221 11222 if (mdd_detected) { 11223 reg = rd32(hw, I40E_PF_MDET_TX); 11224 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11225 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11226 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11227 } 11228 reg = rd32(hw, I40E_PF_MDET_RX); 11229 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11230 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11231 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11232 } 11233 } 11234 11235 /* see if one of the VFs needs its hand slapped */ 11236 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11237 vf = &(pf->vf[i]); 11238 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11239 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11240 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11241 vf->num_mdd_events++; 11242 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 11243 i); 11244 dev_info(&pf->pdev->dev, 11245 "Use PF Control I/F to re-enable the VF\n"); 11246 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11247 } 11248 11249 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11250 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11251 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11252 vf->num_mdd_events++; 11253 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 11254 i); 11255 dev_info(&pf->pdev->dev, 11256 "Use PF Control I/F to re-enable the VF\n"); 11257 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11258 } 11259 } 11260 11261 /* re-enable mdd interrupt cause */ 11262 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 11263 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11264 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11265 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11266 i40e_flush(hw); 11267 } 11268 11269 /** 11270 * i40e_service_task - Run the driver's async subtasks 11271 * @work: pointer to work_struct containing our data 11272 **/ 11273 static void i40e_service_task(struct work_struct *work) 11274 { 11275 struct i40e_pf *pf = container_of(work, 11276 struct i40e_pf, 11277 service_task); 11278 unsigned long start_time = jiffies; 11279 11280 /* don't bother with service tasks if a reset is in progress */ 11281 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11282 test_bit(__I40E_SUSPENDED, pf->state)) 11283 return; 11284 11285 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11286 return; 11287 11288 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11289 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 11290 i40e_sync_filters_subtask(pf); 11291 i40e_reset_subtask(pf); 11292 i40e_handle_mdd_event(pf); 11293 i40e_vc_process_vflr_event(pf); 11294 i40e_watchdog_subtask(pf); 11295 i40e_fdir_reinit_subtask(pf); 11296 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11297 /* Client subtask will reopen next time through. */ 11298 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 11299 true); 11300 } else { 11301 i40e_client_subtask(pf); 11302 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11303 pf->state)) 11304 i40e_notify_client_of_l2_param_changes( 11305 pf->vsi[pf->lan_vsi]); 11306 } 11307 i40e_sync_filters_subtask(pf); 11308 } else { 11309 i40e_reset_subtask(pf); 11310 } 11311 11312 i40e_clean_adminq_subtask(pf); 11313 11314 /* flush memory to make sure state is correct before next watchdog */ 11315 smp_mb__before_atomic(); 11316 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11317 11318 /* If the tasks have taken longer than one timer cycle or there 11319 * is more work to be done, reschedule the service task now 11320 * rather than wait for the timer to tick again. 11321 */ 11322 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11323 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11324 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11325 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11326 i40e_service_event_schedule(pf); 11327 } 11328 11329 /** 11330 * i40e_service_timer - timer callback 11331 * @t: timer list pointer 11332 **/ 11333 static void i40e_service_timer(struct timer_list *t) 11334 { 11335 struct i40e_pf *pf = from_timer(pf, t, service_timer); 11336 11337 mod_timer(&pf->service_timer, 11338 round_jiffies(jiffies + pf->service_timer_period)); 11339 i40e_service_event_schedule(pf); 11340 } 11341 11342 /** 11343 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11344 * @vsi: the VSI being configured 11345 **/ 11346 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11347 { 11348 struct i40e_pf *pf = vsi->back; 11349 11350 switch (vsi->type) { 11351 case I40E_VSI_MAIN: 11352 vsi->alloc_queue_pairs = pf->num_lan_qps; 11353 if (!vsi->num_tx_desc) 11354 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11355 I40E_REQ_DESCRIPTOR_MULTIPLE); 11356 if (!vsi->num_rx_desc) 11357 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11358 I40E_REQ_DESCRIPTOR_MULTIPLE); 11359 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11360 vsi->num_q_vectors = pf->num_lan_msix; 11361 else 11362 vsi->num_q_vectors = 1; 11363 11364 break; 11365 11366 case I40E_VSI_FDIR: 11367 vsi->alloc_queue_pairs = 1; 11368 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11369 I40E_REQ_DESCRIPTOR_MULTIPLE); 11370 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11371 I40E_REQ_DESCRIPTOR_MULTIPLE); 11372 vsi->num_q_vectors = pf->num_fdsb_msix; 11373 break; 11374 11375 case I40E_VSI_VMDQ2: 11376 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11377 if (!vsi->num_tx_desc) 11378 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11379 I40E_REQ_DESCRIPTOR_MULTIPLE); 11380 if (!vsi->num_rx_desc) 11381 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11382 I40E_REQ_DESCRIPTOR_MULTIPLE); 11383 vsi->num_q_vectors = pf->num_vmdq_msix; 11384 break; 11385 11386 case I40E_VSI_SRIOV: 11387 vsi->alloc_queue_pairs = pf->num_vf_qps; 11388 if (!vsi->num_tx_desc) 11389 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11390 I40E_REQ_DESCRIPTOR_MULTIPLE); 11391 if (!vsi->num_rx_desc) 11392 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11393 I40E_REQ_DESCRIPTOR_MULTIPLE); 11394 break; 11395 11396 default: 11397 WARN_ON(1); 11398 return -ENODATA; 11399 } 11400 11401 if (is_kdump_kernel()) { 11402 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11403 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11404 } 11405 11406 return 0; 11407 } 11408 11409 /** 11410 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11411 * @vsi: VSI pointer 11412 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11413 * 11414 * On error: returns error code (negative) 11415 * On success: returns 0 11416 **/ 11417 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11418 { 11419 struct i40e_ring **next_rings; 11420 int size; 11421 int ret = 0; 11422 11423 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11424 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11425 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11426 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11427 if (!vsi->tx_rings) 11428 return -ENOMEM; 11429 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11430 if (i40e_enabled_xdp_vsi(vsi)) { 11431 vsi->xdp_rings = next_rings; 11432 next_rings += vsi->alloc_queue_pairs; 11433 } 11434 vsi->rx_rings = next_rings; 11435 11436 if (alloc_qvectors) { 11437 /* allocate memory for q_vector pointers */ 11438 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11439 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11440 if (!vsi->q_vectors) { 11441 ret = -ENOMEM; 11442 goto err_vectors; 11443 } 11444 } 11445 return ret; 11446 11447 err_vectors: 11448 kfree(vsi->tx_rings); 11449 return ret; 11450 } 11451 11452 /** 11453 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11454 * @pf: board private structure 11455 * @type: type of VSI 11456 * 11457 * On error: returns error code (negative) 11458 * On success: returns vsi index in PF (positive) 11459 **/ 11460 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11461 { 11462 int ret = -ENODEV; 11463 struct i40e_vsi *vsi; 11464 int vsi_idx; 11465 int i; 11466 11467 /* Need to protect the allocation of the VSIs at the PF level */ 11468 mutex_lock(&pf->switch_mutex); 11469 11470 /* VSI list may be fragmented if VSI creation/destruction has 11471 * been happening. We can afford to do a quick scan to look 11472 * for any free VSIs in the list. 11473 * 11474 * find next empty vsi slot, looping back around if necessary 11475 */ 11476 i = pf->next_vsi; 11477 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11478 i++; 11479 if (i >= pf->num_alloc_vsi) { 11480 i = 0; 11481 while (i < pf->next_vsi && pf->vsi[i]) 11482 i++; 11483 } 11484 11485 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11486 vsi_idx = i; /* Found one! */ 11487 } else { 11488 ret = -ENODEV; 11489 goto unlock_pf; /* out of VSI slots! */ 11490 } 11491 pf->next_vsi = ++i; 11492 11493 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11494 if (!vsi) { 11495 ret = -ENOMEM; 11496 goto unlock_pf; 11497 } 11498 vsi->type = type; 11499 vsi->back = pf; 11500 set_bit(__I40E_VSI_DOWN, vsi->state); 11501 vsi->flags = 0; 11502 vsi->idx = vsi_idx; 11503 vsi->int_rate_limit = 0; 11504 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11505 pf->rss_table_size : 64; 11506 vsi->netdev_registered = false; 11507 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11508 hash_init(vsi->mac_filter_hash); 11509 vsi->irqs_ready = false; 11510 11511 if (type == I40E_VSI_MAIN) { 11512 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11513 if (!vsi->af_xdp_zc_qps) 11514 goto err_rings; 11515 } 11516 11517 ret = i40e_set_num_rings_in_vsi(vsi); 11518 if (ret) 11519 goto err_rings; 11520 11521 ret = i40e_vsi_alloc_arrays(vsi, true); 11522 if (ret) 11523 goto err_rings; 11524 11525 /* Setup default MSIX irq handler for VSI */ 11526 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11527 11528 /* Initialize VSI lock */ 11529 spin_lock_init(&vsi->mac_filter_hash_lock); 11530 pf->vsi[vsi_idx] = vsi; 11531 ret = vsi_idx; 11532 goto unlock_pf; 11533 11534 err_rings: 11535 bitmap_free(vsi->af_xdp_zc_qps); 11536 pf->next_vsi = i - 1; 11537 kfree(vsi); 11538 unlock_pf: 11539 mutex_unlock(&pf->switch_mutex); 11540 return ret; 11541 } 11542 11543 /** 11544 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11545 * @vsi: VSI pointer 11546 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11547 * 11548 * On error: returns error code (negative) 11549 * On success: returns 0 11550 **/ 11551 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11552 { 11553 /* free the ring and vector containers */ 11554 if (free_qvectors) { 11555 kfree(vsi->q_vectors); 11556 vsi->q_vectors = NULL; 11557 } 11558 kfree(vsi->tx_rings); 11559 vsi->tx_rings = NULL; 11560 vsi->rx_rings = NULL; 11561 vsi->xdp_rings = NULL; 11562 } 11563 11564 /** 11565 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11566 * and lookup table 11567 * @vsi: Pointer to VSI structure 11568 */ 11569 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11570 { 11571 if (!vsi) 11572 return; 11573 11574 kfree(vsi->rss_hkey_user); 11575 vsi->rss_hkey_user = NULL; 11576 11577 kfree(vsi->rss_lut_user); 11578 vsi->rss_lut_user = NULL; 11579 } 11580 11581 /** 11582 * i40e_vsi_clear - Deallocate the VSI provided 11583 * @vsi: the VSI being un-configured 11584 **/ 11585 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11586 { 11587 struct i40e_pf *pf; 11588 11589 if (!vsi) 11590 return 0; 11591 11592 if (!vsi->back) 11593 goto free_vsi; 11594 pf = vsi->back; 11595 11596 mutex_lock(&pf->switch_mutex); 11597 if (!pf->vsi[vsi->idx]) { 11598 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11599 vsi->idx, vsi->idx, vsi->type); 11600 goto unlock_vsi; 11601 } 11602 11603 if (pf->vsi[vsi->idx] != vsi) { 11604 dev_err(&pf->pdev->dev, 11605 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11606 pf->vsi[vsi->idx]->idx, 11607 pf->vsi[vsi->idx]->type, 11608 vsi->idx, vsi->type); 11609 goto unlock_vsi; 11610 } 11611 11612 /* updates the PF for this cleared vsi */ 11613 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11614 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11615 11616 bitmap_free(vsi->af_xdp_zc_qps); 11617 i40e_vsi_free_arrays(vsi, true); 11618 i40e_clear_rss_config_user(vsi); 11619 11620 pf->vsi[vsi->idx] = NULL; 11621 if (vsi->idx < pf->next_vsi) 11622 pf->next_vsi = vsi->idx; 11623 11624 unlock_vsi: 11625 mutex_unlock(&pf->switch_mutex); 11626 free_vsi: 11627 kfree(vsi); 11628 11629 return 0; 11630 } 11631 11632 /** 11633 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11634 * @vsi: the VSI being cleaned 11635 **/ 11636 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11637 { 11638 int i; 11639 11640 if (vsi->tx_rings && vsi->tx_rings[0]) { 11641 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11642 kfree_rcu(vsi->tx_rings[i], rcu); 11643 WRITE_ONCE(vsi->tx_rings[i], NULL); 11644 WRITE_ONCE(vsi->rx_rings[i], NULL); 11645 if (vsi->xdp_rings) 11646 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11647 } 11648 } 11649 } 11650 11651 /** 11652 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11653 * @vsi: the VSI being configured 11654 **/ 11655 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11656 { 11657 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11658 struct i40e_pf *pf = vsi->back; 11659 struct i40e_ring *ring; 11660 11661 /* Set basic values in the rings to be used later during open() */ 11662 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11663 /* allocate space for both Tx and Rx in one shot */ 11664 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11665 if (!ring) 11666 goto err_out; 11667 11668 ring->queue_index = i; 11669 ring->reg_idx = vsi->base_queue + i; 11670 ring->ring_active = false; 11671 ring->vsi = vsi; 11672 ring->netdev = vsi->netdev; 11673 ring->dev = &pf->pdev->dev; 11674 ring->count = vsi->num_tx_desc; 11675 ring->size = 0; 11676 ring->dcb_tc = 0; 11677 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11678 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11679 ring->itr_setting = pf->tx_itr_default; 11680 WRITE_ONCE(vsi->tx_rings[i], ring++); 11681 11682 if (!i40e_enabled_xdp_vsi(vsi)) 11683 goto setup_rx; 11684 11685 ring->queue_index = vsi->alloc_queue_pairs + i; 11686 ring->reg_idx = vsi->base_queue + ring->queue_index; 11687 ring->ring_active = false; 11688 ring->vsi = vsi; 11689 ring->netdev = NULL; 11690 ring->dev = &pf->pdev->dev; 11691 ring->count = vsi->num_tx_desc; 11692 ring->size = 0; 11693 ring->dcb_tc = 0; 11694 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11695 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11696 set_ring_xdp(ring); 11697 ring->itr_setting = pf->tx_itr_default; 11698 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11699 11700 setup_rx: 11701 ring->queue_index = i; 11702 ring->reg_idx = vsi->base_queue + i; 11703 ring->ring_active = false; 11704 ring->vsi = vsi; 11705 ring->netdev = vsi->netdev; 11706 ring->dev = &pf->pdev->dev; 11707 ring->count = vsi->num_rx_desc; 11708 ring->size = 0; 11709 ring->dcb_tc = 0; 11710 ring->itr_setting = pf->rx_itr_default; 11711 WRITE_ONCE(vsi->rx_rings[i], ring); 11712 } 11713 11714 return 0; 11715 11716 err_out: 11717 i40e_vsi_clear_rings(vsi); 11718 return -ENOMEM; 11719 } 11720 11721 /** 11722 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11723 * @pf: board private structure 11724 * @vectors: the number of MSI-X vectors to request 11725 * 11726 * Returns the number of vectors reserved, or error 11727 **/ 11728 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11729 { 11730 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11731 I40E_MIN_MSIX, vectors); 11732 if (vectors < 0) { 11733 dev_info(&pf->pdev->dev, 11734 "MSI-X vector reservation failed: %d\n", vectors); 11735 vectors = 0; 11736 } 11737 11738 return vectors; 11739 } 11740 11741 /** 11742 * i40e_init_msix - Setup the MSIX capability 11743 * @pf: board private structure 11744 * 11745 * Work with the OS to set up the MSIX vectors needed. 11746 * 11747 * Returns the number of vectors reserved or negative on failure 11748 **/ 11749 static int i40e_init_msix(struct i40e_pf *pf) 11750 { 11751 struct i40e_hw *hw = &pf->hw; 11752 int cpus, extra_vectors; 11753 int vectors_left; 11754 int v_budget, i; 11755 int v_actual; 11756 int iwarp_requested = 0; 11757 11758 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11759 return -ENODEV; 11760 11761 /* The number of vectors we'll request will be comprised of: 11762 * - Add 1 for "other" cause for Admin Queue events, etc. 11763 * - The number of LAN queue pairs 11764 * - Queues being used for RSS. 11765 * We don't need as many as max_rss_size vectors. 11766 * use rss_size instead in the calculation since that 11767 * is governed by number of cpus in the system. 11768 * - assumes symmetric Tx/Rx pairing 11769 * - The number of VMDq pairs 11770 * - The CPU count within the NUMA node if iWARP is enabled 11771 * Once we count this up, try the request. 11772 * 11773 * If we can't get what we want, we'll simplify to nearly nothing 11774 * and try again. If that still fails, we punt. 11775 */ 11776 vectors_left = hw->func_caps.num_msix_vectors; 11777 v_budget = 0; 11778 11779 /* reserve one vector for miscellaneous handler */ 11780 if (vectors_left) { 11781 v_budget++; 11782 vectors_left--; 11783 } 11784 11785 /* reserve some vectors for the main PF traffic queues. Initially we 11786 * only reserve at most 50% of the available vectors, in the case that 11787 * the number of online CPUs is large. This ensures that we can enable 11788 * extra features as well. Once we've enabled the other features, we 11789 * will use any remaining vectors to reach as close as we can to the 11790 * number of online CPUs. 11791 */ 11792 cpus = num_online_cpus(); 11793 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11794 vectors_left -= pf->num_lan_msix; 11795 11796 /* reserve one vector for sideband flow director */ 11797 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11798 if (vectors_left) { 11799 pf->num_fdsb_msix = 1; 11800 v_budget++; 11801 vectors_left--; 11802 } else { 11803 pf->num_fdsb_msix = 0; 11804 } 11805 } 11806 11807 /* can we reserve enough for iWARP? */ 11808 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11809 iwarp_requested = pf->num_iwarp_msix; 11810 11811 if (!vectors_left) 11812 pf->num_iwarp_msix = 0; 11813 else if (vectors_left < pf->num_iwarp_msix) 11814 pf->num_iwarp_msix = 1; 11815 v_budget += pf->num_iwarp_msix; 11816 vectors_left -= pf->num_iwarp_msix; 11817 } 11818 11819 /* any vectors left over go for VMDq support */ 11820 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11821 if (!vectors_left) { 11822 pf->num_vmdq_msix = 0; 11823 pf->num_vmdq_qps = 0; 11824 } else { 11825 int vmdq_vecs_wanted = 11826 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11827 int vmdq_vecs = 11828 min_t(int, vectors_left, vmdq_vecs_wanted); 11829 11830 /* if we're short on vectors for what's desired, we limit 11831 * the queues per vmdq. If this is still more than are 11832 * available, the user will need to change the number of 11833 * queues/vectors used by the PF later with the ethtool 11834 * channels command 11835 */ 11836 if (vectors_left < vmdq_vecs_wanted) { 11837 pf->num_vmdq_qps = 1; 11838 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11839 vmdq_vecs = min_t(int, 11840 vectors_left, 11841 vmdq_vecs_wanted); 11842 } 11843 pf->num_vmdq_msix = pf->num_vmdq_qps; 11844 11845 v_budget += vmdq_vecs; 11846 vectors_left -= vmdq_vecs; 11847 } 11848 } 11849 11850 /* On systems with a large number of SMP cores, we previously limited 11851 * the number of vectors for num_lan_msix to be at most 50% of the 11852 * available vectors, to allow for other features. Now, we add back 11853 * the remaining vectors. However, we ensure that the total 11854 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11855 * calculate the number of vectors we can add without going over the 11856 * cap of CPUs. For systems with a small number of CPUs this will be 11857 * zero. 11858 */ 11859 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11860 pf->num_lan_msix += extra_vectors; 11861 vectors_left -= extra_vectors; 11862 11863 WARN(vectors_left < 0, 11864 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11865 11866 v_budget += pf->num_lan_msix; 11867 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11868 GFP_KERNEL); 11869 if (!pf->msix_entries) 11870 return -ENOMEM; 11871 11872 for (i = 0; i < v_budget; i++) 11873 pf->msix_entries[i].entry = i; 11874 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11875 11876 if (v_actual < I40E_MIN_MSIX) { 11877 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11878 kfree(pf->msix_entries); 11879 pf->msix_entries = NULL; 11880 pci_disable_msix(pf->pdev); 11881 return -ENODEV; 11882 11883 } else if (v_actual == I40E_MIN_MSIX) { 11884 /* Adjust for minimal MSIX use */ 11885 pf->num_vmdq_vsis = 0; 11886 pf->num_vmdq_qps = 0; 11887 pf->num_lan_qps = 1; 11888 pf->num_lan_msix = 1; 11889 11890 } else if (v_actual != v_budget) { 11891 /* If we have limited resources, we will start with no vectors 11892 * for the special features and then allocate vectors to some 11893 * of these features based on the policy and at the end disable 11894 * the features that did not get any vectors. 