1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/net/intel/libie/pctype.h> 7 #include <linux/if_bridge.h> 8 #include <linux/if_macvlan.h> 9 #include <linux/module.h> 10 #include <net/pkt_cls.h> 11 #include <net/xdp_sock_drv.h> 12 13 /* Local includes */ 14 #include "i40e.h" 15 #include "i40e_devids.h" 16 #include "i40e_diag.h" 17 #include "i40e_lan_hmc.h" 18 #include "i40e_virtchnl_pf.h" 19 #include "i40e_xsk.h" 20 21 /* All i40e tracepoints are defined by the include below, which 22 * must be included exactly once across the whole kernel with 23 * CREATE_TRACE_POINTS defined 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "i40e_trace.h" 27 28 const char i40e_driver_name[] = "i40e"; 29 static const char i40e_driver_string[] = 30 "Intel(R) Ethernet Connection XL710 Network Driver"; 31 32 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 33 34 /* a bit of forward declarations */ 35 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 36 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 37 static int i40e_add_vsi(struct i40e_vsi *vsi); 38 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 39 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 40 static int i40e_setup_misc_vector(struct i40e_pf *pf); 41 static void i40e_determine_queue_usage(struct i40e_pf *pf); 42 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 43 static void i40e_prep_for_reset(struct i40e_pf *pf); 44 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 45 bool lock_acquired); 46 static int i40e_reset(struct i40e_pf *pf); 47 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 48 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 49 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 50 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 51 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 52 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 53 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 54 static int i40e_get_capabilities(struct i40e_pf *pf, 55 enum i40e_admin_queue_opc list_type); 56 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 57 58 /* i40e_pci_tbl - PCI Device ID Table 59 * 60 * Last entry must be all 0s 61 * 62 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 63 * Class, Class Mask, private data (not used) } 64 */ 65 static const struct pci_device_id i40e_pci_tbl[] = { 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 91 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 92 /* required last entry */ 93 {0, } 94 }; 95 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 96 97 #define I40E_MAX_VF_COUNT 128 98 static int debug = -1; 99 module_param(debug, uint, 0); 100 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 101 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_IMPORT_NS("LIBIE"); 104 MODULE_LICENSE("GPL v2"); 105 106 static struct workqueue_struct *i40e_wq; 107 108 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 109 struct net_device *netdev, int delta) 110 { 111 struct netdev_hw_addr_list *ha_list; 112 struct netdev_hw_addr *ha; 113 114 if (!f || !netdev) 115 return; 116 117 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr)) 118 ha_list = &netdev->uc; 119 else 120 ha_list = &netdev->mc; 121 122 netdev_hw_addr_list_for_each(ha, ha_list) { 123 if (ether_addr_equal(ha->addr, f->macaddr)) { 124 ha->refcount += delta; 125 if (ha->refcount <= 0) 126 ha->refcount = 1; 127 break; 128 } 129 } 130 } 131 132 /** 133 * i40e_hw_to_dev - get device pointer from the hardware structure 134 * @hw: pointer to the device HW structure 135 **/ 136 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 137 { 138 struct i40e_pf *pf = i40e_hw_to_pf(hw); 139 140 return &pf->pdev->dev; 141 } 142 143 /** 144 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 145 * @hw: pointer to the HW structure 146 * @mem: ptr to mem struct to fill out 147 * @size: size of memory requested 148 * @alignment: what to align the allocation to 149 **/ 150 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 151 u64 size, u32 alignment) 152 { 153 struct i40e_pf *pf = i40e_hw_to_pf(hw); 154 155 mem->size = ALIGN(size, alignment); 156 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 157 GFP_KERNEL); 158 if (!mem->va) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 /** 165 * i40e_free_dma_mem - OS specific memory free for shared code 166 * @hw: pointer to the HW structure 167 * @mem: ptr to mem struct to free 168 **/ 169 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 170 { 171 struct i40e_pf *pf = i40e_hw_to_pf(hw); 172 173 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 174 mem->va = NULL; 175 mem->pa = 0; 176 mem->size = 0; 177 178 return 0; 179 } 180 181 /** 182 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 183 * @hw: pointer to the HW structure 184 * @mem: ptr to mem struct to fill out 185 * @size: size of memory requested 186 **/ 187 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 188 u32 size) 189 { 190 mem->size = size; 191 mem->va = kzalloc(size, GFP_KERNEL); 192 193 if (!mem->va) 194 return -ENOMEM; 195 196 return 0; 197 } 198 199 /** 200 * i40e_free_virt_mem - OS specific memory free for shared code 201 * @hw: pointer to the HW structure 202 * @mem: ptr to mem struct to free 203 **/ 204 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 205 { 206 /* it's ok to kfree a NULL pointer */ 207 kfree(mem->va); 208 mem->va = NULL; 209 mem->size = 0; 210 211 return 0; 212 } 213 214 /** 215 * i40e_get_lump - find a lump of free generic resource 216 * @pf: board private structure 217 * @pile: the pile of resource to search 218 * @needed: the number of items needed 219 * @id: an owner id to stick on the items assigned 220 * 221 * Returns the base item index of the lump, or negative for error 222 **/ 223 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 224 u16 needed, u16 id) 225 { 226 int ret = -ENOMEM; 227 int i, j; 228 229 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 230 dev_info(&pf->pdev->dev, 231 "param err: pile=%s needed=%d id=0x%04x\n", 232 pile ? "<valid>" : "<null>", needed, id); 233 return -EINVAL; 234 } 235 236 /* Allocate last queue in the pile for FDIR VSI queue 237 * so it doesn't fragment the qp_pile 238 */ 239 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 240 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 241 dev_err(&pf->pdev->dev, 242 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 243 pile->num_entries - 1); 244 return -ENOMEM; 245 } 246 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 247 return pile->num_entries - 1; 248 } 249 250 i = 0; 251 while (i < pile->num_entries) { 252 /* skip already allocated entries */ 253 if (pile->list[i] & I40E_PILE_VALID_BIT) { 254 i++; 255 continue; 256 } 257 258 /* do we have enough in this lump? */ 259 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 260 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 261 break; 262 } 263 264 if (j == needed) { 265 /* there was enough, so assign it to the requestor */ 266 for (j = 0; j < needed; j++) 267 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 268 ret = i; 269 break; 270 } 271 272 /* not enough, so skip over it and continue looking */ 273 i += j; 274 } 275 276 return ret; 277 } 278 279 /** 280 * i40e_put_lump - return a lump of generic resource 281 * @pile: the pile of resource to search 282 * @index: the base item index 283 * @id: the owner id of the items assigned 284 * 285 * Returns the count of items in the lump 286 **/ 287 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 288 { 289 int valid_id = (id | I40E_PILE_VALID_BIT); 290 int count = 0; 291 u16 i; 292 293 if (!pile || index >= pile->num_entries) 294 return -EINVAL; 295 296 for (i = index; 297 i < pile->num_entries && pile->list[i] == valid_id; 298 i++) { 299 pile->list[i] = 0; 300 count++; 301 } 302 303 304 return count; 305 } 306 307 /** 308 * i40e_find_vsi_from_id - searches for the vsi with the given id 309 * @pf: the pf structure to search for the vsi 310 * @id: id of the vsi it is searching for 311 **/ 312 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 313 { 314 struct i40e_vsi *vsi; 315 int i; 316 317 i40e_pf_for_each_vsi(pf, i, vsi) 318 if (vsi->id == id) 319 return vsi; 320 321 return NULL; 322 } 323 324 /** 325 * i40e_service_event_schedule - Schedule the service task to wake up 326 * @pf: board private structure 327 * 328 * If not already scheduled, this puts the task into the work queue 329 **/ 330 void i40e_service_event_schedule(struct i40e_pf *pf) 331 { 332 if ((!test_bit(__I40E_DOWN, pf->state) && 333 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 334 test_bit(__I40E_RECOVERY_MODE, pf->state)) 335 queue_work(i40e_wq, &pf->service_task); 336 } 337 338 /** 339 * i40e_tx_timeout - Respond to a Tx Hang 340 * @netdev: network interface device structure 341 * @txqueue: queue number timing out 342 * 343 * If any port has noticed a Tx timeout, it is likely that the whole 344 * device is munged, not just the one netdev port, so go for the full 345 * reset. 346 **/ 347 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 348 { 349 struct i40e_netdev_priv *np = netdev_priv(netdev); 350 struct i40e_vsi *vsi = np->vsi; 351 struct i40e_pf *pf = vsi->back; 352 struct i40e_ring *tx_ring = NULL; 353 unsigned int i; 354 u32 head, val; 355 356 pf->tx_timeout_count++; 357 358 /* with txqueue index, find the tx_ring struct */ 359 for (i = 0; i < vsi->num_queue_pairs; i++) { 360 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 361 if (txqueue == 362 vsi->tx_rings[i]->queue_index) { 363 tx_ring = vsi->tx_rings[i]; 364 break; 365 } 366 } 367 } 368 369 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 370 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 371 else if (time_before(jiffies, 372 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 373 return; /* don't do any new action before the next timeout */ 374 375 /* don't kick off another recovery if one is already pending */ 376 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 377 return; 378 379 if (tx_ring) { 380 head = i40e_get_head(tx_ring); 381 /* Read interrupt register */ 382 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 383 val = rd32(&pf->hw, 384 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 385 tx_ring->vsi->base_vector - 1)); 386 else 387 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 388 389 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 390 vsi->seid, txqueue, tx_ring->next_to_clean, 391 head, tx_ring->next_to_use, 392 readl(tx_ring->tail), val); 393 } 394 395 pf->tx_timeout_last_recovery = jiffies; 396 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 397 pf->tx_timeout_recovery_level, txqueue); 398 399 switch (pf->tx_timeout_recovery_level) { 400 case 1: 401 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 402 break; 403 case 2: 404 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 405 break; 406 case 3: 407 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 408 break; 409 default: 410 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 411 set_bit(__I40E_DOWN_REQUESTED, pf->state); 412 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 413 break; 414 } 415 416 i40e_service_event_schedule(pf); 417 pf->tx_timeout_recovery_level++; 418 } 419 420 /** 421 * i40e_get_vsi_stats_struct - Get System Network Statistics 422 * @vsi: the VSI we care about 423 * 424 * Returns the address of the device statistics structure. 425 * The statistics are actually updated from the service task. 426 **/ 427 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 428 { 429 return &vsi->net_stats; 430 } 431 432 /** 433 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 434 * @ring: Tx ring to get statistics from 435 * @stats: statistics entry to be updated 436 **/ 437 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 438 struct rtnl_link_stats64 *stats) 439 { 440 u64 bytes, packets; 441 unsigned int start; 442 443 do { 444 start = u64_stats_fetch_begin(&ring->syncp); 445 packets = ring->stats.packets; 446 bytes = ring->stats.bytes; 447 } while (u64_stats_fetch_retry(&ring->syncp, start)); 448 449 stats->tx_packets += packets; 450 stats->tx_bytes += bytes; 451 } 452 453 /** 454 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 455 * @netdev: network interface device structure 456 * @stats: data structure to store statistics 457 * 458 * Returns the address of the device statistics structure. 459 * The statistics are actually updated from the service task. 460 **/ 461 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 462 struct rtnl_link_stats64 *stats) 463 { 464 struct i40e_netdev_priv *np = netdev_priv(netdev); 465 struct i40e_vsi *vsi = np->vsi; 466 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 467 struct i40e_ring *ring; 468 int i; 469 470 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 471 return; 472 473 if (!vsi->tx_rings) 474 return; 475 476 rcu_read_lock(); 477 for (i = 0; i < vsi->num_queue_pairs; i++) { 478 u64 bytes, packets; 479 unsigned int start; 480 481 ring = READ_ONCE(vsi->tx_rings[i]); 482 if (!ring) 483 continue; 484 i40e_get_netdev_stats_struct_tx(ring, stats); 485 486 if (i40e_enabled_xdp_vsi(vsi)) { 487 ring = READ_ONCE(vsi->xdp_rings[i]); 488 if (!ring) 489 continue; 490 i40e_get_netdev_stats_struct_tx(ring, stats); 491 } 492 493 ring = READ_ONCE(vsi->rx_rings[i]); 494 if (!ring) 495 continue; 496 do { 497 start = u64_stats_fetch_begin(&ring->syncp); 498 packets = ring->stats.packets; 499 bytes = ring->stats.bytes; 500 } while (u64_stats_fetch_retry(&ring->syncp, start)); 501 502 stats->rx_packets += packets; 503 stats->rx_bytes += bytes; 504 505 } 506 rcu_read_unlock(); 507 508 /* following stats updated by i40e_watchdog_subtask() */ 509 stats->multicast = vsi_stats->multicast; 510 stats->tx_errors = vsi_stats->tx_errors; 511 stats->tx_dropped = vsi_stats->tx_dropped; 512 stats->rx_errors = vsi_stats->rx_errors; 513 stats->rx_dropped = vsi_stats->rx_dropped; 514 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 515 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 516 stats->rx_length_errors = vsi_stats->rx_length_errors; 517 } 518 519 /** 520 * i40e_vsi_reset_stats - Resets all stats of the given vsi 521 * @vsi: the VSI to have its stats reset 522 **/ 523 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 524 { 525 struct rtnl_link_stats64 *ns; 526 int i; 527 528 if (!vsi) 529 return; 530 531 ns = i40e_get_vsi_stats_struct(vsi); 532 memset(ns, 0, sizeof(*ns)); 533 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 534 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 535 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 536 if (vsi->rx_rings && vsi->rx_rings[0]) { 537 for (i = 0; i < vsi->num_queue_pairs; i++) { 538 memset(&vsi->rx_rings[i]->stats, 0, 539 sizeof(vsi->rx_rings[i]->stats)); 540 memset(&vsi->rx_rings[i]->rx_stats, 0, 541 sizeof(vsi->rx_rings[i]->rx_stats)); 542 memset(&vsi->tx_rings[i]->stats, 0, 543 sizeof(vsi->tx_rings[i]->stats)); 544 memset(&vsi->tx_rings[i]->tx_stats, 0, 545 sizeof(vsi->tx_rings[i]->tx_stats)); 546 } 547 } 548 vsi->stat_offsets_loaded = false; 549 } 550 551 /** 552 * i40e_pf_reset_stats - Reset all of the stats for the given PF 553 * @pf: the PF to be reset 554 **/ 555 void i40e_pf_reset_stats(struct i40e_pf *pf) 556 { 557 struct i40e_veb *veb; 558 int i; 559 560 memset(&pf->stats, 0, sizeof(pf->stats)); 561 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 562 pf->stat_offsets_loaded = false; 563 564 i40e_pf_for_each_veb(pf, i, veb) { 565 memset(&veb->stats, 0, sizeof(veb->stats)); 566 memset(&veb->stats_offsets, 0, sizeof(veb->stats_offsets)); 567 memset(&veb->tc_stats, 0, sizeof(veb->tc_stats)); 568 memset(&veb->tc_stats_offsets, 0, sizeof(veb->tc_stats_offsets)); 569 veb->stat_offsets_loaded = false; 570 } 571 pf->hw_csum_rx_error = 0; 572 } 573 574 /** 575 * i40e_compute_pci_to_hw_id - compute index form PCI function. 576 * @vsi: ptr to the VSI to read from. 577 * @hw: ptr to the hardware info. 578 **/ 579 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 580 { 581 int pf_count = i40e_get_pf_count(hw); 582 583 if (vsi->type == I40E_VSI_SRIOV) 584 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 585 586 return hw->port + BIT(7); 587 } 588 589 /** 590 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 591 * @hw: ptr to the hardware info. 592 * @hireg: the high 32 bit reg to read. 593 * @loreg: the low 32 bit reg to read. 594 * @offset_loaded: has the initial offset been loaded yet. 595 * @offset: ptr to current offset value. 596 * @stat: ptr to the stat. 597 * 598 * Since the device stats are not reset at PFReset, they will not 599 * be zeroed when the driver starts. We'll save the first values read 600 * and use them as offsets to be subtracted from the raw values in order 601 * to report stats that count from zero. 602 **/ 603 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 604 bool offset_loaded, u64 *offset, u64 *stat) 605 { 606 u64 new_data; 607 608 new_data = rd64(hw, loreg); 609 610 if (!offset_loaded || new_data < *offset) 611 *offset = new_data; 612 *stat = new_data - *offset; 613 } 614 615 /** 616 * i40e_stat_update48 - read and update a 48 bit stat from the chip 617 * @hw: ptr to the hardware info 618 * @hireg: the high 32 bit reg to read 619 * @loreg: the low 32 bit reg to read 620 * @offset_loaded: has the initial offset been loaded yet 621 * @offset: ptr to current offset value 622 * @stat: ptr to the stat 623 * 624 * Since the device stats are not reset at PFReset, they likely will not 625 * be zeroed when the driver starts. We'll save the first values read 626 * and use them as offsets to be subtracted from the raw values in order 627 * to report stats that count from zero. In the process, we also manage 628 * the potential roll-over. 629 **/ 630 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 631 bool offset_loaded, u64 *offset, u64 *stat) 632 { 633 u64 new_data; 634 635 if (hw->device_id == I40E_DEV_ID_QEMU) { 636 new_data = rd32(hw, loreg); 637 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 638 } else { 639 new_data = rd64(hw, loreg); 640 } 641 if (!offset_loaded) 642 *offset = new_data; 643 if (likely(new_data >= *offset)) 644 *stat = new_data - *offset; 645 else 646 *stat = (new_data + BIT_ULL(48)) - *offset; 647 *stat &= 0xFFFFFFFFFFFFULL; 648 } 649 650 /** 651 * i40e_stat_update32 - read and update a 32 bit stat from the chip 652 * @hw: ptr to the hardware info 653 * @reg: the hw reg to read 654 * @offset_loaded: has the initial offset been loaded yet 655 * @offset: ptr to current offset value 656 * @stat: ptr to the stat 657 **/ 658 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 659 bool offset_loaded, u64 *offset, u64 *stat) 660 { 661 u32 new_data; 662 663 new_data = rd32(hw, reg); 664 if (!offset_loaded) 665 *offset = new_data; 666 if (likely(new_data >= *offset)) 667 *stat = (u32)(new_data - *offset); 668 else 669 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 670 } 671 672 /** 673 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 674 * @hw: ptr to the hardware info 675 * @reg: the hw reg to read and clear 676 * @stat: ptr to the stat 677 **/ 678 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 679 { 680 u32 new_data = rd32(hw, reg); 681 682 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 683 *stat += new_data; 684 } 685 686 /** 687 * i40e_stats_update_rx_discards - update rx_discards. 688 * @vsi: ptr to the VSI to be updated. 689 * @hw: ptr to the hardware info. 690 * @stat_idx: VSI's stat_counter_idx. 691 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 692 * @stat_offset: ptr to stat_offset to store first read of specific register. 693 * @stat: ptr to VSI's stat to be updated. 694 **/ 695 static void 696 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 697 int stat_idx, bool offset_loaded, 698 struct i40e_eth_stats *stat_offset, 699 struct i40e_eth_stats *stat) 700 { 701 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 702 &stat_offset->rx_discards, &stat->rx_discards); 703 i40e_stat_update64(hw, 704 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 705 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 706 offset_loaded, &stat_offset->rx_discards_other, 707 &stat->rx_discards_other); 708 } 709 710 /** 711 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 712 * @vsi: the VSI to be updated 713 **/ 714 void i40e_update_eth_stats(struct i40e_vsi *vsi) 715 { 716 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 717 struct i40e_pf *pf = vsi->back; 718 struct i40e_hw *hw = &pf->hw; 719 struct i40e_eth_stats *oes; 720 struct i40e_eth_stats *es; /* device's eth stats */ 721 722 es = &vsi->eth_stats; 723 oes = &vsi->eth_stats_offsets; 724 725 /* Gather up the stats that the hw collects */ 726 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 727 vsi->stat_offsets_loaded, 728 &oes->tx_errors, &es->tx_errors); 729 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 730 vsi->stat_offsets_loaded, 731 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 732 733 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 734 I40E_GLV_GORCL(stat_idx), 735 vsi->stat_offsets_loaded, 736 &oes->rx_bytes, &es->rx_bytes); 737 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 738 I40E_GLV_UPRCL(stat_idx), 739 vsi->stat_offsets_loaded, 740 &oes->rx_unicast, &es->rx_unicast); 741 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 742 I40E_GLV_MPRCL(stat_idx), 743 vsi->stat_offsets_loaded, 744 &oes->rx_multicast, &es->rx_multicast); 745 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 746 I40E_GLV_BPRCL(stat_idx), 747 vsi->stat_offsets_loaded, 748 &oes->rx_broadcast, &es->rx_broadcast); 749 750 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 751 I40E_GLV_GOTCL(stat_idx), 752 vsi->stat_offsets_loaded, 753 &oes->tx_bytes, &es->tx_bytes); 754 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 755 I40E_GLV_UPTCL(stat_idx), 756 vsi->stat_offsets_loaded, 757 &oes->tx_unicast, &es->tx_unicast); 758 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 759 I40E_GLV_MPTCL(stat_idx), 760 vsi->stat_offsets_loaded, 761 &oes->tx_multicast, &es->tx_multicast); 762 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 763 I40E_GLV_BPTCL(stat_idx), 764 vsi->stat_offsets_loaded, 765 &oes->tx_broadcast, &es->tx_broadcast); 766 767 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 768 vsi->stat_offsets_loaded, oes, es); 769 770 vsi->stat_offsets_loaded = true; 771 } 772 773 /** 774 * i40e_update_veb_stats - Update Switch component statistics 775 * @veb: the VEB being updated 776 **/ 777 void i40e_update_veb_stats(struct i40e_veb *veb) 778 { 779 struct i40e_pf *pf = veb->pf; 780 struct i40e_hw *hw = &pf->hw; 781 struct i40e_eth_stats *oes; 782 struct i40e_eth_stats *es; /* device's eth stats */ 783 struct i40e_veb_tc_stats *veb_oes; 784 struct i40e_veb_tc_stats *veb_es; 785 int i, idx = 0; 786 787 idx = veb->stats_idx; 788 es = &veb->stats; 789 oes = &veb->stats_offsets; 790 veb_es = &veb->tc_stats; 791 veb_oes = &veb->tc_stats_offsets; 792 793 /* Gather up the stats that the hw collects */ 794 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 795 veb->stat_offsets_loaded, 796 &oes->tx_discards, &es->tx_discards); 797 if (hw->revision_id > 0) 798 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 799 veb->stat_offsets_loaded, 800 &oes->rx_unknown_protocol, 801 &es->rx_unknown_protocol); 802 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 803 veb->stat_offsets_loaded, 804 &oes->rx_bytes, &es->rx_bytes); 805 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 806 veb->stat_offsets_loaded, 807 &oes->rx_unicast, &es->rx_unicast); 808 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 809 veb->stat_offsets_loaded, 810 &oes->rx_multicast, &es->rx_multicast); 811 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 812 veb->stat_offsets_loaded, 813 &oes->rx_broadcast, &es->rx_broadcast); 814 815 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 816 veb->stat_offsets_loaded, 817 &oes->tx_bytes, &es->tx_bytes); 818 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 819 veb->stat_offsets_loaded, 820 &oes->tx_unicast, &es->tx_unicast); 821 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 822 veb->stat_offsets_loaded, 823 &oes->tx_multicast, &es->tx_multicast); 824 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 825 veb->stat_offsets_loaded, 826 &oes->tx_broadcast, &es->tx_broadcast); 827 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 828 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 829 I40E_GLVEBTC_RPCL(i, idx), 830 veb->stat_offsets_loaded, 831 &veb_oes->tc_rx_packets[i], 832 &veb_es->tc_rx_packets[i]); 833 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 834 I40E_GLVEBTC_RBCL(i, idx), 835 veb->stat_offsets_loaded, 836 &veb_oes->tc_rx_bytes[i], 837 &veb_es->tc_rx_bytes[i]); 838 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 839 I40E_GLVEBTC_TPCL(i, idx), 840 veb->stat_offsets_loaded, 841 &veb_oes->tc_tx_packets[i], 842 &veb_es->tc_tx_packets[i]); 843 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 844 I40E_GLVEBTC_TBCL(i, idx), 845 veb->stat_offsets_loaded, 846 &veb_oes->tc_tx_bytes[i], 847 &veb_es->tc_tx_bytes[i]); 848 } 849 veb->stat_offsets_loaded = true; 850 } 851 852 /** 853 * i40e_update_vsi_stats - Update the vsi statistics counters. 854 * @vsi: the VSI to be updated 855 * 856 * There are a few instances where we store the same stat in a 857 * couple of different structs. This is partly because we have 858 * the netdev stats that need to be filled out, which is slightly 859 * different from the "eth_stats" defined by the chip and used in 860 * VF communications. We sort it out here. 861 **/ 862 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 863 { 864 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 865 struct i40e_pf *pf = vsi->back; 866 struct rtnl_link_stats64 *ons; 867 struct rtnl_link_stats64 *ns; /* netdev stats */ 868 struct i40e_eth_stats *oes; 869 struct i40e_eth_stats *es; /* device's eth stats */ 870 u64 tx_restart, tx_busy; 871 struct i40e_ring *p; 872 u64 bytes, packets; 873 unsigned int start; 874 u64 tx_linearize; 875 u64 tx_force_wb; 876 u64 tx_stopped; 877 u64 rx_p, rx_b; 878 u64 tx_p, tx_b; 879 u16 q; 880 881 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 882 test_bit(__I40E_CONFIG_BUSY, pf->state)) 883 return; 884 885 ns = i40e_get_vsi_stats_struct(vsi); 886 ons = &vsi->net_stats_offsets; 887 es = &vsi->eth_stats; 888 oes = &vsi->eth_stats_offsets; 889 890 /* Gather up the netdev and vsi stats that the driver collects 891 * on the fly during packet processing 892 */ 893 rx_b = rx_p = 0; 894 tx_b = tx_p = 0; 895 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 896 tx_stopped = 0; 897 rx_page = 0; 898 rx_buf = 0; 899 rx_reuse = 0; 900 rx_alloc = 0; 901 rx_waive = 0; 902 rx_busy = 0; 903 rcu_read_lock(); 904 for (q = 0; q < vsi->num_queue_pairs; q++) { 905 /* locate Tx ring */ 906 p = READ_ONCE(vsi->tx_rings[q]); 907 if (!p) 908 continue; 909 910 do { 911 start = u64_stats_fetch_begin(&p->syncp); 912 packets = p->stats.packets; 913 bytes = p->stats.bytes; 914 } while (u64_stats_fetch_retry(&p->syncp, start)); 915 tx_b += bytes; 916 tx_p += packets; 917 tx_restart += p->tx_stats.restart_queue; 918 tx_busy += p->tx_stats.tx_busy; 919 tx_linearize += p->tx_stats.tx_linearize; 920 tx_force_wb += p->tx_stats.tx_force_wb; 921 tx_stopped += p->tx_stats.tx_stopped; 922 923 /* locate Rx ring */ 924 p = READ_ONCE(vsi->rx_rings[q]); 925 if (!p) 926 continue; 927 928 do { 929 start = u64_stats_fetch_begin(&p->syncp); 930 packets = p->stats.packets; 931 bytes = p->stats.bytes; 932 } while (u64_stats_fetch_retry(&p->syncp, start)); 933 rx_b += bytes; 934 rx_p += packets; 935 rx_buf += p->rx_stats.alloc_buff_failed; 936 rx_page += p->rx_stats.alloc_page_failed; 937 rx_reuse += p->rx_stats.page_reuse_count; 938 rx_alloc += p->rx_stats.page_alloc_count; 939 rx_waive += p->rx_stats.page_waive_count; 940 rx_busy += p->rx_stats.page_busy_count; 941 942 if (i40e_enabled_xdp_vsi(vsi)) { 943 /* locate XDP ring */ 944 p = READ_ONCE(vsi->xdp_rings[q]); 945 if (!p) 946 continue; 947 948 do { 949 start = u64_stats_fetch_begin(&p->syncp); 950 packets = p->stats.packets; 951 bytes = p->stats.bytes; 952 } while (u64_stats_fetch_retry(&p->syncp, start)); 953 tx_b += bytes; 954 tx_p += packets; 955 tx_restart += p->tx_stats.restart_queue; 956 tx_busy += p->tx_stats.tx_busy; 957 tx_linearize += p->tx_stats.tx_linearize; 958 tx_force_wb += p->tx_stats.tx_force_wb; 959 } 960 } 961 rcu_read_unlock(); 962 vsi->tx_restart = tx_restart; 963 vsi->tx_busy = tx_busy; 964 vsi->tx_linearize = tx_linearize; 965 vsi->tx_force_wb = tx_force_wb; 966 vsi->tx_stopped = tx_stopped; 967 vsi->rx_page_failed = rx_page; 968 vsi->rx_buf_failed = rx_buf; 969 vsi->rx_page_reuse = rx_reuse; 970 vsi->rx_page_alloc = rx_alloc; 971 vsi->rx_page_waive = rx_waive; 972 vsi->rx_page_busy = rx_busy; 973 974 ns->rx_packets = rx_p; 975 ns->rx_bytes = rx_b; 976 ns->tx_packets = tx_p; 977 ns->tx_bytes = tx_b; 978 979 /* update netdev stats from eth stats */ 980 i40e_update_eth_stats(vsi); 981 ons->tx_errors = oes->tx_errors; 982 ns->tx_errors = es->tx_errors; 983 ons->multicast = oes->rx_multicast; 984 ns->multicast = es->rx_multicast; 985 ons->rx_dropped = oes->rx_discards_other; 986 ns->rx_dropped = es->rx_discards_other; 987 ons->rx_missed_errors = oes->rx_discards; 988 ns->rx_missed_errors = es->rx_discards; 989 ons->tx_dropped = oes->tx_discards; 990 ns->tx_dropped = es->tx_discards; 991 992 /* pull in a couple PF stats if this is the main vsi */ 993 if (vsi->type == I40E_VSI_MAIN) { 994 ns->rx_crc_errors = pf->stats.crc_errors; 995 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 996 ns->rx_length_errors = pf->stats.rx_length_errors; 997 } 998 } 999 1000 /** 1001 * i40e_update_pf_stats - Update the PF statistics counters. 1002 * @pf: the PF to be updated 1003 **/ 1004 static void i40e_update_pf_stats(struct i40e_pf *pf) 1005 { 1006 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1007 struct i40e_hw_port_stats *nsd = &pf->stats; 1008 struct i40e_hw *hw = &pf->hw; 1009 u32 val; 1010 int i; 1011 1012 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1013 I40E_GLPRT_GORCL(hw->port), 1014 pf->stat_offsets_loaded, 1015 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1016 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1017 I40E_GLPRT_GOTCL(hw->port), 1018 pf->stat_offsets_loaded, 1019 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1020 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->eth.rx_discards, 1023 &nsd->eth.rx_discards); 1024 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1025 I40E_GLPRT_UPRCL(hw->port), 1026 pf->stat_offsets_loaded, 1027 &osd->eth.rx_unicast, 1028 &nsd->eth.rx_unicast); 1029 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1030 I40E_GLPRT_MPRCL(hw->port), 1031 pf->stat_offsets_loaded, 1032 &osd->eth.rx_multicast, 1033 &nsd->eth.rx_multicast); 1034 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1035 I40E_GLPRT_BPRCL(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->eth.rx_broadcast, 1038 &nsd->eth.rx_broadcast); 1039 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1040 I40E_GLPRT_UPTCL(hw->port), 1041 pf->stat_offsets_loaded, 1042 &osd->eth.tx_unicast, 1043 &nsd->eth.tx_unicast); 1044 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1045 I40E_GLPRT_MPTCL(hw->port), 1046 pf->stat_offsets_loaded, 1047 &osd->eth.tx_multicast, 1048 &nsd->eth.tx_multicast); 1049 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1050 I40E_GLPRT_BPTCL(hw->port), 1051 pf->stat_offsets_loaded, 1052 &osd->eth.tx_broadcast, 1053 &nsd->eth.tx_broadcast); 1054 1055 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1056 pf->stat_offsets_loaded, 1057 &osd->tx_dropped_link_down, 1058 &nsd->tx_dropped_link_down); 1059 1060 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1061 pf->stat_offsets_loaded, 1062 &osd->crc_errors, &nsd->crc_errors); 1063 1064 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1065 pf->stat_offsets_loaded, 1066 &osd->illegal_bytes, &nsd->illegal_bytes); 1067 1068 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1069 pf->stat_offsets_loaded, 1070 &osd->mac_local_faults, 1071 &nsd->mac_local_faults); 1072 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1073 pf->stat_offsets_loaded, 1074 &osd->mac_remote_faults, 1075 &nsd->mac_remote_faults); 1076 1077 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1078 pf->stat_offsets_loaded, 1079 &osd->rx_length_errors, 1080 &nsd->rx_length_errors); 1081 1082 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1083 pf->stat_offsets_loaded, 1084 &osd->link_xon_rx, &nsd->link_xon_rx); 1085 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1086 pf->stat_offsets_loaded, 1087 &osd->link_xon_tx, &nsd->link_xon_tx); 1088 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1089 pf->stat_offsets_loaded, 1090 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1091 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1092 pf->stat_offsets_loaded, 1093 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1094 1095 for (i = 0; i < 8; i++) { 1096 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1097 pf->stat_offsets_loaded, 1098 &osd->priority_xoff_rx[i], 1099 &nsd->priority_xoff_rx[i]); 1100 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1101 pf->stat_offsets_loaded, 1102 &osd->priority_xon_rx[i], 1103 &nsd->priority_xon_rx[i]); 1104 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1105 pf->stat_offsets_loaded, 1106 &osd->priority_xon_tx[i], 1107 &nsd->priority_xon_tx[i]); 1108 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1109 pf->stat_offsets_loaded, 1110 &osd->priority_xoff_tx[i], 1111 &nsd->priority_xoff_tx[i]); 1112 i40e_stat_update32(hw, 1113 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1114 pf->stat_offsets_loaded, 1115 &osd->priority_xon_2_xoff[i], 1116 &nsd->priority_xon_2_xoff[i]); 1117 } 1118 1119 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1120 I40E_GLPRT_PRC64L(hw->port), 1121 pf->stat_offsets_loaded, 1122 &osd->rx_size_64, &nsd->rx_size_64); 1123 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1124 I40E_GLPRT_PRC127L(hw->port), 1125 pf->stat_offsets_loaded, 1126 &osd->rx_size_127, &nsd->rx_size_127); 1127 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1128 I40E_GLPRT_PRC255L(hw->port), 1129 pf->stat_offsets_loaded, 1130 &osd->rx_size_255, &nsd->rx_size_255); 1131 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1132 I40E_GLPRT_PRC511L(hw->port), 1133 pf->stat_offsets_loaded, 1134 &osd->rx_size_511, &nsd->rx_size_511); 1135 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1136 I40E_GLPRT_PRC1023L(hw->port), 1137 pf->stat_offsets_loaded, 1138 &osd->rx_size_1023, &nsd->rx_size_1023); 1139 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1140 I40E_GLPRT_PRC1522L(hw->port), 1141 pf->stat_offsets_loaded, 1142 &osd->rx_size_1522, &nsd->rx_size_1522); 1143 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1144 I40E_GLPRT_PRC9522L(hw->port), 1145 pf->stat_offsets_loaded, 1146 &osd->rx_size_big, &nsd->rx_size_big); 1147 1148 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1149 I40E_GLPRT_PTC64L(hw->port), 1150 pf->stat_offsets_loaded, 1151 &osd->tx_size_64, &nsd->tx_size_64); 1152 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1153 I40E_GLPRT_PTC127L(hw->port), 1154 pf->stat_offsets_loaded, 1155 &osd->tx_size_127, &nsd->tx_size_127); 1156 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1157 I40E_GLPRT_PTC255L(hw->port), 1158 pf->stat_offsets_loaded, 1159 &osd->tx_size_255, &nsd->tx_size_255); 1160 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1161 I40E_GLPRT_PTC511L(hw->port), 1162 pf->stat_offsets_loaded, 1163 &osd->tx_size_511, &nsd->tx_size_511); 1164 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1165 I40E_GLPRT_PTC1023L(hw->port), 1166 pf->stat_offsets_loaded, 1167 &osd->tx_size_1023, &nsd->tx_size_1023); 1168 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1169 I40E_GLPRT_PTC1522L(hw->port), 1170 pf->stat_offsets_loaded, 1171 &osd->tx_size_1522, &nsd->tx_size_1522); 1172 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1173 I40E_GLPRT_PTC9522L(hw->port), 1174 pf->stat_offsets_loaded, 1175 &osd->tx_size_big, &nsd->tx_size_big); 1176 1177 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1178 pf->stat_offsets_loaded, 1179 &osd->rx_undersize, &nsd->rx_undersize); 1180 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1181 pf->stat_offsets_loaded, 1182 &osd->rx_fragments, &nsd->rx_fragments); 1183 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1184 pf->stat_offsets_loaded, 1185 &osd->rx_oversize, &nsd->rx_oversize); 1186 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1187 pf->stat_offsets_loaded, 1188 &osd->rx_jabber, &nsd->rx_jabber); 1189 1190 /* FDIR stats */ 1191 i40e_stat_update_and_clear32(hw, 1192 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1193 &nsd->fd_atr_match); 1194 i40e_stat_update_and_clear32(hw, 1195 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1196 &nsd->fd_sb_match); 1197 i40e_stat_update_and_clear32(hw, 1198 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1199 &nsd->fd_atr_tunnel_match); 1200 1201 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1202 nsd->tx_lpi_status = 1203 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val); 1204 nsd->rx_lpi_status = 1205 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val); 1206 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1207 pf->stat_offsets_loaded, 1208 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1209 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1210 pf->stat_offsets_loaded, 1211 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1212 1213 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1214 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1215 nsd->fd_sb_status = true; 1216 else 1217 nsd->fd_sb_status = false; 1218 1219 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1220 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1221 nsd->fd_atr_status = true; 1222 else 1223 nsd->fd_atr_status = false; 1224 1225 pf->stat_offsets_loaded = true; 1226 } 1227 1228 /** 1229 * i40e_update_stats - Update the various statistics counters. 1230 * @vsi: the VSI to be updated 1231 * 1232 * Update the various stats for this VSI and its related entities. 1233 **/ 1234 void i40e_update_stats(struct i40e_vsi *vsi) 1235 { 1236 struct i40e_pf *pf = vsi->back; 1237 1238 if (vsi->type == I40E_VSI_MAIN) 1239 i40e_update_pf_stats(pf); 1240 1241 i40e_update_vsi_stats(vsi); 1242 } 1243 1244 /** 1245 * i40e_count_filters - counts VSI mac filters 1246 * @vsi: the VSI to be searched 1247 * 1248 * Returns count of mac filters 1249 **/ 1250 int i40e_count_filters(struct i40e_vsi *vsi) 1251 { 1252 struct i40e_mac_filter *f; 1253 struct hlist_node *h; 1254 int bkt; 1255 int cnt = 0; 1256 1257 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1258 if (f->state == I40E_FILTER_NEW || 1259 f->state == I40E_FILTER_NEW_SYNC || 1260 f->state == I40E_FILTER_ACTIVE) 1261 ++cnt; 1262 } 1263 1264 return cnt; 1265 } 1266 1267 /** 1268 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1269 * @vsi: the VSI to be searched 1270 * @macaddr: the MAC address 1271 * @vlan: the vlan 1272 * 1273 * Returns ptr to the filter object or NULL 1274 **/ 1275 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1276 const u8 *macaddr, s16 vlan) 1277 { 1278 struct i40e_mac_filter *f; 1279 u64 key; 1280 1281 if (!vsi || !macaddr) 1282 return NULL; 1283 1284 key = i40e_addr_to_hkey(macaddr); 1285 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1286 if ((ether_addr_equal(macaddr, f->macaddr)) && 1287 (vlan == f->vlan)) 1288 return f; 1289 } 1290 return NULL; 1291 } 1292 1293 /** 1294 * i40e_find_mac - Find a mac addr in the macvlan filters list 1295 * @vsi: the VSI to be searched 1296 * @macaddr: the MAC address we are searching for 1297 * 1298 * Returns the first filter with the provided MAC address or NULL if 1299 * MAC address was not found 1300 **/ 1301 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1302 { 1303 struct i40e_mac_filter *f; 1304 u64 key; 1305 1306 if (!vsi || !macaddr) 1307 return NULL; 1308 1309 key = i40e_addr_to_hkey(macaddr); 1310 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1311 if ((ether_addr_equal(macaddr, f->macaddr))) 1312 return f; 1313 } 1314 return NULL; 1315 } 1316 1317 /** 1318 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1319 * @vsi: the VSI to be searched 1320 * 1321 * Returns true if VSI is in vlan mode or false otherwise 1322 **/ 1323 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1324 { 1325 /* If we have a PVID, always operate in VLAN mode */ 1326 if (vsi->info.pvid) 1327 return true; 1328 1329 /* We need to operate in VLAN mode whenever we have any filters with 1330 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1331 * time, incurring search cost repeatedly. However, we can notice two 1332 * things: 1333 * 1334 * 1) the only place where we can gain a VLAN filter is in 1335 * i40e_add_filter. 1336 * 1337 * 2) the only place where filters are actually removed is in 1338 * i40e_sync_filters_subtask. 1339 * 1340 * Thus, we can simply use a boolean value, has_vlan_filters which we 1341 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1342 * we have to perform the full search after deleting filters in 1343 * i40e_sync_filters_subtask, but we already have to search 1344 * filters here and can perform the check at the same time. This 1345 * results in avoiding embedding a loop for VLAN mode inside another 1346 * loop over all the filters, and should maintain correctness as noted 1347 * above. 1348 */ 1349 return vsi->has_vlan_filter; 1350 } 1351 1352 /** 1353 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1354 * @vsi: the VSI to configure 1355 * @tmp_add_list: list of filters ready to be added 1356 * @tmp_del_list: list of filters ready to be deleted 1357 * @vlan_filters: the number of active VLAN filters 1358 * 1359 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1360 * behave as expected. If we have any active VLAN filters remaining or about 1361 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1362 * so that they only match against untagged traffic. If we no longer have any 1363 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1364 * so that they match against both tagged and untagged traffic. In this way, 1365 * we ensure that we correctly receive the desired traffic. This ensures that 1366 * when we have an active VLAN we will receive only untagged traffic and 1367 * traffic matching active VLANs. If we have no active VLANs then we will 1368 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1369 * 1370 * Finally, in a similar fashion, this function also corrects filters when 1371 * there is an active PVID assigned to this VSI. 1372 * 1373 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1374 * 1375 * This function is only expected to be called from within 1376 * i40e_sync_vsi_filters. 1377 * 1378 * NOTE: This function expects to be called while under the 1379 * mac_filter_hash_lock 1380 */ 1381 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1382 struct hlist_head *tmp_add_list, 1383 struct hlist_head *tmp_del_list, 1384 int vlan_filters) 1385 { 1386 s16 pvid = le16_to_cpu(vsi->info.pvid); 1387 struct i40e_mac_filter *f, *add_head; 1388 struct i40e_new_mac_filter *new; 1389 struct hlist_node *h; 1390 int bkt, new_vlan; 1391 1392 /* To determine if a particular filter needs to be replaced we 1393 * have the three following conditions: 1394 * 1395 * a) if we have a PVID assigned, then all filters which are 1396 * not marked as VLAN=PVID must be replaced with filters that 1397 * are. 1398 * b) otherwise, if we have any active VLANS, all filters 1399 * which are marked as VLAN=-1 must be replaced with 1400 * filters marked as VLAN=0 1401 * c) finally, if we do not have any active VLANS, all filters 1402 * which are marked as VLAN=0 must be replaced with filters 1403 * marked as VLAN=-1 1404 */ 1405 1406 /* Update the filters about to be added in place */ 1407 hlist_for_each_entry(new, tmp_add_list, hlist) { 1408 if (pvid && new->f->vlan != pvid) 1409 new->f->vlan = pvid; 1410 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1411 new->f->vlan = 0; 1412 else if (!vlan_filters && new->f->vlan == 0) 1413 new->f->vlan = I40E_VLAN_ANY; 1414 } 1415 1416 /* Update the remaining active filters */ 1417 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1418 /* Combine the checks for whether a filter needs to be changed 1419 * and then determine the new VLAN inside the if block, in 1420 * order to avoid duplicating code for adding the new filter 1421 * then deleting the old filter. 1422 */ 1423 if ((pvid && f->vlan != pvid) || 1424 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1425 (!vlan_filters && f->vlan == 0)) { 1426 /* Determine the new vlan we will be adding */ 1427 if (pvid) 1428 new_vlan = pvid; 1429 else if (vlan_filters) 1430 new_vlan = 0; 1431 else 1432 new_vlan = I40E_VLAN_ANY; 1433 1434 /* Create the new filter */ 1435 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1436 if (!add_head) 1437 return -ENOMEM; 1438 1439 /* Create a temporary i40e_new_mac_filter */ 1440 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1441 if (!new) 1442 return -ENOMEM; 1443 1444 new->f = add_head; 1445 new->state = add_head->state; 1446 if (add_head->state == I40E_FILTER_NEW) 1447 add_head->state = I40E_FILTER_NEW_SYNC; 1448 1449 /* Add the new filter to the tmp list */ 1450 hlist_add_head(&new->hlist, tmp_add_list); 1451 1452 /* Put the original filter into the delete list */ 1453 f->state = I40E_FILTER_REMOVE; 1454 hash_del(&f->hlist); 1455 hlist_add_head(&f->hlist, tmp_del_list); 1456 } 1457 } 1458 1459 vsi->has_vlan_filter = !!vlan_filters; 1460 1461 return 0; 1462 } 1463 1464 /** 1465 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1466 * @vsi: the vsi to configure 1467 * @new_mac: new mac filter to be added 1468 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1469 * @vlan_filters: the number of active VLAN filters 1470 * @trusted: flag if the VF is trusted 1471 * 1472 * Get new VLAN id based on current VLAN filters, trust, PVID 1473 * and vf-vlan-prune-disable flag. 1474 * 1475 * Returns the value of the new vlan filter or 1476 * the old value if no new filter is needed. 1477 */ 1478 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1479 struct i40e_new_mac_filter *new_mac, 1480 struct i40e_mac_filter *f, 1481 int vlan_filters, 1482 bool trusted) 1483 { 1484 s16 pvid = le16_to_cpu(vsi->info.pvid); 1485 struct i40e_pf *pf = vsi->back; 1486 bool is_any; 1487 1488 if (new_mac) 1489 f = new_mac->f; 1490 1491 if (pvid && f->vlan != pvid) 1492 return pvid; 1493 1494 is_any = (trusted || 1495 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1496 1497 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1498 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1499 (is_any && !vlan_filters && f->vlan == 0)) { 1500 if (is_any) 1501 return I40E_VLAN_ANY; 1502 else 1503 return 0; 1504 } 1505 1506 return f->vlan; 1507 } 1508 1509 /** 1510 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1511 * @vsi: the vsi to configure 1512 * @tmp_add_list: list of filters ready to be added 1513 * @tmp_del_list: list of filters ready to be deleted 1514 * @vlan_filters: the number of active VLAN filters 1515 * @trusted: flag if the VF is trusted 1516 * 1517 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1518 * and vf-vlan-prune-disable flag. 1519 * 1520 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1521 * 1522 * This function is only expected to be called from within 1523 * i40e_sync_vsi_filters. 