1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/if_bridge.h> 7 #include <linux/if_macvlan.h> 8 #include <linux/module.h> 9 #include <net/pkt_cls.h> 10 #include <net/xdp_sock_drv.h> 11 12 /* Local includes */ 13 #include "i40e.h" 14 #include "i40e_devids.h" 15 #include "i40e_diag.h" 16 #include "i40e_lan_hmc.h" 17 #include "i40e_virtchnl_pf.h" 18 #include "i40e_xsk.h" 19 20 /* All i40e tracepoints are defined by the include below, which 21 * must be included exactly once across the whole kernel with 22 * CREATE_TRACE_POINTS defined 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "i40e_trace.h" 26 27 const char i40e_driver_name[] = "i40e"; 28 static const char i40e_driver_string[] = 29 "Intel(R) Ethernet Connection XL710 Network Driver"; 30 31 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 32 33 /* a bit of forward declarations */ 34 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 35 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 36 static int i40e_add_vsi(struct i40e_vsi *vsi); 37 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 38 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 39 static int i40e_setup_misc_vector(struct i40e_pf *pf); 40 static void i40e_determine_queue_usage(struct i40e_pf *pf); 41 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 42 static void i40e_prep_for_reset(struct i40e_pf *pf); 43 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 44 bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 48 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 49 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 50 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 51 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 52 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 53 static int i40e_get_capabilities(struct i40e_pf *pf, 54 enum i40e_admin_queue_opc list_type); 55 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 56 57 /* i40e_pci_tbl - PCI Device ID Table 58 * 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id i40e_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 102 MODULE_IMPORT_NS("LIBIE"); 103 MODULE_LICENSE("GPL v2"); 104 105 static struct workqueue_struct *i40e_wq; 106 107 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 108 struct net_device *netdev, int delta) 109 { 110 struct netdev_hw_addr_list *ha_list; 111 struct netdev_hw_addr *ha; 112 113 if (!f || !netdev) 114 return; 115 116 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr)) 117 ha_list = &netdev->uc; 118 else 119 ha_list = &netdev->mc; 120 121 netdev_hw_addr_list_for_each(ha, ha_list) { 122 if (ether_addr_equal(ha->addr, f->macaddr)) { 123 ha->refcount += delta; 124 if (ha->refcount <= 0) 125 ha->refcount = 1; 126 break; 127 } 128 } 129 } 130 131 /** 132 * i40e_hw_to_dev - get device pointer from the hardware structure 133 * @hw: pointer to the device HW structure 134 **/ 135 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 136 { 137 struct i40e_pf *pf = i40e_hw_to_pf(hw); 138 139 return &pf->pdev->dev; 140 } 141 142 /** 143 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 144 * @hw: pointer to the HW structure 145 * @mem: ptr to mem struct to fill out 146 * @size: size of memory requested 147 * @alignment: what to align the allocation to 148 **/ 149 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 150 u64 size, u32 alignment) 151 { 152 struct i40e_pf *pf = i40e_hw_to_pf(hw); 153 154 mem->size = ALIGN(size, alignment); 155 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 156 GFP_KERNEL); 157 if (!mem->va) 158 return -ENOMEM; 159 160 return 0; 161 } 162 163 /** 164 * i40e_free_dma_mem - OS specific memory free for shared code 165 * @hw: pointer to the HW structure 166 * @mem: ptr to mem struct to free 167 **/ 168 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 169 { 170 struct i40e_pf *pf = i40e_hw_to_pf(hw); 171 172 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 173 mem->va = NULL; 174 mem->pa = 0; 175 mem->size = 0; 176 177 return 0; 178 } 179 180 /** 181 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 182 * @hw: pointer to the HW structure 183 * @mem: ptr to mem struct to fill out 184 * @size: size of memory requested 185 **/ 186 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 187 u32 size) 188 { 189 mem->size = size; 190 mem->va = kzalloc(size, GFP_KERNEL); 191 192 if (!mem->va) 193 return -ENOMEM; 194 195 return 0; 196 } 197 198 /** 199 * i40e_free_virt_mem - OS specific memory free for shared code 200 * @hw: pointer to the HW structure 201 * @mem: ptr to mem struct to free 202 **/ 203 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 204 { 205 /* it's ok to kfree a NULL pointer */ 206 kfree(mem->va); 207 mem->va = NULL; 208 mem->size = 0; 209 210 return 0; 211 } 212 213 /** 214 * i40e_get_lump - find a lump of free generic resource 215 * @pf: board private structure 216 * @pile: the pile of resource to search 217 * @needed: the number of items needed 218 * @id: an owner id to stick on the items assigned 219 * 220 * Returns the base item index of the lump, or negative for error 221 **/ 222 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 223 u16 needed, u16 id) 224 { 225 int ret = -ENOMEM; 226 int i, j; 227 228 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 229 dev_info(&pf->pdev->dev, 230 "param err: pile=%s needed=%d id=0x%04x\n", 231 pile ? "<valid>" : "<null>", needed, id); 232 return -EINVAL; 233 } 234 235 /* Allocate last queue in the pile for FDIR VSI queue 236 * so it doesn't fragment the qp_pile 237 */ 238 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 239 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 240 dev_err(&pf->pdev->dev, 241 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 242 pile->num_entries - 1); 243 return -ENOMEM; 244 } 245 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 246 return pile->num_entries - 1; 247 } 248 249 i = 0; 250 while (i < pile->num_entries) { 251 /* skip already allocated entries */ 252 if (pile->list[i] & I40E_PILE_VALID_BIT) { 253 i++; 254 continue; 255 } 256 257 /* do we have enough in this lump? */ 258 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 259 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 260 break; 261 } 262 263 if (j == needed) { 264 /* there was enough, so assign it to the requestor */ 265 for (j = 0; j < needed; j++) 266 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 267 ret = i; 268 break; 269 } 270 271 /* not enough, so skip over it and continue looking */ 272 i += j; 273 } 274 275 return ret; 276 } 277 278 /** 279 * i40e_put_lump - return a lump of generic resource 280 * @pile: the pile of resource to search 281 * @index: the base item index 282 * @id: the owner id of the items assigned 283 * 284 * Returns the count of items in the lump 285 **/ 286 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 287 { 288 int valid_id = (id | I40E_PILE_VALID_BIT); 289 int count = 0; 290 u16 i; 291 292 if (!pile || index >= pile->num_entries) 293 return -EINVAL; 294 295 for (i = index; 296 i < pile->num_entries && pile->list[i] == valid_id; 297 i++) { 298 pile->list[i] = 0; 299 count++; 300 } 301 302 303 return count; 304 } 305 306 /** 307 * i40e_find_vsi_from_id - searches for the vsi with the given id 308 * @pf: the pf structure to search for the vsi 309 * @id: id of the vsi it is searching for 310 **/ 311 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 312 { 313 struct i40e_vsi *vsi; 314 int i; 315 316 i40e_pf_for_each_vsi(pf, i, vsi) 317 if (vsi->id == id) 318 return vsi; 319 320 return NULL; 321 } 322 323 /** 324 * i40e_service_event_schedule - Schedule the service task to wake up 325 * @pf: board private structure 326 * 327 * If not already scheduled, this puts the task into the work queue 328 **/ 329 void i40e_service_event_schedule(struct i40e_pf *pf) 330 { 331 if ((!test_bit(__I40E_DOWN, pf->state) && 332 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 333 test_bit(__I40E_RECOVERY_MODE, pf->state)) 334 queue_work(i40e_wq, &pf->service_task); 335 } 336 337 /** 338 * i40e_tx_timeout - Respond to a Tx Hang 339 * @netdev: network interface device structure 340 * @txqueue: queue number timing out 341 * 342 * If any port has noticed a Tx timeout, it is likely that the whole 343 * device is munged, not just the one netdev port, so go for the full 344 * reset. 345 **/ 346 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 347 { 348 struct i40e_netdev_priv *np = netdev_priv(netdev); 349 struct i40e_vsi *vsi = np->vsi; 350 struct i40e_pf *pf = vsi->back; 351 struct i40e_ring *tx_ring = NULL; 352 unsigned int i; 353 u32 head, val; 354 355 pf->tx_timeout_count++; 356 357 /* with txqueue index, find the tx_ring struct */ 358 for (i = 0; i < vsi->num_queue_pairs; i++) { 359 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 360 if (txqueue == 361 vsi->tx_rings[i]->queue_index) { 362 tx_ring = vsi->tx_rings[i]; 363 break; 364 } 365 } 366 } 367 368 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 369 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 370 else if (time_before(jiffies, 371 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 372 return; /* don't do any new action before the next timeout */ 373 374 /* don't kick off another recovery if one is already pending */ 375 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 376 return; 377 378 if (tx_ring) { 379 head = i40e_get_head(tx_ring); 380 /* Read interrupt register */ 381 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 382 val = rd32(&pf->hw, 383 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 384 tx_ring->vsi->base_vector - 1)); 385 else 386 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 387 388 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 389 vsi->seid, txqueue, tx_ring->next_to_clean, 390 head, tx_ring->next_to_use, 391 readl(tx_ring->tail), val); 392 } 393 394 pf->tx_timeout_last_recovery = jiffies; 395 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 396 pf->tx_timeout_recovery_level, txqueue); 397 398 switch (pf->tx_timeout_recovery_level) { 399 case 1: 400 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 401 break; 402 case 2: 403 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 404 break; 405 case 3: 406 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 407 break; 408 default: 409 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 410 set_bit(__I40E_DOWN_REQUESTED, pf->state); 411 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 412 break; 413 } 414 415 i40e_service_event_schedule(pf); 416 pf->tx_timeout_recovery_level++; 417 } 418 419 /** 420 * i40e_get_vsi_stats_struct - Get System Network Statistics 421 * @vsi: the VSI we care about 422 * 423 * Returns the address of the device statistics structure. 424 * The statistics are actually updated from the service task. 425 **/ 426 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 427 { 428 return &vsi->net_stats; 429 } 430 431 /** 432 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 433 * @ring: Tx ring to get statistics from 434 * @stats: statistics entry to be updated 435 **/ 436 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 437 struct rtnl_link_stats64 *stats) 438 { 439 u64 bytes, packets; 440 unsigned int start; 441 442 do { 443 start = u64_stats_fetch_begin(&ring->syncp); 444 packets = ring->stats.packets; 445 bytes = ring->stats.bytes; 446 } while (u64_stats_fetch_retry(&ring->syncp, start)); 447 448 stats->tx_packets += packets; 449 stats->tx_bytes += bytes; 450 } 451 452 /** 453 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 454 * @netdev: network interface device structure 455 * @stats: data structure to store statistics 456 * 457 * Returns the address of the device statistics structure. 458 * The statistics are actually updated from the service task. 459 **/ 460 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 461 struct rtnl_link_stats64 *stats) 462 { 463 struct i40e_netdev_priv *np = netdev_priv(netdev); 464 struct i40e_vsi *vsi = np->vsi; 465 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 466 struct i40e_ring *ring; 467 int i; 468 469 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 470 return; 471 472 if (!vsi->tx_rings) 473 return; 474 475 rcu_read_lock(); 476 for (i = 0; i < vsi->num_queue_pairs; i++) { 477 u64 bytes, packets; 478 unsigned int start; 479 480 ring = READ_ONCE(vsi->tx_rings[i]); 481 if (!ring) 482 continue; 483 i40e_get_netdev_stats_struct_tx(ring, stats); 484 485 if (i40e_enabled_xdp_vsi(vsi)) { 486 ring = READ_ONCE(vsi->xdp_rings[i]); 487 if (!ring) 488 continue; 489 i40e_get_netdev_stats_struct_tx(ring, stats); 490 } 491 492 ring = READ_ONCE(vsi->rx_rings[i]); 493 if (!ring) 494 continue; 495 do { 496 start = u64_stats_fetch_begin(&ring->syncp); 497 packets = ring->stats.packets; 498 bytes = ring->stats.bytes; 499 } while (u64_stats_fetch_retry(&ring->syncp, start)); 500 501 stats->rx_packets += packets; 502 stats->rx_bytes += bytes; 503 504 } 505 rcu_read_unlock(); 506 507 /* following stats updated by i40e_watchdog_subtask() */ 508 stats->multicast = vsi_stats->multicast; 509 stats->tx_errors = vsi_stats->tx_errors; 510 stats->tx_dropped = vsi_stats->tx_dropped; 511 stats->rx_errors = vsi_stats->rx_errors; 512 stats->rx_dropped = vsi_stats->rx_dropped; 513 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 514 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 515 stats->rx_length_errors = vsi_stats->rx_length_errors; 516 } 517 518 /** 519 * i40e_vsi_reset_stats - Resets all stats of the given vsi 520 * @vsi: the VSI to have its stats reset 521 **/ 522 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 523 { 524 struct rtnl_link_stats64 *ns; 525 int i; 526 527 if (!vsi) 528 return; 529 530 ns = i40e_get_vsi_stats_struct(vsi); 531 memset(ns, 0, sizeof(*ns)); 532 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 533 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 534 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 535 if (vsi->rx_rings && vsi->rx_rings[0]) { 536 for (i = 0; i < vsi->num_queue_pairs; i++) { 537 memset(&vsi->rx_rings[i]->stats, 0, 538 sizeof(vsi->rx_rings[i]->stats)); 539 memset(&vsi->rx_rings[i]->rx_stats, 0, 540 sizeof(vsi->rx_rings[i]->rx_stats)); 541 memset(&vsi->tx_rings[i]->stats, 0, 542 sizeof(vsi->tx_rings[i]->stats)); 543 memset(&vsi->tx_rings[i]->tx_stats, 0, 544 sizeof(vsi->tx_rings[i]->tx_stats)); 545 } 546 } 547 vsi->stat_offsets_loaded = false; 548 } 549 550 /** 551 * i40e_pf_reset_stats - Reset all of the stats for the given PF 552 * @pf: the PF to be reset 553 **/ 554 void i40e_pf_reset_stats(struct i40e_pf *pf) 555 { 556 struct i40e_veb *veb; 557 int i; 558 559 memset(&pf->stats, 0, sizeof(pf->stats)); 560 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 561 pf->stat_offsets_loaded = false; 562 563 i40e_pf_for_each_veb(pf, i, veb) { 564 memset(&veb->stats, 0, sizeof(veb->stats)); 565 memset(&veb->stats_offsets, 0, sizeof(veb->stats_offsets)); 566 memset(&veb->tc_stats, 0, sizeof(veb->tc_stats)); 567 memset(&veb->tc_stats_offsets, 0, sizeof(veb->tc_stats_offsets)); 568 veb->stat_offsets_loaded = false; 569 } 570 pf->hw_csum_rx_error = 0; 571 } 572 573 /** 574 * i40e_compute_pci_to_hw_id - compute index form PCI function. 575 * @vsi: ptr to the VSI to read from. 576 * @hw: ptr to the hardware info. 577 **/ 578 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 579 { 580 int pf_count = i40e_get_pf_count(hw); 581 582 if (vsi->type == I40E_VSI_SRIOV) 583 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 584 585 return hw->port + BIT(7); 586 } 587 588 /** 589 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 590 * @hw: ptr to the hardware info. 591 * @hireg: the high 32 bit reg to read. 592 * @loreg: the low 32 bit reg to read. 593 * @offset_loaded: has the initial offset been loaded yet. 594 * @offset: ptr to current offset value. 595 * @stat: ptr to the stat. 596 * 597 * Since the device stats are not reset at PFReset, they will not 598 * be zeroed when the driver starts. We'll save the first values read 599 * and use them as offsets to be subtracted from the raw values in order 600 * to report stats that count from zero. 601 **/ 602 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 603 bool offset_loaded, u64 *offset, u64 *stat) 604 { 605 u64 new_data; 606 607 new_data = rd64(hw, loreg); 608 609 if (!offset_loaded || new_data < *offset) 610 *offset = new_data; 611 *stat = new_data - *offset; 612 } 613 614 /** 615 * i40e_stat_update48 - read and update a 48 bit stat from the chip 616 * @hw: ptr to the hardware info 617 * @hireg: the high 32 bit reg to read 618 * @loreg: the low 32 bit reg to read 619 * @offset_loaded: has the initial offset been loaded yet 620 * @offset: ptr to current offset value 621 * @stat: ptr to the stat 622 * 623 * Since the device stats are not reset at PFReset, they likely will not 624 * be zeroed when the driver starts. We'll save the first values read 625 * and use them as offsets to be subtracted from the raw values in order 626 * to report stats that count from zero. In the process, we also manage 627 * the potential roll-over. 628 **/ 629 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 630 bool offset_loaded, u64 *offset, u64 *stat) 631 { 632 u64 new_data; 633 634 if (hw->device_id == I40E_DEV_ID_QEMU) { 635 new_data = rd32(hw, loreg); 636 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 637 } else { 638 new_data = rd64(hw, loreg); 639 } 640 if (!offset_loaded) 641 *offset = new_data; 642 if (likely(new_data >= *offset)) 643 *stat = new_data - *offset; 644 else 645 *stat = (new_data + BIT_ULL(48)) - *offset; 646 *stat &= 0xFFFFFFFFFFFFULL; 647 } 648 649 /** 650 * i40e_stat_update32 - read and update a 32 bit stat from the chip 651 * @hw: ptr to the hardware info 652 * @reg: the hw reg to read 653 * @offset_loaded: has the initial offset been loaded yet 654 * @offset: ptr to current offset value 655 * @stat: ptr to the stat 656 **/ 657 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 658 bool offset_loaded, u64 *offset, u64 *stat) 659 { 660 u32 new_data; 661 662 new_data = rd32(hw, reg); 663 if (!offset_loaded) 664 *offset = new_data; 665 if (likely(new_data >= *offset)) 666 *stat = (u32)(new_data - *offset); 667 else 668 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 669 } 670 671 /** 672 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 673 * @hw: ptr to the hardware info 674 * @reg: the hw reg to read and clear 675 * @stat: ptr to the stat 676 **/ 677 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 678 { 679 u32 new_data = rd32(hw, reg); 680 681 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 682 *stat += new_data; 683 } 684 685 /** 686 * i40e_stats_update_rx_discards - update rx_discards. 687 * @vsi: ptr to the VSI to be updated. 688 * @hw: ptr to the hardware info. 689 * @stat_idx: VSI's stat_counter_idx. 690 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 691 * @stat_offset: ptr to stat_offset to store first read of specific register. 692 * @stat: ptr to VSI's stat to be updated. 693 **/ 694 static void 695 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 696 int stat_idx, bool offset_loaded, 697 struct i40e_eth_stats *stat_offset, 698 struct i40e_eth_stats *stat) 699 { 700 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 701 &stat_offset->rx_discards, &stat->rx_discards); 702 i40e_stat_update64(hw, 703 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 704 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 705 offset_loaded, &stat_offset->rx_discards_other, 706 &stat->rx_discards_other); 707 } 708 709 /** 710 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 711 * @vsi: the VSI to be updated 712 **/ 713 void i40e_update_eth_stats(struct i40e_vsi *vsi) 714 { 715 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 716 struct i40e_pf *pf = vsi->back; 717 struct i40e_hw *hw = &pf->hw; 718 struct i40e_eth_stats *oes; 719 struct i40e_eth_stats *es; /* device's eth stats */ 720 721 es = &vsi->eth_stats; 722 oes = &vsi->eth_stats_offsets; 723 724 /* Gather up the stats that the hw collects */ 725 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 726 vsi->stat_offsets_loaded, 727 &oes->tx_errors, &es->tx_errors); 728 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 729 vsi->stat_offsets_loaded, 730 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 731 732 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 733 I40E_GLV_GORCL(stat_idx), 734 vsi->stat_offsets_loaded, 735 &oes->rx_bytes, &es->rx_bytes); 736 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 737 I40E_GLV_UPRCL(stat_idx), 738 vsi->stat_offsets_loaded, 739 &oes->rx_unicast, &es->rx_unicast); 740 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 741 I40E_GLV_MPRCL(stat_idx), 742 vsi->stat_offsets_loaded, 743 &oes->rx_multicast, &es->rx_multicast); 744 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 745 I40E_GLV_BPRCL(stat_idx), 746 vsi->stat_offsets_loaded, 747 &oes->rx_broadcast, &es->rx_broadcast); 748 749 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 750 I40E_GLV_GOTCL(stat_idx), 751 vsi->stat_offsets_loaded, 752 &oes->tx_bytes, &es->tx_bytes); 753 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 754 I40E_GLV_UPTCL(stat_idx), 755 vsi->stat_offsets_loaded, 756 &oes->tx_unicast, &es->tx_unicast); 757 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 758 I40E_GLV_MPTCL(stat_idx), 759 vsi->stat_offsets_loaded, 760 &oes->tx_multicast, &es->tx_multicast); 761 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 762 I40E_GLV_BPTCL(stat_idx), 763 vsi->stat_offsets_loaded, 764 &oes->tx_broadcast, &es->tx_broadcast); 765 766 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 767 vsi->stat_offsets_loaded, oes, es); 768 769 vsi->stat_offsets_loaded = true; 770 } 771 772 /** 773 * i40e_update_veb_stats - Update Switch component statistics 774 * @veb: the VEB being updated 775 **/ 776 void i40e_update_veb_stats(struct i40e_veb *veb) 777 { 778 struct i40e_pf *pf = veb->pf; 779 struct i40e_hw *hw = &pf->hw; 780 struct i40e_eth_stats *oes; 781 struct i40e_eth_stats *es; /* device's eth stats */ 782 struct i40e_veb_tc_stats *veb_oes; 783 struct i40e_veb_tc_stats *veb_es; 784 int i, idx = 0; 785 786 idx = veb->stats_idx; 787 es = &veb->stats; 788 oes = &veb->stats_offsets; 789 veb_es = &veb->tc_stats; 790 veb_oes = &veb->tc_stats_offsets; 791 792 /* Gather up the stats that the hw collects */ 793 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 794 veb->stat_offsets_loaded, 795 &oes->tx_discards, &es->tx_discards); 796 if (hw->revision_id > 0) 797 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 798 veb->stat_offsets_loaded, 799 &oes->rx_unknown_protocol, 800 &es->rx_unknown_protocol); 801 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 802 veb->stat_offsets_loaded, 803 &oes->rx_bytes, &es->rx_bytes); 804 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 805 veb->stat_offsets_loaded, 806 &oes->rx_unicast, &es->rx_unicast); 807 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 808 veb->stat_offsets_loaded, 809 &oes->rx_multicast, &es->rx_multicast); 810 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 811 veb->stat_offsets_loaded, 812 &oes->rx_broadcast, &es->rx_broadcast); 813 814 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 815 veb->stat_offsets_loaded, 816 &oes->tx_bytes, &es->tx_bytes); 817 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 818 veb->stat_offsets_loaded, 819 &oes->tx_unicast, &es->tx_unicast); 820 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 821 veb->stat_offsets_loaded, 822 &oes->tx_multicast, &es->tx_multicast); 823 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 824 veb->stat_offsets_loaded, 825 &oes->tx_broadcast, &es->tx_broadcast); 826 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 827 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 828 I40E_GLVEBTC_RPCL(i, idx), 829 veb->stat_offsets_loaded, 830 &veb_oes->tc_rx_packets[i], 831 &veb_es->tc_rx_packets[i]); 832 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 833 I40E_GLVEBTC_RBCL(i, idx), 834 veb->stat_offsets_loaded, 835 &veb_oes->tc_rx_bytes[i], 836 &veb_es->tc_rx_bytes[i]); 837 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 838 I40E_GLVEBTC_TPCL(i, idx), 839 veb->stat_offsets_loaded, 840 &veb_oes->tc_tx_packets[i], 841 &veb_es->tc_tx_packets[i]); 842 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 843 I40E_GLVEBTC_TBCL(i, idx), 844 veb->stat_offsets_loaded, 845 &veb_oes->tc_tx_bytes[i], 846 &veb_es->tc_tx_bytes[i]); 847 } 848 veb->stat_offsets_loaded = true; 849 } 850 851 /** 852 * i40e_update_vsi_stats - Update the vsi statistics counters. 853 * @vsi: the VSI to be updated 854 * 855 * There are a few instances where we store the same stat in a 856 * couple of different structs. This is partly because we have 857 * the netdev stats that need to be filled out, which is slightly 858 * different from the "eth_stats" defined by the chip and used in 859 * VF communications. We sort it out here. 860 **/ 861 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 862 { 863 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 864 struct i40e_pf *pf = vsi->back; 865 struct rtnl_link_stats64 *ons; 866 struct rtnl_link_stats64 *ns; /* netdev stats */ 867 struct i40e_eth_stats *oes; 868 struct i40e_eth_stats *es; /* device's eth stats */ 869 u64 tx_restart, tx_busy; 870 struct i40e_ring *p; 871 u64 bytes, packets; 872 unsigned int start; 873 u64 tx_linearize; 874 u64 tx_force_wb; 875 u64 tx_stopped; 876 u64 rx_p, rx_b; 877 u64 tx_p, tx_b; 878 u16 q; 879 880 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 881 test_bit(__I40E_CONFIG_BUSY, pf->state)) 882 return; 883 884 ns = i40e_get_vsi_stats_struct(vsi); 885 ons = &vsi->net_stats_offsets; 886 es = &vsi->eth_stats; 887 oes = &vsi->eth_stats_offsets; 888 889 /* Gather up the netdev and vsi stats that the driver collects 890 * on the fly during packet processing 891 */ 892 rx_b = rx_p = 0; 893 tx_b = tx_p = 0; 894 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 895 tx_stopped = 0; 896 rx_page = 0; 897 rx_buf = 0; 898 rx_reuse = 0; 899 rx_alloc = 0; 900 rx_waive = 0; 901 rx_busy = 0; 902 rcu_read_lock(); 903 for (q = 0; q < vsi->num_queue_pairs; q++) { 904 /* locate Tx ring */ 905 p = READ_ONCE(vsi->tx_rings[q]); 906 if (!p) 907 continue; 908 909 do { 910 start = u64_stats_fetch_begin(&p->syncp); 911 packets = p->stats.packets; 912 bytes = p->stats.bytes; 913 } while (u64_stats_fetch_retry(&p->syncp, start)); 914 tx_b += bytes; 915 tx_p += packets; 916 tx_restart += p->tx_stats.restart_queue; 917 tx_busy += p->tx_stats.tx_busy; 918 tx_linearize += p->tx_stats.tx_linearize; 919 tx_force_wb += p->tx_stats.tx_force_wb; 920 tx_stopped += p->tx_stats.tx_stopped; 921 922 /* locate Rx ring */ 923 p = READ_ONCE(vsi->rx_rings[q]); 924 if (!p) 925 continue; 926 927 do { 928 start = u64_stats_fetch_begin(&p->syncp); 929 packets = p->stats.packets; 930 bytes = p->stats.bytes; 931 } while (u64_stats_fetch_retry(&p->syncp, start)); 932 rx_b += bytes; 933 rx_p += packets; 934 rx_buf += p->rx_stats.alloc_buff_failed; 935 rx_page += p->rx_stats.alloc_page_failed; 936 rx_reuse += p->rx_stats.page_reuse_count; 937 rx_alloc += p->rx_stats.page_alloc_count; 938 rx_waive += p->rx_stats.page_waive_count; 939 rx_busy += p->rx_stats.page_busy_count; 940 941 if (i40e_enabled_xdp_vsi(vsi)) { 942 /* locate XDP ring */ 943 p = READ_ONCE(vsi->xdp_rings[q]); 944 if (!p) 945 continue; 946 947 do { 948 start = u64_stats_fetch_begin(&p->syncp); 949 packets = p->stats.packets; 950 bytes = p->stats.bytes; 951 } while (u64_stats_fetch_retry(&p->syncp, start)); 952 tx_b += bytes; 953 tx_p += packets; 954 tx_restart += p->tx_stats.restart_queue; 955 tx_busy += p->tx_stats.tx_busy; 956 tx_linearize += p->tx_stats.tx_linearize; 957 tx_force_wb += p->tx_stats.tx_force_wb; 958 } 959 } 960 rcu_read_unlock(); 961 vsi->tx_restart = tx_restart; 962 vsi->tx_busy = tx_busy; 963 vsi->tx_linearize = tx_linearize; 964 vsi->tx_force_wb = tx_force_wb; 965 vsi->tx_stopped = tx_stopped; 966 vsi->rx_page_failed = rx_page; 967 vsi->rx_buf_failed = rx_buf; 968 vsi->rx_page_reuse = rx_reuse; 969 vsi->rx_page_alloc = rx_alloc; 970 vsi->rx_page_waive = rx_waive; 971 vsi->rx_page_busy = rx_busy; 972 973 ns->rx_packets = rx_p; 974 ns->rx_bytes = rx_b; 975 ns->tx_packets = tx_p; 976 ns->tx_bytes = tx_b; 977 978 /* update netdev stats from eth stats */ 979 i40e_update_eth_stats(vsi); 980 ons->tx_errors = oes->tx_errors; 981 ns->tx_errors = es->tx_errors; 982 ons->multicast = oes->rx_multicast; 983 ns->multicast = es->rx_multicast; 984 ons->rx_dropped = oes->rx_discards_other; 985 ns->rx_dropped = es->rx_discards_other; 986 ons->rx_missed_errors = oes->rx_discards; 987 ns->rx_missed_errors = es->rx_discards; 988 ons->tx_dropped = oes->tx_discards; 989 ns->tx_dropped = es->tx_discards; 990 991 /* pull in a couple PF stats if this is the main vsi */ 992 if (vsi->type == I40E_VSI_MAIN) { 993 ns->rx_crc_errors = pf->stats.crc_errors; 994 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 995 ns->rx_length_errors = pf->stats.rx_length_errors; 996 } 997 } 998 999 /** 1000 * i40e_update_pf_stats - Update the PF statistics counters. 1001 * @pf: the PF to be updated 1002 **/ 1003 static void i40e_update_pf_stats(struct i40e_pf *pf) 1004 { 1005 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1006 struct i40e_hw_port_stats *nsd = &pf->stats; 1007 struct i40e_hw *hw = &pf->hw; 1008 u32 val; 1009 int i; 1010 1011 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1012 I40E_GLPRT_GORCL(hw->port), 1013 pf->stat_offsets_loaded, 1014 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1015 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1016 I40E_GLPRT_GOTCL(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1019 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->eth.rx_discards, 1022 &nsd->eth.rx_discards); 1023 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1024 I40E_GLPRT_UPRCL(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->eth.rx_unicast, 1027 &nsd->eth.rx_unicast); 1028 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1029 I40E_GLPRT_MPRCL(hw->port), 1030 pf->stat_offsets_loaded, 1031 &osd->eth.rx_multicast, 1032 &nsd->eth.rx_multicast); 1033 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1034 I40E_GLPRT_BPRCL(hw->port), 1035 pf->stat_offsets_loaded, 1036 &osd->eth.rx_broadcast, 1037 &nsd->eth.rx_broadcast); 1038 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1039 I40E_GLPRT_UPTCL(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->eth.tx_unicast, 1042 &nsd->eth.tx_unicast); 1043 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1044 I40E_GLPRT_MPTCL(hw->port), 1045 pf->stat_offsets_loaded, 1046 &osd->eth.tx_multicast, 1047 &nsd->eth.tx_multicast); 1048 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1049 I40E_GLPRT_BPTCL(hw->port), 1050 pf->stat_offsets_loaded, 1051 &osd->eth.tx_broadcast, 1052 &nsd->eth.tx_broadcast); 1053 1054 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1055 pf->stat_offsets_loaded, 1056 &osd->tx_dropped_link_down, 1057 &nsd->tx_dropped_link_down); 1058 1059 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1060 pf->stat_offsets_loaded, 1061 &osd->crc_errors, &nsd->crc_errors); 1062 1063 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1064 pf->stat_offsets_loaded, 1065 &osd->illegal_bytes, &nsd->illegal_bytes); 1066 1067 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1068 pf->stat_offsets_loaded, 1069 &osd->mac_local_faults, 1070 &nsd->mac_local_faults); 1071 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1072 pf->stat_offsets_loaded, 1073 &osd->mac_remote_faults, 1074 &nsd->mac_remote_faults); 1075 1076 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1077 pf->stat_offsets_loaded, 1078 &osd->rx_length_errors, 1079 &nsd->rx_length_errors); 1080 1081 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1082 pf->stat_offsets_loaded, 1083 &osd->link_xon_rx, &nsd->link_xon_rx); 1084 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1085 pf->stat_offsets_loaded, 1086 &osd->link_xon_tx, &nsd->link_xon_tx); 1087 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1088 pf->stat_offsets_loaded, 1089 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1090 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1091 pf->stat_offsets_loaded, 1092 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1093 1094 for (i = 0; i < 8; i++) { 1095 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1096 pf->stat_offsets_loaded, 1097 &osd->priority_xoff_rx[i], 1098 &nsd->priority_xoff_rx[i]); 1099 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1100 pf->stat_offsets_loaded, 1101 &osd->priority_xon_rx[i], 1102 &nsd->priority_xon_rx[i]); 1103 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1104 pf->stat_offsets_loaded, 1105 &osd->priority_xon_tx[i], 1106 &nsd->priority_xon_tx[i]); 1107 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1108 pf->stat_offsets_loaded, 1109 &osd->priority_xoff_tx[i], 1110 &nsd->priority_xoff_tx[i]); 1111 i40e_stat_update32(hw, 1112 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1113 pf->stat_offsets_loaded, 1114 &osd->priority_xon_2_xoff[i], 1115 &nsd->priority_xon_2_xoff[i]); 1116 } 1117 1118 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1119 I40E_GLPRT_PRC64L(hw->port), 1120 pf->stat_offsets_loaded, 1121 &osd->rx_size_64, &nsd->rx_size_64); 1122 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1123 I40E_GLPRT_PRC127L(hw->port), 1124 pf->stat_offsets_loaded, 1125 &osd->rx_size_127, &nsd->rx_size_127); 1126 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1127 I40E_GLPRT_PRC255L(hw->port), 1128 pf->stat_offsets_loaded, 1129 &osd->rx_size_255, &nsd->rx_size_255); 1130 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1131 I40E_GLPRT_PRC511L(hw->port), 1132 pf->stat_offsets_loaded, 1133 &osd->rx_size_511, &nsd->rx_size_511); 1134 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1135 I40E_GLPRT_PRC1023L(hw->port), 1136 pf->stat_offsets_loaded, 1137 &osd->rx_size_1023, &nsd->rx_size_1023); 1138 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1139 I40E_GLPRT_PRC1522L(hw->port), 1140 pf->stat_offsets_loaded, 1141 &osd->rx_size_1522, &nsd->rx_size_1522); 1142 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1143 I40E_GLPRT_PRC9522L(hw->port), 1144 pf->stat_offsets_loaded, 1145 &osd->rx_size_big, &nsd->rx_size_big); 1146 1147 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1148 I40E_GLPRT_PTC64L(hw->port), 1149 pf->stat_offsets_loaded, 1150 &osd->tx_size_64, &nsd->tx_size_64); 1151 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1152 I40E_GLPRT_PTC127L(hw->port), 1153 pf->stat_offsets_loaded, 1154 &osd->tx_size_127, &nsd->tx_size_127); 1155 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1156 I40E_GLPRT_PTC255L(hw->port), 1157 pf->stat_offsets_loaded, 1158 &osd->tx_size_255, &nsd->tx_size_255); 1159 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1160 I40E_GLPRT_PTC511L(hw->port), 1161 pf->stat_offsets_loaded, 1162 &osd->tx_size_511, &nsd->tx_size_511); 1163 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1164 I40E_GLPRT_PTC1023L(hw->port), 1165 pf->stat_offsets_loaded, 1166 &osd->tx_size_1023, &nsd->tx_size_1023); 1167 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1168 I40E_GLPRT_PTC1522L(hw->port), 1169 pf->stat_offsets_loaded, 1170 &osd->tx_size_1522, &nsd->tx_size_1522); 1171 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1172 I40E_GLPRT_PTC9522L(hw->port), 1173 pf->stat_offsets_loaded, 1174 &osd->tx_size_big, &nsd->tx_size_big); 1175 1176 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1177 pf->stat_offsets_loaded, 1178 &osd->rx_undersize, &nsd->rx_undersize); 1179 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1180 pf->stat_offsets_loaded, 1181 &osd->rx_fragments, &nsd->rx_fragments); 1182 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1183 pf->stat_offsets_loaded, 1184 &osd->rx_oversize, &nsd->rx_oversize); 1185 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1186 pf->stat_offsets_loaded, 1187 &osd->rx_jabber, &nsd->rx_jabber); 1188 1189 /* FDIR stats */ 1190 i40e_stat_update_and_clear32(hw, 1191 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1192 &nsd->fd_atr_match); 1193 i40e_stat_update_and_clear32(hw, 1194 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1195 &nsd->fd_sb_match); 1196 i40e_stat_update_and_clear32(hw, 1197 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1198 &nsd->fd_atr_tunnel_match); 1199 1200 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1201 nsd->tx_lpi_status = 1202 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val); 1203 nsd->rx_lpi_status = 1204 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val); 1205 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1206 pf->stat_offsets_loaded, 1207 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1208 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1209 pf->stat_offsets_loaded, 1210 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1211 1212 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1213 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1214 nsd->fd_sb_status = true; 1215 else 1216 nsd->fd_sb_status = false; 1217 1218 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1219 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1220 nsd->fd_atr_status = true; 1221 else 1222 nsd->fd_atr_status = false; 1223 1224 pf->stat_offsets_loaded = true; 1225 } 1226 1227 /** 1228 * i40e_update_stats - Update the various statistics counters. 1229 * @vsi: the VSI to be updated 1230 * 1231 * Update the various stats for this VSI and its related entities. 1232 **/ 1233 void i40e_update_stats(struct i40e_vsi *vsi) 1234 { 1235 struct i40e_pf *pf = vsi->back; 1236 1237 if (vsi->type == I40E_VSI_MAIN) 1238 i40e_update_pf_stats(pf); 1239 1240 i40e_update_vsi_stats(vsi); 1241 } 1242 1243 /** 1244 * i40e_count_filters - counts VSI mac filters 1245 * @vsi: the VSI to be searched 1246 * 1247 * Returns count of mac filters 1248 **/ 1249 int i40e_count_filters(struct i40e_vsi *vsi) 1250 { 1251 struct i40e_mac_filter *f; 1252 struct hlist_node *h; 1253 int bkt; 1254 int cnt = 0; 1255 1256 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1257 if (f->state == I40E_FILTER_NEW || 1258 f->state == I40E_FILTER_NEW_SYNC || 1259 f->state == I40E_FILTER_ACTIVE) 1260 ++cnt; 1261 } 1262 1263 return cnt; 1264 } 1265 1266 /** 1267 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1268 * @vsi: the VSI to be searched 1269 * @macaddr: the MAC address 1270 * @vlan: the vlan 1271 * 1272 * Returns ptr to the filter object or NULL 1273 **/ 1274 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1275 const u8 *macaddr, s16 vlan) 1276 { 1277 struct i40e_mac_filter *f; 1278 u64 key; 1279 1280 if (!vsi || !macaddr) 1281 return NULL; 1282 1283 key = i40e_addr_to_hkey(macaddr); 1284 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1285 if ((ether_addr_equal(macaddr, f->macaddr)) && 1286 (vlan == f->vlan)) 1287 return f; 1288 } 1289 return NULL; 1290 } 1291 1292 /** 1293 * i40e_find_mac - Find a mac addr in the macvlan filters list 1294 * @vsi: the VSI to be searched 1295 * @macaddr: the MAC address we are searching for 1296 * 1297 * Returns the first filter with the provided MAC address or NULL if 1298 * MAC address was not found 1299 **/ 1300 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1301 { 1302 struct i40e_mac_filter *f; 1303 u64 key; 1304 1305 if (!vsi || !macaddr) 1306 return NULL; 1307 1308 key = i40e_addr_to_hkey(macaddr); 1309 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1310 if ((ether_addr_equal(macaddr, f->macaddr))) 1311 return f; 1312 } 1313 return NULL; 1314 } 1315 1316 /** 1317 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1318 * @vsi: the VSI to be searched 1319 * 1320 * Returns true if VSI is in vlan mode or false otherwise 1321 **/ 1322 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1323 { 1324 /* If we have a PVID, always operate in VLAN mode */ 1325 if (vsi->info.pvid) 1326 return true; 1327 1328 /* We need to operate in VLAN mode whenever we have any filters with 1329 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1330 * time, incurring search cost repeatedly. However, we can notice two 1331 * things: 1332 * 1333 * 1) the only place where we can gain a VLAN filter is in 1334 * i40e_add_filter. 1335 * 1336 * 2) the only place where filters are actually removed is in 1337 * i40e_sync_filters_subtask. 1338 * 1339 * Thus, we can simply use a boolean value, has_vlan_filters which we 1340 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1341 * we have to perform the full search after deleting filters in 1342 * i40e_sync_filters_subtask, but we already have to search 1343 * filters here and can perform the check at the same time. This 1344 * results in avoiding embedding a loop for VLAN mode inside another 1345 * loop over all the filters, and should maintain correctness as noted 1346 * above. 1347 */ 1348 return vsi->has_vlan_filter; 1349 } 1350 1351 /** 1352 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1353 * @vsi: the VSI to configure 1354 * @tmp_add_list: list of filters ready to be added 1355 * @tmp_del_list: list of filters ready to be deleted 1356 * @vlan_filters: the number of active VLAN filters 1357 * 1358 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1359 * behave as expected. If we have any active VLAN filters remaining or about 1360 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1361 * so that they only match against untagged traffic. If we no longer have any 1362 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1363 * so that they match against both tagged and untagged traffic. In this way, 1364 * we ensure that we correctly receive the desired traffic. This ensures that 1365 * when we have an active VLAN we will receive only untagged traffic and 1366 * traffic matching active VLANs. If we have no active VLANs then we will 1367 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1368 * 1369 * Finally, in a similar fashion, this function also corrects filters when 1370 * there is an active PVID assigned to this VSI. 1371 * 1372 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1373 * 1374 * This function is only expected to be called from within 1375 * i40e_sync_vsi_filters. 1376 * 1377 * NOTE: This function expects to be called while under the 1378 * mac_filter_hash_lock 1379 */ 1380 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1381 struct hlist_head *tmp_add_list, 1382 struct hlist_head *tmp_del_list, 1383 int vlan_filters) 1384 { 1385 s16 pvid = le16_to_cpu(vsi->info.pvid); 1386 struct i40e_mac_filter *f, *add_head; 1387 struct i40e_new_mac_filter *new; 1388 struct hlist_node *h; 1389 int bkt, new_vlan; 1390 1391 /* To determine if a particular filter needs to be replaced we 1392 * have the three following conditions: 1393 * 1394 * a) if we have a PVID assigned, then all filters which are 1395 * not marked as VLAN=PVID must be replaced with filters that 1396 * are. 1397 * b) otherwise, if we have any active VLANS, all filters 1398 * which are marked as VLAN=-1 must be replaced with 1399 * filters marked as VLAN=0 1400 * c) finally, if we do not have any active VLANS, all filters 1401 * which are marked as VLAN=0 must be replaced with filters 1402 * marked as VLAN=-1 1403 */ 1404 1405 /* Update the filters about to be added in place */ 1406 hlist_for_each_entry(new, tmp_add_list, hlist) { 1407 if (pvid && new->f->vlan != pvid) 1408 new->f->vlan = pvid; 1409 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1410 new->f->vlan = 0; 1411 else if (!vlan_filters && new->f->vlan == 0) 1412 new->f->vlan = I40E_VLAN_ANY; 1413 } 1414 1415 /* Update the remaining active filters */ 1416 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1417 /* Combine the checks for whether a filter needs to be changed 1418 * and then determine the new VLAN inside the if block, in 1419 * order to avoid duplicating code for adding the new filter 1420 * then deleting the old filter. 1421 */ 1422 if ((pvid && f->vlan != pvid) || 1423 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1424 (!vlan_filters && f->vlan == 0)) { 1425 /* Determine the new vlan we will be adding */ 1426 if (pvid) 1427 new_vlan = pvid; 1428 else if (vlan_filters) 1429 new_vlan = 0; 1430 else 1431 new_vlan = I40E_VLAN_ANY; 1432 1433 /* Create the new filter */ 1434 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1435 if (!add_head) 1436 return -ENOMEM; 1437 1438 /* Create a temporary i40e_new_mac_filter */ 1439 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1440 if (!new) 1441 return -ENOMEM; 1442 1443 new->f = add_head; 1444 new->state = add_head->state; 1445 if (add_head->state == I40E_FILTER_NEW) 1446 add_head->state = I40E_FILTER_NEW_SYNC; 1447 1448 /* Add the new filter to the tmp list */ 1449 hlist_add_head(&new->hlist, tmp_add_list); 1450 1451 /* Put the original filter into the delete list */ 1452 f->state = I40E_FILTER_REMOVE; 1453 hash_del(&f->hlist); 1454 hlist_add_head(&f->hlist, tmp_del_list); 1455 } 1456 } 1457 1458 vsi->has_vlan_filter = !!vlan_filters; 1459 1460 return 0; 1461 } 1462 1463 /** 1464 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1465 * @vsi: the vsi to configure 1466 * @new_mac: new mac filter to be added 1467 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1468 * @vlan_filters: the number of active VLAN filters 1469 * @trusted: flag if the VF is trusted 1470 * 1471 * Get new VLAN id based on current VLAN filters, trust, PVID 1472 * and vf-vlan-prune-disable flag. 1473 * 1474 * Returns the value of the new vlan filter or 1475 * the old value if no new filter is needed. 1476 */ 1477 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1478 struct i40e_new_mac_filter *new_mac, 1479 struct i40e_mac_filter *f, 1480 int vlan_filters, 1481 bool trusted) 1482 { 1483 s16 pvid = le16_to_cpu(vsi->info.pvid); 1484 struct i40e_pf *pf = vsi->back; 1485 bool is_any; 1486 1487 if (new_mac) 1488 f = new_mac->f; 1489 1490 if (pvid && f->vlan != pvid) 1491 return pvid; 1492 1493 is_any = (trusted || 1494 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1495 1496 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1497 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1498 (is_any && !vlan_filters && f->vlan == 0)) { 1499 if (is_any) 1500 return I40E_VLAN_ANY; 1501 else 1502 return 0; 1503 } 1504 1505 return f->vlan; 1506 } 1507 1508 /** 1509 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1510 * @vsi: the vsi to configure 1511 * @tmp_add_list: list of filters ready to be added 1512 * @tmp_del_list: list of filters ready to be deleted 1513 * @vlan_filters: the number of active VLAN filters 1514 * @trusted: flag if the VF is trusted 1515 * 1516 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1517 * and vf-vlan-prune-disable flag. 1518 * 1519 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1520 * 1521 * This function is only expected to be called from within 1522 * i40e_sync_vsi_filters. 1523 * 1524 * NOTE: This function expects to be called while under the 1525 * mac_filter_hash_lock 1526 */ 1527 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1528 struct hlist_head *tmp_add_list, 1529 struct hlist_head *tmp_del_list, 1530 int vlan_filters, 1531 bool trusted) 1532 { 1533 struct i40e_mac_filter *f, *add_head; 1534 struct i40e_new_mac_filter *new_mac; 1535 struct hlist_node *h; 1536 int bkt, new_vlan; 1537 1538 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1539 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1540 vlan_filters, trusted); 1541 } 1542 1543 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1544 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1545 trusted); 1546 if (new_vlan != f->vlan) { 1547 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1548 if (!add_head) 1549 return -ENOMEM; 1550 /* Create a temporary i40e_new_mac_filter */ 1551 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1552 if (!new_mac) 1553 return -ENOMEM; 1554 new_mac->f = add_head; 1555 new_mac->state = add_head->state; 1556 if (add_head->state == I40E_FILTER_NEW) 1557 add_head->state = I40E_FILTER_NEW_SYNC; 1558 1559 /* Add the new filter to the tmp list */ 1560 hlist_add_head(&new_mac->hlist, tmp_add_list); 1561 1562 /* Put the original filter into the delete list */ 1563 f->state = I40E_FILTER_REMOVE; 1564 hash_del(&f->hlist); 1565 hlist_add_head(&f->hlist, tmp_del_list); 1566 } 1567 } 1568 1569 vsi->has_vlan_filter = !!vlan_filters; 1570 return 0; 1571 } 1572 1573 /** 1574 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1575 * @vsi: the PF Main VSI - inappropriate for any other VSI 1576 * @macaddr: the MAC address 1577 * 1578 * Remove whatever filter the firmware set up so the driver can manage 1579 * its own filtering intelligently. 1580 **/ 1581 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1582 { 1583 struct i40e_aqc_remove_macvlan_element_data element; 1584 struct i40e_pf *pf = vsi->back; 1585 1586 /* Only appropriate for the PF main VSI */ 1587 if (vsi->type != I40E_VSI_MAIN) 1588 return; 1589 1590 memset(&element, 0, sizeof(element)); 1591 ether_addr_copy(element.mac_addr, macaddr); 1592 element.vlan_tag = 0; 1593 /* Ignore error returns, some firmware does it this way... */ 1594 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1595 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1596 1597 memset(&element, 0, sizeof(element)); 1598 ether_addr_copy(element.mac_addr, macaddr); 1599 element.vlan_tag = 0; 1600 /* ...and some firmware does it this way. */ 1601 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1602 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1603 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1604 } 1605 1606 /** 1607 * i40e_add_filter - Add a mac/vlan filter to the VSI 1608 * @vsi: the VSI to be searched 1609 * @macaddr: the MAC address 1610 * @vlan: the vlan 1611 * 1612 * Returns ptr to the filter object or NULL when no memory available. 1613 * 1614 * NOTE: This function is expected to be called with mac_filter_hash_lock 1615 * being held. 1616 **/ 1617 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1618 const u8 *macaddr, s16 vlan) 1619 { 1620 struct i40e_mac_filter *f; 1621 u64 key; 1622 1623 if (!vsi || !macaddr) 1624 return NULL; 1625 1626 f = i40e_find_filter(vsi, macaddr, vlan); 1627 if (!f) { 1628 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1629 if (!f) 1630 return NULL; 1631 1632 /* Update the boolean indicating if we need to function in 1633 * VLAN mode. 1634 */ 1635 if (vlan >= 0) 1636 vsi->has_vlan_filter = true; 1637 1638 ether_addr_copy(f->macaddr, macaddr); 1639 f->vlan = vlan; 1640 f->state = I40E_FILTER_NEW; 1641 INIT_HLIST_NODE(&f->hlist); 1642 1643 key = i40e_addr_to_hkey(macaddr); 1644 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1645 1646 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1647 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1648 } 1649 1650 /* If we're asked to add a filter that has been marked for removal, it 1651 * is safe to simply restore it to active state. __i40e_del_filter 1652 * will have simply deleted any filters which were previously marked 1653 * NEW or FAILED, so if it is currently marked REMOVE it must have 1654 * previously been ACTIVE. Since we haven't yet run the sync filters 1655 * task, just restore this filter to the ACTIVE state so that the 1656 * sync task leaves it in place 1657 */ 1658 if (f->state == I40E_FILTER_REMOVE) 1659 f->state = I40E_FILTER_ACTIVE; 1660 1661 return f; 1662 } 1663 1664 /** 1665 * __i40e_del_filter - Remove a specific filter from the VSI 1666 * @vsi: VSI to remove from 1667 * @f: the filter to remove from the list 1668 * 1669 * This function requires you've found * the exact filter you will remove 1670 * already, such as via i40e_find_filter or i40e_find_mac. 1671 * 1672 * NOTE: This function is expected to be called with mac_filter_hash_lock 1673 * being held. 1674 * ANOTHER NOTE: This function MUST be called from within the context of 1675 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1676 * instead of list_for_each_entry(). 1677 **/ 1678 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1679 { 1680 if (!f) 1681 return; 1682 1683 /* If the filter was never added to firmware then we can just delete it 1684 * directly and we don't want to set the status to remove or else an 1685 * admin queue command will unnecessarily fire. 1686 */ 1687 if ((f->state == I40E_FILTER_FAILED) || 1688 (f->state == I40E_FILTER_NEW)) { 1689 hash_del(&f->hlist); 1690 kfree(f); 1691 } else { 1692 f->state = I40E_FILTER_REMOVE; 1693 } 1694 1695 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1696 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1697 } 1698 1699 /** 1700 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1701 * @vsi: the VSI to be searched 1702 * @macaddr: the mac address to be filtered 1703 * 1704 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1705 * go through all the macvlan filters and add a macvlan filter for each 1706 * unique vlan that already exists. If a PVID has been assigned, instead only 1707 * add the macaddr to that VLAN. 1708 * 1709 * Returns last filter added on success, else NULL 1710 **/ 1711 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1712 const u8 *macaddr) 1713 { 1714 struct i40e_mac_filter *f, *add = NULL; 1715 struct hlist_node *h; 1716 int bkt; 1717 1718 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1719 if (vsi->info.pvid) 1720 return i40e_add_filter(vsi, macaddr, 1721 le16_to_cpu(vsi->info.pvid)); 1722 1723 if (!i40e_is_vsi_in_vlan(vsi)) 1724 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1725 1726 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1727 if (f->state == I40E_FILTER_REMOVE) 1728 continue; 1729 add = i40e_add_filter(vsi, macaddr, f->vlan); 1730 if (!add) 1731 return NULL; 1732 } 1733 1734 return add; 1735 } 1736 1737 /** 1738 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1739 * @vsi: the VSI to be searched 1740 * @macaddr: the mac address to be removed 1741 * 1742 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1743 * associated with. 1744 * 1745 * Returns 0 for success, or error 1746 **/ 1747 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1748 { 1749 struct i40e_mac_filter *f; 1750 struct hlist_node *h; 1751 bool found = false; 1752 int bkt; 1753 1754 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1755 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1756 if (ether_addr_equal(macaddr, f->macaddr)) { 1757 __i40e_del_filter(vsi, f); 1758 found = true; 1759 } 1760 } 1761 1762 if (found) 1763 return 0; 1764 else 1765 return -ENOENT; 1766 } 1767 1768 /** 1769 * i40e_set_mac - NDO callback to set mac address 1770 * @netdev: network interface device structure 1771 * @p: pointer to an address structure 1772 * 1773 * Returns 0 on success, negative on failure 1774 **/ 1775 static int i40e_set_mac(struct net_device *netdev, void *p) 1776 { 1777 struct i40e_netdev_priv *np = netdev_priv(netdev); 1778 struct i40e_vsi *vsi = np->vsi; 1779 struct i40e_pf *pf = vsi->back; 1780 struct i40e_hw *hw = &pf->hw; 1781 struct sockaddr *addr = p; 1782 1783 if (!is_valid_ether_addr(addr->sa_data)) 1784 return -EADDRNOTAVAIL; 1785 1786 if (test_bit(__I40E_DOWN, pf->state) || 1787 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1788 return -EADDRNOTAVAIL; 1789 1790 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1791 netdev_info(netdev, "returning to hw mac address %pM\n", 1792 hw->mac.addr); 1793 else 1794 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1795 1796 /* Copy the address first, so that we avoid a possible race with 1797 * .set_rx_mode(). 1798 * - Remove old address from MAC filter 1799 * - Copy new address 1800 * - Add new address to MAC filter 1801 */ 1802 spin_lock_bh(&vsi->mac_filter_hash_lock); 1803 i40e_del_mac_filter(vsi, netdev->dev_addr); 1804 eth_hw_addr_set(netdev, addr->sa_data); 1805 i40e_add_mac_filter(vsi, netdev->dev_addr); 1806 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1807 1808 if (vsi->type == I40E_VSI_MAIN) { 1809 int ret; 1810 1811 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1812 addr->sa_data, NULL); 1813 if (ret) 1814 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1815 ERR_PTR(ret), 1816 i40e_aq_str(hw, hw->aq.asq_last_status)); 1817 } 1818 1819 /* schedule our worker thread which will take care of 1820 * applying the new filter changes 1821 */ 1822 i40e_service_event_schedule(pf); 1823 return 0; 1824 } 1825 1826 /** 1827 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1828 * @vsi: vsi structure 1829 * @seed: RSS hash seed 1830 * @lut: pointer to lookup table of lut_size 1831 * @lut_size: size of the lookup table 1832 **/ 1833 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1834 u8 *lut, u16 lut_size) 1835 { 1836 struct i40e_pf *pf = vsi->back; 1837 struct i40e_hw *hw = &pf->hw; 1838 int ret = 0; 1839 1840 if (seed) { 1841 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1842 (struct i40e_aqc_get_set_rss_key_data *)seed; 1843 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1844 if (ret) { 1845 dev_info(&pf->pdev->dev, 1846 "Cannot set RSS key, err %pe aq_err %s\n", 1847 ERR_PTR(ret), 1848 i40e_aq_str(hw, hw->aq.asq_last_status)); 1849 return ret; 1850 } 1851 } 1852 if (lut) { 1853 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1854 1855 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1856 if (ret) { 1857 dev_info(&pf->pdev->dev, 1858 "Cannot set RSS lut, err %pe aq_err %s\n", 1859 ERR_PTR(ret), 1860 i40e_aq_str(hw, hw->aq.asq_last_status)); 1861 return ret; 1862 } 1863 } 1864 return ret; 1865 } 1866 1867 /** 1868 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1869 * @vsi: VSI structure 1870 **/ 1871 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1872 { 1873 struct i40e_pf *pf = vsi->back; 1874 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1875 u8 *lut; 1876 int ret; 1877 1878 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1879 return 0; 1880 if (!vsi->rss_size) 1881 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1882 vsi->num_queue_pairs); 1883 if (!vsi->rss_size) 1884 return -EINVAL; 1885 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1886 if (!lut) 1887 return -ENOMEM; 1888 1889 /* Use the user configured hash keys and lookup table if there is one, 1890 * otherwise use default 1891 */ 1892 if (vsi->rss_lut_user) 1893 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1894 else 1895 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1896 if (vsi->rss_hkey_user) 1897 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1898 else 1899 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1900 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1901 kfree(lut); 1902 return ret; 1903 } 1904 1905 /** 1906 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1907 * @vsi: the VSI being configured, 1908 * @ctxt: VSI context structure 1909 * @enabled_tc: number of traffic classes to enable 1910 * 1911 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1912 **/ 1913 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1914 struct i40e_vsi_context *ctxt, 1915 u8 enabled_tc) 1916 { 1917 u16 qcount = 0, max_qcount, qmap, sections = 0; 1918 int i, override_q, pow, num_qps, ret; 1919 u8 netdev_tc = 0, offset = 0; 1920 1921 if (vsi->type != I40E_VSI_MAIN) 1922 return -EINVAL; 1923 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1924 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1925 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1926 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1927 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1928 1929 /* find the next higher power-of-2 of num queue pairs */ 1930 pow = ilog2(num_qps); 1931 if (!is_power_of_2(num_qps)) 1932 pow++; 1933 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1934 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1935 1936 /* Setup queue offset/count for all TCs for given VSI */ 1937 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1938 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1939 /* See if the given TC is enabled for the given VSI */ 1940 if (vsi->tc_config.enabled_tc & BIT(i)) { 1941 offset = vsi->mqprio_qopt.qopt.offset[i]; 1942 qcount = vsi->mqprio_qopt.qopt.count[i]; 1943 if (qcount > max_qcount) 1944 max_qcount = qcount; 1945 vsi->tc_config.tc_info[i].qoffset = offset; 1946 vsi->tc_config.tc_info[i].qcount = qcount; 1947 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1948 } else { 1949 /* TC is not enabled so set the offset to 1950 * default queue and allocate one queue 1951 * for the given TC. 1952 */ 1953 vsi->tc_config.tc_info[i].qoffset = 0; 1954 vsi->tc_config.tc_info[i].qcount = 1; 1955 vsi->tc_config.tc_info[i].netdev_tc = 0; 1956 } 1957 } 1958 1959 /* Set actual Tx/Rx queue pairs */ 1960 vsi->num_queue_pairs = offset + qcount; 1961 1962 /* Setup queue TC[0].qmap for given VSI context */ 1963 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1964 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1965 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1966 ctxt->info.valid_sections |= cpu_to_le16(sections); 1967 1968 /* Reconfigure RSS for main VSI with max queue count */ 1969 vsi->rss_size = max_qcount; 1970 ret = i40e_vsi_config_rss(vsi); 1971 if (ret) { 1972 dev_info(&vsi->back->pdev->dev, 1973 "Failed to reconfig rss for num_queues (%u)\n", 1974 max_qcount); 1975 return ret; 1976 } 1977 vsi->reconfig_rss = true; 1978 dev_dbg(&vsi->back->pdev->dev, 1979 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1980 1981 /* Find queue count available for channel VSIs and starting offset 1982 * for channel VSIs 1983 */ 1984 override_q = vsi->mqprio_qopt.qopt.count[0]; 1985 if (override_q && override_q < vsi->num_queue_pairs) { 1986 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1987 vsi->next_base_queue = override_q; 1988 } 1989 return 0; 1990 } 1991 1992 /** 1993 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1994 * @vsi: the VSI being setup 1995 * @ctxt: VSI context structure 1996 * @enabled_tc: Enabled TCs bitmap 1997 * @is_add: True if called before Add VSI 1998 * 1999 * Setup VSI queue mapping for enabled traffic classes. 2000 **/ 2001 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2002 struct i40e_vsi_context *ctxt, 2003 u8 enabled_tc, 2004 bool is_add) 2005 { 2006 struct i40e_pf *pf = vsi->back; 2007 u16 num_tc_qps = 0; 2008 u16 sections = 0; 2009 u8 netdev_tc = 0; 2010 u16 numtc = 1; 2011 u16 qcount; 2012 u8 offset; 2013 u16 qmap; 2014 int i; 2015 2016 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2017 offset = 0; 2018 /* zero out queue mapping, it will get updated on the end of the function */ 2019 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2020 2021 if (vsi->type == I40E_VSI_MAIN) { 2022 /* This code helps add more queue to the VSI if we have 2023 * more cores than RSS can support, the higher cores will 2024 * be served by ATR or other filters. Furthermore, the 2025 * non-zero req_queue_pairs says that user requested a new 2026 * queue count via ethtool's set_channels, so use this 2027 * value for queues distribution across traffic classes 2028 * We need at least one queue pair for the interface 2029 * to be usable as we see in else statement. 