1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/if_bridge.h> 7 #include <linux/if_macvlan.h> 8 #include <linux/module.h> 9 #include <net/pkt_cls.h> 10 #include <net/xdp_sock_drv.h> 11 12 /* Local includes */ 13 #include "i40e.h" 14 #include "i40e_devids.h" 15 #include "i40e_diag.h" 16 #include "i40e_lan_hmc.h" 17 #include "i40e_virtchnl_pf.h" 18 #include "i40e_xsk.h" 19 20 /* All i40e tracepoints are defined by the include below, which 21 * must be included exactly once across the whole kernel with 22 * CREATE_TRACE_POINTS defined 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "i40e_trace.h" 26 27 const char i40e_driver_name[] = "i40e"; 28 static const char i40e_driver_string[] = 29 "Intel(R) Ethernet Connection XL710 Network Driver"; 30 31 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 32 33 /* a bit of forward declarations */ 34 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 35 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 36 static int i40e_add_vsi(struct i40e_vsi *vsi); 37 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 38 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 39 static int i40e_setup_misc_vector(struct i40e_pf *pf); 40 static void i40e_determine_queue_usage(struct i40e_pf *pf); 41 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 42 static void i40e_prep_for_reset(struct i40e_pf *pf); 43 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 44 bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 48 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 49 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 50 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 51 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 52 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 53 static int i40e_get_capabilities(struct i40e_pf *pf, 54 enum i40e_admin_queue_opc list_type); 55 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 56 57 /* i40e_pci_tbl - PCI Device ID Table 58 * 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id i40e_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 102 MODULE_IMPORT_NS(LIBIE); 103 MODULE_LICENSE("GPL v2"); 104 105 static struct workqueue_struct *i40e_wq; 106 107 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 108 struct net_device *netdev, int delta) 109 { 110 struct netdev_hw_addr_list *ha_list; 111 struct netdev_hw_addr *ha; 112 113 if (!f || !netdev) 114 return; 115 116 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr)) 117 ha_list = &netdev->uc; 118 else 119 ha_list = &netdev->mc; 120 121 netdev_hw_addr_list_for_each(ha, ha_list) { 122 if (ether_addr_equal(ha->addr, f->macaddr)) { 123 ha->refcount += delta; 124 if (ha->refcount <= 0) 125 ha->refcount = 1; 126 break; 127 } 128 } 129 } 130 131 /** 132 * i40e_hw_to_dev - get device pointer from the hardware structure 133 * @hw: pointer to the device HW structure 134 **/ 135 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 136 { 137 struct i40e_pf *pf = i40e_hw_to_pf(hw); 138 139 return &pf->pdev->dev; 140 } 141 142 /** 143 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 144 * @hw: pointer to the HW structure 145 * @mem: ptr to mem struct to fill out 146 * @size: size of memory requested 147 * @alignment: what to align the allocation to 148 **/ 149 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 150 u64 size, u32 alignment) 151 { 152 struct i40e_pf *pf = i40e_hw_to_pf(hw); 153 154 mem->size = ALIGN(size, alignment); 155 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 156 GFP_KERNEL); 157 if (!mem->va) 158 return -ENOMEM; 159 160 return 0; 161 } 162 163 /** 164 * i40e_free_dma_mem - OS specific memory free for shared code 165 * @hw: pointer to the HW structure 166 * @mem: ptr to mem struct to free 167 **/ 168 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 169 { 170 struct i40e_pf *pf = i40e_hw_to_pf(hw); 171 172 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 173 mem->va = NULL; 174 mem->pa = 0; 175 mem->size = 0; 176 177 return 0; 178 } 179 180 /** 181 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 182 * @hw: pointer to the HW structure 183 * @mem: ptr to mem struct to fill out 184 * @size: size of memory requested 185 **/ 186 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 187 u32 size) 188 { 189 mem->size = size; 190 mem->va = kzalloc(size, GFP_KERNEL); 191 192 if (!mem->va) 193 return -ENOMEM; 194 195 return 0; 196 } 197 198 /** 199 * i40e_free_virt_mem - OS specific memory free for shared code 200 * @hw: pointer to the HW structure 201 * @mem: ptr to mem struct to free 202 **/ 203 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 204 { 205 /* it's ok to kfree a NULL pointer */ 206 kfree(mem->va); 207 mem->va = NULL; 208 mem->size = 0; 209 210 return 0; 211 } 212 213 /** 214 * i40e_get_lump - find a lump of free generic resource 215 * @pf: board private structure 216 * @pile: the pile of resource to search 217 * @needed: the number of items needed 218 * @id: an owner id to stick on the items assigned 219 * 220 * Returns the base item index of the lump, or negative for error 221 **/ 222 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 223 u16 needed, u16 id) 224 { 225 int ret = -ENOMEM; 226 int i, j; 227 228 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 229 dev_info(&pf->pdev->dev, 230 "param err: pile=%s needed=%d id=0x%04x\n", 231 pile ? "<valid>" : "<null>", needed, id); 232 return -EINVAL; 233 } 234 235 /* Allocate last queue in the pile for FDIR VSI queue 236 * so it doesn't fragment the qp_pile 237 */ 238 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 239 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 240 dev_err(&pf->pdev->dev, 241 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 242 pile->num_entries - 1); 243 return -ENOMEM; 244 } 245 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 246 return pile->num_entries - 1; 247 } 248 249 i = 0; 250 while (i < pile->num_entries) { 251 /* skip already allocated entries */ 252 if (pile->list[i] & I40E_PILE_VALID_BIT) { 253 i++; 254 continue; 255 } 256 257 /* do we have enough in this lump? */ 258 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 259 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 260 break; 261 } 262 263 if (j == needed) { 264 /* there was enough, so assign it to the requestor */ 265 for (j = 0; j < needed; j++) 266 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 267 ret = i; 268 break; 269 } 270 271 /* not enough, so skip over it and continue looking */ 272 i += j; 273 } 274 275 return ret; 276 } 277 278 /** 279 * i40e_put_lump - return a lump of generic resource 280 * @pile: the pile of resource to search 281 * @index: the base item index 282 * @id: the owner id of the items assigned 283 * 284 * Returns the count of items in the lump 285 **/ 286 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 287 { 288 int valid_id = (id | I40E_PILE_VALID_BIT); 289 int count = 0; 290 u16 i; 291 292 if (!pile || index >= pile->num_entries) 293 return -EINVAL; 294 295 for (i = index; 296 i < pile->num_entries && pile->list[i] == valid_id; 297 i++) { 298 pile->list[i] = 0; 299 count++; 300 } 301 302 303 return count; 304 } 305 306 /** 307 * i40e_find_vsi_from_id - searches for the vsi with the given id 308 * @pf: the pf structure to search for the vsi 309 * @id: id of the vsi it is searching for 310 **/ 311 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 312 { 313 struct i40e_vsi *vsi; 314 int i; 315 316 i40e_pf_for_each_vsi(pf, i, vsi) 317 if (vsi->id == id) 318 return vsi; 319 320 return NULL; 321 } 322 323 /** 324 * i40e_service_event_schedule - Schedule the service task to wake up 325 * @pf: board private structure 326 * 327 * If not already scheduled, this puts the task into the work queue 328 **/ 329 void i40e_service_event_schedule(struct i40e_pf *pf) 330 { 331 if ((!test_bit(__I40E_DOWN, pf->state) && 332 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 333 test_bit(__I40E_RECOVERY_MODE, pf->state)) 334 queue_work(i40e_wq, &pf->service_task); 335 } 336 337 /** 338 * i40e_tx_timeout - Respond to a Tx Hang 339 * @netdev: network interface device structure 340 * @txqueue: queue number timing out 341 * 342 * If any port has noticed a Tx timeout, it is likely that the whole 343 * device is munged, not just the one netdev port, so go for the full 344 * reset. 345 **/ 346 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 347 { 348 struct i40e_netdev_priv *np = netdev_priv(netdev); 349 struct i40e_vsi *vsi = np->vsi; 350 struct i40e_pf *pf = vsi->back; 351 struct i40e_ring *tx_ring = NULL; 352 unsigned int i; 353 u32 head, val; 354 355 pf->tx_timeout_count++; 356 357 /* with txqueue index, find the tx_ring struct */ 358 for (i = 0; i < vsi->num_queue_pairs; i++) { 359 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 360 if (txqueue == 361 vsi->tx_rings[i]->queue_index) { 362 tx_ring = vsi->tx_rings[i]; 363 break; 364 } 365 } 366 } 367 368 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 369 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 370 else if (time_before(jiffies, 371 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 372 return; /* don't do any new action before the next timeout */ 373 374 /* don't kick off another recovery if one is already pending */ 375 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 376 return; 377 378 if (tx_ring) { 379 head = i40e_get_head(tx_ring); 380 /* Read interrupt register */ 381 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 382 val = rd32(&pf->hw, 383 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 384 tx_ring->vsi->base_vector - 1)); 385 else 386 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 387 388 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 389 vsi->seid, txqueue, tx_ring->next_to_clean, 390 head, tx_ring->next_to_use, 391 readl(tx_ring->tail), val); 392 } 393 394 pf->tx_timeout_last_recovery = jiffies; 395 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 396 pf->tx_timeout_recovery_level, txqueue); 397 398 switch (pf->tx_timeout_recovery_level) { 399 case 1: 400 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 401 break; 402 case 2: 403 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 404 break; 405 case 3: 406 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 407 break; 408 default: 409 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 410 set_bit(__I40E_DOWN_REQUESTED, pf->state); 411 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 412 break; 413 } 414 415 i40e_service_event_schedule(pf); 416 pf->tx_timeout_recovery_level++; 417 } 418 419 /** 420 * i40e_get_vsi_stats_struct - Get System Network Statistics 421 * @vsi: the VSI we care about 422 * 423 * Returns the address of the device statistics structure. 424 * The statistics are actually updated from the service task. 425 **/ 426 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 427 { 428 return &vsi->net_stats; 429 } 430 431 /** 432 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 433 * @ring: Tx ring to get statistics from 434 * @stats: statistics entry to be updated 435 **/ 436 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 437 struct rtnl_link_stats64 *stats) 438 { 439 u64 bytes, packets; 440 unsigned int start; 441 442 do { 443 start = u64_stats_fetch_begin(&ring->syncp); 444 packets = ring->stats.packets; 445 bytes = ring->stats.bytes; 446 } while (u64_stats_fetch_retry(&ring->syncp, start)); 447 448 stats->tx_packets += packets; 449 stats->tx_bytes += bytes; 450 } 451 452 /** 453 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 454 * @netdev: network interface device structure 455 * @stats: data structure to store statistics 456 * 457 * Returns the address of the device statistics structure. 458 * The statistics are actually updated from the service task. 459 **/ 460 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 461 struct rtnl_link_stats64 *stats) 462 { 463 struct i40e_netdev_priv *np = netdev_priv(netdev); 464 struct i40e_vsi *vsi = np->vsi; 465 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 466 struct i40e_ring *ring; 467 int i; 468 469 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 470 return; 471 472 if (!vsi->tx_rings) 473 return; 474 475 rcu_read_lock(); 476 for (i = 0; i < vsi->num_queue_pairs; i++) { 477 u64 bytes, packets; 478 unsigned int start; 479 480 ring = READ_ONCE(vsi->tx_rings[i]); 481 if (!ring) 482 continue; 483 i40e_get_netdev_stats_struct_tx(ring, stats); 484 485 if (i40e_enabled_xdp_vsi(vsi)) { 486 ring = READ_ONCE(vsi->xdp_rings[i]); 487 if (!ring) 488 continue; 489 i40e_get_netdev_stats_struct_tx(ring, stats); 490 } 491 492 ring = READ_ONCE(vsi->rx_rings[i]); 493 if (!ring) 494 continue; 495 do { 496 start = u64_stats_fetch_begin(&ring->syncp); 497 packets = ring->stats.packets; 498 bytes = ring->stats.bytes; 499 } while (u64_stats_fetch_retry(&ring->syncp, start)); 500 501 stats->rx_packets += packets; 502 stats->rx_bytes += bytes; 503 504 } 505 rcu_read_unlock(); 506 507 /* following stats updated by i40e_watchdog_subtask() */ 508 stats->multicast = vsi_stats->multicast; 509 stats->tx_errors = vsi_stats->tx_errors; 510 stats->tx_dropped = vsi_stats->tx_dropped; 511 stats->rx_errors = vsi_stats->rx_errors; 512 stats->rx_dropped = vsi_stats->rx_dropped; 513 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 514 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 515 stats->rx_length_errors = vsi_stats->rx_length_errors; 516 } 517 518 /** 519 * i40e_vsi_reset_stats - Resets all stats of the given vsi 520 * @vsi: the VSI to have its stats reset 521 **/ 522 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 523 { 524 struct rtnl_link_stats64 *ns; 525 int i; 526 527 if (!vsi) 528 return; 529 530 ns = i40e_get_vsi_stats_struct(vsi); 531 memset(ns, 0, sizeof(*ns)); 532 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 533 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 534 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 535 if (vsi->rx_rings && vsi->rx_rings[0]) { 536 for (i = 0; i < vsi->num_queue_pairs; i++) { 537 memset(&vsi->rx_rings[i]->stats, 0, 538 sizeof(vsi->rx_rings[i]->stats)); 539 memset(&vsi->rx_rings[i]->rx_stats, 0, 540 sizeof(vsi->rx_rings[i]->rx_stats)); 541 memset(&vsi->tx_rings[i]->stats, 0, 542 sizeof(vsi->tx_rings[i]->stats)); 543 memset(&vsi->tx_rings[i]->tx_stats, 0, 544 sizeof(vsi->tx_rings[i]->tx_stats)); 545 } 546 } 547 vsi->stat_offsets_loaded = false; 548 } 549 550 /** 551 * i40e_pf_reset_stats - Reset all of the stats for the given PF 552 * @pf: the PF to be reset 553 **/ 554 void i40e_pf_reset_stats(struct i40e_pf *pf) 555 { 556 struct i40e_veb *veb; 557 int i; 558 559 memset(&pf->stats, 0, sizeof(pf->stats)); 560 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 561 pf->stat_offsets_loaded = false; 562 563 i40e_pf_for_each_veb(pf, i, veb) { 564 memset(&veb->stats, 0, sizeof(veb->stats)); 565 memset(&veb->stats_offsets, 0, sizeof(veb->stats_offsets)); 566 memset(&veb->tc_stats, 0, sizeof(veb->tc_stats)); 567 memset(&veb->tc_stats_offsets, 0, sizeof(veb->tc_stats_offsets)); 568 veb->stat_offsets_loaded = false; 569 } 570 pf->hw_csum_rx_error = 0; 571 } 572 573 /** 574 * i40e_compute_pci_to_hw_id - compute index form PCI function. 575 * @vsi: ptr to the VSI to read from. 576 * @hw: ptr to the hardware info. 577 **/ 578 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 579 { 580 int pf_count = i40e_get_pf_count(hw); 581 582 if (vsi->type == I40E_VSI_SRIOV) 583 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 584 585 return hw->port + BIT(7); 586 } 587 588 /** 589 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 590 * @hw: ptr to the hardware info. 591 * @hireg: the high 32 bit reg to read. 592 * @loreg: the low 32 bit reg to read. 593 * @offset_loaded: has the initial offset been loaded yet. 594 * @offset: ptr to current offset value. 595 * @stat: ptr to the stat. 596 * 597 * Since the device stats are not reset at PFReset, they will not 598 * be zeroed when the driver starts. We'll save the first values read 599 * and use them as offsets to be subtracted from the raw values in order 600 * to report stats that count from zero. 601 **/ 602 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 603 bool offset_loaded, u64 *offset, u64 *stat) 604 { 605 u64 new_data; 606 607 new_data = rd64(hw, loreg); 608 609 if (!offset_loaded || new_data < *offset) 610 *offset = new_data; 611 *stat = new_data - *offset; 612 } 613 614 /** 615 * i40e_stat_update48 - read and update a 48 bit stat from the chip 616 * @hw: ptr to the hardware info 617 * @hireg: the high 32 bit reg to read 618 * @loreg: the low 32 bit reg to read 619 * @offset_loaded: has the initial offset been loaded yet 620 * @offset: ptr to current offset value 621 * @stat: ptr to the stat 622 * 623 * Since the device stats are not reset at PFReset, they likely will not 624 * be zeroed when the driver starts. We'll save the first values read 625 * and use them as offsets to be subtracted from the raw values in order 626 * to report stats that count from zero. In the process, we also manage 627 * the potential roll-over. 628 **/ 629 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 630 bool offset_loaded, u64 *offset, u64 *stat) 631 { 632 u64 new_data; 633 634 if (hw->device_id == I40E_DEV_ID_QEMU) { 635 new_data = rd32(hw, loreg); 636 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 637 } else { 638 new_data = rd64(hw, loreg); 639 } 640 if (!offset_loaded) 641 *offset = new_data; 642 if (likely(new_data >= *offset)) 643 *stat = new_data - *offset; 644 else 645 *stat = (new_data + BIT_ULL(48)) - *offset; 646 *stat &= 0xFFFFFFFFFFFFULL; 647 } 648 649 /** 650 * i40e_stat_update32 - read and update a 32 bit stat from the chip 651 * @hw: ptr to the hardware info 652 * @reg: the hw reg to read 653 * @offset_loaded: has the initial offset been loaded yet 654 * @offset: ptr to current offset value 655 * @stat: ptr to the stat 656 **/ 657 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 658 bool offset_loaded, u64 *offset, u64 *stat) 659 { 660 u32 new_data; 661 662 new_data = rd32(hw, reg); 663 if (!offset_loaded) 664 *offset = new_data; 665 if (likely(new_data >= *offset)) 666 *stat = (u32)(new_data - *offset); 667 else 668 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 669 } 670 671 /** 672 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 673 * @hw: ptr to the hardware info 674 * @reg: the hw reg to read and clear 675 * @stat: ptr to the stat 676 **/ 677 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 678 { 679 u32 new_data = rd32(hw, reg); 680 681 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 682 *stat += new_data; 683 } 684 685 /** 686 * i40e_stats_update_rx_discards - update rx_discards. 687 * @vsi: ptr to the VSI to be updated. 688 * @hw: ptr to the hardware info. 689 * @stat_idx: VSI's stat_counter_idx. 690 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 691 * @stat_offset: ptr to stat_offset to store first read of specific register. 692 * @stat: ptr to VSI's stat to be updated. 693 **/ 694 static void 695 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 696 int stat_idx, bool offset_loaded, 697 struct i40e_eth_stats *stat_offset, 698 struct i40e_eth_stats *stat) 699 { 700 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 701 &stat_offset->rx_discards, &stat->rx_discards); 702 i40e_stat_update64(hw, 703 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 704 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 705 offset_loaded, &stat_offset->rx_discards_other, 706 &stat->rx_discards_other); 707 } 708 709 /** 710 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 711 * @vsi: the VSI to be updated 712 **/ 713 void i40e_update_eth_stats(struct i40e_vsi *vsi) 714 { 715 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 716 struct i40e_pf *pf = vsi->back; 717 struct i40e_hw *hw = &pf->hw; 718 struct i40e_eth_stats *oes; 719 struct i40e_eth_stats *es; /* device's eth stats */ 720 721 es = &vsi->eth_stats; 722 oes = &vsi->eth_stats_offsets; 723 724 /* Gather up the stats that the hw collects */ 725 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 726 vsi->stat_offsets_loaded, 727 &oes->tx_errors, &es->tx_errors); 728 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 729 vsi->stat_offsets_loaded, 730 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 731 732 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 733 I40E_GLV_GORCL(stat_idx), 734 vsi->stat_offsets_loaded, 735 &oes->rx_bytes, &es->rx_bytes); 736 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 737 I40E_GLV_UPRCL(stat_idx), 738 vsi->stat_offsets_loaded, 739 &oes->rx_unicast, &es->rx_unicast); 740 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 741 I40E_GLV_MPRCL(stat_idx), 742 vsi->stat_offsets_loaded, 743 &oes->rx_multicast, &es->rx_multicast); 744 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 745 I40E_GLV_BPRCL(stat_idx), 746 vsi->stat_offsets_loaded, 747 &oes->rx_broadcast, &es->rx_broadcast); 748 749 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 750 I40E_GLV_GOTCL(stat_idx), 751 vsi->stat_offsets_loaded, 752 &oes->tx_bytes, &es->tx_bytes); 753 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 754 I40E_GLV_UPTCL(stat_idx), 755 vsi->stat_offsets_loaded, 756 &oes->tx_unicast, &es->tx_unicast); 757 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 758 I40E_GLV_MPTCL(stat_idx), 759 vsi->stat_offsets_loaded, 760 &oes->tx_multicast, &es->tx_multicast); 761 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 762 I40E_GLV_BPTCL(stat_idx), 763 vsi->stat_offsets_loaded, 764 &oes->tx_broadcast, &es->tx_broadcast); 765 766 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 767 vsi->stat_offsets_loaded, oes, es); 768 769 vsi->stat_offsets_loaded = true; 770 } 771 772 /** 773 * i40e_update_veb_stats - Update Switch component statistics 774 * @veb: the VEB being updated 775 **/ 776 void i40e_update_veb_stats(struct i40e_veb *veb) 777 { 778 struct i40e_pf *pf = veb->pf; 779 struct i40e_hw *hw = &pf->hw; 780 struct i40e_eth_stats *oes; 781 struct i40e_eth_stats *es; /* device's eth stats */ 782 struct i40e_veb_tc_stats *veb_oes; 783 struct i40e_veb_tc_stats *veb_es; 784 int i, idx = 0; 785 786 idx = veb->stats_idx; 787 es = &veb->stats; 788 oes = &veb->stats_offsets; 789 veb_es = &veb->tc_stats; 790 veb_oes = &veb->tc_stats_offsets; 791 792 /* Gather up the stats that the hw collects */ 793 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 794 veb->stat_offsets_loaded, 795 &oes->tx_discards, &es->tx_discards); 796 if (hw->revision_id > 0) 797 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 798 veb->stat_offsets_loaded, 799 &oes->rx_unknown_protocol, 800 &es->rx_unknown_protocol); 801 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 802 veb->stat_offsets_loaded, 803 &oes->rx_bytes, &es->rx_bytes); 804 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 805 veb->stat_offsets_loaded, 806 &oes->rx_unicast, &es->rx_unicast); 807 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 808 veb->stat_offsets_loaded, 809 &oes->rx_multicast, &es->rx_multicast); 810 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 811 veb->stat_offsets_loaded, 812 &oes->rx_broadcast, &es->rx_broadcast); 813 814 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 815 veb->stat_offsets_loaded, 816 &oes->tx_bytes, &es->tx_bytes); 817 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 818 veb->stat_offsets_loaded, 819 &oes->tx_unicast, &es->tx_unicast); 820 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 821 veb->stat_offsets_loaded, 822 &oes->tx_multicast, &es->tx_multicast); 823 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 824 veb->stat_offsets_loaded, 825 &oes->tx_broadcast, &es->tx_broadcast); 826 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 827 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 828 I40E_GLVEBTC_RPCL(i, idx), 829 veb->stat_offsets_loaded, 830 &veb_oes->tc_rx_packets[i], 831 &veb_es->tc_rx_packets[i]); 832 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 833 I40E_GLVEBTC_RBCL(i, idx), 834 veb->stat_offsets_loaded, 835 &veb_oes->tc_rx_bytes[i], 836 &veb_es->tc_rx_bytes[i]); 837 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 838 I40E_GLVEBTC_TPCL(i, idx), 839 veb->stat_offsets_loaded, 840 &veb_oes->tc_tx_packets[i], 841 &veb_es->tc_tx_packets[i]); 842 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 843 I40E_GLVEBTC_TBCL(i, idx), 844 veb->stat_offsets_loaded, 845 &veb_oes->tc_tx_bytes[i], 846 &veb_es->tc_tx_bytes[i]); 847 } 848 veb->stat_offsets_loaded = true; 849 } 850 851 /** 852 * i40e_update_vsi_stats - Update the vsi statistics counters. 853 * @vsi: the VSI to be updated 854 * 855 * There are a few instances where we store the same stat in a 856 * couple of different structs. This is partly because we have 857 * the netdev stats that need to be filled out, which is slightly 858 * different from the "eth_stats" defined by the chip and used in 859 * VF communications. We sort it out here. 860 **/ 861 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 862 { 863 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 864 struct i40e_pf *pf = vsi->back; 865 struct rtnl_link_stats64 *ons; 866 struct rtnl_link_stats64 *ns; /* netdev stats */ 867 struct i40e_eth_stats *oes; 868 struct i40e_eth_stats *es; /* device's eth stats */ 869 u64 tx_restart, tx_busy; 870 struct i40e_ring *p; 871 u64 bytes, packets; 872 unsigned int start; 873 u64 tx_linearize; 874 u64 tx_force_wb; 875 u64 tx_stopped; 876 u64 rx_p, rx_b; 877 u64 tx_p, tx_b; 878 u16 q; 879 880 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 881 test_bit(__I40E_CONFIG_BUSY, pf->state)) 882 return; 883 884 ns = i40e_get_vsi_stats_struct(vsi); 885 ons = &vsi->net_stats_offsets; 886 es = &vsi->eth_stats; 887 oes = &vsi->eth_stats_offsets; 888 889 /* Gather up the netdev and vsi stats that the driver collects 890 * on the fly during packet processing 891 */ 892 rx_b = rx_p = 0; 893 tx_b = tx_p = 0; 894 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 895 tx_stopped = 0; 896 rx_page = 0; 897 rx_buf = 0; 898 rx_reuse = 0; 899 rx_alloc = 0; 900 rx_waive = 0; 901 rx_busy = 0; 902 rcu_read_lock(); 903 for (q = 0; q < vsi->num_queue_pairs; q++) { 904 /* locate Tx ring */ 905 p = READ_ONCE(vsi->tx_rings[q]); 906 if (!p) 907 continue; 908 909 do { 910 start = u64_stats_fetch_begin(&p->syncp); 911 packets = p->stats.packets; 912 bytes = p->stats.bytes; 913 } while (u64_stats_fetch_retry(&p->syncp, start)); 914 tx_b += bytes; 915 tx_p += packets; 916 tx_restart += p->tx_stats.restart_queue; 917 tx_busy += p->tx_stats.tx_busy; 918 tx_linearize += p->tx_stats.tx_linearize; 919 tx_force_wb += p->tx_stats.tx_force_wb; 920 tx_stopped += p->tx_stats.tx_stopped; 921 922 /* locate Rx ring */ 923 p = READ_ONCE(vsi->rx_rings[q]); 924 if (!p) 925 continue; 926 927 do { 928 start = u64_stats_fetch_begin(&p->syncp); 929 packets = p->stats.packets; 930 bytes = p->stats.bytes; 931 } while (u64_stats_fetch_retry(&p->syncp, start)); 932 rx_b += bytes; 933 rx_p += packets; 934 rx_buf += p->rx_stats.alloc_buff_failed; 935 rx_page += p->rx_stats.alloc_page_failed; 936 rx_reuse += p->rx_stats.page_reuse_count; 937 rx_alloc += p->rx_stats.page_alloc_count; 938 rx_waive += p->rx_stats.page_waive_count; 939 rx_busy += p->rx_stats.page_busy_count; 940 941 if (i40e_enabled_xdp_vsi(vsi)) { 942 /* locate XDP ring */ 943 p = READ_ONCE(vsi->xdp_rings[q]); 944 if (!p) 945 continue; 946 947 do { 948 start = u64_stats_fetch_begin(&p->syncp); 949 packets = p->stats.packets; 950 bytes = p->stats.bytes; 951 } while (u64_stats_fetch_retry(&p->syncp, start)); 952 tx_b += bytes; 953 tx_p += packets; 954 tx_restart += p->tx_stats.restart_queue; 955 tx_busy += p->tx_stats.tx_busy; 956 tx_linearize += p->tx_stats.tx_linearize; 957 tx_force_wb += p->tx_stats.tx_force_wb; 958 } 959 } 960 rcu_read_unlock(); 961 vsi->tx_restart = tx_restart; 962 vsi->tx_busy = tx_busy; 963 vsi->tx_linearize = tx_linearize; 964 vsi->tx_force_wb = tx_force_wb; 965 vsi->tx_stopped = tx_stopped; 966 vsi->rx_page_failed = rx_page; 967 vsi->rx_buf_failed = rx_buf; 968 vsi->rx_page_reuse = rx_reuse; 969 vsi->rx_page_alloc = rx_alloc; 970 vsi->rx_page_waive = rx_waive; 971 vsi->rx_page_busy = rx_busy; 972 973 ns->rx_packets = rx_p; 974 ns->rx_bytes = rx_b; 975 ns->tx_packets = tx_p; 976 ns->tx_bytes = tx_b; 977 978 /* update netdev stats from eth stats */ 979 i40e_update_eth_stats(vsi); 980 ons->tx_errors = oes->tx_errors; 981 ns->tx_errors = es->tx_errors; 982 ons->multicast = oes->rx_multicast; 983 ns->multicast = es->rx_multicast; 984 ons->rx_dropped = oes->rx_discards_other; 985 ns->rx_dropped = es->rx_discards_other; 986 ons->rx_missed_errors = oes->rx_discards; 987 ns->rx_missed_errors = es->rx_discards; 988 ons->tx_dropped = oes->tx_discards; 989 ns->tx_dropped = es->tx_discards; 990 991 /* pull in a couple PF stats if this is the main vsi */ 992 if (vsi->type == I40E_VSI_MAIN) { 993 ns->rx_crc_errors = pf->stats.crc_errors; 994 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 995 ns->rx_length_errors = pf->stats.rx_length_errors; 996 } 997 } 998 999 /** 1000 * i40e_update_pf_stats - Update the PF statistics counters. 1001 * @pf: the PF to be updated 1002 **/ 1003 static void i40e_update_pf_stats(struct i40e_pf *pf) 1004 { 1005 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1006 struct i40e_hw_port_stats *nsd = &pf->stats; 1007 struct i40e_hw *hw = &pf->hw; 1008 u32 val; 1009 int i; 1010 1011 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1012 I40E_GLPRT_GORCL(hw->port), 1013 pf->stat_offsets_loaded, 1014 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1015 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1016 I40E_GLPRT_GOTCL(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1019 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->eth.rx_discards, 1022 &nsd->eth.rx_discards); 1023 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1024 I40E_GLPRT_UPRCL(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->eth.rx_unicast, 1027 &nsd->eth.rx_unicast); 1028 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1029 I40E_GLPRT_MPRCL(hw->port), 1030 pf->stat_offsets_loaded, 1031 &osd->eth.rx_multicast, 1032 &nsd->eth.rx_multicast); 1033 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1034 I40E_GLPRT_BPRCL(hw->port), 1035 pf->stat_offsets_loaded, 1036 &osd->eth.rx_broadcast, 1037 &nsd->eth.rx_broadcast); 1038 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1039 I40E_GLPRT_UPTCL(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->eth.tx_unicast, 1042 &nsd->eth.tx_unicast); 1043 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1044 I40E_GLPRT_MPTCL(hw->port), 1045 pf->stat_offsets_loaded, 1046 &osd->eth.tx_multicast, 1047 &nsd->eth.tx_multicast); 1048 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1049 I40E_GLPRT_BPTCL(hw->port), 1050 pf->stat_offsets_loaded, 1051 &osd->eth.tx_broadcast, 1052 &nsd->eth.tx_broadcast); 1053 1054 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1055 pf->stat_offsets_loaded, 1056 &osd->tx_dropped_link_down, 1057 &nsd->tx_dropped_link_down); 1058 1059 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1060 pf->stat_offsets_loaded, 1061 &osd->crc_errors, &nsd->crc_errors); 1062 1063 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1064 pf->stat_offsets_loaded, 1065 &osd->illegal_bytes, &nsd->illegal_bytes); 1066 1067 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1068 pf->stat_offsets_loaded, 1069 &osd->mac_local_faults, 1070 &nsd->mac_local_faults); 1071 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1072 pf->stat_offsets_loaded, 1073 &osd->mac_remote_faults, 1074 &nsd->mac_remote_faults); 1075 1076 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1077 pf->stat_offsets_loaded, 1078 &osd->rx_length_errors, 1079 &nsd->rx_length_errors); 1080 1081 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1082 pf->stat_offsets_loaded, 1083 &osd->link_xon_rx, &nsd->link_xon_rx); 1084 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1085 pf->stat_offsets_loaded, 1086 &osd->link_xon_tx, &nsd->link_xon_tx); 1087 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1088 pf->stat_offsets_loaded, 1089 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1090 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1091 pf->stat_offsets_loaded, 1092 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1093 1094 for (i = 0; i < 8; i++) { 1095 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1096 pf->stat_offsets_loaded, 1097 &osd->priority_xoff_rx[i], 1098 &nsd->priority_xoff_rx[i]); 1099 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1100 pf->stat_offsets_loaded, 1101 &osd->priority_xon_rx[i], 1102 &nsd->priority_xon_rx[i]); 1103 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1104 pf->stat_offsets_loaded, 1105 &osd->priority_xon_tx[i], 1106 &nsd->priority_xon_tx[i]); 1107 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1108 pf->stat_offsets_loaded, 1109 &osd->priority_xoff_tx[i], 1110 &nsd->priority_xoff_tx[i]); 1111 i40e_stat_update32(hw, 1112 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1113 pf->stat_offsets_loaded, 1114 &osd->priority_xon_2_xoff[i], 1115 &nsd->priority_xon_2_xoff[i]); 1116 } 1117 1118 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1119 I40E_GLPRT_PRC64L(hw->port), 1120 pf->stat_offsets_loaded, 1121 &osd->rx_size_64, &nsd->rx_size_64); 1122 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1123 I40E_GLPRT_PRC127L(hw->port), 1124 pf->stat_offsets_loaded, 1125 &osd->rx_size_127, &nsd->rx_size_127); 1126 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1127 I40E_GLPRT_PRC255L(hw->port), 1128 pf->stat_offsets_loaded, 1129 &osd->rx_size_255, &nsd->rx_size_255); 1130 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1131 I40E_GLPRT_PRC511L(hw->port), 1132 pf->stat_offsets_loaded, 1133 &osd->rx_size_511, &nsd->rx_size_511); 1134 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1135 I40E_GLPRT_PRC1023L(hw->port), 1136 pf->stat_offsets_loaded, 1137 &osd->rx_size_1023, &nsd->rx_size_1023); 1138 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1139 I40E_GLPRT_PRC1522L(hw->port), 1140 pf->stat_offsets_loaded, 1141 &osd->rx_size_1522, &nsd->rx_size_1522); 1142 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1143 I40E_GLPRT_PRC9522L(hw->port), 1144 pf->stat_offsets_loaded, 1145 &osd->rx_size_big, &nsd->rx_size_big); 1146 1147 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1148 I40E_GLPRT_PTC64L(hw->port), 1149 pf->stat_offsets_loaded, 1150 &osd->tx_size_64, &nsd->tx_size_64); 1151 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1152 I40E_GLPRT_PTC127L(hw->port), 1153 pf->stat_offsets_loaded, 1154 &osd->tx_size_127, &nsd->tx_size_127); 1155 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1156 I40E_GLPRT_PTC255L(hw->port), 1157 pf->stat_offsets_loaded, 1158 &osd->tx_size_255, &nsd->tx_size_255); 1159 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1160 I40E_GLPRT_PTC511L(hw->port), 1161 pf->stat_offsets_loaded, 1162 &osd->tx_size_511, &nsd->tx_size_511); 1163 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1164 I40E_GLPRT_PTC1023L(hw->port), 1165 pf->stat_offsets_loaded, 1166 &osd->tx_size_1023, &nsd->tx_size_1023); 1167 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1168 I40E_GLPRT_PTC1522L(hw->port), 1169 pf->stat_offsets_loaded, 1170 &osd->tx_size_1522, &nsd->tx_size_1522); 1171 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1172 I40E_GLPRT_PTC9522L(hw->port), 1173 pf->stat_offsets_loaded, 1174 &osd->tx_size_big, &nsd->tx_size_big); 1175 1176 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1177 pf->stat_offsets_loaded, 1178 &osd->rx_undersize, &nsd->rx_undersize); 1179 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1180 pf->stat_offsets_loaded, 1181 &osd->rx_fragments, &nsd->rx_fragments); 1182 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1183 pf->stat_offsets_loaded, 1184 &osd->rx_oversize, &nsd->rx_oversize); 1185 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1186 pf->stat_offsets_loaded, 1187 &osd->rx_jabber, &nsd->rx_jabber); 1188 1189 /* FDIR stats */ 1190 i40e_stat_update_and_clear32(hw, 1191 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1192 &nsd->fd_atr_match); 1193 i40e_stat_update_and_clear32(hw, 1194 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1195 &nsd->fd_sb_match); 1196 i40e_stat_update_and_clear32(hw, 1197 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1198 &nsd->fd_atr_tunnel_match); 1199 1200 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1201 nsd->tx_lpi_status = 1202 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val); 1203 nsd->rx_lpi_status = 1204 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val); 1205 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1206 pf->stat_offsets_loaded, 1207 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1208 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1209 pf->stat_offsets_loaded, 1210 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1211 1212 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1213 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1214 nsd->fd_sb_status = true; 1215 else 1216 nsd->fd_sb_status = false; 1217 1218 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1219 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1220 nsd->fd_atr_status = true; 1221 else 1222 nsd->fd_atr_status = false; 1223 1224 pf->stat_offsets_loaded = true; 1225 } 1226 1227 /** 1228 * i40e_update_stats - Update the various statistics counters. 1229 * @vsi: the VSI to be updated 1230 * 1231 * Update the various stats for this VSI and its related entities. 1232 **/ 1233 void i40e_update_stats(struct i40e_vsi *vsi) 1234 { 1235 struct i40e_pf *pf = vsi->back; 1236 1237 if (vsi->type == I40E_VSI_MAIN) 1238 i40e_update_pf_stats(pf); 1239 1240 i40e_update_vsi_stats(vsi); 1241 } 1242 1243 /** 1244 * i40e_count_filters - counts VSI mac filters 1245 * @vsi: the VSI to be searched 1246 * 1247 * Returns count of mac filters 1248 **/ 1249 int i40e_count_filters(struct i40e_vsi *vsi) 1250 { 1251 struct i40e_mac_filter *f; 1252 struct hlist_node *h; 1253 int bkt; 1254 int cnt = 0; 1255 1256 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1257 if (f->state == I40E_FILTER_NEW || 1258 f->state == I40E_FILTER_ACTIVE) 1259 ++cnt; 1260 } 1261 1262 return cnt; 1263 } 1264 1265 /** 1266 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1267 * @vsi: the VSI to be searched 1268 * @macaddr: the MAC address 1269 * @vlan: the vlan 1270 * 1271 * Returns ptr to the filter object or NULL 1272 **/ 1273 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1274 const u8 *macaddr, s16 vlan) 1275 { 1276 struct i40e_mac_filter *f; 1277 u64 key; 1278 1279 if (!vsi || !macaddr) 1280 return NULL; 1281 1282 key = i40e_addr_to_hkey(macaddr); 1283 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1284 if ((ether_addr_equal(macaddr, f->macaddr)) && 1285 (vlan == f->vlan)) 1286 return f; 1287 } 1288 return NULL; 1289 } 1290 1291 /** 1292 * i40e_find_mac - Find a mac addr in the macvlan filters list 1293 * @vsi: the VSI to be searched 1294 * @macaddr: the MAC address we are searching for 1295 * 1296 * Returns the first filter with the provided MAC address or NULL if 1297 * MAC address was not found 1298 **/ 1299 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1300 { 1301 struct i40e_mac_filter *f; 1302 u64 key; 1303 1304 if (!vsi || !macaddr) 1305 return NULL; 1306 1307 key = i40e_addr_to_hkey(macaddr); 1308 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1309 if ((ether_addr_equal(macaddr, f->macaddr))) 1310 return f; 1311 } 1312 return NULL; 1313 } 1314 1315 /** 1316 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1317 * @vsi: the VSI to be searched 1318 * 1319 * Returns true if VSI is in vlan mode or false otherwise 1320 **/ 1321 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1322 { 1323 /* If we have a PVID, always operate in VLAN mode */ 1324 if (vsi->info.pvid) 1325 return true; 1326 1327 /* We need to operate in VLAN mode whenever we have any filters with 1328 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1329 * time, incurring search cost repeatedly. However, we can notice two 1330 * things: 1331 * 1332 * 1) the only place where we can gain a VLAN filter is in 1333 * i40e_add_filter. 1334 * 1335 * 2) the only place where filters are actually removed is in 1336 * i40e_sync_filters_subtask. 1337 * 1338 * Thus, we can simply use a boolean value, has_vlan_filters which we 1339 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1340 * we have to perform the full search after deleting filters in 1341 * i40e_sync_filters_subtask, but we already have to search 1342 * filters here and can perform the check at the same time. This 1343 * results in avoiding embedding a loop for VLAN mode inside another 1344 * loop over all the filters, and should maintain correctness as noted 1345 * above. 1346 */ 1347 return vsi->has_vlan_filter; 1348 } 1349 1350 /** 1351 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1352 * @vsi: the VSI to configure 1353 * @tmp_add_list: list of filters ready to be added 1354 * @tmp_del_list: list of filters ready to be deleted 1355 * @vlan_filters: the number of active VLAN filters 1356 * 1357 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1358 * behave as expected. If we have any active VLAN filters remaining or about 1359 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1360 * so that they only match against untagged traffic. If we no longer have any 1361 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1362 * so that they match against both tagged and untagged traffic. In this way, 1363 * we ensure that we correctly receive the desired traffic. This ensures that 1364 * when we have an active VLAN we will receive only untagged traffic and 1365 * traffic matching active VLANs. If we have no active VLANs then we will 1366 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1367 * 1368 * Finally, in a similar fashion, this function also corrects filters when 1369 * there is an active PVID assigned to this VSI. 1370 * 1371 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1372 * 1373 * This function is only expected to be called from within 1374 * i40e_sync_vsi_filters. 1375 * 1376 * NOTE: This function expects to be called while under the 1377 * mac_filter_hash_lock 1378 */ 1379 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1380 struct hlist_head *tmp_add_list, 1381 struct hlist_head *tmp_del_list, 1382 int vlan_filters) 1383 { 1384 s16 pvid = le16_to_cpu(vsi->info.pvid); 1385 struct i40e_mac_filter *f, *add_head; 1386 struct i40e_new_mac_filter *new; 1387 struct hlist_node *h; 1388 int bkt, new_vlan; 1389 1390 /* To determine if a particular filter needs to be replaced we 1391 * have the three following conditions: 1392 * 1393 * a) if we have a PVID assigned, then all filters which are 1394 * not marked as VLAN=PVID must be replaced with filters that 1395 * are. 1396 * b) otherwise, if we have any active VLANS, all filters 1397 * which are marked as VLAN=-1 must be replaced with 1398 * filters marked as VLAN=0 1399 * c) finally, if we do not have any active VLANS, all filters 1400 * which are marked as VLAN=0 must be replaced with filters 1401 * marked as VLAN=-1 1402 */ 1403 1404 /* Update the filters about to be added in place */ 1405 hlist_for_each_entry(new, tmp_add_list, hlist) { 1406 if (pvid && new->f->vlan != pvid) 1407 new->f->vlan = pvid; 1408 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1409 new->f->vlan = 0; 1410 else if (!vlan_filters && new->f->vlan == 0) 1411 new->f->vlan = I40E_VLAN_ANY; 1412 } 1413 1414 /* Update the remaining active filters */ 1415 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1416 /* Combine the checks for whether a filter needs to be changed 1417 * and then determine the new VLAN inside the if block, in 1418 * order to avoid duplicating code for adding the new filter 1419 * then deleting the old filter. 1420 */ 1421 if ((pvid && f->vlan != pvid) || 1422 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1423 (!vlan_filters && f->vlan == 0)) { 1424 /* Determine the new vlan we will be adding */ 1425 if (pvid) 1426 new_vlan = pvid; 1427 else if (vlan_filters) 1428 new_vlan = 0; 1429 else 1430 new_vlan = I40E_VLAN_ANY; 1431 1432 /* Create the new filter */ 1433 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1434 if (!add_head) 1435 return -ENOMEM; 1436 1437 /* Create a temporary i40e_new_mac_filter */ 1438 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1439 if (!new) 1440 return -ENOMEM; 1441 1442 new->f = add_head; 1443 new->state = add_head->state; 1444 1445 /* Add the new filter to the tmp list */ 1446 hlist_add_head(&new->hlist, tmp_add_list); 1447 1448 /* Put the original filter into the delete list */ 1449 f->state = I40E_FILTER_REMOVE; 1450 hash_del(&f->hlist); 1451 hlist_add_head(&f->hlist, tmp_del_list); 1452 } 1453 } 1454 1455 vsi->has_vlan_filter = !!vlan_filters; 1456 1457 return 0; 1458 } 1459 1460 /** 1461 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1462 * @vsi: the vsi to configure 1463 * @new_mac: new mac filter to be added 1464 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1465 * @vlan_filters: the number of active VLAN filters 1466 * @trusted: flag if the VF is trusted 1467 * 1468 * Get new VLAN id based on current VLAN filters, trust, PVID 1469 * and vf-vlan-prune-disable flag. 1470 * 1471 * Returns the value of the new vlan filter or 1472 * the old value if no new filter is needed. 1473 */ 1474 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1475 struct i40e_new_mac_filter *new_mac, 1476 struct i40e_mac_filter *f, 1477 int vlan_filters, 1478 bool trusted) 1479 { 1480 s16 pvid = le16_to_cpu(vsi->info.pvid); 1481 struct i40e_pf *pf = vsi->back; 1482 bool is_any; 1483 1484 if (new_mac) 1485 f = new_mac->f; 1486 1487 if (pvid && f->vlan != pvid) 1488 return pvid; 1489 1490 is_any = (trusted || 1491 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1492 1493 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1494 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1495 (is_any && !vlan_filters && f->vlan == 0)) { 1496 if (is_any) 1497 return I40E_VLAN_ANY; 1498 else 1499 return 0; 1500 } 1501 1502 return f->vlan; 1503 } 1504 1505 /** 1506 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1507 * @vsi: the vsi to configure 1508 * @tmp_add_list: list of filters ready to be added 1509 * @tmp_del_list: list of filters ready to be deleted 1510 * @vlan_filters: the number of active VLAN filters 1511 * @trusted: flag if the VF is trusted 1512 * 1513 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1514 * and vf-vlan-prune-disable flag. 1515 * 1516 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1517 * 1518 * This function is only expected to be called from within 1519 * i40e_sync_vsi_filters. 1520 * 1521 * NOTE: This function expects to be called while under the 1522 * mac_filter_hash_lock 1523 */ 1524 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1525 struct hlist_head *tmp_add_list, 1526 struct hlist_head *tmp_del_list, 1527 int vlan_filters, 1528 bool trusted) 1529 { 1530 struct i40e_mac_filter *f, *add_head; 1531 struct i40e_new_mac_filter *new_mac; 1532 struct hlist_node *h; 1533 int bkt, new_vlan; 1534 1535 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1536 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1537 vlan_filters, trusted); 1538 } 1539 1540 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1541 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1542 trusted); 1543 if (new_vlan != f->vlan) { 1544 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1545 if (!add_head) 1546 return -ENOMEM; 1547 /* Create a temporary i40e_new_mac_filter */ 1548 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1549 if (!new_mac) 1550 return -ENOMEM; 1551 new_mac->f = add_head; 1552 new_mac->state = add_head->state; 1553 1554 /* Add the new filter to the tmp list */ 1555 hlist_add_head(&new_mac->hlist, tmp_add_list); 1556 1557 /* Put the original filter into the delete list */ 1558 f->state = I40E_FILTER_REMOVE; 1559 hash_del(&f->hlist); 1560 hlist_add_head(&f->hlist, tmp_del_list); 1561 } 1562 } 1563 1564 vsi->has_vlan_filter = !!vlan_filters; 1565 return 0; 1566 } 1567 1568 /** 1569 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1570 * @vsi: the PF Main VSI - inappropriate for any other VSI 1571 * @macaddr: the MAC address 1572 * 1573 * Remove whatever filter the firmware set up so the driver can manage 1574 * its own filtering intelligently. 1575 **/ 1576 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1577 { 1578 struct i40e_aqc_remove_macvlan_element_data element; 1579 struct i40e_pf *pf = vsi->back; 1580 1581 /* Only appropriate for the PF main VSI */ 1582 if (vsi->type != I40E_VSI_MAIN) 1583 return; 1584 1585 memset(&element, 0, sizeof(element)); 1586 ether_addr_copy(element.mac_addr, macaddr); 1587 element.vlan_tag = 0; 1588 /* Ignore error returns, some firmware does it this way... */ 1589 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1590 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1591 1592 memset(&element, 0, sizeof(element)); 1593 ether_addr_copy(element.mac_addr, macaddr); 1594 element.vlan_tag = 0; 1595 /* ...and some firmware does it this way. */ 1596 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1597 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1598 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1599 } 1600 1601 /** 1602 * i40e_add_filter - Add a mac/vlan filter to the VSI 1603 * @vsi: the VSI to be searched 1604 * @macaddr: the MAC address 1605 * @vlan: the vlan 1606 * 1607 * Returns ptr to the filter object or NULL when no memory available. 1608 * 1609 * NOTE: This function is expected to be called with mac_filter_hash_lock 1610 * being held. 1611 **/ 1612 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1613 const u8 *macaddr, s16 vlan) 1614 { 1615 struct i40e_mac_filter *f; 1616 u64 key; 1617 1618 if (!vsi || !macaddr) 1619 return NULL; 1620 1621 f = i40e_find_filter(vsi, macaddr, vlan); 1622 if (!f) { 1623 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1624 if (!f) 1625 return NULL; 1626 1627 /* Update the boolean indicating if we need to function in 1628 * VLAN mode. 1629 */ 1630 if (vlan >= 0) 1631 vsi->has_vlan_filter = true; 1632 1633 ether_addr_copy(f->macaddr, macaddr); 1634 f->vlan = vlan; 1635 f->state = I40E_FILTER_NEW; 1636 INIT_HLIST_NODE(&f->hlist); 1637 1638 key = i40e_addr_to_hkey(macaddr); 1639 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1640 1641 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1642 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1643 } 1644 1645 /* If we're asked to add a filter that has been marked for removal, it 1646 * is safe to simply restore it to active state. __i40e_del_filter 1647 * will have simply deleted any filters which were previously marked 1648 * NEW or FAILED, so if it is currently marked REMOVE it must have 1649 * previously been ACTIVE. Since we haven't yet run the sync filters 1650 * task, just restore this filter to the ACTIVE state so that the 1651 * sync task leaves it in place 1652 */ 1653 if (f->state == I40E_FILTER_REMOVE) 1654 f->state = I40E_FILTER_ACTIVE; 1655 1656 return f; 1657 } 1658 1659 /** 1660 * __i40e_del_filter - Remove a specific filter from the VSI 1661 * @vsi: VSI to remove from 1662 * @f: the filter to remove from the list 1663 * 1664 * This function should be called instead of i40e_del_filter only if you know 1665 * the exact filter you will remove already, such as via i40e_find_filter or 1666 * i40e_find_mac. 1667 * 1668 * NOTE: This function is expected to be called with mac_filter_hash_lock 1669 * being held. 1670 * ANOTHER NOTE: This function MUST be called from within the context of 1671 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1672 * instead of list_for_each_entry(). 1673 **/ 1674 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1675 { 1676 if (!f) 1677 return; 1678 1679 /* If the filter was never added to firmware then we can just delete it 1680 * directly and we don't want to set the status to remove or else an 1681 * admin queue command will unnecessarily fire. 1682 */ 1683 if ((f->state == I40E_FILTER_FAILED) || 1684 (f->state == I40E_FILTER_NEW)) { 1685 hash_del(&f->hlist); 1686 kfree(f); 1687 } else { 1688 f->state = I40E_FILTER_REMOVE; 1689 } 1690 1691 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1692 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1693 } 1694 1695 /** 1696 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1697 * @vsi: the VSI to be searched 1698 * @macaddr: the MAC address 1699 * @vlan: the VLAN 1700 * 1701 * NOTE: This function is expected to be called with mac_filter_hash_lock 1702 * being held. 1703 * ANOTHER NOTE: This function MUST be called from within the context of 1704 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1705 * instead of list_for_each_entry(). 1706 **/ 1707 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1708 { 1709 struct i40e_mac_filter *f; 1710 1711 if (!vsi || !macaddr) 1712 return; 1713 1714 f = i40e_find_filter(vsi, macaddr, vlan); 1715 __i40e_del_filter(vsi, f); 1716 } 1717 1718 /** 1719 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1720 * @vsi: the VSI to be searched 1721 * @macaddr: the mac address to be filtered 1722 * 1723 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1724 * go through all the macvlan filters and add a macvlan filter for each 1725 * unique vlan that already exists. If a PVID has been assigned, instead only 1726 * add the macaddr to that VLAN. 1727 * 1728 * Returns last filter added on success, else NULL 1729 **/ 1730 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1731 const u8 *macaddr) 1732 { 1733 struct i40e_mac_filter *f, *add = NULL; 1734 struct hlist_node *h; 1735 int bkt; 1736 1737 if (vsi->info.pvid) 1738 return i40e_add_filter(vsi, macaddr, 1739 le16_to_cpu(vsi->info.pvid)); 1740 1741 if (!i40e_is_vsi_in_vlan(vsi)) 1742 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1743 1744 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1745 if (f->state == I40E_FILTER_REMOVE) 1746 continue; 1747 add = i40e_add_filter(vsi, macaddr, f->vlan); 1748 if (!add) 1749 return NULL; 1750 } 1751 1752 return add; 1753 } 1754 1755 /** 1756 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1757 * @vsi: the VSI to be searched 1758 * @macaddr: the mac address to be removed 1759 * 1760 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1761 * associated with. 1762 * 1763 * Returns 0 for success, or error 1764 **/ 1765 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1766 { 1767 struct i40e_mac_filter *f; 1768 struct hlist_node *h; 1769 bool found = false; 1770 int bkt; 1771 1772 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1773 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1774 if (ether_addr_equal(macaddr, f->macaddr)) { 1775 __i40e_del_filter(vsi, f); 1776 found = true; 1777 } 1778 } 1779 1780 if (found) 1781 return 0; 1782 else 1783 return -ENOENT; 1784 } 1785 1786 /** 1787 * i40e_set_mac - NDO callback to set mac address 1788 * @netdev: network interface device structure 1789 * @p: pointer to an address structure 1790 * 1791 * Returns 0 on success, negative on failure 1792 **/ 1793 static int i40e_set_mac(struct net_device *netdev, void *p) 1794 { 1795 struct i40e_netdev_priv *np = netdev_priv(netdev); 1796 struct i40e_vsi *vsi = np->vsi; 1797 struct i40e_pf *pf = vsi->back; 1798 struct i40e_hw *hw = &pf->hw; 1799 struct sockaddr *addr = p; 1800 1801 if (!is_valid_ether_addr(addr->sa_data)) 1802 return -EADDRNOTAVAIL; 1803 1804 if (test_bit(__I40E_DOWN, pf->state) || 1805 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1806 return -EADDRNOTAVAIL; 1807 1808 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1809 netdev_info(netdev, "returning to hw mac address %pM\n", 1810 hw->mac.addr); 1811 else 1812 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1813 1814 /* Copy the address first, so that we avoid a possible race with 1815 * .set_rx_mode(). 1816 * - Remove old address from MAC filter 1817 * - Copy new address 1818 * - Add new address to MAC filter 1819 */ 1820 spin_lock_bh(&vsi->mac_filter_hash_lock); 1821 i40e_del_mac_filter(vsi, netdev->dev_addr); 1822 eth_hw_addr_set(netdev, addr->sa_data); 1823 i40e_add_mac_filter(vsi, netdev->dev_addr); 1824 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1825 1826 if (vsi->type == I40E_VSI_MAIN) { 1827 int ret; 1828 1829 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1830 addr->sa_data, NULL); 1831 if (ret) 1832 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1833 ERR_PTR(ret), 1834 i40e_aq_str(hw, hw->aq.asq_last_status)); 1835 } 1836 1837 /* schedule our worker thread which will take care of 1838 * applying the new filter changes 1839 */ 1840 i40e_service_event_schedule(pf); 1841 return 0; 1842 } 1843 1844 /** 1845 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1846 * @vsi: vsi structure 1847 * @seed: RSS hash seed 1848 * @lut: pointer to lookup table of lut_size 1849 * @lut_size: size of the lookup table 1850 **/ 1851 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1852 u8 *lut, u16 lut_size) 1853 { 1854 struct i40e_pf *pf = vsi->back; 1855 struct i40e_hw *hw = &pf->hw; 1856 int ret = 0; 1857 1858 if (seed) { 1859 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1860 (struct i40e_aqc_get_set_rss_key_data *)seed; 1861 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1862 if (ret) { 1863 dev_info(&pf->pdev->dev, 1864 "Cannot set RSS key, err %pe aq_err %s\n", 1865 ERR_PTR(ret), 1866 i40e_aq_str(hw, hw->aq.asq_last_status)); 1867 return ret; 1868 } 1869 } 1870 if (lut) { 1871 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1872 1873 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1874 if (ret) { 1875 dev_info(&pf->pdev->dev, 1876 "Cannot set RSS lut, err %pe aq_err %s\n", 1877 ERR_PTR(ret), 1878 i40e_aq_str(hw, hw->aq.asq_last_status)); 1879 return ret; 1880 } 1881 } 1882 return ret; 1883 } 1884 1885 /** 1886 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1887 * @vsi: VSI structure 1888 **/ 1889 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1890 { 1891 struct i40e_pf *pf = vsi->back; 1892 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1893 u8 *lut; 1894 int ret; 1895 1896 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1897 return 0; 1898 if (!vsi->rss_size) 1899 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1900 vsi->num_queue_pairs); 1901 if (!vsi->rss_size) 1902 return -EINVAL; 1903 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1904 if (!lut) 1905 return -ENOMEM; 1906 1907 /* Use the user configured hash keys and lookup table if there is one, 1908 * otherwise use default 1909 */ 1910 if (vsi->rss_lut_user) 1911 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1912 else 1913 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1914 if (vsi->rss_hkey_user) 1915 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1916 else 1917 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1918 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1919 kfree(lut); 1920 return ret; 1921 } 1922 1923 /** 1924 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1925 * @vsi: the VSI being configured, 1926 * @ctxt: VSI context structure 1927 * @enabled_tc: number of traffic classes to enable 1928 * 1929 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1930 **/ 1931 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1932 struct i40e_vsi_context *ctxt, 1933 u8 enabled_tc) 1934 { 1935 u16 qcount = 0, max_qcount, qmap, sections = 0; 1936 int i, override_q, pow, num_qps, ret; 1937 u8 netdev_tc = 0, offset = 0; 1938 1939 if (vsi->type != I40E_VSI_MAIN) 1940 return -EINVAL; 1941 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1942 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1943 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1944 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1945 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1946 1947 /* find the next higher power-of-2 of num queue pairs */ 1948 pow = ilog2(num_qps); 1949 if (!is_power_of_2(num_qps)) 1950 pow++; 1951 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1952 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1953 1954 /* Setup queue offset/count for all TCs for given VSI */ 1955 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1956 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1957 /* See if the given TC is enabled for the given VSI */ 1958 if (vsi->tc_config.enabled_tc & BIT(i)) { 1959 offset = vsi->mqprio_qopt.qopt.offset[i]; 1960 qcount = vsi->mqprio_qopt.qopt.count[i]; 1961 if (qcount > max_qcount) 1962 max_qcount = qcount; 1963 vsi->tc_config.tc_info[i].qoffset = offset; 1964 vsi->tc_config.tc_info[i].qcount = qcount; 1965 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1966 } else { 1967 /* TC is not enabled so set the offset to 1968 * default queue and allocate one queue 1969 * for the given TC. 1970 */ 1971 vsi->tc_config.tc_info[i].qoffset = 0; 1972 vsi->tc_config.tc_info[i].qcount = 1; 1973 vsi->tc_config.tc_info[i].netdev_tc = 0; 1974 } 1975 } 1976 1977 /* Set actual Tx/Rx queue pairs */ 1978 vsi->num_queue_pairs = offset + qcount; 1979 1980 /* Setup queue TC[0].qmap for given VSI context */ 1981 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1982 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1983 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1984 ctxt->info.valid_sections |= cpu_to_le16(sections); 1985 1986 /* Reconfigure RSS for main VSI with max queue count */ 1987 vsi->rss_size = max_qcount; 1988 ret = i40e_vsi_config_rss(vsi); 1989 if (ret) { 1990 dev_info(&vsi->back->pdev->dev, 1991 "Failed to reconfig rss for num_queues (%u)\n", 1992 max_qcount); 1993 return ret; 1994 } 1995 vsi->reconfig_rss = true; 1996 dev_dbg(&vsi->back->pdev->dev, 1997 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1998 1999 /* Find queue count available for channel VSIs and starting offset 2000 * for channel VSIs 2001 */ 2002 override_q = vsi->mqprio_qopt.qopt.count[0]; 2003 if (override_q && override_q < vsi->num_queue_pairs) { 2004 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 2005 vsi->next_base_queue = override_q; 2006 } 2007 return 0; 2008 } 2009 2010 /** 2011 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 2012 * @vsi: the VSI being setup 2013 * @ctxt: VSI context structure 2014 * @enabled_tc: Enabled TCs bitmap 2015 * @is_add: True if called before Add VSI 2016 * 2017 * Setup VSI queue mapping for enabled traffic classes. 2018 **/ 2019 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2020 struct i40e_vsi_context *ctxt, 2021 u8 enabled_tc, 2022 bool is_add) 2023 { 2024 struct i40e_pf *pf = vsi->back; 2025 u16 num_tc_qps = 0; 2026 u16 sections = 0; 2027 u8 netdev_tc = 0; 2028 u16 numtc = 1; 2029 u16 qcount; 2030 u8 offset; 2031 u16 qmap; 2032 int i; 2033 2034 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2035 offset = 0; 2036 /* zero out queue mapping, it will get updated on the end of the function */ 2037 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2038 2039 if (vsi->type == I40E_VSI_MAIN) { 2040 /* This code helps add more queue to the VSI if we have 2041 * more cores than RSS can support, the higher cores will 2042 * be served by ATR or other filters. Furthermore, the 2043 * non-zero req_queue_pairs says that user requested a new 2044 * queue count via ethtool's set_channels, so use this 2045 * value for queues distribution across traffic classes 2046 * We need at least one queue pair for the interface 2047 * to be usable as we see in else statement. 