1524 * 1525 * NOTE: This function expects to be called while under the 1526 * mac_filter_hash_lock 1527 */ 1528 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1529 struct hlist_head *tmp_add_list, 1530 struct hlist_head *tmp_del_list, 1531 int vlan_filters, 1532 bool trusted) 1533 { 1534 struct i40e_mac_filter *f, *add_head; 1535 struct i40e_new_mac_filter *new_mac; 1536 struct hlist_node *h; 1537 int bkt, new_vlan; 1538 1539 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1540 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1541 vlan_filters, trusted); 1542 } 1543 1544 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1545 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1546 trusted); 1547 if (new_vlan != f->vlan) { 1548 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1549 if (!add_head) 1550 return -ENOMEM; 1551 /* Create a temporary i40e_new_mac_filter */ 1552 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1553 if (!new_mac) 1554 return -ENOMEM; 1555 new_mac->f = add_head; 1556 new_mac->state = add_head->state; 1557 if (add_head->state == I40E_FILTER_NEW) 1558 add_head->state = I40E_FILTER_NEW_SYNC; 1559 1560 /* Add the new filter to the tmp list */ 1561 hlist_add_head(&new_mac->hlist, tmp_add_list); 1562 1563 /* Put the original filter into the delete list */ 1564 f->state = I40E_FILTER_REMOVE; 1565 hash_del(&f->hlist); 1566 hlist_add_head(&f->hlist, tmp_del_list); 1567 } 1568 } 1569 1570 vsi->has_vlan_filter = !!vlan_filters; 1571 return 0; 1572 } 1573 1574 /** 1575 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1576 * @vsi: the PF Main VSI - inappropriate for any other VSI 1577 * @macaddr: the MAC address 1578 * 1579 * Remove whatever filter the firmware set up so the driver can manage 1580 * its own filtering intelligently. 1581 **/ 1582 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1583 { 1584 struct i40e_aqc_remove_macvlan_element_data element; 1585 struct i40e_pf *pf = vsi->back; 1586 1587 /* Only appropriate for the PF main VSI */ 1588 if (vsi->type != I40E_VSI_MAIN) 1589 return; 1590 1591 memset(&element, 0, sizeof(element)); 1592 ether_addr_copy(element.mac_addr, macaddr); 1593 element.vlan_tag = 0; 1594 /* Ignore error returns, some firmware does it this way... */ 1595 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1596 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1597 1598 memset(&element, 0, sizeof(element)); 1599 ether_addr_copy(element.mac_addr, macaddr); 1600 element.vlan_tag = 0; 1601 /* ...and some firmware does it this way. */ 1602 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1603 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1604 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1605 } 1606 1607 /** 1608 * i40e_add_filter - Add a mac/vlan filter to the VSI 1609 * @vsi: the VSI to be searched 1610 * @macaddr: the MAC address 1611 * @vlan: the vlan 1612 * 1613 * Returns ptr to the filter object or NULL when no memory available. 1614 * 1615 * NOTE: This function is expected to be called with mac_filter_hash_lock 1616 * being held. 1617 **/ 1618 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1619 const u8 *macaddr, s16 vlan) 1620 { 1621 struct i40e_mac_filter *f; 1622 u64 key; 1623 1624 if (!vsi || !macaddr) 1625 return NULL; 1626 1627 f = i40e_find_filter(vsi, macaddr, vlan); 1628 if (!f) { 1629 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1630 if (!f) 1631 return NULL; 1632 1633 /* Update the boolean indicating if we need to function in 1634 * VLAN mode. 1635 */ 1636 if (vlan >= 0) 1637 vsi->has_vlan_filter = true; 1638 1639 ether_addr_copy(f->macaddr, macaddr); 1640 f->vlan = vlan; 1641 f->state = I40E_FILTER_NEW; 1642 INIT_HLIST_NODE(&f->hlist); 1643 1644 key = i40e_addr_to_hkey(macaddr); 1645 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1646 1647 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1648 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1649 } 1650 1651 /* If we're asked to add a filter that has been marked for removal, it 1652 * is safe to simply restore it to active state. __i40e_del_filter 1653 * will have simply deleted any filters which were previously marked 1654 * NEW or FAILED, so if it is currently marked REMOVE it must have 1655 * previously been ACTIVE. Since we haven't yet run the sync filters 1656 * task, just restore this filter to the ACTIVE state so that the 1657 * sync task leaves it in place 1658 */ 1659 if (f->state == I40E_FILTER_REMOVE) 1660 f->state = I40E_FILTER_ACTIVE; 1661 1662 return f; 1663 } 1664 1665 /** 1666 * __i40e_del_filter - Remove a specific filter from the VSI 1667 * @vsi: VSI to remove from 1668 * @f: the filter to remove from the list 1669 * 1670 * This function requires you've found * the exact filter you will remove 1671 * already, such as via i40e_find_filter or i40e_find_mac. 1672 * 1673 * NOTE: This function is expected to be called with mac_filter_hash_lock 1674 * being held. 1675 * ANOTHER NOTE: This function MUST be called from within the context of 1676 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1677 * instead of list_for_each_entry(). 1678 **/ 1679 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1680 { 1681 if (!f) 1682 return; 1683 1684 /* If the filter was never added to firmware then we can just delete it 1685 * directly and we don't want to set the status to remove or else an 1686 * admin queue command will unnecessarily fire. 1687 */ 1688 if ((f->state == I40E_FILTER_FAILED) || 1689 (f->state == I40E_FILTER_NEW)) { 1690 hash_del(&f->hlist); 1691 kfree(f); 1692 } else { 1693 f->state = I40E_FILTER_REMOVE; 1694 } 1695 1696 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1697 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1698 } 1699 1700 /** 1701 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1702 * @vsi: the VSI to be searched 1703 * @macaddr: the mac address to be filtered 1704 * 1705 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1706 * go through all the macvlan filters and add a macvlan filter for each 1707 * unique vlan that already exists. If a PVID has been assigned, instead only 1708 * add the macaddr to that VLAN. 1709 * 1710 * Returns last filter added on success, else NULL 1711 **/ 1712 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1713 const u8 *macaddr) 1714 { 1715 struct i40e_mac_filter *f, *add = NULL; 1716 struct hlist_node *h; 1717 int bkt; 1718 1719 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1720 if (vsi->info.pvid) 1721 return i40e_add_filter(vsi, macaddr, 1722 le16_to_cpu(vsi->info.pvid)); 1723 1724 if (!i40e_is_vsi_in_vlan(vsi)) 1725 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1726 1727 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1728 if (f->state == I40E_FILTER_REMOVE) 1729 continue; 1730 add = i40e_add_filter(vsi, macaddr, f->vlan); 1731 if (!add) 1732 return NULL; 1733 } 1734 1735 return add; 1736 } 1737 1738 /** 1739 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1740 * @vsi: the VSI to be searched 1741 * @macaddr: the mac address to be removed 1742 * 1743 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1744 * associated with. 1745 * 1746 * Returns 0 for success, or error 1747 **/ 1748 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1749 { 1750 struct i40e_mac_filter *f; 1751 struct hlist_node *h; 1752 bool found = false; 1753 int bkt; 1754 1755 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1756 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1757 if (ether_addr_equal(macaddr, f->macaddr)) { 1758 __i40e_del_filter(vsi, f); 1759 found = true; 1760 } 1761 } 1762 1763 if (found) 1764 return 0; 1765 else 1766 return -ENOENT; 1767 } 1768 1769 /** 1770 * i40e_set_mac - NDO callback to set mac address 1771 * @netdev: network interface device structure 1772 * @p: pointer to an address structure 1773 * 1774 * Returns 0 on success, negative on failure 1775 **/ 1776 static int i40e_set_mac(struct net_device *netdev, void *p) 1777 { 1778 struct i40e_netdev_priv *np = netdev_priv(netdev); 1779 struct i40e_vsi *vsi = np->vsi; 1780 struct i40e_pf *pf = vsi->back; 1781 struct i40e_hw *hw = &pf->hw; 1782 struct sockaddr *addr = p; 1783 1784 if (!is_valid_ether_addr(addr->sa_data)) 1785 return -EADDRNOTAVAIL; 1786 1787 if (test_bit(__I40E_DOWN, pf->state) || 1788 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1789 return -EADDRNOTAVAIL; 1790 1791 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1792 netdev_info(netdev, "returning to hw mac address %pM\n", 1793 hw->mac.addr); 1794 else 1795 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1796 1797 /* Copy the address first, so that we avoid a possible race with 1798 * .set_rx_mode(). 1799 * - Remove old address from MAC filter 1800 * - Copy new address 1801 * - Add new address to MAC filter 1802 */ 1803 spin_lock_bh(&vsi->mac_filter_hash_lock); 1804 i40e_del_mac_filter(vsi, netdev->dev_addr); 1805 eth_hw_addr_set(netdev, addr->sa_data); 1806 i40e_add_mac_filter(vsi, netdev->dev_addr); 1807 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1808 1809 if (vsi->type == I40E_VSI_MAIN) { 1810 int ret; 1811 1812 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1813 addr->sa_data, NULL); 1814 if (ret) 1815 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1816 ERR_PTR(ret), 1817 i40e_aq_str(hw, hw->aq.asq_last_status)); 1818 } 1819 1820 /* schedule our worker thread which will take care of 1821 * applying the new filter changes 1822 */ 1823 i40e_service_event_schedule(pf); 1824 return 0; 1825 } 1826 1827 /** 1828 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1829 * @vsi: vsi structure 1830 * @seed: RSS hash seed 1831 * @lut: pointer to lookup table of lut_size 1832 * @lut_size: size of the lookup table 1833 **/ 1834 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1835 u8 *lut, u16 lut_size) 1836 { 1837 struct i40e_pf *pf = vsi->back; 1838 struct i40e_hw *hw = &pf->hw; 1839 int ret = 0; 1840 1841 if (seed) { 1842 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1843 (struct i40e_aqc_get_set_rss_key_data *)seed; 1844 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1845 if (ret) { 1846 dev_info(&pf->pdev->dev, 1847 "Cannot set RSS key, err %pe aq_err %s\n", 1848 ERR_PTR(ret), 1849 i40e_aq_str(hw, hw->aq.asq_last_status)); 1850 return ret; 1851 } 1852 } 1853 if (lut) { 1854 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1855 1856 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1857 if (ret) { 1858 dev_info(&pf->pdev->dev, 1859 "Cannot set RSS lut, err %pe aq_err %s\n", 1860 ERR_PTR(ret), 1861 i40e_aq_str(hw, hw->aq.asq_last_status)); 1862 return ret; 1863 } 1864 } 1865 return ret; 1866 } 1867 1868 /** 1869 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1870 * @vsi: VSI structure 1871 **/ 1872 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1873 { 1874 struct i40e_pf *pf = vsi->back; 1875 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1876 u8 *lut; 1877 int ret; 1878 1879 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1880 return 0; 1881 if (!vsi->rss_size) 1882 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1883 vsi->num_queue_pairs); 1884 if (!vsi->rss_size) 1885 return -EINVAL; 1886 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1887 if (!lut) 1888 return -ENOMEM; 1889 1890 /* Use the user configured hash keys and lookup table if there is one, 1891 * otherwise use default 1892 */ 1893 if (vsi->rss_lut_user) 1894 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1895 else 1896 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1897 if (vsi->rss_hkey_user) 1898 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1899 else 1900 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1901 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1902 kfree(lut); 1903 return ret; 1904 } 1905 1906 /** 1907 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1908 * @vsi: the VSI being configured, 1909 * @ctxt: VSI context structure 1910 * @enabled_tc: number of traffic classes to enable 1911 * 1912 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1913 **/ 1914 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1915 struct i40e_vsi_context *ctxt, 1916 u8 enabled_tc) 1917 { 1918 u16 qcount = 0, max_qcount, qmap, sections = 0; 1919 int i, override_q, pow, num_qps, ret; 1920 u8 netdev_tc = 0, offset = 0; 1921 1922 if (vsi->type != I40E_VSI_MAIN) 1923 return -EINVAL; 1924 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1925 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1926 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1927 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1928 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1929 1930 /* find the next higher power-of-2 of num queue pairs */ 1931 pow = ilog2(num_qps); 1932 if (!is_power_of_2(num_qps)) 1933 pow++; 1934 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1935 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1936 1937 /* Setup queue offset/count for all TCs for given VSI */ 1938 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1939 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1940 /* See if the given TC is enabled for the given VSI */ 1941 if (vsi->tc_config.enabled_tc & BIT(i)) { 1942 offset = vsi->mqprio_qopt.qopt.offset[i]; 1943 qcount = vsi->mqprio_qopt.qopt.count[i]; 1944 if (qcount > max_qcount) 1945 max_qcount = qcount; 1946 vsi->tc_config.tc_info[i].qoffset = offset; 1947 vsi->tc_config.tc_info[i].qcount = qcount; 1948 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1949 } else { 1950 /* TC is not enabled so set the offset to 1951 * default queue and allocate one queue 1952 * for the given TC. 1953 */ 1954 vsi->tc_config.tc_info[i].qoffset = 0; 1955 vsi->tc_config.tc_info[i].qcount = 1; 1956 vsi->tc_config.tc_info[i].netdev_tc = 0; 1957 } 1958 } 1959 1960 /* Set actual Tx/Rx queue pairs */ 1961 vsi->num_queue_pairs = offset + qcount; 1962 1963 /* Setup queue TC[0].qmap for given VSI context */ 1964 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1965 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1966 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1967 ctxt->info.valid_sections |= cpu_to_le16(sections); 1968 1969 /* Reconfigure RSS for main VSI with max queue count */ 1970 vsi->rss_size = max_qcount; 1971 ret = i40e_vsi_config_rss(vsi); 1972 if (ret) { 1973 dev_info(&vsi->back->pdev->dev, 1974 "Failed to reconfig rss for num_queues (%u)\n", 1975 max_qcount); 1976 return ret; 1977 } 1978 vsi->reconfig_rss = true; 1979 dev_dbg(&vsi->back->pdev->dev, 1980 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1981 1982 /* Find queue count available for channel VSIs and starting offset 1983 * for channel VSIs 1984 */ 1985 override_q = vsi->mqprio_qopt.qopt.count[0]; 1986 if (override_q && override_q < vsi->num_queue_pairs) { 1987 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1988 vsi->next_base_queue = override_q; 1989 } 1990 return 0; 1991 } 1992 1993 /** 1994 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1995 * @vsi: the VSI being setup 1996 * @ctxt: VSI context structure 1997 * @enabled_tc: Enabled TCs bitmap 1998 * @is_add: True if called before Add VSI 1999 * 2000 * Setup VSI queue mapping for enabled traffic classes. 2001 **/ 2002 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2003 struct i40e_vsi_context *ctxt, 2004 u8 enabled_tc, 2005 bool is_add) 2006 { 2007 struct i40e_pf *pf = vsi->back; 2008 u16 num_tc_qps = 0; 2009 u16 sections = 0; 2010 u8 netdev_tc = 0; 2011 u16 numtc = 1; 2012 u16 qcount; 2013 u8 offset; 2014 u16 qmap; 2015 int i; 2016 2017 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2018 offset = 0; 2019 /* zero out queue mapping, it will get updated on the end of the function */ 2020 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2021 2022 if (vsi->type == I40E_VSI_MAIN) { 2023 /* This code helps add more queue to the VSI if we have 2024 * more cores than RSS can support, the higher cores will 2025 * be served by ATR or other filters. Furthermore, the 2026 * non-zero req_queue_pairs says that user requested a new 2027 * queue count via ethtool's set_channels, so use this 2028 * value for queues distribution across traffic classes 2029 * We need at least one queue pair for the interface 2030 * to be usable as we see in else statement. 2031 */ 2032 if (vsi->req_queue_pairs > 0) 2033 vsi->num_queue_pairs = vsi->req_queue_pairs; 2034 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2035 vsi->num_queue_pairs = pf->num_lan_msix; 2036 else 2037 vsi->num_queue_pairs = 1; 2038 } 2039 2040 /* Number of queues per enabled TC */ 2041 if (vsi->type == I40E_VSI_MAIN || 2042 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2043 num_tc_qps = vsi->num_queue_pairs; 2044 else 2045 num_tc_qps = vsi->alloc_queue_pairs; 2046 2047 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2048 /* Find numtc from enabled TC bitmap */ 2049 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2050 if (enabled_tc & BIT(i)) /* TC is enabled */ 2051 numtc++; 2052 } 2053 if (!numtc) { 2054 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2055 numtc = 1; 2056 } 2057 num_tc_qps = num_tc_qps / numtc; 2058 num_tc_qps = min_t(int, num_tc_qps, 2059 i40e_pf_get_max_q_per_tc(pf)); 2060 } 2061 2062 vsi->tc_config.numtc = numtc; 2063 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2064 2065 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2066 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2067 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2068 2069 /* Setup queue offset/count for all TCs for given VSI */ 2070 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2071 /* See if the given TC is enabled for the given VSI */ 2072 if (vsi->tc_config.enabled_tc & BIT(i)) { 2073 /* TC is enabled */ 2074 int pow, num_qps; 2075 2076 switch (vsi->type) { 2077 case I40E_VSI_MAIN: 2078 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2079 pf->flags) && 2080 !test_bit(I40E_FLAG_FD_ATR_ENA, 2081 pf->flags)) || 2082 vsi->tc_config.enabled_tc != 1) { 2083 qcount = min_t(int, pf->alloc_rss_size, 2084 num_tc_qps); 2085 break; 2086 } 2087 fallthrough; 2088 case I40E_VSI_FDIR: 2089 case I40E_VSI_SRIOV: 2090 case I40E_VSI_VMDQ2: 2091 default: 2092 qcount = num_tc_qps; 2093 WARN_ON(i != 0); 2094 break; 2095 } 2096 vsi->tc_config.tc_info[i].qoffset = offset; 2097 vsi->tc_config.tc_info[i].qcount = qcount; 2098 2099 /* find the next higher power-of-2 of num queue pairs */ 2100 num_qps = qcount; 2101 pow = 0; 2102 while (num_qps && (BIT_ULL(pow) < qcount)) { 2103 pow++; 2104 num_qps >>= 1; 2105 } 2106 2107 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2108 qmap = 2109 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2110 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2111 2112 offset += qcount; 2113 } else { 2114 /* TC is not enabled so set the offset to 2115 * default queue and allocate one queue 2116 * for the given TC. 2117 */ 2118 vsi->tc_config.tc_info[i].qoffset = 0; 2119 vsi->tc_config.tc_info[i].qcount = 1; 2120 vsi->tc_config.tc_info[i].netdev_tc = 0; 2121 2122 qmap = 0; 2123 } 2124 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2125 } 2126 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2127 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2128 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2129 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2130 vsi->num_queue_pairs = offset; 2131 2132 /* Scheduler section valid can only be set for ADD VSI */ 2133 if (is_add) { 2134 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2135 2136 ctxt->info.up_enable_bits = enabled_tc; 2137 } 2138 if (vsi->type == I40E_VSI_SRIOV) { 2139 ctxt->info.mapping_flags |= 2140 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2141 for (i = 0; i < vsi->num_queue_pairs; i++) 2142 ctxt->info.queue_mapping[i] = 2143 cpu_to_le16(vsi->base_queue + i); 2144 } else { 2145 ctxt->info.mapping_flags |= 2146 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2147 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2148 } 2149 ctxt->info.valid_sections |= cpu_to_le16(sections); 2150 } 2151 2152 /** 2153 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2154 * @netdev: the netdevice 2155 * @addr: address to add 2156 * 2157 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2158 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2159 */ 2160 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2161 { 2162 struct i40e_netdev_priv *np = netdev_priv(netdev); 2163 struct i40e_vsi *vsi = np->vsi; 2164 2165 if (i40e_add_mac_filter(vsi, addr)) 2166 return 0; 2167 else 2168 return -ENOMEM; 2169 } 2170 2171 /** 2172 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2173 * @netdev: the netdevice 2174 * @addr: address to add 2175 * 2176 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2177 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2178 */ 2179 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2180 { 2181 struct i40e_netdev_priv *np = netdev_priv(netdev); 2182 struct i40e_vsi *vsi = np->vsi; 2183 2184 /* Under some circumstances, we might receive a request to delete 2185 * our own device address from our uc list. Because we store the 2186 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2187 * such requests and not delete our device address from this list. 2188 */ 2189 if (ether_addr_equal(addr, netdev->dev_addr)) 2190 return 0; 2191 2192 i40e_del_mac_filter(vsi, addr); 2193 2194 return 0; 2195 } 2196 2197 /** 2198 * i40e_set_rx_mode - NDO callback to set the netdev filters 2199 * @netdev: network interface device structure 2200 **/ 2201 static void i40e_set_rx_mode(struct net_device *netdev) 2202 { 2203 struct i40e_netdev_priv *np = netdev_priv(netdev); 2204 struct i40e_vsi *vsi = np->vsi; 2205 2206 spin_lock_bh(&vsi->mac_filter_hash_lock); 2207 2208 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2209 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2210 2211 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2212 2213 /* check for other flag changes */ 2214 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2215 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2216 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2217 } 2218 } 2219 2220 /** 2221 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2222 * @vsi: Pointer to VSI struct 2223 * @from: Pointer to list which contains MAC filter entries - changes to 2224 * those entries needs to be undone. 2225 * 2226 * MAC filter entries from this list were slated for deletion. 2227 **/ 2228 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2229 struct hlist_head *from) 2230 { 2231 struct i40e_mac_filter *f; 2232 struct hlist_node *h; 2233 2234 hlist_for_each_entry_safe(f, h, from, hlist) { 2235 u64 key = i40e_addr_to_hkey(f->macaddr); 2236 2237 /* Move the element back into MAC filter list*/ 2238 hlist_del(&f->hlist); 2239 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2240 } 2241 } 2242 2243 /** 2244 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2245 * @vsi: Pointer to vsi struct 2246 * @from: Pointer to list which contains MAC filter entries - changes to 2247 * those entries needs to be undone. 2248 * 2249 * MAC filter entries from this list were slated for addition. 2250 **/ 2251 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2252 struct hlist_head *from) 2253 { 2254 struct i40e_new_mac_filter *new; 2255 struct hlist_node *h; 2256 2257 hlist_for_each_entry_safe(new, h, from, hlist) { 2258 /* We can simply free the wrapper structure */ 2259 hlist_del(&new->hlist); 2260 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2261 kfree(new); 2262 } 2263 } 2264 2265 /** 2266 * i40e_next_filter - Get the next non-broadcast filter from a list 2267 * @next: pointer to filter in list 2268 * 2269 * Returns the next non-broadcast filter in the list. Required so that we 2270 * ignore broadcast filters within the list, since these are not handled via 2271 * the normal firmware update path. 2272 */ 2273 static 2274 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2275 { 2276 hlist_for_each_entry_continue(next, hlist) { 2277 if (!is_broadcast_ether_addr(next->f->macaddr)) 2278 return next; 2279 } 2280 2281 return NULL; 2282 } 2283 2284 /** 2285 * i40e_update_filter_state - Update filter state based on return data 2286 * from firmware 2287 * @count: Number of filters added 2288 * @add_list: return data from fw 2289 * @add_head: pointer to first filter in current batch 2290 * 2291 * MAC filter entries from list were slated to be added to device. Returns 2292 * number of successful filters. Note that 0 does NOT mean success! 2293 **/ 2294 static int 2295 i40e_update_filter_state(int count, 2296 struct i40e_aqc_add_macvlan_element_data *add_list, 2297 struct i40e_new_mac_filter *add_head) 2298 { 2299 int retval = 0; 2300 int i; 2301 2302 for (i = 0; i < count; i++) { 2303 /* Always check status of each filter. We don't need to check 2304 * the firmware return status because we pre-set the filter 2305 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2306 * request to the adminq. Thus, if it no longer matches then 2307 * we know the filter is active. 2308 */ 2309 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2310 add_head->state = I40E_FILTER_FAILED; 2311 } else { 2312 add_head->state = I40E_FILTER_ACTIVE; 2313 retval++; 2314 } 2315 2316 add_head = i40e_next_filter(add_head); 2317 if (!add_head) 2318 break; 2319 } 2320 2321 return retval; 2322 } 2323 2324 /** 2325 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2326 * @vsi: ptr to the VSI 2327 * @vsi_name: name to display in messages 2328 * @list: the list of filters to send to firmware 2329 * @num_del: the number of filters to delete 2330 * @retval: Set to -EIO on failure to delete 2331 * 2332 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2333 * *retval instead of a return value so that success does not force ret_val to 2334 * be set to 0. This ensures that a sequence of calls to this function 2335 * preserve the previous value of *retval on successful delete. 2336 */ 2337 static 2338 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2339 struct i40e_aqc_remove_macvlan_element_data *list, 2340 int num_del, int *retval) 2341 { 2342 struct i40e_hw *hw = &vsi->back->hw; 2343 enum i40e_admin_queue_err aq_status; 2344 int aq_ret; 2345 2346 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2347 &aq_status); 2348 2349 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2350 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2351 *retval = -EIO; 2352 dev_info(&vsi->back->pdev->dev, 2353 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2354 vsi_name, ERR_PTR(aq_ret), 2355 i40e_aq_str(hw, aq_status)); 2356 } 2357 } 2358 2359 /** 2360 * i40e_aqc_add_filters - Request firmware to add a set of filters 2361 * @vsi: ptr to the VSI 2362 * @vsi_name: name to display in messages 2363 * @list: the list of filters to send to firmware 2364 * @add_head: Position in the add hlist 2365 * @num_add: the number of filters to add 2366 * 2367 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2368 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2369 * space for more filters. 2370 */ 2371 static 2372 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2373 struct i40e_aqc_add_macvlan_element_data *list, 2374 struct i40e_new_mac_filter *add_head, 2375 int num_add) 2376 { 2377 struct i40e_hw *hw = &vsi->back->hw; 2378 enum i40e_admin_queue_err aq_status; 2379 int fcnt; 2380 2381 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2382 fcnt = i40e_update_filter_state(num_add, list, add_head); 2383 2384 if (fcnt != num_add) { 2385 if (vsi->type == I40E_VSI_MAIN) { 2386 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2387 dev_warn(&vsi->back->pdev->dev, 2388 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2389 i40e_aq_str(hw, aq_status), vsi_name); 2390 } else if (vsi->type == I40E_VSI_SRIOV || 2391 vsi->type == I40E_VSI_VMDQ1 || 2392 vsi->type == I40E_VSI_VMDQ2) { 2393 dev_warn(&vsi->back->pdev->dev, 2394 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2395 i40e_aq_str(hw, aq_status), vsi_name, 2396 vsi_name); 2397 } else { 2398 dev_warn(&vsi->back->pdev->dev, 2399 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2400 i40e_aq_str(hw, aq_status), vsi_name, 2401 vsi->type); 2402 } 2403 } 2404 } 2405 2406 /** 2407 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2408 * @vsi: pointer to the VSI 2409 * @vsi_name: the VSI name 2410 * @f: filter data 2411 * 2412 * This function sets or clears the promiscuous broadcast flags for VLAN 2413 * filters in order to properly receive broadcast frames. Assumes that only 2414 * broadcast filters are passed. 2415 * 2416 * Returns status indicating success or failure; 2417 **/ 2418 static int 2419 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2420 struct i40e_mac_filter *f) 2421 { 2422 bool enable = f->state == I40E_FILTER_NEW || 2423 f->state == I40E_FILTER_NEW_SYNC; 2424 struct i40e_hw *hw = &vsi->back->hw; 2425 int aq_ret; 2426 2427 if (f->vlan == I40E_VLAN_ANY) { 2428 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2429 vsi->seid, 2430 enable, 2431 NULL); 2432 } else { 2433 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2434 vsi->seid, 2435 enable, 2436 f->vlan, 2437 NULL); 2438 } 2439 2440 if (aq_ret) { 2441 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2442 dev_warn(&vsi->back->pdev->dev, 2443 "Error %s, forcing overflow promiscuous on %s\n", 2444 i40e_aq_str(hw, hw->aq.asq_last_status), 2445 vsi_name); 2446 } 2447 2448 return aq_ret; 2449 } 2450 2451 /** 2452 * i40e_set_promiscuous - set promiscuous mode 2453 * @pf: board private structure 2454 * @promisc: promisc on or off 2455 * 2456 * There are different ways of setting promiscuous mode on a PF depending on 2457 * what state/environment we're in. This identifies and sets it appropriately. 2458 * Returns 0 on success. 2459 **/ 2460 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2461 { 2462 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 2463 struct i40e_hw *hw = &pf->hw; 2464 int aq_ret; 2465 2466 if (vsi->type == I40E_VSI_MAIN && 2467 i40e_pf_get_main_veb(pf) && 2468 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2469 /* set defport ON for Main VSI instead of true promisc 2470 * this way we will get all unicast/multicast and VLAN 2471 * promisc behavior but will not get VF or VMDq traffic 2472 * replicated on the Main VSI. 2473 */ 2474 if (promisc) 2475 aq_ret = i40e_aq_set_default_vsi(hw, 2476 vsi->seid, 2477 NULL); 2478 else 2479 aq_ret = i40e_aq_clear_default_vsi(hw, 2480 vsi->seid, 2481 NULL); 2482 if (aq_ret) { 2483 dev_info(&pf->pdev->dev, 2484 "Set default VSI failed, err %pe, aq_err %s\n", 2485 ERR_PTR(aq_ret), 2486 i40e_aq_str(hw, hw->aq.asq_last_status)); 2487 } 2488 } else { 2489 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2490 hw, 2491 vsi->seid, 2492 promisc, NULL, 2493 true); 2494 if (aq_ret) { 2495 dev_info(&pf->pdev->dev, 2496 "set unicast promisc failed, err %pe, aq_err %s\n", 2497 ERR_PTR(aq_ret), 2498 i40e_aq_str(hw, hw->aq.asq_last_status)); 2499 } 2500 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2501 hw, 2502 vsi->seid, 2503 promisc, NULL); 2504 if (aq_ret) { 2505 dev_info(&pf->pdev->dev, 2506 "set multicast promisc failed, err %pe, aq_err %s\n", 2507 ERR_PTR(aq_ret), 2508 i40e_aq_str(hw, hw->aq.asq_last_status)); 2509 } 2510 } 2511 2512 if (!aq_ret) 2513 pf->cur_promisc = promisc; 2514 2515 return aq_ret; 2516 } 2517 2518 /** 2519 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2520 * @vsi: ptr to the VSI 2521 * 2522 * Push any outstanding VSI filter changes through the AdminQ. 2523 * 2524 * Returns 0 or error value 2525 **/ 2526 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2527 { 2528 struct hlist_head tmp_add_list, tmp_del_list; 2529 struct i40e_mac_filter *f; 2530 struct i40e_new_mac_filter *new, *add_head = NULL; 2531 struct i40e_hw *hw = &vsi->back->hw; 2532 bool old_overflow, new_overflow; 2533 unsigned int failed_filters = 0; 2534 unsigned int vlan_filters = 0; 2535 char vsi_name[16] = "PF"; 2536 int filter_list_len = 0; 2537 u32 changed_flags = 0; 2538 struct hlist_node *h; 2539 struct i40e_pf *pf; 2540 int num_add = 0; 2541 int num_del = 0; 2542 int aq_ret = 0; 2543 int retval = 0; 2544 u16 cmd_flags; 2545 int list_size; 2546 int bkt; 2547 2548 /* empty array typed pointers, kcalloc later */ 2549 struct i40e_aqc_add_macvlan_element_data *add_list; 2550 struct i40e_aqc_remove_macvlan_element_data *del_list; 2551 2552 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2553 usleep_range(1000, 2000); 2554 pf = vsi->back; 2555 2556 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2557 2558 if (vsi->netdev) { 2559 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2560 vsi->current_netdev_flags = vsi->netdev->flags; 2561 } 2562 2563 INIT_HLIST_HEAD(&tmp_add_list); 2564 INIT_HLIST_HEAD(&tmp_del_list); 2565 2566 if (vsi->type == I40E_VSI_SRIOV) 2567 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2568 else if (vsi->type != I40E_VSI_MAIN) 2569 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2570 2571 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2572 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2573 2574 spin_lock_bh(&vsi->mac_filter_hash_lock); 2575 /* Create a list of filters to delete. */ 2576 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2577 if (f->state == I40E_FILTER_REMOVE) { 2578 /* Move the element into temporary del_list */ 2579 hash_del(&f->hlist); 2580 hlist_add_head(&f->hlist, &tmp_del_list); 2581 2582 /* Avoid counting removed filters */ 2583 continue; 2584 } 2585 if (f->state == I40E_FILTER_NEW) { 2586 /* Create a temporary i40e_new_mac_filter */ 2587 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2588 if (!new) 2589 goto err_no_memory_locked; 2590 2591 /* Store pointer to the real filter */ 2592 new->f = f; 2593 new->state = f->state; 2594 2595 /* Add it to the hash list */ 2596 hlist_add_head(&new->hlist, &tmp_add_list); 2597 f->state = I40E_FILTER_NEW_SYNC; 2598 } 2599 2600 /* Count the number of active (current and new) VLAN 2601 * filters we have now. Does not count filters which 2602 * are marked for deletion. 2603 */ 2604 if (f->vlan > 0) 2605 vlan_filters++; 2606 } 2607 2608 if (vsi->type != I40E_VSI_SRIOV) 2609 retval = i40e_correct_mac_vlan_filters 2610 (vsi, &tmp_add_list, &tmp_del_list, 2611 vlan_filters); 2612 else if (pf->vf) 2613 retval = i40e_correct_vf_mac_vlan_filters 2614 (vsi, &tmp_add_list, &tmp_del_list, 2615 vlan_filters, pf->vf[vsi->vf_id].trusted); 2616 2617 hlist_for_each_entry(new, &tmp_add_list, hlist) 2618 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2619 2620 if (retval) 2621 goto err_no_memory_locked; 2622 2623 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2624 } 2625 2626 /* Now process 'del_list' outside the lock */ 2627 if (!hlist_empty(&tmp_del_list)) { 2628 filter_list_len = hw->aq.asq_buf_size / 2629 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2630 list_size = filter_list_len * 2631 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2632 del_list = kzalloc(list_size, GFP_ATOMIC); 2633 if (!del_list) 2634 goto err_no_memory; 2635 2636 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2637 cmd_flags = 0; 2638 2639 /* handle broadcast filters by updating the broadcast 2640 * promiscuous flag and release filter list. 2641 */ 2642 if (is_broadcast_ether_addr(f->macaddr)) { 2643 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2644 2645 hlist_del(&f->hlist); 2646 kfree(f); 2647 continue; 2648 } 2649 2650 /* add to delete list */ 2651 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2652 if (f->vlan == I40E_VLAN_ANY) { 2653 del_list[num_del].vlan_tag = 0; 2654 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2655 } else { 2656 del_list[num_del].vlan_tag = 2657 cpu_to_le16((u16)(f->vlan)); 2658 } 2659 2660 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2661 del_list[num_del].flags = cmd_flags; 2662 num_del++; 2663 2664 /* flush a full buffer */ 2665 if (num_del == filter_list_len) { 2666 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2667 num_del, &retval); 2668 memset(del_list, 0, list_size); 2669 num_del = 0; 2670 } 2671 /* Release memory for MAC filter entries which were 2672 * synced up with HW. 2673 */ 2674 hlist_del(&f->hlist); 2675 kfree(f); 2676 } 2677 2678 if (num_del) { 2679 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2680 num_del, &retval); 2681 } 2682 2683 kfree(del_list); 2684 del_list = NULL; 2685 } 2686 2687 if (!hlist_empty(&tmp_add_list)) { 2688 /* Do all the adds now. */ 2689 filter_list_len = hw->aq.asq_buf_size / 2690 sizeof(struct i40e_aqc_add_macvlan_element_data); 2691 list_size = filter_list_len * 2692 sizeof(struct i40e_aqc_add_macvlan_element_data); 2693 add_list = kzalloc(list_size, GFP_ATOMIC); 2694 if (!add_list) 2695 goto err_no_memory; 2696 2697 num_add = 0; 2698 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2699 /* handle broadcast filters by updating the broadcast 2700 * promiscuous flag instead of adding a MAC filter. 2701 */ 2702 if (is_broadcast_ether_addr(new->f->macaddr)) { 2703 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2704 new->f)) 2705 new->state = I40E_FILTER_FAILED; 2706 else 2707 new->state = I40E_FILTER_ACTIVE; 2708 continue; 2709 } 2710 2711 /* add to add array */ 2712 if (num_add == 0) 2713 add_head = new; 2714 cmd_flags = 0; 2715 ether_addr_copy(add_list[num_add].mac_addr, 2716 new->f->macaddr); 2717 if (new->f->vlan == I40E_VLAN_ANY) { 2718 add_list[num_add].vlan_tag = 0; 2719 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2720 } else { 2721 add_list[num_add].vlan_tag = 2722 cpu_to_le16((u16)(new->f->vlan)); 2723 } 2724 add_list[num_add].queue_number = 0; 2725 /* set invalid match method for later detection */ 2726 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2727 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2728 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2729 num_add++; 2730 2731 /* flush a full buffer */ 2732 if (num_add == filter_list_len) { 2733 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2734 add_head, num_add); 2735 memset(add_list, 0, list_size); 2736 num_add = 0; 2737 } 2738 } 2739 if (num_add) { 2740 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2741 num_add); 2742 } 2743 /* Now move all of the filters from the temp add list back to 2744 * the VSI's list. 2745 */ 2746 spin_lock_bh(&vsi->mac_filter_hash_lock); 2747 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2748 /* Only update the state if we're still NEW */ 2749 if (new->f->state == I40E_FILTER_NEW || 2750 new->f->state == I40E_FILTER_NEW_SYNC) 2751 new->f->state = new->state; 2752 hlist_del(&new->hlist); 2753 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2754 kfree(new); 2755 } 2756 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2757 kfree(add_list); 2758 add_list = NULL; 2759 } 2760 2761 /* Determine the number of active and failed filters. */ 2762 spin_lock_bh(&vsi->mac_filter_hash_lock); 2763 vsi->active_filters = 0; 2764 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2765 if (f->state == I40E_FILTER_ACTIVE) 2766 vsi->active_filters++; 2767 else if (f->state == I40E_FILTER_FAILED) 2768 failed_filters++; 2769 } 2770 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2771 2772 /* Check if we are able to exit overflow promiscuous mode. We can 2773 * safely exit if we didn't just enter, we no longer have any failed 2774 * filters, and we have reduced filters below the threshold value. 2775 */ 2776 if (old_overflow && !failed_filters && 2777 vsi->active_filters < vsi->promisc_threshold) { 2778 dev_info(&pf->pdev->dev, 2779 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2780 vsi_name); 2781 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2782 vsi->promisc_threshold = 0; 2783 } 2784 2785 /* if the VF is not trusted do not do promisc */ 2786 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2787 !pf->vf[vsi->vf_id].trusted) { 2788 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2789 goto out; 2790 } 2791 2792 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2793 2794 /* If we are entering overflow promiscuous, we need to calculate a new 2795 * threshold for when we are safe to exit 2796 */ 2797 if (!old_overflow && new_overflow) 2798 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2799 2800 /* check for changes in promiscuous modes */ 2801 if (changed_flags & IFF_ALLMULTI) { 2802 bool cur_multipromisc; 2803 2804 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2805 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2806 vsi->seid, 2807 cur_multipromisc, 2808 NULL); 2809 if (aq_ret) { 2810 retval = i40e_aq_rc_to_posix(aq_ret, 2811 hw->aq.asq_last_status); 2812 dev_info(&pf->pdev->dev, 2813 "set multi promisc failed on %s, err %pe aq_err %s\n", 2814 vsi_name, 2815 ERR_PTR(aq_ret), 2816 i40e_aq_str(hw, hw->aq.asq_last_status)); 2817 } else { 2818 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2819 cur_multipromisc ? "entering" : "leaving"); 2820 } 2821 } 2822 2823 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2824 bool cur_promisc; 2825 2826 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2827 new_overflow); 2828 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2829 if (aq_ret) { 2830 retval = i40e_aq_rc_to_posix(aq_ret, 2831 hw->aq.asq_last_status); 2832 dev_info(&pf->pdev->dev, 2833 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2834 cur_promisc ? "on" : "off", 2835 vsi_name, 2836 ERR_PTR(aq_ret), 2837 i40e_aq_str(hw, hw->aq.asq_last_status)); 2838 } 2839 } 2840 out: 2841 /* if something went wrong then set the changed flag so we try again */ 2842 if (retval) 2843 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2844 2845 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2846 return retval; 2847 2848 err_no_memory: 2849 /* Restore elements on the temporary add and delete lists */ 2850 spin_lock_bh(&vsi->mac_filter_hash_lock); 2851 err_no_memory_locked: 2852 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2853 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2854 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2855 2856 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2857 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2858 return -ENOMEM; 2859 } 2860 2861 /** 2862 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2863 * @pf: board private structure 2864 **/ 2865 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2866 { 2867 struct i40e_vsi *vsi; 2868 int v; 2869 2870 if (!pf) 2871 return; 2872 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2873 return; 2874 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2875 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2876 return; 2877 } 2878 2879 i40e_pf_for_each_vsi(pf, v, vsi) { 2880 if ((vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2881 !test_bit(__I40E_VSI_RELEASING, vsi->state)) { 2882 int ret = i40e_sync_vsi_filters(vsi); 2883 2884 if (ret) { 2885 /* come back and try again later */ 2886 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2887 pf->state); 2888 break; 2889 } 2890 } 2891 } 2892 } 2893 2894 /** 2895 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2896 * 2897 * @vsi: VSI to calculate rx_buf_len from 2898 */ 2899 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2900 { 2901 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2902 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2903 2904 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2905 } 2906 2907 /** 2908 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2909 * @vsi: the vsi 2910 * @xdp_prog: XDP program 2911 **/ 2912 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2913 struct bpf_prog *xdp_prog) 2914 { 2915 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2916 u16 chain_len; 2917 2918 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2919 chain_len = 1; 2920 else 2921 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2922 2923 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2924 } 2925 2926 /** 2927 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2928 * @netdev: network interface device structure 2929 * @new_mtu: new value for maximum frame size 2930 * 2931 * Returns 0 on success, negative on failure 2932 **/ 2933 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2934 { 2935 struct i40e_netdev_priv *np = netdev_priv(netdev); 2936 struct i40e_vsi *vsi = np->vsi; 2937 struct i40e_pf *pf = vsi->back; 2938 int frame_size; 2939 2940 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2941 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2942 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2943 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2944 return -EINVAL; 2945 } 2946 2947 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2948 netdev->mtu, new_mtu); 2949 WRITE_ONCE(netdev->mtu, new_mtu); 2950 if (netif_running(netdev)) 2951 i40e_vsi_reinit_locked(vsi); 2952 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2953 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2954 return 0; 2955 } 2956 2957 /** 2958 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2959 * @vsi: the vsi being adjusted 2960 **/ 2961 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2962 { 2963 struct i40e_vsi_context ctxt; 2964 int ret; 2965 2966 /* Don't modify stripping options if a port VLAN is active */ 2967 if (vsi->info.pvid) 2968 return; 2969 2970 if ((vsi->info.valid_sections & 2971 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2972 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2973 return; /* already enabled */ 2974 2975 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2976 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2977 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2978 2979 ctxt.seid = vsi->seid; 2980 ctxt.info = vsi->info; 2981 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2982 if (ret) { 2983 dev_info(&vsi->back->pdev->dev, 2984 "update vlan stripping failed, err %pe aq_err %s\n", 2985 ERR_PTR(ret), 2986 i40e_aq_str(&vsi->back->hw, 2987 vsi->back->hw.aq.asq_last_status)); 2988 } 2989 } 2990 2991 /** 2992 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2993 * @vsi: the vsi being adjusted 2994 **/ 2995 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2996 { 2997 struct i40e_vsi_context ctxt; 2998 int ret; 2999 3000 /* Don't modify stripping options if a port VLAN is active */ 3001 if (vsi->info.pvid) 3002 return; 3003 3004 if ((vsi->info.valid_sections & 3005 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3006 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3007 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3008 return; /* already disabled */ 3009 3010 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3011 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3012 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3013 3014 ctxt.seid = vsi->seid; 3015 ctxt.info = vsi->info; 3016 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3017 if (ret) { 3018 dev_info(&vsi->back->pdev->dev, 3019 "update vlan stripping failed, err %pe aq_err %s\n", 3020 ERR_PTR(ret), 3021 i40e_aq_str(&vsi->back->hw, 3022 vsi->back->hw.aq.asq_last_status)); 3023 } 3024 } 3025 3026 /** 3027 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3028 * @vsi: the vsi being configured 3029 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3030 * 3031 * This is a helper function for adding a new MAC/VLAN filter with the 3032 * specified VLAN for each existing MAC address already in the hash table. 3033 * This function does *not* perform any accounting to update filters based on 3034 * VLAN mode. 3035 * 3036 * NOTE: this function expects to be called while under the 3037 * mac_filter_hash_lock 3038 **/ 3039 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3040 { 3041 struct i40e_mac_filter *f, *add_f; 3042 struct hlist_node *h; 3043 int bkt; 3044 3045 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3046 /* If we're asked to add a filter that has been marked for 3047 * removal, it is safe to simply restore it to active state. 