2030 */ 2031 if (vsi->req_queue_pairs > 0) 2032 vsi->num_queue_pairs = vsi->req_queue_pairs; 2033 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2034 vsi->num_queue_pairs = pf->num_lan_msix; 2035 else 2036 vsi->num_queue_pairs = 1; 2037 } 2038 2039 /* Number of queues per enabled TC */ 2040 if (vsi->type == I40E_VSI_MAIN || 2041 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2042 num_tc_qps = vsi->num_queue_pairs; 2043 else 2044 num_tc_qps = vsi->alloc_queue_pairs; 2045 2046 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2047 /* Find numtc from enabled TC bitmap */ 2048 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2049 if (enabled_tc & BIT(i)) /* TC is enabled */ 2050 numtc++; 2051 } 2052 if (!numtc) { 2053 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2054 numtc = 1; 2055 } 2056 num_tc_qps = num_tc_qps / numtc; 2057 num_tc_qps = min_t(int, num_tc_qps, 2058 i40e_pf_get_max_q_per_tc(pf)); 2059 } 2060 2061 vsi->tc_config.numtc = numtc; 2062 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2063 2064 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2065 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2066 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2067 2068 /* Setup queue offset/count for all TCs for given VSI */ 2069 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2070 /* See if the given TC is enabled for the given VSI */ 2071 if (vsi->tc_config.enabled_tc & BIT(i)) { 2072 /* TC is enabled */ 2073 int pow, num_qps; 2074 2075 switch (vsi->type) { 2076 case I40E_VSI_MAIN: 2077 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2078 pf->flags) && 2079 !test_bit(I40E_FLAG_FD_ATR_ENA, 2080 pf->flags)) || 2081 vsi->tc_config.enabled_tc != 1) { 2082 qcount = min_t(int, pf->alloc_rss_size, 2083 num_tc_qps); 2084 break; 2085 } 2086 fallthrough; 2087 case I40E_VSI_FDIR: 2088 case I40E_VSI_SRIOV: 2089 case I40E_VSI_VMDQ2: 2090 default: 2091 qcount = num_tc_qps; 2092 WARN_ON(i != 0); 2093 break; 2094 } 2095 vsi->tc_config.tc_info[i].qoffset = offset; 2096 vsi->tc_config.tc_info[i].qcount = qcount; 2097 2098 /* find the next higher power-of-2 of num queue pairs */ 2099 num_qps = qcount; 2100 pow = 0; 2101 while (num_qps && (BIT_ULL(pow) < qcount)) { 2102 pow++; 2103 num_qps >>= 1; 2104 } 2105 2106 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2107 qmap = 2108 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2109 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2110 2111 offset += qcount; 2112 } else { 2113 /* TC is not enabled so set the offset to 2114 * default queue and allocate one queue 2115 * for the given TC. 2116 */ 2117 vsi->tc_config.tc_info[i].qoffset = 0; 2118 vsi->tc_config.tc_info[i].qcount = 1; 2119 vsi->tc_config.tc_info[i].netdev_tc = 0; 2120 2121 qmap = 0; 2122 } 2123 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2124 } 2125 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2126 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2127 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2128 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2129 vsi->num_queue_pairs = offset; 2130 2131 /* Scheduler section valid can only be set for ADD VSI */ 2132 if (is_add) { 2133 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2134 2135 ctxt->info.up_enable_bits = enabled_tc; 2136 } 2137 if (vsi->type == I40E_VSI_SRIOV) { 2138 ctxt->info.mapping_flags |= 2139 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2140 for (i = 0; i < vsi->num_queue_pairs; i++) 2141 ctxt->info.queue_mapping[i] = 2142 cpu_to_le16(vsi->base_queue + i); 2143 } else { 2144 ctxt->info.mapping_flags |= 2145 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2146 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2147 } 2148 ctxt->info.valid_sections |= cpu_to_le16(sections); 2149 } 2150 2151 /** 2152 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2153 * @netdev: the netdevice 2154 * @addr: address to add 2155 * 2156 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2157 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2158 */ 2159 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2160 { 2161 struct i40e_netdev_priv *np = netdev_priv(netdev); 2162 struct i40e_vsi *vsi = np->vsi; 2163 2164 if (i40e_add_mac_filter(vsi, addr)) 2165 return 0; 2166 else 2167 return -ENOMEM; 2168 } 2169 2170 /** 2171 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2172 * @netdev: the netdevice 2173 * @addr: address to add 2174 * 2175 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2176 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2177 */ 2178 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2179 { 2180 struct i40e_netdev_priv *np = netdev_priv(netdev); 2181 struct i40e_vsi *vsi = np->vsi; 2182 2183 /* Under some circumstances, we might receive a request to delete 2184 * our own device address from our uc list. Because we store the 2185 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2186 * such requests and not delete our device address from this list. 2187 */ 2188 if (ether_addr_equal(addr, netdev->dev_addr)) 2189 return 0; 2190 2191 i40e_del_mac_filter(vsi, addr); 2192 2193 return 0; 2194 } 2195 2196 /** 2197 * i40e_set_rx_mode - NDO callback to set the netdev filters 2198 * @netdev: network interface device structure 2199 **/ 2200 static void i40e_set_rx_mode(struct net_device *netdev) 2201 { 2202 struct i40e_netdev_priv *np = netdev_priv(netdev); 2203 struct i40e_vsi *vsi = np->vsi; 2204 2205 spin_lock_bh(&vsi->mac_filter_hash_lock); 2206 2207 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2208 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2209 2210 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2211 2212 /* check for other flag changes */ 2213 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2214 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2215 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2216 } 2217 } 2218 2219 /** 2220 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2221 * @vsi: Pointer to VSI struct 2222 * @from: Pointer to list which contains MAC filter entries - changes to 2223 * those entries needs to be undone. 2224 * 2225 * MAC filter entries from this list were slated for deletion. 2226 **/ 2227 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2228 struct hlist_head *from) 2229 { 2230 struct i40e_mac_filter *f; 2231 struct hlist_node *h; 2232 2233 hlist_for_each_entry_safe(f, h, from, hlist) { 2234 u64 key = i40e_addr_to_hkey(f->macaddr); 2235 2236 /* Move the element back into MAC filter list*/ 2237 hlist_del(&f->hlist); 2238 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2239 } 2240 } 2241 2242 /** 2243 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2244 * @vsi: Pointer to vsi struct 2245 * @from: Pointer to list which contains MAC filter entries - changes to 2246 * those entries needs to be undone. 2247 * 2248 * MAC filter entries from this list were slated for addition. 2249 **/ 2250 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2251 struct hlist_head *from) 2252 { 2253 struct i40e_new_mac_filter *new; 2254 struct hlist_node *h; 2255 2256 hlist_for_each_entry_safe(new, h, from, hlist) { 2257 /* We can simply free the wrapper structure */ 2258 hlist_del(&new->hlist); 2259 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2260 kfree(new); 2261 } 2262 } 2263 2264 /** 2265 * i40e_next_filter - Get the next non-broadcast filter from a list 2266 * @next: pointer to filter in list 2267 * 2268 * Returns the next non-broadcast filter in the list. Required so that we 2269 * ignore broadcast filters within the list, since these are not handled via 2270 * the normal firmware update path. 2271 */ 2272 static 2273 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2274 { 2275 hlist_for_each_entry_continue(next, hlist) { 2276 if (!is_broadcast_ether_addr(next->f->macaddr)) 2277 return next; 2278 } 2279 2280 return NULL; 2281 } 2282 2283 /** 2284 * i40e_update_filter_state - Update filter state based on return data 2285 * from firmware 2286 * @count: Number of filters added 2287 * @add_list: return data from fw 2288 * @add_head: pointer to first filter in current batch 2289 * 2290 * MAC filter entries from list were slated to be added to device. Returns 2291 * number of successful filters. Note that 0 does NOT mean success! 2292 **/ 2293 static int 2294 i40e_update_filter_state(int count, 2295 struct i40e_aqc_add_macvlan_element_data *add_list, 2296 struct i40e_new_mac_filter *add_head) 2297 { 2298 int retval = 0; 2299 int i; 2300 2301 for (i = 0; i < count; i++) { 2302 /* Always check status of each filter. We don't need to check 2303 * the firmware return status because we pre-set the filter 2304 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2305 * request to the adminq. Thus, if it no longer matches then 2306 * we know the filter is active. 2307 */ 2308 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2309 add_head->state = I40E_FILTER_FAILED; 2310 } else { 2311 add_head->state = I40E_FILTER_ACTIVE; 2312 retval++; 2313 } 2314 2315 add_head = i40e_next_filter(add_head); 2316 if (!add_head) 2317 break; 2318 } 2319 2320 return retval; 2321 } 2322 2323 /** 2324 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2325 * @vsi: ptr to the VSI 2326 * @vsi_name: name to display in messages 2327 * @list: the list of filters to send to firmware 2328 * @num_del: the number of filters to delete 2329 * @retval: Set to -EIO on failure to delete 2330 * 2331 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2332 * *retval instead of a return value so that success does not force ret_val to 2333 * be set to 0. This ensures that a sequence of calls to this function 2334 * preserve the previous value of *retval on successful delete. 2335 */ 2336 static 2337 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2338 struct i40e_aqc_remove_macvlan_element_data *list, 2339 int num_del, int *retval) 2340 { 2341 struct i40e_hw *hw = &vsi->back->hw; 2342 enum i40e_admin_queue_err aq_status; 2343 int aq_ret; 2344 2345 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2346 &aq_status); 2347 2348 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2349 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2350 *retval = -EIO; 2351 dev_info(&vsi->back->pdev->dev, 2352 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2353 vsi_name, ERR_PTR(aq_ret), 2354 i40e_aq_str(hw, aq_status)); 2355 } 2356 } 2357 2358 /** 2359 * i40e_aqc_add_filters - Request firmware to add a set of filters 2360 * @vsi: ptr to the VSI 2361 * @vsi_name: name to display in messages 2362 * @list: the list of filters to send to firmware 2363 * @add_head: Position in the add hlist 2364 * @num_add: the number of filters to add 2365 * 2366 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2367 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2368 * space for more filters. 2369 */ 2370 static 2371 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2372 struct i40e_aqc_add_macvlan_element_data *list, 2373 struct i40e_new_mac_filter *add_head, 2374 int num_add) 2375 { 2376 struct i40e_hw *hw = &vsi->back->hw; 2377 enum i40e_admin_queue_err aq_status; 2378 int fcnt; 2379 2380 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2381 fcnt = i40e_update_filter_state(num_add, list, add_head); 2382 2383 if (fcnt != num_add) { 2384 if (vsi->type == I40E_VSI_MAIN) { 2385 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2386 dev_warn(&vsi->back->pdev->dev, 2387 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2388 i40e_aq_str(hw, aq_status), vsi_name); 2389 } else if (vsi->type == I40E_VSI_SRIOV || 2390 vsi->type == I40E_VSI_VMDQ1 || 2391 vsi->type == I40E_VSI_VMDQ2) { 2392 dev_warn(&vsi->back->pdev->dev, 2393 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2394 i40e_aq_str(hw, aq_status), vsi_name, 2395 vsi_name); 2396 } else { 2397 dev_warn(&vsi->back->pdev->dev, 2398 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2399 i40e_aq_str(hw, aq_status), vsi_name, 2400 vsi->type); 2401 } 2402 } 2403 } 2404 2405 /** 2406 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2407 * @vsi: pointer to the VSI 2408 * @vsi_name: the VSI name 2409 * @f: filter data 2410 * 2411 * This function sets or clears the promiscuous broadcast flags for VLAN 2412 * filters in order to properly receive broadcast frames. Assumes that only 2413 * broadcast filters are passed. 2414 * 2415 * Returns status indicating success or failure; 2416 **/ 2417 static int 2418 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2419 struct i40e_mac_filter *f) 2420 { 2421 bool enable = f->state == I40E_FILTER_NEW || 2422 f->state == I40E_FILTER_NEW_SYNC; 2423 struct i40e_hw *hw = &vsi->back->hw; 2424 int aq_ret; 2425 2426 if (f->vlan == I40E_VLAN_ANY) { 2427 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2428 vsi->seid, 2429 enable, 2430 NULL); 2431 } else { 2432 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2433 vsi->seid, 2434 enable, 2435 f->vlan, 2436 NULL); 2437 } 2438 2439 if (aq_ret) { 2440 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2441 dev_warn(&vsi->back->pdev->dev, 2442 "Error %s, forcing overflow promiscuous on %s\n", 2443 i40e_aq_str(hw, hw->aq.asq_last_status), 2444 vsi_name); 2445 } 2446 2447 return aq_ret; 2448 } 2449 2450 /** 2451 * i40e_set_promiscuous - set promiscuous mode 2452 * @pf: board private structure 2453 * @promisc: promisc on or off 2454 * 2455 * There are different ways of setting promiscuous mode on a PF depending on 2456 * what state/environment we're in. This identifies and sets it appropriately. 2457 * Returns 0 on success. 2458 **/ 2459 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2460 { 2461 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 2462 struct i40e_hw *hw = &pf->hw; 2463 int aq_ret; 2464 2465 if (vsi->type == I40E_VSI_MAIN && 2466 i40e_pf_get_main_veb(pf) && 2467 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2468 /* set defport ON for Main VSI instead of true promisc 2469 * this way we will get all unicast/multicast and VLAN 2470 * promisc behavior but will not get VF or VMDq traffic 2471 * replicated on the Main VSI. 2472 */ 2473 if (promisc) 2474 aq_ret = i40e_aq_set_default_vsi(hw, 2475 vsi->seid, 2476 NULL); 2477 else 2478 aq_ret = i40e_aq_clear_default_vsi(hw, 2479 vsi->seid, 2480 NULL); 2481 if (aq_ret) { 2482 dev_info(&pf->pdev->dev, 2483 "Set default VSI failed, err %pe, aq_err %s\n", 2484 ERR_PTR(aq_ret), 2485 i40e_aq_str(hw, hw->aq.asq_last_status)); 2486 } 2487 } else { 2488 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2489 hw, 2490 vsi->seid, 2491 promisc, NULL, 2492 true); 2493 if (aq_ret) { 2494 dev_info(&pf->pdev->dev, 2495 "set unicast promisc failed, err %pe, aq_err %s\n", 2496 ERR_PTR(aq_ret), 2497 i40e_aq_str(hw, hw->aq.asq_last_status)); 2498 } 2499 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2500 hw, 2501 vsi->seid, 2502 promisc, NULL); 2503 if (aq_ret) { 2504 dev_info(&pf->pdev->dev, 2505 "set multicast promisc failed, err %pe, aq_err %s\n", 2506 ERR_PTR(aq_ret), 2507 i40e_aq_str(hw, hw->aq.asq_last_status)); 2508 } 2509 } 2510 2511 if (!aq_ret) 2512 pf->cur_promisc = promisc; 2513 2514 return aq_ret; 2515 } 2516 2517 /** 2518 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2519 * @vsi: ptr to the VSI 2520 * 2521 * Push any outstanding VSI filter changes through the AdminQ. 2522 * 2523 * Returns 0 or error value 2524 **/ 2525 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2526 { 2527 struct hlist_head tmp_add_list, tmp_del_list; 2528 struct i40e_mac_filter *f; 2529 struct i40e_new_mac_filter *new, *add_head = NULL; 2530 struct i40e_hw *hw = &vsi->back->hw; 2531 bool old_overflow, new_overflow; 2532 unsigned int failed_filters = 0; 2533 unsigned int vlan_filters = 0; 2534 char vsi_name[16] = "PF"; 2535 int filter_list_len = 0; 2536 u32 changed_flags = 0; 2537 struct hlist_node *h; 2538 struct i40e_pf *pf; 2539 int num_add = 0; 2540 int num_del = 0; 2541 int aq_ret = 0; 2542 int retval = 0; 2543 u16 cmd_flags; 2544 int list_size; 2545 int bkt; 2546 2547 /* empty array typed pointers, kcalloc later */ 2548 struct i40e_aqc_add_macvlan_element_data *add_list; 2549 struct i40e_aqc_remove_macvlan_element_data *del_list; 2550 2551 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2552 usleep_range(1000, 2000); 2553 pf = vsi->back; 2554 2555 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2556 2557 if (vsi->netdev) { 2558 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2559 vsi->current_netdev_flags = vsi->netdev->flags; 2560 } 2561 2562 INIT_HLIST_HEAD(&tmp_add_list); 2563 INIT_HLIST_HEAD(&tmp_del_list); 2564 2565 if (vsi->type == I40E_VSI_SRIOV) 2566 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2567 else if (vsi->type != I40E_VSI_MAIN) 2568 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2569 2570 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2571 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2572 2573 spin_lock_bh(&vsi->mac_filter_hash_lock); 2574 /* Create a list of filters to delete. */ 2575 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2576 if (f->state == I40E_FILTER_REMOVE) { 2577 /* Move the element into temporary del_list */ 2578 hash_del(&f->hlist); 2579 hlist_add_head(&f->hlist, &tmp_del_list); 2580 2581 /* Avoid counting removed filters */ 2582 continue; 2583 } 2584 if (f->state == I40E_FILTER_NEW) { 2585 /* Create a temporary i40e_new_mac_filter */ 2586 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2587 if (!new) 2588 goto err_no_memory_locked; 2589 2590 /* Store pointer to the real filter */ 2591 new->f = f; 2592 new->state = f->state; 2593 2594 /* Add it to the hash list */ 2595 hlist_add_head(&new->hlist, &tmp_add_list); 2596 f->state = I40E_FILTER_NEW_SYNC; 2597 } 2598 2599 /* Count the number of active (current and new) VLAN 2600 * filters we have now. Does not count filters which 2601 * are marked for deletion. 2602 */ 2603 if (f->vlan > 0) 2604 vlan_filters++; 2605 } 2606 2607 if (vsi->type != I40E_VSI_SRIOV) 2608 retval = i40e_correct_mac_vlan_filters 2609 (vsi, &tmp_add_list, &tmp_del_list, 2610 vlan_filters); 2611 else if (pf->vf) 2612 retval = i40e_correct_vf_mac_vlan_filters 2613 (vsi, &tmp_add_list, &tmp_del_list, 2614 vlan_filters, pf->vf[vsi->vf_id].trusted); 2615 2616 hlist_for_each_entry(new, &tmp_add_list, hlist) 2617 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2618 2619 if (retval) 2620 goto err_no_memory_locked; 2621 2622 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2623 } 2624 2625 /* Now process 'del_list' outside the lock */ 2626 if (!hlist_empty(&tmp_del_list)) { 2627 filter_list_len = hw->aq.asq_buf_size / 2628 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2629 list_size = filter_list_len * 2630 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2631 del_list = kzalloc(list_size, GFP_ATOMIC); 2632 if (!del_list) 2633 goto err_no_memory; 2634 2635 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2636 cmd_flags = 0; 2637 2638 /* handle broadcast filters by updating the broadcast 2639 * promiscuous flag and release filter list. 2640 */ 2641 if (is_broadcast_ether_addr(f->macaddr)) { 2642 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2643 2644 hlist_del(&f->hlist); 2645 kfree(f); 2646 continue; 2647 } 2648 2649 /* add to delete list */ 2650 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2651 if (f->vlan == I40E_VLAN_ANY) { 2652 del_list[num_del].vlan_tag = 0; 2653 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2654 } else { 2655 del_list[num_del].vlan_tag = 2656 cpu_to_le16((u16)(f->vlan)); 2657 } 2658 2659 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2660 del_list[num_del].flags = cmd_flags; 2661 num_del++; 2662 2663 /* flush a full buffer */ 2664 if (num_del == filter_list_len) { 2665 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2666 num_del, &retval); 2667 memset(del_list, 0, list_size); 2668 num_del = 0; 2669 } 2670 /* Release memory for MAC filter entries which were 2671 * synced up with HW. 2672 */ 2673 hlist_del(&f->hlist); 2674 kfree(f); 2675 } 2676 2677 if (num_del) { 2678 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2679 num_del, &retval); 2680 } 2681 2682 kfree(del_list); 2683 del_list = NULL; 2684 } 2685 2686 if (!hlist_empty(&tmp_add_list)) { 2687 /* Do all the adds now. */ 2688 filter_list_len = hw->aq.asq_buf_size / 2689 sizeof(struct i40e_aqc_add_macvlan_element_data); 2690 list_size = filter_list_len * 2691 sizeof(struct i40e_aqc_add_macvlan_element_data); 2692 add_list = kzalloc(list_size, GFP_ATOMIC); 2693 if (!add_list) 2694 goto err_no_memory; 2695 2696 num_add = 0; 2697 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2698 /* handle broadcast filters by updating the broadcast 2699 * promiscuous flag instead of adding a MAC filter. 2700 */ 2701 if (is_broadcast_ether_addr(new->f->macaddr)) { 2702 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2703 new->f)) 2704 new->state = I40E_FILTER_FAILED; 2705 else 2706 new->state = I40E_FILTER_ACTIVE; 2707 continue; 2708 } 2709 2710 /* add to add array */ 2711 if (num_add == 0) 2712 add_head = new; 2713 cmd_flags = 0; 2714 ether_addr_copy(add_list[num_add].mac_addr, 2715 new->f->macaddr); 2716 if (new->f->vlan == I40E_VLAN_ANY) { 2717 add_list[num_add].vlan_tag = 0; 2718 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2719 } else { 2720 add_list[num_add].vlan_tag = 2721 cpu_to_le16((u16)(new->f->vlan)); 2722 } 2723 add_list[num_add].queue_number = 0; 2724 /* set invalid match method for later detection */ 2725 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2726 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2727 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2728 num_add++; 2729 2730 /* flush a full buffer */ 2731 if (num_add == filter_list_len) { 2732 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2733 add_head, num_add); 2734 memset(add_list, 0, list_size); 2735 num_add = 0; 2736 } 2737 } 2738 if (num_add) { 2739 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2740 num_add); 2741 } 2742 /* Now move all of the filters from the temp add list back to 2743 * the VSI's list. 2744 */ 2745 spin_lock_bh(&vsi->mac_filter_hash_lock); 2746 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2747 /* Only update the state if we're still NEW */ 2748 if (new->f->state == I40E_FILTER_NEW || 2749 new->f->state == I40E_FILTER_NEW_SYNC) 2750 new->f->state = new->state; 2751 hlist_del(&new->hlist); 2752 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2753 kfree(new); 2754 } 2755 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2756 kfree(add_list); 2757 add_list = NULL; 2758 } 2759 2760 /* Determine the number of active and failed filters. */ 2761 spin_lock_bh(&vsi->mac_filter_hash_lock); 2762 vsi->active_filters = 0; 2763 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2764 if (f->state == I40E_FILTER_ACTIVE) 2765 vsi->active_filters++; 2766 else if (f->state == I40E_FILTER_FAILED) 2767 failed_filters++; 2768 } 2769 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2770 2771 /* Check if we are able to exit overflow promiscuous mode. We can 2772 * safely exit if we didn't just enter, we no longer have any failed 2773 * filters, and we have reduced filters below the threshold value. 2774 */ 2775 if (old_overflow && !failed_filters && 2776 vsi->active_filters < vsi->promisc_threshold) { 2777 dev_info(&pf->pdev->dev, 2778 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2779 vsi_name); 2780 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2781 vsi->promisc_threshold = 0; 2782 } 2783 2784 /* if the VF is not trusted do not do promisc */ 2785 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2786 !pf->vf[vsi->vf_id].trusted) { 2787 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2788 goto out; 2789 } 2790 2791 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2792 2793 /* If we are entering overflow promiscuous, we need to calculate a new 2794 * threshold for when we are safe to exit 2795 */ 2796 if (!old_overflow && new_overflow) 2797 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2798 2799 /* check for changes in promiscuous modes */ 2800 if (changed_flags & IFF_ALLMULTI) { 2801 bool cur_multipromisc; 2802 2803 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2804 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2805 vsi->seid, 2806 cur_multipromisc, 2807 NULL); 2808 if (aq_ret) { 2809 retval = i40e_aq_rc_to_posix(aq_ret, 2810 hw->aq.asq_last_status); 2811 dev_info(&pf->pdev->dev, 2812 "set multi promisc failed on %s, err %pe aq_err %s\n", 2813 vsi_name, 2814 ERR_PTR(aq_ret), 2815 i40e_aq_str(hw, hw->aq.asq_last_status)); 2816 } else { 2817 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2818 cur_multipromisc ? "entering" : "leaving"); 2819 } 2820 } 2821 2822 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2823 bool cur_promisc; 2824 2825 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2826 new_overflow); 2827 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2828 if (aq_ret) { 2829 retval = i40e_aq_rc_to_posix(aq_ret, 2830 hw->aq.asq_last_status); 2831 dev_info(&pf->pdev->dev, 2832 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2833 cur_promisc ? "on" : "off", 2834 vsi_name, 2835 ERR_PTR(aq_ret), 2836 i40e_aq_str(hw, hw->aq.asq_last_status)); 2837 } 2838 } 2839 out: 2840 /* if something went wrong then set the changed flag so we try again */ 2841 if (retval) 2842 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2843 2844 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2845 return retval; 2846 2847 err_no_memory: 2848 /* Restore elements on the temporary add and delete lists */ 2849 spin_lock_bh(&vsi->mac_filter_hash_lock); 2850 err_no_memory_locked: 2851 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2852 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2853 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2854 2855 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2856 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2857 return -ENOMEM; 2858 } 2859 2860 /** 2861 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2862 * @pf: board private structure 2863 **/ 2864 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2865 { 2866 struct i40e_vsi *vsi; 2867 int v; 2868 2869 if (!pf) 2870 return; 2871 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2872 return; 2873 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2874 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2875 return; 2876 } 2877 2878 i40e_pf_for_each_vsi(pf, v, vsi) { 2879 if ((vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2880 !test_bit(__I40E_VSI_RELEASING, vsi->state)) { 2881 int ret = i40e_sync_vsi_filters(vsi); 2882 2883 if (ret) { 2884 /* come back and try again later */ 2885 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2886 pf->state); 2887 break; 2888 } 2889 } 2890 } 2891 } 2892 2893 /** 2894 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2895 * 2896 * @vsi: VSI to calculate rx_buf_len from 2897 */ 2898 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2899 { 2900 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2901 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2902 2903 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2904 } 2905 2906 /** 2907 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2908 * @vsi: the vsi 2909 * @xdp_prog: XDP program 2910 **/ 2911 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2912 struct bpf_prog *xdp_prog) 2913 { 2914 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2915 u16 chain_len; 2916 2917 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2918 chain_len = 1; 2919 else 2920 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2921 2922 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2923 } 2924 2925 /** 2926 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2927 * @netdev: network interface device structure 2928 * @new_mtu: new value for maximum frame size 2929 * 2930 * Returns 0 on success, negative on failure 2931 **/ 2932 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2933 { 2934 struct i40e_netdev_priv *np = netdev_priv(netdev); 2935 struct i40e_vsi *vsi = np->vsi; 2936 struct i40e_pf *pf = vsi->back; 2937 int frame_size; 2938 2939 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2940 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2941 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2942 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2943 return -EINVAL; 2944 } 2945 2946 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2947 netdev->mtu, new_mtu); 2948 WRITE_ONCE(netdev->mtu, new_mtu); 2949 if (netif_running(netdev)) 2950 i40e_vsi_reinit_locked(vsi); 2951 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2952 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2953 return 0; 2954 } 2955 2956 /** 2957 * i40e_ioctl - Access the hwtstamp interface 2958 * @netdev: network interface device structure 2959 * @ifr: interface request data 2960 * @cmd: ioctl command 2961 **/ 2962 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2963 { 2964 struct i40e_netdev_priv *np = netdev_priv(netdev); 2965 struct i40e_pf *pf = np->vsi->back; 2966 2967 switch (cmd) { 2968 case SIOCGHWTSTAMP: 2969 return i40e_ptp_get_ts_config(pf, ifr); 2970 case SIOCSHWTSTAMP: 2971 return i40e_ptp_set_ts_config(pf, ifr); 2972 default: 2973 return -EOPNOTSUPP; 2974 } 2975 } 2976 2977 /** 2978 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2979 * @vsi: the vsi being adjusted 2980 **/ 2981 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2982 { 2983 struct i40e_vsi_context ctxt; 2984 int ret; 2985 2986 /* Don't modify stripping options if a port VLAN is active */ 2987 if (vsi->info.pvid) 2988 return; 2989 2990 if ((vsi->info.valid_sections & 2991 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2992 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2993 return; /* already enabled */ 2994 2995 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2996 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2997 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2998 2999 ctxt.seid = vsi->seid; 3000 ctxt.info = vsi->info; 3001 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3002 if (ret) { 3003 dev_info(&vsi->back->pdev->dev, 3004 "update vlan stripping failed, err %pe aq_err %s\n", 3005 ERR_PTR(ret), 3006 i40e_aq_str(&vsi->back->hw, 3007 vsi->back->hw.aq.asq_last_status)); 3008 } 3009 } 3010 3011 /** 3012 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 3013 * @vsi: the vsi being adjusted 3014 **/ 3015 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 3016 { 3017 struct i40e_vsi_context ctxt; 3018 int ret; 3019 3020 /* Don't modify stripping options if a port VLAN is active */ 3021 if (vsi->info.pvid) 3022 return; 3023 3024 if ((vsi->info.valid_sections & 3025 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3026 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3027 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3028 return; /* already disabled */ 3029 3030 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3031 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3032 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3033 3034 ctxt.seid = vsi->seid; 3035 ctxt.info = vsi->info; 3036 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3037 if (ret) { 3038 dev_info(&vsi->back->pdev->dev, 3039 "update vlan stripping failed, err %pe aq_err %s\n", 3040 ERR_PTR(ret), 3041 i40e_aq_str(&vsi->back->hw, 3042 vsi->back->hw.aq.asq_last_status)); 3043 } 3044 } 3045 3046 /** 3047 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3048 * @vsi: the vsi being configured 3049 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3050 * 3051 * This is a helper function for adding a new MAC/VLAN filter with the 3052 * specified VLAN for each existing MAC address already in the hash table. 3053 * This function does *not* perform any accounting to update filters based on 3054 * VLAN mode. 3055 * 3056 * NOTE: this function expects to be called while under the 3057 * mac_filter_hash_lock 3058 **/ 3059 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3060 { 3061 struct i40e_mac_filter *f, *add_f; 3062 struct hlist_node *h; 3063 int bkt; 3064 3065 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3066 /* If we're asked to add a filter that has been marked for 3067 * removal, it is safe to simply restore it to active state. 3068 * __i40e_del_filter will have simply deleted any filters which 3069 * were previously marked NEW or FAILED, so if it is currently 3070 * marked REMOVE it must have previously been ACTIVE. Since we 3071 * haven't yet run the sync filters task, just restore this 3072 * filter to the ACTIVE state so that the sync task leaves it 3073 * in place. 3074 */ 3075 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3076 f->state = I40E_FILTER_ACTIVE; 3077 continue; 3078 } else if (f->state == I40E_FILTER_REMOVE) { 3079 continue; 3080 } 3081 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3082 if (!add_f) { 3083 dev_info(&vsi->back->pdev->dev, 3084 "Could not add vlan filter %d for %pM\n", 3085 vid, f->macaddr); 3086 return -ENOMEM; 3087 } 3088 } 3089 3090 return 0; 3091 } 3092 3093 /** 3094 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3095 * @vsi: the VSI being configured 3096 * @vid: VLAN id to be added 3097 **/ 3098 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3099 { 3100 int err; 3101 3102 if (vsi->info.pvid) 3103 return -EINVAL; 3104 3105 /* The network stack will attempt to add VID=0, with the intention to 3106 * receive priority tagged packets with a VLAN of 0. Our HW receives 3107 * these packets by default when configured to receive untagged 3108 * packets, so we don't need to add a filter for this case. 3109 * Additionally, HW interprets adding a VID=0 filter as meaning to 3110 * receive *only* tagged traffic and stops receiving untagged traffic. 3111 * Thus, we do not want to actually add a filter for VID=0 3112 */ 3113 if (!vid) 3114 return 0; 3115 3116 /* Locked once because all functions invoked below iterates list*/ 3117 spin_lock_bh(&vsi->mac_filter_hash_lock); 3118 err = i40e_add_vlan_all_mac(vsi, vid); 3119 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3120 if (err) 3121 return err; 3122 3123 /* schedule our worker thread which will take care of 3124 * applying the new filter changes 3125 */ 3126 i40e_service_event_schedule(vsi->back); 3127 return 0; 3128 } 3129 3130 /** 3131 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3132 * @vsi: the vsi being configured 3133 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3134 * 3135 * This function should be used to remove all VLAN filters which match the 3136 * given VID. It does not schedule the service event and does not take the 3137 * mac_filter_hash_lock so it may be combined with other operations under 3138 * a single invocation of the mac_filter_hash_lock. 3139 * 3140 * NOTE: this function expects to be called while under the 3141 * mac_filter_hash_lock 3142 */ 3143 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3144 { 3145 struct i40e_mac_filter *f; 3146 struct hlist_node *h; 3147 int bkt; 3148 3149 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3150 if (f->vlan == vid) 3151 __i40e_del_filter(vsi, f); 3152 } 3153 } 3154 3155 /** 3156 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3157 * @vsi: the VSI being configured 3158 * @vid: VLAN id to be removed 3159 **/ 3160 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3161 { 3162 if (!vid || vsi->info.pvid) 3163 return; 3164 3165 spin_lock_bh(&vsi->mac_filter_hash_lock); 3166 i40e_rm_vlan_all_mac(vsi, vid); 3167 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3168 3169 /* schedule our worker thread which will take care of 3170 * applying the new filter changes 3171 */ 3172 i40e_service_event_schedule(vsi->back); 3173 } 3174 3175 /** 3176 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3177 * @netdev: network interface to be adjusted 3178 * @proto: unused protocol value 3179 * @vid: vlan id to be added 3180 * 3181 * net_device_ops implementation for adding vlan ids 3182 **/ 3183 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3184 __always_unused __be16 proto, u16 vid) 3185 { 3186 struct i40e_netdev_priv *np = netdev_priv(netdev); 3187 struct i40e_vsi *vsi = np->vsi; 3188 int ret = 0; 3189 3190 if (vid >= VLAN_N_VID) 3191 return -EINVAL; 3192 3193 ret = i40e_vsi_add_vlan(vsi, vid); 3194 if (!ret) 3195 set_bit(vid, vsi->active_vlans); 3196 3197 return ret; 3198 } 3199 3200 /** 3201 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3202 * @netdev: network interface to be adjusted 3203 * @proto: unused protocol value 3204 * @vid: vlan id to be added 3205 **/ 3206 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3207 __always_unused __be16 proto, u16 vid) 3208 { 3209 struct i40e_netdev_priv *np = netdev_priv(netdev); 3210 struct i40e_vsi *vsi = np->vsi; 3211 3212 if (vid >= VLAN_N_VID) 3213 return; 3214 set_bit(vid, vsi->active_vlans); 3215 } 3216 3217 /** 3218 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3219 * @netdev: network interface to be adjusted 3220 * @proto: unused protocol value 3221 * @vid: vlan id to be removed 3222 * 3223 * net_device_ops implementation for removing vlan ids 3224 **/ 3225 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3226 __always_unused __be16 proto, u16 vid) 3227 { 3228 struct i40e_netdev_priv *np = netdev_priv(netdev); 3229 struct i40e_vsi *vsi = np->vsi; 3230 3231 /* return code is ignored as there is nothing a user 3232 * can do about failure to remove and a log message was 3233 * already printed from the other function 3234 */ 3235 i40e_vsi_kill_vlan(vsi, vid); 3236 3237 clear_bit(vid, vsi->active_vlans); 3238 3239 return 0; 3240 } 3241 3242 /** 3243 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3244 * @vsi: the vsi being brought back up 3245 **/ 3246 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3247 { 3248 u16 vid; 3249 3250 if (!vsi->netdev) 3251 return; 3252 3253 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3254 i40e_vlan_stripping_enable(vsi); 3255 else 3256 i40e_vlan_stripping_disable(vsi); 3257 3258 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3259 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3260 vid); 3261 } 3262 3263 /** 3264 * i40e_vsi_add_pvid - Add pvid for the VSI 3265 * @vsi: the vsi being adjusted 3266 * @vid: the vlan id to set as a PVID 3267 **/ 3268 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3269 { 3270 struct i40e_vsi_context ctxt; 3271 int ret; 3272 3273 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3274 vsi->info.pvid = cpu_to_le16(vid); 3275 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3276 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3277 I40E_AQ_VSI_PVLAN_EMOD_STR; 3278 3279 ctxt.seid = vsi->seid; 3280 ctxt.info = vsi->info; 3281 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3282 if (ret) { 3283 dev_info(&vsi->back->pdev->dev, 3284 "add pvid failed, err %pe aq_err %s\n", 3285 ERR_PTR(ret), 3286 i40e_aq_str(&vsi->back->hw, 3287 vsi->back->hw.aq.asq_last_status)); 3288 return -ENOENT; 3289 } 3290 3291 return 0; 3292 } 3293 3294 /** 3295 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3296 * @vsi: the vsi being adjusted 3297 * 3298 * Just use the vlan_rx_register() service to put it back to normal 3299 **/ 3300 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3301 { 3302 vsi->info.pvid = 0; 3303 3304 i40e_vlan_stripping_disable(vsi); 3305 } 3306 3307 /** 3308 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3309 * @vsi: ptr to the VSI 3310 * 3311 * If this function returns with an error, then it's possible one or 3312 * more of the rings is populated (while the rest are not). It is the 3313 * callers duty to clean those orphaned rings. 3314 * 3315 * Return 0 on success, negative on failure 3316 **/ 3317 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3318 { 3319 int i, err = 0; 3320 3321 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3322 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3323 3324 if (!i40e_enabled_xdp_vsi(vsi)) 3325 return err; 3326 3327 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3328 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3329 3330 return err; 3331 } 3332 3333 /** 3334 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3335 * @vsi: ptr to the VSI 3336 * 3337 * Free VSI's transmit software resources 3338 **/ 3339 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3340 { 3341 int i; 3342 3343 if (vsi->tx_rings) { 3344 for (i = 0; i < vsi->num_queue_pairs; i++) 3345 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3346 i40e_free_tx_resources(vsi->tx_rings[i]); 3347 } 3348 3349 if (vsi->xdp_rings) { 3350 for (i = 0; i < vsi->num_queue_pairs; i++) 3351 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3352 i40e_free_tx_resources(vsi->xdp_rings[i]); 3353 } 3354 } 3355 3356 /** 3357 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3358 * @vsi: ptr to the VSI 3359 * 3360 * If this function returns with an error, then it's possible one or 3361 * more of the rings is populated (while the rest are not). It is the 3362 * callers duty to clean those orphaned rings. 3363 * 3364 * Return 0 on success, negative on failure 3365 **/ 3366 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3367 { 3368 int i, err = 0; 3369 3370 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3371 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3372 return err; 3373 } 3374 3375 /** 3376 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3377 * @vsi: ptr to the VSI 3378 * 3379 * Free all receive software resources 3380 **/ 3381 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3382 { 3383 int i; 3384 3385 if (!vsi->rx_rings) 3386 return; 3387 3388 for (i = 0; i < vsi->num_queue_pairs; i++) 3389 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3390 i40e_free_rx_resources(vsi->rx_rings[i]); 3391 } 3392 3393 /** 3394 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3395 * @ring: The Tx ring to configure 3396 * 3397 * This enables/disables XPS for a given Tx descriptor ring 3398 * based on the TCs enabled for the VSI that ring belongs to. 3399 **/ 3400 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3401 { 3402 int cpu; 3403 3404 if (!ring->q_vector || !ring->netdev || ring->ch) 3405 return; 3406 3407 /* We only initialize XPS once, so as not to overwrite user settings */ 3408 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3409 return; 3410 3411 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3412 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3413 ring->queue_index); 3414 } 3415 3416 /** 3417 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3418 * @ring: The Tx or Rx ring 3419 * 3420 * Returns the AF_XDP buffer pool or NULL. 3421 **/ 3422 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3423 { 3424 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3425 int qid = ring->queue_index; 3426 3427 if (ring_is_xdp(ring)) 3428 qid -= ring->vsi->alloc_queue_pairs; 3429 3430 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3431 return NULL; 3432 3433 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3434 } 3435 3436 /** 3437 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3438 * @ring: The Tx ring to configure 3439 * 3440 * Configure the Tx descriptor ring in the HMC context. 3441 **/ 3442 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3443 { 3444 struct i40e_vsi *vsi = ring->vsi; 3445 u16 pf_q = vsi->base_queue + ring->queue_index; 3446 struct i40e_hw *hw = &vsi->back->hw; 3447 struct i40e_hmc_obj_txq tx_ctx; 3448 u32 qtx_ctl = 0; 3449 int err = 0; 3450 3451 if (ring_is_xdp(ring)) 3452 ring->xsk_pool = i40e_xsk_pool(ring); 3453 3454 /* some ATR related tx ring init */ 3455 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3456 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3457 ring->atr_count = 0; 3458 } else { 3459 ring->atr_sample_rate = 0; 3460 } 3461 3462 /* configure XPS */ 3463 i40e_config_xps_tx_ring(ring); 3464 3465 /* clear the context structure first */ 3466 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3467 3468 tx_ctx.new_context = 1; 3469 tx_ctx.base = (ring->dma / 128); 3470 tx_ctx.qlen = ring->count; 3471 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3472 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3473 tx_ctx.fd_ena = 1; 3474 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3475 tx_ctx.timesync_ena = 1; 3476 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3477 if (vsi->type != I40E_VSI_FDIR) 3478 tx_ctx.head_wb_ena = 1; 3479 tx_ctx.head_wb_addr = ring->dma + 3480 (ring->count * sizeof(struct i40e_tx_desc)); 3481 3482 /* As part of VSI creation/update, FW allocates certain 3483 * Tx arbitration queue sets for each TC enabled for 3484 * the VSI. The FW returns the handles to these queue 3485 * sets as part of the response buffer to Add VSI, 3486 * Update VSI, etc. AQ commands. It is expected that 3487 * these queue set handles be associated with the Tx 3488 * queues by the driver as part of the TX queue context 3489 * initialization. This has to be done regardless of 3490 * DCB as by default everything is mapped to TC0. 3491 */ 3492 3493 if (ring->ch) 3494 tx_ctx.rdylist = 3495 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3496 3497 else 3498 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3499 3500 tx_ctx.rdylist_act = 0; 3501 3502 /* clear the context in the HMC */ 3503 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3504 if (err) { 3505 dev_info(&vsi->back->pdev->dev, 3506 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3507 ring->queue_index, pf_q, err); 3508 return -ENOMEM; 3509 } 3510 3511 /* set the context in the HMC */ 3512 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3513 if (err) { 3514 dev_info(&vsi->back->pdev->dev, 3515 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3516 ring->queue_index, pf_q, err); 3517 return -ENOMEM; 3518 } 3519 3520 /* Now associate this queue with this PCI function */ 3521 if (ring->ch) { 3522 if (ring->ch->type == I40E_VSI_VMDQ2) 3523 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3524 else 3525 return -EINVAL; 3526 3527 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3528 ring->ch->vsi_number); 3529 } else { 3530 if (vsi->type == I40E_VSI_VMDQ2) { 3531 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3532 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3533 vsi->id); 3534 } else { 3535 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3536 } 3537 } 3538 3539 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id); 3540 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3541 i40e_flush(hw); 3542 3543 /* cache tail off for easier writes later */ 3544 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3545 3546 return 0; 3547 } 3548 3549 /** 3550 * i40e_rx_offset - Return expected offset into page to access data 3551 * @rx_ring: Ring we are requesting offset of 3552 * 3553 * Returns the offset value for ring into the data buffer. 3554 */ 3555 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3556 { 3557 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3558 } 3559 3560 /** 3561 * i40e_configure_rx_ring - Configure a receive ring context 3562 * @ring: The Rx ring to configure 3563 * 3564 * Configure the Rx descriptor ring in the HMC context. 3565 **/ 3566 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3567 { 3568 struct i40e_vsi *vsi = ring->vsi; 3569 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3570 u16 pf_q = vsi->base_queue + ring->queue_index; 3571 struct i40e_hw *hw = &vsi->back->hw; 3572 struct i40e_hmc_obj_rxq rx_ctx; 3573 int err = 0; 3574 bool ok; 3575 3576 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3577 3578 /* clear the context structure first */ 3579 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3580 3581 ring->rx_buf_len = vsi->rx_buf_len; 3582 3583 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 3584 if (ring->vsi->type != I40E_VSI_MAIN) 3585 goto skip; 3586 3587 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 3588 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3589 ring->queue_index, 3590 ring->q_vector->napi.napi_id, 3591 ring->rx_buf_len); 3592 if (err) 3593 return err; 3594 } 3595 3596 ring->xsk_pool = i40e_xsk_pool(ring); 3597 if (ring->xsk_pool) { 3598 xdp_rxq_info_unreg(&ring->xdp_rxq); 3599 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool); 3600 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3601 ring->queue_index, 3602 ring->q_vector->napi.napi_id, 3603 ring->rx_buf_len); 3604 if (err) 3605 return err; 3606 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3607 MEM_TYPE_XSK_BUFF_POOL, 3608 NULL); 3609 if (err) 3610 return err; 3611 dev_info(&vsi->back->pdev->dev, 3612 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3613 ring->queue_index); 3614 3615 } else { 3616 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3617 MEM_TYPE_PAGE_SHARED, 3618 NULL); 3619 if (err) 3620 return err; 3621 } 3622 3623 skip: 3624 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3625 3626 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3627 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3628 3629 rx_ctx.base = (ring->dma / 128); 3630 rx_ctx.qlen = ring->count; 3631 3632 /* use 16 byte descriptors */ 3633 rx_ctx.dsize = 0; 3634 3635 /* descriptor type is always zero 3636 * rx_ctx.dtype = 0; 3637 */ 3638 rx_ctx.hsplit_0 = 0; 3639 3640 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3641 if (hw->revision_id == 0) 3642 rx_ctx.lrxqthresh = 0; 3643 else 3644 rx_ctx.lrxqthresh = 1; 3645 rx_ctx.crcstrip = 1; 3646 rx_ctx.l2tsel = 1; 3647 /* this controls whether VLAN is stripped from inner headers */ 3648 rx_ctx.showiv = 0; 3649 /* set the prefena field to 1 because the manual says to */ 3650 rx_ctx.prefena = 1; 3651 3652 /* clear the context in the HMC */ 3653 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3654 if (err) { 3655 dev_info(&vsi->back->pdev->dev, 3656 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3657 ring->queue_index, pf_q, err); 3658 return -ENOMEM; 3659 } 3660 3661 /* set the context in the HMC */ 3662 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3663 if (err) { 3664 dev_info(&vsi->back->pdev->dev, 3665 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3666 ring->queue_index, pf_q, err); 3667 return -ENOMEM; 3668 } 3669 3670 /* configure Rx buffer alignment */ 3671 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3672 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3673 dev_info(&vsi->back->pdev->dev, 3674 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3675 return -EOPNOTSUPP; 3676 } 3677 clear_ring_build_skb_enabled(ring); 3678 } else { 3679 set_ring_build_skb_enabled(ring); 3680 } 3681 3682 ring->rx_offset = i40e_rx_offset(ring); 3683 3684 /* cache tail for quicker writes, and clear the reg before use */ 3685 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3686 writel(0, ring->tail); 3687 3688 if (ring->xsk_pool) { 3689 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3690 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3691 } else { 3692 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3693 } 3694 if (!ok) { 3695 /* Log this in case the user has forgotten to give the kernel 3696 * any buffers, even later in the application. 3697 */ 3698 dev_info(&vsi->back->pdev->dev, 3699 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3700 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3701 ring->queue_index, pf_q); 3702 } 3703 3704 return 0; 3705 } 3706 3707 /** 3708 * i40e_vsi_configure_tx - Configure the VSI for Tx 3709 * @vsi: VSI structure describing this set of rings and resources 3710 * 3711 * Configure the Tx VSI for operation. 3712 **/ 3713 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3714 { 3715 int err = 0; 3716 u16 i; 3717 3718 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3719 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3720 3721 if (err || !i40e_enabled_xdp_vsi(vsi)) 3722 return err; 3723 3724 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3725 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3726 3727 return err; 3728 } 3729 3730 /** 3731 * i40e_vsi_configure_rx - Configure the VSI for Rx 3732 * @vsi: the VSI being configured 3733 * 3734 * Configure the Rx VSI for operation. 3735 **/ 3736 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3737 { 3738 int err = 0; 3739 u16 i; 3740 3741 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3742 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3743 3744 #if (PAGE_SIZE < 8192) 3745 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3746 vsi->netdev->mtu <= ETH_DATA_LEN) { 3747 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3748 vsi->max_frame = vsi->rx_buf_len; 3749 } 3750 #endif 3751 3752 /* set up individual rings */ 3753 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3754 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3755 3756 return err; 3757 } 3758 3759 /** 3760 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3761 * @vsi: ptr to the VSI 3762 **/ 3763 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3764 { 3765 struct i40e_ring *tx_ring, *rx_ring; 3766 u16 qoffset, qcount; 3767 int i, n; 3768 3769 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3770 /* Reset the TC information */ 3771 for (i = 0; i < vsi->num_queue_pairs; i++) { 3772 rx_ring = vsi->rx_rings[i]; 3773 tx_ring = vsi->tx_rings[i]; 3774 rx_ring->dcb_tc = 0; 3775 tx_ring->dcb_tc = 0; 3776 } 3777 return; 3778 } 3779 3780 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3781 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3782 continue; 3783 3784 qoffset = vsi->tc_config.tc_info[n].qoffset; 3785 qcount = vsi->tc_config.tc_info[n].qcount; 3786 for (i = qoffset; i < (qoffset + qcount); i++) { 3787 rx_ring = vsi->rx_rings[i]; 3788 tx_ring = vsi->tx_rings[i]; 3789 rx_ring->dcb_tc = n; 3790 tx_ring->dcb_tc = n; 3791 } 3792 } 3793 } 3794 3795 /** 3796 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3797 * @vsi: ptr to the VSI 3798 **/ 3799 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3800 { 3801 if (vsi->netdev) 3802 i40e_set_rx_mode(vsi->netdev); 3803 } 3804 3805 /** 3806 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3807 * @pf: Pointer to the targeted PF 3808 * 3809 * Set all flow director counters to 0. 3810 */ 3811 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3812 { 3813 pf->fd_tcp4_filter_cnt = 0; 3814 pf->fd_udp4_filter_cnt = 0; 3815 pf->fd_sctp4_filter_cnt = 0; 3816 pf->fd_ip4_filter_cnt = 0; 3817 pf->fd_tcp6_filter_cnt = 0; 3818 pf->fd_udp6_filter_cnt = 0; 3819 pf->fd_sctp6_filter_cnt = 0; 3820 pf->fd_ip6_filter_cnt = 0; 3821 } 3822 3823 /** 3824 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3825 * @vsi: Pointer to the targeted VSI 3826 * 3827 * This function replays the hlist on the hw where all the SB Flow Director 3828 * filters were saved. 3829 **/ 3830 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3831 { 3832 struct i40e_fdir_filter *filter; 3833 struct i40e_pf *pf = vsi->back; 3834 struct hlist_node *node; 3835 3836 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3837 return; 3838 3839 /* Reset FDir counters as we're replaying all existing filters */ 3840 i40e_reset_fdir_filter_cnt(pf); 3841 3842 hlist_for_each_entry_safe(filter, node, 3843 &pf->fdir_filter_list, fdir_node) { 3844 i40e_add_del_fdir(vsi, filter, true); 3845 } 3846 } 3847 3848 /** 3849 * i40e_vsi_configure - Set up the VSI for action 3850 * @vsi: the VSI being configured 3851 **/ 3852 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3853 { 3854 int err; 3855 3856 i40e_set_vsi_rx_mode(vsi); 3857 i40e_restore_vlan(vsi); 3858 i40e_vsi_config_dcb_rings(vsi); 3859 err = i40e_vsi_configure_tx(vsi); 3860 if (!err) 3861 err = i40e_vsi_configure_rx(vsi); 3862 3863 return err; 3864 } 3865 3866 /** 3867 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3868 * @vsi: the VSI being configured 3869 **/ 3870 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3871 { 3872 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3873 struct i40e_pf *pf = vsi->back; 3874 struct i40e_hw *hw = &pf->hw; 3875 u16 vector; 3876 int i, q; 3877 u32 qp; 3878 3879 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3880 * and PFINT_LNKLSTn registers, e.g.: 3881 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3882 */ 3883 qp = vsi->base_queue; 3884 vector = vsi->base_vector; 3885 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3886 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3887 3888 q_vector->rx.next_update = jiffies + 1; 3889 q_vector->rx.target_itr = 3890 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3891 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3892 q_vector->rx.target_itr >> 1); 3893 q_vector->rx.current_itr = q_vector->rx.target_itr; 3894 3895 q_vector->tx.next_update = jiffies + 1; 3896 q_vector->tx.target_itr = 3897 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3898 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3899 q_vector->tx.target_itr >> 1); 3900 q_vector->tx.current_itr = q_vector->tx.target_itr; 3901 3902 /* Set ITR for software interrupts triggered after exiting 3903 * busy-loop polling. 3904 */ 3905 wr32(hw, I40E_PFINT_ITRN(I40E_SW_ITR, vector - 1), 3906 I40E_ITR_20K); 3907 3908 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3909 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3910 3911 /* begin of linked list for RX queue assigned to this vector */ 3912 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3913 for (q = 0; q < q_vector->num_ringpairs; q++) { 3914 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3915 u32 val; 3916 3917 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3918 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3919 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3920 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3921 (I40E_QUEUE_TYPE_TX << 3922 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3923 3924 wr32(hw, I40E_QINT_RQCTL(qp), val); 3925 3926 if (has_xdp) { 3927 /* TX queue with next queue set to TX */ 3928 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3929 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3930 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3931 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3932 (I40E_QUEUE_TYPE_TX << 3933 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3934 3935 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3936 } 3937 /* TX queue with next RX or end of linked list */ 3938 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3939 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3940 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3941 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3942 (I40E_QUEUE_TYPE_RX << 3943 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3944 3945 /* Terminate the linked list */ 3946 if (q == (q_vector->num_ringpairs - 1)) 3947 val |= (I40E_QUEUE_END_OF_LIST << 3948 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3949 3950 wr32(hw, I40E_QINT_TQCTL(qp), val); 3951 qp++; 3952 } 3953 } 3954 3955 i40e_flush(hw); 3956 } 3957 3958 /** 3959 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3960 * @pf: pointer to private device data structure 3961 **/ 3962 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3963 { 3964 struct i40e_hw *hw = &pf->hw; 3965 u32 val; 3966 3967 /* clear things first */ 3968 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3969 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3970 3971 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3972 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3973 I40E_PFINT_ICR0_ENA_GRST_MASK | 3974 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3975 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3976 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3977 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3978 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3979 3980 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 3981 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3982 3983 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3984 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3985 3986 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3987 3988 /* SW_ITR_IDX = 0, but don't change INTENA */ 3989 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3990 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3991 3992 /* OTHER_ITR_IDX = 0 */ 3993 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3994 } 3995 3996 /** 3997 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3998 * @vsi: the VSI being configured 3999 **/ 4000 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 4001 { 4002 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 4003 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4004 struct i40e_pf *pf = vsi->back; 4005 struct i40e_hw *hw = &pf->hw; 4006 4007 /* set the ITR configuration */ 4008 q_vector->rx.next_update = jiffies + 1; 4009 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 4010 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 4011 q_vector->rx.current_itr = q_vector->rx.target_itr; 4012 q_vector->tx.next_update = jiffies + 1; 4013 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 4014 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 4015 q_vector->tx.current_itr = q_vector->tx.target_itr; 4016 4017 i40e_enable_misc_int_causes(pf); 4018 4019 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4020 wr32(hw, I40E_PFINT_LNKLST0, 0); 4021 4022 /* Associate the queue pair to the vector and enable the queue 4023 * interrupt RX queue in linked list with next queue set to TX 4024 */ 4025 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4026 4027 if (i40e_enabled_xdp_vsi(vsi)) { 4028 /* TX queue in linked list with next queue set to TX */ 4029 wr32(hw, I40E_QINT_TQCTL(nextqp), 4030 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4031 } 4032 4033 /* last TX queue so the next RX queue doesn't matter */ 4034 wr32(hw, I40E_QINT_TQCTL(0), 4035 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4036 i40e_flush(hw); 4037 } 4038 4039 /** 4040 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4041 * @pf: board private structure 4042 **/ 4043 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4044 { 4045 struct i40e_hw *hw = &pf->hw; 4046 4047 wr32(hw, I40E_PFINT_DYN_CTL0, 4048 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4049 i40e_flush(hw); 4050 } 4051 4052 /** 4053 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4054 * @pf: board private structure 4055 **/ 4056 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4057 { 4058 struct i40e_hw *hw = &pf->hw; 4059 u32 val; 4060 4061 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4062 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4063 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4064 4065 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4066 i40e_flush(hw); 4067 } 4068 4069 /** 4070 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4071 * @irq: interrupt number 4072 * @data: pointer to a q_vector 4073 **/ 4074 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4075 { 4076 struct i40e_q_vector *q_vector = data; 4077 4078 if (!q_vector->tx.ring && !q_vector->rx.ring) 4079 return IRQ_HANDLED; 4080 4081 napi_schedule_irqoff(&q_vector->napi); 4082 4083 return IRQ_HANDLED; 4084 } 4085 4086 /** 4087 * i40e_irq_affinity_notify - Callback for affinity changes 4088 * @notify: context as to what irq was changed 4089 * @mask: the new affinity mask 4090 * 4091 * This is a callback function used by the irq_set_affinity_notifier function 4092 * so that we may register to receive changes to the irq affinity masks. 4093 **/ 4094 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4095 const cpumask_t *mask) 4096 { 4097 struct i40e_q_vector *q_vector = 4098 container_of(notify, struct i40e_q_vector, affinity_notify); 4099 4100 cpumask_copy(&q_vector->affinity_mask, mask); 4101 } 4102 4103 /** 4104 * i40e_irq_affinity_release - Callback for affinity notifier release 4105 * @ref: internal core kernel usage 4106 * 4107 * This is a callback function used by the irq_set_affinity_notifier function 4108 * to inform the current notification subscriber that they will no longer 4109 * receive notifications. 4110 **/ 4111 static void i40e_irq_affinity_release(struct kref *ref) {} 4112 4113 /** 4114 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4115 * @vsi: the VSI being configured 4116 * @basename: name for the vector 4117 * 4118 * Allocates MSI-X vectors and requests interrupts from the kernel. 4119 **/ 4120 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4121 { 4122 int q_vectors = vsi->num_q_vectors; 4123 struct i40e_pf *pf = vsi->back; 4124 int base = vsi->base_vector; 4125 int rx_int_idx = 0; 4126 int tx_int_idx = 0; 4127 int vector, err; 4128 int irq_num; 4129 int cpu; 4130 4131 for (vector = 0; vector < q_vectors; vector++) { 4132 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4133 4134 irq_num = pf->msix_entries[base + vector].vector; 4135 4136 if (q_vector->tx.ring && q_vector->rx.ring) { 4137 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4138 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4139 tx_int_idx++; 4140 } else if (q_vector->rx.ring) { 4141 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4142 "%s-%s-%d", basename, "rx", rx_int_idx++); 4143 } else if (q_vector->tx.ring) { 4144 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4145 "%s-%s-%d", basename, "tx", tx_int_idx++); 4146 } else { 4147 /* skip this unused q_vector */ 4148 continue; 4149 } 4150 err = request_irq(irq_num, 4151 vsi->irq_handler, 4152 0, 4153 q_vector->name, 4154 q_vector); 4155 if (err) { 4156 dev_info(&pf->pdev->dev, 4157 "MSIX request_irq failed, error: %d\n", err); 4158 goto free_queue_irqs; 4159 } 4160 4161 /* register for affinity change notifications */ 4162 q_vector->irq_num = irq_num; 4163 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4164 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4165 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4166 /* Spread affinity hints out across online CPUs. 4167 * 4168 * get_cpu_mask returns a static constant mask with 4169 * a permanent lifetime so it's ok to pass to 4170 * irq_update_affinity_hint without making a copy. 4171 */ 4172 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4173 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4174 } 4175 4176 vsi->irqs_ready = true; 4177 return 0; 4178 4179 free_queue_irqs: 4180 while (vector) { 4181 vector--; 4182 irq_num = pf->msix_entries[base + vector].vector; 4183 irq_set_affinity_notifier(irq_num, NULL); 4184 irq_update_affinity_hint(irq_num, NULL); 4185 free_irq(irq_num, &vsi->q_vectors[vector]); 4186 } 4187 return err; 4188 } 4189 4190 /** 4191 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4192 * @vsi: the VSI being un-configured 4193 **/ 4194 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4195 { 4196 struct i40e_pf *pf = vsi->back; 4197 struct i40e_hw *hw = &pf->hw; 4198 int base = vsi->base_vector; 4199 int i; 4200 4201 /* disable interrupt causation from each queue */ 4202 for (i = 0; i < vsi->num_queue_pairs; i++) { 4203 u32 val; 4204 4205 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4206 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4207 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4208 4209 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4210 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4211 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4212 4213 if (!i40e_enabled_xdp_vsi(vsi)) 4214 continue; 4215 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4216 } 4217 4218 /* disable each interrupt */ 4219 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4220 for (i = vsi->base_vector; 4221 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4222 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4223 4224 i40e_flush(hw); 4225 for (i = 0; i < vsi->num_q_vectors; i++) 4226 synchronize_irq(pf->msix_entries[i + base].vector); 4227 } else { 4228 /* Legacy and MSI mode - this stops all interrupt handling */ 4229 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4230 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4231 i40e_flush(hw); 4232 synchronize_irq(pf->pdev->irq); 4233 } 4234 } 4235 4236 /** 4237 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4238 * @vsi: the VSI being configured 4239 **/ 4240 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4241 { 4242 struct i40e_pf *pf = vsi->back; 4243 int i; 4244 4245 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4246 for (i = 0; i < vsi->num_q_vectors; i++) 4247 i40e_irq_dynamic_enable(vsi, i); 4248 } else { 4249 i40e_irq_dynamic_enable_icr0(pf); 4250 } 4251 4252 i40e_flush(&pf->hw); 4253 return 0; 4254 } 4255 4256 /** 4257 * i40e_free_misc_vector - Free the vector that handles non-queue events 4258 * @pf: board private structure 4259 **/ 4260 static void i40e_free_misc_vector(struct i40e_pf *pf) 4261 { 4262 /* Disable ICR 0 */ 4263 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4264 i40e_flush(&pf->hw); 4265 4266 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4267 free_irq(pf->msix_entries[0].vector, pf); 4268 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4269 } 4270 } 4271 4272 /** 4273 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4274 * @irq: interrupt number 4275 * @data: pointer to a q_vector 4276 * 4277 * This is the handler used for all MSI/Legacy interrupts, and deals 4278 * with both queue and non-queue interrupts. This is also used in 4279 * MSIX mode to handle the non-queue interrupts. 