2048 */ 2049 if (vsi->req_queue_pairs > 0) 2050 vsi->num_queue_pairs = vsi->req_queue_pairs; 2051 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2052 vsi->num_queue_pairs = pf->num_lan_msix; 2053 else 2054 vsi->num_queue_pairs = 1; 2055 } 2056 2057 /* Number of queues per enabled TC */ 2058 if (vsi->type == I40E_VSI_MAIN || 2059 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2060 num_tc_qps = vsi->num_queue_pairs; 2061 else 2062 num_tc_qps = vsi->alloc_queue_pairs; 2063 2064 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2065 /* Find numtc from enabled TC bitmap */ 2066 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2067 if (enabled_tc & BIT(i)) /* TC is enabled */ 2068 numtc++; 2069 } 2070 if (!numtc) { 2071 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2072 numtc = 1; 2073 } 2074 num_tc_qps = num_tc_qps / numtc; 2075 num_tc_qps = min_t(int, num_tc_qps, 2076 i40e_pf_get_max_q_per_tc(pf)); 2077 } 2078 2079 vsi->tc_config.numtc = numtc; 2080 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2081 2082 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2083 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2084 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2085 2086 /* Setup queue offset/count for all TCs for given VSI */ 2087 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2088 /* See if the given TC is enabled for the given VSI */ 2089 if (vsi->tc_config.enabled_tc & BIT(i)) { 2090 /* TC is enabled */ 2091 int pow, num_qps; 2092 2093 switch (vsi->type) { 2094 case I40E_VSI_MAIN: 2095 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2096 pf->flags) && 2097 !test_bit(I40E_FLAG_FD_ATR_ENA, 2098 pf->flags)) || 2099 vsi->tc_config.enabled_tc != 1) { 2100 qcount = min_t(int, pf->alloc_rss_size, 2101 num_tc_qps); 2102 break; 2103 } 2104 fallthrough; 2105 case I40E_VSI_FDIR: 2106 case I40E_VSI_SRIOV: 2107 case I40E_VSI_VMDQ2: 2108 default: 2109 qcount = num_tc_qps; 2110 WARN_ON(i != 0); 2111 break; 2112 } 2113 vsi->tc_config.tc_info[i].qoffset = offset; 2114 vsi->tc_config.tc_info[i].qcount = qcount; 2115 2116 /* find the next higher power-of-2 of num queue pairs */ 2117 num_qps = qcount; 2118 pow = 0; 2119 while (num_qps && (BIT_ULL(pow) < qcount)) { 2120 pow++; 2121 num_qps >>= 1; 2122 } 2123 2124 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2125 qmap = 2126 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2127 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2128 2129 offset += qcount; 2130 } else { 2131 /* TC is not enabled so set the offset to 2132 * default queue and allocate one queue 2133 * for the given TC. 2134 */ 2135 vsi->tc_config.tc_info[i].qoffset = 0; 2136 vsi->tc_config.tc_info[i].qcount = 1; 2137 vsi->tc_config.tc_info[i].netdev_tc = 0; 2138 2139 qmap = 0; 2140 } 2141 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2142 } 2143 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2144 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2145 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2146 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2147 vsi->num_queue_pairs = offset; 2148 2149 /* Scheduler section valid can only be set for ADD VSI */ 2150 if (is_add) { 2151 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2152 2153 ctxt->info.up_enable_bits = enabled_tc; 2154 } 2155 if (vsi->type == I40E_VSI_SRIOV) { 2156 ctxt->info.mapping_flags |= 2157 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2158 for (i = 0; i < vsi->num_queue_pairs; i++) 2159 ctxt->info.queue_mapping[i] = 2160 cpu_to_le16(vsi->base_queue + i); 2161 } else { 2162 ctxt->info.mapping_flags |= 2163 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2164 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2165 } 2166 ctxt->info.valid_sections |= cpu_to_le16(sections); 2167 } 2168 2169 /** 2170 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2171 * @netdev: the netdevice 2172 * @addr: address to add 2173 * 2174 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2175 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2176 */ 2177 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2178 { 2179 struct i40e_netdev_priv *np = netdev_priv(netdev); 2180 struct i40e_vsi *vsi = np->vsi; 2181 2182 if (i40e_add_mac_filter(vsi, addr)) 2183 return 0; 2184 else 2185 return -ENOMEM; 2186 } 2187 2188 /** 2189 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2190 * @netdev: the netdevice 2191 * @addr: address to add 2192 * 2193 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2194 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2195 */ 2196 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2197 { 2198 struct i40e_netdev_priv *np = netdev_priv(netdev); 2199 struct i40e_vsi *vsi = np->vsi; 2200 2201 /* Under some circumstances, we might receive a request to delete 2202 * our own device address from our uc list. Because we store the 2203 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2204 * such requests and not delete our device address from this list. 2205 */ 2206 if (ether_addr_equal(addr, netdev->dev_addr)) 2207 return 0; 2208 2209 i40e_del_mac_filter(vsi, addr); 2210 2211 return 0; 2212 } 2213 2214 /** 2215 * i40e_set_rx_mode - NDO callback to set the netdev filters 2216 * @netdev: network interface device structure 2217 **/ 2218 static void i40e_set_rx_mode(struct net_device *netdev) 2219 { 2220 struct i40e_netdev_priv *np = netdev_priv(netdev); 2221 struct i40e_vsi *vsi = np->vsi; 2222 2223 spin_lock_bh(&vsi->mac_filter_hash_lock); 2224 2225 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2226 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2227 2228 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2229 2230 /* check for other flag changes */ 2231 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2232 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2233 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2234 } 2235 } 2236 2237 /** 2238 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2239 * @vsi: Pointer to VSI struct 2240 * @from: Pointer to list which contains MAC filter entries - changes to 2241 * those entries needs to be undone. 2242 * 2243 * MAC filter entries from this list were slated for deletion. 2244 **/ 2245 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2246 struct hlist_head *from) 2247 { 2248 struct i40e_mac_filter *f; 2249 struct hlist_node *h; 2250 2251 hlist_for_each_entry_safe(f, h, from, hlist) { 2252 u64 key = i40e_addr_to_hkey(f->macaddr); 2253 2254 /* Move the element back into MAC filter list*/ 2255 hlist_del(&f->hlist); 2256 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2257 } 2258 } 2259 2260 /** 2261 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2262 * @vsi: Pointer to vsi struct 2263 * @from: Pointer to list which contains MAC filter entries - changes to 2264 * those entries needs to be undone. 2265 * 2266 * MAC filter entries from this list were slated for addition. 2267 **/ 2268 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2269 struct hlist_head *from) 2270 { 2271 struct i40e_new_mac_filter *new; 2272 struct hlist_node *h; 2273 2274 hlist_for_each_entry_safe(new, h, from, hlist) { 2275 /* We can simply free the wrapper structure */ 2276 hlist_del(&new->hlist); 2277 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2278 kfree(new); 2279 } 2280 } 2281 2282 /** 2283 * i40e_next_filter - Get the next non-broadcast filter from a list 2284 * @next: pointer to filter in list 2285 * 2286 * Returns the next non-broadcast filter in the list. Required so that we 2287 * ignore broadcast filters within the list, since these are not handled via 2288 * the normal firmware update path. 2289 */ 2290 static 2291 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2292 { 2293 hlist_for_each_entry_continue(next, hlist) { 2294 if (!is_broadcast_ether_addr(next->f->macaddr)) 2295 return next; 2296 } 2297 2298 return NULL; 2299 } 2300 2301 /** 2302 * i40e_update_filter_state - Update filter state based on return data 2303 * from firmware 2304 * @count: Number of filters added 2305 * @add_list: return data from fw 2306 * @add_head: pointer to first filter in current batch 2307 * 2308 * MAC filter entries from list were slated to be added to device. Returns 2309 * number of successful filters. Note that 0 does NOT mean success! 2310 **/ 2311 static int 2312 i40e_update_filter_state(int count, 2313 struct i40e_aqc_add_macvlan_element_data *add_list, 2314 struct i40e_new_mac_filter *add_head) 2315 { 2316 int retval = 0; 2317 int i; 2318 2319 for (i = 0; i < count; i++) { 2320 /* Always check status of each filter. We don't need to check 2321 * the firmware return status because we pre-set the filter 2322 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2323 * request to the adminq. Thus, if it no longer matches then 2324 * we know the filter is active. 2325 */ 2326 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2327 add_head->state = I40E_FILTER_FAILED; 2328 } else { 2329 add_head->state = I40E_FILTER_ACTIVE; 2330 retval++; 2331 } 2332 2333 add_head = i40e_next_filter(add_head); 2334 if (!add_head) 2335 break; 2336 } 2337 2338 return retval; 2339 } 2340 2341 /** 2342 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2343 * @vsi: ptr to the VSI 2344 * @vsi_name: name to display in messages 2345 * @list: the list of filters to send to firmware 2346 * @num_del: the number of filters to delete 2347 * @retval: Set to -EIO on failure to delete 2348 * 2349 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2350 * *retval instead of a return value so that success does not force ret_val to 2351 * be set to 0. This ensures that a sequence of calls to this function 2352 * preserve the previous value of *retval on successful delete. 2353 */ 2354 static 2355 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2356 struct i40e_aqc_remove_macvlan_element_data *list, 2357 int num_del, int *retval) 2358 { 2359 struct i40e_hw *hw = &vsi->back->hw; 2360 enum i40e_admin_queue_err aq_status; 2361 int aq_ret; 2362 2363 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2364 &aq_status); 2365 2366 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2367 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2368 *retval = -EIO; 2369 dev_info(&vsi->back->pdev->dev, 2370 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2371 vsi_name, ERR_PTR(aq_ret), 2372 i40e_aq_str(hw, aq_status)); 2373 } 2374 } 2375 2376 /** 2377 * i40e_aqc_add_filters - Request firmware to add a set of filters 2378 * @vsi: ptr to the VSI 2379 * @vsi_name: name to display in messages 2380 * @list: the list of filters to send to firmware 2381 * @add_head: Position in the add hlist 2382 * @num_add: the number of filters to add 2383 * 2384 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2385 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2386 * space for more filters. 2387 */ 2388 static 2389 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2390 struct i40e_aqc_add_macvlan_element_data *list, 2391 struct i40e_new_mac_filter *add_head, 2392 int num_add) 2393 { 2394 struct i40e_hw *hw = &vsi->back->hw; 2395 enum i40e_admin_queue_err aq_status; 2396 int fcnt; 2397 2398 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2399 fcnt = i40e_update_filter_state(num_add, list, add_head); 2400 2401 if (fcnt != num_add) { 2402 if (vsi->type == I40E_VSI_MAIN) { 2403 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2404 dev_warn(&vsi->back->pdev->dev, 2405 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2406 i40e_aq_str(hw, aq_status), vsi_name); 2407 } else if (vsi->type == I40E_VSI_SRIOV || 2408 vsi->type == I40E_VSI_VMDQ1 || 2409 vsi->type == I40E_VSI_VMDQ2) { 2410 dev_warn(&vsi->back->pdev->dev, 2411 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2412 i40e_aq_str(hw, aq_status), vsi_name, 2413 vsi_name); 2414 } else { 2415 dev_warn(&vsi->back->pdev->dev, 2416 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2417 i40e_aq_str(hw, aq_status), vsi_name, 2418 vsi->type); 2419 } 2420 } 2421 } 2422 2423 /** 2424 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2425 * @vsi: pointer to the VSI 2426 * @vsi_name: the VSI name 2427 * @f: filter data 2428 * 2429 * This function sets or clears the promiscuous broadcast flags for VLAN 2430 * filters in order to properly receive broadcast frames. Assumes that only 2431 * broadcast filters are passed. 2432 * 2433 * Returns status indicating success or failure; 2434 **/ 2435 static int 2436 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2437 struct i40e_mac_filter *f) 2438 { 2439 bool enable = f->state == I40E_FILTER_NEW; 2440 struct i40e_hw *hw = &vsi->back->hw; 2441 int aq_ret; 2442 2443 if (f->vlan == I40E_VLAN_ANY) { 2444 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2445 vsi->seid, 2446 enable, 2447 NULL); 2448 } else { 2449 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2450 vsi->seid, 2451 enable, 2452 f->vlan, 2453 NULL); 2454 } 2455 2456 if (aq_ret) { 2457 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2458 dev_warn(&vsi->back->pdev->dev, 2459 "Error %s, forcing overflow promiscuous on %s\n", 2460 i40e_aq_str(hw, hw->aq.asq_last_status), 2461 vsi_name); 2462 } 2463 2464 return aq_ret; 2465 } 2466 2467 /** 2468 * i40e_set_promiscuous - set promiscuous mode 2469 * @pf: board private structure 2470 * @promisc: promisc on or off 2471 * 2472 * There are different ways of setting promiscuous mode on a PF depending on 2473 * what state/environment we're in. This identifies and sets it appropriately. 2474 * Returns 0 on success. 2475 **/ 2476 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2477 { 2478 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 2479 struct i40e_hw *hw = &pf->hw; 2480 int aq_ret; 2481 2482 if (vsi->type == I40E_VSI_MAIN && 2483 i40e_pf_get_main_veb(pf) && 2484 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2485 /* set defport ON for Main VSI instead of true promisc 2486 * this way we will get all unicast/multicast and VLAN 2487 * promisc behavior but will not get VF or VMDq traffic 2488 * replicated on the Main VSI. 2489 */ 2490 if (promisc) 2491 aq_ret = i40e_aq_set_default_vsi(hw, 2492 vsi->seid, 2493 NULL); 2494 else 2495 aq_ret = i40e_aq_clear_default_vsi(hw, 2496 vsi->seid, 2497 NULL); 2498 if (aq_ret) { 2499 dev_info(&pf->pdev->dev, 2500 "Set default VSI failed, err %pe, aq_err %s\n", 2501 ERR_PTR(aq_ret), 2502 i40e_aq_str(hw, hw->aq.asq_last_status)); 2503 } 2504 } else { 2505 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2506 hw, 2507 vsi->seid, 2508 promisc, NULL, 2509 true); 2510 if (aq_ret) { 2511 dev_info(&pf->pdev->dev, 2512 "set unicast promisc failed, err %pe, aq_err %s\n", 2513 ERR_PTR(aq_ret), 2514 i40e_aq_str(hw, hw->aq.asq_last_status)); 2515 } 2516 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2517 hw, 2518 vsi->seid, 2519 promisc, NULL); 2520 if (aq_ret) { 2521 dev_info(&pf->pdev->dev, 2522 "set multicast promisc failed, err %pe, aq_err %s\n", 2523 ERR_PTR(aq_ret), 2524 i40e_aq_str(hw, hw->aq.asq_last_status)); 2525 } 2526 } 2527 2528 if (!aq_ret) 2529 pf->cur_promisc = promisc; 2530 2531 return aq_ret; 2532 } 2533 2534 /** 2535 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2536 * @vsi: ptr to the VSI 2537 * 2538 * Push any outstanding VSI filter changes through the AdminQ. 2539 * 2540 * Returns 0 or error value 2541 **/ 2542 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2543 { 2544 struct hlist_head tmp_add_list, tmp_del_list; 2545 struct i40e_mac_filter *f; 2546 struct i40e_new_mac_filter *new, *add_head = NULL; 2547 struct i40e_hw *hw = &vsi->back->hw; 2548 bool old_overflow, new_overflow; 2549 unsigned int failed_filters = 0; 2550 unsigned int vlan_filters = 0; 2551 char vsi_name[16] = "PF"; 2552 int filter_list_len = 0; 2553 u32 changed_flags = 0; 2554 struct hlist_node *h; 2555 struct i40e_pf *pf; 2556 int num_add = 0; 2557 int num_del = 0; 2558 int aq_ret = 0; 2559 int retval = 0; 2560 u16 cmd_flags; 2561 int list_size; 2562 int bkt; 2563 2564 /* empty array typed pointers, kcalloc later */ 2565 struct i40e_aqc_add_macvlan_element_data *add_list; 2566 struct i40e_aqc_remove_macvlan_element_data *del_list; 2567 2568 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2569 usleep_range(1000, 2000); 2570 pf = vsi->back; 2571 2572 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2573 2574 if (vsi->netdev) { 2575 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2576 vsi->current_netdev_flags = vsi->netdev->flags; 2577 } 2578 2579 INIT_HLIST_HEAD(&tmp_add_list); 2580 INIT_HLIST_HEAD(&tmp_del_list); 2581 2582 if (vsi->type == I40E_VSI_SRIOV) 2583 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2584 else if (vsi->type != I40E_VSI_MAIN) 2585 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2586 2587 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2588 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2589 2590 spin_lock_bh(&vsi->mac_filter_hash_lock); 2591 /* Create a list of filters to delete. */ 2592 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2593 if (f->state == I40E_FILTER_REMOVE) { 2594 /* Move the element into temporary del_list */ 2595 hash_del(&f->hlist); 2596 hlist_add_head(&f->hlist, &tmp_del_list); 2597 2598 /* Avoid counting removed filters */ 2599 continue; 2600 } 2601 if (f->state == I40E_FILTER_NEW) { 2602 /* Create a temporary i40e_new_mac_filter */ 2603 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2604 if (!new) 2605 goto err_no_memory_locked; 2606 2607 /* Store pointer to the real filter */ 2608 new->f = f; 2609 new->state = f->state; 2610 2611 /* Add it to the hash list */ 2612 hlist_add_head(&new->hlist, &tmp_add_list); 2613 } 2614 2615 /* Count the number of active (current and new) VLAN 2616 * filters we have now. Does not count filters which 2617 * are marked for deletion. 2618 */ 2619 if (f->vlan > 0) 2620 vlan_filters++; 2621 } 2622 2623 if (vsi->type != I40E_VSI_SRIOV) 2624 retval = i40e_correct_mac_vlan_filters 2625 (vsi, &tmp_add_list, &tmp_del_list, 2626 vlan_filters); 2627 else if (pf->vf) 2628 retval = i40e_correct_vf_mac_vlan_filters 2629 (vsi, &tmp_add_list, &tmp_del_list, 2630 vlan_filters, pf->vf[vsi->vf_id].trusted); 2631 2632 hlist_for_each_entry(new, &tmp_add_list, hlist) 2633 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2634 2635 if (retval) 2636 goto err_no_memory_locked; 2637 2638 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2639 } 2640 2641 /* Now process 'del_list' outside the lock */ 2642 if (!hlist_empty(&tmp_del_list)) { 2643 filter_list_len = hw->aq.asq_buf_size / 2644 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2645 list_size = filter_list_len * 2646 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2647 del_list = kzalloc(list_size, GFP_ATOMIC); 2648 if (!del_list) 2649 goto err_no_memory; 2650 2651 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2652 cmd_flags = 0; 2653 2654 /* handle broadcast filters by updating the broadcast 2655 * promiscuous flag and release filter list. 2656 */ 2657 if (is_broadcast_ether_addr(f->macaddr)) { 2658 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2659 2660 hlist_del(&f->hlist); 2661 kfree(f); 2662 continue; 2663 } 2664 2665 /* add to delete list */ 2666 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2667 if (f->vlan == I40E_VLAN_ANY) { 2668 del_list[num_del].vlan_tag = 0; 2669 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2670 } else { 2671 del_list[num_del].vlan_tag = 2672 cpu_to_le16((u16)(f->vlan)); 2673 } 2674 2675 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2676 del_list[num_del].flags = cmd_flags; 2677 num_del++; 2678 2679 /* flush a full buffer */ 2680 if (num_del == filter_list_len) { 2681 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2682 num_del, &retval); 2683 memset(del_list, 0, list_size); 2684 num_del = 0; 2685 } 2686 /* Release memory for MAC filter entries which were 2687 * synced up with HW. 2688 */ 2689 hlist_del(&f->hlist); 2690 kfree(f); 2691 } 2692 2693 if (num_del) { 2694 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2695 num_del, &retval); 2696 } 2697 2698 kfree(del_list); 2699 del_list = NULL; 2700 } 2701 2702 if (!hlist_empty(&tmp_add_list)) { 2703 /* Do all the adds now. */ 2704 filter_list_len = hw->aq.asq_buf_size / 2705 sizeof(struct i40e_aqc_add_macvlan_element_data); 2706 list_size = filter_list_len * 2707 sizeof(struct i40e_aqc_add_macvlan_element_data); 2708 add_list = kzalloc(list_size, GFP_ATOMIC); 2709 if (!add_list) 2710 goto err_no_memory; 2711 2712 num_add = 0; 2713 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2714 /* handle broadcast filters by updating the broadcast 2715 * promiscuous flag instead of adding a MAC filter. 2716 */ 2717 if (is_broadcast_ether_addr(new->f->macaddr)) { 2718 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2719 new->f)) 2720 new->state = I40E_FILTER_FAILED; 2721 else 2722 new->state = I40E_FILTER_ACTIVE; 2723 continue; 2724 } 2725 2726 /* add to add array */ 2727 if (num_add == 0) 2728 add_head = new; 2729 cmd_flags = 0; 2730 ether_addr_copy(add_list[num_add].mac_addr, 2731 new->f->macaddr); 2732 if (new->f->vlan == I40E_VLAN_ANY) { 2733 add_list[num_add].vlan_tag = 0; 2734 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2735 } else { 2736 add_list[num_add].vlan_tag = 2737 cpu_to_le16((u16)(new->f->vlan)); 2738 } 2739 add_list[num_add].queue_number = 0; 2740 /* set invalid match method for later detection */ 2741 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2742 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2743 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2744 num_add++; 2745 2746 /* flush a full buffer */ 2747 if (num_add == filter_list_len) { 2748 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2749 add_head, num_add); 2750 memset(add_list, 0, list_size); 2751 num_add = 0; 2752 } 2753 } 2754 if (num_add) { 2755 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2756 num_add); 2757 } 2758 /* Now move all of the filters from the temp add list back to 2759 * the VSI's list. 2760 */ 2761 spin_lock_bh(&vsi->mac_filter_hash_lock); 2762 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2763 /* Only update the state if we're still NEW */ 2764 if (new->f->state == I40E_FILTER_NEW) 2765 new->f->state = new->state; 2766 hlist_del(&new->hlist); 2767 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2768 kfree(new); 2769 } 2770 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2771 kfree(add_list); 2772 add_list = NULL; 2773 } 2774 2775 /* Determine the number of active and failed filters. */ 2776 spin_lock_bh(&vsi->mac_filter_hash_lock); 2777 vsi->active_filters = 0; 2778 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2779 if (f->state == I40E_FILTER_ACTIVE) 2780 vsi->active_filters++; 2781 else if (f->state == I40E_FILTER_FAILED) 2782 failed_filters++; 2783 } 2784 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2785 2786 /* Check if we are able to exit overflow promiscuous mode. We can 2787 * safely exit if we didn't just enter, we no longer have any failed 2788 * filters, and we have reduced filters below the threshold value. 2789 */ 2790 if (old_overflow && !failed_filters && 2791 vsi->active_filters < vsi->promisc_threshold) { 2792 dev_info(&pf->pdev->dev, 2793 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2794 vsi_name); 2795 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2796 vsi->promisc_threshold = 0; 2797 } 2798 2799 /* if the VF is not trusted do not do promisc */ 2800 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2801 !pf->vf[vsi->vf_id].trusted) { 2802 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2803 goto out; 2804 } 2805 2806 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2807 2808 /* If we are entering overflow promiscuous, we need to calculate a new 2809 * threshold for when we are safe to exit 2810 */ 2811 if (!old_overflow && new_overflow) 2812 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2813 2814 /* check for changes in promiscuous modes */ 2815 if (changed_flags & IFF_ALLMULTI) { 2816 bool cur_multipromisc; 2817 2818 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2819 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2820 vsi->seid, 2821 cur_multipromisc, 2822 NULL); 2823 if (aq_ret) { 2824 retval = i40e_aq_rc_to_posix(aq_ret, 2825 hw->aq.asq_last_status); 2826 dev_info(&pf->pdev->dev, 2827 "set multi promisc failed on %s, err %pe aq_err %s\n", 2828 vsi_name, 2829 ERR_PTR(aq_ret), 2830 i40e_aq_str(hw, hw->aq.asq_last_status)); 2831 } else { 2832 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2833 cur_multipromisc ? "entering" : "leaving"); 2834 } 2835 } 2836 2837 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2838 bool cur_promisc; 2839 2840 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2841 new_overflow); 2842 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2843 if (aq_ret) { 2844 retval = i40e_aq_rc_to_posix(aq_ret, 2845 hw->aq.asq_last_status); 2846 dev_info(&pf->pdev->dev, 2847 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2848 cur_promisc ? "on" : "off", 2849 vsi_name, 2850 ERR_PTR(aq_ret), 2851 i40e_aq_str(hw, hw->aq.asq_last_status)); 2852 } 2853 } 2854 out: 2855 /* if something went wrong then set the changed flag so we try again */ 2856 if (retval) 2857 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2858 2859 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2860 return retval; 2861 2862 err_no_memory: 2863 /* Restore elements on the temporary add and delete lists */ 2864 spin_lock_bh(&vsi->mac_filter_hash_lock); 2865 err_no_memory_locked: 2866 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2867 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2868 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2869 2870 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2871 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2872 return -ENOMEM; 2873 } 2874 2875 /** 2876 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2877 * @pf: board private structure 2878 **/ 2879 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2880 { 2881 struct i40e_vsi *vsi; 2882 int v; 2883 2884 if (!pf) 2885 return; 2886 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2887 return; 2888 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2889 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2890 return; 2891 } 2892 2893 i40e_pf_for_each_vsi(pf, v, vsi) { 2894 if ((vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2895 !test_bit(__I40E_VSI_RELEASING, vsi->state)) { 2896 int ret = i40e_sync_vsi_filters(vsi); 2897 2898 if (ret) { 2899 /* come back and try again later */ 2900 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2901 pf->state); 2902 break; 2903 } 2904 } 2905 } 2906 } 2907 2908 /** 2909 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2910 * 2911 * @vsi: VSI to calculate rx_buf_len from 2912 */ 2913 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2914 { 2915 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2916 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2917 2918 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2919 } 2920 2921 /** 2922 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2923 * @vsi: the vsi 2924 * @xdp_prog: XDP program 2925 **/ 2926 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2927 struct bpf_prog *xdp_prog) 2928 { 2929 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2930 u16 chain_len; 2931 2932 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2933 chain_len = 1; 2934 else 2935 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2936 2937 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2938 } 2939 2940 /** 2941 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2942 * @netdev: network interface device structure 2943 * @new_mtu: new value for maximum frame size 2944 * 2945 * Returns 0 on success, negative on failure 2946 **/ 2947 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2948 { 2949 struct i40e_netdev_priv *np = netdev_priv(netdev); 2950 struct i40e_vsi *vsi = np->vsi; 2951 struct i40e_pf *pf = vsi->back; 2952 int frame_size; 2953 2954 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2955 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2956 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2957 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2958 return -EINVAL; 2959 } 2960 2961 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2962 netdev->mtu, new_mtu); 2963 WRITE_ONCE(netdev->mtu, new_mtu); 2964 if (netif_running(netdev)) 2965 i40e_vsi_reinit_locked(vsi); 2966 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2967 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2968 return 0; 2969 } 2970 2971 /** 2972 * i40e_ioctl - Access the hwtstamp interface 2973 * @netdev: network interface device structure 2974 * @ifr: interface request data 2975 * @cmd: ioctl command 2976 **/ 2977 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2978 { 2979 struct i40e_netdev_priv *np = netdev_priv(netdev); 2980 struct i40e_pf *pf = np->vsi->back; 2981 2982 switch (cmd) { 2983 case SIOCGHWTSTAMP: 2984 return i40e_ptp_get_ts_config(pf, ifr); 2985 case SIOCSHWTSTAMP: 2986 return i40e_ptp_set_ts_config(pf, ifr); 2987 default: 2988 return -EOPNOTSUPP; 2989 } 2990 } 2991 2992 /** 2993 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2994 * @vsi: the vsi being adjusted 2995 **/ 2996 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2997 { 2998 struct i40e_vsi_context ctxt; 2999 int ret; 3000 3001 /* Don't modify stripping options if a port VLAN is active */ 3002 if (vsi->info.pvid) 3003 return; 3004 3005 if ((vsi->info.valid_sections & 3006 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3007 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 3008 return; /* already enabled */ 3009 3010 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3011 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3012 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 3013 3014 ctxt.seid = vsi->seid; 3015 ctxt.info = vsi->info; 3016 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3017 if (ret) { 3018 dev_info(&vsi->back->pdev->dev, 3019 "update vlan stripping failed, err %pe aq_err %s\n", 3020 ERR_PTR(ret), 3021 i40e_aq_str(&vsi->back->hw, 3022 vsi->back->hw.aq.asq_last_status)); 3023 } 3024 } 3025 3026 /** 3027 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 3028 * @vsi: the vsi being adjusted 3029 **/ 3030 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 3031 { 3032 struct i40e_vsi_context ctxt; 3033 int ret; 3034 3035 /* Don't modify stripping options if a port VLAN is active */ 3036 if (vsi->info.pvid) 3037 return; 3038 3039 if ((vsi->info.valid_sections & 3040 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3041 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3042 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3043 return; /* already disabled */ 3044 3045 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3046 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3047 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3048 3049 ctxt.seid = vsi->seid; 3050 ctxt.info = vsi->info; 3051 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3052 if (ret) { 3053 dev_info(&vsi->back->pdev->dev, 3054 "update vlan stripping failed, err %pe aq_err %s\n", 3055 ERR_PTR(ret), 3056 i40e_aq_str(&vsi->back->hw, 3057 vsi->back->hw.aq.asq_last_status)); 3058 } 3059 } 3060 3061 /** 3062 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3063 * @vsi: the vsi being configured 3064 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3065 * 3066 * This is a helper function for adding a new MAC/VLAN filter with the 3067 * specified VLAN for each existing MAC address already in the hash table. 3068 * This function does *not* perform any accounting to update filters based on 3069 * VLAN mode. 3070 * 3071 * NOTE: this function expects to be called while under the 3072 * mac_filter_hash_lock 3073 **/ 3074 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3075 { 3076 struct i40e_mac_filter *f, *add_f; 3077 struct hlist_node *h; 3078 int bkt; 3079 3080 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3081 /* If we're asked to add a filter that has been marked for 3082 * removal, it is safe to simply restore it to active state. 3083 * __i40e_del_filter will have simply deleted any filters which 3084 * were previously marked NEW or FAILED, so if it is currently 3085 * marked REMOVE it must have previously been ACTIVE. Since we 3086 * haven't yet run the sync filters task, just restore this 3087 * filter to the ACTIVE state so that the sync task leaves it 3088 * in place. 3089 */ 3090 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3091 f->state = I40E_FILTER_ACTIVE; 3092 continue; 3093 } else if (f->state == I40E_FILTER_REMOVE) { 3094 continue; 3095 } 3096 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3097 if (!add_f) { 3098 dev_info(&vsi->back->pdev->dev, 3099 "Could not add vlan filter %d for %pM\n", 3100 vid, f->macaddr); 3101 return -ENOMEM; 3102 } 3103 } 3104 3105 return 0; 3106 } 3107 3108 /** 3109 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3110 * @vsi: the VSI being configured 3111 * @vid: VLAN id to be added 3112 **/ 3113 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3114 { 3115 int err; 3116 3117 if (vsi->info.pvid) 3118 return -EINVAL; 3119 3120 /* The network stack will attempt to add VID=0, with the intention to 3121 * receive priority tagged packets with a VLAN of 0. Our HW receives 3122 * these packets by default when configured to receive untagged 3123 * packets, so we don't need to add a filter for this case. 3124 * Additionally, HW interprets adding a VID=0 filter as meaning to 3125 * receive *only* tagged traffic and stops receiving untagged traffic. 3126 * Thus, we do not want to actually add a filter for VID=0 3127 */ 3128 if (!vid) 3129 return 0; 3130 3131 /* Locked once because all functions invoked below iterates list*/ 3132 spin_lock_bh(&vsi->mac_filter_hash_lock); 3133 err = i40e_add_vlan_all_mac(vsi, vid); 3134 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3135 if (err) 3136 return err; 3137 3138 /* schedule our worker thread which will take care of 3139 * applying the new filter changes 3140 */ 3141 i40e_service_event_schedule(vsi->back); 3142 return 0; 3143 } 3144 3145 /** 3146 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3147 * @vsi: the vsi being configured 3148 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3149 * 3150 * This function should be used to remove all VLAN filters which match the 3151 * given VID. It does not schedule the service event and does not take the 3152 * mac_filter_hash_lock so it may be combined with other operations under 3153 * a single invocation of the mac_filter_hash_lock. 3154 * 3155 * NOTE: this function expects to be called while under the 3156 * mac_filter_hash_lock 3157 */ 3158 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3159 { 3160 struct i40e_mac_filter *f; 3161 struct hlist_node *h; 3162 int bkt; 3163 3164 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3165 if (f->vlan == vid) 3166 __i40e_del_filter(vsi, f); 3167 } 3168 } 3169 3170 /** 3171 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3172 * @vsi: the VSI being configured 3173 * @vid: VLAN id to be removed 3174 **/ 3175 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3176 { 3177 if (!vid || vsi->info.pvid) 3178 return; 3179 3180 spin_lock_bh(&vsi->mac_filter_hash_lock); 3181 i40e_rm_vlan_all_mac(vsi, vid); 3182 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3183 3184 /* schedule our worker thread which will take care of 3185 * applying the new filter changes 3186 */ 3187 i40e_service_event_schedule(vsi->back); 3188 } 3189 3190 /** 3191 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3192 * @netdev: network interface to be adjusted 3193 * @proto: unused protocol value 3194 * @vid: vlan id to be added 3195 * 3196 * net_device_ops implementation for adding vlan ids 3197 **/ 3198 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3199 __always_unused __be16 proto, u16 vid) 3200 { 3201 struct i40e_netdev_priv *np = netdev_priv(netdev); 3202 struct i40e_vsi *vsi = np->vsi; 3203 int ret = 0; 3204 3205 if (vid >= VLAN_N_VID) 3206 return -EINVAL; 3207 3208 ret = i40e_vsi_add_vlan(vsi, vid); 3209 if (!ret) 3210 set_bit(vid, vsi->active_vlans); 3211 3212 return ret; 3213 } 3214 3215 /** 3216 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3217 * @netdev: network interface to be adjusted 3218 * @proto: unused protocol value 3219 * @vid: vlan id to be added 3220 **/ 3221 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3222 __always_unused __be16 proto, u16 vid) 3223 { 3224 struct i40e_netdev_priv *np = netdev_priv(netdev); 3225 struct i40e_vsi *vsi = np->vsi; 3226 3227 if (vid >= VLAN_N_VID) 3228 return; 3229 set_bit(vid, vsi->active_vlans); 3230 } 3231 3232 /** 3233 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3234 * @netdev: network interface to be adjusted 3235 * @proto: unused protocol value 3236 * @vid: vlan id to be removed 3237 * 3238 * net_device_ops implementation for removing vlan ids 3239 **/ 3240 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3241 __always_unused __be16 proto, u16 vid) 3242 { 3243 struct i40e_netdev_priv *np = netdev_priv(netdev); 3244 struct i40e_vsi *vsi = np->vsi; 3245 3246 /* return code is ignored as there is nothing a user 3247 * can do about failure to remove and a log message was 3248 * already printed from the other function 3249 */ 3250 i40e_vsi_kill_vlan(vsi, vid); 3251 3252 clear_bit(vid, vsi->active_vlans); 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3259 * @vsi: the vsi being brought back up 3260 **/ 3261 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3262 { 3263 u16 vid; 3264 3265 if (!vsi->netdev) 3266 return; 3267 3268 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3269 i40e_vlan_stripping_enable(vsi); 3270 else 3271 i40e_vlan_stripping_disable(vsi); 3272 3273 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3274 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3275 vid); 3276 } 3277 3278 /** 3279 * i40e_vsi_add_pvid - Add pvid for the VSI 3280 * @vsi: the vsi being adjusted 3281 * @vid: the vlan id to set as a PVID 3282 **/ 3283 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3284 { 3285 struct i40e_vsi_context ctxt; 3286 int ret; 3287 3288 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3289 vsi->info.pvid = cpu_to_le16(vid); 3290 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3291 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3292 I40E_AQ_VSI_PVLAN_EMOD_STR; 3293 3294 ctxt.seid = vsi->seid; 3295 ctxt.info = vsi->info; 3296 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3297 if (ret) { 3298 dev_info(&vsi->back->pdev->dev, 3299 "add pvid failed, err %pe aq_err %s\n", 3300 ERR_PTR(ret), 3301 i40e_aq_str(&vsi->back->hw, 3302 vsi->back->hw.aq.asq_last_status)); 3303 return -ENOENT; 3304 } 3305 3306 return 0; 3307 } 3308 3309 /** 3310 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3311 * @vsi: the vsi being adjusted 3312 * 3313 * Just use the vlan_rx_register() service to put it back to normal 3314 **/ 3315 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3316 { 3317 vsi->info.pvid = 0; 3318 3319 i40e_vlan_stripping_disable(vsi); 3320 } 3321 3322 /** 3323 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3324 * @vsi: ptr to the VSI 3325 * 3326 * If this function returns with an error, then it's possible one or 3327 * more of the rings is populated (while the rest are not). It is the 3328 * callers duty to clean those orphaned rings. 3329 * 3330 * Return 0 on success, negative on failure 3331 **/ 3332 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3333 { 3334 int i, err = 0; 3335 3336 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3337 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3338 3339 if (!i40e_enabled_xdp_vsi(vsi)) 3340 return err; 3341 3342 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3343 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3344 3345 return err; 3346 } 3347 3348 /** 3349 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3350 * @vsi: ptr to the VSI 3351 * 3352 * Free VSI's transmit software resources 3353 **/ 3354 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3355 { 3356 int i; 3357 3358 if (vsi->tx_rings) { 3359 for (i = 0; i < vsi->num_queue_pairs; i++) 3360 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3361 i40e_free_tx_resources(vsi->tx_rings[i]); 3362 } 3363 3364 if (vsi->xdp_rings) { 3365 for (i = 0; i < vsi->num_queue_pairs; i++) 3366 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3367 i40e_free_tx_resources(vsi->xdp_rings[i]); 3368 } 3369 } 3370 3371 /** 3372 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3373 * @vsi: ptr to the VSI 3374 * 3375 * If this function returns with an error, then it's possible one or 3376 * more of the rings is populated (while the rest are not). It is the 3377 * callers duty to clean those orphaned rings. 3378 * 3379 * Return 0 on success, negative on failure 3380 **/ 3381 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3382 { 3383 int i, err = 0; 3384 3385 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3386 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3387 return err; 3388 } 3389 3390 /** 3391 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3392 * @vsi: ptr to the VSI 3393 * 3394 * Free all receive software resources 3395 **/ 3396 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3397 { 3398 int i; 3399 3400 if (!vsi->rx_rings) 3401 return; 3402 3403 for (i = 0; i < vsi->num_queue_pairs; i++) 3404 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3405 i40e_free_rx_resources(vsi->rx_rings[i]); 3406 } 3407 3408 /** 3409 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3410 * @ring: The Tx ring to configure 3411 * 3412 * This enables/disables XPS for a given Tx descriptor ring 3413 * based on the TCs enabled for the VSI that ring belongs to. 3414 **/ 3415 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3416 { 3417 int cpu; 3418 3419 if (!ring->q_vector || !ring->netdev || ring->ch) 3420 return; 3421 3422 /* We only initialize XPS once, so as not to overwrite user settings */ 3423 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3424 return; 3425 3426 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3427 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3428 ring->queue_index); 3429 } 3430 3431 /** 3432 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3433 * @ring: The Tx or Rx ring 3434 * 3435 * Returns the AF_XDP buffer pool or NULL. 3436 **/ 3437 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3438 { 3439 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3440 int qid = ring->queue_index; 3441 3442 if (ring_is_xdp(ring)) 3443 qid -= ring->vsi->alloc_queue_pairs; 3444 3445 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3446 return NULL; 3447 3448 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3449 } 3450 3451 /** 3452 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3453 * @ring: The Tx ring to configure 3454 * 3455 * Configure the Tx descriptor ring in the HMC context. 3456 **/ 3457 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3458 { 3459 struct i40e_vsi *vsi = ring->vsi; 3460 u16 pf_q = vsi->base_queue + ring->queue_index; 3461 struct i40e_hw *hw = &vsi->back->hw; 3462 struct i40e_hmc_obj_txq tx_ctx; 3463 u32 qtx_ctl = 0; 3464 int err = 0; 3465 3466 if (ring_is_xdp(ring)) 3467 ring->xsk_pool = i40e_xsk_pool(ring); 3468 3469 /* some ATR related tx ring init */ 3470 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3471 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3472 ring->atr_count = 0; 3473 } else { 3474 ring->atr_sample_rate = 0; 3475 } 3476 3477 /* configure XPS */ 3478 i40e_config_xps_tx_ring(ring); 3479 3480 /* clear the context structure first */ 3481 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3482 3483 tx_ctx.new_context = 1; 3484 tx_ctx.base = (ring->dma / 128); 3485 tx_ctx.qlen = ring->count; 3486 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3487 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3488 tx_ctx.fd_ena = 1; 3489 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3490 tx_ctx.timesync_ena = 1; 3491 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3492 if (vsi->type != I40E_VSI_FDIR) 3493 tx_ctx.head_wb_ena = 1; 3494 tx_ctx.head_wb_addr = ring->dma + 3495 (ring->count * sizeof(struct i40e_tx_desc)); 3496 3497 /* As part of VSI creation/update, FW allocates certain 3498 * Tx arbitration queue sets for each TC enabled for 3499 * the VSI. The FW returns the handles to these queue 3500 * sets as part of the response buffer to Add VSI, 3501 * Update VSI, etc. AQ commands. It is expected that 3502 * these queue set handles be associated with the Tx 3503 * queues by the driver as part of the TX queue context 3504 * initialization. This has to be done regardless of 3505 * DCB as by default everything is mapped to TC0. 3506 */ 3507 3508 if (ring->ch) 3509 tx_ctx.rdylist = 3510 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3511 3512 else 3513 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3514 3515 tx_ctx.rdylist_act = 0; 3516 3517 /* clear the context in the HMC */ 3518 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3519 if (err) { 3520 dev_info(&vsi->back->pdev->dev, 3521 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3522 ring->queue_index, pf_q, err); 3523 return -ENOMEM; 3524 } 3525 3526 /* set the context in the HMC */ 3527 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3528 if (err) { 3529 dev_info(&vsi->back->pdev->dev, 3530 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3531 ring->queue_index, pf_q, err); 3532 return -ENOMEM; 3533 } 3534 3535 /* Now associate this queue with this PCI function */ 3536 if (ring->ch) { 3537 if (ring->ch->type == I40E_VSI_VMDQ2) 3538 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3539 else 3540 return -EINVAL; 3541 3542 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3543 ring->ch->vsi_number); 3544 } else { 3545 if (vsi->type == I40E_VSI_VMDQ2) { 3546 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3547 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3548 vsi->id); 3549 } else { 3550 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3551 } 3552 } 3553 3554 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id); 3555 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3556 i40e_flush(hw); 3557 3558 /* cache tail off for easier writes later */ 3559 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3560 3561 return 0; 3562 } 3563 3564 /** 3565 * i40e_rx_offset - Return expected offset into page to access data 3566 * @rx_ring: Ring we are requesting offset of 3567 * 3568 * Returns the offset value for ring into the data buffer. 3569 */ 3570 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3571 { 3572 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3573 } 3574 3575 /** 3576 * i40e_configure_rx_ring - Configure a receive ring context 3577 * @ring: The Rx ring to configure 3578 * 3579 * Configure the Rx descriptor ring in the HMC context. 3580 **/ 3581 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3582 { 3583 struct i40e_vsi *vsi = ring->vsi; 3584 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3585 u16 pf_q = vsi->base_queue + ring->queue_index; 3586 struct i40e_hw *hw = &vsi->back->hw; 3587 struct i40e_hmc_obj_rxq rx_ctx; 3588 int err = 0; 3589 bool ok; 3590 3591 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3592 3593 /* clear the context structure first */ 3594 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3595 3596 ring->rx_buf_len = vsi->rx_buf_len; 3597 3598 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 3599 if (ring->vsi->type != I40E_VSI_MAIN) 3600 goto skip; 3601 3602 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 3603 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3604 ring->queue_index, 3605 ring->q_vector->napi.napi_id, 3606 ring->rx_buf_len); 3607 if (err) 3608 return err; 3609 } 3610 3611 ring->xsk_pool = i40e_xsk_pool(ring); 3612 if (ring->xsk_pool) { 3613 xdp_rxq_info_unreg(&ring->xdp_rxq); 3614 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool); 3615 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3616 ring->queue_index, 3617 ring->q_vector->napi.napi_id, 3618 ring->rx_buf_len); 3619 if (err) 3620 return err; 3621 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3622 MEM_TYPE_XSK_BUFF_POOL, 3623 NULL); 3624 if (err) 3625 return err; 3626 dev_info(&vsi->back->pdev->dev, 3627 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3628 ring->queue_index); 3629 3630 } else { 3631 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3632 MEM_TYPE_PAGE_SHARED, 3633 NULL); 3634 if (err) 3635 return err; 3636 } 3637 3638 skip: 3639 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3640 3641 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3642 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3643 3644 rx_ctx.base = (ring->dma / 128); 3645 rx_ctx.qlen = ring->count; 3646 3647 /* use 16 byte descriptors */ 3648 rx_ctx.dsize = 0; 3649 3650 /* descriptor type is always zero 3651 * rx_ctx.dtype = 0; 3652 */ 3653 rx_ctx.hsplit_0 = 0; 3654 3655 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3656 if (hw->revision_id == 0) 3657 rx_ctx.lrxqthresh = 0; 3658 else 3659 rx_ctx.lrxqthresh = 1; 3660 rx_ctx.crcstrip = 1; 3661 rx_ctx.l2tsel = 1; 3662 /* this controls whether VLAN is stripped from inner headers */ 3663 rx_ctx.showiv = 0; 3664 /* set the prefena field to 1 because the manual says to */ 3665 rx_ctx.prefena = 1; 3666 3667 /* clear the context in the HMC */ 3668 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3669 if (err) { 3670 dev_info(&vsi->back->pdev->dev, 3671 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3672 ring->queue_index, pf_q, err); 3673 return -ENOMEM; 3674 } 3675 3676 /* set the context in the HMC */ 3677 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3678 if (err) { 3679 dev_info(&vsi->back->pdev->dev, 3680 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3681 ring->queue_index, pf_q, err); 3682 return -ENOMEM; 3683 } 3684 3685 /* configure Rx buffer alignment */ 3686 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3687 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3688 dev_info(&vsi->back->pdev->dev, 3689 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3690 return -EOPNOTSUPP; 3691 } 3692 clear_ring_build_skb_enabled(ring); 3693 } else { 3694 set_ring_build_skb_enabled(ring); 3695 } 3696 3697 ring->rx_offset = i40e_rx_offset(ring); 3698 3699 /* cache tail for quicker writes, and clear the reg before use */ 3700 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3701 writel(0, ring->tail); 3702 3703 if (ring->xsk_pool) { 3704 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3705 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3706 } else { 3707 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3708 } 3709 if (!ok) { 3710 /* Log this in case the user has forgotten to give the kernel 3711 * any buffers, even later in the application. 3712 */ 3713 dev_info(&vsi->back->pdev->dev, 3714 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3715 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3716 ring->queue_index, pf_q); 3717 } 3718 3719 return 0; 3720 } 3721 3722 /** 3723 * i40e_vsi_configure_tx - Configure the VSI for Tx 3724 * @vsi: VSI structure describing this set of rings and resources 3725 * 3726 * Configure the Tx VSI for operation. 3727 **/ 3728 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3729 { 3730 int err = 0; 3731 u16 i; 3732 3733 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3734 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3735 3736 if (err || !i40e_enabled_xdp_vsi(vsi)) 3737 return err; 3738 3739 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3740 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3741 3742 return err; 3743 } 3744 3745 /** 3746 * i40e_vsi_configure_rx - Configure the VSI for Rx 3747 * @vsi: the VSI being configured 3748 * 3749 * Configure the Rx VSI for operation. 3750 **/ 3751 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3752 { 3753 int err = 0; 3754 u16 i; 3755 3756 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3757 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3758 3759 #if (PAGE_SIZE < 8192) 3760 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3761 vsi->netdev->mtu <= ETH_DATA_LEN) { 3762 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3763 vsi->max_frame = vsi->rx_buf_len; 3764 } 3765 #endif 3766 3767 /* set up individual rings */ 3768 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3769 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3770 3771 return err; 3772 } 3773 3774 /** 3775 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3776 * @vsi: ptr to the VSI 3777 **/ 3778 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3779 { 3780 struct i40e_ring *tx_ring, *rx_ring; 3781 u16 qoffset, qcount; 3782 int i, n; 3783 3784 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3785 /* Reset the TC information */ 3786 for (i = 0; i < vsi->num_queue_pairs; i++) { 3787 rx_ring = vsi->rx_rings[i]; 3788 tx_ring = vsi->tx_rings[i]; 3789 rx_ring->dcb_tc = 0; 3790 tx_ring->dcb_tc = 0; 3791 } 3792 return; 3793 } 3794 3795 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3796 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3797 continue; 3798 3799 qoffset = vsi->tc_config.tc_info[n].qoffset; 3800 qcount = vsi->tc_config.tc_info[n].qcount; 3801 for (i = qoffset; i < (qoffset + qcount); i++) { 3802 rx_ring = vsi->rx_rings[i]; 3803 tx_ring = vsi->tx_rings[i]; 3804 rx_ring->dcb_tc = n; 3805 tx_ring->dcb_tc = n; 3806 } 3807 } 3808 } 3809 3810 /** 3811 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3812 * @vsi: ptr to the VSI 3813 **/ 3814 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3815 { 3816 if (vsi->netdev) 3817 i40e_set_rx_mode(vsi->netdev); 3818 } 3819 3820 /** 3821 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3822 * @pf: Pointer to the targeted PF 3823 * 3824 * Set all flow director counters to 0. 3825 */ 3826 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3827 { 3828 pf->fd_tcp4_filter_cnt = 0; 3829 pf->fd_udp4_filter_cnt = 0; 3830 pf->fd_sctp4_filter_cnt = 0; 3831 pf->fd_ip4_filter_cnt = 0; 3832 pf->fd_tcp6_filter_cnt = 0; 3833 pf->fd_udp6_filter_cnt = 0; 3834 pf->fd_sctp6_filter_cnt = 0; 3835 pf->fd_ip6_filter_cnt = 0; 3836 } 3837 3838 /** 3839 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3840 * @vsi: Pointer to the targeted VSI 3841 * 3842 * This function replays the hlist on the hw where all the SB Flow Director 3843 * filters were saved. 3844 **/ 3845 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3846 { 3847 struct i40e_fdir_filter *filter; 3848 struct i40e_pf *pf = vsi->back; 3849 struct hlist_node *node; 3850 3851 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3852 return; 3853 3854 /* Reset FDir counters as we're replaying all existing filters */ 3855 i40e_reset_fdir_filter_cnt(pf); 3856 3857 hlist_for_each_entry_safe(filter, node, 3858 &pf->fdir_filter_list, fdir_node) { 3859 i40e_add_del_fdir(vsi, filter, true); 3860 } 3861 } 3862 3863 /** 3864 * i40e_vsi_configure - Set up the VSI for action 3865 * @vsi: the VSI being configured 3866 **/ 3867 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3868 { 3869 int err; 3870 3871 i40e_set_vsi_rx_mode(vsi); 3872 i40e_restore_vlan(vsi); 3873 i40e_vsi_config_dcb_rings(vsi); 3874 err = i40e_vsi_configure_tx(vsi); 3875 if (!err) 3876 err = i40e_vsi_configure_rx(vsi); 3877 3878 return err; 3879 } 3880 3881 /** 3882 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3883 * @vsi: the VSI being configured 3884 **/ 3885 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3886 { 3887 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3888 struct i40e_pf *pf = vsi->back; 3889 struct i40e_hw *hw = &pf->hw; 3890 u16 vector; 3891 int i, q; 3892 u32 qp; 3893 3894 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3895 * and PFINT_LNKLSTn registers, e.g.: 3896 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3897 */ 3898 qp = vsi->base_queue; 3899 vector = vsi->base_vector; 3900 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3901 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3902 3903 q_vector->rx.next_update = jiffies + 1; 3904 q_vector->rx.target_itr = 3905 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3906 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3907 q_vector->rx.target_itr >> 1); 3908 q_vector->rx.current_itr = q_vector->rx.target_itr; 3909 3910 q_vector->tx.next_update = jiffies + 1; 3911 q_vector->tx.target_itr = 3912 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3913 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3914 q_vector->tx.target_itr >> 1); 3915 q_vector->tx.current_itr = q_vector->tx.target_itr; 3916 3917 /* Set ITR for software interrupts triggered after exiting 3918 * busy-loop polling. 3919 */ 3920 wr32(hw, I40E_PFINT_ITRN(I40E_SW_ITR, vector - 1), 3921 I40E_ITR_20K); 3922 3923 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3924 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3925 3926 /* begin of linked list for RX queue assigned to this vector */ 3927 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3928 for (q = 0; q < q_vector->num_ringpairs; q++) { 3929 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3930 u32 val; 3931 3932 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3933 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3934 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3935 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3936 (I40E_QUEUE_TYPE_TX << 3937 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3938 3939 wr32(hw, I40E_QINT_RQCTL(qp), val); 3940 3941 if (has_xdp) { 3942 /* TX queue with next queue set to TX */ 3943 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3944 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3945 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3946 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3947 (I40E_QUEUE_TYPE_TX << 3948 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3949 3950 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3951 } 3952 /* TX queue with next RX or end of linked list */ 3953 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3954 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3955 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3956 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3957 (I40E_QUEUE_TYPE_RX << 3958 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3959 3960 /* Terminate the linked list */ 3961 if (q == (q_vector->num_ringpairs - 1)) 3962 val |= (I40E_QUEUE_END_OF_LIST << 3963 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3964 3965 wr32(hw, I40E_QINT_TQCTL(qp), val); 3966 qp++; 3967 } 3968 } 3969 3970 i40e_flush(hw); 3971 } 3972 3973 /** 3974 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3975 * @pf: pointer to private device data structure 3976 **/ 3977 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3978 { 3979 struct i40e_hw *hw = &pf->hw; 3980 u32 val; 3981 3982 /* clear things first */ 3983 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3984 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3985 3986 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3987 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3988 I40E_PFINT_ICR0_ENA_GRST_MASK | 3989 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3990 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3991 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3992 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3993 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3994 3995 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 3996 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3997 3998 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3999 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4000 4001 wr32(hw, I40E_PFINT_ICR0_ENA, val); 4002 4003 /* SW_ITR_IDX = 0, but don't change INTENA */ 4004 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 4005 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 4006 4007 /* OTHER_ITR_IDX = 0 */ 4008 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 4009 } 4010 4011 /** 4012 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 4013 * @vsi: the VSI being configured 4014 **/ 4015 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 4016 { 4017 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 4018 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4019 struct i40e_pf *pf = vsi->back; 4020 struct i40e_hw *hw = &pf->hw; 4021 4022 /* set the ITR configuration */ 4023 q_vector->rx.next_update = jiffies + 1; 4024 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 4025 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 4026 q_vector->rx.current_itr = q_vector->rx.target_itr; 4027 q_vector->tx.next_update = jiffies + 1; 4028 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 4029 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 4030 q_vector->tx.current_itr = q_vector->tx.target_itr; 4031 4032 i40e_enable_misc_int_causes(pf); 4033 4034 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4035 wr32(hw, I40E_PFINT_LNKLST0, 0); 4036 4037 /* Associate the queue pair to the vector and enable the queue 4038 * interrupt RX queue in linked list with next queue set to TX 4039 */ 4040 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4041 4042 if (i40e_enabled_xdp_vsi(vsi)) { 4043 /* TX queue in linked list with next queue set to TX */ 4044 wr32(hw, I40E_QINT_TQCTL(nextqp), 4045 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4046 } 4047 4048 /* last TX queue so the next RX queue doesn't matter */ 4049 wr32(hw, I40E_QINT_TQCTL(0), 4050 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4051 i40e_flush(hw); 4052 } 4053 4054 /** 4055 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4056 * @pf: board private structure 4057 **/ 4058 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4059 { 4060 struct i40e_hw *hw = &pf->hw; 4061 4062 wr32(hw, I40E_PFINT_DYN_CTL0, 4063 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4064 i40e_flush(hw); 4065 } 4066 4067 /** 4068 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4069 * @pf: board private structure 4070 **/ 4071 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4072 { 4073 struct i40e_hw *hw = &pf->hw; 4074 u32 val; 4075 4076 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4077 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4078 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4079 4080 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4081 i40e_flush(hw); 4082 } 4083 4084 /** 4085 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4086 * @irq: interrupt number 4087 * @data: pointer to a q_vector 4088 **/ 4089 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4090 { 4091 struct i40e_q_vector *q_vector = data; 4092 4093 if (!q_vector->tx.ring && !q_vector->rx.ring) 4094 return IRQ_HANDLED; 4095 4096 napi_schedule_irqoff(&q_vector->napi); 4097 4098 return IRQ_HANDLED; 4099 } 4100 4101 /** 4102 * i40e_irq_affinity_notify - Callback for affinity changes 4103 * @notify: context as to what irq was changed 4104 * @mask: the new affinity mask 4105 * 4106 * This is a callback function used by the irq_set_affinity_notifier function 4107 * so that we may register to receive changes to the irq affinity masks. 4108 **/ 4109 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4110 const cpumask_t *mask) 4111 { 4112 struct i40e_q_vector *q_vector = 4113 container_of(notify, struct i40e_q_vector, affinity_notify); 4114 4115 cpumask_copy(&q_vector->affinity_mask, mask); 4116 } 4117 4118 /** 4119 * i40e_irq_affinity_release - Callback for affinity notifier release 4120 * @ref: internal core kernel usage 4121 * 4122 * This is a callback function used by the irq_set_affinity_notifier function 4123 * to inform the current notification subscriber that they will no longer 4124 * receive notifications. 4125 **/ 4126 static void i40e_irq_affinity_release(struct kref *ref) {} 4127 4128 /** 4129 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4130 * @vsi: the VSI being configured 4131 * @basename: name for the vector 4132 * 4133 * Allocates MSI-X vectors and requests interrupts from the kernel. 