3048 * __i40e_del_filter will have simply deleted any filters which 3049 * were previously marked NEW or FAILED, so if it is currently 3050 * marked REMOVE it must have previously been ACTIVE. Since we 3051 * haven't yet run the sync filters task, just restore this 3052 * filter to the ACTIVE state so that the sync task leaves it 3053 * in place. 3054 */ 3055 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3056 f->state = I40E_FILTER_ACTIVE; 3057 continue; 3058 } else if (f->state == I40E_FILTER_REMOVE) { 3059 continue; 3060 } 3061 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3062 if (!add_f) { 3063 dev_info(&vsi->back->pdev->dev, 3064 "Could not add vlan filter %d for %pM\n", 3065 vid, f->macaddr); 3066 return -ENOMEM; 3067 } 3068 } 3069 3070 return 0; 3071 } 3072 3073 /** 3074 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3075 * @vsi: the VSI being configured 3076 * @vid: VLAN id to be added 3077 **/ 3078 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3079 { 3080 int err; 3081 3082 if (vsi->info.pvid) 3083 return -EINVAL; 3084 3085 /* The network stack will attempt to add VID=0, with the intention to 3086 * receive priority tagged packets with a VLAN of 0. Our HW receives 3087 * these packets by default when configured to receive untagged 3088 * packets, so we don't need to add a filter for this case. 3089 * Additionally, HW interprets adding a VID=0 filter as meaning to 3090 * receive *only* tagged traffic and stops receiving untagged traffic. 3091 * Thus, we do not want to actually add a filter for VID=0 3092 */ 3093 if (!vid) 3094 return 0; 3095 3096 /* Locked once because all functions invoked below iterates list*/ 3097 spin_lock_bh(&vsi->mac_filter_hash_lock); 3098 err = i40e_add_vlan_all_mac(vsi, vid); 3099 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3100 if (err) 3101 return err; 3102 3103 /* schedule our worker thread which will take care of 3104 * applying the new filter changes 3105 */ 3106 i40e_service_event_schedule(vsi->back); 3107 return 0; 3108 } 3109 3110 /** 3111 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3112 * @vsi: the vsi being configured 3113 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3114 * 3115 * This function should be used to remove all VLAN filters which match the 3116 * given VID. It does not schedule the service event and does not take the 3117 * mac_filter_hash_lock so it may be combined with other operations under 3118 * a single invocation of the mac_filter_hash_lock. 3119 * 3120 * NOTE: this function expects to be called while under the 3121 * mac_filter_hash_lock 3122 */ 3123 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3124 { 3125 struct i40e_mac_filter *f; 3126 struct hlist_node *h; 3127 int bkt; 3128 3129 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3130 if (f->vlan == vid) 3131 __i40e_del_filter(vsi, f); 3132 } 3133 } 3134 3135 /** 3136 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3137 * @vsi: the VSI being configured 3138 * @vid: VLAN id to be removed 3139 **/ 3140 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3141 { 3142 if (!vid || vsi->info.pvid) 3143 return; 3144 3145 spin_lock_bh(&vsi->mac_filter_hash_lock); 3146 i40e_rm_vlan_all_mac(vsi, vid); 3147 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3148 3149 /* schedule our worker thread which will take care of 3150 * applying the new filter changes 3151 */ 3152 i40e_service_event_schedule(vsi->back); 3153 } 3154 3155 /** 3156 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3157 * @netdev: network interface to be adjusted 3158 * @proto: unused protocol value 3159 * @vid: vlan id to be added 3160 * 3161 * net_device_ops implementation for adding vlan ids 3162 **/ 3163 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3164 __always_unused __be16 proto, u16 vid) 3165 { 3166 struct i40e_netdev_priv *np = netdev_priv(netdev); 3167 struct i40e_vsi *vsi = np->vsi; 3168 int ret = 0; 3169 3170 if (vid >= VLAN_N_VID) 3171 return -EINVAL; 3172 3173 ret = i40e_vsi_add_vlan(vsi, vid); 3174 if (!ret) 3175 set_bit(vid, vsi->active_vlans); 3176 3177 return ret; 3178 } 3179 3180 /** 3181 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3182 * @netdev: network interface to be adjusted 3183 * @proto: unused protocol value 3184 * @vid: vlan id to be added 3185 **/ 3186 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3187 __always_unused __be16 proto, u16 vid) 3188 { 3189 struct i40e_netdev_priv *np = netdev_priv(netdev); 3190 struct i40e_vsi *vsi = np->vsi; 3191 3192 if (vid >= VLAN_N_VID) 3193 return; 3194 set_bit(vid, vsi->active_vlans); 3195 } 3196 3197 /** 3198 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3199 * @netdev: network interface to be adjusted 3200 * @proto: unused protocol value 3201 * @vid: vlan id to be removed 3202 * 3203 * net_device_ops implementation for removing vlan ids 3204 **/ 3205 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3206 __always_unused __be16 proto, u16 vid) 3207 { 3208 struct i40e_netdev_priv *np = netdev_priv(netdev); 3209 struct i40e_vsi *vsi = np->vsi; 3210 3211 /* return code is ignored as there is nothing a user 3212 * can do about failure to remove and a log message was 3213 * already printed from the other function 3214 */ 3215 i40e_vsi_kill_vlan(vsi, vid); 3216 3217 clear_bit(vid, vsi->active_vlans); 3218 3219 return 0; 3220 } 3221 3222 /** 3223 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3224 * @vsi: the vsi being brought back up 3225 **/ 3226 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3227 { 3228 u16 vid; 3229 3230 if (!vsi->netdev) 3231 return; 3232 3233 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3234 i40e_vlan_stripping_enable(vsi); 3235 else 3236 i40e_vlan_stripping_disable(vsi); 3237 3238 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3239 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3240 vid); 3241 } 3242 3243 /** 3244 * i40e_vsi_add_pvid - Add pvid for the VSI 3245 * @vsi: the vsi being adjusted 3246 * @vid: the vlan id to set as a PVID 3247 **/ 3248 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3249 { 3250 struct i40e_vsi_context ctxt; 3251 int ret; 3252 3253 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3254 vsi->info.pvid = cpu_to_le16(vid); 3255 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3256 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3257 I40E_AQ_VSI_PVLAN_EMOD_STR; 3258 3259 ctxt.seid = vsi->seid; 3260 ctxt.info = vsi->info; 3261 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3262 if (ret) { 3263 dev_info(&vsi->back->pdev->dev, 3264 "add pvid failed, err %pe aq_err %s\n", 3265 ERR_PTR(ret), 3266 i40e_aq_str(&vsi->back->hw, 3267 vsi->back->hw.aq.asq_last_status)); 3268 return -ENOENT; 3269 } 3270 3271 return 0; 3272 } 3273 3274 /** 3275 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3276 * @vsi: the vsi being adjusted 3277 * 3278 * Just use the vlan_rx_register() service to put it back to normal 3279 **/ 3280 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3281 { 3282 vsi->info.pvid = 0; 3283 3284 i40e_vlan_stripping_disable(vsi); 3285 } 3286 3287 /** 3288 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3289 * @vsi: ptr to the VSI 3290 * 3291 * If this function returns with an error, then it's possible one or 3292 * more of the rings is populated (while the rest are not). It is the 3293 * callers duty to clean those orphaned rings. 3294 * 3295 * Return 0 on success, negative on failure 3296 **/ 3297 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3298 { 3299 int i, err = 0; 3300 3301 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3302 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3303 3304 if (!i40e_enabled_xdp_vsi(vsi)) 3305 return err; 3306 3307 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3308 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3309 3310 return err; 3311 } 3312 3313 /** 3314 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3315 * @vsi: ptr to the VSI 3316 * 3317 * Free VSI's transmit software resources 3318 **/ 3319 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3320 { 3321 int i; 3322 3323 if (vsi->tx_rings) { 3324 for (i = 0; i < vsi->num_queue_pairs; i++) 3325 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3326 i40e_free_tx_resources(vsi->tx_rings[i]); 3327 } 3328 3329 if (vsi->xdp_rings) { 3330 for (i = 0; i < vsi->num_queue_pairs; i++) 3331 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3332 i40e_free_tx_resources(vsi->xdp_rings[i]); 3333 } 3334 } 3335 3336 /** 3337 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3338 * @vsi: ptr to the VSI 3339 * 3340 * If this function returns with an error, then it's possible one or 3341 * more of the rings is populated (while the rest are not). It is the 3342 * callers duty to clean those orphaned rings. 3343 * 3344 * Return 0 on success, negative on failure 3345 **/ 3346 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3347 { 3348 int i, err = 0; 3349 3350 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3351 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3352 return err; 3353 } 3354 3355 /** 3356 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3357 * @vsi: ptr to the VSI 3358 * 3359 * Free all receive software resources 3360 **/ 3361 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3362 { 3363 int i; 3364 3365 if (!vsi->rx_rings) 3366 return; 3367 3368 for (i = 0; i < vsi->num_queue_pairs; i++) 3369 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3370 i40e_free_rx_resources(vsi->rx_rings[i]); 3371 } 3372 3373 /** 3374 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3375 * @ring: The Tx ring to configure 3376 * 3377 * This enables/disables XPS for a given Tx descriptor ring 3378 * based on the TCs enabled for the VSI that ring belongs to. 3379 **/ 3380 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3381 { 3382 int cpu; 3383 3384 if (!ring->q_vector || !ring->netdev || ring->ch) 3385 return; 3386 3387 /* We only initialize XPS once, so as not to overwrite user settings */ 3388 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3389 return; 3390 3391 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3392 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3393 ring->queue_index); 3394 } 3395 3396 /** 3397 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3398 * @ring: The Tx or Rx ring 3399 * 3400 * Returns the AF_XDP buffer pool or NULL. 3401 **/ 3402 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3403 { 3404 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3405 int qid = ring->queue_index; 3406 3407 if (ring_is_xdp(ring)) 3408 qid -= ring->vsi->alloc_queue_pairs; 3409 3410 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3411 return NULL; 3412 3413 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3414 } 3415 3416 /** 3417 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3418 * @ring: The Tx ring to configure 3419 * 3420 * Configure the Tx descriptor ring in the HMC context. 3421 **/ 3422 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3423 { 3424 struct i40e_vsi *vsi = ring->vsi; 3425 u16 pf_q = vsi->base_queue + ring->queue_index; 3426 struct i40e_hw *hw = &vsi->back->hw; 3427 struct i40e_hmc_obj_txq tx_ctx; 3428 u32 qtx_ctl = 0; 3429 int err = 0; 3430 3431 if (ring_is_xdp(ring)) 3432 ring->xsk_pool = i40e_xsk_pool(ring); 3433 3434 /* some ATR related tx ring init */ 3435 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3436 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3437 ring->atr_count = 0; 3438 } else { 3439 ring->atr_sample_rate = 0; 3440 } 3441 3442 /* configure XPS */ 3443 i40e_config_xps_tx_ring(ring); 3444 3445 /* clear the context structure first */ 3446 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3447 3448 tx_ctx.new_context = 1; 3449 tx_ctx.base = (ring->dma / 128); 3450 tx_ctx.qlen = ring->count; 3451 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3452 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3453 tx_ctx.fd_ena = 1; 3454 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3455 tx_ctx.timesync_ena = 1; 3456 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3457 if (vsi->type != I40E_VSI_FDIR) 3458 tx_ctx.head_wb_ena = 1; 3459 tx_ctx.head_wb_addr = ring->dma + 3460 (ring->count * sizeof(struct i40e_tx_desc)); 3461 3462 /* As part of VSI creation/update, FW allocates certain 3463 * Tx arbitration queue sets for each TC enabled for 3464 * the VSI. The FW returns the handles to these queue 3465 * sets as part of the response buffer to Add VSI, 3466 * Update VSI, etc. AQ commands. It is expected that 3467 * these queue set handles be associated with the Tx 3468 * queues by the driver as part of the TX queue context 3469 * initialization. This has to be done regardless of 3470 * DCB as by default everything is mapped to TC0. 3471 */ 3472 3473 if (ring->ch) 3474 tx_ctx.rdylist = 3475 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3476 3477 else 3478 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3479 3480 tx_ctx.rdylist_act = 0; 3481 3482 /* clear the context in the HMC */ 3483 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3484 if (err) { 3485 dev_info(&vsi->back->pdev->dev, 3486 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3487 ring->queue_index, pf_q, err); 3488 return -ENOMEM; 3489 } 3490 3491 /* set the context in the HMC */ 3492 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3493 if (err) { 3494 dev_info(&vsi->back->pdev->dev, 3495 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3496 ring->queue_index, pf_q, err); 3497 return -ENOMEM; 3498 } 3499 3500 /* Now associate this queue with this PCI function */ 3501 if (ring->ch) { 3502 if (ring->ch->type == I40E_VSI_VMDQ2) 3503 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3504 else 3505 return -EINVAL; 3506 3507 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3508 ring->ch->vsi_number); 3509 } else { 3510 if (vsi->type == I40E_VSI_VMDQ2) { 3511 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3512 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3513 vsi->id); 3514 } else { 3515 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3516 } 3517 } 3518 3519 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id); 3520 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3521 i40e_flush(hw); 3522 3523 /* cache tail off for easier writes later */ 3524 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3525 3526 return 0; 3527 } 3528 3529 /** 3530 * i40e_rx_offset - Return expected offset into page to access data 3531 * @rx_ring: Ring we are requesting offset of 3532 * 3533 * Returns the offset value for ring into the data buffer. 3534 */ 3535 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3536 { 3537 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3538 } 3539 3540 /** 3541 * i40e_configure_rx_ring - Configure a receive ring context 3542 * @ring: The Rx ring to configure 3543 * 3544 * Configure the Rx descriptor ring in the HMC context. 3545 **/ 3546 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3547 { 3548 struct i40e_vsi *vsi = ring->vsi; 3549 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3550 u16 pf_q = vsi->base_queue + ring->queue_index; 3551 struct i40e_hw *hw = &vsi->back->hw; 3552 struct i40e_hmc_obj_rxq rx_ctx; 3553 int err = 0; 3554 bool ok; 3555 3556 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3557 3558 /* clear the context structure first */ 3559 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3560 3561 ring->rx_buf_len = vsi->rx_buf_len; 3562 3563 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 3564 if (ring->vsi->type != I40E_VSI_MAIN) 3565 goto skip; 3566 3567 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 3568 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3569 ring->queue_index, 3570 ring->q_vector->napi.napi_id, 3571 ring->rx_buf_len); 3572 if (err) 3573 return err; 3574 } 3575 3576 ring->xsk_pool = i40e_xsk_pool(ring); 3577 if (ring->xsk_pool) { 3578 xdp_rxq_info_unreg(&ring->xdp_rxq); 3579 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool); 3580 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3581 ring->queue_index, 3582 ring->q_vector->napi.napi_id, 3583 ring->rx_buf_len); 3584 if (err) 3585 return err; 3586 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3587 MEM_TYPE_XSK_BUFF_POOL, 3588 NULL); 3589 if (err) 3590 return err; 3591 dev_info(&vsi->back->pdev->dev, 3592 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3593 ring->queue_index); 3594 3595 } else { 3596 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3597 MEM_TYPE_PAGE_SHARED, 3598 NULL); 3599 if (err) 3600 return err; 3601 } 3602 3603 skip: 3604 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3605 3606 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3607 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3608 3609 rx_ctx.base = (ring->dma / 128); 3610 rx_ctx.qlen = ring->count; 3611 3612 /* use 16 byte descriptors */ 3613 rx_ctx.dsize = 0; 3614 3615 /* descriptor type is always zero 3616 * rx_ctx.dtype = 0; 3617 */ 3618 rx_ctx.hsplit_0 = 0; 3619 3620 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3621 if (hw->revision_id == 0) 3622 rx_ctx.lrxqthresh = 0; 3623 else 3624 rx_ctx.lrxqthresh = 1; 3625 rx_ctx.crcstrip = 1; 3626 rx_ctx.l2tsel = 1; 3627 /* this controls whether VLAN is stripped from inner headers */ 3628 rx_ctx.showiv = 0; 3629 /* set the prefena field to 1 because the manual says to */ 3630 rx_ctx.prefena = 1; 3631 3632 /* clear the context in the HMC */ 3633 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3634 if (err) { 3635 dev_info(&vsi->back->pdev->dev, 3636 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3637 ring->queue_index, pf_q, err); 3638 return -ENOMEM; 3639 } 3640 3641 /* set the context in the HMC */ 3642 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3643 if (err) { 3644 dev_info(&vsi->back->pdev->dev, 3645 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3646 ring->queue_index, pf_q, err); 3647 return -ENOMEM; 3648 } 3649 3650 /* configure Rx buffer alignment */ 3651 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3652 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3653 dev_info(&vsi->back->pdev->dev, 3654 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3655 return -EOPNOTSUPP; 3656 } 3657 clear_ring_build_skb_enabled(ring); 3658 } else { 3659 set_ring_build_skb_enabled(ring); 3660 } 3661 3662 ring->rx_offset = i40e_rx_offset(ring); 3663 3664 /* cache tail for quicker writes, and clear the reg before use */ 3665 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3666 writel(0, ring->tail); 3667 3668 if (ring->xsk_pool) { 3669 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3670 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3671 } else { 3672 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3673 } 3674 if (!ok) { 3675 /* Log this in case the user has forgotten to give the kernel 3676 * any buffers, even later in the application. 3677 */ 3678 dev_info(&vsi->back->pdev->dev, 3679 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3680 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3681 ring->queue_index, pf_q); 3682 } 3683 3684 return 0; 3685 } 3686 3687 /** 3688 * i40e_vsi_configure_tx - Configure the VSI for Tx 3689 * @vsi: VSI structure describing this set of rings and resources 3690 * 3691 * Configure the Tx VSI for operation. 3692 **/ 3693 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3694 { 3695 int err = 0; 3696 u16 i; 3697 3698 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3699 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3700 3701 if (err || !i40e_enabled_xdp_vsi(vsi)) 3702 return err; 3703 3704 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3705 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3706 3707 return err; 3708 } 3709 3710 /** 3711 * i40e_vsi_configure_rx - Configure the VSI for Rx 3712 * @vsi: the VSI being configured 3713 * 3714 * Configure the Rx VSI for operation. 3715 **/ 3716 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3717 { 3718 int err = 0; 3719 u16 i; 3720 3721 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3722 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3723 3724 #if (PAGE_SIZE < 8192) 3725 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3726 vsi->netdev->mtu <= ETH_DATA_LEN) { 3727 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3728 vsi->max_frame = vsi->rx_buf_len; 3729 } 3730 #endif 3731 3732 /* set up individual rings */ 3733 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3734 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3735 3736 return err; 3737 } 3738 3739 /** 3740 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3741 * @vsi: ptr to the VSI 3742 **/ 3743 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3744 { 3745 struct i40e_ring *tx_ring, *rx_ring; 3746 u16 qoffset, qcount; 3747 int i, n; 3748 3749 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3750 /* Reset the TC information */ 3751 for (i = 0; i < vsi->num_queue_pairs; i++) { 3752 rx_ring = vsi->rx_rings[i]; 3753 tx_ring = vsi->tx_rings[i]; 3754 rx_ring->dcb_tc = 0; 3755 tx_ring->dcb_tc = 0; 3756 } 3757 return; 3758 } 3759 3760 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3761 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3762 continue; 3763 3764 qoffset = vsi->tc_config.tc_info[n].qoffset; 3765 qcount = vsi->tc_config.tc_info[n].qcount; 3766 for (i = qoffset; i < (qoffset + qcount); i++) { 3767 rx_ring = vsi->rx_rings[i]; 3768 tx_ring = vsi->tx_rings[i]; 3769 rx_ring->dcb_tc = n; 3770 tx_ring->dcb_tc = n; 3771 } 3772 } 3773 } 3774 3775 /** 3776 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3777 * @vsi: ptr to the VSI 3778 **/ 3779 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3780 { 3781 if (vsi->netdev) 3782 i40e_set_rx_mode(vsi->netdev); 3783 } 3784 3785 /** 3786 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3787 * @pf: Pointer to the targeted PF 3788 * 3789 * Set all flow director counters to 0. 3790 */ 3791 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3792 { 3793 pf->fd_tcp4_filter_cnt = 0; 3794 pf->fd_udp4_filter_cnt = 0; 3795 pf->fd_sctp4_filter_cnt = 0; 3796 pf->fd_ip4_filter_cnt = 0; 3797 pf->fd_tcp6_filter_cnt = 0; 3798 pf->fd_udp6_filter_cnt = 0; 3799 pf->fd_sctp6_filter_cnt = 0; 3800 pf->fd_ip6_filter_cnt = 0; 3801 } 3802 3803 /** 3804 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3805 * @vsi: Pointer to the targeted VSI 3806 * 3807 * This function replays the hlist on the hw where all the SB Flow Director 3808 * filters were saved. 3809 **/ 3810 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3811 { 3812 struct i40e_fdir_filter *filter; 3813 struct i40e_pf *pf = vsi->back; 3814 struct hlist_node *node; 3815 3816 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3817 return; 3818 3819 /* Reset FDir counters as we're replaying all existing filters */ 3820 i40e_reset_fdir_filter_cnt(pf); 3821 3822 hlist_for_each_entry_safe(filter, node, 3823 &pf->fdir_filter_list, fdir_node) { 3824 i40e_add_del_fdir(vsi, filter, true); 3825 } 3826 } 3827 3828 /** 3829 * i40e_vsi_configure - Set up the VSI for action 3830 * @vsi: the VSI being configured 3831 **/ 3832 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3833 { 3834 int err; 3835 3836 i40e_set_vsi_rx_mode(vsi); 3837 i40e_restore_vlan(vsi); 3838 i40e_vsi_config_dcb_rings(vsi); 3839 err = i40e_vsi_configure_tx(vsi); 3840 if (!err) 3841 err = i40e_vsi_configure_rx(vsi); 3842 3843 return err; 3844 } 3845 3846 /** 3847 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3848 * @vsi: the VSI being configured 3849 **/ 3850 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3851 { 3852 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3853 struct i40e_pf *pf = vsi->back; 3854 struct i40e_hw *hw = &pf->hw; 3855 u16 vector; 3856 int i, q; 3857 u32 qp; 3858 3859 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3860 * and PFINT_LNKLSTn registers, e.g.: 3861 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3862 */ 3863 qp = vsi->base_queue; 3864 vector = vsi->base_vector; 3865 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3866 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3867 3868 q_vector->rx.next_update = jiffies + 1; 3869 q_vector->rx.target_itr = 3870 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3871 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3872 q_vector->rx.target_itr >> 1); 3873 q_vector->rx.current_itr = q_vector->rx.target_itr; 3874 3875 q_vector->tx.next_update = jiffies + 1; 3876 q_vector->tx.target_itr = 3877 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3878 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3879 q_vector->tx.target_itr >> 1); 3880 q_vector->tx.current_itr = q_vector->tx.target_itr; 3881 3882 /* Set ITR for software interrupts triggered after exiting 3883 * busy-loop polling. 3884 */ 3885 wr32(hw, I40E_PFINT_ITRN(I40E_SW_ITR, vector - 1), 3886 I40E_ITR_20K); 3887 3888 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3889 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3890 3891 /* begin of linked list for RX queue assigned to this vector */ 3892 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3893 for (q = 0; q < q_vector->num_ringpairs; q++) { 3894 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3895 u32 val; 3896 3897 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3898 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3899 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3900 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3901 (I40E_QUEUE_TYPE_TX << 3902 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3903 3904 wr32(hw, I40E_QINT_RQCTL(qp), val); 3905 3906 if (has_xdp) { 3907 /* TX queue with next queue set to TX */ 3908 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3909 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3910 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3911 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3912 (I40E_QUEUE_TYPE_TX << 3913 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3914 3915 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3916 } 3917 /* TX queue with next RX or end of linked list */ 3918 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3919 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3920 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3921 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3922 (I40E_QUEUE_TYPE_RX << 3923 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3924 3925 /* Terminate the linked list */ 3926 if (q == (q_vector->num_ringpairs - 1)) 3927 val |= (I40E_QUEUE_END_OF_LIST << 3928 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3929 3930 wr32(hw, I40E_QINT_TQCTL(qp), val); 3931 qp++; 3932 } 3933 } 3934 3935 i40e_flush(hw); 3936 } 3937 3938 /** 3939 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3940 * @pf: pointer to private device data structure 3941 **/ 3942 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3943 { 3944 struct i40e_hw *hw = &pf->hw; 3945 u32 val; 3946 3947 /* clear things first */ 3948 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3949 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3950 3951 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3952 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3953 I40E_PFINT_ICR0_ENA_GRST_MASK | 3954 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3955 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3956 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3957 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3958 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3959 3960 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 3961 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3962 3963 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3964 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3965 3966 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3967 3968 /* SW_ITR_IDX = 0, but don't change INTENA */ 3969 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3970 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3971 3972 /* OTHER_ITR_IDX = 0 */ 3973 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3974 } 3975 3976 /** 3977 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3978 * @vsi: the VSI being configured 3979 **/ 3980 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3981 { 3982 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3983 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3984 struct i40e_pf *pf = vsi->back; 3985 struct i40e_hw *hw = &pf->hw; 3986 3987 /* set the ITR configuration */ 3988 q_vector->rx.next_update = jiffies + 1; 3989 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3990 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 3991 q_vector->rx.current_itr = q_vector->rx.target_itr; 3992 q_vector->tx.next_update = jiffies + 1; 3993 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3994 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 3995 q_vector->tx.current_itr = q_vector->tx.target_itr; 3996 3997 i40e_enable_misc_int_causes(pf); 3998 3999 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4000 wr32(hw, I40E_PFINT_LNKLST0, 0); 4001 4002 /* Associate the queue pair to the vector and enable the queue 4003 * interrupt RX queue in linked list with next queue set to TX 4004 */ 4005 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4006 4007 if (i40e_enabled_xdp_vsi(vsi)) { 4008 /* TX queue in linked list with next queue set to TX */ 4009 wr32(hw, I40E_QINT_TQCTL(nextqp), 4010 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4011 } 4012 4013 /* last TX queue so the next RX queue doesn't matter */ 4014 wr32(hw, I40E_QINT_TQCTL(0), 4015 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4016 i40e_flush(hw); 4017 } 4018 4019 /** 4020 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4021 * @pf: board private structure 4022 **/ 4023 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4024 { 4025 struct i40e_hw *hw = &pf->hw; 4026 4027 wr32(hw, I40E_PFINT_DYN_CTL0, 4028 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4029 i40e_flush(hw); 4030 } 4031 4032 /** 4033 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4034 * @pf: board private structure 4035 **/ 4036 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4037 { 4038 struct i40e_hw *hw = &pf->hw; 4039 u32 val; 4040 4041 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4042 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4043 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4044 4045 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4046 i40e_flush(hw); 4047 } 4048 4049 /** 4050 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4051 * @irq: interrupt number 4052 * @data: pointer to a q_vector 4053 **/ 4054 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4055 { 4056 struct i40e_q_vector *q_vector = data; 4057 4058 if (!q_vector->tx.ring && !q_vector->rx.ring) 4059 return IRQ_HANDLED; 4060 4061 napi_schedule_irqoff(&q_vector->napi); 4062 4063 return IRQ_HANDLED; 4064 } 4065 4066 /** 4067 * i40e_irq_affinity_notify - Callback for affinity changes 4068 * @notify: context as to what irq was changed 4069 * @mask: the new affinity mask 4070 * 4071 * This is a callback function used by the irq_set_affinity_notifier function 4072 * so that we may register to receive changes to the irq affinity masks. 4073 **/ 4074 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4075 const cpumask_t *mask) 4076 { 4077 struct i40e_q_vector *q_vector = 4078 container_of(notify, struct i40e_q_vector, affinity_notify); 4079 4080 cpumask_copy(&q_vector->affinity_mask, mask); 4081 } 4082 4083 /** 4084 * i40e_irq_affinity_release - Callback for affinity notifier release 4085 * @ref: internal core kernel usage 4086 * 4087 * This is a callback function used by the irq_set_affinity_notifier function 4088 * to inform the current notification subscriber that they will no longer 4089 * receive notifications. 4090 **/ 4091 static void i40e_irq_affinity_release(struct kref *ref) {} 4092 4093 /** 4094 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4095 * @vsi: the VSI being configured 4096 * @basename: name for the vector 4097 * 4098 * Allocates MSI-X vectors and requests interrupts from the kernel. 4099 **/ 4100 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4101 { 4102 int q_vectors = vsi->num_q_vectors; 4103 struct i40e_pf *pf = vsi->back; 4104 int base = vsi->base_vector; 4105 int rx_int_idx = 0; 4106 int tx_int_idx = 0; 4107 int vector, err; 4108 int irq_num; 4109 int cpu; 4110 4111 for (vector = 0; vector < q_vectors; vector++) { 4112 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4113 4114 irq_num = pf->msix_entries[base + vector].vector; 4115 4116 if (q_vector->tx.ring && q_vector->rx.ring) { 4117 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4118 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4119 tx_int_idx++; 4120 } else if (q_vector->rx.ring) { 4121 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4122 "%s-%s-%d", basename, "rx", rx_int_idx++); 4123 } else if (q_vector->tx.ring) { 4124 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4125 "%s-%s-%d", basename, "tx", tx_int_idx++); 4126 } else { 4127 /* skip this unused q_vector */ 4128 continue; 4129 } 4130 err = request_irq(irq_num, 4131 vsi->irq_handler, 4132 0, 4133 q_vector->name, 4134 q_vector); 4135 if (err) { 4136 dev_info(&pf->pdev->dev, 4137 "MSIX request_irq failed, error: %d\n", err); 4138 goto free_queue_irqs; 4139 } 4140 4141 /* register for affinity change notifications */ 4142 q_vector->irq_num = irq_num; 4143 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4144 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4145 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4146 /* Spread affinity hints out across online CPUs. 4147 * 4148 * get_cpu_mask returns a static constant mask with 4149 * a permanent lifetime so it's ok to pass to 4150 * irq_update_affinity_hint without making a copy. 4151 */ 4152 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4153 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4154 } 4155 4156 vsi->irqs_ready = true; 4157 return 0; 4158 4159 free_queue_irqs: 4160 while (vector) { 4161 vector--; 4162 irq_num = pf->msix_entries[base + vector].vector; 4163 irq_set_affinity_notifier(irq_num, NULL); 4164 irq_update_affinity_hint(irq_num, NULL); 4165 free_irq(irq_num, &vsi->q_vectors[vector]); 4166 } 4167 return err; 4168 } 4169 4170 /** 4171 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4172 * @vsi: the VSI being un-configured 4173 **/ 4174 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4175 { 4176 struct i40e_pf *pf = vsi->back; 4177 struct i40e_hw *hw = &pf->hw; 4178 int base = vsi->base_vector; 4179 int i; 4180 4181 /* disable interrupt causation from each queue */ 4182 for (i = 0; i < vsi->num_queue_pairs; i++) { 4183 u32 val; 4184 4185 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4186 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4187 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4188 4189 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4190 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4191 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4192 4193 if (!i40e_enabled_xdp_vsi(vsi)) 4194 continue; 4195 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4196 } 4197 4198 /* disable each interrupt */ 4199 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4200 for (i = vsi->base_vector; 4201 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4202 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4203 4204 i40e_flush(hw); 4205 for (i = 0; i < vsi->num_q_vectors; i++) 4206 synchronize_irq(pf->msix_entries[i + base].vector); 4207 } else { 4208 /* Legacy and MSI mode - this stops all interrupt handling */ 4209 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4210 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4211 i40e_flush(hw); 4212 synchronize_irq(pf->pdev->irq); 4213 } 4214 } 4215 4216 /** 4217 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4218 * @vsi: the VSI being configured 4219 **/ 4220 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4221 { 4222 struct i40e_pf *pf = vsi->back; 4223 int i; 4224 4225 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4226 for (i = 0; i < vsi->num_q_vectors; i++) 4227 i40e_irq_dynamic_enable(vsi, i); 4228 } else { 4229 i40e_irq_dynamic_enable_icr0(pf); 4230 } 4231 4232 i40e_flush(&pf->hw); 4233 return 0; 4234 } 4235 4236 /** 4237 * i40e_free_misc_vector - Free the vector that handles non-queue events 4238 * @pf: board private structure 4239 **/ 4240 static void i40e_free_misc_vector(struct i40e_pf *pf) 4241 { 4242 /* Disable ICR 0 */ 4243 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4244 i40e_flush(&pf->hw); 4245 4246 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4247 free_irq(pf->msix_entries[0].vector, pf); 4248 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4249 } 4250 } 4251 4252 /** 4253 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4254 * @irq: interrupt number 4255 * @data: pointer to a q_vector 4256 * 4257 * This is the handler used for all MSI/Legacy interrupts, and deals 4258 * with both queue and non-queue interrupts. This is also used in 4259 * MSIX mode to handle the non-queue interrupts. 4260 **/ 4261 static irqreturn_t i40e_intr(int irq, void *data) 4262 { 4263 struct i40e_pf *pf = (struct i40e_pf *)data; 4264 struct i40e_hw *hw = &pf->hw; 4265 irqreturn_t ret = IRQ_NONE; 4266 u32 icr0, icr0_remaining; 4267 u32 val, ena_mask; 4268 4269 icr0 = rd32(hw, I40E_PFINT_ICR0); 4270 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4271 4272 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4273 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4274 goto enable_intr; 4275 4276 /* if interrupt but no bits showing, must be SWINT */ 4277 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4278 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4279 pf->sw_int_count++; 4280 4281 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4282 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4283 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4284 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4285 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4286 } 4287 4288 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4289 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4290 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 4291 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4292 4293 /* We do not have a way to disarm Queue causes while leaving 4294 * interrupt enabled for all other causes, ideally 4295 * interrupt should be disabled while we are in NAPI but 4296 * this is not a performance path and napi_schedule() 4297 * can deal with rescheduling. 4298 */ 4299 if (!test_bit(__I40E_DOWN, pf->state)) 4300 napi_schedule_irqoff(&q_vector->napi); 4301 } 4302 4303 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4304 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4305 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4306 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4307 } 4308 4309 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4310 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4311 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4312 } 4313 4314 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4315 /* disable any further VFLR event notifications */ 4316 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4317 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4318 4319 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4320 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4321 } else { 4322 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4323 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4324 } 4325 } 4326 4327 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4328 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4329 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4330 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4331 val = rd32(hw, I40E_GLGEN_RSTAT); 4332 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val); 4333 if (val == I40E_RESET_CORER) { 4334 pf->corer_count++; 4335 } else if (val == I40E_RESET_GLOBR) { 4336 pf->globr_count++; 4337 } else if (val == I40E_RESET_EMPR) { 4338 pf->empr_count++; 4339 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4340 } 4341 } 4342 4343 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4344 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4345 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4346 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4347 rd32(hw, I40E_PFHMC_ERRORINFO), 4348 rd32(hw, I40E_PFHMC_ERRORDATA)); 4349 } 4350 4351 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4352 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4353 4354 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4355 schedule_work(&pf->ptp_extts0_work); 4356 4357 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4358 i40e_ptp_tx_hwtstamp(pf); 4359 4360 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4361 } 4362 4363 /* If a critical error is pending we have no choice but to reset the 4364 * device. 4365 * Report and mask out any remaining unexpected interrupts. 4366 */ 4367 icr0_remaining = icr0 & ena_mask; 4368 if (icr0_remaining) { 4369 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4370 icr0_remaining); 4371 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4372 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4373 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4374 dev_info(&pf->pdev->dev, "device will be reset\n"); 4375 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4376 i40e_service_event_schedule(pf); 4377 } 4378 ena_mask &= ~icr0_remaining; 4379 } 4380 ret = IRQ_HANDLED; 4381 4382 enable_intr: 4383 /* re-enable interrupt causes */ 4384 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4385 if (!test_bit(__I40E_DOWN, pf->state) || 4386 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4387 i40e_service_event_schedule(pf); 4388 i40e_irq_dynamic_enable_icr0(pf); 4389 } 4390 4391 return ret; 4392 } 4393 4394 /** 4395 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4396 * @tx_ring: tx ring to clean 4397 * @budget: how many cleans we're allowed 4398 * 4399 * Returns true if there's any budget left (e.g. the clean is finished) 4400 **/ 4401 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4402 { 4403 struct i40e_vsi *vsi = tx_ring->vsi; 4404 u16 i = tx_ring->next_to_clean; 4405 struct i40e_tx_buffer *tx_buf; 4406 struct i40e_tx_desc *tx_desc; 4407 4408 tx_buf = &tx_ring->tx_bi[i]; 4409 tx_desc = I40E_TX_DESC(tx_ring, i); 4410 i -= tx_ring->count; 4411 4412 do { 4413 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4414 4415 /* if next_to_watch is not set then there is no work pending */ 4416 if (!eop_desc) 4417 break; 4418 4419 /* prevent any other reads prior to eop_desc */ 4420 smp_rmb(); 4421 4422 /* if the descriptor isn't done, no work yet to do */ 4423 if (!(eop_desc->cmd_type_offset_bsz & 4424 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4425 break; 4426 4427 /* clear next_to_watch to prevent false hangs */ 4428 tx_buf->next_to_watch = NULL; 4429 4430 tx_desc->buffer_addr = 0; 4431 tx_desc->cmd_type_offset_bsz = 0; 4432 /* move past filter desc */ 4433 tx_buf++; 4434 tx_desc++; 4435 i++; 4436 if (unlikely(!i)) { 4437 i -= tx_ring->count; 4438 tx_buf = tx_ring->tx_bi; 4439 tx_desc = I40E_TX_DESC(tx_ring, 0); 4440 } 4441 /* unmap skb header data */ 4442 dma_unmap_single(tx_ring->dev, 4443 dma_unmap_addr(tx_buf, dma), 4444 dma_unmap_len(tx_buf, len), 4445 DMA_TO_DEVICE); 4446 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4447 kfree(tx_buf->raw_buf); 4448 4449 tx_buf->raw_buf = NULL; 4450 tx_buf->tx_flags = 0; 4451 tx_buf->next_to_watch = NULL; 4452 dma_unmap_len_set(tx_buf, len, 0); 4453 tx_desc->buffer_addr = 0; 4454 tx_desc->cmd_type_offset_bsz = 0; 4455 4456 /* move us past the eop_desc for start of next FD desc */ 4457 tx_buf++; 4458 tx_desc++; 4459 i++; 4460 if (unlikely(!i)) { 4461 i -= tx_ring->count; 4462 tx_buf = tx_ring->tx_bi; 4463 tx_desc = I40E_TX_DESC(tx_ring, 0); 4464 } 4465 4466 /* update budget accounting */ 4467 budget--; 4468 } while (likely(budget)); 4469 4470 i += tx_ring->count; 4471 tx_ring->next_to_clean = i; 4472 4473 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4474 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4475 4476 return budget > 0; 4477 } 4478 4479 /** 4480 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4481 * @irq: interrupt number 4482 * @data: pointer to a q_vector 4483 **/ 4484 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4485 { 4486 struct i40e_q_vector *q_vector = data; 4487 struct i40e_vsi *vsi; 4488 4489 if (!q_vector->tx.ring) 4490 return IRQ_HANDLED; 4491 4492 vsi = q_vector->tx.ring->vsi; 4493 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4494 4495 return IRQ_HANDLED; 4496 } 4497 4498 /** 4499 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4500 * @vsi: the VSI being configured 4501 * @v_idx: vector index 4502 * @qp_idx: queue pair index 4503 **/ 4504 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4505 { 4506 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4507 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4508 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4509 4510 tx_ring->q_vector = q_vector; 4511 tx_ring->next = q_vector->tx.ring; 4512 q_vector->tx.ring = tx_ring; 4513 q_vector->tx.count++; 4514 4515 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4516 if (i40e_enabled_xdp_vsi(vsi)) { 4517 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4518 4519 xdp_ring->q_vector = q_vector; 4520 xdp_ring->next = q_vector->tx.ring; 4521 q_vector->tx.ring = xdp_ring; 4522 q_vector->tx.count++; 4523 } 4524 4525 rx_ring->q_vector = q_vector; 4526 rx_ring->next = q_vector->rx.ring; 4527 q_vector->rx.ring = rx_ring; 4528 q_vector->rx.count++; 4529 } 4530 4531 /** 4532 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4533 * @vsi: the VSI being configured 4534 * 4535 * This function maps descriptor rings to the queue-specific vectors 4536 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4537 * one vector per queue pair, but on a constrained vector budget, we 4538 * group the queue pairs as "efficiently" as possible. 4539 **/ 4540 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4541 { 4542 int qp_remaining = vsi->num_queue_pairs; 4543 int q_vectors = vsi->num_q_vectors; 4544 int num_ringpairs; 4545 int v_start = 0; 4546 int qp_idx = 0; 4547 4548 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4549 * group them so there are multiple queues per vector. 