4280 **/ 4281 static irqreturn_t i40e_intr(int irq, void *data) 4282 { 4283 struct i40e_pf *pf = (struct i40e_pf *)data; 4284 struct i40e_hw *hw = &pf->hw; 4285 irqreturn_t ret = IRQ_NONE; 4286 u32 icr0, icr0_remaining; 4287 u32 val, ena_mask; 4288 4289 icr0 = rd32(hw, I40E_PFINT_ICR0); 4290 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4291 4292 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4293 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4294 goto enable_intr; 4295 4296 /* if interrupt but no bits showing, must be SWINT */ 4297 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4298 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4299 pf->sw_int_count++; 4300 4301 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4302 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4303 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4304 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4305 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4306 } 4307 4308 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4309 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4310 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 4311 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4312 4313 /* We do not have a way to disarm Queue causes while leaving 4314 * interrupt enabled for all other causes, ideally 4315 * interrupt should be disabled while we are in NAPI but 4316 * this is not a performance path and napi_schedule() 4317 * can deal with rescheduling. 4318 */ 4319 if (!test_bit(__I40E_DOWN, pf->state)) 4320 napi_schedule_irqoff(&q_vector->napi); 4321 } 4322 4323 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4324 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4325 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4326 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4327 } 4328 4329 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4330 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4331 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4332 } 4333 4334 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4335 /* disable any further VFLR event notifications */ 4336 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4337 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4338 4339 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4340 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4341 } else { 4342 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4343 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4344 } 4345 } 4346 4347 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4348 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4349 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4350 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4351 val = rd32(hw, I40E_GLGEN_RSTAT); 4352 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val); 4353 if (val == I40E_RESET_CORER) { 4354 pf->corer_count++; 4355 } else if (val == I40E_RESET_GLOBR) { 4356 pf->globr_count++; 4357 } else if (val == I40E_RESET_EMPR) { 4358 pf->empr_count++; 4359 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4360 } 4361 } 4362 4363 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4364 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4365 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4366 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4367 rd32(hw, I40E_PFHMC_ERRORINFO), 4368 rd32(hw, I40E_PFHMC_ERRORDATA)); 4369 } 4370 4371 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4372 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4373 4374 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4375 schedule_work(&pf->ptp_extts0_work); 4376 4377 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4378 i40e_ptp_tx_hwtstamp(pf); 4379 4380 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4381 } 4382 4383 /* If a critical error is pending we have no choice but to reset the 4384 * device. 4385 * Report and mask out any remaining unexpected interrupts. 4386 */ 4387 icr0_remaining = icr0 & ena_mask; 4388 if (icr0_remaining) { 4389 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4390 icr0_remaining); 4391 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4392 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4393 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4394 dev_info(&pf->pdev->dev, "device will be reset\n"); 4395 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4396 i40e_service_event_schedule(pf); 4397 } 4398 ena_mask &= ~icr0_remaining; 4399 } 4400 ret = IRQ_HANDLED; 4401 4402 enable_intr: 4403 /* re-enable interrupt causes */ 4404 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4405 if (!test_bit(__I40E_DOWN, pf->state) || 4406 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4407 i40e_service_event_schedule(pf); 4408 i40e_irq_dynamic_enable_icr0(pf); 4409 } 4410 4411 return ret; 4412 } 4413 4414 /** 4415 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4416 * @tx_ring: tx ring to clean 4417 * @budget: how many cleans we're allowed 4418 * 4419 * Returns true if there's any budget left (e.g. the clean is finished) 4420 **/ 4421 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4422 { 4423 struct i40e_vsi *vsi = tx_ring->vsi; 4424 u16 i = tx_ring->next_to_clean; 4425 struct i40e_tx_buffer *tx_buf; 4426 struct i40e_tx_desc *tx_desc; 4427 4428 tx_buf = &tx_ring->tx_bi[i]; 4429 tx_desc = I40E_TX_DESC(tx_ring, i); 4430 i -= tx_ring->count; 4431 4432 do { 4433 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4434 4435 /* if next_to_watch is not set then there is no work pending */ 4436 if (!eop_desc) 4437 break; 4438 4439 /* prevent any other reads prior to eop_desc */ 4440 smp_rmb(); 4441 4442 /* if the descriptor isn't done, no work yet to do */ 4443 if (!(eop_desc->cmd_type_offset_bsz & 4444 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4445 break; 4446 4447 /* clear next_to_watch to prevent false hangs */ 4448 tx_buf->next_to_watch = NULL; 4449 4450 tx_desc->buffer_addr = 0; 4451 tx_desc->cmd_type_offset_bsz = 0; 4452 /* move past filter desc */ 4453 tx_buf++; 4454 tx_desc++; 4455 i++; 4456 if (unlikely(!i)) { 4457 i -= tx_ring->count; 4458 tx_buf = tx_ring->tx_bi; 4459 tx_desc = I40E_TX_DESC(tx_ring, 0); 4460 } 4461 /* unmap skb header data */ 4462 dma_unmap_single(tx_ring->dev, 4463 dma_unmap_addr(tx_buf, dma), 4464 dma_unmap_len(tx_buf, len), 4465 DMA_TO_DEVICE); 4466 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4467 kfree(tx_buf->raw_buf); 4468 4469 tx_buf->raw_buf = NULL; 4470 tx_buf->tx_flags = 0; 4471 tx_buf->next_to_watch = NULL; 4472 dma_unmap_len_set(tx_buf, len, 0); 4473 tx_desc->buffer_addr = 0; 4474 tx_desc->cmd_type_offset_bsz = 0; 4475 4476 /* move us past the eop_desc for start of next FD desc */ 4477 tx_buf++; 4478 tx_desc++; 4479 i++; 4480 if (unlikely(!i)) { 4481 i -= tx_ring->count; 4482 tx_buf = tx_ring->tx_bi; 4483 tx_desc = I40E_TX_DESC(tx_ring, 0); 4484 } 4485 4486 /* update budget accounting */ 4487 budget--; 4488 } while (likely(budget)); 4489 4490 i += tx_ring->count; 4491 tx_ring->next_to_clean = i; 4492 4493 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4494 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4495 4496 return budget > 0; 4497 } 4498 4499 /** 4500 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4501 * @irq: interrupt number 4502 * @data: pointer to a q_vector 4503 **/ 4504 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4505 { 4506 struct i40e_q_vector *q_vector = data; 4507 struct i40e_vsi *vsi; 4508 4509 if (!q_vector->tx.ring) 4510 return IRQ_HANDLED; 4511 4512 vsi = q_vector->tx.ring->vsi; 4513 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4514 4515 return IRQ_HANDLED; 4516 } 4517 4518 /** 4519 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4520 * @vsi: the VSI being configured 4521 * @v_idx: vector index 4522 * @qp_idx: queue pair index 4523 **/ 4524 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4525 { 4526 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4527 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4528 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4529 4530 tx_ring->q_vector = q_vector; 4531 tx_ring->next = q_vector->tx.ring; 4532 q_vector->tx.ring = tx_ring; 4533 q_vector->tx.count++; 4534 4535 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4536 if (i40e_enabled_xdp_vsi(vsi)) { 4537 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4538 4539 xdp_ring->q_vector = q_vector; 4540 xdp_ring->next = q_vector->tx.ring; 4541 q_vector->tx.ring = xdp_ring; 4542 q_vector->tx.count++; 4543 } 4544 4545 rx_ring->q_vector = q_vector; 4546 rx_ring->next = q_vector->rx.ring; 4547 q_vector->rx.ring = rx_ring; 4548 q_vector->rx.count++; 4549 } 4550 4551 /** 4552 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4553 * @vsi: the VSI being configured 4554 * 4555 * This function maps descriptor rings to the queue-specific vectors 4556 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4557 * one vector per queue pair, but on a constrained vector budget, we 4558 * group the queue pairs as "efficiently" as possible. 4559 **/ 4560 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4561 { 4562 int qp_remaining = vsi->num_queue_pairs; 4563 int q_vectors = vsi->num_q_vectors; 4564 int num_ringpairs; 4565 int v_start = 0; 4566 int qp_idx = 0; 4567 4568 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4569 * group them so there are multiple queues per vector. 4570 * It is also important to go through all the vectors available to be 4571 * sure that if we don't use all the vectors, that the remaining vectors 4572 * are cleared. This is especially important when decreasing the 4573 * number of queues in use. 4574 */ 4575 for (; v_start < q_vectors; v_start++) { 4576 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4577 4578 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4579 4580 q_vector->num_ringpairs = num_ringpairs; 4581 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4582 4583 q_vector->rx.count = 0; 4584 q_vector->tx.count = 0; 4585 q_vector->rx.ring = NULL; 4586 q_vector->tx.ring = NULL; 4587 4588 while (num_ringpairs--) { 4589 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4590 qp_idx++; 4591 qp_remaining--; 4592 } 4593 } 4594 } 4595 4596 /** 4597 * i40e_vsi_request_irq - Request IRQ from the OS 4598 * @vsi: the VSI being configured 4599 * @basename: name for the vector 4600 **/ 4601 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4602 { 4603 struct i40e_pf *pf = vsi->back; 4604 int err; 4605 4606 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4607 err = i40e_vsi_request_irq_msix(vsi, basename); 4608 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4609 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4610 pf->int_name, pf); 4611 else 4612 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4613 pf->int_name, pf); 4614 4615 if (err) 4616 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4617 4618 return err; 4619 } 4620 4621 #ifdef CONFIG_NET_POLL_CONTROLLER 4622 /** 4623 * i40e_netpoll - A Polling 'interrupt' handler 4624 * @netdev: network interface device structure 4625 * 4626 * This is used by netconsole to send skbs without having to re-enable 4627 * interrupts. It's not called while the normal interrupt routine is executing. 4628 **/ 4629 static void i40e_netpoll(struct net_device *netdev) 4630 { 4631 struct i40e_netdev_priv *np = netdev_priv(netdev); 4632 struct i40e_vsi *vsi = np->vsi; 4633 struct i40e_pf *pf = vsi->back; 4634 int i; 4635 4636 /* if interface is down do nothing */ 4637 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4638 return; 4639 4640 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4641 for (i = 0; i < vsi->num_q_vectors; i++) 4642 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4643 } else { 4644 i40e_intr(pf->pdev->irq, netdev); 4645 } 4646 } 4647 #endif 4648 4649 #define I40E_QTX_ENA_WAIT_COUNT 50 4650 4651 /** 4652 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4653 * @pf: the PF being configured 4654 * @pf_q: the PF queue 4655 * @enable: enable or disable state of the queue 4656 * 4657 * This routine will wait for the given Tx queue of the PF to reach the 4658 * enabled or disabled state. 4659 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4660 * multiple retries; else will return 0 in case of success. 4661 **/ 4662 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4663 { 4664 int i; 4665 u32 tx_reg; 4666 4667 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4668 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4669 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4670 break; 4671 4672 usleep_range(10, 20); 4673 } 4674 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4675 return -ETIMEDOUT; 4676 4677 return 0; 4678 } 4679 4680 /** 4681 * i40e_control_tx_q - Start or stop a particular Tx queue 4682 * @pf: the PF structure 4683 * @pf_q: the PF queue to configure 4684 * @enable: start or stop the queue 4685 * 4686 * This function enables or disables a single queue. Note that any delay 4687 * required after the operation is expected to be handled by the caller of 4688 * this function. 4689 **/ 4690 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4691 { 4692 struct i40e_hw *hw = &pf->hw; 4693 u32 tx_reg; 4694 int i; 4695 4696 /* warn the TX unit of coming changes */ 4697 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4698 if (!enable) 4699 usleep_range(10, 20); 4700 4701 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4702 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4703 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4704 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4705 break; 4706 usleep_range(1000, 2000); 4707 } 4708 4709 /* Skip if the queue is already in the requested state */ 4710 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4711 return; 4712 4713 /* turn on/off the queue */ 4714 if (enable) { 4715 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4716 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4717 } else { 4718 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4719 } 4720 4721 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4722 } 4723 4724 /** 4725 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4726 * @seid: VSI SEID 4727 * @pf: the PF structure 4728 * @pf_q: the PF queue to configure 4729 * @is_xdp: true if the queue is used for XDP 4730 * @enable: start or stop the queue 4731 **/ 4732 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4733 bool is_xdp, bool enable) 4734 { 4735 int ret; 4736 4737 i40e_control_tx_q(pf, pf_q, enable); 4738 4739 /* wait for the change to finish */ 4740 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4741 if (ret) { 4742 dev_info(&pf->pdev->dev, 4743 "VSI seid %d %sTx ring %d %sable timeout\n", 4744 seid, (is_xdp ? "XDP " : ""), pf_q, 4745 (enable ? "en" : "dis")); 4746 } 4747 4748 return ret; 4749 } 4750 4751 /** 4752 * i40e_vsi_enable_tx - Start a VSI's rings 4753 * @vsi: the VSI being configured 4754 **/ 4755 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4756 { 4757 struct i40e_pf *pf = vsi->back; 4758 int i, pf_q, ret = 0; 4759 4760 pf_q = vsi->base_queue; 4761 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4762 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4763 pf_q, 4764 false /*is xdp*/, true); 4765 if (ret) 4766 break; 4767 4768 if (!i40e_enabled_xdp_vsi(vsi)) 4769 continue; 4770 4771 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4772 pf_q + vsi->alloc_queue_pairs, 4773 true /*is xdp*/, true); 4774 if (ret) 4775 break; 4776 } 4777 return ret; 4778 } 4779 4780 /** 4781 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4782 * @pf: the PF being configured 4783 * @pf_q: the PF queue 4784 * @enable: enable or disable state of the queue 4785 * 4786 * This routine will wait for the given Rx queue of the PF to reach the 4787 * enabled or disabled state. 4788 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4789 * multiple retries; else will return 0 in case of success. 4790 **/ 4791 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4792 { 4793 int i; 4794 u32 rx_reg; 4795 4796 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4797 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4798 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4799 break; 4800 4801 usleep_range(10, 20); 4802 } 4803 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4804 return -ETIMEDOUT; 4805 4806 return 0; 4807 } 4808 4809 /** 4810 * i40e_control_rx_q - Start or stop a particular Rx queue 4811 * @pf: the PF structure 4812 * @pf_q: the PF queue to configure 4813 * @enable: start or stop the queue 4814 * 4815 * This function enables or disables a single queue. Note that 4816 * any delay required after the operation is expected to be 4817 * handled by the caller of this function. 4818 **/ 4819 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4820 { 4821 struct i40e_hw *hw = &pf->hw; 4822 u32 rx_reg; 4823 int i; 4824 4825 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4826 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4827 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4828 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4829 break; 4830 usleep_range(1000, 2000); 4831 } 4832 4833 /* Skip if the queue is already in the requested state */ 4834 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4835 return; 4836 4837 /* turn on/off the queue */ 4838 if (enable) 4839 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4840 else 4841 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4842 4843 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4844 } 4845 4846 /** 4847 * i40e_control_wait_rx_q 4848 * @pf: the PF structure 4849 * @pf_q: queue being configured 4850 * @enable: start or stop the rings 4851 * 4852 * This function enables or disables a single queue along with waiting 4853 * for the change to finish. The caller of this function should handle 4854 * the delays needed in the case of disabling queues. 4855 **/ 4856 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4857 { 4858 int ret = 0; 4859 4860 i40e_control_rx_q(pf, pf_q, enable); 4861 4862 /* wait for the change to finish */ 4863 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4864 if (ret) 4865 return ret; 4866 4867 return ret; 4868 } 4869 4870 /** 4871 * i40e_vsi_enable_rx - Start a VSI's rings 4872 * @vsi: the VSI being configured 4873 **/ 4874 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4875 { 4876 struct i40e_pf *pf = vsi->back; 4877 int i, pf_q, ret = 0; 4878 4879 pf_q = vsi->base_queue; 4880 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4881 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4882 if (ret) { 4883 dev_info(&pf->pdev->dev, 4884 "VSI seid %d Rx ring %d enable timeout\n", 4885 vsi->seid, pf_q); 4886 break; 4887 } 4888 } 4889 4890 return ret; 4891 } 4892 4893 /** 4894 * i40e_vsi_start_rings - Start a VSI's rings 4895 * @vsi: the VSI being configured 4896 **/ 4897 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4898 { 4899 int ret = 0; 4900 4901 /* do rx first for enable and last for disable */ 4902 ret = i40e_vsi_enable_rx(vsi); 4903 if (ret) 4904 return ret; 4905 ret = i40e_vsi_enable_tx(vsi); 4906 4907 return ret; 4908 } 4909 4910 #define I40E_DISABLE_TX_GAP_MSEC 50 4911 4912 /** 4913 * i40e_vsi_stop_rings - Stop a VSI's rings 4914 * @vsi: the VSI being configured 4915 **/ 4916 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4917 { 4918 struct i40e_pf *pf = vsi->back; 4919 u32 pf_q, tx_q_end, rx_q_end; 4920 4921 /* When port TX is suspended, don't wait */ 4922 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4923 return i40e_vsi_stop_rings_no_wait(vsi); 4924 4925 tx_q_end = vsi->base_queue + 4926 vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 4927 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4928 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false); 4929 4930 rx_q_end = vsi->base_queue + vsi->num_queue_pairs; 4931 for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++) 4932 i40e_control_rx_q(pf, pf_q, false); 4933 4934 msleep(I40E_DISABLE_TX_GAP_MSEC); 4935 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4936 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4937 4938 i40e_vsi_wait_queues_disabled(vsi); 4939 } 4940 4941 /** 4942 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4943 * @vsi: the VSI being shutdown 4944 * 4945 * This function stops all the rings for a VSI but does not delay to verify 4946 * that rings have been disabled. It is expected that the caller is shutting 4947 * down multiple VSIs at once and will delay together for all the VSIs after 4948 * initiating the shutdown. This is particularly useful for shutting down lots 4949 * of VFs together. Otherwise, a large delay can be incurred while configuring 4950 * each VSI in serial. 4951 **/ 4952 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4953 { 4954 struct i40e_pf *pf = vsi->back; 4955 int i, pf_q; 4956 4957 pf_q = vsi->base_queue; 4958 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4959 i40e_control_tx_q(pf, pf_q, false); 4960 i40e_control_rx_q(pf, pf_q, false); 4961 } 4962 } 4963 4964 /** 4965 * i40e_vsi_free_irq - Free the irq association with the OS 4966 * @vsi: the VSI being configured 4967 **/ 4968 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4969 { 4970 struct i40e_pf *pf = vsi->back; 4971 struct i40e_hw *hw = &pf->hw; 4972 int base = vsi->base_vector; 4973 u32 val, qp; 4974 int i; 4975 4976 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4977 if (!vsi->q_vectors) 4978 return; 4979 4980 if (!vsi->irqs_ready) 4981 return; 4982 4983 vsi->irqs_ready = false; 4984 for (i = 0; i < vsi->num_q_vectors; i++) { 4985 int irq_num; 4986 u16 vector; 4987 4988 vector = i + base; 4989 irq_num = pf->msix_entries[vector].vector; 4990 4991 /* free only the irqs that were actually requested */ 4992 if (!vsi->q_vectors[i] || 4993 !vsi->q_vectors[i]->num_ringpairs) 4994 continue; 4995 4996 /* clear the affinity notifier in the IRQ descriptor */ 4997 irq_set_affinity_notifier(irq_num, NULL); 4998 /* remove our suggested affinity mask for this IRQ */ 4999 irq_update_affinity_hint(irq_num, NULL); 5000 free_irq(irq_num, vsi->q_vectors[i]); 5001 5002 /* Tear down the interrupt queue link list 5003 * 5004 * We know that they come in pairs and always 5005 * the Rx first, then the Tx. To clear the 5006 * link list, stick the EOL value into the 5007 * next_q field of the registers. 5008 */ 5009 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 5010 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, 5011 val); 5012 val |= I40E_QUEUE_END_OF_LIST 5013 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5014 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 5015 5016 while (qp != I40E_QUEUE_END_OF_LIST) { 5017 u32 next; 5018 5019 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5020 5021 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5022 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5023 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5024 I40E_QINT_RQCTL_INTEVENT_MASK); 5025 5026 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5027 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5028 5029 wr32(hw, I40E_QINT_RQCTL(qp), val); 5030 5031 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5032 5033 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK, 5034 val); 5035 5036 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5037 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5038 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5039 I40E_QINT_TQCTL_INTEVENT_MASK); 5040 5041 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5042 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5043 5044 wr32(hw, I40E_QINT_TQCTL(qp), val); 5045 qp = next; 5046 } 5047 } 5048 } else { 5049 free_irq(pf->pdev->irq, pf); 5050 5051 val = rd32(hw, I40E_PFINT_LNKLST0); 5052 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val); 5053 val |= I40E_QUEUE_END_OF_LIST 5054 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5055 wr32(hw, I40E_PFINT_LNKLST0, val); 5056 5057 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5058 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5059 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5060 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5061 I40E_QINT_RQCTL_INTEVENT_MASK); 5062 5063 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5064 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5065 5066 wr32(hw, I40E_QINT_RQCTL(qp), val); 5067 5068 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5069 5070 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5071 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5072 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5073 I40E_QINT_TQCTL_INTEVENT_MASK); 5074 5075 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5076 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5077 5078 wr32(hw, I40E_QINT_TQCTL(qp), val); 5079 } 5080 } 5081 5082 /** 5083 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5084 * @vsi: the VSI being configured 5085 * @v_idx: Index of vector to be freed 5086 * 5087 * This function frees the memory allocated to the q_vector. In addition if 5088 * NAPI is enabled it will delete any references to the NAPI struct prior 5089 * to freeing the q_vector. 5090 **/ 5091 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5092 { 5093 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5094 struct i40e_ring *ring; 5095 5096 if (!q_vector) 5097 return; 5098 5099 /* disassociate q_vector from rings */ 5100 i40e_for_each_ring(ring, q_vector->tx) 5101 ring->q_vector = NULL; 5102 5103 i40e_for_each_ring(ring, q_vector->rx) 5104 ring->q_vector = NULL; 5105 5106 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5107 if (vsi->netdev) 5108 netif_napi_del(&q_vector->napi); 5109 5110 vsi->q_vectors[v_idx] = NULL; 5111 5112 kfree_rcu(q_vector, rcu); 5113 } 5114 5115 /** 5116 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5117 * @vsi: the VSI being un-configured 5118 * 5119 * This frees the memory allocated to the q_vectors and 5120 * deletes references to the NAPI struct. 5121 **/ 5122 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5123 { 5124 int v_idx; 5125 5126 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5127 i40e_free_q_vector(vsi, v_idx); 5128 } 5129 5130 /** 5131 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5132 * @pf: board private structure 5133 **/ 5134 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5135 { 5136 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5137 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5138 pci_disable_msix(pf->pdev); 5139 kfree(pf->msix_entries); 5140 pf->msix_entries = NULL; 5141 kfree(pf->irq_pile); 5142 pf->irq_pile = NULL; 5143 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5144 pci_disable_msi(pf->pdev); 5145 } 5146 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5147 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5148 } 5149 5150 /** 5151 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5152 * @pf: board private structure 5153 * 5154 * We go through and clear interrupt specific resources and reset the structure 5155 * to pre-load conditions 5156 **/ 5157 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5158 { 5159 struct i40e_vsi *vsi; 5160 int i; 5161 5162 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5163 i40e_free_misc_vector(pf); 5164 5165 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5166 I40E_IWARP_IRQ_PILE_ID); 5167 5168 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5169 5170 i40e_pf_for_each_vsi(pf, i, vsi) 5171 i40e_vsi_free_q_vectors(vsi); 5172 5173 i40e_reset_interrupt_capability(pf); 5174 } 5175 5176 /** 5177 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5178 * @vsi: the VSI being configured 5179 **/ 5180 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5181 { 5182 int q_idx; 5183 5184 if (!vsi->netdev) 5185 return; 5186 5187 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5188 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5189 5190 if (q_vector->rx.ring || q_vector->tx.ring) 5191 napi_enable(&q_vector->napi); 5192 } 5193 } 5194 5195 /** 5196 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5197 * @vsi: the VSI being configured 5198 **/ 5199 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5200 { 5201 int q_idx; 5202 5203 if (!vsi->netdev) 5204 return; 5205 5206 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5207 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5208 5209 if (q_vector->rx.ring || q_vector->tx.ring) 5210 napi_disable(&q_vector->napi); 5211 } 5212 } 5213 5214 /** 5215 * i40e_vsi_close - Shut down a VSI 5216 * @vsi: the vsi to be quelled 5217 **/ 5218 static void i40e_vsi_close(struct i40e_vsi *vsi) 5219 { 5220 struct i40e_pf *pf = vsi->back; 5221 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5222 i40e_down(vsi); 5223 i40e_vsi_free_irq(vsi); 5224 i40e_vsi_free_tx_resources(vsi); 5225 i40e_vsi_free_rx_resources(vsi); 5226 vsi->current_netdev_flags = 0; 5227 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5228 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5229 set_bit(__I40E_CLIENT_RESET, pf->state); 5230 } 5231 5232 /** 5233 * i40e_quiesce_vsi - Pause a given VSI 5234 * @vsi: the VSI being paused 5235 **/ 5236 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5237 { 5238 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5239 return; 5240 5241 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5242 if (vsi->netdev && netif_running(vsi->netdev)) 5243 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5244 else 5245 i40e_vsi_close(vsi); 5246 } 5247 5248 /** 5249 * i40e_unquiesce_vsi - Resume a given VSI 5250 * @vsi: the VSI being resumed 5251 **/ 5252 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5253 { 5254 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5255 return; 5256 5257 if (vsi->netdev && netif_running(vsi->netdev)) 5258 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5259 else 5260 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5261 } 5262 5263 /** 5264 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5265 * @pf: the PF 5266 **/ 5267 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5268 { 5269 struct i40e_vsi *vsi; 5270 int v; 5271 5272 i40e_pf_for_each_vsi(pf, v, vsi) 5273 i40e_quiesce_vsi(vsi); 5274 } 5275 5276 /** 5277 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5278 * @pf: the PF 5279 **/ 5280 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5281 { 5282 struct i40e_vsi *vsi; 5283 int v; 5284 5285 i40e_pf_for_each_vsi(pf, v, vsi) 5286 i40e_unquiesce_vsi(vsi); 5287 } 5288 5289 /** 5290 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5291 * @vsi: the VSI being configured 5292 * 5293 * Wait until all queues on a given VSI have been disabled. 5294 **/ 5295 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5296 { 5297 struct i40e_pf *pf = vsi->back; 5298 int i, pf_q, ret; 5299 5300 pf_q = vsi->base_queue; 5301 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5302 /* Check and wait for the Tx queue */ 5303 ret = i40e_pf_txq_wait(pf, pf_q, false); 5304 if (ret) { 5305 dev_info(&pf->pdev->dev, 5306 "VSI seid %d Tx ring %d disable timeout\n", 5307 vsi->seid, pf_q); 5308 return ret; 5309 } 5310 5311 if (!i40e_enabled_xdp_vsi(vsi)) 5312 goto wait_rx; 5313 5314 /* Check and wait for the XDP Tx queue */ 5315 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5316 false); 5317 if (ret) { 5318 dev_info(&pf->pdev->dev, 5319 "VSI seid %d XDP Tx ring %d disable timeout\n", 5320 vsi->seid, pf_q); 5321 return ret; 5322 } 5323 wait_rx: 5324 /* Check and wait for the Rx queue */ 5325 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5326 if (ret) { 5327 dev_info(&pf->pdev->dev, 5328 "VSI seid %d Rx ring %d disable timeout\n", 5329 vsi->seid, pf_q); 5330 return ret; 5331 } 5332 } 5333 5334 return 0; 5335 } 5336 5337 #ifdef CONFIG_I40E_DCB 5338 /** 5339 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5340 * @pf: the PF 5341 * 5342 * This function waits for the queues to be in disabled state for all the 5343 * VSIs that are managed by this PF. 5344 **/ 5345 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5346 { 5347 struct i40e_vsi *vsi; 5348 int v, ret = 0; 5349 5350 i40e_pf_for_each_vsi(pf, v, vsi) { 5351 ret = i40e_vsi_wait_queues_disabled(vsi); 5352 if (ret) 5353 break; 5354 } 5355 5356 return ret; 5357 } 5358 5359 #endif 5360 5361 /** 5362 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5363 * @pf: pointer to PF 5364 * 5365 * Get TC map for ISCSI PF type that will include iSCSI TC 5366 * and LAN TC. 5367 **/ 5368 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5369 { 5370 struct i40e_dcb_app_priority_table app; 5371 struct i40e_hw *hw = &pf->hw; 5372 u8 enabled_tc = 1; /* TC0 is always enabled */ 5373 u8 tc, i; 5374 /* Get the iSCSI APP TLV */ 5375 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5376 5377 for (i = 0; i < dcbcfg->numapps; i++) { 5378 app = dcbcfg->app[i]; 5379 if (app.selector == I40E_APP_SEL_TCPIP && 5380 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5381 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5382 enabled_tc |= BIT(tc); 5383 break; 5384 } 5385 } 5386 5387 return enabled_tc; 5388 } 5389 5390 /** 5391 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5392 * @dcbcfg: the corresponding DCBx configuration structure 5393 * 5394 * Return the number of TCs from given DCBx configuration 5395 **/ 5396 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5397 { 5398 int i, tc_unused = 0; 5399 u8 num_tc = 0; 5400 u8 ret = 0; 5401 5402 /* Scan the ETS Config Priority Table to find 5403 * traffic class enabled for a given priority 5404 * and create a bitmask of enabled TCs 5405 */ 5406 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5407 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5408 5409 /* Now scan the bitmask to check for 5410 * contiguous TCs starting with TC0 5411 */ 5412 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5413 if (num_tc & BIT(i)) { 5414 if (!tc_unused) { 5415 ret++; 5416 } else { 5417 pr_err("Non-contiguous TC - Disabling DCB\n"); 5418 return 1; 5419 } 5420 } else { 5421 tc_unused = 1; 5422 } 5423 } 5424 5425 /* There is always at least TC0 */ 5426 if (!ret) 5427 ret = 1; 5428 5429 return ret; 5430 } 5431 5432 /** 5433 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5434 * @dcbcfg: the corresponding DCBx configuration structure 5435 * 5436 * Query the current DCB configuration and return the number of 5437 * traffic classes enabled from the given DCBX config 5438 **/ 5439 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5440 { 5441 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5442 u8 enabled_tc = 1; 5443 u8 i; 5444 5445 for (i = 0; i < num_tc; i++) 5446 enabled_tc |= BIT(i); 5447 5448 return enabled_tc; 5449 } 5450 5451 /** 5452 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5453 * @pf: PF being queried 5454 * 5455 * Query the current MQPRIO configuration and return the number of 5456 * traffic classes enabled. 5457 **/ 5458 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5459 { 5460 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5461 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5462 u8 enabled_tc = 1, i; 5463 5464 for (i = 1; i < num_tc; i++) 5465 enabled_tc |= BIT(i); 5466 return enabled_tc; 5467 } 5468 5469 /** 5470 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5471 * @pf: PF being queried 5472 * 5473 * Return number of traffic classes enabled for the given PF 5474 **/ 5475 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5476 { 5477 u8 i, enabled_tc = 1; 5478 u8 num_tc = 0; 5479 5480 if (i40e_is_tc_mqprio_enabled(pf)) { 5481 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5482 5483 return vsi->mqprio_qopt.qopt.num_tc; 5484 } 5485 5486 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5487 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5488 return 1; 5489 5490 /* SFP mode will be enabled for all TCs on port */ 5491 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5492 return i40e_dcb_get_num_tc(&pf->hw.local_dcbx_config); 5493 5494 /* MFP mode return count of enabled TCs for this PF */ 5495 if (pf->hw.func_caps.iscsi) 5496 enabled_tc = i40e_get_iscsi_tc_map(pf); 5497 else 5498 return 1; /* Only TC0 */ 5499 5500 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5501 if (enabled_tc & BIT(i)) 5502 num_tc++; 5503 } 5504 return num_tc; 5505 } 5506 5507 /** 5508 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5509 * @pf: PF being queried 5510 * 5511 * Return a bitmap for enabled traffic classes for this PF. 5512 **/ 5513 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5514 { 5515 if (i40e_is_tc_mqprio_enabled(pf)) 5516 return i40e_mqprio_get_enabled_tc(pf); 5517 5518 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5519 * default TC 5520 */ 5521 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5522 return I40E_DEFAULT_TRAFFIC_CLASS; 5523 5524 /* SFP mode we want PF to be enabled for all TCs */ 5525 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5526 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5527 5528 /* MFP enabled and iSCSI PF type */ 5529 if (pf->hw.func_caps.iscsi) 5530 return i40e_get_iscsi_tc_map(pf); 5531 else 5532 return I40E_DEFAULT_TRAFFIC_CLASS; 5533 } 5534 5535 /** 5536 * i40e_vsi_get_bw_info - Query VSI BW Information 5537 * @vsi: the VSI being queried 5538 * 5539 * Returns 0 on success, negative value on failure 5540 **/ 5541 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5542 { 5543 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5544 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5545 struct i40e_pf *pf = vsi->back; 5546 struct i40e_hw *hw = &pf->hw; 5547 u32 tc_bw_max; 5548 int ret; 5549 int i; 5550 5551 /* Get the VSI level BW configuration */ 5552 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5553 if (ret) { 5554 dev_info(&pf->pdev->dev, 5555 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5556 ERR_PTR(ret), 5557 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5558 return -EINVAL; 5559 } 5560 5561 /* Get the VSI level BW configuration per TC */ 5562 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5563 NULL); 5564 if (ret) { 5565 dev_info(&pf->pdev->dev, 5566 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5567 ERR_PTR(ret), 5568 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5569 return -EINVAL; 5570 } 5571 5572 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5573 dev_info(&pf->pdev->dev, 5574 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5575 bw_config.tc_valid_bits, 5576 bw_ets_config.tc_valid_bits); 5577 /* Still continuing */ 5578 } 5579 5580 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5581 vsi->bw_max_quanta = bw_config.max_bw; 5582 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5583 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5584 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5585 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5586 vsi->bw_ets_limit_credits[i] = 5587 le16_to_cpu(bw_ets_config.credits[i]); 5588 /* 3 bits out of 4 for each TC */ 5589 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5590 } 5591 5592 return 0; 5593 } 5594 5595 /** 5596 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5597 * @vsi: the VSI being configured 5598 * @enabled_tc: TC bitmap 5599 * @bw_share: BW shared credits per TC 5600 * 5601 * Returns 0 on success, negative value on failure 5602 **/ 5603 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5604 u8 *bw_share) 5605 { 5606 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5607 struct i40e_pf *pf = vsi->back; 5608 int ret; 5609 int i; 5610 5611 /* There is no need to reset BW when mqprio mode is on. */ 5612 if (i40e_is_tc_mqprio_enabled(pf)) 5613 return 0; 5614 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5615 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5616 if (ret) 5617 dev_info(&pf->pdev->dev, 5618 "Failed to reset tx rate for vsi->seid %u\n", 5619 vsi->seid); 5620 return ret; 5621 } 5622 memset(&bw_data, 0, sizeof(bw_data)); 5623 bw_data.tc_valid_bits = enabled_tc; 5624 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5625 bw_data.tc_bw_credits[i] = bw_share[i]; 5626 5627 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5628 if (ret) { 5629 dev_info(&pf->pdev->dev, 5630 "AQ command Config VSI BW allocation per TC failed = %d\n", 5631 pf->hw.aq.asq_last_status); 5632 return -EINVAL; 5633 } 5634 5635 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5636 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5637 5638 return 0; 5639 } 5640 5641 /** 5642 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5643 * @vsi: the VSI being configured 5644 * @enabled_tc: TC map to be enabled 5645 * 5646 **/ 5647 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5648 { 5649 struct net_device *netdev = vsi->netdev; 5650 struct i40e_pf *pf = vsi->back; 5651 struct i40e_hw *hw = &pf->hw; 5652 u8 netdev_tc = 0; 5653 int i; 5654 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5655 5656 if (!netdev) 5657 return; 5658 5659 if (!enabled_tc) { 5660 netdev_reset_tc(netdev); 5661 return; 5662 } 5663 5664 /* Set up actual enabled TCs on the VSI */ 5665 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5666 return; 5667 5668 /* set per TC queues for the VSI */ 5669 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5670 /* Only set TC queues for enabled tcs 5671 * 5672 * e.g. For a VSI that has TC0 and TC3 enabled the 5673 * enabled_tc bitmap would be 0x00001001; the driver 5674 * will set the numtc for netdev as 2 that will be 5675 * referenced by the netdev layer as TC 0 and 1. 5676 */ 5677 if (vsi->tc_config.enabled_tc & BIT(i)) 5678 netdev_set_tc_queue(netdev, 5679 vsi->tc_config.tc_info[i].netdev_tc, 5680 vsi->tc_config.tc_info[i].qcount, 5681 vsi->tc_config.tc_info[i].qoffset); 5682 } 5683 5684 if (i40e_is_tc_mqprio_enabled(pf)) 5685 return; 5686 5687 /* Assign UP2TC map for the VSI */ 5688 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5689 /* Get the actual TC# for the UP */ 5690 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5691 /* Get the mapped netdev TC# for the UP */ 5692 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5693 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5694 } 5695 } 5696 5697 /** 5698 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5699 * @vsi: the VSI being configured 5700 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5701 **/ 5702 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5703 struct i40e_vsi_context *ctxt) 5704 { 5705 /* copy just the sections touched not the entire info 5706 * since not all sections are valid as returned by 5707 * update vsi params 5708 */ 5709 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5710 memcpy(&vsi->info.queue_mapping, 5711 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5712 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5713 sizeof(vsi->info.tc_mapping)); 5714 } 5715 5716 /** 5717 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5718 * @vsi: the VSI being reconfigured 5719 * @vsi_offset: offset from main VF VSI 5720 */ 5721 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5722 { 5723 struct i40e_vsi_context ctxt = {}; 5724 struct i40e_pf *pf; 5725 struct i40e_hw *hw; 5726 int ret; 5727 5728 if (!vsi) 5729 return -EINVAL; 5730 pf = vsi->back; 5731 hw = &pf->hw; 5732 5733 ctxt.seid = vsi->seid; 5734 ctxt.pf_num = hw->pf_id; 5735 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5736 ctxt.uplink_seid = vsi->uplink_seid; 5737 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5738 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5739 ctxt.info = vsi->info; 5740 5741 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5742 false); 5743 if (vsi->reconfig_rss) { 5744 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5745 vsi->num_queue_pairs); 5746 ret = i40e_vsi_config_rss(vsi); 5747 if (ret) { 5748 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5749 return ret; 5750 } 5751 vsi->reconfig_rss = false; 5752 } 5753 5754 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5755 if (ret) { 5756 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5757 ERR_PTR(ret), 5758 i40e_aq_str(hw, hw->aq.asq_last_status)); 5759 return ret; 5760 } 5761 /* update the local VSI info with updated queue map */ 5762 i40e_vsi_update_queue_map(vsi, &ctxt); 5763 vsi->info.valid_sections = 0; 5764 5765 return ret; 5766 } 5767 5768 /** 5769 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5770 * @vsi: VSI to be configured 5771 * @enabled_tc: TC bitmap 5772 * 5773 * This configures a particular VSI for TCs that are mapped to the 5774 * given TC bitmap. It uses default bandwidth share for TCs across 5775 * VSIs to configure TC for a particular VSI. 5776 * 5777 * NOTE: 5778 * It is expected that the VSI queues have been quisced before calling 5779 * this function. 5780 **/ 5781 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5782 { 5783 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5784 struct i40e_pf *pf = vsi->back; 5785 struct i40e_hw *hw = &pf->hw; 5786 struct i40e_vsi_context ctxt; 5787 int ret = 0; 5788 int i; 5789 5790 /* Check if enabled_tc is same as existing or new TCs */ 5791 if (vsi->tc_config.enabled_tc == enabled_tc && 5792 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5793 return ret; 5794 5795 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5796 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5797 if (enabled_tc & BIT(i)) 5798 bw_share[i] = 1; 5799 } 5800 5801 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5802 if (ret) { 5803 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5804 5805 dev_info(&pf->pdev->dev, 5806 "Failed configuring TC map %d for VSI %d\n", 5807 enabled_tc, vsi->seid); 5808 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5809 &bw_config, NULL); 5810 if (ret) { 5811 dev_info(&pf->pdev->dev, 5812 "Failed querying vsi bw info, err %pe aq_err %s\n", 5813 ERR_PTR(ret), 5814 i40e_aq_str(hw, hw->aq.asq_last_status)); 5815 goto out; 5816 } 5817 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5818 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5819 5820 if (!valid_tc) 5821 valid_tc = bw_config.tc_valid_bits; 5822 /* Always enable TC0, no matter what */ 5823 valid_tc |= 1; 5824 dev_info(&pf->pdev->dev, 5825 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5826 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5827 enabled_tc = valid_tc; 5828 } 5829 5830 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5831 if (ret) { 5832 dev_err(&pf->pdev->dev, 5833 "Unable to configure TC map %d for VSI %d\n", 5834 enabled_tc, vsi->seid); 5835 goto out; 5836 } 5837 } 5838 5839 /* Update Queue Pairs Mapping for currently enabled UPs */ 5840 ctxt.seid = vsi->seid; 5841 ctxt.pf_num = vsi->back->hw.pf_id; 5842 ctxt.vf_num = 0; 5843 ctxt.uplink_seid = vsi->uplink_seid; 5844 ctxt.info = vsi->info; 5845 if (i40e_is_tc_mqprio_enabled(pf)) { 5846 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5847 if (ret) 5848 goto out; 5849 } else { 5850 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5851 } 5852 5853 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5854 * queues changed. 5855 */ 5856 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5857 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5858 vsi->num_queue_pairs); 5859 ret = i40e_vsi_config_rss(vsi); 5860 if (ret) { 5861 dev_info(&vsi->back->pdev->dev, 5862 "Failed to reconfig rss for num_queues\n"); 5863 return ret; 5864 } 5865 vsi->reconfig_rss = false; 5866 } 5867 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5868 ctxt.info.valid_sections |= 5869 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5870 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5871 } 5872 5873 /* Update the VSI after updating the VSI queue-mapping 5874 * information 5875 */ 5876 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5877 if (ret) { 5878 dev_info(&pf->pdev->dev, 5879 "Update vsi tc config failed, err %pe aq_err %s\n", 5880 ERR_PTR(ret), 5881 i40e_aq_str(hw, hw->aq.asq_last_status)); 5882 goto out; 5883 } 5884 /* update the local VSI info with updated queue map */ 5885 i40e_vsi_update_queue_map(vsi, &ctxt); 5886 vsi->info.valid_sections = 0; 5887 5888 /* Update current VSI BW information */ 5889 ret = i40e_vsi_get_bw_info(vsi); 5890 if (ret) { 5891 dev_info(&pf->pdev->dev, 5892 "Failed updating vsi bw info, err %pe aq_err %s\n", 5893 ERR_PTR(ret), 5894 i40e_aq_str(hw, hw->aq.asq_last_status)); 5895 goto out; 5896 } 5897 5898 /* Update the netdev TC setup */ 5899 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5900 out: 5901 return ret; 5902 } 5903 5904 /** 5905 * i40e_vsi_reconfig_tc - Reconfigure VSI Tx Scheduler for stored TC map 5906 * @vsi: VSI to be reconfigured 5907 * 5908 * This reconfigures a particular VSI for TCs that are mapped to the 5909 * TC bitmap stored previously for the VSI. 5910 * 5911 * Context: It is expected that the VSI queues have been quisced before 5912 * calling this function. 5913 * 5914 * Return: 0 on success, negative value on failure 5915 **/ 5916 static int i40e_vsi_reconfig_tc(struct i40e_vsi *vsi) 5917 { 5918 u8 enabled_tc; 5919 5920 enabled_tc = vsi->tc_config.enabled_tc; 5921 vsi->tc_config.enabled_tc = 0; 5922 5923 return i40e_vsi_config_tc(vsi, enabled_tc); 5924 } 5925 5926 /** 5927 * i40e_get_link_speed - Returns link speed for the interface 5928 * @vsi: VSI to be configured 5929 * 5930 **/ 5931 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5932 { 5933 struct i40e_pf *pf = vsi->back; 5934 5935 switch (pf->hw.phy.link_info.link_speed) { 5936 case I40E_LINK_SPEED_40GB: 5937 return 40000; 5938 case I40E_LINK_SPEED_25GB: 5939 return 25000; 5940 case I40E_LINK_SPEED_20GB: 5941 return 20000; 5942 case I40E_LINK_SPEED_10GB: 5943 return 10000; 5944 case I40E_LINK_SPEED_1GB: 5945 return 1000; 5946 default: 5947 return -EINVAL; 5948 } 5949 } 5950 5951 /** 5952 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5953 * @vsi: Pointer to vsi structure 5954 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5955 * 5956 * Helper function to convert units before send to set BW limit 5957 **/ 5958 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5959 { 5960 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5961 dev_warn(&vsi->back->pdev->dev, 5962 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5963 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5964 } else { 5965 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5966 } 5967 5968 return max_tx_rate; 5969 } 5970 5971 /** 5972 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5973 * @vsi: VSI to be configured 5974 * @seid: seid of the channel/VSI 5975 * @max_tx_rate: max TX rate to be configured as BW limit 5976 * 5977 * Helper function to set BW limit for a given VSI 5978 **/ 5979 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5980 { 5981 struct i40e_pf *pf = vsi->back; 5982 u64 credits = 0; 5983 int speed = 0; 5984 int ret = 0; 5985 5986 speed = i40e_get_link_speed(vsi); 5987 if (max_tx_rate > speed) { 5988 dev_err(&pf->pdev->dev, 5989 "Invalid max tx rate %llu specified for VSI seid %d.", 5990 max_tx_rate, seid); 5991 return -EINVAL; 5992 } 5993 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 5994 dev_warn(&pf->pdev->dev, 5995 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5996 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5997 } 5998 5999 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 6000 credits = max_tx_rate; 6001 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6002 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 6003 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 6004 if (ret) 6005 dev_err(&pf->pdev->dev, 6006 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 6007 max_tx_rate, seid, ERR_PTR(ret), 6008 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6009 return ret; 6010 } 6011 6012 /** 6013 * i40e_remove_queue_channels - Remove queue channels for the TCs 6014 * @vsi: VSI to be configured 6015 * 6016 * Remove queue channels for the TCs 6017 **/ 6018 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 6019 { 6020 enum i40e_admin_queue_err last_aq_status; 6021 struct i40e_cloud_filter *cfilter; 6022 struct i40e_channel *ch, *ch_tmp; 6023 struct i40e_pf *pf = vsi->back; 6024 struct hlist_node *node; 6025 int ret, i; 6026 6027 /* Reset rss size that was stored when reconfiguring rss for 6028 * channel VSIs with non-power-of-2 queue count. 6029 */ 6030 vsi->current_rss_size = 0; 6031 6032 /* perform cleanup for channels if they exist */ 6033 if (list_empty(&vsi->ch_list)) 6034 return; 6035 6036 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6037 struct i40e_vsi *p_vsi; 6038 6039 list_del(&ch->list); 6040 p_vsi = ch->parent_vsi; 6041 if (!p_vsi || !ch->initialized) { 6042 kfree(ch); 6043 continue; 6044 } 6045 /* Reset queue contexts */ 6046 for (i = 0; i < ch->num_queue_pairs; i++) { 6047 struct i40e_ring *tx_ring, *rx_ring; 6048 u16 pf_q; 6049 6050 pf_q = ch->base_queue + i; 6051 tx_ring = vsi->tx_rings[pf_q]; 6052 tx_ring->ch = NULL; 6053 6054 rx_ring = vsi->rx_rings[pf_q]; 6055 rx_ring->ch = NULL; 6056 } 6057 6058 /* Reset BW configured for this VSI via mqprio */ 6059 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6060 if (ret) 6061 dev_info(&vsi->back->pdev->dev, 6062 "Failed to reset tx rate for ch->seid %u\n", 6063 ch->seid); 6064 6065 /* delete cloud filters associated with this channel */ 6066 hlist_for_each_entry_safe(cfilter, node, 6067 &pf->cloud_filter_list, cloud_node) { 6068 if (cfilter->seid != ch->seid) 6069 continue; 6070 6071 hash_del(&cfilter->cloud_node); 6072 if (cfilter->dst_port) 6073 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6074 cfilter, 6075 false); 6076 else 6077 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6078 false); 6079 last_aq_status = pf->hw.aq.asq_last_status; 6080 if (ret) 6081 dev_info(&pf->pdev->dev, 6082 "Failed to delete cloud filter, err %pe aq_err %s\n", 6083 ERR_PTR(ret), 6084 i40e_aq_str(&pf->hw, last_aq_status)); 6085 kfree(cfilter); 6086 } 6087 6088 /* delete VSI from FW */ 6089 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6090 NULL); 6091 if (ret) 6092 dev_err(&vsi->back->pdev->dev, 6093 "unable to remove channel (%d) for parent VSI(%d)\n", 6094 ch->seid, p_vsi->seid); 6095 kfree(ch); 6096 } 6097 INIT_LIST_HEAD(&vsi->ch_list); 6098 } 6099 6100 /** 6101 * i40e_get_max_queues_for_channel 6102 * @vsi: ptr to VSI to which channels are associated with 6103 * 6104 * Helper function which returns max value among the queue counts set on the 6105 * channels/TCs created. 6106 **/ 6107 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6108 { 6109 struct i40e_channel *ch, *ch_tmp; 6110 int max = 0; 6111 6112 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6113 if (!ch->initialized) 6114 continue; 6115 if (ch->num_queue_pairs > max) 6116 max = ch->num_queue_pairs; 6117 } 6118 6119 return max; 6120 } 6121 6122 /** 6123 * i40e_validate_num_queues - validate num_queues w.r.t channel 6124 * @pf: ptr to PF device 6125 * @num_queues: number of queues 6126 * @vsi: the parent VSI 6127 * @reconfig_rss: indicates should the RSS be reconfigured or not 6128 * 6129 * This function validates number of queues in the context of new channel 6130 * which is being established and determines if RSS should be reconfigured 6131 * or not for parent VSI. 6132 **/ 6133 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6134 struct i40e_vsi *vsi, bool *reconfig_rss) 6135 { 6136 int max_ch_queues; 6137 6138 if (!reconfig_rss) 6139 return -EINVAL; 6140 6141 *reconfig_rss = false; 6142 if (vsi->current_rss_size) { 6143 if (num_queues > vsi->current_rss_size) { 6144 dev_dbg(&pf->pdev->dev, 6145 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6146 num_queues, vsi->current_rss_size); 6147 return -EINVAL; 6148 } else if ((num_queues < vsi->current_rss_size) && 6149 (!is_power_of_2(num_queues))) { 6150 dev_dbg(&pf->pdev->dev, 6151 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6152 num_queues, vsi->current_rss_size); 6153 return -EINVAL; 6154 } 6155 } 6156 6157 if (!is_power_of_2(num_queues)) { 6158 /* Find the max num_queues configured for channel if channel 6159 * exist. 6160 * if channel exist, then enforce 'num_queues' to be more than 6161 * max ever queues configured for channel. 6162 */ 6163 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6164 if (num_queues < max_ch_queues) { 6165 dev_dbg(&pf->pdev->dev, 6166 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6167 num_queues, max_ch_queues); 6168 return -EINVAL; 6169 } 6170 *reconfig_rss = true; 6171 } 6172 6173 return 0; 6174 } 6175 6176 /** 6177 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6178 * @vsi: the VSI being setup 6179 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6180 * 6181 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6182 **/ 6183 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6184 { 6185 struct i40e_pf *pf = vsi->back; 6186 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6187 struct i40e_hw *hw = &pf->hw; 6188 int local_rss_size; 6189 u8 *lut; 6190 int ret; 6191 6192 if (!vsi->rss_size) 6193 return -EINVAL; 6194 6195 if (rss_size > vsi->rss_size) 6196 return -EINVAL; 6197 6198 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6199 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6200 if (!lut) 6201 return -ENOMEM; 6202 6203 /* Ignoring user configured lut if there is one */ 6204 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6205 6206 /* Use user configured hash key if there is one, otherwise 6207 * use default. 6208 */ 6209 if (vsi->rss_hkey_user) 6210 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6211 else 6212 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6213 6214 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6215 if (ret) { 6216 dev_info(&pf->pdev->dev, 6217 "Cannot set RSS lut, err %pe aq_err %s\n", 6218 ERR_PTR(ret), 6219 i40e_aq_str(hw, hw->aq.asq_last_status)); 6220 kfree(lut); 6221 return ret; 6222 } 6223 kfree(lut); 6224 6225 /* Do the update w.r.t. storing rss_size */ 6226 if (!vsi->orig_rss_size) 6227 vsi->orig_rss_size = vsi->rss_size; 6228 vsi->current_rss_size = local_rss_size; 6229 6230 return ret; 6231 } 6232 6233 /** 6234 * i40e_channel_setup_queue_map - Setup a channel queue map 6235 * @pf: ptr to PF device 6236 * @ctxt: VSI context structure 6237 * @ch: ptr to channel structure 6238 * 6239 * Setup queue map for a specific channel 6240 **/ 6241 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6242 struct i40e_vsi_context *ctxt, 6243 struct i40e_channel *ch) 6244 { 6245 u16 qcount, qmap, sections = 0; 6246 u8 offset = 0; 6247 int pow; 6248 6249 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6250 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6251 6252 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6253 ch->num_queue_pairs = qcount; 6254 6255 /* find the next higher power-of-2 of num queue pairs */ 6256 pow = ilog2(qcount); 6257 if (!is_power_of_2(qcount)) 6258 pow++; 6259 6260 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6261 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6262 6263 /* Setup queue TC[0].qmap for given VSI context */ 6264 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6265 6266 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6267 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6268 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6269 ctxt->info.valid_sections |= cpu_to_le16(sections); 6270 } 6271 6272 /** 6273 * i40e_add_channel - add a channel by adding VSI 6274 * @pf: ptr to PF device 6275 * @uplink_seid: underlying HW switching element (VEB) ID 6276 * @ch: ptr to channel structure 6277 * 6278 * Add a channel (VSI) using add_vsi and queue_map 6279 **/ 6280 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6281 struct i40e_channel *ch) 6282 { 6283 struct i40e_hw *hw = &pf->hw; 6284 struct i40e_vsi_context ctxt; 6285 u8 enabled_tc = 0x1; /* TC0 enabled */ 6286 int ret; 6287 6288 if (ch->type != I40E_VSI_VMDQ2) { 6289 dev_info(&pf->pdev->dev, 6290 "add new vsi failed, ch->type %d\n", ch->type); 6291 return -EINVAL; 6292 } 6293 6294 memset(&ctxt, 0, sizeof(ctxt)); 6295 ctxt.pf_num = hw->pf_id; 6296 ctxt.vf_num = 0; 6297 ctxt.uplink_seid = uplink_seid; 6298 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6299 if (ch->type == I40E_VSI_VMDQ2) 6300 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6301 6302 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6303 ctxt.info.valid_sections |= 6304 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6305 ctxt.info.switch_id = 6306 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6307 } 6308 6309 /* Set queue map for a given VSI context */ 6310 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6311 6312 /* Now time to create VSI */ 6313 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6314 if (ret) { 6315 dev_info(&pf->pdev->dev, 6316 "add new vsi failed, err %pe aq_err %s\n", 6317 ERR_PTR(ret), 6318 i40e_aq_str(&pf->hw, 6319 pf->hw.aq.asq_last_status)); 6320 return -ENOENT; 6321 } 6322 6323 /* Success, update channel, set enabled_tc only if the channel 6324 * is not a macvlan 6325 */ 6326 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6327 ch->seid = ctxt.seid; 6328 ch->vsi_number = ctxt.vsi_number; 6329 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6330 6331 /* copy just the sections touched not the entire info 6332 * since not all sections are valid as returned by 6333 * update vsi params 6334 */ 6335 ch->info.mapping_flags = ctxt.info.mapping_flags; 6336 memcpy(&ch->info.queue_mapping, 6337 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6338 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6339 sizeof(ctxt.info.tc_mapping)); 6340 6341 return 0; 6342 } 6343 6344 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6345 u8 *bw_share) 6346 { 6347 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6348 int ret; 6349 int i; 6350 6351 memset(&bw_data, 0, sizeof(bw_data)); 6352 bw_data.tc_valid_bits = ch->enabled_tc; 6353 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6354 bw_data.tc_bw_credits[i] = bw_share[i]; 6355 6356 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6357 &bw_data, NULL); 6358 if (ret) { 6359 dev_info(&vsi->back->pdev->dev, 6360 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6361 vsi->back->hw.aq.asq_last_status, ch->seid); 6362 return -EINVAL; 6363 } 6364 6365 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6366 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6367 6368 return 0; 6369 } 6370 6371 /** 6372 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6373 * @pf: ptr to PF device 6374 * @vsi: the VSI being setup 6375 * @ch: ptr to channel structure 6376 * 6377 * Configure TX rings associated with channel (VSI) since queues are being 6378 * from parent VSI. 6379 **/ 6380 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6381 struct i40e_vsi *vsi, 6382 struct i40e_channel *ch) 6383 { 6384 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6385 int ret; 6386 int i; 6387 6388 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6389 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6390 if (ch->enabled_tc & BIT(i)) 6391 bw_share[i] = 1; 6392 } 6393 6394 /* configure BW for new VSI */ 6395 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6396 if (ret) { 6397 dev_info(&vsi->back->pdev->dev, 6398 "Failed configuring TC map %d for channel (seid %u)\n", 6399 ch->enabled_tc, ch->seid); 6400 return ret; 6401 } 6402 6403 for (i = 0; i < ch->num_queue_pairs; i++) { 6404 struct i40e_ring *tx_ring, *rx_ring; 6405 u16 pf_q; 6406 6407 pf_q = ch->base_queue + i; 6408 6409 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6410 * context 6411 */ 6412 tx_ring = vsi->tx_rings[pf_q]; 6413 tx_ring->ch = ch; 6414 6415 /* Get the RX ring ptr */ 6416 rx_ring = vsi->rx_rings[pf_q]; 6417 rx_ring->ch = ch; 6418 } 6419 6420 return 0; 6421 } 6422 6423 /** 6424 * i40e_setup_hw_channel - setup new channel 6425 * @pf: ptr to PF device 6426 * @vsi: the VSI being setup 6427 * @ch: ptr to channel structure 6428 * @uplink_seid: underlying HW switching element (VEB) ID 6429 * @type: type of channel to be created (VMDq2/VF) 6430 * 6431 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6432 * and configures TX rings accordingly 6433 **/ 6434 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6435 struct i40e_vsi *vsi, 6436 struct i40e_channel *ch, 6437 u16 uplink_seid, u8 type) 6438 { 6439 int ret; 6440 6441 ch->initialized = false; 6442 ch->base_queue = vsi->next_base_queue; 6443 ch->type = type; 6444 6445 /* Proceed with creation of channel (VMDq2) VSI */ 6446 ret = i40e_add_channel(pf, uplink_seid, ch); 6447 if (ret) { 6448 dev_info(&pf->pdev->dev, 6449 "failed to add_channel using uplink_seid %u\n", 6450 uplink_seid); 6451 return ret; 6452 } 6453 6454 /* Mark the successful creation of channel */ 6455 ch->initialized = true; 6456 6457 /* Reconfigure TX queues using QTX_CTL register */ 6458 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6459 if (ret) { 6460 dev_info(&pf->pdev->dev, 6461 "failed to configure TX rings for channel %u\n", 6462 ch->seid); 6463 return ret; 6464 } 6465 6466 /* update 'next_base_queue' */ 6467 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6468 dev_dbg(&pf->pdev->dev, 6469 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6470 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6471 ch->num_queue_pairs, 6472 vsi->next_base_queue); 6473 return ret; 6474 } 6475 6476 /** 6477 * i40e_setup_channel - setup new channel using uplink element 6478 * @pf: ptr to PF device 6479 * @vsi: pointer to the VSI to set up the channel within 6480 * @ch: ptr to channel structure 6481 * 6482 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6483 * and uplink switching element (uplink_seid) 6484 **/ 6485 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6486 struct i40e_channel *ch) 6487 { 6488 struct i40e_vsi *main_vsi; 6489 u8 vsi_type; 6490 u16 seid; 6491 int ret; 6492 6493 if (vsi->type == I40E_VSI_MAIN) { 6494 vsi_type = I40E_VSI_VMDQ2; 6495 } else { 6496 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6497 vsi->type); 6498 return false; 6499 } 6500 6501 /* underlying switching element */ 6502 main_vsi = i40e_pf_get_main_vsi(pf); 6503 seid = main_vsi->uplink_seid; 6504 6505 /* create channel (VSI), configure TX rings */ 6506 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6507 if (ret) { 6508 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6509 return false; 6510 } 6511 6512 return ch->initialized ? true : false; 6513 } 6514 6515 /** 6516 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6517 * @vsi: ptr to VSI which has PF backing 6518 * 6519 * Sets up switch mode correctly if it needs to be changed and perform 6520 * what are allowed modes. 