4134 **/ 4135 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4136 { 4137 int q_vectors = vsi->num_q_vectors; 4138 struct i40e_pf *pf = vsi->back; 4139 int base = vsi->base_vector; 4140 int rx_int_idx = 0; 4141 int tx_int_idx = 0; 4142 int vector, err; 4143 int irq_num; 4144 int cpu; 4145 4146 for (vector = 0; vector < q_vectors; vector++) { 4147 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4148 4149 irq_num = pf->msix_entries[base + vector].vector; 4150 4151 if (q_vector->tx.ring && q_vector->rx.ring) { 4152 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4153 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4154 tx_int_idx++; 4155 } else if (q_vector->rx.ring) { 4156 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4157 "%s-%s-%d", basename, "rx", rx_int_idx++); 4158 } else if (q_vector->tx.ring) { 4159 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4160 "%s-%s-%d", basename, "tx", tx_int_idx++); 4161 } else { 4162 /* skip this unused q_vector */ 4163 continue; 4164 } 4165 err = request_irq(irq_num, 4166 vsi->irq_handler, 4167 0, 4168 q_vector->name, 4169 q_vector); 4170 if (err) { 4171 dev_info(&pf->pdev->dev, 4172 "MSIX request_irq failed, error: %d\n", err); 4173 goto free_queue_irqs; 4174 } 4175 4176 /* register for affinity change notifications */ 4177 q_vector->irq_num = irq_num; 4178 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4179 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4180 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4181 /* Spread affinity hints out across online CPUs. 4182 * 4183 * get_cpu_mask returns a static constant mask with 4184 * a permanent lifetime so it's ok to pass to 4185 * irq_update_affinity_hint without making a copy. 4186 */ 4187 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4188 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4189 } 4190 4191 vsi->irqs_ready = true; 4192 return 0; 4193 4194 free_queue_irqs: 4195 while (vector) { 4196 vector--; 4197 irq_num = pf->msix_entries[base + vector].vector; 4198 irq_set_affinity_notifier(irq_num, NULL); 4199 irq_update_affinity_hint(irq_num, NULL); 4200 free_irq(irq_num, &vsi->q_vectors[vector]); 4201 } 4202 return err; 4203 } 4204 4205 /** 4206 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4207 * @vsi: the VSI being un-configured 4208 **/ 4209 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4210 { 4211 struct i40e_pf *pf = vsi->back; 4212 struct i40e_hw *hw = &pf->hw; 4213 int base = vsi->base_vector; 4214 int i; 4215 4216 /* disable interrupt causation from each queue */ 4217 for (i = 0; i < vsi->num_queue_pairs; i++) { 4218 u32 val; 4219 4220 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4221 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4222 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4223 4224 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4225 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4226 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4227 4228 if (!i40e_enabled_xdp_vsi(vsi)) 4229 continue; 4230 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4231 } 4232 4233 /* disable each interrupt */ 4234 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4235 for (i = vsi->base_vector; 4236 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4237 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4238 4239 i40e_flush(hw); 4240 for (i = 0; i < vsi->num_q_vectors; i++) 4241 synchronize_irq(pf->msix_entries[i + base].vector); 4242 } else { 4243 /* Legacy and MSI mode - this stops all interrupt handling */ 4244 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4245 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4246 i40e_flush(hw); 4247 synchronize_irq(pf->pdev->irq); 4248 } 4249 } 4250 4251 /** 4252 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4253 * @vsi: the VSI being configured 4254 **/ 4255 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4256 { 4257 struct i40e_pf *pf = vsi->back; 4258 int i; 4259 4260 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4261 for (i = 0; i < vsi->num_q_vectors; i++) 4262 i40e_irq_dynamic_enable(vsi, i); 4263 } else { 4264 i40e_irq_dynamic_enable_icr0(pf); 4265 } 4266 4267 i40e_flush(&pf->hw); 4268 return 0; 4269 } 4270 4271 /** 4272 * i40e_free_misc_vector - Free the vector that handles non-queue events 4273 * @pf: board private structure 4274 **/ 4275 static void i40e_free_misc_vector(struct i40e_pf *pf) 4276 { 4277 /* Disable ICR 0 */ 4278 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4279 i40e_flush(&pf->hw); 4280 4281 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4282 free_irq(pf->msix_entries[0].vector, pf); 4283 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4284 } 4285 } 4286 4287 /** 4288 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4289 * @irq: interrupt number 4290 * @data: pointer to a q_vector 4291 * 4292 * This is the handler used for all MSI/Legacy interrupts, and deals 4293 * with both queue and non-queue interrupts. This is also used in 4294 * MSIX mode to handle the non-queue interrupts. 4295 **/ 4296 static irqreturn_t i40e_intr(int irq, void *data) 4297 { 4298 struct i40e_pf *pf = (struct i40e_pf *)data; 4299 struct i40e_hw *hw = &pf->hw; 4300 irqreturn_t ret = IRQ_NONE; 4301 u32 icr0, icr0_remaining; 4302 u32 val, ena_mask; 4303 4304 icr0 = rd32(hw, I40E_PFINT_ICR0); 4305 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4306 4307 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4308 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4309 goto enable_intr; 4310 4311 /* if interrupt but no bits showing, must be SWINT */ 4312 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4313 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4314 pf->sw_int_count++; 4315 4316 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4317 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4318 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4319 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4320 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4321 } 4322 4323 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4324 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4325 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 4326 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4327 4328 /* We do not have a way to disarm Queue causes while leaving 4329 * interrupt enabled for all other causes, ideally 4330 * interrupt should be disabled while we are in NAPI but 4331 * this is not a performance path and napi_schedule() 4332 * can deal with rescheduling. 4333 */ 4334 if (!test_bit(__I40E_DOWN, pf->state)) 4335 napi_schedule_irqoff(&q_vector->napi); 4336 } 4337 4338 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4339 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4340 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4341 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4342 } 4343 4344 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4345 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4346 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4347 } 4348 4349 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4350 /* disable any further VFLR event notifications */ 4351 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4352 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4353 4354 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4355 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4356 } else { 4357 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4358 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4359 } 4360 } 4361 4362 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4363 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4364 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4365 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4366 val = rd32(hw, I40E_GLGEN_RSTAT); 4367 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val); 4368 if (val == I40E_RESET_CORER) { 4369 pf->corer_count++; 4370 } else if (val == I40E_RESET_GLOBR) { 4371 pf->globr_count++; 4372 } else if (val == I40E_RESET_EMPR) { 4373 pf->empr_count++; 4374 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4375 } 4376 } 4377 4378 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4379 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4380 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4381 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4382 rd32(hw, I40E_PFHMC_ERRORINFO), 4383 rd32(hw, I40E_PFHMC_ERRORDATA)); 4384 } 4385 4386 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4387 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4388 4389 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4390 schedule_work(&pf->ptp_extts0_work); 4391 4392 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4393 i40e_ptp_tx_hwtstamp(pf); 4394 4395 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4396 } 4397 4398 /* If a critical error is pending we have no choice but to reset the 4399 * device. 4400 * Report and mask out any remaining unexpected interrupts. 4401 */ 4402 icr0_remaining = icr0 & ena_mask; 4403 if (icr0_remaining) { 4404 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4405 icr0_remaining); 4406 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4407 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4408 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4409 dev_info(&pf->pdev->dev, "device will be reset\n"); 4410 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4411 i40e_service_event_schedule(pf); 4412 } 4413 ena_mask &= ~icr0_remaining; 4414 } 4415 ret = IRQ_HANDLED; 4416 4417 enable_intr: 4418 /* re-enable interrupt causes */ 4419 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4420 if (!test_bit(__I40E_DOWN, pf->state) || 4421 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4422 i40e_service_event_schedule(pf); 4423 i40e_irq_dynamic_enable_icr0(pf); 4424 } 4425 4426 return ret; 4427 } 4428 4429 /** 4430 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4431 * @tx_ring: tx ring to clean 4432 * @budget: how many cleans we're allowed 4433 * 4434 * Returns true if there's any budget left (e.g. the clean is finished) 4435 **/ 4436 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4437 { 4438 struct i40e_vsi *vsi = tx_ring->vsi; 4439 u16 i = tx_ring->next_to_clean; 4440 struct i40e_tx_buffer *tx_buf; 4441 struct i40e_tx_desc *tx_desc; 4442 4443 tx_buf = &tx_ring->tx_bi[i]; 4444 tx_desc = I40E_TX_DESC(tx_ring, i); 4445 i -= tx_ring->count; 4446 4447 do { 4448 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4449 4450 /* if next_to_watch is not set then there is no work pending */ 4451 if (!eop_desc) 4452 break; 4453 4454 /* prevent any other reads prior to eop_desc */ 4455 smp_rmb(); 4456 4457 /* if the descriptor isn't done, no work yet to do */ 4458 if (!(eop_desc->cmd_type_offset_bsz & 4459 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4460 break; 4461 4462 /* clear next_to_watch to prevent false hangs */ 4463 tx_buf->next_to_watch = NULL; 4464 4465 tx_desc->buffer_addr = 0; 4466 tx_desc->cmd_type_offset_bsz = 0; 4467 /* move past filter desc */ 4468 tx_buf++; 4469 tx_desc++; 4470 i++; 4471 if (unlikely(!i)) { 4472 i -= tx_ring->count; 4473 tx_buf = tx_ring->tx_bi; 4474 tx_desc = I40E_TX_DESC(tx_ring, 0); 4475 } 4476 /* unmap skb header data */ 4477 dma_unmap_single(tx_ring->dev, 4478 dma_unmap_addr(tx_buf, dma), 4479 dma_unmap_len(tx_buf, len), 4480 DMA_TO_DEVICE); 4481 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4482 kfree(tx_buf->raw_buf); 4483 4484 tx_buf->raw_buf = NULL; 4485 tx_buf->tx_flags = 0; 4486 tx_buf->next_to_watch = NULL; 4487 dma_unmap_len_set(tx_buf, len, 0); 4488 tx_desc->buffer_addr = 0; 4489 tx_desc->cmd_type_offset_bsz = 0; 4490 4491 /* move us past the eop_desc for start of next FD desc */ 4492 tx_buf++; 4493 tx_desc++; 4494 i++; 4495 if (unlikely(!i)) { 4496 i -= tx_ring->count; 4497 tx_buf = tx_ring->tx_bi; 4498 tx_desc = I40E_TX_DESC(tx_ring, 0); 4499 } 4500 4501 /* update budget accounting */ 4502 budget--; 4503 } while (likely(budget)); 4504 4505 i += tx_ring->count; 4506 tx_ring->next_to_clean = i; 4507 4508 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4509 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4510 4511 return budget > 0; 4512 } 4513 4514 /** 4515 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4516 * @irq: interrupt number 4517 * @data: pointer to a q_vector 4518 **/ 4519 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4520 { 4521 struct i40e_q_vector *q_vector = data; 4522 struct i40e_vsi *vsi; 4523 4524 if (!q_vector->tx.ring) 4525 return IRQ_HANDLED; 4526 4527 vsi = q_vector->tx.ring->vsi; 4528 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4529 4530 return IRQ_HANDLED; 4531 } 4532 4533 /** 4534 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4535 * @vsi: the VSI being configured 4536 * @v_idx: vector index 4537 * @qp_idx: queue pair index 4538 **/ 4539 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4540 { 4541 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4542 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4543 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4544 4545 tx_ring->q_vector = q_vector; 4546 tx_ring->next = q_vector->tx.ring; 4547 q_vector->tx.ring = tx_ring; 4548 q_vector->tx.count++; 4549 4550 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4551 if (i40e_enabled_xdp_vsi(vsi)) { 4552 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4553 4554 xdp_ring->q_vector = q_vector; 4555 xdp_ring->next = q_vector->tx.ring; 4556 q_vector->tx.ring = xdp_ring; 4557 q_vector->tx.count++; 4558 } 4559 4560 rx_ring->q_vector = q_vector; 4561 rx_ring->next = q_vector->rx.ring; 4562 q_vector->rx.ring = rx_ring; 4563 q_vector->rx.count++; 4564 } 4565 4566 /** 4567 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4568 * @vsi: the VSI being configured 4569 * 4570 * This function maps descriptor rings to the queue-specific vectors 4571 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4572 * one vector per queue pair, but on a constrained vector budget, we 4573 * group the queue pairs as "efficiently" as possible. 4574 **/ 4575 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4576 { 4577 int qp_remaining = vsi->num_queue_pairs; 4578 int q_vectors = vsi->num_q_vectors; 4579 int num_ringpairs; 4580 int v_start = 0; 4581 int qp_idx = 0; 4582 4583 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4584 * group them so there are multiple queues per vector. 4585 * It is also important to go through all the vectors available to be 4586 * sure that if we don't use all the vectors, that the remaining vectors 4587 * are cleared. This is especially important when decreasing the 4588 * number of queues in use. 4589 */ 4590 for (; v_start < q_vectors; v_start++) { 4591 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4592 4593 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4594 4595 q_vector->num_ringpairs = num_ringpairs; 4596 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4597 4598 q_vector->rx.count = 0; 4599 q_vector->tx.count = 0; 4600 q_vector->rx.ring = NULL; 4601 q_vector->tx.ring = NULL; 4602 4603 while (num_ringpairs--) { 4604 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4605 qp_idx++; 4606 qp_remaining--; 4607 } 4608 } 4609 } 4610 4611 /** 4612 * i40e_vsi_request_irq - Request IRQ from the OS 4613 * @vsi: the VSI being configured 4614 * @basename: name for the vector 4615 **/ 4616 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4617 { 4618 struct i40e_pf *pf = vsi->back; 4619 int err; 4620 4621 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4622 err = i40e_vsi_request_irq_msix(vsi, basename); 4623 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4624 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4625 pf->int_name, pf); 4626 else 4627 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4628 pf->int_name, pf); 4629 4630 if (err) 4631 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4632 4633 return err; 4634 } 4635 4636 #ifdef CONFIG_NET_POLL_CONTROLLER 4637 /** 4638 * i40e_netpoll - A Polling 'interrupt' handler 4639 * @netdev: network interface device structure 4640 * 4641 * This is used by netconsole to send skbs without having to re-enable 4642 * interrupts. It's not called while the normal interrupt routine is executing. 4643 **/ 4644 static void i40e_netpoll(struct net_device *netdev) 4645 { 4646 struct i40e_netdev_priv *np = netdev_priv(netdev); 4647 struct i40e_vsi *vsi = np->vsi; 4648 struct i40e_pf *pf = vsi->back; 4649 int i; 4650 4651 /* if interface is down do nothing */ 4652 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4653 return; 4654 4655 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4656 for (i = 0; i < vsi->num_q_vectors; i++) 4657 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4658 } else { 4659 i40e_intr(pf->pdev->irq, netdev); 4660 } 4661 } 4662 #endif 4663 4664 #define I40E_QTX_ENA_WAIT_COUNT 50 4665 4666 /** 4667 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4668 * @pf: the PF being configured 4669 * @pf_q: the PF queue 4670 * @enable: enable or disable state of the queue 4671 * 4672 * This routine will wait for the given Tx queue of the PF to reach the 4673 * enabled or disabled state. 4674 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4675 * multiple retries; else will return 0 in case of success. 4676 **/ 4677 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4678 { 4679 int i; 4680 u32 tx_reg; 4681 4682 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4683 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4684 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4685 break; 4686 4687 usleep_range(10, 20); 4688 } 4689 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4690 return -ETIMEDOUT; 4691 4692 return 0; 4693 } 4694 4695 /** 4696 * i40e_control_tx_q - Start or stop a particular Tx queue 4697 * @pf: the PF structure 4698 * @pf_q: the PF queue to configure 4699 * @enable: start or stop the queue 4700 * 4701 * This function enables or disables a single queue. Note that any delay 4702 * required after the operation is expected to be handled by the caller of 4703 * this function. 4704 **/ 4705 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4706 { 4707 struct i40e_hw *hw = &pf->hw; 4708 u32 tx_reg; 4709 int i; 4710 4711 /* warn the TX unit of coming changes */ 4712 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4713 if (!enable) 4714 usleep_range(10, 20); 4715 4716 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4717 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4718 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4719 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4720 break; 4721 usleep_range(1000, 2000); 4722 } 4723 4724 /* Skip if the queue is already in the requested state */ 4725 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4726 return; 4727 4728 /* turn on/off the queue */ 4729 if (enable) { 4730 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4731 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4732 } else { 4733 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4734 } 4735 4736 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4737 } 4738 4739 /** 4740 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4741 * @seid: VSI SEID 4742 * @pf: the PF structure 4743 * @pf_q: the PF queue to configure 4744 * @is_xdp: true if the queue is used for XDP 4745 * @enable: start or stop the queue 4746 **/ 4747 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4748 bool is_xdp, bool enable) 4749 { 4750 int ret; 4751 4752 i40e_control_tx_q(pf, pf_q, enable); 4753 4754 /* wait for the change to finish */ 4755 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4756 if (ret) { 4757 dev_info(&pf->pdev->dev, 4758 "VSI seid %d %sTx ring %d %sable timeout\n", 4759 seid, (is_xdp ? "XDP " : ""), pf_q, 4760 (enable ? "en" : "dis")); 4761 } 4762 4763 return ret; 4764 } 4765 4766 /** 4767 * i40e_vsi_enable_tx - Start a VSI's rings 4768 * @vsi: the VSI being configured 4769 **/ 4770 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4771 { 4772 struct i40e_pf *pf = vsi->back; 4773 int i, pf_q, ret = 0; 4774 4775 pf_q = vsi->base_queue; 4776 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4777 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4778 pf_q, 4779 false /*is xdp*/, true); 4780 if (ret) 4781 break; 4782 4783 if (!i40e_enabled_xdp_vsi(vsi)) 4784 continue; 4785 4786 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4787 pf_q + vsi->alloc_queue_pairs, 4788 true /*is xdp*/, true); 4789 if (ret) 4790 break; 4791 } 4792 return ret; 4793 } 4794 4795 /** 4796 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4797 * @pf: the PF being configured 4798 * @pf_q: the PF queue 4799 * @enable: enable or disable state of the queue 4800 * 4801 * This routine will wait for the given Rx queue of the PF to reach the 4802 * enabled or disabled state. 4803 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4804 * multiple retries; else will return 0 in case of success. 4805 **/ 4806 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4807 { 4808 int i; 4809 u32 rx_reg; 4810 4811 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4812 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4813 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4814 break; 4815 4816 usleep_range(10, 20); 4817 } 4818 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4819 return -ETIMEDOUT; 4820 4821 return 0; 4822 } 4823 4824 /** 4825 * i40e_control_rx_q - Start or stop a particular Rx queue 4826 * @pf: the PF structure 4827 * @pf_q: the PF queue to configure 4828 * @enable: start or stop the queue 4829 * 4830 * This function enables or disables a single queue. Note that 4831 * any delay required after the operation is expected to be 4832 * handled by the caller of this function. 4833 **/ 4834 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4835 { 4836 struct i40e_hw *hw = &pf->hw; 4837 u32 rx_reg; 4838 int i; 4839 4840 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4841 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4842 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4843 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4844 break; 4845 usleep_range(1000, 2000); 4846 } 4847 4848 /* Skip if the queue is already in the requested state */ 4849 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4850 return; 4851 4852 /* turn on/off the queue */ 4853 if (enable) 4854 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4855 else 4856 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4857 4858 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4859 } 4860 4861 /** 4862 * i40e_control_wait_rx_q 4863 * @pf: the PF structure 4864 * @pf_q: queue being configured 4865 * @enable: start or stop the rings 4866 * 4867 * This function enables or disables a single queue along with waiting 4868 * for the change to finish. The caller of this function should handle 4869 * the delays needed in the case of disabling queues. 4870 **/ 4871 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4872 { 4873 int ret = 0; 4874 4875 i40e_control_rx_q(pf, pf_q, enable); 4876 4877 /* wait for the change to finish */ 4878 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4879 if (ret) 4880 return ret; 4881 4882 return ret; 4883 } 4884 4885 /** 4886 * i40e_vsi_enable_rx - Start a VSI's rings 4887 * @vsi: the VSI being configured 4888 **/ 4889 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4890 { 4891 struct i40e_pf *pf = vsi->back; 4892 int i, pf_q, ret = 0; 4893 4894 pf_q = vsi->base_queue; 4895 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4896 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4897 if (ret) { 4898 dev_info(&pf->pdev->dev, 4899 "VSI seid %d Rx ring %d enable timeout\n", 4900 vsi->seid, pf_q); 4901 break; 4902 } 4903 } 4904 4905 return ret; 4906 } 4907 4908 /** 4909 * i40e_vsi_start_rings - Start a VSI's rings 4910 * @vsi: the VSI being configured 4911 **/ 4912 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4913 { 4914 int ret = 0; 4915 4916 /* do rx first for enable and last for disable */ 4917 ret = i40e_vsi_enable_rx(vsi); 4918 if (ret) 4919 return ret; 4920 ret = i40e_vsi_enable_tx(vsi); 4921 4922 return ret; 4923 } 4924 4925 #define I40E_DISABLE_TX_GAP_MSEC 50 4926 4927 /** 4928 * i40e_vsi_stop_rings - Stop a VSI's rings 4929 * @vsi: the VSI being configured 4930 **/ 4931 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4932 { 4933 struct i40e_pf *pf = vsi->back; 4934 u32 pf_q, tx_q_end, rx_q_end; 4935 4936 /* When port TX is suspended, don't wait */ 4937 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4938 return i40e_vsi_stop_rings_no_wait(vsi); 4939 4940 tx_q_end = vsi->base_queue + 4941 vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 4942 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4943 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false); 4944 4945 rx_q_end = vsi->base_queue + vsi->num_queue_pairs; 4946 for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++) 4947 i40e_control_rx_q(pf, pf_q, false); 4948 4949 msleep(I40E_DISABLE_TX_GAP_MSEC); 4950 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4951 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4952 4953 i40e_vsi_wait_queues_disabled(vsi); 4954 } 4955 4956 /** 4957 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4958 * @vsi: the VSI being shutdown 4959 * 4960 * This function stops all the rings for a VSI but does not delay to verify 4961 * that rings have been disabled. It is expected that the caller is shutting 4962 * down multiple VSIs at once and will delay together for all the VSIs after 4963 * initiating the shutdown. This is particularly useful for shutting down lots 4964 * of VFs together. Otherwise, a large delay can be incurred while configuring 4965 * each VSI in serial. 4966 **/ 4967 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4968 { 4969 struct i40e_pf *pf = vsi->back; 4970 int i, pf_q; 4971 4972 pf_q = vsi->base_queue; 4973 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4974 i40e_control_tx_q(pf, pf_q, false); 4975 i40e_control_rx_q(pf, pf_q, false); 4976 } 4977 } 4978 4979 /** 4980 * i40e_vsi_free_irq - Free the irq association with the OS 4981 * @vsi: the VSI being configured 4982 **/ 4983 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4984 { 4985 struct i40e_pf *pf = vsi->back; 4986 struct i40e_hw *hw = &pf->hw; 4987 int base = vsi->base_vector; 4988 u32 val, qp; 4989 int i; 4990 4991 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4992 if (!vsi->q_vectors) 4993 return; 4994 4995 if (!vsi->irqs_ready) 4996 return; 4997 4998 vsi->irqs_ready = false; 4999 for (i = 0; i < vsi->num_q_vectors; i++) { 5000 int irq_num; 5001 u16 vector; 5002 5003 vector = i + base; 5004 irq_num = pf->msix_entries[vector].vector; 5005 5006 /* free only the irqs that were actually requested */ 5007 if (!vsi->q_vectors[i] || 5008 !vsi->q_vectors[i]->num_ringpairs) 5009 continue; 5010 5011 /* clear the affinity notifier in the IRQ descriptor */ 5012 irq_set_affinity_notifier(irq_num, NULL); 5013 /* remove our suggested affinity mask for this IRQ */ 5014 irq_update_affinity_hint(irq_num, NULL); 5015 free_irq(irq_num, vsi->q_vectors[i]); 5016 5017 /* Tear down the interrupt queue link list 5018 * 5019 * We know that they come in pairs and always 5020 * the Rx first, then the Tx. To clear the 5021 * link list, stick the EOL value into the 5022 * next_q field of the registers. 5023 */ 5024 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 5025 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, 5026 val); 5027 val |= I40E_QUEUE_END_OF_LIST 5028 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5029 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 5030 5031 while (qp != I40E_QUEUE_END_OF_LIST) { 5032 u32 next; 5033 5034 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5035 5036 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5037 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5038 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5039 I40E_QINT_RQCTL_INTEVENT_MASK); 5040 5041 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5042 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5043 5044 wr32(hw, I40E_QINT_RQCTL(qp), val); 5045 5046 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5047 5048 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK, 5049 val); 5050 5051 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5052 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5053 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5054 I40E_QINT_TQCTL_INTEVENT_MASK); 5055 5056 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5057 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5058 5059 wr32(hw, I40E_QINT_TQCTL(qp), val); 5060 qp = next; 5061 } 5062 } 5063 } else { 5064 free_irq(pf->pdev->irq, pf); 5065 5066 val = rd32(hw, I40E_PFINT_LNKLST0); 5067 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val); 5068 val |= I40E_QUEUE_END_OF_LIST 5069 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5070 wr32(hw, I40E_PFINT_LNKLST0, val); 5071 5072 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5073 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5074 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5075 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5076 I40E_QINT_RQCTL_INTEVENT_MASK); 5077 5078 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5079 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5080 5081 wr32(hw, I40E_QINT_RQCTL(qp), val); 5082 5083 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5084 5085 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5086 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5087 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5088 I40E_QINT_TQCTL_INTEVENT_MASK); 5089 5090 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5091 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5092 5093 wr32(hw, I40E_QINT_TQCTL(qp), val); 5094 } 5095 } 5096 5097 /** 5098 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5099 * @vsi: the VSI being configured 5100 * @v_idx: Index of vector to be freed 5101 * 5102 * This function frees the memory allocated to the q_vector. In addition if 5103 * NAPI is enabled it will delete any references to the NAPI struct prior 5104 * to freeing the q_vector. 5105 **/ 5106 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5107 { 5108 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5109 struct i40e_ring *ring; 5110 5111 if (!q_vector) 5112 return; 5113 5114 /* disassociate q_vector from rings */ 5115 i40e_for_each_ring(ring, q_vector->tx) 5116 ring->q_vector = NULL; 5117 5118 i40e_for_each_ring(ring, q_vector->rx) 5119 ring->q_vector = NULL; 5120 5121 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5122 if (vsi->netdev) 5123 netif_napi_del(&q_vector->napi); 5124 5125 vsi->q_vectors[v_idx] = NULL; 5126 5127 kfree_rcu(q_vector, rcu); 5128 } 5129 5130 /** 5131 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5132 * @vsi: the VSI being un-configured 5133 * 5134 * This frees the memory allocated to the q_vectors and 5135 * deletes references to the NAPI struct. 5136 **/ 5137 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5138 { 5139 int v_idx; 5140 5141 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5142 i40e_free_q_vector(vsi, v_idx); 5143 } 5144 5145 /** 5146 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5147 * @pf: board private structure 5148 **/ 5149 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5150 { 5151 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5152 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5153 pci_disable_msix(pf->pdev); 5154 kfree(pf->msix_entries); 5155 pf->msix_entries = NULL; 5156 kfree(pf->irq_pile); 5157 pf->irq_pile = NULL; 5158 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5159 pci_disable_msi(pf->pdev); 5160 } 5161 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5162 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5163 } 5164 5165 /** 5166 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5167 * @pf: board private structure 5168 * 5169 * We go through and clear interrupt specific resources and reset the structure 5170 * to pre-load conditions 5171 **/ 5172 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5173 { 5174 struct i40e_vsi *vsi; 5175 int i; 5176 5177 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5178 i40e_free_misc_vector(pf); 5179 5180 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5181 I40E_IWARP_IRQ_PILE_ID); 5182 5183 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5184 5185 i40e_pf_for_each_vsi(pf, i, vsi) 5186 i40e_vsi_free_q_vectors(vsi); 5187 5188 i40e_reset_interrupt_capability(pf); 5189 } 5190 5191 /** 5192 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5193 * @vsi: the VSI being configured 5194 **/ 5195 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5196 { 5197 int q_idx; 5198 5199 if (!vsi->netdev) 5200 return; 5201 5202 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5203 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5204 5205 if (q_vector->rx.ring || q_vector->tx.ring) 5206 napi_enable(&q_vector->napi); 5207 } 5208 } 5209 5210 /** 5211 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5212 * @vsi: the VSI being configured 5213 **/ 5214 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5215 { 5216 int q_idx; 5217 5218 if (!vsi->netdev) 5219 return; 5220 5221 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5222 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5223 5224 if (q_vector->rx.ring || q_vector->tx.ring) 5225 napi_disable(&q_vector->napi); 5226 } 5227 } 5228 5229 /** 5230 * i40e_vsi_close - Shut down a VSI 5231 * @vsi: the vsi to be quelled 5232 **/ 5233 static void i40e_vsi_close(struct i40e_vsi *vsi) 5234 { 5235 struct i40e_pf *pf = vsi->back; 5236 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5237 i40e_down(vsi); 5238 i40e_vsi_free_irq(vsi); 5239 i40e_vsi_free_tx_resources(vsi); 5240 i40e_vsi_free_rx_resources(vsi); 5241 vsi->current_netdev_flags = 0; 5242 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5243 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5244 set_bit(__I40E_CLIENT_RESET, pf->state); 5245 } 5246 5247 /** 5248 * i40e_quiesce_vsi - Pause a given VSI 5249 * @vsi: the VSI being paused 5250 **/ 5251 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5252 { 5253 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5254 return; 5255 5256 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5257 if (vsi->netdev && netif_running(vsi->netdev)) 5258 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5259 else 5260 i40e_vsi_close(vsi); 5261 } 5262 5263 /** 5264 * i40e_unquiesce_vsi - Resume a given VSI 5265 * @vsi: the VSI being resumed 5266 **/ 5267 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5268 { 5269 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5270 return; 5271 5272 if (vsi->netdev && netif_running(vsi->netdev)) 5273 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5274 else 5275 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5276 } 5277 5278 /** 5279 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5280 * @pf: the PF 5281 **/ 5282 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5283 { 5284 struct i40e_vsi *vsi; 5285 int v; 5286 5287 i40e_pf_for_each_vsi(pf, v, vsi) 5288 i40e_quiesce_vsi(vsi); 5289 } 5290 5291 /** 5292 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5293 * @pf: the PF 5294 **/ 5295 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5296 { 5297 struct i40e_vsi *vsi; 5298 int v; 5299 5300 i40e_pf_for_each_vsi(pf, v, vsi) 5301 i40e_unquiesce_vsi(vsi); 5302 } 5303 5304 /** 5305 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5306 * @vsi: the VSI being configured 5307 * 5308 * Wait until all queues on a given VSI have been disabled. 5309 **/ 5310 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5311 { 5312 struct i40e_pf *pf = vsi->back; 5313 int i, pf_q, ret; 5314 5315 pf_q = vsi->base_queue; 5316 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5317 /* Check and wait for the Tx queue */ 5318 ret = i40e_pf_txq_wait(pf, pf_q, false); 5319 if (ret) { 5320 dev_info(&pf->pdev->dev, 5321 "VSI seid %d Tx ring %d disable timeout\n", 5322 vsi->seid, pf_q); 5323 return ret; 5324 } 5325 5326 if (!i40e_enabled_xdp_vsi(vsi)) 5327 goto wait_rx; 5328 5329 /* Check and wait for the XDP Tx queue */ 5330 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5331 false); 5332 if (ret) { 5333 dev_info(&pf->pdev->dev, 5334 "VSI seid %d XDP Tx ring %d disable timeout\n", 5335 vsi->seid, pf_q); 5336 return ret; 5337 } 5338 wait_rx: 5339 /* Check and wait for the Rx queue */ 5340 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5341 if (ret) { 5342 dev_info(&pf->pdev->dev, 5343 "VSI seid %d Rx ring %d disable timeout\n", 5344 vsi->seid, pf_q); 5345 return ret; 5346 } 5347 } 5348 5349 return 0; 5350 } 5351 5352 #ifdef CONFIG_I40E_DCB 5353 /** 5354 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5355 * @pf: the PF 5356 * 5357 * This function waits for the queues to be in disabled state for all the 5358 * VSIs that are managed by this PF. 5359 **/ 5360 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5361 { 5362 struct i40e_vsi *vsi; 5363 int v, ret = 0; 5364 5365 i40e_pf_for_each_vsi(pf, v, vsi) { 5366 ret = i40e_vsi_wait_queues_disabled(vsi); 5367 if (ret) 5368 break; 5369 } 5370 5371 return ret; 5372 } 5373 5374 #endif 5375 5376 /** 5377 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5378 * @pf: pointer to PF 5379 * 5380 * Get TC map for ISCSI PF type that will include iSCSI TC 5381 * and LAN TC. 5382 **/ 5383 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5384 { 5385 struct i40e_dcb_app_priority_table app; 5386 struct i40e_hw *hw = &pf->hw; 5387 u8 enabled_tc = 1; /* TC0 is always enabled */ 5388 u8 tc, i; 5389 /* Get the iSCSI APP TLV */ 5390 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5391 5392 for (i = 0; i < dcbcfg->numapps; i++) { 5393 app = dcbcfg->app[i]; 5394 if (app.selector == I40E_APP_SEL_TCPIP && 5395 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5396 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5397 enabled_tc |= BIT(tc); 5398 break; 5399 } 5400 } 5401 5402 return enabled_tc; 5403 } 5404 5405 /** 5406 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5407 * @dcbcfg: the corresponding DCBx configuration structure 5408 * 5409 * Return the number of TCs from given DCBx configuration 5410 **/ 5411 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5412 { 5413 int i, tc_unused = 0; 5414 u8 num_tc = 0; 5415 u8 ret = 0; 5416 5417 /* Scan the ETS Config Priority Table to find 5418 * traffic class enabled for a given priority 5419 * and create a bitmask of enabled TCs 5420 */ 5421 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5422 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5423 5424 /* Now scan the bitmask to check for 5425 * contiguous TCs starting with TC0 5426 */ 5427 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5428 if (num_tc & BIT(i)) { 5429 if (!tc_unused) { 5430 ret++; 5431 } else { 5432 pr_err("Non-contiguous TC - Disabling DCB\n"); 5433 return 1; 5434 } 5435 } else { 5436 tc_unused = 1; 5437 } 5438 } 5439 5440 /* There is always at least TC0 */ 5441 if (!ret) 5442 ret = 1; 5443 5444 return ret; 5445 } 5446 5447 /** 5448 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5449 * @dcbcfg: the corresponding DCBx configuration structure 5450 * 5451 * Query the current DCB configuration and return the number of 5452 * traffic classes enabled from the given DCBX config 5453 **/ 5454 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5455 { 5456 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5457 u8 enabled_tc = 1; 5458 u8 i; 5459 5460 for (i = 0; i < num_tc; i++) 5461 enabled_tc |= BIT(i); 5462 5463 return enabled_tc; 5464 } 5465 5466 /** 5467 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5468 * @pf: PF being queried 5469 * 5470 * Query the current MQPRIO configuration and return the number of 5471 * traffic classes enabled. 5472 **/ 5473 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5474 { 5475 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5476 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5477 u8 enabled_tc = 1, i; 5478 5479 for (i = 1; i < num_tc; i++) 5480 enabled_tc |= BIT(i); 5481 return enabled_tc; 5482 } 5483 5484 /** 5485 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5486 * @pf: PF being queried 5487 * 5488 * Return number of traffic classes enabled for the given PF 5489 **/ 5490 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5491 { 5492 u8 i, enabled_tc = 1; 5493 u8 num_tc = 0; 5494 5495 if (i40e_is_tc_mqprio_enabled(pf)) { 5496 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5497 5498 return vsi->mqprio_qopt.qopt.num_tc; 5499 } 5500 5501 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5502 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5503 return 1; 5504 5505 /* SFP mode will be enabled for all TCs on port */ 5506 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5507 return i40e_dcb_get_num_tc(&pf->hw.local_dcbx_config); 5508 5509 /* MFP mode return count of enabled TCs for this PF */ 5510 if (pf->hw.func_caps.iscsi) 5511 enabled_tc = i40e_get_iscsi_tc_map(pf); 5512 else 5513 return 1; /* Only TC0 */ 5514 5515 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5516 if (enabled_tc & BIT(i)) 5517 num_tc++; 5518 } 5519 return num_tc; 5520 } 5521 5522 /** 5523 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5524 * @pf: PF being queried 5525 * 5526 * Return a bitmap for enabled traffic classes for this PF. 5527 **/ 5528 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5529 { 5530 if (i40e_is_tc_mqprio_enabled(pf)) 5531 return i40e_mqprio_get_enabled_tc(pf); 5532 5533 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5534 * default TC 5535 */ 5536 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5537 return I40E_DEFAULT_TRAFFIC_CLASS; 5538 5539 /* SFP mode we want PF to be enabled for all TCs */ 5540 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5541 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5542 5543 /* MFP enabled and iSCSI PF type */ 5544 if (pf->hw.func_caps.iscsi) 5545 return i40e_get_iscsi_tc_map(pf); 5546 else 5547 return I40E_DEFAULT_TRAFFIC_CLASS; 5548 } 5549 5550 /** 5551 * i40e_vsi_get_bw_info - Query VSI BW Information 5552 * @vsi: the VSI being queried 5553 * 5554 * Returns 0 on success, negative value on failure 5555 **/ 5556 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5557 { 5558 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5559 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5560 struct i40e_pf *pf = vsi->back; 5561 struct i40e_hw *hw = &pf->hw; 5562 u32 tc_bw_max; 5563 int ret; 5564 int i; 5565 5566 /* Get the VSI level BW configuration */ 5567 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5568 if (ret) { 5569 dev_info(&pf->pdev->dev, 5570 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5571 ERR_PTR(ret), 5572 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5573 return -EINVAL; 5574 } 5575 5576 /* Get the VSI level BW configuration per TC */ 5577 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5578 NULL); 5579 if (ret) { 5580 dev_info(&pf->pdev->dev, 5581 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5582 ERR_PTR(ret), 5583 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5584 return -EINVAL; 5585 } 5586 5587 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5588 dev_info(&pf->pdev->dev, 5589 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5590 bw_config.tc_valid_bits, 5591 bw_ets_config.tc_valid_bits); 5592 /* Still continuing */ 5593 } 5594 5595 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5596 vsi->bw_max_quanta = bw_config.max_bw; 5597 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5598 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5599 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5600 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5601 vsi->bw_ets_limit_credits[i] = 5602 le16_to_cpu(bw_ets_config.credits[i]); 5603 /* 3 bits out of 4 for each TC */ 5604 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5605 } 5606 5607 return 0; 5608 } 5609 5610 /** 5611 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5612 * @vsi: the VSI being configured 5613 * @enabled_tc: TC bitmap 5614 * @bw_share: BW shared credits per TC 5615 * 5616 * Returns 0 on success, negative value on failure 5617 **/ 5618 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5619 u8 *bw_share) 5620 { 5621 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5622 struct i40e_pf *pf = vsi->back; 5623 int ret; 5624 int i; 5625 5626 /* There is no need to reset BW when mqprio mode is on. */ 5627 if (i40e_is_tc_mqprio_enabled(pf)) 5628 return 0; 5629 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5630 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5631 if (ret) 5632 dev_info(&pf->pdev->dev, 5633 "Failed to reset tx rate for vsi->seid %u\n", 5634 vsi->seid); 5635 return ret; 5636 } 5637 memset(&bw_data, 0, sizeof(bw_data)); 5638 bw_data.tc_valid_bits = enabled_tc; 5639 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5640 bw_data.tc_bw_credits[i] = bw_share[i]; 5641 5642 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5643 if (ret) { 5644 dev_info(&pf->pdev->dev, 5645 "AQ command Config VSI BW allocation per TC failed = %d\n", 5646 pf->hw.aq.asq_last_status); 5647 return -EINVAL; 5648 } 5649 5650 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5651 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5652 5653 return 0; 5654 } 5655 5656 /** 5657 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5658 * @vsi: the VSI being configured 5659 * @enabled_tc: TC map to be enabled 5660 * 5661 **/ 5662 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5663 { 5664 struct net_device *netdev = vsi->netdev; 5665 struct i40e_pf *pf = vsi->back; 5666 struct i40e_hw *hw = &pf->hw; 5667 u8 netdev_tc = 0; 5668 int i; 5669 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5670 5671 if (!netdev) 5672 return; 5673 5674 if (!enabled_tc) { 5675 netdev_reset_tc(netdev); 5676 return; 5677 } 5678 5679 /* Set up actual enabled TCs on the VSI */ 5680 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5681 return; 5682 5683 /* set per TC queues for the VSI */ 5684 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5685 /* Only set TC queues for enabled tcs 5686 * 5687 * e.g. For a VSI that has TC0 and TC3 enabled the 5688 * enabled_tc bitmap would be 0x00001001; the driver 5689 * will set the numtc for netdev as 2 that will be 5690 * referenced by the netdev layer as TC 0 and 1. 5691 */ 5692 if (vsi->tc_config.enabled_tc & BIT(i)) 5693 netdev_set_tc_queue(netdev, 5694 vsi->tc_config.tc_info[i].netdev_tc, 5695 vsi->tc_config.tc_info[i].qcount, 5696 vsi->tc_config.tc_info[i].qoffset); 5697 } 5698 5699 if (i40e_is_tc_mqprio_enabled(pf)) 5700 return; 5701 5702 /* Assign UP2TC map for the VSI */ 5703 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5704 /* Get the actual TC# for the UP */ 5705 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5706 /* Get the mapped netdev TC# for the UP */ 5707 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5708 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5709 } 5710 } 5711 5712 /** 5713 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5714 * @vsi: the VSI being configured 5715 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5716 **/ 5717 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5718 struct i40e_vsi_context *ctxt) 5719 { 5720 /* copy just the sections touched not the entire info 5721 * since not all sections are valid as returned by 5722 * update vsi params 5723 */ 5724 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5725 memcpy(&vsi->info.queue_mapping, 5726 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5727 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5728 sizeof(vsi->info.tc_mapping)); 5729 } 5730 5731 /** 5732 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5733 * @vsi: the VSI being reconfigured 5734 * @vsi_offset: offset from main VF VSI 5735 */ 5736 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5737 { 5738 struct i40e_vsi_context ctxt = {}; 5739 struct i40e_pf *pf; 5740 struct i40e_hw *hw; 5741 int ret; 5742 5743 if (!vsi) 5744 return -EINVAL; 5745 pf = vsi->back; 5746 hw = &pf->hw; 5747 5748 ctxt.seid = vsi->seid; 5749 ctxt.pf_num = hw->pf_id; 5750 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5751 ctxt.uplink_seid = vsi->uplink_seid; 5752 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5753 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5754 ctxt.info = vsi->info; 5755 5756 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5757 false); 5758 if (vsi->reconfig_rss) { 5759 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5760 vsi->num_queue_pairs); 5761 ret = i40e_vsi_config_rss(vsi); 5762 if (ret) { 5763 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5764 return ret; 5765 } 5766 vsi->reconfig_rss = false; 5767 } 5768 5769 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5770 if (ret) { 5771 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5772 ERR_PTR(ret), 5773 i40e_aq_str(hw, hw->aq.asq_last_status)); 5774 return ret; 5775 } 5776 /* update the local VSI info with updated queue map */ 5777 i40e_vsi_update_queue_map(vsi, &ctxt); 5778 vsi->info.valid_sections = 0; 5779 5780 return ret; 5781 } 5782 5783 /** 5784 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5785 * @vsi: VSI to be configured 5786 * @enabled_tc: TC bitmap 5787 * 5788 * This configures a particular VSI for TCs that are mapped to the 5789 * given TC bitmap. It uses default bandwidth share for TCs across 5790 * VSIs to configure TC for a particular VSI. 5791 * 5792 * NOTE: 5793 * It is expected that the VSI queues have been quisced before calling 5794 * this function. 5795 **/ 5796 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5797 { 5798 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5799 struct i40e_pf *pf = vsi->back; 5800 struct i40e_hw *hw = &pf->hw; 5801 struct i40e_vsi_context ctxt; 5802 int ret = 0; 5803 int i; 5804 5805 /* Check if enabled_tc is same as existing or new TCs */ 5806 if (vsi->tc_config.enabled_tc == enabled_tc && 5807 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5808 return ret; 5809 5810 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5811 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5812 if (enabled_tc & BIT(i)) 5813 bw_share[i] = 1; 5814 } 5815 5816 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5817 if (ret) { 5818 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5819 5820 dev_info(&pf->pdev->dev, 5821 "Failed configuring TC map %d for VSI %d\n", 5822 enabled_tc, vsi->seid); 5823 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5824 &bw_config, NULL); 5825 if (ret) { 5826 dev_info(&pf->pdev->dev, 5827 "Failed querying vsi bw info, err %pe aq_err %s\n", 5828 ERR_PTR(ret), 5829 i40e_aq_str(hw, hw->aq.asq_last_status)); 5830 goto out; 5831 } 5832 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5833 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5834 5835 if (!valid_tc) 5836 valid_tc = bw_config.tc_valid_bits; 5837 /* Always enable TC0, no matter what */ 5838 valid_tc |= 1; 5839 dev_info(&pf->pdev->dev, 5840 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5841 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5842 enabled_tc = valid_tc; 5843 } 5844 5845 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5846 if (ret) { 5847 dev_err(&pf->pdev->dev, 5848 "Unable to configure TC map %d for VSI %d\n", 5849 enabled_tc, vsi->seid); 5850 goto out; 5851 } 5852 } 5853 5854 /* Update Queue Pairs Mapping for currently enabled UPs */ 5855 ctxt.seid = vsi->seid; 5856 ctxt.pf_num = vsi->back->hw.pf_id; 5857 ctxt.vf_num = 0; 5858 ctxt.uplink_seid = vsi->uplink_seid; 5859 ctxt.info = vsi->info; 5860 if (i40e_is_tc_mqprio_enabled(pf)) { 5861 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5862 if (ret) 5863 goto out; 5864 } else { 5865 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5866 } 5867 5868 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5869 * queues changed. 5870 */ 5871 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5872 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5873 vsi->num_queue_pairs); 5874 ret = i40e_vsi_config_rss(vsi); 5875 if (ret) { 5876 dev_info(&vsi->back->pdev->dev, 5877 "Failed to reconfig rss for num_queues\n"); 5878 return ret; 5879 } 5880 vsi->reconfig_rss = false; 5881 } 5882 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5883 ctxt.info.valid_sections |= 5884 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5885 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5886 } 5887 5888 /* Update the VSI after updating the VSI queue-mapping 5889 * information 5890 */ 5891 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5892 if (ret) { 5893 dev_info(&pf->pdev->dev, 5894 "Update vsi tc config failed, err %pe aq_err %s\n", 5895 ERR_PTR(ret), 5896 i40e_aq_str(hw, hw->aq.asq_last_status)); 5897 goto out; 5898 } 5899 /* update the local VSI info with updated queue map */ 5900 i40e_vsi_update_queue_map(vsi, &ctxt); 5901 vsi->info.valid_sections = 0; 5902 5903 /* Update current VSI BW information */ 5904 ret = i40e_vsi_get_bw_info(vsi); 5905 if (ret) { 5906 dev_info(&pf->pdev->dev, 5907 "Failed updating vsi bw info, err %pe aq_err %s\n", 5908 ERR_PTR(ret), 5909 i40e_aq_str(hw, hw->aq.asq_last_status)); 5910 goto out; 5911 } 5912 5913 /* Update the netdev TC setup */ 5914 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5915 out: 5916 return ret; 5917 } 5918 5919 /** 5920 * i40e_vsi_reconfig_tc - Reconfigure VSI Tx Scheduler for stored TC map 5921 * @vsi: VSI to be reconfigured 5922 * 5923 * This reconfigures a particular VSI for TCs that are mapped to the 5924 * TC bitmap stored previously for the VSI. 5925 * 5926 * Context: It is expected that the VSI queues have been quisced before 5927 * calling this function. 5928 * 5929 * Return: 0 on success, negative value on failure 5930 **/ 5931 static int i40e_vsi_reconfig_tc(struct i40e_vsi *vsi) 5932 { 5933 u8 enabled_tc; 5934 5935 enabled_tc = vsi->tc_config.enabled_tc; 5936 vsi->tc_config.enabled_tc = 0; 5937 5938 return i40e_vsi_config_tc(vsi, enabled_tc); 5939 } 5940 5941 /** 5942 * i40e_get_link_speed - Returns link speed for the interface 5943 * @vsi: VSI to be configured 5944 * 5945 **/ 5946 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5947 { 5948 struct i40e_pf *pf = vsi->back; 5949 5950 switch (pf->hw.phy.link_info.link_speed) { 5951 case I40E_LINK_SPEED_40GB: 5952 return 40000; 5953 case I40E_LINK_SPEED_25GB: 5954 return 25000; 5955 case I40E_LINK_SPEED_20GB: 5956 return 20000; 5957 case I40E_LINK_SPEED_10GB: 5958 return 10000; 5959 case I40E_LINK_SPEED_1GB: 5960 return 1000; 5961 default: 5962 return -EINVAL; 5963 } 5964 } 5965 5966 /** 5967 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5968 * @vsi: Pointer to vsi structure 5969 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5970 * 5971 * Helper function to convert units before send to set BW limit 5972 **/ 5973 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5974 { 5975 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5976 dev_warn(&vsi->back->pdev->dev, 5977 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5978 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5979 } else { 5980 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5981 } 5982 5983 return max_tx_rate; 5984 } 5985 5986 /** 5987 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5988 * @vsi: VSI to be configured 5989 * @seid: seid of the channel/VSI 5990 * @max_tx_rate: max TX rate to be configured as BW limit 5991 * 5992 * Helper function to set BW limit for a given VSI 5993 **/ 5994 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5995 { 5996 struct i40e_pf *pf = vsi->back; 5997 u64 credits = 0; 5998 int speed = 0; 5999 int ret = 0; 6000 6001 speed = i40e_get_link_speed(vsi); 6002 if (max_tx_rate > speed) { 6003 dev_err(&pf->pdev->dev, 6004 "Invalid max tx rate %llu specified for VSI seid %d.", 6005 max_tx_rate, seid); 6006 return -EINVAL; 6007 } 6008 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 6009 dev_warn(&pf->pdev->dev, 6010 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 6011 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 6012 } 6013 6014 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 6015 credits = max_tx_rate; 6016 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6017 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 6018 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 6019 if (ret) 6020 dev_err(&pf->pdev->dev, 6021 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 6022 max_tx_rate, seid, ERR_PTR(ret), 6023 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6024 return ret; 6025 } 6026 6027 /** 6028 * i40e_remove_queue_channels - Remove queue channels for the TCs 6029 * @vsi: VSI to be configured 6030 * 6031 * Remove queue channels for the TCs 6032 **/ 6033 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 6034 { 6035 enum i40e_admin_queue_err last_aq_status; 6036 struct i40e_cloud_filter *cfilter; 6037 struct i40e_channel *ch, *ch_tmp; 6038 struct i40e_pf *pf = vsi->back; 6039 struct hlist_node *node; 6040 int ret, i; 6041 6042 /* Reset rss size that was stored when reconfiguring rss for 6043 * channel VSIs with non-power-of-2 queue count. 6044 */ 6045 vsi->current_rss_size = 0; 6046 6047 /* perform cleanup for channels if they exist */ 6048 if (list_empty(&vsi->ch_list)) 6049 return; 6050 6051 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6052 struct i40e_vsi *p_vsi; 6053 6054 list_del(&ch->list); 6055 p_vsi = ch->parent_vsi; 6056 if (!p_vsi || !ch->initialized) { 6057 kfree(ch); 6058 continue; 6059 } 6060 /* Reset queue contexts */ 6061 for (i = 0; i < ch->num_queue_pairs; i++) { 6062 struct i40e_ring *tx_ring, *rx_ring; 6063 u16 pf_q; 6064 6065 pf_q = ch->base_queue + i; 6066 tx_ring = vsi->tx_rings[pf_q]; 6067 tx_ring->ch = NULL; 6068 6069 rx_ring = vsi->rx_rings[pf_q]; 6070 rx_ring->ch = NULL; 6071 } 6072 6073 /* Reset BW configured for this VSI via mqprio */ 6074 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6075 if (ret) 6076 dev_info(&vsi->back->pdev->dev, 6077 "Failed to reset tx rate for ch->seid %u\n", 6078 ch->seid); 6079 6080 /* delete cloud filters associated with this channel */ 6081 hlist_for_each_entry_safe(cfilter, node, 6082 &pf->cloud_filter_list, cloud_node) { 6083 if (cfilter->seid != ch->seid) 6084 continue; 6085 6086 hash_del(&cfilter->cloud_node); 6087 if (cfilter->dst_port) 6088 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6089 cfilter, 6090 false); 6091 else 6092 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6093 false); 6094 last_aq_status = pf->hw.aq.asq_last_status; 6095 if (ret) 6096 dev_info(&pf->pdev->dev, 6097 "Failed to delete cloud filter, err %pe aq_err %s\n", 6098 ERR_PTR(ret), 6099 i40e_aq_str(&pf->hw, last_aq_status)); 6100 kfree(cfilter); 6101 } 6102 6103 /* delete VSI from FW */ 6104 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6105 NULL); 6106 if (ret) 6107 dev_err(&vsi->back->pdev->dev, 6108 "unable to remove channel (%d) for parent VSI(%d)\n", 6109 ch->seid, p_vsi->seid); 6110 kfree(ch); 6111 } 6112 INIT_LIST_HEAD(&vsi->ch_list); 6113 } 6114 6115 /** 6116 * i40e_get_max_queues_for_channel 6117 * @vsi: ptr to VSI to which channels are associated with 6118 * 6119 * Helper function which returns max value among the queue counts set on the 6120 * channels/TCs created. 6121 **/ 6122 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6123 { 6124 struct i40e_channel *ch, *ch_tmp; 6125 int max = 0; 6126 6127 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6128 if (!ch->initialized) 6129 continue; 6130 if (ch->num_queue_pairs > max) 6131 max = ch->num_queue_pairs; 6132 } 6133 6134 return max; 6135 } 6136 6137 /** 6138 * i40e_validate_num_queues - validate num_queues w.r.t channel 6139 * @pf: ptr to PF device 6140 * @num_queues: number of queues 6141 * @vsi: the parent VSI 6142 * @reconfig_rss: indicates should the RSS be reconfigured or not 6143 * 6144 * This function validates number of queues in the context of new channel 6145 * which is being established and determines if RSS should be reconfigured 6146 * or not for parent VSI. 6147 **/ 6148 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6149 struct i40e_vsi *vsi, bool *reconfig_rss) 6150 { 6151 int max_ch_queues; 6152 6153 if (!reconfig_rss) 6154 return -EINVAL; 6155 6156 *reconfig_rss = false; 6157 if (vsi->current_rss_size) { 6158 if (num_queues > vsi->current_rss_size) { 6159 dev_dbg(&pf->pdev->dev, 6160 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6161 num_queues, vsi->current_rss_size); 6162 return -EINVAL; 6163 } else if ((num_queues < vsi->current_rss_size) && 6164 (!is_power_of_2(num_queues))) { 6165 dev_dbg(&pf->pdev->dev, 6166 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6167 num_queues, vsi->current_rss_size); 6168 return -EINVAL; 6169 } 6170 } 6171 6172 if (!is_power_of_2(num_queues)) { 6173 /* Find the max num_queues configured for channel if channel 6174 * exist. 6175 * if channel exist, then enforce 'num_queues' to be more than 6176 * max ever queues configured for channel. 6177 */ 6178 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6179 if (num_queues < max_ch_queues) { 6180 dev_dbg(&pf->pdev->dev, 6181 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6182 num_queues, max_ch_queues); 6183 return -EINVAL; 6184 } 6185 *reconfig_rss = true; 6186 } 6187 6188 return 0; 6189 } 6190 6191 /** 6192 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6193 * @vsi: the VSI being setup 6194 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6195 * 6196 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6197 **/ 6198 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6199 { 6200 struct i40e_pf *pf = vsi->back; 6201 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6202 struct i40e_hw *hw = &pf->hw; 6203 int local_rss_size; 6204 u8 *lut; 6205 int ret; 6206 6207 if (!vsi->rss_size) 6208 return -EINVAL; 6209 6210 if (rss_size > vsi->rss_size) 6211 return -EINVAL; 6212 6213 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6214 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6215 if (!lut) 6216 return -ENOMEM; 6217 6218 /* Ignoring user configured lut if there is one */ 6219 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6220 6221 /* Use user configured hash key if there is one, otherwise 6222 * use default. 6223 */ 6224 if (vsi->rss_hkey_user) 6225 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6226 else 6227 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6228 6229 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6230 if (ret) { 6231 dev_info(&pf->pdev->dev, 6232 "Cannot set RSS lut, err %pe aq_err %s\n", 6233 ERR_PTR(ret), 6234 i40e_aq_str(hw, hw->aq.asq_last_status)); 6235 kfree(lut); 6236 return ret; 6237 } 6238 kfree(lut); 6239 6240 /* Do the update w.r.t. storing rss_size */ 6241 if (!vsi->orig_rss_size) 6242 vsi->orig_rss_size = vsi->rss_size; 6243 vsi->current_rss_size = local_rss_size; 6244 6245 return ret; 6246 } 6247 6248 /** 6249 * i40e_channel_setup_queue_map - Setup a channel queue map 6250 * @pf: ptr to PF device 6251 * @ctxt: VSI context structure 6252 * @ch: ptr to channel structure 6253 * 6254 * Setup queue map for a specific channel 6255 **/ 6256 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6257 struct i40e_vsi_context *ctxt, 6258 struct i40e_channel *ch) 6259 { 6260 u16 qcount, qmap, sections = 0; 6261 u8 offset = 0; 6262 int pow; 6263 6264 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6265 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6266 6267 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6268 ch->num_queue_pairs = qcount; 6269 6270 /* find the next higher power-of-2 of num queue pairs */ 6271 pow = ilog2(qcount); 6272 if (!is_power_of_2(qcount)) 6273 pow++; 6274 6275 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6276 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6277 6278 /* Setup queue TC[0].qmap for given VSI context */ 6279 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6280 6281 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6282 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6283 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6284 ctxt->info.valid_sections |= cpu_to_le16(sections); 6285 } 6286 6287 /** 6288 * i40e_add_channel - add a channel by adding VSI 6289 * @pf: ptr to PF device 6290 * @uplink_seid: underlying HW switching element (VEB) ID 6291 * @ch: ptr to channel structure 6292 * 6293 * Add a channel (VSI) using add_vsi and queue_map 6294 **/ 6295 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6296 struct i40e_channel *ch) 6297 { 6298 struct i40e_hw *hw = &pf->hw; 6299 struct i40e_vsi_context ctxt; 6300 u8 enabled_tc = 0x1; /* TC0 enabled */ 6301 int ret; 6302 6303 if (ch->type != I40E_VSI_VMDQ2) { 6304 dev_info(&pf->pdev->dev, 6305 "add new vsi failed, ch->type %d\n", ch->type); 6306 return -EINVAL; 6307 } 6308 6309 memset(&ctxt, 0, sizeof(ctxt)); 6310 ctxt.pf_num = hw->pf_id; 6311 ctxt.vf_num = 0; 6312 ctxt.uplink_seid = uplink_seid; 6313 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6314 if (ch->type == I40E_VSI_VMDQ2) 6315 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6316 6317 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6318 ctxt.info.valid_sections |= 6319 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6320 ctxt.info.switch_id = 6321 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6322 } 6323 6324 /* Set queue map for a given VSI context */ 6325 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6326 6327 /* Now time to create VSI */ 6328 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6329 if (ret) { 6330 dev_info(&pf->pdev->dev, 6331 "add new vsi failed, err %pe aq_err %s\n", 6332 ERR_PTR(ret), 6333 i40e_aq_str(&pf->hw, 6334 pf->hw.aq.asq_last_status)); 6335 return -ENOENT; 6336 } 6337 6338 /* Success, update channel, set enabled_tc only if the channel 6339 * is not a macvlan 6340 */ 6341 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6342 ch->seid = ctxt.seid; 6343 ch->vsi_number = ctxt.vsi_number; 6344 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6345 6346 /* copy just the sections touched not the entire info 6347 * since not all sections are valid as returned by 6348 * update vsi params 6349 */ 6350 ch->info.mapping_flags = ctxt.info.mapping_flags; 6351 memcpy(&ch->info.queue_mapping, 6352 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6353 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6354 sizeof(ctxt.info.tc_mapping)); 6355 6356 return 0; 6357 } 6358 6359 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6360 u8 *bw_share) 6361 { 6362 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6363 int ret; 6364 int i; 6365 6366 memset(&bw_data, 0, sizeof(bw_data)); 6367 bw_data.tc_valid_bits = ch->enabled_tc; 6368 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6369 bw_data.tc_bw_credits[i] = bw_share[i]; 6370 6371 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6372 &bw_data, NULL); 6373 if (ret) { 6374 dev_info(&vsi->back->pdev->dev, 6375 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6376 vsi->back->hw.aq.asq_last_status, ch->seid); 6377 return -EINVAL; 6378 } 6379 6380 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6381 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6382 6383 return 0; 6384 } 6385 6386 /** 6387 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6388 * @pf: ptr to PF device 6389 * @vsi: the VSI being setup 6390 * @ch: ptr to channel structure 6391 * 6392 * Configure TX rings associated with channel (VSI) since queues are being 6393 * from parent VSI. 6394 **/ 6395 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6396 struct i40e_vsi *vsi, 6397 struct i40e_channel *ch) 6398 { 6399 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6400 int ret; 6401 int i; 6402 6403 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6404 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6405 if (ch->enabled_tc & BIT(i)) 6406 bw_share[i] = 1; 6407 } 6408 6409 /* configure BW for new VSI */ 6410 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6411 if (ret) { 6412 dev_info(&vsi->back->pdev->dev, 6413 "Failed configuring TC map %d for channel (seid %u)\n", 6414 ch->enabled_tc, ch->seid); 6415 return ret; 6416 } 6417 6418 for (i = 0; i < ch->num_queue_pairs; i++) { 6419 struct i40e_ring *tx_ring, *rx_ring; 6420 u16 pf_q; 6421 6422 pf_q = ch->base_queue + i; 6423 6424 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6425 * context 6426 */ 6427 tx_ring = vsi->tx_rings[pf_q]; 6428 tx_ring->ch = ch; 6429 6430 /* Get the RX ring ptr */ 6431 rx_ring = vsi->rx_rings[pf_q]; 6432 rx_ring->ch = ch; 6433 } 6434 6435 return 0; 6436 } 6437 6438 /** 6439 * i40e_setup_hw_channel - setup new channel 6440 * @pf: ptr to PF device 6441 * @vsi: the VSI being setup 6442 * @ch: ptr to channel structure 6443 * @uplink_seid: underlying HW switching element (VEB) ID 6444 * @type: type of channel to be created (VMDq2/VF) 6445 * 6446 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6447 * and configures TX rings accordingly 6448 **/ 6449 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6450 struct i40e_vsi *vsi, 6451 struct i40e_channel *ch, 6452 u16 uplink_seid, u8 type) 6453 { 6454 int ret; 6455 6456 ch->initialized = false; 6457 ch->base_queue = vsi->next_base_queue; 6458 ch->type = type; 6459 6460 /* Proceed with creation of channel (VMDq2) VSI */ 6461 ret = i40e_add_channel(pf, uplink_seid, ch); 6462 if (ret) { 6463 dev_info(&pf->pdev->dev, 6464 "failed to add_channel using uplink_seid %u\n", 6465 uplink_seid); 6466 return ret; 6467 } 6468 6469 /* Mark the successful creation of channel */ 6470 ch->initialized = true; 6471 6472 /* Reconfigure TX queues using QTX_CTL register */ 6473 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6474 if (ret) { 6475 dev_info(&pf->pdev->dev, 6476 "failed to configure TX rings for channel %u\n", 6477 ch->seid); 6478 return ret; 6479 } 6480 6481 /* update 'next_base_queue' */ 6482 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6483 dev_dbg(&pf->pdev->dev, 6484 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6485 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6486 ch->num_queue_pairs, 6487 vsi->next_base_queue); 6488 return ret; 6489 } 6490 6491 /** 6492 * i40e_setup_channel - setup new channel using uplink element 6493 * @pf: ptr to PF device 6494 * @vsi: pointer to the VSI to set up the channel within 6495 * @ch: ptr to channel structure 6496 * 6497 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6498 * and uplink switching element (uplink_seid) 6499 **/ 6500 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6501 struct i40e_channel *ch) 6502 { 6503 struct i40e_vsi *main_vsi; 6504 u8 vsi_type; 6505 u16 seid; 6506 int ret; 6507 6508 if (vsi->type == I40E_VSI_MAIN) { 6509 vsi_type = I40E_VSI_VMDQ2; 6510 } else { 6511 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6512 vsi->type); 6513 return false; 6514 } 6515 6516 /* underlying switching element */ 6517 main_vsi = i40e_pf_get_main_vsi(pf); 6518 seid = main_vsi->uplink_seid; 6519 6520 /* create channel (VSI), configure TX rings */ 6521 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6522 if (ret) { 6523 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6524 return false; 6525 } 6526 6527 return ch->initialized ? true : false; 6528 } 6529 6530 /** 6531 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6532 * @vsi: ptr to VSI which has PF backing 6533 * 6534 * Sets up switch mode correctly if it needs to be changed and perform 6535 * what are allowed modes. 