4550 * It is also important to go through all the vectors available to be 4551 * sure that if we don't use all the vectors, that the remaining vectors 4552 * are cleared. This is especially important when decreasing the 4553 * number of queues in use. 4554 */ 4555 for (; v_start < q_vectors; v_start++) { 4556 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4557 4558 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4559 4560 q_vector->num_ringpairs = num_ringpairs; 4561 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4562 4563 q_vector->rx.count = 0; 4564 q_vector->tx.count = 0; 4565 q_vector->rx.ring = NULL; 4566 q_vector->tx.ring = NULL; 4567 4568 while (num_ringpairs--) { 4569 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4570 qp_idx++; 4571 qp_remaining--; 4572 } 4573 } 4574 } 4575 4576 /** 4577 * i40e_vsi_request_irq - Request IRQ from the OS 4578 * @vsi: the VSI being configured 4579 * @basename: name for the vector 4580 **/ 4581 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4582 { 4583 struct i40e_pf *pf = vsi->back; 4584 int err; 4585 4586 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4587 err = i40e_vsi_request_irq_msix(vsi, basename); 4588 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4589 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4590 pf->int_name, pf); 4591 else 4592 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4593 pf->int_name, pf); 4594 4595 if (err) 4596 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4597 4598 return err; 4599 } 4600 4601 #ifdef CONFIG_NET_POLL_CONTROLLER 4602 /** 4603 * i40e_netpoll - A Polling 'interrupt' handler 4604 * @netdev: network interface device structure 4605 * 4606 * This is used by netconsole to send skbs without having to re-enable 4607 * interrupts. It's not called while the normal interrupt routine is executing. 4608 **/ 4609 static void i40e_netpoll(struct net_device *netdev) 4610 { 4611 struct i40e_netdev_priv *np = netdev_priv(netdev); 4612 struct i40e_vsi *vsi = np->vsi; 4613 struct i40e_pf *pf = vsi->back; 4614 int i; 4615 4616 /* if interface is down do nothing */ 4617 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4618 return; 4619 4620 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4621 for (i = 0; i < vsi->num_q_vectors; i++) 4622 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4623 } else { 4624 i40e_intr(pf->pdev->irq, netdev); 4625 } 4626 } 4627 #endif 4628 4629 #define I40E_QTX_ENA_WAIT_COUNT 50 4630 4631 /** 4632 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4633 * @pf: the PF being configured 4634 * @pf_q: the PF queue 4635 * @enable: enable or disable state of the queue 4636 * 4637 * This routine will wait for the given Tx queue of the PF to reach the 4638 * enabled or disabled state. 4639 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4640 * multiple retries; else will return 0 in case of success. 4641 **/ 4642 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4643 { 4644 int i; 4645 u32 tx_reg; 4646 4647 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4648 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4649 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4650 break; 4651 4652 usleep_range(10, 20); 4653 } 4654 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4655 return -ETIMEDOUT; 4656 4657 return 0; 4658 } 4659 4660 /** 4661 * i40e_control_tx_q - Start or stop a particular Tx queue 4662 * @pf: the PF structure 4663 * @pf_q: the PF queue to configure 4664 * @enable: start or stop the queue 4665 * 4666 * This function enables or disables a single queue. Note that any delay 4667 * required after the operation is expected to be handled by the caller of 4668 * this function. 4669 **/ 4670 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4671 { 4672 struct i40e_hw *hw = &pf->hw; 4673 u32 tx_reg; 4674 int i; 4675 4676 /* warn the TX unit of coming changes */ 4677 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4678 if (!enable) 4679 usleep_range(10, 20); 4680 4681 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4682 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4683 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4684 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4685 break; 4686 usleep_range(1000, 2000); 4687 } 4688 4689 /* Skip if the queue is already in the requested state */ 4690 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4691 return; 4692 4693 /* turn on/off the queue */ 4694 if (enable) { 4695 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4696 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4697 } else { 4698 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4699 } 4700 4701 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4702 } 4703 4704 /** 4705 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4706 * @seid: VSI SEID 4707 * @pf: the PF structure 4708 * @pf_q: the PF queue to configure 4709 * @is_xdp: true if the queue is used for XDP 4710 * @enable: start or stop the queue 4711 **/ 4712 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4713 bool is_xdp, bool enable) 4714 { 4715 int ret; 4716 4717 i40e_control_tx_q(pf, pf_q, enable); 4718 4719 /* wait for the change to finish */ 4720 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4721 if (ret) { 4722 dev_info(&pf->pdev->dev, 4723 "VSI seid %d %sTx ring %d %sable timeout\n", 4724 seid, (is_xdp ? "XDP " : ""), pf_q, 4725 (enable ? "en" : "dis")); 4726 } 4727 4728 return ret; 4729 } 4730 4731 /** 4732 * i40e_vsi_enable_tx - Start a VSI's rings 4733 * @vsi: the VSI being configured 4734 **/ 4735 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4736 { 4737 struct i40e_pf *pf = vsi->back; 4738 int i, pf_q, ret = 0; 4739 4740 pf_q = vsi->base_queue; 4741 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4742 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4743 pf_q, 4744 false /*is xdp*/, true); 4745 if (ret) 4746 break; 4747 4748 if (!i40e_enabled_xdp_vsi(vsi)) 4749 continue; 4750 4751 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4752 pf_q + vsi->alloc_queue_pairs, 4753 true /*is xdp*/, true); 4754 if (ret) 4755 break; 4756 } 4757 return ret; 4758 } 4759 4760 /** 4761 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4762 * @pf: the PF being configured 4763 * @pf_q: the PF queue 4764 * @enable: enable or disable state of the queue 4765 * 4766 * This routine will wait for the given Rx queue of the PF to reach the 4767 * enabled or disabled state. 4768 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4769 * multiple retries; else will return 0 in case of success. 4770 **/ 4771 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4772 { 4773 int i; 4774 u32 rx_reg; 4775 4776 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4777 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4778 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4779 break; 4780 4781 usleep_range(10, 20); 4782 } 4783 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4784 return -ETIMEDOUT; 4785 4786 return 0; 4787 } 4788 4789 /** 4790 * i40e_control_rx_q - Start or stop a particular Rx queue 4791 * @pf: the PF structure 4792 * @pf_q: the PF queue to configure 4793 * @enable: start or stop the queue 4794 * 4795 * This function enables or disables a single queue. Note that 4796 * any delay required after the operation is expected to be 4797 * handled by the caller of this function. 4798 **/ 4799 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4800 { 4801 struct i40e_hw *hw = &pf->hw; 4802 u32 rx_reg; 4803 int i; 4804 4805 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4806 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4807 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4808 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4809 break; 4810 usleep_range(1000, 2000); 4811 } 4812 4813 /* Skip if the queue is already in the requested state */ 4814 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4815 return; 4816 4817 /* turn on/off the queue */ 4818 if (enable) 4819 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4820 else 4821 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4822 4823 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4824 } 4825 4826 /** 4827 * i40e_control_wait_rx_q 4828 * @pf: the PF structure 4829 * @pf_q: queue being configured 4830 * @enable: start or stop the rings 4831 * 4832 * This function enables or disables a single queue along with waiting 4833 * for the change to finish. The caller of this function should handle 4834 * the delays needed in the case of disabling queues. 4835 **/ 4836 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4837 { 4838 int ret = 0; 4839 4840 i40e_control_rx_q(pf, pf_q, enable); 4841 4842 /* wait for the change to finish */ 4843 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4844 if (ret) 4845 return ret; 4846 4847 return ret; 4848 } 4849 4850 /** 4851 * i40e_vsi_enable_rx - Start a VSI's rings 4852 * @vsi: the VSI being configured 4853 **/ 4854 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4855 { 4856 struct i40e_pf *pf = vsi->back; 4857 int i, pf_q, ret = 0; 4858 4859 pf_q = vsi->base_queue; 4860 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4861 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4862 if (ret) { 4863 dev_info(&pf->pdev->dev, 4864 "VSI seid %d Rx ring %d enable timeout\n", 4865 vsi->seid, pf_q); 4866 break; 4867 } 4868 } 4869 4870 return ret; 4871 } 4872 4873 /** 4874 * i40e_vsi_start_rings - Start a VSI's rings 4875 * @vsi: the VSI being configured 4876 **/ 4877 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4878 { 4879 int ret = 0; 4880 4881 /* do rx first for enable and last for disable */ 4882 ret = i40e_vsi_enable_rx(vsi); 4883 if (ret) 4884 return ret; 4885 ret = i40e_vsi_enable_tx(vsi); 4886 4887 return ret; 4888 } 4889 4890 #define I40E_DISABLE_TX_GAP_MSEC 50 4891 4892 /** 4893 * i40e_vsi_stop_rings - Stop a VSI's rings 4894 * @vsi: the VSI being configured 4895 **/ 4896 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4897 { 4898 struct i40e_pf *pf = vsi->back; 4899 u32 pf_q, tx_q_end, rx_q_end; 4900 4901 /* When port TX is suspended, don't wait */ 4902 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4903 return i40e_vsi_stop_rings_no_wait(vsi); 4904 4905 tx_q_end = vsi->base_queue + 4906 vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 4907 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4908 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false); 4909 4910 rx_q_end = vsi->base_queue + vsi->num_queue_pairs; 4911 for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++) 4912 i40e_control_rx_q(pf, pf_q, false); 4913 4914 msleep(I40E_DISABLE_TX_GAP_MSEC); 4915 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4916 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4917 4918 i40e_vsi_wait_queues_disabled(vsi); 4919 } 4920 4921 /** 4922 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4923 * @vsi: the VSI being shutdown 4924 * 4925 * This function stops all the rings for a VSI but does not delay to verify 4926 * that rings have been disabled. It is expected that the caller is shutting 4927 * down multiple VSIs at once and will delay together for all the VSIs after 4928 * initiating the shutdown. This is particularly useful for shutting down lots 4929 * of VFs together. Otherwise, a large delay can be incurred while configuring 4930 * each VSI in serial. 4931 **/ 4932 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4933 { 4934 struct i40e_pf *pf = vsi->back; 4935 int i, pf_q; 4936 4937 pf_q = vsi->base_queue; 4938 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4939 i40e_control_tx_q(pf, pf_q, false); 4940 i40e_control_rx_q(pf, pf_q, false); 4941 } 4942 } 4943 4944 /** 4945 * i40e_vsi_free_irq - Free the irq association with the OS 4946 * @vsi: the VSI being configured 4947 **/ 4948 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4949 { 4950 struct i40e_pf *pf = vsi->back; 4951 struct i40e_hw *hw = &pf->hw; 4952 int base = vsi->base_vector; 4953 u32 val, qp; 4954 int i; 4955 4956 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4957 if (!vsi->q_vectors) 4958 return; 4959 4960 if (!vsi->irqs_ready) 4961 return; 4962 4963 vsi->irqs_ready = false; 4964 for (i = 0; i < vsi->num_q_vectors; i++) { 4965 int irq_num; 4966 u16 vector; 4967 4968 vector = i + base; 4969 irq_num = pf->msix_entries[vector].vector; 4970 4971 /* free only the irqs that were actually requested */ 4972 if (!vsi->q_vectors[i] || 4973 !vsi->q_vectors[i]->num_ringpairs) 4974 continue; 4975 4976 /* clear the affinity notifier in the IRQ descriptor */ 4977 irq_set_affinity_notifier(irq_num, NULL); 4978 /* remove our suggested affinity mask for this IRQ */ 4979 irq_update_affinity_hint(irq_num, NULL); 4980 free_irq(irq_num, vsi->q_vectors[i]); 4981 4982 /* Tear down the interrupt queue link list 4983 * 4984 * We know that they come in pairs and always 4985 * the Rx first, then the Tx. To clear the 4986 * link list, stick the EOL value into the 4987 * next_q field of the registers. 4988 */ 4989 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4990 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, 4991 val); 4992 val |= I40E_QUEUE_END_OF_LIST 4993 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4994 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4995 4996 while (qp != I40E_QUEUE_END_OF_LIST) { 4997 u32 next; 4998 4999 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5000 5001 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5002 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5003 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5004 I40E_QINT_RQCTL_INTEVENT_MASK); 5005 5006 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5007 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5008 5009 wr32(hw, I40E_QINT_RQCTL(qp), val); 5010 5011 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5012 5013 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK, 5014 val); 5015 5016 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5017 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5018 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5019 I40E_QINT_TQCTL_INTEVENT_MASK); 5020 5021 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5022 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5023 5024 wr32(hw, I40E_QINT_TQCTL(qp), val); 5025 qp = next; 5026 } 5027 } 5028 } else { 5029 free_irq(pf->pdev->irq, pf); 5030 5031 val = rd32(hw, I40E_PFINT_LNKLST0); 5032 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val); 5033 val |= I40E_QUEUE_END_OF_LIST 5034 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5035 wr32(hw, I40E_PFINT_LNKLST0, val); 5036 5037 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5038 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5039 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5040 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5041 I40E_QINT_RQCTL_INTEVENT_MASK); 5042 5043 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5044 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5045 5046 wr32(hw, I40E_QINT_RQCTL(qp), val); 5047 5048 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5049 5050 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5051 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5052 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5053 I40E_QINT_TQCTL_INTEVENT_MASK); 5054 5055 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5056 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5057 5058 wr32(hw, I40E_QINT_TQCTL(qp), val); 5059 } 5060 } 5061 5062 /** 5063 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5064 * @vsi: the VSI being configured 5065 * @v_idx: Index of vector to be freed 5066 * 5067 * This function frees the memory allocated to the q_vector. In addition if 5068 * NAPI is enabled it will delete any references to the NAPI struct prior 5069 * to freeing the q_vector. 5070 **/ 5071 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5072 { 5073 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5074 struct i40e_ring *ring; 5075 5076 if (!q_vector) 5077 return; 5078 5079 /* disassociate q_vector from rings */ 5080 i40e_for_each_ring(ring, q_vector->tx) 5081 ring->q_vector = NULL; 5082 5083 i40e_for_each_ring(ring, q_vector->rx) 5084 ring->q_vector = NULL; 5085 5086 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5087 if (vsi->netdev) 5088 netif_napi_del(&q_vector->napi); 5089 5090 vsi->q_vectors[v_idx] = NULL; 5091 5092 kfree_rcu(q_vector, rcu); 5093 } 5094 5095 /** 5096 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5097 * @vsi: the VSI being un-configured 5098 * 5099 * This frees the memory allocated to the q_vectors and 5100 * deletes references to the NAPI struct. 5101 **/ 5102 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5103 { 5104 int v_idx; 5105 5106 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5107 i40e_free_q_vector(vsi, v_idx); 5108 } 5109 5110 /** 5111 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5112 * @pf: board private structure 5113 **/ 5114 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5115 { 5116 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5117 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5118 pci_disable_msix(pf->pdev); 5119 kfree(pf->msix_entries); 5120 pf->msix_entries = NULL; 5121 kfree(pf->irq_pile); 5122 pf->irq_pile = NULL; 5123 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5124 pci_disable_msi(pf->pdev); 5125 } 5126 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5127 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5128 } 5129 5130 /** 5131 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5132 * @pf: board private structure 5133 * 5134 * We go through and clear interrupt specific resources and reset the structure 5135 * to pre-load conditions 5136 **/ 5137 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5138 { 5139 struct i40e_vsi *vsi; 5140 int i; 5141 5142 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5143 i40e_free_misc_vector(pf); 5144 5145 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5146 I40E_IWARP_IRQ_PILE_ID); 5147 5148 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5149 5150 i40e_pf_for_each_vsi(pf, i, vsi) 5151 i40e_vsi_free_q_vectors(vsi); 5152 5153 i40e_reset_interrupt_capability(pf); 5154 } 5155 5156 /** 5157 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5158 * @vsi: the VSI being configured 5159 **/ 5160 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5161 { 5162 int q_idx; 5163 5164 if (!vsi->netdev) 5165 return; 5166 5167 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5168 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5169 5170 if (q_vector->rx.ring || q_vector->tx.ring) 5171 napi_enable(&q_vector->napi); 5172 } 5173 } 5174 5175 /** 5176 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5177 * @vsi: the VSI being configured 5178 **/ 5179 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5180 { 5181 int q_idx; 5182 5183 if (!vsi->netdev) 5184 return; 5185 5186 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5187 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5188 5189 if (q_vector->rx.ring || q_vector->tx.ring) 5190 napi_disable(&q_vector->napi); 5191 } 5192 } 5193 5194 /** 5195 * i40e_vsi_close - Shut down a VSI 5196 * @vsi: the vsi to be quelled 5197 **/ 5198 static void i40e_vsi_close(struct i40e_vsi *vsi) 5199 { 5200 struct i40e_pf *pf = vsi->back; 5201 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5202 i40e_down(vsi); 5203 i40e_vsi_free_irq(vsi); 5204 i40e_vsi_free_tx_resources(vsi); 5205 i40e_vsi_free_rx_resources(vsi); 5206 vsi->current_netdev_flags = 0; 5207 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5208 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5209 set_bit(__I40E_CLIENT_RESET, pf->state); 5210 } 5211 5212 /** 5213 * i40e_quiesce_vsi - Pause a given VSI 5214 * @vsi: the VSI being paused 5215 **/ 5216 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5217 { 5218 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5219 return; 5220 5221 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5222 if (vsi->netdev && netif_running(vsi->netdev)) 5223 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5224 else 5225 i40e_vsi_close(vsi); 5226 } 5227 5228 /** 5229 * i40e_unquiesce_vsi - Resume a given VSI 5230 * @vsi: the VSI being resumed 5231 **/ 5232 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5233 { 5234 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5235 return; 5236 5237 if (vsi->netdev && netif_running(vsi->netdev)) 5238 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5239 else 5240 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5241 } 5242 5243 /** 5244 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5245 * @pf: the PF 5246 **/ 5247 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5248 { 5249 struct i40e_vsi *vsi; 5250 int v; 5251 5252 i40e_pf_for_each_vsi(pf, v, vsi) 5253 i40e_quiesce_vsi(vsi); 5254 } 5255 5256 /** 5257 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5258 * @pf: the PF 5259 **/ 5260 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5261 { 5262 struct i40e_vsi *vsi; 5263 int v; 5264 5265 i40e_pf_for_each_vsi(pf, v, vsi) 5266 i40e_unquiesce_vsi(vsi); 5267 } 5268 5269 /** 5270 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5271 * @vsi: the VSI being configured 5272 * 5273 * Wait until all queues on a given VSI have been disabled. 5274 **/ 5275 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5276 { 5277 struct i40e_pf *pf = vsi->back; 5278 int i, pf_q, ret; 5279 5280 pf_q = vsi->base_queue; 5281 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5282 /* Check and wait for the Tx queue */ 5283 ret = i40e_pf_txq_wait(pf, pf_q, false); 5284 if (ret) { 5285 dev_info(&pf->pdev->dev, 5286 "VSI seid %d Tx ring %d disable timeout\n", 5287 vsi->seid, pf_q); 5288 return ret; 5289 } 5290 5291 if (!i40e_enabled_xdp_vsi(vsi)) 5292 goto wait_rx; 5293 5294 /* Check and wait for the XDP Tx queue */ 5295 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5296 false); 5297 if (ret) { 5298 dev_info(&pf->pdev->dev, 5299 "VSI seid %d XDP Tx ring %d disable timeout\n", 5300 vsi->seid, pf_q); 5301 return ret; 5302 } 5303 wait_rx: 5304 /* Check and wait for the Rx queue */ 5305 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5306 if (ret) { 5307 dev_info(&pf->pdev->dev, 5308 "VSI seid %d Rx ring %d disable timeout\n", 5309 vsi->seid, pf_q); 5310 return ret; 5311 } 5312 } 5313 5314 return 0; 5315 } 5316 5317 #ifdef CONFIG_I40E_DCB 5318 /** 5319 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5320 * @pf: the PF 5321 * 5322 * This function waits for the queues to be in disabled state for all the 5323 * VSIs that are managed by this PF. 5324 **/ 5325 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5326 { 5327 struct i40e_vsi *vsi; 5328 int v, ret = 0; 5329 5330 i40e_pf_for_each_vsi(pf, v, vsi) { 5331 ret = i40e_vsi_wait_queues_disabled(vsi); 5332 if (ret) 5333 break; 5334 } 5335 5336 return ret; 5337 } 5338 5339 #endif 5340 5341 /** 5342 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5343 * @pf: pointer to PF 5344 * 5345 * Get TC map for ISCSI PF type that will include iSCSI TC 5346 * and LAN TC. 5347 **/ 5348 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5349 { 5350 struct i40e_dcb_app_priority_table app; 5351 struct i40e_hw *hw = &pf->hw; 5352 u8 enabled_tc = 1; /* TC0 is always enabled */ 5353 u8 tc, i; 5354 /* Get the iSCSI APP TLV */ 5355 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5356 5357 for (i = 0; i < dcbcfg->numapps; i++) { 5358 app = dcbcfg->app[i]; 5359 if (app.selector == I40E_APP_SEL_TCPIP && 5360 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5361 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5362 enabled_tc |= BIT(tc); 5363 break; 5364 } 5365 } 5366 5367 return enabled_tc; 5368 } 5369 5370 /** 5371 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5372 * @dcbcfg: the corresponding DCBx configuration structure 5373 * 5374 * Return the number of TCs from given DCBx configuration 5375 **/ 5376 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5377 { 5378 int i, tc_unused = 0; 5379 u8 num_tc = 0; 5380 u8 ret = 0; 5381 5382 /* Scan the ETS Config Priority Table to find 5383 * traffic class enabled for a given priority 5384 * and create a bitmask of enabled TCs 5385 */ 5386 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5387 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5388 5389 /* Now scan the bitmask to check for 5390 * contiguous TCs starting with TC0 5391 */ 5392 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5393 if (num_tc & BIT(i)) { 5394 if (!tc_unused) { 5395 ret++; 5396 } else { 5397 pr_err("Non-contiguous TC - Disabling DCB\n"); 5398 return 1; 5399 } 5400 } else { 5401 tc_unused = 1; 5402 } 5403 } 5404 5405 /* There is always at least TC0 */ 5406 if (!ret) 5407 ret = 1; 5408 5409 return ret; 5410 } 5411 5412 /** 5413 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5414 * @dcbcfg: the corresponding DCBx configuration structure 5415 * 5416 * Query the current DCB configuration and return the number of 5417 * traffic classes enabled from the given DCBX config 5418 **/ 5419 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5420 { 5421 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5422 u8 enabled_tc = 1; 5423 u8 i; 5424 5425 for (i = 0; i < num_tc; i++) 5426 enabled_tc |= BIT(i); 5427 5428 return enabled_tc; 5429 } 5430 5431 /** 5432 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5433 * @pf: PF being queried 5434 * 5435 * Query the current MQPRIO configuration and return the number of 5436 * traffic classes enabled. 5437 **/ 5438 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5439 { 5440 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5441 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5442 u8 enabled_tc = 1, i; 5443 5444 for (i = 1; i < num_tc; i++) 5445 enabled_tc |= BIT(i); 5446 return enabled_tc; 5447 } 5448 5449 /** 5450 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5451 * @pf: PF being queried 5452 * 5453 * Return number of traffic classes enabled for the given PF 5454 **/ 5455 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5456 { 5457 u8 i, enabled_tc = 1; 5458 u8 num_tc = 0; 5459 5460 if (i40e_is_tc_mqprio_enabled(pf)) { 5461 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5462 5463 return vsi->mqprio_qopt.qopt.num_tc; 5464 } 5465 5466 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5467 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5468 return 1; 5469 5470 /* SFP mode will be enabled for all TCs on port */ 5471 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5472 return i40e_dcb_get_num_tc(&pf->hw.local_dcbx_config); 5473 5474 /* MFP mode return count of enabled TCs for this PF */ 5475 if (pf->hw.func_caps.iscsi) 5476 enabled_tc = i40e_get_iscsi_tc_map(pf); 5477 else 5478 return 1; /* Only TC0 */ 5479 5480 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5481 if (enabled_tc & BIT(i)) 5482 num_tc++; 5483 } 5484 return num_tc; 5485 } 5486 5487 /** 5488 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5489 * @pf: PF being queried 5490 * 5491 * Return a bitmap for enabled traffic classes for this PF. 5492 **/ 5493 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5494 { 5495 if (i40e_is_tc_mqprio_enabled(pf)) 5496 return i40e_mqprio_get_enabled_tc(pf); 5497 5498 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5499 * default TC 5500 */ 5501 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5502 return I40E_DEFAULT_TRAFFIC_CLASS; 5503 5504 /* SFP mode we want PF to be enabled for all TCs */ 5505 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5506 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5507 5508 /* MFP enabled and iSCSI PF type */ 5509 if (pf->hw.func_caps.iscsi) 5510 return i40e_get_iscsi_tc_map(pf); 5511 else 5512 return I40E_DEFAULT_TRAFFIC_CLASS; 5513 } 5514 5515 /** 5516 * i40e_vsi_get_bw_info - Query VSI BW Information 5517 * @vsi: the VSI being queried 5518 * 5519 * Returns 0 on success, negative value on failure 5520 **/ 5521 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5522 { 5523 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5524 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5525 struct i40e_pf *pf = vsi->back; 5526 struct i40e_hw *hw = &pf->hw; 5527 u32 tc_bw_max; 5528 int ret; 5529 int i; 5530 5531 /* Get the VSI level BW configuration */ 5532 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5533 if (ret) { 5534 dev_info(&pf->pdev->dev, 5535 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5536 ERR_PTR(ret), 5537 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5538 return -EINVAL; 5539 } 5540 5541 /* Get the VSI level BW configuration per TC */ 5542 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5543 NULL); 5544 if (ret) { 5545 dev_info(&pf->pdev->dev, 5546 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5547 ERR_PTR(ret), 5548 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5549 return -EINVAL; 5550 } 5551 5552 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5553 dev_info(&pf->pdev->dev, 5554 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5555 bw_config.tc_valid_bits, 5556 bw_ets_config.tc_valid_bits); 5557 /* Still continuing */ 5558 } 5559 5560 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5561 vsi->bw_max_quanta = bw_config.max_bw; 5562 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5563 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5564 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5565 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5566 vsi->bw_ets_limit_credits[i] = 5567 le16_to_cpu(bw_ets_config.credits[i]); 5568 /* 3 bits out of 4 for each TC */ 5569 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5570 } 5571 5572 return 0; 5573 } 5574 5575 /** 5576 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5577 * @vsi: the VSI being configured 5578 * @enabled_tc: TC bitmap 5579 * @bw_share: BW shared credits per TC 5580 * 5581 * Returns 0 on success, negative value on failure 5582 **/ 5583 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5584 u8 *bw_share) 5585 { 5586 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5587 struct i40e_pf *pf = vsi->back; 5588 int ret; 5589 int i; 5590 5591 /* There is no need to reset BW when mqprio mode is on. */ 5592 if (i40e_is_tc_mqprio_enabled(pf)) 5593 return 0; 5594 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5595 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5596 if (ret) 5597 dev_info(&pf->pdev->dev, 5598 "Failed to reset tx rate for vsi->seid %u\n", 5599 vsi->seid); 5600 return ret; 5601 } 5602 memset(&bw_data, 0, sizeof(bw_data)); 5603 bw_data.tc_valid_bits = enabled_tc; 5604 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5605 bw_data.tc_bw_credits[i] = bw_share[i]; 5606 5607 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5608 if (ret) { 5609 dev_info(&pf->pdev->dev, 5610 "AQ command Config VSI BW allocation per TC failed = %d\n", 5611 pf->hw.aq.asq_last_status); 5612 return -EINVAL; 5613 } 5614 5615 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5616 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5617 5618 return 0; 5619 } 5620 5621 /** 5622 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5623 * @vsi: the VSI being configured 5624 * @enabled_tc: TC map to be enabled 5625 * 5626 **/ 5627 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5628 { 5629 struct net_device *netdev = vsi->netdev; 5630 struct i40e_pf *pf = vsi->back; 5631 struct i40e_hw *hw = &pf->hw; 5632 u8 netdev_tc = 0; 5633 int i; 5634 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5635 5636 if (!netdev) 5637 return; 5638 5639 if (!enabled_tc) { 5640 netdev_reset_tc(netdev); 5641 return; 5642 } 5643 5644 /* Set up actual enabled TCs on the VSI */ 5645 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5646 return; 5647 5648 /* set per TC queues for the VSI */ 5649 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5650 /* Only set TC queues for enabled tcs 5651 * 5652 * e.g. For a VSI that has TC0 and TC3 enabled the 5653 * enabled_tc bitmap would be 0x00001001; the driver 5654 * will set the numtc for netdev as 2 that will be 5655 * referenced by the netdev layer as TC 0 and 1. 5656 */ 5657 if (vsi->tc_config.enabled_tc & BIT(i)) 5658 netdev_set_tc_queue(netdev, 5659 vsi->tc_config.tc_info[i].netdev_tc, 5660 vsi->tc_config.tc_info[i].qcount, 5661 vsi->tc_config.tc_info[i].qoffset); 5662 } 5663 5664 if (i40e_is_tc_mqprio_enabled(pf)) 5665 return; 5666 5667 /* Assign UP2TC map for the VSI */ 5668 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5669 /* Get the actual TC# for the UP */ 5670 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5671 /* Get the mapped netdev TC# for the UP */ 5672 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5673 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5674 } 5675 } 5676 5677 /** 5678 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5679 * @vsi: the VSI being configured 5680 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5681 **/ 5682 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5683 struct i40e_vsi_context *ctxt) 5684 { 5685 /* copy just the sections touched not the entire info 5686 * since not all sections are valid as returned by 5687 * update vsi params 5688 */ 5689 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5690 memcpy(&vsi->info.queue_mapping, 5691 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5692 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5693 sizeof(vsi->info.tc_mapping)); 5694 } 5695 5696 /** 5697 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5698 * @vsi: the VSI being reconfigured 5699 * @vsi_offset: offset from main VF VSI 5700 */ 5701 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5702 { 5703 struct i40e_vsi_context ctxt = {}; 5704 struct i40e_pf *pf; 5705 struct i40e_hw *hw; 5706 int ret; 5707 5708 if (!vsi) 5709 return -EINVAL; 5710 pf = vsi->back; 5711 hw = &pf->hw; 5712 5713 ctxt.seid = vsi->seid; 5714 ctxt.pf_num = hw->pf_id; 5715 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5716 ctxt.uplink_seid = vsi->uplink_seid; 5717 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5718 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5719 ctxt.info = vsi->info; 5720 5721 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5722 false); 5723 if (vsi->reconfig_rss) { 5724 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5725 vsi->num_queue_pairs); 5726 ret = i40e_vsi_config_rss(vsi); 5727 if (ret) { 5728 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5729 return ret; 5730 } 5731 vsi->reconfig_rss = false; 5732 } 5733 5734 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5735 if (ret) { 5736 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5737 ERR_PTR(ret), 5738 i40e_aq_str(hw, hw->aq.asq_last_status)); 5739 return ret; 5740 } 5741 /* update the local VSI info with updated queue map */ 5742 i40e_vsi_update_queue_map(vsi, &ctxt); 5743 vsi->info.valid_sections = 0; 5744 5745 return ret; 5746 } 5747 5748 /** 5749 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5750 * @vsi: VSI to be configured 5751 * @enabled_tc: TC bitmap 5752 * 5753 * This configures a particular VSI for TCs that are mapped to the 5754 * given TC bitmap. It uses default bandwidth share for TCs across 5755 * VSIs to configure TC for a particular VSI. 5756 * 5757 * NOTE: 5758 * It is expected that the VSI queues have been quisced before calling 5759 * this function. 5760 **/ 5761 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5762 { 5763 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5764 struct i40e_pf *pf = vsi->back; 5765 struct i40e_hw *hw = &pf->hw; 5766 struct i40e_vsi_context ctxt; 5767 int ret = 0; 5768 int i; 5769 5770 /* Check if enabled_tc is same as existing or new TCs */ 5771 if (vsi->tc_config.enabled_tc == enabled_tc && 5772 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5773 return ret; 5774 5775 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5776 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5777 if (enabled_tc & BIT(i)) 5778 bw_share[i] = 1; 5779 } 5780 5781 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5782 if (ret) { 5783 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5784 5785 dev_info(&pf->pdev->dev, 5786 "Failed configuring TC map %d for VSI %d\n", 5787 enabled_tc, vsi->seid); 5788 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5789 &bw_config, NULL); 5790 if (ret) { 5791 dev_info(&pf->pdev->dev, 5792 "Failed querying vsi bw info, err %pe aq_err %s\n", 5793 ERR_PTR(ret), 5794 i40e_aq_str(hw, hw->aq.asq_last_status)); 5795 goto out; 5796 } 5797 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5798 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5799 5800 if (!valid_tc) 5801 valid_tc = bw_config.tc_valid_bits; 5802 /* Always enable TC0, no matter what */ 5803 valid_tc |= 1; 5804 dev_info(&pf->pdev->dev, 5805 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5806 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5807 enabled_tc = valid_tc; 5808 } 5809 5810 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5811 if (ret) { 5812 dev_err(&pf->pdev->dev, 5813 "Unable to configure TC map %d for VSI %d\n", 5814 enabled_tc, vsi->seid); 5815 goto out; 5816 } 5817 } 5818 5819 /* Update Queue Pairs Mapping for currently enabled UPs */ 5820 ctxt.seid = vsi->seid; 5821 ctxt.pf_num = vsi->back->hw.pf_id; 5822 ctxt.vf_num = 0; 5823 ctxt.uplink_seid = vsi->uplink_seid; 5824 ctxt.info = vsi->info; 5825 if (i40e_is_tc_mqprio_enabled(pf)) { 5826 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5827 if (ret) 5828 goto out; 5829 } else { 5830 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5831 } 5832 5833 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5834 * queues changed. 5835 */ 5836 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5837 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5838 vsi->num_queue_pairs); 5839 ret = i40e_vsi_config_rss(vsi); 5840 if (ret) { 5841 dev_info(&vsi->back->pdev->dev, 5842 "Failed to reconfig rss for num_queues\n"); 5843 return ret; 5844 } 5845 vsi->reconfig_rss = false; 5846 } 5847 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5848 ctxt.info.valid_sections |= 5849 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5850 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5851 } 5852 5853 /* Update the VSI after updating the VSI queue-mapping 5854 * information 5855 */ 5856 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5857 if (ret) { 5858 dev_info(&pf->pdev->dev, 5859 "Update vsi tc config failed, err %pe aq_err %s\n", 5860 ERR_PTR(ret), 5861 i40e_aq_str(hw, hw->aq.asq_last_status)); 5862 goto out; 5863 } 5864 /* update the local VSI info with updated queue map */ 5865 i40e_vsi_update_queue_map(vsi, &ctxt); 5866 vsi->info.valid_sections = 0; 5867 5868 /* Update current VSI BW information */ 5869 ret = i40e_vsi_get_bw_info(vsi); 5870 if (ret) { 5871 dev_info(&pf->pdev->dev, 5872 "Failed updating vsi bw info, err %pe aq_err %s\n", 5873 ERR_PTR(ret), 5874 i40e_aq_str(hw, hw->aq.asq_last_status)); 5875 goto out; 5876 } 5877 5878 /* Update the netdev TC setup */ 5879 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5880 out: 5881 return ret; 5882 } 5883 5884 /** 5885 * i40e_vsi_reconfig_tc - Reconfigure VSI Tx Scheduler for stored TC map 5886 * @vsi: VSI to be reconfigured 5887 * 5888 * This reconfigures a particular VSI for TCs that are mapped to the 5889 * TC bitmap stored previously for the VSI. 5890 * 5891 * Context: It is expected that the VSI queues have been quisced before 5892 * calling this function. 5893 * 5894 * Return: 0 on success, negative value on failure 5895 **/ 5896 static int i40e_vsi_reconfig_tc(struct i40e_vsi *vsi) 5897 { 5898 u8 enabled_tc; 5899 5900 enabled_tc = vsi->tc_config.enabled_tc; 5901 vsi->tc_config.enabled_tc = 0; 5902 5903 return i40e_vsi_config_tc(vsi, enabled_tc); 5904 } 5905 5906 /** 5907 * i40e_get_link_speed - Returns link speed for the interface 5908 * @vsi: VSI to be configured 5909 * 5910 **/ 5911 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5912 { 5913 struct i40e_pf *pf = vsi->back; 5914 5915 switch (pf->hw.phy.link_info.link_speed) { 5916 case I40E_LINK_SPEED_40GB: 5917 return 40000; 5918 case I40E_LINK_SPEED_25GB: 5919 return 25000; 5920 case I40E_LINK_SPEED_20GB: 5921 return 20000; 5922 case I40E_LINK_SPEED_10GB: 5923 return 10000; 5924 case I40E_LINK_SPEED_1GB: 5925 return 1000; 5926 default: 5927 return -EINVAL; 5928 } 5929 } 5930 5931 /** 5932 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5933 * @vsi: Pointer to vsi structure 5934 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5935 * 5936 * Helper function to convert units before send to set BW limit 5937 **/ 5938 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5939 { 5940 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5941 dev_warn(&vsi->back->pdev->dev, 5942 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5943 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5944 } else { 5945 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5946 } 5947 5948 return max_tx_rate; 5949 } 5950 5951 /** 5952 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5953 * @vsi: VSI to be configured 5954 * @seid: seid of the channel/VSI 5955 * @max_tx_rate: max TX rate to be configured as BW limit 5956 * 5957 * Helper function to set BW limit for a given VSI 5958 **/ 5959 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5960 { 5961 struct i40e_pf *pf = vsi->back; 5962 u64 credits = 0; 5963 int speed = 0; 5964 int ret = 0; 5965 5966 speed = i40e_get_link_speed(vsi); 5967 if (max_tx_rate > speed) { 5968 dev_err(&pf->pdev->dev, 5969 "Invalid max tx rate %llu specified for VSI seid %d.", 5970 max_tx_rate, seid); 5971 return -EINVAL; 5972 } 5973 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 5974 dev_warn(&pf->pdev->dev, 5975 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5976 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5977 } 5978 5979 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5980 credits = max_tx_rate; 5981 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5982 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5983 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5984 if (ret) 5985 dev_err(&pf->pdev->dev, 5986 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 5987 max_tx_rate, seid, ERR_PTR(ret), 5988 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5989 return ret; 5990 } 5991 5992 /** 5993 * i40e_remove_queue_channels - Remove queue channels for the TCs 5994 * @vsi: VSI to be configured 5995 * 5996 * Remove queue channels for the TCs 5997 **/ 5998 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5999 { 6000 enum i40e_admin_queue_err last_aq_status; 6001 struct i40e_cloud_filter *cfilter; 6002 struct i40e_channel *ch, *ch_tmp; 6003 struct i40e_pf *pf = vsi->back; 6004 struct hlist_node *node; 6005 int ret, i; 6006 6007 /* Reset rss size that was stored when reconfiguring rss for 6008 * channel VSIs with non-power-of-2 queue count. 6009 */ 6010 vsi->current_rss_size = 0; 6011 6012 /* perform cleanup for channels if they exist */ 6013 if (list_empty(&vsi->ch_list)) 6014 return; 6015 6016 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6017 struct i40e_vsi *p_vsi; 6018 6019 list_del(&ch->list); 6020 p_vsi = ch->parent_vsi; 6021 if (!p_vsi || !ch->initialized) { 6022 kfree(ch); 6023 continue; 6024 } 6025 /* Reset queue contexts */ 6026 for (i = 0; i < ch->num_queue_pairs; i++) { 6027 struct i40e_ring *tx_ring, *rx_ring; 6028 u16 pf_q; 6029 6030 pf_q = ch->base_queue + i; 6031 tx_ring = vsi->tx_rings[pf_q]; 6032 tx_ring->ch = NULL; 6033 6034 rx_ring = vsi->rx_rings[pf_q]; 6035 rx_ring->ch = NULL; 6036 } 6037 6038 /* Reset BW configured for this VSI via mqprio */ 6039 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6040 if (ret) 6041 dev_info(&vsi->back->pdev->dev, 6042 "Failed to reset tx rate for ch->seid %u\n", 6043 ch->seid); 6044 6045 /* delete cloud filters associated with this channel */ 6046 hlist_for_each_entry_safe(cfilter, node, 6047 &pf->cloud_filter_list, cloud_node) { 6048 if (cfilter->seid != ch->seid) 6049 continue; 6050 6051 hash_del(&cfilter->cloud_node); 6052 if (cfilter->dst_port) 6053 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6054 cfilter, 6055 false); 6056 else 6057 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6058 false); 6059 last_aq_status = pf->hw.aq.asq_last_status; 6060 if (ret) 6061 dev_info(&pf->pdev->dev, 6062 "Failed to delete cloud filter, err %pe aq_err %s\n", 6063 ERR_PTR(ret), 6064 i40e_aq_str(&pf->hw, last_aq_status)); 6065 kfree(cfilter); 6066 } 6067 6068 /* delete VSI from FW */ 6069 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6070 NULL); 6071 if (ret) 6072 dev_err(&vsi->back->pdev->dev, 6073 "unable to remove channel (%d) for parent VSI(%d)\n", 6074 ch->seid, p_vsi->seid); 6075 kfree(ch); 6076 } 6077 INIT_LIST_HEAD(&vsi->ch_list); 6078 } 6079 6080 /** 6081 * i40e_get_max_queues_for_channel 6082 * @vsi: ptr to VSI to which channels are associated with 6083 * 6084 * Helper function which returns max value among the queue counts set on the 6085 * channels/TCs created. 6086 **/ 6087 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6088 { 6089 struct i40e_channel *ch, *ch_tmp; 6090 int max = 0; 6091 6092 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6093 if (!ch->initialized) 6094 continue; 6095 if (ch->num_queue_pairs > max) 6096 max = ch->num_queue_pairs; 6097 } 6098 6099 return max; 6100 } 6101 6102 /** 6103 * i40e_validate_num_queues - validate num_queues w.r.t channel 6104 * @pf: ptr to PF device 6105 * @num_queues: number of queues 6106 * @vsi: the parent VSI 6107 * @reconfig_rss: indicates should the RSS be reconfigured or not 6108 * 6109 * This function validates number of queues in the context of new channel 6110 * which is being established and determines if RSS should be reconfigured 6111 * or not for parent VSI. 6112 **/ 6113 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6114 struct i40e_vsi *vsi, bool *reconfig_rss) 6115 { 6116 int max_ch_queues; 6117 6118 if (!reconfig_rss) 6119 return -EINVAL; 6120 6121 *reconfig_rss = false; 6122 if (vsi->current_rss_size) { 6123 if (num_queues > vsi->current_rss_size) { 6124 dev_dbg(&pf->pdev->dev, 6125 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6126 num_queues, vsi->current_rss_size); 6127 return -EINVAL; 6128 } else if ((num_queues < vsi->current_rss_size) && 6129 (!is_power_of_2(num_queues))) { 6130 dev_dbg(&pf->pdev->dev, 6131 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6132 num_queues, vsi->current_rss_size); 6133 return -EINVAL; 6134 } 6135 } 6136 6137 if (!is_power_of_2(num_queues)) { 6138 /* Find the max num_queues configured for channel if channel 6139 * exist. 6140 * if channel exist, then enforce 'num_queues' to be more than 6141 * max ever queues configured for channel. 6142 */ 6143 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6144 if (num_queues < max_ch_queues) { 6145 dev_dbg(&pf->pdev->dev, 6146 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6147 num_queues, max_ch_queues); 6148 return -EINVAL; 6149 } 6150 *reconfig_rss = true; 6151 } 6152 6153 return 0; 6154 } 6155 6156 /** 6157 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6158 * @vsi: the VSI being setup 6159 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6160 * 6161 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6162 **/ 6163 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6164 { 6165 struct i40e_pf *pf = vsi->back; 6166 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6167 struct i40e_hw *hw = &pf->hw; 6168 int local_rss_size; 6169 u8 *lut; 6170 int ret; 6171 6172 if (!vsi->rss_size) 6173 return -EINVAL; 6174 6175 if (rss_size > vsi->rss_size) 6176 return -EINVAL; 6177 6178 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6179 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6180 if (!lut) 6181 return -ENOMEM; 6182 6183 /* Ignoring user configured lut if there is one */ 6184 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6185 6186 /* Use user configured hash key if there is one, otherwise 6187 * use default. 