11895 */ 11896 int vec; 11897 11898 dev_info(&pf->pdev->dev, 11899 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11900 v_actual, v_budget); 11901 /* reserve the misc vector */ 11902 vec = v_actual - 1; 11903 11904 /* Scale vector usage down */ 11905 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11906 pf->num_vmdq_vsis = 1; 11907 pf->num_vmdq_qps = 1; 11908 11909 /* partition out the remaining vectors */ 11910 switch (vec) { 11911 case 2: 11912 pf->num_lan_msix = 1; 11913 break; 11914 case 3: 11915 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11916 pf->num_lan_msix = 1; 11917 pf->num_iwarp_msix = 1; 11918 } else { 11919 pf->num_lan_msix = 2; 11920 } 11921 break; 11922 default: 11923 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11924 pf->num_iwarp_msix = min_t(int, (vec / 3), 11925 iwarp_requested); 11926 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11927 I40E_DEFAULT_NUM_VMDQ_VSI); 11928 } else { 11929 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11930 I40E_DEFAULT_NUM_VMDQ_VSI); 11931 } 11932 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11933 pf->num_fdsb_msix = 1; 11934 vec--; 11935 } 11936 pf->num_lan_msix = min_t(int, 11937 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11938 pf->num_lan_msix); 11939 pf->num_lan_qps = pf->num_lan_msix; 11940 break; 11941 } 11942 } 11943 11944 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 11945 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11946 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 11947 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 11948 } 11949 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 11950 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11951 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 11952 } 11953 11954 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 11955 pf->num_iwarp_msix == 0) { 11956 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11957 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 11958 } 11959 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11960 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11961 pf->num_lan_msix, 11962 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11963 pf->num_fdsb_msix, 11964 pf->num_iwarp_msix); 11965 11966 return v_actual; 11967 } 11968 11969 /** 11970 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11971 * @vsi: the VSI being configured 11972 * @v_idx: index of the vector in the vsi struct 11973 * 11974 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11975 **/ 11976 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 11977 { 11978 struct i40e_q_vector *q_vector; 11979 11980 /* allocate q_vector */ 11981 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11982 if (!q_vector) 11983 return -ENOMEM; 11984 11985 q_vector->vsi = vsi; 11986 q_vector->v_idx = v_idx; 11987 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11988 11989 if (vsi->netdev) 11990 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 11991 11992 /* tie q_vector and vsi together */ 11993 vsi->q_vectors[v_idx] = q_vector; 11994 11995 return 0; 11996 } 11997 11998 /** 11999 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 12000 * @vsi: the VSI being configured 12001 * 12002 * We allocate one q_vector per queue interrupt. If allocation fails we 12003 * return -ENOMEM. 12004 **/ 12005 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 12006 { 12007 struct i40e_pf *pf = vsi->back; 12008 int err, v_idx, num_q_vectors; 12009 12010 /* if not MSIX, give the one vector only to the LAN VSI */ 12011 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12012 num_q_vectors = vsi->num_q_vectors; 12013 else if (vsi == pf->vsi[pf->lan_vsi]) 12014 num_q_vectors = 1; 12015 else 12016 return -EINVAL; 12017 12018 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 12019 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 12020 if (err) 12021 goto err_out; 12022 } 12023 12024 return 0; 12025 12026 err_out: 12027 while (v_idx--) 12028 i40e_free_q_vector(vsi, v_idx); 12029 12030 return err; 12031 } 12032 12033 /** 12034 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12035 * @pf: board private structure to initialize 12036 **/ 12037 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12038 { 12039 int vectors = 0; 12040 ssize_t size; 12041 12042 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12043 vectors = i40e_init_msix(pf); 12044 if (vectors < 0) { 12045 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12046 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12047 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12048 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12049 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12050 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12051 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12052 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12053 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12054 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12055 12056 /* rework the queue expectations without MSIX */ 12057 i40e_determine_queue_usage(pf); 12058 } 12059 } 12060 12061 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12062 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12063 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12064 vectors = pci_enable_msi(pf->pdev); 12065 if (vectors < 0) { 12066 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12067 vectors); 12068 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12069 } 12070 vectors = 1; /* one MSI or Legacy vector */ 12071 } 12072 12073 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12074 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12075 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12076 12077 /* set up vector assignment tracking */ 12078 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12079 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12080 if (!pf->irq_pile) 12081 return -ENOMEM; 12082 12083 pf->irq_pile->num_entries = vectors; 12084 12085 /* track first vector for misc interrupts, ignore return */ 12086 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12087 12088 return 0; 12089 } 12090 12091 /** 12092 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12093 * @pf: private board data structure 12094 * 12095 * Restore the interrupt scheme that was cleared when we suspended the 12096 * device. This should be called during resume to re-allocate the q_vectors 12097 * and reacquire IRQs. 12098 */ 12099 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12100 { 12101 int err, i; 12102 12103 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12104 * scheme. We need to re-enabled them here in order to attempt to 12105 * re-acquire the MSI or MSI-X vectors 12106 */ 12107 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12108 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12109 12110 err = i40e_init_interrupt_scheme(pf); 12111 if (err) 12112 return err; 12113 12114 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12115 * rings together again. 12116 */ 12117 for (i = 0; i < pf->num_alloc_vsi; i++) { 12118 if (pf->vsi[i]) { 12119 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 12120 if (err) 12121 goto err_unwind; 12122 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 12123 } 12124 } 12125 12126 err = i40e_setup_misc_vector(pf); 12127 if (err) 12128 goto err_unwind; 12129 12130 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12131 i40e_client_update_msix_info(pf); 12132 12133 return 0; 12134 12135 err_unwind: 12136 while (i--) { 12137 if (pf->vsi[i]) 12138 i40e_vsi_free_q_vectors(pf->vsi[i]); 12139 } 12140 12141 return err; 12142 } 12143 12144 /** 12145 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12146 * non queue events in recovery mode 12147 * @pf: board private structure 12148 * 12149 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12150 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12151 * This is handled differently than in recovery mode since no Tx/Rx resources 12152 * are being allocated. 12153 **/ 12154 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12155 { 12156 int err; 12157 12158 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12159 err = i40e_setup_misc_vector(pf); 12160 12161 if (err) { 12162 dev_info(&pf->pdev->dev, 12163 "MSI-X misc vector request failed, error %d\n", 12164 err); 12165 return err; 12166 } 12167 } else { 12168 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12169 12170 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12171 pf->int_name, pf); 12172 12173 if (err) { 12174 dev_info(&pf->pdev->dev, 12175 "MSI/legacy misc vector request failed, error %d\n", 12176 err); 12177 return err; 12178 } 12179 i40e_enable_misc_int_causes(pf); 12180 i40e_irq_dynamic_enable_icr0(pf); 12181 } 12182 12183 return 0; 12184 } 12185 12186 /** 12187 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12188 * @pf: board private structure 12189 * 12190 * This sets up the handler for MSIX 0, which is used to manage the 12191 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12192 * when in MSI or Legacy interrupt mode. 12193 **/ 12194 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12195 { 12196 struct i40e_hw *hw = &pf->hw; 12197 int err = 0; 12198 12199 /* Only request the IRQ once, the first time through. */ 12200 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12201 err = request_irq(pf->msix_entries[0].vector, 12202 i40e_intr, 0, pf->int_name, pf); 12203 if (err) { 12204 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12205 dev_info(&pf->pdev->dev, 12206 "request_irq for %s failed: %d\n", 12207 pf->int_name, err); 12208 return -EFAULT; 12209 } 12210 } 12211 12212 i40e_enable_misc_int_causes(pf); 12213 12214 /* associate no queues to the misc vector */ 12215 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12216 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12217 12218 i40e_flush(hw); 12219 12220 i40e_irq_dynamic_enable_icr0(pf); 12221 12222 return err; 12223 } 12224 12225 /** 12226 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12227 * @vsi: Pointer to vsi structure 12228 * @seed: Buffter to store the hash keys 12229 * @lut: Buffer to store the lookup table entries 12230 * @lut_size: Size of buffer to store the lookup table entries 12231 * 12232 * Return 0 on success, negative on failure 12233 */ 12234 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12235 u8 *lut, u16 lut_size) 12236 { 12237 struct i40e_pf *pf = vsi->back; 12238 struct i40e_hw *hw = &pf->hw; 12239 int ret = 0; 12240 12241 if (seed) { 12242 ret = i40e_aq_get_rss_key(hw, vsi->id, 12243 (struct i40e_aqc_get_set_rss_key_data *)seed); 12244 if (ret) { 12245 dev_info(&pf->pdev->dev, 12246 "Cannot get RSS key, err %pe aq_err %s\n", 12247 ERR_PTR(ret), 12248 i40e_aq_str(&pf->hw, 12249 pf->hw.aq.asq_last_status)); 12250 return ret; 12251 } 12252 } 12253 12254 if (lut) { 12255 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12256 12257 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12258 if (ret) { 12259 dev_info(&pf->pdev->dev, 12260 "Cannot get RSS lut, err %pe aq_err %s\n", 12261 ERR_PTR(ret), 12262 i40e_aq_str(&pf->hw, 12263 pf->hw.aq.asq_last_status)); 12264 return ret; 12265 } 12266 } 12267 12268 return ret; 12269 } 12270 12271 /** 12272 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12273 * @vsi: Pointer to vsi structure 12274 * @seed: RSS hash seed 12275 * @lut: Lookup table 12276 * @lut_size: Lookup table size 12277 * 12278 * Returns 0 on success, negative on failure 12279 **/ 12280 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12281 const u8 *lut, u16 lut_size) 12282 { 12283 struct i40e_pf *pf = vsi->back; 12284 struct i40e_hw *hw = &pf->hw; 12285 u16 vf_id = vsi->vf_id; 12286 u8 i; 12287 12288 /* Fill out hash function seed */ 12289 if (seed) { 12290 u32 *seed_dw = (u32 *)seed; 12291 12292 if (vsi->type == I40E_VSI_MAIN) { 12293 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12294 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12295 } else if (vsi->type == I40E_VSI_SRIOV) { 12296 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12297 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12298 } else { 12299 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12300 } 12301 } 12302 12303 if (lut) { 12304 u32 *lut_dw = (u32 *)lut; 12305 12306 if (vsi->type == I40E_VSI_MAIN) { 12307 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12308 return -EINVAL; 12309 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12310 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12311 } else if (vsi->type == I40E_VSI_SRIOV) { 12312 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12313 return -EINVAL; 12314 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12315 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12316 } else { 12317 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12318 } 12319 } 12320 i40e_flush(hw); 12321 12322 return 0; 12323 } 12324 12325 /** 12326 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12327 * @vsi: Pointer to VSI structure 12328 * @seed: Buffer to store the keys 12329 * @lut: Buffer to store the lookup table entries 12330 * @lut_size: Size of buffer to store the lookup table entries 12331 * 12332 * Returns 0 on success, negative on failure 12333 */ 12334 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12335 u8 *lut, u16 lut_size) 12336 { 12337 struct i40e_pf *pf = vsi->back; 12338 struct i40e_hw *hw = &pf->hw; 12339 u16 i; 12340 12341 if (seed) { 12342 u32 *seed_dw = (u32 *)seed; 12343 12344 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12345 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12346 } 12347 if (lut) { 12348 u32 *lut_dw = (u32 *)lut; 12349 12350 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12351 return -EINVAL; 12352 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12353 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12354 } 12355 12356 return 0; 12357 } 12358 12359 /** 12360 * i40e_config_rss - Configure RSS keys and lut 12361 * @vsi: Pointer to VSI structure 12362 * @seed: RSS hash seed 12363 * @lut: Lookup table 12364 * @lut_size: Lookup table size 12365 * 12366 * Returns 0 on success, negative on failure 12367 */ 12368 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12369 { 12370 struct i40e_pf *pf = vsi->back; 12371 12372 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12373 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12374 else 12375 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12376 } 12377 12378 /** 12379 * i40e_get_rss - Get RSS keys and lut 12380 * @vsi: Pointer to VSI structure 12381 * @seed: Buffer to store the keys 12382 * @lut: Buffer to store the lookup table entries 12383 * @lut_size: Size of buffer to store the lookup table entries 12384 * 12385 * Returns 0 on success, negative on failure 12386 */ 12387 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12388 { 12389 struct i40e_pf *pf = vsi->back; 12390 12391 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12392 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12393 else 12394 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12395 } 12396 12397 /** 12398 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12399 * @pf: Pointer to board private structure 12400 * @lut: Lookup table 12401 * @rss_table_size: Lookup table size 12402 * @rss_size: Range of queue number for hashing 12403 */ 12404 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12405 u16 rss_table_size, u16 rss_size) 12406 { 12407 u16 i; 12408 12409 for (i = 0; i < rss_table_size; i++) 12410 lut[i] = i % rss_size; 12411 } 12412 12413 /** 12414 * i40e_pf_config_rss - Prepare for RSS if used 12415 * @pf: board private structure 12416 **/ 12417 static int i40e_pf_config_rss(struct i40e_pf *pf) 12418 { 12419 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12420 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12421 u8 *lut; 12422 struct i40e_hw *hw = &pf->hw; 12423 u32 reg_val; 12424 u64 hena; 12425 int ret; 12426 12427 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12428 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12429 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12430 hena |= i40e_pf_get_default_rss_hena(pf); 12431 12432 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12433 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12434 12435 /* Determine the RSS table size based on the hardware capabilities */ 12436 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12437 reg_val = (pf->rss_table_size == 512) ? 12438 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12439 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12440 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12441 12442 /* Determine the RSS size of the VSI */ 12443 if (!vsi->rss_size) { 12444 u16 qcount; 12445 /* If the firmware does something weird during VSI init, we 12446 * could end up with zero TCs. Check for that to avoid 12447 * divide-by-zero. It probably won't pass traffic, but it also 12448 * won't panic. 12449 */ 12450 qcount = vsi->num_queue_pairs / 12451 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12452 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12453 } 12454 if (!vsi->rss_size) 12455 return -EINVAL; 12456 12457 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12458 if (!lut) 12459 return -ENOMEM; 12460 12461 /* Use user configured lut if there is one, otherwise use default */ 12462 if (vsi->rss_lut_user) 12463 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12464 else 12465 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12466 12467 /* Use user configured hash key if there is one, otherwise 12468 * use default. 12469 */ 12470 if (vsi->rss_hkey_user) 12471 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12472 else 12473 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12474 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12475 kfree(lut); 12476 12477 return ret; 12478 } 12479 12480 /** 12481 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12482 * @pf: board private structure 12483 * @queue_count: the requested queue count for rss. 12484 * 12485 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12486 * count which may be different from the requested queue count. 12487 * Note: expects to be called while under rtnl_lock() 12488 **/ 12489 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12490 { 12491 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12492 int new_rss_size; 12493 12494 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12495 return 0; 12496 12497 queue_count = min_t(int, queue_count, num_online_cpus()); 12498 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12499 12500 if (queue_count != vsi->num_queue_pairs) { 12501 u16 qcount; 12502 12503 vsi->req_queue_pairs = queue_count; 12504 i40e_prep_for_reset(pf); 12505 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12506 return pf->alloc_rss_size; 12507 12508 pf->alloc_rss_size = new_rss_size; 12509 12510 i40e_reset_and_rebuild(pf, true, true); 12511 12512 /* Discard the user configured hash keys and lut, if less 12513 * queues are enabled. 12514 */ 12515 if (queue_count < vsi->rss_size) { 12516 i40e_clear_rss_config_user(vsi); 12517 dev_dbg(&pf->pdev->dev, 12518 "discard user configured hash keys and lut\n"); 12519 } 12520 12521 /* Reset vsi->rss_size, as number of enabled queues changed */ 12522 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12523 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12524 12525 i40e_pf_config_rss(pf); 12526 } 12527 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12528 vsi->req_queue_pairs, pf->rss_size_max); 12529 return pf->alloc_rss_size; 12530 } 12531 12532 /** 12533 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12534 * @pf: board private structure 12535 **/ 12536 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12537 { 12538 bool min_valid, max_valid; 12539 u32 max_bw, min_bw; 12540 int status; 12541 12542 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12543 &min_valid, &max_valid); 12544 12545 if (!status) { 12546 if (min_valid) 12547 pf->min_bw = min_bw; 12548 if (max_valid) 12549 pf->max_bw = max_bw; 12550 } 12551 12552 return status; 12553 } 12554 12555 /** 12556 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12557 * @pf: board private structure 12558 **/ 12559 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12560 { 12561 struct i40e_aqc_configure_partition_bw_data bw_data; 12562 int status; 12563 12564 memset(&bw_data, 0, sizeof(bw_data)); 12565 12566 /* Set the valid bit for this PF */ 12567 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12568 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12569 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12570 12571 /* Set the new bandwidths */ 12572 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12573 12574 return status; 12575 } 12576 12577 /** 12578 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12579 * @pf: board private structure 12580 **/ 12581 int i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12582 { 12583 /* Commit temporary BW setting to permanent NVM image */ 12584 enum i40e_admin_queue_err last_aq_status; 12585 u16 nvm_word; 12586 int ret; 12587 12588 if (pf->hw.partition_id != 1) { 12589 dev_info(&pf->pdev->dev, 12590 "Commit BW only works on partition 1! This is partition %d", 12591 pf->hw.partition_id); 12592 ret = -EOPNOTSUPP; 12593 goto bw_commit_out; 12594 } 12595 12596 /* Acquire NVM for read access */ 12597 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12598 last_aq_status = pf->hw.aq.asq_last_status; 12599 if (ret) { 12600 dev_info(&pf->pdev->dev, 12601 "Cannot acquire NVM for read access, err %pe aq_err %s\n", 12602 ERR_PTR(ret), 12603 i40e_aq_str(&pf->hw, last_aq_status)); 12604 goto bw_commit_out; 12605 } 12606 12607 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12608 ret = i40e_aq_read_nvm(&pf->hw, 12609 I40E_SR_NVM_CONTROL_WORD, 12610 0x10, sizeof(nvm_word), &nvm_word, 12611 false, NULL); 12612 /* Save off last admin queue command status before releasing 12613 * the NVM 12614 */ 12615 last_aq_status = pf->hw.aq.asq_last_status; 12616 i40e_release_nvm(&pf->hw); 12617 if (ret) { 12618 dev_info(&pf->pdev->dev, "NVM read error, err %pe aq_err %s\n", 12619 ERR_PTR(ret), 12620 i40e_aq_str(&pf->hw, last_aq_status)); 12621 goto bw_commit_out; 12622 } 12623 12624 /* Wait a bit for NVM release to complete */ 12625 msleep(50); 12626 12627 /* Acquire NVM for write access */ 12628 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12629 last_aq_status = pf->hw.aq.asq_last_status; 12630 if (ret) { 12631 dev_info(&pf->pdev->dev, 12632 "Cannot acquire NVM for write access, err %pe aq_err %s\n", 12633 ERR_PTR(ret), 12634 i40e_aq_str(&pf->hw, last_aq_status)); 12635 goto bw_commit_out; 12636 } 12637 /* Write it back out unchanged to initiate update NVM, 12638 * which will force a write of the shadow (alt) RAM to 12639 * the NVM - thus storing the bandwidth values permanently. 