6536 **/ 6537 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6538 { 6539 u8 mode; 6540 struct i40e_pf *pf = vsi->back; 6541 struct i40e_hw *hw = &pf->hw; 6542 int ret; 6543 6544 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6545 if (ret) 6546 return -EINVAL; 6547 6548 if (hw->dev_caps.switch_mode) { 6549 /* if switch mode is set, support mode2 (non-tunneled for 6550 * cloud filter) for now 6551 */ 6552 u32 switch_mode = hw->dev_caps.switch_mode & 6553 I40E_SWITCH_MODE_MASK; 6554 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6555 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6556 return 0; 6557 dev_err(&pf->pdev->dev, 6558 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6559 hw->dev_caps.switch_mode); 6560 return -EINVAL; 6561 } 6562 } 6563 6564 /* Set Bit 7 to be valid */ 6565 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6566 6567 /* Set L4type for TCP support */ 6568 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6569 6570 /* Set cloud filter mode */ 6571 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6572 6573 /* Prep mode field for set_switch_config */ 6574 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6575 pf->last_sw_conf_valid_flags, 6576 mode, NULL); 6577 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6578 dev_err(&pf->pdev->dev, 6579 "couldn't set switch config bits, err %pe aq_err %s\n", 6580 ERR_PTR(ret), 6581 i40e_aq_str(hw, 6582 hw->aq.asq_last_status)); 6583 6584 return ret; 6585 } 6586 6587 /** 6588 * i40e_create_queue_channel - function to create channel 6589 * @vsi: VSI to be configured 6590 * @ch: ptr to channel (it contains channel specific params) 6591 * 6592 * This function creates channel (VSI) using num_queues specified by user, 6593 * reconfigs RSS if needed. 6594 **/ 6595 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6596 struct i40e_channel *ch) 6597 { 6598 struct i40e_pf *pf = vsi->back; 6599 bool reconfig_rss; 6600 int err; 6601 6602 if (!ch) 6603 return -EINVAL; 6604 6605 if (!ch->num_queue_pairs) { 6606 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6607 ch->num_queue_pairs); 6608 return -EINVAL; 6609 } 6610 6611 /* validate user requested num_queues for channel */ 6612 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6613 &reconfig_rss); 6614 if (err) { 6615 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6616 ch->num_queue_pairs); 6617 return -EINVAL; 6618 } 6619 6620 /* By default we are in VEPA mode, if this is the first VF/VMDq 6621 * VSI to be added switch to VEB mode. 6622 */ 6623 6624 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6625 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6626 6627 if (vsi->type == I40E_VSI_MAIN) { 6628 if (i40e_is_tc_mqprio_enabled(pf)) 6629 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6630 else 6631 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6632 } 6633 /* now onwards for main VSI, number of queues will be value 6634 * of TC0's queue count 6635 */ 6636 } 6637 6638 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6639 * it should be more than num_queues 6640 */ 6641 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6642 dev_dbg(&pf->pdev->dev, 6643 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6644 vsi->cnt_q_avail, ch->num_queue_pairs); 6645 return -EINVAL; 6646 } 6647 6648 /* reconfig_rss only if vsi type is MAIN_VSI */ 6649 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6650 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6651 if (err) { 6652 dev_info(&pf->pdev->dev, 6653 "Error: unable to reconfig rss for num_queues (%u)\n", 6654 ch->num_queue_pairs); 6655 return -EINVAL; 6656 } 6657 } 6658 6659 if (!i40e_setup_channel(pf, vsi, ch)) { 6660 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6661 return -EINVAL; 6662 } 6663 6664 dev_info(&pf->pdev->dev, 6665 "Setup channel (id:%u) utilizing num_queues %d\n", 6666 ch->seid, ch->num_queue_pairs); 6667 6668 /* configure VSI for BW limit */ 6669 if (ch->max_tx_rate) { 6670 u64 credits = ch->max_tx_rate; 6671 6672 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6673 return -EINVAL; 6674 6675 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6676 dev_dbg(&pf->pdev->dev, 6677 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6678 ch->max_tx_rate, 6679 credits, 6680 ch->seid); 6681 } 6682 6683 /* in case of VF, this will be main SRIOV VSI */ 6684 ch->parent_vsi = vsi; 6685 6686 /* and update main_vsi's count for queue_available to use */ 6687 vsi->cnt_q_avail -= ch->num_queue_pairs; 6688 6689 return 0; 6690 } 6691 6692 /** 6693 * i40e_configure_queue_channels - Add queue channel for the given TCs 6694 * @vsi: VSI to be configured 6695 * 6696 * Configures queue channel mapping to the given TCs 6697 **/ 6698 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6699 { 6700 struct i40e_channel *ch; 6701 u64 max_rate = 0; 6702 int ret = 0, i; 6703 6704 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6705 vsi->tc_seid_map[0] = vsi->seid; 6706 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6707 if (vsi->tc_config.enabled_tc & BIT(i)) { 6708 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6709 if (!ch) { 6710 ret = -ENOMEM; 6711 goto err_free; 6712 } 6713 6714 INIT_LIST_HEAD(&ch->list); 6715 ch->num_queue_pairs = 6716 vsi->tc_config.tc_info[i].qcount; 6717 ch->base_queue = 6718 vsi->tc_config.tc_info[i].qoffset; 6719 6720 /* Bandwidth limit through tc interface is in bytes/s, 6721 * change to Mbit/s 6722 */ 6723 max_rate = vsi->mqprio_qopt.max_rate[i]; 6724 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6725 ch->max_tx_rate = max_rate; 6726 6727 list_add_tail(&ch->list, &vsi->ch_list); 6728 6729 ret = i40e_create_queue_channel(vsi, ch); 6730 if (ret) { 6731 dev_err(&vsi->back->pdev->dev, 6732 "Failed creating queue channel with TC%d: queues %d\n", 6733 i, ch->num_queue_pairs); 6734 goto err_free; 6735 } 6736 vsi->tc_seid_map[i] = ch->seid; 6737 } 6738 } 6739 6740 /* reset to reconfigure TX queue contexts */ 6741 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6742 return ret; 6743 6744 err_free: 6745 i40e_remove_queue_channels(vsi); 6746 return ret; 6747 } 6748 6749 /** 6750 * i40e_veb_config_tc - Configure TCs for given VEB 6751 * @veb: given VEB 6752 * @enabled_tc: TC bitmap 6753 * 6754 * Configures given TC bitmap for VEB (switching) element 6755 **/ 6756 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6757 { 6758 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6759 struct i40e_pf *pf = veb->pf; 6760 int ret = 0; 6761 int i; 6762 6763 /* No TCs or already enabled TCs just return */ 6764 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6765 return ret; 6766 6767 bw_data.tc_valid_bits = enabled_tc; 6768 /* bw_data.absolute_credits is not set (relative) */ 6769 6770 /* Enable ETS TCs with equal BW Share for now */ 6771 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6772 if (enabled_tc & BIT(i)) 6773 bw_data.tc_bw_share_credits[i] = 1; 6774 } 6775 6776 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6777 &bw_data, NULL); 6778 if (ret) { 6779 dev_info(&pf->pdev->dev, 6780 "VEB bw config failed, err %pe aq_err %s\n", 6781 ERR_PTR(ret), 6782 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6783 goto out; 6784 } 6785 6786 /* Update the BW information */ 6787 ret = i40e_veb_get_bw_info(veb); 6788 if (ret) { 6789 dev_info(&pf->pdev->dev, 6790 "Failed getting veb bw config, err %pe aq_err %s\n", 6791 ERR_PTR(ret), 6792 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6793 } 6794 6795 out: 6796 return ret; 6797 } 6798 6799 #ifdef CONFIG_I40E_DCB 6800 /** 6801 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6802 * @pf: PF struct 6803 * 6804 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6805 * the caller would've quiesce all the VSIs before calling 6806 * this function 6807 **/ 6808 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6809 { 6810 struct i40e_vsi *vsi; 6811 struct i40e_veb *veb; 6812 u8 tc_map = 0; 6813 int ret; 6814 int v; 6815 6816 /* Enable the TCs available on PF to all VEBs */ 6817 tc_map = i40e_pf_get_tc_map(pf); 6818 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6819 return; 6820 6821 i40e_pf_for_each_veb(pf, v, veb) { 6822 ret = i40e_veb_config_tc(veb, tc_map); 6823 if (ret) { 6824 dev_info(&pf->pdev->dev, 6825 "Failed configuring TC for VEB seid=%d\n", 6826 veb->seid); 6827 /* Will try to configure as many components */ 6828 } 6829 } 6830 6831 /* Update each VSI */ 6832 i40e_pf_for_each_vsi(pf, v, vsi) { 6833 /* - Enable all TCs for the LAN VSI 6834 * - For all others keep them at TC0 for now 6835 */ 6836 if (vsi->type == I40E_VSI_MAIN) 6837 tc_map = i40e_pf_get_tc_map(pf); 6838 else 6839 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6840 6841 ret = i40e_vsi_config_tc(vsi, tc_map); 6842 if (ret) { 6843 dev_info(&pf->pdev->dev, 6844 "Failed configuring TC for VSI seid=%d\n", 6845 vsi->seid); 6846 /* Will try to configure as many components */ 6847 } else { 6848 /* Re-configure VSI vectors based on updated TC map */ 6849 i40e_vsi_map_rings_to_vectors(vsi); 6850 if (vsi->netdev) 6851 i40e_dcbnl_set_all(vsi); 6852 } 6853 } 6854 } 6855 6856 /** 6857 * i40e_resume_port_tx - Resume port Tx 6858 * @pf: PF struct 6859 * 6860 * Resume a port's Tx and issue a PF reset in case of failure to 6861 * resume. 6862 **/ 6863 static int i40e_resume_port_tx(struct i40e_pf *pf) 6864 { 6865 struct i40e_hw *hw = &pf->hw; 6866 int ret; 6867 6868 ret = i40e_aq_resume_port_tx(hw, NULL); 6869 if (ret) { 6870 dev_info(&pf->pdev->dev, 6871 "Resume Port Tx failed, err %pe aq_err %s\n", 6872 ERR_PTR(ret), 6873 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6874 /* Schedule PF reset to recover */ 6875 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6876 i40e_service_event_schedule(pf); 6877 } 6878 6879 return ret; 6880 } 6881 6882 /** 6883 * i40e_suspend_port_tx - Suspend port Tx 6884 * @pf: PF struct 6885 * 6886 * Suspend a port's Tx and issue a PF reset in case of failure. 6887 **/ 6888 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6889 { 6890 struct i40e_hw *hw = &pf->hw; 6891 int ret; 6892 6893 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6894 if (ret) { 6895 dev_info(&pf->pdev->dev, 6896 "Suspend Port Tx failed, err %pe aq_err %s\n", 6897 ERR_PTR(ret), 6898 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6899 /* Schedule PF reset to recover */ 6900 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6901 i40e_service_event_schedule(pf); 6902 } 6903 6904 return ret; 6905 } 6906 6907 /** 6908 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6909 * @pf: PF being configured 6910 * @new_cfg: New DCBX configuration 6911 * 6912 * Program DCB settings into HW and reconfigure VEB/VSIs on 6913 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6914 **/ 6915 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6916 struct i40e_dcbx_config *new_cfg) 6917 { 6918 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6919 int ret; 6920 6921 /* Check if need reconfiguration */ 6922 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6923 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6924 return 0; 6925 } 6926 6927 /* Config change disable all VSIs */ 6928 i40e_pf_quiesce_all_vsi(pf); 6929 6930 /* Copy the new config to the current config */ 6931 *old_cfg = *new_cfg; 6932 old_cfg->etsrec = old_cfg->etscfg; 6933 ret = i40e_set_dcb_config(&pf->hw); 6934 if (ret) { 6935 dev_info(&pf->pdev->dev, 6936 "Set DCB Config failed, err %pe aq_err %s\n", 6937 ERR_PTR(ret), 6938 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6939 goto out; 6940 } 6941 6942 /* Changes in configuration update VEB/VSI */ 6943 i40e_dcb_reconfigure(pf); 6944 out: 6945 /* In case of reset do not try to resume anything */ 6946 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6947 /* Re-start the VSIs if disabled */ 6948 ret = i40e_resume_port_tx(pf); 6949 /* In case of error no point in resuming VSIs */ 6950 if (ret) 6951 goto err; 6952 i40e_pf_unquiesce_all_vsi(pf); 6953 } 6954 err: 6955 return ret; 6956 } 6957 6958 /** 6959 * i40e_hw_dcb_config - Program new DCBX settings into HW 6960 * @pf: PF being configured 6961 * @new_cfg: New DCBX configuration 6962 * 6963 * Program DCB settings into HW and reconfigure VEB/VSIs on 6964 * given PF 6965 **/ 6966 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6967 { 6968 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6969 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6970 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6971 struct i40e_dcbx_config *old_cfg; 6972 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6973 struct i40e_rx_pb_config pb_cfg; 6974 struct i40e_hw *hw = &pf->hw; 6975 u8 num_ports = hw->num_ports; 6976 bool need_reconfig; 6977 int ret = -EINVAL; 6978 u8 lltc_map = 0; 6979 u8 tc_map = 0; 6980 u8 new_numtc; 6981 u8 i; 6982 6983 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6984 /* Un-pack information to Program ETS HW via shared API 6985 * numtc, tcmap 6986 * LLTC map 6987 * ETS/NON-ETS arbiter mode 6988 * max exponent (credit refills) 6989 * Total number of ports 6990 * PFC priority bit-map 6991 * Priority Table 6992 * BW % per TC 6993 * Arbiter mode between UPs sharing same TC 6994 * TSA table (ETS or non-ETS) 6995 * EEE enabled or not 6996 * MFS TC table 6997 */ 6998 6999 new_numtc = i40e_dcb_get_num_tc(new_cfg); 7000 7001 memset(&ets_data, 0, sizeof(ets_data)); 7002 for (i = 0; i < new_numtc; i++) { 7003 tc_map |= BIT(i); 7004 switch (new_cfg->etscfg.tsatable[i]) { 7005 case I40E_IEEE_TSA_ETS: 7006 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 7007 ets_data.tc_bw_share_credits[i] = 7008 new_cfg->etscfg.tcbwtable[i]; 7009 break; 7010 case I40E_IEEE_TSA_STRICT: 7011 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 7012 lltc_map |= BIT(i); 7013 ets_data.tc_bw_share_credits[i] = 7014 I40E_DCB_STRICT_PRIO_CREDITS; 7015 break; 7016 default: 7017 /* Invalid TSA type */ 7018 need_reconfig = false; 7019 goto out; 7020 } 7021 } 7022 7023 old_cfg = &hw->local_dcbx_config; 7024 /* Check if need reconfiguration */ 7025 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 7026 7027 /* If needed, enable/disable frame tagging, disable all VSIs 7028 * and suspend port tx 7029 */ 7030 if (need_reconfig) { 7031 /* Enable DCB tagging only when more than one TC */ 7032 if (new_numtc > 1) 7033 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7034 else 7035 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7036 7037 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7038 /* Reconfiguration needed quiesce all VSIs */ 7039 i40e_pf_quiesce_all_vsi(pf); 7040 ret = i40e_suspend_port_tx(pf); 7041 if (ret) 7042 goto err; 7043 } 7044 7045 /* Configure Port ETS Tx Scheduler */ 7046 ets_data.tc_valid_bits = tc_map; 7047 ets_data.tc_strict_priority_flags = lltc_map; 7048 ret = i40e_aq_config_switch_comp_ets 7049 (hw, pf->mac_seid, &ets_data, 7050 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7051 if (ret) { 7052 dev_info(&pf->pdev->dev, 7053 "Modify Port ETS failed, err %pe aq_err %s\n", 7054 ERR_PTR(ret), 7055 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7056 goto out; 7057 } 7058 7059 /* Configure Rx ETS HW */ 7060 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7061 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7062 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7063 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7064 I40E_DCB_DEFAULT_MAX_EXPONENT, 7065 lltc_map); 7066 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7067 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7068 prio_type); 7069 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7070 new_cfg->etscfg.prioritytable); 7071 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7072 7073 /* Configure Rx Packet Buffers in HW */ 7074 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7075 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 7076 7077 mfs_tc[i] = main_vsi->netdev->mtu; 7078 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7079 } 7080 7081 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7082 false, new_cfg->pfc.pfcenable, 7083 mfs_tc, &pb_cfg); 7084 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7085 7086 /* Update the local Rx Packet buffer config */ 7087 pf->pb_cfg = pb_cfg; 7088 7089 /* Inform the FW about changes to DCB configuration */ 7090 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7091 if (ret) { 7092 dev_info(&pf->pdev->dev, 7093 "DCB Updated failed, err %pe aq_err %s\n", 7094 ERR_PTR(ret), 7095 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7096 goto out; 7097 } 7098 7099 /* Update the port DCBx configuration */ 7100 *old_cfg = *new_cfg; 7101 7102 /* Changes in configuration update VEB/VSI */ 7103 i40e_dcb_reconfigure(pf); 7104 out: 7105 /* Re-start the VSIs if disabled */ 7106 if (need_reconfig) { 7107 ret = i40e_resume_port_tx(pf); 7108 7109 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7110 /* In case of error no point in resuming VSIs */ 7111 if (ret) 7112 goto err; 7113 7114 /* Wait for the PF's queues to be disabled */ 7115 ret = i40e_pf_wait_queues_disabled(pf); 7116 if (ret) { 7117 /* Schedule PF reset to recover */ 7118 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7119 i40e_service_event_schedule(pf); 7120 goto err; 7121 } else { 7122 i40e_pf_unquiesce_all_vsi(pf); 7123 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7124 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7125 } 7126 /* registers are set, lets apply */ 7127 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7128 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7129 } 7130 7131 err: 7132 return ret; 7133 } 7134 7135 /** 7136 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7137 * @pf: PF being queried 7138 * 7139 * Set default DCB configuration in case DCB is to be done in SW. 7140 **/ 7141 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7142 { 7143 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7144 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7145 struct i40e_hw *hw = &pf->hw; 7146 int err; 7147 7148 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7149 /* Update the local cached instance with TC0 ETS */ 7150 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7151 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7152 pf->tmp_cfg.etscfg.maxtcs = 0; 7153 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7154 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7155 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7156 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7157 /* FW needs one App to configure HW */ 7158 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7159 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7160 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7161 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7162 7163 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7164 } 7165 7166 memset(&ets_data, 0, sizeof(ets_data)); 7167 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7168 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7169 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7170 7171 /* Enable ETS on the Physical port */ 7172 err = i40e_aq_config_switch_comp_ets 7173 (hw, pf->mac_seid, &ets_data, 7174 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7175 if (err) { 7176 dev_info(&pf->pdev->dev, 7177 "Enable Port ETS failed, err %pe aq_err %s\n", 7178 ERR_PTR(err), 7179 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7180 err = -ENOENT; 7181 goto out; 7182 } 7183 7184 /* Update the local cached instance with TC0 ETS */ 7185 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7186 dcb_cfg->etscfg.cbs = 0; 7187 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7188 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7189 7190 out: 7191 return err; 7192 } 7193 7194 /** 7195 * i40e_init_pf_dcb - Initialize DCB configuration 7196 * @pf: PF being configured 7197 * 7198 * Query the current DCB configuration and cache it 7199 * in the hardware structure 7200 **/ 7201 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7202 { 7203 struct i40e_hw *hw = &pf->hw; 7204 int err; 7205 7206 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7207 * Also do not enable DCBx if FW LLDP agent is disabled 7208 */ 7209 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7210 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7211 err = -EOPNOTSUPP; 7212 goto out; 7213 } 7214 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7215 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7216 err = i40e_dcb_sw_default_config(pf); 7217 if (err) { 7218 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7219 goto out; 7220 } 7221 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7222 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7223 DCB_CAP_DCBX_VER_IEEE; 7224 /* at init capable but disabled */ 7225 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7226 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7227 goto out; 7228 } 7229 err = i40e_init_dcb(hw, true); 7230 if (!err) { 7231 /* Device/Function is not DCBX capable */ 7232 if ((!hw->func_caps.dcb) || 7233 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7234 dev_info(&pf->pdev->dev, 7235 "DCBX offload is not supported or is disabled for this PF.\n"); 7236 } else { 7237 /* When status is not DISABLED then DCBX in FW */ 7238 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7239 DCB_CAP_DCBX_VER_IEEE; 7240 7241 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7242 /* Enable DCB tagging only when more than one TC 7243 * or explicitly disable if only one TC 7244 */ 7245 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7246 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7247 else 7248 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7249 dev_dbg(&pf->pdev->dev, 7250 "DCBX offload is supported for this PF.\n"); 7251 } 7252 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7253 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7254 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7255 } else { 7256 dev_info(&pf->pdev->dev, 7257 "Query for DCB configuration failed, err %pe aq_err %s\n", 7258 ERR_PTR(err), 7259 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7260 } 7261 7262 out: 7263 return err; 7264 } 7265 #endif /* CONFIG_I40E_DCB */ 7266 7267 static void i40e_print_link_message_eee(struct i40e_vsi *vsi, 7268 const char *speed, const char *fc) 7269 { 7270 struct ethtool_keee kedata; 7271 7272 memzero_explicit(&kedata, sizeof(kedata)); 7273 if (vsi->netdev->ethtool_ops->get_eee) 7274 vsi->netdev->ethtool_ops->get_eee(vsi->netdev, &kedata); 7275 7276 if (!linkmode_empty(kedata.supported)) 7277 netdev_info(vsi->netdev, 7278 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s, EEE: %s\n", 7279 speed, fc, 7280 kedata.eee_enabled ? "Enabled" : "Disabled"); 7281 else 7282 netdev_info(vsi->netdev, 7283 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7284 speed, fc); 7285 } 7286 7287 /** 7288 * i40e_print_link_message - print link up or down 7289 * @vsi: the VSI for which link needs a message 7290 * @isup: true of link is up, false otherwise 7291 */ 7292 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7293 { 7294 enum i40e_aq_link_speed new_speed; 7295 struct i40e_pf *pf = vsi->back; 7296 char *speed = "Unknown"; 7297 char *fc = "Unknown"; 7298 char *fec = ""; 7299 char *req_fec = ""; 7300 char *an = ""; 7301 7302 if (isup) 7303 new_speed = pf->hw.phy.link_info.link_speed; 7304 else 7305 new_speed = I40E_LINK_SPEED_UNKNOWN; 7306 7307 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7308 return; 7309 vsi->current_isup = isup; 7310 vsi->current_speed = new_speed; 7311 if (!isup) { 7312 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7313 return; 7314 } 7315 7316 /* Warn user if link speed on NPAR enabled partition is not at 7317 * least 10GB 7318 */ 7319 if (pf->hw.func_caps.npar_enable && 7320 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7321 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7322 netdev_warn(vsi->netdev, 7323 "The partition detected link speed that is less than 10Gbps\n"); 7324 7325 switch (pf->hw.phy.link_info.link_speed) { 7326 case I40E_LINK_SPEED_40GB: 7327 speed = "40 G"; 7328 break; 7329 case I40E_LINK_SPEED_20GB: 7330 speed = "20 G"; 7331 break; 7332 case I40E_LINK_SPEED_25GB: 7333 speed = "25 G"; 7334 break; 7335 case I40E_LINK_SPEED_10GB: 7336 speed = "10 G"; 7337 break; 7338 case I40E_LINK_SPEED_5GB: 7339 speed = "5 G"; 7340 break; 7341 case I40E_LINK_SPEED_2_5GB: 7342 speed = "2.5 G"; 7343 break; 7344 case I40E_LINK_SPEED_1GB: 7345 speed = "1000 M"; 7346 break; 7347 case I40E_LINK_SPEED_100MB: 7348 speed = "100 M"; 7349 break; 7350 default: 7351 break; 7352 } 7353 7354 switch (pf->hw.fc.current_mode) { 7355 case I40E_FC_FULL: 7356 fc = "RX/TX"; 7357 break; 7358 case I40E_FC_TX_PAUSE: 7359 fc = "TX"; 7360 break; 7361 case I40E_FC_RX_PAUSE: 7362 fc = "RX"; 7363 break; 7364 default: 7365 fc = "None"; 7366 break; 7367 } 7368 7369 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7370 req_fec = "None"; 7371 fec = "None"; 7372 an = "False"; 7373 7374 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7375 an = "True"; 7376 7377 if (pf->hw.phy.link_info.fec_info & 7378 I40E_AQ_CONFIG_FEC_KR_ENA) 7379 fec = "CL74 FC-FEC/BASE-R"; 7380 else if (pf->hw.phy.link_info.fec_info & 7381 I40E_AQ_CONFIG_FEC_RS_ENA) 7382 fec = "CL108 RS-FEC"; 7383 7384 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7385 * both RS and FC are requested 7386 */ 7387 if (vsi->back->hw.phy.link_info.req_fec_info & 7388 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7389 if (vsi->back->hw.phy.link_info.req_fec_info & 7390 I40E_AQ_REQUEST_FEC_RS) 7391 req_fec = "CL108 RS-FEC"; 7392 else 7393 req_fec = "CL74 FC-FEC/BASE-R"; 7394 } 7395 netdev_info(vsi->netdev, 7396 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7397 speed, req_fec, fec, an, fc); 7398 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7399 req_fec = "None"; 7400 fec = "None"; 7401 an = "False"; 7402 7403 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7404 an = "True"; 7405 7406 if (pf->hw.phy.link_info.fec_info & 7407 I40E_AQ_CONFIG_FEC_KR_ENA) 7408 fec = "CL74 FC-FEC/BASE-R"; 7409 7410 if (pf->hw.phy.link_info.req_fec_info & 7411 I40E_AQ_REQUEST_FEC_KR) 7412 req_fec = "CL74 FC-FEC/BASE-R"; 7413 7414 netdev_info(vsi->netdev, 7415 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7416 speed, req_fec, fec, an, fc); 7417 } else { 7418 i40e_print_link_message_eee(vsi, speed, fc); 7419 } 7420 7421 } 7422 7423 /** 7424 * i40e_up_complete - Finish the last steps of bringing up a connection 7425 * @vsi: the VSI being configured 7426 **/ 7427 static int i40e_up_complete(struct i40e_vsi *vsi) 7428 { 7429 struct i40e_pf *pf = vsi->back; 7430 int err; 7431 7432 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7433 i40e_vsi_configure_msix(vsi); 7434 else 7435 i40e_configure_msi_and_legacy(vsi); 7436 7437 /* start rings */ 7438 err = i40e_vsi_start_rings(vsi); 7439 if (err) 7440 return err; 7441 7442 clear_bit(__I40E_VSI_DOWN, vsi->state); 7443 i40e_napi_enable_all(vsi); 7444 i40e_vsi_enable_irq(vsi); 7445 7446 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7447 (vsi->netdev)) { 7448 i40e_print_link_message(vsi, true); 7449 netif_tx_start_all_queues(vsi->netdev); 7450 netif_carrier_on(vsi->netdev); 7451 } 7452 7453 /* replay FDIR SB filters */ 7454 if (vsi->type == I40E_VSI_FDIR) { 7455 /* reset fd counters */ 7456 pf->fd_add_err = 0; 7457 pf->fd_atr_cnt = 0; 7458 i40e_fdir_filter_restore(vsi); 7459 } 7460 7461 /* On the next run of the service_task, notify any clients of the new 7462 * opened netdev 7463 */ 7464 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7465 i40e_service_event_schedule(pf); 7466 7467 return 0; 7468 } 7469 7470 /** 7471 * i40e_vsi_reinit_locked - Reset the VSI 7472 * @vsi: the VSI being configured 7473 * 7474 * Rebuild the ring structs after some configuration 7475 * has changed, e.g. MTU size. 7476 **/ 7477 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7478 { 7479 struct i40e_pf *pf = vsi->back; 7480 7481 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7482 usleep_range(1000, 2000); 7483 i40e_down(vsi); 7484 7485 i40e_up(vsi); 7486 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7487 } 7488 7489 /** 7490 * i40e_force_link_state - Force the link status 7491 * @pf: board private structure 7492 * @is_up: whether the link state should be forced up or down 7493 **/ 7494 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7495 { 7496 struct i40e_aq_get_phy_abilities_resp abilities; 7497 struct i40e_aq_set_phy_config config = {0}; 7498 bool non_zero_phy_type = is_up; 7499 struct i40e_hw *hw = &pf->hw; 7500 u64 mask; 7501 u8 speed; 7502 int err; 7503 7504 /* Card might've been put in an unstable state by other drivers 7505 * and applications, which causes incorrect speed values being 7506 * set on startup. In order to clear speed registers, we call 7507 * get_phy_capabilities twice, once to get initial state of 7508 * available speeds, and once to get current PHY config. 7509 */ 7510 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7511 NULL); 7512 if (err) { 7513 dev_err(&pf->pdev->dev, 7514 "failed to get phy cap., ret = %pe last_status = %s\n", 7515 ERR_PTR(err), 7516 i40e_aq_str(hw, hw->aq.asq_last_status)); 7517 return err; 7518 } 7519 speed = abilities.link_speed; 7520 7521 /* Get the current phy config */ 7522 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7523 NULL); 7524 if (err) { 7525 dev_err(&pf->pdev->dev, 7526 "failed to get phy cap., ret = %pe last_status = %s\n", 7527 ERR_PTR(err), 7528 i40e_aq_str(hw, hw->aq.asq_last_status)); 7529 return err; 7530 } 7531 7532 /* If link needs to go up, but was not forced to go down, 7533 * and its speed values are OK, no need for a flap 7534 * if non_zero_phy_type was set, still need to force up 7535 */ 7536 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7537 non_zero_phy_type = true; 7538 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7539 return 0; 7540 7541 /* To force link we need to set bits for all supported PHY types, 7542 * but there are now more than 32, so we need to split the bitmap 7543 * across two fields. 7544 */ 7545 mask = I40E_PHY_TYPES_BITMASK; 7546 config.phy_type = 7547 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7548 config.phy_type_ext = 7549 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7550 /* Copy the old settings, except of phy_type */ 7551 config.abilities = abilities.abilities; 7552 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7553 if (is_up) 7554 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7555 else 7556 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7557 } 7558 if (abilities.link_speed != 0) 7559 config.link_speed = abilities.link_speed; 7560 else 7561 config.link_speed = speed; 7562 config.eee_capability = abilities.eee_capability; 7563 config.eeer = abilities.eeer_val; 7564 config.low_power_ctrl = abilities.d3_lpan; 7565 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7566 I40E_AQ_PHY_FEC_CONFIG_MASK; 7567 err = i40e_aq_set_phy_config(hw, &config, NULL); 7568 7569 if (err) { 7570 dev_err(&pf->pdev->dev, 7571 "set phy config ret = %pe last_status = %s\n", 7572 ERR_PTR(err), 7573 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7574 return err; 7575 } 7576 7577 /* Update the link info */ 7578 err = i40e_update_link_info(hw); 7579 if (err) { 7580 /* Wait a little bit (on 40G cards it sometimes takes a really 7581 * long time for link to come back from the atomic reset) 7582 * and try once more 7583 */ 7584 msleep(1000); 7585 i40e_update_link_info(hw); 7586 } 7587 7588 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7589 7590 return 0; 7591 } 7592 7593 /** 7594 * i40e_up - Bring the connection back up after being down 7595 * @vsi: the VSI being configured 7596 **/ 7597 int i40e_up(struct i40e_vsi *vsi) 7598 { 7599 int err; 7600 7601 if (vsi->type == I40E_VSI_MAIN && 7602 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7603 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7604 i40e_force_link_state(vsi->back, true); 7605 7606 err = i40e_vsi_configure(vsi); 7607 if (!err) 7608 err = i40e_up_complete(vsi); 7609 7610 return err; 7611 } 7612 7613 /** 7614 * i40e_down - Shutdown the connection processing 7615 * @vsi: the VSI being stopped 7616 **/ 7617 void i40e_down(struct i40e_vsi *vsi) 7618 { 7619 int i; 7620 7621 /* It is assumed that the caller of this function 7622 * sets the vsi->state __I40E_VSI_DOWN bit. 7623 */ 7624 if (vsi->netdev) { 7625 netif_carrier_off(vsi->netdev); 7626 netif_tx_disable(vsi->netdev); 7627 } 7628 i40e_vsi_disable_irq(vsi); 7629 i40e_vsi_stop_rings(vsi); 7630 if (vsi->type == I40E_VSI_MAIN && 7631 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7632 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7633 i40e_force_link_state(vsi->back, false); 7634 i40e_napi_disable_all(vsi); 7635 7636 for (i = 0; i < vsi->num_queue_pairs; i++) { 7637 i40e_clean_tx_ring(vsi->tx_rings[i]); 7638 if (i40e_enabled_xdp_vsi(vsi)) { 7639 /* Make sure that in-progress ndo_xdp_xmit and 7640 * ndo_xsk_wakeup calls are completed. 7641 */ 7642 synchronize_rcu(); 7643 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7644 } 7645 i40e_clean_rx_ring(vsi->rx_rings[i]); 7646 } 7647 7648 } 7649 7650 /** 7651 * i40e_validate_mqprio_qopt- validate queue mapping info 7652 * @vsi: the VSI being configured 7653 * @mqprio_qopt: queue parametrs 7654 **/ 7655 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7656 struct tc_mqprio_qopt_offload *mqprio_qopt) 7657 { 7658 u64 sum_max_rate = 0; 7659 u64 max_rate = 0; 7660 int i; 7661 7662 if (mqprio_qopt->qopt.offset[0] != 0 || 7663 mqprio_qopt->qopt.num_tc < 1 || 7664 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7665 return -EINVAL; 7666 for (i = 0; ; i++) { 7667 if (!mqprio_qopt->qopt.count[i]) 7668 return -EINVAL; 7669 if (mqprio_qopt->min_rate[i]) { 7670 dev_err(&vsi->back->pdev->dev, 7671 "Invalid min tx rate (greater than 0) specified\n"); 7672 return -EINVAL; 7673 } 7674 max_rate = mqprio_qopt->max_rate[i]; 7675 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7676 sum_max_rate += max_rate; 7677 7678 if (i >= mqprio_qopt->qopt.num_tc - 1) 7679 break; 7680 if (mqprio_qopt->qopt.offset[i + 1] != 7681 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7682 return -EINVAL; 7683 } 7684 if (vsi->num_queue_pairs < 7685 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7686 dev_err(&vsi->back->pdev->dev, 7687 "Failed to create traffic channel, insufficient number of queues.\n"); 7688 return -EINVAL; 7689 } 7690 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7691 dev_err(&vsi->back->pdev->dev, 7692 "Invalid max tx rate specified\n"); 7693 return -EINVAL; 7694 } 7695 return 0; 7696 } 7697 7698 /** 7699 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7700 * @vsi: the VSI being configured 7701 **/ 7702 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7703 { 7704 u16 qcount; 7705 int i; 7706 7707 /* Only TC0 is enabled */ 7708 vsi->tc_config.numtc = 1; 7709 vsi->tc_config.enabled_tc = 1; 7710 qcount = min_t(int, vsi->alloc_queue_pairs, 7711 i40e_pf_get_max_q_per_tc(vsi->back)); 7712 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7713 /* For the TC that is not enabled set the offset to default 7714 * queue and allocate one queue for the given TC. 7715 */ 7716 vsi->tc_config.tc_info[i].qoffset = 0; 7717 if (i == 0) 7718 vsi->tc_config.tc_info[i].qcount = qcount; 7719 else 7720 vsi->tc_config.tc_info[i].qcount = 1; 7721 vsi->tc_config.tc_info[i].netdev_tc = 0; 7722 } 7723 } 7724 7725 /** 7726 * i40e_del_macvlan_filter 7727 * @hw: pointer to the HW structure 7728 * @seid: seid of the channel VSI 7729 * @macaddr: the mac address to apply as a filter 7730 * @aq_err: store the admin Q error 7731 * 7732 * This function deletes a mac filter on the channel VSI which serves as the 7733 * macvlan. Returns 0 on success. 7734 **/ 7735 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7736 const u8 *macaddr, int *aq_err) 7737 { 7738 struct i40e_aqc_remove_macvlan_element_data element; 7739 int status; 7740 7741 memset(&element, 0, sizeof(element)); 7742 ether_addr_copy(element.mac_addr, macaddr); 7743 element.vlan_tag = 0; 7744 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7745 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7746 *aq_err = hw->aq.asq_last_status; 7747 7748 return status; 7749 } 7750 7751 /** 7752 * i40e_add_macvlan_filter 7753 * @hw: pointer to the HW structure 7754 * @seid: seid of the channel VSI 7755 * @macaddr: the mac address to apply as a filter 7756 * @aq_err: store the admin Q error 7757 * 7758 * This function adds a mac filter on the channel VSI which serves as the 7759 * macvlan. Returns 0 on success. 7760 **/ 7761 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7762 const u8 *macaddr, int *aq_err) 7763 { 7764 struct i40e_aqc_add_macvlan_element_data element; 7765 u16 cmd_flags = 0; 7766 int status; 7767 7768 ether_addr_copy(element.mac_addr, macaddr); 7769 element.vlan_tag = 0; 7770 element.queue_number = 0; 7771 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7772 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7773 element.flags = cpu_to_le16(cmd_flags); 7774 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7775 *aq_err = hw->aq.asq_last_status; 7776 7777 return status; 7778 } 7779 7780 /** 7781 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7782 * @vsi: the VSI we want to access 7783 * @ch: the channel we want to access 7784 */ 7785 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7786 { 7787 struct i40e_ring *tx_ring, *rx_ring; 7788 u16 pf_q; 7789 int i; 7790 7791 for (i = 0; i < ch->num_queue_pairs; i++) { 7792 pf_q = ch->base_queue + i; 7793 tx_ring = vsi->tx_rings[pf_q]; 7794 tx_ring->ch = NULL; 7795 rx_ring = vsi->rx_rings[pf_q]; 7796 rx_ring->ch = NULL; 7797 } 7798 } 7799 7800 /** 7801 * i40e_free_macvlan_channels 7802 * @vsi: the VSI we want to access 7803 * 7804 * This function frees the Qs of the channel VSI from 7805 * the stack and also deletes the channel VSIs which 7806 * serve as macvlans. 7807 */ 7808 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7809 { 7810 struct i40e_channel *ch, *ch_tmp; 7811 int ret; 7812 7813 if (list_empty(&vsi->macvlan_list)) 7814 return; 7815 7816 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7817 struct i40e_vsi *parent_vsi; 7818 7819 if (i40e_is_channel_macvlan(ch)) { 7820 i40e_reset_ch_rings(vsi, ch); 7821 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7822 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7823 netdev_set_sb_channel(ch->fwd->netdev, 0); 7824 kfree(ch->fwd); 7825 ch->fwd = NULL; 7826 } 7827 7828 list_del(&ch->list); 7829 parent_vsi = ch->parent_vsi; 7830 if (!parent_vsi || !ch->initialized) { 7831 kfree(ch); 7832 continue; 7833 } 7834 7835 /* remove the VSI */ 7836 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7837 NULL); 7838 if (ret) 7839 dev_err(&vsi->back->pdev->dev, 7840 "unable to remove channel (%d) for parent VSI(%d)\n", 7841 ch->seid, parent_vsi->seid); 7842 kfree(ch); 7843 } 7844 vsi->macvlan_cnt = 0; 7845 } 7846 7847 /** 7848 * i40e_fwd_ring_up - bring the macvlan device up 7849 * @vsi: the VSI we want to access 7850 * @vdev: macvlan netdevice 7851 * @fwd: the private fwd structure 7852 */ 7853 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7854 struct i40e_fwd_adapter *fwd) 7855 { 7856 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7857 int ret = 0, num_tc = 1, i, aq_err; 7858 struct i40e_pf *pf = vsi->back; 7859 struct i40e_hw *hw = &pf->hw; 7860 7861 /* Go through the list and find an available channel */ 7862 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7863 if (!i40e_is_channel_macvlan(iter)) { 7864 iter->fwd = fwd; 7865 /* record configuration for macvlan interface in vdev */ 7866 for (i = 0; i < num_tc; i++) 7867 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7868 i, 7869 iter->num_queue_pairs, 7870 iter->base_queue); 7871 for (i = 0; i < iter->num_queue_pairs; i++) { 7872 struct i40e_ring *tx_ring, *rx_ring; 7873 u16 pf_q; 7874 7875 pf_q = iter->base_queue + i; 7876 7877 /* Get to TX ring ptr */ 7878 tx_ring = vsi->tx_rings[pf_q]; 7879 tx_ring->ch = iter; 7880 7881 /* Get the RX ring ptr */ 7882 rx_ring = vsi->rx_rings[pf_q]; 7883 rx_ring->ch = iter; 7884 } 7885 ch = iter; 7886 break; 7887 } 7888 } 7889 7890 if (!ch) 7891 return -EINVAL; 7892 7893 /* Guarantee all rings are updated before we update the 7894 * MAC address filter. 7895 */ 7896 wmb(); 7897 7898 /* Add a mac filter */ 7899 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7900 if (ret) { 7901 /* if we cannot add the MAC rule then disable the offload */ 7902 macvlan_release_l2fw_offload(vdev); 7903 for (i = 0; i < ch->num_queue_pairs; i++) { 7904 struct i40e_ring *rx_ring; 7905 u16 pf_q; 7906 7907 pf_q = ch->base_queue + i; 7908 rx_ring = vsi->rx_rings[pf_q]; 7909 rx_ring->netdev = NULL; 7910 } 7911 dev_info(&pf->pdev->dev, 7912 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7913 ERR_PTR(ret), 7914 i40e_aq_str(hw, aq_err)); 7915 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7916 } 7917 7918 return ret; 7919 } 7920 7921 /** 7922 * i40e_setup_macvlans - create the channels which will be macvlans 7923 * @vsi: the VSI we want to access 7924 * @macvlan_cnt: no. of macvlans to be setup 7925 * @qcnt: no. of Qs per macvlan 7926 * @vdev: macvlan netdevice 7927 */ 7928 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7929 struct net_device *vdev) 7930 { 7931 struct i40e_pf *pf = vsi->back; 7932 struct i40e_hw *hw = &pf->hw; 7933 struct i40e_vsi_context ctxt; 7934 u16 sections, qmap, num_qps; 7935 struct i40e_channel *ch; 7936 int i, pow, ret = 0; 7937 u8 offset = 0; 7938 7939 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7940 return -EINVAL; 7941 7942 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7943 7944 /* find the next higher power-of-2 of num queue pairs */ 7945 pow = fls(roundup_pow_of_two(num_qps) - 1); 7946 7947 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7948 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7949 7950 /* Setup context bits for the main VSI */ 7951 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7952 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7953 memset(&ctxt, 0, sizeof(ctxt)); 7954 ctxt.seid = vsi->seid; 7955 ctxt.pf_num = vsi->back->hw.pf_id; 7956 ctxt.vf_num = 0; 7957 ctxt.uplink_seid = vsi->uplink_seid; 7958 ctxt.info = vsi->info; 7959 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7960 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7961 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7962 ctxt.info.valid_sections |= cpu_to_le16(sections); 7963 7964 /* Reconfigure RSS for main VSI with new max queue count */ 7965 vsi->rss_size = max_t(u16, num_qps, qcnt); 7966 ret = i40e_vsi_config_rss(vsi); 7967 if (ret) { 7968 dev_info(&pf->pdev->dev, 7969 "Failed to reconfig RSS for num_queues (%u)\n", 7970 vsi->rss_size); 7971 return ret; 7972 } 7973 vsi->reconfig_rss = true; 7974 dev_dbg(&vsi->back->pdev->dev, 7975 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7976 vsi->next_base_queue = num_qps; 7977 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7978 7979 /* Update the VSI after updating the VSI queue-mapping 7980 * information 7981 */ 7982 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7983 if (ret) { 7984 dev_info(&pf->pdev->dev, 7985 "Update vsi tc config failed, err %pe aq_err %s\n", 7986 ERR_PTR(ret), 7987 i40e_aq_str(hw, hw->aq.asq_last_status)); 7988 return ret; 7989 } 7990 /* update the local VSI info with updated queue map */ 7991 i40e_vsi_update_queue_map(vsi, &ctxt); 7992 vsi->info.valid_sections = 0; 7993 7994 /* Create channels for macvlans */ 7995 INIT_LIST_HEAD(&vsi->macvlan_list); 7996 for (i = 0; i < macvlan_cnt; i++) { 7997 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7998 if (!ch) { 7999 ret = -ENOMEM; 8000 goto err_free; 8001 } 8002 INIT_LIST_HEAD(&ch->list); 8003 ch->num_queue_pairs = qcnt; 8004 if (!i40e_setup_channel(pf, vsi, ch)) { 8005 ret = -EINVAL; 8006 kfree(ch); 8007 goto err_free; 8008 } 8009 ch->parent_vsi = vsi; 8010 vsi->cnt_q_avail -= ch->num_queue_pairs; 8011 vsi->macvlan_cnt++; 8012 list_add_tail(&ch->list, &vsi->macvlan_list); 8013 } 8014 8015 return ret; 8016 8017 err_free: 8018 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 8019 i40e_free_macvlan_channels(vsi); 8020 8021 return ret; 8022 } 8023 8024 /** 8025 * i40e_fwd_add - configure macvlans 8026 * @netdev: net device to configure 8027 * @vdev: macvlan netdevice 8028 **/ 8029 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 8030 { 8031 struct i40e_netdev_priv *np = netdev_priv(netdev); 8032 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 8033 struct i40e_vsi *vsi = np->vsi; 8034 struct i40e_pf *pf = vsi->back; 8035 struct i40e_fwd_adapter *fwd; 8036 int avail_macvlan, ret; 8037 8038 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8039 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 8040 return ERR_PTR(-EINVAL); 8041 } 8042 if (i40e_is_tc_mqprio_enabled(pf)) { 8043 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 8044 return ERR_PTR(-EINVAL); 8045 } 8046 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 8047 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 8048 return ERR_PTR(-EINVAL); 8049 } 8050 8051 /* The macvlan device has to be a single Q device so that the 8052 * tc_to_txq field can be reused to pick the tx queue. 8053 */ 8054 if (netif_is_multiqueue(vdev)) 8055 return ERR_PTR(-ERANGE); 8056 8057 if (!vsi->macvlan_cnt) { 8058 /* reserve bit 0 for the pf device */ 8059 set_bit(0, vsi->fwd_bitmask); 8060 8061 /* Try to reserve as many queues as possible for macvlans. First 8062 * reserve 3/4th of max vectors, then half, then quarter and 8063 * calculate Qs per macvlan as you go 8064 */ 8065 vectors = pf->num_lan_msix; 8066 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8067 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8068 q_per_macvlan = 4; 8069 macvlan_cnt = (vectors - 32) / 4; 8070 } else if (vectors <= 64 && vectors > 32) { 8071 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8072 q_per_macvlan = 2; 8073 macvlan_cnt = (vectors - 16) / 2; 8074 } else if (vectors <= 32 && vectors > 16) { 8075 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8076 q_per_macvlan = 1; 8077 macvlan_cnt = vectors - 16; 8078 } else if (vectors <= 16 && vectors > 8) { 8079 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8080 q_per_macvlan = 1; 8081 macvlan_cnt = vectors - 8; 8082 } else { 8083 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8084 q_per_macvlan = 1; 8085 macvlan_cnt = vectors - 1; 8086 } 8087 8088 if (macvlan_cnt == 0) 8089 return ERR_PTR(-EBUSY); 8090 8091 /* Quiesce VSI queues */ 8092 i40e_quiesce_vsi(vsi); 8093 8094 /* sets up the macvlans but does not "enable" them */ 8095 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8096 vdev); 8097 if (ret) 8098 return ERR_PTR(ret); 8099 8100 /* Unquiesce VSI */ 8101 i40e_unquiesce_vsi(vsi); 8102 } 8103 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8104 vsi->macvlan_cnt); 8105 if (avail_macvlan >= I40E_MAX_MACVLANS) 8106 return ERR_PTR(-EBUSY); 8107 8108 /* create the fwd struct */ 8109 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8110 if (!fwd) 8111 return ERR_PTR(-ENOMEM); 8112 8113 set_bit(avail_macvlan, vsi->fwd_bitmask); 8114 fwd->bit_no = avail_macvlan; 8115 netdev_set_sb_channel(vdev, avail_macvlan); 8116 fwd->netdev = vdev; 8117 8118 if (!netif_running(netdev)) 8119 return fwd; 8120 8121 /* Set fwd ring up */ 8122 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8123 if (ret) { 8124 /* unbind the queues and drop the subordinate channel config */ 8125 netdev_unbind_sb_channel(netdev, vdev); 8126 netdev_set_sb_channel(vdev, 0); 8127 8128 kfree(fwd); 8129 return ERR_PTR(-EINVAL); 8130 } 8131 8132 return fwd; 8133 } 8134 8135 /** 8136 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8137 * @vsi: the VSI we want to access 8138 */ 8139 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8140 { 8141 struct i40e_channel *ch, *ch_tmp; 8142 struct i40e_pf *pf = vsi->back; 8143 struct i40e_hw *hw = &pf->hw; 8144 int aq_err, ret = 0; 8145 8146 if (list_empty(&vsi->macvlan_list)) 8147 return; 8148 8149 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8150 if (i40e_is_channel_macvlan(ch)) { 8151 ret = i40e_del_macvlan_filter(hw, ch->seid, 8152 i40e_channel_mac(ch), 8153 &aq_err); 8154 if (!ret) { 8155 /* Reset queue contexts */ 8156 i40e_reset_ch_rings(vsi, ch); 8157 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8158 netdev_unbind_sb_channel(vsi->netdev, 8159 ch->fwd->netdev); 8160 netdev_set_sb_channel(ch->fwd->netdev, 0); 8161 kfree(ch->fwd); 8162 ch->fwd = NULL; 8163 } 8164 } 8165 } 8166 } 8167 8168 /** 8169 * i40e_fwd_del - delete macvlan interfaces 8170 * @netdev: net device to configure 8171 * @vdev: macvlan netdevice 8172 */ 8173 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8174 { 8175 struct i40e_netdev_priv *np = netdev_priv(netdev); 8176 struct i40e_fwd_adapter *fwd = vdev; 8177 struct i40e_channel *ch, *ch_tmp; 8178 struct i40e_vsi *vsi = np->vsi; 8179 struct i40e_pf *pf = vsi->back; 8180 struct i40e_hw *hw = &pf->hw; 8181 int aq_err, ret = 0; 8182 8183 /* Find the channel associated with the macvlan and del mac filter */ 8184 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8185 if (i40e_is_channel_macvlan(ch) && 8186 ether_addr_equal(i40e_channel_mac(ch), 8187 fwd->netdev->dev_addr)) { 8188 ret = i40e_del_macvlan_filter(hw, ch->seid, 8189 i40e_channel_mac(ch), 8190 &aq_err); 8191 if (!ret) { 8192 /* Reset queue contexts */ 8193 i40e_reset_ch_rings(vsi, ch); 8194 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8195 netdev_unbind_sb_channel(netdev, fwd->netdev); 8196 netdev_set_sb_channel(fwd->netdev, 0); 8197 kfree(ch->fwd); 8198 ch->fwd = NULL; 8199 } else { 8200 dev_info(&pf->pdev->dev, 8201 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8202 ERR_PTR(ret), 8203 i40e_aq_str(hw, aq_err)); 8204 } 8205 break; 8206 } 8207 } 8208 } 8209 8210 /** 8211 * i40e_setup_tc - configure multiple traffic classes 8212 * @netdev: net device to configure 8213 * @type_data: tc offload data 8214 **/ 8215 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8216 { 8217 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8218 struct i40e_netdev_priv *np = netdev_priv(netdev); 8219 struct i40e_vsi *vsi = np->vsi; 8220 struct i40e_pf *pf = vsi->back; 8221 u8 enabled_tc = 0, num_tc, hw; 8222 bool need_reset = false; 8223 int old_queue_pairs; 8224 int ret = -EINVAL; 8225 u16 mode; 8226 int i; 8227 8228 old_queue_pairs = vsi->num_queue_pairs; 8229 num_tc = mqprio_qopt->qopt.num_tc; 8230 hw = mqprio_qopt->qopt.hw; 8231 mode = mqprio_qopt->mode; 8232 if (!hw) { 8233 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8234 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8235 goto config_tc; 8236 } 8237 8238 /* Check if MFP enabled */ 8239 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8240 netdev_info(netdev, 8241 "Configuring TC not supported in MFP mode\n"); 8242 return ret; 8243 } 8244 switch (mode) { 8245 case TC_MQPRIO_MODE_DCB: 8246 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8247 8248 /* Check if DCB enabled to continue */ 8249 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8250 netdev_info(netdev, 8251 "DCB is not enabled for adapter\n"); 8252 return ret; 8253 } 8254 8255 /* Check whether tc count is within enabled limit */ 8256 if (num_tc > i40e_pf_get_num_tc(pf)) { 8257 netdev_info(netdev, 8258 "TC count greater than enabled on link for adapter\n"); 8259 return ret; 8260 } 8261 break; 8262 case TC_MQPRIO_MODE_CHANNEL: 8263 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8264 netdev_info(netdev, 8265 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8266 return ret; 8267 } 8268 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8269 return ret; 8270 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8271 if (ret) 8272 return ret; 8273 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8274 sizeof(*mqprio_qopt)); 8275 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8276 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8277 break; 8278 default: 8279 return -EINVAL; 8280 } 8281 8282 config_tc: 8283 /* Generate TC map for number of tc requested */ 8284 for (i = 0; i < num_tc; i++) 8285 enabled_tc |= BIT(i); 8286 8287 /* Requesting same TC configuration as already enabled */ 8288 if (enabled_tc == vsi->tc_config.enabled_tc && 8289 mode != TC_MQPRIO_MODE_CHANNEL) 8290 return 0; 8291 8292 /* Quiesce VSI queues */ 8293 i40e_quiesce_vsi(vsi); 8294 8295 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8296 i40e_remove_queue_channels(vsi); 8297 8298 /* Configure VSI for enabled TCs */ 8299 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8300 if (ret) { 8301 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8302 vsi->seid); 8303 need_reset = true; 8304 goto exit; 8305 } else if (enabled_tc && 8306 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8307 netdev_info(netdev, 8308 "Failed to create channel. Override queues (%u) not power of 2\n", 8309 vsi->tc_config.tc_info[0].qcount); 8310 ret = -EINVAL; 8311 need_reset = true; 8312 goto exit; 8313 } 8314 8315 dev_info(&vsi->back->pdev->dev, 8316 "Setup channel (id:%u) utilizing num_queues %d\n", 8317 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8318 8319 if (i40e_is_tc_mqprio_enabled(pf)) { 8320 if (vsi->mqprio_qopt.max_rate[0]) { 8321 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8322 vsi->mqprio_qopt.max_rate[0]); 8323 8324 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8325 if (!ret) { 8326 u64 credits = max_tx_rate; 8327 8328 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8329 dev_dbg(&vsi->back->pdev->dev, 8330 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8331 max_tx_rate, 8332 credits, 8333 vsi->seid); 8334 } else { 8335 need_reset = true; 8336 goto exit; 8337 } 8338 } 8339 ret = i40e_configure_queue_channels(vsi); 8340 if (ret) { 8341 vsi->num_queue_pairs = old_queue_pairs; 8342 netdev_info(netdev, 8343 "Failed configuring queue channels\n"); 8344 need_reset = true; 8345 goto exit; 8346 } 8347 } 8348 8349 exit: 8350 /* Reset the configuration data to defaults, only TC0 is enabled */ 8351 if (need_reset) { 8352 i40e_vsi_set_default_tc_config(vsi); 8353 need_reset = false; 8354 } 8355 8356 /* Unquiesce VSI */ 8357 i40e_unquiesce_vsi(vsi); 8358 return ret; 8359 } 8360 8361 /** 8362 * i40e_set_cld_element - sets cloud filter element data 8363 * @filter: cloud filter rule 8364 * @cld: ptr to cloud filter element data 8365 * 8366 * This is helper function to copy data into cloud filter element 8367 **/ 8368 static inline void 8369 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8370 struct i40e_aqc_cloud_filters_element_data *cld) 8371 { 8372 u32 ipa; 8373 int i; 8374 8375 memset(cld, 0, sizeof(*cld)); 8376 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8377 ether_addr_copy(cld->inner_mac, filter->src_mac); 8378 8379 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8380 return; 8381 8382 if (filter->n_proto == ETH_P_IPV6) { 8383 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8384 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8385 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8386 8387 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8388 } 8389 } else { 8390 ipa = be32_to_cpu(filter->dst_ipv4); 8391 8392 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8393 } 8394 8395 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8396 8397 /* tenant_id is not supported by FW now, once the support is enabled 8398 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8399 */ 8400 if (filter->tenant_id) 8401 return; 8402 } 8403 8404 /** 8405 * i40e_add_del_cloud_filter - Add/del cloud filter 8406 * @vsi: pointer to VSI 8407 * @filter: cloud filter rule 8408 * @add: if true, add, if false, delete 8409 * 8410 * Add or delete a cloud filter for a specific flow spec. 8411 * Returns 0 if the filter were successfully added. 8412 **/ 8413 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8414 struct i40e_cloud_filter *filter, bool add) 8415 { 8416 struct i40e_aqc_cloud_filters_element_data cld_filter; 8417 struct i40e_pf *pf = vsi->back; 8418 int ret; 8419 static const u16 flag_table[128] = { 8420 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8421 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8422 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8423 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8424 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8425 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8426 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8427 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8428 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8429 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8430 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8431 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8432 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8433 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8434 }; 8435 8436 if (filter->flags >= ARRAY_SIZE(flag_table)) 8437 return -EIO; 8438 8439 memset(&cld_filter, 0, sizeof(cld_filter)); 8440 8441 /* copy element needed to add cloud filter from filter */ 8442 i40e_set_cld_element(filter, &cld_filter); 8443 8444 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8445 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8446 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8447 8448 if (filter->n_proto == ETH_P_IPV6) 8449 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8450 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8451 else 8452 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8453 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8454 8455 if (add) 8456 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8457 &cld_filter, 1); 8458 else 8459 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8460 &cld_filter, 1); 8461 if (ret) 8462 dev_dbg(&pf->pdev->dev, 8463 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8464 add ? "add" : "delete", filter->dst_port, ret, 8465 pf->hw.aq.asq_last_status); 8466 else 8467 dev_info(&pf->pdev->dev, 8468 "%s cloud filter for VSI: %d\n", 8469 add ? "Added" : "Deleted", filter->seid); 8470 return ret; 8471 } 8472 8473 /** 8474 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8475 * @vsi: pointer to VSI 8476 * @filter: cloud filter rule 8477 * @add: if true, add, if false, delete 8478 * 8479 * Add or delete a cloud filter for a specific flow spec using big buffer. 8480 * Returns 0 if the filter were successfully added. 