6521 **/ 6522 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6523 { 6524 u8 mode; 6525 struct i40e_pf *pf = vsi->back; 6526 struct i40e_hw *hw = &pf->hw; 6527 int ret; 6528 6529 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6530 if (ret) 6531 return -EINVAL; 6532 6533 if (hw->dev_caps.switch_mode) { 6534 /* if switch mode is set, support mode2 (non-tunneled for 6535 * cloud filter) for now 6536 */ 6537 u32 switch_mode = hw->dev_caps.switch_mode & 6538 I40E_SWITCH_MODE_MASK; 6539 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6540 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6541 return 0; 6542 dev_err(&pf->pdev->dev, 6543 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6544 hw->dev_caps.switch_mode); 6545 return -EINVAL; 6546 } 6547 } 6548 6549 /* Set Bit 7 to be valid */ 6550 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6551 6552 /* Set L4type for TCP support */ 6553 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6554 6555 /* Set cloud filter mode */ 6556 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6557 6558 /* Prep mode field for set_switch_config */ 6559 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6560 pf->last_sw_conf_valid_flags, 6561 mode, NULL); 6562 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6563 dev_err(&pf->pdev->dev, 6564 "couldn't set switch config bits, err %pe aq_err %s\n", 6565 ERR_PTR(ret), 6566 i40e_aq_str(hw, 6567 hw->aq.asq_last_status)); 6568 6569 return ret; 6570 } 6571 6572 /** 6573 * i40e_create_queue_channel - function to create channel 6574 * @vsi: VSI to be configured 6575 * @ch: ptr to channel (it contains channel specific params) 6576 * 6577 * This function creates channel (VSI) using num_queues specified by user, 6578 * reconfigs RSS if needed. 6579 **/ 6580 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6581 struct i40e_channel *ch) 6582 { 6583 struct i40e_pf *pf = vsi->back; 6584 bool reconfig_rss; 6585 int err; 6586 6587 if (!ch) 6588 return -EINVAL; 6589 6590 if (!ch->num_queue_pairs) { 6591 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6592 ch->num_queue_pairs); 6593 return -EINVAL; 6594 } 6595 6596 /* validate user requested num_queues for channel */ 6597 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6598 &reconfig_rss); 6599 if (err) { 6600 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6601 ch->num_queue_pairs); 6602 return -EINVAL; 6603 } 6604 6605 /* By default we are in VEPA mode, if this is the first VF/VMDq 6606 * VSI to be added switch to VEB mode. 6607 */ 6608 6609 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6610 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6611 6612 if (vsi->type == I40E_VSI_MAIN) { 6613 if (i40e_is_tc_mqprio_enabled(pf)) 6614 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6615 else 6616 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6617 } 6618 /* now onwards for main VSI, number of queues will be value 6619 * of TC0's queue count 6620 */ 6621 } 6622 6623 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6624 * it should be more than num_queues 6625 */ 6626 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6627 dev_dbg(&pf->pdev->dev, 6628 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6629 vsi->cnt_q_avail, ch->num_queue_pairs); 6630 return -EINVAL; 6631 } 6632 6633 /* reconfig_rss only if vsi type is MAIN_VSI */ 6634 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6635 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6636 if (err) { 6637 dev_info(&pf->pdev->dev, 6638 "Error: unable to reconfig rss for num_queues (%u)\n", 6639 ch->num_queue_pairs); 6640 return -EINVAL; 6641 } 6642 } 6643 6644 if (!i40e_setup_channel(pf, vsi, ch)) { 6645 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6646 return -EINVAL; 6647 } 6648 6649 dev_info(&pf->pdev->dev, 6650 "Setup channel (id:%u) utilizing num_queues %d\n", 6651 ch->seid, ch->num_queue_pairs); 6652 6653 /* configure VSI for BW limit */ 6654 if (ch->max_tx_rate) { 6655 u64 credits = ch->max_tx_rate; 6656 6657 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6658 return -EINVAL; 6659 6660 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6661 dev_dbg(&pf->pdev->dev, 6662 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6663 ch->max_tx_rate, 6664 credits, 6665 ch->seid); 6666 } 6667 6668 /* in case of VF, this will be main SRIOV VSI */ 6669 ch->parent_vsi = vsi; 6670 6671 /* and update main_vsi's count for queue_available to use */ 6672 vsi->cnt_q_avail -= ch->num_queue_pairs; 6673 6674 return 0; 6675 } 6676 6677 /** 6678 * i40e_configure_queue_channels - Add queue channel for the given TCs 6679 * @vsi: VSI to be configured 6680 * 6681 * Configures queue channel mapping to the given TCs 6682 **/ 6683 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6684 { 6685 struct i40e_channel *ch; 6686 u64 max_rate = 0; 6687 int ret = 0, i; 6688 6689 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6690 vsi->tc_seid_map[0] = vsi->seid; 6691 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6692 if (vsi->tc_config.enabled_tc & BIT(i)) { 6693 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6694 if (!ch) { 6695 ret = -ENOMEM; 6696 goto err_free; 6697 } 6698 6699 INIT_LIST_HEAD(&ch->list); 6700 ch->num_queue_pairs = 6701 vsi->tc_config.tc_info[i].qcount; 6702 ch->base_queue = 6703 vsi->tc_config.tc_info[i].qoffset; 6704 6705 /* Bandwidth limit through tc interface is in bytes/s, 6706 * change to Mbit/s 6707 */ 6708 max_rate = vsi->mqprio_qopt.max_rate[i]; 6709 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6710 ch->max_tx_rate = max_rate; 6711 6712 list_add_tail(&ch->list, &vsi->ch_list); 6713 6714 ret = i40e_create_queue_channel(vsi, ch); 6715 if (ret) { 6716 dev_err(&vsi->back->pdev->dev, 6717 "Failed creating queue channel with TC%d: queues %d\n", 6718 i, ch->num_queue_pairs); 6719 goto err_free; 6720 } 6721 vsi->tc_seid_map[i] = ch->seid; 6722 } 6723 } 6724 6725 /* reset to reconfigure TX queue contexts */ 6726 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6727 return ret; 6728 6729 err_free: 6730 i40e_remove_queue_channels(vsi); 6731 return ret; 6732 } 6733 6734 /** 6735 * i40e_veb_config_tc - Configure TCs for given VEB 6736 * @veb: given VEB 6737 * @enabled_tc: TC bitmap 6738 * 6739 * Configures given TC bitmap for VEB (switching) element 6740 **/ 6741 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6742 { 6743 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6744 struct i40e_pf *pf = veb->pf; 6745 int ret = 0; 6746 int i; 6747 6748 /* No TCs or already enabled TCs just return */ 6749 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6750 return ret; 6751 6752 bw_data.tc_valid_bits = enabled_tc; 6753 /* bw_data.absolute_credits is not set (relative) */ 6754 6755 /* Enable ETS TCs with equal BW Share for now */ 6756 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6757 if (enabled_tc & BIT(i)) 6758 bw_data.tc_bw_share_credits[i] = 1; 6759 } 6760 6761 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6762 &bw_data, NULL); 6763 if (ret) { 6764 dev_info(&pf->pdev->dev, 6765 "VEB bw config failed, err %pe aq_err %s\n", 6766 ERR_PTR(ret), 6767 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6768 goto out; 6769 } 6770 6771 /* Update the BW information */ 6772 ret = i40e_veb_get_bw_info(veb); 6773 if (ret) { 6774 dev_info(&pf->pdev->dev, 6775 "Failed getting veb bw config, err %pe aq_err %s\n", 6776 ERR_PTR(ret), 6777 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6778 } 6779 6780 out: 6781 return ret; 6782 } 6783 6784 #ifdef CONFIG_I40E_DCB 6785 /** 6786 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6787 * @pf: PF struct 6788 * 6789 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6790 * the caller would've quiesce all the VSIs before calling 6791 * this function 6792 **/ 6793 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6794 { 6795 struct i40e_vsi *vsi; 6796 struct i40e_veb *veb; 6797 u8 tc_map = 0; 6798 int ret; 6799 int v; 6800 6801 /* Enable the TCs available on PF to all VEBs */ 6802 tc_map = i40e_pf_get_tc_map(pf); 6803 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6804 return; 6805 6806 i40e_pf_for_each_veb(pf, v, veb) { 6807 ret = i40e_veb_config_tc(veb, tc_map); 6808 if (ret) { 6809 dev_info(&pf->pdev->dev, 6810 "Failed configuring TC for VEB seid=%d\n", 6811 veb->seid); 6812 /* Will try to configure as many components */ 6813 } 6814 } 6815 6816 /* Update each VSI */ 6817 i40e_pf_for_each_vsi(pf, v, vsi) { 6818 /* - Enable all TCs for the LAN VSI 6819 * - For all others keep them at TC0 for now 6820 */ 6821 if (vsi->type == I40E_VSI_MAIN) 6822 tc_map = i40e_pf_get_tc_map(pf); 6823 else 6824 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6825 6826 ret = i40e_vsi_config_tc(vsi, tc_map); 6827 if (ret) { 6828 dev_info(&pf->pdev->dev, 6829 "Failed configuring TC for VSI seid=%d\n", 6830 vsi->seid); 6831 /* Will try to configure as many components */ 6832 } else { 6833 /* Re-configure VSI vectors based on updated TC map */ 6834 i40e_vsi_map_rings_to_vectors(vsi); 6835 if (vsi->netdev) 6836 i40e_dcbnl_set_all(vsi); 6837 } 6838 } 6839 } 6840 6841 /** 6842 * i40e_resume_port_tx - Resume port Tx 6843 * @pf: PF struct 6844 * 6845 * Resume a port's Tx and issue a PF reset in case of failure to 6846 * resume. 6847 **/ 6848 static int i40e_resume_port_tx(struct i40e_pf *pf) 6849 { 6850 struct i40e_hw *hw = &pf->hw; 6851 int ret; 6852 6853 ret = i40e_aq_resume_port_tx(hw, NULL); 6854 if (ret) { 6855 dev_info(&pf->pdev->dev, 6856 "Resume Port Tx failed, err %pe aq_err %s\n", 6857 ERR_PTR(ret), 6858 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6859 /* Schedule PF reset to recover */ 6860 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6861 i40e_service_event_schedule(pf); 6862 } 6863 6864 return ret; 6865 } 6866 6867 /** 6868 * i40e_suspend_port_tx - Suspend port Tx 6869 * @pf: PF struct 6870 * 6871 * Suspend a port's Tx and issue a PF reset in case of failure. 6872 **/ 6873 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6874 { 6875 struct i40e_hw *hw = &pf->hw; 6876 int ret; 6877 6878 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6879 if (ret) { 6880 dev_info(&pf->pdev->dev, 6881 "Suspend Port Tx failed, err %pe aq_err %s\n", 6882 ERR_PTR(ret), 6883 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6884 /* Schedule PF reset to recover */ 6885 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6886 i40e_service_event_schedule(pf); 6887 } 6888 6889 return ret; 6890 } 6891 6892 /** 6893 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6894 * @pf: PF being configured 6895 * @new_cfg: New DCBX configuration 6896 * 6897 * Program DCB settings into HW and reconfigure VEB/VSIs on 6898 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6899 **/ 6900 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6901 struct i40e_dcbx_config *new_cfg) 6902 { 6903 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6904 int ret; 6905 6906 /* Check if need reconfiguration */ 6907 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6908 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6909 return 0; 6910 } 6911 6912 /* Config change disable all VSIs */ 6913 i40e_pf_quiesce_all_vsi(pf); 6914 6915 /* Copy the new config to the current config */ 6916 *old_cfg = *new_cfg; 6917 old_cfg->etsrec = old_cfg->etscfg; 6918 ret = i40e_set_dcb_config(&pf->hw); 6919 if (ret) { 6920 dev_info(&pf->pdev->dev, 6921 "Set DCB Config failed, err %pe aq_err %s\n", 6922 ERR_PTR(ret), 6923 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6924 goto out; 6925 } 6926 6927 /* Changes in configuration update VEB/VSI */ 6928 i40e_dcb_reconfigure(pf); 6929 out: 6930 /* In case of reset do not try to resume anything */ 6931 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6932 /* Re-start the VSIs if disabled */ 6933 ret = i40e_resume_port_tx(pf); 6934 /* In case of error no point in resuming VSIs */ 6935 if (ret) 6936 goto err; 6937 i40e_pf_unquiesce_all_vsi(pf); 6938 } 6939 err: 6940 return ret; 6941 } 6942 6943 /** 6944 * i40e_hw_dcb_config - Program new DCBX settings into HW 6945 * @pf: PF being configured 6946 * @new_cfg: New DCBX configuration 6947 * 6948 * Program DCB settings into HW and reconfigure VEB/VSIs on 6949 * given PF 6950 **/ 6951 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6952 { 6953 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6954 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6955 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6956 struct i40e_dcbx_config *old_cfg; 6957 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6958 struct i40e_rx_pb_config pb_cfg; 6959 struct i40e_hw *hw = &pf->hw; 6960 u8 num_ports = hw->num_ports; 6961 bool need_reconfig; 6962 int ret = -EINVAL; 6963 u8 lltc_map = 0; 6964 u8 tc_map = 0; 6965 u8 new_numtc; 6966 u8 i; 6967 6968 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6969 /* Un-pack information to Program ETS HW via shared API 6970 * numtc, tcmap 6971 * LLTC map 6972 * ETS/NON-ETS arbiter mode 6973 * max exponent (credit refills) 6974 * Total number of ports 6975 * PFC priority bit-map 6976 * Priority Table 6977 * BW % per TC 6978 * Arbiter mode between UPs sharing same TC 6979 * TSA table (ETS or non-ETS) 6980 * EEE enabled or not 6981 * MFS TC table 6982 */ 6983 6984 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6985 6986 memset(&ets_data, 0, sizeof(ets_data)); 6987 for (i = 0; i < new_numtc; i++) { 6988 tc_map |= BIT(i); 6989 switch (new_cfg->etscfg.tsatable[i]) { 6990 case I40E_IEEE_TSA_ETS: 6991 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6992 ets_data.tc_bw_share_credits[i] = 6993 new_cfg->etscfg.tcbwtable[i]; 6994 break; 6995 case I40E_IEEE_TSA_STRICT: 6996 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6997 lltc_map |= BIT(i); 6998 ets_data.tc_bw_share_credits[i] = 6999 I40E_DCB_STRICT_PRIO_CREDITS; 7000 break; 7001 default: 7002 /* Invalid TSA type */ 7003 need_reconfig = false; 7004 goto out; 7005 } 7006 } 7007 7008 old_cfg = &hw->local_dcbx_config; 7009 /* Check if need reconfiguration */ 7010 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 7011 7012 /* If needed, enable/disable frame tagging, disable all VSIs 7013 * and suspend port tx 7014 */ 7015 if (need_reconfig) { 7016 /* Enable DCB tagging only when more than one TC */ 7017 if (new_numtc > 1) 7018 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7019 else 7020 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7021 7022 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7023 /* Reconfiguration needed quiesce all VSIs */ 7024 i40e_pf_quiesce_all_vsi(pf); 7025 ret = i40e_suspend_port_tx(pf); 7026 if (ret) 7027 goto err; 7028 } 7029 7030 /* Configure Port ETS Tx Scheduler */ 7031 ets_data.tc_valid_bits = tc_map; 7032 ets_data.tc_strict_priority_flags = lltc_map; 7033 ret = i40e_aq_config_switch_comp_ets 7034 (hw, pf->mac_seid, &ets_data, 7035 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7036 if (ret) { 7037 dev_info(&pf->pdev->dev, 7038 "Modify Port ETS failed, err %pe aq_err %s\n", 7039 ERR_PTR(ret), 7040 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7041 goto out; 7042 } 7043 7044 /* Configure Rx ETS HW */ 7045 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7046 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7047 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7048 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7049 I40E_DCB_DEFAULT_MAX_EXPONENT, 7050 lltc_map); 7051 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7052 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7053 prio_type); 7054 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7055 new_cfg->etscfg.prioritytable); 7056 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7057 7058 /* Configure Rx Packet Buffers in HW */ 7059 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7060 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 7061 7062 mfs_tc[i] = main_vsi->netdev->mtu; 7063 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7064 } 7065 7066 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7067 false, new_cfg->pfc.pfcenable, 7068 mfs_tc, &pb_cfg); 7069 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7070 7071 /* Update the local Rx Packet buffer config */ 7072 pf->pb_cfg = pb_cfg; 7073 7074 /* Inform the FW about changes to DCB configuration */ 7075 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7076 if (ret) { 7077 dev_info(&pf->pdev->dev, 7078 "DCB Updated failed, err %pe aq_err %s\n", 7079 ERR_PTR(ret), 7080 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7081 goto out; 7082 } 7083 7084 /* Update the port DCBx configuration */ 7085 *old_cfg = *new_cfg; 7086 7087 /* Changes in configuration update VEB/VSI */ 7088 i40e_dcb_reconfigure(pf); 7089 out: 7090 /* Re-start the VSIs if disabled */ 7091 if (need_reconfig) { 7092 ret = i40e_resume_port_tx(pf); 7093 7094 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7095 /* In case of error no point in resuming VSIs */ 7096 if (ret) 7097 goto err; 7098 7099 /* Wait for the PF's queues to be disabled */ 7100 ret = i40e_pf_wait_queues_disabled(pf); 7101 if (ret) { 7102 /* Schedule PF reset to recover */ 7103 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7104 i40e_service_event_schedule(pf); 7105 goto err; 7106 } else { 7107 i40e_pf_unquiesce_all_vsi(pf); 7108 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7109 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7110 } 7111 /* registers are set, lets apply */ 7112 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7113 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7114 } 7115 7116 err: 7117 return ret; 7118 } 7119 7120 /** 7121 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7122 * @pf: PF being queried 7123 * 7124 * Set default DCB configuration in case DCB is to be done in SW. 7125 **/ 7126 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7127 { 7128 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7129 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7130 struct i40e_hw *hw = &pf->hw; 7131 int err; 7132 7133 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7134 /* Update the local cached instance with TC0 ETS */ 7135 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7136 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7137 pf->tmp_cfg.etscfg.maxtcs = 0; 7138 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7139 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7140 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7141 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7142 /* FW needs one App to configure HW */ 7143 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7144 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7145 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7146 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7147 7148 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7149 } 7150 7151 memset(&ets_data, 0, sizeof(ets_data)); 7152 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7153 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7154 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7155 7156 /* Enable ETS on the Physical port */ 7157 err = i40e_aq_config_switch_comp_ets 7158 (hw, pf->mac_seid, &ets_data, 7159 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7160 if (err) { 7161 dev_info(&pf->pdev->dev, 7162 "Enable Port ETS failed, err %pe aq_err %s\n", 7163 ERR_PTR(err), 7164 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7165 err = -ENOENT; 7166 goto out; 7167 } 7168 7169 /* Update the local cached instance with TC0 ETS */ 7170 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7171 dcb_cfg->etscfg.cbs = 0; 7172 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7173 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7174 7175 out: 7176 return err; 7177 } 7178 7179 /** 7180 * i40e_init_pf_dcb - Initialize DCB configuration 7181 * @pf: PF being configured 7182 * 7183 * Query the current DCB configuration and cache it 7184 * in the hardware structure 7185 **/ 7186 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7187 { 7188 struct i40e_hw *hw = &pf->hw; 7189 int err; 7190 7191 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7192 * Also do not enable DCBx if FW LLDP agent is disabled 7193 */ 7194 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7195 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7196 err = -EOPNOTSUPP; 7197 goto out; 7198 } 7199 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7200 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7201 err = i40e_dcb_sw_default_config(pf); 7202 if (err) { 7203 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7204 goto out; 7205 } 7206 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7207 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7208 DCB_CAP_DCBX_VER_IEEE; 7209 /* at init capable but disabled */ 7210 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7211 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7212 goto out; 7213 } 7214 err = i40e_init_dcb(hw, true); 7215 if (!err) { 7216 /* Device/Function is not DCBX capable */ 7217 if ((!hw->func_caps.dcb) || 7218 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7219 dev_info(&pf->pdev->dev, 7220 "DCBX offload is not supported or is disabled for this PF.\n"); 7221 } else { 7222 /* When status is not DISABLED then DCBX in FW */ 7223 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7224 DCB_CAP_DCBX_VER_IEEE; 7225 7226 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7227 /* Enable DCB tagging only when more than one TC 7228 * or explicitly disable if only one TC 7229 */ 7230 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7231 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7232 else 7233 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7234 dev_dbg(&pf->pdev->dev, 7235 "DCBX offload is supported for this PF.\n"); 7236 } 7237 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7238 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7239 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7240 } else { 7241 dev_info(&pf->pdev->dev, 7242 "Query for DCB configuration failed, err %pe aq_err %s\n", 7243 ERR_PTR(err), 7244 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7245 } 7246 7247 out: 7248 return err; 7249 } 7250 #endif /* CONFIG_I40E_DCB */ 7251 7252 static void i40e_print_link_message_eee(struct i40e_vsi *vsi, 7253 const char *speed, const char *fc) 7254 { 7255 struct ethtool_keee kedata; 7256 7257 memzero_explicit(&kedata, sizeof(kedata)); 7258 if (vsi->netdev->ethtool_ops->get_eee) 7259 vsi->netdev->ethtool_ops->get_eee(vsi->netdev, &kedata); 7260 7261 if (!linkmode_empty(kedata.supported)) 7262 netdev_info(vsi->netdev, 7263 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s, EEE: %s\n", 7264 speed, fc, 7265 kedata.eee_enabled ? "Enabled" : "Disabled"); 7266 else 7267 netdev_info(vsi->netdev, 7268 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7269 speed, fc); 7270 } 7271 7272 /** 7273 * i40e_print_link_message - print link up or down 7274 * @vsi: the VSI for which link needs a message 7275 * @isup: true of link is up, false otherwise 7276 */ 7277 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7278 { 7279 enum i40e_aq_link_speed new_speed; 7280 struct i40e_pf *pf = vsi->back; 7281 char *speed = "Unknown"; 7282 char *fc = "Unknown"; 7283 char *fec = ""; 7284 char *req_fec = ""; 7285 char *an = ""; 7286 7287 if (isup) 7288 new_speed = pf->hw.phy.link_info.link_speed; 7289 else 7290 new_speed = I40E_LINK_SPEED_UNKNOWN; 7291 7292 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7293 return; 7294 vsi->current_isup = isup; 7295 vsi->current_speed = new_speed; 7296 if (!isup) { 7297 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7298 return; 7299 } 7300 7301 /* Warn user if link speed on NPAR enabled partition is not at 7302 * least 10GB 7303 */ 7304 if (pf->hw.func_caps.npar_enable && 7305 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7306 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7307 netdev_warn(vsi->netdev, 7308 "The partition detected link speed that is less than 10Gbps\n"); 7309 7310 switch (pf->hw.phy.link_info.link_speed) { 7311 case I40E_LINK_SPEED_40GB: 7312 speed = "40 G"; 7313 break; 7314 case I40E_LINK_SPEED_20GB: 7315 speed = "20 G"; 7316 break; 7317 case I40E_LINK_SPEED_25GB: 7318 speed = "25 G"; 7319 break; 7320 case I40E_LINK_SPEED_10GB: 7321 speed = "10 G"; 7322 break; 7323 case I40E_LINK_SPEED_5GB: 7324 speed = "5 G"; 7325 break; 7326 case I40E_LINK_SPEED_2_5GB: 7327 speed = "2.5 G"; 7328 break; 7329 case I40E_LINK_SPEED_1GB: 7330 speed = "1000 M"; 7331 break; 7332 case I40E_LINK_SPEED_100MB: 7333 speed = "100 M"; 7334 break; 7335 default: 7336 break; 7337 } 7338 7339 switch (pf->hw.fc.current_mode) { 7340 case I40E_FC_FULL: 7341 fc = "RX/TX"; 7342 break; 7343 case I40E_FC_TX_PAUSE: 7344 fc = "TX"; 7345 break; 7346 case I40E_FC_RX_PAUSE: 7347 fc = "RX"; 7348 break; 7349 default: 7350 fc = "None"; 7351 break; 7352 } 7353 7354 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7355 req_fec = "None"; 7356 fec = "None"; 7357 an = "False"; 7358 7359 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7360 an = "True"; 7361 7362 if (pf->hw.phy.link_info.fec_info & 7363 I40E_AQ_CONFIG_FEC_KR_ENA) 7364 fec = "CL74 FC-FEC/BASE-R"; 7365 else if (pf->hw.phy.link_info.fec_info & 7366 I40E_AQ_CONFIG_FEC_RS_ENA) 7367 fec = "CL108 RS-FEC"; 7368 7369 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7370 * both RS and FC are requested 7371 */ 7372 if (vsi->back->hw.phy.link_info.req_fec_info & 7373 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7374 if (vsi->back->hw.phy.link_info.req_fec_info & 7375 I40E_AQ_REQUEST_FEC_RS) 7376 req_fec = "CL108 RS-FEC"; 7377 else 7378 req_fec = "CL74 FC-FEC/BASE-R"; 7379 } 7380 netdev_info(vsi->netdev, 7381 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7382 speed, req_fec, fec, an, fc); 7383 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7384 req_fec = "None"; 7385 fec = "None"; 7386 an = "False"; 7387 7388 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7389 an = "True"; 7390 7391 if (pf->hw.phy.link_info.fec_info & 7392 I40E_AQ_CONFIG_FEC_KR_ENA) 7393 fec = "CL74 FC-FEC/BASE-R"; 7394 7395 if (pf->hw.phy.link_info.req_fec_info & 7396 I40E_AQ_REQUEST_FEC_KR) 7397 req_fec = "CL74 FC-FEC/BASE-R"; 7398 7399 netdev_info(vsi->netdev, 7400 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7401 speed, req_fec, fec, an, fc); 7402 } else { 7403 i40e_print_link_message_eee(vsi, speed, fc); 7404 } 7405 7406 } 7407 7408 /** 7409 * i40e_up_complete - Finish the last steps of bringing up a connection 7410 * @vsi: the VSI being configured 7411 **/ 7412 static int i40e_up_complete(struct i40e_vsi *vsi) 7413 { 7414 struct i40e_pf *pf = vsi->back; 7415 int err; 7416 7417 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7418 i40e_vsi_configure_msix(vsi); 7419 else 7420 i40e_configure_msi_and_legacy(vsi); 7421 7422 /* start rings */ 7423 err = i40e_vsi_start_rings(vsi); 7424 if (err) 7425 return err; 7426 7427 clear_bit(__I40E_VSI_DOWN, vsi->state); 7428 i40e_napi_enable_all(vsi); 7429 i40e_vsi_enable_irq(vsi); 7430 7431 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7432 (vsi->netdev)) { 7433 i40e_print_link_message(vsi, true); 7434 netif_tx_start_all_queues(vsi->netdev); 7435 netif_carrier_on(vsi->netdev); 7436 } 7437 7438 /* replay FDIR SB filters */ 7439 if (vsi->type == I40E_VSI_FDIR) { 7440 /* reset fd counters */ 7441 pf->fd_add_err = 0; 7442 pf->fd_atr_cnt = 0; 7443 i40e_fdir_filter_restore(vsi); 7444 } 7445 7446 /* On the next run of the service_task, notify any clients of the new 7447 * opened netdev 7448 */ 7449 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7450 i40e_service_event_schedule(pf); 7451 7452 return 0; 7453 } 7454 7455 /** 7456 * i40e_vsi_reinit_locked - Reset the VSI 7457 * @vsi: the VSI being configured 7458 * 7459 * Rebuild the ring structs after some configuration 7460 * has changed, e.g. MTU size. 7461 **/ 7462 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7463 { 7464 struct i40e_pf *pf = vsi->back; 7465 7466 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7467 usleep_range(1000, 2000); 7468 i40e_down(vsi); 7469 7470 i40e_up(vsi); 7471 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7472 } 7473 7474 /** 7475 * i40e_force_link_state - Force the link status 7476 * @pf: board private structure 7477 * @is_up: whether the link state should be forced up or down 7478 **/ 7479 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7480 { 7481 struct i40e_aq_get_phy_abilities_resp abilities; 7482 struct i40e_aq_set_phy_config config = {0}; 7483 bool non_zero_phy_type = is_up; 7484 struct i40e_hw *hw = &pf->hw; 7485 u64 mask; 7486 u8 speed; 7487 int err; 7488 7489 /* Card might've been put in an unstable state by other drivers 7490 * and applications, which causes incorrect speed values being 7491 * set on startup. In order to clear speed registers, we call 7492 * get_phy_capabilities twice, once to get initial state of 7493 * available speeds, and once to get current PHY config. 7494 */ 7495 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7496 NULL); 7497 if (err) { 7498 dev_err(&pf->pdev->dev, 7499 "failed to get phy cap., ret = %pe last_status = %s\n", 7500 ERR_PTR(err), 7501 i40e_aq_str(hw, hw->aq.asq_last_status)); 7502 return err; 7503 } 7504 speed = abilities.link_speed; 7505 7506 /* Get the current phy config */ 7507 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7508 NULL); 7509 if (err) { 7510 dev_err(&pf->pdev->dev, 7511 "failed to get phy cap., ret = %pe last_status = %s\n", 7512 ERR_PTR(err), 7513 i40e_aq_str(hw, hw->aq.asq_last_status)); 7514 return err; 7515 } 7516 7517 /* If link needs to go up, but was not forced to go down, 7518 * and its speed values are OK, no need for a flap 7519 * if non_zero_phy_type was set, still need to force up 7520 */ 7521 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7522 non_zero_phy_type = true; 7523 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7524 return 0; 7525 7526 /* To force link we need to set bits for all supported PHY types, 7527 * but there are now more than 32, so we need to split the bitmap 7528 * across two fields. 7529 */ 7530 mask = I40E_PHY_TYPES_BITMASK; 7531 config.phy_type = 7532 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7533 config.phy_type_ext = 7534 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7535 /* Copy the old settings, except of phy_type */ 7536 config.abilities = abilities.abilities; 7537 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7538 if (is_up) 7539 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7540 else 7541 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7542 } 7543 if (abilities.link_speed != 0) 7544 config.link_speed = abilities.link_speed; 7545 else 7546 config.link_speed = speed; 7547 config.eee_capability = abilities.eee_capability; 7548 config.eeer = abilities.eeer_val; 7549 config.low_power_ctrl = abilities.d3_lpan; 7550 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7551 I40E_AQ_PHY_FEC_CONFIG_MASK; 7552 err = i40e_aq_set_phy_config(hw, &config, NULL); 7553 7554 if (err) { 7555 dev_err(&pf->pdev->dev, 7556 "set phy config ret = %pe last_status = %s\n", 7557 ERR_PTR(err), 7558 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7559 return err; 7560 } 7561 7562 /* Update the link info */ 7563 err = i40e_update_link_info(hw); 7564 if (err) { 7565 /* Wait a little bit (on 40G cards it sometimes takes a really 7566 * long time for link to come back from the atomic reset) 7567 * and try once more 7568 */ 7569 msleep(1000); 7570 i40e_update_link_info(hw); 7571 } 7572 7573 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7574 7575 return 0; 7576 } 7577 7578 /** 7579 * i40e_up - Bring the connection back up after being down 7580 * @vsi: the VSI being configured 7581 **/ 7582 int i40e_up(struct i40e_vsi *vsi) 7583 { 7584 int err; 7585 7586 if (vsi->type == I40E_VSI_MAIN && 7587 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7588 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7589 i40e_force_link_state(vsi->back, true); 7590 7591 err = i40e_vsi_configure(vsi); 7592 if (!err) 7593 err = i40e_up_complete(vsi); 7594 7595 return err; 7596 } 7597 7598 /** 7599 * i40e_down - Shutdown the connection processing 7600 * @vsi: the VSI being stopped 7601 **/ 7602 void i40e_down(struct i40e_vsi *vsi) 7603 { 7604 int i; 7605 7606 /* It is assumed that the caller of this function 7607 * sets the vsi->state __I40E_VSI_DOWN bit. 7608 */ 7609 if (vsi->netdev) { 7610 netif_carrier_off(vsi->netdev); 7611 netif_tx_disable(vsi->netdev); 7612 } 7613 i40e_vsi_disable_irq(vsi); 7614 i40e_vsi_stop_rings(vsi); 7615 if (vsi->type == I40E_VSI_MAIN && 7616 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7617 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7618 i40e_force_link_state(vsi->back, false); 7619 i40e_napi_disable_all(vsi); 7620 7621 for (i = 0; i < vsi->num_queue_pairs; i++) { 7622 i40e_clean_tx_ring(vsi->tx_rings[i]); 7623 if (i40e_enabled_xdp_vsi(vsi)) { 7624 /* Make sure that in-progress ndo_xdp_xmit and 7625 * ndo_xsk_wakeup calls are completed. 7626 */ 7627 synchronize_rcu(); 7628 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7629 } 7630 i40e_clean_rx_ring(vsi->rx_rings[i]); 7631 } 7632 7633 } 7634 7635 /** 7636 * i40e_validate_mqprio_qopt- validate queue mapping info 7637 * @vsi: the VSI being configured 7638 * @mqprio_qopt: queue parametrs 7639 **/ 7640 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7641 struct tc_mqprio_qopt_offload *mqprio_qopt) 7642 { 7643 u64 sum_max_rate = 0; 7644 u64 max_rate = 0; 7645 int i; 7646 7647 if (mqprio_qopt->qopt.offset[0] != 0 || 7648 mqprio_qopt->qopt.num_tc < 1 || 7649 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7650 return -EINVAL; 7651 for (i = 0; ; i++) { 7652 if (!mqprio_qopt->qopt.count[i]) 7653 return -EINVAL; 7654 if (mqprio_qopt->min_rate[i]) { 7655 dev_err(&vsi->back->pdev->dev, 7656 "Invalid min tx rate (greater than 0) specified\n"); 7657 return -EINVAL; 7658 } 7659 max_rate = mqprio_qopt->max_rate[i]; 7660 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7661 sum_max_rate += max_rate; 7662 7663 if (i >= mqprio_qopt->qopt.num_tc - 1) 7664 break; 7665 if (mqprio_qopt->qopt.offset[i + 1] != 7666 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7667 return -EINVAL; 7668 } 7669 if (vsi->num_queue_pairs < 7670 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7671 dev_err(&vsi->back->pdev->dev, 7672 "Failed to create traffic channel, insufficient number of queues.\n"); 7673 return -EINVAL; 7674 } 7675 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7676 dev_err(&vsi->back->pdev->dev, 7677 "Invalid max tx rate specified\n"); 7678 return -EINVAL; 7679 } 7680 return 0; 7681 } 7682 7683 /** 7684 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7685 * @vsi: the VSI being configured 7686 **/ 7687 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7688 { 7689 u16 qcount; 7690 int i; 7691 7692 /* Only TC0 is enabled */ 7693 vsi->tc_config.numtc = 1; 7694 vsi->tc_config.enabled_tc = 1; 7695 qcount = min_t(int, vsi->alloc_queue_pairs, 7696 i40e_pf_get_max_q_per_tc(vsi->back)); 7697 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7698 /* For the TC that is not enabled set the offset to default 7699 * queue and allocate one queue for the given TC. 7700 */ 7701 vsi->tc_config.tc_info[i].qoffset = 0; 7702 if (i == 0) 7703 vsi->tc_config.tc_info[i].qcount = qcount; 7704 else 7705 vsi->tc_config.tc_info[i].qcount = 1; 7706 vsi->tc_config.tc_info[i].netdev_tc = 0; 7707 } 7708 } 7709 7710 /** 7711 * i40e_del_macvlan_filter 7712 * @hw: pointer to the HW structure 7713 * @seid: seid of the channel VSI 7714 * @macaddr: the mac address to apply as a filter 7715 * @aq_err: store the admin Q error 7716 * 7717 * This function deletes a mac filter on the channel VSI which serves as the 7718 * macvlan. Returns 0 on success. 7719 **/ 7720 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7721 const u8 *macaddr, int *aq_err) 7722 { 7723 struct i40e_aqc_remove_macvlan_element_data element; 7724 int status; 7725 7726 memset(&element, 0, sizeof(element)); 7727 ether_addr_copy(element.mac_addr, macaddr); 7728 element.vlan_tag = 0; 7729 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7730 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7731 *aq_err = hw->aq.asq_last_status; 7732 7733 return status; 7734 } 7735 7736 /** 7737 * i40e_add_macvlan_filter 7738 * @hw: pointer to the HW structure 7739 * @seid: seid of the channel VSI 7740 * @macaddr: the mac address to apply as a filter 7741 * @aq_err: store the admin Q error 7742 * 7743 * This function adds a mac filter on the channel VSI which serves as the 7744 * macvlan. Returns 0 on success. 7745 **/ 7746 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7747 const u8 *macaddr, int *aq_err) 7748 { 7749 struct i40e_aqc_add_macvlan_element_data element; 7750 u16 cmd_flags = 0; 7751 int status; 7752 7753 ether_addr_copy(element.mac_addr, macaddr); 7754 element.vlan_tag = 0; 7755 element.queue_number = 0; 7756 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7757 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7758 element.flags = cpu_to_le16(cmd_flags); 7759 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7760 *aq_err = hw->aq.asq_last_status; 7761 7762 return status; 7763 } 7764 7765 /** 7766 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7767 * @vsi: the VSI we want to access 7768 * @ch: the channel we want to access 7769 */ 7770 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7771 { 7772 struct i40e_ring *tx_ring, *rx_ring; 7773 u16 pf_q; 7774 int i; 7775 7776 for (i = 0; i < ch->num_queue_pairs; i++) { 7777 pf_q = ch->base_queue + i; 7778 tx_ring = vsi->tx_rings[pf_q]; 7779 tx_ring->ch = NULL; 7780 rx_ring = vsi->rx_rings[pf_q]; 7781 rx_ring->ch = NULL; 7782 } 7783 } 7784 7785 /** 7786 * i40e_free_macvlan_channels 7787 * @vsi: the VSI we want to access 7788 * 7789 * This function frees the Qs of the channel VSI from 7790 * the stack and also deletes the channel VSIs which 7791 * serve as macvlans. 7792 */ 7793 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7794 { 7795 struct i40e_channel *ch, *ch_tmp; 7796 int ret; 7797 7798 if (list_empty(&vsi->macvlan_list)) 7799 return; 7800 7801 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7802 struct i40e_vsi *parent_vsi; 7803 7804 if (i40e_is_channel_macvlan(ch)) { 7805 i40e_reset_ch_rings(vsi, ch); 7806 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7807 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7808 netdev_set_sb_channel(ch->fwd->netdev, 0); 7809 kfree(ch->fwd); 7810 ch->fwd = NULL; 7811 } 7812 7813 list_del(&ch->list); 7814 parent_vsi = ch->parent_vsi; 7815 if (!parent_vsi || !ch->initialized) { 7816 kfree(ch); 7817 continue; 7818 } 7819 7820 /* remove the VSI */ 7821 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7822 NULL); 7823 if (ret) 7824 dev_err(&vsi->back->pdev->dev, 7825 "unable to remove channel (%d) for parent VSI(%d)\n", 7826 ch->seid, parent_vsi->seid); 7827 kfree(ch); 7828 } 7829 vsi->macvlan_cnt = 0; 7830 } 7831 7832 /** 7833 * i40e_fwd_ring_up - bring the macvlan device up 7834 * @vsi: the VSI we want to access 7835 * @vdev: macvlan netdevice 7836 * @fwd: the private fwd structure 7837 */ 7838 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7839 struct i40e_fwd_adapter *fwd) 7840 { 7841 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7842 int ret = 0, num_tc = 1, i, aq_err; 7843 struct i40e_pf *pf = vsi->back; 7844 struct i40e_hw *hw = &pf->hw; 7845 7846 /* Go through the list and find an available channel */ 7847 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7848 if (!i40e_is_channel_macvlan(iter)) { 7849 iter->fwd = fwd; 7850 /* record configuration for macvlan interface in vdev */ 7851 for (i = 0; i < num_tc; i++) 7852 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7853 i, 7854 iter->num_queue_pairs, 7855 iter->base_queue); 7856 for (i = 0; i < iter->num_queue_pairs; i++) { 7857 struct i40e_ring *tx_ring, *rx_ring; 7858 u16 pf_q; 7859 7860 pf_q = iter->base_queue + i; 7861 7862 /* Get to TX ring ptr */ 7863 tx_ring = vsi->tx_rings[pf_q]; 7864 tx_ring->ch = iter; 7865 7866 /* Get the RX ring ptr */ 7867 rx_ring = vsi->rx_rings[pf_q]; 7868 rx_ring->ch = iter; 7869 } 7870 ch = iter; 7871 break; 7872 } 7873 } 7874 7875 if (!ch) 7876 return -EINVAL; 7877 7878 /* Guarantee all rings are updated before we update the 7879 * MAC address filter. 7880 */ 7881 wmb(); 7882 7883 /* Add a mac filter */ 7884 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7885 if (ret) { 7886 /* if we cannot add the MAC rule then disable the offload */ 7887 macvlan_release_l2fw_offload(vdev); 7888 for (i = 0; i < ch->num_queue_pairs; i++) { 7889 struct i40e_ring *rx_ring; 7890 u16 pf_q; 7891 7892 pf_q = ch->base_queue + i; 7893 rx_ring = vsi->rx_rings[pf_q]; 7894 rx_ring->netdev = NULL; 7895 } 7896 dev_info(&pf->pdev->dev, 7897 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7898 ERR_PTR(ret), 7899 i40e_aq_str(hw, aq_err)); 7900 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7901 } 7902 7903 return ret; 7904 } 7905 7906 /** 7907 * i40e_setup_macvlans - create the channels which will be macvlans 7908 * @vsi: the VSI we want to access 7909 * @macvlan_cnt: no. of macvlans to be setup 7910 * @qcnt: no. of Qs per macvlan 7911 * @vdev: macvlan netdevice 7912 */ 7913 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7914 struct net_device *vdev) 7915 { 7916 struct i40e_pf *pf = vsi->back; 7917 struct i40e_hw *hw = &pf->hw; 7918 struct i40e_vsi_context ctxt; 7919 u16 sections, qmap, num_qps; 7920 struct i40e_channel *ch; 7921 int i, pow, ret = 0; 7922 u8 offset = 0; 7923 7924 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7925 return -EINVAL; 7926 7927 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7928 7929 /* find the next higher power-of-2 of num queue pairs */ 7930 pow = fls(roundup_pow_of_two(num_qps) - 1); 7931 7932 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7933 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7934 7935 /* Setup context bits for the main VSI */ 7936 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7937 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7938 memset(&ctxt, 0, sizeof(ctxt)); 7939 ctxt.seid = vsi->seid; 7940 ctxt.pf_num = vsi->back->hw.pf_id; 7941 ctxt.vf_num = 0; 7942 ctxt.uplink_seid = vsi->uplink_seid; 7943 ctxt.info = vsi->info; 7944 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7945 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7946 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7947 ctxt.info.valid_sections |= cpu_to_le16(sections); 7948 7949 /* Reconfigure RSS for main VSI with new max queue count */ 7950 vsi->rss_size = max_t(u16, num_qps, qcnt); 7951 ret = i40e_vsi_config_rss(vsi); 7952 if (ret) { 7953 dev_info(&pf->pdev->dev, 7954 "Failed to reconfig RSS for num_queues (%u)\n", 7955 vsi->rss_size); 7956 return ret; 7957 } 7958 vsi->reconfig_rss = true; 7959 dev_dbg(&vsi->back->pdev->dev, 7960 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7961 vsi->next_base_queue = num_qps; 7962 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7963 7964 /* Update the VSI after updating the VSI queue-mapping 7965 * information 7966 */ 7967 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7968 if (ret) { 7969 dev_info(&pf->pdev->dev, 7970 "Update vsi tc config failed, err %pe aq_err %s\n", 7971 ERR_PTR(ret), 7972 i40e_aq_str(hw, hw->aq.asq_last_status)); 7973 return ret; 7974 } 7975 /* update the local VSI info with updated queue map */ 7976 i40e_vsi_update_queue_map(vsi, &ctxt); 7977 vsi->info.valid_sections = 0; 7978 7979 /* Create channels for macvlans */ 7980 INIT_LIST_HEAD(&vsi->macvlan_list); 7981 for (i = 0; i < macvlan_cnt; i++) { 7982 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7983 if (!ch) { 7984 ret = -ENOMEM; 7985 goto err_free; 7986 } 7987 INIT_LIST_HEAD(&ch->list); 7988 ch->num_queue_pairs = qcnt; 7989 if (!i40e_setup_channel(pf, vsi, ch)) { 7990 ret = -EINVAL; 7991 kfree(ch); 7992 goto err_free; 7993 } 7994 ch->parent_vsi = vsi; 7995 vsi->cnt_q_avail -= ch->num_queue_pairs; 7996 vsi->macvlan_cnt++; 7997 list_add_tail(&ch->list, &vsi->macvlan_list); 7998 } 7999 8000 return ret; 8001 8002 err_free: 8003 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 8004 i40e_free_macvlan_channels(vsi); 8005 8006 return ret; 8007 } 8008 8009 /** 8010 * i40e_fwd_add - configure macvlans 8011 * @netdev: net device to configure 8012 * @vdev: macvlan netdevice 8013 **/ 8014 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 8015 { 8016 struct i40e_netdev_priv *np = netdev_priv(netdev); 8017 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 8018 struct i40e_vsi *vsi = np->vsi; 8019 struct i40e_pf *pf = vsi->back; 8020 struct i40e_fwd_adapter *fwd; 8021 int avail_macvlan, ret; 8022 8023 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8024 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 8025 return ERR_PTR(-EINVAL); 8026 } 8027 if (i40e_is_tc_mqprio_enabled(pf)) { 8028 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 8029 return ERR_PTR(-EINVAL); 8030 } 8031 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 8032 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 8033 return ERR_PTR(-EINVAL); 8034 } 8035 8036 /* The macvlan device has to be a single Q device so that the 8037 * tc_to_txq field can be reused to pick the tx queue. 8038 */ 8039 if (netif_is_multiqueue(vdev)) 8040 return ERR_PTR(-ERANGE); 8041 8042 if (!vsi->macvlan_cnt) { 8043 /* reserve bit 0 for the pf device */ 8044 set_bit(0, vsi->fwd_bitmask); 8045 8046 /* Try to reserve as many queues as possible for macvlans. First 8047 * reserve 3/4th of max vectors, then half, then quarter and 8048 * calculate Qs per macvlan as you go 8049 */ 8050 vectors = pf->num_lan_msix; 8051 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8052 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8053 q_per_macvlan = 4; 8054 macvlan_cnt = (vectors - 32) / 4; 8055 } else if (vectors <= 64 && vectors > 32) { 8056 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8057 q_per_macvlan = 2; 8058 macvlan_cnt = (vectors - 16) / 2; 8059 } else if (vectors <= 32 && vectors > 16) { 8060 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8061 q_per_macvlan = 1; 8062 macvlan_cnt = vectors - 16; 8063 } else if (vectors <= 16 && vectors > 8) { 8064 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8065 q_per_macvlan = 1; 8066 macvlan_cnt = vectors - 8; 8067 } else { 8068 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8069 q_per_macvlan = 1; 8070 macvlan_cnt = vectors - 1; 8071 } 8072 8073 if (macvlan_cnt == 0) 8074 return ERR_PTR(-EBUSY); 8075 8076 /* Quiesce VSI queues */ 8077 i40e_quiesce_vsi(vsi); 8078 8079 /* sets up the macvlans but does not "enable" them */ 8080 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8081 vdev); 8082 if (ret) 8083 return ERR_PTR(ret); 8084 8085 /* Unquiesce VSI */ 8086 i40e_unquiesce_vsi(vsi); 8087 } 8088 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8089 vsi->macvlan_cnt); 8090 if (avail_macvlan >= I40E_MAX_MACVLANS) 8091 return ERR_PTR(-EBUSY); 8092 8093 /* create the fwd struct */ 8094 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8095 if (!fwd) 8096 return ERR_PTR(-ENOMEM); 8097 8098 set_bit(avail_macvlan, vsi->fwd_bitmask); 8099 fwd->bit_no = avail_macvlan; 8100 netdev_set_sb_channel(vdev, avail_macvlan); 8101 fwd->netdev = vdev; 8102 8103 if (!netif_running(netdev)) 8104 return fwd; 8105 8106 /* Set fwd ring up */ 8107 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8108 if (ret) { 8109 /* unbind the queues and drop the subordinate channel config */ 8110 netdev_unbind_sb_channel(netdev, vdev); 8111 netdev_set_sb_channel(vdev, 0); 8112 8113 kfree(fwd); 8114 return ERR_PTR(-EINVAL); 8115 } 8116 8117 return fwd; 8118 } 8119 8120 /** 8121 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8122 * @vsi: the VSI we want to access 8123 */ 8124 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8125 { 8126 struct i40e_channel *ch, *ch_tmp; 8127 struct i40e_pf *pf = vsi->back; 8128 struct i40e_hw *hw = &pf->hw; 8129 int aq_err, ret = 0; 8130 8131 if (list_empty(&vsi->macvlan_list)) 8132 return; 8133 8134 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8135 if (i40e_is_channel_macvlan(ch)) { 8136 ret = i40e_del_macvlan_filter(hw, ch->seid, 8137 i40e_channel_mac(ch), 8138 &aq_err); 8139 if (!ret) { 8140 /* Reset queue contexts */ 8141 i40e_reset_ch_rings(vsi, ch); 8142 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8143 netdev_unbind_sb_channel(vsi->netdev, 8144 ch->fwd->netdev); 8145 netdev_set_sb_channel(ch->fwd->netdev, 0); 8146 kfree(ch->fwd); 8147 ch->fwd = NULL; 8148 } 8149 } 8150 } 8151 } 8152 8153 /** 8154 * i40e_fwd_del - delete macvlan interfaces 8155 * @netdev: net device to configure 8156 * @vdev: macvlan netdevice 8157 */ 8158 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8159 { 8160 struct i40e_netdev_priv *np = netdev_priv(netdev); 8161 struct i40e_fwd_adapter *fwd = vdev; 8162 struct i40e_channel *ch, *ch_tmp; 8163 struct i40e_vsi *vsi = np->vsi; 8164 struct i40e_pf *pf = vsi->back; 8165 struct i40e_hw *hw = &pf->hw; 8166 int aq_err, ret = 0; 8167 8168 /* Find the channel associated with the macvlan and del mac filter */ 8169 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8170 if (i40e_is_channel_macvlan(ch) && 8171 ether_addr_equal(i40e_channel_mac(ch), 8172 fwd->netdev->dev_addr)) { 8173 ret = i40e_del_macvlan_filter(hw, ch->seid, 8174 i40e_channel_mac(ch), 8175 &aq_err); 8176 if (!ret) { 8177 /* Reset queue contexts */ 8178 i40e_reset_ch_rings(vsi, ch); 8179 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8180 netdev_unbind_sb_channel(netdev, fwd->netdev); 8181 netdev_set_sb_channel(fwd->netdev, 0); 8182 kfree(ch->fwd); 8183 ch->fwd = NULL; 8184 } else { 8185 dev_info(&pf->pdev->dev, 8186 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8187 ERR_PTR(ret), 8188 i40e_aq_str(hw, aq_err)); 8189 } 8190 break; 8191 } 8192 } 8193 } 8194 8195 /** 8196 * i40e_setup_tc - configure multiple traffic classes 8197 * @netdev: net device to configure 8198 * @type_data: tc offload data 8199 **/ 8200 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8201 { 8202 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8203 struct i40e_netdev_priv *np = netdev_priv(netdev); 8204 struct i40e_vsi *vsi = np->vsi; 8205 struct i40e_pf *pf = vsi->back; 8206 u8 enabled_tc = 0, num_tc, hw; 8207 bool need_reset = false; 8208 int old_queue_pairs; 8209 int ret = -EINVAL; 8210 u16 mode; 8211 int i; 8212 8213 old_queue_pairs = vsi->num_queue_pairs; 8214 num_tc = mqprio_qopt->qopt.num_tc; 8215 hw = mqprio_qopt->qopt.hw; 8216 mode = mqprio_qopt->mode; 8217 if (!hw) { 8218 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8219 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8220 goto config_tc; 8221 } 8222 8223 /* Check if MFP enabled */ 8224 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8225 netdev_info(netdev, 8226 "Configuring TC not supported in MFP mode\n"); 8227 return ret; 8228 } 8229 switch (mode) { 8230 case TC_MQPRIO_MODE_DCB: 8231 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8232 8233 /* Check if DCB enabled to continue */ 8234 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8235 netdev_info(netdev, 8236 "DCB is not enabled for adapter\n"); 8237 return ret; 8238 } 8239 8240 /* Check whether tc count is within enabled limit */ 8241 if (num_tc > i40e_pf_get_num_tc(pf)) { 8242 netdev_info(netdev, 8243 "TC count greater than enabled on link for adapter\n"); 8244 return ret; 8245 } 8246 break; 8247 case TC_MQPRIO_MODE_CHANNEL: 8248 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8249 netdev_info(netdev, 8250 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8251 return ret; 8252 } 8253 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8254 return ret; 8255 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8256 if (ret) 8257 return ret; 8258 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8259 sizeof(*mqprio_qopt)); 8260 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8261 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8262 break; 8263 default: 8264 return -EINVAL; 8265 } 8266 8267 config_tc: 8268 /* Generate TC map for number of tc requested */ 8269 for (i = 0; i < num_tc; i++) 8270 enabled_tc |= BIT(i); 8271 8272 /* Requesting same TC configuration as already enabled */ 8273 if (enabled_tc == vsi->tc_config.enabled_tc && 8274 mode != TC_MQPRIO_MODE_CHANNEL) 8275 return 0; 8276 8277 /* Quiesce VSI queues */ 8278 i40e_quiesce_vsi(vsi); 8279 8280 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8281 i40e_remove_queue_channels(vsi); 8282 8283 /* Configure VSI for enabled TCs */ 8284 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8285 if (ret) { 8286 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8287 vsi->seid); 8288 need_reset = true; 8289 goto exit; 8290 } else if (enabled_tc && 8291 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8292 netdev_info(netdev, 8293 "Failed to create channel. Override queues (%u) not power of 2\n", 8294 vsi->tc_config.tc_info[0].qcount); 8295 ret = -EINVAL; 8296 need_reset = true; 8297 goto exit; 8298 } 8299 8300 dev_info(&vsi->back->pdev->dev, 8301 "Setup channel (id:%u) utilizing num_queues %d\n", 8302 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8303 8304 if (i40e_is_tc_mqprio_enabled(pf)) { 8305 if (vsi->mqprio_qopt.max_rate[0]) { 8306 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8307 vsi->mqprio_qopt.max_rate[0]); 8308 8309 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8310 if (!ret) { 8311 u64 credits = max_tx_rate; 8312 8313 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8314 dev_dbg(&vsi->back->pdev->dev, 8315 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8316 max_tx_rate, 8317 credits, 8318 vsi->seid); 8319 } else { 8320 need_reset = true; 8321 goto exit; 8322 } 8323 } 8324 ret = i40e_configure_queue_channels(vsi); 8325 if (ret) { 8326 vsi->num_queue_pairs = old_queue_pairs; 8327 netdev_info(netdev, 8328 "Failed configuring queue channels\n"); 8329 need_reset = true; 8330 goto exit; 8331 } 8332 } 8333 8334 exit: 8335 /* Reset the configuration data to defaults, only TC0 is enabled */ 8336 if (need_reset) { 8337 i40e_vsi_set_default_tc_config(vsi); 8338 need_reset = false; 8339 } 8340 8341 /* Unquiesce VSI */ 8342 i40e_unquiesce_vsi(vsi); 8343 return ret; 8344 } 8345 8346 /** 8347 * i40e_set_cld_element - sets cloud filter element data 8348 * @filter: cloud filter rule 8349 * @cld: ptr to cloud filter element data 8350 * 8351 * This is helper function to copy data into cloud filter element 8352 **/ 8353 static inline void 8354 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8355 struct i40e_aqc_cloud_filters_element_data *cld) 8356 { 8357 u32 ipa; 8358 int i; 8359 8360 memset(cld, 0, sizeof(*cld)); 8361 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8362 ether_addr_copy(cld->inner_mac, filter->src_mac); 8363 8364 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8365 return; 8366 8367 if (filter->n_proto == ETH_P_IPV6) { 8368 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8369 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8370 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8371 8372 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8373 } 8374 } else { 8375 ipa = be32_to_cpu(filter->dst_ipv4); 8376 8377 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8378 } 8379 8380 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8381 8382 /* tenant_id is not supported by FW now, once the support is enabled 8383 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8384 */ 8385 if (filter->tenant_id) 8386 return; 8387 } 8388 8389 /** 8390 * i40e_add_del_cloud_filter - Add/del cloud filter 8391 * @vsi: pointer to VSI 8392 * @filter: cloud filter rule 8393 * @add: if true, add, if false, delete 8394 * 8395 * Add or delete a cloud filter for a specific flow spec. 8396 * Returns 0 if the filter were successfully added. 8397 **/ 8398 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8399 struct i40e_cloud_filter *filter, bool add) 8400 { 8401 struct i40e_aqc_cloud_filters_element_data cld_filter; 8402 struct i40e_pf *pf = vsi->back; 8403 int ret; 8404 static const u16 flag_table[128] = { 8405 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8406 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8407 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8408 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8409 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8410 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8411 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8412 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8413 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8414 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8415 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8416 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8417 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8418 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8419 }; 8420 8421 if (filter->flags >= ARRAY_SIZE(flag_table)) 8422 return -EIO; 8423 8424 memset(&cld_filter, 0, sizeof(cld_filter)); 8425 8426 /* copy element needed to add cloud filter from filter */ 8427 i40e_set_cld_element(filter, &cld_filter); 8428 8429 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8430 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8431 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8432 8433 if (filter->n_proto == ETH_P_IPV6) 8434 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8435 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8436 else 8437 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8438 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8439 8440 if (add) 8441 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8442 &cld_filter, 1); 8443 else 8444 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8445 &cld_filter, 1); 8446 if (ret) 8447 dev_dbg(&pf->pdev->dev, 8448 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8449 add ? "add" : "delete", filter->dst_port, ret, 8450 pf->hw.aq.asq_last_status); 8451 else 8452 dev_info(&pf->pdev->dev, 8453 "%s cloud filter for VSI: %d\n", 8454 add ? "Added" : "Deleted", filter->seid); 8455 return ret; 8456 } 8457 8458 /** 8459 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8460 * @vsi: pointer to VSI 8461 * @filter: cloud filter rule 8462 * @add: if true, add, if false, delete 8463 * 8464 * Add or delete a cloud filter for a specific flow spec using big buffer. 8465 * Returns 0 if the filter were successfully added. 