12640 */ 12641 ret = i40e_aq_update_nvm(&pf->hw, 12642 I40E_SR_NVM_CONTROL_WORD, 12643 0x10, sizeof(nvm_word), 12644 &nvm_word, true, 0, NULL); 12645 /* Save off last admin queue command status before releasing 12646 * the NVM 12647 */ 12648 last_aq_status = pf->hw.aq.asq_last_status; 12649 i40e_release_nvm(&pf->hw); 12650 if (ret) 12651 dev_info(&pf->pdev->dev, 12652 "BW settings NOT SAVED, err %pe aq_err %s\n", 12653 ERR_PTR(ret), 12654 i40e_aq_str(&pf->hw, last_aq_status)); 12655 bw_commit_out: 12656 12657 return ret; 12658 } 12659 12660 /** 12661 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12662 * if total port shutdown feature is enabled for this PF 12663 * @pf: board private structure 12664 **/ 12665 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12666 { 12667 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12668 #define I40E_FEATURES_ENABLE_PTR 0x2A 12669 #define I40E_CURRENT_SETTING_PTR 0x2B 12670 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12671 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12672 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12673 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12674 u16 sr_emp_sr_settings_ptr = 0; 12675 u16 features_enable = 0; 12676 u16 link_behavior = 0; 12677 int read_status = 0; 12678 bool ret = false; 12679 12680 read_status = i40e_read_nvm_word(&pf->hw, 12681 I40E_SR_EMP_SR_SETTINGS_PTR, 12682 &sr_emp_sr_settings_ptr); 12683 if (read_status) 12684 goto err_nvm; 12685 read_status = i40e_read_nvm_word(&pf->hw, 12686 sr_emp_sr_settings_ptr + 12687 I40E_FEATURES_ENABLE_PTR, 12688 &features_enable); 12689 if (read_status) 12690 goto err_nvm; 12691 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12692 read_status = i40e_read_nvm_module_data(&pf->hw, 12693 I40E_SR_EMP_SR_SETTINGS_PTR, 12694 I40E_CURRENT_SETTING_PTR, 12695 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12696 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12697 &link_behavior); 12698 if (read_status) 12699 goto err_nvm; 12700 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12701 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12702 } 12703 return ret; 12704 12705 err_nvm: 12706 dev_warn(&pf->pdev->dev, 12707 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12708 ERR_PTR(read_status)); 12709 return ret; 12710 } 12711 12712 /** 12713 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12714 * @pf: board private structure to initialize 12715 * 12716 * i40e_sw_init initializes the Adapter private data structure. 12717 * Fields are initialized based on PCI device information and 12718 * OS network device settings (MTU size). 12719 **/ 12720 static int i40e_sw_init(struct i40e_pf *pf) 12721 { 12722 int err = 0; 12723 int size; 12724 u16 pow; 12725 12726 /* Set default capability flags */ 12727 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12728 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12729 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12730 12731 /* Set default ITR */ 12732 pf->rx_itr_default = I40E_ITR_RX_DEF; 12733 pf->tx_itr_default = I40E_ITR_TX_DEF; 12734 12735 /* Depending on PF configurations, it is possible that the RSS 12736 * maximum might end up larger than the available queues 12737 */ 12738 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12739 pf->alloc_rss_size = 1; 12740 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12741 pf->rss_size_max = min_t(int, pf->rss_size_max, 12742 pf->hw.func_caps.num_tx_qp); 12743 12744 /* find the next higher power-of-2 of num cpus */ 12745 pow = roundup_pow_of_two(num_online_cpus()); 12746 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12747 12748 if (pf->hw.func_caps.rss) { 12749 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12750 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12751 num_online_cpus()); 12752 } 12753 12754 /* MFP mode enabled */ 12755 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12756 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12757 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12758 if (i40e_get_partition_bw_setting(pf)) { 12759 dev_warn(&pf->pdev->dev, 12760 "Could not get partition bw settings\n"); 12761 } else { 12762 dev_info(&pf->pdev->dev, 12763 "Partition BW Min = %8.8x, Max = %8.8x\n", 12764 pf->min_bw, pf->max_bw); 12765 12766 /* nudge the Tx scheduler */ 12767 i40e_set_partition_bw_setting(pf); 12768 } 12769 } 12770 12771 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12772 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12773 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12774 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12775 pf->hw.num_partitions > 1) 12776 dev_info(&pf->pdev->dev, 12777 "Flow Director Sideband mode Disabled in MFP mode\n"); 12778 else 12779 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12780 pf->fdir_pf_filter_count = 12781 pf->hw.func_caps.fd_filters_guaranteed; 12782 pf->hw.fdir_shared_filter_count = 12783 pf->hw.func_caps.fd_filters_best_effort; 12784 } 12785 12786 /* Enable HW ATR eviction if possible */ 12787 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12788 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12789 12790 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12791 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12792 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12793 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12794 } 12795 12796 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12797 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12798 /* IWARP needs one extra vector for CQP just like MISC.*/ 12799 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12800 } 12801 /* Stopping FW LLDP engine is supported on XL710 and X722 12802 * starting from FW versions determined in i40e_init_adminq. 12803 * Stopping the FW LLDP engine is not supported on XL710 12804 * if NPAR is functioning so unset this hw flag in this case. 12805 */ 12806 if (pf->hw.mac.type == I40E_MAC_XL710 && 12807 pf->hw.func_caps.npar_enable) 12808 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12809 12810 #ifdef CONFIG_PCI_IOV 12811 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12812 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12813 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12814 pf->num_req_vfs = min_t(int, 12815 pf->hw.func_caps.num_vfs, 12816 I40E_MAX_VF_COUNT); 12817 } 12818 #endif /* CONFIG_PCI_IOV */ 12819 pf->lan_veb = I40E_NO_VEB; 12820 pf->lan_vsi = I40E_NO_VSI; 12821 12822 /* By default FW has this off for performance reasons */ 12823 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12824 12825 /* set up queue assignment tracking */ 12826 size = sizeof(struct i40e_lump_tracking) 12827 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12828 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12829 if (!pf->qp_pile) { 12830 err = -ENOMEM; 12831 goto sw_init_done; 12832 } 12833 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12834 12835 pf->tx_timeout_recovery_level = 1; 12836 12837 if (pf->hw.mac.type != I40E_MAC_X722 && 12838 i40e_is_total_port_shutdown_enabled(pf)) { 12839 /* Link down on close must be on when total port shutdown 12840 * is enabled for a given port 12841 */ 12842 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12843 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12844 dev_info(&pf->pdev->dev, 12845 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12846 } 12847 mutex_init(&pf->switch_mutex); 12848 12849 sw_init_done: 12850 return err; 12851 } 12852 12853 /** 12854 * i40e_set_ntuple - set the ntuple feature flag and take action 12855 * @pf: board private structure to initialize 12856 * @features: the feature set that the stack is suggesting 12857 * 12858 * returns a bool to indicate if reset needs to happen 12859 **/ 12860 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12861 { 12862 bool need_reset = false; 12863 12864 /* Check if Flow Director n-tuple support was enabled or disabled. If 12865 * the state changed, we need to reset. 12866 */ 12867 if (features & NETIF_F_NTUPLE) { 12868 /* Enable filters and mark for reset */ 12869 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12870 need_reset = true; 12871 /* enable FD_SB only if there is MSI-X vector and no cloud 12872 * filters exist 12873 */ 12874 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12875 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12876 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12877 } 12878 } else { 12879 /* turn off filters, mark for reset and clear SW filter list */ 12880 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12881 need_reset = true; 12882 i40e_fdir_filter_exit(pf); 12883 } 12884 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12885 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12886 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12887 12888 /* reset fd counters */ 12889 pf->fd_add_err = 0; 12890 pf->fd_atr_cnt = 0; 12891 /* if ATR was auto disabled it can be re-enabled. */ 12892 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12893 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12894 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12895 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12896 } 12897 return need_reset; 12898 } 12899 12900 /** 12901 * i40e_clear_rss_lut - clear the rx hash lookup table 12902 * @vsi: the VSI being configured 12903 **/ 12904 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12905 { 12906 struct i40e_pf *pf = vsi->back; 12907 struct i40e_hw *hw = &pf->hw; 12908 u16 vf_id = vsi->vf_id; 12909 u8 i; 12910 12911 if (vsi->type == I40E_VSI_MAIN) { 12912 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12913 wr32(hw, I40E_PFQF_HLUT(i), 0); 12914 } else if (vsi->type == I40E_VSI_SRIOV) { 12915 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12916 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12917 } else { 12918 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12919 } 12920 } 12921 12922 /** 12923 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12924 * @vsi: ptr to VSI 12925 * @ena: flag to indicate the on/off setting 12926 */ 12927 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12928 { 12929 bool if_running = netif_running(vsi->netdev) && 12930 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12931 int ret; 12932 12933 if (if_running) 12934 i40e_down(vsi); 12935 12936 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12937 if (ret) 12938 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12939 if (if_running) 12940 i40e_up(vsi); 12941 12942 return ret; 12943 } 12944 12945 /** 12946 * i40e_set_features - set the netdev feature flags 12947 * @netdev: ptr to the netdev being adjusted 12948 * @features: the feature set that the stack is suggesting 12949 * Note: expects to be called while under rtnl_lock() 12950 **/ 12951 static int i40e_set_features(struct net_device *netdev, 12952 netdev_features_t features) 12953 { 12954 struct i40e_netdev_priv *np = netdev_priv(netdev); 12955 struct i40e_vsi *vsi = np->vsi; 12956 struct i40e_pf *pf = vsi->back; 12957 bool need_reset; 12958 12959 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12960 i40e_pf_config_rss(pf); 12961 else if (!(features & NETIF_F_RXHASH) && 12962 netdev->features & NETIF_F_RXHASH) 12963 i40e_clear_rss_lut(vsi); 12964 12965 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12966 i40e_vlan_stripping_enable(vsi); 12967 else 12968 i40e_vlan_stripping_disable(vsi); 12969 12970 if (!(features & NETIF_F_HW_TC) && 12971 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12972 dev_err(&pf->pdev->dev, 12973 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12974 return -EINVAL; 12975 } 12976 12977 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12978 i40e_del_all_macvlans(vsi); 12979 12980 need_reset = i40e_set_ntuple(pf, features); 12981 12982 if (need_reset) 12983 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12984 12985 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 12986 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 12987 12988 return 0; 12989 } 12990 12991 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12992 unsigned int table, unsigned int idx, 12993 struct udp_tunnel_info *ti) 12994 { 12995 struct i40e_netdev_priv *np = netdev_priv(netdev); 12996 struct i40e_hw *hw = &np->vsi->back->hw; 12997 u8 type, filter_index; 12998 int ret; 12999 13000 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 13001 I40E_AQC_TUNNEL_TYPE_NGE; 13002 13003 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 13004 NULL); 13005 if (ret) { 13006 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 13007 ERR_PTR(ret), 13008 i40e_aq_str(hw, hw->aq.asq_last_status)); 13009 return -EIO; 13010 } 13011 13012 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 13013 return 0; 13014 } 13015 13016 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 13017 unsigned int table, unsigned int idx, 13018 struct udp_tunnel_info *ti) 13019 { 13020 struct i40e_netdev_priv *np = netdev_priv(netdev); 13021 struct i40e_hw *hw = &np->vsi->back->hw; 13022 int ret; 13023 13024 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 13025 if (ret) { 13026 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 13027 ERR_PTR(ret), 13028 i40e_aq_str(hw, hw->aq.asq_last_status)); 13029 return -EIO; 13030 } 13031 13032 return 0; 13033 } 13034 13035 static int i40e_get_phys_port_id(struct net_device *netdev, 13036 struct netdev_phys_item_id *ppid) 13037 { 13038 struct i40e_netdev_priv *np = netdev_priv(netdev); 13039 struct i40e_pf *pf = np->vsi->back; 13040 struct i40e_hw *hw = &pf->hw; 13041 13042 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13043 return -EOPNOTSUPP; 13044 13045 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13046 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13047 13048 return 0; 13049 } 13050 13051 /** 13052 * i40e_ndo_fdb_add - add an entry to the hardware database 13053 * @ndm: the input from the stack 13054 * @tb: pointer to array of nladdr (unused) 13055 * @dev: the net device pointer 13056 * @addr: the MAC address entry being added 13057 * @vid: VLAN ID 13058 * @flags: instructions from stack about fdb operation 13059 * @extack: netlink extended ack, unused currently 13060 */ 13061 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13062 struct net_device *dev, 13063 const unsigned char *addr, u16 vid, 13064 u16 flags, 13065 struct netlink_ext_ack *extack) 13066 { 13067 struct i40e_netdev_priv *np = netdev_priv(dev); 13068 struct i40e_pf *pf = np->vsi->back; 13069 int err = 0; 13070 13071 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13072 return -EOPNOTSUPP; 13073 13074 if (vid) { 13075 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13076 return -EINVAL; 13077 } 13078 13079 /* Hardware does not support aging addresses so if a 13080 * ndm_state is given only allow permanent addresses 13081 */ 13082 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13083 netdev_info(dev, "FDB only supports static addresses\n"); 13084 return -EINVAL; 13085 } 13086 13087 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13088 err = dev_uc_add_excl(dev, addr); 13089 else if (is_multicast_ether_addr(addr)) 13090 err = dev_mc_add_excl(dev, addr); 13091 else 13092 err = -EINVAL; 13093 13094 /* Only return duplicate errors if NLM_F_EXCL is set */ 13095 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13096 err = 0; 13097 13098 return err; 13099 } 13100 13101 /** 13102 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13103 * @dev: the netdev being configured 13104 * @nlh: RTNL message 13105 * @flags: bridge flags 13106 * @extack: netlink extended ack 13107 * 13108 * Inserts a new hardware bridge if not already created and 13109 * enables the bridging mode requested (VEB or VEPA). If the 13110 * hardware bridge has already been inserted and the request 13111 * is to change the mode then that requires a PF reset to 13112 * allow rebuild of the components with required hardware 13113 * bridge mode enabled. 13114 * 13115 * Note: expects to be called while under rtnl_lock() 13116 **/ 13117 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13118 struct nlmsghdr *nlh, 13119 u16 flags, 13120 struct netlink_ext_ack *extack) 13121 { 13122 struct i40e_netdev_priv *np = netdev_priv(dev); 13123 struct i40e_vsi *vsi = np->vsi; 13124 struct i40e_pf *pf = vsi->back; 13125 struct i40e_veb *veb = NULL; 13126 struct nlattr *attr, *br_spec; 13127 int i, rem; 13128 13129 /* Only for PF VSI for now */ 13130 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13131 return -EOPNOTSUPP; 13132 13133 /* Find the HW bridge for PF VSI */ 13134 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13135 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13136 veb = pf->veb[i]; 13137 } 13138 13139 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13140 if (!br_spec) 13141 return -EINVAL; 13142 13143 nla_for_each_nested(attr, br_spec, rem) { 13144 __u16 mode; 13145 13146 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13147 continue; 13148 13149 mode = nla_get_u16(attr); 13150 if ((mode != BRIDGE_MODE_VEPA) && 13151 (mode != BRIDGE_MODE_VEB)) 13152 return -EINVAL; 13153 13154 /* Insert a new HW bridge */ 13155 if (!veb) { 13156 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 13157 vsi->tc_config.enabled_tc); 13158 if (veb) { 13159 veb->bridge_mode = mode; 13160 i40e_config_bridge_mode(veb); 13161 } else { 13162 /* No Bridge HW offload available */ 13163 return -ENOENT; 13164 } 13165 break; 13166 } else if (mode != veb->bridge_mode) { 13167 /* Existing HW bridge but different mode needs reset */ 13168 veb->bridge_mode = mode; 13169 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13170 if (mode == BRIDGE_MODE_VEB) 13171 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13172 else 13173 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13174 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13175 break; 13176 } 13177 } 13178 13179 return 0; 13180 } 13181 13182 /** 13183 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13184 * @skb: skb buff 13185 * @pid: process id 13186 * @seq: RTNL message seq # 13187 * @dev: the netdev being configured 13188 * @filter_mask: unused 13189 * @nlflags: netlink flags passed in 13190 * 13191 * Return the mode in which the hardware bridge is operating in 13192 * i.e VEB or VEPA. 13193 **/ 13194 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13195 struct net_device *dev, 13196 u32 __always_unused filter_mask, 13197 int nlflags) 13198 { 13199 struct i40e_netdev_priv *np = netdev_priv(dev); 13200 struct i40e_vsi *vsi = np->vsi; 13201 struct i40e_pf *pf = vsi->back; 13202 struct i40e_veb *veb = NULL; 13203 int i; 13204 13205 /* Only for PF VSI for now */ 13206 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13207 return -EOPNOTSUPP; 13208 13209 /* Find the HW bridge for the PF VSI */ 13210 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13211 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13212 veb = pf->veb[i]; 13213 } 13214 13215 if (!veb) 13216 return 0; 13217 13218 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13219 0, 0, nlflags, filter_mask, NULL); 13220 } 13221 13222 /** 13223 * i40e_features_check - Validate encapsulated packet conforms to limits 13224 * @skb: skb buff 13225 * @dev: This physical port's netdev 13226 * @features: Offload features that the stack believes apply 13227 **/ 13228 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13229 struct net_device *dev, 13230 netdev_features_t features) 13231 { 13232 size_t len; 13233 13234 /* No point in doing any of this if neither checksum nor GSO are 13235 * being requested for this frame. We can rule out both by just 13236 * checking for CHECKSUM_PARTIAL 13237 */ 13238 if (skb->ip_summed != CHECKSUM_PARTIAL) 13239 return features; 13240 13241 /* We cannot support GSO if the MSS is going to be less than 13242 * 64 bytes. If it is then we need to drop support for GSO. 13243 */ 13244 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13245 features &= ~NETIF_F_GSO_MASK; 13246 13247 /* MACLEN can support at most 63 words */ 13248 len = skb_network_header(skb) - skb->data; 13249 if (len & ~(63 * 2)) 13250 goto out_err; 13251 13252 /* IPLEN and EIPLEN can support at most 127 dwords */ 13253 len = skb_transport_header(skb) - skb_network_header(skb); 13254 if (len & ~(127 * 4)) 13255 goto out_err; 13256 13257 if (skb->encapsulation) { 13258 /* L4TUNLEN can support 127 words */ 13259 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13260 if (len & ~(127 * 2)) 13261 goto out_err; 13262 13263 /* IPLEN can support at most 127 dwords */ 13264 len = skb_inner_transport_header(skb) - 13265 skb_inner_network_header(skb); 13266 if (len & ~(127 * 4)) 13267 goto out_err; 13268 } 13269 13270 /* No need to validate L4LEN as TCP is the only protocol with a 13271 * flexible value and we support all possible values supported 13272 * by TCP, which is at most 15 dwords 13273 */ 13274 13275 return features; 13276 out_err: 13277 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13278 } 13279 13280 /** 13281 * i40e_xdp_setup - add/remove an XDP program 13282 * @vsi: VSI to changed 13283 * @prog: XDP program 13284 * @extack: netlink extended ack 13285 **/ 13286 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13287 struct netlink_ext_ack *extack) 13288 { 13289 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13290 struct i40e_pf *pf = vsi->back; 13291 struct bpf_prog *old_prog; 13292 bool need_reset; 13293 int i; 13294 13295 /* Don't allow frames that span over multiple buffers */ 13296 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13297 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13298 return -EINVAL; 13299 } 13300 13301 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13302 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13303 13304 if (need_reset) 13305 i40e_prep_for_reset(pf); 13306 13307 /* VSI shall be deleted in a moment, just return EINVAL */ 13308 if (test_bit(__I40E_IN_REMOVE, pf->state)) 13309 return -EINVAL; 13310 13311 old_prog = xchg(&vsi->xdp_prog, prog); 13312 13313 if (need_reset) { 13314 if (!prog) { 13315 xdp_features_clear_redirect_target(vsi->netdev); 13316 /* Wait until ndo_xsk_wakeup completes. */ 13317 synchronize_rcu(); 13318 } 13319 i40e_reset_and_rebuild(pf, true, true); 13320 } 13321 13322 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13323 if (i40e_realloc_rx_bi_zc(vsi, true)) 13324 return -ENOMEM; 13325 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13326 if (i40e_realloc_rx_bi_zc(vsi, false)) 13327 return -ENOMEM; 13328 } 13329 13330 for (i = 0; i < vsi->num_queue_pairs; i++) 13331 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13332 13333 if (old_prog) 13334 bpf_prog_put(old_prog); 13335 13336 /* Kick start the NAPI context if there is an AF_XDP socket open 13337 * on that queue id. This so that receiving will start. 