8481 **/ 8482 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8483 struct i40e_cloud_filter *filter, 8484 bool add) 8485 { 8486 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8487 struct i40e_pf *pf = vsi->back; 8488 int ret; 8489 8490 /* Both (src/dst) valid mac_addr are not supported */ 8491 if ((is_valid_ether_addr(filter->dst_mac) && 8492 is_valid_ether_addr(filter->src_mac)) || 8493 (is_multicast_ether_addr(filter->dst_mac) && 8494 is_multicast_ether_addr(filter->src_mac))) 8495 return -EOPNOTSUPP; 8496 8497 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8498 * ports are not supported via big buffer now. 8499 */ 8500 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8501 return -EOPNOTSUPP; 8502 8503 /* adding filter using src_port/src_ip is not supported at this stage */ 8504 if (filter->src_port || 8505 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8506 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8507 return -EOPNOTSUPP; 8508 8509 memset(&cld_filter, 0, sizeof(cld_filter)); 8510 8511 /* copy element needed to add cloud filter from filter */ 8512 i40e_set_cld_element(filter, &cld_filter.element); 8513 8514 if (is_valid_ether_addr(filter->dst_mac) || 8515 is_valid_ether_addr(filter->src_mac) || 8516 is_multicast_ether_addr(filter->dst_mac) || 8517 is_multicast_ether_addr(filter->src_mac)) { 8518 /* MAC + IP : unsupported mode */ 8519 if (filter->dst_ipv4) 8520 return -EOPNOTSUPP; 8521 8522 /* since we validated that L4 port must be valid before 8523 * we get here, start with respective "flags" value 8524 * and update if vlan is present or not 8525 */ 8526 cld_filter.element.flags = 8527 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8528 8529 if (filter->vlan_id) { 8530 cld_filter.element.flags = 8531 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8532 } 8533 8534 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8535 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8536 cld_filter.element.flags = 8537 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8538 if (filter->n_proto == ETH_P_IPV6) 8539 cld_filter.element.flags |= 8540 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8541 else 8542 cld_filter.element.flags |= 8543 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8544 } else { 8545 dev_err(&pf->pdev->dev, 8546 "either mac or ip has to be valid for cloud filter\n"); 8547 return -EINVAL; 8548 } 8549 8550 /* Now copy L4 port in Byte 6..7 in general fields */ 8551 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8552 be16_to_cpu(filter->dst_port); 8553 8554 if (add) { 8555 /* Validate current device switch mode, change if necessary */ 8556 ret = i40e_validate_and_set_switch_mode(vsi); 8557 if (ret) { 8558 dev_err(&pf->pdev->dev, 8559 "failed to set switch mode, ret %d\n", 8560 ret); 8561 return ret; 8562 } 8563 8564 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8565 &cld_filter, 1); 8566 } else { 8567 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8568 &cld_filter, 1); 8569 } 8570 8571 if (ret) 8572 dev_dbg(&pf->pdev->dev, 8573 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8574 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8575 else 8576 dev_info(&pf->pdev->dev, 8577 "%s cloud filter for VSI: %d, L4 port: %d\n", 8578 add ? "add" : "delete", filter->seid, 8579 ntohs(filter->dst_port)); 8580 return ret; 8581 } 8582 8583 /** 8584 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8585 * @vsi: Pointer to VSI 8586 * @f: Pointer to struct flow_cls_offload 8587 * @filter: Pointer to cloud filter structure 8588 * 8589 **/ 8590 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8591 struct flow_cls_offload *f, 8592 struct i40e_cloud_filter *filter) 8593 { 8594 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8595 struct flow_dissector *dissector = rule->match.dissector; 8596 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8597 struct i40e_pf *pf = vsi->back; 8598 u8 field_flags = 0; 8599 8600 if (dissector->used_keys & 8601 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8602 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8603 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8604 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8605 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8606 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8607 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8608 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8609 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8610 dissector->used_keys); 8611 return -EOPNOTSUPP; 8612 } 8613 8614 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8615 struct flow_match_enc_keyid match; 8616 8617 flow_rule_match_enc_keyid(rule, &match); 8618 if (match.mask->keyid != 0) 8619 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8620 8621 filter->tenant_id = be32_to_cpu(match.key->keyid); 8622 } 8623 8624 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8625 struct flow_match_basic match; 8626 8627 flow_rule_match_basic(rule, &match); 8628 n_proto_key = ntohs(match.key->n_proto); 8629 n_proto_mask = ntohs(match.mask->n_proto); 8630 8631 if (n_proto_key == ETH_P_ALL) { 8632 n_proto_key = 0; 8633 n_proto_mask = 0; 8634 } 8635 filter->n_proto = n_proto_key & n_proto_mask; 8636 filter->ip_proto = match.key->ip_proto; 8637 } 8638 8639 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8640 struct flow_match_eth_addrs match; 8641 8642 flow_rule_match_eth_addrs(rule, &match); 8643 8644 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8645 if (!is_zero_ether_addr(match.mask->dst)) { 8646 if (is_broadcast_ether_addr(match.mask->dst)) { 8647 field_flags |= I40E_CLOUD_FIELD_OMAC; 8648 } else { 8649 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8650 match.mask->dst); 8651 return -EIO; 8652 } 8653 } 8654 8655 if (!is_zero_ether_addr(match.mask->src)) { 8656 if (is_broadcast_ether_addr(match.mask->src)) { 8657 field_flags |= I40E_CLOUD_FIELD_IMAC; 8658 } else { 8659 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8660 match.mask->src); 8661 return -EIO; 8662 } 8663 } 8664 ether_addr_copy(filter->dst_mac, match.key->dst); 8665 ether_addr_copy(filter->src_mac, match.key->src); 8666 } 8667 8668 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8669 struct flow_match_vlan match; 8670 8671 flow_rule_match_vlan(rule, &match); 8672 if (match.mask->vlan_id) { 8673 if (match.mask->vlan_id == VLAN_VID_MASK) { 8674 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8675 8676 } else { 8677 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8678 match.mask->vlan_id); 8679 return -EIO; 8680 } 8681 } 8682 8683 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8684 } 8685 8686 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8687 struct flow_match_control match; 8688 8689 flow_rule_match_control(rule, &match); 8690 addr_type = match.key->addr_type; 8691 8692 if (flow_rule_has_control_flags(match.mask->flags, 8693 f->common.extack)) 8694 return -EOPNOTSUPP; 8695 } 8696 8697 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8698 struct flow_match_ipv4_addrs match; 8699 8700 flow_rule_match_ipv4_addrs(rule, &match); 8701 if (match.mask->dst) { 8702 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8703 field_flags |= I40E_CLOUD_FIELD_IIP; 8704 } else { 8705 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8706 &match.mask->dst); 8707 return -EIO; 8708 } 8709 } 8710 8711 if (match.mask->src) { 8712 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8713 field_flags |= I40E_CLOUD_FIELD_IIP; 8714 } else { 8715 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8716 &match.mask->src); 8717 return -EIO; 8718 } 8719 } 8720 8721 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8722 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8723 return -EIO; 8724 } 8725 filter->dst_ipv4 = match.key->dst; 8726 filter->src_ipv4 = match.key->src; 8727 } 8728 8729 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8730 struct flow_match_ipv6_addrs match; 8731 8732 flow_rule_match_ipv6_addrs(rule, &match); 8733 8734 /* src and dest IPV6 address should not be LOOPBACK 8735 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8736 */ 8737 if (ipv6_addr_loopback(&match.key->dst) || 8738 ipv6_addr_loopback(&match.key->src)) { 8739 dev_err(&pf->pdev->dev, 8740 "Bad ipv6, addr is LOOPBACK\n"); 8741 return -EIO; 8742 } 8743 if (!ipv6_addr_any(&match.mask->dst) || 8744 !ipv6_addr_any(&match.mask->src)) 8745 field_flags |= I40E_CLOUD_FIELD_IIP; 8746 8747 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8748 sizeof(filter->src_ipv6)); 8749 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8750 sizeof(filter->dst_ipv6)); 8751 } 8752 8753 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8754 struct flow_match_ports match; 8755 8756 flow_rule_match_ports(rule, &match); 8757 if (match.mask->src) { 8758 if (match.mask->src == cpu_to_be16(0xffff)) { 8759 field_flags |= I40E_CLOUD_FIELD_IIP; 8760 } else { 8761 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8762 be16_to_cpu(match.mask->src)); 8763 return -EIO; 8764 } 8765 } 8766 8767 if (match.mask->dst) { 8768 if (match.mask->dst == cpu_to_be16(0xffff)) { 8769 field_flags |= I40E_CLOUD_FIELD_IIP; 8770 } else { 8771 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8772 be16_to_cpu(match.mask->dst)); 8773 return -EIO; 8774 } 8775 } 8776 8777 filter->dst_port = match.key->dst; 8778 filter->src_port = match.key->src; 8779 8780 switch (filter->ip_proto) { 8781 case IPPROTO_TCP: 8782 case IPPROTO_UDP: 8783 break; 8784 default: 8785 dev_err(&pf->pdev->dev, 8786 "Only UDP and TCP transport are supported\n"); 8787 return -EINVAL; 8788 } 8789 } 8790 filter->flags = field_flags; 8791 return 0; 8792 } 8793 8794 /** 8795 * i40e_handle_tclass: Forward to a traffic class on the device 8796 * @vsi: Pointer to VSI 8797 * @tc: traffic class index on the device 8798 * @filter: Pointer to cloud filter structure 8799 * 8800 **/ 8801 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8802 struct i40e_cloud_filter *filter) 8803 { 8804 struct i40e_channel *ch, *ch_tmp; 8805 8806 /* direct to a traffic class on the same device */ 8807 if (tc == 0) { 8808 filter->seid = vsi->seid; 8809 return 0; 8810 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8811 if (!filter->dst_port) { 8812 dev_err(&vsi->back->pdev->dev, 8813 "Specify destination port to direct to traffic class that is not default\n"); 8814 return -EINVAL; 8815 } 8816 if (list_empty(&vsi->ch_list)) 8817 return -EINVAL; 8818 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8819 list) { 8820 if (ch->seid == vsi->tc_seid_map[tc]) 8821 filter->seid = ch->seid; 8822 } 8823 return 0; 8824 } 8825 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8826 return -EINVAL; 8827 } 8828 8829 /** 8830 * i40e_configure_clsflower - Configure tc flower filters 8831 * @vsi: Pointer to VSI 8832 * @cls_flower: Pointer to struct flow_cls_offload 8833 * 8834 **/ 8835 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8836 struct flow_cls_offload *cls_flower) 8837 { 8838 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8839 struct i40e_cloud_filter *filter = NULL; 8840 struct i40e_pf *pf = vsi->back; 8841 int err = 0; 8842 8843 if (tc < 0) { 8844 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8845 return -EOPNOTSUPP; 8846 } 8847 8848 if (!tc) { 8849 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8850 return -EINVAL; 8851 } 8852 8853 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8854 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8855 return -EBUSY; 8856 8857 if (pf->fdir_pf_active_filters || 8858 (!hlist_empty(&pf->fdir_filter_list))) { 8859 dev_err(&vsi->back->pdev->dev, 8860 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8861 return -EINVAL; 8862 } 8863 8864 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8865 dev_err(&vsi->back->pdev->dev, 8866 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8867 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8868 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8869 } 8870 8871 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8872 if (!filter) 8873 return -ENOMEM; 8874 8875 filter->cookie = cls_flower->cookie; 8876 8877 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8878 if (err < 0) 8879 goto err; 8880 8881 err = i40e_handle_tclass(vsi, tc, filter); 8882 if (err < 0) 8883 goto err; 8884 8885 /* Add cloud filter */ 8886 if (filter->dst_port) 8887 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8888 else 8889 err = i40e_add_del_cloud_filter(vsi, filter, true); 8890 8891 if (err) { 8892 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8893 err); 8894 goto err; 8895 } 8896 8897 /* add filter to the ordered list */ 8898 INIT_HLIST_NODE(&filter->cloud_node); 8899 8900 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8901 8902 pf->num_cloud_filters++; 8903 8904 return err; 8905 err: 8906 kfree(filter); 8907 return err; 8908 } 8909 8910 /** 8911 * i40e_find_cloud_filter - Find the could filter in the list 8912 * @vsi: Pointer to VSI 8913 * @cookie: filter specific cookie 8914 * 8915 **/ 8916 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8917 unsigned long *cookie) 8918 { 8919 struct i40e_cloud_filter *filter = NULL; 8920 struct hlist_node *node2; 8921 8922 hlist_for_each_entry_safe(filter, node2, 8923 &vsi->back->cloud_filter_list, cloud_node) 8924 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8925 return filter; 8926 return NULL; 8927 } 8928 8929 /** 8930 * i40e_delete_clsflower - Remove tc flower filters 8931 * @vsi: Pointer to VSI 8932 * @cls_flower: Pointer to struct flow_cls_offload 8933 * 8934 **/ 8935 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8936 struct flow_cls_offload *cls_flower) 8937 { 8938 struct i40e_cloud_filter *filter = NULL; 8939 struct i40e_pf *pf = vsi->back; 8940 int err = 0; 8941 8942 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8943 8944 if (!filter) 8945 return -EINVAL; 8946 8947 hash_del(&filter->cloud_node); 8948 8949 if (filter->dst_port) 8950 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8951 else 8952 err = i40e_add_del_cloud_filter(vsi, filter, false); 8953 8954 kfree(filter); 8955 if (err) { 8956 dev_err(&pf->pdev->dev, 8957 "Failed to delete cloud filter, err %pe\n", 8958 ERR_PTR(err)); 8959 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8960 } 8961 8962 pf->num_cloud_filters--; 8963 if (!pf->num_cloud_filters) 8964 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8965 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8966 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8967 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8968 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8969 } 8970 return 0; 8971 } 8972 8973 /** 8974 * i40e_setup_tc_cls_flower - flower classifier offloads 8975 * @np: net device to configure 8976 * @cls_flower: offload data 8977 **/ 8978 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8979 struct flow_cls_offload *cls_flower) 8980 { 8981 struct i40e_vsi *vsi = np->vsi; 8982 8983 switch (cls_flower->command) { 8984 case FLOW_CLS_REPLACE: 8985 return i40e_configure_clsflower(vsi, cls_flower); 8986 case FLOW_CLS_DESTROY: 8987 return i40e_delete_clsflower(vsi, cls_flower); 8988 case FLOW_CLS_STATS: 8989 return -EOPNOTSUPP; 8990 default: 8991 return -EOPNOTSUPP; 8992 } 8993 } 8994 8995 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8996 void *cb_priv) 8997 { 8998 struct i40e_netdev_priv *np = cb_priv; 8999 9000 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 9001 return -EOPNOTSUPP; 9002 9003 switch (type) { 9004 case TC_SETUP_CLSFLOWER: 9005 return i40e_setup_tc_cls_flower(np, type_data); 9006 9007 default: 9008 return -EOPNOTSUPP; 9009 } 9010 } 9011 9012 static LIST_HEAD(i40e_block_cb_list); 9013 9014 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9015 void *type_data) 9016 { 9017 struct i40e_netdev_priv *np = netdev_priv(netdev); 9018 9019 switch (type) { 9020 case TC_SETUP_QDISC_MQPRIO: 9021 return i40e_setup_tc(netdev, type_data); 9022 case TC_SETUP_BLOCK: 9023 return flow_block_cb_setup_simple(type_data, 9024 &i40e_block_cb_list, 9025 i40e_setup_tc_block_cb, 9026 np, np, true); 9027 default: 9028 return -EOPNOTSUPP; 9029 } 9030 } 9031 9032 /** 9033 * i40e_open - Called when a network interface is made active 9034 * @netdev: network interface device structure 9035 * 9036 * The open entry point is called when a network interface is made 9037 * active by the system (IFF_UP). At this point all resources needed 9038 * for transmit and receive operations are allocated, the interrupt 9039 * handler is registered with the OS, the netdev watchdog subtask is 9040 * enabled, and the stack is notified that the interface is ready. 9041 * 9042 * Returns 0 on success, negative value on failure 9043 **/ 9044 int i40e_open(struct net_device *netdev) 9045 { 9046 struct i40e_netdev_priv *np = netdev_priv(netdev); 9047 struct i40e_vsi *vsi = np->vsi; 9048 struct i40e_pf *pf = vsi->back; 9049 int err; 9050 9051 /* disallow open during test or if eeprom is broken */ 9052 if (test_bit(__I40E_TESTING, pf->state) || 9053 test_bit(__I40E_BAD_EEPROM, pf->state)) 9054 return -EBUSY; 9055 9056 netif_carrier_off(netdev); 9057 9058 if (i40e_force_link_state(pf, true)) 9059 return -EAGAIN; 9060 9061 err = i40e_vsi_open(vsi); 9062 if (err) 9063 return err; 9064 9065 /* configure global TSO hardware offload settings */ 9066 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9067 TCP_FLAG_FIN) >> 16); 9068 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9069 TCP_FLAG_FIN | 9070 TCP_FLAG_CWR) >> 16); 9071 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9072 udp_tunnel_get_rx_info(netdev); 9073 9074 return 0; 9075 } 9076 9077 /** 9078 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9079 * @vsi: vsi structure 9080 * 9081 * This updates netdev's number of tx/rx queues 9082 * 9083 * Returns status of setting tx/rx queues 9084 **/ 9085 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9086 { 9087 int ret; 9088 9089 ret = netif_set_real_num_rx_queues(vsi->netdev, 9090 vsi->num_queue_pairs); 9091 if (ret) 9092 return ret; 9093 9094 return netif_set_real_num_tx_queues(vsi->netdev, 9095 vsi->num_queue_pairs); 9096 } 9097 9098 /** 9099 * i40e_vsi_open - 9100 * @vsi: the VSI to open 9101 * 9102 * Finish initialization of the VSI. 9103 * 9104 * Returns 0 on success, negative value on failure 9105 * 9106 * Note: expects to be called while under rtnl_lock() 9107 **/ 9108 int i40e_vsi_open(struct i40e_vsi *vsi) 9109 { 9110 struct i40e_pf *pf = vsi->back; 9111 char int_name[I40E_INT_NAME_STR_LEN]; 9112 int err; 9113 9114 /* allocate descriptors */ 9115 err = i40e_vsi_setup_tx_resources(vsi); 9116 if (err) 9117 goto err_setup_tx; 9118 err = i40e_vsi_setup_rx_resources(vsi); 9119 if (err) 9120 goto err_setup_rx; 9121 9122 err = i40e_vsi_configure(vsi); 9123 if (err) 9124 goto err_setup_rx; 9125 9126 if (vsi->netdev) { 9127 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9128 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9129 err = i40e_vsi_request_irq(vsi, int_name); 9130 if (err) 9131 goto err_setup_rx; 9132 9133 /* Notify the stack of the actual queue counts. */ 9134 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9135 if (err) 9136 goto err_set_queues; 9137 9138 } else if (vsi->type == I40E_VSI_FDIR) { 9139 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9140 dev_driver_string(&pf->pdev->dev), 9141 dev_name(&pf->pdev->dev)); 9142 err = i40e_vsi_request_irq(vsi, int_name); 9143 if (err) 9144 goto err_setup_rx; 9145 9146 } else { 9147 err = -EINVAL; 9148 goto err_setup_rx; 9149 } 9150 9151 err = i40e_up_complete(vsi); 9152 if (err) 9153 goto err_up_complete; 9154 9155 return 0; 9156 9157 err_up_complete: 9158 i40e_down(vsi); 9159 err_set_queues: 9160 i40e_vsi_free_irq(vsi); 9161 err_setup_rx: 9162 i40e_vsi_free_rx_resources(vsi); 9163 err_setup_tx: 9164 i40e_vsi_free_tx_resources(vsi); 9165 if (vsi->type == I40E_VSI_MAIN) 9166 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9167 9168 return err; 9169 } 9170 9171 /** 9172 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9173 * @pf: Pointer to PF 9174 * 9175 * This function destroys the hlist where all the Flow Director 9176 * filters were saved. 9177 **/ 9178 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9179 { 9180 struct i40e_fdir_filter *filter; 9181 struct i40e_flex_pit *pit_entry, *tmp; 9182 struct hlist_node *node2; 9183 9184 hlist_for_each_entry_safe(filter, node2, 9185 &pf->fdir_filter_list, fdir_node) { 9186 hlist_del(&filter->fdir_node); 9187 kfree(filter); 9188 } 9189 9190 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9191 list_del(&pit_entry->list); 9192 kfree(pit_entry); 9193 } 9194 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9195 9196 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9197 list_del(&pit_entry->list); 9198 kfree(pit_entry); 9199 } 9200 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9201 9202 pf->fdir_pf_active_filters = 0; 9203 i40e_reset_fdir_filter_cnt(pf); 9204 9205 /* Reprogram the default input set for TCP/IPv4 */ 9206 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9207 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9208 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9209 9210 /* Reprogram the default input set for TCP/IPv6 */ 9211 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 9212 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9213 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9214 9215 /* Reprogram the default input set for UDP/IPv4 */ 9216 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 9217 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9218 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9219 9220 /* Reprogram the default input set for UDP/IPv6 */ 9221 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 9222 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9223 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9224 9225 /* Reprogram the default input set for SCTP/IPv4 */ 9226 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 9227 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9228 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9229 9230 /* Reprogram the default input set for SCTP/IPv6 */ 9231 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 9232 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9233 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9234 9235 /* Reprogram the default input set for Other/IPv4 */ 9236 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 9237 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9238 9239 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 9240 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9241 9242 /* Reprogram the default input set for Other/IPv6 */ 9243 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 9244 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9245 9246 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 9247 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9248 } 9249 9250 /** 9251 * i40e_cloud_filter_exit - Cleans up the cloud filters 9252 * @pf: Pointer to PF 9253 * 9254 * This function destroys the hlist where all the cloud filters 9255 * were saved. 9256 **/ 9257 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9258 { 9259 struct i40e_cloud_filter *cfilter; 9260 struct hlist_node *node; 9261 9262 hlist_for_each_entry_safe(cfilter, node, 9263 &pf->cloud_filter_list, cloud_node) { 9264 hlist_del(&cfilter->cloud_node); 9265 kfree(cfilter); 9266 } 9267 pf->num_cloud_filters = 0; 9268 9269 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9270 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9271 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9272 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9273 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9274 } 9275 } 9276 9277 /** 9278 * i40e_close - Disables a network interface 9279 * @netdev: network interface device structure 9280 * 9281 * The close entry point is called when an interface is de-activated 9282 * by the OS. The hardware is still under the driver's control, but 9283 * this netdev interface is disabled. 9284 * 9285 * Returns 0, this is not allowed to fail 9286 **/ 9287 int i40e_close(struct net_device *netdev) 9288 { 9289 struct i40e_netdev_priv *np = netdev_priv(netdev); 9290 struct i40e_vsi *vsi = np->vsi; 9291 9292 i40e_vsi_close(vsi); 9293 9294 return 0; 9295 } 9296 9297 /** 9298 * i40e_do_reset - Start a PF or Core Reset sequence 9299 * @pf: board private structure 9300 * @reset_flags: which reset is requested 9301 * @lock_acquired: indicates whether or not the lock has been acquired 9302 * before this function was called. 9303 * 9304 * The essential difference in resets is that the PF Reset 9305 * doesn't clear the packet buffers, doesn't reset the PE 9306 * firmware, and doesn't bother the other PFs on the chip. 9307 **/ 9308 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9309 { 9310 struct i40e_vsi *vsi; 9311 u32 val; 9312 int i; 9313 9314 /* do the biggest reset indicated */ 9315 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9316 9317 /* Request a Global Reset 9318 * 9319 * This will start the chip's countdown to the actual full 9320 * chip reset event, and a warning interrupt to be sent 9321 * to all PFs, including the requestor. Our handler 9322 * for the warning interrupt will deal with the shutdown 9323 * and recovery of the switch setup. 9324 */ 9325 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9326 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9327 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9328 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9329 9330 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9331 9332 /* Request a Core Reset 9333 * 9334 * Same as Global Reset, except does *not* include the MAC/PHY 9335 */ 9336 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9337 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9338 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9339 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9340 i40e_flush(&pf->hw); 9341 9342 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9343 9344 /* Request a PF Reset 9345 * 9346 * Resets only the PF-specific registers 9347 * 9348 * This goes directly to the tear-down and rebuild of 9349 * the switch, since we need to do all the recovery as 9350 * for the Core Reset. 9351 */ 9352 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9353 i40e_handle_reset_warning(pf, lock_acquired); 9354 9355 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9356 /* Request a PF Reset 9357 * 9358 * Resets PF and reinitializes PFs VSI. 9359 */ 9360 i40e_prep_for_reset(pf); 9361 i40e_reset_and_rebuild(pf, true, lock_acquired); 9362 dev_info(&pf->pdev->dev, 9363 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9364 "FW LLDP is disabled\n" : 9365 "FW LLDP is enabled\n"); 9366 9367 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9368 /* Find the VSI(s) that requested a re-init */ 9369 dev_info(&pf->pdev->dev, "VSI reinit requested\n"); 9370 9371 i40e_pf_for_each_vsi(pf, i, vsi) { 9372 if (test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9373 vsi->state)) 9374 i40e_vsi_reinit_locked(vsi); 9375 } 9376 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9377 /* Find the VSI(s) that needs to be brought down */ 9378 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9379 9380 i40e_pf_for_each_vsi(pf, i, vsi) { 9381 if (test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9382 vsi->state)) { 9383 set_bit(__I40E_VSI_DOWN, vsi->state); 9384 i40e_down(vsi); 9385 } 9386 } 9387 } else { 9388 dev_info(&pf->pdev->dev, 9389 "bad reset request 0x%08x\n", reset_flags); 9390 } 9391 } 9392 9393 #ifdef CONFIG_I40E_DCB 9394 /** 9395 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9396 * @pf: board private structure 9397 * @old_cfg: current DCB config 9398 * @new_cfg: new DCB config 9399 **/ 9400 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9401 struct i40e_dcbx_config *old_cfg, 9402 struct i40e_dcbx_config *new_cfg) 9403 { 9404 bool need_reconfig = false; 9405 9406 /* Check if ETS configuration has changed */ 9407 if (memcmp(&new_cfg->etscfg, 9408 &old_cfg->etscfg, 9409 sizeof(new_cfg->etscfg))) { 9410 /* If Priority Table has changed reconfig is needed */ 9411 if (memcmp(&new_cfg->etscfg.prioritytable, 9412 &old_cfg->etscfg.prioritytable, 9413 sizeof(new_cfg->etscfg.prioritytable))) { 9414 need_reconfig = true; 9415 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9416 } 9417 9418 if (memcmp(&new_cfg->etscfg.tcbwtable, 9419 &old_cfg->etscfg.tcbwtable, 9420 sizeof(new_cfg->etscfg.tcbwtable))) 9421 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9422 9423 if (memcmp(&new_cfg->etscfg.tsatable, 9424 &old_cfg->etscfg.tsatable, 9425 sizeof(new_cfg->etscfg.tsatable))) 9426 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9427 } 9428 9429 /* Check if PFC configuration has changed */ 9430 if (memcmp(&new_cfg->pfc, 9431 &old_cfg->pfc, 9432 sizeof(new_cfg->pfc))) { 9433 need_reconfig = true; 9434 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9435 } 9436 9437 /* Check if APP Table has changed */ 9438 if (memcmp(&new_cfg->app, 9439 &old_cfg->app, 9440 sizeof(new_cfg->app))) { 9441 need_reconfig = true; 9442 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9443 } 9444 9445 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9446 return need_reconfig; 9447 } 9448 9449 /** 9450 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9451 * @pf: board private structure 9452 * @e: event info posted on ARQ 9453 **/ 9454 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9455 struct i40e_arq_event_info *e) 9456 { 9457 struct i40e_aqc_lldp_get_mib *mib = 9458 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9459 struct i40e_hw *hw = &pf->hw; 9460 struct i40e_dcbx_config tmp_dcbx_cfg; 9461 bool need_reconfig = false; 9462 int ret = 0; 9463 u8 type; 9464 9465 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9466 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9467 (hw->phy.link_info.link_speed & 9468 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9469 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9470 /* let firmware decide if the DCB should be disabled */ 9471 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9472 9473 /* Not DCB capable or capability disabled */ 9474 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9475 return ret; 9476 9477 /* Ignore if event is not for Nearest Bridge */ 9478 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9479 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9480 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9481 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9482 return ret; 9483 9484 /* Check MIB Type and return if event for Remote MIB update */ 9485 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9486 dev_dbg(&pf->pdev->dev, 9487 "LLDP event mib type %s\n", type ? "remote" : "local"); 9488 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9489 /* Update the remote cached instance and return */ 9490 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9491 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9492 &hw->remote_dcbx_config); 9493 goto exit; 9494 } 9495 9496 /* Store the old configuration */ 9497 tmp_dcbx_cfg = hw->local_dcbx_config; 9498 9499 /* Reset the old DCBx configuration data */ 9500 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9501 /* Get updated DCBX data from firmware */ 9502 ret = i40e_get_dcb_config(&pf->hw); 9503 if (ret) { 9504 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9505 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9506 (hw->phy.link_info.link_speed & 9507 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9508 dev_warn(&pf->pdev->dev, 9509 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9510 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9511 } else { 9512 dev_info(&pf->pdev->dev, 9513 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9514 ERR_PTR(ret), 9515 i40e_aq_str(&pf->hw, 9516 pf->hw.aq.asq_last_status)); 9517 } 9518 goto exit; 9519 } 9520 9521 /* No change detected in DCBX configs */ 9522 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9523 sizeof(tmp_dcbx_cfg))) { 9524 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9525 goto exit; 9526 } 9527 9528 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9529 &hw->local_dcbx_config); 9530 9531 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9532 9533 if (!need_reconfig) 9534 goto exit; 9535 9536 /* Enable DCB tagging only when more than one TC */ 9537 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9538 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9539 else 9540 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9541 9542 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9543 /* Reconfiguration needed quiesce all VSIs */ 9544 i40e_pf_quiesce_all_vsi(pf); 9545 9546 /* Changes in configuration update VEB/VSI */ 9547 i40e_dcb_reconfigure(pf); 9548 9549 ret = i40e_resume_port_tx(pf); 9550 9551 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9552 /* In case of error no point in resuming VSIs */ 9553 if (ret) 9554 goto exit; 9555 9556 /* Wait for the PF's queues to be disabled */ 9557 ret = i40e_pf_wait_queues_disabled(pf); 9558 if (ret) { 9559 /* Schedule PF reset to recover */ 9560 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9561 i40e_service_event_schedule(pf); 9562 } else { 9563 i40e_pf_unquiesce_all_vsi(pf); 9564 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9565 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9566 } 9567 9568 exit: 9569 return ret; 9570 } 9571 #endif /* CONFIG_I40E_DCB */ 9572 9573 /** 9574 * i40e_do_reset_safe - Protected reset path for userland calls. 9575 * @pf: board private structure 9576 * @reset_flags: which reset is requested 9577 * 9578 **/ 9579 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9580 { 9581 rtnl_lock(); 9582 i40e_do_reset(pf, reset_flags, true); 9583 rtnl_unlock(); 9584 } 9585 9586 /** 9587 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9588 * @pf: board private structure 9589 * @e: event info posted on ARQ 9590 * 9591 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9592 * and VF queues 9593 **/ 9594 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9595 struct i40e_arq_event_info *e) 9596 { 9597 struct i40e_aqc_lan_overflow *data = 9598 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9599 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9600 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9601 struct i40e_hw *hw = &pf->hw; 9602 struct i40e_vf *vf; 9603 u16 vf_id; 9604 9605 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9606 queue, qtx_ctl); 9607 9608 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) != 9609 I40E_QTX_CTL_VF_QUEUE) 9610 return; 9611 9612 /* Queue belongs to VF, find the VF and issue VF reset */ 9613 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl); 9614 vf_id -= hw->func_caps.vf_base_id; 9615 vf = &pf->vf[vf_id]; 9616 i40e_vc_notify_vf_reset(vf); 9617 /* Allow VF to process pending reset notification */ 9618 msleep(20); 9619 i40e_reset_vf(vf, false); 9620 } 9621 9622 /** 9623 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9624 * @pf: board private structure 9625 **/ 9626 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9627 { 9628 u32 val, fcnt_prog; 9629 9630 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9631 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9632 return fcnt_prog; 9633 } 9634 9635 /** 9636 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9637 * @pf: board private structure 9638 **/ 9639 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9640 { 9641 u32 val, fcnt_prog; 9642 9643 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9644 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9645 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val); 9646 return fcnt_prog; 9647 } 9648 9649 /** 9650 * i40e_get_global_fd_count - Get total FD filters programmed on device 9651 * @pf: board private structure 9652 **/ 9653 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9654 { 9655 u32 val, fcnt_prog; 9656 9657 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9658 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9659 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val); 9660 return fcnt_prog; 9661 } 9662 9663 /** 9664 * i40e_reenable_fdir_sb - Restore FDir SB capability 9665 * @pf: board private structure 9666 **/ 9667 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9668 { 9669 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9670 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9671 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9672 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9673 } 9674 9675 /** 9676 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9677 * @pf: board private structure 9678 **/ 9679 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9680 { 9681 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9682 /* ATR uses the same filtering logic as SB rules. It only 9683 * functions properly if the input set mask is at the default 9684 * settings. It is safe to restore the default input set 9685 * because there are no active TCPv4 filter rules. 9686 */ 9687 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9688 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9689 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9690 9691 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9692 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9693 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9694 } 9695 } 9696 9697 /** 9698 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9699 * @pf: board private structure 9700 * @filter: FDir filter to remove 9701 */ 9702 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9703 struct i40e_fdir_filter *filter) 9704 { 9705 /* Update counters */ 9706 pf->fdir_pf_active_filters--; 9707 pf->fd_inv = 0; 9708 9709 switch (filter->flow_type) { 9710 case TCP_V4_FLOW: 9711 pf->fd_tcp4_filter_cnt--; 9712 break; 9713 case UDP_V4_FLOW: 9714 pf->fd_udp4_filter_cnt--; 9715 break; 9716 case SCTP_V4_FLOW: 9717 pf->fd_sctp4_filter_cnt--; 9718 break; 9719 case TCP_V6_FLOW: 9720 pf->fd_tcp6_filter_cnt--; 9721 break; 9722 case UDP_V6_FLOW: 9723 pf->fd_udp6_filter_cnt--; 9724 break; 9725 case SCTP_V6_FLOW: 9726 pf->fd_udp6_filter_cnt--; 9727 break; 9728 case IP_USER_FLOW: 9729 switch (filter->ipl4_proto) { 9730 case IPPROTO_TCP: 9731 pf->fd_tcp4_filter_cnt--; 9732 break; 9733 case IPPROTO_UDP: 9734 pf->fd_udp4_filter_cnt--; 9735 break; 9736 case IPPROTO_SCTP: 9737 pf->fd_sctp4_filter_cnt--; 9738 break; 9739 case IPPROTO_IP: 9740 pf->fd_ip4_filter_cnt--; 9741 break; 9742 } 9743 break; 9744 case IPV6_USER_FLOW: 9745 switch (filter->ipl4_proto) { 9746 case IPPROTO_TCP: 9747 pf->fd_tcp6_filter_cnt--; 9748 break; 9749 case IPPROTO_UDP: 9750 pf->fd_udp6_filter_cnt--; 9751 break; 9752 case IPPROTO_SCTP: 9753 pf->fd_sctp6_filter_cnt--; 9754 break; 9755 case IPPROTO_IP: 9756 pf->fd_ip6_filter_cnt--; 9757 break; 9758 } 9759 break; 9760 } 9761 9762 /* Remove the filter from the list and free memory */ 9763 hlist_del(&filter->fdir_node); 9764 kfree(filter); 9765 } 9766 9767 /** 9768 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9769 * @pf: board private structure 9770 **/ 9771 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9772 { 9773 struct i40e_fdir_filter *filter; 9774 u32 fcnt_prog, fcnt_avail; 9775 struct hlist_node *node; 9776 9777 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9778 return; 9779 9780 /* Check if we have enough room to re-enable FDir SB capability. */ 9781 fcnt_prog = i40e_get_global_fd_count(pf); 9782 fcnt_avail = pf->fdir_pf_filter_count; 9783 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9784 (pf->fd_add_err == 0) || 9785 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9786 i40e_reenable_fdir_sb(pf); 9787 9788 /* We should wait for even more space before re-enabling ATR. 9789 * Additionally, we cannot enable ATR as long as we still have TCP SB 9790 * rules active. 9791 */ 9792 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9793 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9794 i40e_reenable_fdir_atr(pf); 9795 9796 /* if hw had a problem adding a filter, delete it */ 9797 if (pf->fd_inv > 0) { 9798 hlist_for_each_entry_safe(filter, node, 9799 &pf->fdir_filter_list, fdir_node) 9800 if (filter->fd_id == pf->fd_inv) 9801 i40e_delete_invalid_filter(pf, filter); 9802 } 9803 } 9804 9805 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9806 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9807 /** 9808 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9809 * @pf: board private structure 9810 **/ 9811 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9812 { 9813 unsigned long min_flush_time; 9814 int flush_wait_retry = 50; 9815 bool disable_atr = false; 9816 int fd_room; 9817 int reg; 9818 9819 if (!time_after(jiffies, pf->fd_flush_timestamp + 9820 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9821 return; 9822 9823 /* If the flush is happening too quick and we have mostly SB rules we 9824 * should not re-enable ATR for some time. 9825 */ 9826 min_flush_time = pf->fd_flush_timestamp + 9827 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9828 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9829 9830 if (!(time_after(jiffies, min_flush_time)) && 9831 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9832 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9833 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9834 disable_atr = true; 9835 } 9836 9837 pf->fd_flush_timestamp = jiffies; 9838 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9839 /* flush all filters */ 9840 wr32(&pf->hw, I40E_PFQF_CTL_1, 9841 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9842 i40e_flush(&pf->hw); 9843 pf->fd_flush_cnt++; 9844 pf->fd_add_err = 0; 9845 do { 9846 /* Check FD flush status every 5-6msec */ 9847 usleep_range(5000, 6000); 9848 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9849 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9850 break; 9851 } while (flush_wait_retry--); 9852 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9853 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9854 } else { 9855 /* replay sideband filters */ 9856 i40e_fdir_filter_restore(i40e_pf_get_main_vsi(pf)); 9857 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9858 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9859 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9860 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9861 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9862 } 9863 } 9864 9865 /** 9866 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9867 * @pf: board private structure 9868 **/ 9869 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9870 { 9871 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9872 } 9873 9874 /** 9875 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9876 * @pf: board private structure 9877 **/ 9878 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9879 { 9880 9881 /* if interface is down do nothing */ 9882 if (test_bit(__I40E_DOWN, pf->state)) 9883 return; 9884 9885 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9886 i40e_fdir_flush_and_replay(pf); 9887 9888 i40e_fdir_check_and_reenable(pf); 9889 9890 } 9891 9892 /** 9893 * i40e_vsi_link_event - notify VSI of a link event 9894 * @vsi: vsi to be notified 9895 * @link_up: link up or down 9896 **/ 9897 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9898 { 9899 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9900 return; 9901 9902 switch (vsi->type) { 9903 case I40E_VSI_MAIN: 9904 if (!vsi->netdev || !vsi->netdev_registered) 9905 break; 9906 9907 if (link_up) { 9908 netif_carrier_on(vsi->netdev); 9909 netif_tx_wake_all_queues(vsi->netdev); 9910 } else { 9911 netif_carrier_off(vsi->netdev); 9912 netif_tx_stop_all_queues(vsi->netdev); 9913 } 9914 break; 9915 9916 case I40E_VSI_SRIOV: 9917 case I40E_VSI_VMDQ2: 9918 case I40E_VSI_CTRL: 9919 case I40E_VSI_IWARP: 9920 case I40E_VSI_MIRROR: 9921 default: 9922 /* there is no notification for other VSIs */ 9923 break; 9924 } 9925 } 9926 9927 /** 9928 * i40e_veb_link_event - notify elements on the veb of a link event 9929 * @veb: veb to be notified 9930 * @link_up: link up or down 9931 **/ 9932 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9933 { 9934 struct i40e_vsi *vsi; 9935 struct i40e_pf *pf; 9936 int i; 9937 9938 if (!veb || !veb->pf) 9939 return; 9940 pf = veb->pf; 9941 9942 /* Send link event to contained VSIs */ 9943 i40e_pf_for_each_vsi(pf, i, vsi) 9944 if (vsi->uplink_seid == veb->seid) 9945 i40e_vsi_link_event(vsi, link_up); 9946 } 9947 9948 /** 9949 * i40e_link_event - Update netif_carrier status 9950 * @pf: board private structure 9951 **/ 9952 static void i40e_link_event(struct i40e_pf *pf) 9953 { 9954 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 9955 struct i40e_veb *veb = i40e_pf_get_main_veb(pf); 9956 u8 new_link_speed, old_link_speed; 9957 bool new_link, old_link; 9958 int status; 9959 #ifdef CONFIG_I40E_DCB 9960 int err; 9961 #endif /* CONFIG_I40E_DCB */ 9962 9963 /* set this to force the get_link_status call to refresh state */ 9964 pf->hw.phy.get_link_info = true; 9965 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9966 status = i40e_get_link_status(&pf->hw, &new_link); 9967 9968 /* On success, disable temp link polling */ 9969 if (status == 0) { 9970 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9971 } else { 9972 /* Enable link polling temporarily until i40e_get_link_status 9973 * returns 0 9974 */ 9975 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9976 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9977 status); 9978 return; 9979 } 9980 9981 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9982 new_link_speed = pf->hw.phy.link_info.link_speed; 9983 9984 if (new_link == old_link && 9985 new_link_speed == old_link_speed && 9986 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9987 new_link == netif_carrier_ok(vsi->netdev))) 9988 return; 9989 9990 i40e_print_link_message(vsi, new_link); 9991 9992 /* Notify the base of the switch tree connected to 9993 * the link. Floating VEBs are not notified. 9994 */ 9995 if (veb) 9996 i40e_veb_link_event(veb, new_link); 9997 else 9998 i40e_vsi_link_event(vsi, new_link); 9999 10000 if (pf->vf) 10001 i40e_vc_notify_link_state(pf); 10002 10003 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 10004 i40e_ptp_set_increment(pf); 10005 #ifdef CONFIG_I40E_DCB 10006 if (new_link == old_link) 10007 return; 10008 /* Not SW DCB so firmware will take care of default settings */ 10009 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 10010 return; 10011 10012 /* We cover here only link down, as after link up in case of SW DCB 10013 * SW LLDP agent will take care of setting it up 10014 */ 10015 if (!new_link) { 10016 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 10017 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 10018 err = i40e_dcb_sw_default_config(pf); 10019 if (err) { 10020 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10021 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 10022 } else { 10023 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 10024 DCB_CAP_DCBX_VER_IEEE; 10025 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10026 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 10027 } 10028 } 10029 #endif /* CONFIG_I40E_DCB */ 10030 } 10031 10032 /** 10033 * i40e_watchdog_subtask - periodic checks not using event driven response 10034 * @pf: board private structure 10035 **/ 10036 static void i40e_watchdog_subtask(struct i40e_pf *pf) 10037 { 10038 struct i40e_vsi *vsi; 10039 struct i40e_veb *veb; 10040 int i; 10041 10042 /* if interface is down do nothing */ 10043 if (test_bit(__I40E_DOWN, pf->state) || 10044 test_bit(__I40E_CONFIG_BUSY, pf->state)) 10045 return; 10046 10047 /* make sure we don't do these things too often */ 10048 if (time_before(jiffies, (pf->service_timer_previous + 10049 pf->service_timer_period))) 10050 return; 10051 pf->service_timer_previous = jiffies; 10052 10053 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 10054 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 10055 i40e_link_event(pf); 10056 10057 /* Update the stats for active netdevs so the network stack 10058 * can look at updated numbers whenever it cares to 10059 */ 10060 i40e_pf_for_each_vsi(pf, i, vsi) 10061 if (vsi->netdev) 10062 i40e_update_stats(vsi); 10063 10064 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10065 /* Update the stats for the active switching components */ 10066 i40e_pf_for_each_veb(pf, i, veb) 10067 i40e_update_veb_stats(veb); 10068 } 10069 10070 i40e_ptp_rx_hang(pf); 10071 i40e_ptp_tx_hang(pf); 10072 } 10073 10074 /** 10075 * i40e_reset_subtask - Set up for resetting the device and driver 10076 * @pf: board private structure 10077 **/ 10078 static void i40e_reset_subtask(struct i40e_pf *pf) 10079 { 10080 u32 reset_flags = 0; 10081 10082 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10083 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10084 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10085 } 10086 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10087 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10088 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10089 } 10090 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10091 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10092 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10093 } 10094 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10095 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10096 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10097 } 10098 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10099 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10100 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10101 } 10102 10103 /* If there's a recovery already waiting, it takes 10104 * precedence before starting a new reset sequence. 10105 */ 10106 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10107 i40e_prep_for_reset(pf); 10108 i40e_reset(pf); 10109 i40e_rebuild(pf, false, false); 10110 } 10111 10112 /* If we're already down or resetting, just bail */ 10113 if (reset_flags && 10114 !test_bit(__I40E_DOWN, pf->state) && 10115 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10116 i40e_do_reset(pf, reset_flags, false); 10117 } 10118 } 10119 10120 /** 10121 * i40e_handle_link_event - Handle link event 10122 * @pf: board private structure 10123 * @e: event info posted on ARQ 10124 **/ 10125 static void i40e_handle_link_event(struct i40e_pf *pf, 10126 struct i40e_arq_event_info *e) 10127 { 10128 struct i40e_aqc_get_link_status *status = 10129 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10130 10131 /* Do a new status request to re-enable LSE reporting 10132 * and load new status information into the hw struct 10133 * This completely ignores any state information 10134 * in the ARQ event info, instead choosing to always 10135 * issue the AQ update link status command. 10136 */ 10137 i40e_link_event(pf); 10138 10139 /* Check if module meets thermal requirements */ 10140 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10141 dev_err(&pf->pdev->dev, 10142 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10143 dev_err(&pf->pdev->dev, 10144 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10145 } else { 10146 /* check for unqualified module, if link is down, suppress 10147 * the message if link was forced to be down. 10148 */ 10149 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10150 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10151 (!(status->link_info & I40E_AQ_LINK_UP)) && 10152 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10153 dev_err(&pf->pdev->dev, 10154 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10155 dev_err(&pf->pdev->dev, 10156 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10157 } 10158 } 10159 } 10160 10161 /** 10162 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10163 * @pf: board private structure 10164 **/ 10165 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10166 { 10167 struct i40e_arq_event_info event; 10168 struct i40e_hw *hw = &pf->hw; 10169 u16 pending, i = 0; 10170 u16 opcode; 10171 u32 oldval; 10172 int ret; 10173 u32 val; 10174 10175 /* Do not run clean AQ when PF reset fails */ 10176 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10177 return; 10178 10179 /* check for error indications */ 10180 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10181 oldval = val; 10182 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10183 if (hw->debug_mask & I40E_DEBUG_AQ) 10184 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10185 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10186 } 10187 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10188 if (hw->debug_mask & I40E_DEBUG_AQ) 10189 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10190 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10191 pf->arq_overflows++; 10192 } 10193 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10194 if (hw->debug_mask & I40E_DEBUG_AQ) 10195 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10196 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10197 } 10198 if (oldval != val) 10199 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10200 10201 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10202 oldval = val; 10203 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10204 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10205 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10206 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10207 } 10208 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10209 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10210 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10211 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10212 } 10213 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10214 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10215 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10216 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10217 } 10218 if (oldval != val) 10219 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10220 10221 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10222 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10223 if (!event.msg_buf) 10224 return; 10225 10226 do { 10227 ret = i40e_clean_arq_element(hw, &event, &pending); 10228 if (ret == -EALREADY) 10229 break; 10230 else if (ret) { 10231 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10232 break; 10233 } 10234 10235 opcode = le16_to_cpu(event.desc.opcode); 10236 switch (opcode) { 10237 10238 case i40e_aqc_opc_get_link_status: 10239 rtnl_lock(); 10240 i40e_handle_link_event(pf, &event); 10241 rtnl_unlock(); 10242 break; 10243 case i40e_aqc_opc_send_msg_to_pf: 10244 ret = i40e_vc_process_vf_msg(pf, 10245 le16_to_cpu(event.desc.retval), 10246 le32_to_cpu(event.desc.cookie_high), 10247 le32_to_cpu(event.desc.cookie_low), 10248 event.msg_buf, 10249 event.msg_len); 10250 break; 10251 case i40e_aqc_opc_lldp_update_mib: 10252 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10253 #ifdef CONFIG_I40E_DCB 10254 rtnl_lock(); 10255 i40e_handle_lldp_event(pf, &event); 10256 rtnl_unlock(); 10257 #endif /* CONFIG_I40E_DCB */ 10258 break; 10259 case i40e_aqc_opc_event_lan_overflow: 10260 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10261 i40e_handle_lan_overflow_event(pf, &event); 10262 break; 10263 case i40e_aqc_opc_send_msg_to_peer: 10264 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10265 break; 10266 case i40e_aqc_opc_nvm_erase: 10267 case i40e_aqc_opc_nvm_update: 10268 case i40e_aqc_opc_oem_post_update: 10269 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10270 "ARQ NVM operation 0x%04x completed\n", 10271 opcode); 10272 break; 10273 default: 10274 dev_info(&pf->pdev->dev, 10275 "ARQ: Unknown event 0x%04x ignored\n", 10276 opcode); 10277 break; 10278 } 10279 } while (i++ < I40E_AQ_WORK_LIMIT); 10280 10281 if (i < I40E_AQ_WORK_LIMIT) 10282 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10283 10284 /* re-enable Admin queue interrupt cause */ 10285 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10286 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10287 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10288 i40e_flush(hw); 10289 10290 kfree(event.msg_buf); 10291 } 10292 10293 /** 10294 * i40e_verify_eeprom - make sure eeprom is good to use 10295 * @pf: board private structure 10296 **/ 10297 static void i40e_verify_eeprom(struct i40e_pf *pf) 10298 { 10299 int err; 10300 10301 err = i40e_diag_eeprom_test(&pf->hw); 10302 if (err) { 10303 /* retry in case of garbage read */ 10304 err = i40e_diag_eeprom_test(&pf->hw); 10305 if (err) { 10306 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10307 err); 10308 set_bit(__I40E_BAD_EEPROM, pf->state); 10309 } 10310 } 10311 10312 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10313 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10314 clear_bit(__I40E_BAD_EEPROM, pf->state); 10315 } 10316 } 10317 10318 /** 10319 * i40e_enable_pf_switch_lb 10320 * @pf: pointer to the PF structure 10321 * 10322 * enable switch loop back or die - no point in a return value 10323 **/ 10324 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10325 { 10326 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10327 struct i40e_vsi_context ctxt; 10328 int ret; 10329 10330 ctxt.seid = pf->main_vsi_seid; 10331 ctxt.pf_num = pf->hw.pf_id; 10332 ctxt.vf_num = 0; 10333 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10334 if (ret) { 10335 dev_info(&pf->pdev->dev, 10336 "couldn't get PF vsi config, err %pe aq_err %s\n", 10337 ERR_PTR(ret), 10338 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10339 return; 10340 } 10341 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10342 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10343 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10344 10345 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10346 if (ret) { 10347 dev_info(&pf->pdev->dev, 10348 "update vsi switch failed, err %pe aq_err %s\n", 10349 ERR_PTR(ret), 10350 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10351 } 10352 } 10353 10354 /** 10355 * i40e_disable_pf_switch_lb 10356 * @pf: pointer to the PF structure 10357 * 10358 * disable switch loop back or die - no point in a return value 10359 **/ 10360 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10361 { 10362 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10363 struct i40e_vsi_context ctxt; 10364 int ret; 10365 10366 ctxt.seid = pf->main_vsi_seid; 10367 ctxt.pf_num = pf->hw.pf_id; 10368 ctxt.vf_num = 0; 10369 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10370 if (ret) { 10371 dev_info(&pf->pdev->dev, 10372 "couldn't get PF vsi config, err %pe aq_err %s\n", 10373 ERR_PTR(ret), 10374 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10375 return; 10376 } 10377 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10378 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10379 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10380 10381 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10382 if (ret) { 10383 dev_info(&pf->pdev->dev, 10384 "update vsi switch failed, err %pe aq_err %s\n", 10385 ERR_PTR(ret), 10386 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10387 } 10388 } 10389 10390 /** 10391 * i40e_config_bridge_mode - Configure the HW bridge mode 10392 * @veb: pointer to the bridge instance 10393 * 10394 * Configure the loop back mode for the LAN VSI that is downlink to the 10395 * specified HW bridge instance. It is expected this function is called 10396 * when a new HW bridge is instantiated. 10397 **/ 10398 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10399 { 10400 struct i40e_pf *pf = veb->pf; 10401 10402 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10403 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10404 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10405 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10406 i40e_disable_pf_switch_lb(pf); 10407 else 10408 i40e_enable_pf_switch_lb(pf); 10409 } 10410 10411 /** 10412 * i40e_reconstitute_veb - rebuild the VEB and VSIs connected to it 10413 * @veb: pointer to the VEB instance 10414 * 10415 * This is a function that builds the attached VSIs. We track the connections 10416 * through our own index numbers because the seid's from the HW could change 10417 * across the reset. 10418 **/ 10419 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10420 { 10421 struct i40e_vsi *ctl_vsi = NULL; 10422 struct i40e_pf *pf = veb->pf; 10423 struct i40e_vsi *vsi; 10424 int v, ret; 10425 10426 /* As we do not maintain PV (port virtualizer) switch element then 10427 * there can be only one non-floating VEB that have uplink to MAC SEID 10428 * and its control VSI is the main one. 10429 */ 10430 if (WARN_ON(veb->uplink_seid && veb->uplink_seid != pf->mac_seid)) { 10431 dev_err(&pf->pdev->dev, 10432 "Invalid uplink SEID for VEB %d\n", veb->idx); 10433 return -ENOENT; 10434 } 10435 10436 if (veb->uplink_seid == pf->mac_seid) { 10437 /* Check that the LAN VSI has VEB owning flag set */ 10438 ctl_vsi = i40e_pf_get_main_vsi(pf); 10439 10440 if (WARN_ON(ctl_vsi->veb_idx != veb->idx || 10441 !(ctl_vsi->flags & I40E_VSI_FLAG_VEB_OWNER))) { 10442 dev_err(&pf->pdev->dev, 10443 "Invalid control VSI for VEB %d\n", veb->idx); 10444 return -ENOENT; 10445 } 10446 10447 /* Add the control VSI to switch */ 10448 ret = i40e_add_vsi(ctl_vsi); 10449 if (ret) { 10450 dev_err(&pf->pdev->dev, 10451 "Rebuild of owner VSI for VEB %d failed: %d\n", 10452 veb->idx, ret); 10453 return ret; 10454 } 10455 10456 i40e_vsi_reset_stats(ctl_vsi); 10457 } 10458 10459 /* create the VEB in the switch and move the VSI onto the VEB */ 10460 ret = i40e_add_veb(veb, ctl_vsi); 10461 if (ret) 10462 return ret; 10463 10464 if (veb->uplink_seid) { 10465 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10466 veb->bridge_mode = BRIDGE_MODE_VEB; 10467 else 10468 veb->bridge_mode = BRIDGE_MODE_VEPA; 10469 i40e_config_bridge_mode(veb); 10470 } 10471 10472 /* create the remaining VSIs attached to this VEB */ 10473 i40e_pf_for_each_vsi(pf, v, vsi) { 10474 if (vsi == ctl_vsi) 10475 continue; 10476 10477 if (vsi->veb_idx == veb->idx) { 10478 vsi->uplink_seid = veb->seid; 10479 ret = i40e_add_vsi(vsi); 10480 if (ret) { 10481 dev_info(&pf->pdev->dev, 10482 "rebuild of vsi_idx %d failed: %d\n", 10483 v, ret); 10484 return ret; 10485 } 10486 i40e_vsi_reset_stats(vsi); 10487 } 10488 } 10489 10490 return ret; 10491 } 10492 10493 /** 10494 * i40e_get_capabilities - get info about the HW 10495 * @pf: the PF struct 10496 * @list_type: AQ capability to be queried 10497 **/ 10498 static int i40e_get_capabilities(struct i40e_pf *pf, 10499 enum i40e_admin_queue_opc list_type) 10500 { 10501 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10502 u16 data_size; 10503 int buf_len; 10504 int err; 10505 10506 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10507 do { 10508 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10509 if (!cap_buf) 10510 return -ENOMEM; 10511 10512 /* this loads the data into the hw struct for us */ 10513 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10514 &data_size, list_type, 10515 NULL); 10516 /* data loaded, buffer no longer needed */ 10517 kfree(cap_buf); 10518 10519 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10520 /* retry with a larger buffer */ 10521 buf_len = data_size; 10522 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10523 dev_info(&pf->pdev->dev, 10524 "capability discovery failed, err %pe aq_err %s\n", 10525 ERR_PTR(err), 10526 i40e_aq_str(&pf->hw, 10527 pf->hw.aq.asq_last_status)); 10528 return -ENODEV; 10529 } 10530 } while (err); 10531 10532 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10533 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10534 dev_info(&pf->pdev->dev, 10535 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10536 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10537 pf->hw.func_caps.num_msix_vectors, 10538 pf->hw.func_caps.num_msix_vectors_vf, 10539 pf->hw.func_caps.fd_filters_guaranteed, 10540 pf->hw.func_caps.fd_filters_best_effort, 10541 pf->hw.func_caps.num_tx_qp, 10542 pf->hw.func_caps.num_vsis); 10543 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10544 dev_info(&pf->pdev->dev, 10545 "switch_mode=0x%04x, function_valid=0x%08x\n", 10546 pf->hw.dev_caps.switch_mode, 10547 pf->hw.dev_caps.valid_functions); 10548 dev_info(&pf->pdev->dev, 10549 "SR-IOV=%d, num_vfs for all function=%u\n", 10550 pf->hw.dev_caps.sr_iov_1_1, 10551 pf->hw.dev_caps.num_vfs); 10552 dev_info(&pf->pdev->dev, 10553 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10554 pf->hw.dev_caps.num_vsis, 10555 pf->hw.dev_caps.num_rx_qp, 10556 pf->hw.dev_caps.num_tx_qp); 10557 } 10558 } 10559 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10560 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10561 + pf->hw.func_caps.num_vfs) 10562 if (pf->hw.revision_id == 0 && 10563 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10564 dev_info(&pf->pdev->dev, 10565 "got num_vsis %d, setting num_vsis to %d\n", 10566 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10567 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10568 } 10569 } 10570 return 0; 10571 } 10572 10573 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10574 10575 /** 10576 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10577 * @pf: board private structure 10578 **/ 10579 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10580 { 10581 struct i40e_vsi *main_vsi, *vsi; 10582 10583 /* quick workaround for an NVM issue that leaves a critical register 10584 * uninitialized 10585 */ 10586 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10587 static const u32 hkey[] = { 10588 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10589 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10590 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10591 0x95b3a76d}; 10592 int i; 10593 10594 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10595 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10596 } 10597 10598 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10599 return; 10600 10601 /* find existing VSI and see if it needs configuring */ 10602 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10603 10604 /* create a new VSI if none exists */ 10605 if (!vsi) { 10606 main_vsi = i40e_pf_get_main_vsi(pf); 10607 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, main_vsi->seid, 0); 10608 if (!vsi) { 10609 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10610 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10611 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10612 return; 10613 } 10614 } 10615 10616 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10617 } 10618 10619 /** 10620 * i40e_fdir_teardown - release the Flow Director resources 10621 * @pf: board private structure 10622 **/ 10623 static void i40e_fdir_teardown(struct i40e_pf *pf) 10624 { 10625 struct i40e_vsi *vsi; 10626 10627 i40e_fdir_filter_exit(pf); 10628 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10629 if (vsi) 10630 i40e_vsi_release(vsi); 10631 } 10632 10633 /** 10634 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10635 * @vsi: PF main vsi 10636 * @seid: seid of main or channel VSIs 10637 * 10638 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10639 * existed before reset 10640 **/ 10641 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10642 { 10643 struct i40e_cloud_filter *cfilter; 10644 struct i40e_pf *pf = vsi->back; 10645 struct hlist_node *node; 10646 int ret; 10647 10648 /* Add cloud filters back if they exist */ 10649 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10650 cloud_node) { 10651 if (cfilter->seid != seid) 10652 continue; 10653 10654 if (cfilter->dst_port) 10655 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10656 true); 10657 else 10658 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10659 10660 if (ret) { 10661 dev_dbg(&pf->pdev->dev, 10662 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10663 ERR_PTR(ret), 10664 i40e_aq_str(&pf->hw, 10665 pf->hw.aq.asq_last_status)); 10666 return ret; 10667 } 10668 } 10669 return 0; 10670 } 10671 10672 /** 10673 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10674 * @vsi: PF main vsi 10675 * 10676 * Rebuilds channel VSIs if they existed before reset 10677 **/ 10678 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10679 { 10680 struct i40e_channel *ch, *ch_tmp; 10681 int ret; 10682 10683 if (list_empty(&vsi->ch_list)) 10684 return 0; 10685 10686 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10687 if (!ch->initialized) 10688 break; 10689 /* Proceed with creation of channel (VMDq2) VSI */ 10690 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10691 if (ret) { 10692 dev_info(&vsi->back->pdev->dev, 10693 "failed to rebuild channels using uplink_seid %u\n", 10694 vsi->uplink_seid); 10695 return ret; 10696 } 10697 /* Reconfigure TX queues using QTX_CTL register */ 10698 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10699 if (ret) { 10700 dev_info(&vsi->back->pdev->dev, 10701 "failed to configure TX rings for channel %u\n", 10702 ch->seid); 10703 return ret; 10704 } 10705 /* update 'next_base_queue' */ 10706 vsi->next_base_queue = vsi->next_base_queue + 10707 ch->num_queue_pairs; 10708 if (ch->max_tx_rate) { 10709 u64 credits = ch->max_tx_rate; 10710 10711 if (i40e_set_bw_limit(vsi, ch->seid, 10712 ch->max_tx_rate)) 10713 return -EINVAL; 10714 10715 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10716 dev_dbg(&vsi->back->pdev->dev, 10717 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10718 ch->max_tx_rate, 10719 credits, 10720 ch->seid); 10721 } 10722 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10723 if (ret) { 10724 dev_dbg(&vsi->back->pdev->dev, 10725 "Failed to rebuild cloud filters for channel VSI %u\n", 10726 ch->seid); 10727 return ret; 10728 } 10729 } 10730 return 0; 10731 } 10732 10733 /** 10734 * i40e_clean_xps_state - clean xps state for every tx_ring 10735 * @vsi: ptr to the VSI 10736 **/ 10737 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10738 { 10739 int i; 10740 10741 if (vsi->tx_rings) 10742 for (i = 0; i < vsi->num_queue_pairs; i++) 10743 if (vsi->tx_rings[i]) 10744 clear_bit(__I40E_TX_XPS_INIT_DONE, 10745 vsi->tx_rings[i]->state); 10746 } 10747 10748 /** 10749 * i40e_prep_for_reset - prep for the core to reset 10750 * @pf: board private structure 10751 * 10752 * Close up the VFs and other things in prep for PF Reset. 