6188 */ 6189 if (vsi->rss_hkey_user) 6190 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6191 else 6192 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6193 6194 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6195 if (ret) { 6196 dev_info(&pf->pdev->dev, 6197 "Cannot set RSS lut, err %pe aq_err %s\n", 6198 ERR_PTR(ret), 6199 i40e_aq_str(hw, hw->aq.asq_last_status)); 6200 kfree(lut); 6201 return ret; 6202 } 6203 kfree(lut); 6204 6205 /* Do the update w.r.t. storing rss_size */ 6206 if (!vsi->orig_rss_size) 6207 vsi->orig_rss_size = vsi->rss_size; 6208 vsi->current_rss_size = local_rss_size; 6209 6210 return ret; 6211 } 6212 6213 /** 6214 * i40e_channel_setup_queue_map - Setup a channel queue map 6215 * @pf: ptr to PF device 6216 * @ctxt: VSI context structure 6217 * @ch: ptr to channel structure 6218 * 6219 * Setup queue map for a specific channel 6220 **/ 6221 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6222 struct i40e_vsi_context *ctxt, 6223 struct i40e_channel *ch) 6224 { 6225 u16 qcount, qmap, sections = 0; 6226 u8 offset = 0; 6227 int pow; 6228 6229 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6230 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6231 6232 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6233 ch->num_queue_pairs = qcount; 6234 6235 /* find the next higher power-of-2 of num queue pairs */ 6236 pow = ilog2(qcount); 6237 if (!is_power_of_2(qcount)) 6238 pow++; 6239 6240 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6241 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6242 6243 /* Setup queue TC[0].qmap for given VSI context */ 6244 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6245 6246 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6247 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6248 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6249 ctxt->info.valid_sections |= cpu_to_le16(sections); 6250 } 6251 6252 /** 6253 * i40e_add_channel - add a channel by adding VSI 6254 * @pf: ptr to PF device 6255 * @uplink_seid: underlying HW switching element (VEB) ID 6256 * @ch: ptr to channel structure 6257 * 6258 * Add a channel (VSI) using add_vsi and queue_map 6259 **/ 6260 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6261 struct i40e_channel *ch) 6262 { 6263 struct i40e_hw *hw = &pf->hw; 6264 struct i40e_vsi_context ctxt; 6265 u8 enabled_tc = 0x1; /* TC0 enabled */ 6266 int ret; 6267 6268 if (ch->type != I40E_VSI_VMDQ2) { 6269 dev_info(&pf->pdev->dev, 6270 "add new vsi failed, ch->type %d\n", ch->type); 6271 return -EINVAL; 6272 } 6273 6274 memset(&ctxt, 0, sizeof(ctxt)); 6275 ctxt.pf_num = hw->pf_id; 6276 ctxt.vf_num = 0; 6277 ctxt.uplink_seid = uplink_seid; 6278 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6279 if (ch->type == I40E_VSI_VMDQ2) 6280 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6281 6282 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6283 ctxt.info.valid_sections |= 6284 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6285 ctxt.info.switch_id = 6286 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6287 } 6288 6289 /* Set queue map for a given VSI context */ 6290 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6291 6292 /* Now time to create VSI */ 6293 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6294 if (ret) { 6295 dev_info(&pf->pdev->dev, 6296 "add new vsi failed, err %pe aq_err %s\n", 6297 ERR_PTR(ret), 6298 i40e_aq_str(&pf->hw, 6299 pf->hw.aq.asq_last_status)); 6300 return -ENOENT; 6301 } 6302 6303 /* Success, update channel, set enabled_tc only if the channel 6304 * is not a macvlan 6305 */ 6306 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6307 ch->seid = ctxt.seid; 6308 ch->vsi_number = ctxt.vsi_number; 6309 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6310 6311 /* copy just the sections touched not the entire info 6312 * since not all sections are valid as returned by 6313 * update vsi params 6314 */ 6315 ch->info.mapping_flags = ctxt.info.mapping_flags; 6316 memcpy(&ch->info.queue_mapping, 6317 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6318 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6319 sizeof(ctxt.info.tc_mapping)); 6320 6321 return 0; 6322 } 6323 6324 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6325 u8 *bw_share) 6326 { 6327 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6328 int ret; 6329 int i; 6330 6331 memset(&bw_data, 0, sizeof(bw_data)); 6332 bw_data.tc_valid_bits = ch->enabled_tc; 6333 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6334 bw_data.tc_bw_credits[i] = bw_share[i]; 6335 6336 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6337 &bw_data, NULL); 6338 if (ret) { 6339 dev_info(&vsi->back->pdev->dev, 6340 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6341 vsi->back->hw.aq.asq_last_status, ch->seid); 6342 return -EINVAL; 6343 } 6344 6345 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6346 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6347 6348 return 0; 6349 } 6350 6351 /** 6352 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6353 * @pf: ptr to PF device 6354 * @vsi: the VSI being setup 6355 * @ch: ptr to channel structure 6356 * 6357 * Configure TX rings associated with channel (VSI) since queues are being 6358 * from parent VSI. 6359 **/ 6360 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6361 struct i40e_vsi *vsi, 6362 struct i40e_channel *ch) 6363 { 6364 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6365 int ret; 6366 int i; 6367 6368 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6369 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6370 if (ch->enabled_tc & BIT(i)) 6371 bw_share[i] = 1; 6372 } 6373 6374 /* configure BW for new VSI */ 6375 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6376 if (ret) { 6377 dev_info(&vsi->back->pdev->dev, 6378 "Failed configuring TC map %d for channel (seid %u)\n", 6379 ch->enabled_tc, ch->seid); 6380 return ret; 6381 } 6382 6383 for (i = 0; i < ch->num_queue_pairs; i++) { 6384 struct i40e_ring *tx_ring, *rx_ring; 6385 u16 pf_q; 6386 6387 pf_q = ch->base_queue + i; 6388 6389 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6390 * context 6391 */ 6392 tx_ring = vsi->tx_rings[pf_q]; 6393 tx_ring->ch = ch; 6394 6395 /* Get the RX ring ptr */ 6396 rx_ring = vsi->rx_rings[pf_q]; 6397 rx_ring->ch = ch; 6398 } 6399 6400 return 0; 6401 } 6402 6403 /** 6404 * i40e_setup_hw_channel - setup new channel 6405 * @pf: ptr to PF device 6406 * @vsi: the VSI being setup 6407 * @ch: ptr to channel structure 6408 * @uplink_seid: underlying HW switching element (VEB) ID 6409 * @type: type of channel to be created (VMDq2/VF) 6410 * 6411 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6412 * and configures TX rings accordingly 6413 **/ 6414 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6415 struct i40e_vsi *vsi, 6416 struct i40e_channel *ch, 6417 u16 uplink_seid, u8 type) 6418 { 6419 int ret; 6420 6421 ch->initialized = false; 6422 ch->base_queue = vsi->next_base_queue; 6423 ch->type = type; 6424 6425 /* Proceed with creation of channel (VMDq2) VSI */ 6426 ret = i40e_add_channel(pf, uplink_seid, ch); 6427 if (ret) { 6428 dev_info(&pf->pdev->dev, 6429 "failed to add_channel using uplink_seid %u\n", 6430 uplink_seid); 6431 return ret; 6432 } 6433 6434 /* Mark the successful creation of channel */ 6435 ch->initialized = true; 6436 6437 /* Reconfigure TX queues using QTX_CTL register */ 6438 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6439 if (ret) { 6440 dev_info(&pf->pdev->dev, 6441 "failed to configure TX rings for channel %u\n", 6442 ch->seid); 6443 return ret; 6444 } 6445 6446 /* update 'next_base_queue' */ 6447 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6448 dev_dbg(&pf->pdev->dev, 6449 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6450 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6451 ch->num_queue_pairs, 6452 vsi->next_base_queue); 6453 return ret; 6454 } 6455 6456 /** 6457 * i40e_setup_channel - setup new channel using uplink element 6458 * @pf: ptr to PF device 6459 * @vsi: pointer to the VSI to set up the channel within 6460 * @ch: ptr to channel structure 6461 * 6462 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6463 * and uplink switching element (uplink_seid) 6464 **/ 6465 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6466 struct i40e_channel *ch) 6467 { 6468 struct i40e_vsi *main_vsi; 6469 u8 vsi_type; 6470 u16 seid; 6471 int ret; 6472 6473 if (vsi->type == I40E_VSI_MAIN) { 6474 vsi_type = I40E_VSI_VMDQ2; 6475 } else { 6476 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6477 vsi->type); 6478 return false; 6479 } 6480 6481 /* underlying switching element */ 6482 main_vsi = i40e_pf_get_main_vsi(pf); 6483 seid = main_vsi->uplink_seid; 6484 6485 /* create channel (VSI), configure TX rings */ 6486 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6487 if (ret) { 6488 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6489 return false; 6490 } 6491 6492 return ch->initialized ? true : false; 6493 } 6494 6495 /** 6496 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6497 * @vsi: ptr to VSI which has PF backing 6498 * 6499 * Sets up switch mode correctly if it needs to be changed and perform 6500 * what are allowed modes. 6501 **/ 6502 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6503 { 6504 u8 mode; 6505 struct i40e_pf *pf = vsi->back; 6506 struct i40e_hw *hw = &pf->hw; 6507 int ret; 6508 6509 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6510 if (ret) 6511 return -EINVAL; 6512 6513 if (hw->dev_caps.switch_mode) { 6514 /* if switch mode is set, support mode2 (non-tunneled for 6515 * cloud filter) for now 6516 */ 6517 u32 switch_mode = hw->dev_caps.switch_mode & 6518 I40E_SWITCH_MODE_MASK; 6519 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6520 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6521 return 0; 6522 dev_err(&pf->pdev->dev, 6523 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6524 hw->dev_caps.switch_mode); 6525 return -EINVAL; 6526 } 6527 } 6528 6529 /* Set Bit 7 to be valid */ 6530 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6531 6532 /* Set L4type for TCP support */ 6533 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6534 6535 /* Set cloud filter mode */ 6536 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6537 6538 /* Prep mode field for set_switch_config */ 6539 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6540 pf->last_sw_conf_valid_flags, 6541 mode, NULL); 6542 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6543 dev_err(&pf->pdev->dev, 6544 "couldn't set switch config bits, err %pe aq_err %s\n", 6545 ERR_PTR(ret), 6546 i40e_aq_str(hw, 6547 hw->aq.asq_last_status)); 6548 6549 return ret; 6550 } 6551 6552 /** 6553 * i40e_create_queue_channel - function to create channel 6554 * @vsi: VSI to be configured 6555 * @ch: ptr to channel (it contains channel specific params) 6556 * 6557 * This function creates channel (VSI) using num_queues specified by user, 6558 * reconfigs RSS if needed. 6559 **/ 6560 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6561 struct i40e_channel *ch) 6562 { 6563 struct i40e_pf *pf = vsi->back; 6564 bool reconfig_rss; 6565 int err; 6566 6567 if (!ch) 6568 return -EINVAL; 6569 6570 if (!ch->num_queue_pairs) { 6571 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6572 ch->num_queue_pairs); 6573 return -EINVAL; 6574 } 6575 6576 /* validate user requested num_queues for channel */ 6577 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6578 &reconfig_rss); 6579 if (err) { 6580 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6581 ch->num_queue_pairs); 6582 return -EINVAL; 6583 } 6584 6585 /* By default we are in VEPA mode, if this is the first VF/VMDq 6586 * VSI to be added switch to VEB mode. 6587 */ 6588 6589 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6590 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6591 6592 if (vsi->type == I40E_VSI_MAIN) { 6593 if (i40e_is_tc_mqprio_enabled(pf)) 6594 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6595 else 6596 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6597 } 6598 /* now onwards for main VSI, number of queues will be value 6599 * of TC0's queue count 6600 */ 6601 } 6602 6603 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6604 * it should be more than num_queues 6605 */ 6606 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6607 dev_dbg(&pf->pdev->dev, 6608 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6609 vsi->cnt_q_avail, ch->num_queue_pairs); 6610 return -EINVAL; 6611 } 6612 6613 /* reconfig_rss only if vsi type is MAIN_VSI */ 6614 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6615 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6616 if (err) { 6617 dev_info(&pf->pdev->dev, 6618 "Error: unable to reconfig rss for num_queues (%u)\n", 6619 ch->num_queue_pairs); 6620 return -EINVAL; 6621 } 6622 } 6623 6624 if (!i40e_setup_channel(pf, vsi, ch)) { 6625 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6626 return -EINVAL; 6627 } 6628 6629 dev_info(&pf->pdev->dev, 6630 "Setup channel (id:%u) utilizing num_queues %d\n", 6631 ch->seid, ch->num_queue_pairs); 6632 6633 /* configure VSI for BW limit */ 6634 if (ch->max_tx_rate) { 6635 u64 credits = ch->max_tx_rate; 6636 6637 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6638 return -EINVAL; 6639 6640 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6641 dev_dbg(&pf->pdev->dev, 6642 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6643 ch->max_tx_rate, 6644 credits, 6645 ch->seid); 6646 } 6647 6648 /* in case of VF, this will be main SRIOV VSI */ 6649 ch->parent_vsi = vsi; 6650 6651 /* and update main_vsi's count for queue_available to use */ 6652 vsi->cnt_q_avail -= ch->num_queue_pairs; 6653 6654 return 0; 6655 } 6656 6657 /** 6658 * i40e_configure_queue_channels - Add queue channel for the given TCs 6659 * @vsi: VSI to be configured 6660 * 6661 * Configures queue channel mapping to the given TCs 6662 **/ 6663 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6664 { 6665 struct i40e_channel *ch; 6666 u64 max_rate = 0; 6667 int ret = 0, i; 6668 6669 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6670 vsi->tc_seid_map[0] = vsi->seid; 6671 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6672 if (vsi->tc_config.enabled_tc & BIT(i)) { 6673 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6674 if (!ch) { 6675 ret = -ENOMEM; 6676 goto err_free; 6677 } 6678 6679 INIT_LIST_HEAD(&ch->list); 6680 ch->num_queue_pairs = 6681 vsi->tc_config.tc_info[i].qcount; 6682 ch->base_queue = 6683 vsi->tc_config.tc_info[i].qoffset; 6684 6685 /* Bandwidth limit through tc interface is in bytes/s, 6686 * change to Mbit/s 6687 */ 6688 max_rate = vsi->mqprio_qopt.max_rate[i]; 6689 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6690 ch->max_tx_rate = max_rate; 6691 6692 list_add_tail(&ch->list, &vsi->ch_list); 6693 6694 ret = i40e_create_queue_channel(vsi, ch); 6695 if (ret) { 6696 dev_err(&vsi->back->pdev->dev, 6697 "Failed creating queue channel with TC%d: queues %d\n", 6698 i, ch->num_queue_pairs); 6699 goto err_free; 6700 } 6701 vsi->tc_seid_map[i] = ch->seid; 6702 } 6703 } 6704 6705 /* reset to reconfigure TX queue contexts */ 6706 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6707 return ret; 6708 6709 err_free: 6710 i40e_remove_queue_channels(vsi); 6711 return ret; 6712 } 6713 6714 /** 6715 * i40e_veb_config_tc - Configure TCs for given VEB 6716 * @veb: given VEB 6717 * @enabled_tc: TC bitmap 6718 * 6719 * Configures given TC bitmap for VEB (switching) element 6720 **/ 6721 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6722 { 6723 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6724 struct i40e_pf *pf = veb->pf; 6725 int ret = 0; 6726 int i; 6727 6728 /* No TCs or already enabled TCs just return */ 6729 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6730 return ret; 6731 6732 bw_data.tc_valid_bits = enabled_tc; 6733 /* bw_data.absolute_credits is not set (relative) */ 6734 6735 /* Enable ETS TCs with equal BW Share for now */ 6736 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6737 if (enabled_tc & BIT(i)) 6738 bw_data.tc_bw_share_credits[i] = 1; 6739 } 6740 6741 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6742 &bw_data, NULL); 6743 if (ret) { 6744 dev_info(&pf->pdev->dev, 6745 "VEB bw config failed, err %pe aq_err %s\n", 6746 ERR_PTR(ret), 6747 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6748 goto out; 6749 } 6750 6751 /* Update the BW information */ 6752 ret = i40e_veb_get_bw_info(veb); 6753 if (ret) { 6754 dev_info(&pf->pdev->dev, 6755 "Failed getting veb bw config, err %pe aq_err %s\n", 6756 ERR_PTR(ret), 6757 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6758 } 6759 6760 out: 6761 return ret; 6762 } 6763 6764 #ifdef CONFIG_I40E_DCB 6765 /** 6766 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6767 * @pf: PF struct 6768 * 6769 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6770 * the caller would've quiesce all the VSIs before calling 6771 * this function 6772 **/ 6773 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6774 { 6775 struct i40e_vsi *vsi; 6776 struct i40e_veb *veb; 6777 u8 tc_map = 0; 6778 int ret; 6779 int v; 6780 6781 /* Enable the TCs available on PF to all VEBs */ 6782 tc_map = i40e_pf_get_tc_map(pf); 6783 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6784 return; 6785 6786 i40e_pf_for_each_veb(pf, v, veb) { 6787 ret = i40e_veb_config_tc(veb, tc_map); 6788 if (ret) { 6789 dev_info(&pf->pdev->dev, 6790 "Failed configuring TC for VEB seid=%d\n", 6791 veb->seid); 6792 /* Will try to configure as many components */ 6793 } 6794 } 6795 6796 /* Update each VSI */ 6797 i40e_pf_for_each_vsi(pf, v, vsi) { 6798 /* - Enable all TCs for the LAN VSI 6799 * - For all others keep them at TC0 for now 6800 */ 6801 if (vsi->type == I40E_VSI_MAIN) 6802 tc_map = i40e_pf_get_tc_map(pf); 6803 else 6804 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6805 6806 ret = i40e_vsi_config_tc(vsi, tc_map); 6807 if (ret) { 6808 dev_info(&pf->pdev->dev, 6809 "Failed configuring TC for VSI seid=%d\n", 6810 vsi->seid); 6811 /* Will try to configure as many components */ 6812 } else { 6813 /* Re-configure VSI vectors based on updated TC map */ 6814 i40e_vsi_map_rings_to_vectors(vsi); 6815 if (vsi->netdev) 6816 i40e_dcbnl_set_all(vsi); 6817 } 6818 } 6819 } 6820 6821 /** 6822 * i40e_resume_port_tx - Resume port Tx 6823 * @pf: PF struct 6824 * 6825 * Resume a port's Tx and issue a PF reset in case of failure to 6826 * resume. 6827 **/ 6828 static int i40e_resume_port_tx(struct i40e_pf *pf) 6829 { 6830 struct i40e_hw *hw = &pf->hw; 6831 int ret; 6832 6833 ret = i40e_aq_resume_port_tx(hw, NULL); 6834 if (ret) { 6835 dev_info(&pf->pdev->dev, 6836 "Resume Port Tx failed, err %pe aq_err %s\n", 6837 ERR_PTR(ret), 6838 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6839 /* Schedule PF reset to recover */ 6840 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6841 i40e_service_event_schedule(pf); 6842 } 6843 6844 return ret; 6845 } 6846 6847 /** 6848 * i40e_suspend_port_tx - Suspend port Tx 6849 * @pf: PF struct 6850 * 6851 * Suspend a port's Tx and issue a PF reset in case of failure. 6852 **/ 6853 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6854 { 6855 struct i40e_hw *hw = &pf->hw; 6856 int ret; 6857 6858 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6859 if (ret) { 6860 dev_info(&pf->pdev->dev, 6861 "Suspend Port Tx failed, err %pe aq_err %s\n", 6862 ERR_PTR(ret), 6863 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6864 /* Schedule PF reset to recover */ 6865 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6866 i40e_service_event_schedule(pf); 6867 } 6868 6869 return ret; 6870 } 6871 6872 /** 6873 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6874 * @pf: PF being configured 6875 * @new_cfg: New DCBX configuration 6876 * 6877 * Program DCB settings into HW and reconfigure VEB/VSIs on 6878 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6879 **/ 6880 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6881 struct i40e_dcbx_config *new_cfg) 6882 { 6883 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6884 int ret; 6885 6886 /* Check if need reconfiguration */ 6887 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6888 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6889 return 0; 6890 } 6891 6892 /* Config change disable all VSIs */ 6893 i40e_pf_quiesce_all_vsi(pf); 6894 6895 /* Copy the new config to the current config */ 6896 *old_cfg = *new_cfg; 6897 old_cfg->etsrec = old_cfg->etscfg; 6898 ret = i40e_set_dcb_config(&pf->hw); 6899 if (ret) { 6900 dev_info(&pf->pdev->dev, 6901 "Set DCB Config failed, err %pe aq_err %s\n", 6902 ERR_PTR(ret), 6903 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6904 goto out; 6905 } 6906 6907 /* Changes in configuration update VEB/VSI */ 6908 i40e_dcb_reconfigure(pf); 6909 out: 6910 /* In case of reset do not try to resume anything */ 6911 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6912 /* Re-start the VSIs if disabled */ 6913 ret = i40e_resume_port_tx(pf); 6914 /* In case of error no point in resuming VSIs */ 6915 if (ret) 6916 goto err; 6917 i40e_pf_unquiesce_all_vsi(pf); 6918 } 6919 err: 6920 return ret; 6921 } 6922 6923 /** 6924 * i40e_hw_dcb_config - Program new DCBX settings into HW 6925 * @pf: PF being configured 6926 * @new_cfg: New DCBX configuration 6927 * 6928 * Program DCB settings into HW and reconfigure VEB/VSIs on 6929 * given PF 6930 **/ 6931 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6932 { 6933 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6934 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6935 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6936 struct i40e_dcbx_config *old_cfg; 6937 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6938 struct i40e_rx_pb_config pb_cfg; 6939 struct i40e_hw *hw = &pf->hw; 6940 u8 num_ports = hw->num_ports; 6941 bool need_reconfig; 6942 int ret = -EINVAL; 6943 u8 lltc_map = 0; 6944 u8 tc_map = 0; 6945 u8 new_numtc; 6946 u8 i; 6947 6948 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6949 /* Un-pack information to Program ETS HW via shared API 6950 * numtc, tcmap 6951 * LLTC map 6952 * ETS/NON-ETS arbiter mode 6953 * max exponent (credit refills) 6954 * Total number of ports 6955 * PFC priority bit-map 6956 * Priority Table 6957 * BW % per TC 6958 * Arbiter mode between UPs sharing same TC 6959 * TSA table (ETS or non-ETS) 6960 * EEE enabled or not 6961 * MFS TC table 6962 */ 6963 6964 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6965 6966 memset(&ets_data, 0, sizeof(ets_data)); 6967 for (i = 0; i < new_numtc; i++) { 6968 tc_map |= BIT(i); 6969 switch (new_cfg->etscfg.tsatable[i]) { 6970 case I40E_IEEE_TSA_ETS: 6971 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6972 ets_data.tc_bw_share_credits[i] = 6973 new_cfg->etscfg.tcbwtable[i]; 6974 break; 6975 case I40E_IEEE_TSA_STRICT: 6976 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6977 lltc_map |= BIT(i); 6978 ets_data.tc_bw_share_credits[i] = 6979 I40E_DCB_STRICT_PRIO_CREDITS; 6980 break; 6981 default: 6982 /* Invalid TSA type */ 6983 need_reconfig = false; 6984 goto out; 6985 } 6986 } 6987 6988 old_cfg = &hw->local_dcbx_config; 6989 /* Check if need reconfiguration */ 6990 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 6991 6992 /* If needed, enable/disable frame tagging, disable all VSIs 6993 * and suspend port tx 6994 */ 6995 if (need_reconfig) { 6996 /* Enable DCB tagging only when more than one TC */ 6997 if (new_numtc > 1) 6998 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 6999 else 7000 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7001 7002 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7003 /* Reconfiguration needed quiesce all VSIs */ 7004 i40e_pf_quiesce_all_vsi(pf); 7005 ret = i40e_suspend_port_tx(pf); 7006 if (ret) 7007 goto err; 7008 } 7009 7010 /* Configure Port ETS Tx Scheduler */ 7011 ets_data.tc_valid_bits = tc_map; 7012 ets_data.tc_strict_priority_flags = lltc_map; 7013 ret = i40e_aq_config_switch_comp_ets 7014 (hw, pf->mac_seid, &ets_data, 7015 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7016 if (ret) { 7017 dev_info(&pf->pdev->dev, 7018 "Modify Port ETS failed, err %pe aq_err %s\n", 7019 ERR_PTR(ret), 7020 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7021 goto out; 7022 } 7023 7024 /* Configure Rx ETS HW */ 7025 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7026 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7027 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7028 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7029 I40E_DCB_DEFAULT_MAX_EXPONENT, 7030 lltc_map); 7031 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7032 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7033 prio_type); 7034 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7035 new_cfg->etscfg.prioritytable); 7036 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7037 7038 /* Configure Rx Packet Buffers in HW */ 7039 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7040 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 7041 7042 mfs_tc[i] = main_vsi->netdev->mtu; 7043 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7044 } 7045 7046 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7047 false, new_cfg->pfc.pfcenable, 7048 mfs_tc, &pb_cfg); 7049 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7050 7051 /* Update the local Rx Packet buffer config */ 7052 pf->pb_cfg = pb_cfg; 7053 7054 /* Inform the FW about changes to DCB configuration */ 7055 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7056 if (ret) { 7057 dev_info(&pf->pdev->dev, 7058 "DCB Updated failed, err %pe aq_err %s\n", 7059 ERR_PTR(ret), 7060 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7061 goto out; 7062 } 7063 7064 /* Update the port DCBx configuration */ 7065 *old_cfg = *new_cfg; 7066 7067 /* Changes in configuration update VEB/VSI */ 7068 i40e_dcb_reconfigure(pf); 7069 out: 7070 /* Re-start the VSIs if disabled */ 7071 if (need_reconfig) { 7072 ret = i40e_resume_port_tx(pf); 7073 7074 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7075 /* In case of error no point in resuming VSIs */ 7076 if (ret) 7077 goto err; 7078 7079 /* Wait for the PF's queues to be disabled */ 7080 ret = i40e_pf_wait_queues_disabled(pf); 7081 if (ret) { 7082 /* Schedule PF reset to recover */ 7083 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7084 i40e_service_event_schedule(pf); 7085 goto err; 7086 } else { 7087 i40e_pf_unquiesce_all_vsi(pf); 7088 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7089 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7090 } 7091 /* registers are set, lets apply */ 7092 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7093 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7094 } 7095 7096 err: 7097 return ret; 7098 } 7099 7100 /** 7101 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7102 * @pf: PF being queried 7103 * 7104 * Set default DCB configuration in case DCB is to be done in SW. 7105 **/ 7106 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7107 { 7108 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7109 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7110 struct i40e_hw *hw = &pf->hw; 7111 int err; 7112 7113 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7114 /* Update the local cached instance with TC0 ETS */ 7115 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7116 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7117 pf->tmp_cfg.etscfg.maxtcs = 0; 7118 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7119 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7120 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7121 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7122 /* FW needs one App to configure HW */ 7123 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7124 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7125 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7126 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7127 7128 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7129 } 7130 7131 memset(&ets_data, 0, sizeof(ets_data)); 7132 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7133 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7134 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7135 7136 /* Enable ETS on the Physical port */ 7137 err = i40e_aq_config_switch_comp_ets 7138 (hw, pf->mac_seid, &ets_data, 7139 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7140 if (err) { 7141 dev_info(&pf->pdev->dev, 7142 "Enable Port ETS failed, err %pe aq_err %s\n", 7143 ERR_PTR(err), 7144 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7145 err = -ENOENT; 7146 goto out; 7147 } 7148 7149 /* Update the local cached instance with TC0 ETS */ 7150 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7151 dcb_cfg->etscfg.cbs = 0; 7152 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7153 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7154 7155 out: 7156 return err; 7157 } 7158 7159 /** 7160 * i40e_init_pf_dcb - Initialize DCB configuration 7161 * @pf: PF being configured 7162 * 7163 * Query the current DCB configuration and cache it 7164 * in the hardware structure 7165 **/ 7166 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7167 { 7168 struct i40e_hw *hw = &pf->hw; 7169 int err; 7170 7171 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7172 * Also do not enable DCBx if FW LLDP agent is disabled 7173 */ 7174 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7175 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7176 err = -EOPNOTSUPP; 7177 goto out; 7178 } 7179 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7180 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7181 err = i40e_dcb_sw_default_config(pf); 7182 if (err) { 7183 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7184 goto out; 7185 } 7186 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7187 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7188 DCB_CAP_DCBX_VER_IEEE; 7189 /* at init capable but disabled */ 7190 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7191 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7192 goto out; 7193 } 7194 err = i40e_init_dcb(hw, true); 7195 if (!err) { 7196 /* Device/Function is not DCBX capable */ 7197 if ((!hw->func_caps.dcb) || 7198 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7199 dev_info(&pf->pdev->dev, 7200 "DCBX offload is not supported or is disabled for this PF.\n"); 7201 } else { 7202 /* When status is not DISABLED then DCBX in FW */ 7203 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7204 DCB_CAP_DCBX_VER_IEEE; 7205 7206 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7207 /* Enable DCB tagging only when more than one TC 7208 * or explicitly disable if only one TC 7209 */ 7210 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7211 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7212 else 7213 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7214 dev_dbg(&pf->pdev->dev, 7215 "DCBX offload is supported for this PF.\n"); 7216 } 7217 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7218 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7219 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7220 } else { 7221 dev_info(&pf->pdev->dev, 7222 "Query for DCB configuration failed, err %pe aq_err %s\n", 7223 ERR_PTR(err), 7224 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7225 } 7226 7227 out: 7228 return err; 7229 } 7230 #endif /* CONFIG_I40E_DCB */ 7231 7232 static void i40e_print_link_message_eee(struct i40e_vsi *vsi, 7233 const char *speed, const char *fc) 7234 { 7235 struct ethtool_keee kedata; 7236 7237 memzero_explicit(&kedata, sizeof(kedata)); 7238 if (vsi->netdev->ethtool_ops->get_eee) 7239 vsi->netdev->ethtool_ops->get_eee(vsi->netdev, &kedata); 7240 7241 if (!linkmode_empty(kedata.supported)) 7242 netdev_info(vsi->netdev, 7243 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s, EEE: %s\n", 7244 speed, fc, 7245 kedata.eee_enabled ? "Enabled" : "Disabled"); 7246 else 7247 netdev_info(vsi->netdev, 7248 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7249 speed, fc); 7250 } 7251 7252 /** 7253 * i40e_print_link_message - print link up or down 7254 * @vsi: the VSI for which link needs a message 7255 * @isup: true of link is up, false otherwise 7256 */ 7257 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7258 { 7259 enum i40e_aq_link_speed new_speed; 7260 struct i40e_pf *pf = vsi->back; 7261 char *speed = "Unknown"; 7262 char *fc = "Unknown"; 7263 char *fec = ""; 7264 char *req_fec = ""; 7265 char *an = ""; 7266 7267 if (isup) 7268 new_speed = pf->hw.phy.link_info.link_speed; 7269 else 7270 new_speed = I40E_LINK_SPEED_UNKNOWN; 7271 7272 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7273 return; 7274 vsi->current_isup = isup; 7275 vsi->current_speed = new_speed; 7276 if (!isup) { 7277 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7278 return; 7279 } 7280 7281 /* Warn user if link speed on NPAR enabled partition is not at 7282 * least 10GB 7283 */ 7284 if (pf->hw.func_caps.npar_enable && 7285 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7286 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7287 netdev_warn(vsi->netdev, 7288 "The partition detected link speed that is less than 10Gbps\n"); 7289 7290 switch (pf->hw.phy.link_info.link_speed) { 7291 case I40E_LINK_SPEED_40GB: 7292 speed = "40 G"; 7293 break; 7294 case I40E_LINK_SPEED_20GB: 7295 speed = "20 G"; 7296 break; 7297 case I40E_LINK_SPEED_25GB: 7298 speed = "25 G"; 7299 break; 7300 case I40E_LINK_SPEED_10GB: 7301 speed = "10 G"; 7302 break; 7303 case I40E_LINK_SPEED_5GB: 7304 speed = "5 G"; 7305 break; 7306 case I40E_LINK_SPEED_2_5GB: 7307 speed = "2.5 G"; 7308 break; 7309 case I40E_LINK_SPEED_1GB: 7310 speed = "1000 M"; 7311 break; 7312 case I40E_LINK_SPEED_100MB: 7313 speed = "100 M"; 7314 break; 7315 default: 7316 break; 7317 } 7318 7319 switch (pf->hw.fc.current_mode) { 7320 case I40E_FC_FULL: 7321 fc = "RX/TX"; 7322 break; 7323 case I40E_FC_TX_PAUSE: 7324 fc = "TX"; 7325 break; 7326 case I40E_FC_RX_PAUSE: 7327 fc = "RX"; 7328 break; 7329 default: 7330 fc = "None"; 7331 break; 7332 } 7333 7334 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7335 req_fec = "None"; 7336 fec = "None"; 7337 an = "False"; 7338 7339 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7340 an = "True"; 7341 7342 if (pf->hw.phy.link_info.fec_info & 7343 I40E_AQ_CONFIG_FEC_KR_ENA) 7344 fec = "CL74 FC-FEC/BASE-R"; 7345 else if (pf->hw.phy.link_info.fec_info & 7346 I40E_AQ_CONFIG_FEC_RS_ENA) 7347 fec = "CL108 RS-FEC"; 7348 7349 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7350 * both RS and FC are requested 7351 */ 7352 if (vsi->back->hw.phy.link_info.req_fec_info & 7353 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7354 if (vsi->back->hw.phy.link_info.req_fec_info & 7355 I40E_AQ_REQUEST_FEC_RS) 7356 req_fec = "CL108 RS-FEC"; 7357 else 7358 req_fec = "CL74 FC-FEC/BASE-R"; 7359 } 7360 netdev_info(vsi->netdev, 7361 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7362 speed, req_fec, fec, an, fc); 7363 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7364 req_fec = "None"; 7365 fec = "None"; 7366 an = "False"; 7367 7368 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7369 an = "True"; 7370 7371 if (pf->hw.phy.link_info.fec_info & 7372 I40E_AQ_CONFIG_FEC_KR_ENA) 7373 fec = "CL74 FC-FEC/BASE-R"; 7374 7375 if (pf->hw.phy.link_info.req_fec_info & 7376 I40E_AQ_REQUEST_FEC_KR) 7377 req_fec = "CL74 FC-FEC/BASE-R"; 7378 7379 netdev_info(vsi->netdev, 7380 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7381 speed, req_fec, fec, an, fc); 7382 } else { 7383 i40e_print_link_message_eee(vsi, speed, fc); 7384 } 7385 7386 } 7387 7388 /** 7389 * i40e_up_complete - Finish the last steps of bringing up a connection 7390 * @vsi: the VSI being configured 7391 **/ 7392 static int i40e_up_complete(struct i40e_vsi *vsi) 7393 { 7394 struct i40e_pf *pf = vsi->back; 7395 int err; 7396 7397 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7398 i40e_vsi_configure_msix(vsi); 7399 else 7400 i40e_configure_msi_and_legacy(vsi); 7401 7402 /* start rings */ 7403 err = i40e_vsi_start_rings(vsi); 7404 if (err) 7405 return err; 7406 7407 clear_bit(__I40E_VSI_DOWN, vsi->state); 7408 i40e_napi_enable_all(vsi); 7409 i40e_vsi_enable_irq(vsi); 7410 7411 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7412 (vsi->netdev)) { 7413 i40e_print_link_message(vsi, true); 7414 netif_tx_start_all_queues(vsi->netdev); 7415 netif_carrier_on(vsi->netdev); 7416 } 7417 7418 /* replay FDIR SB filters */ 7419 if (vsi->type == I40E_VSI_FDIR) { 7420 /* reset fd counters */ 7421 pf->fd_add_err = 0; 7422 pf->fd_atr_cnt = 0; 7423 i40e_fdir_filter_restore(vsi); 7424 } 7425 7426 /* On the next run of the service_task, notify any clients of the new 7427 * opened netdev 7428 */ 7429 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7430 i40e_service_event_schedule(pf); 7431 7432 return 0; 7433 } 7434 7435 /** 7436 * i40e_vsi_reinit_locked - Reset the VSI 7437 * @vsi: the VSI being configured 7438 * 7439 * Rebuild the ring structs after some configuration 7440 * has changed, e.g. MTU size. 7441 **/ 7442 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7443 { 7444 struct i40e_pf *pf = vsi->back; 7445 7446 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7447 usleep_range(1000, 2000); 7448 i40e_down(vsi); 7449 7450 i40e_up(vsi); 7451 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7452 } 7453 7454 /** 7455 * i40e_force_link_state - Force the link status 7456 * @pf: board private structure 7457 * @is_up: whether the link state should be forced up or down 7458 **/ 7459 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7460 { 7461 struct i40e_aq_get_phy_abilities_resp abilities; 7462 struct i40e_aq_set_phy_config config = {0}; 7463 bool non_zero_phy_type = is_up; 7464 struct i40e_hw *hw = &pf->hw; 7465 u64 mask; 7466 u8 speed; 7467 int err; 7468 7469 /* Card might've been put in an unstable state by other drivers 7470 * and applications, which causes incorrect speed values being 7471 * set on startup. In order to clear speed registers, we call 7472 * get_phy_capabilities twice, once to get initial state of 7473 * available speeds, and once to get current PHY config. 7474 */ 7475 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7476 NULL); 7477 if (err) { 7478 dev_err(&pf->pdev->dev, 7479 "failed to get phy cap., ret = %pe last_status = %s\n", 7480 ERR_PTR(err), 7481 i40e_aq_str(hw, hw->aq.asq_last_status)); 7482 return err; 7483 } 7484 speed = abilities.link_speed; 7485 7486 /* Get the current phy config */ 7487 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7488 NULL); 7489 if (err) { 7490 dev_err(&pf->pdev->dev, 7491 "failed to get phy cap., ret = %pe last_status = %s\n", 7492 ERR_PTR(err), 7493 i40e_aq_str(hw, hw->aq.asq_last_status)); 7494 return err; 7495 } 7496 7497 /* If link needs to go up, but was not forced to go down, 7498 * and its speed values are OK, no need for a flap 7499 * if non_zero_phy_type was set, still need to force up 7500 */ 7501 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7502 non_zero_phy_type = true; 7503 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7504 return 0; 7505 7506 /* To force link we need to set bits for all supported PHY types, 7507 * but there are now more than 32, so we need to split the bitmap 7508 * across two fields. 7509 */ 7510 mask = I40E_PHY_TYPES_BITMASK; 7511 config.phy_type = 7512 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7513 config.phy_type_ext = 7514 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7515 /* Copy the old settings, except of phy_type */ 7516 config.abilities = abilities.abilities; 7517 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7518 if (is_up) 7519 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7520 else 7521 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7522 } 7523 if (abilities.link_speed != 0) 7524 config.link_speed = abilities.link_speed; 7525 else 7526 config.link_speed = speed; 7527 config.eee_capability = abilities.eee_capability; 7528 config.eeer = abilities.eeer_val; 7529 config.low_power_ctrl = abilities.d3_lpan; 7530 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7531 I40E_AQ_PHY_FEC_CONFIG_MASK; 7532 err = i40e_aq_set_phy_config(hw, &config, NULL); 7533 7534 if (err) { 7535 dev_err(&pf->pdev->dev, 7536 "set phy config ret = %pe last_status = %s\n", 7537 ERR_PTR(err), 7538 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7539 return err; 7540 } 7541 7542 /* Update the link info */ 7543 err = i40e_update_link_info(hw); 7544 if (err) { 7545 /* Wait a little bit (on 40G cards it sometimes takes a really 7546 * long time for link to come back from the atomic reset) 7547 * and try once more 7548 */ 7549 msleep(1000); 7550 i40e_update_link_info(hw); 7551 } 7552 7553 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7554 7555 return 0; 7556 } 7557 7558 /** 7559 * i40e_up - Bring the connection back up after being down 7560 * @vsi: the VSI being configured 7561 **/ 7562 int i40e_up(struct i40e_vsi *vsi) 7563 { 7564 int err; 7565 7566 if (vsi->type == I40E_VSI_MAIN && 7567 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7568 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7569 i40e_force_link_state(vsi->back, true); 7570 7571 err = i40e_vsi_configure(vsi); 7572 if (!err) 7573 err = i40e_up_complete(vsi); 7574 7575 return err; 7576 } 7577 7578 /** 7579 * i40e_down - Shutdown the connection processing 7580 * @vsi: the VSI being stopped 7581 **/ 7582 void i40e_down(struct i40e_vsi *vsi) 7583 { 7584 int i; 7585 7586 /* It is assumed that the caller of this function 7587 * sets the vsi->state __I40E_VSI_DOWN bit. 7588 */ 7589 if (vsi->netdev) { 7590 netif_carrier_off(vsi->netdev); 7591 netif_tx_disable(vsi->netdev); 7592 } 7593 i40e_vsi_disable_irq(vsi); 7594 i40e_vsi_stop_rings(vsi); 7595 if (vsi->type == I40E_VSI_MAIN && 7596 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7597 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7598 i40e_force_link_state(vsi->back, false); 7599 i40e_napi_disable_all(vsi); 7600 7601 for (i = 0; i < vsi->num_queue_pairs; i++) { 7602 i40e_clean_tx_ring(vsi->tx_rings[i]); 7603 if (i40e_enabled_xdp_vsi(vsi)) { 7604 /* Make sure that in-progress ndo_xdp_xmit and 7605 * ndo_xsk_wakeup calls are completed. 7606 */ 7607 synchronize_rcu(); 7608 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7609 } 7610 i40e_clean_rx_ring(vsi->rx_rings[i]); 7611 } 7612 7613 } 7614 7615 /** 7616 * i40e_validate_mqprio_qopt- validate queue mapping info 7617 * @vsi: the VSI being configured 7618 * @mqprio_qopt: queue parametrs 7619 **/ 7620 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7621 struct tc_mqprio_qopt_offload *mqprio_qopt) 7622 { 7623 u64 sum_max_rate = 0; 7624 u64 max_rate = 0; 7625 int i; 7626 7627 if (mqprio_qopt->qopt.offset[0] != 0 || 7628 mqprio_qopt->qopt.num_tc < 1 || 7629 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7630 return -EINVAL; 7631 for (i = 0; ; i++) { 7632 if (!mqprio_qopt->qopt.count[i]) 7633 return -EINVAL; 7634 if (mqprio_qopt->min_rate[i]) { 7635 dev_err(&vsi->back->pdev->dev, 7636 "Invalid min tx rate (greater than 0) specified\n"); 7637 return -EINVAL; 7638 } 7639 max_rate = mqprio_qopt->max_rate[i]; 7640 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7641 sum_max_rate += max_rate; 7642 7643 if (i >= mqprio_qopt->qopt.num_tc - 1) 7644 break; 7645 if (mqprio_qopt->qopt.offset[i + 1] != 7646 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7647 return -EINVAL; 7648 } 7649 if (vsi->num_queue_pairs < 7650 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7651 dev_err(&vsi->back->pdev->dev, 7652 "Failed to create traffic channel, insufficient number of queues.\n"); 7653 return -EINVAL; 7654 } 7655 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7656 dev_err(&vsi->back->pdev->dev, 7657 "Invalid max tx rate specified\n"); 7658 return -EINVAL; 7659 } 7660 return 0; 7661 } 7662 7663 /** 7664 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7665 * @vsi: the VSI being configured 7666 **/ 7667 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7668 { 7669 u16 qcount; 7670 int i; 7671 7672 /* Only TC0 is enabled */ 7673 vsi->tc_config.numtc = 1; 7674 vsi->tc_config.enabled_tc = 1; 7675 qcount = min_t(int, vsi->alloc_queue_pairs, 7676 i40e_pf_get_max_q_per_tc(vsi->back)); 7677 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7678 /* For the TC that is not enabled set the offset to default 7679 * queue and allocate one queue for the given TC. 7680 */ 7681 vsi->tc_config.tc_info[i].qoffset = 0; 7682 if (i == 0) 7683 vsi->tc_config.tc_info[i].qcount = qcount; 7684 else 7685 vsi->tc_config.tc_info[i].qcount = 1; 7686 vsi->tc_config.tc_info[i].netdev_tc = 0; 7687 } 7688 } 7689 7690 /** 7691 * i40e_del_macvlan_filter 7692 * @hw: pointer to the HW structure 7693 * @seid: seid of the channel VSI 7694 * @macaddr: the mac address to apply as a filter 7695 * @aq_err: store the admin Q error 7696 * 7697 * This function deletes a mac filter on the channel VSI which serves as the 7698 * macvlan. Returns 0 on success. 7699 **/ 7700 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7701 const u8 *macaddr, int *aq_err) 7702 { 7703 struct i40e_aqc_remove_macvlan_element_data element; 7704 int status; 7705 7706 memset(&element, 0, sizeof(element)); 7707 ether_addr_copy(element.mac_addr, macaddr); 7708 element.vlan_tag = 0; 7709 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7710 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7711 *aq_err = hw->aq.asq_last_status; 7712 7713 return status; 7714 } 7715 7716 /** 7717 * i40e_add_macvlan_filter 7718 * @hw: pointer to the HW structure 7719 * @seid: seid of the channel VSI 7720 * @macaddr: the mac address to apply as a filter 7721 * @aq_err: store the admin Q error 7722 * 7723 * This function adds a mac filter on the channel VSI which serves as the 7724 * macvlan. Returns 0 on success. 7725 **/ 7726 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7727 const u8 *macaddr, int *aq_err) 7728 { 7729 struct i40e_aqc_add_macvlan_element_data element; 7730 u16 cmd_flags = 0; 7731 int status; 7732 7733 ether_addr_copy(element.mac_addr, macaddr); 7734 element.vlan_tag = 0; 7735 element.queue_number = 0; 7736 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7737 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7738 element.flags = cpu_to_le16(cmd_flags); 7739 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7740 *aq_err = hw->aq.asq_last_status; 7741 7742 return status; 7743 } 7744 7745 /** 7746 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7747 * @vsi: the VSI we want to access 7748 * @ch: the channel we want to access 7749 */ 7750 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7751 { 7752 struct i40e_ring *tx_ring, *rx_ring; 7753 u16 pf_q; 7754 int i; 7755 7756 for (i = 0; i < ch->num_queue_pairs; i++) { 7757 pf_q = ch->base_queue + i; 7758 tx_ring = vsi->tx_rings[pf_q]; 7759 tx_ring->ch = NULL; 7760 rx_ring = vsi->rx_rings[pf_q]; 7761 rx_ring->ch = NULL; 7762 } 7763 } 7764 7765 /** 7766 * i40e_free_macvlan_channels 7767 * @vsi: the VSI we want to access 7768 * 7769 * This function frees the Qs of the channel VSI from 7770 * the stack and also deletes the channel VSIs which 7771 * serve as macvlans. 