13338 */ 13339 if (need_reset && prog) { 13340 for (i = 0; i < vsi->num_queue_pairs; i++) 13341 if (vsi->xdp_rings[i]->xsk_pool) 13342 (void)i40e_xsk_wakeup(vsi->netdev, i, 13343 XDP_WAKEUP_RX); 13344 xdp_features_set_redirect_target(vsi->netdev, true); 13345 } 13346 13347 return 0; 13348 } 13349 13350 /** 13351 * i40e_enter_busy_conf - Enters busy config state 13352 * @vsi: vsi 13353 * 13354 * Returns 0 on success, <0 for failure. 13355 **/ 13356 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13357 { 13358 struct i40e_pf *pf = vsi->back; 13359 int timeout = 50; 13360 13361 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13362 timeout--; 13363 if (!timeout) 13364 return -EBUSY; 13365 usleep_range(1000, 2000); 13366 } 13367 13368 return 0; 13369 } 13370 13371 /** 13372 * i40e_exit_busy_conf - Exits busy config state 13373 * @vsi: vsi 13374 **/ 13375 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13376 { 13377 struct i40e_pf *pf = vsi->back; 13378 13379 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13380 } 13381 13382 /** 13383 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13384 * @vsi: vsi 13385 * @queue_pair: queue pair 13386 **/ 13387 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13388 { 13389 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13390 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13391 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13392 sizeof(vsi->tx_rings[queue_pair]->stats)); 13393 if (i40e_enabled_xdp_vsi(vsi)) { 13394 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13395 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13396 } 13397 } 13398 13399 /** 13400 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13401 * @vsi: vsi 13402 * @queue_pair: queue pair 13403 **/ 13404 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13405 { 13406 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13407 if (i40e_enabled_xdp_vsi(vsi)) { 13408 /* Make sure that in-progress ndo_xdp_xmit calls are 13409 * completed. 13410 */ 13411 synchronize_rcu(); 13412 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13413 } 13414 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13415 } 13416 13417 /** 13418 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13419 * @vsi: vsi 13420 * @queue_pair: queue pair 13421 * @enable: true for enable, false for disable 13422 **/ 13423 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13424 bool enable) 13425 { 13426 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13427 struct i40e_q_vector *q_vector = rxr->q_vector; 13428 13429 if (!vsi->netdev) 13430 return; 13431 13432 /* All rings in a qp belong to the same qvector. */ 13433 if (q_vector->rx.ring || q_vector->tx.ring) { 13434 if (enable) 13435 napi_enable(&q_vector->napi); 13436 else 13437 napi_disable(&q_vector->napi); 13438 } 13439 } 13440 13441 /** 13442 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13443 * @vsi: vsi 13444 * @queue_pair: queue pair 13445 * @enable: true for enable, false for disable 13446 * 13447 * Returns 0 on success, <0 on failure. 13448 **/ 13449 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13450 bool enable) 13451 { 13452 struct i40e_pf *pf = vsi->back; 13453 int pf_q, ret = 0; 13454 13455 pf_q = vsi->base_queue + queue_pair; 13456 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13457 false /*is xdp*/, enable); 13458 if (ret) { 13459 dev_info(&pf->pdev->dev, 13460 "VSI seid %d Tx ring %d %sable timeout\n", 13461 vsi->seid, pf_q, (enable ? "en" : "dis")); 13462 return ret; 13463 } 13464 13465 i40e_control_rx_q(pf, pf_q, enable); 13466 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13467 if (ret) { 13468 dev_info(&pf->pdev->dev, 13469 "VSI seid %d Rx ring %d %sable timeout\n", 13470 vsi->seid, pf_q, (enable ? "en" : "dis")); 13471 return ret; 13472 } 13473 13474 /* Due to HW errata, on Rx disable only, the register can 13475 * indicate done before it really is. Needs 50ms to be sure 13476 */ 13477 if (!enable) 13478 mdelay(50); 13479 13480 if (!i40e_enabled_xdp_vsi(vsi)) 13481 return ret; 13482 13483 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13484 pf_q + vsi->alloc_queue_pairs, 13485 true /*is xdp*/, enable); 13486 if (ret) { 13487 dev_info(&pf->pdev->dev, 13488 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13489 vsi->seid, pf_q, (enable ? "en" : "dis")); 13490 } 13491 13492 return ret; 13493 } 13494 13495 /** 13496 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13497 * @vsi: vsi 13498 * @queue_pair: queue_pair 13499 **/ 13500 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13501 { 13502 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13503 struct i40e_pf *pf = vsi->back; 13504 struct i40e_hw *hw = &pf->hw; 13505 13506 /* All rings in a qp belong to the same qvector. */ 13507 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13508 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13509 else 13510 i40e_irq_dynamic_enable_icr0(pf); 13511 13512 i40e_flush(hw); 13513 } 13514 13515 /** 13516 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13517 * @vsi: vsi 13518 * @queue_pair: queue_pair 13519 **/ 13520 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13521 { 13522 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13523 struct i40e_pf *pf = vsi->back; 13524 struct i40e_hw *hw = &pf->hw; 13525 13526 /* For simplicity, instead of removing the qp interrupt causes 13527 * from the interrupt linked list, we simply disable the interrupt, and 13528 * leave the list intact. 13529 * 13530 * All rings in a qp belong to the same qvector. 13531 */ 13532 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13533 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13534 13535 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13536 i40e_flush(hw); 13537 synchronize_irq(pf->msix_entries[intpf].vector); 13538 } else { 13539 /* Legacy and MSI mode - this stops all interrupt handling */ 13540 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13541 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13542 i40e_flush(hw); 13543 synchronize_irq(pf->pdev->irq); 13544 } 13545 } 13546 13547 /** 13548 * i40e_queue_pair_disable - Disables a queue pair 13549 * @vsi: vsi 13550 * @queue_pair: queue pair 13551 * 13552 * Returns 0 on success, <0 on failure. 13553 **/ 13554 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13555 { 13556 int err; 13557 13558 err = i40e_enter_busy_conf(vsi); 13559 if (err) 13560 return err; 13561 13562 i40e_queue_pair_disable_irq(vsi, queue_pair); 13563 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13564 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13565 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13566 i40e_queue_pair_clean_rings(vsi, queue_pair); 13567 i40e_queue_pair_reset_stats(vsi, queue_pair); 13568 13569 return err; 13570 } 13571 13572 /** 13573 * i40e_queue_pair_enable - Enables a queue pair 13574 * @vsi: vsi 13575 * @queue_pair: queue pair 13576 * 13577 * Returns 0 on success, <0 on failure. 13578 **/ 13579 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13580 { 13581 int err; 13582 13583 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13584 if (err) 13585 return err; 13586 13587 if (i40e_enabled_xdp_vsi(vsi)) { 13588 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13589 if (err) 13590 return err; 13591 } 13592 13593 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13594 if (err) 13595 return err; 13596 13597 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13598 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13599 i40e_queue_pair_enable_irq(vsi, queue_pair); 13600 13601 i40e_exit_busy_conf(vsi); 13602 13603 return err; 13604 } 13605 13606 /** 13607 * i40e_xdp - implements ndo_bpf for i40e 13608 * @dev: netdevice 13609 * @xdp: XDP command 13610 **/ 13611 static int i40e_xdp(struct net_device *dev, 13612 struct netdev_bpf *xdp) 13613 { 13614 struct i40e_netdev_priv *np = netdev_priv(dev); 13615 struct i40e_vsi *vsi = np->vsi; 13616 13617 if (vsi->type != I40E_VSI_MAIN) 13618 return -EINVAL; 13619 13620 switch (xdp->command) { 13621 case XDP_SETUP_PROG: 13622 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13623 case XDP_SETUP_XSK_POOL: 13624 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13625 xdp->xsk.queue_id); 13626 default: 13627 return -EINVAL; 13628 } 13629 } 13630 13631 static const struct net_device_ops i40e_netdev_ops = { 13632 .ndo_open = i40e_open, 13633 .ndo_stop = i40e_close, 13634 .ndo_start_xmit = i40e_lan_xmit_frame, 13635 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13636 .ndo_set_rx_mode = i40e_set_rx_mode, 13637 .ndo_validate_addr = eth_validate_addr, 13638 .ndo_set_mac_address = i40e_set_mac, 13639 .ndo_change_mtu = i40e_change_mtu, 13640 .ndo_eth_ioctl = i40e_ioctl, 13641 .ndo_tx_timeout = i40e_tx_timeout, 13642 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13643 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13644 #ifdef CONFIG_NET_POLL_CONTROLLER 13645 .ndo_poll_controller = i40e_netpoll, 13646 #endif 13647 .ndo_setup_tc = __i40e_setup_tc, 13648 .ndo_select_queue = i40e_lan_select_queue, 13649 .ndo_set_features = i40e_set_features, 13650 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13651 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13652 .ndo_get_vf_stats = i40e_get_vf_stats, 13653 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13654 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13655 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13656 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13657 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13658 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13659 .ndo_fdb_add = i40e_ndo_fdb_add, 13660 .ndo_features_check = i40e_features_check, 13661 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13662 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13663 .ndo_bpf = i40e_xdp, 13664 .ndo_xdp_xmit = i40e_xdp_xmit, 13665 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13666 .ndo_dfwd_add_station = i40e_fwd_add, 13667 .ndo_dfwd_del_station = i40e_fwd_del, 13668 }; 13669 13670 /** 13671 * i40e_config_netdev - Setup the netdev flags 13672 * @vsi: the VSI being configured 13673 * 13674 * Returns 0 on success, negative value on failure 13675 **/ 13676 static int i40e_config_netdev(struct i40e_vsi *vsi) 13677 { 13678 struct i40e_pf *pf = vsi->back; 13679 struct i40e_hw *hw = &pf->hw; 13680 struct i40e_netdev_priv *np; 13681 struct net_device *netdev; 13682 u8 broadcast[ETH_ALEN]; 13683 u8 mac_addr[ETH_ALEN]; 13684 int etherdev_size; 13685 netdev_features_t hw_enc_features; 13686 netdev_features_t hw_features; 13687 13688 etherdev_size = sizeof(struct i40e_netdev_priv); 13689 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13690 if (!netdev) 13691 return -ENOMEM; 13692 13693 vsi->netdev = netdev; 13694 np = netdev_priv(netdev); 13695 np->vsi = vsi; 13696 13697 hw_enc_features = NETIF_F_SG | 13698 NETIF_F_HW_CSUM | 13699 NETIF_F_HIGHDMA | 13700 NETIF_F_SOFT_FEATURES | 13701 NETIF_F_TSO | 13702 NETIF_F_TSO_ECN | 13703 NETIF_F_TSO6 | 13704 NETIF_F_GSO_GRE | 13705 NETIF_F_GSO_GRE_CSUM | 13706 NETIF_F_GSO_PARTIAL | 13707 NETIF_F_GSO_IPXIP4 | 13708 NETIF_F_GSO_IPXIP6 | 13709 NETIF_F_GSO_UDP_TUNNEL | 13710 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13711 NETIF_F_GSO_UDP_L4 | 13712 NETIF_F_SCTP_CRC | 13713 NETIF_F_RXHASH | 13714 NETIF_F_RXCSUM | 13715 0; 13716 13717 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13718 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13719 13720 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13721 13722 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13723 13724 netdev->hw_enc_features |= hw_enc_features; 13725 13726 /* record features VLANs can make use of */ 13727 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13728 13729 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13730 NETIF_F_GSO_GRE_CSUM | \ 13731 NETIF_F_GSO_IPXIP4 | \ 13732 NETIF_F_GSO_IPXIP6 | \ 13733 NETIF_F_GSO_UDP_TUNNEL | \ 13734 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13735 13736 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13737 netdev->features |= NETIF_F_GSO_PARTIAL | 13738 I40E_GSO_PARTIAL_FEATURES; 13739 13740 netdev->mpls_features |= NETIF_F_SG; 13741 netdev->mpls_features |= NETIF_F_HW_CSUM; 13742 netdev->mpls_features |= NETIF_F_TSO; 13743 netdev->mpls_features |= NETIF_F_TSO6; 13744 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13745 13746 /* enable macvlan offloads */ 13747 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13748 13749 hw_features = hw_enc_features | 13750 NETIF_F_HW_VLAN_CTAG_TX | 13751 NETIF_F_HW_VLAN_CTAG_RX; 13752 13753 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13754 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13755 13756 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13757 13758 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13759 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13760 13761 netdev->features &= ~NETIF_F_HW_TC; 13762 13763 if (vsi->type == I40E_VSI_MAIN) { 13764 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13765 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13766 /* The following steps are necessary for two reasons. First, 13767 * some older NVM configurations load a default MAC-VLAN 13768 * filter that will accept any tagged packet, and we want to 13769 * replace this with a normal filter. Additionally, it is 13770 * possible our MAC address was provided by the platform using 13771 * Open Firmware or similar. 13772 * 13773 * Thus, we need to remove the default filter and install one 13774 * specific to the MAC address. 13775 */ 13776 i40e_rm_default_mac_filter(vsi, mac_addr); 13777 spin_lock_bh(&vsi->mac_filter_hash_lock); 13778 i40e_add_mac_filter(vsi, mac_addr); 13779 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13780 13781 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13782 NETDEV_XDP_ACT_REDIRECT | 13783 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13784 NETDEV_XDP_ACT_RX_SG; 13785 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13786 } else { 13787 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13788 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13789 * the end, which is 4 bytes long, so force truncation of the 13790 * original name by IFNAMSIZ - 4 13791 */ 13792 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 13793 IFNAMSIZ - 4, 13794 pf->vsi[pf->lan_vsi]->netdev->name); 13795 eth_random_addr(mac_addr); 13796 13797 spin_lock_bh(&vsi->mac_filter_hash_lock); 13798 i40e_add_mac_filter(vsi, mac_addr); 13799 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13800 } 13801 13802 /* Add the broadcast filter so that we initially will receive 13803 * broadcast packets. Note that when a new VLAN is first added the 13804 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13805 * specific filters as part of transitioning into "vlan" operation. 13806 * When more VLANs are added, the driver will copy each existing MAC 13807 * filter and add it for the new VLAN. 13808 * 13809 * Broadcast filters are handled specially by 13810 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13811 * promiscuous bit instead of adding this directly as a MAC/VLAN 13812 * filter. The subtask will update the correct broadcast promiscuous 13813 * bits as VLANs become active or inactive. 13814 */ 13815 eth_broadcast_addr(broadcast); 13816 spin_lock_bh(&vsi->mac_filter_hash_lock); 13817 i40e_add_mac_filter(vsi, broadcast); 13818 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13819 13820 eth_hw_addr_set(netdev, mac_addr); 13821 ether_addr_copy(netdev->perm_addr, mac_addr); 13822 13823 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13824 netdev->neigh_priv_len = sizeof(u32) * 4; 13825 13826 netdev->priv_flags |= IFF_UNICAST_FLT; 13827 netdev->priv_flags |= IFF_SUPP_NOFCS; 13828 /* Setup netdev TC information */ 13829 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13830 13831 netdev->netdev_ops = &i40e_netdev_ops; 13832 netdev->watchdog_timeo = 5 * HZ; 13833 i40e_set_ethtool_ops(netdev); 13834 13835 /* MTU range: 68 - 9706 */ 13836 netdev->min_mtu = ETH_MIN_MTU; 13837 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13838 13839 return 0; 13840 } 13841 13842 /** 13843 * i40e_vsi_delete - Delete a VSI from the switch 13844 * @vsi: the VSI being removed 13845 * 13846 * Returns 0 on success, negative value on failure 13847 **/ 13848 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13849 { 13850 /* remove default VSI is not allowed */ 13851 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13852 return; 13853 13854 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13855 } 13856 13857 /** 13858 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13859 * @vsi: the VSI being queried 13860 * 13861 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13862 **/ 13863 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13864 { 13865 struct i40e_veb *veb; 13866 struct i40e_pf *pf = vsi->back; 13867 13868 /* Uplink is not a bridge so default to VEB */ 13869 if (vsi->veb_idx >= I40E_MAX_VEB) 13870 return 1; 13871 13872 veb = pf->veb[vsi->veb_idx]; 13873 if (!veb) { 13874 dev_info(&pf->pdev->dev, 13875 "There is no veb associated with the bridge\n"); 13876 return -ENOENT; 13877 } 13878 13879 /* Uplink is a bridge in VEPA mode */ 13880 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13881 return 0; 13882 } else { 13883 /* Uplink is a bridge in VEB mode */ 13884 return 1; 13885 } 13886 13887 /* VEPA is now default bridge, so return 0 */ 13888 return 0; 13889 } 13890 13891 /** 13892 * i40e_add_vsi - Add a VSI to the switch 13893 * @vsi: the VSI being configured 13894 * 13895 * This initializes a VSI context depending on the VSI type to be added and 13896 * passes it down to the add_vsi aq command. 13897 **/ 13898 static int i40e_add_vsi(struct i40e_vsi *vsi) 13899 { 13900 int ret = -ENODEV; 13901 struct i40e_pf *pf = vsi->back; 13902 struct i40e_hw *hw = &pf->hw; 13903 struct i40e_vsi_context ctxt; 13904 struct i40e_mac_filter *f; 13905 struct hlist_node *h; 13906 int bkt; 13907 13908 u8 enabled_tc = 0x1; /* TC0 enabled */ 13909 int f_count = 0; 13910 13911 memset(&ctxt, 0, sizeof(ctxt)); 13912 switch (vsi->type) { 13913 case I40E_VSI_MAIN: 13914 /* The PF's main VSI is already setup as part of the 13915 * device initialization, so we'll not bother with 13916 * the add_vsi call, but we will retrieve the current 13917 * VSI context. 13918 */ 13919 ctxt.seid = pf->main_vsi_seid; 13920 ctxt.pf_num = pf->hw.pf_id; 13921 ctxt.vf_num = 0; 13922 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13923 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13924 if (ret) { 13925 dev_info(&pf->pdev->dev, 13926 "couldn't get PF vsi config, err %pe aq_err %s\n", 13927 ERR_PTR(ret), 13928 i40e_aq_str(&pf->hw, 13929 pf->hw.aq.asq_last_status)); 13930 return -ENOENT; 13931 } 13932 vsi->info = ctxt.info; 13933 vsi->info.valid_sections = 0; 13934 13935 vsi->seid = ctxt.seid; 13936 vsi->id = ctxt.vsi_number; 13937 13938 enabled_tc = i40e_pf_get_tc_map(pf); 13939 13940 /* Source pruning is enabled by default, so the flag is 13941 * negative logic - if it's set, we need to fiddle with 13942 * the VSI to disable source pruning. 13943 */ 13944 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13945 memset(&ctxt, 0, sizeof(ctxt)); 13946 ctxt.seid = pf->main_vsi_seid; 13947 ctxt.pf_num = pf->hw.pf_id; 13948 ctxt.vf_num = 0; 13949 ctxt.info.valid_sections |= 13950 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13951 ctxt.info.switch_id = 13952 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13953 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13954 if (ret) { 13955 dev_info(&pf->pdev->dev, 13956 "update vsi failed, err %d aq_err %s\n", 13957 ret, 13958 i40e_aq_str(&pf->hw, 13959 pf->hw.aq.asq_last_status)); 13960 ret = -ENOENT; 13961 goto err; 13962 } 13963 } 13964 13965 /* MFP mode setup queue map and update VSI */ 13966 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13967 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13968 memset(&ctxt, 0, sizeof(ctxt)); 13969 ctxt.seid = pf->main_vsi_seid; 13970 ctxt.pf_num = pf->hw.pf_id; 13971 ctxt.vf_num = 0; 13972 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13973 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13974 if (ret) { 13975 dev_info(&pf->pdev->dev, 13976 "update vsi failed, err %pe aq_err %s\n", 13977 ERR_PTR(ret), 13978 i40e_aq_str(&pf->hw, 13979 pf->hw.aq.asq_last_status)); 13980 ret = -ENOENT; 13981 goto err; 13982 } 13983 /* update the local VSI info queue map */ 13984 i40e_vsi_update_queue_map(vsi, &ctxt); 13985 vsi->info.valid_sections = 0; 13986 } else { 13987 /* Default/Main VSI is only enabled for TC0 13988 * reconfigure it to enable all TCs that are 13989 * available on the port in SFP mode. 13990 * For MFP case the iSCSI PF would use this 13991 * flow to enable LAN+iSCSI TC. 13992 */ 13993 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13994 if (ret) { 13995 /* Single TC condition is not fatal, 13996 * message and continue 13997 */ 13998 dev_info(&pf->pdev->dev, 13999 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 14000 enabled_tc, 14001 ERR_PTR(ret), 14002 i40e_aq_str(&pf->hw, 14003 pf->hw.aq.asq_last_status)); 14004 } 14005 } 14006 break; 14007 14008 case I40E_VSI_FDIR: 14009 ctxt.pf_num = hw->pf_id; 14010 ctxt.vf_num = 0; 14011 ctxt.uplink_seid = vsi->uplink_seid; 14012 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14013 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 14014 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 14015 (i40e_is_vsi_uplink_mode_veb(vsi))) { 14016 ctxt.info.valid_sections |= 14017 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14018 ctxt.info.switch_id = 14019 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14020 } 14021 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14022 break; 14023 14024 case I40E_VSI_VMDQ2: 14025 ctxt.pf_num = hw->pf_id; 14026 ctxt.vf_num = 0; 14027 ctxt.uplink_seid = vsi->uplink_seid; 14028 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14029 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 14030 14031 /* This VSI is connected to VEB so the switch_id 14032 * should be set to zero by default. 