8466 **/ 8467 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8468 struct i40e_cloud_filter *filter, 8469 bool add) 8470 { 8471 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8472 struct i40e_pf *pf = vsi->back; 8473 int ret; 8474 8475 /* Both (src/dst) valid mac_addr are not supported */ 8476 if ((is_valid_ether_addr(filter->dst_mac) && 8477 is_valid_ether_addr(filter->src_mac)) || 8478 (is_multicast_ether_addr(filter->dst_mac) && 8479 is_multicast_ether_addr(filter->src_mac))) 8480 return -EOPNOTSUPP; 8481 8482 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8483 * ports are not supported via big buffer now. 8484 */ 8485 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8486 return -EOPNOTSUPP; 8487 8488 /* adding filter using src_port/src_ip is not supported at this stage */ 8489 if (filter->src_port || 8490 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8491 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8492 return -EOPNOTSUPP; 8493 8494 memset(&cld_filter, 0, sizeof(cld_filter)); 8495 8496 /* copy element needed to add cloud filter from filter */ 8497 i40e_set_cld_element(filter, &cld_filter.element); 8498 8499 if (is_valid_ether_addr(filter->dst_mac) || 8500 is_valid_ether_addr(filter->src_mac) || 8501 is_multicast_ether_addr(filter->dst_mac) || 8502 is_multicast_ether_addr(filter->src_mac)) { 8503 /* MAC + IP : unsupported mode */ 8504 if (filter->dst_ipv4) 8505 return -EOPNOTSUPP; 8506 8507 /* since we validated that L4 port must be valid before 8508 * we get here, start with respective "flags" value 8509 * and update if vlan is present or not 8510 */ 8511 cld_filter.element.flags = 8512 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8513 8514 if (filter->vlan_id) { 8515 cld_filter.element.flags = 8516 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8517 } 8518 8519 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8520 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8521 cld_filter.element.flags = 8522 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8523 if (filter->n_proto == ETH_P_IPV6) 8524 cld_filter.element.flags |= 8525 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8526 else 8527 cld_filter.element.flags |= 8528 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8529 } else { 8530 dev_err(&pf->pdev->dev, 8531 "either mac or ip has to be valid for cloud filter\n"); 8532 return -EINVAL; 8533 } 8534 8535 /* Now copy L4 port in Byte 6..7 in general fields */ 8536 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8537 be16_to_cpu(filter->dst_port); 8538 8539 if (add) { 8540 /* Validate current device switch mode, change if necessary */ 8541 ret = i40e_validate_and_set_switch_mode(vsi); 8542 if (ret) { 8543 dev_err(&pf->pdev->dev, 8544 "failed to set switch mode, ret %d\n", 8545 ret); 8546 return ret; 8547 } 8548 8549 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8550 &cld_filter, 1); 8551 } else { 8552 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8553 &cld_filter, 1); 8554 } 8555 8556 if (ret) 8557 dev_dbg(&pf->pdev->dev, 8558 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8559 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8560 else 8561 dev_info(&pf->pdev->dev, 8562 "%s cloud filter for VSI: %d, L4 port: %d\n", 8563 add ? "add" : "delete", filter->seid, 8564 ntohs(filter->dst_port)); 8565 return ret; 8566 } 8567 8568 /** 8569 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8570 * @vsi: Pointer to VSI 8571 * @f: Pointer to struct flow_cls_offload 8572 * @filter: Pointer to cloud filter structure 8573 * 8574 **/ 8575 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8576 struct flow_cls_offload *f, 8577 struct i40e_cloud_filter *filter) 8578 { 8579 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8580 struct flow_dissector *dissector = rule->match.dissector; 8581 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8582 struct i40e_pf *pf = vsi->back; 8583 u8 field_flags = 0; 8584 8585 if (dissector->used_keys & 8586 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8587 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8588 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8589 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8590 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8591 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8592 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8593 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8594 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8595 dissector->used_keys); 8596 return -EOPNOTSUPP; 8597 } 8598 8599 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8600 struct flow_match_enc_keyid match; 8601 8602 flow_rule_match_enc_keyid(rule, &match); 8603 if (match.mask->keyid != 0) 8604 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8605 8606 filter->tenant_id = be32_to_cpu(match.key->keyid); 8607 } 8608 8609 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8610 struct flow_match_basic match; 8611 8612 flow_rule_match_basic(rule, &match); 8613 n_proto_key = ntohs(match.key->n_proto); 8614 n_proto_mask = ntohs(match.mask->n_proto); 8615 8616 if (n_proto_key == ETH_P_ALL) { 8617 n_proto_key = 0; 8618 n_proto_mask = 0; 8619 } 8620 filter->n_proto = n_proto_key & n_proto_mask; 8621 filter->ip_proto = match.key->ip_proto; 8622 } 8623 8624 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8625 struct flow_match_eth_addrs match; 8626 8627 flow_rule_match_eth_addrs(rule, &match); 8628 8629 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8630 if (!is_zero_ether_addr(match.mask->dst)) { 8631 if (is_broadcast_ether_addr(match.mask->dst)) { 8632 field_flags |= I40E_CLOUD_FIELD_OMAC; 8633 } else { 8634 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8635 match.mask->dst); 8636 return -EIO; 8637 } 8638 } 8639 8640 if (!is_zero_ether_addr(match.mask->src)) { 8641 if (is_broadcast_ether_addr(match.mask->src)) { 8642 field_flags |= I40E_CLOUD_FIELD_IMAC; 8643 } else { 8644 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8645 match.mask->src); 8646 return -EIO; 8647 } 8648 } 8649 ether_addr_copy(filter->dst_mac, match.key->dst); 8650 ether_addr_copy(filter->src_mac, match.key->src); 8651 } 8652 8653 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8654 struct flow_match_vlan match; 8655 8656 flow_rule_match_vlan(rule, &match); 8657 if (match.mask->vlan_id) { 8658 if (match.mask->vlan_id == VLAN_VID_MASK) { 8659 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8660 8661 } else { 8662 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8663 match.mask->vlan_id); 8664 return -EIO; 8665 } 8666 } 8667 8668 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8669 } 8670 8671 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8672 struct flow_match_control match; 8673 8674 flow_rule_match_control(rule, &match); 8675 addr_type = match.key->addr_type; 8676 8677 if (flow_rule_has_control_flags(match.mask->flags, 8678 f->common.extack)) 8679 return -EOPNOTSUPP; 8680 } 8681 8682 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8683 struct flow_match_ipv4_addrs match; 8684 8685 flow_rule_match_ipv4_addrs(rule, &match); 8686 if (match.mask->dst) { 8687 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8688 field_flags |= I40E_CLOUD_FIELD_IIP; 8689 } else { 8690 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8691 &match.mask->dst); 8692 return -EIO; 8693 } 8694 } 8695 8696 if (match.mask->src) { 8697 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8698 field_flags |= I40E_CLOUD_FIELD_IIP; 8699 } else { 8700 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8701 &match.mask->src); 8702 return -EIO; 8703 } 8704 } 8705 8706 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8707 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8708 return -EIO; 8709 } 8710 filter->dst_ipv4 = match.key->dst; 8711 filter->src_ipv4 = match.key->src; 8712 } 8713 8714 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8715 struct flow_match_ipv6_addrs match; 8716 8717 flow_rule_match_ipv6_addrs(rule, &match); 8718 8719 /* src and dest IPV6 address should not be LOOPBACK 8720 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8721 */ 8722 if (ipv6_addr_loopback(&match.key->dst) || 8723 ipv6_addr_loopback(&match.key->src)) { 8724 dev_err(&pf->pdev->dev, 8725 "Bad ipv6, addr is LOOPBACK\n"); 8726 return -EIO; 8727 } 8728 if (!ipv6_addr_any(&match.mask->dst) || 8729 !ipv6_addr_any(&match.mask->src)) 8730 field_flags |= I40E_CLOUD_FIELD_IIP; 8731 8732 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8733 sizeof(filter->src_ipv6)); 8734 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8735 sizeof(filter->dst_ipv6)); 8736 } 8737 8738 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8739 struct flow_match_ports match; 8740 8741 flow_rule_match_ports(rule, &match); 8742 if (match.mask->src) { 8743 if (match.mask->src == cpu_to_be16(0xffff)) { 8744 field_flags |= I40E_CLOUD_FIELD_IIP; 8745 } else { 8746 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8747 be16_to_cpu(match.mask->src)); 8748 return -EIO; 8749 } 8750 } 8751 8752 if (match.mask->dst) { 8753 if (match.mask->dst == cpu_to_be16(0xffff)) { 8754 field_flags |= I40E_CLOUD_FIELD_IIP; 8755 } else { 8756 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8757 be16_to_cpu(match.mask->dst)); 8758 return -EIO; 8759 } 8760 } 8761 8762 filter->dst_port = match.key->dst; 8763 filter->src_port = match.key->src; 8764 8765 switch (filter->ip_proto) { 8766 case IPPROTO_TCP: 8767 case IPPROTO_UDP: 8768 break; 8769 default: 8770 dev_err(&pf->pdev->dev, 8771 "Only UDP and TCP transport are supported\n"); 8772 return -EINVAL; 8773 } 8774 } 8775 filter->flags = field_flags; 8776 return 0; 8777 } 8778 8779 /** 8780 * i40e_handle_tclass: Forward to a traffic class on the device 8781 * @vsi: Pointer to VSI 8782 * @tc: traffic class index on the device 8783 * @filter: Pointer to cloud filter structure 8784 * 8785 **/ 8786 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8787 struct i40e_cloud_filter *filter) 8788 { 8789 struct i40e_channel *ch, *ch_tmp; 8790 8791 /* direct to a traffic class on the same device */ 8792 if (tc == 0) { 8793 filter->seid = vsi->seid; 8794 return 0; 8795 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8796 if (!filter->dst_port) { 8797 dev_err(&vsi->back->pdev->dev, 8798 "Specify destination port to direct to traffic class that is not default\n"); 8799 return -EINVAL; 8800 } 8801 if (list_empty(&vsi->ch_list)) 8802 return -EINVAL; 8803 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8804 list) { 8805 if (ch->seid == vsi->tc_seid_map[tc]) 8806 filter->seid = ch->seid; 8807 } 8808 return 0; 8809 } 8810 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8811 return -EINVAL; 8812 } 8813 8814 /** 8815 * i40e_configure_clsflower - Configure tc flower filters 8816 * @vsi: Pointer to VSI 8817 * @cls_flower: Pointer to struct flow_cls_offload 8818 * 8819 **/ 8820 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8821 struct flow_cls_offload *cls_flower) 8822 { 8823 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8824 struct i40e_cloud_filter *filter = NULL; 8825 struct i40e_pf *pf = vsi->back; 8826 int err = 0; 8827 8828 if (tc < 0) { 8829 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8830 return -EOPNOTSUPP; 8831 } 8832 8833 if (!tc) { 8834 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8835 return -EINVAL; 8836 } 8837 8838 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8839 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8840 return -EBUSY; 8841 8842 if (pf->fdir_pf_active_filters || 8843 (!hlist_empty(&pf->fdir_filter_list))) { 8844 dev_err(&vsi->back->pdev->dev, 8845 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8846 return -EINVAL; 8847 } 8848 8849 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8850 dev_err(&vsi->back->pdev->dev, 8851 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8852 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8853 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8854 } 8855 8856 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8857 if (!filter) 8858 return -ENOMEM; 8859 8860 filter->cookie = cls_flower->cookie; 8861 8862 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8863 if (err < 0) 8864 goto err; 8865 8866 err = i40e_handle_tclass(vsi, tc, filter); 8867 if (err < 0) 8868 goto err; 8869 8870 /* Add cloud filter */ 8871 if (filter->dst_port) 8872 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8873 else 8874 err = i40e_add_del_cloud_filter(vsi, filter, true); 8875 8876 if (err) { 8877 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8878 err); 8879 goto err; 8880 } 8881 8882 /* add filter to the ordered list */ 8883 INIT_HLIST_NODE(&filter->cloud_node); 8884 8885 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8886 8887 pf->num_cloud_filters++; 8888 8889 return err; 8890 err: 8891 kfree(filter); 8892 return err; 8893 } 8894 8895 /** 8896 * i40e_find_cloud_filter - Find the could filter in the list 8897 * @vsi: Pointer to VSI 8898 * @cookie: filter specific cookie 8899 * 8900 **/ 8901 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8902 unsigned long *cookie) 8903 { 8904 struct i40e_cloud_filter *filter = NULL; 8905 struct hlist_node *node2; 8906 8907 hlist_for_each_entry_safe(filter, node2, 8908 &vsi->back->cloud_filter_list, cloud_node) 8909 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8910 return filter; 8911 return NULL; 8912 } 8913 8914 /** 8915 * i40e_delete_clsflower - Remove tc flower filters 8916 * @vsi: Pointer to VSI 8917 * @cls_flower: Pointer to struct flow_cls_offload 8918 * 8919 **/ 8920 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8921 struct flow_cls_offload *cls_flower) 8922 { 8923 struct i40e_cloud_filter *filter = NULL; 8924 struct i40e_pf *pf = vsi->back; 8925 int err = 0; 8926 8927 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8928 8929 if (!filter) 8930 return -EINVAL; 8931 8932 hash_del(&filter->cloud_node); 8933 8934 if (filter->dst_port) 8935 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8936 else 8937 err = i40e_add_del_cloud_filter(vsi, filter, false); 8938 8939 kfree(filter); 8940 if (err) { 8941 dev_err(&pf->pdev->dev, 8942 "Failed to delete cloud filter, err %pe\n", 8943 ERR_PTR(err)); 8944 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8945 } 8946 8947 pf->num_cloud_filters--; 8948 if (!pf->num_cloud_filters) 8949 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8950 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8951 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8952 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8953 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8954 } 8955 return 0; 8956 } 8957 8958 /** 8959 * i40e_setup_tc_cls_flower - flower classifier offloads 8960 * @np: net device to configure 8961 * @cls_flower: offload data 8962 **/ 8963 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8964 struct flow_cls_offload *cls_flower) 8965 { 8966 struct i40e_vsi *vsi = np->vsi; 8967 8968 switch (cls_flower->command) { 8969 case FLOW_CLS_REPLACE: 8970 return i40e_configure_clsflower(vsi, cls_flower); 8971 case FLOW_CLS_DESTROY: 8972 return i40e_delete_clsflower(vsi, cls_flower); 8973 case FLOW_CLS_STATS: 8974 return -EOPNOTSUPP; 8975 default: 8976 return -EOPNOTSUPP; 8977 } 8978 } 8979 8980 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8981 void *cb_priv) 8982 { 8983 struct i40e_netdev_priv *np = cb_priv; 8984 8985 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8986 return -EOPNOTSUPP; 8987 8988 switch (type) { 8989 case TC_SETUP_CLSFLOWER: 8990 return i40e_setup_tc_cls_flower(np, type_data); 8991 8992 default: 8993 return -EOPNOTSUPP; 8994 } 8995 } 8996 8997 static LIST_HEAD(i40e_block_cb_list); 8998 8999 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9000 void *type_data) 9001 { 9002 struct i40e_netdev_priv *np = netdev_priv(netdev); 9003 9004 switch (type) { 9005 case TC_SETUP_QDISC_MQPRIO: 9006 return i40e_setup_tc(netdev, type_data); 9007 case TC_SETUP_BLOCK: 9008 return flow_block_cb_setup_simple(type_data, 9009 &i40e_block_cb_list, 9010 i40e_setup_tc_block_cb, 9011 np, np, true); 9012 default: 9013 return -EOPNOTSUPP; 9014 } 9015 } 9016 9017 /** 9018 * i40e_open - Called when a network interface is made active 9019 * @netdev: network interface device structure 9020 * 9021 * The open entry point is called when a network interface is made 9022 * active by the system (IFF_UP). At this point all resources needed 9023 * for transmit and receive operations are allocated, the interrupt 9024 * handler is registered with the OS, the netdev watchdog subtask is 9025 * enabled, and the stack is notified that the interface is ready. 9026 * 9027 * Returns 0 on success, negative value on failure 9028 **/ 9029 int i40e_open(struct net_device *netdev) 9030 { 9031 struct i40e_netdev_priv *np = netdev_priv(netdev); 9032 struct i40e_vsi *vsi = np->vsi; 9033 struct i40e_pf *pf = vsi->back; 9034 int err; 9035 9036 /* disallow open during test or if eeprom is broken */ 9037 if (test_bit(__I40E_TESTING, pf->state) || 9038 test_bit(__I40E_BAD_EEPROM, pf->state)) 9039 return -EBUSY; 9040 9041 netif_carrier_off(netdev); 9042 9043 if (i40e_force_link_state(pf, true)) 9044 return -EAGAIN; 9045 9046 err = i40e_vsi_open(vsi); 9047 if (err) 9048 return err; 9049 9050 /* configure global TSO hardware offload settings */ 9051 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9052 TCP_FLAG_FIN) >> 16); 9053 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9054 TCP_FLAG_FIN | 9055 TCP_FLAG_CWR) >> 16); 9056 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9057 udp_tunnel_get_rx_info(netdev); 9058 9059 return 0; 9060 } 9061 9062 /** 9063 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9064 * @vsi: vsi structure 9065 * 9066 * This updates netdev's number of tx/rx queues 9067 * 9068 * Returns status of setting tx/rx queues 9069 **/ 9070 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9071 { 9072 int ret; 9073 9074 ret = netif_set_real_num_rx_queues(vsi->netdev, 9075 vsi->num_queue_pairs); 9076 if (ret) 9077 return ret; 9078 9079 return netif_set_real_num_tx_queues(vsi->netdev, 9080 vsi->num_queue_pairs); 9081 } 9082 9083 /** 9084 * i40e_vsi_open - 9085 * @vsi: the VSI to open 9086 * 9087 * Finish initialization of the VSI. 9088 * 9089 * Returns 0 on success, negative value on failure 9090 * 9091 * Note: expects to be called while under rtnl_lock() 9092 **/ 9093 int i40e_vsi_open(struct i40e_vsi *vsi) 9094 { 9095 struct i40e_pf *pf = vsi->back; 9096 char int_name[I40E_INT_NAME_STR_LEN]; 9097 int err; 9098 9099 /* allocate descriptors */ 9100 err = i40e_vsi_setup_tx_resources(vsi); 9101 if (err) 9102 goto err_setup_tx; 9103 err = i40e_vsi_setup_rx_resources(vsi); 9104 if (err) 9105 goto err_setup_rx; 9106 9107 err = i40e_vsi_configure(vsi); 9108 if (err) 9109 goto err_setup_rx; 9110 9111 if (vsi->netdev) { 9112 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9113 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9114 err = i40e_vsi_request_irq(vsi, int_name); 9115 if (err) 9116 goto err_setup_rx; 9117 9118 /* Notify the stack of the actual queue counts. */ 9119 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9120 if (err) 9121 goto err_set_queues; 9122 9123 } else if (vsi->type == I40E_VSI_FDIR) { 9124 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9125 dev_driver_string(&pf->pdev->dev), 9126 dev_name(&pf->pdev->dev)); 9127 err = i40e_vsi_request_irq(vsi, int_name); 9128 if (err) 9129 goto err_setup_rx; 9130 9131 } else { 9132 err = -EINVAL; 9133 goto err_setup_rx; 9134 } 9135 9136 err = i40e_up_complete(vsi); 9137 if (err) 9138 goto err_up_complete; 9139 9140 return 0; 9141 9142 err_up_complete: 9143 i40e_down(vsi); 9144 err_set_queues: 9145 i40e_vsi_free_irq(vsi); 9146 err_setup_rx: 9147 i40e_vsi_free_rx_resources(vsi); 9148 err_setup_tx: 9149 i40e_vsi_free_tx_resources(vsi); 9150 if (vsi->type == I40E_VSI_MAIN) 9151 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9152 9153 return err; 9154 } 9155 9156 /** 9157 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9158 * @pf: Pointer to PF 9159 * 9160 * This function destroys the hlist where all the Flow Director 9161 * filters were saved. 9162 **/ 9163 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9164 { 9165 struct i40e_fdir_filter *filter; 9166 struct i40e_flex_pit *pit_entry, *tmp; 9167 struct hlist_node *node2; 9168 9169 hlist_for_each_entry_safe(filter, node2, 9170 &pf->fdir_filter_list, fdir_node) { 9171 hlist_del(&filter->fdir_node); 9172 kfree(filter); 9173 } 9174 9175 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9176 list_del(&pit_entry->list); 9177 kfree(pit_entry); 9178 } 9179 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9180 9181 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9182 list_del(&pit_entry->list); 9183 kfree(pit_entry); 9184 } 9185 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9186 9187 pf->fdir_pf_active_filters = 0; 9188 i40e_reset_fdir_filter_cnt(pf); 9189 9190 /* Reprogram the default input set for TCP/IPv4 */ 9191 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9192 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9193 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9194 9195 /* Reprogram the default input set for TCP/IPv6 */ 9196 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 9197 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9198 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9199 9200 /* Reprogram the default input set for UDP/IPv4 */ 9201 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 9202 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9203 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9204 9205 /* Reprogram the default input set for UDP/IPv6 */ 9206 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 9207 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9208 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9209 9210 /* Reprogram the default input set for SCTP/IPv4 */ 9211 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 9212 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9213 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9214 9215 /* Reprogram the default input set for SCTP/IPv6 */ 9216 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 9217 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9218 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9219 9220 /* Reprogram the default input set for Other/IPv4 */ 9221 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 9222 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9223 9224 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 9225 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9226 9227 /* Reprogram the default input set for Other/IPv6 */ 9228 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 9229 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9230 9231 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 9232 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9233 } 9234 9235 /** 9236 * i40e_cloud_filter_exit - Cleans up the cloud filters 9237 * @pf: Pointer to PF 9238 * 9239 * This function destroys the hlist where all the cloud filters 9240 * were saved. 9241 **/ 9242 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9243 { 9244 struct i40e_cloud_filter *cfilter; 9245 struct hlist_node *node; 9246 9247 hlist_for_each_entry_safe(cfilter, node, 9248 &pf->cloud_filter_list, cloud_node) { 9249 hlist_del(&cfilter->cloud_node); 9250 kfree(cfilter); 9251 } 9252 pf->num_cloud_filters = 0; 9253 9254 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9255 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9256 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9257 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9258 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9259 } 9260 } 9261 9262 /** 9263 * i40e_close - Disables a network interface 9264 * @netdev: network interface device structure 9265 * 9266 * The close entry point is called when an interface is de-activated 9267 * by the OS. The hardware is still under the driver's control, but 9268 * this netdev interface is disabled. 9269 * 9270 * Returns 0, this is not allowed to fail 9271 **/ 9272 int i40e_close(struct net_device *netdev) 9273 { 9274 struct i40e_netdev_priv *np = netdev_priv(netdev); 9275 struct i40e_vsi *vsi = np->vsi; 9276 9277 i40e_vsi_close(vsi); 9278 9279 return 0; 9280 } 9281 9282 /** 9283 * i40e_do_reset - Start a PF or Core Reset sequence 9284 * @pf: board private structure 9285 * @reset_flags: which reset is requested 9286 * @lock_acquired: indicates whether or not the lock has been acquired 9287 * before this function was called. 9288 * 9289 * The essential difference in resets is that the PF Reset 9290 * doesn't clear the packet buffers, doesn't reset the PE 9291 * firmware, and doesn't bother the other PFs on the chip. 9292 **/ 9293 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9294 { 9295 struct i40e_vsi *vsi; 9296 u32 val; 9297 int i; 9298 9299 /* do the biggest reset indicated */ 9300 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9301 9302 /* Request a Global Reset 9303 * 9304 * This will start the chip's countdown to the actual full 9305 * chip reset event, and a warning interrupt to be sent 9306 * to all PFs, including the requestor. Our handler 9307 * for the warning interrupt will deal with the shutdown 9308 * and recovery of the switch setup. 9309 */ 9310 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9311 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9312 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9313 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9314 9315 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9316 9317 /* Request a Core Reset 9318 * 9319 * Same as Global Reset, except does *not* include the MAC/PHY 9320 */ 9321 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9322 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9323 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9324 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9325 i40e_flush(&pf->hw); 9326 9327 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9328 9329 /* Request a PF Reset 9330 * 9331 * Resets only the PF-specific registers 9332 * 9333 * This goes directly to the tear-down and rebuild of 9334 * the switch, since we need to do all the recovery as 9335 * for the Core Reset. 9336 */ 9337 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9338 i40e_handle_reset_warning(pf, lock_acquired); 9339 9340 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9341 /* Request a PF Reset 9342 * 9343 * Resets PF and reinitializes PFs VSI. 9344 */ 9345 i40e_prep_for_reset(pf); 9346 i40e_reset_and_rebuild(pf, true, lock_acquired); 9347 dev_info(&pf->pdev->dev, 9348 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9349 "FW LLDP is disabled\n" : 9350 "FW LLDP is enabled\n"); 9351 9352 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9353 /* Find the VSI(s) that requested a re-init */ 9354 dev_info(&pf->pdev->dev, "VSI reinit requested\n"); 9355 9356 i40e_pf_for_each_vsi(pf, i, vsi) { 9357 if (test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9358 vsi->state)) 9359 i40e_vsi_reinit_locked(vsi); 9360 } 9361 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9362 /* Find the VSI(s) that needs to be brought down */ 9363 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9364 9365 i40e_pf_for_each_vsi(pf, i, vsi) { 9366 if (test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9367 vsi->state)) { 9368 set_bit(__I40E_VSI_DOWN, vsi->state); 9369 i40e_down(vsi); 9370 } 9371 } 9372 } else { 9373 dev_info(&pf->pdev->dev, 9374 "bad reset request 0x%08x\n", reset_flags); 9375 } 9376 } 9377 9378 #ifdef CONFIG_I40E_DCB 9379 /** 9380 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9381 * @pf: board private structure 9382 * @old_cfg: current DCB config 9383 * @new_cfg: new DCB config 9384 **/ 9385 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9386 struct i40e_dcbx_config *old_cfg, 9387 struct i40e_dcbx_config *new_cfg) 9388 { 9389 bool need_reconfig = false; 9390 9391 /* Check if ETS configuration has changed */ 9392 if (memcmp(&new_cfg->etscfg, 9393 &old_cfg->etscfg, 9394 sizeof(new_cfg->etscfg))) { 9395 /* If Priority Table has changed reconfig is needed */ 9396 if (memcmp(&new_cfg->etscfg.prioritytable, 9397 &old_cfg->etscfg.prioritytable, 9398 sizeof(new_cfg->etscfg.prioritytable))) { 9399 need_reconfig = true; 9400 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9401 } 9402 9403 if (memcmp(&new_cfg->etscfg.tcbwtable, 9404 &old_cfg->etscfg.tcbwtable, 9405 sizeof(new_cfg->etscfg.tcbwtable))) 9406 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9407 9408 if (memcmp(&new_cfg->etscfg.tsatable, 9409 &old_cfg->etscfg.tsatable, 9410 sizeof(new_cfg->etscfg.tsatable))) 9411 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9412 } 9413 9414 /* Check if PFC configuration has changed */ 9415 if (memcmp(&new_cfg->pfc, 9416 &old_cfg->pfc, 9417 sizeof(new_cfg->pfc))) { 9418 need_reconfig = true; 9419 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9420 } 9421 9422 /* Check if APP Table has changed */ 9423 if (memcmp(&new_cfg->app, 9424 &old_cfg->app, 9425 sizeof(new_cfg->app))) { 9426 need_reconfig = true; 9427 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9428 } 9429 9430 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9431 return need_reconfig; 9432 } 9433 9434 /** 9435 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9436 * @pf: board private structure 9437 * @e: event info posted on ARQ 9438 **/ 9439 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9440 struct i40e_arq_event_info *e) 9441 { 9442 struct i40e_aqc_lldp_get_mib *mib = 9443 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9444 struct i40e_hw *hw = &pf->hw; 9445 struct i40e_dcbx_config tmp_dcbx_cfg; 9446 bool need_reconfig = false; 9447 int ret = 0; 9448 u8 type; 9449 9450 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9451 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9452 (hw->phy.link_info.link_speed & 9453 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9454 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9455 /* let firmware decide if the DCB should be disabled */ 9456 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9457 9458 /* Not DCB capable or capability disabled */ 9459 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9460 return ret; 9461 9462 /* Ignore if event is not for Nearest Bridge */ 9463 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9464 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9465 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9466 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9467 return ret; 9468 9469 /* Check MIB Type and return if event for Remote MIB update */ 9470 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9471 dev_dbg(&pf->pdev->dev, 9472 "LLDP event mib type %s\n", type ? "remote" : "local"); 9473 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9474 /* Update the remote cached instance and return */ 9475 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9476 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9477 &hw->remote_dcbx_config); 9478 goto exit; 9479 } 9480 9481 /* Store the old configuration */ 9482 tmp_dcbx_cfg = hw->local_dcbx_config; 9483 9484 /* Reset the old DCBx configuration data */ 9485 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9486 /* Get updated DCBX data from firmware */ 9487 ret = i40e_get_dcb_config(&pf->hw); 9488 if (ret) { 9489 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9490 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9491 (hw->phy.link_info.link_speed & 9492 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9493 dev_warn(&pf->pdev->dev, 9494 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9495 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9496 } else { 9497 dev_info(&pf->pdev->dev, 9498 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9499 ERR_PTR(ret), 9500 i40e_aq_str(&pf->hw, 9501 pf->hw.aq.asq_last_status)); 9502 } 9503 goto exit; 9504 } 9505 9506 /* No change detected in DCBX configs */ 9507 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9508 sizeof(tmp_dcbx_cfg))) { 9509 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9510 goto exit; 9511 } 9512 9513 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9514 &hw->local_dcbx_config); 9515 9516 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9517 9518 if (!need_reconfig) 9519 goto exit; 9520 9521 /* Enable DCB tagging only when more than one TC */ 9522 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9523 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9524 else 9525 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9526 9527 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9528 /* Reconfiguration needed quiesce all VSIs */ 9529 i40e_pf_quiesce_all_vsi(pf); 9530 9531 /* Changes in configuration update VEB/VSI */ 9532 i40e_dcb_reconfigure(pf); 9533 9534 ret = i40e_resume_port_tx(pf); 9535 9536 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9537 /* In case of error no point in resuming VSIs */ 9538 if (ret) 9539 goto exit; 9540 9541 /* Wait for the PF's queues to be disabled */ 9542 ret = i40e_pf_wait_queues_disabled(pf); 9543 if (ret) { 9544 /* Schedule PF reset to recover */ 9545 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9546 i40e_service_event_schedule(pf); 9547 } else { 9548 i40e_pf_unquiesce_all_vsi(pf); 9549 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9550 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9551 } 9552 9553 exit: 9554 return ret; 9555 } 9556 #endif /* CONFIG_I40E_DCB */ 9557 9558 /** 9559 * i40e_do_reset_safe - Protected reset path for userland calls. 9560 * @pf: board private structure 9561 * @reset_flags: which reset is requested 9562 * 9563 **/ 9564 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9565 { 9566 rtnl_lock(); 9567 i40e_do_reset(pf, reset_flags, true); 9568 rtnl_unlock(); 9569 } 9570 9571 /** 9572 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9573 * @pf: board private structure 9574 * @e: event info posted on ARQ 9575 * 9576 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9577 * and VF queues 9578 **/ 9579 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9580 struct i40e_arq_event_info *e) 9581 { 9582 struct i40e_aqc_lan_overflow *data = 9583 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9584 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9585 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9586 struct i40e_hw *hw = &pf->hw; 9587 struct i40e_vf *vf; 9588 u16 vf_id; 9589 9590 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9591 queue, qtx_ctl); 9592 9593 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) != 9594 I40E_QTX_CTL_VF_QUEUE) 9595 return; 9596 9597 /* Queue belongs to VF, find the VF and issue VF reset */ 9598 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl); 9599 vf_id -= hw->func_caps.vf_base_id; 9600 vf = &pf->vf[vf_id]; 9601 i40e_vc_notify_vf_reset(vf); 9602 /* Allow VF to process pending reset notification */ 9603 msleep(20); 9604 i40e_reset_vf(vf, false); 9605 } 9606 9607 /** 9608 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9609 * @pf: board private structure 9610 **/ 9611 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9612 { 9613 u32 val, fcnt_prog; 9614 9615 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9616 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9617 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val); 9618 return fcnt_prog; 9619 } 9620 9621 /** 9622 * i40e_get_global_fd_count - Get total FD filters programmed on device 9623 * @pf: board private structure 9624 **/ 9625 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9626 { 9627 u32 val, fcnt_prog; 9628 9629 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9630 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9631 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val); 9632 return fcnt_prog; 9633 } 9634 9635 /** 9636 * i40e_reenable_fdir_sb - Restore FDir SB capability 9637 * @pf: board private structure 9638 **/ 9639 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9640 { 9641 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9642 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9643 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9644 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9645 } 9646 9647 /** 9648 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9649 * @pf: board private structure 9650 **/ 9651 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9652 { 9653 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9654 /* ATR uses the same filtering logic as SB rules. It only 9655 * functions properly if the input set mask is at the default 9656 * settings. It is safe to restore the default input set 9657 * because there are no active TCPv4 filter rules. 9658 */ 9659 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9660 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9661 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9662 9663 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9664 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9665 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9666 } 9667 } 9668 9669 /** 9670 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9671 * @pf: board private structure 9672 * @filter: FDir filter to remove 9673 */ 9674 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9675 struct i40e_fdir_filter *filter) 9676 { 9677 /* Update counters */ 9678 pf->fdir_pf_active_filters--; 9679 pf->fd_inv = 0; 9680 9681 switch (filter->flow_type) { 9682 case TCP_V4_FLOW: 9683 pf->fd_tcp4_filter_cnt--; 9684 break; 9685 case UDP_V4_FLOW: 9686 pf->fd_udp4_filter_cnt--; 9687 break; 9688 case SCTP_V4_FLOW: 9689 pf->fd_sctp4_filter_cnt--; 9690 break; 9691 case TCP_V6_FLOW: 9692 pf->fd_tcp6_filter_cnt--; 9693 break; 9694 case UDP_V6_FLOW: 9695 pf->fd_udp6_filter_cnt--; 9696 break; 9697 case SCTP_V6_FLOW: 9698 pf->fd_udp6_filter_cnt--; 9699 break; 9700 case IP_USER_FLOW: 9701 switch (filter->ipl4_proto) { 9702 case IPPROTO_TCP: 9703 pf->fd_tcp4_filter_cnt--; 9704 break; 9705 case IPPROTO_UDP: 9706 pf->fd_udp4_filter_cnt--; 9707 break; 9708 case IPPROTO_SCTP: 9709 pf->fd_sctp4_filter_cnt--; 9710 break; 9711 case IPPROTO_IP: 9712 pf->fd_ip4_filter_cnt--; 9713 break; 9714 } 9715 break; 9716 case IPV6_USER_FLOW: 9717 switch (filter->ipl4_proto) { 9718 case IPPROTO_TCP: 9719 pf->fd_tcp6_filter_cnt--; 9720 break; 9721 case IPPROTO_UDP: 9722 pf->fd_udp6_filter_cnt--; 9723 break; 9724 case IPPROTO_SCTP: 9725 pf->fd_sctp6_filter_cnt--; 9726 break; 9727 case IPPROTO_IP: 9728 pf->fd_ip6_filter_cnt--; 9729 break; 9730 } 9731 break; 9732 } 9733 9734 /* Remove the filter from the list and free memory */ 9735 hlist_del(&filter->fdir_node); 9736 kfree(filter); 9737 } 9738 9739 /** 9740 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9741 * @pf: board private structure 9742 **/ 9743 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9744 { 9745 struct i40e_fdir_filter *filter; 9746 u32 fcnt_prog, fcnt_avail; 9747 struct hlist_node *node; 9748 9749 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9750 return; 9751 9752 /* Check if we have enough room to re-enable FDir SB capability. */ 9753 fcnt_prog = i40e_get_global_fd_count(pf); 9754 fcnt_avail = pf->fdir_pf_filter_count; 9755 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9756 (pf->fd_add_err == 0) || 9757 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9758 i40e_reenable_fdir_sb(pf); 9759 9760 /* We should wait for even more space before re-enabling ATR. 9761 * Additionally, we cannot enable ATR as long as we still have TCP SB 9762 * rules active. 9763 */ 9764 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9765 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9766 i40e_reenable_fdir_atr(pf); 9767 9768 /* if hw had a problem adding a filter, delete it */ 9769 if (pf->fd_inv > 0) { 9770 hlist_for_each_entry_safe(filter, node, 9771 &pf->fdir_filter_list, fdir_node) 9772 if (filter->fd_id == pf->fd_inv) 9773 i40e_delete_invalid_filter(pf, filter); 9774 } 9775 } 9776 9777 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9778 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9779 /** 9780 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9781 * @pf: board private structure 9782 **/ 9783 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9784 { 9785 unsigned long min_flush_time; 9786 int flush_wait_retry = 50; 9787 bool disable_atr = false; 9788 int fd_room; 9789 int reg; 9790 9791 if (!time_after(jiffies, pf->fd_flush_timestamp + 9792 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9793 return; 9794 9795 /* If the flush is happening too quick and we have mostly SB rules we 9796 * should not re-enable ATR for some time. 9797 */ 9798 min_flush_time = pf->fd_flush_timestamp + 9799 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9800 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9801 9802 if (!(time_after(jiffies, min_flush_time)) && 9803 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9804 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9805 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9806 disable_atr = true; 9807 } 9808 9809 pf->fd_flush_timestamp = jiffies; 9810 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9811 /* flush all filters */ 9812 wr32(&pf->hw, I40E_PFQF_CTL_1, 9813 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9814 i40e_flush(&pf->hw); 9815 pf->fd_flush_cnt++; 9816 pf->fd_add_err = 0; 9817 do { 9818 /* Check FD flush status every 5-6msec */ 9819 usleep_range(5000, 6000); 9820 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9821 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9822 break; 9823 } while (flush_wait_retry--); 9824 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9825 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9826 } else { 9827 /* replay sideband filters */ 9828 i40e_fdir_filter_restore(i40e_pf_get_main_vsi(pf)); 9829 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9830 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9831 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9832 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9833 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9834 } 9835 } 9836 9837 /** 9838 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9839 * @pf: board private structure 9840 **/ 9841 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9842 { 9843 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9844 } 9845 9846 /** 9847 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9848 * @pf: board private structure 9849 **/ 9850 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9851 { 9852 9853 /* if interface is down do nothing */ 9854 if (test_bit(__I40E_DOWN, pf->state)) 9855 return; 9856 9857 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9858 i40e_fdir_flush_and_replay(pf); 9859 9860 i40e_fdir_check_and_reenable(pf); 9861 9862 } 9863 9864 /** 9865 * i40e_vsi_link_event - notify VSI of a link event 9866 * @vsi: vsi to be notified 9867 * @link_up: link up or down 9868 **/ 9869 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9870 { 9871 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9872 return; 9873 9874 switch (vsi->type) { 9875 case I40E_VSI_MAIN: 9876 if (!vsi->netdev || !vsi->netdev_registered) 9877 break; 9878 9879 if (link_up) { 9880 netif_carrier_on(vsi->netdev); 9881 netif_tx_wake_all_queues(vsi->netdev); 9882 } else { 9883 netif_carrier_off(vsi->netdev); 9884 netif_tx_stop_all_queues(vsi->netdev); 9885 } 9886 break; 9887 9888 case I40E_VSI_SRIOV: 9889 case I40E_VSI_VMDQ2: 9890 case I40E_VSI_CTRL: 9891 case I40E_VSI_IWARP: 9892 case I40E_VSI_MIRROR: 9893 default: 9894 /* there is no notification for other VSIs */ 9895 break; 9896 } 9897 } 9898 9899 /** 9900 * i40e_veb_link_event - notify elements on the veb of a link event 9901 * @veb: veb to be notified 9902 * @link_up: link up or down 9903 **/ 9904 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9905 { 9906 struct i40e_vsi *vsi; 9907 struct i40e_pf *pf; 9908 int i; 9909 9910 if (!veb || !veb->pf) 9911 return; 9912 pf = veb->pf; 9913 9914 /* Send link event to contained VSIs */ 9915 i40e_pf_for_each_vsi(pf, i, vsi) 9916 if (vsi->uplink_seid == veb->seid) 9917 i40e_vsi_link_event(vsi, link_up); 9918 } 9919 9920 /** 9921 * i40e_link_event - Update netif_carrier status 9922 * @pf: board private structure 9923 **/ 9924 static void i40e_link_event(struct i40e_pf *pf) 9925 { 9926 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 9927 struct i40e_veb *veb = i40e_pf_get_main_veb(pf); 9928 u8 new_link_speed, old_link_speed; 9929 bool new_link, old_link; 9930 int status; 9931 #ifdef CONFIG_I40E_DCB 9932 int err; 9933 #endif /* CONFIG_I40E_DCB */ 9934 9935 /* set this to force the get_link_status call to refresh state */ 9936 pf->hw.phy.get_link_info = true; 9937 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9938 status = i40e_get_link_status(&pf->hw, &new_link); 9939 9940 /* On success, disable temp link polling */ 9941 if (status == 0) { 9942 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9943 } else { 9944 /* Enable link polling temporarily until i40e_get_link_status 9945 * returns 0 9946 */ 9947 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9948 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9949 status); 9950 return; 9951 } 9952 9953 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9954 new_link_speed = pf->hw.phy.link_info.link_speed; 9955 9956 if (new_link == old_link && 9957 new_link_speed == old_link_speed && 9958 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9959 new_link == netif_carrier_ok(vsi->netdev))) 9960 return; 9961 9962 i40e_print_link_message(vsi, new_link); 9963 9964 /* Notify the base of the switch tree connected to 9965 * the link. Floating VEBs are not notified. 9966 */ 9967 if (veb) 9968 i40e_veb_link_event(veb, new_link); 9969 else 9970 i40e_vsi_link_event(vsi, new_link); 9971 9972 if (pf->vf) 9973 i40e_vc_notify_link_state(pf); 9974 9975 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 9976 i40e_ptp_set_increment(pf); 9977 #ifdef CONFIG_I40E_DCB 9978 if (new_link == old_link) 9979 return; 9980 /* Not SW DCB so firmware will take care of default settings */ 9981 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9982 return; 9983 9984 /* We cover here only link down, as after link up in case of SW DCB 9985 * SW LLDP agent will take care of setting it up 9986 */ 9987 if (!new_link) { 9988 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9989 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9990 err = i40e_dcb_sw_default_config(pf); 9991 if (err) { 9992 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9993 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9994 } else { 9995 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9996 DCB_CAP_DCBX_VER_IEEE; 9997 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9998 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9999 } 10000 } 10001 #endif /* CONFIG_I40E_DCB */ 10002 } 10003 10004 /** 10005 * i40e_watchdog_subtask - periodic checks not using event driven response 10006 * @pf: board private structure 10007 **/ 10008 static void i40e_watchdog_subtask(struct i40e_pf *pf) 10009 { 10010 struct i40e_vsi *vsi; 10011 struct i40e_veb *veb; 10012 int i; 10013 10014 /* if interface is down do nothing */ 10015 if (test_bit(__I40E_DOWN, pf->state) || 10016 test_bit(__I40E_CONFIG_BUSY, pf->state)) 10017 return; 10018 10019 /* make sure we don't do these things too often */ 10020 if (time_before(jiffies, (pf->service_timer_previous + 10021 pf->service_timer_period))) 10022 return; 10023 pf->service_timer_previous = jiffies; 10024 10025 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 10026 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 10027 i40e_link_event(pf); 10028 10029 /* Update the stats for active netdevs so the network stack 10030 * can look at updated numbers whenever it cares to 10031 */ 10032 i40e_pf_for_each_vsi(pf, i, vsi) 10033 if (vsi->netdev) 10034 i40e_update_stats(vsi); 10035 10036 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10037 /* Update the stats for the active switching components */ 10038 i40e_pf_for_each_veb(pf, i, veb) 10039 i40e_update_veb_stats(veb); 10040 } 10041 10042 i40e_ptp_rx_hang(pf); 10043 i40e_ptp_tx_hang(pf); 10044 } 10045 10046 /** 10047 * i40e_reset_subtask - Set up for resetting the device and driver 10048 * @pf: board private structure 10049 **/ 10050 static void i40e_reset_subtask(struct i40e_pf *pf) 10051 { 10052 u32 reset_flags = 0; 10053 10054 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10055 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10056 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10057 } 10058 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10059 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10060 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10061 } 10062 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10063 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10064 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10065 } 10066 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10067 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10068 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10069 } 10070 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10071 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10072 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10073 } 10074 10075 /* If there's a recovery already waiting, it takes 10076 * precedence before starting a new reset sequence. 10077 */ 10078 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10079 i40e_prep_for_reset(pf); 10080 i40e_reset(pf); 10081 i40e_rebuild(pf, false, false); 10082 } 10083 10084 /* If we're already down or resetting, just bail */ 10085 if (reset_flags && 10086 !test_bit(__I40E_DOWN, pf->state) && 10087 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10088 i40e_do_reset(pf, reset_flags, false); 10089 } 10090 } 10091 10092 /** 10093 * i40e_handle_link_event - Handle link event 10094 * @pf: board private structure 10095 * @e: event info posted on ARQ 10096 **/ 10097 static void i40e_handle_link_event(struct i40e_pf *pf, 10098 struct i40e_arq_event_info *e) 10099 { 10100 struct i40e_aqc_get_link_status *status = 10101 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10102 10103 /* Do a new status request to re-enable LSE reporting 10104 * and load new status information into the hw struct 10105 * This completely ignores any state information 10106 * in the ARQ event info, instead choosing to always 10107 * issue the AQ update link status command. 10108 */ 10109 i40e_link_event(pf); 10110 10111 /* Check if module meets thermal requirements */ 10112 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10113 dev_err(&pf->pdev->dev, 10114 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10115 dev_err(&pf->pdev->dev, 10116 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10117 } else { 10118 /* check for unqualified module, if link is down, suppress 10119 * the message if link was forced to be down. 10120 */ 10121 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10122 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10123 (!(status->link_info & I40E_AQ_LINK_UP)) && 10124 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10125 dev_err(&pf->pdev->dev, 10126 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10127 dev_err(&pf->pdev->dev, 10128 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10129 } 10130 } 10131 } 10132 10133 /** 10134 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10135 * @pf: board private structure 10136 **/ 10137 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10138 { 10139 struct i40e_arq_event_info event; 10140 struct i40e_hw *hw = &pf->hw; 10141 u16 pending, i = 0; 10142 u16 opcode; 10143 u32 oldval; 10144 int ret; 10145 u32 val; 10146 10147 /* Do not run clean AQ when PF reset fails */ 10148 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10149 return; 10150 10151 /* check for error indications */ 10152 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10153 oldval = val; 10154 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10155 if (hw->debug_mask & I40E_DEBUG_AQ) 10156 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10157 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10158 } 10159 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10160 if (hw->debug_mask & I40E_DEBUG_AQ) 10161 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10162 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10163 pf->arq_overflows++; 10164 } 10165 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10166 if (hw->debug_mask & I40E_DEBUG_AQ) 10167 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10168 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10169 } 10170 if (oldval != val) 10171 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10172 10173 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10174 oldval = val; 10175 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10176 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10177 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10178 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10179 } 10180 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10181 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10182 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10183 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10184 } 10185 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10186 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10187 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10188 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10189 } 10190 if (oldval != val) 10191 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10192 10193 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10194 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10195 if (!event.msg_buf) 10196 return; 10197 10198 do { 10199 ret = i40e_clean_arq_element(hw, &event, &pending); 10200 if (ret == -EALREADY) 10201 break; 10202 else if (ret) { 10203 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10204 break; 10205 } 10206 10207 opcode = le16_to_cpu(event.desc.opcode); 10208 switch (opcode) { 10209 10210 case i40e_aqc_opc_get_link_status: 10211 rtnl_lock(); 10212 i40e_handle_link_event(pf, &event); 10213 rtnl_unlock(); 10214 break; 10215 case i40e_aqc_opc_send_msg_to_pf: 10216 ret = i40e_vc_process_vf_msg(pf, 10217 le16_to_cpu(event.desc.retval), 10218 le32_to_cpu(event.desc.cookie_high), 10219 le32_to_cpu(event.desc.cookie_low), 10220 event.msg_buf, 10221 event.msg_len); 10222 break; 10223 case i40e_aqc_opc_lldp_update_mib: 10224 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10225 #ifdef CONFIG_I40E_DCB 10226 rtnl_lock(); 10227 i40e_handle_lldp_event(pf, &event); 10228 rtnl_unlock(); 10229 #endif /* CONFIG_I40E_DCB */ 10230 break; 10231 case i40e_aqc_opc_event_lan_overflow: 10232 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10233 i40e_handle_lan_overflow_event(pf, &event); 10234 break; 10235 case i40e_aqc_opc_send_msg_to_peer: 10236 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10237 break; 10238 case i40e_aqc_opc_nvm_erase: 10239 case i40e_aqc_opc_nvm_update: 10240 case i40e_aqc_opc_oem_post_update: 10241 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10242 "ARQ NVM operation 0x%04x completed\n", 10243 opcode); 10244 break; 10245 default: 10246 dev_info(&pf->pdev->dev, 10247 "ARQ: Unknown event 0x%04x ignored\n", 10248 opcode); 10249 break; 10250 } 10251 } while (i++ < I40E_AQ_WORK_LIMIT); 10252 10253 if (i < I40E_AQ_WORK_LIMIT) 10254 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10255 10256 /* re-enable Admin queue interrupt cause */ 10257 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10258 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10259 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10260 i40e_flush(hw); 10261 10262 kfree(event.msg_buf); 10263 } 10264 10265 /** 10266 * i40e_verify_eeprom - make sure eeprom is good to use 10267 * @pf: board private structure 10268 **/ 10269 static void i40e_verify_eeprom(struct i40e_pf *pf) 10270 { 10271 int err; 10272 10273 err = i40e_diag_eeprom_test(&pf->hw); 10274 if (err) { 10275 /* retry in case of garbage read */ 10276 err = i40e_diag_eeprom_test(&pf->hw); 10277 if (err) { 10278 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10279 err); 10280 set_bit(__I40E_BAD_EEPROM, pf->state); 10281 } 10282 } 10283 10284 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10285 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10286 clear_bit(__I40E_BAD_EEPROM, pf->state); 10287 } 10288 } 10289 10290 /** 10291 * i40e_enable_pf_switch_lb 10292 * @pf: pointer to the PF structure 10293 * 10294 * enable switch loop back or die - no point in a return value 10295 **/ 10296 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10297 { 10298 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10299 struct i40e_vsi_context ctxt; 10300 int ret; 10301 10302 ctxt.seid = pf->main_vsi_seid; 10303 ctxt.pf_num = pf->hw.pf_id; 10304 ctxt.vf_num = 0; 10305 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10306 if (ret) { 10307 dev_info(&pf->pdev->dev, 10308 "couldn't get PF vsi config, err %pe aq_err %s\n", 10309 ERR_PTR(ret), 10310 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10311 return; 10312 } 10313 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10314 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10315 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10316 10317 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10318 if (ret) { 10319 dev_info(&pf->pdev->dev, 10320 "update vsi switch failed, err %pe aq_err %s\n", 10321 ERR_PTR(ret), 10322 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10323 } 10324 } 10325 10326 /** 10327 * i40e_disable_pf_switch_lb 10328 * @pf: pointer to the PF structure 10329 * 10330 * disable switch loop back or die - no point in a return value 10331 **/ 10332 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10333 { 10334 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10335 struct i40e_vsi_context ctxt; 10336 int ret; 10337 10338 ctxt.seid = pf->main_vsi_seid; 10339 ctxt.pf_num = pf->hw.pf_id; 10340 ctxt.vf_num = 0; 10341 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10342 if (ret) { 10343 dev_info(&pf->pdev->dev, 10344 "couldn't get PF vsi config, err %pe aq_err %s\n", 10345 ERR_PTR(ret), 10346 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10347 return; 10348 } 10349 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10350 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10351 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10352 10353 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10354 if (ret) { 10355 dev_info(&pf->pdev->dev, 10356 "update vsi switch failed, err %pe aq_err %s\n", 10357 ERR_PTR(ret), 10358 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10359 } 10360 } 10361 10362 /** 10363 * i40e_config_bridge_mode - Configure the HW bridge mode 10364 * @veb: pointer to the bridge instance 10365 * 10366 * Configure the loop back mode for the LAN VSI that is downlink to the 10367 * specified HW bridge instance. It is expected this function is called 10368 * when a new HW bridge is instantiated. 10369 **/ 10370 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10371 { 10372 struct i40e_pf *pf = veb->pf; 10373 10374 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10375 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10376 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10377 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10378 i40e_disable_pf_switch_lb(pf); 10379 else 10380 i40e_enable_pf_switch_lb(pf); 10381 } 10382 10383 /** 10384 * i40e_reconstitute_veb - rebuild the VEB and VSIs connected to it 10385 * @veb: pointer to the VEB instance 10386 * 10387 * This is a function that builds the attached VSIs. We track the connections 10388 * through our own index numbers because the seid's from the HW could change 10389 * across the reset. 10390 **/ 10391 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10392 { 10393 struct i40e_vsi *ctl_vsi = NULL; 10394 struct i40e_pf *pf = veb->pf; 10395 struct i40e_vsi *vsi; 10396 int v, ret; 10397 10398 /* As we do not maintain PV (port virtualizer) switch element then 10399 * there can be only one non-floating VEB that have uplink to MAC SEID 10400 * and its control VSI is the main one. 10401 */ 10402 if (WARN_ON(veb->uplink_seid && veb->uplink_seid != pf->mac_seid)) { 10403 dev_err(&pf->pdev->dev, 10404 "Invalid uplink SEID for VEB %d\n", veb->idx); 10405 return -ENOENT; 10406 } 10407 10408 if (veb->uplink_seid == pf->mac_seid) { 10409 /* Check that the LAN VSI has VEB owning flag set */ 10410 ctl_vsi = i40e_pf_get_main_vsi(pf); 10411 10412 if (WARN_ON(ctl_vsi->veb_idx != veb->idx || 10413 !(ctl_vsi->flags & I40E_VSI_FLAG_VEB_OWNER))) { 10414 dev_err(&pf->pdev->dev, 10415 "Invalid control VSI for VEB %d\n", veb->idx); 10416 return -ENOENT; 10417 } 10418 10419 /* Add the control VSI to switch */ 10420 ret = i40e_add_vsi(ctl_vsi); 10421 if (ret) { 10422 dev_err(&pf->pdev->dev, 10423 "Rebuild of owner VSI for VEB %d failed: %d\n", 10424 veb->idx, ret); 10425 return ret; 10426 } 10427 10428 i40e_vsi_reset_stats(ctl_vsi); 10429 } 10430 10431 /* create the VEB in the switch and move the VSI onto the VEB */ 10432 ret = i40e_add_veb(veb, ctl_vsi); 10433 if (ret) 10434 return ret; 10435 10436 if (veb->uplink_seid) { 10437 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10438 veb->bridge_mode = BRIDGE_MODE_VEB; 10439 else 10440 veb->bridge_mode = BRIDGE_MODE_VEPA; 10441 i40e_config_bridge_mode(veb); 10442 } 10443 10444 /* create the remaining VSIs attached to this VEB */ 10445 i40e_pf_for_each_vsi(pf, v, vsi) { 10446 if (vsi == ctl_vsi) 10447 continue; 10448 10449 if (vsi->veb_idx == veb->idx) { 10450 vsi->uplink_seid = veb->seid; 10451 ret = i40e_add_vsi(vsi); 10452 if (ret) { 10453 dev_info(&pf->pdev->dev, 10454 "rebuild of vsi_idx %d failed: %d\n", 10455 v, ret); 10456 return ret; 10457 } 10458 i40e_vsi_reset_stats(vsi); 10459 } 10460 } 10461 10462 return ret; 10463 } 10464 10465 /** 10466 * i40e_get_capabilities - get info about the HW 10467 * @pf: the PF struct 10468 * @list_type: AQ capability to be queried 10469 **/ 10470 static int i40e_get_capabilities(struct i40e_pf *pf, 10471 enum i40e_admin_queue_opc list_type) 10472 { 10473 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10474 u16 data_size; 10475 int buf_len; 10476 int err; 10477 10478 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10479 do { 10480 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10481 if (!cap_buf) 10482 return -ENOMEM; 10483 10484 /* this loads the data into the hw struct for us */ 10485 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10486 &data_size, list_type, 10487 NULL); 10488 /* data loaded, buffer no longer needed */ 10489 kfree(cap_buf); 10490 10491 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10492 /* retry with a larger buffer */ 10493 buf_len = data_size; 10494 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10495 dev_info(&pf->pdev->dev, 10496 "capability discovery failed, err %pe aq_err %s\n", 10497 ERR_PTR(err), 10498 i40e_aq_str(&pf->hw, 10499 pf->hw.aq.asq_last_status)); 10500 return -ENODEV; 10501 } 10502 } while (err); 10503 10504 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10505 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10506 dev_info(&pf->pdev->dev, 10507 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10508 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10509 pf->hw.func_caps.num_msix_vectors, 10510 pf->hw.func_caps.num_msix_vectors_vf, 10511 pf->hw.func_caps.fd_filters_guaranteed, 10512 pf->hw.func_caps.fd_filters_best_effort, 10513 pf->hw.func_caps.num_tx_qp, 10514 pf->hw.func_caps.num_vsis); 10515 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10516 dev_info(&pf->pdev->dev, 10517 "switch_mode=0x%04x, function_valid=0x%08x\n", 10518 pf->hw.dev_caps.switch_mode, 10519 pf->hw.dev_caps.valid_functions); 10520 dev_info(&pf->pdev->dev, 10521 "SR-IOV=%d, num_vfs for all function=%u\n", 10522 pf->hw.dev_caps.sr_iov_1_1, 10523 pf->hw.dev_caps.num_vfs); 10524 dev_info(&pf->pdev->dev, 10525 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10526 pf->hw.dev_caps.num_vsis, 10527 pf->hw.dev_caps.num_rx_qp, 10528 pf->hw.dev_caps.num_tx_qp); 10529 } 10530 } 10531 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10532 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10533 + pf->hw.func_caps.num_vfs) 10534 if (pf->hw.revision_id == 0 && 10535 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10536 dev_info(&pf->pdev->dev, 10537 "got num_vsis %d, setting num_vsis to %d\n", 10538 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10539 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10540 } 10541 } 10542 return 0; 10543 } 10544 10545 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10546 10547 /** 10548 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10549 * @pf: board private structure 10550 **/ 10551 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10552 { 10553 struct i40e_vsi *main_vsi, *vsi; 10554 10555 /* quick workaround for an NVM issue that leaves a critical register 10556 * uninitialized 10557 */ 10558 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10559 static const u32 hkey[] = { 10560 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10561 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10562 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10563 0x95b3a76d}; 10564 int i; 10565 10566 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10567 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10568 } 10569 10570 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10571 return; 10572 10573 /* find existing VSI and see if it needs configuring */ 10574 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10575 10576 /* create a new VSI if none exists */ 10577 if (!vsi) { 10578 main_vsi = i40e_pf_get_main_vsi(pf); 10579 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, main_vsi->seid, 0); 10580 if (!vsi) { 10581 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10582 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10583 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10584 return; 10585 } 10586 } 10587 10588 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10589 } 10590 10591 /** 10592 * i40e_fdir_teardown - release the Flow Director resources 10593 * @pf: board private structure 10594 **/ 10595 static void i40e_fdir_teardown(struct i40e_pf *pf) 10596 { 10597 struct i40e_vsi *vsi; 10598 10599 i40e_fdir_filter_exit(pf); 10600 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10601 if (vsi) 10602 i40e_vsi_release(vsi); 10603 } 10604 10605 /** 10606 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10607 * @vsi: PF main vsi 10608 * @seid: seid of main or channel VSIs 10609 * 10610 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10611 * existed before reset 10612 **/ 10613 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10614 { 10615 struct i40e_cloud_filter *cfilter; 10616 struct i40e_pf *pf = vsi->back; 10617 struct hlist_node *node; 10618 int ret; 10619 10620 /* Add cloud filters back if they exist */ 10621 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10622 cloud_node) { 10623 if (cfilter->seid != seid) 10624 continue; 10625 10626 if (cfilter->dst_port) 10627 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10628 true); 10629 else 10630 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10631 10632 if (ret) { 10633 dev_dbg(&pf->pdev->dev, 10634 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10635 ERR_PTR(ret), 10636 i40e_aq_str(&pf->hw, 10637 pf->hw.aq.asq_last_status)); 10638 return ret; 10639 } 10640 } 10641 return 0; 10642 } 10643 10644 /** 10645 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10646 * @vsi: PF main vsi 10647 * 10648 * Rebuilds channel VSIs if they existed before reset 10649 **/ 10650 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10651 { 10652 struct i40e_channel *ch, *ch_tmp; 10653 int ret; 10654 10655 if (list_empty(&vsi->ch_list)) 10656 return 0; 10657 10658 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10659 if (!ch->initialized) 10660 break; 10661 /* Proceed with creation of channel (VMDq2) VSI */ 10662 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10663 if (ret) { 10664 dev_info(&vsi->back->pdev->dev, 10665 "failed to rebuild channels using uplink_seid %u\n", 10666 vsi->uplink_seid); 10667 return ret; 10668 } 10669 /* Reconfigure TX queues using QTX_CTL register */ 10670 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10671 if (ret) { 10672 dev_info(&vsi->back->pdev->dev, 10673 "failed to configure TX rings for channel %u\n", 10674 ch->seid); 10675 return ret; 10676 } 10677 /* update 'next_base_queue' */ 10678 vsi->next_base_queue = vsi->next_base_queue + 10679 ch->num_queue_pairs; 10680 if (ch->max_tx_rate) { 10681 u64 credits = ch->max_tx_rate; 10682 10683 if (i40e_set_bw_limit(vsi, ch->seid, 10684 ch->max_tx_rate)) 10685 return -EINVAL; 10686 10687 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10688 dev_dbg(&vsi->back->pdev->dev, 10689 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10690 ch->max_tx_rate, 10691 credits, 10692 ch->seid); 10693 } 10694 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10695 if (ret) { 10696 dev_dbg(&vsi->back->pdev->dev, 10697 "Failed to rebuild cloud filters for channel VSI %u\n", 10698 ch->seid); 10699 return ret; 10700 } 10701 } 10702 return 0; 10703 } 10704 10705 /** 10706 * i40e_clean_xps_state - clean xps state for every tx_ring 10707 * @vsi: ptr to the VSI 10708 **/ 10709 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10710 { 10711 int i; 10712 10713 if (vsi->tx_rings) 10714 for (i = 0; i < vsi->num_queue_pairs; i++) 10715 if (vsi->tx_rings[i]) 10716 clear_bit(__I40E_TX_XPS_INIT_DONE, 10717 vsi->tx_rings[i]->state); 10718 } 10719 10720 /** 10721 * i40e_prep_for_reset - prep for the core to reset 10722 * @pf: board private structure 10723 * 10724 * Close up the VFs and other things in prep for PF Reset. 