7772 */ 7773 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7774 { 7775 struct i40e_channel *ch, *ch_tmp; 7776 int ret; 7777 7778 if (list_empty(&vsi->macvlan_list)) 7779 return; 7780 7781 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7782 struct i40e_vsi *parent_vsi; 7783 7784 if (i40e_is_channel_macvlan(ch)) { 7785 i40e_reset_ch_rings(vsi, ch); 7786 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7787 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7788 netdev_set_sb_channel(ch->fwd->netdev, 0); 7789 kfree(ch->fwd); 7790 ch->fwd = NULL; 7791 } 7792 7793 list_del(&ch->list); 7794 parent_vsi = ch->parent_vsi; 7795 if (!parent_vsi || !ch->initialized) { 7796 kfree(ch); 7797 continue; 7798 } 7799 7800 /* remove the VSI */ 7801 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7802 NULL); 7803 if (ret) 7804 dev_err(&vsi->back->pdev->dev, 7805 "unable to remove channel (%d) for parent VSI(%d)\n", 7806 ch->seid, parent_vsi->seid); 7807 kfree(ch); 7808 } 7809 vsi->macvlan_cnt = 0; 7810 } 7811 7812 /** 7813 * i40e_fwd_ring_up - bring the macvlan device up 7814 * @vsi: the VSI we want to access 7815 * @vdev: macvlan netdevice 7816 * @fwd: the private fwd structure 7817 */ 7818 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7819 struct i40e_fwd_adapter *fwd) 7820 { 7821 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7822 int ret = 0, num_tc = 1, i, aq_err; 7823 struct i40e_pf *pf = vsi->back; 7824 struct i40e_hw *hw = &pf->hw; 7825 7826 /* Go through the list and find an available channel */ 7827 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7828 if (!i40e_is_channel_macvlan(iter)) { 7829 iter->fwd = fwd; 7830 /* record configuration for macvlan interface in vdev */ 7831 for (i = 0; i < num_tc; i++) 7832 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7833 i, 7834 iter->num_queue_pairs, 7835 iter->base_queue); 7836 for (i = 0; i < iter->num_queue_pairs; i++) { 7837 struct i40e_ring *tx_ring, *rx_ring; 7838 u16 pf_q; 7839 7840 pf_q = iter->base_queue + i; 7841 7842 /* Get to TX ring ptr */ 7843 tx_ring = vsi->tx_rings[pf_q]; 7844 tx_ring->ch = iter; 7845 7846 /* Get the RX ring ptr */ 7847 rx_ring = vsi->rx_rings[pf_q]; 7848 rx_ring->ch = iter; 7849 } 7850 ch = iter; 7851 break; 7852 } 7853 } 7854 7855 if (!ch) 7856 return -EINVAL; 7857 7858 /* Guarantee all rings are updated before we update the 7859 * MAC address filter. 7860 */ 7861 wmb(); 7862 7863 /* Add a mac filter */ 7864 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7865 if (ret) { 7866 /* if we cannot add the MAC rule then disable the offload */ 7867 macvlan_release_l2fw_offload(vdev); 7868 for (i = 0; i < ch->num_queue_pairs; i++) { 7869 struct i40e_ring *rx_ring; 7870 u16 pf_q; 7871 7872 pf_q = ch->base_queue + i; 7873 rx_ring = vsi->rx_rings[pf_q]; 7874 rx_ring->netdev = NULL; 7875 } 7876 dev_info(&pf->pdev->dev, 7877 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7878 ERR_PTR(ret), 7879 i40e_aq_str(hw, aq_err)); 7880 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7881 } 7882 7883 return ret; 7884 } 7885 7886 /** 7887 * i40e_setup_macvlans - create the channels which will be macvlans 7888 * @vsi: the VSI we want to access 7889 * @macvlan_cnt: no. of macvlans to be setup 7890 * @qcnt: no. of Qs per macvlan 7891 * @vdev: macvlan netdevice 7892 */ 7893 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7894 struct net_device *vdev) 7895 { 7896 struct i40e_pf *pf = vsi->back; 7897 struct i40e_hw *hw = &pf->hw; 7898 struct i40e_vsi_context ctxt; 7899 u16 sections, qmap, num_qps; 7900 struct i40e_channel *ch; 7901 int i, pow, ret = 0; 7902 u8 offset = 0; 7903 7904 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7905 return -EINVAL; 7906 7907 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7908 7909 /* find the next higher power-of-2 of num queue pairs */ 7910 pow = fls(roundup_pow_of_two(num_qps) - 1); 7911 7912 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7913 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7914 7915 /* Setup context bits for the main VSI */ 7916 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7917 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7918 memset(&ctxt, 0, sizeof(ctxt)); 7919 ctxt.seid = vsi->seid; 7920 ctxt.pf_num = vsi->back->hw.pf_id; 7921 ctxt.vf_num = 0; 7922 ctxt.uplink_seid = vsi->uplink_seid; 7923 ctxt.info = vsi->info; 7924 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7925 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7926 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7927 ctxt.info.valid_sections |= cpu_to_le16(sections); 7928 7929 /* Reconfigure RSS for main VSI with new max queue count */ 7930 vsi->rss_size = max_t(u16, num_qps, qcnt); 7931 ret = i40e_vsi_config_rss(vsi); 7932 if (ret) { 7933 dev_info(&pf->pdev->dev, 7934 "Failed to reconfig RSS for num_queues (%u)\n", 7935 vsi->rss_size); 7936 return ret; 7937 } 7938 vsi->reconfig_rss = true; 7939 dev_dbg(&vsi->back->pdev->dev, 7940 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7941 vsi->next_base_queue = num_qps; 7942 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7943 7944 /* Update the VSI after updating the VSI queue-mapping 7945 * information 7946 */ 7947 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7948 if (ret) { 7949 dev_info(&pf->pdev->dev, 7950 "Update vsi tc config failed, err %pe aq_err %s\n", 7951 ERR_PTR(ret), 7952 i40e_aq_str(hw, hw->aq.asq_last_status)); 7953 return ret; 7954 } 7955 /* update the local VSI info with updated queue map */ 7956 i40e_vsi_update_queue_map(vsi, &ctxt); 7957 vsi->info.valid_sections = 0; 7958 7959 /* Create channels for macvlans */ 7960 INIT_LIST_HEAD(&vsi->macvlan_list); 7961 for (i = 0; i < macvlan_cnt; i++) { 7962 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7963 if (!ch) { 7964 ret = -ENOMEM; 7965 goto err_free; 7966 } 7967 INIT_LIST_HEAD(&ch->list); 7968 ch->num_queue_pairs = qcnt; 7969 if (!i40e_setup_channel(pf, vsi, ch)) { 7970 ret = -EINVAL; 7971 kfree(ch); 7972 goto err_free; 7973 } 7974 ch->parent_vsi = vsi; 7975 vsi->cnt_q_avail -= ch->num_queue_pairs; 7976 vsi->macvlan_cnt++; 7977 list_add_tail(&ch->list, &vsi->macvlan_list); 7978 } 7979 7980 return ret; 7981 7982 err_free: 7983 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7984 i40e_free_macvlan_channels(vsi); 7985 7986 return ret; 7987 } 7988 7989 /** 7990 * i40e_fwd_add - configure macvlans 7991 * @netdev: net device to configure 7992 * @vdev: macvlan netdevice 7993 **/ 7994 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7995 { 7996 struct i40e_netdev_priv *np = netdev_priv(netdev); 7997 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7998 struct i40e_vsi *vsi = np->vsi; 7999 struct i40e_pf *pf = vsi->back; 8000 struct i40e_fwd_adapter *fwd; 8001 int avail_macvlan, ret; 8002 8003 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8004 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 8005 return ERR_PTR(-EINVAL); 8006 } 8007 if (i40e_is_tc_mqprio_enabled(pf)) { 8008 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 8009 return ERR_PTR(-EINVAL); 8010 } 8011 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 8012 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 8013 return ERR_PTR(-EINVAL); 8014 } 8015 8016 /* The macvlan device has to be a single Q device so that the 8017 * tc_to_txq field can be reused to pick the tx queue. 8018 */ 8019 if (netif_is_multiqueue(vdev)) 8020 return ERR_PTR(-ERANGE); 8021 8022 if (!vsi->macvlan_cnt) { 8023 /* reserve bit 0 for the pf device */ 8024 set_bit(0, vsi->fwd_bitmask); 8025 8026 /* Try to reserve as many queues as possible for macvlans. First 8027 * reserve 3/4th of max vectors, then half, then quarter and 8028 * calculate Qs per macvlan as you go 8029 */ 8030 vectors = pf->num_lan_msix; 8031 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8032 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8033 q_per_macvlan = 4; 8034 macvlan_cnt = (vectors - 32) / 4; 8035 } else if (vectors <= 64 && vectors > 32) { 8036 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8037 q_per_macvlan = 2; 8038 macvlan_cnt = (vectors - 16) / 2; 8039 } else if (vectors <= 32 && vectors > 16) { 8040 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8041 q_per_macvlan = 1; 8042 macvlan_cnt = vectors - 16; 8043 } else if (vectors <= 16 && vectors > 8) { 8044 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8045 q_per_macvlan = 1; 8046 macvlan_cnt = vectors - 8; 8047 } else { 8048 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8049 q_per_macvlan = 1; 8050 macvlan_cnt = vectors - 1; 8051 } 8052 8053 if (macvlan_cnt == 0) 8054 return ERR_PTR(-EBUSY); 8055 8056 /* Quiesce VSI queues */ 8057 i40e_quiesce_vsi(vsi); 8058 8059 /* sets up the macvlans but does not "enable" them */ 8060 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8061 vdev); 8062 if (ret) 8063 return ERR_PTR(ret); 8064 8065 /* Unquiesce VSI */ 8066 i40e_unquiesce_vsi(vsi); 8067 } 8068 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8069 vsi->macvlan_cnt); 8070 if (avail_macvlan >= I40E_MAX_MACVLANS) 8071 return ERR_PTR(-EBUSY); 8072 8073 /* create the fwd struct */ 8074 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8075 if (!fwd) 8076 return ERR_PTR(-ENOMEM); 8077 8078 set_bit(avail_macvlan, vsi->fwd_bitmask); 8079 fwd->bit_no = avail_macvlan; 8080 netdev_set_sb_channel(vdev, avail_macvlan); 8081 fwd->netdev = vdev; 8082 8083 if (!netif_running(netdev)) 8084 return fwd; 8085 8086 /* Set fwd ring up */ 8087 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8088 if (ret) { 8089 /* unbind the queues and drop the subordinate channel config */ 8090 netdev_unbind_sb_channel(netdev, vdev); 8091 netdev_set_sb_channel(vdev, 0); 8092 8093 kfree(fwd); 8094 return ERR_PTR(-EINVAL); 8095 } 8096 8097 return fwd; 8098 } 8099 8100 /** 8101 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8102 * @vsi: the VSI we want to access 8103 */ 8104 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8105 { 8106 struct i40e_channel *ch, *ch_tmp; 8107 struct i40e_pf *pf = vsi->back; 8108 struct i40e_hw *hw = &pf->hw; 8109 int aq_err, ret = 0; 8110 8111 if (list_empty(&vsi->macvlan_list)) 8112 return; 8113 8114 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8115 if (i40e_is_channel_macvlan(ch)) { 8116 ret = i40e_del_macvlan_filter(hw, ch->seid, 8117 i40e_channel_mac(ch), 8118 &aq_err); 8119 if (!ret) { 8120 /* Reset queue contexts */ 8121 i40e_reset_ch_rings(vsi, ch); 8122 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8123 netdev_unbind_sb_channel(vsi->netdev, 8124 ch->fwd->netdev); 8125 netdev_set_sb_channel(ch->fwd->netdev, 0); 8126 kfree(ch->fwd); 8127 ch->fwd = NULL; 8128 } 8129 } 8130 } 8131 } 8132 8133 /** 8134 * i40e_fwd_del - delete macvlan interfaces 8135 * @netdev: net device to configure 8136 * @vdev: macvlan netdevice 8137 */ 8138 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8139 { 8140 struct i40e_netdev_priv *np = netdev_priv(netdev); 8141 struct i40e_fwd_adapter *fwd = vdev; 8142 struct i40e_channel *ch, *ch_tmp; 8143 struct i40e_vsi *vsi = np->vsi; 8144 struct i40e_pf *pf = vsi->back; 8145 struct i40e_hw *hw = &pf->hw; 8146 int aq_err, ret = 0; 8147 8148 /* Find the channel associated with the macvlan and del mac filter */ 8149 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8150 if (i40e_is_channel_macvlan(ch) && 8151 ether_addr_equal(i40e_channel_mac(ch), 8152 fwd->netdev->dev_addr)) { 8153 ret = i40e_del_macvlan_filter(hw, ch->seid, 8154 i40e_channel_mac(ch), 8155 &aq_err); 8156 if (!ret) { 8157 /* Reset queue contexts */ 8158 i40e_reset_ch_rings(vsi, ch); 8159 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8160 netdev_unbind_sb_channel(netdev, fwd->netdev); 8161 netdev_set_sb_channel(fwd->netdev, 0); 8162 kfree(ch->fwd); 8163 ch->fwd = NULL; 8164 } else { 8165 dev_info(&pf->pdev->dev, 8166 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8167 ERR_PTR(ret), 8168 i40e_aq_str(hw, aq_err)); 8169 } 8170 break; 8171 } 8172 } 8173 } 8174 8175 /** 8176 * i40e_setup_tc - configure multiple traffic classes 8177 * @netdev: net device to configure 8178 * @type_data: tc offload data 8179 **/ 8180 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8181 { 8182 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8183 struct i40e_netdev_priv *np = netdev_priv(netdev); 8184 struct i40e_vsi *vsi = np->vsi; 8185 struct i40e_pf *pf = vsi->back; 8186 u8 enabled_tc = 0, num_tc, hw; 8187 bool need_reset = false; 8188 int old_queue_pairs; 8189 int ret = -EINVAL; 8190 u16 mode; 8191 int i; 8192 8193 old_queue_pairs = vsi->num_queue_pairs; 8194 num_tc = mqprio_qopt->qopt.num_tc; 8195 hw = mqprio_qopt->qopt.hw; 8196 mode = mqprio_qopt->mode; 8197 if (!hw) { 8198 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8199 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8200 goto config_tc; 8201 } 8202 8203 /* Check if MFP enabled */ 8204 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8205 netdev_info(netdev, 8206 "Configuring TC not supported in MFP mode\n"); 8207 return ret; 8208 } 8209 switch (mode) { 8210 case TC_MQPRIO_MODE_DCB: 8211 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8212 8213 /* Check if DCB enabled to continue */ 8214 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8215 netdev_info(netdev, 8216 "DCB is not enabled for adapter\n"); 8217 return ret; 8218 } 8219 8220 /* Check whether tc count is within enabled limit */ 8221 if (num_tc > i40e_pf_get_num_tc(pf)) { 8222 netdev_info(netdev, 8223 "TC count greater than enabled on link for adapter\n"); 8224 return ret; 8225 } 8226 break; 8227 case TC_MQPRIO_MODE_CHANNEL: 8228 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8229 netdev_info(netdev, 8230 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8231 return ret; 8232 } 8233 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8234 return ret; 8235 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8236 if (ret) 8237 return ret; 8238 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8239 sizeof(*mqprio_qopt)); 8240 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8241 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8242 break; 8243 default: 8244 return -EINVAL; 8245 } 8246 8247 config_tc: 8248 /* Generate TC map for number of tc requested */ 8249 for (i = 0; i < num_tc; i++) 8250 enabled_tc |= BIT(i); 8251 8252 /* Requesting same TC configuration as already enabled */ 8253 if (enabled_tc == vsi->tc_config.enabled_tc && 8254 mode != TC_MQPRIO_MODE_CHANNEL) 8255 return 0; 8256 8257 /* Quiesce VSI queues */ 8258 i40e_quiesce_vsi(vsi); 8259 8260 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8261 i40e_remove_queue_channels(vsi); 8262 8263 /* Configure VSI for enabled TCs */ 8264 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8265 if (ret) { 8266 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8267 vsi->seid); 8268 need_reset = true; 8269 goto exit; 8270 } else if (enabled_tc && 8271 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8272 netdev_info(netdev, 8273 "Failed to create channel. Override queues (%u) not power of 2\n", 8274 vsi->tc_config.tc_info[0].qcount); 8275 ret = -EINVAL; 8276 need_reset = true; 8277 goto exit; 8278 } 8279 8280 dev_info(&vsi->back->pdev->dev, 8281 "Setup channel (id:%u) utilizing num_queues %d\n", 8282 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8283 8284 if (i40e_is_tc_mqprio_enabled(pf)) { 8285 if (vsi->mqprio_qopt.max_rate[0]) { 8286 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8287 vsi->mqprio_qopt.max_rate[0]); 8288 8289 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8290 if (!ret) { 8291 u64 credits = max_tx_rate; 8292 8293 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8294 dev_dbg(&vsi->back->pdev->dev, 8295 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8296 max_tx_rate, 8297 credits, 8298 vsi->seid); 8299 } else { 8300 need_reset = true; 8301 goto exit; 8302 } 8303 } 8304 ret = i40e_configure_queue_channels(vsi); 8305 if (ret) { 8306 vsi->num_queue_pairs = old_queue_pairs; 8307 netdev_info(netdev, 8308 "Failed configuring queue channels\n"); 8309 need_reset = true; 8310 goto exit; 8311 } 8312 } 8313 8314 exit: 8315 /* Reset the configuration data to defaults, only TC0 is enabled */ 8316 if (need_reset) { 8317 i40e_vsi_set_default_tc_config(vsi); 8318 need_reset = false; 8319 } 8320 8321 /* Unquiesce VSI */ 8322 i40e_unquiesce_vsi(vsi); 8323 return ret; 8324 } 8325 8326 /** 8327 * i40e_set_cld_element - sets cloud filter element data 8328 * @filter: cloud filter rule 8329 * @cld: ptr to cloud filter element data 8330 * 8331 * This is helper function to copy data into cloud filter element 8332 **/ 8333 static inline void 8334 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8335 struct i40e_aqc_cloud_filters_element_data *cld) 8336 { 8337 u32 ipa; 8338 int i; 8339 8340 memset(cld, 0, sizeof(*cld)); 8341 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8342 ether_addr_copy(cld->inner_mac, filter->src_mac); 8343 8344 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8345 return; 8346 8347 if (filter->n_proto == ETH_P_IPV6) { 8348 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8349 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8350 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8351 8352 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8353 } 8354 } else { 8355 ipa = be32_to_cpu(filter->dst_ipv4); 8356 8357 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8358 } 8359 8360 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8361 8362 /* tenant_id is not supported by FW now, once the support is enabled 8363 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8364 */ 8365 if (filter->tenant_id) 8366 return; 8367 } 8368 8369 /** 8370 * i40e_add_del_cloud_filter - Add/del cloud filter 8371 * @vsi: pointer to VSI 8372 * @filter: cloud filter rule 8373 * @add: if true, add, if false, delete 8374 * 8375 * Add or delete a cloud filter for a specific flow spec. 8376 * Returns 0 if the filter were successfully added. 8377 **/ 8378 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8379 struct i40e_cloud_filter *filter, bool add) 8380 { 8381 struct i40e_aqc_cloud_filters_element_data cld_filter; 8382 struct i40e_pf *pf = vsi->back; 8383 int ret; 8384 static const u16 flag_table[128] = { 8385 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8386 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8387 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8388 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8389 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8390 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8391 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8392 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8393 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8394 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8395 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8396 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8397 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8398 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8399 }; 8400 8401 if (filter->flags >= ARRAY_SIZE(flag_table)) 8402 return -EIO; 8403 8404 memset(&cld_filter, 0, sizeof(cld_filter)); 8405 8406 /* copy element needed to add cloud filter from filter */ 8407 i40e_set_cld_element(filter, &cld_filter); 8408 8409 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8410 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8411 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8412 8413 if (filter->n_proto == ETH_P_IPV6) 8414 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8415 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8416 else 8417 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8418 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8419 8420 if (add) 8421 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8422 &cld_filter, 1); 8423 else 8424 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8425 &cld_filter, 1); 8426 if (ret) 8427 dev_dbg(&pf->pdev->dev, 8428 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8429 add ? "add" : "delete", filter->dst_port, ret, 8430 pf->hw.aq.asq_last_status); 8431 else 8432 dev_info(&pf->pdev->dev, 8433 "%s cloud filter for VSI: %d\n", 8434 add ? "Added" : "Deleted", filter->seid); 8435 return ret; 8436 } 8437 8438 /** 8439 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8440 * @vsi: pointer to VSI 8441 * @filter: cloud filter rule 8442 * @add: if true, add, if false, delete 8443 * 8444 * Add or delete a cloud filter for a specific flow spec using big buffer. 8445 * Returns 0 if the filter were successfully added. 8446 **/ 8447 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8448 struct i40e_cloud_filter *filter, 8449 bool add) 8450 { 8451 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8452 struct i40e_pf *pf = vsi->back; 8453 int ret; 8454 8455 /* Both (src/dst) valid mac_addr are not supported */ 8456 if ((is_valid_ether_addr(filter->dst_mac) && 8457 is_valid_ether_addr(filter->src_mac)) || 8458 (is_multicast_ether_addr(filter->dst_mac) && 8459 is_multicast_ether_addr(filter->src_mac))) 8460 return -EOPNOTSUPP; 8461 8462 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8463 * ports are not supported via big buffer now. 8464 */ 8465 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8466 return -EOPNOTSUPP; 8467 8468 /* adding filter using src_port/src_ip is not supported at this stage */ 8469 if (filter->src_port || 8470 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8471 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8472 return -EOPNOTSUPP; 8473 8474 memset(&cld_filter, 0, sizeof(cld_filter)); 8475 8476 /* copy element needed to add cloud filter from filter */ 8477 i40e_set_cld_element(filter, &cld_filter.element); 8478 8479 if (is_valid_ether_addr(filter->dst_mac) || 8480 is_valid_ether_addr(filter->src_mac) || 8481 is_multicast_ether_addr(filter->dst_mac) || 8482 is_multicast_ether_addr(filter->src_mac)) { 8483 /* MAC + IP : unsupported mode */ 8484 if (filter->dst_ipv4) 8485 return -EOPNOTSUPP; 8486 8487 /* since we validated that L4 port must be valid before 8488 * we get here, start with respective "flags" value 8489 * and update if vlan is present or not 8490 */ 8491 cld_filter.element.flags = 8492 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8493 8494 if (filter->vlan_id) { 8495 cld_filter.element.flags = 8496 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8497 } 8498 8499 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8500 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8501 cld_filter.element.flags = 8502 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8503 if (filter->n_proto == ETH_P_IPV6) 8504 cld_filter.element.flags |= 8505 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8506 else 8507 cld_filter.element.flags |= 8508 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8509 } else { 8510 dev_err(&pf->pdev->dev, 8511 "either mac or ip has to be valid for cloud filter\n"); 8512 return -EINVAL; 8513 } 8514 8515 /* Now copy L4 port in Byte 6..7 in general fields */ 8516 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8517 be16_to_cpu(filter->dst_port); 8518 8519 if (add) { 8520 /* Validate current device switch mode, change if necessary */ 8521 ret = i40e_validate_and_set_switch_mode(vsi); 8522 if (ret) { 8523 dev_err(&pf->pdev->dev, 8524 "failed to set switch mode, ret %d\n", 8525 ret); 8526 return ret; 8527 } 8528 8529 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8530 &cld_filter, 1); 8531 } else { 8532 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8533 &cld_filter, 1); 8534 } 8535 8536 if (ret) 8537 dev_dbg(&pf->pdev->dev, 8538 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8539 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8540 else 8541 dev_info(&pf->pdev->dev, 8542 "%s cloud filter for VSI: %d, L4 port: %d\n", 8543 add ? "add" : "delete", filter->seid, 8544 ntohs(filter->dst_port)); 8545 return ret; 8546 } 8547 8548 /** 8549 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8550 * @vsi: Pointer to VSI 8551 * @f: Pointer to struct flow_cls_offload 8552 * @filter: Pointer to cloud filter structure 8553 * 8554 **/ 8555 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8556 struct flow_cls_offload *f, 8557 struct i40e_cloud_filter *filter) 8558 { 8559 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8560 struct flow_dissector *dissector = rule->match.dissector; 8561 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8562 struct i40e_pf *pf = vsi->back; 8563 u8 field_flags = 0; 8564 8565 if (dissector->used_keys & 8566 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8567 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8568 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8569 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8570 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8571 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8572 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8573 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8574 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8575 dissector->used_keys); 8576 return -EOPNOTSUPP; 8577 } 8578 8579 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8580 struct flow_match_enc_keyid match; 8581 8582 flow_rule_match_enc_keyid(rule, &match); 8583 if (match.mask->keyid != 0) 8584 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8585 8586 filter->tenant_id = be32_to_cpu(match.key->keyid); 8587 } 8588 8589 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8590 struct flow_match_basic match; 8591 8592 flow_rule_match_basic(rule, &match); 8593 n_proto_key = ntohs(match.key->n_proto); 8594 n_proto_mask = ntohs(match.mask->n_proto); 8595 8596 if (n_proto_key == ETH_P_ALL) { 8597 n_proto_key = 0; 8598 n_proto_mask = 0; 8599 } 8600 filter->n_proto = n_proto_key & n_proto_mask; 8601 filter->ip_proto = match.key->ip_proto; 8602 } 8603 8604 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8605 struct flow_match_eth_addrs match; 8606 8607 flow_rule_match_eth_addrs(rule, &match); 8608 8609 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8610 if (!is_zero_ether_addr(match.mask->dst)) { 8611 if (is_broadcast_ether_addr(match.mask->dst)) { 8612 field_flags |= I40E_CLOUD_FIELD_OMAC; 8613 } else { 8614 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8615 match.mask->dst); 8616 return -EIO; 8617 } 8618 } 8619 8620 if (!is_zero_ether_addr(match.mask->src)) { 8621 if (is_broadcast_ether_addr(match.mask->src)) { 8622 field_flags |= I40E_CLOUD_FIELD_IMAC; 8623 } else { 8624 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8625 match.mask->src); 8626 return -EIO; 8627 } 8628 } 8629 ether_addr_copy(filter->dst_mac, match.key->dst); 8630 ether_addr_copy(filter->src_mac, match.key->src); 8631 } 8632 8633 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8634 struct flow_match_vlan match; 8635 8636 flow_rule_match_vlan(rule, &match); 8637 if (match.mask->vlan_id) { 8638 if (match.mask->vlan_id == VLAN_VID_MASK) { 8639 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8640 8641 } else { 8642 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8643 match.mask->vlan_id); 8644 return -EIO; 8645 } 8646 } 8647 8648 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8649 } 8650 8651 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8652 struct flow_match_control match; 8653 8654 flow_rule_match_control(rule, &match); 8655 addr_type = match.key->addr_type; 8656 8657 if (flow_rule_has_control_flags(match.mask->flags, 8658 f->common.extack)) 8659 return -EOPNOTSUPP; 8660 } 8661 8662 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8663 struct flow_match_ipv4_addrs match; 8664 8665 flow_rule_match_ipv4_addrs(rule, &match); 8666 if (match.mask->dst) { 8667 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8668 field_flags |= I40E_CLOUD_FIELD_IIP; 8669 } else { 8670 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8671 &match.mask->dst); 8672 return -EIO; 8673 } 8674 } 8675 8676 if (match.mask->src) { 8677 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8678 field_flags |= I40E_CLOUD_FIELD_IIP; 8679 } else { 8680 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8681 &match.mask->src); 8682 return -EIO; 8683 } 8684 } 8685 8686 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8687 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8688 return -EIO; 8689 } 8690 filter->dst_ipv4 = match.key->dst; 8691 filter->src_ipv4 = match.key->src; 8692 } 8693 8694 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8695 struct flow_match_ipv6_addrs match; 8696 8697 flow_rule_match_ipv6_addrs(rule, &match); 8698 8699 /* src and dest IPV6 address should not be LOOPBACK 8700 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8701 */ 8702 if (ipv6_addr_loopback(&match.key->dst) || 8703 ipv6_addr_loopback(&match.key->src)) { 8704 dev_err(&pf->pdev->dev, 8705 "Bad ipv6, addr is LOOPBACK\n"); 8706 return -EIO; 8707 } 8708 if (!ipv6_addr_any(&match.mask->dst) || 8709 !ipv6_addr_any(&match.mask->src)) 8710 field_flags |= I40E_CLOUD_FIELD_IIP; 8711 8712 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8713 sizeof(filter->src_ipv6)); 8714 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8715 sizeof(filter->dst_ipv6)); 8716 } 8717 8718 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8719 struct flow_match_ports match; 8720 8721 flow_rule_match_ports(rule, &match); 8722 if (match.mask->src) { 8723 if (match.mask->src == cpu_to_be16(0xffff)) { 8724 field_flags |= I40E_CLOUD_FIELD_IIP; 8725 } else { 8726 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8727 be16_to_cpu(match.mask->src)); 8728 return -EIO; 8729 } 8730 } 8731 8732 if (match.mask->dst) { 8733 if (match.mask->dst == cpu_to_be16(0xffff)) { 8734 field_flags |= I40E_CLOUD_FIELD_IIP; 8735 } else { 8736 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8737 be16_to_cpu(match.mask->dst)); 8738 return -EIO; 8739 } 8740 } 8741 8742 filter->dst_port = match.key->dst; 8743 filter->src_port = match.key->src; 8744 8745 switch (filter->ip_proto) { 8746 case IPPROTO_TCP: 8747 case IPPROTO_UDP: 8748 break; 8749 default: 8750 dev_err(&pf->pdev->dev, 8751 "Only UDP and TCP transport are supported\n"); 8752 return -EINVAL; 8753 } 8754 } 8755 filter->flags = field_flags; 8756 return 0; 8757 } 8758 8759 /** 8760 * i40e_handle_tclass: Forward to a traffic class on the device 8761 * @vsi: Pointer to VSI 8762 * @tc: traffic class index on the device 8763 * @filter: Pointer to cloud filter structure 8764 * 8765 **/ 8766 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8767 struct i40e_cloud_filter *filter) 8768 { 8769 struct i40e_channel *ch, *ch_tmp; 8770 8771 /* direct to a traffic class on the same device */ 8772 if (tc == 0) { 8773 filter->seid = vsi->seid; 8774 return 0; 8775 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8776 if (!filter->dst_port) { 8777 dev_err(&vsi->back->pdev->dev, 8778 "Specify destination port to direct to traffic class that is not default\n"); 8779 return -EINVAL; 8780 } 8781 if (list_empty(&vsi->ch_list)) 8782 return -EINVAL; 8783 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8784 list) { 8785 if (ch->seid == vsi->tc_seid_map[tc]) 8786 filter->seid = ch->seid; 8787 } 8788 return 0; 8789 } 8790 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8791 return -EINVAL; 8792 } 8793 8794 /** 8795 * i40e_configure_clsflower - Configure tc flower filters 8796 * @vsi: Pointer to VSI 8797 * @cls_flower: Pointer to struct flow_cls_offload 8798 * 8799 **/ 8800 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8801 struct flow_cls_offload *cls_flower) 8802 { 8803 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8804 struct i40e_cloud_filter *filter = NULL; 8805 struct i40e_pf *pf = vsi->back; 8806 int err = 0; 8807 8808 if (tc < 0) { 8809 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8810 return -EOPNOTSUPP; 8811 } 8812 8813 if (!tc) { 8814 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8815 return -EINVAL; 8816 } 8817 8818 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8819 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8820 return -EBUSY; 8821 8822 if (pf->fdir_pf_active_filters || 8823 (!hlist_empty(&pf->fdir_filter_list))) { 8824 dev_err(&vsi->back->pdev->dev, 8825 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8826 return -EINVAL; 8827 } 8828 8829 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8830 dev_err(&vsi->back->pdev->dev, 8831 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8832 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8833 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8834 } 8835 8836 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8837 if (!filter) 8838 return -ENOMEM; 8839 8840 filter->cookie = cls_flower->cookie; 8841 8842 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8843 if (err < 0) 8844 goto err; 8845 8846 err = i40e_handle_tclass(vsi, tc, filter); 8847 if (err < 0) 8848 goto err; 8849 8850 /* Add cloud filter */ 8851 if (filter->dst_port) 8852 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8853 else 8854 err = i40e_add_del_cloud_filter(vsi, filter, true); 8855 8856 if (err) { 8857 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8858 err); 8859 goto err; 8860 } 8861 8862 /* add filter to the ordered list */ 8863 INIT_HLIST_NODE(&filter->cloud_node); 8864 8865 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8866 8867 pf->num_cloud_filters++; 8868 8869 return err; 8870 err: 8871 kfree(filter); 8872 return err; 8873 } 8874 8875 /** 8876 * i40e_find_cloud_filter - Find the could filter in the list 8877 * @vsi: Pointer to VSI 8878 * @cookie: filter specific cookie 8879 * 8880 **/ 8881 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8882 unsigned long *cookie) 8883 { 8884 struct i40e_cloud_filter *filter = NULL; 8885 struct hlist_node *node2; 8886 8887 hlist_for_each_entry_safe(filter, node2, 8888 &vsi->back->cloud_filter_list, cloud_node) 8889 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8890 return filter; 8891 return NULL; 8892 } 8893 8894 /** 8895 * i40e_delete_clsflower - Remove tc flower filters 8896 * @vsi: Pointer to VSI 8897 * @cls_flower: Pointer to struct flow_cls_offload 8898 * 8899 **/ 8900 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8901 struct flow_cls_offload *cls_flower) 8902 { 8903 struct i40e_cloud_filter *filter = NULL; 8904 struct i40e_pf *pf = vsi->back; 8905 int err = 0; 8906 8907 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8908 8909 if (!filter) 8910 return -EINVAL; 8911 8912 hash_del(&filter->cloud_node); 8913 8914 if (filter->dst_port) 8915 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8916 else 8917 err = i40e_add_del_cloud_filter(vsi, filter, false); 8918 8919 kfree(filter); 8920 if (err) { 8921 dev_err(&pf->pdev->dev, 8922 "Failed to delete cloud filter, err %pe\n", 8923 ERR_PTR(err)); 8924 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8925 } 8926 8927 pf->num_cloud_filters--; 8928 if (!pf->num_cloud_filters) 8929 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8930 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8931 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8932 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8933 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8934 } 8935 return 0; 8936 } 8937 8938 /** 8939 * i40e_setup_tc_cls_flower - flower classifier offloads 8940 * @np: net device to configure 8941 * @cls_flower: offload data 8942 **/ 8943 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8944 struct flow_cls_offload *cls_flower) 8945 { 8946 struct i40e_vsi *vsi = np->vsi; 8947 8948 switch (cls_flower->command) { 8949 case FLOW_CLS_REPLACE: 8950 return i40e_configure_clsflower(vsi, cls_flower); 8951 case FLOW_CLS_DESTROY: 8952 return i40e_delete_clsflower(vsi, cls_flower); 8953 case FLOW_CLS_STATS: 8954 return -EOPNOTSUPP; 8955 default: 8956 return -EOPNOTSUPP; 8957 } 8958 } 8959 8960 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8961 void *cb_priv) 8962 { 8963 struct i40e_netdev_priv *np = cb_priv; 8964 8965 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8966 return -EOPNOTSUPP; 8967 8968 switch (type) { 8969 case TC_SETUP_CLSFLOWER: 8970 return i40e_setup_tc_cls_flower(np, type_data); 8971 8972 default: 8973 return -EOPNOTSUPP; 8974 } 8975 } 8976 8977 static LIST_HEAD(i40e_block_cb_list); 8978 8979 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8980 void *type_data) 8981 { 8982 struct i40e_netdev_priv *np = netdev_priv(netdev); 8983 8984 switch (type) { 8985 case TC_SETUP_QDISC_MQPRIO: 8986 return i40e_setup_tc(netdev, type_data); 8987 case TC_SETUP_BLOCK: 8988 return flow_block_cb_setup_simple(type_data, 8989 &i40e_block_cb_list, 8990 i40e_setup_tc_block_cb, 8991 np, np, true); 8992 default: 8993 return -EOPNOTSUPP; 8994 } 8995 } 8996 8997 /** 8998 * i40e_open - Called when a network interface is made active 8999 * @netdev: network interface device structure 9000 * 9001 * The open entry point is called when a network interface is made 9002 * active by the system (IFF_UP). At this point all resources needed 9003 * for transmit and receive operations are allocated, the interrupt 9004 * handler is registered with the OS, the netdev watchdog subtask is 9005 * enabled, and the stack is notified that the interface is ready. 9006 * 9007 * Returns 0 on success, negative value on failure 9008 **/ 9009 int i40e_open(struct net_device *netdev) 9010 { 9011 struct i40e_netdev_priv *np = netdev_priv(netdev); 9012 struct i40e_vsi *vsi = np->vsi; 9013 struct i40e_pf *pf = vsi->back; 9014 int err; 9015 9016 /* disallow open during test or if eeprom is broken */ 9017 if (test_bit(__I40E_TESTING, pf->state) || 9018 test_bit(__I40E_BAD_EEPROM, pf->state)) 9019 return -EBUSY; 9020 9021 netif_carrier_off(netdev); 9022 9023 if (i40e_force_link_state(pf, true)) 9024 return -EAGAIN; 9025 9026 err = i40e_vsi_open(vsi); 9027 if (err) 9028 return err; 9029 9030 /* configure global TSO hardware offload settings */ 9031 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9032 TCP_FLAG_FIN) >> 16); 9033 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9034 TCP_FLAG_FIN | 9035 TCP_FLAG_CWR) >> 16); 9036 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9037 udp_tunnel_get_rx_info(netdev); 9038 9039 return 0; 9040 } 9041 9042 /** 9043 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9044 * @vsi: vsi structure 9045 * 9046 * This updates netdev's number of tx/rx queues 9047 * 9048 * Returns status of setting tx/rx queues 9049 **/ 9050 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9051 { 9052 int ret; 9053 9054 ret = netif_set_real_num_rx_queues(vsi->netdev, 9055 vsi->num_queue_pairs); 9056 if (ret) 9057 return ret; 9058 9059 return netif_set_real_num_tx_queues(vsi->netdev, 9060 vsi->num_queue_pairs); 9061 } 9062 9063 /** 9064 * i40e_vsi_open - 9065 * @vsi: the VSI to open 9066 * 9067 * Finish initialization of the VSI. 9068 * 9069 * Returns 0 on success, negative value on failure 9070 * 9071 * Note: expects to be called while under rtnl_lock() 9072 **/ 9073 int i40e_vsi_open(struct i40e_vsi *vsi) 9074 { 9075 struct i40e_pf *pf = vsi->back; 9076 char int_name[I40E_INT_NAME_STR_LEN]; 9077 int err; 9078 9079 /* allocate descriptors */ 9080 err = i40e_vsi_setup_tx_resources(vsi); 9081 if (err) 9082 goto err_setup_tx; 9083 err = i40e_vsi_setup_rx_resources(vsi); 9084 if (err) 9085 goto err_setup_rx; 9086 9087 err = i40e_vsi_configure(vsi); 9088 if (err) 9089 goto err_setup_rx; 9090 9091 if (vsi->netdev) { 9092 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9093 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9094 err = i40e_vsi_request_irq(vsi, int_name); 9095 if (err) 9096 goto err_setup_rx; 9097 9098 /* Notify the stack of the actual queue counts. */ 9099 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9100 if (err) 9101 goto err_set_queues; 9102 9103 } else if (vsi->type == I40E_VSI_FDIR) { 9104 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9105 dev_driver_string(&pf->pdev->dev), 9106 dev_name(&pf->pdev->dev)); 9107 err = i40e_vsi_request_irq(vsi, int_name); 9108 if (err) 9109 goto err_setup_rx; 9110 9111 } else { 9112 err = -EINVAL; 9113 goto err_setup_rx; 9114 } 9115 9116 err = i40e_up_complete(vsi); 9117 if (err) 9118 goto err_up_complete; 9119 9120 return 0; 9121 9122 err_up_complete: 9123 i40e_down(vsi); 9124 err_set_queues: 9125 i40e_vsi_free_irq(vsi); 9126 err_setup_rx: 9127 i40e_vsi_free_rx_resources(vsi); 9128 err_setup_tx: 9129 i40e_vsi_free_tx_resources(vsi); 9130 if (vsi->type == I40E_VSI_MAIN) 9131 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9132 9133 return err; 9134 } 9135 9136 /** 9137 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9138 * @pf: Pointer to PF 9139 * 9140 * This function destroys the hlist where all the Flow Director 9141 * filters were saved. 9142 **/ 9143 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9144 { 9145 struct i40e_fdir_filter *filter; 9146 struct i40e_flex_pit *pit_entry, *tmp; 9147 struct hlist_node *node2; 9148 9149 hlist_for_each_entry_safe(filter, node2, 9150 &pf->fdir_filter_list, fdir_node) { 9151 hlist_del(&filter->fdir_node); 9152 kfree(filter); 9153 } 9154 9155 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9156 list_del(&pit_entry->list); 9157 kfree(pit_entry); 9158 } 9159 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9160 9161 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9162 list_del(&pit_entry->list); 9163 kfree(pit_entry); 9164 } 9165 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9166 9167 pf->fdir_pf_active_filters = 0; 9168 i40e_reset_fdir_filter_cnt(pf); 9169 9170 /* Reprogram the default input set for TCP/IPv4 */ 9171 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP, 9172 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9173 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9174 9175 /* Reprogram the default input set for TCP/IPv6 */ 9176 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP, 9177 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9178 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9179 9180 /* Reprogram the default input set for UDP/IPv4 */ 9181 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP, 9182 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9183 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9184 9185 /* Reprogram the default input set for UDP/IPv6 */ 9186 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP, 9187 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9188 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9189 9190 /* Reprogram the default input set for SCTP/IPv4 */ 9191 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP, 9192 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9193 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9194 9195 /* Reprogram the default input set for SCTP/IPv6 */ 9196 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP, 9197 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9198 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9199 9200 /* Reprogram the default input set for Other/IPv4 */ 9201 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER, 9202 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9203 9204 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_FRAG_IPV4, 9205 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9206 9207 /* Reprogram the default input set for Other/IPv6 */ 9208 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER, 9209 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9210 9211 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_FRAG_IPV6, 9212 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9213 } 9214 9215 /** 9216 * i40e_cloud_filter_exit - Cleans up the cloud filters 9217 * @pf: Pointer to PF 9218 * 9219 * This function destroys the hlist where all the cloud filters 9220 * were saved. 9221 **/ 9222 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9223 { 9224 struct i40e_cloud_filter *cfilter; 9225 struct hlist_node *node; 9226 9227 hlist_for_each_entry_safe(cfilter, node, 9228 &pf->cloud_filter_list, cloud_node) { 9229 hlist_del(&cfilter->cloud_node); 9230 kfree(cfilter); 9231 } 9232 pf->num_cloud_filters = 0; 9233 9234 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9235 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9236 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9237 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9238 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9239 } 9240 } 9241 9242 /** 9243 * i40e_close - Disables a network interface 9244 * @netdev: network interface device structure 9245 * 9246 * The close entry point is called when an interface is de-activated 9247 * by the OS. The hardware is still under the driver's control, but 9248 * this netdev interface is disabled. 9249 * 9250 * Returns 0, this is not allowed to fail 9251 **/ 9252 int i40e_close(struct net_device *netdev) 9253 { 9254 struct i40e_netdev_priv *np = netdev_priv(netdev); 9255 struct i40e_vsi *vsi = np->vsi; 9256 9257 i40e_vsi_close(vsi); 9258 9259 return 0; 9260 } 9261 9262 /** 9263 * i40e_do_reset - Start a PF or Core Reset sequence 9264 * @pf: board private structure 9265 * @reset_flags: which reset is requested 9266 * @lock_acquired: indicates whether or not the lock has been acquired 9267 * before this function was called. 9268 * 9269 * The essential difference in resets is that the PF Reset 9270 * doesn't clear the packet buffers, doesn't reset the PE 9271 * firmware, and doesn't bother the other PFs on the chip. 9272 **/ 9273 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9274 { 9275 struct i40e_vsi *vsi; 9276 u32 val; 9277 int i; 9278 9279 /* do the biggest reset indicated */ 9280 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9281 9282 /* Request a Global Reset 9283 * 9284 * This will start the chip's countdown to the actual full 9285 * chip reset event, and a warning interrupt to be sent 9286 * to all PFs, including the requestor. Our handler 9287 * for the warning interrupt will deal with the shutdown 9288 * and recovery of the switch setup. 9289 */ 9290 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9291 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9292 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9293 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9294 9295 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9296 9297 /* Request a Core Reset 9298 * 9299 * Same as Global Reset, except does *not* include the MAC/PHY 9300 */ 9301 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9302 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9303 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9304 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9305 i40e_flush(&pf->hw); 9306 9307 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9308 9309 /* Request a PF Reset 9310 * 9311 * Resets only the PF-specific registers 9312 * 9313 * This goes directly to the tear-down and rebuild of 9314 * the switch, since we need to do all the recovery as 9315 * for the Core Reset. 