14033 */ 14034 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14035 ctxt.info.valid_sections |= 14036 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14037 ctxt.info.switch_id = 14038 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14039 } 14040 14041 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14042 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14043 break; 14044 14045 case I40E_VSI_SRIOV: 14046 ctxt.pf_num = hw->pf_id; 14047 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14048 ctxt.uplink_seid = vsi->uplink_seid; 14049 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14050 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14051 14052 /* This VSI is connected to VEB so the switch_id 14053 * should be set to zero by default. 14054 */ 14055 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14056 ctxt.info.valid_sections |= 14057 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14058 ctxt.info.switch_id = 14059 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14060 } 14061 14062 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14063 ctxt.info.valid_sections |= 14064 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14065 ctxt.info.queueing_opt_flags |= 14066 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14067 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14068 } 14069 14070 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14071 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14072 if (pf->vf[vsi->vf_id].spoofchk) { 14073 ctxt.info.valid_sections |= 14074 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14075 ctxt.info.sec_flags |= 14076 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14077 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14078 } 14079 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14080 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14081 break; 14082 14083 case I40E_VSI_IWARP: 14084 /* send down message to iWARP */ 14085 break; 14086 14087 default: 14088 return -ENODEV; 14089 } 14090 14091 if (vsi->type != I40E_VSI_MAIN) { 14092 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14093 if (ret) { 14094 dev_info(&vsi->back->pdev->dev, 14095 "add vsi failed, err %pe aq_err %s\n", 14096 ERR_PTR(ret), 14097 i40e_aq_str(&pf->hw, 14098 pf->hw.aq.asq_last_status)); 14099 ret = -ENOENT; 14100 goto err; 14101 } 14102 vsi->info = ctxt.info; 14103 vsi->info.valid_sections = 0; 14104 vsi->seid = ctxt.seid; 14105 vsi->id = ctxt.vsi_number; 14106 } 14107 14108 spin_lock_bh(&vsi->mac_filter_hash_lock); 14109 vsi->active_filters = 0; 14110 /* If macvlan filters already exist, force them to get loaded */ 14111 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14112 f->state = I40E_FILTER_NEW; 14113 f_count++; 14114 } 14115 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14116 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14117 14118 if (f_count) { 14119 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14120 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14121 } 14122 14123 /* Update VSI BW information */ 14124 ret = i40e_vsi_get_bw_info(vsi); 14125 if (ret) { 14126 dev_info(&pf->pdev->dev, 14127 "couldn't get vsi bw info, err %pe aq_err %s\n", 14128 ERR_PTR(ret), 14129 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14130 /* VSI is already added so not tearing that up */ 14131 ret = 0; 14132 } 14133 14134 err: 14135 return ret; 14136 } 14137 14138 /** 14139 * i40e_vsi_release - Delete a VSI and free its resources 14140 * @vsi: the VSI being removed 14141 * 14142 * Returns 0 on success or < 0 on error 14143 **/ 14144 int i40e_vsi_release(struct i40e_vsi *vsi) 14145 { 14146 struct i40e_mac_filter *f; 14147 struct hlist_node *h; 14148 struct i40e_veb *veb = NULL; 14149 struct i40e_pf *pf; 14150 u16 uplink_seid; 14151 int i, n, bkt; 14152 14153 pf = vsi->back; 14154 14155 /* release of a VEB-owner or last VSI is not allowed */ 14156 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14157 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14158 vsi->seid, vsi->uplink_seid); 14159 return -ENODEV; 14160 } 14161 if (vsi == pf->vsi[pf->lan_vsi] && 14162 !test_bit(__I40E_DOWN, pf->state)) { 14163 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14164 return -ENODEV; 14165 } 14166 set_bit(__I40E_VSI_RELEASING, vsi->state); 14167 uplink_seid = vsi->uplink_seid; 14168 14169 if (vsi->type != I40E_VSI_SRIOV) { 14170 if (vsi->netdev_registered) { 14171 vsi->netdev_registered = false; 14172 if (vsi->netdev) { 14173 /* results in a call to i40e_close() */ 14174 unregister_netdev(vsi->netdev); 14175 } 14176 } else { 14177 i40e_vsi_close(vsi); 14178 } 14179 i40e_vsi_disable_irq(vsi); 14180 } 14181 14182 if (vsi->type == I40E_VSI_MAIN) 14183 i40e_devlink_destroy_port(pf); 14184 14185 spin_lock_bh(&vsi->mac_filter_hash_lock); 14186 14187 /* clear the sync flag on all filters */ 14188 if (vsi->netdev) { 14189 __dev_uc_unsync(vsi->netdev, NULL); 14190 __dev_mc_unsync(vsi->netdev, NULL); 14191 } 14192 14193 /* make sure any remaining filters are marked for deletion */ 14194 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14195 __i40e_del_filter(vsi, f); 14196 14197 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14198 14199 i40e_sync_vsi_filters(vsi); 14200 14201 i40e_vsi_delete(vsi); 14202 i40e_vsi_free_q_vectors(vsi); 14203 if (vsi->netdev) { 14204 free_netdev(vsi->netdev); 14205 vsi->netdev = NULL; 14206 } 14207 i40e_vsi_clear_rings(vsi); 14208 i40e_vsi_clear(vsi); 14209 14210 /* If this was the last thing on the VEB, except for the 14211 * controlling VSI, remove the VEB, which puts the controlling 14212 * VSI onto the next level down in the switch. 14213 * 14214 * Well, okay, there's one more exception here: don't remove 14215 * the orphan VEBs yet. We'll wait for an explicit remove request 14216 * from up the network stack. 14217 */ 14218 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 14219 if (pf->vsi[i] && 14220 pf->vsi[i]->uplink_seid == uplink_seid && 14221 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14222 n++; /* count the VSIs */ 14223 } 14224 } 14225 for (i = 0; i < I40E_MAX_VEB; i++) { 14226 if (!pf->veb[i]) 14227 continue; 14228 if (pf->veb[i]->uplink_seid == uplink_seid) 14229 n++; /* count the VEBs */ 14230 if (pf->veb[i]->seid == uplink_seid) 14231 veb = pf->veb[i]; 14232 } 14233 if (n == 0 && veb && veb->uplink_seid != 0) 14234 i40e_veb_release(veb); 14235 14236 return 0; 14237 } 14238 14239 /** 14240 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14241 * @vsi: ptr to the VSI 14242 * 14243 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14244 * corresponding SW VSI structure and initializes num_queue_pairs for the 14245 * newly allocated VSI. 14246 * 14247 * Returns 0 on success or negative on failure 14248 **/ 14249 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14250 { 14251 int ret = -ENOENT; 14252 struct i40e_pf *pf = vsi->back; 14253 14254 if (vsi->q_vectors[0]) { 14255 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14256 vsi->seid); 14257 return -EEXIST; 14258 } 14259 14260 if (vsi->base_vector) { 14261 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14262 vsi->seid, vsi->base_vector); 14263 return -EEXIST; 14264 } 14265 14266 ret = i40e_vsi_alloc_q_vectors(vsi); 14267 if (ret) { 14268 dev_info(&pf->pdev->dev, 14269 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14270 vsi->num_q_vectors, vsi->seid, ret); 14271 vsi->num_q_vectors = 0; 14272 goto vector_setup_out; 14273 } 14274 14275 /* In Legacy mode, we do not have to get any other vector since we 14276 * piggyback on the misc/ICR0 for queue interrupts. 14277 */ 14278 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14279 return ret; 14280 if (vsi->num_q_vectors) 14281 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14282 vsi->num_q_vectors, vsi->idx); 14283 if (vsi->base_vector < 0) { 14284 dev_info(&pf->pdev->dev, 14285 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14286 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14287 i40e_vsi_free_q_vectors(vsi); 14288 ret = -ENOENT; 14289 goto vector_setup_out; 14290 } 14291 14292 vector_setup_out: 14293 return ret; 14294 } 14295 14296 /** 14297 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14298 * @vsi: pointer to the vsi. 14299 * 14300 * This re-allocates a vsi's queue resources. 14301 * 14302 * Returns pointer to the successfully allocated and configured VSI sw struct 14303 * on success, otherwise returns NULL on failure. 14304 **/ 14305 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14306 { 14307 u16 alloc_queue_pairs; 14308 struct i40e_pf *pf; 14309 u8 enabled_tc; 14310 int ret; 14311 14312 if (!vsi) 14313 return NULL; 14314 14315 pf = vsi->back; 14316 14317 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14318 i40e_vsi_clear_rings(vsi); 14319 14320 i40e_vsi_free_arrays(vsi, false); 14321 i40e_set_num_rings_in_vsi(vsi); 14322 ret = i40e_vsi_alloc_arrays(vsi, false); 14323 if (ret) 14324 goto err_vsi; 14325 14326 alloc_queue_pairs = vsi->alloc_queue_pairs * 14327 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14328 14329 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14330 if (ret < 0) { 14331 dev_info(&pf->pdev->dev, 14332 "failed to get tracking for %d queues for VSI %d err %d\n", 14333 alloc_queue_pairs, vsi->seid, ret); 14334 goto err_vsi; 14335 } 14336 vsi->base_queue = ret; 14337 14338 /* Update the FW view of the VSI. Force a reset of TC and queue 14339 * layout configurations. 14340 */ 14341 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14342 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14343 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14344 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14345 if (vsi->type == I40E_VSI_MAIN) 14346 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14347 14348 /* assign it some queues */ 14349 ret = i40e_alloc_rings(vsi); 14350 if (ret) 14351 goto err_rings; 14352 14353 /* map all of the rings to the q_vectors */ 14354 i40e_vsi_map_rings_to_vectors(vsi); 14355 return vsi; 14356 14357 err_rings: 14358 i40e_vsi_free_q_vectors(vsi); 14359 if (vsi->netdev_registered) { 14360 vsi->netdev_registered = false; 14361 unregister_netdev(vsi->netdev); 14362 free_netdev(vsi->netdev); 14363 vsi->netdev = NULL; 14364 } 14365 if (vsi->type == I40E_VSI_MAIN) 14366 i40e_devlink_destroy_port(pf); 14367 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14368 err_vsi: 14369 i40e_vsi_clear(vsi); 14370 return NULL; 14371 } 14372 14373 /** 14374 * i40e_vsi_setup - Set up a VSI by a given type 14375 * @pf: board private structure 14376 * @type: VSI type 14377 * @uplink_seid: the switch element to link to 14378 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14379 * 14380 * This allocates the sw VSI structure and its queue resources, then add a VSI 14381 * to the identified VEB. 14382 * 14383 * Returns pointer to the successfully allocated and configure VSI sw struct on 14384 * success, otherwise returns NULL on failure. 14385 **/ 14386 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14387 u16 uplink_seid, u32 param1) 14388 { 14389 struct i40e_vsi *vsi = NULL; 14390 struct i40e_veb *veb = NULL; 14391 u16 alloc_queue_pairs; 14392 int ret, i; 14393 int v_idx; 14394 14395 /* The requested uplink_seid must be either 14396 * - the PF's port seid 14397 * no VEB is needed because this is the PF 14398 * or this is a Flow Director special case VSI 14399 * - seid of an existing VEB 14400 * - seid of a VSI that owns an existing VEB 14401 * - seid of a VSI that doesn't own a VEB 14402 * a new VEB is created and the VSI becomes the owner 14403 * - seid of the PF VSI, which is what creates the first VEB 14404 * this is a special case of the previous 14405 * 14406 * Find which uplink_seid we were given and create a new VEB if needed 14407 */ 14408 for (i = 0; i < I40E_MAX_VEB; i++) { 14409 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 14410 veb = pf->veb[i]; 14411 break; 14412 } 14413 } 14414 14415 if (!veb && uplink_seid != pf->mac_seid) { 14416 14417 for (i = 0; i < pf->num_alloc_vsi; i++) { 14418 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 14419 vsi = pf->vsi[i]; 14420 break; 14421 } 14422 } 14423 if (!vsi) { 14424 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14425 uplink_seid); 14426 return NULL; 14427 } 14428 14429 if (vsi->uplink_seid == pf->mac_seid) 14430 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 14431 vsi->tc_config.enabled_tc); 14432 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14433 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 14434 vsi->tc_config.enabled_tc); 14435 if (veb) { 14436 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 14437 dev_info(&vsi->back->pdev->dev, 14438 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14439 return NULL; 14440 } 14441 /* We come up by default in VEPA mode if SRIOV is not 14442 * already enabled, in which case we can't force VEPA 14443 * mode. 14444 */ 14445 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14446 veb->bridge_mode = BRIDGE_MODE_VEPA; 14447 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14448 } 14449 i40e_config_bridge_mode(veb); 14450 } 14451 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 14452 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 14453 veb = pf->veb[i]; 14454 } 14455 if (!veb) { 14456 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14457 return NULL; 14458 } 14459 14460 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14461 uplink_seid = veb->seid; 14462 } 14463 14464 /* get vsi sw struct */ 14465 v_idx = i40e_vsi_mem_alloc(pf, type); 14466 if (v_idx < 0) 14467 goto err_alloc; 14468 vsi = pf->vsi[v_idx]; 14469 if (!vsi) 14470 goto err_alloc; 14471 vsi->type = type; 14472 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14473 14474 if (type == I40E_VSI_MAIN) 14475 pf->lan_vsi = v_idx; 14476 else if (type == I40E_VSI_SRIOV) 14477 vsi->vf_id = param1; 14478 /* assign it some queues */ 14479 alloc_queue_pairs = vsi->alloc_queue_pairs * 14480 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14481 14482 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14483 if (ret < 0) { 14484 dev_info(&pf->pdev->dev, 14485 "failed to get tracking for %d queues for VSI %d err=%d\n", 14486 alloc_queue_pairs, vsi->seid, ret); 14487 goto err_vsi; 14488 } 14489 vsi->base_queue = ret; 14490 14491 /* get a VSI from the hardware */ 14492 vsi->uplink_seid = uplink_seid; 14493 ret = i40e_add_vsi(vsi); 14494 if (ret) 14495 goto err_vsi; 14496 14497 switch (vsi->type) { 14498 /* setup the netdev if needed */ 14499 case I40E_VSI_MAIN: 14500 case I40E_VSI_VMDQ2: 14501 ret = i40e_config_netdev(vsi); 14502 if (ret) 14503 goto err_netdev; 14504 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14505 if (ret) 14506 goto err_netdev; 14507 if (vsi->type == I40E_VSI_MAIN) { 14508 ret = i40e_devlink_create_port(pf); 14509 if (ret) 14510 goto err_netdev; 14511 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14512 } 14513 ret = register_netdev(vsi->netdev); 14514 if (ret) 14515 goto err_dl_port; 14516 vsi->netdev_registered = true; 14517 netif_carrier_off(vsi->netdev); 14518 #ifdef CONFIG_I40E_DCB 14519 /* Setup DCB netlink interface */ 14520 i40e_dcbnl_setup(vsi); 14521 #endif /* CONFIG_I40E_DCB */ 14522 fallthrough; 14523 case I40E_VSI_FDIR: 14524 /* set up vectors and rings if needed */ 14525 ret = i40e_vsi_setup_vectors(vsi); 14526 if (ret) 14527 goto err_msix; 14528 14529 ret = i40e_alloc_rings(vsi); 14530 if (ret) 14531 goto err_rings; 14532 14533 /* map all of the rings to the q_vectors */ 14534 i40e_vsi_map_rings_to_vectors(vsi); 14535 14536 i40e_vsi_reset_stats(vsi); 14537 break; 14538 default: 14539 /* no netdev or rings for the other VSI types */ 14540 break; 14541 } 14542 14543 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14544 vsi->type == I40E_VSI_VMDQ2) { 14545 ret = i40e_vsi_config_rss(vsi); 14546 if (ret) 14547 goto err_config; 14548 } 14549 return vsi; 14550 14551 err_config: 14552 i40e_vsi_clear_rings(vsi); 14553 err_rings: 14554 i40e_vsi_free_q_vectors(vsi); 14555 err_msix: 14556 if (vsi->netdev_registered) { 14557 vsi->netdev_registered = false; 14558 unregister_netdev(vsi->netdev); 14559 free_netdev(vsi->netdev); 14560 vsi->netdev = NULL; 14561 } 14562 err_dl_port: 14563 if (vsi->type == I40E_VSI_MAIN) 14564 i40e_devlink_destroy_port(pf); 14565 err_netdev: 14566 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14567 err_vsi: 14568 i40e_vsi_clear(vsi); 14569 err_alloc: 14570 return NULL; 14571 } 14572 14573 /** 14574 * i40e_veb_get_bw_info - Query VEB BW information 14575 * @veb: the veb to query 14576 * 14577 * Query the Tx scheduler BW configuration data for given VEB 14578 **/ 14579 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14580 { 14581 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14582 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14583 struct i40e_pf *pf = veb->pf; 14584 struct i40e_hw *hw = &pf->hw; 14585 u32 tc_bw_max; 14586 int ret = 0; 14587 int i; 14588 14589 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14590 &bw_data, NULL); 14591 if (ret) { 14592 dev_info(&pf->pdev->dev, 14593 "query veb bw config failed, err %pe aq_err %s\n", 14594 ERR_PTR(ret), 14595 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14596 goto out; 14597 } 14598 14599 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14600 &ets_data, NULL); 14601 if (ret) { 14602 dev_info(&pf->pdev->dev, 14603 "query veb bw ets config failed, err %pe aq_err %s\n", 14604 ERR_PTR(ret), 14605 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14606 goto out; 14607 } 14608 14609 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14610 veb->bw_max_quanta = ets_data.tc_bw_max; 14611 veb->is_abs_credits = bw_data.absolute_credits_enable; 14612 veb->enabled_tc = ets_data.tc_valid_bits; 14613 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14614 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14615 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14616 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14617 veb->bw_tc_limit_credits[i] = 14618 le16_to_cpu(bw_data.tc_bw_limits[i]); 14619 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14620 } 14621 14622 out: 14623 return ret; 14624 } 14625 14626 /** 14627 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14628 * @pf: board private structure 14629 * 14630 * On error: returns error code (negative) 14631 * On success: returns vsi index in PF (positive) 14632 **/ 14633 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14634 { 14635 int ret = -ENOENT; 14636 struct i40e_veb *veb; 14637 int i; 14638 14639 /* Need to protect the allocation of switch elements at the PF level */ 14640 mutex_lock(&pf->switch_mutex); 14641 14642 /* VEB list may be fragmented if VEB creation/destruction has 14643 * been happening. We can afford to do a quick scan to look 14644 * for any free slots in the list. 14645 * 14646 * find next empty veb slot, looping back around if necessary 14647 */ 14648 i = 0; 14649 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14650 i++; 14651 if (i >= I40E_MAX_VEB) { 14652 ret = -ENOMEM; 14653 goto err_alloc_veb; /* out of VEB slots! */ 14654 } 14655 14656 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14657 if (!veb) { 14658 ret = -ENOMEM; 14659 goto err_alloc_veb; 14660 } 14661 veb->pf = pf; 14662 veb->idx = i; 14663 veb->enabled_tc = 1; 14664 14665 pf->veb[i] = veb; 14666 ret = i; 14667 err_alloc_veb: 14668 mutex_unlock(&pf->switch_mutex); 14669 return ret; 14670 } 14671 14672 /** 14673 * i40e_switch_branch_release - Delete a branch of the switch tree 14674 * @branch: where to start deleting 14675 * 14676 * This uses recursion to find the tips of the branch to be 14677 * removed, deleting until we get back to and can delete this VEB. 14678 **/ 14679 static void i40e_switch_branch_release(struct i40e_veb *branch) 14680 { 14681 struct i40e_pf *pf = branch->pf; 14682 u16 branch_seid = branch->seid; 14683 u16 veb_idx = branch->idx; 14684 int i; 14685 14686 /* release any VEBs on this VEB - RECURSION */ 14687 for (i = 0; i < I40E_MAX_VEB; i++) { 14688 if (!pf->veb[i]) 14689 continue; 14690 if (pf->veb[i]->uplink_seid == branch->seid) 14691 i40e_switch_branch_release(pf->veb[i]); 14692 } 14693 14694 /* Release the VSIs on this VEB, but not the owner VSI. 14695 * 14696 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14697 * the VEB itself, so don't use (*branch) after this loop. 14698 */ 14699 for (i = 0; i < pf->num_alloc_vsi; i++) { 14700 if (!pf->vsi[i]) 14701 continue; 14702 if (pf->vsi[i]->uplink_seid == branch_seid && 14703 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14704 i40e_vsi_release(pf->vsi[i]); 14705 } 14706 } 14707 14708 /* There's one corner case where the VEB might not have been 14709 * removed, so double check it here and remove it if needed. 