10753 **/ 10754 static void i40e_prep_for_reset(struct i40e_pf *pf) 10755 { 10756 struct i40e_hw *hw = &pf->hw; 10757 struct i40e_vsi *vsi; 10758 int ret = 0; 10759 u32 v; 10760 10761 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10762 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10763 return; 10764 if (i40e_check_asq_alive(&pf->hw)) 10765 i40e_vc_notify_reset(pf); 10766 10767 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10768 10769 /* quiesce the VSIs and their queues that are not already DOWN */ 10770 i40e_pf_quiesce_all_vsi(pf); 10771 10772 i40e_pf_for_each_vsi(pf, v, vsi) { 10773 i40e_clean_xps_state(vsi); 10774 vsi->seid = 0; 10775 } 10776 10777 i40e_shutdown_adminq(&pf->hw); 10778 10779 /* call shutdown HMC */ 10780 if (hw->hmc.hmc_obj) { 10781 ret = i40e_shutdown_lan_hmc(hw); 10782 if (ret) 10783 dev_warn(&pf->pdev->dev, 10784 "shutdown_lan_hmc failed: %d\n", ret); 10785 } 10786 10787 /* Save the current PTP time so that we can restore the time after the 10788 * reset completes. 10789 */ 10790 i40e_ptp_save_hw_time(pf); 10791 } 10792 10793 /** 10794 * i40e_send_version - update firmware with driver version 10795 * @pf: PF struct 10796 */ 10797 static void i40e_send_version(struct i40e_pf *pf) 10798 { 10799 struct i40e_driver_version dv; 10800 10801 dv.major_version = 0xff; 10802 dv.minor_version = 0xff; 10803 dv.build_version = 0xff; 10804 dv.subbuild_version = 0; 10805 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10806 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10807 } 10808 10809 /** 10810 * i40e_get_oem_version - get OEM specific version information 10811 * @hw: pointer to the hardware structure 10812 **/ 10813 static void i40e_get_oem_version(struct i40e_hw *hw) 10814 { 10815 u16 block_offset = 0xffff; 10816 u16 block_length = 0; 10817 u16 capabilities = 0; 10818 u16 gen_snap = 0; 10819 u16 release = 0; 10820 10821 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10822 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10823 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10824 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10825 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10826 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10827 #define I40E_NVM_OEM_LENGTH 3 10828 10829 /* Check if pointer to OEM version block is valid. */ 10830 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10831 if (block_offset == 0xffff) 10832 return; 10833 10834 /* Check if OEM version block has correct length. */ 10835 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10836 &block_length); 10837 if (block_length < I40E_NVM_OEM_LENGTH) 10838 return; 10839 10840 /* Check if OEM version format is as expected. */ 10841 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10842 &capabilities); 10843 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10844 return; 10845 10846 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10847 &gen_snap); 10848 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10849 &release); 10850 hw->nvm.oem_ver = 10851 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10852 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10853 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10854 } 10855 10856 /** 10857 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10858 * @pf: board private structure 10859 **/ 10860 static int i40e_reset(struct i40e_pf *pf) 10861 { 10862 struct i40e_hw *hw = &pf->hw; 10863 int ret; 10864 10865 ret = i40e_pf_reset(hw); 10866 if (ret) { 10867 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10868 set_bit(__I40E_RESET_FAILED, pf->state); 10869 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10870 } else { 10871 pf->pfr_count++; 10872 } 10873 return ret; 10874 } 10875 10876 /** 10877 * i40e_rebuild - rebuild using a saved config 10878 * @pf: board private structure 10879 * @reinit: if the Main VSI needs to re-initialized. 10880 * @lock_acquired: indicates whether or not the lock has been acquired 10881 * before this function was called. 10882 **/ 10883 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10884 { 10885 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10886 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10887 struct i40e_hw *hw = &pf->hw; 10888 struct i40e_veb *veb; 10889 int ret; 10890 u32 val; 10891 int v; 10892 10893 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10894 is_recovery_mode_reported) 10895 i40e_set_ethtool_ops(vsi->netdev); 10896 10897 if (test_bit(__I40E_DOWN, pf->state) && 10898 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10899 goto clear_recovery; 10900 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10901 10902 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10903 ret = i40e_init_adminq(&pf->hw); 10904 if (ret) { 10905 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10906 ERR_PTR(ret), 10907 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10908 goto clear_recovery; 10909 } 10910 i40e_get_oem_version(&pf->hw); 10911 10912 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10913 /* The following delay is necessary for firmware update. */ 10914 mdelay(1000); 10915 } 10916 10917 /* re-verify the eeprom if we just had an EMP reset */ 10918 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10919 i40e_verify_eeprom(pf); 10920 10921 /* if we are going out of or into recovery mode we have to act 10922 * accordingly with regard to resources initialization 10923 * and deinitialization 10924 */ 10925 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10926 if (i40e_get_capabilities(pf, 10927 i40e_aqc_opc_list_func_capabilities)) 10928 goto end_unlock; 10929 10930 if (is_recovery_mode_reported) { 10931 /* we're staying in recovery mode so we'll reinitialize 10932 * misc vector here 10933 */ 10934 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10935 goto end_unlock; 10936 } else { 10937 if (!lock_acquired) 10938 rtnl_lock(); 10939 /* we're going out of recovery mode so we'll free 10940 * the IRQ allocated specifically for recovery mode 10941 * and restore the interrupt scheme 10942 */ 10943 free_irq(pf->pdev->irq, pf); 10944 i40e_clear_interrupt_scheme(pf); 10945 if (i40e_restore_interrupt_scheme(pf)) 10946 goto end_unlock; 10947 } 10948 10949 /* tell the firmware that we're starting */ 10950 i40e_send_version(pf); 10951 10952 /* bail out in case recovery mode was detected, as there is 10953 * no need for further configuration. 10954 */ 10955 goto end_unlock; 10956 } 10957 10958 i40e_clear_pxe_mode(hw); 10959 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10960 if (ret) 10961 goto end_core_reset; 10962 10963 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10964 hw->func_caps.num_rx_qp, 0, 0); 10965 if (ret) { 10966 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10967 goto end_core_reset; 10968 } 10969 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10970 if (ret) { 10971 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10972 goto end_core_reset; 10973 } 10974 10975 #ifdef CONFIG_I40E_DCB 10976 /* Enable FW to write a default DCB config on link-up 10977 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10978 * is not supported with new link speed 10979 */ 10980 if (i40e_is_tc_mqprio_enabled(pf)) { 10981 i40e_aq_set_dcb_parameters(hw, false, NULL); 10982 } else { 10983 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10984 (hw->phy.link_info.link_speed & 10985 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10986 i40e_aq_set_dcb_parameters(hw, false, NULL); 10987 dev_warn(&pf->pdev->dev, 10988 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10989 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10990 } else { 10991 i40e_aq_set_dcb_parameters(hw, true, NULL); 10992 ret = i40e_init_pf_dcb(pf); 10993 if (ret) { 10994 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10995 ret); 10996 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10997 /* Continue without DCB enabled */ 10998 } 10999 } 11000 } 11001 11002 #endif /* CONFIG_I40E_DCB */ 11003 if (!lock_acquired) 11004 rtnl_lock(); 11005 ret = i40e_setup_pf_switch(pf, reinit, true); 11006 if (ret) 11007 goto end_unlock; 11008 11009 /* The driver only wants link up/down and module qualification 11010 * reports from firmware. Note the negative logic. 11011 */ 11012 ret = i40e_aq_set_phy_int_mask(&pf->hw, 11013 ~(I40E_AQ_EVENT_LINK_UPDOWN | 11014 I40E_AQ_EVENT_MEDIA_NA | 11015 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 11016 if (ret) 11017 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 11018 ERR_PTR(ret), 11019 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11020 11021 /* Rebuild the VSIs and VEBs that existed before reset. 11022 * They are still in our local switch element arrays, so only 11023 * need to rebuild the switch model in the HW. 11024 * 11025 * If there were VEBs but the reconstitution failed, we'll try 11026 * to recover minimal use by getting the basic PF VSI working. 11027 */ 11028 if (vsi->uplink_seid != pf->mac_seid) { 11029 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 11030 11031 /* Rebuild VEBs */ 11032 i40e_pf_for_each_veb(pf, v, veb) { 11033 ret = i40e_reconstitute_veb(veb); 11034 if (!ret) 11035 continue; 11036 11037 /* If Main VEB failed, we're in deep doodoo, 11038 * so give up rebuilding the switch and set up 11039 * for minimal rebuild of PF VSI. 11040 * If orphan failed, we'll report the error 11041 * but try to keep going. 11042 */ 11043 if (veb->uplink_seid == pf->mac_seid) { 11044 dev_info(&pf->pdev->dev, 11045 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 11046 ret); 11047 vsi->uplink_seid = pf->mac_seid; 11048 break; 11049 } else if (veb->uplink_seid == 0) { 11050 dev_info(&pf->pdev->dev, 11051 "rebuild of orphan VEB failed: %d\n", 11052 ret); 11053 } 11054 } 11055 } 11056 11057 if (vsi->uplink_seid == pf->mac_seid) { 11058 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11059 /* no VEB, so rebuild only the Main VSI */ 11060 ret = i40e_add_vsi(vsi); 11061 if (ret) { 11062 dev_info(&pf->pdev->dev, 11063 "rebuild of Main VSI failed: %d\n", ret); 11064 goto end_unlock; 11065 } 11066 } 11067 11068 if (vsi->mqprio_qopt.max_rate[0]) { 11069 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11070 vsi->mqprio_qopt.max_rate[0]); 11071 u64 credits = 0; 11072 11073 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11074 if (ret) 11075 goto end_unlock; 11076 11077 credits = max_tx_rate; 11078 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11079 dev_dbg(&vsi->back->pdev->dev, 11080 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11081 max_tx_rate, 11082 credits, 11083 vsi->seid); 11084 } 11085 11086 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11087 if (ret) 11088 goto end_unlock; 11089 11090 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11091 * for this main VSI if they exist 11092 */ 11093 ret = i40e_rebuild_channels(vsi); 11094 if (ret) 11095 goto end_unlock; 11096 11097 /* Reconfigure hardware for allowing smaller MSS in the case 11098 * of TSO, so that we avoid the MDD being fired and causing 11099 * a reset in the case of small MSS+TSO. 11100 */ 11101 #define I40E_REG_MSS 0x000E64DC 11102 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11103 #define I40E_64BYTE_MSS 0x400000 11104 val = rd32(hw, I40E_REG_MSS); 11105 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11106 val &= ~I40E_REG_MSS_MIN_MASK; 11107 val |= I40E_64BYTE_MSS; 11108 wr32(hw, I40E_REG_MSS, val); 11109 } 11110 11111 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11112 msleep(75); 11113 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11114 if (ret) 11115 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11116 ERR_PTR(ret), 11117 i40e_aq_str(&pf->hw, 11118 pf->hw.aq.asq_last_status)); 11119 } 11120 /* reinit the misc interrupt */ 11121 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11122 ret = i40e_setup_misc_vector(pf); 11123 if (ret) 11124 goto end_unlock; 11125 } 11126 11127 /* Add a filter to drop all Flow control frames from any VSI from being 11128 * transmitted. By doing so we stop a malicious VF from sending out 11129 * PAUSE or PFC frames and potentially controlling traffic for other 11130 * PF/VF VSIs. 11131 * The FW can still send Flow control frames if enabled. 11132 */ 11133 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11134 pf->main_vsi_seid); 11135 11136 /* restart the VSIs that were rebuilt and running before the reset */ 11137 i40e_pf_unquiesce_all_vsi(pf); 11138 11139 /* Release the RTNL lock before we start resetting VFs */ 11140 if (!lock_acquired) 11141 rtnl_unlock(); 11142 11143 /* Restore promiscuous settings */ 11144 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11145 if (ret) 11146 dev_warn(&pf->pdev->dev, 11147 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11148 pf->cur_promisc ? "on" : "off", 11149 ERR_PTR(ret), 11150 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11151 11152 i40e_reset_all_vfs(pf, true); 11153 11154 /* tell the firmware that we're starting */ 11155 i40e_send_version(pf); 11156 11157 /* We've already released the lock, so don't do it again */ 11158 goto end_core_reset; 11159 11160 end_unlock: 11161 if (!lock_acquired) 11162 rtnl_unlock(); 11163 end_core_reset: 11164 clear_bit(__I40E_RESET_FAILED, pf->state); 11165 clear_recovery: 11166 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11167 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11168 } 11169 11170 /** 11171 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11172 * @pf: board private structure 11173 * @reinit: if the Main VSI needs to re-initialized. 11174 * @lock_acquired: indicates whether or not the lock has been acquired 11175 * before this function was called. 11176 **/ 11177 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11178 bool lock_acquired) 11179 { 11180 int ret; 11181 11182 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11183 return; 11184 /* Now we wait for GRST to settle out. 11185 * We don't have to delete the VEBs or VSIs from the hw switch 11186 * because the reset will make them disappear. 11187 */ 11188 ret = i40e_reset(pf); 11189 if (!ret) 11190 i40e_rebuild(pf, reinit, lock_acquired); 11191 else 11192 dev_err(&pf->pdev->dev, "%s: i40e_reset() FAILED", __func__); 11193 } 11194 11195 /** 11196 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11197 * @pf: board private structure 11198 * 11199 * Close up the VFs and other things in prep for a Core Reset, 11200 * then get ready to rebuild the world. 11201 * @lock_acquired: indicates whether or not the lock has been acquired 11202 * before this function was called. 11203 **/ 11204 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11205 { 11206 i40e_prep_for_reset(pf); 11207 i40e_reset_and_rebuild(pf, false, lock_acquired); 11208 } 11209 11210 /** 11211 * i40e_handle_mdd_event 11212 * @pf: pointer to the PF structure 11213 * 11214 * Called from the MDD irq handler to identify possibly malicious vfs 11215 **/ 11216 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11217 { 11218 struct i40e_hw *hw = &pf->hw; 11219 bool mdd_detected = false; 11220 struct i40e_vf *vf; 11221 u32 reg; 11222 int i; 11223 11224 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 11225 return; 11226 11227 /* find what triggered the MDD event */ 11228 reg = rd32(hw, I40E_GL_MDET_TX); 11229 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11230 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg); 11231 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg); 11232 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg); 11233 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) - 11234 pf->hw.func_caps.base_queue; 11235 if (netif_msg_tx_err(pf)) 11236 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11237 event, queue, pf_num, vf_num); 11238 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11239 mdd_detected = true; 11240 } 11241 reg = rd32(hw, I40E_GL_MDET_RX); 11242 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11243 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg); 11244 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg); 11245 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) - 11246 pf->hw.func_caps.base_queue; 11247 if (netif_msg_rx_err(pf)) 11248 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11249 event, queue, func); 11250 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11251 mdd_detected = true; 11252 } 11253 11254 if (mdd_detected) { 11255 reg = rd32(hw, I40E_PF_MDET_TX); 11256 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11257 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11258 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11259 } 11260 reg = rd32(hw, I40E_PF_MDET_RX); 11261 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11262 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11263 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11264 } 11265 } 11266 11267 /* see if one of the VFs needs its hand slapped */ 11268 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11269 vf = &(pf->vf[i]); 11270 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11271 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11272 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11273 vf->num_mdd_events++; 11274 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 11275 i); 11276 dev_info(&pf->pdev->dev, 11277 "Use PF Control I/F to re-enable the VF\n"); 11278 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11279 } 11280 11281 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11282 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11283 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11284 vf->num_mdd_events++; 11285 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 11286 i); 11287 dev_info(&pf->pdev->dev, 11288 "Use PF Control I/F to re-enable the VF\n"); 11289 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11290 } 11291 } 11292 11293 /* re-enable mdd interrupt cause */ 11294 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 11295 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11296 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11297 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11298 i40e_flush(hw); 11299 } 11300 11301 /** 11302 * i40e_service_task - Run the driver's async subtasks 11303 * @work: pointer to work_struct containing our data 11304 **/ 11305 static void i40e_service_task(struct work_struct *work) 11306 { 11307 struct i40e_pf *pf = container_of(work, 11308 struct i40e_pf, 11309 service_task); 11310 unsigned long start_time = jiffies; 11311 11312 /* don't bother with service tasks if a reset is in progress */ 11313 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11314 test_bit(__I40E_SUSPENDED, pf->state)) 11315 return; 11316 11317 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11318 return; 11319 11320 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11321 i40e_detect_recover_hung(pf); 11322 i40e_sync_filters_subtask(pf); 11323 i40e_reset_subtask(pf); 11324 i40e_handle_mdd_event(pf); 11325 i40e_vc_process_vflr_event(pf); 11326 i40e_watchdog_subtask(pf); 11327 i40e_fdir_reinit_subtask(pf); 11328 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11329 /* Client subtask will reopen next time through. */ 11330 i40e_notify_client_of_netdev_close(pf, true); 11331 } else { 11332 i40e_client_subtask(pf); 11333 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11334 pf->state)) 11335 i40e_notify_client_of_l2_param_changes(pf); 11336 } 11337 i40e_sync_filters_subtask(pf); 11338 } else { 11339 i40e_reset_subtask(pf); 11340 } 11341 11342 i40e_clean_adminq_subtask(pf); 11343 11344 /* flush memory to make sure state is correct before next watchdog */ 11345 smp_mb__before_atomic(); 11346 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11347 11348 /* If the tasks have taken longer than one timer cycle or there 11349 * is more work to be done, reschedule the service task now 11350 * rather than wait for the timer to tick again. 11351 */ 11352 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11353 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11354 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11355 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11356 i40e_service_event_schedule(pf); 11357 } 11358 11359 /** 11360 * i40e_service_timer - timer callback 11361 * @t: timer list pointer 11362 **/ 11363 static void i40e_service_timer(struct timer_list *t) 11364 { 11365 struct i40e_pf *pf = from_timer(pf, t, service_timer); 11366 11367 mod_timer(&pf->service_timer, 11368 round_jiffies(jiffies + pf->service_timer_period)); 11369 i40e_service_event_schedule(pf); 11370 } 11371 11372 /** 11373 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11374 * @vsi: the VSI being configured 11375 **/ 11376 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11377 { 11378 struct i40e_pf *pf = vsi->back; 11379 11380 switch (vsi->type) { 11381 case I40E_VSI_MAIN: 11382 vsi->alloc_queue_pairs = pf->num_lan_qps; 11383 if (!vsi->num_tx_desc) 11384 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11385 I40E_REQ_DESCRIPTOR_MULTIPLE); 11386 if (!vsi->num_rx_desc) 11387 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11388 I40E_REQ_DESCRIPTOR_MULTIPLE); 11389 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11390 vsi->num_q_vectors = pf->num_lan_msix; 11391 else 11392 vsi->num_q_vectors = 1; 11393 11394 break; 11395 11396 case I40E_VSI_FDIR: 11397 vsi->alloc_queue_pairs = 1; 11398 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11399 I40E_REQ_DESCRIPTOR_MULTIPLE); 11400 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11401 I40E_REQ_DESCRIPTOR_MULTIPLE); 11402 vsi->num_q_vectors = pf->num_fdsb_msix; 11403 break; 11404 11405 case I40E_VSI_VMDQ2: 11406 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11407 if (!vsi->num_tx_desc) 11408 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11409 I40E_REQ_DESCRIPTOR_MULTIPLE); 11410 if (!vsi->num_rx_desc) 11411 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11412 I40E_REQ_DESCRIPTOR_MULTIPLE); 11413 vsi->num_q_vectors = pf->num_vmdq_msix; 11414 break; 11415 11416 case I40E_VSI_SRIOV: 11417 vsi->alloc_queue_pairs = pf->num_vf_qps; 11418 if (!vsi->num_tx_desc) 11419 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11420 I40E_REQ_DESCRIPTOR_MULTIPLE); 11421 if (!vsi->num_rx_desc) 11422 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11423 I40E_REQ_DESCRIPTOR_MULTIPLE); 11424 break; 11425 11426 default: 11427 WARN_ON(1); 11428 return -ENODATA; 11429 } 11430 11431 if (is_kdump_kernel()) { 11432 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11433 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11434 } 11435 11436 return 0; 11437 } 11438 11439 /** 11440 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11441 * @vsi: VSI pointer 11442 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11443 * 11444 * On error: returns error code (negative) 11445 * On success: returns 0 11446 **/ 11447 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11448 { 11449 struct i40e_ring **next_rings; 11450 int size; 11451 int ret = 0; 11452 11453 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11454 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11455 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11456 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11457 if (!vsi->tx_rings) 11458 return -ENOMEM; 11459 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11460 if (i40e_enabled_xdp_vsi(vsi)) { 11461 vsi->xdp_rings = next_rings; 11462 next_rings += vsi->alloc_queue_pairs; 11463 } 11464 vsi->rx_rings = next_rings; 11465 11466 if (alloc_qvectors) { 11467 /* allocate memory for q_vector pointers */ 11468 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11469 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11470 if (!vsi->q_vectors) { 11471 ret = -ENOMEM; 11472 goto err_vectors; 11473 } 11474 } 11475 return ret; 11476 11477 err_vectors: 11478 kfree(vsi->tx_rings); 11479 return ret; 11480 } 11481 11482 /** 11483 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11484 * @pf: board private structure 11485 * @type: type of VSI 11486 * 11487 * On error: returns error code (negative) 11488 * On success: returns vsi index in PF (positive) 11489 **/ 11490 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11491 { 11492 int ret = -ENODEV; 11493 struct i40e_vsi *vsi; 11494 int vsi_idx; 11495 int i; 11496 11497 /* Need to protect the allocation of the VSIs at the PF level */ 11498 mutex_lock(&pf->switch_mutex); 11499 11500 /* VSI list may be fragmented if VSI creation/destruction has 11501 * been happening. We can afford to do a quick scan to look 11502 * for any free VSIs in the list. 11503 * 11504 * find next empty vsi slot, looping back around if necessary 11505 */ 11506 i = pf->next_vsi; 11507 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11508 i++; 11509 if (i >= pf->num_alloc_vsi) { 11510 i = 0; 11511 while (i < pf->next_vsi && pf->vsi[i]) 11512 i++; 11513 } 11514 11515 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11516 vsi_idx = i; /* Found one! */ 11517 } else { 11518 ret = -ENODEV; 11519 goto unlock_pf; /* out of VSI slots! */ 11520 } 11521 pf->next_vsi = ++i; 11522 11523 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11524 if (!vsi) { 11525 ret = -ENOMEM; 11526 goto unlock_pf; 11527 } 11528 vsi->type = type; 11529 vsi->back = pf; 11530 set_bit(__I40E_VSI_DOWN, vsi->state); 11531 vsi->flags = 0; 11532 vsi->idx = vsi_idx; 11533 vsi->int_rate_limit = 0; 11534 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11535 pf->rss_table_size : 64; 11536 vsi->netdev_registered = false; 11537 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11538 hash_init(vsi->mac_filter_hash); 11539 vsi->irqs_ready = false; 11540 11541 if (type == I40E_VSI_MAIN) { 11542 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11543 if (!vsi->af_xdp_zc_qps) 11544 goto err_rings; 11545 } 11546 11547 ret = i40e_set_num_rings_in_vsi(vsi); 11548 if (ret) 11549 goto err_rings; 11550 11551 ret = i40e_vsi_alloc_arrays(vsi, true); 11552 if (ret) 11553 goto err_rings; 11554 11555 /* Setup default MSIX irq handler for VSI */ 11556 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11557 11558 /* Initialize VSI lock */ 11559 spin_lock_init(&vsi->mac_filter_hash_lock); 11560 pf->vsi[vsi_idx] = vsi; 11561 ret = vsi_idx; 11562 goto unlock_pf; 11563 11564 err_rings: 11565 bitmap_free(vsi->af_xdp_zc_qps); 11566 pf->next_vsi = i - 1; 11567 kfree(vsi); 11568 unlock_pf: 11569 mutex_unlock(&pf->switch_mutex); 11570 return ret; 11571 } 11572 11573 /** 11574 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11575 * @vsi: VSI pointer 11576 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11577 * 11578 * On error: returns error code (negative) 11579 * On success: returns 0 11580 **/ 11581 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11582 { 11583 /* free the ring and vector containers */ 11584 if (free_qvectors) { 11585 kfree(vsi->q_vectors); 11586 vsi->q_vectors = NULL; 11587 } 11588 kfree(vsi->tx_rings); 11589 vsi->tx_rings = NULL; 11590 vsi->rx_rings = NULL; 11591 vsi->xdp_rings = NULL; 11592 } 11593 11594 /** 11595 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11596 * and lookup table 11597 * @vsi: Pointer to VSI structure 11598 */ 11599 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11600 { 11601 if (!vsi) 11602 return; 11603 11604 kfree(vsi->rss_hkey_user); 11605 vsi->rss_hkey_user = NULL; 11606 11607 kfree(vsi->rss_lut_user); 11608 vsi->rss_lut_user = NULL; 11609 } 11610 11611 /** 11612 * i40e_vsi_clear - Deallocate the VSI provided 11613 * @vsi: the VSI being un-configured 11614 **/ 11615 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11616 { 11617 struct i40e_pf *pf; 11618 11619 if (!vsi) 11620 return 0; 11621 11622 if (!vsi->back) 11623 goto free_vsi; 11624 pf = vsi->back; 11625 11626 mutex_lock(&pf->switch_mutex); 11627 if (!pf->vsi[vsi->idx]) { 11628 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11629 vsi->idx, vsi->idx, vsi->type); 11630 goto unlock_vsi; 11631 } 11632 11633 if (pf->vsi[vsi->idx] != vsi) { 11634 dev_err(&pf->pdev->dev, 11635 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11636 pf->vsi[vsi->idx]->idx, 11637 pf->vsi[vsi->idx]->type, 11638 vsi->idx, vsi->type); 11639 goto unlock_vsi; 11640 } 11641 11642 /* updates the PF for this cleared vsi */ 11643 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11644 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11645 11646 bitmap_free(vsi->af_xdp_zc_qps); 11647 i40e_vsi_free_arrays(vsi, true); 11648 i40e_clear_rss_config_user(vsi); 11649 11650 pf->vsi[vsi->idx] = NULL; 11651 if (vsi->idx < pf->next_vsi) 11652 pf->next_vsi = vsi->idx; 11653 11654 unlock_vsi: 11655 mutex_unlock(&pf->switch_mutex); 11656 free_vsi: 11657 kfree(vsi); 11658 11659 return 0; 11660 } 11661 11662 /** 11663 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11664 * @vsi: the VSI being cleaned 11665 **/ 11666 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11667 { 11668 int i; 11669 11670 if (vsi->tx_rings && vsi->tx_rings[0]) { 11671 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11672 kfree_rcu(vsi->tx_rings[i], rcu); 11673 WRITE_ONCE(vsi->tx_rings[i], NULL); 11674 WRITE_ONCE(vsi->rx_rings[i], NULL); 11675 if (vsi->xdp_rings) 11676 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11677 } 11678 } 11679 } 11680 11681 /** 11682 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11683 * @vsi: the VSI being configured 11684 **/ 11685 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11686 { 11687 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11688 struct i40e_pf *pf = vsi->back; 11689 struct i40e_ring *ring; 11690 11691 /* Set basic values in the rings to be used later during open() */ 11692 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11693 /* allocate space for both Tx and Rx in one shot */ 11694 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11695 if (!ring) 11696 goto err_out; 11697 11698 ring->queue_index = i; 11699 ring->reg_idx = vsi->base_queue + i; 11700 ring->ring_active = false; 11701 ring->vsi = vsi; 11702 ring->netdev = vsi->netdev; 11703 ring->dev = &pf->pdev->dev; 11704 ring->count = vsi->num_tx_desc; 11705 ring->size = 0; 11706 ring->dcb_tc = 0; 11707 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11708 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11709 ring->itr_setting = pf->tx_itr_default; 11710 WRITE_ONCE(vsi->tx_rings[i], ring++); 11711 11712 if (!i40e_enabled_xdp_vsi(vsi)) 11713 goto setup_rx; 11714 11715 ring->queue_index = vsi->alloc_queue_pairs + i; 11716 ring->reg_idx = vsi->base_queue + ring->queue_index; 11717 ring->ring_active = false; 11718 ring->vsi = vsi; 11719 ring->netdev = NULL; 11720 ring->dev = &pf->pdev->dev; 11721 ring->count = vsi->num_tx_desc; 11722 ring->size = 0; 11723 ring->dcb_tc = 0; 11724 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11725 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11726 set_ring_xdp(ring); 11727 ring->itr_setting = pf->tx_itr_default; 11728 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11729 11730 setup_rx: 11731 ring->queue_index = i; 11732 ring->reg_idx = vsi->base_queue + i; 11733 ring->ring_active = false; 11734 ring->vsi = vsi; 11735 ring->netdev = vsi->netdev; 11736 ring->dev = &pf->pdev->dev; 11737 ring->count = vsi->num_rx_desc; 11738 ring->size = 0; 11739 ring->dcb_tc = 0; 11740 ring->itr_setting = pf->rx_itr_default; 11741 WRITE_ONCE(vsi->rx_rings[i], ring); 11742 } 11743 11744 return 0; 11745 11746 err_out: 11747 i40e_vsi_clear_rings(vsi); 11748 return -ENOMEM; 11749 } 11750 11751 /** 11752 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11753 * @pf: board private structure 11754 * @vectors: the number of MSI-X vectors to request 11755 * 11756 * Returns the number of vectors reserved, or error 11757 **/ 11758 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11759 { 11760 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11761 I40E_MIN_MSIX, vectors); 11762 if (vectors < 0) { 11763 dev_info(&pf->pdev->dev, 11764 "MSI-X vector reservation failed: %d\n", vectors); 11765 vectors = 0; 11766 } 11767 11768 return vectors; 11769 } 11770 11771 /** 11772 * i40e_init_msix - Setup the MSIX capability 11773 * @pf: board private structure 11774 * 11775 * Work with the OS to set up the MSIX vectors needed. 11776 * 11777 * Returns the number of vectors reserved or negative on failure 11778 **/ 11779 static int i40e_init_msix(struct i40e_pf *pf) 11780 { 11781 struct i40e_hw *hw = &pf->hw; 11782 int cpus, extra_vectors; 11783 int vectors_left; 11784 int v_budget, i; 11785 int v_actual; 11786 int iwarp_requested = 0; 11787 11788 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11789 return -ENODEV; 11790 11791 /* The number of vectors we'll request will be comprised of: 11792 * - Add 1 for "other" cause for Admin Queue events, etc. 11793 * - The number of LAN queue pairs 11794 * - Queues being used for RSS. 11795 * We don't need as many as max_rss_size vectors. 11796 * use rss_size instead in the calculation since that 11797 * is governed by number of cpus in the system. 11798 * - assumes symmetric Tx/Rx pairing 11799 * - The number of VMDq pairs 11800 * - The CPU count within the NUMA node if iWARP is enabled 11801 * Once we count this up, try the request. 11802 * 11803 * If we can't get what we want, we'll simplify to nearly nothing 11804 * and try again. If that still fails, we punt. 11805 */ 11806 vectors_left = hw->func_caps.num_msix_vectors; 11807 v_budget = 0; 11808 11809 /* reserve one vector for miscellaneous handler */ 11810 if (vectors_left) { 11811 v_budget++; 11812 vectors_left--; 11813 } 11814 11815 /* reserve some vectors for the main PF traffic queues. Initially we 11816 * only reserve at most 50% of the available vectors, in the case that 11817 * the number of online CPUs is large. This ensures that we can enable 11818 * extra features as well. Once we've enabled the other features, we 11819 * will use any remaining vectors to reach as close as we can to the 11820 * number of online CPUs. 11821 */ 11822 cpus = num_online_cpus(); 11823 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11824 vectors_left -= pf->num_lan_msix; 11825 11826 /* reserve one vector for sideband flow director */ 11827 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11828 if (vectors_left) { 11829 pf->num_fdsb_msix = 1; 11830 v_budget++; 11831 vectors_left--; 11832 } else { 11833 pf->num_fdsb_msix = 0; 11834 } 11835 } 11836 11837 /* can we reserve enough for iWARP? */ 11838 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11839 iwarp_requested = pf->num_iwarp_msix; 11840 11841 if (!vectors_left) 11842 pf->num_iwarp_msix = 0; 11843 else if (vectors_left < pf->num_iwarp_msix) 11844 pf->num_iwarp_msix = 1; 11845 v_budget += pf->num_iwarp_msix; 11846 vectors_left -= pf->num_iwarp_msix; 11847 } 11848 11849 /* any vectors left over go for VMDq support */ 11850 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11851 if (!vectors_left) { 11852 pf->num_vmdq_msix = 0; 11853 pf->num_vmdq_qps = 0; 11854 } else { 11855 int vmdq_vecs_wanted = 11856 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11857 int vmdq_vecs = 11858 min_t(int, vectors_left, vmdq_vecs_wanted); 11859 11860 /* if we're short on vectors for what's desired, we limit 11861 * the queues per vmdq. If this is still more than are 11862 * available, the user will need to change the number of 11863 * queues/vectors used by the PF later with the ethtool 11864 * channels command 11865 */ 11866 if (vectors_left < vmdq_vecs_wanted) { 11867 pf->num_vmdq_qps = 1; 11868 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11869 vmdq_vecs = min_t(int, 11870 vectors_left, 11871 vmdq_vecs_wanted); 11872 } 11873 pf->num_vmdq_msix = pf->num_vmdq_qps; 11874 11875 v_budget += vmdq_vecs; 11876 vectors_left -= vmdq_vecs; 11877 } 11878 } 11879 11880 /* On systems with a large number of SMP cores, we previously limited 11881 * the number of vectors for num_lan_msix to be at most 50% of the 11882 * available vectors, to allow for other features. Now, we add back 11883 * the remaining vectors. However, we ensure that the total 11884 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11885 * calculate the number of vectors we can add without going over the 11886 * cap of CPUs. For systems with a small number of CPUs this will be 11887 * zero. 11888 */ 11889 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11890 pf->num_lan_msix += extra_vectors; 11891 vectors_left -= extra_vectors; 11892 11893 WARN(vectors_left < 0, 11894 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11895 11896 v_budget += pf->num_lan_msix; 11897 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11898 GFP_KERNEL); 11899 if (!pf->msix_entries) 11900 return -ENOMEM; 11901 11902 for (i = 0; i < v_budget; i++) 11903 pf->msix_entries[i].entry = i; 11904 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11905 11906 if (v_actual < I40E_MIN_MSIX) { 11907 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11908 kfree(pf->msix_entries); 11909 pf->msix_entries = NULL; 11910 pci_disable_msix(pf->pdev); 11911 return -ENODEV; 11912 11913 } else if (v_actual == I40E_MIN_MSIX) { 11914 /* Adjust for minimal MSIX use */ 11915 pf->num_vmdq_vsis = 0; 11916 pf->num_vmdq_qps = 0; 11917 pf->num_lan_qps = 1; 11918 pf->num_lan_msix = 1; 11919 11920 } else if (v_actual != v_budget) { 11921 /* If we have limited resources, we will start with no vectors 11922 * for the special features and then allocate vectors to some 11923 * of these features based on the policy and at the end disable 11924 * the features that did not get any vectors. 11925 */ 11926 int vec; 11927 11928 dev_info(&pf->pdev->dev, 11929 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11930 v_actual, v_budget); 11931 /* reserve the misc vector */ 11932 vec = v_actual - 1; 11933 11934 /* Scale vector usage down */ 11935 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11936 pf->num_vmdq_vsis = 1; 11937 pf->num_vmdq_qps = 1; 11938 11939 /* partition out the remaining vectors */ 11940 switch (vec) { 11941 case 2: 11942 pf->num_lan_msix = 1; 11943 break; 11944 case 3: 11945 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11946 pf->num_lan_msix = 1; 11947 pf->num_iwarp_msix = 1; 11948 } else { 11949 pf->num_lan_msix = 2; 11950 } 11951 break; 11952 default: 11953 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11954 pf->num_iwarp_msix = min_t(int, (vec / 3), 11955 iwarp_requested); 11956 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11957 I40E_DEFAULT_NUM_VMDQ_VSI); 11958 } else { 11959 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11960 I40E_DEFAULT_NUM_VMDQ_VSI); 11961 } 11962 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11963 pf->num_fdsb_msix = 1; 11964 vec--; 11965 } 11966 pf->num_lan_msix = min_t(int, 11967 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11968 pf->num_lan_msix); 11969 pf->num_lan_qps = pf->num_lan_msix; 11970 break; 11971 } 11972 } 11973 11974 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 11975 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11976 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 11977 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 11978 } 11979 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 11980 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11981 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 11982 } 11983 11984 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 11985 pf->num_iwarp_msix == 0) { 11986 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11987 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 11988 } 11989 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11990 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11991 pf->num_lan_msix, 11992 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11993 pf->num_fdsb_msix, 11994 pf->num_iwarp_msix); 11995 11996 return v_actual; 11997 } 11998 11999 /** 12000 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 12001 * @vsi: the VSI being configured 12002 * @v_idx: index of the vector in the vsi struct 12003 * 12004 * We allocate one q_vector. If allocation fails we return -ENOMEM. 12005 **/ 12006 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 12007 { 12008 struct i40e_q_vector *q_vector; 12009 12010 /* allocate q_vector */ 12011 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 12012 if (!q_vector) 12013 return -ENOMEM; 12014 12015 q_vector->vsi = vsi; 12016 q_vector->v_idx = v_idx; 12017 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 12018 12019 if (vsi->netdev) 12020 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 12021 12022 /* tie q_vector and vsi together */ 12023 vsi->q_vectors[v_idx] = q_vector; 12024 12025 return 0; 12026 } 12027 12028 /** 12029 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 12030 * @vsi: the VSI being configured 12031 * 12032 * We allocate one q_vector per queue interrupt. If allocation fails we 12033 * return -ENOMEM. 12034 **/ 12035 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 12036 { 12037 struct i40e_pf *pf = vsi->back; 12038 int err, v_idx, num_q_vectors; 12039 12040 /* if not MSIX, give the one vector only to the LAN VSI */ 12041 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12042 num_q_vectors = vsi->num_q_vectors; 12043 else if (vsi->type == I40E_VSI_MAIN) 12044 num_q_vectors = 1; 12045 else 12046 return -EINVAL; 12047 12048 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 12049 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 12050 if (err) 12051 goto err_out; 12052 } 12053 12054 return 0; 12055 12056 err_out: 12057 while (v_idx--) 12058 i40e_free_q_vector(vsi, v_idx); 12059 12060 return err; 12061 } 12062 12063 /** 12064 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12065 * @pf: board private structure to initialize 12066 **/ 12067 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12068 { 12069 int vectors = 0; 12070 ssize_t size; 12071 12072 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12073 vectors = i40e_init_msix(pf); 12074 if (vectors < 0) { 12075 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12076 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12077 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12078 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12079 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12080 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12081 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12082 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12083 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12084 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12085 12086 /* rework the queue expectations without MSIX */ 12087 i40e_determine_queue_usage(pf); 12088 } 12089 } 12090 12091 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12092 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12093 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12094 vectors = pci_enable_msi(pf->pdev); 12095 if (vectors < 0) { 12096 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12097 vectors); 12098 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12099 } 12100 vectors = 1; /* one MSI or Legacy vector */ 12101 } 12102 12103 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12104 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12105 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12106 12107 /* set up vector assignment tracking */ 12108 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12109 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12110 if (!pf->irq_pile) 12111 return -ENOMEM; 12112 12113 pf->irq_pile->num_entries = vectors; 12114 12115 /* track first vector for misc interrupts, ignore return */ 12116 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12117 12118 return 0; 12119 } 12120 12121 /** 12122 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12123 * @pf: private board data structure 12124 * 12125 * Restore the interrupt scheme that was cleared when we suspended the 12126 * device. This should be called during resume to re-allocate the q_vectors 12127 * and reacquire IRQs. 12128 */ 12129 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12130 { 12131 struct i40e_vsi *vsi; 12132 int err, i; 12133 12134 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12135 * scheme. We need to re-enabled them here in order to attempt to 12136 * re-acquire the MSI or MSI-X vectors 12137 */ 12138 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12139 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12140 12141 err = i40e_init_interrupt_scheme(pf); 12142 if (err) 12143 return err; 12144 12145 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12146 * rings together again. 12147 */ 12148 i40e_pf_for_each_vsi(pf, i, vsi) { 12149 err = i40e_vsi_alloc_q_vectors(vsi); 12150 if (err) 12151 goto err_unwind; 12152 12153 i40e_vsi_map_rings_to_vectors(vsi); 12154 } 12155 12156 err = i40e_setup_misc_vector(pf); 12157 if (err) 12158 goto err_unwind; 12159 12160 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12161 i40e_client_update_msix_info(pf); 12162 12163 return 0; 12164 12165 err_unwind: 12166 while (i--) { 12167 if (pf->vsi[i]) 12168 i40e_vsi_free_q_vectors(pf->vsi[i]); 12169 } 12170 12171 return err; 12172 } 12173 12174 /** 12175 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12176 * non queue events in recovery mode 12177 * @pf: board private structure 12178 * 12179 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12180 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12181 * This is handled differently than in recovery mode since no Tx/Rx resources 12182 * are being allocated. 12183 **/ 12184 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12185 { 12186 int err; 12187 12188 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12189 err = i40e_setup_misc_vector(pf); 12190 12191 if (err) { 12192 dev_info(&pf->pdev->dev, 12193 "MSI-X misc vector request failed, error %d\n", 12194 err); 12195 return err; 12196 } 12197 } else { 12198 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12199 12200 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12201 pf->int_name, pf); 12202 12203 if (err) { 12204 dev_info(&pf->pdev->dev, 12205 "MSI/legacy misc vector request failed, error %d\n", 12206 err); 12207 return err; 12208 } 12209 i40e_enable_misc_int_causes(pf); 12210 i40e_irq_dynamic_enable_icr0(pf); 12211 } 12212 12213 return 0; 12214 } 12215 12216 /** 12217 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12218 * @pf: board private structure 12219 * 12220 * This sets up the handler for MSIX 0, which is used to manage the 12221 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12222 * when in MSI or Legacy interrupt mode. 12223 **/ 12224 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12225 { 12226 struct i40e_hw *hw = &pf->hw; 12227 int err = 0; 12228 12229 /* Only request the IRQ once, the first time through. */ 12230 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12231 err = request_irq(pf->msix_entries[0].vector, 12232 i40e_intr, 0, pf->int_name, pf); 12233 if (err) { 12234 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12235 dev_info(&pf->pdev->dev, 12236 "request_irq for %s failed: %d\n", 12237 pf->int_name, err); 12238 return -EFAULT; 12239 } 12240 } 12241 12242 i40e_enable_misc_int_causes(pf); 12243 12244 /* associate no queues to the misc vector */ 12245 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12246 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12247 12248 i40e_flush(hw); 12249 12250 i40e_irq_dynamic_enable_icr0(pf); 12251 12252 return err; 12253 } 12254 12255 /** 12256 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12257 * @vsi: Pointer to vsi structure 12258 * @seed: Buffter to store the hash keys 12259 * @lut: Buffer to store the lookup table entries 12260 * @lut_size: Size of buffer to store the lookup table entries 12261 * 12262 * Return 0 on success, negative on failure 12263 */ 12264 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12265 u8 *lut, u16 lut_size) 12266 { 12267 struct i40e_pf *pf = vsi->back; 12268 struct i40e_hw *hw = &pf->hw; 12269 int ret = 0; 12270 12271 if (seed) { 12272 ret = i40e_aq_get_rss_key(hw, vsi->id, 12273 (struct i40e_aqc_get_set_rss_key_data *)seed); 12274 if (ret) { 12275 dev_info(&pf->pdev->dev, 12276 "Cannot get RSS key, err %pe aq_err %s\n", 12277 ERR_PTR(ret), 12278 i40e_aq_str(&pf->hw, 12279 pf->hw.aq.asq_last_status)); 12280 return ret; 12281 } 12282 } 12283 12284 if (lut) { 12285 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12286 12287 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12288 if (ret) { 12289 dev_info(&pf->pdev->dev, 12290 "Cannot get RSS lut, err %pe aq_err %s\n", 12291 ERR_PTR(ret), 12292 i40e_aq_str(&pf->hw, 12293 pf->hw.aq.asq_last_status)); 12294 return ret; 12295 } 12296 } 12297 12298 return ret; 12299 } 12300 12301 /** 12302 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12303 * @vsi: Pointer to vsi structure 12304 * @seed: RSS hash seed 12305 * @lut: Lookup table 12306 * @lut_size: Lookup table size 12307 * 12308 * Returns 0 on success, negative on failure 12309 **/ 12310 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12311 const u8 *lut, u16 lut_size) 12312 { 12313 struct i40e_pf *pf = vsi->back; 12314 struct i40e_hw *hw = &pf->hw; 12315 u16 vf_id = vsi->vf_id; 12316 u8 i; 12317 12318 /* Fill out hash function seed */ 12319 if (seed) { 12320 u32 *seed_dw = (u32 *)seed; 12321 12322 if (vsi->type == I40E_VSI_MAIN) { 12323 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12324 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12325 } else if (vsi->type == I40E_VSI_SRIOV) { 12326 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12327 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12328 } else { 12329 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12330 } 12331 } 12332 12333 if (lut) { 12334 u32 *lut_dw = (u32 *)lut; 12335 12336 if (vsi->type == I40E_VSI_MAIN) { 12337 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12338 return -EINVAL; 12339 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12340 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12341 } else if (vsi->type == I40E_VSI_SRIOV) { 12342 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12343 return -EINVAL; 12344 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12345 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12346 } else { 12347 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12348 } 12349 } 12350 i40e_flush(hw); 12351 12352 return 0; 12353 } 12354 12355 /** 12356 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12357 * @vsi: Pointer to VSI structure 12358 * @seed: Buffer to store the keys 12359 * @lut: Buffer to store the lookup table entries 12360 * @lut_size: Size of buffer to store the lookup table entries 12361 * 12362 * Returns 0 on success, negative on failure 12363 */ 12364 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12365 u8 *lut, u16 lut_size) 12366 { 12367 struct i40e_pf *pf = vsi->back; 12368 struct i40e_hw *hw = &pf->hw; 12369 u16 i; 12370 12371 if (seed) { 12372 u32 *seed_dw = (u32 *)seed; 12373 12374 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12375 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12376 } 12377 if (lut) { 12378 u32 *lut_dw = (u32 *)lut; 12379 12380 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12381 return -EINVAL; 12382 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12383 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12384 } 12385 12386 return 0; 12387 } 12388 12389 /** 12390 * i40e_config_rss - Configure RSS keys and lut 12391 * @vsi: Pointer to VSI structure 12392 * @seed: RSS hash seed 12393 * @lut: Lookup table 12394 * @lut_size: Lookup table size 12395 * 12396 * Returns 0 on success, negative on failure 12397 */ 12398 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12399 { 12400 struct i40e_pf *pf = vsi->back; 12401 12402 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12403 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12404 else 12405 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12406 } 12407 12408 /** 12409 * i40e_get_rss - Get RSS keys and lut 12410 * @vsi: Pointer to VSI structure 12411 * @seed: Buffer to store the keys 12412 * @lut: Buffer to store the lookup table entries 12413 * @lut_size: Size of buffer to store the lookup table entries 12414 * 12415 * Returns 0 on success, negative on failure 12416 */ 12417 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12418 { 12419 struct i40e_pf *pf = vsi->back; 12420 12421 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12422 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12423 else 12424 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12425 } 12426 12427 /** 12428 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12429 * @pf: Pointer to board private structure 12430 * @lut: Lookup table 12431 * @rss_table_size: Lookup table size 12432 * @rss_size: Range of queue number for hashing 12433 */ 12434 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12435 u16 rss_table_size, u16 rss_size) 12436 { 12437 u16 i; 12438 12439 for (i = 0; i < rss_table_size; i++) 12440 lut[i] = i % rss_size; 12441 } 12442 12443 /** 12444 * i40e_pf_config_rss - Prepare for RSS if used 12445 * @pf: board private structure 12446 **/ 12447 static int i40e_pf_config_rss(struct i40e_pf *pf) 12448 { 12449 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12450 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12451 u8 *lut; 12452 struct i40e_hw *hw = &pf->hw; 12453 u32 reg_val; 12454 u64 hena; 12455 int ret; 12456 12457 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12458 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12459 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12460 hena |= i40e_pf_get_default_rss_hena(pf); 12461 12462 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12463 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12464 12465 /* Determine the RSS table size based on the hardware capabilities */ 12466 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12467 reg_val = (pf->rss_table_size == 512) ? 12468 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12469 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12470 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12471 12472 /* Determine the RSS size of the VSI */ 12473 if (!vsi->rss_size) { 12474 u16 qcount; 12475 /* If the firmware does something weird during VSI init, we 12476 * could end up with zero TCs. Check for that to avoid 12477 * divide-by-zero. It probably won't pass traffic, but it also 12478 * won't panic. 12479 */ 12480 qcount = vsi->num_queue_pairs / 12481 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12482 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12483 } 12484 if (!vsi->rss_size) 12485 return -EINVAL; 12486 12487 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12488 if (!lut) 12489 return -ENOMEM; 12490 12491 /* Use user configured lut if there is one, otherwise use default */ 12492 if (vsi->rss_lut_user) 12493 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12494 else 12495 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12496 12497 /* Use user configured hash key if there is one, otherwise 12498 * use default. 12499 */ 12500 if (vsi->rss_hkey_user) 12501 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12502 else 12503 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12504 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12505 kfree(lut); 12506 12507 return ret; 12508 } 12509 12510 /** 12511 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12512 * @pf: board private structure 12513 * @queue_count: the requested queue count for rss. 12514 * 12515 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12516 * count which may be different from the requested queue count. 12517 * Note: expects to be called while under rtnl_lock() 12518 **/ 12519 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12520 { 12521 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12522 int new_rss_size; 12523 12524 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12525 return 0; 12526 12527 queue_count = min_t(int, queue_count, num_online_cpus()); 12528 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12529 12530 if (queue_count != vsi->num_queue_pairs) { 12531 u16 qcount; 12532 12533 vsi->req_queue_pairs = queue_count; 12534 i40e_prep_for_reset(pf); 12535 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12536 return pf->alloc_rss_size; 12537 12538 pf->alloc_rss_size = new_rss_size; 12539 12540 i40e_reset_and_rebuild(pf, true, true); 12541 12542 /* Discard the user configured hash keys and lut, if less 12543 * queues are enabled. 12544 */ 12545 if (queue_count < vsi->rss_size) { 12546 i40e_clear_rss_config_user(vsi); 12547 dev_dbg(&pf->pdev->dev, 12548 "discard user configured hash keys and lut\n"); 12549 } 12550 12551 /* Reset vsi->rss_size, as number of enabled queues changed */ 12552 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12553 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12554 12555 i40e_pf_config_rss(pf); 12556 } 12557 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12558 vsi->req_queue_pairs, pf->rss_size_max); 12559 return pf->alloc_rss_size; 12560 } 12561 12562 /** 12563 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12564 * @pf: board private structure 12565 **/ 12566 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12567 { 12568 bool min_valid, max_valid; 12569 u32 max_bw, min_bw; 12570 int status; 12571 12572 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12573 &min_valid, &max_valid); 12574 12575 if (!status) { 12576 if (min_valid) 12577 pf->min_bw = min_bw; 12578 if (max_valid) 12579 pf->max_bw = max_bw; 12580 } 12581 12582 return status; 12583 } 12584 12585 /** 12586 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12587 * @pf: board private structure 12588 **/ 12589 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12590 { 12591 struct i40e_aqc_configure_partition_bw_data bw_data; 12592 int status; 12593 12594 memset(&bw_data, 0, sizeof(bw_data)); 12595 12596 /* Set the valid bit for this PF */ 12597 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12598 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12599 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12600 12601 /* Set the new bandwidths */ 12602 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12603 12604 return status; 12605 } 12606 12607 /** 12608 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12609 * @pf: board private structure 12610 **/ 12611 int i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12612 { 12613 /* Commit temporary BW setting to permanent NVM image */ 12614 enum i40e_admin_queue_err last_aq_status; 12615 u16 nvm_word; 12616 int ret; 12617 12618 if (pf->hw.partition_id != 1) { 12619 dev_info(&pf->pdev->dev, 12620 "Commit BW only works on partition 1! This is partition %d", 12621 pf->hw.partition_id); 12622 ret = -EOPNOTSUPP; 12623 goto bw_commit_out; 12624 } 12625 12626 /* Acquire NVM for read access */ 12627 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12628 last_aq_status = pf->hw.aq.asq_last_status; 12629 if (ret) { 12630 dev_info(&pf->pdev->dev, 12631 "Cannot acquire NVM for read access, err %pe aq_err %s\n", 12632 ERR_PTR(ret), 12633 i40e_aq_str(&pf->hw, last_aq_status)); 12634 goto bw_commit_out; 12635 } 12636 12637 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12638 ret = i40e_aq_read_nvm(&pf->hw, 12639 I40E_SR_NVM_CONTROL_WORD, 12640 0x10, sizeof(nvm_word), &nvm_word, 12641 false, NULL); 12642 /* Save off last admin queue command status before releasing 12643 * the NVM 12644 */ 12645 last_aq_status = pf->hw.aq.asq_last_status; 12646 i40e_release_nvm(&pf->hw); 12647 if (ret) { 12648 dev_info(&pf->pdev->dev, "NVM read error, err %pe aq_err %s\n", 12649 ERR_PTR(ret), 12650 i40e_aq_str(&pf->hw, last_aq_status)); 12651 goto bw_commit_out; 12652 } 12653 12654 /* Wait a bit for NVM release to complete */ 12655 msleep(50); 12656 12657 /* Acquire NVM for write access */ 12658 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12659 last_aq_status = pf->hw.aq.asq_last_status; 12660 if (ret) { 12661 dev_info(&pf->pdev->dev, 12662 "Cannot acquire NVM for write access, err %pe aq_err %s\n", 12663 ERR_PTR(ret), 12664 i40e_aq_str(&pf->hw, last_aq_status)); 12665 goto bw_commit_out; 12666 } 12667 /* Write it back out unchanged to initiate update NVM, 12668 * which will force a write of the shadow (alt) RAM to 12669 * the NVM - thus storing the bandwidth values permanently. 12670 */ 12671 ret = i40e_aq_update_nvm(&pf->hw, 12672 I40E_SR_NVM_CONTROL_WORD, 12673 0x10, sizeof(nvm_word), 12674 &nvm_word, true, 0, NULL); 12675 /* Save off last admin queue command status before releasing 12676 * the NVM 12677 */ 12678 last_aq_status = pf->hw.aq.asq_last_status; 12679 i40e_release_nvm(&pf->hw); 12680 if (ret) 12681 dev_info(&pf->pdev->dev, 12682 "BW settings NOT SAVED, err %pe aq_err %s\n", 12683 ERR_PTR(ret), 12684 i40e_aq_str(&pf->hw, last_aq_status)); 12685 bw_commit_out: 12686 12687 return ret; 12688 } 12689 12690 /** 12691 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12692 * if total port shutdown feature is enabled for this PF 12693 * @pf: board private structure 12694 **/ 12695 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12696 { 12697 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12698 #define I40E_FEATURES_ENABLE_PTR 0x2A 12699 #define I40E_CURRENT_SETTING_PTR 0x2B 12700 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12701 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12702 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12703 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12704 u16 sr_emp_sr_settings_ptr = 0; 12705 u16 features_enable = 0; 12706 u16 link_behavior = 0; 12707 int read_status = 0; 12708 bool ret = false; 12709 12710 read_status = i40e_read_nvm_word(&pf->hw, 12711 I40E_SR_EMP_SR_SETTINGS_PTR, 12712 &sr_emp_sr_settings_ptr); 12713 if (read_status) 12714 goto err_nvm; 12715 read_status = i40e_read_nvm_word(&pf->hw, 12716 sr_emp_sr_settings_ptr + 12717 I40E_FEATURES_ENABLE_PTR, 12718 &features_enable); 12719 if (read_status) 12720 goto err_nvm; 12721 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12722 read_status = i40e_read_nvm_module_data(&pf->hw, 12723 I40E_SR_EMP_SR_SETTINGS_PTR, 12724 I40E_CURRENT_SETTING_PTR, 12725 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12726 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12727 &link_behavior); 12728 if (read_status) 12729 goto err_nvm; 12730 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12731 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12732 } 12733 return ret; 12734 12735 err_nvm: 12736 dev_warn(&pf->pdev->dev, 12737 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12738 ERR_PTR(read_status)); 12739 return ret; 12740 } 12741 12742 /** 12743 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12744 * @pf: board private structure to initialize 12745 * 12746 * i40e_sw_init initializes the Adapter private data structure. 