9316 */ 9317 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9318 i40e_handle_reset_warning(pf, lock_acquired); 9319 9320 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9321 /* Request a PF Reset 9322 * 9323 * Resets PF and reinitializes PFs VSI. 9324 */ 9325 i40e_prep_for_reset(pf); 9326 i40e_reset_and_rebuild(pf, true, lock_acquired); 9327 dev_info(&pf->pdev->dev, 9328 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9329 "FW LLDP is disabled\n" : 9330 "FW LLDP is enabled\n"); 9331 9332 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9333 /* Find the VSI(s) that requested a re-init */ 9334 dev_info(&pf->pdev->dev, "VSI reinit requested\n"); 9335 9336 i40e_pf_for_each_vsi(pf, i, vsi) { 9337 if (test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9338 vsi->state)) 9339 i40e_vsi_reinit_locked(vsi); 9340 } 9341 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9342 /* Find the VSI(s) that needs to be brought down */ 9343 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9344 9345 i40e_pf_for_each_vsi(pf, i, vsi) { 9346 if (test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9347 vsi->state)) { 9348 set_bit(__I40E_VSI_DOWN, vsi->state); 9349 i40e_down(vsi); 9350 } 9351 } 9352 } else { 9353 dev_info(&pf->pdev->dev, 9354 "bad reset request 0x%08x\n", reset_flags); 9355 } 9356 } 9357 9358 #ifdef CONFIG_I40E_DCB 9359 /** 9360 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9361 * @pf: board private structure 9362 * @old_cfg: current DCB config 9363 * @new_cfg: new DCB config 9364 **/ 9365 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9366 struct i40e_dcbx_config *old_cfg, 9367 struct i40e_dcbx_config *new_cfg) 9368 { 9369 bool need_reconfig = false; 9370 9371 /* Check if ETS configuration has changed */ 9372 if (memcmp(&new_cfg->etscfg, 9373 &old_cfg->etscfg, 9374 sizeof(new_cfg->etscfg))) { 9375 /* If Priority Table has changed reconfig is needed */ 9376 if (memcmp(&new_cfg->etscfg.prioritytable, 9377 &old_cfg->etscfg.prioritytable, 9378 sizeof(new_cfg->etscfg.prioritytable))) { 9379 need_reconfig = true; 9380 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9381 } 9382 9383 if (memcmp(&new_cfg->etscfg.tcbwtable, 9384 &old_cfg->etscfg.tcbwtable, 9385 sizeof(new_cfg->etscfg.tcbwtable))) 9386 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9387 9388 if (memcmp(&new_cfg->etscfg.tsatable, 9389 &old_cfg->etscfg.tsatable, 9390 sizeof(new_cfg->etscfg.tsatable))) 9391 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9392 } 9393 9394 /* Check if PFC configuration has changed */ 9395 if (memcmp(&new_cfg->pfc, 9396 &old_cfg->pfc, 9397 sizeof(new_cfg->pfc))) { 9398 need_reconfig = true; 9399 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9400 } 9401 9402 /* Check if APP Table has changed */ 9403 if (memcmp(&new_cfg->app, 9404 &old_cfg->app, 9405 sizeof(new_cfg->app))) { 9406 need_reconfig = true; 9407 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9408 } 9409 9410 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9411 return need_reconfig; 9412 } 9413 9414 /** 9415 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9416 * @pf: board private structure 9417 * @e: event info posted on ARQ 9418 **/ 9419 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9420 struct i40e_arq_event_info *e) 9421 { 9422 struct i40e_aqc_lldp_get_mib *mib = 9423 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9424 struct i40e_hw *hw = &pf->hw; 9425 struct i40e_dcbx_config tmp_dcbx_cfg; 9426 bool need_reconfig = false; 9427 int ret = 0; 9428 u8 type; 9429 9430 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9431 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9432 (hw->phy.link_info.link_speed & 9433 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9434 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9435 /* let firmware decide if the DCB should be disabled */ 9436 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9437 9438 /* Not DCB capable or capability disabled */ 9439 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9440 return ret; 9441 9442 /* Ignore if event is not for Nearest Bridge */ 9443 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9444 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9445 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9446 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9447 return ret; 9448 9449 /* Check MIB Type and return if event for Remote MIB update */ 9450 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9451 dev_dbg(&pf->pdev->dev, 9452 "LLDP event mib type %s\n", type ? "remote" : "local"); 9453 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9454 /* Update the remote cached instance and return */ 9455 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9456 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9457 &hw->remote_dcbx_config); 9458 goto exit; 9459 } 9460 9461 /* Store the old configuration */ 9462 tmp_dcbx_cfg = hw->local_dcbx_config; 9463 9464 /* Reset the old DCBx configuration data */ 9465 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9466 /* Get updated DCBX data from firmware */ 9467 ret = i40e_get_dcb_config(&pf->hw); 9468 if (ret) { 9469 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9470 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9471 (hw->phy.link_info.link_speed & 9472 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9473 dev_warn(&pf->pdev->dev, 9474 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9475 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9476 } else { 9477 dev_info(&pf->pdev->dev, 9478 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9479 ERR_PTR(ret), 9480 i40e_aq_str(&pf->hw, 9481 pf->hw.aq.asq_last_status)); 9482 } 9483 goto exit; 9484 } 9485 9486 /* No change detected in DCBX configs */ 9487 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9488 sizeof(tmp_dcbx_cfg))) { 9489 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9490 goto exit; 9491 } 9492 9493 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9494 &hw->local_dcbx_config); 9495 9496 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9497 9498 if (!need_reconfig) 9499 goto exit; 9500 9501 /* Enable DCB tagging only when more than one TC */ 9502 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9503 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9504 else 9505 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9506 9507 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9508 /* Reconfiguration needed quiesce all VSIs */ 9509 i40e_pf_quiesce_all_vsi(pf); 9510 9511 /* Changes in configuration update VEB/VSI */ 9512 i40e_dcb_reconfigure(pf); 9513 9514 ret = i40e_resume_port_tx(pf); 9515 9516 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9517 /* In case of error no point in resuming VSIs */ 9518 if (ret) 9519 goto exit; 9520 9521 /* Wait for the PF's queues to be disabled */ 9522 ret = i40e_pf_wait_queues_disabled(pf); 9523 if (ret) { 9524 /* Schedule PF reset to recover */ 9525 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9526 i40e_service_event_schedule(pf); 9527 } else { 9528 i40e_pf_unquiesce_all_vsi(pf); 9529 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9530 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9531 } 9532 9533 exit: 9534 return ret; 9535 } 9536 #endif /* CONFIG_I40E_DCB */ 9537 9538 /** 9539 * i40e_do_reset_safe - Protected reset path for userland calls. 9540 * @pf: board private structure 9541 * @reset_flags: which reset is requested 9542 * 9543 **/ 9544 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9545 { 9546 rtnl_lock(); 9547 i40e_do_reset(pf, reset_flags, true); 9548 rtnl_unlock(); 9549 } 9550 9551 /** 9552 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9553 * @pf: board private structure 9554 * @e: event info posted on ARQ 9555 * 9556 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9557 * and VF queues 9558 **/ 9559 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9560 struct i40e_arq_event_info *e) 9561 { 9562 struct i40e_aqc_lan_overflow *data = 9563 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9564 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9565 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9566 struct i40e_hw *hw = &pf->hw; 9567 struct i40e_vf *vf; 9568 u16 vf_id; 9569 9570 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9571 queue, qtx_ctl); 9572 9573 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) != 9574 I40E_QTX_CTL_VF_QUEUE) 9575 return; 9576 9577 /* Queue belongs to VF, find the VF and issue VF reset */ 9578 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl); 9579 vf_id -= hw->func_caps.vf_base_id; 9580 vf = &pf->vf[vf_id]; 9581 i40e_vc_notify_vf_reset(vf); 9582 /* Allow VF to process pending reset notification */ 9583 msleep(20); 9584 i40e_reset_vf(vf, false); 9585 } 9586 9587 /** 9588 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9589 * @pf: board private structure 9590 **/ 9591 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9592 { 9593 u32 val, fcnt_prog; 9594 9595 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9596 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9597 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val); 9598 return fcnt_prog; 9599 } 9600 9601 /** 9602 * i40e_get_global_fd_count - Get total FD filters programmed on device 9603 * @pf: board private structure 9604 **/ 9605 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9606 { 9607 u32 val, fcnt_prog; 9608 9609 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9610 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9611 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val); 9612 return fcnt_prog; 9613 } 9614 9615 /** 9616 * i40e_reenable_fdir_sb - Restore FDir SB capability 9617 * @pf: board private structure 9618 **/ 9619 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9620 { 9621 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9622 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9623 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9624 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9625 } 9626 9627 /** 9628 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9629 * @pf: board private structure 9630 **/ 9631 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9632 { 9633 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9634 /* ATR uses the same filtering logic as SB rules. It only 9635 * functions properly if the input set mask is at the default 9636 * settings. It is safe to restore the default input set 9637 * because there are no active TCPv4 filter rules. 9638 */ 9639 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP, 9640 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9641 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9642 9643 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9644 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9645 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9646 } 9647 } 9648 9649 /** 9650 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9651 * @pf: board private structure 9652 * @filter: FDir filter to remove 9653 */ 9654 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9655 struct i40e_fdir_filter *filter) 9656 { 9657 /* Update counters */ 9658 pf->fdir_pf_active_filters--; 9659 pf->fd_inv = 0; 9660 9661 switch (filter->flow_type) { 9662 case TCP_V4_FLOW: 9663 pf->fd_tcp4_filter_cnt--; 9664 break; 9665 case UDP_V4_FLOW: 9666 pf->fd_udp4_filter_cnt--; 9667 break; 9668 case SCTP_V4_FLOW: 9669 pf->fd_sctp4_filter_cnt--; 9670 break; 9671 case TCP_V6_FLOW: 9672 pf->fd_tcp6_filter_cnt--; 9673 break; 9674 case UDP_V6_FLOW: 9675 pf->fd_udp6_filter_cnt--; 9676 break; 9677 case SCTP_V6_FLOW: 9678 pf->fd_udp6_filter_cnt--; 9679 break; 9680 case IP_USER_FLOW: 9681 switch (filter->ipl4_proto) { 9682 case IPPROTO_TCP: 9683 pf->fd_tcp4_filter_cnt--; 9684 break; 9685 case IPPROTO_UDP: 9686 pf->fd_udp4_filter_cnt--; 9687 break; 9688 case IPPROTO_SCTP: 9689 pf->fd_sctp4_filter_cnt--; 9690 break; 9691 case IPPROTO_IP: 9692 pf->fd_ip4_filter_cnt--; 9693 break; 9694 } 9695 break; 9696 case IPV6_USER_FLOW: 9697 switch (filter->ipl4_proto) { 9698 case IPPROTO_TCP: 9699 pf->fd_tcp6_filter_cnt--; 9700 break; 9701 case IPPROTO_UDP: 9702 pf->fd_udp6_filter_cnt--; 9703 break; 9704 case IPPROTO_SCTP: 9705 pf->fd_sctp6_filter_cnt--; 9706 break; 9707 case IPPROTO_IP: 9708 pf->fd_ip6_filter_cnt--; 9709 break; 9710 } 9711 break; 9712 } 9713 9714 /* Remove the filter from the list and free memory */ 9715 hlist_del(&filter->fdir_node); 9716 kfree(filter); 9717 } 9718 9719 /** 9720 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9721 * @pf: board private structure 9722 **/ 9723 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9724 { 9725 struct i40e_fdir_filter *filter; 9726 u32 fcnt_prog, fcnt_avail; 9727 struct hlist_node *node; 9728 9729 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9730 return; 9731 9732 /* Check if we have enough room to re-enable FDir SB capability. */ 9733 fcnt_prog = i40e_get_global_fd_count(pf); 9734 fcnt_avail = pf->fdir_pf_filter_count; 9735 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9736 (pf->fd_add_err == 0) || 9737 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9738 i40e_reenable_fdir_sb(pf); 9739 9740 /* We should wait for even more space before re-enabling ATR. 9741 * Additionally, we cannot enable ATR as long as we still have TCP SB 9742 * rules active. 9743 */ 9744 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9745 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9746 i40e_reenable_fdir_atr(pf); 9747 9748 /* if hw had a problem adding a filter, delete it */ 9749 if (pf->fd_inv > 0) { 9750 hlist_for_each_entry_safe(filter, node, 9751 &pf->fdir_filter_list, fdir_node) 9752 if (filter->fd_id == pf->fd_inv) 9753 i40e_delete_invalid_filter(pf, filter); 9754 } 9755 } 9756 9757 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9758 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9759 /** 9760 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9761 * @pf: board private structure 9762 **/ 9763 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9764 { 9765 unsigned long min_flush_time; 9766 int flush_wait_retry = 50; 9767 bool disable_atr = false; 9768 int fd_room; 9769 int reg; 9770 9771 if (!time_after(jiffies, pf->fd_flush_timestamp + 9772 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9773 return; 9774 9775 /* If the flush is happening too quick and we have mostly SB rules we 9776 * should not re-enable ATR for some time. 9777 */ 9778 min_flush_time = pf->fd_flush_timestamp + 9779 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9780 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9781 9782 if (!(time_after(jiffies, min_flush_time)) && 9783 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9784 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9785 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9786 disable_atr = true; 9787 } 9788 9789 pf->fd_flush_timestamp = jiffies; 9790 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9791 /* flush all filters */ 9792 wr32(&pf->hw, I40E_PFQF_CTL_1, 9793 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9794 i40e_flush(&pf->hw); 9795 pf->fd_flush_cnt++; 9796 pf->fd_add_err = 0; 9797 do { 9798 /* Check FD flush status every 5-6msec */ 9799 usleep_range(5000, 6000); 9800 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9801 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9802 break; 9803 } while (flush_wait_retry--); 9804 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9805 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9806 } else { 9807 /* replay sideband filters */ 9808 i40e_fdir_filter_restore(i40e_pf_get_main_vsi(pf)); 9809 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9810 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9811 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9812 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9813 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9814 } 9815 } 9816 9817 /** 9818 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9819 * @pf: board private structure 9820 **/ 9821 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9822 { 9823 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9824 } 9825 9826 /** 9827 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9828 * @pf: board private structure 9829 **/ 9830 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9831 { 9832 9833 /* if interface is down do nothing */ 9834 if (test_bit(__I40E_DOWN, pf->state)) 9835 return; 9836 9837 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9838 i40e_fdir_flush_and_replay(pf); 9839 9840 i40e_fdir_check_and_reenable(pf); 9841 9842 } 9843 9844 /** 9845 * i40e_vsi_link_event - notify VSI of a link event 9846 * @vsi: vsi to be notified 9847 * @link_up: link up or down 9848 **/ 9849 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9850 { 9851 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9852 return; 9853 9854 switch (vsi->type) { 9855 case I40E_VSI_MAIN: 9856 if (!vsi->netdev || !vsi->netdev_registered) 9857 break; 9858 9859 if (link_up) { 9860 netif_carrier_on(vsi->netdev); 9861 netif_tx_wake_all_queues(vsi->netdev); 9862 } else { 9863 netif_carrier_off(vsi->netdev); 9864 netif_tx_stop_all_queues(vsi->netdev); 9865 } 9866 break; 9867 9868 case I40E_VSI_SRIOV: 9869 case I40E_VSI_VMDQ2: 9870 case I40E_VSI_CTRL: 9871 case I40E_VSI_IWARP: 9872 case I40E_VSI_MIRROR: 9873 default: 9874 /* there is no notification for other VSIs */ 9875 break; 9876 } 9877 } 9878 9879 /** 9880 * i40e_veb_link_event - notify elements on the veb of a link event 9881 * @veb: veb to be notified 9882 * @link_up: link up or down 9883 **/ 9884 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9885 { 9886 struct i40e_vsi *vsi; 9887 struct i40e_pf *pf; 9888 int i; 9889 9890 if (!veb || !veb->pf) 9891 return; 9892 pf = veb->pf; 9893 9894 /* Send link event to contained VSIs */ 9895 i40e_pf_for_each_vsi(pf, i, vsi) 9896 if (vsi->uplink_seid == veb->seid) 9897 i40e_vsi_link_event(vsi, link_up); 9898 } 9899 9900 /** 9901 * i40e_link_event - Update netif_carrier status 9902 * @pf: board private structure 9903 **/ 9904 static void i40e_link_event(struct i40e_pf *pf) 9905 { 9906 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 9907 struct i40e_veb *veb = i40e_pf_get_main_veb(pf); 9908 u8 new_link_speed, old_link_speed; 9909 bool new_link, old_link; 9910 int status; 9911 #ifdef CONFIG_I40E_DCB 9912 int err; 9913 #endif /* CONFIG_I40E_DCB */ 9914 9915 /* set this to force the get_link_status call to refresh state */ 9916 pf->hw.phy.get_link_info = true; 9917 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9918 status = i40e_get_link_status(&pf->hw, &new_link); 9919 9920 /* On success, disable temp link polling */ 9921 if (status == 0) { 9922 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9923 } else { 9924 /* Enable link polling temporarily until i40e_get_link_status 9925 * returns 0 9926 */ 9927 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9928 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9929 status); 9930 return; 9931 } 9932 9933 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9934 new_link_speed = pf->hw.phy.link_info.link_speed; 9935 9936 if (new_link == old_link && 9937 new_link_speed == old_link_speed && 9938 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9939 new_link == netif_carrier_ok(vsi->netdev))) 9940 return; 9941 9942 if (!new_link && old_link) 9943 pf->link_down_events++; 9944 9945 i40e_print_link_message(vsi, new_link); 9946 9947 /* Notify the base of the switch tree connected to 9948 * the link. Floating VEBs are not notified. 9949 */ 9950 if (veb) 9951 i40e_veb_link_event(veb, new_link); 9952 else 9953 i40e_vsi_link_event(vsi, new_link); 9954 9955 if (pf->vf) 9956 i40e_vc_notify_link_state(pf); 9957 9958 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 9959 i40e_ptp_set_increment(pf); 9960 #ifdef CONFIG_I40E_DCB 9961 if (new_link == old_link) 9962 return; 9963 /* Not SW DCB so firmware will take care of default settings */ 9964 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9965 return; 9966 9967 /* We cover here only link down, as after link up in case of SW DCB 9968 * SW LLDP agent will take care of setting it up 9969 */ 9970 if (!new_link) { 9971 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9972 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9973 err = i40e_dcb_sw_default_config(pf); 9974 if (err) { 9975 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9976 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9977 } else { 9978 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9979 DCB_CAP_DCBX_VER_IEEE; 9980 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9981 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9982 } 9983 } 9984 #endif /* CONFIG_I40E_DCB */ 9985 } 9986 9987 /** 9988 * i40e_watchdog_subtask - periodic checks not using event driven response 9989 * @pf: board private structure 9990 **/ 9991 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9992 { 9993 struct i40e_vsi *vsi; 9994 struct i40e_veb *veb; 9995 int i; 9996 9997 /* if interface is down do nothing */ 9998 if (test_bit(__I40E_DOWN, pf->state) || 9999 test_bit(__I40E_CONFIG_BUSY, pf->state)) 10000 return; 10001 10002 /* make sure we don't do these things too often */ 10003 if (time_before(jiffies, (pf->service_timer_previous + 10004 pf->service_timer_period))) 10005 return; 10006 pf->service_timer_previous = jiffies; 10007 10008 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 10009 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 10010 i40e_link_event(pf); 10011 10012 /* Update the stats for active netdevs so the network stack 10013 * can look at updated numbers whenever it cares to 10014 */ 10015 i40e_pf_for_each_vsi(pf, i, vsi) 10016 if (vsi->netdev) 10017 i40e_update_stats(vsi); 10018 10019 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10020 /* Update the stats for the active switching components */ 10021 i40e_pf_for_each_veb(pf, i, veb) 10022 i40e_update_veb_stats(veb); 10023 } 10024 10025 i40e_ptp_rx_hang(pf); 10026 i40e_ptp_tx_hang(pf); 10027 } 10028 10029 /** 10030 * i40e_reset_subtask - Set up for resetting the device and driver 10031 * @pf: board private structure 10032 **/ 10033 static void i40e_reset_subtask(struct i40e_pf *pf) 10034 { 10035 u32 reset_flags = 0; 10036 10037 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10038 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10039 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10040 } 10041 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10042 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10043 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10044 } 10045 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10046 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10047 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10048 } 10049 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10050 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10051 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10052 } 10053 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10054 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10055 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10056 } 10057 10058 /* If there's a recovery already waiting, it takes 10059 * precedence before starting a new reset sequence. 10060 */ 10061 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10062 i40e_prep_for_reset(pf); 10063 i40e_reset(pf); 10064 i40e_rebuild(pf, false, false); 10065 } 10066 10067 /* If we're already down or resetting, just bail */ 10068 if (reset_flags && 10069 !test_bit(__I40E_DOWN, pf->state) && 10070 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10071 i40e_do_reset(pf, reset_flags, false); 10072 } 10073 } 10074 10075 /** 10076 * i40e_handle_link_event - Handle link event 10077 * @pf: board private structure 10078 * @e: event info posted on ARQ 10079 **/ 10080 static void i40e_handle_link_event(struct i40e_pf *pf, 10081 struct i40e_arq_event_info *e) 10082 { 10083 struct i40e_aqc_get_link_status *status = 10084 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10085 10086 /* Do a new status request to re-enable LSE reporting 10087 * and load new status information into the hw struct 10088 * This completely ignores any state information 10089 * in the ARQ event info, instead choosing to always 10090 * issue the AQ update link status command. 10091 */ 10092 i40e_link_event(pf); 10093 10094 /* Check if module meets thermal requirements */ 10095 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10096 dev_err(&pf->pdev->dev, 10097 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10098 dev_err(&pf->pdev->dev, 10099 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10100 } else { 10101 /* check for unqualified module, if link is down, suppress 10102 * the message if link was forced to be down. 10103 */ 10104 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10105 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10106 (!(status->link_info & I40E_AQ_LINK_UP)) && 10107 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10108 dev_err(&pf->pdev->dev, 10109 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10110 dev_err(&pf->pdev->dev, 10111 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10112 } 10113 } 10114 } 10115 10116 /** 10117 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10118 * @pf: board private structure 10119 **/ 10120 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10121 { 10122 struct i40e_arq_event_info event; 10123 struct i40e_hw *hw = &pf->hw; 10124 u16 pending, i = 0; 10125 u16 opcode; 10126 u32 oldval; 10127 int ret; 10128 u32 val; 10129 10130 /* Do not run clean AQ when PF reset fails */ 10131 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10132 return; 10133 10134 /* check for error indications */ 10135 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10136 oldval = val; 10137 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10138 if (hw->debug_mask & I40E_DEBUG_AQ) 10139 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10140 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10141 } 10142 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10143 if (hw->debug_mask & I40E_DEBUG_AQ) 10144 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10145 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10146 pf->arq_overflows++; 10147 } 10148 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10149 if (hw->debug_mask & I40E_DEBUG_AQ) 10150 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10151 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10152 } 10153 if (oldval != val) 10154 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10155 10156 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10157 oldval = val; 10158 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10159 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10160 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10161 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10162 } 10163 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10164 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10165 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10166 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10167 } 10168 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10169 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10170 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10171 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10172 } 10173 if (oldval != val) 10174 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10175 10176 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10177 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10178 if (!event.msg_buf) 10179 return; 10180 10181 do { 10182 ret = i40e_clean_arq_element(hw, &event, &pending); 10183 if (ret == -EALREADY) 10184 break; 10185 else if (ret) { 10186 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10187 break; 10188 } 10189 10190 opcode = le16_to_cpu(event.desc.opcode); 10191 switch (opcode) { 10192 10193 case i40e_aqc_opc_get_link_status: 10194 rtnl_lock(); 10195 i40e_handle_link_event(pf, &event); 10196 rtnl_unlock(); 10197 break; 10198 case i40e_aqc_opc_send_msg_to_pf: 10199 ret = i40e_vc_process_vf_msg(pf, 10200 le16_to_cpu(event.desc.retval), 10201 le32_to_cpu(event.desc.cookie_high), 10202 le32_to_cpu(event.desc.cookie_low), 10203 event.msg_buf, 10204 event.msg_len); 10205 break; 10206 case i40e_aqc_opc_lldp_update_mib: 10207 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10208 #ifdef CONFIG_I40E_DCB 10209 rtnl_lock(); 10210 i40e_handle_lldp_event(pf, &event); 10211 rtnl_unlock(); 10212 #endif /* CONFIG_I40E_DCB */ 10213 break; 10214 case i40e_aqc_opc_event_lan_overflow: 10215 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10216 i40e_handle_lan_overflow_event(pf, &event); 10217 break; 10218 case i40e_aqc_opc_send_msg_to_peer: 10219 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10220 break; 10221 case i40e_aqc_opc_nvm_erase: 10222 case i40e_aqc_opc_nvm_update: 10223 case i40e_aqc_opc_oem_post_update: 10224 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10225 "ARQ NVM operation 0x%04x completed\n", 10226 opcode); 10227 break; 10228 default: 10229 dev_info(&pf->pdev->dev, 10230 "ARQ: Unknown event 0x%04x ignored\n", 10231 opcode); 10232 break; 10233 } 10234 } while (i++ < I40E_AQ_WORK_LIMIT); 10235 10236 if (i < I40E_AQ_WORK_LIMIT) 10237 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10238 10239 /* re-enable Admin queue interrupt cause */ 10240 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10241 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10242 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10243 i40e_flush(hw); 10244 10245 kfree(event.msg_buf); 10246 } 10247 10248 /** 10249 * i40e_verify_eeprom - make sure eeprom is good to use 10250 * @pf: board private structure 10251 **/ 10252 static void i40e_verify_eeprom(struct i40e_pf *pf) 10253 { 10254 int err; 10255 10256 err = i40e_diag_eeprom_test(&pf->hw); 10257 if (err) { 10258 /* retry in case of garbage read */ 10259 err = i40e_diag_eeprom_test(&pf->hw); 10260 if (err) { 10261 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10262 err); 10263 set_bit(__I40E_BAD_EEPROM, pf->state); 10264 } 10265 } 10266 10267 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10268 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10269 clear_bit(__I40E_BAD_EEPROM, pf->state); 10270 } 10271 } 10272 10273 /** 10274 * i40e_enable_pf_switch_lb 10275 * @pf: pointer to the PF structure 10276 * 10277 * enable switch loop back or die - no point in a return value 10278 **/ 10279 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10280 { 10281 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10282 struct i40e_vsi_context ctxt; 10283 int ret; 10284 10285 ctxt.seid = pf->main_vsi_seid; 10286 ctxt.pf_num = pf->hw.pf_id; 10287 ctxt.vf_num = 0; 10288 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10289 if (ret) { 10290 dev_info(&pf->pdev->dev, 10291 "couldn't get PF vsi config, err %pe aq_err %s\n", 10292 ERR_PTR(ret), 10293 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10294 return; 10295 } 10296 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10297 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10298 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10299 10300 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10301 if (ret) { 10302 dev_info(&pf->pdev->dev, 10303 "update vsi switch failed, err %pe aq_err %s\n", 10304 ERR_PTR(ret), 10305 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10306 } 10307 } 10308 10309 /** 10310 * i40e_disable_pf_switch_lb 10311 * @pf: pointer to the PF structure 10312 * 10313 * disable switch loop back or die - no point in a return value 10314 **/ 10315 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10316 { 10317 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10318 struct i40e_vsi_context ctxt; 10319 int ret; 10320 10321 ctxt.seid = pf->main_vsi_seid; 10322 ctxt.pf_num = pf->hw.pf_id; 10323 ctxt.vf_num = 0; 10324 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10325 if (ret) { 10326 dev_info(&pf->pdev->dev, 10327 "couldn't get PF vsi config, err %pe aq_err %s\n", 10328 ERR_PTR(ret), 10329 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10330 return; 10331 } 10332 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10333 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10334 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10335 10336 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10337 if (ret) { 10338 dev_info(&pf->pdev->dev, 10339 "update vsi switch failed, err %pe aq_err %s\n", 10340 ERR_PTR(ret), 10341 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10342 } 10343 } 10344 10345 /** 10346 * i40e_config_bridge_mode - Configure the HW bridge mode 10347 * @veb: pointer to the bridge instance 10348 * 10349 * Configure the loop back mode for the LAN VSI that is downlink to the 10350 * specified HW bridge instance. It is expected this function is called 10351 * when a new HW bridge is instantiated. 10352 **/ 10353 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10354 { 10355 struct i40e_pf *pf = veb->pf; 10356 10357 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10358 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10359 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10360 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10361 i40e_disable_pf_switch_lb(pf); 10362 else 10363 i40e_enable_pf_switch_lb(pf); 10364 } 10365 10366 /** 10367 * i40e_reconstitute_veb - rebuild the VEB and VSIs connected to it 10368 * @veb: pointer to the VEB instance 10369 * 10370 * This is a function that builds the attached VSIs. We track the connections 10371 * through our own index numbers because the seid's from the HW could change 10372 * across the reset. 10373 **/ 10374 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10375 { 10376 struct i40e_vsi *ctl_vsi = NULL; 10377 struct i40e_pf *pf = veb->pf; 10378 struct i40e_vsi *vsi; 10379 int v, ret; 10380 10381 /* As we do not maintain PV (port virtualizer) switch element then 10382 * there can be only one non-floating VEB that have uplink to MAC SEID 10383 * and its control VSI is the main one. 10384 */ 10385 if (WARN_ON(veb->uplink_seid && veb->uplink_seid != pf->mac_seid)) { 10386 dev_err(&pf->pdev->dev, 10387 "Invalid uplink SEID for VEB %d\n", veb->idx); 10388 return -ENOENT; 10389 } 10390 10391 if (veb->uplink_seid == pf->mac_seid) { 10392 /* Check that the LAN VSI has VEB owning flag set */ 10393 ctl_vsi = i40e_pf_get_main_vsi(pf); 10394 10395 if (WARN_ON(ctl_vsi->veb_idx != veb->idx || 10396 !(ctl_vsi->flags & I40E_VSI_FLAG_VEB_OWNER))) { 10397 dev_err(&pf->pdev->dev, 10398 "Invalid control VSI for VEB %d\n", veb->idx); 10399 return -ENOENT; 10400 } 10401 10402 /* Add the control VSI to switch */ 10403 ret = i40e_add_vsi(ctl_vsi); 10404 if (ret) { 10405 dev_err(&pf->pdev->dev, 10406 "Rebuild of owner VSI for VEB %d failed: %d\n", 10407 veb->idx, ret); 10408 return ret; 10409 } 10410 10411 i40e_vsi_reset_stats(ctl_vsi); 10412 } 10413 10414 /* create the VEB in the switch and move the VSI onto the VEB */ 10415 ret = i40e_add_veb(veb, ctl_vsi); 10416 if (ret) 10417 return ret; 10418 10419 if (veb->uplink_seid) { 10420 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10421 veb->bridge_mode = BRIDGE_MODE_VEB; 10422 else 10423 veb->bridge_mode = BRIDGE_MODE_VEPA; 10424 i40e_config_bridge_mode(veb); 10425 } 10426 10427 /* create the remaining VSIs attached to this VEB */ 10428 i40e_pf_for_each_vsi(pf, v, vsi) { 10429 if (vsi == ctl_vsi) 10430 continue; 10431 10432 if (vsi->veb_idx == veb->idx) { 10433 vsi->uplink_seid = veb->seid; 10434 ret = i40e_add_vsi(vsi); 10435 if (ret) { 10436 dev_info(&pf->pdev->dev, 10437 "rebuild of vsi_idx %d failed: %d\n", 10438 v, ret); 10439 return ret; 10440 } 10441 i40e_vsi_reset_stats(vsi); 10442 } 10443 } 10444 10445 return ret; 10446 } 10447 10448 /** 10449 * i40e_get_capabilities - get info about the HW 10450 * @pf: the PF struct 10451 * @list_type: AQ capability to be queried 10452 **/ 10453 static int i40e_get_capabilities(struct i40e_pf *pf, 10454 enum i40e_admin_queue_opc list_type) 10455 { 10456 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10457 u16 data_size; 10458 int buf_len; 10459 int err; 10460 10461 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10462 do { 10463 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10464 if (!cap_buf) 10465 return -ENOMEM; 10466 10467 /* this loads the data into the hw struct for us */ 10468 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10469 &data_size, list_type, 10470 NULL); 10471 /* data loaded, buffer no longer needed */ 10472 kfree(cap_buf); 10473 10474 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10475 /* retry with a larger buffer */ 10476 buf_len = data_size; 10477 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10478 dev_info(&pf->pdev->dev, 10479 "capability discovery failed, err %pe aq_err %s\n", 10480 ERR_PTR(err), 10481 i40e_aq_str(&pf->hw, 10482 pf->hw.aq.asq_last_status)); 10483 return -ENODEV; 10484 } 10485 } while (err); 10486 10487 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10488 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10489 dev_info(&pf->pdev->dev, 10490 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10491 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10492 pf->hw.func_caps.num_msix_vectors, 10493 pf->hw.func_caps.num_msix_vectors_vf, 10494 pf->hw.func_caps.fd_filters_guaranteed, 10495 pf->hw.func_caps.fd_filters_best_effort, 10496 pf->hw.func_caps.num_tx_qp, 10497 pf->hw.func_caps.num_vsis); 10498 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10499 dev_info(&pf->pdev->dev, 10500 "switch_mode=0x%04x, function_valid=0x%08x\n", 10501 pf->hw.dev_caps.switch_mode, 10502 pf->hw.dev_caps.valid_functions); 10503 dev_info(&pf->pdev->dev, 10504 "SR-IOV=%d, num_vfs for all function=%u\n", 10505 pf->hw.dev_caps.sr_iov_1_1, 10506 pf->hw.dev_caps.num_vfs); 10507 dev_info(&pf->pdev->dev, 10508 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10509 pf->hw.dev_caps.num_vsis, 10510 pf->hw.dev_caps.num_rx_qp, 10511 pf->hw.dev_caps.num_tx_qp); 10512 } 10513 } 10514 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10515 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10516 + pf->hw.func_caps.num_vfs) 10517 if (pf->hw.revision_id == 0 && 10518 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10519 dev_info(&pf->pdev->dev, 10520 "got num_vsis %d, setting num_vsis to %d\n", 10521 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10522 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10523 } 10524 } 10525 return 0; 10526 } 10527 10528 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10529 10530 /** 10531 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10532 * @pf: board private structure 10533 **/ 10534 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10535 { 10536 struct i40e_vsi *main_vsi, *vsi; 10537 10538 /* quick workaround for an NVM issue that leaves a critical register 10539 * uninitialized 10540 */ 10541 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10542 static const u32 hkey[] = { 10543 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10544 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10545 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10546 0x95b3a76d}; 10547 int i; 10548 10549 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10550 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10551 } 10552 10553 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10554 return; 10555 10556 /* find existing VSI and see if it needs configuring */ 10557 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10558 10559 /* create a new VSI if none exists */ 10560 if (!vsi) { 10561 main_vsi = i40e_pf_get_main_vsi(pf); 10562 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, main_vsi->seid, 0); 10563 if (!vsi) { 10564 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10565 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10566 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10567 return; 10568 } 10569 } 10570 10571 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10572 } 10573 10574 /** 10575 * i40e_fdir_teardown - release the Flow Director resources 10576 * @pf: board private structure 10577 **/ 10578 static void i40e_fdir_teardown(struct i40e_pf *pf) 10579 { 10580 struct i40e_vsi *vsi; 10581 10582 i40e_fdir_filter_exit(pf); 10583 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10584 if (vsi) 10585 i40e_vsi_release(vsi); 10586 } 10587 10588 /** 10589 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10590 * @vsi: PF main vsi 10591 * @seid: seid of main or channel VSIs 10592 * 10593 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10594 * existed before reset 10595 **/ 10596 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10597 { 10598 struct i40e_cloud_filter *cfilter; 10599 struct i40e_pf *pf = vsi->back; 10600 struct hlist_node *node; 10601 int ret; 10602 10603 /* Add cloud filters back if they exist */ 10604 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10605 cloud_node) { 10606 if (cfilter->seid != seid) 10607 continue; 10608 10609 if (cfilter->dst_port) 10610 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10611 true); 10612 else 10613 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10614 10615 if (ret) { 10616 dev_dbg(&pf->pdev->dev, 10617 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10618 ERR_PTR(ret), 10619 i40e_aq_str(&pf->hw, 10620 pf->hw.aq.asq_last_status)); 10621 return ret; 10622 } 10623 } 10624 return 0; 10625 } 10626 10627 /** 10628 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10629 * @vsi: PF main vsi 10630 * 10631 * Rebuilds channel VSIs if they existed before reset 10632 **/ 10633 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10634 { 10635 struct i40e_channel *ch, *ch_tmp; 10636 int ret; 10637 10638 if (list_empty(&vsi->ch_list)) 10639 return 0; 10640 10641 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10642 if (!ch->initialized) 10643 break; 10644 /* Proceed with creation of channel (VMDq2) VSI */ 10645 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10646 if (ret) { 10647 dev_info(&vsi->back->pdev->dev, 10648 "failed to rebuild channels using uplink_seid %u\n", 10649 vsi->uplink_seid); 10650 return ret; 10651 } 10652 /* Reconfigure TX queues using QTX_CTL register */ 10653 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10654 if (ret) { 10655 dev_info(&vsi->back->pdev->dev, 10656 "failed to configure TX rings for channel %u\n", 10657 ch->seid); 10658 return ret; 10659 } 10660 /* update 'next_base_queue' */ 10661 vsi->next_base_queue = vsi->next_base_queue + 10662 ch->num_queue_pairs; 10663 if (ch->max_tx_rate) { 10664 u64 credits = ch->max_tx_rate; 10665 10666 if (i40e_set_bw_limit(vsi, ch->seid, 10667 ch->max_tx_rate)) 10668 return -EINVAL; 10669 10670 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10671 dev_dbg(&vsi->back->pdev->dev, 10672 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10673 ch->max_tx_rate, 10674 credits, 10675 ch->seid); 10676 } 10677 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10678 if (ret) { 10679 dev_dbg(&vsi->back->pdev->dev, 10680 "Failed to rebuild cloud filters for channel VSI %u\n", 10681 ch->seid); 10682 return ret; 10683 } 10684 } 10685 return 0; 10686 } 10687 10688 /** 10689 * i40e_clean_xps_state - clean xps state for every tx_ring 10690 * @vsi: ptr to the VSI 10691 **/ 10692 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10693 { 10694 int i; 10695 10696 if (vsi->tx_rings) 10697 for (i = 0; i < vsi->num_queue_pairs; i++) 10698 if (vsi->tx_rings[i]) 10699 clear_bit(__I40E_TX_XPS_INIT_DONE, 10700 vsi->tx_rings[i]->state); 10701 } 10702 10703 /** 10704 * i40e_prep_for_reset - prep for the core to reset 10705 * @pf: board private structure 10706 * 10707 * Close up the VFs and other things in prep for PF Reset. 10708 **/ 10709 static void i40e_prep_for_reset(struct i40e_pf *pf) 10710 { 10711 struct i40e_hw *hw = &pf->hw; 10712 struct i40e_vsi *vsi; 10713 int ret = 0; 10714 u32 v; 10715 10716 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10717 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10718 return; 10719 if (i40e_check_asq_alive(&pf->hw)) 10720 i40e_vc_notify_reset(pf); 10721 10722 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10723 10724 /* quiesce the VSIs and their queues that are not already DOWN */ 10725 i40e_pf_quiesce_all_vsi(pf); 10726 10727 i40e_pf_for_each_vsi(pf, v, vsi) { 10728 i40e_clean_xps_state(vsi); 10729 vsi->seid = 0; 10730 } 10731 10732 i40e_shutdown_adminq(&pf->hw); 10733 10734 /* call shutdown HMC */ 10735 if (hw->hmc.hmc_obj) { 10736 ret = i40e_shutdown_lan_hmc(hw); 10737 if (ret) 10738 dev_warn(&pf->pdev->dev, 10739 "shutdown_lan_hmc failed: %d\n", ret); 10740 } 10741 10742 /* Save the current PTP time so that we can restore the time after the 10743 * reset completes. 10744 */ 10745 i40e_ptp_save_hw_time(pf); 10746 } 10747 10748 /** 10749 * i40e_send_version - update firmware with driver version 10750 * @pf: PF struct 10751 */ 10752 static void i40e_send_version(struct i40e_pf *pf) 10753 { 10754 struct i40e_driver_version dv; 10755 10756 dv.major_version = 0xff; 10757 dv.minor_version = 0xff; 10758 dv.build_version = 0xff; 10759 dv.subbuild_version = 0; 10760 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10761 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10762 } 10763 10764 /** 10765 * i40e_get_oem_version - get OEM specific version information 10766 * @hw: pointer to the hardware structure 10767 **/ 10768 static void i40e_get_oem_version(struct i40e_hw *hw) 10769 { 10770 u16 block_offset = 0xffff; 10771 u16 block_length = 0; 10772 u16 capabilities = 0; 10773 u16 gen_snap = 0; 10774 u16 release = 0; 10775 10776 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10777 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10778 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10779 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10780 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10781 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10782 #define I40E_NVM_OEM_LENGTH 3 10783 10784 /* Check if pointer to OEM version block is valid. */ 10785 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10786 if (block_offset == 0xffff) 10787 return; 10788 10789 /* Check if OEM version block has correct length. */ 10790 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10791 &block_length); 10792 if (block_length < I40E_NVM_OEM_LENGTH) 10793 return; 10794 10795 /* Check if OEM version format is as expected. */ 10796 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10797 &capabilities); 10798 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10799 return; 10800 10801 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10802 &gen_snap); 10803 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10804 &release); 10805 hw->nvm.oem_ver = 10806 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10807 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10808 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10809 } 10810 10811 /** 10812 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10813 * @pf: board private structure 10814 **/ 10815 static int i40e_reset(struct i40e_pf *pf) 10816 { 10817 struct i40e_hw *hw = &pf->hw; 10818 int ret; 10819 10820 ret = i40e_pf_reset(hw); 10821 if (ret) { 10822 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10823 set_bit(__I40E_RESET_FAILED, pf->state); 10824 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10825 } else { 10826 pf->pfr_count++; 10827 } 10828 return ret; 10829 } 10830 10831 /** 10832 * i40e_rebuild - rebuild using a saved config 10833 * @pf: board private structure 10834 * @reinit: if the Main VSI needs to re-initialized. 10835 * @lock_acquired: indicates whether or not the lock has been acquired 10836 * before this function was called. 