14710 * This case happens if the veb was created from the debugfs 14711 * commands and no VSIs were added to it. 14712 */ 14713 if (pf->veb[veb_idx]) 14714 i40e_veb_release(pf->veb[veb_idx]); 14715 } 14716 14717 /** 14718 * i40e_veb_clear - remove veb struct 14719 * @veb: the veb to remove 14720 **/ 14721 static void i40e_veb_clear(struct i40e_veb *veb) 14722 { 14723 if (!veb) 14724 return; 14725 14726 if (veb->pf) { 14727 struct i40e_pf *pf = veb->pf; 14728 14729 mutex_lock(&pf->switch_mutex); 14730 if (pf->veb[veb->idx] == veb) 14731 pf->veb[veb->idx] = NULL; 14732 mutex_unlock(&pf->switch_mutex); 14733 } 14734 14735 kfree(veb); 14736 } 14737 14738 /** 14739 * i40e_veb_release - Delete a VEB and free its resources 14740 * @veb: the VEB being removed 14741 **/ 14742 void i40e_veb_release(struct i40e_veb *veb) 14743 { 14744 struct i40e_vsi *vsi = NULL; 14745 struct i40e_pf *pf; 14746 int i, n = 0; 14747 14748 pf = veb->pf; 14749 14750 /* find the remaining VSI and check for extras */ 14751 for (i = 0; i < pf->num_alloc_vsi; i++) { 14752 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 14753 n++; 14754 vsi = pf->vsi[i]; 14755 } 14756 } 14757 if (n != 1) { 14758 dev_info(&pf->pdev->dev, 14759 "can't remove VEB %d with %d VSIs left\n", 14760 veb->seid, n); 14761 return; 14762 } 14763 14764 /* move the remaining VSI to uplink veb */ 14765 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14766 if (veb->uplink_seid) { 14767 vsi->uplink_seid = veb->uplink_seid; 14768 if (veb->uplink_seid == pf->mac_seid) 14769 vsi->veb_idx = I40E_NO_VEB; 14770 else 14771 vsi->veb_idx = veb->veb_idx; 14772 } else { 14773 /* floating VEB */ 14774 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 14775 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 14776 } 14777 14778 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14779 i40e_veb_clear(veb); 14780 } 14781 14782 /** 14783 * i40e_add_veb - create the VEB in the switch 14784 * @veb: the VEB to be instantiated 14785 * @vsi: the controlling VSI 14786 **/ 14787 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14788 { 14789 struct i40e_pf *pf = veb->pf; 14790 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14791 int ret; 14792 14793 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 14794 veb->enabled_tc, false, 14795 &veb->seid, enable_stats, NULL); 14796 14797 /* get a VEB from the hardware */ 14798 if (ret) { 14799 dev_info(&pf->pdev->dev, 14800 "couldn't add VEB, err %pe aq_err %s\n", 14801 ERR_PTR(ret), 14802 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14803 return -EPERM; 14804 } 14805 14806 /* get statistics counter */ 14807 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14808 &veb->stats_idx, NULL, NULL, NULL); 14809 if (ret) { 14810 dev_info(&pf->pdev->dev, 14811 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14812 ERR_PTR(ret), 14813 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14814 return -EPERM; 14815 } 14816 ret = i40e_veb_get_bw_info(veb); 14817 if (ret) { 14818 dev_info(&pf->pdev->dev, 14819 "couldn't get VEB bw info, err %pe aq_err %s\n", 14820 ERR_PTR(ret), 14821 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14822 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14823 return -ENOENT; 14824 } 14825 14826 vsi->uplink_seid = veb->seid; 14827 vsi->veb_idx = veb->idx; 14828 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14829 14830 return 0; 14831 } 14832 14833 /** 14834 * i40e_veb_setup - Set up a VEB 14835 * @pf: board private structure 14836 * @flags: VEB setup flags 14837 * @uplink_seid: the switch element to link to 14838 * @vsi_seid: the initial VSI seid 14839 * @enabled_tc: Enabled TC bit-map 14840 * 14841 * This allocates the sw VEB structure and links it into the switch 14842 * It is possible and legal for this to be a duplicate of an already 14843 * existing VEB. It is also possible for both uplink and vsi seids 14844 * to be zero, in order to create a floating VEB. 14845 * 14846 * Returns pointer to the successfully allocated VEB sw struct on 14847 * success, otherwise returns NULL on failure. 14848 **/ 14849 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14850 u16 uplink_seid, u16 vsi_seid, 14851 u8 enabled_tc) 14852 { 14853 struct i40e_veb *veb, *uplink_veb = NULL; 14854 int vsi_idx, veb_idx; 14855 int ret; 14856 14857 /* if one seid is 0, the other must be 0 to create a floating relay */ 14858 if ((uplink_seid == 0 || vsi_seid == 0) && 14859 (uplink_seid + vsi_seid != 0)) { 14860 dev_info(&pf->pdev->dev, 14861 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14862 uplink_seid, vsi_seid); 14863 return NULL; 14864 } 14865 14866 /* make sure there is such a vsi and uplink */ 14867 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14868 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14869 break; 14870 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14871 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14872 vsi_seid); 14873 return NULL; 14874 } 14875 14876 if (uplink_seid && uplink_seid != pf->mac_seid) { 14877 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14878 if (pf->veb[veb_idx] && 14879 pf->veb[veb_idx]->seid == uplink_seid) { 14880 uplink_veb = pf->veb[veb_idx]; 14881 break; 14882 } 14883 } 14884 if (!uplink_veb) { 14885 dev_info(&pf->pdev->dev, 14886 "uplink seid %d not found\n", uplink_seid); 14887 return NULL; 14888 } 14889 } 14890 14891 /* get veb sw struct */ 14892 veb_idx = i40e_veb_mem_alloc(pf); 14893 if (veb_idx < 0) 14894 goto err_alloc; 14895 veb = pf->veb[veb_idx]; 14896 veb->flags = flags; 14897 veb->uplink_seid = uplink_seid; 14898 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14899 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14900 14901 /* create the VEB in the switch */ 14902 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14903 if (ret) 14904 goto err_veb; 14905 if (vsi_idx == pf->lan_vsi) 14906 pf->lan_veb = veb->idx; 14907 14908 return veb; 14909 14910 err_veb: 14911 i40e_veb_clear(veb); 14912 err_alloc: 14913 return NULL; 14914 } 14915 14916 /** 14917 * i40e_setup_pf_switch_element - set PF vars based on switch type 14918 * @pf: board private structure 14919 * @ele: element we are building info from 14920 * @num_reported: total number of elements 14921 * @printconfig: should we print the contents 14922 * 14923 * helper function to assist in extracting a few useful SEID values. 14924 **/ 14925 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14926 struct i40e_aqc_switch_config_element_resp *ele, 14927 u16 num_reported, bool printconfig) 14928 { 14929 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14930 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14931 u8 element_type = ele->element_type; 14932 u16 seid = le16_to_cpu(ele->seid); 14933 14934 if (printconfig) 14935 dev_info(&pf->pdev->dev, 14936 "type=%d seid=%d uplink=%d downlink=%d\n", 14937 element_type, seid, uplink_seid, downlink_seid); 14938 14939 switch (element_type) { 14940 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14941 pf->mac_seid = seid; 14942 break; 14943 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14944 /* Main VEB? */ 14945 if (uplink_seid != pf->mac_seid) 14946 break; 14947 if (pf->lan_veb >= I40E_MAX_VEB) { 14948 int v; 14949 14950 /* find existing or else empty VEB */ 14951 for (v = 0; v < I40E_MAX_VEB; v++) { 14952 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14953 pf->lan_veb = v; 14954 break; 14955 } 14956 } 14957 if (pf->lan_veb >= I40E_MAX_VEB) { 14958 v = i40e_veb_mem_alloc(pf); 14959 if (v < 0) 14960 break; 14961 pf->lan_veb = v; 14962 } 14963 } 14964 if (pf->lan_veb >= I40E_MAX_VEB) 14965 break; 14966 14967 pf->veb[pf->lan_veb]->seid = seid; 14968 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14969 pf->veb[pf->lan_veb]->pf = pf; 14970 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14971 break; 14972 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14973 if (num_reported != 1) 14974 break; 14975 /* This is immediately after a reset so we can assume this is 14976 * the PF's VSI 14977 */ 14978 pf->mac_seid = uplink_seid; 14979 pf->main_vsi_seid = seid; 14980 if (printconfig) 14981 dev_info(&pf->pdev->dev, 14982 "pf_seid=%d main_vsi_seid=%d\n", 14983 downlink_seid, pf->main_vsi_seid); 14984 break; 14985 case I40E_SWITCH_ELEMENT_TYPE_PF: 14986 case I40E_SWITCH_ELEMENT_TYPE_VF: 14987 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14988 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14989 case I40E_SWITCH_ELEMENT_TYPE_PE: 14990 case I40E_SWITCH_ELEMENT_TYPE_PA: 14991 /* ignore these for now */ 14992 break; 14993 default: 14994 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14995 element_type, seid); 14996 break; 14997 } 14998 } 14999 15000 /** 15001 * i40e_fetch_switch_configuration - Get switch config from firmware 15002 * @pf: board private structure 15003 * @printconfig: should we print the contents 15004 * 15005 * Get the current switch configuration from the device and 15006 * extract a few useful SEID values. 15007 **/ 15008 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 15009 { 15010 struct i40e_aqc_get_switch_config_resp *sw_config; 15011 u16 next_seid = 0; 15012 int ret = 0; 15013 u8 *aq_buf; 15014 int i; 15015 15016 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 15017 if (!aq_buf) 15018 return -ENOMEM; 15019 15020 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 15021 do { 15022 u16 num_reported, num_total; 15023 15024 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 15025 I40E_AQ_LARGE_BUF, 15026 &next_seid, NULL); 15027 if (ret) { 15028 dev_info(&pf->pdev->dev, 15029 "get switch config failed err %d aq_err %s\n", 15030 ret, 15031 i40e_aq_str(&pf->hw, 15032 pf->hw.aq.asq_last_status)); 15033 kfree(aq_buf); 15034 return -ENOENT; 15035 } 15036 15037 num_reported = le16_to_cpu(sw_config->header.num_reported); 15038 num_total = le16_to_cpu(sw_config->header.num_total); 15039 15040 if (printconfig) 15041 dev_info(&pf->pdev->dev, 15042 "header: %d reported %d total\n", 15043 num_reported, num_total); 15044 15045 for (i = 0; i < num_reported; i++) { 15046 struct i40e_aqc_switch_config_element_resp *ele = 15047 &sw_config->element[i]; 15048 15049 i40e_setup_pf_switch_element(pf, ele, num_reported, 15050 printconfig); 15051 } 15052 } while (next_seid != 0); 15053 15054 kfree(aq_buf); 15055 return ret; 15056 } 15057 15058 /** 15059 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 15060 * @pf: board private structure 15061 * @reinit: if the Main VSI needs to re-initialized. 15062 * @lock_acquired: indicates whether or not the lock has been acquired 15063 * 15064 * Returns 0 on success, negative value on failure 15065 **/ 15066 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 15067 { 15068 u16 flags = 0; 15069 int ret; 15070 15071 /* find out what's out there already */ 15072 ret = i40e_fetch_switch_configuration(pf, false); 15073 if (ret) { 15074 dev_info(&pf->pdev->dev, 15075 "couldn't fetch switch config, err %pe aq_err %s\n", 15076 ERR_PTR(ret), 15077 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15078 return ret; 15079 } 15080 i40e_pf_reset_stats(pf); 15081 15082 /* set the switch config bit for the whole device to 15083 * support limited promisc or true promisc 15084 * when user requests promisc. The default is limited 15085 * promisc. 15086 */ 15087 15088 if ((pf->hw.pf_id == 0) && 15089 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15090 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15091 pf->last_sw_conf_flags = flags; 15092 } 15093 15094 if (pf->hw.pf_id == 0) { 15095 u16 valid_flags; 15096 15097 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15098 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15099 NULL); 15100 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15101 dev_info(&pf->pdev->dev, 15102 "couldn't set switch config bits, err %pe aq_err %s\n", 15103 ERR_PTR(ret), 15104 i40e_aq_str(&pf->hw, 15105 pf->hw.aq.asq_last_status)); 15106 /* not a fatal problem, just keep going */ 15107 } 15108 pf->last_sw_conf_valid_flags = valid_flags; 15109 } 15110 15111 /* first time setup */ 15112 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 15113 struct i40e_vsi *vsi = NULL; 15114 u16 uplink_seid; 15115 15116 /* Set up the PF VSI associated with the PF's main VSI 15117 * that is already in the HW switch 15118 */ 15119 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 15120 uplink_seid = pf->veb[pf->lan_veb]->seid; 15121 else 15122 uplink_seid = pf->mac_seid; 15123 if (pf->lan_vsi == I40E_NO_VSI) 15124 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 15125 else if (reinit) 15126 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 15127 if (!vsi) { 15128 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15129 i40e_cloud_filter_exit(pf); 15130 i40e_fdir_teardown(pf); 15131 return -EAGAIN; 15132 } 15133 } else { 15134 /* force a reset of TC and queue layout configurations */ 15135 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 15136 15137 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 15138 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 15139 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 15140 } 15141 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 15142 15143 i40e_fdir_sb_setup(pf); 15144 15145 /* Setup static PF queue filter control settings */ 15146 ret = i40e_setup_pf_filter_control(pf); 15147 if (ret) { 15148 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15149 ret); 15150 /* Failure here should not stop continuing other steps */ 15151 } 15152 15153 /* enable RSS in the HW, even for only one queue, as the stack can use 15154 * the hash 15155 */ 15156 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15157 i40e_pf_config_rss(pf); 15158 15159 /* fill in link information and enable LSE reporting */ 15160 i40e_link_event(pf); 15161 15162 i40e_ptp_init(pf); 15163 15164 if (!lock_acquired) 15165 rtnl_lock(); 15166 15167 /* repopulate tunnel port filters */ 15168 udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev); 15169 15170 if (!lock_acquired) 15171 rtnl_unlock(); 15172 15173 return ret; 15174 } 15175 15176 /** 15177 * i40e_determine_queue_usage - Work out queue distribution 15178 * @pf: board private structure 15179 **/ 15180 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15181 { 15182 int queues_left; 15183 int q_max; 15184 15185 pf->num_lan_qps = 0; 15186 15187 /* Find the max queues to be put into basic use. We'll always be 15188 * using TC0, whether or not DCB is running, and TC0 will get the 15189 * big RSS set. 15190 */ 15191 queues_left = pf->hw.func_caps.num_tx_qp; 15192 15193 if ((queues_left == 1) || 15194 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15195 /* one qp for PF, no queues for anything else */ 15196 queues_left = 0; 15197 pf->alloc_rss_size = pf->num_lan_qps = 1; 15198 15199 /* make sure all the fancies are disabled */ 15200 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15201 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15202 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15203 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15204 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15205 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15206 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15207 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15208 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15209 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15210 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15211 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15212 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15213 /* one qp for PF */ 15214 pf->alloc_rss_size = pf->num_lan_qps = 1; 15215 queues_left -= pf->num_lan_qps; 15216 15217 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15218 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15219 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15220 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15221 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15222 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15223 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15224 } else { 15225 /* Not enough queues for all TCs */ 15226 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15227 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15228 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15229 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15230 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15231 } 15232 15233 /* limit lan qps to the smaller of qps, cpus or msix */ 15234 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15235 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15236 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15237 pf->num_lan_qps = q_max; 15238 15239 queues_left -= pf->num_lan_qps; 15240 } 15241 15242 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15243 if (queues_left > 1) { 15244 queues_left -= 1; /* save 1 queue for FD */ 15245 } else { 15246 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15247 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15248 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15249 } 15250 } 15251 15252 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15253 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15254 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15255 (queues_left / pf->num_vf_qps)); 15256 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15257 } 15258 15259 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15260 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15261 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15262 (queues_left / pf->num_vmdq_qps)); 15263 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15264 } 15265 15266 pf->queues_left = queues_left; 15267 dev_dbg(&pf->pdev->dev, 15268 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15269 pf->hw.func_caps.num_tx_qp, 15270 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15271 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15272 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15273 queues_left); 15274 } 15275 15276 /** 15277 * i40e_setup_pf_filter_control - Setup PF static filter control 15278 * @pf: PF to be setup 15279 * 15280 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15281 * settings. If PE/FCoE are enabled then it will also set the per PF 15282 * based filter sizes required for them. It also enables Flow director, 15283 * ethertype and macvlan type filter settings for the pf. 15284 * 15285 * Returns 0 on success, negative on failure 15286 **/ 15287 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15288 { 15289 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15290 15291 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15292 15293 /* Flow Director is enabled */ 15294 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15295 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15296 settings->enable_fdir = true; 15297 15298 /* Ethtype and MACVLAN filters enabled for PF */ 15299 settings->enable_ethtype = true; 15300 settings->enable_macvlan = true; 15301 15302 if (i40e_set_filter_control(&pf->hw, settings)) 15303 return -ENOENT; 15304 15305 return 0; 15306 } 15307 15308 #define INFO_STRING_LEN 255 15309 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15310 static void i40e_print_features(struct i40e_pf *pf) 15311 { 15312 struct i40e_hw *hw = &pf->hw; 15313 char *buf; 15314 int i; 15315 15316 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15317 if (!buf) 15318 return; 15319 15320 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15321 #ifdef CONFIG_PCI_IOV 15322 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15323 #endif 15324 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15325 pf->hw.func_caps.num_vsis, 15326 pf->vsi[pf->lan_vsi]->num_queue_pairs); 15327 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15328 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15329 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15330 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15331 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15332 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15333 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15334 } 15335 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15336 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15337 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15338 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15339 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15340 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15341 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15342 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15343 else 15344 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15345 15346 dev_info(&pf->pdev->dev, "%s\n", buf); 15347 kfree(buf); 15348 WARN_ON(i > INFO_STRING_LEN); 15349 } 15350 15351 /** 15352 * i40e_get_platform_mac_addr - get platform-specific MAC address 15353 * @pdev: PCI device information struct 15354 * @pf: board private structure 15355 * 15356 * Look up the MAC address for the device. First we'll try 15357 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15358 * specific fallback. Otherwise, we'll default to the stored value in 15359 * firmware. 15360 **/ 15361 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15362 { 15363 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15364 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15365 } 15366 15367 /** 15368 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15369 * @fec_cfg: FEC option to set in flags 15370 * @flags: ptr to flags in which we set FEC option 15371 **/ 15372 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15373 { 15374 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15375 set_bit(I40E_FLAG_RS_FEC, flags); 15376 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15377 } 15378 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15379 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15380 set_bit(I40E_FLAG_RS_FEC, flags); 15381 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15382 } 15383 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15384 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15385 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15386 clear_bit(I40E_FLAG_RS_FEC, flags); 15387 } 15388 if (fec_cfg == 0) { 15389 clear_bit(I40E_FLAG_RS_FEC, flags); 15390 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15391 } 15392 } 15393 15394 /** 15395 * i40e_check_recovery_mode - check if we are running transition firmware 15396 * @pf: board private structure 15397 * 15398 * Check registers indicating the firmware runs in recovery mode. Sets the 15399 * appropriate driver state. 