12747 * Fields are initialized based on PCI device information and 12748 * OS network device settings (MTU size). 12749 **/ 12750 static int i40e_sw_init(struct i40e_pf *pf) 12751 { 12752 int err = 0; 12753 int size; 12754 u16 pow; 12755 12756 /* Set default capability flags */ 12757 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12758 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12759 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12760 12761 /* Set default ITR */ 12762 pf->rx_itr_default = I40E_ITR_RX_DEF; 12763 pf->tx_itr_default = I40E_ITR_TX_DEF; 12764 12765 /* Depending on PF configurations, it is possible that the RSS 12766 * maximum might end up larger than the available queues 12767 */ 12768 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12769 pf->alloc_rss_size = 1; 12770 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12771 pf->rss_size_max = min_t(int, pf->rss_size_max, 12772 pf->hw.func_caps.num_tx_qp); 12773 12774 /* find the next higher power-of-2 of num cpus */ 12775 pow = roundup_pow_of_two(num_online_cpus()); 12776 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12777 12778 if (pf->hw.func_caps.rss) { 12779 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12780 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12781 num_online_cpus()); 12782 } 12783 12784 /* MFP mode enabled */ 12785 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12786 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12787 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12788 if (i40e_get_partition_bw_setting(pf)) { 12789 dev_warn(&pf->pdev->dev, 12790 "Could not get partition bw settings\n"); 12791 } else { 12792 dev_info(&pf->pdev->dev, 12793 "Partition BW Min = %8.8x, Max = %8.8x\n", 12794 pf->min_bw, pf->max_bw); 12795 12796 /* nudge the Tx scheduler */ 12797 i40e_set_partition_bw_setting(pf); 12798 } 12799 } 12800 12801 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12802 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12803 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12804 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12805 pf->hw.num_partitions > 1) 12806 dev_info(&pf->pdev->dev, 12807 "Flow Director Sideband mode Disabled in MFP mode\n"); 12808 else 12809 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12810 pf->fdir_pf_filter_count = 12811 pf->hw.func_caps.fd_filters_guaranteed; 12812 pf->hw.fdir_shared_filter_count = 12813 pf->hw.func_caps.fd_filters_best_effort; 12814 } 12815 12816 /* Enable HW ATR eviction if possible */ 12817 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12818 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12819 12820 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12821 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12822 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12823 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12824 } 12825 12826 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12827 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12828 /* IWARP needs one extra vector for CQP just like MISC.*/ 12829 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12830 } 12831 /* Stopping FW LLDP engine is supported on XL710 and X722 12832 * starting from FW versions determined in i40e_init_adminq. 12833 * Stopping the FW LLDP engine is not supported on XL710 12834 * if NPAR is functioning so unset this hw flag in this case. 12835 */ 12836 if (pf->hw.mac.type == I40E_MAC_XL710 && 12837 pf->hw.func_caps.npar_enable) 12838 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12839 12840 #ifdef CONFIG_PCI_IOV 12841 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12842 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12843 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12844 pf->num_req_vfs = min_t(int, 12845 pf->hw.func_caps.num_vfs, 12846 I40E_MAX_VF_COUNT); 12847 } 12848 #endif /* CONFIG_PCI_IOV */ 12849 pf->lan_veb = I40E_NO_VEB; 12850 pf->lan_vsi = I40E_NO_VSI; 12851 12852 /* By default FW has this off for performance reasons */ 12853 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12854 12855 /* set up queue assignment tracking */ 12856 size = sizeof(struct i40e_lump_tracking) 12857 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12858 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12859 if (!pf->qp_pile) { 12860 err = -ENOMEM; 12861 goto sw_init_done; 12862 } 12863 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12864 12865 pf->tx_timeout_recovery_level = 1; 12866 12867 if (pf->hw.mac.type != I40E_MAC_X722 && 12868 i40e_is_total_port_shutdown_enabled(pf)) { 12869 /* Link down on close must be on when total port shutdown 12870 * is enabled for a given port 12871 */ 12872 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12873 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12874 dev_info(&pf->pdev->dev, 12875 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12876 } 12877 mutex_init(&pf->switch_mutex); 12878 12879 sw_init_done: 12880 return err; 12881 } 12882 12883 /** 12884 * i40e_set_ntuple - set the ntuple feature flag and take action 12885 * @pf: board private structure to initialize 12886 * @features: the feature set that the stack is suggesting 12887 * 12888 * returns a bool to indicate if reset needs to happen 12889 **/ 12890 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12891 { 12892 bool need_reset = false; 12893 12894 /* Check if Flow Director n-tuple support was enabled or disabled. If 12895 * the state changed, we need to reset. 12896 */ 12897 if (features & NETIF_F_NTUPLE) { 12898 /* Enable filters and mark for reset */ 12899 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12900 need_reset = true; 12901 /* enable FD_SB only if there is MSI-X vector and no cloud 12902 * filters exist 12903 */ 12904 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12905 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12906 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12907 } 12908 } else { 12909 /* turn off filters, mark for reset and clear SW filter list */ 12910 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12911 need_reset = true; 12912 i40e_fdir_filter_exit(pf); 12913 } 12914 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12915 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12916 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12917 12918 /* reset fd counters */ 12919 pf->fd_add_err = 0; 12920 pf->fd_atr_cnt = 0; 12921 /* if ATR was auto disabled it can be re-enabled. */ 12922 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12923 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12924 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12925 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12926 } 12927 return need_reset; 12928 } 12929 12930 /** 12931 * i40e_clear_rss_lut - clear the rx hash lookup table 12932 * @vsi: the VSI being configured 12933 **/ 12934 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12935 { 12936 struct i40e_pf *pf = vsi->back; 12937 struct i40e_hw *hw = &pf->hw; 12938 u16 vf_id = vsi->vf_id; 12939 u8 i; 12940 12941 if (vsi->type == I40E_VSI_MAIN) { 12942 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12943 wr32(hw, I40E_PFQF_HLUT(i), 0); 12944 } else if (vsi->type == I40E_VSI_SRIOV) { 12945 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12946 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12947 } else { 12948 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12949 } 12950 } 12951 12952 /** 12953 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12954 * @vsi: ptr to VSI 12955 * @ena: flag to indicate the on/off setting 12956 */ 12957 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12958 { 12959 bool if_running = netif_running(vsi->netdev) && 12960 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12961 int ret; 12962 12963 if (if_running) 12964 i40e_down(vsi); 12965 12966 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12967 if (ret) 12968 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12969 if (if_running) 12970 i40e_up(vsi); 12971 12972 return ret; 12973 } 12974 12975 /** 12976 * i40e_set_features - set the netdev feature flags 12977 * @netdev: ptr to the netdev being adjusted 12978 * @features: the feature set that the stack is suggesting 12979 * Note: expects to be called while under rtnl_lock() 12980 **/ 12981 static int i40e_set_features(struct net_device *netdev, 12982 netdev_features_t features) 12983 { 12984 struct i40e_netdev_priv *np = netdev_priv(netdev); 12985 struct i40e_vsi *vsi = np->vsi; 12986 struct i40e_pf *pf = vsi->back; 12987 bool need_reset; 12988 12989 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12990 i40e_pf_config_rss(pf); 12991 else if (!(features & NETIF_F_RXHASH) && 12992 netdev->features & NETIF_F_RXHASH) 12993 i40e_clear_rss_lut(vsi); 12994 12995 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12996 i40e_vlan_stripping_enable(vsi); 12997 else 12998 i40e_vlan_stripping_disable(vsi); 12999 13000 if (!(features & NETIF_F_HW_TC) && 13001 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 13002 dev_err(&pf->pdev->dev, 13003 "Offloaded tc filters active, can't turn hw_tc_offload off"); 13004 return -EINVAL; 13005 } 13006 13007 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 13008 i40e_del_all_macvlans(vsi); 13009 13010 need_reset = i40e_set_ntuple(pf, features); 13011 13012 if (need_reset) 13013 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13014 13015 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 13016 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 13017 13018 return 0; 13019 } 13020 13021 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 13022 unsigned int table, unsigned int idx, 13023 struct udp_tunnel_info *ti) 13024 { 13025 struct i40e_netdev_priv *np = netdev_priv(netdev); 13026 struct i40e_hw *hw = &np->vsi->back->hw; 13027 u8 type, filter_index; 13028 int ret; 13029 13030 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 13031 I40E_AQC_TUNNEL_TYPE_NGE; 13032 13033 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 13034 NULL); 13035 if (ret) { 13036 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 13037 ERR_PTR(ret), 13038 i40e_aq_str(hw, hw->aq.asq_last_status)); 13039 return -EIO; 13040 } 13041 13042 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 13043 return 0; 13044 } 13045 13046 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 13047 unsigned int table, unsigned int idx, 13048 struct udp_tunnel_info *ti) 13049 { 13050 struct i40e_netdev_priv *np = netdev_priv(netdev); 13051 struct i40e_hw *hw = &np->vsi->back->hw; 13052 int ret; 13053 13054 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 13055 if (ret) { 13056 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 13057 ERR_PTR(ret), 13058 i40e_aq_str(hw, hw->aq.asq_last_status)); 13059 return -EIO; 13060 } 13061 13062 return 0; 13063 } 13064 13065 static int i40e_get_phys_port_id(struct net_device *netdev, 13066 struct netdev_phys_item_id *ppid) 13067 { 13068 struct i40e_netdev_priv *np = netdev_priv(netdev); 13069 struct i40e_pf *pf = np->vsi->back; 13070 struct i40e_hw *hw = &pf->hw; 13071 13072 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13073 return -EOPNOTSUPP; 13074 13075 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13076 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13077 13078 return 0; 13079 } 13080 13081 /** 13082 * i40e_ndo_fdb_add - add an entry to the hardware database 13083 * @ndm: the input from the stack 13084 * @tb: pointer to array of nladdr (unused) 13085 * @dev: the net device pointer 13086 * @addr: the MAC address entry being added 13087 * @vid: VLAN ID 13088 * @flags: instructions from stack about fdb operation 13089 * @extack: netlink extended ack, unused currently 13090 */ 13091 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13092 struct net_device *dev, 13093 const unsigned char *addr, u16 vid, 13094 u16 flags, 13095 struct netlink_ext_ack *extack) 13096 { 13097 struct i40e_netdev_priv *np = netdev_priv(dev); 13098 struct i40e_pf *pf = np->vsi->back; 13099 int err = 0; 13100 13101 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13102 return -EOPNOTSUPP; 13103 13104 if (vid) { 13105 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13106 return -EINVAL; 13107 } 13108 13109 /* Hardware does not support aging addresses so if a 13110 * ndm_state is given only allow permanent addresses 13111 */ 13112 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13113 netdev_info(dev, "FDB only supports static addresses\n"); 13114 return -EINVAL; 13115 } 13116 13117 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13118 err = dev_uc_add_excl(dev, addr); 13119 else if (is_multicast_ether_addr(addr)) 13120 err = dev_mc_add_excl(dev, addr); 13121 else 13122 err = -EINVAL; 13123 13124 /* Only return duplicate errors if NLM_F_EXCL is set */ 13125 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13126 err = 0; 13127 13128 return err; 13129 } 13130 13131 /** 13132 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13133 * @dev: the netdev being configured 13134 * @nlh: RTNL message 13135 * @flags: bridge flags 13136 * @extack: netlink extended ack 13137 * 13138 * Inserts a new hardware bridge if not already created and 13139 * enables the bridging mode requested (VEB or VEPA). If the 13140 * hardware bridge has already been inserted and the request 13141 * is to change the mode then that requires a PF reset to 13142 * allow rebuild of the components with required hardware 13143 * bridge mode enabled. 13144 * 13145 * Note: expects to be called while under rtnl_lock() 13146 **/ 13147 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13148 struct nlmsghdr *nlh, 13149 u16 flags, 13150 struct netlink_ext_ack *extack) 13151 { 13152 struct i40e_netdev_priv *np = netdev_priv(dev); 13153 struct i40e_vsi *vsi = np->vsi; 13154 struct i40e_pf *pf = vsi->back; 13155 struct nlattr *attr, *br_spec; 13156 struct i40e_veb *veb; 13157 int rem; 13158 13159 /* Only for PF VSI for now */ 13160 if (vsi->type != I40E_VSI_MAIN) 13161 return -EOPNOTSUPP; 13162 13163 /* Find the HW bridge for PF VSI */ 13164 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13165 13166 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13167 if (!br_spec) 13168 return -EINVAL; 13169 13170 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 13171 __u16 mode = nla_get_u16(attr); 13172 13173 if ((mode != BRIDGE_MODE_VEPA) && 13174 (mode != BRIDGE_MODE_VEB)) 13175 return -EINVAL; 13176 13177 /* Insert a new HW bridge */ 13178 if (!veb) { 13179 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 13180 vsi->tc_config.enabled_tc); 13181 if (veb) { 13182 veb->bridge_mode = mode; 13183 i40e_config_bridge_mode(veb); 13184 } else { 13185 /* No Bridge HW offload available */ 13186 return -ENOENT; 13187 } 13188 break; 13189 } else if (mode != veb->bridge_mode) { 13190 /* Existing HW bridge but different mode needs reset */ 13191 veb->bridge_mode = mode; 13192 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13193 if (mode == BRIDGE_MODE_VEB) 13194 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13195 else 13196 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13197 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13198 break; 13199 } 13200 } 13201 13202 return 0; 13203 } 13204 13205 /** 13206 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13207 * @skb: skb buff 13208 * @pid: process id 13209 * @seq: RTNL message seq # 13210 * @dev: the netdev being configured 13211 * @filter_mask: unused 13212 * @nlflags: netlink flags passed in 13213 * 13214 * Return the mode in which the hardware bridge is operating in 13215 * i.e VEB or VEPA. 13216 **/ 13217 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13218 struct net_device *dev, 13219 u32 __always_unused filter_mask, 13220 int nlflags) 13221 { 13222 struct i40e_netdev_priv *np = netdev_priv(dev); 13223 struct i40e_vsi *vsi = np->vsi; 13224 struct i40e_pf *pf = vsi->back; 13225 struct i40e_veb *veb; 13226 13227 /* Only for PF VSI for now */ 13228 if (vsi->type != I40E_VSI_MAIN) 13229 return -EOPNOTSUPP; 13230 13231 /* Find the HW bridge for the PF VSI */ 13232 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13233 if (!veb) 13234 return 0; 13235 13236 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13237 0, 0, nlflags, filter_mask, NULL); 13238 } 13239 13240 /** 13241 * i40e_features_check - Validate encapsulated packet conforms to limits 13242 * @skb: skb buff 13243 * @dev: This physical port's netdev 13244 * @features: Offload features that the stack believes apply 13245 **/ 13246 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13247 struct net_device *dev, 13248 netdev_features_t features) 13249 { 13250 size_t len; 13251 13252 /* No point in doing any of this if neither checksum nor GSO are 13253 * being requested for this frame. We can rule out both by just 13254 * checking for CHECKSUM_PARTIAL 13255 */ 13256 if (skb->ip_summed != CHECKSUM_PARTIAL) 13257 return features; 13258 13259 /* We cannot support GSO if the MSS is going to be less than 13260 * 64 bytes. If it is then we need to drop support for GSO. 13261 */ 13262 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13263 features &= ~NETIF_F_GSO_MASK; 13264 13265 /* MACLEN can support at most 63 words */ 13266 len = skb_network_offset(skb); 13267 if (len & ~(63 * 2)) 13268 goto out_err; 13269 13270 /* IPLEN and EIPLEN can support at most 127 dwords */ 13271 len = skb_network_header_len(skb); 13272 if (len & ~(127 * 4)) 13273 goto out_err; 13274 13275 if (skb->encapsulation) { 13276 /* L4TUNLEN can support 127 words */ 13277 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13278 if (len & ~(127 * 2)) 13279 goto out_err; 13280 13281 /* IPLEN can support at most 127 dwords */ 13282 len = skb_inner_transport_header(skb) - 13283 skb_inner_network_header(skb); 13284 if (len & ~(127 * 4)) 13285 goto out_err; 13286 } 13287 13288 /* No need to validate L4LEN as TCP is the only protocol with a 13289 * flexible value and we support all possible values supported 13290 * by TCP, which is at most 15 dwords 13291 */ 13292 13293 return features; 13294 out_err: 13295 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13296 } 13297 13298 /** 13299 * i40e_xdp_setup - add/remove an XDP program 13300 * @vsi: VSI to changed 13301 * @prog: XDP program 13302 * @extack: netlink extended ack 13303 **/ 13304 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13305 struct netlink_ext_ack *extack) 13306 { 13307 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13308 struct i40e_pf *pf = vsi->back; 13309 struct bpf_prog *old_prog; 13310 bool need_reset; 13311 int i; 13312 13313 /* VSI shall be deleted in a moment, block loading new programs */ 13314 if (prog && test_bit(__I40E_IN_REMOVE, pf->state)) 13315 return -EINVAL; 13316 13317 /* Don't allow frames that span over multiple buffers */ 13318 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13319 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13320 return -EINVAL; 13321 } 13322 13323 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13324 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13325 if (need_reset) 13326 i40e_prep_for_reset(pf); 13327 13328 old_prog = xchg(&vsi->xdp_prog, prog); 13329 13330 if (need_reset) { 13331 if (!prog) { 13332 xdp_features_clear_redirect_target(vsi->netdev); 13333 /* Wait until ndo_xsk_wakeup completes. */ 13334 synchronize_rcu(); 13335 } 13336 i40e_reset_and_rebuild(pf, true, true); 13337 } 13338 13339 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13340 if (i40e_realloc_rx_bi_zc(vsi, true)) 13341 return -ENOMEM; 13342 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13343 if (i40e_realloc_rx_bi_zc(vsi, false)) 13344 return -ENOMEM; 13345 } 13346 13347 for (i = 0; i < vsi->num_queue_pairs; i++) 13348 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13349 13350 if (old_prog) 13351 bpf_prog_put(old_prog); 13352 13353 /* Kick start the NAPI context if there is an AF_XDP socket open 13354 * on that queue id. This so that receiving will start. 13355 */ 13356 if (need_reset && prog) { 13357 for (i = 0; i < vsi->num_queue_pairs; i++) 13358 if (vsi->xdp_rings[i]->xsk_pool) 13359 (void)i40e_xsk_wakeup(vsi->netdev, i, 13360 XDP_WAKEUP_RX); 13361 xdp_features_set_redirect_target(vsi->netdev, true); 13362 } 13363 13364 return 0; 13365 } 13366 13367 /** 13368 * i40e_enter_busy_conf - Enters busy config state 13369 * @vsi: vsi 13370 * 13371 * Returns 0 on success, <0 for failure. 13372 **/ 13373 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13374 { 13375 struct i40e_pf *pf = vsi->back; 13376 int timeout = 50; 13377 13378 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13379 timeout--; 13380 if (!timeout) 13381 return -EBUSY; 13382 usleep_range(1000, 2000); 13383 } 13384 13385 return 0; 13386 } 13387 13388 /** 13389 * i40e_exit_busy_conf - Exits busy config state 13390 * @vsi: vsi 13391 **/ 13392 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13393 { 13394 struct i40e_pf *pf = vsi->back; 13395 13396 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13397 } 13398 13399 /** 13400 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13401 * @vsi: vsi 13402 * @queue_pair: queue pair 13403 **/ 13404 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13405 { 13406 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13407 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13408 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13409 sizeof(vsi->tx_rings[queue_pair]->stats)); 13410 if (i40e_enabled_xdp_vsi(vsi)) { 13411 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13412 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13413 } 13414 } 13415 13416 /** 13417 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13418 * @vsi: vsi 13419 * @queue_pair: queue pair 13420 **/ 13421 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13422 { 13423 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13424 if (i40e_enabled_xdp_vsi(vsi)) { 13425 /* Make sure that in-progress ndo_xdp_xmit calls are 13426 * completed. 13427 */ 13428 synchronize_rcu(); 13429 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13430 } 13431 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13432 } 13433 13434 /** 13435 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13436 * @vsi: vsi 13437 * @queue_pair: queue pair 13438 * @enable: true for enable, false for disable 13439 **/ 13440 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13441 bool enable) 13442 { 13443 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13444 struct i40e_q_vector *q_vector = rxr->q_vector; 13445 13446 if (!vsi->netdev) 13447 return; 13448 13449 /* All rings in a qp belong to the same qvector. */ 13450 if (q_vector->rx.ring || q_vector->tx.ring) { 13451 if (enable) 13452 napi_enable(&q_vector->napi); 13453 else 13454 napi_disable(&q_vector->napi); 13455 } 13456 } 13457 13458 /** 13459 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13460 * @vsi: vsi 13461 * @queue_pair: queue pair 13462 * @enable: true for enable, false for disable 13463 * 13464 * Returns 0 on success, <0 on failure. 13465 **/ 13466 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13467 bool enable) 13468 { 13469 struct i40e_pf *pf = vsi->back; 13470 int pf_q, ret = 0; 13471 13472 pf_q = vsi->base_queue + queue_pair; 13473 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13474 false /*is xdp*/, enable); 13475 if (ret) { 13476 dev_info(&pf->pdev->dev, 13477 "VSI seid %d Tx ring %d %sable timeout\n", 13478 vsi->seid, pf_q, (enable ? "en" : "dis")); 13479 return ret; 13480 } 13481 13482 i40e_control_rx_q(pf, pf_q, enable); 13483 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13484 if (ret) { 13485 dev_info(&pf->pdev->dev, 13486 "VSI seid %d Rx ring %d %sable timeout\n", 13487 vsi->seid, pf_q, (enable ? "en" : "dis")); 13488 return ret; 13489 } 13490 13491 /* Due to HW errata, on Rx disable only, the register can 13492 * indicate done before it really is. Needs 50ms to be sure 13493 */ 13494 if (!enable) 13495 mdelay(50); 13496 13497 if (!i40e_enabled_xdp_vsi(vsi)) 13498 return ret; 13499 13500 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13501 pf_q + vsi->alloc_queue_pairs, 13502 true /*is xdp*/, enable); 13503 if (ret) { 13504 dev_info(&pf->pdev->dev, 13505 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13506 vsi->seid, pf_q, (enable ? "en" : "dis")); 13507 } 13508 13509 return ret; 13510 } 13511 13512 /** 13513 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13514 * @vsi: vsi 13515 * @queue_pair: queue_pair 13516 **/ 13517 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13518 { 13519 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13520 struct i40e_pf *pf = vsi->back; 13521 struct i40e_hw *hw = &pf->hw; 13522 13523 /* All rings in a qp belong to the same qvector. */ 13524 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13525 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13526 else 13527 i40e_irq_dynamic_enable_icr0(pf); 13528 13529 i40e_flush(hw); 13530 } 13531 13532 /** 13533 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13534 * @vsi: vsi 13535 * @queue_pair: queue_pair 13536 **/ 13537 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13538 { 13539 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13540 struct i40e_pf *pf = vsi->back; 13541 struct i40e_hw *hw = &pf->hw; 13542 13543 /* For simplicity, instead of removing the qp interrupt causes 13544 * from the interrupt linked list, we simply disable the interrupt, and 13545 * leave the list intact. 13546 * 13547 * All rings in a qp belong to the same qvector. 13548 */ 13549 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13550 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13551 13552 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13553 i40e_flush(hw); 13554 synchronize_irq(pf->msix_entries[intpf].vector); 13555 } else { 13556 /* Legacy and MSI mode - this stops all interrupt handling */ 13557 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13558 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13559 i40e_flush(hw); 13560 synchronize_irq(pf->pdev->irq); 13561 } 13562 } 13563 13564 /** 13565 * i40e_queue_pair_disable - Disables a queue pair 13566 * @vsi: vsi 13567 * @queue_pair: queue pair 13568 * 13569 * Returns 0 on success, <0 on failure. 13570 **/ 13571 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13572 { 13573 int err; 13574 13575 err = i40e_enter_busy_conf(vsi); 13576 if (err) 13577 return err; 13578 13579 i40e_queue_pair_disable_irq(vsi, queue_pair); 13580 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13581 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13582 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13583 i40e_queue_pair_clean_rings(vsi, queue_pair); 13584 i40e_queue_pair_reset_stats(vsi, queue_pair); 13585 13586 return err; 13587 } 13588 13589 /** 13590 * i40e_queue_pair_enable - Enables a queue pair 13591 * @vsi: vsi 13592 * @queue_pair: queue pair 13593 * 13594 * Returns 0 on success, <0 on failure. 13595 **/ 13596 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13597 { 13598 int err; 13599 13600 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13601 if (err) 13602 return err; 13603 13604 if (i40e_enabled_xdp_vsi(vsi)) { 13605 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13606 if (err) 13607 return err; 13608 } 13609 13610 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13611 if (err) 13612 return err; 13613 13614 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13615 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13616 i40e_queue_pair_enable_irq(vsi, queue_pair); 13617 13618 i40e_exit_busy_conf(vsi); 13619 13620 return err; 13621 } 13622 13623 /** 13624 * i40e_xdp - implements ndo_bpf for i40e 13625 * @dev: netdevice 13626 * @xdp: XDP command 13627 **/ 13628 static int i40e_xdp(struct net_device *dev, 13629 struct netdev_bpf *xdp) 13630 { 13631 struct i40e_netdev_priv *np = netdev_priv(dev); 13632 struct i40e_vsi *vsi = np->vsi; 13633 13634 if (vsi->type != I40E_VSI_MAIN) 13635 return -EINVAL; 13636 13637 switch (xdp->command) { 13638 case XDP_SETUP_PROG: 13639 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13640 case XDP_SETUP_XSK_POOL: 13641 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13642 xdp->xsk.queue_id); 13643 default: 13644 return -EINVAL; 13645 } 13646 } 13647 13648 static const struct net_device_ops i40e_netdev_ops = { 13649 .ndo_open = i40e_open, 13650 .ndo_stop = i40e_close, 13651 .ndo_start_xmit = i40e_lan_xmit_frame, 13652 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13653 .ndo_set_rx_mode = i40e_set_rx_mode, 13654 .ndo_validate_addr = eth_validate_addr, 13655 .ndo_set_mac_address = i40e_set_mac, 13656 .ndo_change_mtu = i40e_change_mtu, 13657 .ndo_eth_ioctl = i40e_ioctl, 13658 .ndo_tx_timeout = i40e_tx_timeout, 13659 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13660 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13661 #ifdef CONFIG_NET_POLL_CONTROLLER 13662 .ndo_poll_controller = i40e_netpoll, 13663 #endif 13664 .ndo_setup_tc = __i40e_setup_tc, 13665 .ndo_select_queue = i40e_lan_select_queue, 13666 .ndo_set_features = i40e_set_features, 13667 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13668 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13669 .ndo_get_vf_stats = i40e_get_vf_stats, 13670 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13671 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13672 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13673 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13674 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13675 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13676 .ndo_fdb_add = i40e_ndo_fdb_add, 13677 .ndo_features_check = i40e_features_check, 13678 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13679 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13680 .ndo_bpf = i40e_xdp, 13681 .ndo_xdp_xmit = i40e_xdp_xmit, 13682 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13683 .ndo_dfwd_add_station = i40e_fwd_add, 13684 .ndo_dfwd_del_station = i40e_fwd_del, 13685 }; 13686 13687 /** 13688 * i40e_config_netdev - Setup the netdev flags 13689 * @vsi: the VSI being configured 13690 * 13691 * Returns 0 on success, negative value on failure 13692 **/ 13693 static int i40e_config_netdev(struct i40e_vsi *vsi) 13694 { 13695 struct i40e_pf *pf = vsi->back; 13696 struct i40e_hw *hw = &pf->hw; 13697 struct i40e_netdev_priv *np; 13698 struct net_device *netdev; 13699 u8 broadcast[ETH_ALEN]; 13700 u8 mac_addr[ETH_ALEN]; 13701 int etherdev_size; 13702 netdev_features_t hw_enc_features; 13703 netdev_features_t hw_features; 13704 13705 etherdev_size = sizeof(struct i40e_netdev_priv); 13706 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13707 if (!netdev) 13708 return -ENOMEM; 13709 13710 vsi->netdev = netdev; 13711 np = netdev_priv(netdev); 13712 np->vsi = vsi; 13713 13714 hw_enc_features = NETIF_F_SG | 13715 NETIF_F_HW_CSUM | 13716 NETIF_F_HIGHDMA | 13717 NETIF_F_SOFT_FEATURES | 13718 NETIF_F_TSO | 13719 NETIF_F_TSO_ECN | 13720 NETIF_F_TSO6 | 13721 NETIF_F_GSO_GRE | 13722 NETIF_F_GSO_GRE_CSUM | 13723 NETIF_F_GSO_PARTIAL | 13724 NETIF_F_GSO_IPXIP4 | 13725 NETIF_F_GSO_IPXIP6 | 13726 NETIF_F_GSO_UDP_TUNNEL | 13727 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13728 NETIF_F_GSO_UDP_L4 | 13729 NETIF_F_SCTP_CRC | 13730 NETIF_F_RXHASH | 13731 NETIF_F_RXCSUM | 13732 0; 13733 13734 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13735 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13736 13737 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13738 13739 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13740 13741 netdev->hw_enc_features |= hw_enc_features; 13742 13743 /* record features VLANs can make use of */ 13744 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13745 13746 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13747 NETIF_F_GSO_GRE_CSUM | \ 13748 NETIF_F_GSO_IPXIP4 | \ 13749 NETIF_F_GSO_IPXIP6 | \ 13750 NETIF_F_GSO_UDP_TUNNEL | \ 13751 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13752 13753 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13754 netdev->features |= NETIF_F_GSO_PARTIAL | 13755 I40E_GSO_PARTIAL_FEATURES; 13756 13757 netdev->mpls_features |= NETIF_F_SG; 13758 netdev->mpls_features |= NETIF_F_HW_CSUM; 13759 netdev->mpls_features |= NETIF_F_TSO; 13760 netdev->mpls_features |= NETIF_F_TSO6; 13761 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13762 13763 /* enable macvlan offloads */ 13764 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13765 13766 hw_features = hw_enc_features | 13767 NETIF_F_HW_VLAN_CTAG_TX | 13768 NETIF_F_HW_VLAN_CTAG_RX; 13769 13770 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13771 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13772 13773 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13774 13775 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13776 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13777 13778 netdev->features &= ~NETIF_F_HW_TC; 13779 13780 if (vsi->type == I40E_VSI_MAIN) { 13781 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13782 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13783 /* The following steps are necessary for two reasons. First, 13784 * some older NVM configurations load a default MAC-VLAN 13785 * filter that will accept any tagged packet, and we want to 13786 * replace this with a normal filter. Additionally, it is 13787 * possible our MAC address was provided by the platform using 13788 * Open Firmware or similar. 13789 * 13790 * Thus, we need to remove the default filter and install one 13791 * specific to the MAC address. 13792 */ 13793 i40e_rm_default_mac_filter(vsi, mac_addr); 13794 spin_lock_bh(&vsi->mac_filter_hash_lock); 13795 i40e_add_mac_filter(vsi, mac_addr); 13796 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13797 13798 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13799 NETDEV_XDP_ACT_REDIRECT | 13800 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13801 NETDEV_XDP_ACT_RX_SG; 13802 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13803 } else { 13804 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13805 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13806 * the end, which is 4 bytes long, so force truncation of the 13807 * original name by IFNAMSIZ - 4 13808 */ 13809 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 13810 13811 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", IFNAMSIZ - 4, 13812 main_vsi->netdev->name); 13813 eth_random_addr(mac_addr); 13814 13815 spin_lock_bh(&vsi->mac_filter_hash_lock); 13816 i40e_add_mac_filter(vsi, mac_addr); 13817 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13818 } 13819 13820 /* Add the broadcast filter so that we initially will receive 13821 * broadcast packets. Note that when a new VLAN is first added the 13822 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13823 * specific filters as part of transitioning into "vlan" operation. 13824 * When more VLANs are added, the driver will copy each existing MAC 13825 * filter and add it for the new VLAN. 13826 * 13827 * Broadcast filters are handled specially by 13828 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13829 * promiscuous bit instead of adding this directly as a MAC/VLAN 13830 * filter. The subtask will update the correct broadcast promiscuous 13831 * bits as VLANs become active or inactive. 13832 */ 13833 eth_broadcast_addr(broadcast); 13834 spin_lock_bh(&vsi->mac_filter_hash_lock); 13835 i40e_add_mac_filter(vsi, broadcast); 13836 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13837 13838 eth_hw_addr_set(netdev, mac_addr); 13839 ether_addr_copy(netdev->perm_addr, mac_addr); 13840 13841 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13842 netdev->neigh_priv_len = sizeof(u32) * 4; 13843 13844 netdev->priv_flags |= IFF_UNICAST_FLT; 13845 netdev->priv_flags |= IFF_SUPP_NOFCS; 13846 /* Setup netdev TC information */ 13847 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13848 13849 netdev->netdev_ops = &i40e_netdev_ops; 13850 netdev->watchdog_timeo = 5 * HZ; 13851 i40e_set_ethtool_ops(netdev); 13852 13853 /* MTU range: 68 - 9706 */ 13854 netdev->min_mtu = ETH_MIN_MTU; 13855 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13856 13857 return 0; 13858 } 13859 13860 /** 13861 * i40e_vsi_delete - Delete a VSI from the switch 13862 * @vsi: the VSI being removed 13863 * 13864 * Returns 0 on success, negative value on failure 13865 **/ 13866 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13867 { 13868 /* remove default VSI is not allowed */ 13869 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13870 return; 13871 13872 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13873 } 13874 13875 /** 13876 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13877 * @vsi: the VSI being queried 13878 * 13879 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13880 **/ 13881 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13882 { 13883 struct i40e_veb *veb; 13884 struct i40e_pf *pf = vsi->back; 13885 13886 /* Uplink is not a bridge so default to VEB */ 13887 if (vsi->veb_idx >= I40E_MAX_VEB) 13888 return 1; 13889 13890 veb = pf->veb[vsi->veb_idx]; 13891 if (!veb) { 13892 dev_info(&pf->pdev->dev, 13893 "There is no veb associated with the bridge\n"); 13894 return -ENOENT; 13895 } 13896 13897 /* Uplink is a bridge in VEPA mode */ 13898 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13899 return 0; 13900 } else { 13901 /* Uplink is a bridge in VEB mode */ 13902 return 1; 13903 } 13904 13905 /* VEPA is now default bridge, so return 0 */ 13906 return 0; 13907 } 13908 13909 /** 13910 * i40e_add_vsi - Add a VSI to the switch 13911 * @vsi: the VSI being configured 13912 * 13913 * This initializes a VSI context depending on the VSI type to be added and 13914 * passes it down to the add_vsi aq command. 13915 **/ 13916 static int i40e_add_vsi(struct i40e_vsi *vsi) 13917 { 13918 int ret = -ENODEV; 13919 struct i40e_pf *pf = vsi->back; 13920 struct i40e_hw *hw = &pf->hw; 13921 struct i40e_vsi_context ctxt; 13922 struct i40e_mac_filter *f; 13923 struct hlist_node *h; 13924 int bkt; 13925 13926 u8 enabled_tc = 0x1; /* TC0 enabled */ 13927 int f_count = 0; 13928 13929 memset(&ctxt, 0, sizeof(ctxt)); 13930 switch (vsi->type) { 13931 case I40E_VSI_MAIN: 13932 /* The PF's main VSI is already setup as part of the 13933 * device initialization, so we'll not bother with 13934 * the add_vsi call, but we will retrieve the current 13935 * VSI context. 13936 */ 13937 ctxt.seid = pf->main_vsi_seid; 13938 ctxt.pf_num = pf->hw.pf_id; 13939 ctxt.vf_num = 0; 13940 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13941 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13942 if (ret) { 13943 dev_info(&pf->pdev->dev, 13944 "couldn't get PF vsi config, err %pe aq_err %s\n", 13945 ERR_PTR(ret), 13946 i40e_aq_str(&pf->hw, 13947 pf->hw.aq.asq_last_status)); 13948 return -ENOENT; 13949 } 13950 vsi->info = ctxt.info; 13951 vsi->info.valid_sections = 0; 13952 13953 vsi->seid = ctxt.seid; 13954 vsi->id = ctxt.vsi_number; 13955 13956 enabled_tc = i40e_pf_get_tc_map(pf); 13957 13958 /* Source pruning is enabled by default, so the flag is 13959 * negative logic - if it's set, we need to fiddle with 13960 * the VSI to disable source pruning. 13961 */ 13962 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13963 memset(&ctxt, 0, sizeof(ctxt)); 13964 ctxt.seid = pf->main_vsi_seid; 13965 ctxt.pf_num = pf->hw.pf_id; 13966 ctxt.vf_num = 0; 13967 ctxt.info.valid_sections |= 13968 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13969 ctxt.info.switch_id = 13970 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13971 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13972 if (ret) { 13973 dev_info(&pf->pdev->dev, 13974 "update vsi failed, err %d aq_err %s\n", 13975 ret, 13976 i40e_aq_str(&pf->hw, 13977 pf->hw.aq.asq_last_status)); 13978 ret = -ENOENT; 13979 goto err; 13980 } 13981 } 13982 13983 /* MFP mode setup queue map and update VSI */ 13984 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13985 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13986 memset(&ctxt, 0, sizeof(ctxt)); 13987 ctxt.seid = pf->main_vsi_seid; 13988 ctxt.pf_num = pf->hw.pf_id; 13989 ctxt.vf_num = 0; 13990 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13991 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13992 if (ret) { 13993 dev_info(&pf->pdev->dev, 13994 "update vsi failed, err %pe aq_err %s\n", 13995 ERR_PTR(ret), 13996 i40e_aq_str(&pf->hw, 13997 pf->hw.aq.asq_last_status)); 13998 ret = -ENOENT; 13999 goto err; 14000 } 14001 /* update the local VSI info queue map */ 14002 i40e_vsi_update_queue_map(vsi, &ctxt); 14003 vsi->info.valid_sections = 0; 14004 } else { 14005 /* Default/Main VSI is only enabled for TC0 14006 * reconfigure it to enable all TCs that are 14007 * available on the port in SFP mode. 14008 * For MFP case the iSCSI PF would use this 14009 * flow to enable LAN+iSCSI TC. 14010 */ 14011 ret = i40e_vsi_config_tc(vsi, enabled_tc); 14012 if (ret) { 14013 /* Single TC condition is not fatal, 14014 * message and continue 14015 */ 14016 dev_info(&pf->pdev->dev, 14017 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 14018 enabled_tc, 14019 ERR_PTR(ret), 14020 i40e_aq_str(&pf->hw, 14021 pf->hw.aq.asq_last_status)); 14022 } 14023 } 14024 break; 14025 14026 case I40E_VSI_FDIR: 14027 ctxt.pf_num = hw->pf_id; 14028 ctxt.vf_num = 0; 14029 ctxt.uplink_seid = vsi->uplink_seid; 14030 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14031 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 14032 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 14033 (i40e_is_vsi_uplink_mode_veb(vsi))) { 14034 ctxt.info.valid_sections |= 14035 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14036 ctxt.info.switch_id = 14037 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14038 } 14039 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14040 break; 14041 14042 case I40E_VSI_VMDQ2: 14043 ctxt.pf_num = hw->pf_id; 14044 ctxt.vf_num = 0; 14045 ctxt.uplink_seid = vsi->uplink_seid; 14046 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14047 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 14048 14049 /* This VSI is connected to VEB so the switch_id 14050 * should be set to zero by default. 14051 */ 14052 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14053 ctxt.info.valid_sections |= 14054 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14055 ctxt.info.switch_id = 14056 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14057 } 14058 14059 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14060 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14061 break; 14062 14063 case I40E_VSI_SRIOV: 14064 ctxt.pf_num = hw->pf_id; 14065 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14066 ctxt.uplink_seid = vsi->uplink_seid; 14067 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14068 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14069 14070 /* This VSI is connected to VEB so the switch_id 14071 * should be set to zero by default. 14072 */ 14073 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14074 ctxt.info.valid_sections |= 14075 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14076 ctxt.info.switch_id = 14077 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14078 } 14079 14080 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14081 ctxt.info.valid_sections |= 14082 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14083 ctxt.info.queueing_opt_flags |= 14084 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14085 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14086 } 14087 14088 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14089 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14090 if (pf->vf[vsi->vf_id].spoofchk) { 14091 ctxt.info.valid_sections |= 14092 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14093 ctxt.info.sec_flags |= 14094 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14095 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14096 } 14097 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14098 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14099 break; 14100 14101 case I40E_VSI_IWARP: 14102 /* send down message to iWARP */ 14103 break; 14104 14105 default: 14106 return -ENODEV; 14107 } 14108 14109 if (vsi->type != I40E_VSI_MAIN) { 14110 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14111 if (ret) { 14112 dev_info(&vsi->back->pdev->dev, 14113 "add vsi failed, err %pe aq_err %s\n", 14114 ERR_PTR(ret), 14115 i40e_aq_str(&pf->hw, 14116 pf->hw.aq.asq_last_status)); 14117 ret = -ENOENT; 14118 goto err; 14119 } 14120 vsi->info = ctxt.info; 14121 vsi->info.valid_sections = 0; 14122 vsi->seid = ctxt.seid; 14123 vsi->id = ctxt.vsi_number; 14124 } 14125 14126 spin_lock_bh(&vsi->mac_filter_hash_lock); 14127 vsi->active_filters = 0; 14128 /* If macvlan filters already exist, force them to get loaded */ 14129 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14130 f->state = I40E_FILTER_NEW; 14131 f_count++; 14132 } 14133 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14134 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14135 14136 if (f_count) { 14137 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14138 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14139 } 14140 14141 /* Update VSI BW information */ 14142 ret = i40e_vsi_get_bw_info(vsi); 14143 if (ret) { 14144 dev_info(&pf->pdev->dev, 14145 "couldn't get vsi bw info, err %pe aq_err %s\n", 14146 ERR_PTR(ret), 14147 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14148 /* VSI is already added so not tearing that up */ 14149 ret = 0; 14150 } 14151 14152 err: 14153 return ret; 14154 } 14155 14156 /** 14157 * i40e_vsi_release - Delete a VSI and free its resources 14158 * @vsi: the VSI being removed 14159 * 14160 * Returns 0 on success or < 0 on error 14161 **/ 14162 int i40e_vsi_release(struct i40e_vsi *vsi) 14163 { 14164 struct i40e_mac_filter *f; 14165 struct hlist_node *h; 14166 struct i40e_veb *veb; 14167 struct i40e_pf *pf; 14168 u16 uplink_seid; 14169 int i, n, bkt; 14170 14171 pf = vsi->back; 14172 14173 /* release of a VEB-owner or last VSI is not allowed */ 14174 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14175 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14176 vsi->seid, vsi->uplink_seid); 14177 return -ENODEV; 14178 } 14179 if (vsi->type == I40E_VSI_MAIN && !test_bit(__I40E_DOWN, pf->state)) { 14180 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14181 return -ENODEV; 14182 } 14183 set_bit(__I40E_VSI_RELEASING, vsi->state); 14184 uplink_seid = vsi->uplink_seid; 14185 14186 if (vsi->type != I40E_VSI_SRIOV) { 14187 if (vsi->netdev_registered) { 14188 vsi->netdev_registered = false; 14189 if (vsi->netdev) { 14190 /* results in a call to i40e_close() */ 14191 unregister_netdev(vsi->netdev); 14192 } 14193 } else { 14194 i40e_vsi_close(vsi); 14195 } 14196 i40e_vsi_disable_irq(vsi); 14197 } 14198 14199 if (vsi->type == I40E_VSI_MAIN) 14200 i40e_devlink_destroy_port(pf); 14201 14202 spin_lock_bh(&vsi->mac_filter_hash_lock); 14203 14204 /* clear the sync flag on all filters */ 14205 if (vsi->netdev) { 14206 __dev_uc_unsync(vsi->netdev, NULL); 14207 __dev_mc_unsync(vsi->netdev, NULL); 14208 } 14209 14210 /* make sure any remaining filters are marked for deletion */ 14211 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14212 __i40e_del_filter(vsi, f); 14213 14214 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14215 14216 i40e_sync_vsi_filters(vsi); 14217 14218 i40e_vsi_delete(vsi); 14219 i40e_vsi_free_q_vectors(vsi); 14220 if (vsi->netdev) { 14221 free_netdev(vsi->netdev); 14222 vsi->netdev = NULL; 14223 } 14224 i40e_vsi_clear_rings(vsi); 14225 i40e_vsi_clear(vsi); 14226 14227 /* If this was the last thing on the VEB, except for the 14228 * controlling VSI, remove the VEB, which puts the controlling 14229 * VSI onto the uplink port. 14230 * 14231 * Well, okay, there's one more exception here: don't remove 14232 * the floating VEBs yet. We'll wait for an explicit remove request 14233 * from up the network stack. 14234 */ 14235 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14236 if (veb && veb->uplink_seid) { 14237 n = 0; 14238 14239 /* Count non-controlling VSIs present on the VEB */ 14240 i40e_pf_for_each_vsi(pf, i, vsi) 14241 if (vsi->uplink_seid == uplink_seid && 14242 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14243 n++; 14244 14245 /* If there is no VSI except the control one then release 14246 * the VEB and put the control VSI onto VEB uplink. 14247 */ 14248 if (!n) 14249 i40e_veb_release(veb); 14250 } 14251 14252 return 0; 14253 } 14254 14255 /** 14256 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14257 * @vsi: ptr to the VSI 14258 * 14259 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14260 * corresponding SW VSI structure and initializes num_queue_pairs for the 14261 * newly allocated VSI. 14262 * 14263 * Returns 0 on success or negative on failure 14264 **/ 14265 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14266 { 14267 int ret = -ENOENT; 14268 struct i40e_pf *pf = vsi->back; 14269 14270 if (vsi->q_vectors[0]) { 14271 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14272 vsi->seid); 14273 return -EEXIST; 14274 } 14275 14276 if (vsi->base_vector) { 14277 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14278 vsi->seid, vsi->base_vector); 14279 return -EEXIST; 14280 } 14281 14282 ret = i40e_vsi_alloc_q_vectors(vsi); 14283 if (ret) { 14284 dev_info(&pf->pdev->dev, 14285 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14286 vsi->num_q_vectors, vsi->seid, ret); 14287 vsi->num_q_vectors = 0; 14288 goto vector_setup_out; 14289 } 14290 14291 /* In Legacy mode, we do not have to get any other vector since we 14292 * piggyback on the misc/ICR0 for queue interrupts. 14293 */ 14294 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14295 return ret; 14296 if (vsi->num_q_vectors) 14297 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14298 vsi->num_q_vectors, vsi->idx); 14299 if (vsi->base_vector < 0) { 14300 dev_info(&pf->pdev->dev, 14301 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14302 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14303 i40e_vsi_free_q_vectors(vsi); 14304 ret = -ENOENT; 14305 goto vector_setup_out; 14306 } 14307 14308 vector_setup_out: 14309 return ret; 14310 } 14311 14312 /** 14313 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14314 * @vsi: pointer to the vsi. 14315 * 14316 * This re-allocates a vsi's queue resources. 14317 * 14318 * Returns pointer to the successfully allocated and configured VSI sw struct 14319 * on success, otherwise returns NULL on failure. 14320 **/ 14321 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14322 { 14323 struct i40e_vsi *main_vsi; 14324 u16 alloc_queue_pairs; 14325 struct i40e_pf *pf; 14326 int ret; 14327 14328 if (!vsi) 14329 return NULL; 14330 14331 pf = vsi->back; 14332 14333 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14334 i40e_vsi_clear_rings(vsi); 14335 14336 i40e_vsi_free_arrays(vsi, false); 14337 i40e_set_num_rings_in_vsi(vsi); 14338 ret = i40e_vsi_alloc_arrays(vsi, false); 14339 if (ret) 14340 goto err_vsi; 14341 14342 alloc_queue_pairs = vsi->alloc_queue_pairs * 14343 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14344 14345 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14346 if (ret < 0) { 14347 dev_info(&pf->pdev->dev, 14348 "failed to get tracking for %d queues for VSI %d err %d\n", 14349 alloc_queue_pairs, vsi->seid, ret); 14350 goto err_vsi; 14351 } 14352 vsi->base_queue = ret; 14353 14354 /* Update the FW view of the VSI. Force a reset of TC and queue 14355 * layout configurations. 14356 */ 14357 main_vsi = i40e_pf_get_main_vsi(pf); 14358 main_vsi->seid = pf->main_vsi_seid; 14359 i40e_vsi_reconfig_tc(main_vsi); 14360 14361 if (vsi->type == I40E_VSI_MAIN) 14362 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14363 14364 /* assign it some queues */ 14365 ret = i40e_alloc_rings(vsi); 14366 if (ret) 14367 goto err_rings; 14368 14369 /* map all of the rings to the q_vectors */ 14370 i40e_vsi_map_rings_to_vectors(vsi); 14371 return vsi; 14372 14373 err_rings: 14374 i40e_vsi_free_q_vectors(vsi); 14375 if (vsi->netdev_registered) { 14376 vsi->netdev_registered = false; 14377 unregister_netdev(vsi->netdev); 14378 free_netdev(vsi->netdev); 14379 vsi->netdev = NULL; 14380 } 14381 if (vsi->type == I40E_VSI_MAIN) 14382 i40e_devlink_destroy_port(pf); 14383 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14384 err_vsi: 14385 i40e_vsi_clear(vsi); 14386 return NULL; 14387 } 14388 14389 /** 14390 * i40e_vsi_setup - Set up a VSI by a given type 14391 * @pf: board private structure 14392 * @type: VSI type 14393 * @uplink_seid: the switch element to link to 14394 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14395 * 14396 * This allocates the sw VSI structure and its queue resources, then add a VSI 14397 * to the identified VEB. 14398 * 14399 * Returns pointer to the successfully allocated and configure VSI sw struct on 14400 * success, otherwise returns NULL on failure. 14401 **/ 14402 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14403 u16 uplink_seid, u32 param1) 14404 { 14405 struct i40e_vsi *vsi = NULL; 14406 struct i40e_veb *veb = NULL; 14407 u16 alloc_queue_pairs; 14408 int v_idx; 14409 int ret; 14410 14411 /* The requested uplink_seid must be either 14412 * - the PF's port seid 14413 * no VEB is needed because this is the PF 14414 * or this is a Flow Director special case VSI 14415 * - seid of an existing VEB 14416 * - seid of a VSI that owns an existing VEB 14417 * - seid of a VSI that doesn't own a VEB 14418 * a new VEB is created and the VSI becomes the owner 14419 * - seid of the PF VSI, which is what creates the first VEB 14420 * this is a special case of the previous 14421 * 14422 * Find which uplink_seid we were given and create a new VEB if needed 14423 */ 14424 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14425 if (!veb && uplink_seid != pf->mac_seid) { 14426 vsi = i40e_pf_get_vsi_by_seid(pf, uplink_seid); 14427 if (!vsi) { 14428 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14429 uplink_seid); 14430 return NULL; 14431 } 14432 14433 if (vsi->uplink_seid == pf->mac_seid) 14434 veb = i40e_veb_setup(pf, pf->mac_seid, vsi->seid, 14435 vsi->tc_config.enabled_tc); 14436 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14437 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 14438 vsi->tc_config.enabled_tc); 14439 if (veb) { 14440 if (vsi->type != I40E_VSI_MAIN) { 14441 dev_info(&vsi->back->pdev->dev, 14442 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14443 return NULL; 14444 } 14445 /* We come up by default in VEPA mode if SRIOV is not 14446 * already enabled, in which case we can't force VEPA 14447 * mode. 14448 */ 14449 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14450 veb->bridge_mode = BRIDGE_MODE_VEPA; 14451 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14452 } 14453 i40e_config_bridge_mode(veb); 14454 } 14455 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 14456 if (!veb) { 14457 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14458 return NULL; 14459 } 14460 14461 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14462 uplink_seid = veb->seid; 14463 } 14464 14465 /* get vsi sw struct */ 14466 v_idx = i40e_vsi_mem_alloc(pf, type); 14467 if (v_idx < 0) 14468 goto err_alloc; 14469 vsi = pf->vsi[v_idx]; 14470 if (!vsi) 14471 goto err_alloc; 14472 vsi->type = type; 14473 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14474 14475 if (type == I40E_VSI_MAIN) 14476 pf->lan_vsi = v_idx; 14477 else if (type == I40E_VSI_SRIOV) 14478 vsi->vf_id = param1; 14479 /* assign it some queues */ 14480 alloc_queue_pairs = vsi->alloc_queue_pairs * 14481 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14482 14483 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14484 if (ret < 0) { 14485 dev_info(&pf->pdev->dev, 14486 "failed to get tracking for %d queues for VSI %d err=%d\n", 14487 alloc_queue_pairs, vsi->seid, ret); 14488 goto err_vsi; 14489 } 14490 vsi->base_queue = ret; 14491 14492 /* get a VSI from the hardware */ 14493 vsi->uplink_seid = uplink_seid; 14494 ret = i40e_add_vsi(vsi); 14495 if (ret) 14496 goto err_vsi; 14497 14498 switch (vsi->type) { 14499 /* setup the netdev if needed */ 14500 case I40E_VSI_MAIN: 14501 case I40E_VSI_VMDQ2: 14502 ret = i40e_config_netdev(vsi); 14503 if (ret) 14504 goto err_netdev; 14505 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14506 if (ret) 14507 goto err_netdev; 14508 if (vsi->type == I40E_VSI_MAIN) { 14509 ret = i40e_devlink_create_port(pf); 14510 if (ret) 14511 goto err_netdev; 14512 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14513 } 14514 ret = register_netdev(vsi->netdev); 14515 if (ret) 14516 goto err_dl_port; 14517 vsi->netdev_registered = true; 14518 netif_carrier_off(vsi->netdev); 14519 #ifdef CONFIG_I40E_DCB 14520 /* Setup DCB netlink interface */ 14521 i40e_dcbnl_setup(vsi); 14522 #endif /* CONFIG_I40E_DCB */ 14523 fallthrough; 14524 case I40E_VSI_FDIR: 14525 /* set up vectors and rings if needed */ 14526 ret = i40e_vsi_setup_vectors(vsi); 14527 if (ret) 14528 goto err_msix; 14529 14530 ret = i40e_alloc_rings(vsi); 14531 if (ret) 14532 goto err_rings; 14533 14534 /* map all of the rings to the q_vectors */ 14535 i40e_vsi_map_rings_to_vectors(vsi); 14536 14537 i40e_vsi_reset_stats(vsi); 14538 break; 14539 default: 14540 /* no netdev or rings for the other VSI types */ 14541 break; 14542 } 14543 14544 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14545 vsi->type == I40E_VSI_VMDQ2) { 14546 ret = i40e_vsi_config_rss(vsi); 14547 if (ret) 14548 goto err_config; 14549 } 14550 return vsi; 14551 14552 err_config: 14553 i40e_vsi_clear_rings(vsi); 14554 err_rings: 14555 i40e_vsi_free_q_vectors(vsi); 14556 err_msix: 14557 if (vsi->netdev_registered) { 14558 vsi->netdev_registered = false; 14559 unregister_netdev(vsi->netdev); 14560 free_netdev(vsi->netdev); 14561 vsi->netdev = NULL; 14562 } 14563 err_dl_port: 14564 if (vsi->type == I40E_VSI_MAIN) 14565 i40e_devlink_destroy_port(pf); 14566 err_netdev: 14567 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14568 err_vsi: 14569 i40e_vsi_clear(vsi); 14570 err_alloc: 14571 return NULL; 14572 } 14573 14574 /** 14575 * i40e_veb_get_bw_info - Query VEB BW information 14576 * @veb: the veb to query 14577 * 14578 * Query the Tx scheduler BW configuration data for given VEB 14579 **/ 14580 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14581 { 14582 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14583 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14584 struct i40e_pf *pf = veb->pf; 14585 struct i40e_hw *hw = &pf->hw; 14586 u32 tc_bw_max; 14587 int ret = 0; 14588 int i; 14589 14590 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14591 &bw_data, NULL); 14592 if (ret) { 14593 dev_info(&pf->pdev->dev, 14594 "query veb bw config failed, err %pe aq_err %s\n", 14595 ERR_PTR(ret), 14596 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14597 goto out; 14598 } 14599 14600 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14601 &ets_data, NULL); 14602 if (ret) { 14603 dev_info(&pf->pdev->dev, 14604 "query veb bw ets config failed, err %pe aq_err %s\n", 14605 ERR_PTR(ret), 14606 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14607 goto out; 14608 } 14609 14610 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14611 veb->bw_max_quanta = ets_data.tc_bw_max; 14612 veb->is_abs_credits = bw_data.absolute_credits_enable; 14613 veb->enabled_tc = ets_data.tc_valid_bits; 14614 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14615 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14616 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14617 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14618 veb->bw_tc_limit_credits[i] = 14619 le16_to_cpu(bw_data.tc_bw_limits[i]); 14620 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14621 } 14622 14623 out: 14624 return ret; 14625 } 14626 14627 /** 14628 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14629 * @pf: board private structure 14630 * 14631 * On error: returns error code (negative) 14632 * On success: returns vsi index in PF (positive) 14633 **/ 14634 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14635 { 14636 int ret = -ENOENT; 14637 struct i40e_veb *veb; 14638 int i; 14639 14640 /* Need to protect the allocation of switch elements at the PF level */ 14641 mutex_lock(&pf->switch_mutex); 14642 14643 /* VEB list may be fragmented if VEB creation/destruction has 14644 * been happening. We can afford to do a quick scan to look 14645 * for any free slots in the list. 14646 * 14647 * find next empty veb slot, looping back around if necessary 14648 */ 14649 i = 0; 14650 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14651 i++; 14652 if (i >= I40E_MAX_VEB) { 14653 ret = -ENOMEM; 14654 goto err_alloc_veb; /* out of VEB slots! */ 14655 } 14656 14657 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14658 if (!veb) { 14659 ret = -ENOMEM; 14660 goto err_alloc_veb; 14661 } 14662 veb->pf = pf; 14663 veb->idx = i; 14664 veb->enabled_tc = 1; 14665 14666 pf->veb[i] = veb; 14667 ret = i; 14668 err_alloc_veb: 14669 mutex_unlock(&pf->switch_mutex); 14670 return ret; 14671 } 14672 14673 /** 14674 * i40e_switch_branch_release - Delete a branch of the switch tree 14675 * @branch: where to start deleting 14676 * 14677 * This uses recursion to find the tips of the branch to be 14678 * removed, deleting until we get back to and can delete this VEB. 14679 **/ 14680 static void i40e_switch_branch_release(struct i40e_veb *branch) 14681 { 14682 struct i40e_pf *pf = branch->pf; 14683 u16 branch_seid = branch->seid; 14684 u16 veb_idx = branch->idx; 14685 struct i40e_vsi *vsi; 14686 struct i40e_veb *veb; 14687 int i; 14688 14689 /* release any VEBs on this VEB - RECURSION */ 14690 i40e_pf_for_each_veb(pf, i, veb) 14691 if (veb->uplink_seid == branch->seid) 14692 i40e_switch_branch_release(veb); 14693 14694 /* Release the VSIs on this VEB, but not the owner VSI. 14695 * 14696 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14697 * the VEB itself, so don't use (*branch) after this loop. 14698 */ 14699 i40e_pf_for_each_vsi(pf, i, vsi) 14700 if (vsi->uplink_seid == branch_seid && 14701 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14702 i40e_vsi_release(vsi); 14703 14704 /* There's one corner case where the VEB might not have been 14705 * removed, so double check it here and remove it if needed. 