10725 **/ 10726 static void i40e_prep_for_reset(struct i40e_pf *pf) 10727 { 10728 struct i40e_hw *hw = &pf->hw; 10729 struct i40e_vsi *vsi; 10730 int ret = 0; 10731 u32 v; 10732 10733 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10734 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10735 return; 10736 if (i40e_check_asq_alive(&pf->hw)) 10737 i40e_vc_notify_reset(pf); 10738 10739 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10740 10741 /* quiesce the VSIs and their queues that are not already DOWN */ 10742 i40e_pf_quiesce_all_vsi(pf); 10743 10744 i40e_pf_for_each_vsi(pf, v, vsi) { 10745 i40e_clean_xps_state(vsi); 10746 vsi->seid = 0; 10747 } 10748 10749 i40e_shutdown_adminq(&pf->hw); 10750 10751 /* call shutdown HMC */ 10752 if (hw->hmc.hmc_obj) { 10753 ret = i40e_shutdown_lan_hmc(hw); 10754 if (ret) 10755 dev_warn(&pf->pdev->dev, 10756 "shutdown_lan_hmc failed: %d\n", ret); 10757 } 10758 10759 /* Save the current PTP time so that we can restore the time after the 10760 * reset completes. 10761 */ 10762 i40e_ptp_save_hw_time(pf); 10763 } 10764 10765 /** 10766 * i40e_send_version - update firmware with driver version 10767 * @pf: PF struct 10768 */ 10769 static void i40e_send_version(struct i40e_pf *pf) 10770 { 10771 struct i40e_driver_version dv; 10772 10773 dv.major_version = 0xff; 10774 dv.minor_version = 0xff; 10775 dv.build_version = 0xff; 10776 dv.subbuild_version = 0; 10777 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10778 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10779 } 10780 10781 /** 10782 * i40e_get_oem_version - get OEM specific version information 10783 * @hw: pointer to the hardware structure 10784 **/ 10785 static void i40e_get_oem_version(struct i40e_hw *hw) 10786 { 10787 u16 block_offset = 0xffff; 10788 u16 block_length = 0; 10789 u16 capabilities = 0; 10790 u16 gen_snap = 0; 10791 u16 release = 0; 10792 10793 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10794 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10795 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10796 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10797 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10798 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10799 #define I40E_NVM_OEM_LENGTH 3 10800 10801 /* Check if pointer to OEM version block is valid. */ 10802 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10803 if (block_offset == 0xffff) 10804 return; 10805 10806 /* Check if OEM version block has correct length. */ 10807 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10808 &block_length); 10809 if (block_length < I40E_NVM_OEM_LENGTH) 10810 return; 10811 10812 /* Check if OEM version format is as expected. */ 10813 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10814 &capabilities); 10815 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10816 return; 10817 10818 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10819 &gen_snap); 10820 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10821 &release); 10822 hw->nvm.oem_ver = 10823 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10824 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10825 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10826 } 10827 10828 /** 10829 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10830 * @pf: board private structure 10831 **/ 10832 static int i40e_reset(struct i40e_pf *pf) 10833 { 10834 struct i40e_hw *hw = &pf->hw; 10835 int ret; 10836 10837 ret = i40e_pf_reset(hw); 10838 if (ret) { 10839 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10840 set_bit(__I40E_RESET_FAILED, pf->state); 10841 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10842 } else { 10843 pf->pfr_count++; 10844 } 10845 return ret; 10846 } 10847 10848 /** 10849 * i40e_rebuild - rebuild using a saved config 10850 * @pf: board private structure 10851 * @reinit: if the Main VSI needs to re-initialized. 10852 * @lock_acquired: indicates whether or not the lock has been acquired 10853 * before this function was called. 10854 **/ 10855 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10856 { 10857 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10858 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10859 struct i40e_hw *hw = &pf->hw; 10860 struct i40e_veb *veb; 10861 int ret; 10862 u32 val; 10863 int v; 10864 10865 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10866 is_recovery_mode_reported) 10867 i40e_set_ethtool_ops(vsi->netdev); 10868 10869 if (test_bit(__I40E_DOWN, pf->state) && 10870 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10871 goto clear_recovery; 10872 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10873 10874 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10875 ret = i40e_init_adminq(&pf->hw); 10876 if (ret) { 10877 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10878 ERR_PTR(ret), 10879 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10880 goto clear_recovery; 10881 } 10882 i40e_get_oem_version(&pf->hw); 10883 10884 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10885 /* The following delay is necessary for firmware update. */ 10886 mdelay(1000); 10887 } 10888 10889 /* re-verify the eeprom if we just had an EMP reset */ 10890 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10891 i40e_verify_eeprom(pf); 10892 10893 /* if we are going out of or into recovery mode we have to act 10894 * accordingly with regard to resources initialization 10895 * and deinitialization 10896 */ 10897 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10898 if (i40e_get_capabilities(pf, 10899 i40e_aqc_opc_list_func_capabilities)) 10900 goto end_unlock; 10901 10902 if (is_recovery_mode_reported) { 10903 /* we're staying in recovery mode so we'll reinitialize 10904 * misc vector here 10905 */ 10906 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10907 goto end_unlock; 10908 } else { 10909 if (!lock_acquired) 10910 rtnl_lock(); 10911 /* we're going out of recovery mode so we'll free 10912 * the IRQ allocated specifically for recovery mode 10913 * and restore the interrupt scheme 10914 */ 10915 free_irq(pf->pdev->irq, pf); 10916 i40e_clear_interrupt_scheme(pf); 10917 if (i40e_restore_interrupt_scheme(pf)) 10918 goto end_unlock; 10919 } 10920 10921 /* tell the firmware that we're starting */ 10922 i40e_send_version(pf); 10923 10924 /* bail out in case recovery mode was detected, as there is 10925 * no need for further configuration. 10926 */ 10927 goto end_unlock; 10928 } 10929 10930 i40e_clear_pxe_mode(hw); 10931 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10932 if (ret) 10933 goto end_core_reset; 10934 10935 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10936 hw->func_caps.num_rx_qp, 0, 0); 10937 if (ret) { 10938 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10939 goto end_core_reset; 10940 } 10941 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10942 if (ret) { 10943 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10944 goto end_core_reset; 10945 } 10946 10947 #ifdef CONFIG_I40E_DCB 10948 /* Enable FW to write a default DCB config on link-up 10949 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10950 * is not supported with new link speed 10951 */ 10952 if (i40e_is_tc_mqprio_enabled(pf)) { 10953 i40e_aq_set_dcb_parameters(hw, false, NULL); 10954 } else { 10955 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10956 (hw->phy.link_info.link_speed & 10957 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10958 i40e_aq_set_dcb_parameters(hw, false, NULL); 10959 dev_warn(&pf->pdev->dev, 10960 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10961 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10962 } else { 10963 i40e_aq_set_dcb_parameters(hw, true, NULL); 10964 ret = i40e_init_pf_dcb(pf); 10965 if (ret) { 10966 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10967 ret); 10968 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10969 /* Continue without DCB enabled */ 10970 } 10971 } 10972 } 10973 10974 #endif /* CONFIG_I40E_DCB */ 10975 if (!lock_acquired) 10976 rtnl_lock(); 10977 ret = i40e_setup_pf_switch(pf, reinit, true); 10978 if (ret) 10979 goto end_unlock; 10980 10981 /* The driver only wants link up/down and module qualification 10982 * reports from firmware. Note the negative logic. 10983 */ 10984 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10985 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10986 I40E_AQ_EVENT_MEDIA_NA | 10987 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10988 if (ret) 10989 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 10990 ERR_PTR(ret), 10991 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10992 10993 /* Rebuild the VSIs and VEBs that existed before reset. 10994 * They are still in our local switch element arrays, so only 10995 * need to rebuild the switch model in the HW. 10996 * 10997 * If there were VEBs but the reconstitution failed, we'll try 10998 * to recover minimal use by getting the basic PF VSI working. 10999 */ 11000 if (vsi->uplink_seid != pf->mac_seid) { 11001 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 11002 11003 /* Rebuild VEBs */ 11004 i40e_pf_for_each_veb(pf, v, veb) { 11005 ret = i40e_reconstitute_veb(veb); 11006 if (!ret) 11007 continue; 11008 11009 /* If Main VEB failed, we're in deep doodoo, 11010 * so give up rebuilding the switch and set up 11011 * for minimal rebuild of PF VSI. 11012 * If orphan failed, we'll report the error 11013 * but try to keep going. 11014 */ 11015 if (veb->uplink_seid == pf->mac_seid) { 11016 dev_info(&pf->pdev->dev, 11017 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 11018 ret); 11019 vsi->uplink_seid = pf->mac_seid; 11020 break; 11021 } else if (veb->uplink_seid == 0) { 11022 dev_info(&pf->pdev->dev, 11023 "rebuild of orphan VEB failed: %d\n", 11024 ret); 11025 } 11026 } 11027 } 11028 11029 if (vsi->uplink_seid == pf->mac_seid) { 11030 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11031 /* no VEB, so rebuild only the Main VSI */ 11032 ret = i40e_add_vsi(vsi); 11033 if (ret) { 11034 dev_info(&pf->pdev->dev, 11035 "rebuild of Main VSI failed: %d\n", ret); 11036 goto end_unlock; 11037 } 11038 } 11039 11040 if (vsi->mqprio_qopt.max_rate[0]) { 11041 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11042 vsi->mqprio_qopt.max_rate[0]); 11043 u64 credits = 0; 11044 11045 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11046 if (ret) 11047 goto end_unlock; 11048 11049 credits = max_tx_rate; 11050 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11051 dev_dbg(&vsi->back->pdev->dev, 11052 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11053 max_tx_rate, 11054 credits, 11055 vsi->seid); 11056 } 11057 11058 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11059 if (ret) 11060 goto end_unlock; 11061 11062 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11063 * for this main VSI if they exist 11064 */ 11065 ret = i40e_rebuild_channels(vsi); 11066 if (ret) 11067 goto end_unlock; 11068 11069 /* Reconfigure hardware for allowing smaller MSS in the case 11070 * of TSO, so that we avoid the MDD being fired and causing 11071 * a reset in the case of small MSS+TSO. 11072 */ 11073 #define I40E_REG_MSS 0x000E64DC 11074 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11075 #define I40E_64BYTE_MSS 0x400000 11076 val = rd32(hw, I40E_REG_MSS); 11077 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11078 val &= ~I40E_REG_MSS_MIN_MASK; 11079 val |= I40E_64BYTE_MSS; 11080 wr32(hw, I40E_REG_MSS, val); 11081 } 11082 11083 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11084 msleep(75); 11085 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11086 if (ret) 11087 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11088 ERR_PTR(ret), 11089 i40e_aq_str(&pf->hw, 11090 pf->hw.aq.asq_last_status)); 11091 } 11092 /* reinit the misc interrupt */ 11093 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11094 ret = i40e_setup_misc_vector(pf); 11095 if (ret) 11096 goto end_unlock; 11097 } 11098 11099 /* Add a filter to drop all Flow control frames from any VSI from being 11100 * transmitted. By doing so we stop a malicious VF from sending out 11101 * PAUSE or PFC frames and potentially controlling traffic for other 11102 * PF/VF VSIs. 11103 * The FW can still send Flow control frames if enabled. 11104 */ 11105 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11106 pf->main_vsi_seid); 11107 11108 /* restart the VSIs that were rebuilt and running before the reset */ 11109 i40e_pf_unquiesce_all_vsi(pf); 11110 11111 /* Release the RTNL lock before we start resetting VFs */ 11112 if (!lock_acquired) 11113 rtnl_unlock(); 11114 11115 /* Restore promiscuous settings */ 11116 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11117 if (ret) 11118 dev_warn(&pf->pdev->dev, 11119 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11120 pf->cur_promisc ? "on" : "off", 11121 ERR_PTR(ret), 11122 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11123 11124 i40e_reset_all_vfs(pf, true); 11125 11126 /* tell the firmware that we're starting */ 11127 i40e_send_version(pf); 11128 11129 /* We've already released the lock, so don't do it again */ 11130 goto end_core_reset; 11131 11132 end_unlock: 11133 if (!lock_acquired) 11134 rtnl_unlock(); 11135 end_core_reset: 11136 clear_bit(__I40E_RESET_FAILED, pf->state); 11137 clear_recovery: 11138 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11139 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11140 } 11141 11142 /** 11143 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11144 * @pf: board private structure 11145 * @reinit: if the Main VSI needs to re-initialized. 11146 * @lock_acquired: indicates whether or not the lock has been acquired 11147 * before this function was called. 11148 **/ 11149 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11150 bool lock_acquired) 11151 { 11152 int ret; 11153 11154 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11155 return; 11156 /* Now we wait for GRST to settle out. 11157 * We don't have to delete the VEBs or VSIs from the hw switch 11158 * because the reset will make them disappear. 11159 */ 11160 ret = i40e_reset(pf); 11161 if (!ret) 11162 i40e_rebuild(pf, reinit, lock_acquired); 11163 else 11164 dev_err(&pf->pdev->dev, "%s: i40e_reset() FAILED", __func__); 11165 } 11166 11167 /** 11168 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11169 * @pf: board private structure 11170 * 11171 * Close up the VFs and other things in prep for a Core Reset, 11172 * then get ready to rebuild the world. 11173 * @lock_acquired: indicates whether or not the lock has been acquired 11174 * before this function was called. 11175 **/ 11176 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11177 { 11178 i40e_prep_for_reset(pf); 11179 i40e_reset_and_rebuild(pf, false, lock_acquired); 11180 } 11181 11182 /** 11183 * i40e_print_vf_mdd_event - print VF Tx/Rx malicious driver detect event 11184 * @pf: board private structure 11185 * @vf: pointer to the VF structure 11186 * @is_tx: true - for Tx event, false - for Rx 11187 */ 11188 static void i40e_print_vf_mdd_event(struct i40e_pf *pf, struct i40e_vf *vf, 11189 bool is_tx) 11190 { 11191 dev_err(&pf->pdev->dev, is_tx ? 11192 "%lld Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n" : 11193 "%lld Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n", 11194 is_tx ? vf->mdd_tx_events.count : vf->mdd_rx_events.count, 11195 pf->hw.pf_id, 11196 vf->vf_id, 11197 vf->default_lan_addr.addr, 11198 str_on_off(test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags))); 11199 } 11200 11201 /** 11202 * i40e_print_vfs_mdd_events - print VFs malicious driver detect event 11203 * @pf: pointer to the PF structure 11204 * 11205 * Called from i40e_handle_mdd_event to rate limit and print VFs MDD events. 11206 */ 11207 static void i40e_print_vfs_mdd_events(struct i40e_pf *pf) 11208 { 11209 unsigned int i; 11210 11211 /* check that there are pending MDD events to print */ 11212 if (!test_and_clear_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state)) 11213 return; 11214 11215 if (!__ratelimit(&pf->mdd_message_rate_limit)) 11216 return; 11217 11218 for (i = 0; i < pf->num_alloc_vfs; i++) { 11219 struct i40e_vf *vf = &pf->vf[i]; 11220 bool is_printed = false; 11221 11222 /* only print Rx MDD event message if there are new events */ 11223 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 11224 vf->mdd_rx_events.last_printed = vf->mdd_rx_events.count; 11225 i40e_print_vf_mdd_event(pf, vf, false); 11226 is_printed = true; 11227 } 11228 11229 /* only print Tx MDD event message if there are new events */ 11230 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 11231 vf->mdd_tx_events.last_printed = vf->mdd_tx_events.count; 11232 i40e_print_vf_mdd_event(pf, vf, true); 11233 is_printed = true; 11234 } 11235 11236 if (is_printed && !test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 11237 dev_info(&pf->pdev->dev, 11238 "Use PF Control I/F to re-enable the VF #%d\n", 11239 i); 11240 } 11241 } 11242 11243 /** 11244 * i40e_handle_mdd_event 11245 * @pf: pointer to the PF structure 11246 * 11247 * Called from the MDD irq handler to identify possibly malicious vfs 11248 **/ 11249 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11250 { 11251 struct i40e_hw *hw = &pf->hw; 11252 bool mdd_detected = false; 11253 struct i40e_vf *vf; 11254 u32 reg; 11255 int i; 11256 11257 if (!test_and_clear_bit(__I40E_MDD_EVENT_PENDING, pf->state)) { 11258 /* Since the VF MDD event logging is rate limited, check if 11259 * there are pending MDD events. 11260 */ 11261 i40e_print_vfs_mdd_events(pf); 11262 return; 11263 } 11264 11265 /* find what triggered the MDD event */ 11266 reg = rd32(hw, I40E_GL_MDET_TX); 11267 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11268 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg); 11269 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg); 11270 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg); 11271 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) - 11272 pf->hw.func_caps.base_queue; 11273 if (netif_msg_tx_err(pf)) 11274 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11275 event, queue, pf_num, vf_num); 11276 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11277 mdd_detected = true; 11278 } 11279 reg = rd32(hw, I40E_GL_MDET_RX); 11280 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11281 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg); 11282 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg); 11283 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) - 11284 pf->hw.func_caps.base_queue; 11285 if (netif_msg_rx_err(pf)) 11286 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11287 event, queue, func); 11288 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11289 mdd_detected = true; 11290 } 11291 11292 if (mdd_detected) { 11293 reg = rd32(hw, I40E_PF_MDET_TX); 11294 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11295 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11296 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11297 } 11298 reg = rd32(hw, I40E_PF_MDET_RX); 11299 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11300 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11301 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11302 } 11303 } 11304 11305 /* see if one of the VFs needs its hand slapped */ 11306 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11307 bool is_mdd_on_tx = false; 11308 bool is_mdd_on_rx = false; 11309 11310 vf = &(pf->vf[i]); 11311 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11312 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11313 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state); 11314 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11315 vf->mdd_tx_events.count++; 11316 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11317 is_mdd_on_tx = true; 11318 } 11319 11320 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11321 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11322 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state); 11323 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11324 vf->mdd_rx_events.count++; 11325 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11326 is_mdd_on_rx = true; 11327 } 11328 11329 if ((is_mdd_on_tx || is_mdd_on_rx) && 11330 test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 11331 /* VF MDD event counters will be cleared by 11332 * reset, so print the event prior to reset. 11333 */ 11334 if (is_mdd_on_rx) 11335 i40e_print_vf_mdd_event(pf, vf, false); 11336 if (is_mdd_on_tx) 11337 i40e_print_vf_mdd_event(pf, vf, true); 11338 11339 i40e_vc_reset_vf(vf, true); 11340 } 11341 } 11342 11343 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11344 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11345 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11346 i40e_flush(hw); 11347 11348 i40e_print_vfs_mdd_events(pf); 11349 } 11350 11351 /** 11352 * i40e_service_task - Run the driver's async subtasks 11353 * @work: pointer to work_struct containing our data 11354 **/ 11355 static void i40e_service_task(struct work_struct *work) 11356 { 11357 struct i40e_pf *pf = container_of(work, 11358 struct i40e_pf, 11359 service_task); 11360 unsigned long start_time = jiffies; 11361 11362 /* don't bother with service tasks if a reset is in progress */ 11363 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11364 test_bit(__I40E_SUSPENDED, pf->state)) 11365 return; 11366 11367 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11368 return; 11369 11370 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11371 i40e_detect_recover_hung(pf); 11372 i40e_sync_filters_subtask(pf); 11373 i40e_reset_subtask(pf); 11374 i40e_handle_mdd_event(pf); 11375 i40e_vc_process_vflr_event(pf); 11376 i40e_watchdog_subtask(pf); 11377 i40e_fdir_reinit_subtask(pf); 11378 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11379 /* Client subtask will reopen next time through. */ 11380 i40e_notify_client_of_netdev_close(pf, true); 11381 } else { 11382 i40e_client_subtask(pf); 11383 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11384 pf->state)) 11385 i40e_notify_client_of_l2_param_changes(pf); 11386 } 11387 i40e_sync_filters_subtask(pf); 11388 } else { 11389 i40e_reset_subtask(pf); 11390 } 11391 11392 i40e_clean_adminq_subtask(pf); 11393 11394 /* flush memory to make sure state is correct before next watchdog */ 11395 smp_mb__before_atomic(); 11396 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11397 11398 /* If the tasks have taken longer than one timer cycle or there 11399 * is more work to be done, reschedule the service task now 11400 * rather than wait for the timer to tick again. 11401 */ 11402 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11403 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11404 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11405 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11406 i40e_service_event_schedule(pf); 11407 } 11408 11409 /** 11410 * i40e_service_timer - timer callback 11411 * @t: timer list pointer 11412 **/ 11413 static void i40e_service_timer(struct timer_list *t) 11414 { 11415 struct i40e_pf *pf = from_timer(pf, t, service_timer); 11416 11417 mod_timer(&pf->service_timer, 11418 round_jiffies(jiffies + pf->service_timer_period)); 11419 i40e_service_event_schedule(pf); 11420 } 11421 11422 /** 11423 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11424 * @vsi: the VSI being configured 11425 **/ 11426 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11427 { 11428 struct i40e_pf *pf = vsi->back; 11429 11430 switch (vsi->type) { 11431 case I40E_VSI_MAIN: 11432 vsi->alloc_queue_pairs = pf->num_lan_qps; 11433 if (!vsi->num_tx_desc) 11434 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11435 I40E_REQ_DESCRIPTOR_MULTIPLE); 11436 if (!vsi->num_rx_desc) 11437 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11438 I40E_REQ_DESCRIPTOR_MULTIPLE); 11439 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11440 vsi->num_q_vectors = pf->num_lan_msix; 11441 else 11442 vsi->num_q_vectors = 1; 11443 11444 break; 11445 11446 case I40E_VSI_FDIR: 11447 vsi->alloc_queue_pairs = 1; 11448 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11449 I40E_REQ_DESCRIPTOR_MULTIPLE); 11450 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11451 I40E_REQ_DESCRIPTOR_MULTIPLE); 11452 vsi->num_q_vectors = pf->num_fdsb_msix; 11453 break; 11454 11455 case I40E_VSI_VMDQ2: 11456 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11457 if (!vsi->num_tx_desc) 11458 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11459 I40E_REQ_DESCRIPTOR_MULTIPLE); 11460 if (!vsi->num_rx_desc) 11461 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11462 I40E_REQ_DESCRIPTOR_MULTIPLE); 11463 vsi->num_q_vectors = pf->num_vmdq_msix; 11464 break; 11465 11466 case I40E_VSI_SRIOV: 11467 vsi->alloc_queue_pairs = pf->num_vf_qps; 11468 if (!vsi->num_tx_desc) 11469 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11470 I40E_REQ_DESCRIPTOR_MULTIPLE); 11471 if (!vsi->num_rx_desc) 11472 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11473 I40E_REQ_DESCRIPTOR_MULTIPLE); 11474 break; 11475 11476 default: 11477 WARN_ON(1); 11478 return -ENODATA; 11479 } 11480 11481 if (is_kdump_kernel()) { 11482 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11483 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11484 } 11485 11486 return 0; 11487 } 11488 11489 /** 11490 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11491 * @vsi: VSI pointer 11492 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11493 * 11494 * On error: returns error code (negative) 11495 * On success: returns 0 11496 **/ 11497 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11498 { 11499 struct i40e_ring **next_rings; 11500 int size; 11501 int ret = 0; 11502 11503 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11504 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11505 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11506 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11507 if (!vsi->tx_rings) 11508 return -ENOMEM; 11509 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11510 if (i40e_enabled_xdp_vsi(vsi)) { 11511 vsi->xdp_rings = next_rings; 11512 next_rings += vsi->alloc_queue_pairs; 11513 } 11514 vsi->rx_rings = next_rings; 11515 11516 if (alloc_qvectors) { 11517 /* allocate memory for q_vector pointers */ 11518 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11519 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11520 if (!vsi->q_vectors) { 11521 ret = -ENOMEM; 11522 goto err_vectors; 11523 } 11524 } 11525 return ret; 11526 11527 err_vectors: 11528 kfree(vsi->tx_rings); 11529 return ret; 11530 } 11531 11532 /** 11533 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11534 * @pf: board private structure 11535 * @type: type of VSI 11536 * 11537 * On error: returns error code (negative) 11538 * On success: returns vsi index in PF (positive) 11539 **/ 11540 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11541 { 11542 int ret = -ENODEV; 11543 struct i40e_vsi *vsi; 11544 int vsi_idx; 11545 int i; 11546 11547 /* Need to protect the allocation of the VSIs at the PF level */ 11548 mutex_lock(&pf->switch_mutex); 11549 11550 /* VSI list may be fragmented if VSI creation/destruction has 11551 * been happening. We can afford to do a quick scan to look 11552 * for any free VSIs in the list. 11553 * 11554 * find next empty vsi slot, looping back around if necessary 11555 */ 11556 i = pf->next_vsi; 11557 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11558 i++; 11559 if (i >= pf->num_alloc_vsi) { 11560 i = 0; 11561 while (i < pf->next_vsi && pf->vsi[i]) 11562 i++; 11563 } 11564 11565 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11566 vsi_idx = i; /* Found one! */ 11567 } else { 11568 ret = -ENODEV; 11569 goto unlock_pf; /* out of VSI slots! */ 11570 } 11571 pf->next_vsi = ++i; 11572 11573 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11574 if (!vsi) { 11575 ret = -ENOMEM; 11576 goto unlock_pf; 11577 } 11578 vsi->type = type; 11579 vsi->back = pf; 11580 set_bit(__I40E_VSI_DOWN, vsi->state); 11581 vsi->flags = 0; 11582 vsi->idx = vsi_idx; 11583 vsi->int_rate_limit = 0; 11584 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11585 pf->rss_table_size : 64; 11586 vsi->netdev_registered = false; 11587 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11588 hash_init(vsi->mac_filter_hash); 11589 vsi->irqs_ready = false; 11590 11591 if (type == I40E_VSI_MAIN) { 11592 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11593 if (!vsi->af_xdp_zc_qps) 11594 goto err_rings; 11595 } 11596 11597 ret = i40e_set_num_rings_in_vsi(vsi); 11598 if (ret) 11599 goto err_rings; 11600 11601 ret = i40e_vsi_alloc_arrays(vsi, true); 11602 if (ret) 11603 goto err_rings; 11604 11605 /* Setup default MSIX irq handler for VSI */ 11606 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11607 11608 /* Initialize VSI lock */ 11609 spin_lock_init(&vsi->mac_filter_hash_lock); 11610 pf->vsi[vsi_idx] = vsi; 11611 ret = vsi_idx; 11612 goto unlock_pf; 11613 11614 err_rings: 11615 bitmap_free(vsi->af_xdp_zc_qps); 11616 pf->next_vsi = i - 1; 11617 kfree(vsi); 11618 unlock_pf: 11619 mutex_unlock(&pf->switch_mutex); 11620 return ret; 11621 } 11622 11623 /** 11624 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11625 * @vsi: VSI pointer 11626 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11627 * 11628 * On error: returns error code (negative) 11629 * On success: returns 0 11630 **/ 11631 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11632 { 11633 /* free the ring and vector containers */ 11634 if (free_qvectors) { 11635 kfree(vsi->q_vectors); 11636 vsi->q_vectors = NULL; 11637 } 11638 kfree(vsi->tx_rings); 11639 vsi->tx_rings = NULL; 11640 vsi->rx_rings = NULL; 11641 vsi->xdp_rings = NULL; 11642 } 11643 11644 /** 11645 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11646 * and lookup table 11647 * @vsi: Pointer to VSI structure 11648 */ 11649 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11650 { 11651 if (!vsi) 11652 return; 11653 11654 kfree(vsi->rss_hkey_user); 11655 vsi->rss_hkey_user = NULL; 11656 11657 kfree(vsi->rss_lut_user); 11658 vsi->rss_lut_user = NULL; 11659 } 11660 11661 /** 11662 * i40e_vsi_clear - Deallocate the VSI provided 11663 * @vsi: the VSI being un-configured 11664 **/ 11665 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11666 { 11667 struct i40e_pf *pf; 11668 11669 if (!vsi) 11670 return 0; 11671 11672 if (!vsi->back) 11673 goto free_vsi; 11674 pf = vsi->back; 11675 11676 mutex_lock(&pf->switch_mutex); 11677 if (!pf->vsi[vsi->idx]) { 11678 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11679 vsi->idx, vsi->idx, vsi->type); 11680 goto unlock_vsi; 11681 } 11682 11683 if (pf->vsi[vsi->idx] != vsi) { 11684 dev_err(&pf->pdev->dev, 11685 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11686 pf->vsi[vsi->idx]->idx, 11687 pf->vsi[vsi->idx]->type, 11688 vsi->idx, vsi->type); 11689 goto unlock_vsi; 11690 } 11691 11692 /* updates the PF for this cleared vsi */ 11693 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11694 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11695 11696 bitmap_free(vsi->af_xdp_zc_qps); 11697 i40e_vsi_free_arrays(vsi, true); 11698 i40e_clear_rss_config_user(vsi); 11699 11700 pf->vsi[vsi->idx] = NULL; 11701 if (vsi->idx < pf->next_vsi) 11702 pf->next_vsi = vsi->idx; 11703 11704 unlock_vsi: 11705 mutex_unlock(&pf->switch_mutex); 11706 free_vsi: 11707 kfree(vsi); 11708 11709 return 0; 11710 } 11711 11712 /** 11713 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11714 * @vsi: the VSI being cleaned 11715 **/ 11716 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11717 { 11718 int i; 11719 11720 if (vsi->tx_rings && vsi->tx_rings[0]) { 11721 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11722 kfree_rcu(vsi->tx_rings[i], rcu); 11723 WRITE_ONCE(vsi->tx_rings[i], NULL); 11724 WRITE_ONCE(vsi->rx_rings[i], NULL); 11725 if (vsi->xdp_rings) 11726 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11727 } 11728 } 11729 } 11730 11731 /** 11732 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11733 * @vsi: the VSI being configured 11734 **/ 11735 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11736 { 11737 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11738 struct i40e_pf *pf = vsi->back; 11739 struct i40e_ring *ring; 11740 11741 /* Set basic values in the rings to be used later during open() */ 11742 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11743 /* allocate space for both Tx and Rx in one shot */ 11744 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11745 if (!ring) 11746 goto err_out; 11747 11748 ring->queue_index = i; 11749 ring->reg_idx = vsi->base_queue + i; 11750 ring->ring_active = false; 11751 ring->vsi = vsi; 11752 ring->netdev = vsi->netdev; 11753 ring->dev = &pf->pdev->dev; 11754 ring->count = vsi->num_tx_desc; 11755 ring->size = 0; 11756 ring->dcb_tc = 0; 11757 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11758 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11759 ring->itr_setting = pf->tx_itr_default; 11760 WRITE_ONCE(vsi->tx_rings[i], ring++); 11761 11762 if (!i40e_enabled_xdp_vsi(vsi)) 11763 goto setup_rx; 11764 11765 ring->queue_index = vsi->alloc_queue_pairs + i; 11766 ring->reg_idx = vsi->base_queue + ring->queue_index; 11767 ring->ring_active = false; 11768 ring->vsi = vsi; 11769 ring->netdev = NULL; 11770 ring->dev = &pf->pdev->dev; 11771 ring->count = vsi->num_tx_desc; 11772 ring->size = 0; 11773 ring->dcb_tc = 0; 11774 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11775 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11776 set_ring_xdp(ring); 11777 ring->itr_setting = pf->tx_itr_default; 11778 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11779 11780 setup_rx: 11781 ring->queue_index = i; 11782 ring->reg_idx = vsi->base_queue + i; 11783 ring->ring_active = false; 11784 ring->vsi = vsi; 11785 ring->netdev = vsi->netdev; 11786 ring->dev = &pf->pdev->dev; 11787 ring->count = vsi->num_rx_desc; 11788 ring->size = 0; 11789 ring->dcb_tc = 0; 11790 ring->itr_setting = pf->rx_itr_default; 11791 WRITE_ONCE(vsi->rx_rings[i], ring); 11792 } 11793 11794 return 0; 11795 11796 err_out: 11797 i40e_vsi_clear_rings(vsi); 11798 return -ENOMEM; 11799 } 11800 11801 /** 11802 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11803 * @pf: board private structure 11804 * @vectors: the number of MSI-X vectors to request 11805 * 11806 * Returns the number of vectors reserved, or error 11807 **/ 11808 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11809 { 11810 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11811 I40E_MIN_MSIX, vectors); 11812 if (vectors < 0) { 11813 dev_info(&pf->pdev->dev, 11814 "MSI-X vector reservation failed: %d\n", vectors); 11815 vectors = 0; 11816 } 11817 11818 return vectors; 11819 } 11820 11821 /** 11822 * i40e_init_msix - Setup the MSIX capability 11823 * @pf: board private structure 11824 * 11825 * Work with the OS to set up the MSIX vectors needed. 11826 * 11827 * Returns the number of vectors reserved or negative on failure 11828 **/ 11829 static int i40e_init_msix(struct i40e_pf *pf) 11830 { 11831 struct i40e_hw *hw = &pf->hw; 11832 int cpus, extra_vectors; 11833 int vectors_left; 11834 int v_budget, i; 11835 int v_actual; 11836 int iwarp_requested = 0; 11837 11838 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11839 return -ENODEV; 11840 11841 /* The number of vectors we'll request will be comprised of: 11842 * - Add 1 for "other" cause for Admin Queue events, etc. 11843 * - The number of LAN queue pairs 11844 * - Queues being used for RSS. 11845 * We don't need as many as max_rss_size vectors. 11846 * use rss_size instead in the calculation since that 11847 * is governed by number of cpus in the system. 11848 * - assumes symmetric Tx/Rx pairing 11849 * - The number of VMDq pairs 11850 * - The CPU count within the NUMA node if iWARP is enabled 11851 * Once we count this up, try the request. 11852 * 11853 * If we can't get what we want, we'll simplify to nearly nothing 11854 * and try again. If that still fails, we punt. 11855 */ 11856 vectors_left = hw->func_caps.num_msix_vectors; 11857 v_budget = 0; 11858 11859 /* reserve one vector for miscellaneous handler */ 11860 if (vectors_left) { 11861 v_budget++; 11862 vectors_left--; 11863 } 11864 11865 /* reserve some vectors for the main PF traffic queues. Initially we 11866 * only reserve at most 50% of the available vectors, in the case that 11867 * the number of online CPUs is large. This ensures that we can enable 11868 * extra features as well. Once we've enabled the other features, we 11869 * will use any remaining vectors to reach as close as we can to the 11870 * number of online CPUs. 11871 */ 11872 cpus = num_online_cpus(); 11873 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11874 vectors_left -= pf->num_lan_msix; 11875 11876 /* reserve one vector for sideband flow director */ 11877 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11878 if (vectors_left) { 11879 pf->num_fdsb_msix = 1; 11880 v_budget++; 11881 vectors_left--; 11882 } else { 11883 pf->num_fdsb_msix = 0; 11884 } 11885 } 11886 11887 /* can we reserve enough for iWARP? */ 11888 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11889 iwarp_requested = pf->num_iwarp_msix; 11890 11891 if (!vectors_left) 11892 pf->num_iwarp_msix = 0; 11893 else if (vectors_left < pf->num_iwarp_msix) 11894 pf->num_iwarp_msix = 1; 11895 v_budget += pf->num_iwarp_msix; 11896 vectors_left -= pf->num_iwarp_msix; 11897 } 11898 11899 /* any vectors left over go for VMDq support */ 11900 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11901 if (!vectors_left) { 11902 pf->num_vmdq_msix = 0; 11903 pf->num_vmdq_qps = 0; 11904 } else { 11905 int vmdq_vecs_wanted = 11906 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11907 int vmdq_vecs = 11908 min_t(int, vectors_left, vmdq_vecs_wanted); 11909 11910 /* if we're short on vectors for what's desired, we limit 11911 * the queues per vmdq. If this is still more than are 11912 * available, the user will need to change the number of 11913 * queues/vectors used by the PF later with the ethtool 11914 * channels command 11915 */ 11916 if (vectors_left < vmdq_vecs_wanted) { 11917 pf->num_vmdq_qps = 1; 11918 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11919 vmdq_vecs = min_t(int, 11920 vectors_left, 11921 vmdq_vecs_wanted); 11922 } 11923 pf->num_vmdq_msix = pf->num_vmdq_qps; 11924 11925 v_budget += vmdq_vecs; 11926 vectors_left -= vmdq_vecs; 11927 } 11928 } 11929 11930 /* On systems with a large number of SMP cores, we previously limited 11931 * the number of vectors for num_lan_msix to be at most 50% of the 11932 * available vectors, to allow for other features. Now, we add back 11933 * the remaining vectors. However, we ensure that the total 11934 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11935 * calculate the number of vectors we can add without going over the 11936 * cap of CPUs. For systems with a small number of CPUs this will be 11937 * zero. 11938 */ 11939 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11940 pf->num_lan_msix += extra_vectors; 11941 vectors_left -= extra_vectors; 11942 11943 WARN(vectors_left < 0, 11944 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11945 11946 v_budget += pf->num_lan_msix; 11947 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11948 GFP_KERNEL); 11949 if (!pf->msix_entries) 11950 return -ENOMEM; 11951 11952 for (i = 0; i < v_budget; i++) 11953 pf->msix_entries[i].entry = i; 11954 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11955 11956 if (v_actual < I40E_MIN_MSIX) { 11957 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11958 kfree(pf->msix_entries); 11959 pf->msix_entries = NULL; 11960 pci_disable_msix(pf->pdev); 11961 return -ENODEV; 11962 11963 } else if (v_actual == I40E_MIN_MSIX) { 11964 /* Adjust for minimal MSIX use */ 11965 pf->num_vmdq_vsis = 0; 11966 pf->num_vmdq_qps = 0; 11967 pf->num_lan_qps = 1; 11968 pf->num_lan_msix = 1; 11969 11970 } else if (v_actual != v_budget) { 11971 /* If we have limited resources, we will start with no vectors 11972 * for the special features and then allocate vectors to some 11973 * of these features based on the policy and at the end disable 11974 * the features that did not get any vectors. 11975 */ 11976 int vec; 11977 11978 dev_info(&pf->pdev->dev, 11979 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11980 v_actual, v_budget); 11981 /* reserve the misc vector */ 11982 vec = v_actual - 1; 11983 11984 /* Scale vector usage down */ 11985 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11986 pf->num_vmdq_vsis = 1; 11987 pf->num_vmdq_qps = 1; 11988 11989 /* partition out the remaining vectors */ 11990 switch (vec) { 11991 case 2: 11992 pf->num_lan_msix = 1; 11993 break; 11994 case 3: 11995 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11996 pf->num_lan_msix = 1; 11997 pf->num_iwarp_msix = 1; 11998 } else { 11999 pf->num_lan_msix = 2; 12000 } 12001 break; 12002 default: 12003 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 12004 pf->num_iwarp_msix = min_t(int, (vec / 3), 12005 iwarp_requested); 12006 pf->num_vmdq_vsis = min_t(int, (vec / 3), 12007 I40E_DEFAULT_NUM_VMDQ_VSI); 12008 } else { 12009 pf->num_vmdq_vsis = min_t(int, (vec / 2), 12010 I40E_DEFAULT_NUM_VMDQ_VSI); 12011 } 12012 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12013 pf->num_fdsb_msix = 1; 12014 vec--; 12015 } 12016 pf->num_lan_msix = min_t(int, 12017 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 12018 pf->num_lan_msix); 12019 pf->num_lan_qps = pf->num_lan_msix; 12020 break; 12021 } 12022 } 12023 12024 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 12025 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 12026 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12027 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12028 } 12029 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 12030 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 12031 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12032 } 12033 12034 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 12035 pf->num_iwarp_msix == 0) { 12036 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 12037 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12038 } 12039 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 12040 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 12041 pf->num_lan_msix, 12042 pf->num_vmdq_msix * pf->num_vmdq_vsis, 12043 pf->num_fdsb_msix, 12044 pf->num_iwarp_msix); 12045 12046 return v_actual; 12047 } 12048 12049 /** 12050 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 12051 * @vsi: the VSI being configured 12052 * @v_idx: index of the vector in the vsi struct 12053 * 12054 * We allocate one q_vector. If allocation fails we return -ENOMEM. 12055 **/ 12056 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 12057 { 12058 struct i40e_q_vector *q_vector; 12059 12060 /* allocate q_vector */ 12061 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 12062 if (!q_vector) 12063 return -ENOMEM; 12064 12065 q_vector->vsi = vsi; 12066 q_vector->v_idx = v_idx; 12067 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 12068 12069 if (vsi->netdev) 12070 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 12071 12072 /* tie q_vector and vsi together */ 12073 vsi->q_vectors[v_idx] = q_vector; 12074 12075 return 0; 12076 } 12077 12078 /** 12079 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 12080 * @vsi: the VSI being configured 12081 * 12082 * We allocate one q_vector per queue interrupt. If allocation fails we 12083 * return -ENOMEM. 12084 **/ 12085 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 12086 { 12087 struct i40e_pf *pf = vsi->back; 12088 int err, v_idx, num_q_vectors; 12089 12090 /* if not MSIX, give the one vector only to the LAN VSI */ 12091 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12092 num_q_vectors = vsi->num_q_vectors; 12093 else if (vsi->type == I40E_VSI_MAIN) 12094 num_q_vectors = 1; 12095 else 12096 return -EINVAL; 12097 12098 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 12099 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 12100 if (err) 12101 goto err_out; 12102 } 12103 12104 return 0; 12105 12106 err_out: 12107 while (v_idx--) 12108 i40e_free_q_vector(vsi, v_idx); 12109 12110 return err; 12111 } 12112 12113 /** 12114 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12115 * @pf: board private structure to initialize 12116 **/ 12117 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12118 { 12119 int vectors = 0; 12120 ssize_t size; 12121 12122 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12123 vectors = i40e_init_msix(pf); 12124 if (vectors < 0) { 12125 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12126 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12127 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12128 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12129 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12130 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12131 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12132 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12133 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12134 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12135 12136 /* rework the queue expectations without MSIX */ 12137 i40e_determine_queue_usage(pf); 12138 } 12139 } 12140 12141 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12142 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12143 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12144 vectors = pci_enable_msi(pf->pdev); 12145 if (vectors < 0) { 12146 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12147 vectors); 12148 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12149 } 12150 vectors = 1; /* one MSI or Legacy vector */ 12151 } 12152 12153 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12154 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12155 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12156 12157 /* set up vector assignment tracking */ 12158 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12159 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12160 if (!pf->irq_pile) 12161 return -ENOMEM; 12162 12163 pf->irq_pile->num_entries = vectors; 12164 12165 /* track first vector for misc interrupts, ignore return */ 12166 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12167 12168 return 0; 12169 } 12170 12171 /** 12172 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12173 * @pf: private board data structure 12174 * 12175 * Restore the interrupt scheme that was cleared when we suspended the 12176 * device. This should be called during resume to re-allocate the q_vectors 12177 * and reacquire IRQs. 12178 */ 12179 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12180 { 12181 struct i40e_vsi *vsi; 12182 int err, i; 12183 12184 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12185 * scheme. We need to re-enabled them here in order to attempt to 12186 * re-acquire the MSI or MSI-X vectors 12187 */ 12188 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12189 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12190 12191 err = i40e_init_interrupt_scheme(pf); 12192 if (err) 12193 return err; 12194 12195 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12196 * rings together again. 12197 */ 12198 i40e_pf_for_each_vsi(pf, i, vsi) { 12199 err = i40e_vsi_alloc_q_vectors(vsi); 12200 if (err) 12201 goto err_unwind; 12202 12203 i40e_vsi_map_rings_to_vectors(vsi); 12204 } 12205 12206 err = i40e_setup_misc_vector(pf); 12207 if (err) 12208 goto err_unwind; 12209 12210 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12211 i40e_client_update_msix_info(pf); 12212 12213 return 0; 12214 12215 err_unwind: 12216 while (i--) { 12217 if (pf->vsi[i]) 12218 i40e_vsi_free_q_vectors(pf->vsi[i]); 12219 } 12220 12221 return err; 12222 } 12223 12224 /** 12225 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12226 * non queue events in recovery mode 12227 * @pf: board private structure 12228 * 12229 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12230 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12231 * This is handled differently than in recovery mode since no Tx/Rx resources 12232 * are being allocated. 12233 **/ 12234 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12235 { 12236 int err; 12237 12238 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12239 err = i40e_setup_misc_vector(pf); 12240 12241 if (err) { 12242 dev_info(&pf->pdev->dev, 12243 "MSI-X misc vector request failed, error %d\n", 12244 err); 12245 return err; 12246 } 12247 } else { 12248 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12249 12250 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12251 pf->int_name, pf); 12252 12253 if (err) { 12254 dev_info(&pf->pdev->dev, 12255 "MSI/legacy misc vector request failed, error %d\n", 12256 err); 12257 return err; 12258 } 12259 i40e_enable_misc_int_causes(pf); 12260 i40e_irq_dynamic_enable_icr0(pf); 12261 } 12262 12263 return 0; 12264 } 12265 12266 /** 12267 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12268 * @pf: board private structure 12269 * 12270 * This sets up the handler for MSIX 0, which is used to manage the 12271 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12272 * when in MSI or Legacy interrupt mode. 12273 **/ 12274 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12275 { 12276 struct i40e_hw *hw = &pf->hw; 12277 int err = 0; 12278 12279 /* Only request the IRQ once, the first time through. */ 12280 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12281 err = request_irq(pf->msix_entries[0].vector, 12282 i40e_intr, 0, pf->int_name, pf); 12283 if (err) { 12284 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12285 dev_info(&pf->pdev->dev, 12286 "request_irq for %s failed: %d\n", 12287 pf->int_name, err); 12288 return -EFAULT; 12289 } 12290 } 12291 12292 i40e_enable_misc_int_causes(pf); 12293 12294 /* associate no queues to the misc vector */ 12295 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12296 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12297 12298 i40e_flush(hw); 12299 12300 i40e_irq_dynamic_enable_icr0(pf); 12301 12302 return err; 12303 } 12304 12305 /** 12306 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12307 * @vsi: Pointer to vsi structure 12308 * @seed: Buffter to store the hash keys 12309 * @lut: Buffer to store the lookup table entries 12310 * @lut_size: Size of buffer to store the lookup table entries 12311 * 12312 * Return 0 on success, negative on failure 12313 */ 12314 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12315 u8 *lut, u16 lut_size) 12316 { 12317 struct i40e_pf *pf = vsi->back; 12318 struct i40e_hw *hw = &pf->hw; 12319 int ret = 0; 12320 12321 if (seed) { 12322 ret = i40e_aq_get_rss_key(hw, vsi->id, 12323 (struct i40e_aqc_get_set_rss_key_data *)seed); 12324 if (ret) { 12325 dev_info(&pf->pdev->dev, 12326 "Cannot get RSS key, err %pe aq_err %s\n", 12327 ERR_PTR(ret), 12328 i40e_aq_str(&pf->hw, 12329 pf->hw.aq.asq_last_status)); 12330 return ret; 12331 } 12332 } 12333 12334 if (lut) { 12335 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12336 12337 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12338 if (ret) { 12339 dev_info(&pf->pdev->dev, 12340 "Cannot get RSS lut, err %pe aq_err %s\n", 12341 ERR_PTR(ret), 12342 i40e_aq_str(&pf->hw, 12343 pf->hw.aq.asq_last_status)); 12344 return ret; 12345 } 12346 } 12347 12348 return ret; 12349 } 12350 12351 /** 12352 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12353 * @vsi: Pointer to vsi structure 12354 * @seed: RSS hash seed 12355 * @lut: Lookup table 12356 * @lut_size: Lookup table size 12357 * 12358 * Returns 0 on success, negative on failure 12359 **/ 12360 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12361 const u8 *lut, u16 lut_size) 12362 { 12363 struct i40e_pf *pf = vsi->back; 12364 struct i40e_hw *hw = &pf->hw; 12365 u16 vf_id = vsi->vf_id; 12366 u8 i; 12367 12368 /* Fill out hash function seed */ 12369 if (seed) { 12370 u32 *seed_dw = (u32 *)seed; 12371 12372 if (vsi->type == I40E_VSI_MAIN) { 12373 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12374 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12375 } else if (vsi->type == I40E_VSI_SRIOV) { 12376 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12377 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12378 } else { 12379 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12380 } 12381 } 12382 12383 if (lut) { 12384 u32 *lut_dw = (u32 *)lut; 12385 12386 if (vsi->type == I40E_VSI_MAIN) { 12387 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12388 return -EINVAL; 12389 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12390 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12391 } else if (vsi->type == I40E_VSI_SRIOV) { 12392 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12393 return -EINVAL; 12394 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12395 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12396 } else { 12397 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12398 } 12399 } 12400 i40e_flush(hw); 12401 12402 return 0; 12403 } 12404 12405 /** 12406 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12407 * @vsi: Pointer to VSI structure 12408 * @seed: Buffer to store the keys 12409 * @lut: Buffer to store the lookup table entries 12410 * @lut_size: Size of buffer to store the lookup table entries 12411 * 12412 * Returns 0 on success, negative on failure 12413 */ 12414 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12415 u8 *lut, u16 lut_size) 12416 { 12417 struct i40e_pf *pf = vsi->back; 12418 struct i40e_hw *hw = &pf->hw; 12419 u16 i; 12420 12421 if (seed) { 12422 u32 *seed_dw = (u32 *)seed; 12423 12424 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12425 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12426 } 12427 if (lut) { 12428 u32 *lut_dw = (u32 *)lut; 12429 12430 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12431 return -EINVAL; 12432 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12433 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12434 } 12435 12436 return 0; 12437 } 12438 12439 /** 12440 * i40e_config_rss - Configure RSS keys and lut 12441 * @vsi: Pointer to VSI structure 12442 * @seed: RSS hash seed 12443 * @lut: Lookup table 12444 * @lut_size: Lookup table size 12445 * 12446 * Returns 0 on success, negative on failure 12447 */ 12448 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12449 { 12450 struct i40e_pf *pf = vsi->back; 12451 12452 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12453 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12454 else 12455 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12456 } 12457 12458 /** 12459 * i40e_get_rss - Get RSS keys and lut 12460 * @vsi: Pointer to VSI structure 12461 * @seed: Buffer to store the keys 12462 * @lut: Buffer to store the lookup table entries 12463 * @lut_size: Size of buffer to store the lookup table entries 12464 * 12465 * Returns 0 on success, negative on failure 12466 */ 12467 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12468 { 12469 struct i40e_pf *pf = vsi->back; 12470 12471 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12472 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12473 else 12474 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12475 } 12476 12477 /** 12478 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12479 * @pf: Pointer to board private structure 12480 * @lut: Lookup table 12481 * @rss_table_size: Lookup table size 12482 * @rss_size: Range of queue number for hashing 12483 */ 12484 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12485 u16 rss_table_size, u16 rss_size) 12486 { 12487 u16 i; 12488 12489 for (i = 0; i < rss_table_size; i++) 12490 lut[i] = i % rss_size; 12491 } 12492 12493 /** 12494 * i40e_pf_config_rss - Prepare for RSS if used 12495 * @pf: board private structure 12496 **/ 12497 static int i40e_pf_config_rss(struct i40e_pf *pf) 12498 { 12499 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12500 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12501 u8 *lut; 12502 struct i40e_hw *hw = &pf->hw; 12503 u32 reg_val; 12504 u64 hena; 12505 int ret; 12506 12507 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12508 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12509 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12510 hena |= i40e_pf_get_default_rss_hena(pf); 12511 12512 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12513 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12514 12515 /* Determine the RSS table size based on the hardware capabilities */ 12516 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12517 reg_val = (pf->rss_table_size == 512) ? 12518 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12519 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12520 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12521 12522 /* Determine the RSS size of the VSI */ 12523 if (!vsi->rss_size) { 12524 u16 qcount; 12525 /* If the firmware does something weird during VSI init, we 12526 * could end up with zero TCs. Check for that to avoid 12527 * divide-by-zero. It probably won't pass traffic, but it also 12528 * won't panic. 12529 */ 12530 qcount = vsi->num_queue_pairs / 12531 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12532 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12533 } 12534 if (!vsi->rss_size) 12535 return -EINVAL; 12536 12537 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12538 if (!lut) 12539 return -ENOMEM; 12540 12541 /* Use user configured lut if there is one, otherwise use default */ 12542 if (vsi->rss_lut_user) 12543 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12544 else 12545 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12546 12547 /* Use user configured hash key if there is one, otherwise 12548 * use default. 12549 */ 12550 if (vsi->rss_hkey_user) 12551 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12552 else 12553 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12554 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12555 kfree(lut); 12556 12557 return ret; 12558 } 12559 12560 /** 12561 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12562 * @pf: board private structure 12563 * @queue_count: the requested queue count for rss. 12564 * 12565 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12566 * count which may be different from the requested queue count. 12567 * Note: expects to be called while under rtnl_lock() 12568 **/ 12569 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12570 { 12571 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12572 int new_rss_size; 12573 12574 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12575 return 0; 12576 12577 queue_count = min_t(int, queue_count, num_online_cpus()); 12578 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12579 12580 if (queue_count != vsi->num_queue_pairs) { 12581 u16 qcount; 12582 12583 vsi->req_queue_pairs = queue_count; 12584 i40e_prep_for_reset(pf); 12585 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12586 return pf->alloc_rss_size; 12587 12588 pf->alloc_rss_size = new_rss_size; 12589 12590 i40e_reset_and_rebuild(pf, true, true); 12591 12592 /* Discard the user configured hash keys and lut, if less 12593 * queues are enabled. 12594 */ 12595 if (queue_count < vsi->rss_size) { 12596 i40e_clear_rss_config_user(vsi); 12597 dev_dbg(&pf->pdev->dev, 12598 "discard user configured hash keys and lut\n"); 12599 } 12600 12601 /* Reset vsi->rss_size, as number of enabled queues changed */ 12602 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12603 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12604 12605 i40e_pf_config_rss(pf); 12606 } 12607 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12608 vsi->req_queue_pairs, pf->rss_size_max); 12609 return pf->alloc_rss_size; 12610 } 12611 12612 /** 12613 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12614 * @pf: board private structure 12615 **/ 12616 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12617 { 12618 bool min_valid, max_valid; 12619 u32 max_bw, min_bw; 12620 int status; 12621 12622 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12623 &min_valid, &max_valid); 12624 12625 if (!status) { 12626 if (min_valid) 12627 pf->min_bw = min_bw; 12628 if (max_valid) 12629 pf->max_bw = max_bw; 12630 } 12631 12632 return status; 12633 } 12634 12635 /** 12636 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12637 * @pf: board private structure 12638 **/ 12639 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12640 { 12641 struct i40e_aqc_configure_partition_bw_data bw_data; 12642 int status; 12643 12644 memset(&bw_data, 0, sizeof(bw_data)); 12645 12646 /* Set the valid bit for this PF */ 12647 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12648 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12649 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12650 12651 /* Set the new bandwidths */ 12652 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12653 12654 return status; 12655 } 12656 12657 /** 12658 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12659 * if total port shutdown feature is enabled for this PF 12660 * @pf: board private structure 12661 **/ 12662 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12663 { 12664 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12665 #define I40E_FEATURES_ENABLE_PTR 0x2A 12666 #define I40E_CURRENT_SETTING_PTR 0x2B 12667 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12668 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12669 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12670 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12671 u16 sr_emp_sr_settings_ptr = 0; 12672 u16 features_enable = 0; 12673 u16 link_behavior = 0; 12674 int read_status = 0; 12675 bool ret = false; 12676 12677 read_status = i40e_read_nvm_word(&pf->hw, 12678 I40E_SR_EMP_SR_SETTINGS_PTR, 12679 &sr_emp_sr_settings_ptr); 12680 if (read_status) 12681 goto err_nvm; 12682 read_status = i40e_read_nvm_word(&pf->hw, 12683 sr_emp_sr_settings_ptr + 12684 I40E_FEATURES_ENABLE_PTR, 12685 &features_enable); 12686 if (read_status) 12687 goto err_nvm; 12688 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12689 read_status = i40e_read_nvm_module_data(&pf->hw, 12690 I40E_SR_EMP_SR_SETTINGS_PTR, 12691 I40E_CURRENT_SETTING_PTR, 12692 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12693 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12694 &link_behavior); 12695 if (read_status) 12696 goto err_nvm; 12697 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12698 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12699 } 12700 return ret; 12701 12702 err_nvm: 12703 dev_warn(&pf->pdev->dev, 12704 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12705 ERR_PTR(read_status)); 12706 return ret; 12707 } 12708 12709 /** 12710 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12711 * @pf: board private structure to initialize 12712 * 12713 * i40e_sw_init initializes the Adapter private data structure. 