15400 * 15401 * Returns true if the recovery mode was detected, false otherwise 15402 **/ 15403 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15404 { 15405 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15406 15407 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15408 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15409 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15410 set_bit(__I40E_RECOVERY_MODE, pf->state); 15411 15412 return true; 15413 } 15414 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15415 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15416 15417 return false; 15418 } 15419 15420 /** 15421 * i40e_pf_loop_reset - perform reset in a loop. 15422 * @pf: board private structure 15423 * 15424 * This function is useful when a NIC is about to enter recovery mode. 15425 * When a NIC's internal data structures are corrupted the NIC's 15426 * firmware is going to enter recovery mode. 15427 * Right after a POR it takes about 7 minutes for firmware to enter 15428 * recovery mode. Until that time a NIC is in some kind of intermediate 15429 * state. After that time period the NIC almost surely enters 15430 * recovery mode. The only way for a driver to detect intermediate 15431 * state is to issue a series of pf-resets and check a return value. 15432 * If a PF reset returns success then the firmware could be in recovery 15433 * mode so the caller of this code needs to check for recovery mode 15434 * if this function returns success. There is a little chance that 15435 * firmware will hang in intermediate state forever. 15436 * Since waiting 7 minutes is quite a lot of time this function waits 15437 * 10 seconds and then gives up by returning an error. 15438 * 15439 * Return 0 on success, negative on failure. 15440 **/ 15441 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15442 { 15443 /* wait max 10 seconds for PF reset to succeed */ 15444 const unsigned long time_end = jiffies + 10 * HZ; 15445 struct i40e_hw *hw = &pf->hw; 15446 int ret; 15447 15448 ret = i40e_pf_reset(hw); 15449 while (ret != 0 && time_before(jiffies, time_end)) { 15450 usleep_range(10000, 20000); 15451 ret = i40e_pf_reset(hw); 15452 } 15453 15454 if (ret == 0) 15455 pf->pfr_count++; 15456 else 15457 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15458 15459 return ret; 15460 } 15461 15462 /** 15463 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15464 * @pf: board private structure 15465 * 15466 * Check FW registers to determine if FW issued unexpected EMP Reset. 15467 * Every time when unexpected EMP Reset occurs the FW increments 15468 * a counter of unexpected EMP Resets. When the counter reaches 10 15469 * the FW should enter the Recovery mode 15470 * 15471 * Returns true if FW issued unexpected EMP Reset 15472 **/ 15473 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15474 { 15475 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15476 I40E_GL_FWSTS_FWS1B_MASK; 15477 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15478 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15479 } 15480 15481 /** 15482 * i40e_handle_resets - handle EMP resets and PF resets 15483 * @pf: board private structure 15484 * 15485 * Handle both EMP resets and PF resets and conclude whether there are 15486 * any issues regarding these resets. If there are any issues then 15487 * generate log entry. 15488 * 15489 * Return 0 if NIC is healthy or negative value when there are issues 15490 * with resets 15491 **/ 15492 static int i40e_handle_resets(struct i40e_pf *pf) 15493 { 15494 const int pfr = i40e_pf_loop_reset(pf); 15495 const bool is_empr = i40e_check_fw_empr(pf); 15496 15497 if (is_empr || pfr != 0) 15498 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15499 15500 return is_empr ? -EIO : pfr; 15501 } 15502 15503 /** 15504 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15505 * @pf: board private structure 15506 * @hw: ptr to the hardware info 15507 * 15508 * This function does a minimal setup of all subsystems needed for running 15509 * recovery mode. 15510 * 15511 * Returns 0 on success, negative on failure 15512 **/ 15513 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15514 { 15515 struct i40e_vsi *vsi; 15516 int err; 15517 int v_idx; 15518 15519 pci_set_drvdata(pf->pdev, pf); 15520 pci_save_state(pf->pdev); 15521 15522 /* set up periodic task facility */ 15523 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15524 pf->service_timer_period = HZ; 15525 15526 INIT_WORK(&pf->service_task, i40e_service_task); 15527 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15528 15529 err = i40e_init_interrupt_scheme(pf); 15530 if (err) 15531 goto err_switch_setup; 15532 15533 /* The number of VSIs reported by the FW is the minimum guaranteed 15534 * to us; HW supports far more and we share the remaining pool with 15535 * the other PFs. We allocate space for more than the guarantee with 15536 * the understanding that we might not get them all later. 15537 */ 15538 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15539 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15540 else 15541 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15542 15543 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15544 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15545 GFP_KERNEL); 15546 if (!pf->vsi) { 15547 err = -ENOMEM; 15548 goto err_switch_setup; 15549 } 15550 15551 /* We allocate one VSI which is needed as absolute minimum 15552 * in order to register the netdev 15553 */ 15554 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15555 if (v_idx < 0) { 15556 err = v_idx; 15557 goto err_switch_setup; 15558 } 15559 pf->lan_vsi = v_idx; 15560 vsi = pf->vsi[v_idx]; 15561 if (!vsi) { 15562 err = -EFAULT; 15563 goto err_switch_setup; 15564 } 15565 vsi->alloc_queue_pairs = 1; 15566 err = i40e_config_netdev(vsi); 15567 if (err) 15568 goto err_switch_setup; 15569 err = register_netdev(vsi->netdev); 15570 if (err) 15571 goto err_switch_setup; 15572 vsi->netdev_registered = true; 15573 i40e_dbg_pf_init(pf); 15574 15575 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15576 if (err) 15577 goto err_switch_setup; 15578 15579 /* tell the firmware that we're starting */ 15580 i40e_send_version(pf); 15581 15582 /* since everything's happy, start the service_task timer */ 15583 mod_timer(&pf->service_timer, 15584 round_jiffies(jiffies + pf->service_timer_period)); 15585 15586 return 0; 15587 15588 err_switch_setup: 15589 i40e_reset_interrupt_capability(pf); 15590 timer_shutdown_sync(&pf->service_timer); 15591 i40e_shutdown_adminq(hw); 15592 iounmap(hw->hw_addr); 15593 pci_release_mem_regions(pf->pdev); 15594 pci_disable_device(pf->pdev); 15595 i40e_free_pf(pf); 15596 15597 return err; 15598 } 15599 15600 /** 15601 * i40e_set_subsystem_device_id - set subsystem device id 15602 * @hw: pointer to the hardware info 15603 * 15604 * Set PCI subsystem device id either from a pci_dev structure or 15605 * a specific FW register. 15606 **/ 15607 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15608 { 15609 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15610 15611 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15612 pf->pdev->subsystem_device : 15613 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15614 } 15615 15616 /** 15617 * i40e_probe - Device initialization routine 15618 * @pdev: PCI device information struct 15619 * @ent: entry in i40e_pci_tbl 15620 * 15621 * i40e_probe initializes a PF identified by a pci_dev structure. 15622 * The OS initialization, configuring of the PF private structure, 15623 * and a hardware reset occur. 15624 * 15625 * Returns 0 on success, negative on failure 15626 **/ 15627 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15628 { 15629 struct i40e_aq_get_phy_abilities_resp abilities; 15630 #ifdef CONFIG_I40E_DCB 15631 enum i40e_get_fw_lldp_status_resp lldp_status; 15632 #endif /* CONFIG_I40E_DCB */ 15633 struct i40e_pf *pf; 15634 struct i40e_hw *hw; 15635 u16 wol_nvm_bits; 15636 char nvm_ver[32]; 15637 u16 link_status; 15638 #ifdef CONFIG_I40E_DCB 15639 int status; 15640 #endif /* CONFIG_I40E_DCB */ 15641 int err; 15642 u32 val; 15643 u32 i; 15644 15645 err = pci_enable_device_mem(pdev); 15646 if (err) 15647 return err; 15648 15649 /* set up for high or low dma */ 15650 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15651 if (err) { 15652 dev_err(&pdev->dev, 15653 "DMA configuration failed: 0x%x\n", err); 15654 goto err_dma; 15655 } 15656 15657 /* set up pci connections */ 15658 err = pci_request_mem_regions(pdev, i40e_driver_name); 15659 if (err) { 15660 dev_info(&pdev->dev, 15661 "pci_request_selected_regions failed %d\n", err); 15662 goto err_pci_reg; 15663 } 15664 15665 pci_set_master(pdev); 15666 15667 /* Now that we have a PCI connection, we need to do the 15668 * low level device setup. This is primarily setting up 15669 * the Admin Queue structures and then querying for the 15670 * device's current profile information. 15671 */ 15672 pf = i40e_alloc_pf(&pdev->dev); 15673 if (!pf) { 15674 err = -ENOMEM; 15675 goto err_pf_alloc; 15676 } 15677 pf->next_vsi = 0; 15678 pf->pdev = pdev; 15679 set_bit(__I40E_DOWN, pf->state); 15680 15681 hw = &pf->hw; 15682 15683 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15684 I40E_MAX_CSR_SPACE); 15685 /* We believe that the highest register to read is 15686 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15687 * is not less than that before mapping to prevent a 15688 * kernel panic. 15689 */ 15690 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15691 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15692 pf->ioremap_len); 15693 err = -ENOMEM; 15694 goto err_ioremap; 15695 } 15696 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15697 if (!hw->hw_addr) { 15698 err = -EIO; 15699 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15700 (unsigned int)pci_resource_start(pdev, 0), 15701 pf->ioremap_len, err); 15702 goto err_ioremap; 15703 } 15704 hw->vendor_id = pdev->vendor; 15705 hw->device_id = pdev->device; 15706 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15707 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15708 i40e_set_subsystem_device_id(hw); 15709 hw->bus.device = PCI_SLOT(pdev->devfn); 15710 hw->bus.func = PCI_FUNC(pdev->devfn); 15711 hw->bus.bus_id = pdev->bus->number; 15712 15713 /* Select something other than the 802.1ad ethertype for the 15714 * switch to use internally and drop on ingress. 15715 */ 15716 hw->switch_tag = 0xffff; 15717 hw->first_tag = ETH_P_8021AD; 15718 hw->second_tag = ETH_P_8021Q; 15719 15720 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15721 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15722 INIT_LIST_HEAD(&pf->ddp_old_prof); 15723 15724 /* set up the locks for the AQ, do this only once in probe 15725 * and destroy them only once in remove 15726 */ 15727 mutex_init(&hw->aq.asq_mutex); 15728 mutex_init(&hw->aq.arq_mutex); 15729 15730 pf->msg_enable = netif_msg_init(debug, 15731 NETIF_MSG_DRV | 15732 NETIF_MSG_PROBE | 15733 NETIF_MSG_LINK); 15734 if (debug < -1) 15735 pf->hw.debug_mask = debug; 15736 15737 /* do a special CORER for clearing PXE mode once at init */ 15738 if (hw->revision_id == 0 && 15739 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15740 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15741 i40e_flush(hw); 15742 msleep(200); 15743 pf->corer_count++; 15744 15745 i40e_clear_pxe_mode(hw); 15746 } 15747 15748 /* Reset here to make sure all is clean and to define PF 'n' */ 15749 i40e_clear_hw(hw); 15750 15751 err = i40e_set_mac_type(hw); 15752 if (err) { 15753 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15754 err); 15755 goto err_pf_reset; 15756 } 15757 15758 err = i40e_handle_resets(pf); 15759 if (err) 15760 goto err_pf_reset; 15761 15762 i40e_check_recovery_mode(pf); 15763 15764 if (is_kdump_kernel()) { 15765 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15766 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15767 } else { 15768 hw->aq.num_arq_entries = I40E_AQ_LEN; 15769 hw->aq.num_asq_entries = I40E_AQ_LEN; 15770 } 15771 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15772 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15773 15774 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15775 "%s-%s:misc", 15776 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15777 15778 err = i40e_init_shared_code(hw); 15779 if (err) { 15780 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15781 err); 15782 goto err_pf_reset; 15783 } 15784 15785 /* set up a default setting for link flow control */ 15786 pf->hw.fc.requested_mode = I40E_FC_NONE; 15787 15788 err = i40e_init_adminq(hw); 15789 if (err) { 15790 if (err == -EIO) 15791 dev_info(&pdev->dev, 15792 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15793 hw->aq.api_maj_ver, 15794 hw->aq.api_min_ver, 15795 I40E_FW_API_VERSION_MAJOR, 15796 I40E_FW_MINOR_VERSION(hw)); 15797 else 15798 dev_info(&pdev->dev, 15799 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15800 15801 goto err_pf_reset; 15802 } 15803 i40e_get_oem_version(hw); 15804 i40e_get_pba_string(hw); 15805 15806 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15807 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15808 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15809 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15810 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15811 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15812 hw->subsystem_device_id); 15813 15814 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15815 I40E_FW_MINOR_VERSION(hw) + 1)) 15816 dev_dbg(&pdev->dev, 15817 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15818 hw->aq.api_maj_ver, 15819 hw->aq.api_min_ver, 15820 I40E_FW_API_VERSION_MAJOR, 15821 I40E_FW_MINOR_VERSION(hw)); 15822 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15823 dev_info(&pdev->dev, 15824 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15825 hw->aq.api_maj_ver, 15826 hw->aq.api_min_ver, 15827 I40E_FW_API_VERSION_MAJOR, 15828 I40E_FW_MINOR_VERSION(hw)); 15829 15830 i40e_verify_eeprom(pf); 15831 15832 /* Rev 0 hardware was never productized */ 15833 if (hw->revision_id < 1) 15834 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15835 15836 i40e_clear_pxe_mode(hw); 15837 15838 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15839 if (err) 15840 goto err_adminq_setup; 15841 15842 err = i40e_sw_init(pf); 15843 if (err) { 15844 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15845 goto err_sw_init; 15846 } 15847 15848 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15849 return i40e_init_recovery_mode(pf, hw); 15850 15851 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15852 hw->func_caps.num_rx_qp, 0, 0); 15853 if (err) { 15854 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15855 goto err_init_lan_hmc; 15856 } 15857 15858 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15859 if (err) { 15860 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15861 err = -ENOENT; 15862 goto err_configure_lan_hmc; 15863 } 15864 15865 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15866 * Ignore error return codes because if it was already disabled via 15867 * hardware settings this will fail 15868 */ 15869 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15870 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15871 i40e_aq_stop_lldp(hw, true, false, NULL); 15872 } 15873 15874 /* allow a platform config to override the HW addr */ 15875 i40e_get_platform_mac_addr(pdev, pf); 15876 15877 if (!is_valid_ether_addr(hw->mac.addr)) { 15878 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15879 err = -EIO; 15880 goto err_mac_addr; 15881 } 15882 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15883 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15884 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15885 if (is_valid_ether_addr(hw->mac.port_addr)) 15886 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15887 15888 i40e_ptp_alloc_pins(pf); 15889 pci_set_drvdata(pdev, pf); 15890 pci_save_state(pdev); 15891 15892 #ifdef CONFIG_I40E_DCB 15893 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15894 (!status && 15895 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15896 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15897 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15898 dev_info(&pdev->dev, 15899 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15900 "FW LLDP is disabled\n" : 15901 "FW LLDP is enabled\n"); 15902 15903 /* Enable FW to write default DCB config on link-up */ 15904 i40e_aq_set_dcb_parameters(hw, true, NULL); 15905 15906 err = i40e_init_pf_dcb(pf); 15907 if (err) { 15908 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15909 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15910 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15911 /* Continue without DCB enabled */ 15912 } 15913 #endif /* CONFIG_I40E_DCB */ 15914 15915 /* set up periodic task facility */ 15916 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15917 pf->service_timer_period = HZ; 15918 15919 INIT_WORK(&pf->service_task, i40e_service_task); 15920 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15921 15922 /* NVM bit on means WoL disabled for the port */ 15923 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15924 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15925 pf->wol_en = false; 15926 else 15927 pf->wol_en = true; 15928 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15929 15930 /* set up the main switch operations */ 15931 i40e_determine_queue_usage(pf); 15932 err = i40e_init_interrupt_scheme(pf); 15933 if (err) 15934 goto err_switch_setup; 15935 15936 /* Reduce Tx and Rx pairs for kdump 15937 * When MSI-X is enabled, it's not allowed to use more TC queue 15938 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15939 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15940 */ 15941 if (is_kdump_kernel()) 15942 pf->num_lan_msix = 1; 15943 15944 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15945 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15946 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15947 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15948 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15949 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15950 UDP_TUNNEL_TYPE_GENEVE; 15951 15952 /* The number of VSIs reported by the FW is the minimum guaranteed 15953 * to us; HW supports far more and we share the remaining pool with 15954 * the other PFs. We allocate space for more than the guarantee with 15955 * the understanding that we might not get them all later. 15956 */ 15957 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15958 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15959 else 15960 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15961 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15962 dev_warn(&pf->pdev->dev, 15963 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15964 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15965 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15966 } 15967 15968 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15969 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15970 GFP_KERNEL); 15971 if (!pf->vsi) { 15972 err = -ENOMEM; 15973 goto err_switch_setup; 15974 } 15975 15976 #ifdef CONFIG_PCI_IOV 15977 /* prep for VF support */ 15978 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15979 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15980 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15981 if (pci_num_vf(pdev)) 15982 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15983 } 15984 #endif 15985 err = i40e_setup_pf_switch(pf, false, false); 15986 if (err) { 15987 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15988 goto err_vsis; 15989 } 15990 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15991 15992 /* if FDIR VSI was set up, start it now */ 15993 for (i = 0; i < pf->num_alloc_vsi; i++) { 15994 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15995 i40e_vsi_open(pf->vsi[i]); 15996 break; 15997 } 15998 } 15999 16000 /* The driver only wants link up/down and module qualification 16001 * reports from firmware. Note the negative logic. 16002 */ 16003 err = i40e_aq_set_phy_int_mask(&pf->hw, 16004 ~(I40E_AQ_EVENT_LINK_UPDOWN | 16005 I40E_AQ_EVENT_MEDIA_NA | 16006 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 16007 if (err) 16008 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 16009 ERR_PTR(err), 16010 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16011 16012 /* Reconfigure hardware for allowing smaller MSS in the case 16013 * of TSO, so that we avoid the MDD being fired and causing 16014 * a reset in the case of small MSS+TSO. 16015 */ 16016 val = rd32(hw, I40E_REG_MSS); 16017 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 16018 val &= ~I40E_REG_MSS_MIN_MASK; 16019 val |= I40E_64BYTE_MSS; 16020 wr32(hw, I40E_REG_MSS, val); 16021 } 16022 16023 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 16024 msleep(75); 16025 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 16026 if (err) 16027 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 16028 ERR_PTR(err), 16029 i40e_aq_str(&pf->hw, 16030 pf->hw.aq.asq_last_status)); 16031 } 16032 /* The main driver is (mostly) up and happy. We need to set this state 16033 * before setting up the misc vector or we get a race and the vector 16034 * ends up disabled forever. 16035 */ 16036 clear_bit(__I40E_DOWN, pf->state); 16037 16038 /* In case of MSIX we are going to setup the misc vector right here 16039 * to handle admin queue events etc. In case of legacy and MSI 16040 * the misc functionality and queue processing is combined in 16041 * the same vector and that gets setup at open. 16042 */ 16043 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 16044 err = i40e_setup_misc_vector(pf); 16045 if (err) { 16046 dev_info(&pdev->dev, 16047 "setup of misc vector failed: %d\n", err); 16048 i40e_cloud_filter_exit(pf); 16049 i40e_fdir_teardown(pf); 16050 goto err_vsis; 16051 } 16052 } 16053 16054 #ifdef CONFIG_PCI_IOV 16055 /* prep for VF support */ 16056 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 16057 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 16058 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 16059 /* disable link interrupts for VFs */ 16060 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 16061 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 16062 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 16063 i40e_flush(hw); 16064 16065 if (pci_num_vf(pdev)) { 16066 dev_info(&pdev->dev, 16067 "Active VFs found, allocating resources.