14706 * This case happens if the veb was created from the debugfs 14707 * commands and no VSIs were added to it. 14708 */ 14709 if (pf->veb[veb_idx]) 14710 i40e_veb_release(pf->veb[veb_idx]); 14711 } 14712 14713 /** 14714 * i40e_veb_clear - remove veb struct 14715 * @veb: the veb to remove 14716 **/ 14717 static void i40e_veb_clear(struct i40e_veb *veb) 14718 { 14719 if (!veb) 14720 return; 14721 14722 if (veb->pf) { 14723 struct i40e_pf *pf = veb->pf; 14724 14725 mutex_lock(&pf->switch_mutex); 14726 if (pf->veb[veb->idx] == veb) 14727 pf->veb[veb->idx] = NULL; 14728 mutex_unlock(&pf->switch_mutex); 14729 } 14730 14731 kfree(veb); 14732 } 14733 14734 /** 14735 * i40e_veb_release - Delete a VEB and free its resources 14736 * @veb: the VEB being removed 14737 **/ 14738 void i40e_veb_release(struct i40e_veb *veb) 14739 { 14740 struct i40e_vsi *vsi, *vsi_it; 14741 struct i40e_pf *pf; 14742 int i, n = 0; 14743 14744 pf = veb->pf; 14745 14746 /* find the remaining VSI and check for extras */ 14747 i40e_pf_for_each_vsi(pf, i, vsi_it) 14748 if (vsi_it->uplink_seid == veb->seid) { 14749 if (vsi_it->flags & I40E_VSI_FLAG_VEB_OWNER) 14750 vsi = vsi_it; 14751 n++; 14752 } 14753 14754 /* Floating VEB has to be empty and regular one must have 14755 * single owner VSI. 14756 */ 14757 if ((veb->uplink_seid && n != 1) || (!veb->uplink_seid && n != 0)) { 14758 dev_info(&pf->pdev->dev, 14759 "can't remove VEB %d with %d VSIs left\n", 14760 veb->seid, n); 14761 return; 14762 } 14763 14764 /* For regular VEB move the owner VSI to uplink port */ 14765 if (veb->uplink_seid) { 14766 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14767 vsi->uplink_seid = veb->uplink_seid; 14768 vsi->veb_idx = I40E_NO_VEB; 14769 } 14770 14771 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14772 i40e_veb_clear(veb); 14773 } 14774 14775 /** 14776 * i40e_add_veb - create the VEB in the switch 14777 * @veb: the VEB to be instantiated 14778 * @vsi: the controlling VSI 14779 **/ 14780 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14781 { 14782 struct i40e_pf *pf = veb->pf; 14783 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14784 int ret; 14785 14786 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi ? vsi->seid : 0, 14787 veb->enabled_tc, vsi ? false : true, 14788 &veb->seid, enable_stats, NULL); 14789 14790 /* get a VEB from the hardware */ 14791 if (ret) { 14792 dev_info(&pf->pdev->dev, 14793 "couldn't add VEB, err %pe aq_err %s\n", 14794 ERR_PTR(ret), 14795 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14796 return -EPERM; 14797 } 14798 14799 /* get statistics counter */ 14800 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14801 &veb->stats_idx, NULL, NULL, NULL); 14802 if (ret) { 14803 dev_info(&pf->pdev->dev, 14804 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14805 ERR_PTR(ret), 14806 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14807 return -EPERM; 14808 } 14809 ret = i40e_veb_get_bw_info(veb); 14810 if (ret) { 14811 dev_info(&pf->pdev->dev, 14812 "couldn't get VEB bw info, err %pe aq_err %s\n", 14813 ERR_PTR(ret), 14814 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14815 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14816 return -ENOENT; 14817 } 14818 14819 if (vsi) { 14820 vsi->uplink_seid = veb->seid; 14821 vsi->veb_idx = veb->idx; 14822 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14823 } 14824 14825 return 0; 14826 } 14827 14828 /** 14829 * i40e_veb_setup - Set up a VEB 14830 * @pf: board private structure 14831 * @uplink_seid: the switch element to link to 14832 * @vsi_seid: the initial VSI seid 14833 * @enabled_tc: Enabled TC bit-map 14834 * 14835 * This allocates the sw VEB structure and links it into the switch 14836 * It is possible and legal for this to be a duplicate of an already 14837 * existing VEB. It is also possible for both uplink and vsi seids 14838 * to be zero, in order to create a floating VEB. 14839 * 14840 * Returns pointer to the successfully allocated VEB sw struct on 14841 * success, otherwise returns NULL on failure. 14842 **/ 14843 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 uplink_seid, 14844 u16 vsi_seid, u8 enabled_tc) 14845 { 14846 struct i40e_vsi *vsi = NULL; 14847 struct i40e_veb *veb; 14848 int veb_idx; 14849 int ret; 14850 14851 /* if one seid is 0, the other must be 0 to create a floating relay */ 14852 if ((uplink_seid == 0 || vsi_seid == 0) && 14853 (uplink_seid + vsi_seid != 0)) { 14854 dev_info(&pf->pdev->dev, 14855 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14856 uplink_seid, vsi_seid); 14857 return NULL; 14858 } 14859 14860 /* make sure there is such a vsi and uplink */ 14861 if (vsi_seid) { 14862 vsi = i40e_pf_get_vsi_by_seid(pf, vsi_seid); 14863 if (!vsi) { 14864 dev_err(&pf->pdev->dev, "vsi seid %d not found\n", 14865 vsi_seid); 14866 return NULL; 14867 } 14868 } 14869 14870 /* get veb sw struct */ 14871 veb_idx = i40e_veb_mem_alloc(pf); 14872 if (veb_idx < 0) 14873 goto err_alloc; 14874 veb = pf->veb[veb_idx]; 14875 veb->uplink_seid = uplink_seid; 14876 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14877 14878 /* create the VEB in the switch */ 14879 ret = i40e_add_veb(veb, vsi); 14880 if (ret) 14881 goto err_veb; 14882 14883 if (vsi && vsi->idx == pf->lan_vsi) 14884 pf->lan_veb = veb->idx; 14885 14886 return veb; 14887 14888 err_veb: 14889 i40e_veb_clear(veb); 14890 err_alloc: 14891 return NULL; 14892 } 14893 14894 /** 14895 * i40e_setup_pf_switch_element - set PF vars based on switch type 14896 * @pf: board private structure 14897 * @ele: element we are building info from 14898 * @num_reported: total number of elements 14899 * @printconfig: should we print the contents 14900 * 14901 * helper function to assist in extracting a few useful SEID values. 14902 **/ 14903 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14904 struct i40e_aqc_switch_config_element_resp *ele, 14905 u16 num_reported, bool printconfig) 14906 { 14907 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14908 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14909 u8 element_type = ele->element_type; 14910 u16 seid = le16_to_cpu(ele->seid); 14911 struct i40e_veb *veb; 14912 14913 if (printconfig) 14914 dev_info(&pf->pdev->dev, 14915 "type=%d seid=%d uplink=%d downlink=%d\n", 14916 element_type, seid, uplink_seid, downlink_seid); 14917 14918 switch (element_type) { 14919 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14920 pf->mac_seid = seid; 14921 break; 14922 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14923 /* Main VEB? */ 14924 if (uplink_seid != pf->mac_seid) 14925 break; 14926 veb = i40e_pf_get_main_veb(pf); 14927 if (!veb) { 14928 int v; 14929 14930 /* find existing or else empty VEB */ 14931 veb = i40e_pf_get_veb_by_seid(pf, seid); 14932 if (veb) { 14933 pf->lan_veb = veb->idx; 14934 } else { 14935 v = i40e_veb_mem_alloc(pf); 14936 if (v < 0) 14937 break; 14938 pf->lan_veb = v; 14939 } 14940 } 14941 14942 /* Try to get again main VEB as pf->lan_veb may have changed */ 14943 veb = i40e_pf_get_main_veb(pf); 14944 if (!veb) 14945 break; 14946 14947 veb->seid = seid; 14948 veb->uplink_seid = pf->mac_seid; 14949 veb->pf = pf; 14950 break; 14951 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14952 if (num_reported != 1) 14953 break; 14954 /* This is immediately after a reset so we can assume this is 14955 * the PF's VSI 14956 */ 14957 pf->mac_seid = uplink_seid; 14958 pf->main_vsi_seid = seid; 14959 if (printconfig) 14960 dev_info(&pf->pdev->dev, 14961 "pf_seid=%d main_vsi_seid=%d\n", 14962 downlink_seid, pf->main_vsi_seid); 14963 break; 14964 case I40E_SWITCH_ELEMENT_TYPE_PF: 14965 case I40E_SWITCH_ELEMENT_TYPE_VF: 14966 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14967 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14968 case I40E_SWITCH_ELEMENT_TYPE_PE: 14969 case I40E_SWITCH_ELEMENT_TYPE_PA: 14970 /* ignore these for now */ 14971 break; 14972 default: 14973 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14974 element_type, seid); 14975 break; 14976 } 14977 } 14978 14979 /** 14980 * i40e_fetch_switch_configuration - Get switch config from firmware 14981 * @pf: board private structure 14982 * @printconfig: should we print the contents 14983 * 14984 * Get the current switch configuration from the device and 14985 * extract a few useful SEID values. 14986 **/ 14987 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14988 { 14989 struct i40e_aqc_get_switch_config_resp *sw_config; 14990 u16 next_seid = 0; 14991 int ret = 0; 14992 u8 *aq_buf; 14993 int i; 14994 14995 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14996 if (!aq_buf) 14997 return -ENOMEM; 14998 14999 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 15000 do { 15001 u16 num_reported, num_total; 15002 15003 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 15004 I40E_AQ_LARGE_BUF, 15005 &next_seid, NULL); 15006 if (ret) { 15007 dev_info(&pf->pdev->dev, 15008 "get switch config failed err %d aq_err %s\n", 15009 ret, 15010 i40e_aq_str(&pf->hw, 15011 pf->hw.aq.asq_last_status)); 15012 kfree(aq_buf); 15013 return -ENOENT; 15014 } 15015 15016 num_reported = le16_to_cpu(sw_config->header.num_reported); 15017 num_total = le16_to_cpu(sw_config->header.num_total); 15018 15019 if (printconfig) 15020 dev_info(&pf->pdev->dev, 15021 "header: %d reported %d total\n", 15022 num_reported, num_total); 15023 15024 for (i = 0; i < num_reported; i++) { 15025 struct i40e_aqc_switch_config_element_resp *ele = 15026 &sw_config->element[i]; 15027 15028 i40e_setup_pf_switch_element(pf, ele, num_reported, 15029 printconfig); 15030 } 15031 } while (next_seid != 0); 15032 15033 kfree(aq_buf); 15034 return ret; 15035 } 15036 15037 /** 15038 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 15039 * @pf: board private structure 15040 * @reinit: if the Main VSI needs to re-initialized. 15041 * @lock_acquired: indicates whether or not the lock has been acquired 15042 * 15043 * Returns 0 on success, negative value on failure 15044 **/ 15045 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 15046 { 15047 struct i40e_vsi *main_vsi; 15048 u16 flags = 0; 15049 int ret; 15050 15051 /* find out what's out there already */ 15052 ret = i40e_fetch_switch_configuration(pf, false); 15053 if (ret) { 15054 dev_info(&pf->pdev->dev, 15055 "couldn't fetch switch config, err %pe aq_err %s\n", 15056 ERR_PTR(ret), 15057 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15058 return ret; 15059 } 15060 i40e_pf_reset_stats(pf); 15061 15062 /* set the switch config bit for the whole device to 15063 * support limited promisc or true promisc 15064 * when user requests promisc. The default is limited 15065 * promisc. 15066 */ 15067 15068 if ((pf->hw.pf_id == 0) && 15069 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15070 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15071 pf->last_sw_conf_flags = flags; 15072 } 15073 15074 if (pf->hw.pf_id == 0) { 15075 u16 valid_flags; 15076 15077 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15078 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15079 NULL); 15080 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15081 dev_info(&pf->pdev->dev, 15082 "couldn't set switch config bits, err %pe aq_err %s\n", 15083 ERR_PTR(ret), 15084 i40e_aq_str(&pf->hw, 15085 pf->hw.aq.asq_last_status)); 15086 /* not a fatal problem, just keep going */ 15087 } 15088 pf->last_sw_conf_valid_flags = valid_flags; 15089 } 15090 15091 /* first time setup */ 15092 main_vsi = i40e_pf_get_main_vsi(pf); 15093 if (!main_vsi || reinit) { 15094 struct i40e_veb *veb; 15095 u16 uplink_seid; 15096 15097 /* Set up the PF VSI associated with the PF's main VSI 15098 * that is already in the HW switch 15099 */ 15100 veb = i40e_pf_get_main_veb(pf); 15101 if (veb) 15102 uplink_seid = veb->seid; 15103 else 15104 uplink_seid = pf->mac_seid; 15105 if (!main_vsi) 15106 main_vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, 15107 uplink_seid, 0); 15108 else if (reinit) 15109 main_vsi = i40e_vsi_reinit_setup(main_vsi); 15110 if (!main_vsi) { 15111 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15112 i40e_cloud_filter_exit(pf); 15113 i40e_fdir_teardown(pf); 15114 return -EAGAIN; 15115 } 15116 } else { 15117 /* force a reset of TC and queue layout configurations */ 15118 main_vsi->seid = pf->main_vsi_seid; 15119 i40e_vsi_reconfig_tc(main_vsi); 15120 } 15121 i40e_vlan_stripping_disable(main_vsi); 15122 15123 i40e_fdir_sb_setup(pf); 15124 15125 /* Setup static PF queue filter control settings */ 15126 ret = i40e_setup_pf_filter_control(pf); 15127 if (ret) { 15128 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15129 ret); 15130 /* Failure here should not stop continuing other steps */ 15131 } 15132 15133 /* enable RSS in the HW, even for only one queue, as the stack can use 15134 * the hash 15135 */ 15136 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15137 i40e_pf_config_rss(pf); 15138 15139 /* fill in link information and enable LSE reporting */ 15140 i40e_link_event(pf); 15141 15142 i40e_ptp_init(pf); 15143 15144 if (!lock_acquired) 15145 rtnl_lock(); 15146 15147 /* repopulate tunnel port filters */ 15148 udp_tunnel_nic_reset_ntf(main_vsi->netdev); 15149 15150 if (!lock_acquired) 15151 rtnl_unlock(); 15152 15153 return ret; 15154 } 15155 15156 /** 15157 * i40e_determine_queue_usage - Work out queue distribution 15158 * @pf: board private structure 15159 **/ 15160 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15161 { 15162 int queues_left; 15163 int q_max; 15164 15165 pf->num_lan_qps = 0; 15166 15167 /* Find the max queues to be put into basic use. We'll always be 15168 * using TC0, whether or not DCB is running, and TC0 will get the 15169 * big RSS set. 15170 */ 15171 queues_left = pf->hw.func_caps.num_tx_qp; 15172 15173 if ((queues_left == 1) || 15174 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15175 /* one qp for PF, no queues for anything else */ 15176 queues_left = 0; 15177 pf->alloc_rss_size = pf->num_lan_qps = 1; 15178 15179 /* make sure all the fancies are disabled */ 15180 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15181 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15182 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15183 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15184 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15185 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15186 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15187 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15188 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15189 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15190 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15191 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15192 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15193 /* one qp for PF */ 15194 pf->alloc_rss_size = pf->num_lan_qps = 1; 15195 queues_left -= pf->num_lan_qps; 15196 15197 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15198 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15199 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15200 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15201 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15202 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15203 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15204 } else { 15205 /* Not enough queues for all TCs */ 15206 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15207 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15208 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15209 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15210 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15211 } 15212 15213 /* limit lan qps to the smaller of qps, cpus or msix */ 15214 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15215 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15216 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15217 pf->num_lan_qps = q_max; 15218 15219 queues_left -= pf->num_lan_qps; 15220 } 15221 15222 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15223 if (queues_left > 1) { 15224 queues_left -= 1; /* save 1 queue for FD */ 15225 } else { 15226 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15227 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15228 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15229 } 15230 } 15231 15232 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15233 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15234 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15235 (queues_left / pf->num_vf_qps)); 15236 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15237 } 15238 15239 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15240 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15241 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15242 (queues_left / pf->num_vmdq_qps)); 15243 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15244 } 15245 15246 pf->queues_left = queues_left; 15247 dev_dbg(&pf->pdev->dev, 15248 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15249 pf->hw.func_caps.num_tx_qp, 15250 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15251 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15252 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15253 queues_left); 15254 } 15255 15256 /** 15257 * i40e_setup_pf_filter_control - Setup PF static filter control 15258 * @pf: PF to be setup 15259 * 15260 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15261 * settings. If PE/FCoE are enabled then it will also set the per PF 15262 * based filter sizes required for them. It also enables Flow director, 15263 * ethertype and macvlan type filter settings for the pf. 15264 * 15265 * Returns 0 on success, negative on failure 15266 **/ 15267 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15268 { 15269 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15270 15271 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15272 15273 /* Flow Director is enabled */ 15274 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15275 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15276 settings->enable_fdir = true; 15277 15278 /* Ethtype and MACVLAN filters enabled for PF */ 15279 settings->enable_ethtype = true; 15280 settings->enable_macvlan = true; 15281 15282 if (i40e_set_filter_control(&pf->hw, settings)) 15283 return -ENOENT; 15284 15285 return 0; 15286 } 15287 15288 #define INFO_STRING_LEN 255 15289 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15290 static void i40e_print_features(struct i40e_pf *pf) 15291 { 15292 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 15293 struct i40e_hw *hw = &pf->hw; 15294 char *buf; 15295 int i; 15296 15297 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15298 if (!buf) 15299 return; 15300 15301 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15302 #ifdef CONFIG_PCI_IOV 15303 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15304 #endif 15305 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15306 pf->hw.func_caps.num_vsis, main_vsi->num_queue_pairs); 15307 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15308 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15309 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15310 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15311 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15312 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15313 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15314 } 15315 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15316 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15317 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15318 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15319 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15320 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15321 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15322 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15323 else 15324 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15325 15326 dev_info(&pf->pdev->dev, "%s\n", buf); 15327 kfree(buf); 15328 WARN_ON(i > INFO_STRING_LEN); 15329 } 15330 15331 /** 15332 * i40e_get_platform_mac_addr - get platform-specific MAC address 15333 * @pdev: PCI device information struct 15334 * @pf: board private structure 15335 * 15336 * Look up the MAC address for the device. First we'll try 15337 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15338 * specific fallback. Otherwise, we'll default to the stored value in 15339 * firmware. 15340 **/ 15341 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15342 { 15343 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15344 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15345 } 15346 15347 /** 15348 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15349 * @fec_cfg: FEC option to set in flags 15350 * @flags: ptr to flags in which we set FEC option 15351 **/ 15352 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15353 { 15354 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15355 set_bit(I40E_FLAG_RS_FEC, flags); 15356 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15357 } 15358 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15359 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15360 set_bit(I40E_FLAG_RS_FEC, flags); 15361 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15362 } 15363 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15364 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15365 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15366 clear_bit(I40E_FLAG_RS_FEC, flags); 15367 } 15368 if (fec_cfg == 0) { 15369 clear_bit(I40E_FLAG_RS_FEC, flags); 15370 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15371 } 15372 } 15373 15374 /** 15375 * i40e_check_recovery_mode - check if we are running transition firmware 15376 * @pf: board private structure 15377 * 15378 * Check registers indicating the firmware runs in recovery mode. Sets the 15379 * appropriate driver state. 15380 * 15381 * Returns true if the recovery mode was detected, false otherwise 15382 **/ 15383 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15384 { 15385 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15386 15387 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15388 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15389 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15390 set_bit(__I40E_RECOVERY_MODE, pf->state); 15391 15392 return true; 15393 } 15394 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15395 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15396 15397 return false; 15398 } 15399 15400 /** 15401 * i40e_pf_loop_reset - perform reset in a loop. 15402 * @pf: board private structure 15403 * 15404 * This function is useful when a NIC is about to enter recovery mode. 15405 * When a NIC's internal data structures are corrupted the NIC's 15406 * firmware is going to enter recovery mode. 15407 * Right after a POR it takes about 7 minutes for firmware to enter 15408 * recovery mode. Until that time a NIC is in some kind of intermediate 15409 * state. After that time period the NIC almost surely enters 15410 * recovery mode. The only way for a driver to detect intermediate 15411 * state is to issue a series of pf-resets and check a return value. 15412 * If a PF reset returns success then the firmware could be in recovery 15413 * mode so the caller of this code needs to check for recovery mode 15414 * if this function returns success. There is a little chance that 15415 * firmware will hang in intermediate state forever. 15416 * Since waiting 7 minutes is quite a lot of time this function waits 15417 * 10 seconds and then gives up by returning an error. 15418 * 15419 * Return 0 on success, negative on failure. 15420 **/ 15421 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15422 { 15423 /* wait max 10 seconds for PF reset to succeed */ 15424 const unsigned long time_end = jiffies + 10 * HZ; 15425 struct i40e_hw *hw = &pf->hw; 15426 int ret; 15427 15428 ret = i40e_pf_reset(hw); 15429 while (ret != 0 && time_before(jiffies, time_end)) { 15430 usleep_range(10000, 20000); 15431 ret = i40e_pf_reset(hw); 15432 } 15433 15434 if (ret == 0) 15435 pf->pfr_count++; 15436 else 15437 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15438 15439 return ret; 15440 } 15441 15442 /** 15443 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15444 * @pf: board private structure 15445 * 15446 * Check FW registers to determine if FW issued unexpected EMP Reset. 15447 * Every time when unexpected EMP Reset occurs the FW increments 15448 * a counter of unexpected EMP Resets. When the counter reaches 10 15449 * the FW should enter the Recovery mode 15450 * 15451 * Returns true if FW issued unexpected EMP Reset 15452 **/ 15453 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15454 { 15455 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15456 I40E_GL_FWSTS_FWS1B_MASK; 15457 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15458 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15459 } 15460 15461 /** 15462 * i40e_handle_resets - handle EMP resets and PF resets 15463 * @pf: board private structure 15464 * 15465 * Handle both EMP resets and PF resets and conclude whether there are 15466 * any issues regarding these resets. If there are any issues then 15467 * generate log entry. 15468 * 15469 * Return 0 if NIC is healthy or negative value when there are issues 15470 * with resets 15471 **/ 15472 static int i40e_handle_resets(struct i40e_pf *pf) 15473 { 15474 const int pfr = i40e_pf_loop_reset(pf); 15475 const bool is_empr = i40e_check_fw_empr(pf); 15476 15477 if (is_empr || pfr != 0) 15478 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15479 15480 return is_empr ? -EIO : pfr; 15481 } 15482 15483 /** 15484 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15485 * @pf: board private structure 15486 * @hw: ptr to the hardware info 15487 * 15488 * This function does a minimal setup of all subsystems needed for running 15489 * recovery mode. 15490 * 15491 * Returns 0 on success, negative on failure 15492 **/ 15493 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15494 { 15495 struct i40e_vsi *vsi; 15496 int err; 15497 int v_idx; 15498 15499 pci_set_drvdata(pf->pdev, pf); 15500 pci_save_state(pf->pdev); 15501 15502 /* set up periodic task facility */ 15503 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15504 pf->service_timer_period = HZ; 15505 15506 INIT_WORK(&pf->service_task, i40e_service_task); 15507 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15508 15509 err = i40e_init_interrupt_scheme(pf); 15510 if (err) 15511 goto err_switch_setup; 15512 15513 /* The number of VSIs reported by the FW is the minimum guaranteed 15514 * to us; HW supports far more and we share the remaining pool with 15515 * the other PFs. We allocate space for more than the guarantee with 15516 * the understanding that we might not get them all later. 15517 */ 15518 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15519 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15520 else 15521 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15522 15523 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15524 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15525 GFP_KERNEL); 15526 if (!pf->vsi) { 15527 err = -ENOMEM; 15528 goto err_switch_setup; 15529 } 15530 15531 /* We allocate one VSI which is needed as absolute minimum 15532 * in order to register the netdev 15533 */ 15534 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15535 if (v_idx < 0) { 15536 err = v_idx; 15537 goto err_switch_setup; 15538 } 15539 pf->lan_vsi = v_idx; 15540 vsi = pf->vsi[v_idx]; 15541 if (!vsi) { 15542 err = -EFAULT; 15543 goto err_switch_setup; 15544 } 15545 vsi->alloc_queue_pairs = 1; 15546 err = i40e_config_netdev(vsi); 15547 if (err) 15548 goto err_switch_setup; 15549 err = register_netdev(vsi->netdev); 15550 if (err) 15551 goto err_switch_setup; 15552 vsi->netdev_registered = true; 15553 i40e_dbg_pf_init(pf); 15554 15555 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15556 if (err) 15557 goto err_switch_setup; 15558 15559 /* tell the firmware that we're starting */ 15560 i40e_send_version(pf); 15561 15562 /* since everything's happy, start the service_task timer */ 15563 mod_timer(&pf->service_timer, 15564 round_jiffies(jiffies + pf->service_timer_period)); 15565 15566 return 0; 15567 15568 err_switch_setup: 15569 i40e_reset_interrupt_capability(pf); 15570 timer_shutdown_sync(&pf->service_timer); 15571 i40e_shutdown_adminq(hw); 15572 iounmap(hw->hw_addr); 15573 pci_release_mem_regions(pf->pdev); 15574 pci_disable_device(pf->pdev); 15575 i40e_free_pf(pf); 15576 15577 return err; 15578 } 15579 15580 /** 15581 * i40e_set_subsystem_device_id - set subsystem device id 15582 * @hw: pointer to the hardware info 15583 * 15584 * Set PCI subsystem device id either from a pci_dev structure or 15585 * a specific FW register. 15586 **/ 15587 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15588 { 15589 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15590 15591 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15592 pf->pdev->subsystem_device : 15593 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15594 } 15595 15596 /** 15597 * i40e_probe - Device initialization routine 15598 * @pdev: PCI device information struct 15599 * @ent: entry in i40e_pci_tbl 15600 * 15601 * i40e_probe initializes a PF identified by a pci_dev structure. 15602 * The OS initialization, configuring of the PF private structure, 15603 * and a hardware reset occur. 15604 * 15605 * Returns 0 on success, negative on failure 15606 **/ 15607 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15608 { 15609 struct i40e_aq_get_phy_abilities_resp abilities; 15610 #ifdef CONFIG_I40E_DCB 15611 enum i40e_get_fw_lldp_status_resp lldp_status; 15612 #endif /* CONFIG_I40E_DCB */ 15613 struct i40e_vsi *vsi; 15614 struct i40e_pf *pf; 15615 struct i40e_hw *hw; 15616 u16 wol_nvm_bits; 15617 char nvm_ver[32]; 15618 u16 link_status; 15619 #ifdef CONFIG_I40E_DCB 15620 int status; 15621 #endif /* CONFIG_I40E_DCB */ 15622 int err; 15623 u32 val; 15624 15625 err = pci_enable_device_mem(pdev); 15626 if (err) 15627 return err; 15628 15629 /* set up for high or low dma */ 15630 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15631 if (err) { 15632 dev_err(&pdev->dev, 15633 "DMA configuration failed: 0x%x\n", err); 15634 goto err_dma; 15635 } 15636 15637 /* set up pci connections */ 15638 err = pci_request_mem_regions(pdev, i40e_driver_name); 15639 if (err) { 15640 dev_info(&pdev->dev, 15641 "pci_request_selected_regions failed %d\n", err); 15642 goto err_pci_reg; 15643 } 15644 15645 pci_set_master(pdev); 15646 15647 /* Now that we have a PCI connection, we need to do the 15648 * low level device setup. This is primarily setting up 15649 * the Admin Queue structures and then querying for the 15650 * device's current profile information. 15651 */ 15652 pf = i40e_alloc_pf(&pdev->dev); 15653 if (!pf) { 15654 err = -ENOMEM; 15655 goto err_pf_alloc; 15656 } 15657 pf->next_vsi = 0; 15658 pf->pdev = pdev; 15659 set_bit(__I40E_DOWN, pf->state); 15660 15661 hw = &pf->hw; 15662 15663 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15664 I40E_MAX_CSR_SPACE); 15665 /* We believe that the highest register to read is 15666 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15667 * is not less than that before mapping to prevent a 15668 * kernel panic. 15669 */ 15670 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15671 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15672 pf->ioremap_len); 15673 err = -ENOMEM; 15674 goto err_ioremap; 15675 } 15676 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15677 if (!hw->hw_addr) { 15678 err = -EIO; 15679 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15680 (unsigned int)pci_resource_start(pdev, 0), 15681 pf->ioremap_len, err); 15682 goto err_ioremap; 15683 } 15684 hw->vendor_id = pdev->vendor; 15685 hw->device_id = pdev->device; 15686 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15687 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15688 i40e_set_subsystem_device_id(hw); 15689 hw->bus.device = PCI_SLOT(pdev->devfn); 15690 hw->bus.func = PCI_FUNC(pdev->devfn); 15691 hw->bus.bus_id = pdev->bus->number; 15692 15693 /* Select something other than the 802.1ad ethertype for the 15694 * switch to use internally and drop on ingress. 15695 */ 15696 hw->switch_tag = 0xffff; 15697 hw->first_tag = ETH_P_8021AD; 15698 hw->second_tag = ETH_P_8021Q; 15699 15700 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15701 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15702 INIT_LIST_HEAD(&pf->ddp_old_prof); 15703 15704 /* set up the locks for the AQ, do this only once in probe 15705 * and destroy them only once in remove 15706 */ 15707 mutex_init(&hw->aq.asq_mutex); 15708 mutex_init(&hw->aq.arq_mutex); 15709 15710 pf->msg_enable = netif_msg_init(debug, 15711 NETIF_MSG_DRV | 15712 NETIF_MSG_PROBE | 15713 NETIF_MSG_LINK); 15714 if (debug < -1) 15715 pf->hw.debug_mask = debug; 15716 15717 /* do a special CORER for clearing PXE mode once at init */ 15718 if (hw->revision_id == 0 && 15719 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15720 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15721 i40e_flush(hw); 15722 msleep(200); 15723 pf->corer_count++; 15724 15725 i40e_clear_pxe_mode(hw); 15726 } 15727 15728 /* Reset here to make sure all is clean and to define PF 'n' */ 15729 i40e_clear_hw(hw); 15730 15731 err = i40e_set_mac_type(hw); 15732 if (err) { 15733 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15734 err); 15735 goto err_pf_reset; 15736 } 15737 15738 err = i40e_handle_resets(pf); 15739 if (err) 15740 goto err_pf_reset; 15741 15742 i40e_check_recovery_mode(pf); 15743 15744 if (is_kdump_kernel()) { 15745 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15746 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15747 } else { 15748 hw->aq.num_arq_entries = I40E_AQ_LEN; 15749 hw->aq.num_asq_entries = I40E_AQ_LEN; 15750 } 15751 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15752 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15753 15754 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15755 "%s-%s:misc", 15756 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15757 15758 err = i40e_init_shared_code(hw); 15759 if (err) { 15760 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15761 err); 15762 goto err_pf_reset; 15763 } 15764 15765 /* set up a default setting for link flow control */ 15766 pf->hw.fc.requested_mode = I40E_FC_NONE; 15767 15768 err = i40e_init_adminq(hw); 15769 if (err) { 15770 if (err == -EIO) 15771 dev_info(&pdev->dev, 15772 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15773 hw->aq.api_maj_ver, 15774 hw->aq.api_min_ver, 15775 I40E_FW_API_VERSION_MAJOR, 15776 I40E_FW_MINOR_VERSION(hw)); 15777 else 15778 dev_info(&pdev->dev, 15779 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15780 15781 goto err_pf_reset; 15782 } 15783 i40e_get_oem_version(hw); 15784 i40e_get_pba_string(hw); 15785 15786 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15787 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15788 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15789 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15790 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15791 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15792 hw->subsystem_device_id); 15793 15794 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15795 I40E_FW_MINOR_VERSION(hw) + 1)) 15796 dev_dbg(&pdev->dev, 15797 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15798 hw->aq.api_maj_ver, 15799 hw->aq.api_min_ver, 15800 I40E_FW_API_VERSION_MAJOR, 15801 I40E_FW_MINOR_VERSION(hw)); 15802 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15803 dev_info(&pdev->dev, 15804 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15805 hw->aq.api_maj_ver, 15806 hw->aq.api_min_ver, 15807 I40E_FW_API_VERSION_MAJOR, 15808 I40E_FW_MINOR_VERSION(hw)); 15809 15810 i40e_verify_eeprom(pf); 15811 15812 /* Rev 0 hardware was never productized */ 15813 if (hw->revision_id < 1) 15814 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15815 15816 i40e_clear_pxe_mode(hw); 15817 15818 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15819 if (err) 15820 goto err_adminq_setup; 15821 15822 err = i40e_sw_init(pf); 15823 if (err) { 15824 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15825 goto err_sw_init; 15826 } 15827 15828 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15829 return i40e_init_recovery_mode(pf, hw); 15830 15831 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15832 hw->func_caps.num_rx_qp, 0, 0); 15833 if (err) { 15834 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15835 goto err_init_lan_hmc; 15836 } 15837 15838 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15839 if (err) { 15840 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15841 err = -ENOENT; 15842 goto err_configure_lan_hmc; 15843 } 15844 15845 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15846 * Ignore error return codes because if it was already disabled via 15847 * hardware settings this will fail 15848 */ 15849 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15850 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15851 i40e_aq_stop_lldp(hw, true, false, NULL); 15852 } 15853 15854 /* allow a platform config to override the HW addr */ 15855 i40e_get_platform_mac_addr(pdev, pf); 15856 15857 if (!is_valid_ether_addr(hw->mac.addr)) { 15858 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15859 err = -EIO; 15860 goto err_mac_addr; 15861 } 15862 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15863 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15864 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15865 if (is_valid_ether_addr(hw->mac.port_addr)) 15866 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15867 15868 i40e_ptp_alloc_pins(pf); 15869 pci_set_drvdata(pdev, pf); 15870 pci_save_state(pdev); 15871 15872 #ifdef CONFIG_I40E_DCB 15873 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15874 (!status && 15875 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15876 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15877 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15878 dev_info(&pdev->dev, 15879 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15880 "FW LLDP is disabled\n" : 15881 "FW LLDP is enabled\n"); 15882 15883 /* Enable FW to write default DCB config on link-up */ 15884 i40e_aq_set_dcb_parameters(hw, true, NULL); 15885 15886 err = i40e_init_pf_dcb(pf); 15887 if (err) { 15888 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15889 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15890 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15891 /* Continue without DCB enabled */ 15892 } 15893 #endif /* CONFIG_I40E_DCB */ 15894 15895 /* set up periodic task facility */ 15896 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15897 pf->service_timer_period = HZ; 15898 15899 INIT_WORK(&pf->service_task, i40e_service_task); 15900 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15901 15902 /* NVM bit on means WoL disabled for the port */ 15903 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15904 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15905 pf->wol_en = false; 15906 else 15907 pf->wol_en = true; 15908 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15909 15910 /* set up the main switch operations */ 15911 i40e_determine_queue_usage(pf); 15912 err = i40e_init_interrupt_scheme(pf); 15913 if (err) 15914 goto err_switch_setup; 15915 15916 /* Reduce Tx and Rx pairs for kdump 15917 * When MSI-X is enabled, it's not allowed to use more TC queue 15918 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15919 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15920 */ 15921 if (is_kdump_kernel()) 15922 pf->num_lan_msix = 1; 15923 15924 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15925 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15926 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15927 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15928 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15929 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15930 UDP_TUNNEL_TYPE_GENEVE; 15931 15932 /* The number of VSIs reported by the FW is the minimum guaranteed 15933 * to us; HW supports far more and we share the remaining pool with 15934 * the other PFs. We allocate space for more than the guarantee with 15935 * the understanding that we might not get them all later. 15936 */ 15937 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15938 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15939 else 15940 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15941 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15942 dev_warn(&pf->pdev->dev, 15943 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15944 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15945 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15946 } 15947 15948 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15949 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15950 GFP_KERNEL); 15951 if (!pf->vsi) { 15952 err = -ENOMEM; 15953 goto err_switch_setup; 15954 } 15955 15956 #ifdef CONFIG_PCI_IOV 15957 /* prep for VF support */ 15958 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15959 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15960 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15961 if (pci_num_vf(pdev)) 15962 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15963 } 15964 #endif 15965 err = i40e_setup_pf_switch(pf, false, false); 15966 if (err) { 15967 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15968 goto err_vsis; 15969 } 15970 15971 vsi = i40e_pf_get_main_vsi(pf); 15972 INIT_LIST_HEAD(&vsi->ch_list); 15973 15974 /* if FDIR VSI was set up, start it now */ 15975 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 15976 if (vsi) 15977 i40e_vsi_open(vsi); 15978 15979 /* The driver only wants link up/down and module qualification 15980 * reports from firmware. Note the negative logic. 15981 */ 15982 err = i40e_aq_set_phy_int_mask(&pf->hw, 15983 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15984 I40E_AQ_EVENT_MEDIA_NA | 15985 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15986 if (err) 15987 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 15988 ERR_PTR(err), 15989 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15990 15991 /* Reconfigure hardware for allowing smaller MSS in the case 15992 * of TSO, so that we avoid the MDD being fired and causing 15993 * a reset in the case of small MSS+TSO. 15994 */ 15995 val = rd32(hw, I40E_REG_MSS); 15996 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15997 val &= ~I40E_REG_MSS_MIN_MASK; 15998 val |= I40E_64BYTE_MSS; 15999 wr32(hw, I40E_REG_MSS, val); 16000 } 16001 16002 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 16003 msleep(75); 16004 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 16005 if (err) 16006 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 16007 ERR_PTR(err), 16008 i40e_aq_str(&pf->hw, 16009 pf->hw.aq.asq_last_status)); 16010 } 16011 /* The main driver is (mostly) up and happy. We need to set this state 16012 * before setting up the misc vector or we get a race and the vector 16013 * ends up disabled forever. 16014 */ 16015 clear_bit(__I40E_DOWN, pf->state); 16016 16017 /* In case of MSIX we are going to setup the misc vector right here 16018 * to handle admin queue events etc. In case of legacy and MSI 16019 * the misc functionality and queue processing is combined in 16020 * the same vector and that gets setup at open. 16021 */ 16022 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 16023 err = i40e_setup_misc_vector(pf); 16024 if (err) { 16025 dev_info(&pdev->dev, 16026 "setup of misc vector failed: %d\n", err); 16027 i40e_cloud_filter_exit(pf); 16028 i40e_fdir_teardown(pf); 16029 goto err_vsis; 16030 } 16031 } 16032 16033 #ifdef CONFIG_PCI_IOV 16034 /* prep for VF support */ 16035 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 16036 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 16037 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 16038 /* disable link interrupts for VFs */ 16039 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 16040 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 16041 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 16042 i40e_flush(hw); 16043 16044 if (pci_num_vf(pdev)) { 16045 dev_info(&pdev->dev, 16046 "Active VFs found, allocating resources.\n"); 16047 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 16048 if (err) 16049 dev_info(&pdev->dev, 16050 "Error %d allocating resources for existing VFs\n", 16051 err); 16052 } 16053 } 16054 #endif /* CONFIG_PCI_IOV */ 16055 16056 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16057 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16058 pf->num_iwarp_msix, 16059 I40E_IWARP_IRQ_PILE_ID); 16060 if (pf->iwarp_base_vector < 0) { 16061 dev_info(&pdev->dev, 16062 "failed to get tracking for %d vectors for IWARP err=%d\n", 16063 pf->num_iwarp_msix, pf->iwarp_base_vector); 16064 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16065 } 16066 } 16067 16068 i40e_dbg_pf_init(pf); 16069 16070 /* tell the firmware that we're starting */ 16071 i40e_send_version(pf); 16072 16073 /* since everything's happy, start the service_task timer */ 16074 mod_timer(&pf->service_timer, 16075 round_jiffies(jiffies + pf->service_timer_period)); 16076 16077 /* add this PF to client device list and launch a client service task */ 16078 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16079 err = i40e_lan_add_device(pf); 16080 if (err) 16081 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16082 err); 16083 } 16084 16085 #define PCI_SPEED_SIZE 8 16086 #define PCI_WIDTH_SIZE 8 16087 /* Devices on the IOSF bus do not have this information 16088 * and will report PCI Gen 1 x 1 by default so don't bother 16089 * checking them. 16090 */ 16091 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16092 char speed[PCI_SPEED_SIZE] = "Unknown"; 16093 char width[PCI_WIDTH_SIZE] = "Unknown"; 16094 16095 /* Get the negotiated link width and speed from PCI config 16096 * space 16097 */ 16098 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16099 &link_status); 16100 16101 i40e_set_pci_config_data(hw, link_status); 16102 16103 switch (hw->bus.speed) { 16104 case i40e_bus_speed_8000: 16105 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16106 case i40e_bus_speed_5000: 16107 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16108 case i40e_bus_speed_2500: 16109 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16110 default: 16111 break; 16112 } 16113 switch (hw->bus.width) { 16114 case i40e_bus_width_pcie_x8: 16115 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16116 case i40e_bus_width_pcie_x4: 16117 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16118 case i40e_bus_width_pcie_x2: 16119 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16120 case i40e_bus_width_pcie_x1: 16121 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16122 default: 16123 break; 16124 } 16125 16126 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16127 speed, width); 16128 16129 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16130 hw->bus.speed < i40e_bus_speed_8000) { 16131 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16132 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16133 } 16134 } 16135 16136 /* get the requested speeds from the fw */ 16137 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16138 if (err) 16139 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16140 ERR_PTR(err), 16141 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16142 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16143 16144 /* set the FEC config due to the board capabilities */ 16145 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16146 16147 /* get the supported phy types from the fw */ 16148 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16149 if (err) 16150 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16151 ERR_PTR(err), 16152 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16153 16154 /* make sure the MFS hasn't been set lower than the default */ 16155 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16156 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK, 16157 rd32(&pf->hw, I40E_PRTGL_SAH)); 16158 if (val < MAX_FRAME_SIZE_DEFAULT) 16159 dev_warn(&pdev->dev, "MFS for port %x (%d) has been set below the default (%d)\n", 16160 pf->hw.port, val, MAX_FRAME_SIZE_DEFAULT); 16161 16162 /* Add a filter to drop all Flow control frames from any VSI from being 16163 * transmitted. By doing so we stop a malicious VF from sending out 16164 * PAUSE or PFC frames and potentially controlling traffic for other 16165 * PF/VF VSIs. 16166 * The FW can still send Flow control frames if enabled. 16167 */ 16168 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16169 pf->main_vsi_seid); 16170 16171 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16172 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16173 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16174 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16175 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16176 /* print a string summarizing features */ 16177 i40e_print_features(pf); 16178 16179 i40e_devlink_register(pf); 16180 16181 return 0; 16182 16183 /* Unwind what we've done if something failed in the setup */ 16184 err_vsis: 16185 set_bit(__I40E_DOWN, pf->state); 16186 i40e_clear_interrupt_scheme(pf); 16187 kfree(pf->vsi); 16188 err_switch_setup: 16189 i40e_reset_interrupt_capability(pf); 16190 timer_shutdown_sync(&pf->service_timer); 16191 err_mac_addr: 16192 err_configure_lan_hmc: 16193 (void)i40e_shutdown_lan_hmc(hw); 16194 err_init_lan_hmc: 16195 kfree(pf->qp_pile); 16196 err_sw_init: 16197 err_adminq_setup: 16198 err_pf_reset: 16199 iounmap(hw->hw_addr); 16200 err_ioremap: 16201 i40e_free_pf(pf); 16202 err_pf_alloc: 16203 pci_release_mem_regions(pdev); 16204 err_pci_reg: 16205 err_dma: 16206 pci_disable_device(pdev); 16207 return err; 16208 } 16209 16210 /** 16211 * i40e_remove - Device removal routine 16212 * @pdev: PCI device information struct 16213 * 16214 * i40e_remove is called by the PCI subsystem to alert the driver 16215 * that is should release a PCI device. This could be caused by a 16216 * Hot-Plug event, or because the driver is going to be removed from 16217 * memory. 16218 **/ 16219 static void i40e_remove(struct pci_dev *pdev) 16220 { 16221 struct i40e_pf *pf = pci_get_drvdata(pdev); 16222 struct i40e_hw *hw = &pf->hw; 16223 struct i40e_vsi *vsi; 16224 struct i40e_veb *veb; 16225 int ret_code; 16226 int i; 16227 16228 i40e_devlink_unregister(pf); 16229 16230 i40e_dbg_pf_exit(pf); 16231 16232 i40e_ptp_stop(pf); 16233 16234 /* Disable RSS in hw */ 16235 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16236 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16237 16238 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16239 * flags, once they are set, i40e_rebuild should not be called as 16240 * i40e_prep_for_reset always returns early. 16241 */ 16242 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16243 usleep_range(1000, 2000); 16244 set_bit(__I40E_IN_REMOVE, pf->state); 16245 16246 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16247 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16248 i40e_free_vfs(pf); 16249 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16250 } 16251 /* no more scheduling of any task */ 16252 set_bit(__I40E_SUSPENDED, pf->state); 16253 set_bit(__I40E_DOWN, pf->state); 16254 if (pf->service_timer.function) 16255 timer_shutdown_sync(&pf->service_timer); 16256 if (pf->service_task.func) 16257 cancel_work_sync(&pf->service_task); 16258 16259 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16260 struct i40e_vsi *vsi = pf->vsi[0]; 16261 16262 /* We know that we have allocated only one vsi for this PF, 16263 * it was just for registering netdevice, so the interface 16264 * could be visible in the 'ifconfig' output 16265 */ 16266 unregister_netdev(vsi->netdev); 16267 free_netdev(vsi->netdev); 16268 16269 goto unmap; 16270 } 16271 16272 /* Client close must be called explicitly here because the timer 16273 * has been stopped. 16274 */ 16275 i40e_notify_client_of_netdev_close(pf, false); 16276 16277 i40e_fdir_teardown(pf); 16278 16279 /* If there is a switch structure or any orphans, remove them. 16280 * This will leave only the PF's VSI remaining. 16281 */ 16282 i40e_pf_for_each_veb(pf, i, veb) 16283 if (veb->uplink_seid == pf->mac_seid || 16284 veb->uplink_seid == 0) 16285 i40e_switch_branch_release(veb); 16286 16287 /* Now we can shutdown the PF's VSIs, just before we kill 16288 * adminq and hmc. 16289 */ 16290 i40e_pf_for_each_vsi(pf, i, vsi) { 16291 i40e_vsi_close(vsi); 16292 i40e_vsi_release(vsi); 16293 pf->vsi[i] = NULL; 16294 } 16295 16296 i40e_cloud_filter_exit(pf); 16297 16298 /* remove attached clients */ 16299 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16300 ret_code = i40e_lan_del_device(pf); 16301 if (ret_code) 16302 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16303 ret_code); 16304 } 16305 16306 /* shutdown and destroy the HMC */ 16307 if (hw->hmc.hmc_obj) { 16308 ret_code = i40e_shutdown_lan_hmc(hw); 16309 if (ret_code) 16310 dev_warn(&pdev->dev, 16311 "Failed to destroy the HMC resources: %d\n", 16312 ret_code); 16313 } 16314 16315 unmap: 16316 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16317 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16318 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16319 free_irq(pf->pdev->irq, pf); 16320 16321 /* shutdown the adminq */ 16322 i40e_shutdown_adminq(hw); 16323 16324 /* destroy the locks only once, here */ 16325 mutex_destroy(&hw->aq.arq_mutex); 16326 mutex_destroy(&hw->aq.asq_mutex); 16327 16328 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16329 rtnl_lock(); 16330 i40e_clear_interrupt_scheme(pf); 16331 i40e_pf_for_each_vsi(pf, i, vsi) { 16332 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16333 i40e_vsi_clear_rings(vsi); 16334 16335 i40e_vsi_clear(vsi); 16336 pf->vsi[i] = NULL; 16337 } 16338 rtnl_unlock(); 16339 16340 i40e_pf_for_each_veb(pf, i, veb) { 16341 kfree(veb); 16342 pf->veb[i] = NULL; 16343 } 16344 16345 kfree(pf->qp_pile); 16346 kfree(pf->vsi); 16347 16348 iounmap(hw->hw_addr); 16349 i40e_free_pf(pf); 16350 pci_release_mem_regions(pdev); 16351 16352 pci_disable_device(pdev); 16353 } 16354 16355 /** 16356 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16357 * using the mac_address_write admin q function 16358 * @pf: pointer to i40e_pf struct 16359 **/ 16360 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16361 { 16362 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 16363 struct i40e_hw *hw = &pf->hw; 16364 u8 mac_addr[6]; 16365 u16 flags = 0; 16366 int ret; 16367 16368 /* Get current MAC address in case it's an LAA */ 16369 if (main_vsi && main_vsi->netdev) { 16370 ether_addr_copy(mac_addr, main_vsi->netdev->dev_addr); 16371 } else { 16372 dev_err(&pf->pdev->dev, 16373 "Failed to retrieve MAC address; using default\n"); 16374 ether_addr_copy(mac_addr, hw->mac.addr); 16375 } 16376 16377 /* The FW expects the mac address write cmd to first be called with 16378 * one of these flags before calling it again with the multicast 16379 * enable flags. 16380 */ 16381 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16382 16383 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16384 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16385 16386 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16387 if (ret) { 16388 dev_err(&pf->pdev->dev, 16389 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16390 return; 16391 } 16392 16393 flags = I40E_AQC_MC_MAG_EN 16394 | I40E_AQC_WOL_PRESERVE_ON_PFR 16395 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16396 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16397 if (ret) 16398 dev_err(&pf->pdev->dev, 16399 "Failed to enable Multicast Magic Packet wake up\n"); 16400 } 16401 16402 /** 16403 * i40e_io_suspend - suspend all IO operations 16404 * @pf: pointer to i40e_pf struct 16405 * 16406 **/ 16407 static int i40e_io_suspend(struct i40e_pf *pf) 16408 { 16409 struct i40e_hw *hw = &pf->hw; 16410 16411 set_bit(__I40E_DOWN, pf->state); 16412 16413 /* Ensure service task will not be running */ 16414 del_timer_sync(&pf->service_timer); 16415 cancel_work_sync(&pf->service_task); 16416 16417 /* Client close must be called explicitly here because the timer 16418 * has been stopped. 16419 */ 16420 i40e_notify_client_of_netdev_close(pf, false); 16421 16422 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16423 pf->wol_en) 16424 i40e_enable_mc_magic_wake(pf); 16425 16426 /* Since we're going to destroy queues during the 16427 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16428 * whole section 16429 */ 16430 rtnl_lock(); 16431 16432 i40e_prep_for_reset(pf); 16433 16434 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16435 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16436 16437 /* Clear the interrupt scheme and release our IRQs so that the system 16438 * can safely hibernate even when there are a large number of CPUs. 16439 * Otherwise hibernation might fail when mapping all the vectors back 16440 * to CPU0. 16441 */ 16442 i40e_clear_interrupt_scheme(pf); 16443 16444 rtnl_unlock(); 16445 16446 return 0; 16447 } 16448 16449 /** 16450 * i40e_io_resume - resume IO operations 16451 * @pf: pointer to i40e_pf struct 16452 * 16453 **/ 16454 static int i40e_io_resume(struct i40e_pf *pf) 16455 { 16456 struct device *dev = &pf->pdev->dev; 16457 int err; 16458 16459 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16460 * since we're going to be restoring queues 16461 */ 16462 rtnl_lock(); 16463 16464 /* We cleared the interrupt scheme when we suspended, so we need to 16465 * restore it now to resume device functionality. 16466 */ 16467 err = i40e_restore_interrupt_scheme(pf); 16468 if (err) { 16469 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16470 err); 16471 } 16472 16473 clear_bit(__I40E_DOWN, pf->state); 16474 i40e_reset_and_rebuild(pf, false, true); 16475 16476 rtnl_unlock(); 16477 16478 /* Clear suspended state last after everything is recovered */ 16479 clear_bit(__I40E_SUSPENDED, pf->state); 16480 16481 /* Restart the service task */ 16482 mod_timer(&pf->service_timer, 16483 round_jiffies(jiffies + pf->service_timer_period)); 16484 16485 return 0; 16486 } 16487 16488 /** 16489 * i40e_pci_error_detected - warning that something funky happened in PCI land 16490 * @pdev: PCI device information struct 16491 * @error: the type of PCI error 16492 * 16493 * Called to warn that something happened and the error handling steps 16494 * are in progress. Allows the driver to quiesce things, be ready for 16495 * remediation. 16496 **/ 16497 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16498 pci_channel_state_t error) 16499 { 16500 struct i40e_pf *pf = pci_get_drvdata(pdev); 16501 16502 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16503 16504 if (!pf) { 16505 dev_info(&pdev->dev, 16506 "Cannot recover - error happened during device probe\n"); 16507 return PCI_ERS_RESULT_DISCONNECT; 16508 } 16509 16510 /* shutdown all operations */ 16511 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16512 i40e_io_suspend(pf); 16513 16514 /* Request a slot reset */ 16515 return PCI_ERS_RESULT_NEED_RESET; 16516 } 16517 16518 /** 16519 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16520 * @pdev: PCI device information struct 16521 * 16522 * Called to find if the driver can work with the device now that 16523 * the pci slot has been reset. If a basic connection seems good 16524 * (registers are readable and have sane content) then return a 16525 * happy little PCI_ERS_RESULT_xxx. 16526 **/ 16527 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16528 { 16529 struct i40e_pf *pf = pci_get_drvdata(pdev); 16530 pci_ers_result_t result; 16531 u32 reg; 16532 16533 dev_dbg(&pdev->dev, "%s\n", __func__); 16534 /* enable I/O and memory of the device */ 16535 if (pci_enable_device(pdev)) { 16536 dev_info(&pdev->dev, 16537 "Cannot re-enable PCI device after reset.\n"); 16538 result = PCI_ERS_RESULT_DISCONNECT; 16539 } else { 16540 pci_set_master(pdev); 16541 pci_restore_state(pdev); 16542 pci_save_state(pdev); 16543 pci_wake_from_d3(pdev, false); 16544 16545 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16546 if (reg == 0) 16547 result = PCI_ERS_RESULT_RECOVERED; 16548 else 16549 result = PCI_ERS_RESULT_DISCONNECT; 16550 } 16551 16552 return result; 16553 } 16554 16555 /** 16556 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16557 * @pdev: PCI device information struct 16558 */ 16559 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16560 { 16561 struct i40e_pf *pf = pci_get_drvdata(pdev); 16562 16563 i40e_prep_for_reset(pf); 16564 } 16565 16566 /** 16567 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16568 * @pdev: PCI device information struct 16569 */ 16570 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16571 { 16572 struct i40e_pf *pf = pci_get_drvdata(pdev); 16573 16574 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16575 return; 16576 16577 i40e_reset_and_rebuild(pf, false, false); 16578 #ifdef CONFIG_PCI_IOV 16579 i40e_restore_all_vfs_msi_state(pdev); 16580 #endif /* CONFIG_PCI_IOV */ 16581 } 16582 16583 /** 16584 * i40e_pci_error_resume - restart operations after PCI error recovery 16585 * @pdev: PCI device information struct 16586 * 16587 * Called to allow the driver to bring things back up after PCI error 16588 * and/or reset recovery has finished. 16589 **/ 16590 static void i40e_pci_error_resume(struct pci_dev *pdev) 16591 { 16592 struct i40e_pf *pf = pci_get_drvdata(pdev); 16593 16594 dev_dbg(&pdev->dev, "%s\n", __func__); 16595 if (test_bit(__I40E_SUSPENDED, pf->state)) 16596 return; 16597 16598 i40e_io_resume(pf); 16599 } 16600 16601 /** 16602 * i40e_shutdown - PCI callback for shutting down 16603 * @pdev: PCI device information struct 16604 **/ 16605 static void i40e_shutdown(struct pci_dev *pdev) 16606 { 16607 struct i40e_pf *pf = pci_get_drvdata(pdev); 16608 struct i40e_hw *hw = &pf->hw; 16609 16610 set_bit(__I40E_SUSPENDED, pf->state); 16611 set_bit(__I40E_DOWN, pf->state); 16612 16613 del_timer_sync(&pf->service_timer); 16614 cancel_work_sync(&pf->service_task); 16615 i40e_cloud_filter_exit(pf); 16616 i40e_fdir_teardown(pf); 16617 16618 /* Client close must be called explicitly here because the timer 16619 * has been stopped. 16620 */ 16621 i40e_notify_client_of_netdev_close(pf, false); 16622 16623 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16624 pf->wol_en) 16625 i40e_enable_mc_magic_wake(pf); 16626 16627 i40e_prep_for_reset(pf); 16628 16629 wr32(hw, I40E_PFPM_APM, 16630 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16631 wr32(hw, I40E_PFPM_WUFC, 16632 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16633 16634 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16635 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16636 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16637 free_irq(pf->pdev->irq, pf); 16638 16639 /* Since we're going to destroy queues during the 16640 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16641 * whole section 16642 */ 16643 rtnl_lock(); 16644 i40e_clear_interrupt_scheme(pf); 16645 rtnl_unlock(); 16646 16647 if (system_state == SYSTEM_POWER_OFF) { 16648 pci_wake_from_d3(pdev, pf->wol_en); 16649 pci_set_power_state(pdev, PCI_D3hot); 16650 } 16651 } 16652 16653 /** 16654 * i40e_suspend - PM callback for moving to D3 16655 * @dev: generic device information structure 16656 **/ 16657 static int i40e_suspend(struct device *dev) 16658 { 16659 struct i40e_pf *pf = dev_get_drvdata(dev); 16660 16661 /* If we're already suspended, then there is nothing to do */ 16662 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16663 return 0; 16664 return i40e_io_suspend(pf); 16665 } 16666 16667 /** 16668 * i40e_resume - PM callback for waking up from D3 16669 * @dev: generic device information structure 16670 **/ 16671 static int i40e_resume(struct device *dev) 16672 { 16673 struct i40e_pf *pf = dev_get_drvdata(dev); 16674 16675 /* If we're not suspended, then there is nothing to do */ 16676 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16677 return 0; 16678 return i40e_io_resume(pf); 16679 } 16680 16681 static const struct pci_error_handlers i40e_err_handler = { 16682 .error_detected = i40e_pci_error_detected, 16683 .slot_reset = i40e_pci_error_slot_reset, 16684 .reset_prepare = i40e_pci_error_reset_prepare, 16685 .reset_done = i40e_pci_error_reset_done, 16686 .resume = i40e_pci_error_resume, 16687 }; 16688 16689 static DEFINE_SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16690 16691 static struct pci_driver i40e_driver = { 16692 .name = i40e_driver_name, 16693 .id_table = i40e_pci_tbl, 16694 .probe = i40e_probe, 16695 .remove = i40e_remove, 16696 .driver.pm = pm_sleep_ptr(&i40e_pm_ops), 16697 .shutdown = i40e_shutdown, 16698 .err_handler = &i40e_err_handler, 16699 .sriov_configure = i40e_pci_sriov_configure, 16700 }; 16701 16702 /** 16703 * i40e_init_module - Driver registration routine 16704 * 16705 * i40e_init_module is the first routine called when the driver is 16706 * loaded. All it does is register with the PCI subsystem. 16707 **/ 16708 static int __init i40e_init_module(void) 16709 { 16710 int err; 16711 16712 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16713 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16714 16715 /* There is no need to throttle the number of active tasks because 16716 * each device limits its own task using a state bit for scheduling 16717 * the service task, and the device tasks do not interfere with each 16718 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16719 * since we need to be able to guarantee forward progress even under 16720 * memory pressure. 16721 */ 16722 i40e_wq = alloc_workqueue("%s", 0, 0, i40e_driver_name); 16723 if (!i40e_wq) { 16724 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16725 return -ENOMEM; 16726 } 16727 16728 i40e_dbg_init(); 16729 err = pci_register_driver(&i40e_driver); 16730 if (err) { 16731 destroy_workqueue(i40e_wq); 16732 i40e_dbg_exit(); 16733 return err; 16734 } 16735 16736 return 0; 16737 } 16738 module_init(i40e_init_module); 16739 16740 /** 16741 * i40e_exit_module - Driver exit cleanup routine 16742 * 16743 * i40e_exit_module is called just before the driver is removed 16744 * from memory. 16745 **/ 16746 static void __exit i40e_exit_module(void) 16747 { 16748 pci_unregister_driver(&i40e_driver); 16749 destroy_workqueue(i40e_wq); 16750 ida_destroy(&i40e_client_ida); 16751 i40e_dbg_exit(); 16752 } 16753 module_exit(i40e_exit_module); 16754