12714 * Fields are initialized based on PCI device information and 12715 * OS network device settings (MTU size). 12716 **/ 12717 static int i40e_sw_init(struct i40e_pf *pf) 12718 { 12719 int err = 0; 12720 int size; 12721 u16 pow; 12722 12723 /* Set default capability flags */ 12724 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12725 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12726 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12727 12728 /* Set default ITR */ 12729 pf->rx_itr_default = I40E_ITR_RX_DEF; 12730 pf->tx_itr_default = I40E_ITR_TX_DEF; 12731 12732 /* Depending on PF configurations, it is possible that the RSS 12733 * maximum might end up larger than the available queues 12734 */ 12735 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12736 pf->alloc_rss_size = 1; 12737 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12738 pf->rss_size_max = min_t(int, pf->rss_size_max, 12739 pf->hw.func_caps.num_tx_qp); 12740 12741 /* find the next higher power-of-2 of num cpus */ 12742 pow = roundup_pow_of_two(num_online_cpus()); 12743 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12744 12745 if (pf->hw.func_caps.rss) { 12746 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12747 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12748 num_online_cpus()); 12749 } 12750 12751 /* MFP mode enabled */ 12752 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12753 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12754 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12755 if (i40e_get_partition_bw_setting(pf)) { 12756 dev_warn(&pf->pdev->dev, 12757 "Could not get partition bw settings\n"); 12758 } else { 12759 dev_info(&pf->pdev->dev, 12760 "Partition BW Min = %8.8x, Max = %8.8x\n", 12761 pf->min_bw, pf->max_bw); 12762 12763 /* nudge the Tx scheduler */ 12764 i40e_set_partition_bw_setting(pf); 12765 } 12766 } 12767 12768 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12769 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12770 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12771 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12772 pf->hw.num_partitions > 1) 12773 dev_info(&pf->pdev->dev, 12774 "Flow Director Sideband mode Disabled in MFP mode\n"); 12775 else 12776 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12777 pf->fdir_pf_filter_count = 12778 pf->hw.func_caps.fd_filters_guaranteed; 12779 pf->hw.fdir_shared_filter_count = 12780 pf->hw.func_caps.fd_filters_best_effort; 12781 } 12782 12783 /* Enable HW ATR eviction if possible */ 12784 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12785 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12786 12787 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12788 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12789 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12790 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12791 } 12792 12793 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12794 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12795 /* IWARP needs one extra vector for CQP just like MISC.*/ 12796 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12797 } 12798 /* Stopping FW LLDP engine is supported on XL710 and X722 12799 * starting from FW versions determined in i40e_init_adminq. 12800 * Stopping the FW LLDP engine is not supported on XL710 12801 * if NPAR is functioning so unset this hw flag in this case. 12802 */ 12803 if (pf->hw.mac.type == I40E_MAC_XL710 && 12804 pf->hw.func_caps.npar_enable) 12805 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12806 12807 #ifdef CONFIG_PCI_IOV 12808 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12809 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12810 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12811 pf->num_req_vfs = min_t(int, 12812 pf->hw.func_caps.num_vfs, 12813 I40E_MAX_VF_COUNT); 12814 } 12815 #endif /* CONFIG_PCI_IOV */ 12816 pf->lan_veb = I40E_NO_VEB; 12817 pf->lan_vsi = I40E_NO_VSI; 12818 12819 /* By default FW has this off for performance reasons */ 12820 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12821 12822 /* set up queue assignment tracking */ 12823 size = sizeof(struct i40e_lump_tracking) 12824 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12825 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12826 if (!pf->qp_pile) { 12827 err = -ENOMEM; 12828 goto sw_init_done; 12829 } 12830 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12831 12832 pf->tx_timeout_recovery_level = 1; 12833 12834 if (pf->hw.mac.type != I40E_MAC_X722 && 12835 i40e_is_total_port_shutdown_enabled(pf)) { 12836 /* Link down on close must be on when total port shutdown 12837 * is enabled for a given port 12838 */ 12839 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12840 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12841 dev_info(&pf->pdev->dev, 12842 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12843 } 12844 mutex_init(&pf->switch_mutex); 12845 12846 sw_init_done: 12847 return err; 12848 } 12849 12850 /** 12851 * i40e_set_ntuple - set the ntuple feature flag and take action 12852 * @pf: board private structure to initialize 12853 * @features: the feature set that the stack is suggesting 12854 * 12855 * returns a bool to indicate if reset needs to happen 12856 **/ 12857 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12858 { 12859 bool need_reset = false; 12860 12861 /* Check if Flow Director n-tuple support was enabled or disabled. If 12862 * the state changed, we need to reset. 12863 */ 12864 if (features & NETIF_F_NTUPLE) { 12865 /* Enable filters and mark for reset */ 12866 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12867 need_reset = true; 12868 /* enable FD_SB only if there is MSI-X vector and no cloud 12869 * filters exist 12870 */ 12871 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12872 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12873 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12874 } 12875 } else { 12876 /* turn off filters, mark for reset and clear SW filter list */ 12877 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12878 need_reset = true; 12879 i40e_fdir_filter_exit(pf); 12880 } 12881 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12882 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12883 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12884 12885 /* reset fd counters */ 12886 pf->fd_add_err = 0; 12887 pf->fd_atr_cnt = 0; 12888 /* if ATR was auto disabled it can be re-enabled. */ 12889 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12890 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12891 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12892 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12893 } 12894 return need_reset; 12895 } 12896 12897 /** 12898 * i40e_clear_rss_lut - clear the rx hash lookup table 12899 * @vsi: the VSI being configured 12900 **/ 12901 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12902 { 12903 struct i40e_pf *pf = vsi->back; 12904 struct i40e_hw *hw = &pf->hw; 12905 u16 vf_id = vsi->vf_id; 12906 u8 i; 12907 12908 if (vsi->type == I40E_VSI_MAIN) { 12909 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12910 wr32(hw, I40E_PFQF_HLUT(i), 0); 12911 } else if (vsi->type == I40E_VSI_SRIOV) { 12912 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12913 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12914 } else { 12915 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12916 } 12917 } 12918 12919 /** 12920 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12921 * @vsi: ptr to VSI 12922 * @ena: flag to indicate the on/off setting 12923 */ 12924 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12925 { 12926 bool if_running = netif_running(vsi->netdev) && 12927 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12928 int ret; 12929 12930 if (if_running) 12931 i40e_down(vsi); 12932 12933 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12934 if (ret) 12935 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12936 if (if_running) 12937 i40e_up(vsi); 12938 12939 return ret; 12940 } 12941 12942 /** 12943 * i40e_set_features - set the netdev feature flags 12944 * @netdev: ptr to the netdev being adjusted 12945 * @features: the feature set that the stack is suggesting 12946 * Note: expects to be called while under rtnl_lock() 12947 **/ 12948 static int i40e_set_features(struct net_device *netdev, 12949 netdev_features_t features) 12950 { 12951 struct i40e_netdev_priv *np = netdev_priv(netdev); 12952 struct i40e_vsi *vsi = np->vsi; 12953 struct i40e_pf *pf = vsi->back; 12954 bool need_reset; 12955 12956 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12957 i40e_pf_config_rss(pf); 12958 else if (!(features & NETIF_F_RXHASH) && 12959 netdev->features & NETIF_F_RXHASH) 12960 i40e_clear_rss_lut(vsi); 12961 12962 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12963 i40e_vlan_stripping_enable(vsi); 12964 else 12965 i40e_vlan_stripping_disable(vsi); 12966 12967 if (!(features & NETIF_F_HW_TC) && 12968 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12969 dev_err(&pf->pdev->dev, 12970 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12971 return -EINVAL; 12972 } 12973 12974 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12975 i40e_del_all_macvlans(vsi); 12976 12977 need_reset = i40e_set_ntuple(pf, features); 12978 12979 if (need_reset) 12980 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12981 12982 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 12983 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 12984 12985 return 0; 12986 } 12987 12988 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12989 unsigned int table, unsigned int idx, 12990 struct udp_tunnel_info *ti) 12991 { 12992 struct i40e_netdev_priv *np = netdev_priv(netdev); 12993 struct i40e_hw *hw = &np->vsi->back->hw; 12994 u8 type, filter_index; 12995 int ret; 12996 12997 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 12998 I40E_AQC_TUNNEL_TYPE_NGE; 12999 13000 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 13001 NULL); 13002 if (ret) { 13003 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 13004 ERR_PTR(ret), 13005 i40e_aq_str(hw, hw->aq.asq_last_status)); 13006 return -EIO; 13007 } 13008 13009 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 13010 return 0; 13011 } 13012 13013 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 13014 unsigned int table, unsigned int idx, 13015 struct udp_tunnel_info *ti) 13016 { 13017 struct i40e_netdev_priv *np = netdev_priv(netdev); 13018 struct i40e_hw *hw = &np->vsi->back->hw; 13019 int ret; 13020 13021 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 13022 if (ret) { 13023 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 13024 ERR_PTR(ret), 13025 i40e_aq_str(hw, hw->aq.asq_last_status)); 13026 return -EIO; 13027 } 13028 13029 return 0; 13030 } 13031 13032 static int i40e_get_phys_port_id(struct net_device *netdev, 13033 struct netdev_phys_item_id *ppid) 13034 { 13035 struct i40e_netdev_priv *np = netdev_priv(netdev); 13036 struct i40e_pf *pf = np->vsi->back; 13037 struct i40e_hw *hw = &pf->hw; 13038 13039 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13040 return -EOPNOTSUPP; 13041 13042 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13043 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13044 13045 return 0; 13046 } 13047 13048 /** 13049 * i40e_ndo_fdb_add - add an entry to the hardware database 13050 * @ndm: the input from the stack 13051 * @tb: pointer to array of nladdr (unused) 13052 * @dev: the net device pointer 13053 * @addr: the MAC address entry being added 13054 * @vid: VLAN ID 13055 * @flags: instructions from stack about fdb operation 13056 * @notified: whether notification was emitted 13057 * @extack: netlink extended ack, unused currently 13058 */ 13059 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13060 struct net_device *dev, 13061 const unsigned char *addr, u16 vid, 13062 u16 flags, bool *notified, 13063 struct netlink_ext_ack *extack) 13064 { 13065 struct i40e_netdev_priv *np = netdev_priv(dev); 13066 struct i40e_pf *pf = np->vsi->back; 13067 int err = 0; 13068 13069 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13070 return -EOPNOTSUPP; 13071 13072 if (vid) { 13073 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13074 return -EINVAL; 13075 } 13076 13077 /* Hardware does not support aging addresses so if a 13078 * ndm_state is given only allow permanent addresses 13079 */ 13080 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13081 netdev_info(dev, "FDB only supports static addresses\n"); 13082 return -EINVAL; 13083 } 13084 13085 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13086 err = dev_uc_add_excl(dev, addr); 13087 else if (is_multicast_ether_addr(addr)) 13088 err = dev_mc_add_excl(dev, addr); 13089 else 13090 err = -EINVAL; 13091 13092 /* Only return duplicate errors if NLM_F_EXCL is set */ 13093 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13094 err = 0; 13095 13096 return err; 13097 } 13098 13099 /** 13100 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13101 * @dev: the netdev being configured 13102 * @nlh: RTNL message 13103 * @flags: bridge flags 13104 * @extack: netlink extended ack 13105 * 13106 * Inserts a new hardware bridge if not already created and 13107 * enables the bridging mode requested (VEB or VEPA). If the 13108 * hardware bridge has already been inserted and the request 13109 * is to change the mode then that requires a PF reset to 13110 * allow rebuild of the components with required hardware 13111 * bridge mode enabled. 13112 * 13113 * Note: expects to be called while under rtnl_lock() 13114 **/ 13115 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13116 struct nlmsghdr *nlh, 13117 u16 flags, 13118 struct netlink_ext_ack *extack) 13119 { 13120 struct i40e_netdev_priv *np = netdev_priv(dev); 13121 struct i40e_vsi *vsi = np->vsi; 13122 struct i40e_pf *pf = vsi->back; 13123 struct nlattr *attr, *br_spec; 13124 struct i40e_veb *veb; 13125 int rem; 13126 13127 /* Only for PF VSI for now */ 13128 if (vsi->type != I40E_VSI_MAIN) 13129 return -EOPNOTSUPP; 13130 13131 /* Find the HW bridge for PF VSI */ 13132 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13133 13134 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13135 if (!br_spec) 13136 return -EINVAL; 13137 13138 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 13139 __u16 mode = nla_get_u16(attr); 13140 13141 if ((mode != BRIDGE_MODE_VEPA) && 13142 (mode != BRIDGE_MODE_VEB)) 13143 return -EINVAL; 13144 13145 /* Insert a new HW bridge */ 13146 if (!veb) { 13147 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 13148 vsi->tc_config.enabled_tc); 13149 if (veb) { 13150 veb->bridge_mode = mode; 13151 i40e_config_bridge_mode(veb); 13152 } else { 13153 /* No Bridge HW offload available */ 13154 return -ENOENT; 13155 } 13156 break; 13157 } else if (mode != veb->bridge_mode) { 13158 /* Existing HW bridge but different mode needs reset */ 13159 veb->bridge_mode = mode; 13160 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13161 if (mode == BRIDGE_MODE_VEB) 13162 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13163 else 13164 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13165 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13166 break; 13167 } 13168 } 13169 13170 return 0; 13171 } 13172 13173 /** 13174 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13175 * @skb: skb buff 13176 * @pid: process id 13177 * @seq: RTNL message seq # 13178 * @dev: the netdev being configured 13179 * @filter_mask: unused 13180 * @nlflags: netlink flags passed in 13181 * 13182 * Return the mode in which the hardware bridge is operating in 13183 * i.e VEB or VEPA. 13184 **/ 13185 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13186 struct net_device *dev, 13187 u32 __always_unused filter_mask, 13188 int nlflags) 13189 { 13190 struct i40e_netdev_priv *np = netdev_priv(dev); 13191 struct i40e_vsi *vsi = np->vsi; 13192 struct i40e_pf *pf = vsi->back; 13193 struct i40e_veb *veb; 13194 13195 /* Only for PF VSI for now */ 13196 if (vsi->type != I40E_VSI_MAIN) 13197 return -EOPNOTSUPP; 13198 13199 /* Find the HW bridge for the PF VSI */ 13200 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13201 if (!veb) 13202 return 0; 13203 13204 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13205 0, 0, nlflags, filter_mask, NULL); 13206 } 13207 13208 /** 13209 * i40e_features_check - Validate encapsulated packet conforms to limits 13210 * @skb: skb buff 13211 * @dev: This physical port's netdev 13212 * @features: Offload features that the stack believes apply 13213 **/ 13214 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13215 struct net_device *dev, 13216 netdev_features_t features) 13217 { 13218 size_t len; 13219 13220 /* No point in doing any of this if neither checksum nor GSO are 13221 * being requested for this frame. We can rule out both by just 13222 * checking for CHECKSUM_PARTIAL 13223 */ 13224 if (skb->ip_summed != CHECKSUM_PARTIAL) 13225 return features; 13226 13227 /* We cannot support GSO if the MSS is going to be less than 13228 * 64 bytes. If it is then we need to drop support for GSO. 13229 */ 13230 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13231 features &= ~NETIF_F_GSO_MASK; 13232 13233 /* MACLEN can support at most 63 words */ 13234 len = skb_network_offset(skb); 13235 if (len & ~(63 * 2)) 13236 goto out_err; 13237 13238 /* IPLEN and EIPLEN can support at most 127 dwords */ 13239 len = skb_network_header_len(skb); 13240 if (len & ~(127 * 4)) 13241 goto out_err; 13242 13243 if (skb->encapsulation) { 13244 /* L4TUNLEN can support 127 words */ 13245 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13246 if (len & ~(127 * 2)) 13247 goto out_err; 13248 13249 /* IPLEN can support at most 127 dwords */ 13250 len = skb_inner_transport_header(skb) - 13251 skb_inner_network_header(skb); 13252 if (len & ~(127 * 4)) 13253 goto out_err; 13254 } 13255 13256 /* No need to validate L4LEN as TCP is the only protocol with a 13257 * flexible value and we support all possible values supported 13258 * by TCP, which is at most 15 dwords 13259 */ 13260 13261 return features; 13262 out_err: 13263 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13264 } 13265 13266 /** 13267 * i40e_xdp_setup - add/remove an XDP program 13268 * @vsi: VSI to changed 13269 * @prog: XDP program 13270 * @extack: netlink extended ack 13271 **/ 13272 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13273 struct netlink_ext_ack *extack) 13274 { 13275 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13276 struct i40e_pf *pf = vsi->back; 13277 struct bpf_prog *old_prog; 13278 bool need_reset; 13279 int i; 13280 13281 /* VSI shall be deleted in a moment, block loading new programs */ 13282 if (prog && test_bit(__I40E_IN_REMOVE, pf->state)) 13283 return -EINVAL; 13284 13285 /* Don't allow frames that span over multiple buffers */ 13286 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13287 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13288 return -EINVAL; 13289 } 13290 13291 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13292 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13293 if (need_reset) 13294 i40e_prep_for_reset(pf); 13295 13296 old_prog = xchg(&vsi->xdp_prog, prog); 13297 13298 if (need_reset) { 13299 if (!prog) { 13300 xdp_features_clear_redirect_target(vsi->netdev); 13301 /* Wait until ndo_xsk_wakeup completes. */ 13302 synchronize_rcu(); 13303 } 13304 i40e_reset_and_rebuild(pf, true, true); 13305 } 13306 13307 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13308 if (i40e_realloc_rx_bi_zc(vsi, true)) 13309 return -ENOMEM; 13310 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13311 if (i40e_realloc_rx_bi_zc(vsi, false)) 13312 return -ENOMEM; 13313 } 13314 13315 for (i = 0; i < vsi->num_queue_pairs; i++) 13316 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13317 13318 if (old_prog) 13319 bpf_prog_put(old_prog); 13320 13321 /* Kick start the NAPI context if there is an AF_XDP socket open 13322 * on that queue id. This so that receiving will start. 13323 */ 13324 if (need_reset && prog) { 13325 for (i = 0; i < vsi->num_queue_pairs; i++) 13326 if (vsi->xdp_rings[i]->xsk_pool) 13327 (void)i40e_xsk_wakeup(vsi->netdev, i, 13328 XDP_WAKEUP_RX); 13329 xdp_features_set_redirect_target(vsi->netdev, true); 13330 } 13331 13332 return 0; 13333 } 13334 13335 /** 13336 * i40e_enter_busy_conf - Enters busy config state 13337 * @vsi: vsi 13338 * 13339 * Returns 0 on success, <0 for failure. 13340 **/ 13341 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13342 { 13343 struct i40e_pf *pf = vsi->back; 13344 int timeout = 50; 13345 13346 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13347 timeout--; 13348 if (!timeout) 13349 return -EBUSY; 13350 usleep_range(1000, 2000); 13351 } 13352 13353 return 0; 13354 } 13355 13356 /** 13357 * i40e_exit_busy_conf - Exits busy config state 13358 * @vsi: vsi 13359 **/ 13360 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13361 { 13362 struct i40e_pf *pf = vsi->back; 13363 13364 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13365 } 13366 13367 /** 13368 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13369 * @vsi: vsi 13370 * @queue_pair: queue pair 13371 **/ 13372 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13373 { 13374 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13375 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13376 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13377 sizeof(vsi->tx_rings[queue_pair]->stats)); 13378 if (i40e_enabled_xdp_vsi(vsi)) { 13379 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13380 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13381 } 13382 } 13383 13384 /** 13385 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13386 * @vsi: vsi 13387 * @queue_pair: queue pair 13388 **/ 13389 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13390 { 13391 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13392 if (i40e_enabled_xdp_vsi(vsi)) { 13393 /* Make sure that in-progress ndo_xdp_xmit calls are 13394 * completed. 13395 */ 13396 synchronize_rcu(); 13397 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13398 } 13399 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13400 } 13401 13402 /** 13403 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13404 * @vsi: vsi 13405 * @queue_pair: queue pair 13406 * @enable: true for enable, false for disable 13407 **/ 13408 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13409 bool enable) 13410 { 13411 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13412 struct i40e_q_vector *q_vector = rxr->q_vector; 13413 13414 if (!vsi->netdev) 13415 return; 13416 13417 /* All rings in a qp belong to the same qvector. */ 13418 if (q_vector->rx.ring || q_vector->tx.ring) { 13419 if (enable) 13420 napi_enable(&q_vector->napi); 13421 else 13422 napi_disable(&q_vector->napi); 13423 } 13424 } 13425 13426 /** 13427 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13428 * @vsi: vsi 13429 * @queue_pair: queue pair 13430 * @enable: true for enable, false for disable 13431 * 13432 * Returns 0 on success, <0 on failure. 13433 **/ 13434 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13435 bool enable) 13436 { 13437 struct i40e_pf *pf = vsi->back; 13438 int pf_q, ret = 0; 13439 13440 pf_q = vsi->base_queue + queue_pair; 13441 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13442 false /*is xdp*/, enable); 13443 if (ret) { 13444 dev_info(&pf->pdev->dev, 13445 "VSI seid %d Tx ring %d %sable timeout\n", 13446 vsi->seid, pf_q, (enable ? "en" : "dis")); 13447 return ret; 13448 } 13449 13450 i40e_control_rx_q(pf, pf_q, enable); 13451 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13452 if (ret) { 13453 dev_info(&pf->pdev->dev, 13454 "VSI seid %d Rx ring %d %sable timeout\n", 13455 vsi->seid, pf_q, (enable ? "en" : "dis")); 13456 return ret; 13457 } 13458 13459 /* Due to HW errata, on Rx disable only, the register can 13460 * indicate done before it really is. Needs 50ms to be sure 13461 */ 13462 if (!enable) 13463 mdelay(50); 13464 13465 if (!i40e_enabled_xdp_vsi(vsi)) 13466 return ret; 13467 13468 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13469 pf_q + vsi->alloc_queue_pairs, 13470 true /*is xdp*/, enable); 13471 if (ret) { 13472 dev_info(&pf->pdev->dev, 13473 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13474 vsi->seid, pf_q, (enable ? "en" : "dis")); 13475 } 13476 13477 return ret; 13478 } 13479 13480 /** 13481 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13482 * @vsi: vsi 13483 * @queue_pair: queue_pair 13484 **/ 13485 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13486 { 13487 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13488 struct i40e_pf *pf = vsi->back; 13489 struct i40e_hw *hw = &pf->hw; 13490 13491 /* All rings in a qp belong to the same qvector. */ 13492 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13493 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13494 else 13495 i40e_irq_dynamic_enable_icr0(pf); 13496 13497 i40e_flush(hw); 13498 } 13499 13500 /** 13501 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13502 * @vsi: vsi 13503 * @queue_pair: queue_pair 13504 **/ 13505 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13506 { 13507 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13508 struct i40e_pf *pf = vsi->back; 13509 struct i40e_hw *hw = &pf->hw; 13510 13511 /* For simplicity, instead of removing the qp interrupt causes 13512 * from the interrupt linked list, we simply disable the interrupt, and 13513 * leave the list intact. 13514 * 13515 * All rings in a qp belong to the same qvector. 13516 */ 13517 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13518 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13519 13520 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13521 i40e_flush(hw); 13522 synchronize_irq(pf->msix_entries[intpf].vector); 13523 } else { 13524 /* Legacy and MSI mode - this stops all interrupt handling */ 13525 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13526 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13527 i40e_flush(hw); 13528 synchronize_irq(pf->pdev->irq); 13529 } 13530 } 13531 13532 /** 13533 * i40e_queue_pair_disable - Disables a queue pair 13534 * @vsi: vsi 13535 * @queue_pair: queue pair 13536 * 13537 * Returns 0 on success, <0 on failure. 13538 **/ 13539 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13540 { 13541 int err; 13542 13543 err = i40e_enter_busy_conf(vsi); 13544 if (err) 13545 return err; 13546 13547 i40e_queue_pair_disable_irq(vsi, queue_pair); 13548 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13549 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13550 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13551 i40e_queue_pair_clean_rings(vsi, queue_pair); 13552 i40e_queue_pair_reset_stats(vsi, queue_pair); 13553 13554 return err; 13555 } 13556 13557 /** 13558 * i40e_queue_pair_enable - Enables a queue pair 13559 * @vsi: vsi 13560 * @queue_pair: queue pair 13561 * 13562 * Returns 0 on success, <0 on failure. 13563 **/ 13564 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13565 { 13566 int err; 13567 13568 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13569 if (err) 13570 return err; 13571 13572 if (i40e_enabled_xdp_vsi(vsi)) { 13573 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13574 if (err) 13575 return err; 13576 } 13577 13578 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13579 if (err) 13580 return err; 13581 13582 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13583 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13584 i40e_queue_pair_enable_irq(vsi, queue_pair); 13585 13586 i40e_exit_busy_conf(vsi); 13587 13588 return err; 13589 } 13590 13591 /** 13592 * i40e_xdp - implements ndo_bpf for i40e 13593 * @dev: netdevice 13594 * @xdp: XDP command 13595 **/ 13596 static int i40e_xdp(struct net_device *dev, 13597 struct netdev_bpf *xdp) 13598 { 13599 struct i40e_netdev_priv *np = netdev_priv(dev); 13600 struct i40e_vsi *vsi = np->vsi; 13601 13602 if (vsi->type != I40E_VSI_MAIN) 13603 return -EINVAL; 13604 13605 switch (xdp->command) { 13606 case XDP_SETUP_PROG: 13607 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13608 case XDP_SETUP_XSK_POOL: 13609 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13610 xdp->xsk.queue_id); 13611 default: 13612 return -EINVAL; 13613 } 13614 } 13615 13616 static const struct net_device_ops i40e_netdev_ops = { 13617 .ndo_open = i40e_open, 13618 .ndo_stop = i40e_close, 13619 .ndo_start_xmit = i40e_lan_xmit_frame, 13620 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13621 .ndo_set_rx_mode = i40e_set_rx_mode, 13622 .ndo_validate_addr = eth_validate_addr, 13623 .ndo_set_mac_address = i40e_set_mac, 13624 .ndo_change_mtu = i40e_change_mtu, 13625 .ndo_eth_ioctl = i40e_ioctl, 13626 .ndo_tx_timeout = i40e_tx_timeout, 13627 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13628 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13629 #ifdef CONFIG_NET_POLL_CONTROLLER 13630 .ndo_poll_controller = i40e_netpoll, 13631 #endif 13632 .ndo_setup_tc = __i40e_setup_tc, 13633 .ndo_select_queue = i40e_lan_select_queue, 13634 .ndo_set_features = i40e_set_features, 13635 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13636 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13637 .ndo_get_vf_stats = i40e_get_vf_stats, 13638 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13639 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13640 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13641 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13642 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13643 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13644 .ndo_fdb_add = i40e_ndo_fdb_add, 13645 .ndo_features_check = i40e_features_check, 13646 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13647 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13648 .ndo_bpf = i40e_xdp, 13649 .ndo_xdp_xmit = i40e_xdp_xmit, 13650 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13651 .ndo_dfwd_add_station = i40e_fwd_add, 13652 .ndo_dfwd_del_station = i40e_fwd_del, 13653 }; 13654 13655 /** 13656 * i40e_config_netdev - Setup the netdev flags 13657 * @vsi: the VSI being configured 13658 * 13659 * Returns 0 on success, negative value on failure 13660 **/ 13661 static int i40e_config_netdev(struct i40e_vsi *vsi) 13662 { 13663 struct i40e_pf *pf = vsi->back; 13664 struct i40e_hw *hw = &pf->hw; 13665 struct i40e_netdev_priv *np; 13666 struct net_device *netdev; 13667 u8 broadcast[ETH_ALEN]; 13668 u8 mac_addr[ETH_ALEN]; 13669 int etherdev_size; 13670 netdev_features_t hw_enc_features; 13671 netdev_features_t hw_features; 13672 13673 etherdev_size = sizeof(struct i40e_netdev_priv); 13674 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13675 if (!netdev) 13676 return -ENOMEM; 13677 13678 vsi->netdev = netdev; 13679 np = netdev_priv(netdev); 13680 np->vsi = vsi; 13681 13682 hw_enc_features = NETIF_F_SG | 13683 NETIF_F_HW_CSUM | 13684 NETIF_F_HIGHDMA | 13685 NETIF_F_SOFT_FEATURES | 13686 NETIF_F_TSO | 13687 NETIF_F_TSO_ECN | 13688 NETIF_F_TSO6 | 13689 NETIF_F_GSO_GRE | 13690 NETIF_F_GSO_GRE_CSUM | 13691 NETIF_F_GSO_PARTIAL | 13692 NETIF_F_GSO_IPXIP4 | 13693 NETIF_F_GSO_IPXIP6 | 13694 NETIF_F_GSO_UDP_TUNNEL | 13695 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13696 NETIF_F_GSO_UDP_L4 | 13697 NETIF_F_SCTP_CRC | 13698 NETIF_F_RXHASH | 13699 NETIF_F_RXCSUM | 13700 0; 13701 13702 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13703 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13704 13705 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13706 13707 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13708 13709 netdev->hw_enc_features |= hw_enc_features; 13710 13711 /* record features VLANs can make use of */ 13712 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13713 13714 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13715 NETIF_F_GSO_GRE_CSUM | \ 13716 NETIF_F_GSO_IPXIP4 | \ 13717 NETIF_F_GSO_IPXIP6 | \ 13718 NETIF_F_GSO_UDP_TUNNEL | \ 13719 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13720 13721 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13722 netdev->features |= NETIF_F_GSO_PARTIAL | 13723 I40E_GSO_PARTIAL_FEATURES; 13724 13725 netdev->mpls_features |= NETIF_F_SG; 13726 netdev->mpls_features |= NETIF_F_HW_CSUM; 13727 netdev->mpls_features |= NETIF_F_TSO; 13728 netdev->mpls_features |= NETIF_F_TSO6; 13729 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13730 13731 /* enable macvlan offloads */ 13732 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13733 13734 hw_features = hw_enc_features | 13735 NETIF_F_HW_VLAN_CTAG_TX | 13736 NETIF_F_HW_VLAN_CTAG_RX; 13737 13738 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13739 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13740 13741 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13742 13743 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13744 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13745 13746 netdev->features &= ~NETIF_F_HW_TC; 13747 13748 if (vsi->type == I40E_VSI_MAIN) { 13749 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13750 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13751 /* The following steps are necessary for two reasons. First, 13752 * some older NVM configurations load a default MAC-VLAN 13753 * filter that will accept any tagged packet, and we want to 13754 * replace this with a normal filter. Additionally, it is 13755 * possible our MAC address was provided by the platform using 13756 * Open Firmware or similar. 13757 * 13758 * Thus, we need to remove the default filter and install one 13759 * specific to the MAC address. 13760 */ 13761 i40e_rm_default_mac_filter(vsi, mac_addr); 13762 spin_lock_bh(&vsi->mac_filter_hash_lock); 13763 i40e_add_mac_filter(vsi, mac_addr); 13764 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13765 13766 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13767 NETDEV_XDP_ACT_REDIRECT | 13768 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13769 NETDEV_XDP_ACT_RX_SG; 13770 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13771 } else { 13772 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13773 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13774 * the end, which is 4 bytes long, so force truncation of the 13775 * original name by IFNAMSIZ - 4 13776 */ 13777 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 13778 13779 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", IFNAMSIZ - 4, 13780 main_vsi->netdev->name); 13781 eth_random_addr(mac_addr); 13782 13783 spin_lock_bh(&vsi->mac_filter_hash_lock); 13784 i40e_add_mac_filter(vsi, mac_addr); 13785 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13786 } 13787 13788 /* Add the broadcast filter so that we initially will receive 13789 * broadcast packets. Note that when a new VLAN is first added the 13790 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13791 * specific filters as part of transitioning into "vlan" operation. 13792 * When more VLANs are added, the driver will copy each existing MAC 13793 * filter and add it for the new VLAN. 13794 * 13795 * Broadcast filters are handled specially by 13796 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13797 * promiscuous bit instead of adding this directly as a MAC/VLAN 13798 * filter. The subtask will update the correct broadcast promiscuous 13799 * bits as VLANs become active or inactive. 13800 */ 13801 eth_broadcast_addr(broadcast); 13802 spin_lock_bh(&vsi->mac_filter_hash_lock); 13803 i40e_add_mac_filter(vsi, broadcast); 13804 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13805 13806 eth_hw_addr_set(netdev, mac_addr); 13807 ether_addr_copy(netdev->perm_addr, mac_addr); 13808 13809 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13810 netdev->neigh_priv_len = sizeof(u32) * 4; 13811 13812 netdev->priv_flags |= IFF_UNICAST_FLT; 13813 netdev->priv_flags |= IFF_SUPP_NOFCS; 13814 /* Setup netdev TC information */ 13815 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13816 13817 netdev->netdev_ops = &i40e_netdev_ops; 13818 netdev->watchdog_timeo = 5 * HZ; 13819 i40e_set_ethtool_ops(netdev); 13820 13821 /* MTU range: 68 - 9706 */ 13822 netdev->min_mtu = ETH_MIN_MTU; 13823 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13824 13825 return 0; 13826 } 13827 13828 /** 13829 * i40e_vsi_delete - Delete a VSI from the switch 13830 * @vsi: the VSI being removed 13831 * 13832 * Returns 0 on success, negative value on failure 13833 **/ 13834 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13835 { 13836 /* remove default VSI is not allowed */ 13837 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13838 return; 13839 13840 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13841 } 13842 13843 /** 13844 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13845 * @vsi: the VSI being queried 13846 * 13847 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13848 **/ 13849 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13850 { 13851 struct i40e_veb *veb; 13852 struct i40e_pf *pf = vsi->back; 13853 13854 /* Uplink is not a bridge so default to VEB */ 13855 if (vsi->veb_idx >= I40E_MAX_VEB) 13856 return 1; 13857 13858 veb = pf->veb[vsi->veb_idx]; 13859 if (!veb) { 13860 dev_info(&pf->pdev->dev, 13861 "There is no veb associated with the bridge\n"); 13862 return -ENOENT; 13863 } 13864 13865 /* Uplink is a bridge in VEPA mode */ 13866 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13867 return 0; 13868 } else { 13869 /* Uplink is a bridge in VEB mode */ 13870 return 1; 13871 } 13872 13873 /* VEPA is now default bridge, so return 0 */ 13874 return 0; 13875 } 13876 13877 /** 13878 * i40e_add_vsi - Add a VSI to the switch 13879 * @vsi: the VSI being configured 13880 * 13881 * This initializes a VSI context depending on the VSI type to be added and 13882 * passes it down to the add_vsi aq command. 13883 **/ 13884 static int i40e_add_vsi(struct i40e_vsi *vsi) 13885 { 13886 int ret = -ENODEV; 13887 struct i40e_pf *pf = vsi->back; 13888 struct i40e_hw *hw = &pf->hw; 13889 struct i40e_vsi_context ctxt; 13890 struct i40e_mac_filter *f; 13891 struct hlist_node *h; 13892 int bkt; 13893 13894 u8 enabled_tc = 0x1; /* TC0 enabled */ 13895 int f_count = 0; 13896 13897 memset(&ctxt, 0, sizeof(ctxt)); 13898 switch (vsi->type) { 13899 case I40E_VSI_MAIN: 13900 /* The PF's main VSI is already setup as part of the 13901 * device initialization, so we'll not bother with 13902 * the add_vsi call, but we will retrieve the current 13903 * VSI context. 13904 */ 13905 ctxt.seid = pf->main_vsi_seid; 13906 ctxt.pf_num = pf->hw.pf_id; 13907 ctxt.vf_num = 0; 13908 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13909 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13910 if (ret) { 13911 dev_info(&pf->pdev->dev, 13912 "couldn't get PF vsi config, err %pe aq_err %s\n", 13913 ERR_PTR(ret), 13914 i40e_aq_str(&pf->hw, 13915 pf->hw.aq.asq_last_status)); 13916 return -ENOENT; 13917 } 13918 vsi->info = ctxt.info; 13919 vsi->info.valid_sections = 0; 13920 13921 vsi->seid = ctxt.seid; 13922 vsi->id = ctxt.vsi_number; 13923 13924 enabled_tc = i40e_pf_get_tc_map(pf); 13925 13926 /* Source pruning is enabled by default, so the flag is 13927 * negative logic - if it's set, we need to fiddle with 13928 * the VSI to disable source pruning. 13929 */ 13930 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13931 memset(&ctxt, 0, sizeof(ctxt)); 13932 ctxt.seid = pf->main_vsi_seid; 13933 ctxt.pf_num = pf->hw.pf_id; 13934 ctxt.vf_num = 0; 13935 ctxt.info.valid_sections |= 13936 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13937 ctxt.info.switch_id = 13938 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13939 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13940 if (ret) { 13941 dev_info(&pf->pdev->dev, 13942 "update vsi failed, err %d aq_err %s\n", 13943 ret, 13944 i40e_aq_str(&pf->hw, 13945 pf->hw.aq.asq_last_status)); 13946 ret = -ENOENT; 13947 goto err; 13948 } 13949 } 13950 13951 /* MFP mode setup queue map and update VSI */ 13952 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13953 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13954 memset(&ctxt, 0, sizeof(ctxt)); 13955 ctxt.seid = pf->main_vsi_seid; 13956 ctxt.pf_num = pf->hw.pf_id; 13957 ctxt.vf_num = 0; 13958 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13959 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13960 if (ret) { 13961 dev_info(&pf->pdev->dev, 13962 "update vsi failed, err %pe aq_err %s\n", 13963 ERR_PTR(ret), 13964 i40e_aq_str(&pf->hw, 13965 pf->hw.aq.asq_last_status)); 13966 ret = -ENOENT; 13967 goto err; 13968 } 13969 /* update the local VSI info queue map */ 13970 i40e_vsi_update_queue_map(vsi, &ctxt); 13971 vsi->info.valid_sections = 0; 13972 } else { 13973 /* Default/Main VSI is only enabled for TC0 13974 * reconfigure it to enable all TCs that are 13975 * available on the port in SFP mode. 13976 * For MFP case the iSCSI PF would use this 13977 * flow to enable LAN+iSCSI TC. 13978 */ 13979 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13980 if (ret) { 13981 /* Single TC condition is not fatal, 13982 * message and continue 13983 */ 13984 dev_info(&pf->pdev->dev, 13985 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 13986 enabled_tc, 13987 ERR_PTR(ret), 13988 i40e_aq_str(&pf->hw, 13989 pf->hw.aq.asq_last_status)); 13990 } 13991 } 13992 break; 13993 13994 case I40E_VSI_FDIR: 13995 ctxt.pf_num = hw->pf_id; 13996 ctxt.vf_num = 0; 13997 ctxt.uplink_seid = vsi->uplink_seid; 13998 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13999 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 14000 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 14001 (i40e_is_vsi_uplink_mode_veb(vsi))) { 14002 ctxt.info.valid_sections |= 14003 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14004 ctxt.info.switch_id = 14005 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14006 } 14007 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14008 break; 14009 14010 case I40E_VSI_VMDQ2: 14011 ctxt.pf_num = hw->pf_id; 14012 ctxt.vf_num = 0; 14013 ctxt.uplink_seid = vsi->uplink_seid; 14014 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14015 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 14016 14017 /* This VSI is connected to VEB so the switch_id 14018 * should be set to zero by default. 14019 */ 14020 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14021 ctxt.info.valid_sections |= 14022 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14023 ctxt.info.switch_id = 14024 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14025 } 14026 14027 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14028 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14029 break; 14030 14031 case I40E_VSI_SRIOV: 14032 ctxt.pf_num = hw->pf_id; 14033 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14034 ctxt.uplink_seid = vsi->uplink_seid; 14035 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14036 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14037 14038 /* This VSI is connected to VEB so the switch_id 14039 * should be set to zero by default. 14040 */ 14041 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14042 ctxt.info.valid_sections |= 14043 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14044 ctxt.info.switch_id = 14045 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14046 } 14047 14048 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14049 ctxt.info.valid_sections |= 14050 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14051 ctxt.info.queueing_opt_flags |= 14052 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14053 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14054 } 14055 14056 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14057 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14058 if (pf->vf[vsi->vf_id].spoofchk) { 14059 ctxt.info.valid_sections |= 14060 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14061 ctxt.info.sec_flags |= 14062 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14063 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14064 } 14065 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14066 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14067 break; 14068 14069 case I40E_VSI_IWARP: 14070 /* send down message to iWARP */ 14071 break; 14072 14073 default: 14074 return -ENODEV; 14075 } 14076 14077 if (vsi->type != I40E_VSI_MAIN) { 14078 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14079 if (ret) { 14080 dev_info(&vsi->back->pdev->dev, 14081 "add vsi failed, err %pe aq_err %s\n", 14082 ERR_PTR(ret), 14083 i40e_aq_str(&pf->hw, 14084 pf->hw.aq.asq_last_status)); 14085 ret = -ENOENT; 14086 goto err; 14087 } 14088 vsi->info = ctxt.info; 14089 vsi->info.valid_sections = 0; 14090 vsi->seid = ctxt.seid; 14091 vsi->id = ctxt.vsi_number; 14092 } 14093 14094 spin_lock_bh(&vsi->mac_filter_hash_lock); 14095 vsi->active_filters = 0; 14096 /* If macvlan filters already exist, force them to get loaded */ 14097 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14098 f->state = I40E_FILTER_NEW; 14099 f_count++; 14100 } 14101 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14102 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14103 14104 if (f_count) { 14105 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14106 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14107 } 14108 14109 /* Update VSI BW information */ 14110 ret = i40e_vsi_get_bw_info(vsi); 14111 if (ret) { 14112 dev_info(&pf->pdev->dev, 14113 "couldn't get vsi bw info, err %pe aq_err %s\n", 14114 ERR_PTR(ret), 14115 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14116 /* VSI is already added so not tearing that up */ 14117 ret = 0; 14118 } 14119 14120 err: 14121 return ret; 14122 } 14123 14124 /** 14125 * i40e_vsi_release - Delete a VSI and free its resources 14126 * @vsi: the VSI being removed 14127 * 14128 * Returns 0 on success or < 0 on error 14129 **/ 14130 int i40e_vsi_release(struct i40e_vsi *vsi) 14131 { 14132 struct i40e_mac_filter *f; 14133 struct hlist_node *h; 14134 struct i40e_veb *veb; 14135 struct i40e_pf *pf; 14136 u16 uplink_seid; 14137 int i, n, bkt; 14138 14139 pf = vsi->back; 14140 14141 /* release of a VEB-owner or last VSI is not allowed */ 14142 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14143 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14144 vsi->seid, vsi->uplink_seid); 14145 return -ENODEV; 14146 } 14147 if (vsi->type == I40E_VSI_MAIN && !test_bit(__I40E_DOWN, pf->state)) { 14148 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14149 return -ENODEV; 14150 } 14151 set_bit(__I40E_VSI_RELEASING, vsi->state); 14152 uplink_seid = vsi->uplink_seid; 14153 14154 if (vsi->type != I40E_VSI_SRIOV) { 14155 if (vsi->netdev_registered) { 14156 vsi->netdev_registered = false; 14157 if (vsi->netdev) { 14158 /* results in a call to i40e_close() */ 14159 unregister_netdev(vsi->netdev); 14160 } 14161 } else { 14162 i40e_vsi_close(vsi); 14163 } 14164 i40e_vsi_disable_irq(vsi); 14165 } 14166 14167 if (vsi->type == I40E_VSI_MAIN) 14168 i40e_devlink_destroy_port(pf); 14169 14170 spin_lock_bh(&vsi->mac_filter_hash_lock); 14171 14172 /* clear the sync flag on all filters */ 14173 if (vsi->netdev) { 14174 __dev_uc_unsync(vsi->netdev, NULL); 14175 __dev_mc_unsync(vsi->netdev, NULL); 14176 } 14177 14178 /* make sure any remaining filters are marked for deletion */ 14179 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14180 __i40e_del_filter(vsi, f); 14181 14182 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14183 14184 i40e_sync_vsi_filters(vsi); 14185 14186 i40e_vsi_delete(vsi); 14187 i40e_vsi_free_q_vectors(vsi); 14188 if (vsi->netdev) { 14189 free_netdev(vsi->netdev); 14190 vsi->netdev = NULL; 14191 } 14192 i40e_vsi_clear_rings(vsi); 14193 i40e_vsi_clear(vsi); 14194 14195 /* If this was the last thing on the VEB, except for the 14196 * controlling VSI, remove the VEB, which puts the controlling 14197 * VSI onto the uplink port. 14198 * 14199 * Well, okay, there's one more exception here: don't remove 14200 * the floating VEBs yet. We'll wait for an explicit remove request 14201 * from up the network stack. 14202 */ 14203 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14204 if (veb && veb->uplink_seid) { 14205 n = 0; 14206 14207 /* Count non-controlling VSIs present on the VEB */ 14208 i40e_pf_for_each_vsi(pf, i, vsi) 14209 if (vsi->uplink_seid == uplink_seid && 14210 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14211 n++; 14212 14213 /* If there is no VSI except the control one then release 14214 * the VEB and put the control VSI onto VEB uplink. 14215 */ 14216 if (!n) 14217 i40e_veb_release(veb); 14218 } 14219 14220 return 0; 14221 } 14222 14223 /** 14224 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14225 * @vsi: ptr to the VSI 14226 * 14227 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14228 * corresponding SW VSI structure and initializes num_queue_pairs for the 14229 * newly allocated VSI. 14230 * 14231 * Returns 0 on success or negative on failure 14232 **/ 14233 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14234 { 14235 int ret = -ENOENT; 14236 struct i40e_pf *pf = vsi->back; 14237 14238 if (vsi->q_vectors[0]) { 14239 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14240 vsi->seid); 14241 return -EEXIST; 14242 } 14243 14244 if (vsi->base_vector) { 14245 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14246 vsi->seid, vsi->base_vector); 14247 return -EEXIST; 14248 } 14249 14250 ret = i40e_vsi_alloc_q_vectors(vsi); 14251 if (ret) { 14252 dev_info(&pf->pdev->dev, 14253 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14254 vsi->num_q_vectors, vsi->seid, ret); 14255 vsi->num_q_vectors = 0; 14256 goto vector_setup_out; 14257 } 14258 14259 /* In Legacy mode, we do not have to get any other vector since we 14260 * piggyback on the misc/ICR0 for queue interrupts. 14261 */ 14262 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14263 return ret; 14264 if (vsi->num_q_vectors) 14265 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14266 vsi->num_q_vectors, vsi->idx); 14267 if (vsi->base_vector < 0) { 14268 dev_info(&pf->pdev->dev, 14269 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14270 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14271 i40e_vsi_free_q_vectors(vsi); 14272 ret = -ENOENT; 14273 goto vector_setup_out; 14274 } 14275 14276 vector_setup_out: 14277 return ret; 14278 } 14279 14280 /** 14281 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14282 * @vsi: pointer to the vsi. 14283 * 14284 * This re-allocates a vsi's queue resources. 14285 * 14286 * Returns pointer to the successfully allocated and configured VSI sw struct 14287 * on success, otherwise returns NULL on failure. 14288 **/ 14289 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14290 { 14291 struct i40e_vsi *main_vsi; 14292 u16 alloc_queue_pairs; 14293 struct i40e_pf *pf; 14294 int ret; 14295 14296 if (!vsi) 14297 return NULL; 14298 14299 pf = vsi->back; 14300 14301 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14302 i40e_vsi_clear_rings(vsi); 14303 14304 i40e_vsi_free_arrays(vsi, false); 14305 i40e_set_num_rings_in_vsi(vsi); 14306 ret = i40e_vsi_alloc_arrays(vsi, false); 14307 if (ret) 14308 goto err_vsi; 14309 14310 alloc_queue_pairs = vsi->alloc_queue_pairs * 14311 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14312 14313 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14314 if (ret < 0) { 14315 dev_info(&pf->pdev->dev, 14316 "failed to get tracking for %d queues for VSI %d err %d\n", 14317 alloc_queue_pairs, vsi->seid, ret); 14318 goto err_vsi; 14319 } 14320 vsi->base_queue = ret; 14321 14322 /* Update the FW view of the VSI. Force a reset of TC and queue 14323 * layout configurations. 14324 */ 14325 main_vsi = i40e_pf_get_main_vsi(pf); 14326 main_vsi->seid = pf->main_vsi_seid; 14327 i40e_vsi_reconfig_tc(main_vsi); 14328 14329 if (vsi->type == I40E_VSI_MAIN) 14330 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14331 14332 /* assign it some queues */ 14333 ret = i40e_alloc_rings(vsi); 14334 if (ret) 14335 goto err_rings; 14336 14337 /* map all of the rings to the q_vectors */ 14338 i40e_vsi_map_rings_to_vectors(vsi); 14339 return vsi; 14340 14341 err_rings: 14342 i40e_vsi_free_q_vectors(vsi); 14343 if (vsi->netdev_registered) { 14344 vsi->netdev_registered = false; 14345 unregister_netdev(vsi->netdev); 14346 free_netdev(vsi->netdev); 14347 vsi->netdev = NULL; 14348 } 14349 if (vsi->type == I40E_VSI_MAIN) 14350 i40e_devlink_destroy_port(pf); 14351 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14352 err_vsi: 14353 i40e_vsi_clear(vsi); 14354 return NULL; 14355 } 14356 14357 /** 14358 * i40e_vsi_setup - Set up a VSI by a given type 14359 * @pf: board private structure 14360 * @type: VSI type 14361 * @uplink_seid: the switch element to link to 14362 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14363 * 14364 * This allocates the sw VSI structure and its queue resources, then add a VSI 14365 * to the identified VEB. 14366 * 14367 * Returns pointer to the successfully allocated and configure VSI sw struct on 14368 * success, otherwise returns NULL on failure. 14369 **/ 14370 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14371 u16 uplink_seid, u32 param1) 14372 { 14373 struct i40e_vsi *vsi = NULL; 14374 struct i40e_veb *veb = NULL; 14375 u16 alloc_queue_pairs; 14376 int v_idx; 14377 int ret; 14378 14379 /* The requested uplink_seid must be either 14380 * - the PF's port seid 14381 * no VEB is needed because this is the PF 14382 * or this is a Flow Director special case VSI 14383 * - seid of an existing VEB 14384 * - seid of a VSI that owns an existing VEB 14385 * - seid of a VSI that doesn't own a VEB 14386 * a new VEB is created and the VSI becomes the owner 14387 * - seid of the PF VSI, which is what creates the first VEB 14388 * this is a special case of the previous 14389 * 14390 * Find which uplink_seid we were given and create a new VEB if needed 14391 */ 14392 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14393 if (!veb && uplink_seid != pf->mac_seid) { 14394 vsi = i40e_pf_get_vsi_by_seid(pf, uplink_seid); 14395 if (!vsi) { 14396 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14397 uplink_seid); 14398 return NULL; 14399 } 14400 14401 if (vsi->uplink_seid == pf->mac_seid) 14402 veb = i40e_veb_setup(pf, pf->mac_seid, vsi->seid, 14403 vsi->tc_config.enabled_tc); 14404 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14405 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 14406 vsi->tc_config.enabled_tc); 14407 if (veb) { 14408 if (vsi->type != I40E_VSI_MAIN) { 14409 dev_info(&vsi->back->pdev->dev, 14410 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14411 return NULL; 14412 } 14413 /* We come up by default in VEPA mode if SRIOV is not 14414 * already enabled, in which case we can't force VEPA 14415 * mode. 14416 */ 14417 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14418 veb->bridge_mode = BRIDGE_MODE_VEPA; 14419 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14420 } 14421 i40e_config_bridge_mode(veb); 14422 } 14423 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 14424 if (!veb) { 14425 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14426 return NULL; 14427 } 14428 14429 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14430 uplink_seid = veb->seid; 14431 } 14432 14433 /* get vsi sw struct */ 14434 v_idx = i40e_vsi_mem_alloc(pf, type); 14435 if (v_idx < 0) 14436 goto err_alloc; 14437 vsi = pf->vsi[v_idx]; 14438 if (!vsi) 14439 goto err_alloc; 14440 vsi->type = type; 14441 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14442 14443 if (type == I40E_VSI_MAIN) 14444 pf->lan_vsi = v_idx; 14445 else if (type == I40E_VSI_SRIOV) 14446 vsi->vf_id = param1; 14447 /* assign it some queues */ 14448 alloc_queue_pairs = vsi->alloc_queue_pairs * 14449 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14450 14451 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14452 if (ret < 0) { 14453 dev_info(&pf->pdev->dev, 14454 "failed to get tracking for %d queues for VSI %d err=%d\n", 14455 alloc_queue_pairs, vsi->seid, ret); 14456 goto err_vsi; 14457 } 14458 vsi->base_queue = ret; 14459 14460 /* get a VSI from the hardware */ 14461 vsi->uplink_seid = uplink_seid; 14462 ret = i40e_add_vsi(vsi); 14463 if (ret) 14464 goto err_vsi; 14465 14466 switch (vsi->type) { 14467 /* setup the netdev if needed */ 14468 case I40E_VSI_MAIN: 14469 case I40E_VSI_VMDQ2: 14470 ret = i40e_config_netdev(vsi); 14471 if (ret) 14472 goto err_netdev; 14473 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14474 if (ret) 14475 goto err_netdev; 14476 if (vsi->type == I40E_VSI_MAIN) { 14477 ret = i40e_devlink_create_port(pf); 14478 if (ret) 14479 goto err_netdev; 14480 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14481 } 14482 ret = register_netdev(vsi->netdev); 14483 if (ret) 14484 goto err_dl_port; 14485 vsi->netdev_registered = true; 14486 netif_carrier_off(vsi->netdev); 14487 #ifdef CONFIG_I40E_DCB 14488 /* Setup DCB netlink interface */ 14489 i40e_dcbnl_setup(vsi); 14490 #endif /* CONFIG_I40E_DCB */ 14491 fallthrough; 14492 case I40E_VSI_FDIR: 14493 /* set up vectors and rings if needed */ 14494 ret = i40e_vsi_setup_vectors(vsi); 14495 if (ret) 14496 goto err_msix; 14497 14498 ret = i40e_alloc_rings(vsi); 14499 if (ret) 14500 goto err_rings; 14501 14502 /* map all of the rings to the q_vectors */ 14503 i40e_vsi_map_rings_to_vectors(vsi); 14504 14505 i40e_vsi_reset_stats(vsi); 14506 break; 14507 default: 14508 /* no netdev or rings for the other VSI types */ 14509 break; 14510 } 14511 14512 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14513 vsi->type == I40E_VSI_VMDQ2) { 14514 ret = i40e_vsi_config_rss(vsi); 14515 if (ret) 14516 goto err_config; 14517 } 14518 return vsi; 14519 14520 err_config: 14521 i40e_vsi_clear_rings(vsi); 14522 err_rings: 14523 i40e_vsi_free_q_vectors(vsi); 14524 err_msix: 14525 if (vsi->netdev_registered) { 14526 vsi->netdev_registered = false; 14527 unregister_netdev(vsi->netdev); 14528 free_netdev(vsi->netdev); 14529 vsi->netdev = NULL; 14530 } 14531 err_dl_port: 14532 if (vsi->type == I40E_VSI_MAIN) 14533 i40e_devlink_destroy_port(pf); 14534 err_netdev: 14535 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14536 err_vsi: 14537 i40e_vsi_clear(vsi); 14538 err_alloc: 14539 return NULL; 14540 } 14541 14542 /** 14543 * i40e_veb_get_bw_info - Query VEB BW information 14544 * @veb: the veb to query 14545 * 14546 * Query the Tx scheduler BW configuration data for given VEB 14547 **/ 14548 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14549 { 14550 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14551 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14552 struct i40e_pf *pf = veb->pf; 14553 struct i40e_hw *hw = &pf->hw; 14554 u32 tc_bw_max; 14555 int ret = 0; 14556 int i; 14557 14558 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14559 &bw_data, NULL); 14560 if (ret) { 14561 dev_info(&pf->pdev->dev, 14562 "query veb bw config failed, err %pe aq_err %s\n", 14563 ERR_PTR(ret), 14564 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14565 goto out; 14566 } 14567 14568 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14569 &ets_data, NULL); 14570 if (ret) { 14571 dev_info(&pf->pdev->dev, 14572 "query veb bw ets config failed, err %pe aq_err %s\n", 14573 ERR_PTR(ret), 14574 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14575 goto out; 14576 } 14577 14578 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14579 veb->bw_max_quanta = ets_data.tc_bw_max; 14580 veb->is_abs_credits = bw_data.absolute_credits_enable; 14581 veb->enabled_tc = ets_data.tc_valid_bits; 14582 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14583 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14584 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14585 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14586 veb->bw_tc_limit_credits[i] = 14587 le16_to_cpu(bw_data.tc_bw_limits[i]); 14588 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14589 } 14590 14591 out: 14592 return ret; 14593 } 14594 14595 /** 14596 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14597 * @pf: board private structure 14598 * 14599 * On error: returns error code (negative) 14600 * On success: returns vsi index in PF (positive) 14601 **/ 14602 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14603 { 14604 int ret = -ENOENT; 14605 struct i40e_veb *veb; 14606 int i; 14607 14608 /* Need to protect the allocation of switch elements at the PF level */ 14609 mutex_lock(&pf->switch_mutex); 14610 14611 /* VEB list may be fragmented if VEB creation/destruction has 14612 * been happening. We can afford to do a quick scan to look 14613 * for any free slots in the list. 14614 * 14615 * find next empty veb slot, looping back around if necessary 14616 */ 14617 i = 0; 14618 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14619 i++; 14620 if (i >= I40E_MAX_VEB) { 14621 ret = -ENOMEM; 14622 goto err_alloc_veb; /* out of VEB slots! */ 14623 } 14624 14625 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14626 if (!veb) { 14627 ret = -ENOMEM; 14628 goto err_alloc_veb; 14629 } 14630 veb->pf = pf; 14631 veb->idx = i; 14632 veb->enabled_tc = 1; 14633 14634 pf->veb[i] = veb; 14635 ret = i; 14636 err_alloc_veb: 14637 mutex_unlock(&pf->switch_mutex); 14638 return ret; 14639 } 14640 14641 /** 14642 * i40e_switch_branch_release - Delete a branch of the switch tree 14643 * @branch: where to start deleting 14644 * 14645 * This uses recursion to find the tips of the branch to be 14646 * removed, deleting until we get back to and can delete this VEB. 14647 **/ 14648 static void i40e_switch_branch_release(struct i40e_veb *branch) 14649 { 14650 struct i40e_pf *pf = branch->pf; 14651 u16 branch_seid = branch->seid; 14652 u16 veb_idx = branch->idx; 14653 struct i40e_vsi *vsi; 14654 struct i40e_veb *veb; 14655 int i; 14656 14657 /* release any VEBs on this VEB - RECURSION */ 14658 i40e_pf_for_each_veb(pf, i, veb) 14659 if (veb->uplink_seid == branch->seid) 14660 i40e_switch_branch_release(veb); 14661 14662 /* Release the VSIs on this VEB, but not the owner VSI. 14663 * 14664 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14665 * the VEB itself, so don't use (*branch) after this loop. 14666 */ 14667 i40e_pf_for_each_vsi(pf, i, vsi) 14668 if (vsi->uplink_seid == branch_seid && 14669 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14670 i40e_vsi_release(vsi); 14671 14672 /* There's one corner case where the VEB might not have been 14673 * removed, so double check it here and remove it if needed. 