\n"); 16068 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 16069 if (err) 16070 dev_info(&pdev->dev, 16071 "Error %d allocating resources for existing VFs\n", 16072 err); 16073 } 16074 } 16075 #endif /* CONFIG_PCI_IOV */ 16076 16077 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16078 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16079 pf->num_iwarp_msix, 16080 I40E_IWARP_IRQ_PILE_ID); 16081 if (pf->iwarp_base_vector < 0) { 16082 dev_info(&pdev->dev, 16083 "failed to get tracking for %d vectors for IWARP err=%d\n", 16084 pf->num_iwarp_msix, pf->iwarp_base_vector); 16085 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16086 } 16087 } 16088 16089 i40e_dbg_pf_init(pf); 16090 16091 /* tell the firmware that we're starting */ 16092 i40e_send_version(pf); 16093 16094 /* since everything's happy, start the service_task timer */ 16095 mod_timer(&pf->service_timer, 16096 round_jiffies(jiffies + pf->service_timer_period)); 16097 16098 /* add this PF to client device list and launch a client service task */ 16099 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16100 err = i40e_lan_add_device(pf); 16101 if (err) 16102 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16103 err); 16104 } 16105 16106 #define PCI_SPEED_SIZE 8 16107 #define PCI_WIDTH_SIZE 8 16108 /* Devices on the IOSF bus do not have this information 16109 * and will report PCI Gen 1 x 1 by default so don't bother 16110 * checking them. 16111 */ 16112 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16113 char speed[PCI_SPEED_SIZE] = "Unknown"; 16114 char width[PCI_WIDTH_SIZE] = "Unknown"; 16115 16116 /* Get the negotiated link width and speed from PCI config 16117 * space 16118 */ 16119 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16120 &link_status); 16121 16122 i40e_set_pci_config_data(hw, link_status); 16123 16124 switch (hw->bus.speed) { 16125 case i40e_bus_speed_8000: 16126 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16127 case i40e_bus_speed_5000: 16128 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16129 case i40e_bus_speed_2500: 16130 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16131 default: 16132 break; 16133 } 16134 switch (hw->bus.width) { 16135 case i40e_bus_width_pcie_x8: 16136 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16137 case i40e_bus_width_pcie_x4: 16138 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16139 case i40e_bus_width_pcie_x2: 16140 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16141 case i40e_bus_width_pcie_x1: 16142 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16143 default: 16144 break; 16145 } 16146 16147 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16148 speed, width); 16149 16150 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16151 hw->bus.speed < i40e_bus_speed_8000) { 16152 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16153 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16154 } 16155 } 16156 16157 /* get the requested speeds from the fw */ 16158 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16159 if (err) 16160 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16161 ERR_PTR(err), 16162 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16163 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16164 16165 /* set the FEC config due to the board capabilities */ 16166 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16167 16168 /* get the supported phy types from the fw */ 16169 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16170 if (err) 16171 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16172 ERR_PTR(err), 16173 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16174 16175 /* make sure the MFS hasn't been set lower than the default */ 16176 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16177 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK, 16178 rd32(&pf->hw, I40E_PRTGL_SAH)); 16179 if (val < MAX_FRAME_SIZE_DEFAULT) 16180 dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n", 16181 pf->hw.port, val); 16182 16183 /* Add a filter to drop all Flow control frames from any VSI from being 16184 * transmitted. By doing so we stop a malicious VF from sending out 16185 * PAUSE or PFC frames and potentially controlling traffic for other 16186 * PF/VF VSIs. 16187 * The FW can still send Flow control frames if enabled. 16188 */ 16189 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16190 pf->main_vsi_seid); 16191 16192 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16193 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16194 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16195 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16196 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16197 /* print a string summarizing features */ 16198 i40e_print_features(pf); 16199 16200 i40e_devlink_register(pf); 16201 16202 return 0; 16203 16204 /* Unwind what we've done if something failed in the setup */ 16205 err_vsis: 16206 set_bit(__I40E_DOWN, pf->state); 16207 i40e_clear_interrupt_scheme(pf); 16208 kfree(pf->vsi); 16209 err_switch_setup: 16210 i40e_reset_interrupt_capability(pf); 16211 timer_shutdown_sync(&pf->service_timer); 16212 err_mac_addr: 16213 err_configure_lan_hmc: 16214 (void)i40e_shutdown_lan_hmc(hw); 16215 err_init_lan_hmc: 16216 kfree(pf->qp_pile); 16217 err_sw_init: 16218 err_adminq_setup: 16219 err_pf_reset: 16220 iounmap(hw->hw_addr); 16221 err_ioremap: 16222 i40e_free_pf(pf); 16223 err_pf_alloc: 16224 pci_release_mem_regions(pdev); 16225 err_pci_reg: 16226 err_dma: 16227 pci_disable_device(pdev); 16228 return err; 16229 } 16230 16231 /** 16232 * i40e_remove - Device removal routine 16233 * @pdev: PCI device information struct 16234 * 16235 * i40e_remove is called by the PCI subsystem to alert the driver 16236 * that is should release a PCI device. This could be caused by a 16237 * Hot-Plug event, or because the driver is going to be removed from 16238 * memory. 16239 **/ 16240 static void i40e_remove(struct pci_dev *pdev) 16241 { 16242 struct i40e_pf *pf = pci_get_drvdata(pdev); 16243 struct i40e_hw *hw = &pf->hw; 16244 int ret_code; 16245 int i; 16246 16247 i40e_devlink_unregister(pf); 16248 16249 i40e_dbg_pf_exit(pf); 16250 16251 i40e_ptp_stop(pf); 16252 16253 /* Disable RSS in hw */ 16254 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16255 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16256 16257 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16258 * flags, once they are set, i40e_rebuild should not be called as 16259 * i40e_prep_for_reset always returns early. 16260 */ 16261 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16262 usleep_range(1000, 2000); 16263 set_bit(__I40E_IN_REMOVE, pf->state); 16264 16265 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16266 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16267 i40e_free_vfs(pf); 16268 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16269 } 16270 /* no more scheduling of any task */ 16271 set_bit(__I40E_SUSPENDED, pf->state); 16272 set_bit(__I40E_DOWN, pf->state); 16273 if (pf->service_timer.function) 16274 timer_shutdown_sync(&pf->service_timer); 16275 if (pf->service_task.func) 16276 cancel_work_sync(&pf->service_task); 16277 16278 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16279 struct i40e_vsi *vsi = pf->vsi[0]; 16280 16281 /* We know that we have allocated only one vsi for this PF, 16282 * it was just for registering netdevice, so the interface 16283 * could be visible in the 'ifconfig' output 16284 */ 16285 unregister_netdev(vsi->netdev); 16286 free_netdev(vsi->netdev); 16287 16288 goto unmap; 16289 } 16290 16291 /* Client close must be called explicitly here because the timer 16292 * has been stopped. 16293 */ 16294 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16295 16296 i40e_fdir_teardown(pf); 16297 16298 /* If there is a switch structure or any orphans, remove them. 16299 * This will leave only the PF's VSI remaining. 16300 */ 16301 for (i = 0; i < I40E_MAX_VEB; i++) { 16302 if (!pf->veb[i]) 16303 continue; 16304 16305 if (pf->veb[i]->uplink_seid == pf->mac_seid || 16306 pf->veb[i]->uplink_seid == 0) 16307 i40e_switch_branch_release(pf->veb[i]); 16308 } 16309 16310 /* Now we can shutdown the PF's VSIs, just before we kill 16311 * adminq and hmc. 16312 */ 16313 for (i = pf->num_alloc_vsi; i--;) 16314 if (pf->vsi[i]) { 16315 i40e_vsi_close(pf->vsi[i]); 16316 i40e_vsi_release(pf->vsi[i]); 16317 pf->vsi[i] = NULL; 16318 } 16319 16320 i40e_cloud_filter_exit(pf); 16321 16322 /* remove attached clients */ 16323 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16324 ret_code = i40e_lan_del_device(pf); 16325 if (ret_code) 16326 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16327 ret_code); 16328 } 16329 16330 /* shutdown and destroy the HMC */ 16331 if (hw->hmc.hmc_obj) { 16332 ret_code = i40e_shutdown_lan_hmc(hw); 16333 if (ret_code) 16334 dev_warn(&pdev->dev, 16335 "Failed to destroy the HMC resources: %d\n", 16336 ret_code); 16337 } 16338 16339 unmap: 16340 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16341 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16342 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16343 free_irq(pf->pdev->irq, pf); 16344 16345 /* shutdown the adminq */ 16346 i40e_shutdown_adminq(hw); 16347 16348 /* destroy the locks only once, here */ 16349 mutex_destroy(&hw->aq.arq_mutex); 16350 mutex_destroy(&hw->aq.asq_mutex); 16351 16352 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16353 rtnl_lock(); 16354 i40e_clear_interrupt_scheme(pf); 16355 for (i = 0; i < pf->num_alloc_vsi; i++) { 16356 if (pf->vsi[i]) { 16357 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16358 i40e_vsi_clear_rings(pf->vsi[i]); 16359 i40e_vsi_clear(pf->vsi[i]); 16360 pf->vsi[i] = NULL; 16361 } 16362 } 16363 rtnl_unlock(); 16364 16365 for (i = 0; i < I40E_MAX_VEB; i++) { 16366 kfree(pf->veb[i]); 16367 pf->veb[i] = NULL; 16368 } 16369 16370 kfree(pf->qp_pile); 16371 kfree(pf->vsi); 16372 16373 iounmap(hw->hw_addr); 16374 i40e_free_pf(pf); 16375 pci_release_mem_regions(pdev); 16376 16377 pci_disable_device(pdev); 16378 } 16379 16380 /** 16381 * i40e_pci_error_detected - warning that something funky happened in PCI land 16382 * @pdev: PCI device information struct 16383 * @error: the type of PCI error 16384 * 16385 * Called to warn that something happened and the error handling steps 16386 * are in progress. Allows the driver to quiesce things, be ready for 16387 * remediation. 16388 **/ 16389 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16390 pci_channel_state_t error) 16391 { 16392 struct i40e_pf *pf = pci_get_drvdata(pdev); 16393 16394 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16395 16396 if (!pf) { 16397 dev_info(&pdev->dev, 16398 "Cannot recover - error happened during device probe\n"); 16399 return PCI_ERS_RESULT_DISCONNECT; 16400 } 16401 16402 /* shutdown all operations */ 16403 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16404 i40e_prep_for_reset(pf); 16405 16406 /* Request a slot reset */ 16407 return PCI_ERS_RESULT_NEED_RESET; 16408 } 16409 16410 /** 16411 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16412 * @pdev: PCI device information struct 16413 * 16414 * Called to find if the driver can work with the device now that 16415 * the pci slot has been reset. If a basic connection seems good 16416 * (registers are readable and have sane content) then return a 16417 * happy little PCI_ERS_RESULT_xxx. 16418 **/ 16419 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16420 { 16421 struct i40e_pf *pf = pci_get_drvdata(pdev); 16422 pci_ers_result_t result; 16423 u32 reg; 16424 16425 dev_dbg(&pdev->dev, "%s\n", __func__); 16426 if (pci_enable_device_mem(pdev)) { 16427 dev_info(&pdev->dev, 16428 "Cannot re-enable PCI device after reset.\n"); 16429 result = PCI_ERS_RESULT_DISCONNECT; 16430 } else { 16431 pci_set_master(pdev); 16432 pci_restore_state(pdev); 16433 pci_save_state(pdev); 16434 pci_wake_from_d3(pdev, false); 16435 16436 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16437 if (reg == 0) 16438 result = PCI_ERS_RESULT_RECOVERED; 16439 else 16440 result = PCI_ERS_RESULT_DISCONNECT; 16441 } 16442 16443 return result; 16444 } 16445 16446 /** 16447 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16448 * @pdev: PCI device information struct 16449 */ 16450 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16451 { 16452 struct i40e_pf *pf = pci_get_drvdata(pdev); 16453 16454 i40e_prep_for_reset(pf); 16455 } 16456 16457 /** 16458 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16459 * @pdev: PCI device information struct 16460 */ 16461 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16462 { 16463 struct i40e_pf *pf = pci_get_drvdata(pdev); 16464 16465 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16466 return; 16467 16468 i40e_reset_and_rebuild(pf, false, false); 16469 #ifdef CONFIG_PCI_IOV 16470 i40e_restore_all_vfs_msi_state(pdev); 16471 #endif /* CONFIG_PCI_IOV */ 16472 } 16473 16474 /** 16475 * i40e_pci_error_resume - restart operations after PCI error recovery 16476 * @pdev: PCI device information struct 16477 * 16478 * Called to allow the driver to bring things back up after PCI error 16479 * and/or reset recovery has finished. 16480 **/ 16481 static void i40e_pci_error_resume(struct pci_dev *pdev) 16482 { 16483 struct i40e_pf *pf = pci_get_drvdata(pdev); 16484 16485 dev_dbg(&pdev->dev, "%s\n", __func__); 16486 if (test_bit(__I40E_SUSPENDED, pf->state)) 16487 return; 16488 16489 i40e_handle_reset_warning(pf, false); 16490 } 16491 16492 /** 16493 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16494 * using the mac_address_write admin q function 16495 * @pf: pointer to i40e_pf struct 16496 **/ 16497 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16498 { 16499 struct i40e_hw *hw = &pf->hw; 16500 u8 mac_addr[6]; 16501 u16 flags = 0; 16502 int ret; 16503 16504 /* Get current MAC address in case it's an LAA */ 16505 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 16506 ether_addr_copy(mac_addr, 16507 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 16508 } else { 16509 dev_err(&pf->pdev->dev, 16510 "Failed to retrieve MAC address; using default\n"); 16511 ether_addr_copy(mac_addr, hw->mac.addr); 16512 } 16513 16514 /* The FW expects the mac address write cmd to first be called with 16515 * one of these flags before calling it again with the multicast 16516 * enable flags. 16517 */ 16518 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16519 16520 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16521 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16522 16523 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16524 if (ret) { 16525 dev_err(&pf->pdev->dev, 16526 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16527 return; 16528 } 16529 16530 flags = I40E_AQC_MC_MAG_EN 16531 | I40E_AQC_WOL_PRESERVE_ON_PFR 16532 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16533 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16534 if (ret) 16535 dev_err(&pf->pdev->dev, 16536 "Failed to enable Multicast Magic Packet wake up\n"); 16537 } 16538 16539 /** 16540 * i40e_shutdown - PCI callback for shutting down 16541 * @pdev: PCI device information struct 16542 **/ 16543 static void i40e_shutdown(struct pci_dev *pdev) 16544 { 16545 struct i40e_pf *pf = pci_get_drvdata(pdev); 16546 struct i40e_hw *hw = &pf->hw; 16547 16548 set_bit(__I40E_SUSPENDED, pf->state); 16549 set_bit(__I40E_DOWN, pf->state); 16550 16551 del_timer_sync(&pf->service_timer); 16552 cancel_work_sync(&pf->service_task); 16553 i40e_cloud_filter_exit(pf); 16554 i40e_fdir_teardown(pf); 16555 16556 /* Client close must be called explicitly here because the timer 16557 * has been stopped. 16558 */ 16559 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16560 16561 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16562 pf->wol_en) 16563 i40e_enable_mc_magic_wake(pf); 16564 16565 i40e_prep_for_reset(pf); 16566 16567 wr32(hw, I40E_PFPM_APM, 16568 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16569 wr32(hw, I40E_PFPM_WUFC, 16570 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16571 16572 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16573 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16574 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16575 free_irq(pf->pdev->irq, pf); 16576 16577 /* Since we're going to destroy queues during the 16578 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16579 * whole section 16580 */ 16581 rtnl_lock(); 16582 i40e_clear_interrupt_scheme(pf); 16583 rtnl_unlock(); 16584 16585 if (system_state == SYSTEM_POWER_OFF) { 16586 pci_wake_from_d3(pdev, pf->wol_en); 16587 pci_set_power_state(pdev, PCI_D3hot); 16588 } 16589 } 16590 16591 /** 16592 * i40e_suspend - PM callback for moving to D3 16593 * @dev: generic device information structure 16594 **/ 16595 static int __maybe_unused i40e_suspend(struct device *dev) 16596 { 16597 struct i40e_pf *pf = dev_get_drvdata(dev); 16598 struct i40e_hw *hw = &pf->hw; 16599 16600 /* If we're already suspended, then there is nothing to do */ 16601 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16602 return 0; 16603 16604 set_bit(__I40E_DOWN, pf->state); 16605 16606 /* Ensure service task will not be running */ 16607 del_timer_sync(&pf->service_timer); 16608 cancel_work_sync(&pf->service_task); 16609 16610 /* Client close must be called explicitly here because the timer 16611 * has been stopped. 16612 */ 16613 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16614 16615 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16616 pf->wol_en) 16617 i40e_enable_mc_magic_wake(pf); 16618 16619 /* Since we're going to destroy queues during the 16620 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16621 * whole section 16622 */ 16623 rtnl_lock(); 16624 16625 i40e_prep_for_reset(pf); 16626 16627 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16628 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16629 16630 /* Clear the interrupt scheme and release our IRQs so that the system 16631 * can safely hibernate even when there are a large number of CPUs. 16632 * Otherwise hibernation might fail when mapping all the vectors back 16633 * to CPU0. 16634 */ 16635 i40e_clear_interrupt_scheme(pf); 16636 16637 rtnl_unlock(); 16638 16639 return 0; 16640 } 16641 16642 /** 16643 * i40e_resume - PM callback for waking up from D3 16644 * @dev: generic device information structure 16645 **/ 16646 static int __maybe_unused i40e_resume(struct device *dev) 16647 { 16648 struct i40e_pf *pf = dev_get_drvdata(dev); 16649 int err; 16650 16651 /* If we're not suspended, then there is nothing to do */ 16652 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16653 return 0; 16654 16655 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16656 * since we're going to be restoring queues 16657 */ 16658 rtnl_lock(); 16659 16660 /* We cleared the interrupt scheme when we suspended, so we need to 16661 * restore it now to resume device functionality. 16662 */ 16663 err = i40e_restore_interrupt_scheme(pf); 16664 if (err) { 16665 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16666 err); 16667 } 16668 16669 clear_bit(__I40E_DOWN, pf->state); 16670 i40e_reset_and_rebuild(pf, false, true); 16671 16672 rtnl_unlock(); 16673 16674 /* Clear suspended state last after everything is recovered */ 16675 clear_bit(__I40E_SUSPENDED, pf->state); 16676 16677 /* Restart the service task */ 16678 mod_timer(&pf->service_timer, 16679 round_jiffies(jiffies + pf->service_timer_period)); 16680 16681 return 0; 16682 } 16683 16684 static const struct pci_error_handlers i40e_err_handler = { 16685 .error_detected = i40e_pci_error_detected, 16686 .slot_reset = i40e_pci_error_slot_reset, 16687 .reset_prepare = i40e_pci_error_reset_prepare, 16688 .reset_done = i40e_pci_error_reset_done, 16689 .resume = i40e_pci_error_resume, 16690 }; 16691 16692 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16693 16694 static struct pci_driver i40e_driver = { 16695 .name = i40e_driver_name, 16696 .id_table = i40e_pci_tbl, 16697 .probe = i40e_probe, 16698 .remove = i40e_remove, 16699 .driver = { 16700 .pm = &i40e_pm_ops, 16701 }, 16702 .shutdown = i40e_shutdown, 16703 .err_handler = &i40e_err_handler, 16704 .sriov_configure = i40e_pci_sriov_configure, 16705 }; 16706 16707 /** 16708 * i40e_init_module - Driver registration routine 16709 * 16710 * i40e_init_module is the first routine called when the driver is 16711 * loaded. All it does is register with the PCI subsystem. 16712 **/ 16713 static int __init i40e_init_module(void) 16714 { 16715 int err; 16716 16717 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16718 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16719 16720 /* There is no need to throttle the number of active tasks because 16721 * each device limits its own task using a state bit for scheduling 16722 * the service task, and the device tasks do not interfere with each 16723 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16724 * since we need to be able to guarantee forward progress even under 16725 * memory pressure. 16726 */ 16727 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 16728 if (!i40e_wq) { 16729 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16730 return -ENOMEM; 16731 } 16732 16733 i40e_dbg_init(); 16734 err = pci_register_driver(&i40e_driver); 16735 if (err) { 16736 destroy_workqueue(i40e_wq); 16737 i40e_dbg_exit(); 16738 return err; 16739 } 16740 16741 return 0; 16742 } 16743 module_init(i40e_init_module); 16744 16745 /** 16746 * i40e_exit_module - Driver exit cleanup routine 16747 * 16748 * i40e_exit_module is called just before the driver is removed 16749 * from memory. 16750 **/ 16751 static void __exit i40e_exit_module(void) 16752 { 16753 pci_unregister_driver(&i40e_driver); 16754 destroy_workqueue(i40e_wq); 16755 ida_destroy(&i40e_client_ida); 16756 i40e_dbg_exit(); 16757 } 16758 module_exit(i40e_exit_module); 16759