14674 * This case happens if the veb was created from the debugfs 14675 * commands and no VSIs were added to it. 14676 */ 14677 if (pf->veb[veb_idx]) 14678 i40e_veb_release(pf->veb[veb_idx]); 14679 } 14680 14681 /** 14682 * i40e_veb_clear - remove veb struct 14683 * @veb: the veb to remove 14684 **/ 14685 static void i40e_veb_clear(struct i40e_veb *veb) 14686 { 14687 if (!veb) 14688 return; 14689 14690 if (veb->pf) { 14691 struct i40e_pf *pf = veb->pf; 14692 14693 mutex_lock(&pf->switch_mutex); 14694 if (pf->veb[veb->idx] == veb) 14695 pf->veb[veb->idx] = NULL; 14696 mutex_unlock(&pf->switch_mutex); 14697 } 14698 14699 kfree(veb); 14700 } 14701 14702 /** 14703 * i40e_veb_release - Delete a VEB and free its resources 14704 * @veb: the VEB being removed 14705 **/ 14706 void i40e_veb_release(struct i40e_veb *veb) 14707 { 14708 struct i40e_vsi *vsi, *vsi_it; 14709 struct i40e_pf *pf; 14710 int i, n = 0; 14711 14712 pf = veb->pf; 14713 14714 /* find the remaining VSI and check for extras */ 14715 i40e_pf_for_each_vsi(pf, i, vsi_it) 14716 if (vsi_it->uplink_seid == veb->seid) { 14717 if (vsi_it->flags & I40E_VSI_FLAG_VEB_OWNER) 14718 vsi = vsi_it; 14719 n++; 14720 } 14721 14722 /* Floating VEB has to be empty and regular one must have 14723 * single owner VSI. 14724 */ 14725 if ((veb->uplink_seid && n != 1) || (!veb->uplink_seid && n != 0)) { 14726 dev_info(&pf->pdev->dev, 14727 "can't remove VEB %d with %d VSIs left\n", 14728 veb->seid, n); 14729 return; 14730 } 14731 14732 /* For regular VEB move the owner VSI to uplink port */ 14733 if (veb->uplink_seid) { 14734 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14735 vsi->uplink_seid = veb->uplink_seid; 14736 vsi->veb_idx = I40E_NO_VEB; 14737 } 14738 14739 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14740 i40e_veb_clear(veb); 14741 } 14742 14743 /** 14744 * i40e_add_veb - create the VEB in the switch 14745 * @veb: the VEB to be instantiated 14746 * @vsi: the controlling VSI 14747 **/ 14748 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14749 { 14750 struct i40e_pf *pf = veb->pf; 14751 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14752 int ret; 14753 14754 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi ? vsi->seid : 0, 14755 veb->enabled_tc, vsi ? false : true, 14756 &veb->seid, enable_stats, NULL); 14757 14758 /* get a VEB from the hardware */ 14759 if (ret) { 14760 dev_info(&pf->pdev->dev, 14761 "couldn't add VEB, err %pe aq_err %s\n", 14762 ERR_PTR(ret), 14763 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14764 return -EPERM; 14765 } 14766 14767 /* get statistics counter */ 14768 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14769 &veb->stats_idx, NULL, NULL, NULL); 14770 if (ret) { 14771 dev_info(&pf->pdev->dev, 14772 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14773 ERR_PTR(ret), 14774 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14775 return -EPERM; 14776 } 14777 ret = i40e_veb_get_bw_info(veb); 14778 if (ret) { 14779 dev_info(&pf->pdev->dev, 14780 "couldn't get VEB bw info, err %pe aq_err %s\n", 14781 ERR_PTR(ret), 14782 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14783 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14784 return -ENOENT; 14785 } 14786 14787 if (vsi) { 14788 vsi->uplink_seid = veb->seid; 14789 vsi->veb_idx = veb->idx; 14790 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14791 } 14792 14793 return 0; 14794 } 14795 14796 /** 14797 * i40e_veb_setup - Set up a VEB 14798 * @pf: board private structure 14799 * @uplink_seid: the switch element to link to 14800 * @vsi_seid: the initial VSI seid 14801 * @enabled_tc: Enabled TC bit-map 14802 * 14803 * This allocates the sw VEB structure and links it into the switch 14804 * It is possible and legal for this to be a duplicate of an already 14805 * existing VEB. It is also possible for both uplink and vsi seids 14806 * to be zero, in order to create a floating VEB. 14807 * 14808 * Returns pointer to the successfully allocated VEB sw struct on 14809 * success, otherwise returns NULL on failure. 14810 **/ 14811 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 uplink_seid, 14812 u16 vsi_seid, u8 enabled_tc) 14813 { 14814 struct i40e_vsi *vsi = NULL; 14815 struct i40e_veb *veb; 14816 int veb_idx; 14817 int ret; 14818 14819 /* if one seid is 0, the other must be 0 to create a floating relay */ 14820 if ((uplink_seid == 0 || vsi_seid == 0) && 14821 (uplink_seid + vsi_seid != 0)) { 14822 dev_info(&pf->pdev->dev, 14823 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14824 uplink_seid, vsi_seid); 14825 return NULL; 14826 } 14827 14828 /* make sure there is such a vsi and uplink */ 14829 if (vsi_seid) { 14830 vsi = i40e_pf_get_vsi_by_seid(pf, vsi_seid); 14831 if (!vsi) { 14832 dev_err(&pf->pdev->dev, "vsi seid %d not found\n", 14833 vsi_seid); 14834 return NULL; 14835 } 14836 } 14837 14838 /* get veb sw struct */ 14839 veb_idx = i40e_veb_mem_alloc(pf); 14840 if (veb_idx < 0) 14841 goto err_alloc; 14842 veb = pf->veb[veb_idx]; 14843 veb->uplink_seid = uplink_seid; 14844 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14845 14846 /* create the VEB in the switch */ 14847 ret = i40e_add_veb(veb, vsi); 14848 if (ret) 14849 goto err_veb; 14850 14851 if (vsi && vsi->idx == pf->lan_vsi) 14852 pf->lan_veb = veb->idx; 14853 14854 return veb; 14855 14856 err_veb: 14857 i40e_veb_clear(veb); 14858 err_alloc: 14859 return NULL; 14860 } 14861 14862 /** 14863 * i40e_setup_pf_switch_element - set PF vars based on switch type 14864 * @pf: board private structure 14865 * @ele: element we are building info from 14866 * @num_reported: total number of elements 14867 * @printconfig: should we print the contents 14868 * 14869 * helper function to assist in extracting a few useful SEID values. 14870 **/ 14871 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14872 struct i40e_aqc_switch_config_element_resp *ele, 14873 u16 num_reported, bool printconfig) 14874 { 14875 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14876 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14877 u8 element_type = ele->element_type; 14878 u16 seid = le16_to_cpu(ele->seid); 14879 struct i40e_veb *veb; 14880 14881 if (printconfig) 14882 dev_info(&pf->pdev->dev, 14883 "type=%d seid=%d uplink=%d downlink=%d\n", 14884 element_type, seid, uplink_seid, downlink_seid); 14885 14886 switch (element_type) { 14887 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14888 pf->mac_seid = seid; 14889 break; 14890 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14891 /* Main VEB? */ 14892 if (uplink_seid != pf->mac_seid) 14893 break; 14894 veb = i40e_pf_get_main_veb(pf); 14895 if (!veb) { 14896 int v; 14897 14898 /* find existing or else empty VEB */ 14899 veb = i40e_pf_get_veb_by_seid(pf, seid); 14900 if (veb) { 14901 pf->lan_veb = veb->idx; 14902 } else { 14903 v = i40e_veb_mem_alloc(pf); 14904 if (v < 0) 14905 break; 14906 pf->lan_veb = v; 14907 } 14908 } 14909 14910 /* Try to get again main VEB as pf->lan_veb may have changed */ 14911 veb = i40e_pf_get_main_veb(pf); 14912 if (!veb) 14913 break; 14914 14915 veb->seid = seid; 14916 veb->uplink_seid = pf->mac_seid; 14917 veb->pf = pf; 14918 break; 14919 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14920 if (num_reported != 1) 14921 break; 14922 /* This is immediately after a reset so we can assume this is 14923 * the PF's VSI 14924 */ 14925 pf->mac_seid = uplink_seid; 14926 pf->main_vsi_seid = seid; 14927 if (printconfig) 14928 dev_info(&pf->pdev->dev, 14929 "pf_seid=%d main_vsi_seid=%d\n", 14930 downlink_seid, pf->main_vsi_seid); 14931 break; 14932 case I40E_SWITCH_ELEMENT_TYPE_PF: 14933 case I40E_SWITCH_ELEMENT_TYPE_VF: 14934 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14935 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14936 case I40E_SWITCH_ELEMENT_TYPE_PE: 14937 case I40E_SWITCH_ELEMENT_TYPE_PA: 14938 /* ignore these for now */ 14939 break; 14940 default: 14941 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14942 element_type, seid); 14943 break; 14944 } 14945 } 14946 14947 /** 14948 * i40e_fetch_switch_configuration - Get switch config from firmware 14949 * @pf: board private structure 14950 * @printconfig: should we print the contents 14951 * 14952 * Get the current switch configuration from the device and 14953 * extract a few useful SEID values. 14954 **/ 14955 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14956 { 14957 struct i40e_aqc_get_switch_config_resp *sw_config; 14958 u16 next_seid = 0; 14959 int ret = 0; 14960 u8 *aq_buf; 14961 int i; 14962 14963 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14964 if (!aq_buf) 14965 return -ENOMEM; 14966 14967 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14968 do { 14969 u16 num_reported, num_total; 14970 14971 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14972 I40E_AQ_LARGE_BUF, 14973 &next_seid, NULL); 14974 if (ret) { 14975 dev_info(&pf->pdev->dev, 14976 "get switch config failed err %d aq_err %s\n", 14977 ret, 14978 i40e_aq_str(&pf->hw, 14979 pf->hw.aq.asq_last_status)); 14980 kfree(aq_buf); 14981 return -ENOENT; 14982 } 14983 14984 num_reported = le16_to_cpu(sw_config->header.num_reported); 14985 num_total = le16_to_cpu(sw_config->header.num_total); 14986 14987 if (printconfig) 14988 dev_info(&pf->pdev->dev, 14989 "header: %d reported %d total\n", 14990 num_reported, num_total); 14991 14992 for (i = 0; i < num_reported; i++) { 14993 struct i40e_aqc_switch_config_element_resp *ele = 14994 &sw_config->element[i]; 14995 14996 i40e_setup_pf_switch_element(pf, ele, num_reported, 14997 printconfig); 14998 } 14999 } while (next_seid != 0); 15000 15001 kfree(aq_buf); 15002 return ret; 15003 } 15004 15005 /** 15006 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 15007 * @pf: board private structure 15008 * @reinit: if the Main VSI needs to re-initialized. 15009 * @lock_acquired: indicates whether or not the lock has been acquired 15010 * 15011 * Returns 0 on success, negative value on failure 15012 **/ 15013 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 15014 { 15015 struct i40e_vsi *main_vsi; 15016 u16 flags = 0; 15017 int ret; 15018 15019 /* find out what's out there already */ 15020 ret = i40e_fetch_switch_configuration(pf, false); 15021 if (ret) { 15022 dev_info(&pf->pdev->dev, 15023 "couldn't fetch switch config, err %pe aq_err %s\n", 15024 ERR_PTR(ret), 15025 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15026 return ret; 15027 } 15028 i40e_pf_reset_stats(pf); 15029 15030 /* set the switch config bit for the whole device to 15031 * support limited promisc or true promisc 15032 * when user requests promisc. The default is limited 15033 * promisc. 15034 */ 15035 15036 if ((pf->hw.pf_id == 0) && 15037 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15038 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15039 pf->last_sw_conf_flags = flags; 15040 } 15041 15042 if (pf->hw.pf_id == 0) { 15043 u16 valid_flags; 15044 15045 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15046 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15047 NULL); 15048 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15049 dev_info(&pf->pdev->dev, 15050 "couldn't set switch config bits, err %pe aq_err %s\n", 15051 ERR_PTR(ret), 15052 i40e_aq_str(&pf->hw, 15053 pf->hw.aq.asq_last_status)); 15054 /* not a fatal problem, just keep going */ 15055 } 15056 pf->last_sw_conf_valid_flags = valid_flags; 15057 } 15058 15059 /* first time setup */ 15060 main_vsi = i40e_pf_get_main_vsi(pf); 15061 if (!main_vsi || reinit) { 15062 struct i40e_veb *veb; 15063 u16 uplink_seid; 15064 15065 /* Set up the PF VSI associated with the PF's main VSI 15066 * that is already in the HW switch 15067 */ 15068 veb = i40e_pf_get_main_veb(pf); 15069 if (veb) 15070 uplink_seid = veb->seid; 15071 else 15072 uplink_seid = pf->mac_seid; 15073 if (!main_vsi) 15074 main_vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, 15075 uplink_seid, 0); 15076 else if (reinit) 15077 main_vsi = i40e_vsi_reinit_setup(main_vsi); 15078 if (!main_vsi) { 15079 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15080 i40e_cloud_filter_exit(pf); 15081 i40e_fdir_teardown(pf); 15082 return -EAGAIN; 15083 } 15084 } else { 15085 /* force a reset of TC and queue layout configurations */ 15086 main_vsi->seid = pf->main_vsi_seid; 15087 i40e_vsi_reconfig_tc(main_vsi); 15088 } 15089 i40e_vlan_stripping_disable(main_vsi); 15090 15091 i40e_fdir_sb_setup(pf); 15092 15093 /* Setup static PF queue filter control settings */ 15094 ret = i40e_setup_pf_filter_control(pf); 15095 if (ret) { 15096 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15097 ret); 15098 /* Failure here should not stop continuing other steps */ 15099 } 15100 15101 /* enable RSS in the HW, even for only one queue, as the stack can use 15102 * the hash 15103 */ 15104 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15105 i40e_pf_config_rss(pf); 15106 15107 /* fill in link information and enable LSE reporting */ 15108 i40e_link_event(pf); 15109 15110 i40e_ptp_init(pf); 15111 15112 if (!lock_acquired) 15113 rtnl_lock(); 15114 15115 /* repopulate tunnel port filters */ 15116 udp_tunnel_nic_reset_ntf(main_vsi->netdev); 15117 15118 if (!lock_acquired) 15119 rtnl_unlock(); 15120 15121 return ret; 15122 } 15123 15124 /** 15125 * i40e_determine_queue_usage - Work out queue distribution 15126 * @pf: board private structure 15127 **/ 15128 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15129 { 15130 int queues_left; 15131 int q_max; 15132 15133 pf->num_lan_qps = 0; 15134 15135 /* Find the max queues to be put into basic use. We'll always be 15136 * using TC0, whether or not DCB is running, and TC0 will get the 15137 * big RSS set. 15138 */ 15139 queues_left = pf->hw.func_caps.num_tx_qp; 15140 15141 if ((queues_left == 1) || 15142 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15143 /* one qp for PF, no queues for anything else */ 15144 queues_left = 0; 15145 pf->alloc_rss_size = pf->num_lan_qps = 1; 15146 15147 /* make sure all the fancies are disabled */ 15148 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15149 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15150 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15151 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15152 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15153 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15154 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15155 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15156 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15157 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15158 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15159 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15160 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15161 /* one qp for PF */ 15162 pf->alloc_rss_size = pf->num_lan_qps = 1; 15163 queues_left -= pf->num_lan_qps; 15164 15165 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15166 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15167 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15168 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15169 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15170 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15171 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15172 } else { 15173 /* Not enough queues for all TCs */ 15174 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15175 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15176 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15177 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15178 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15179 } 15180 15181 /* limit lan qps to the smaller of qps, cpus or msix */ 15182 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15183 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15184 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15185 pf->num_lan_qps = q_max; 15186 15187 queues_left -= pf->num_lan_qps; 15188 } 15189 15190 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15191 if (queues_left > 1) { 15192 queues_left -= 1; /* save 1 queue for FD */ 15193 } else { 15194 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15195 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15196 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15197 } 15198 } 15199 15200 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15201 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15202 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15203 (queues_left / pf->num_vf_qps)); 15204 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15205 } 15206 15207 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15208 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15209 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15210 (queues_left / pf->num_vmdq_qps)); 15211 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15212 } 15213 15214 pf->queues_left = queues_left; 15215 dev_dbg(&pf->pdev->dev, 15216 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15217 pf->hw.func_caps.num_tx_qp, 15218 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15219 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15220 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15221 queues_left); 15222 } 15223 15224 /** 15225 * i40e_setup_pf_filter_control - Setup PF static filter control 15226 * @pf: PF to be setup 15227 * 15228 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15229 * settings. If PE/FCoE are enabled then it will also set the per PF 15230 * based filter sizes required for them. It also enables Flow director, 15231 * ethertype and macvlan type filter settings for the pf. 15232 * 15233 * Returns 0 on success, negative on failure 15234 **/ 15235 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15236 { 15237 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15238 15239 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15240 15241 /* Flow Director is enabled */ 15242 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15243 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15244 settings->enable_fdir = true; 15245 15246 /* Ethtype and MACVLAN filters enabled for PF */ 15247 settings->enable_ethtype = true; 15248 settings->enable_macvlan = true; 15249 15250 if (i40e_set_filter_control(&pf->hw, settings)) 15251 return -ENOENT; 15252 15253 return 0; 15254 } 15255 15256 #define INFO_STRING_LEN 255 15257 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15258 static void i40e_print_features(struct i40e_pf *pf) 15259 { 15260 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 15261 struct i40e_hw *hw = &pf->hw; 15262 char *buf; 15263 int i; 15264 15265 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15266 if (!buf) 15267 return; 15268 15269 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15270 #ifdef CONFIG_PCI_IOV 15271 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15272 #endif 15273 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15274 pf->hw.func_caps.num_vsis, main_vsi->num_queue_pairs); 15275 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15276 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15277 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15278 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15279 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15280 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15281 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15282 } 15283 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15284 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15285 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15286 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15287 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15288 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15289 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15290 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15291 else 15292 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15293 15294 dev_info(&pf->pdev->dev, "%s\n", buf); 15295 kfree(buf); 15296 WARN_ON(i > INFO_STRING_LEN); 15297 } 15298 15299 /** 15300 * i40e_get_platform_mac_addr - get platform-specific MAC address 15301 * @pdev: PCI device information struct 15302 * @pf: board private structure 15303 * 15304 * Look up the MAC address for the device. First we'll try 15305 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15306 * specific fallback. Otherwise, we'll default to the stored value in 15307 * firmware. 15308 **/ 15309 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15310 { 15311 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15312 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15313 } 15314 15315 /** 15316 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15317 * @fec_cfg: FEC option to set in flags 15318 * @flags: ptr to flags in which we set FEC option 15319 **/ 15320 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15321 { 15322 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15323 set_bit(I40E_FLAG_RS_FEC, flags); 15324 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15325 } 15326 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15327 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15328 set_bit(I40E_FLAG_RS_FEC, flags); 15329 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15330 } 15331 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15332 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15333 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15334 clear_bit(I40E_FLAG_RS_FEC, flags); 15335 } 15336 if (fec_cfg == 0) { 15337 clear_bit(I40E_FLAG_RS_FEC, flags); 15338 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15339 } 15340 } 15341 15342 /** 15343 * i40e_check_recovery_mode - check if we are running transition firmware 15344 * @pf: board private structure 15345 * 15346 * Check registers indicating the firmware runs in recovery mode. Sets the 15347 * appropriate driver state. 15348 * 15349 * Returns true if the recovery mode was detected, false otherwise 15350 **/ 15351 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15352 { 15353 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15354 15355 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15356 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15357 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15358 set_bit(__I40E_RECOVERY_MODE, pf->state); 15359 15360 return true; 15361 } 15362 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15363 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15364 15365 return false; 15366 } 15367 15368 /** 15369 * i40e_pf_loop_reset - perform reset in a loop. 15370 * @pf: board private structure 15371 * 15372 * This function is useful when a NIC is about to enter recovery mode. 15373 * When a NIC's internal data structures are corrupted the NIC's 15374 * firmware is going to enter recovery mode. 15375 * Right after a POR it takes about 7 minutes for firmware to enter 15376 * recovery mode. Until that time a NIC is in some kind of intermediate 15377 * state. After that time period the NIC almost surely enters 15378 * recovery mode. The only way for a driver to detect intermediate 15379 * state is to issue a series of pf-resets and check a return value. 15380 * If a PF reset returns success then the firmware could be in recovery 15381 * mode so the caller of this code needs to check for recovery mode 15382 * if this function returns success. There is a little chance that 15383 * firmware will hang in intermediate state forever. 15384 * Since waiting 7 minutes is quite a lot of time this function waits 15385 * 10 seconds and then gives up by returning an error. 15386 * 15387 * Return 0 on success, negative on failure. 15388 **/ 15389 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15390 { 15391 /* wait max 10 seconds for PF reset to succeed */ 15392 const unsigned long time_end = jiffies + 10 * HZ; 15393 struct i40e_hw *hw = &pf->hw; 15394 int ret; 15395 15396 ret = i40e_pf_reset(hw); 15397 while (ret != 0 && time_before(jiffies, time_end)) { 15398 usleep_range(10000, 20000); 15399 ret = i40e_pf_reset(hw); 15400 } 15401 15402 if (ret == 0) 15403 pf->pfr_count++; 15404 else 15405 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15406 15407 return ret; 15408 } 15409 15410 /** 15411 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15412 * @pf: board private structure 15413 * 15414 * Check FW registers to determine if FW issued unexpected EMP Reset. 15415 * Every time when unexpected EMP Reset occurs the FW increments 15416 * a counter of unexpected EMP Resets. When the counter reaches 10 15417 * the FW should enter the Recovery mode 15418 * 15419 * Returns true if FW issued unexpected EMP Reset 15420 **/ 15421 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15422 { 15423 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15424 I40E_GL_FWSTS_FWS1B_MASK; 15425 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15426 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15427 } 15428 15429 /** 15430 * i40e_handle_resets - handle EMP resets and PF resets 15431 * @pf: board private structure 15432 * 15433 * Handle both EMP resets and PF resets and conclude whether there are 15434 * any issues regarding these resets. If there are any issues then 15435 * generate log entry. 15436 * 15437 * Return 0 if NIC is healthy or negative value when there are issues 15438 * with resets 15439 **/ 15440 static int i40e_handle_resets(struct i40e_pf *pf) 15441 { 15442 const int pfr = i40e_pf_loop_reset(pf); 15443 const bool is_empr = i40e_check_fw_empr(pf); 15444 15445 if (is_empr || pfr != 0) 15446 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15447 15448 return is_empr ? -EIO : pfr; 15449 } 15450 15451 /** 15452 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15453 * @pf: board private structure 15454 * @hw: ptr to the hardware info 15455 * 15456 * This function does a minimal setup of all subsystems needed for running 15457 * recovery mode. 15458 * 15459 * Returns 0 on success, negative on failure 15460 **/ 15461 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15462 { 15463 struct i40e_vsi *vsi; 15464 int err; 15465 int v_idx; 15466 15467 pci_set_drvdata(pf->pdev, pf); 15468 pci_save_state(pf->pdev); 15469 15470 /* set up periodic task facility */ 15471 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15472 pf->service_timer_period = HZ; 15473 15474 INIT_WORK(&pf->service_task, i40e_service_task); 15475 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15476 15477 err = i40e_init_interrupt_scheme(pf); 15478 if (err) 15479 goto err_switch_setup; 15480 15481 /* The number of VSIs reported by the FW is the minimum guaranteed 15482 * to us; HW supports far more and we share the remaining pool with 15483 * the other PFs. We allocate space for more than the guarantee with 15484 * the understanding that we might not get them all later. 15485 */ 15486 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15487 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15488 else 15489 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15490 15491 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15492 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15493 GFP_KERNEL); 15494 if (!pf->vsi) { 15495 err = -ENOMEM; 15496 goto err_switch_setup; 15497 } 15498 15499 /* We allocate one VSI which is needed as absolute minimum 15500 * in order to register the netdev 15501 */ 15502 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15503 if (v_idx < 0) { 15504 err = v_idx; 15505 goto err_switch_setup; 15506 } 15507 pf->lan_vsi = v_idx; 15508 vsi = pf->vsi[v_idx]; 15509 if (!vsi) { 15510 err = -EFAULT; 15511 goto err_switch_setup; 15512 } 15513 vsi->alloc_queue_pairs = 1; 15514 err = i40e_config_netdev(vsi); 15515 if (err) 15516 goto err_switch_setup; 15517 err = register_netdev(vsi->netdev); 15518 if (err) 15519 goto err_switch_setup; 15520 vsi->netdev_registered = true; 15521 i40e_dbg_pf_init(pf); 15522 15523 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15524 if (err) 15525 goto err_switch_setup; 15526 15527 /* tell the firmware that we're starting */ 15528 i40e_send_version(pf); 15529 15530 /* since everything's happy, start the service_task timer */ 15531 mod_timer(&pf->service_timer, 15532 round_jiffies(jiffies + pf->service_timer_period)); 15533 15534 return 0; 15535 15536 err_switch_setup: 15537 i40e_reset_interrupt_capability(pf); 15538 timer_shutdown_sync(&pf->service_timer); 15539 i40e_shutdown_adminq(hw); 15540 iounmap(hw->hw_addr); 15541 pci_release_mem_regions(pf->pdev); 15542 pci_disable_device(pf->pdev); 15543 i40e_free_pf(pf); 15544 15545 return err; 15546 } 15547 15548 /** 15549 * i40e_set_subsystem_device_id - set subsystem device id 15550 * @hw: pointer to the hardware info 15551 * 15552 * Set PCI subsystem device id either from a pci_dev structure or 15553 * a specific FW register. 15554 **/ 15555 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15556 { 15557 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15558 15559 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15560 pf->pdev->subsystem_device : 15561 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15562 } 15563 15564 /** 15565 * i40e_probe - Device initialization routine 15566 * @pdev: PCI device information struct 15567 * @ent: entry in i40e_pci_tbl 15568 * 15569 * i40e_probe initializes a PF identified by a pci_dev structure. 15570 * The OS initialization, configuring of the PF private structure, 15571 * and a hardware reset occur. 15572 * 15573 * Returns 0 on success, negative on failure 15574 **/ 15575 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15576 { 15577 struct i40e_aq_get_phy_abilities_resp abilities; 15578 #ifdef CONFIG_I40E_DCB 15579 enum i40e_get_fw_lldp_status_resp lldp_status; 15580 #endif /* CONFIG_I40E_DCB */ 15581 struct i40e_vsi *vsi; 15582 struct i40e_pf *pf; 15583 struct i40e_hw *hw; 15584 u16 wol_nvm_bits; 15585 char nvm_ver[32]; 15586 u16 link_status; 15587 #ifdef CONFIG_I40E_DCB 15588 int status; 15589 #endif /* CONFIG_I40E_DCB */ 15590 int err; 15591 u32 val; 15592 15593 err = pci_enable_device_mem(pdev); 15594 if (err) 15595 return err; 15596 15597 /* set up for high or low dma */ 15598 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15599 if (err) { 15600 dev_err(&pdev->dev, 15601 "DMA configuration failed: 0x%x\n", err); 15602 goto err_dma; 15603 } 15604 15605 /* set up pci connections */ 15606 err = pci_request_mem_regions(pdev, i40e_driver_name); 15607 if (err) { 15608 dev_info(&pdev->dev, 15609 "pci_request_selected_regions failed %d\n", err); 15610 goto err_pci_reg; 15611 } 15612 15613 pci_set_master(pdev); 15614 15615 /* Now that we have a PCI connection, we need to do the 15616 * low level device setup. This is primarily setting up 15617 * the Admin Queue structures and then querying for the 15618 * device's current profile information. 15619 */ 15620 pf = i40e_alloc_pf(&pdev->dev); 15621 if (!pf) { 15622 err = -ENOMEM; 15623 goto err_pf_alloc; 15624 } 15625 pf->next_vsi = 0; 15626 pf->pdev = pdev; 15627 set_bit(__I40E_DOWN, pf->state); 15628 15629 hw = &pf->hw; 15630 15631 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15632 I40E_MAX_CSR_SPACE); 15633 /* We believe that the highest register to read is 15634 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15635 * is not less than that before mapping to prevent a 15636 * kernel panic. 15637 */ 15638 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15639 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15640 pf->ioremap_len); 15641 err = -ENOMEM; 15642 goto err_ioremap; 15643 } 15644 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15645 if (!hw->hw_addr) { 15646 err = -EIO; 15647 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15648 (unsigned int)pci_resource_start(pdev, 0), 15649 pf->ioremap_len, err); 15650 goto err_ioremap; 15651 } 15652 hw->vendor_id = pdev->vendor; 15653 hw->device_id = pdev->device; 15654 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15655 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15656 i40e_set_subsystem_device_id(hw); 15657 hw->bus.device = PCI_SLOT(pdev->devfn); 15658 hw->bus.func = PCI_FUNC(pdev->devfn); 15659 hw->bus.bus_id = pdev->bus->number; 15660 15661 /* Select something other than the 802.1ad ethertype for the 15662 * switch to use internally and drop on ingress. 15663 */ 15664 hw->switch_tag = 0xffff; 15665 hw->first_tag = ETH_P_8021AD; 15666 hw->second_tag = ETH_P_8021Q; 15667 15668 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15669 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15670 INIT_LIST_HEAD(&pf->ddp_old_prof); 15671 15672 /* set up the locks for the AQ, do this only once in probe 15673 * and destroy them only once in remove 15674 */ 15675 mutex_init(&hw->aq.asq_mutex); 15676 mutex_init(&hw->aq.arq_mutex); 15677 15678 pf->msg_enable = netif_msg_init(debug, 15679 NETIF_MSG_DRV | 15680 NETIF_MSG_PROBE | 15681 NETIF_MSG_LINK); 15682 if (debug < -1) 15683 pf->hw.debug_mask = debug; 15684 15685 /* do a special CORER for clearing PXE mode once at init */ 15686 if (hw->revision_id == 0 && 15687 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15688 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15689 i40e_flush(hw); 15690 msleep(200); 15691 pf->corer_count++; 15692 15693 i40e_clear_pxe_mode(hw); 15694 } 15695 15696 /* Reset here to make sure all is clean and to define PF 'n' */ 15697 i40e_clear_hw(hw); 15698 15699 err = i40e_set_mac_type(hw); 15700 if (err) { 15701 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15702 err); 15703 goto err_pf_reset; 15704 } 15705 15706 err = i40e_handle_resets(pf); 15707 if (err) 15708 goto err_pf_reset; 15709 15710 i40e_check_recovery_mode(pf); 15711 15712 if (is_kdump_kernel()) { 15713 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15714 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15715 } else { 15716 hw->aq.num_arq_entries = I40E_AQ_LEN; 15717 hw->aq.num_asq_entries = I40E_AQ_LEN; 15718 } 15719 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15720 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15721 15722 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15723 "%s-%s:misc", 15724 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15725 15726 err = i40e_init_shared_code(hw); 15727 if (err) { 15728 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15729 err); 15730 goto err_pf_reset; 15731 } 15732 15733 /* set up a default setting for link flow control */ 15734 pf->hw.fc.requested_mode = I40E_FC_NONE; 15735 15736 err = i40e_init_adminq(hw); 15737 if (err) { 15738 if (err == -EIO) 15739 dev_info(&pdev->dev, 15740 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15741 hw->aq.api_maj_ver, 15742 hw->aq.api_min_ver, 15743 I40E_FW_API_VERSION_MAJOR, 15744 I40E_FW_MINOR_VERSION(hw)); 15745 else 15746 dev_info(&pdev->dev, 15747 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15748 15749 goto err_pf_reset; 15750 } 15751 i40e_get_oem_version(hw); 15752 i40e_get_pba_string(hw); 15753 15754 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15755 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15756 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15757 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15758 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15759 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15760 hw->subsystem_device_id); 15761 15762 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15763 I40E_FW_MINOR_VERSION(hw) + 1)) 15764 dev_dbg(&pdev->dev, 15765 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15766 hw->aq.api_maj_ver, 15767 hw->aq.api_min_ver, 15768 I40E_FW_API_VERSION_MAJOR, 15769 I40E_FW_MINOR_VERSION(hw)); 15770 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15771 dev_info(&pdev->dev, 15772 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15773 hw->aq.api_maj_ver, 15774 hw->aq.api_min_ver, 15775 I40E_FW_API_VERSION_MAJOR, 15776 I40E_FW_MINOR_VERSION(hw)); 15777 15778 i40e_verify_eeprom(pf); 15779 15780 /* Rev 0 hardware was never productized */ 15781 if (hw->revision_id < 1) 15782 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15783 15784 i40e_clear_pxe_mode(hw); 15785 15786 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15787 if (err) 15788 goto err_adminq_setup; 15789 15790 err = i40e_sw_init(pf); 15791 if (err) { 15792 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15793 goto err_sw_init; 15794 } 15795 15796 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15797 return i40e_init_recovery_mode(pf, hw); 15798 15799 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15800 hw->func_caps.num_rx_qp, 0, 0); 15801 if (err) { 15802 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15803 goto err_init_lan_hmc; 15804 } 15805 15806 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15807 if (err) { 15808 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15809 err = -ENOENT; 15810 goto err_configure_lan_hmc; 15811 } 15812 15813 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15814 * Ignore error return codes because if it was already disabled via 15815 * hardware settings this will fail 15816 */ 15817 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15818 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15819 i40e_aq_stop_lldp(hw, true, false, NULL); 15820 } 15821 15822 /* allow a platform config to override the HW addr */ 15823 i40e_get_platform_mac_addr(pdev, pf); 15824 15825 if (!is_valid_ether_addr(hw->mac.addr)) { 15826 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15827 err = -EIO; 15828 goto err_mac_addr; 15829 } 15830 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15831 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15832 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15833 if (is_valid_ether_addr(hw->mac.port_addr)) 15834 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15835 15836 i40e_ptp_alloc_pins(pf); 15837 pci_set_drvdata(pdev, pf); 15838 pci_save_state(pdev); 15839 15840 #ifdef CONFIG_I40E_DCB 15841 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15842 (!status && 15843 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15844 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15845 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15846 dev_info(&pdev->dev, 15847 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15848 "FW LLDP is disabled\n" : 15849 "FW LLDP is enabled\n"); 15850 15851 /* Enable FW to write default DCB config on link-up */ 15852 i40e_aq_set_dcb_parameters(hw, true, NULL); 15853 15854 err = i40e_init_pf_dcb(pf); 15855 if (err) { 15856 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15857 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15858 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15859 /* Continue without DCB enabled */ 15860 } 15861 #endif /* CONFIG_I40E_DCB */ 15862 15863 /* set up periodic task facility */ 15864 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15865 pf->service_timer_period = HZ; 15866 15867 INIT_WORK(&pf->service_task, i40e_service_task); 15868 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15869 15870 /* NVM bit on means WoL disabled for the port */ 15871 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15872 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15873 pf->wol_en = false; 15874 else 15875 pf->wol_en = true; 15876 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15877 15878 /* set up the main switch operations */ 15879 i40e_determine_queue_usage(pf); 15880 err = i40e_init_interrupt_scheme(pf); 15881 if (err) 15882 goto err_switch_setup; 15883 15884 /* Reduce Tx and Rx pairs for kdump 15885 * When MSI-X is enabled, it's not allowed to use more TC queue 15886 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15887 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15888 */ 15889 if (is_kdump_kernel()) 15890 pf->num_lan_msix = 1; 15891 15892 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15893 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15894 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15895 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15896 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15897 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15898 UDP_TUNNEL_TYPE_GENEVE; 15899 15900 /* The number of VSIs reported by the FW is the minimum guaranteed 15901 * to us; HW supports far more and we share the remaining pool with 15902 * the other PFs. We allocate space for more than the guarantee with 15903 * the understanding that we might not get them all later. 15904 */ 15905 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15906 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15907 else 15908 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15909 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15910 dev_warn(&pf->pdev->dev, 15911 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15912 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15913 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15914 } 15915 15916 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15917 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15918 GFP_KERNEL); 15919 if (!pf->vsi) { 15920 err = -ENOMEM; 15921 goto err_switch_setup; 15922 } 15923 15924 #ifdef CONFIG_PCI_IOV 15925 /* prep for VF support */ 15926 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15927 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15928 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15929 if (pci_num_vf(pdev)) 15930 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15931 } 15932 #endif 15933 err = i40e_setup_pf_switch(pf, false, false); 15934 if (err) { 15935 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15936 goto err_vsis; 15937 } 15938 15939 vsi = i40e_pf_get_main_vsi(pf); 15940 INIT_LIST_HEAD(&vsi->ch_list); 15941 15942 /* if FDIR VSI was set up, start it now */ 15943 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 15944 if (vsi) 15945 i40e_vsi_open(vsi); 15946 15947 /* The driver only wants link up/down and module qualification 15948 * reports from firmware. Note the negative logic. 15949 */ 15950 err = i40e_aq_set_phy_int_mask(&pf->hw, 15951 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15952 I40E_AQ_EVENT_MEDIA_NA | 15953 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15954 if (err) 15955 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 15956 ERR_PTR(err), 15957 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15958 15959 /* VF MDD event logs are rate limited to one second intervals */ 15960 ratelimit_state_init(&pf->mdd_message_rate_limit, 1 * HZ, 1); 15961 15962 /* Reconfigure hardware for allowing smaller MSS in the case 15963 * of TSO, so that we avoid the MDD being fired and causing 15964 * a reset in the case of small MSS+TSO. 15965 */ 15966 val = rd32(hw, I40E_REG_MSS); 15967 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15968 val &= ~I40E_REG_MSS_MIN_MASK; 15969 val |= I40E_64BYTE_MSS; 15970 wr32(hw, I40E_REG_MSS, val); 15971 } 15972 15973 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 15974 msleep(75); 15975 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15976 if (err) 15977 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 15978 ERR_PTR(err), 15979 i40e_aq_str(&pf->hw, 15980 pf->hw.aq.asq_last_status)); 15981 } 15982 /* The main driver is (mostly) up and happy. We need to set this state 15983 * before setting up the misc vector or we get a race and the vector 15984 * ends up disabled forever. 15985 */ 15986 clear_bit(__I40E_DOWN, pf->state); 15987 15988 /* In case of MSIX we are going to setup the misc vector right here 15989 * to handle admin queue events etc. In case of legacy and MSI 15990 * the misc functionality and queue processing is combined in 15991 * the same vector and that gets setup at open. 15992 */ 15993 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15994 err = i40e_setup_misc_vector(pf); 15995 if (err) { 15996 dev_info(&pdev->dev, 15997 "setup of misc vector failed: %d\n", err); 15998 i40e_cloud_filter_exit(pf); 15999 i40e_fdir_teardown(pf); 16000 goto err_vsis; 16001 } 16002 } 16003 16004 #ifdef CONFIG_PCI_IOV 16005 /* prep for VF support */ 16006 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 16007 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 16008 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 16009 /* disable link interrupts for VFs */ 16010 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 16011 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 16012 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 16013 i40e_flush(hw); 16014 16015 if (pci_num_vf(pdev)) { 16016 dev_info(&pdev->dev, 16017 "Active VFs found, allocating resources.\n"); 16018 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 16019 if (err) 16020 dev_info(&pdev->dev, 16021 "Error %d allocating resources for existing VFs\n", 16022 err); 16023 } 16024 } 16025 #endif /* CONFIG_PCI_IOV */ 16026 16027 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16028 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16029 pf->num_iwarp_msix, 16030 I40E_IWARP_IRQ_PILE_ID); 16031 if (pf->iwarp_base_vector < 0) { 16032 dev_info(&pdev->dev, 16033 "failed to get tracking for %d vectors for IWARP err=%d\n", 16034 pf->num_iwarp_msix, pf->iwarp_base_vector); 16035 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16036 } 16037 } 16038 16039 i40e_dbg_pf_init(pf); 16040 16041 /* tell the firmware that we're starting */ 16042 i40e_send_version(pf); 16043 16044 /* since everything's happy, start the service_task timer */ 16045 mod_timer(&pf->service_timer, 16046 round_jiffies(jiffies + pf->service_timer_period)); 16047 16048 /* add this PF to client device list and launch a client service task */ 16049 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16050 err = i40e_lan_add_device(pf); 16051 if (err) 16052 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16053 err); 16054 } 16055 16056 #define PCI_SPEED_SIZE 8 16057 #define PCI_WIDTH_SIZE 8 16058 /* Devices on the IOSF bus do not have this information 16059 * and will report PCI Gen 1 x 1 by default so don't bother 16060 * checking them. 16061 */ 16062 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16063 char speed[PCI_SPEED_SIZE] = "Unknown"; 16064 char width[PCI_WIDTH_SIZE] = "Unknown"; 16065 16066 /* Get the negotiated link width and speed from PCI config 16067 * space 16068 */ 16069 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16070 &link_status); 16071 16072 i40e_set_pci_config_data(hw, link_status); 16073 16074 switch (hw->bus.speed) { 16075 case i40e_bus_speed_8000: 16076 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16077 case i40e_bus_speed_5000: 16078 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16079 case i40e_bus_speed_2500: 16080 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16081 default: 16082 break; 16083 } 16084 switch (hw->bus.width) { 16085 case i40e_bus_width_pcie_x8: 16086 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16087 case i40e_bus_width_pcie_x4: 16088 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16089 case i40e_bus_width_pcie_x2: 16090 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16091 case i40e_bus_width_pcie_x1: 16092 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16093 default: 16094 break; 16095 } 16096 16097 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16098 speed, width); 16099 16100 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16101 hw->bus.speed < i40e_bus_speed_8000) { 16102 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16103 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16104 } 16105 } 16106 16107 /* get the requested speeds from the fw */ 16108 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16109 if (err) 16110 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16111 ERR_PTR(err), 16112 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16113 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16114 16115 /* set the FEC config due to the board capabilities */ 16116 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16117 16118 /* get the supported phy types from the fw */ 16119 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16120 if (err) 16121 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16122 ERR_PTR(err), 16123 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16124 16125 /* make sure the MFS hasn't been set lower than the default */ 16126 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16127 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK, 16128 rd32(&pf->hw, I40E_PRTGL_SAH)); 16129 if (val < MAX_FRAME_SIZE_DEFAULT) 16130 dev_warn(&pdev->dev, "MFS for port %x (%d) has been set below the default (%d)\n", 16131 pf->hw.port, val, MAX_FRAME_SIZE_DEFAULT); 16132 16133 /* Add a filter to drop all Flow control frames from any VSI from being 16134 * transmitted. By doing so we stop a malicious VF from sending out 16135 * PAUSE or PFC frames and potentially controlling traffic for other 16136 * PF/VF VSIs. 16137 * The FW can still send Flow control frames if enabled. 16138 */ 16139 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16140 pf->main_vsi_seid); 16141 16142 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16143 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16144 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16145 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16146 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16147 /* print a string summarizing features */ 16148 i40e_print_features(pf); 16149 16150 i40e_devlink_register(pf); 16151 16152 return 0; 16153 16154 /* Unwind what we've done if something failed in the setup */ 16155 err_vsis: 16156 set_bit(__I40E_DOWN, pf->state); 16157 i40e_clear_interrupt_scheme(pf); 16158 kfree(pf->vsi); 16159 err_switch_setup: 16160 i40e_reset_interrupt_capability(pf); 16161 timer_shutdown_sync(&pf->service_timer); 16162 err_mac_addr: 16163 err_configure_lan_hmc: 16164 (void)i40e_shutdown_lan_hmc(hw); 16165 err_init_lan_hmc: 16166 kfree(pf->qp_pile); 16167 err_sw_init: 16168 err_adminq_setup: 16169 err_pf_reset: 16170 iounmap(hw->hw_addr); 16171 err_ioremap: 16172 i40e_free_pf(pf); 16173 err_pf_alloc: 16174 pci_release_mem_regions(pdev); 16175 err_pci_reg: 16176 err_dma: 16177 pci_disable_device(pdev); 16178 return err; 16179 } 16180 16181 /** 16182 * i40e_remove - Device removal routine 16183 * @pdev: PCI device information struct 16184 * 16185 * i40e_remove is called by the PCI subsystem to alert the driver 16186 * that is should release a PCI device. This could be caused by a 16187 * Hot-Plug event, or because the driver is going to be removed from 16188 * memory. 16189 **/ 16190 static void i40e_remove(struct pci_dev *pdev) 16191 { 16192 struct i40e_pf *pf = pci_get_drvdata(pdev); 16193 struct i40e_hw *hw = &pf->hw; 16194 struct i40e_vsi *vsi; 16195 struct i40e_veb *veb; 16196 int ret_code; 16197 int i; 16198 16199 i40e_devlink_unregister(pf); 16200 16201 i40e_dbg_pf_exit(pf); 16202 16203 i40e_ptp_stop(pf); 16204 16205 /* Disable RSS in hw */ 16206 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16207 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16208 16209 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16210 * flags, once they are set, i40e_rebuild should not be called as 16211 * i40e_prep_for_reset always returns early. 16212 */ 16213 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16214 usleep_range(1000, 2000); 16215 set_bit(__I40E_IN_REMOVE, pf->state); 16216 16217 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16218 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16219 i40e_free_vfs(pf); 16220 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16221 } 16222 /* no more scheduling of any task */ 16223 set_bit(__I40E_SUSPENDED, pf->state); 16224 set_bit(__I40E_DOWN, pf->state); 16225 if (pf->service_timer.function) 16226 timer_shutdown_sync(&pf->service_timer); 16227 if (pf->service_task.func) 16228 cancel_work_sync(&pf->service_task); 16229 16230 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16231 struct i40e_vsi *vsi = pf->vsi[0]; 16232 16233 /* We know that we have allocated only one vsi for this PF, 16234 * it was just for registering netdevice, so the interface 16235 * could be visible in the 'ifconfig' output 16236 */ 16237 unregister_netdev(vsi->netdev); 16238 free_netdev(vsi->netdev); 16239 16240 goto unmap; 16241 } 16242 16243 /* Client close must be called explicitly here because the timer 16244 * has been stopped. 16245 */ 16246 i40e_notify_client_of_netdev_close(pf, false); 16247 16248 i40e_fdir_teardown(pf); 16249 16250 /* If there is a switch structure or any orphans, remove them. 16251 * This will leave only the PF's VSI remaining. 16252 */ 16253 i40e_pf_for_each_veb(pf, i, veb) 16254 if (veb->uplink_seid == pf->mac_seid || 16255 veb->uplink_seid == 0) 16256 i40e_switch_branch_release(veb); 16257 16258 /* Now we can shutdown the PF's VSIs, just before we kill 16259 * adminq and hmc. 16260 */ 16261 i40e_pf_for_each_vsi(pf, i, vsi) { 16262 i40e_vsi_close(vsi); 16263 i40e_vsi_release(vsi); 16264 pf->vsi[i] = NULL; 16265 } 16266 16267 i40e_cloud_filter_exit(pf); 16268 16269 /* remove attached clients */ 16270 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16271 ret_code = i40e_lan_del_device(pf); 16272 if (ret_code) 16273 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16274 ret_code); 16275 } 16276 16277 /* shutdown and destroy the HMC */ 16278 if (hw->hmc.hmc_obj) { 16279 ret_code = i40e_shutdown_lan_hmc(hw); 16280 if (ret_code) 16281 dev_warn(&pdev->dev, 16282 "Failed to destroy the HMC resources: %d\n", 16283 ret_code); 16284 } 16285 16286 unmap: 16287 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16288 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16289 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16290 free_irq(pf->pdev->irq, pf); 16291 16292 /* shutdown the adminq */ 16293 i40e_shutdown_adminq(hw); 16294 16295 /* destroy the locks only once, here */ 16296 mutex_destroy(&hw->aq.arq_mutex); 16297 mutex_destroy(&hw->aq.asq_mutex); 16298 16299 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16300 rtnl_lock(); 16301 i40e_clear_interrupt_scheme(pf); 16302 i40e_pf_for_each_vsi(pf, i, vsi) { 16303 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16304 i40e_vsi_clear_rings(vsi); 16305 16306 i40e_vsi_clear(vsi); 16307 pf->vsi[i] = NULL; 16308 } 16309 rtnl_unlock(); 16310 16311 i40e_pf_for_each_veb(pf, i, veb) { 16312 kfree(veb); 16313 pf->veb[i] = NULL; 16314 } 16315 16316 kfree(pf->qp_pile); 16317 kfree(pf->vsi); 16318 16319 iounmap(hw->hw_addr); 16320 i40e_free_pf(pf); 16321 pci_release_mem_regions(pdev); 16322 16323 pci_disable_device(pdev); 16324 } 16325 16326 /** 16327 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16328 * using the mac_address_write admin q function 16329 * @pf: pointer to i40e_pf struct 16330 **/ 16331 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16332 { 16333 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 16334 struct i40e_hw *hw = &pf->hw; 16335 u8 mac_addr[6]; 16336 u16 flags = 0; 16337 int ret; 16338 16339 /* Get current MAC address in case it's an LAA */ 16340 if (main_vsi && main_vsi->netdev) { 16341 ether_addr_copy(mac_addr, main_vsi->netdev->dev_addr); 16342 } else { 16343 dev_err(&pf->pdev->dev, 16344 "Failed to retrieve MAC address; using default\n"); 16345 ether_addr_copy(mac_addr, hw->mac.addr); 16346 } 16347 16348 /* The FW expects the mac address write cmd to first be called with 16349 * one of these flags before calling it again with the multicast 16350 * enable flags. 16351 */ 16352 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16353 16354 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16355 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16356 16357 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16358 if (ret) { 16359 dev_err(&pf->pdev->dev, 16360 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16361 return; 16362 } 16363 16364 flags = I40E_AQC_MC_MAG_EN 16365 | I40E_AQC_WOL_PRESERVE_ON_PFR 16366 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16367 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16368 if (ret) 16369 dev_err(&pf->pdev->dev, 16370 "Failed to enable Multicast Magic Packet wake up\n"); 16371 } 16372 16373 /** 16374 * i40e_io_suspend - suspend all IO operations 16375 * @pf: pointer to i40e_pf struct 16376 * 16377 **/ 16378 static int i40e_io_suspend(struct i40e_pf *pf) 16379 { 16380 struct i40e_hw *hw = &pf->hw; 16381 16382 set_bit(__I40E_DOWN, pf->state); 16383 16384 /* Ensure service task will not be running */ 16385 del_timer_sync(&pf->service_timer); 16386 cancel_work_sync(&pf->service_task); 16387 16388 /* Client close must be called explicitly here because the timer 16389 * has been stopped. 16390 */ 16391 i40e_notify_client_of_netdev_close(pf, false); 16392 16393 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16394 pf->wol_en) 16395 i40e_enable_mc_magic_wake(pf); 16396 16397 /* Since we're going to destroy queues during the 16398 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16399 * whole section 16400 */ 16401 rtnl_lock(); 16402 16403 i40e_prep_for_reset(pf); 16404 16405 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16406 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16407 16408 /* Clear the interrupt scheme and release our IRQs so that the system 16409 * can safely hibernate even when there are a large number of CPUs. 16410 * Otherwise hibernation might fail when mapping all the vectors back 16411 * to CPU0. 16412 */ 16413 i40e_clear_interrupt_scheme(pf); 16414 16415 rtnl_unlock(); 16416 16417 return 0; 16418 } 16419 16420 /** 16421 * i40e_io_resume - resume IO operations 16422 * @pf: pointer to i40e_pf struct 16423 * 16424 **/ 16425 static int i40e_io_resume(struct i40e_pf *pf) 16426 { 16427 struct device *dev = &pf->pdev->dev; 16428 int err; 16429 16430 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16431 * since we're going to be restoring queues 16432 */ 16433 rtnl_lock(); 16434 16435 /* We cleared the interrupt scheme when we suspended, so we need to 16436 * restore it now to resume device functionality. 16437 */ 16438 err = i40e_restore_interrupt_scheme(pf); 16439 if (err) { 16440 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16441 err); 16442 } 16443 16444 clear_bit(__I40E_DOWN, pf->state); 16445 i40e_reset_and_rebuild(pf, false, true); 16446 16447 rtnl_unlock(); 16448 16449 /* Clear suspended state last after everything is recovered */ 16450 clear_bit(__I40E_SUSPENDED, pf->state); 16451 16452 /* Restart the service task */ 16453 mod_timer(&pf->service_timer, 16454 round_jiffies(jiffies + pf->service_timer_period)); 16455 16456 return 0; 16457 } 16458 16459 /** 16460 * i40e_pci_error_detected - warning that something funky happened in PCI land 16461 * @pdev: PCI device information struct 16462 * @error: the type of PCI error 16463 * 16464 * Called to warn that something happened and the error handling steps 16465 * are in progress. Allows the driver to quiesce things, be ready for 16466 * remediation. 16467 **/ 16468 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16469 pci_channel_state_t error) 16470 { 16471 struct i40e_pf *pf = pci_get_drvdata(pdev); 16472 16473 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16474 16475 if (!pf) { 16476 dev_info(&pdev->dev, 16477 "Cannot recover - error happened during device probe\n"); 16478 return PCI_ERS_RESULT_DISCONNECT; 16479 } 16480 16481 /* shutdown all operations */ 16482 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16483 i40e_io_suspend(pf); 16484 16485 /* Request a slot reset */ 16486 return PCI_ERS_RESULT_NEED_RESET; 16487 } 16488 16489 /** 16490 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16491 * @pdev: PCI device information struct 16492 * 16493 * Called to find if the driver can work with the device now that 16494 * the pci slot has been reset. If a basic connection seems good 16495 * (registers are readable and have sane content) then return a 16496 * happy little PCI_ERS_RESULT_xxx. 16497 **/ 16498 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16499 { 16500 struct i40e_pf *pf = pci_get_drvdata(pdev); 16501 pci_ers_result_t result; 16502 u32 reg; 16503 16504 dev_dbg(&pdev->dev, "%s\n", __func__); 16505 /* enable I/O and memory of the device */ 16506 if (pci_enable_device(pdev)) { 16507 dev_info(&pdev->dev, 16508 "Cannot re-enable PCI device after reset.\n"); 16509 result = PCI_ERS_RESULT_DISCONNECT; 16510 } else { 16511 pci_set_master(pdev); 16512 pci_restore_state(pdev); 16513 pci_save_state(pdev); 16514 pci_wake_from_d3(pdev, false); 16515 16516 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16517 if (reg == 0) 16518 result = PCI_ERS_RESULT_RECOVERED; 16519 else 16520 result = PCI_ERS_RESULT_DISCONNECT; 16521 } 16522 16523 return result; 16524 } 16525 16526 /** 16527 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16528 * @pdev: PCI device information struct 16529 */ 16530 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16531 { 16532 struct i40e_pf *pf = pci_get_drvdata(pdev); 16533 16534 i40e_prep_for_reset(pf); 16535 } 16536 16537 /** 16538 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16539 * @pdev: PCI device information struct 16540 */ 16541 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16542 { 16543 struct i40e_pf *pf = pci_get_drvdata(pdev); 16544 16545 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16546 return; 16547 16548 i40e_reset_and_rebuild(pf, false, false); 16549 #ifdef CONFIG_PCI_IOV 16550 i40e_restore_all_vfs_msi_state(pdev); 16551 #endif /* CONFIG_PCI_IOV */ 16552 } 16553 16554 /** 16555 * i40e_pci_error_resume - restart operations after PCI error recovery 16556 * @pdev: PCI device information struct 16557 * 16558 * Called to allow the driver to bring things back up after PCI error 16559 * and/or reset recovery has finished. 16560 **/ 16561 static void i40e_pci_error_resume(struct pci_dev *pdev) 16562 { 16563 struct i40e_pf *pf = pci_get_drvdata(pdev); 16564 16565 dev_dbg(&pdev->dev, "%s\n", __func__); 16566 if (test_bit(__I40E_SUSPENDED, pf->state)) 16567 return; 16568 16569 i40e_io_resume(pf); 16570 } 16571 16572 /** 16573 * i40e_shutdown - PCI callback for shutting down 16574 * @pdev: PCI device information struct 16575 **/ 16576 static void i40e_shutdown(struct pci_dev *pdev) 16577 { 16578 struct i40e_pf *pf = pci_get_drvdata(pdev); 16579 struct i40e_hw *hw = &pf->hw; 16580 16581 set_bit(__I40E_SUSPENDED, pf->state); 16582 set_bit(__I40E_DOWN, pf->state); 16583 16584 del_timer_sync(&pf->service_timer); 16585 cancel_work_sync(&pf->service_task); 16586 i40e_cloud_filter_exit(pf); 16587 i40e_fdir_teardown(pf); 16588 16589 /* Client close must be called explicitly here because the timer 16590 * has been stopped. 16591 */ 16592 i40e_notify_client_of_netdev_close(pf, false); 16593 16594 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16595 pf->wol_en) 16596 i40e_enable_mc_magic_wake(pf); 16597 16598 i40e_prep_for_reset(pf); 16599 16600 wr32(hw, I40E_PFPM_APM, 16601 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16602 wr32(hw, I40E_PFPM_WUFC, 16603 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16604 16605 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16606 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16607 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16608 free_irq(pf->pdev->irq, pf); 16609 16610 /* Since we're going to destroy queues during the 16611 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16612 * whole section 16613 */ 16614 rtnl_lock(); 16615 i40e_clear_interrupt_scheme(pf); 16616 rtnl_unlock(); 16617 16618 if (system_state == SYSTEM_POWER_OFF) { 16619 pci_wake_from_d3(pdev, pf->wol_en); 16620 pci_set_power_state(pdev, PCI_D3hot); 16621 } 16622 } 16623 16624 /** 16625 * i40e_suspend - PM callback for moving to D3 16626 * @dev: generic device information structure 16627 **/ 16628 static int i40e_suspend(struct device *dev) 16629 { 16630 struct i40e_pf *pf = dev_get_drvdata(dev); 16631 16632 /* If we're already suspended, then there is nothing to do */ 16633 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16634 return 0; 16635 return i40e_io_suspend(pf); 16636 } 16637 16638 /** 16639 * i40e_resume - PM callback for waking up from D3 16640 * @dev: generic device information structure 16641 **/ 16642 static int i40e_resume(struct device *dev) 16643 { 16644 struct i40e_pf *pf = dev_get_drvdata(dev); 16645 16646 /* If we're not suspended, then there is nothing to do */ 16647 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16648 return 0; 16649 return i40e_io_resume(pf); 16650 } 16651 16652 static const struct pci_error_handlers i40e_err_handler = { 16653 .error_detected = i40e_pci_error_detected, 16654 .slot_reset = i40e_pci_error_slot_reset, 16655 .reset_prepare = i40e_pci_error_reset_prepare, 16656 .reset_done = i40e_pci_error_reset_done, 16657 .resume = i40e_pci_error_resume, 16658 }; 16659 16660 static DEFINE_SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16661 16662 static struct pci_driver i40e_driver = { 16663 .name = i40e_driver_name, 16664 .id_table = i40e_pci_tbl, 16665 .probe = i40e_probe, 16666 .remove = i40e_remove, 16667 .driver.pm = pm_sleep_ptr(&i40e_pm_ops), 16668 .shutdown = i40e_shutdown, 16669 .err_handler = &i40e_err_handler, 16670 .sriov_configure = i40e_pci_sriov_configure, 16671 }; 16672 16673 /** 16674 * i40e_init_module - Driver registration routine 16675 * 16676 * i40e_init_module is the first routine called when the driver is 16677 * loaded. All it does is register with the PCI subsystem. 16678 **/ 16679 static int __init i40e_init_module(void) 16680 { 16681 int err; 16682 16683 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16684 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16685 16686 /* There is no need to throttle the number of active tasks because 16687 * each device limits its own task using a state bit for scheduling 16688 * the service task, and the device tasks do not interfere with each 16689 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16690 * since we need to be able to guarantee forward progress even under 16691 * memory pressure. 16692 */ 16693 i40e_wq = alloc_workqueue("%s", 0, 0, i40e_driver_name); 16694 if (!i40e_wq) { 16695 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16696 return -ENOMEM; 16697 } 16698 16699 i40e_dbg_init(); 16700 err = pci_register_driver(&i40e_driver); 16701 if (err) { 16702 destroy_workqueue(i40e_wq); 16703 i40e_dbg_exit(); 16704 return err; 16705 } 16706 16707 return 0; 16708 } 16709 module_init(i40e_init_module); 16710 16711 /** 16712 * i40e_exit_module - Driver exit cleanup routine 16713 * 16714 * i40e_exit_module is called just before the driver is removed 16715 * from memory. 16716 **/ 16717 static void __exit i40e_exit_module(void) 16718 { 16719 pci_unregister_driver(&i40e_driver); 16720 destroy_workqueue(i40e_wq); 16721 ida_destroy(&i40e_client_ida); 16722 i40e_dbg_exit(); 16723 } 16724 module_exit(i40e_exit_module); 16725