10837 **/ 10838 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10839 { 10840 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10841 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10842 struct i40e_hw *hw = &pf->hw; 10843 struct i40e_veb *veb; 10844 int ret; 10845 u32 val; 10846 int v; 10847 10848 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10849 is_recovery_mode_reported) 10850 i40e_set_ethtool_ops(vsi->netdev); 10851 10852 if (test_bit(__I40E_DOWN, pf->state) && 10853 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10854 goto clear_recovery; 10855 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10856 10857 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10858 ret = i40e_init_adminq(&pf->hw); 10859 if (ret) { 10860 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10861 ERR_PTR(ret), 10862 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10863 goto clear_recovery; 10864 } 10865 i40e_get_oem_version(&pf->hw); 10866 10867 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10868 /* The following delay is necessary for firmware update. */ 10869 mdelay(1000); 10870 } 10871 10872 /* re-verify the eeprom if we just had an EMP reset */ 10873 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10874 i40e_verify_eeprom(pf); 10875 10876 /* if we are going out of or into recovery mode we have to act 10877 * accordingly with regard to resources initialization 10878 * and deinitialization 10879 */ 10880 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10881 if (i40e_get_capabilities(pf, 10882 i40e_aqc_opc_list_func_capabilities)) 10883 goto end_unlock; 10884 10885 if (is_recovery_mode_reported) { 10886 /* we're staying in recovery mode so we'll reinitialize 10887 * misc vector here 10888 */ 10889 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10890 goto end_unlock; 10891 } else { 10892 if (!lock_acquired) 10893 rtnl_lock(); 10894 /* we're going out of recovery mode so we'll free 10895 * the IRQ allocated specifically for recovery mode 10896 * and restore the interrupt scheme 10897 */ 10898 free_irq(pf->pdev->irq, pf); 10899 i40e_clear_interrupt_scheme(pf); 10900 if (i40e_restore_interrupt_scheme(pf)) 10901 goto end_unlock; 10902 } 10903 10904 /* tell the firmware that we're starting */ 10905 i40e_send_version(pf); 10906 10907 /* bail out in case recovery mode was detected, as there is 10908 * no need for further configuration. 10909 */ 10910 goto end_unlock; 10911 } 10912 10913 i40e_clear_pxe_mode(hw); 10914 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10915 if (ret) 10916 goto end_core_reset; 10917 10918 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10919 hw->func_caps.num_rx_qp, 0, 0); 10920 if (ret) { 10921 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10922 goto end_core_reset; 10923 } 10924 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10925 if (ret) { 10926 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10927 goto end_core_reset; 10928 } 10929 10930 #ifdef CONFIG_I40E_DCB 10931 /* Enable FW to write a default DCB config on link-up 10932 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10933 * is not supported with new link speed 10934 */ 10935 if (i40e_is_tc_mqprio_enabled(pf)) { 10936 i40e_aq_set_dcb_parameters(hw, false, NULL); 10937 } else { 10938 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10939 (hw->phy.link_info.link_speed & 10940 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10941 i40e_aq_set_dcb_parameters(hw, false, NULL); 10942 dev_warn(&pf->pdev->dev, 10943 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10944 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10945 } else { 10946 i40e_aq_set_dcb_parameters(hw, true, NULL); 10947 ret = i40e_init_pf_dcb(pf); 10948 if (ret) { 10949 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10950 ret); 10951 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10952 /* Continue without DCB enabled */ 10953 } 10954 } 10955 } 10956 10957 #endif /* CONFIG_I40E_DCB */ 10958 if (!lock_acquired) 10959 rtnl_lock(); 10960 ret = i40e_setup_pf_switch(pf, reinit, true); 10961 if (ret) 10962 goto end_unlock; 10963 10964 /* The driver only wants link up/down and module qualification 10965 * reports from firmware. Note the negative logic. 10966 */ 10967 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10968 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10969 I40E_AQ_EVENT_MEDIA_NA | 10970 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10971 if (ret) 10972 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 10973 ERR_PTR(ret), 10974 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10975 10976 /* Rebuild the VSIs and VEBs that existed before reset. 10977 * They are still in our local switch element arrays, so only 10978 * need to rebuild the switch model in the HW. 10979 * 10980 * If there were VEBs but the reconstitution failed, we'll try 10981 * to recover minimal use by getting the basic PF VSI working. 10982 */ 10983 if (vsi->uplink_seid != pf->mac_seid) { 10984 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10985 10986 /* Rebuild VEBs */ 10987 i40e_pf_for_each_veb(pf, v, veb) { 10988 ret = i40e_reconstitute_veb(veb); 10989 if (!ret) 10990 continue; 10991 10992 /* If Main VEB failed, we're in deep doodoo, 10993 * so give up rebuilding the switch and set up 10994 * for minimal rebuild of PF VSI. 10995 * If orphan failed, we'll report the error 10996 * but try to keep going. 10997 */ 10998 if (veb->uplink_seid == pf->mac_seid) { 10999 dev_info(&pf->pdev->dev, 11000 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 11001 ret); 11002 vsi->uplink_seid = pf->mac_seid; 11003 break; 11004 } else if (veb->uplink_seid == 0) { 11005 dev_info(&pf->pdev->dev, 11006 "rebuild of orphan VEB failed: %d\n", 11007 ret); 11008 } 11009 } 11010 } 11011 11012 if (vsi->uplink_seid == pf->mac_seid) { 11013 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11014 /* no VEB, so rebuild only the Main VSI */ 11015 ret = i40e_add_vsi(vsi); 11016 if (ret) { 11017 dev_info(&pf->pdev->dev, 11018 "rebuild of Main VSI failed: %d\n", ret); 11019 goto end_unlock; 11020 } 11021 } 11022 11023 if (vsi->mqprio_qopt.max_rate[0]) { 11024 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11025 vsi->mqprio_qopt.max_rate[0]); 11026 u64 credits = 0; 11027 11028 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11029 if (ret) 11030 goto end_unlock; 11031 11032 credits = max_tx_rate; 11033 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11034 dev_dbg(&vsi->back->pdev->dev, 11035 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11036 max_tx_rate, 11037 credits, 11038 vsi->seid); 11039 } 11040 11041 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11042 if (ret) 11043 goto end_unlock; 11044 11045 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11046 * for this main VSI if they exist 11047 */ 11048 ret = i40e_rebuild_channels(vsi); 11049 if (ret) 11050 goto end_unlock; 11051 11052 /* Reconfigure hardware for allowing smaller MSS in the case 11053 * of TSO, so that we avoid the MDD being fired and causing 11054 * a reset in the case of small MSS+TSO. 11055 */ 11056 #define I40E_REG_MSS 0x000E64DC 11057 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11058 #define I40E_64BYTE_MSS 0x400000 11059 val = rd32(hw, I40E_REG_MSS); 11060 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11061 val &= ~I40E_REG_MSS_MIN_MASK; 11062 val |= I40E_64BYTE_MSS; 11063 wr32(hw, I40E_REG_MSS, val); 11064 } 11065 11066 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11067 msleep(75); 11068 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11069 if (ret) 11070 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11071 ERR_PTR(ret), 11072 i40e_aq_str(&pf->hw, 11073 pf->hw.aq.asq_last_status)); 11074 } 11075 /* reinit the misc interrupt */ 11076 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11077 ret = i40e_setup_misc_vector(pf); 11078 if (ret) 11079 goto end_unlock; 11080 } 11081 11082 /* Add a filter to drop all Flow control frames from any VSI from being 11083 * transmitted. By doing so we stop a malicious VF from sending out 11084 * PAUSE or PFC frames and potentially controlling traffic for other 11085 * PF/VF VSIs. 11086 * The FW can still send Flow control frames if enabled. 11087 */ 11088 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11089 pf->main_vsi_seid); 11090 11091 /* restart the VSIs that were rebuilt and running before the reset */ 11092 i40e_pf_unquiesce_all_vsi(pf); 11093 11094 /* Release the RTNL lock before we start resetting VFs */ 11095 if (!lock_acquired) 11096 rtnl_unlock(); 11097 11098 /* Restore promiscuous settings */ 11099 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11100 if (ret) 11101 dev_warn(&pf->pdev->dev, 11102 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11103 pf->cur_promisc ? "on" : "off", 11104 ERR_PTR(ret), 11105 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11106 11107 i40e_reset_all_vfs(pf, true); 11108 11109 /* tell the firmware that we're starting */ 11110 i40e_send_version(pf); 11111 11112 /* We've already released the lock, so don't do it again */ 11113 goto end_core_reset; 11114 11115 end_unlock: 11116 if (!lock_acquired) 11117 rtnl_unlock(); 11118 end_core_reset: 11119 clear_bit(__I40E_RESET_FAILED, pf->state); 11120 clear_recovery: 11121 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11122 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11123 } 11124 11125 /** 11126 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11127 * @pf: board private structure 11128 * @reinit: if the Main VSI needs to re-initialized. 11129 * @lock_acquired: indicates whether or not the lock has been acquired 11130 * before this function was called. 11131 **/ 11132 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11133 bool lock_acquired) 11134 { 11135 int ret; 11136 11137 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11138 return; 11139 /* Now we wait for GRST to settle out. 11140 * We don't have to delete the VEBs or VSIs from the hw switch 11141 * because the reset will make them disappear. 11142 */ 11143 ret = i40e_reset(pf); 11144 if (!ret) 11145 i40e_rebuild(pf, reinit, lock_acquired); 11146 else 11147 dev_err(&pf->pdev->dev, "%s: i40e_reset() FAILED", __func__); 11148 } 11149 11150 /** 11151 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11152 * @pf: board private structure 11153 * 11154 * Close up the VFs and other things in prep for a Core Reset, 11155 * then get ready to rebuild the world. 11156 * @lock_acquired: indicates whether or not the lock has been acquired 11157 * before this function was called. 11158 **/ 11159 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11160 { 11161 i40e_prep_for_reset(pf); 11162 i40e_reset_and_rebuild(pf, false, lock_acquired); 11163 } 11164 11165 /** 11166 * i40e_print_vf_mdd_event - print VF Tx/Rx malicious driver detect event 11167 * @pf: board private structure 11168 * @vf: pointer to the VF structure 11169 * @is_tx: true - for Tx event, false - for Rx 11170 */ 11171 static void i40e_print_vf_mdd_event(struct i40e_pf *pf, struct i40e_vf *vf, 11172 bool is_tx) 11173 { 11174 dev_err(&pf->pdev->dev, is_tx ? 11175 "%lld Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n" : 11176 "%lld Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n", 11177 is_tx ? vf->mdd_tx_events.count : vf->mdd_rx_events.count, 11178 pf->hw.pf_id, 11179 vf->vf_id, 11180 vf->default_lan_addr.addr, 11181 str_on_off(test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags))); 11182 } 11183 11184 /** 11185 * i40e_print_vfs_mdd_events - print VFs malicious driver detect event 11186 * @pf: pointer to the PF structure 11187 * 11188 * Called from i40e_handle_mdd_event to rate limit and print VFs MDD events. 11189 */ 11190 static void i40e_print_vfs_mdd_events(struct i40e_pf *pf) 11191 { 11192 unsigned int i; 11193 11194 /* check that there are pending MDD events to print */ 11195 if (!test_and_clear_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state)) 11196 return; 11197 11198 if (!__ratelimit(&pf->mdd_message_rate_limit)) 11199 return; 11200 11201 for (i = 0; i < pf->num_alloc_vfs; i++) { 11202 struct i40e_vf *vf = &pf->vf[i]; 11203 bool is_printed = false; 11204 11205 /* only print Rx MDD event message if there are new events */ 11206 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 11207 vf->mdd_rx_events.last_printed = vf->mdd_rx_events.count; 11208 i40e_print_vf_mdd_event(pf, vf, false); 11209 is_printed = true; 11210 } 11211 11212 /* only print Tx MDD event message if there are new events */ 11213 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 11214 vf->mdd_tx_events.last_printed = vf->mdd_tx_events.count; 11215 i40e_print_vf_mdd_event(pf, vf, true); 11216 is_printed = true; 11217 } 11218 11219 if (is_printed && !test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 11220 dev_info(&pf->pdev->dev, 11221 "Use PF Control I/F to re-enable the VF #%d\n", 11222 i); 11223 } 11224 } 11225 11226 /** 11227 * i40e_handle_mdd_event 11228 * @pf: pointer to the PF structure 11229 * 11230 * Called from the MDD irq handler to identify possibly malicious vfs 11231 **/ 11232 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11233 { 11234 struct i40e_hw *hw = &pf->hw; 11235 bool mdd_detected = false; 11236 struct i40e_vf *vf; 11237 u32 reg; 11238 int i; 11239 11240 if (!test_and_clear_bit(__I40E_MDD_EVENT_PENDING, pf->state)) { 11241 /* Since the VF MDD event logging is rate limited, check if 11242 * there are pending MDD events. 11243 */ 11244 i40e_print_vfs_mdd_events(pf); 11245 return; 11246 } 11247 11248 /* find what triggered the MDD event */ 11249 reg = rd32(hw, I40E_GL_MDET_TX); 11250 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11251 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg); 11252 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg); 11253 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg); 11254 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) - 11255 pf->hw.func_caps.base_queue; 11256 if (netif_msg_tx_err(pf)) 11257 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11258 event, queue, pf_num, vf_num); 11259 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11260 mdd_detected = true; 11261 } 11262 reg = rd32(hw, I40E_GL_MDET_RX); 11263 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11264 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg); 11265 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg); 11266 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) - 11267 pf->hw.func_caps.base_queue; 11268 if (netif_msg_rx_err(pf)) 11269 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11270 event, queue, func); 11271 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11272 mdd_detected = true; 11273 } 11274 11275 if (mdd_detected) { 11276 reg = rd32(hw, I40E_PF_MDET_TX); 11277 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11278 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11279 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11280 } 11281 reg = rd32(hw, I40E_PF_MDET_RX); 11282 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11283 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11284 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11285 } 11286 } 11287 11288 /* see if one of the VFs needs its hand slapped */ 11289 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11290 bool is_mdd_on_tx = false; 11291 bool is_mdd_on_rx = false; 11292 11293 vf = &(pf->vf[i]); 11294 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11295 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11296 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state); 11297 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11298 vf->mdd_tx_events.count++; 11299 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11300 is_mdd_on_tx = true; 11301 } 11302 11303 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11304 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11305 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state); 11306 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11307 vf->mdd_rx_events.count++; 11308 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11309 is_mdd_on_rx = true; 11310 } 11311 11312 if ((is_mdd_on_tx || is_mdd_on_rx) && 11313 test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 11314 /* VF MDD event counters will be cleared by 11315 * reset, so print the event prior to reset. 11316 */ 11317 if (is_mdd_on_rx) 11318 i40e_print_vf_mdd_event(pf, vf, false); 11319 if (is_mdd_on_tx) 11320 i40e_print_vf_mdd_event(pf, vf, true); 11321 11322 i40e_vc_reset_vf(vf, true); 11323 } 11324 } 11325 11326 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11327 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11328 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11329 i40e_flush(hw); 11330 11331 i40e_print_vfs_mdd_events(pf); 11332 } 11333 11334 /** 11335 * i40e_service_task - Run the driver's async subtasks 11336 * @work: pointer to work_struct containing our data 11337 **/ 11338 static void i40e_service_task(struct work_struct *work) 11339 { 11340 struct i40e_pf *pf = container_of(work, 11341 struct i40e_pf, 11342 service_task); 11343 unsigned long start_time = jiffies; 11344 11345 /* don't bother with service tasks if a reset is in progress */ 11346 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11347 test_bit(__I40E_SUSPENDED, pf->state)) 11348 return; 11349 11350 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11351 return; 11352 11353 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11354 i40e_detect_recover_hung(pf); 11355 i40e_sync_filters_subtask(pf); 11356 i40e_reset_subtask(pf); 11357 i40e_handle_mdd_event(pf); 11358 i40e_vc_process_vflr_event(pf); 11359 i40e_watchdog_subtask(pf); 11360 i40e_fdir_reinit_subtask(pf); 11361 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11362 /* Client subtask will reopen next time through. */ 11363 i40e_notify_client_of_netdev_close(pf, true); 11364 } else { 11365 i40e_client_subtask(pf); 11366 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11367 pf->state)) 11368 i40e_notify_client_of_l2_param_changes(pf); 11369 } 11370 i40e_sync_filters_subtask(pf); 11371 } else { 11372 i40e_reset_subtask(pf); 11373 } 11374 11375 i40e_clean_adminq_subtask(pf); 11376 11377 /* flush memory to make sure state is correct before next watchdog */ 11378 smp_mb__before_atomic(); 11379 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11380 11381 /* If the tasks have taken longer than one timer cycle or there 11382 * is more work to be done, reschedule the service task now 11383 * rather than wait for the timer to tick again. 11384 */ 11385 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11386 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11387 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11388 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11389 i40e_service_event_schedule(pf); 11390 } 11391 11392 /** 11393 * i40e_service_timer - timer callback 11394 * @t: timer list pointer 11395 **/ 11396 static void i40e_service_timer(struct timer_list *t) 11397 { 11398 struct i40e_pf *pf = timer_container_of(pf, t, service_timer); 11399 11400 mod_timer(&pf->service_timer, 11401 round_jiffies(jiffies + pf->service_timer_period)); 11402 i40e_service_event_schedule(pf); 11403 } 11404 11405 /** 11406 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11407 * @vsi: the VSI being configured 11408 **/ 11409 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11410 { 11411 struct i40e_pf *pf = vsi->back; 11412 11413 switch (vsi->type) { 11414 case I40E_VSI_MAIN: 11415 vsi->alloc_queue_pairs = pf->num_lan_qps; 11416 if (!vsi->num_tx_desc) 11417 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11418 I40E_REQ_DESCRIPTOR_MULTIPLE); 11419 if (!vsi->num_rx_desc) 11420 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11421 I40E_REQ_DESCRIPTOR_MULTIPLE); 11422 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11423 vsi->num_q_vectors = pf->num_lan_msix; 11424 else 11425 vsi->num_q_vectors = 1; 11426 11427 break; 11428 11429 case I40E_VSI_FDIR: 11430 vsi->alloc_queue_pairs = 1; 11431 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11432 I40E_REQ_DESCRIPTOR_MULTIPLE); 11433 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11434 I40E_REQ_DESCRIPTOR_MULTIPLE); 11435 vsi->num_q_vectors = pf->num_fdsb_msix; 11436 break; 11437 11438 case I40E_VSI_VMDQ2: 11439 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11440 if (!vsi->num_tx_desc) 11441 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11442 I40E_REQ_DESCRIPTOR_MULTIPLE); 11443 if (!vsi->num_rx_desc) 11444 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11445 I40E_REQ_DESCRIPTOR_MULTIPLE); 11446 vsi->num_q_vectors = pf->num_vmdq_msix; 11447 break; 11448 11449 case I40E_VSI_SRIOV: 11450 vsi->alloc_queue_pairs = pf->num_vf_qps; 11451 if (!vsi->num_tx_desc) 11452 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11453 I40E_REQ_DESCRIPTOR_MULTIPLE); 11454 if (!vsi->num_rx_desc) 11455 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11456 I40E_REQ_DESCRIPTOR_MULTIPLE); 11457 break; 11458 11459 default: 11460 WARN_ON(1); 11461 return -ENODATA; 11462 } 11463 11464 if (is_kdump_kernel()) { 11465 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11466 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11467 } 11468 11469 return 0; 11470 } 11471 11472 /** 11473 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11474 * @vsi: VSI pointer 11475 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11476 * 11477 * On error: returns error code (negative) 11478 * On success: returns 0 11479 **/ 11480 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11481 { 11482 struct i40e_ring **next_rings; 11483 int size; 11484 int ret = 0; 11485 11486 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11487 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11488 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11489 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11490 if (!vsi->tx_rings) 11491 return -ENOMEM; 11492 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11493 if (i40e_enabled_xdp_vsi(vsi)) { 11494 vsi->xdp_rings = next_rings; 11495 next_rings += vsi->alloc_queue_pairs; 11496 } 11497 vsi->rx_rings = next_rings; 11498 11499 if (alloc_qvectors) { 11500 /* allocate memory for q_vector pointers */ 11501 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11502 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11503 if (!vsi->q_vectors) { 11504 ret = -ENOMEM; 11505 goto err_vectors; 11506 } 11507 } 11508 return ret; 11509 11510 err_vectors: 11511 kfree(vsi->tx_rings); 11512 return ret; 11513 } 11514 11515 /** 11516 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11517 * @pf: board private structure 11518 * @type: type of VSI 11519 * 11520 * On error: returns error code (negative) 11521 * On success: returns vsi index in PF (positive) 11522 **/ 11523 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11524 { 11525 int ret = -ENODEV; 11526 struct i40e_vsi *vsi; 11527 int vsi_idx; 11528 int i; 11529 11530 /* Need to protect the allocation of the VSIs at the PF level */ 11531 mutex_lock(&pf->switch_mutex); 11532 11533 /* VSI list may be fragmented if VSI creation/destruction has 11534 * been happening. We can afford to do a quick scan to look 11535 * for any free VSIs in the list. 11536 * 11537 * find next empty vsi slot, looping back around if necessary 11538 */ 11539 i = pf->next_vsi; 11540 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11541 i++; 11542 if (i >= pf->num_alloc_vsi) { 11543 i = 0; 11544 while (i < pf->next_vsi && pf->vsi[i]) 11545 i++; 11546 } 11547 11548 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11549 vsi_idx = i; /* Found one! */ 11550 } else { 11551 ret = -ENODEV; 11552 goto unlock_pf; /* out of VSI slots! */ 11553 } 11554 pf->next_vsi = ++i; 11555 11556 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11557 if (!vsi) { 11558 ret = -ENOMEM; 11559 goto unlock_pf; 11560 } 11561 vsi->type = type; 11562 vsi->back = pf; 11563 set_bit(__I40E_VSI_DOWN, vsi->state); 11564 vsi->flags = 0; 11565 vsi->idx = vsi_idx; 11566 vsi->int_rate_limit = 0; 11567 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11568 pf->rss_table_size : 64; 11569 vsi->netdev_registered = false; 11570 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11571 hash_init(vsi->mac_filter_hash); 11572 vsi->irqs_ready = false; 11573 11574 if (type == I40E_VSI_MAIN) { 11575 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11576 if (!vsi->af_xdp_zc_qps) 11577 goto err_rings; 11578 } 11579 11580 ret = i40e_set_num_rings_in_vsi(vsi); 11581 if (ret) 11582 goto err_rings; 11583 11584 ret = i40e_vsi_alloc_arrays(vsi, true); 11585 if (ret) 11586 goto err_rings; 11587 11588 /* Setup default MSIX irq handler for VSI */ 11589 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11590 11591 /* Initialize VSI lock */ 11592 spin_lock_init(&vsi->mac_filter_hash_lock); 11593 pf->vsi[vsi_idx] = vsi; 11594 ret = vsi_idx; 11595 goto unlock_pf; 11596 11597 err_rings: 11598 bitmap_free(vsi->af_xdp_zc_qps); 11599 pf->next_vsi = i - 1; 11600 kfree(vsi); 11601 unlock_pf: 11602 mutex_unlock(&pf->switch_mutex); 11603 return ret; 11604 } 11605 11606 /** 11607 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11608 * @vsi: VSI pointer 11609 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11610 * 11611 * On error: returns error code (negative) 11612 * On success: returns 0 11613 **/ 11614 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11615 { 11616 /* free the ring and vector containers */ 11617 if (free_qvectors) { 11618 kfree(vsi->q_vectors); 11619 vsi->q_vectors = NULL; 11620 } 11621 kfree(vsi->tx_rings); 11622 vsi->tx_rings = NULL; 11623 vsi->rx_rings = NULL; 11624 vsi->xdp_rings = NULL; 11625 } 11626 11627 /** 11628 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11629 * and lookup table 11630 * @vsi: Pointer to VSI structure 11631 */ 11632 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11633 { 11634 if (!vsi) 11635 return; 11636 11637 kfree(vsi->rss_hkey_user); 11638 vsi->rss_hkey_user = NULL; 11639 11640 kfree(vsi->rss_lut_user); 11641 vsi->rss_lut_user = NULL; 11642 } 11643 11644 /** 11645 * i40e_vsi_clear - Deallocate the VSI provided 11646 * @vsi: the VSI being un-configured 11647 **/ 11648 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11649 { 11650 struct i40e_pf *pf; 11651 11652 if (!vsi) 11653 return 0; 11654 11655 if (!vsi->back) 11656 goto free_vsi; 11657 pf = vsi->back; 11658 11659 mutex_lock(&pf->switch_mutex); 11660 if (!pf->vsi[vsi->idx]) { 11661 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11662 vsi->idx, vsi->idx, vsi->type); 11663 goto unlock_vsi; 11664 } 11665 11666 if (pf->vsi[vsi->idx] != vsi) { 11667 dev_err(&pf->pdev->dev, 11668 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11669 pf->vsi[vsi->idx]->idx, 11670 pf->vsi[vsi->idx]->type, 11671 vsi->idx, vsi->type); 11672 goto unlock_vsi; 11673 } 11674 11675 /* updates the PF for this cleared vsi */ 11676 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11677 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11678 11679 bitmap_free(vsi->af_xdp_zc_qps); 11680 i40e_vsi_free_arrays(vsi, true); 11681 i40e_clear_rss_config_user(vsi); 11682 11683 pf->vsi[vsi->idx] = NULL; 11684 if (vsi->idx < pf->next_vsi) 11685 pf->next_vsi = vsi->idx; 11686 11687 unlock_vsi: 11688 mutex_unlock(&pf->switch_mutex); 11689 free_vsi: 11690 kfree(vsi); 11691 11692 return 0; 11693 } 11694 11695 /** 11696 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11697 * @vsi: the VSI being cleaned 11698 **/ 11699 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11700 { 11701 int i; 11702 11703 if (vsi->tx_rings && vsi->tx_rings[0]) { 11704 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11705 kfree_rcu(vsi->tx_rings[i], rcu); 11706 WRITE_ONCE(vsi->tx_rings[i], NULL); 11707 WRITE_ONCE(vsi->rx_rings[i], NULL); 11708 if (vsi->xdp_rings) 11709 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11710 } 11711 } 11712 } 11713 11714 /** 11715 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11716 * @vsi: the VSI being configured 11717 **/ 11718 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11719 { 11720 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11721 struct i40e_pf *pf = vsi->back; 11722 struct i40e_ring *ring; 11723 11724 /* Set basic values in the rings to be used later during open() */ 11725 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11726 /* allocate space for both Tx and Rx in one shot */ 11727 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11728 if (!ring) 11729 goto err_out; 11730 11731 ring->queue_index = i; 11732 ring->reg_idx = vsi->base_queue + i; 11733 ring->ring_active = false; 11734 ring->vsi = vsi; 11735 ring->netdev = vsi->netdev; 11736 ring->dev = &pf->pdev->dev; 11737 ring->count = vsi->num_tx_desc; 11738 ring->size = 0; 11739 ring->dcb_tc = 0; 11740 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11741 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11742 ring->itr_setting = pf->tx_itr_default; 11743 WRITE_ONCE(vsi->tx_rings[i], ring++); 11744 11745 if (!i40e_enabled_xdp_vsi(vsi)) 11746 goto setup_rx; 11747 11748 ring->queue_index = vsi->alloc_queue_pairs + i; 11749 ring->reg_idx = vsi->base_queue + ring->queue_index; 11750 ring->ring_active = false; 11751 ring->vsi = vsi; 11752 ring->netdev = NULL; 11753 ring->dev = &pf->pdev->dev; 11754 ring->count = vsi->num_tx_desc; 11755 ring->size = 0; 11756 ring->dcb_tc = 0; 11757 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11758 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11759 set_ring_xdp(ring); 11760 ring->itr_setting = pf->tx_itr_default; 11761 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11762 11763 setup_rx: 11764 ring->queue_index = i; 11765 ring->reg_idx = vsi->base_queue + i; 11766 ring->ring_active = false; 11767 ring->vsi = vsi; 11768 ring->netdev = vsi->netdev; 11769 ring->dev = &pf->pdev->dev; 11770 ring->count = vsi->num_rx_desc; 11771 ring->size = 0; 11772 ring->dcb_tc = 0; 11773 ring->itr_setting = pf->rx_itr_default; 11774 WRITE_ONCE(vsi->rx_rings[i], ring); 11775 } 11776 11777 return 0; 11778 11779 err_out: 11780 i40e_vsi_clear_rings(vsi); 11781 return -ENOMEM; 11782 } 11783 11784 /** 11785 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11786 * @pf: board private structure 11787 * @vectors: the number of MSI-X vectors to request 11788 * 11789 * Returns the number of vectors reserved, or error 11790 **/ 11791 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11792 { 11793 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11794 I40E_MIN_MSIX, vectors); 11795 if (vectors < 0) { 11796 dev_info(&pf->pdev->dev, 11797 "MSI-X vector reservation failed: %d\n", vectors); 11798 vectors = 0; 11799 } 11800 11801 return vectors; 11802 } 11803 11804 /** 11805 * i40e_init_msix - Setup the MSIX capability 11806 * @pf: board private structure 11807 * 11808 * Work with the OS to set up the MSIX vectors needed. 11809 * 11810 * Returns the number of vectors reserved or negative on failure 11811 **/ 11812 static int i40e_init_msix(struct i40e_pf *pf) 11813 { 11814 struct i40e_hw *hw = &pf->hw; 11815 int cpus, extra_vectors; 11816 int vectors_left; 11817 int v_budget, i; 11818 int v_actual; 11819 int iwarp_requested = 0; 11820 11821 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11822 return -ENODEV; 11823 11824 /* The number of vectors we'll request will be comprised of: 11825 * - Add 1 for "other" cause for Admin Queue events, etc. 11826 * - The number of LAN queue pairs 11827 * - Queues being used for RSS. 11828 * We don't need as many as max_rss_size vectors. 11829 * use rss_size instead in the calculation since that 11830 * is governed by number of cpus in the system. 11831 * - assumes symmetric Tx/Rx pairing 11832 * - The number of VMDq pairs 11833 * - The CPU count within the NUMA node if iWARP is enabled 11834 * Once we count this up, try the request. 11835 * 11836 * If we can't get what we want, we'll simplify to nearly nothing 11837 * and try again. If that still fails, we punt. 11838 */ 11839 vectors_left = hw->func_caps.num_msix_vectors; 11840 v_budget = 0; 11841 11842 /* reserve one vector for miscellaneous handler */ 11843 if (vectors_left) { 11844 v_budget++; 11845 vectors_left--; 11846 } 11847 11848 /* reserve some vectors for the main PF traffic queues. Initially we 11849 * only reserve at most 50% of the available vectors, in the case that 11850 * the number of online CPUs is large. This ensures that we can enable 11851 * extra features as well. Once we've enabled the other features, we 11852 * will use any remaining vectors to reach as close as we can to the 11853 * number of online CPUs. 11854 */ 11855 cpus = num_online_cpus(); 11856 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11857 vectors_left -= pf->num_lan_msix; 11858 11859 /* reserve one vector for sideband flow director */ 11860 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11861 if (vectors_left) { 11862 pf->num_fdsb_msix = 1; 11863 v_budget++; 11864 vectors_left--; 11865 } else { 11866 pf->num_fdsb_msix = 0; 11867 } 11868 } 11869 11870 /* can we reserve enough for iWARP? */ 11871 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11872 iwarp_requested = pf->num_iwarp_msix; 11873 11874 if (!vectors_left) 11875 pf->num_iwarp_msix = 0; 11876 else if (vectors_left < pf->num_iwarp_msix) 11877 pf->num_iwarp_msix = 1; 11878 v_budget += pf->num_iwarp_msix; 11879 vectors_left -= pf->num_iwarp_msix; 11880 } 11881 11882 /* any vectors left over go for VMDq support */ 11883 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11884 if (!vectors_left) { 11885 pf->num_vmdq_msix = 0; 11886 pf->num_vmdq_qps = 0; 11887 } else { 11888 int vmdq_vecs_wanted = 11889 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11890 int vmdq_vecs = 11891 min_t(int, vectors_left, vmdq_vecs_wanted); 11892 11893 /* if we're short on vectors for what's desired, we limit 11894 * the queues per vmdq. If this is still more than are 11895 * available, the user will need to change the number of 11896 * queues/vectors used by the PF later with the ethtool 11897 * channels command 11898 */ 11899 if (vectors_left < vmdq_vecs_wanted) { 11900 pf->num_vmdq_qps = 1; 11901 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11902 vmdq_vecs = min_t(int, 11903 vectors_left, 11904 vmdq_vecs_wanted); 11905 } 11906 pf->num_vmdq_msix = pf->num_vmdq_qps; 11907 11908 v_budget += vmdq_vecs; 11909 vectors_left -= vmdq_vecs; 11910 } 11911 } 11912 11913 /* On systems with a large number of SMP cores, we previously limited 11914 * the number of vectors for num_lan_msix to be at most 50% of the 11915 * available vectors, to allow for other features. Now, we add back 11916 * the remaining vectors. However, we ensure that the total 11917 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11918 * calculate the number of vectors we can add without going over the 11919 * cap of CPUs. For systems with a small number of CPUs this will be 11920 * zero. 11921 */ 11922 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11923 pf->num_lan_msix += extra_vectors; 11924 vectors_left -= extra_vectors; 11925 11926 WARN(vectors_left < 0, 11927 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11928 11929 v_budget += pf->num_lan_msix; 11930 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11931 GFP_KERNEL); 11932 if (!pf->msix_entries) 11933 return -ENOMEM; 11934 11935 for (i = 0; i < v_budget; i++) 11936 pf->msix_entries[i].entry = i; 11937 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11938 11939 if (v_actual < I40E_MIN_MSIX) { 11940 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11941 kfree(pf->msix_entries); 11942 pf->msix_entries = NULL; 11943 pci_disable_msix(pf->pdev); 11944 return -ENODEV; 11945 11946 } else if (v_actual == I40E_MIN_MSIX) { 11947 /* Adjust for minimal MSIX use */ 11948 pf->num_vmdq_vsis = 0; 11949 pf->num_vmdq_qps = 0; 11950 pf->num_lan_qps = 1; 11951 pf->num_lan_msix = 1; 11952 11953 } else if (v_actual != v_budget) { 11954 /* If we have limited resources, we will start with no vectors 11955 * for the special features and then allocate vectors to some 11956 * of these features based on the policy and at the end disable 11957 * the features that did not get any vectors. 11958 */ 11959 int vec; 11960 11961 dev_info(&pf->pdev->dev, 11962 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11963 v_actual, v_budget); 11964 /* reserve the misc vector */ 11965 vec = v_actual - 1; 11966 11967 /* Scale vector usage down */ 11968 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11969 pf->num_vmdq_vsis = 1; 11970 pf->num_vmdq_qps = 1; 11971 11972 /* partition out the remaining vectors */ 11973 switch (vec) { 11974 case 2: 11975 pf->num_lan_msix = 1; 11976 break; 11977 case 3: 11978 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11979 pf->num_lan_msix = 1; 11980 pf->num_iwarp_msix = 1; 11981 } else { 11982 pf->num_lan_msix = 2; 11983 } 11984 break; 11985 default: 11986 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11987 pf->num_iwarp_msix = min_t(int, (vec / 3), 11988 iwarp_requested); 11989 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11990 I40E_DEFAULT_NUM_VMDQ_VSI); 11991 } else { 11992 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11993 I40E_DEFAULT_NUM_VMDQ_VSI); 11994 } 11995 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11996 pf->num_fdsb_msix = 1; 11997 vec--; 11998 } 11999 pf->num_lan_msix = min_t(int, 12000 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 12001 pf->num_lan_msix); 12002 pf->num_lan_qps = pf->num_lan_msix; 12003 break; 12004 } 12005 } 12006 12007 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 12008 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 12009 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12010 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12011 } 12012 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 12013 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 12014 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12015 } 12016 12017 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 12018 pf->num_iwarp_msix == 0) { 12019 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 12020 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12021 } 12022 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 12023 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 12024 pf->num_lan_msix, 12025 pf->num_vmdq_msix * pf->num_vmdq_vsis, 12026 pf->num_fdsb_msix, 12027 pf->num_iwarp_msix); 12028 12029 return v_actual; 12030 } 12031 12032 /** 12033 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 12034 * @vsi: the VSI being configured 12035 * @v_idx: index of the vector in the vsi struct 12036 * 12037 * We allocate one q_vector. If allocation fails we return -ENOMEM. 12038 **/ 12039 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 12040 { 12041 struct i40e_q_vector *q_vector; 12042 12043 /* allocate q_vector */ 12044 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 12045 if (!q_vector) 12046 return -ENOMEM; 12047 12048 q_vector->vsi = vsi; 12049 q_vector->v_idx = v_idx; 12050 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 12051 12052 if (vsi->netdev) 12053 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 12054 12055 /* tie q_vector and vsi together */ 12056 vsi->q_vectors[v_idx] = q_vector; 12057 12058 return 0; 12059 } 12060 12061 /** 12062 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 12063 * @vsi: the VSI being configured 12064 * 12065 * We allocate one q_vector per queue interrupt. If allocation fails we 12066 * return -ENOMEM. 12067 **/ 12068 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 12069 { 12070 struct i40e_pf *pf = vsi->back; 12071 int err, v_idx, num_q_vectors; 12072 12073 /* if not MSIX, give the one vector only to the LAN VSI */ 12074 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12075 num_q_vectors = vsi->num_q_vectors; 12076 else if (vsi->type == I40E_VSI_MAIN) 12077 num_q_vectors = 1; 12078 else 12079 return -EINVAL; 12080 12081 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 12082 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 12083 if (err) 12084 goto err_out; 12085 } 12086 12087 return 0; 12088 12089 err_out: 12090 while (v_idx--) 12091 i40e_free_q_vector(vsi, v_idx); 12092 12093 return err; 12094 } 12095 12096 /** 12097 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12098 * @pf: board private structure to initialize 12099 **/ 12100 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12101 { 12102 int vectors = 0; 12103 ssize_t size; 12104 12105 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12106 vectors = i40e_init_msix(pf); 12107 if (vectors < 0) { 12108 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12109 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12110 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12111 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12112 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12113 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12114 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12115 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12116 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12117 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12118 12119 /* rework the queue expectations without MSIX */ 12120 i40e_determine_queue_usage(pf); 12121 } 12122 } 12123 12124 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12125 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12126 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12127 vectors = pci_enable_msi(pf->pdev); 12128 if (vectors < 0) { 12129 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12130 vectors); 12131 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12132 } 12133 vectors = 1; /* one MSI or Legacy vector */ 12134 } 12135 12136 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12137 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12138 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12139 12140 /* set up vector assignment tracking */ 12141 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12142 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12143 if (!pf->irq_pile) 12144 return -ENOMEM; 12145 12146 pf->irq_pile->num_entries = vectors; 12147 12148 /* track first vector for misc interrupts, ignore return */ 12149 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12150 12151 return 0; 12152 } 12153 12154 /** 12155 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12156 * @pf: private board data structure 12157 * 12158 * Restore the interrupt scheme that was cleared when we suspended the 12159 * device. This should be called during resume to re-allocate the q_vectors 12160 * and reacquire IRQs. 12161 */ 12162 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12163 { 12164 struct i40e_vsi *vsi; 12165 int err, i; 12166 12167 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12168 * scheme. We need to re-enabled them here in order to attempt to 12169 * re-acquire the MSI or MSI-X vectors 12170 */ 12171 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12172 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12173 12174 err = i40e_init_interrupt_scheme(pf); 12175 if (err) 12176 return err; 12177 12178 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12179 * rings together again. 12180 */ 12181 i40e_pf_for_each_vsi(pf, i, vsi) { 12182 err = i40e_vsi_alloc_q_vectors(vsi); 12183 if (err) 12184 goto err_unwind; 12185 12186 i40e_vsi_map_rings_to_vectors(vsi); 12187 } 12188 12189 err = i40e_setup_misc_vector(pf); 12190 if (err) 12191 goto err_unwind; 12192 12193 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12194 i40e_client_update_msix_info(pf); 12195 12196 return 0; 12197 12198 err_unwind: 12199 while (i--) { 12200 if (pf->vsi[i]) 12201 i40e_vsi_free_q_vectors(pf->vsi[i]); 12202 } 12203 12204 return err; 12205 } 12206 12207 /** 12208 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12209 * non queue events in recovery mode 12210 * @pf: board private structure 12211 * 12212 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12213 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12214 * This is handled differently than in recovery mode since no Tx/Rx resources 12215 * are being allocated. 12216 **/ 12217 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12218 { 12219 int err; 12220 12221 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12222 err = i40e_setup_misc_vector(pf); 12223 12224 if (err) { 12225 dev_info(&pf->pdev->dev, 12226 "MSI-X misc vector request failed, error %d\n", 12227 err); 12228 return err; 12229 } 12230 } else { 12231 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12232 12233 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12234 pf->int_name, pf); 12235 12236 if (err) { 12237 dev_info(&pf->pdev->dev, 12238 "MSI/legacy misc vector request failed, error %d\n", 12239 err); 12240 return err; 12241 } 12242 i40e_enable_misc_int_causes(pf); 12243 i40e_irq_dynamic_enable_icr0(pf); 12244 } 12245 12246 return 0; 12247 } 12248 12249 /** 12250 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12251 * @pf: board private structure 12252 * 12253 * This sets up the handler for MSIX 0, which is used to manage the 12254 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12255 * when in MSI or Legacy interrupt mode. 12256 **/ 12257 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12258 { 12259 struct i40e_hw *hw = &pf->hw; 12260 int err = 0; 12261 12262 /* Only request the IRQ once, the first time through. */ 12263 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12264 err = request_irq(pf->msix_entries[0].vector, 12265 i40e_intr, 0, pf->int_name, pf); 12266 if (err) { 12267 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12268 dev_info(&pf->pdev->dev, 12269 "request_irq for %s failed: %d\n", 12270 pf->int_name, err); 12271 return -EFAULT; 12272 } 12273 } 12274 12275 i40e_enable_misc_int_causes(pf); 12276 12277 /* associate no queues to the misc vector */ 12278 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12279 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12280 12281 i40e_flush(hw); 12282 12283 i40e_irq_dynamic_enable_icr0(pf); 12284 12285 return err; 12286 } 12287 12288 /** 12289 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12290 * @vsi: Pointer to vsi structure 12291 * @seed: Buffter to store the hash keys 12292 * @lut: Buffer to store the lookup table entries 12293 * @lut_size: Size of buffer to store the lookup table entries 12294 * 12295 * Return 0 on success, negative on failure 12296 */ 12297 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12298 u8 *lut, u16 lut_size) 12299 { 12300 struct i40e_pf *pf = vsi->back; 12301 struct i40e_hw *hw = &pf->hw; 12302 int ret = 0; 12303 12304 if (seed) { 12305 ret = i40e_aq_get_rss_key(hw, vsi->id, 12306 (struct i40e_aqc_get_set_rss_key_data *)seed); 12307 if (ret) { 12308 dev_info(&pf->pdev->dev, 12309 "Cannot get RSS key, err %pe aq_err %s\n", 12310 ERR_PTR(ret), 12311 i40e_aq_str(&pf->hw, 12312 pf->hw.aq.asq_last_status)); 12313 return ret; 12314 } 12315 } 12316 12317 if (lut) { 12318 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12319 12320 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12321 if (ret) { 12322 dev_info(&pf->pdev->dev, 12323 "Cannot get RSS lut, err %pe aq_err %s\n", 12324 ERR_PTR(ret), 12325 i40e_aq_str(&pf->hw, 12326 pf->hw.aq.asq_last_status)); 12327 return ret; 12328 } 12329 } 12330 12331 return ret; 12332 } 12333 12334 /** 12335 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12336 * @vsi: Pointer to vsi structure 12337 * @seed: RSS hash seed 12338 * @lut: Lookup table 12339 * @lut_size: Lookup table size 12340 * 12341 * Returns 0 on success, negative on failure 12342 **/ 12343 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12344 const u8 *lut, u16 lut_size) 12345 { 12346 struct i40e_pf *pf = vsi->back; 12347 struct i40e_hw *hw = &pf->hw; 12348 u16 vf_id = vsi->vf_id; 12349 u8 i; 12350 12351 /* Fill out hash function seed */ 12352 if (seed) { 12353 u32 *seed_dw = (u32 *)seed; 12354 12355 if (vsi->type == I40E_VSI_MAIN) { 12356 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12357 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12358 } else if (vsi->type == I40E_VSI_SRIOV) { 12359 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12360 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12361 } else { 12362 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12363 } 12364 } 12365 12366 if (lut) { 12367 u32 *lut_dw = (u32 *)lut; 12368 12369 if (vsi->type == I40E_VSI_MAIN) { 12370 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12371 return -EINVAL; 12372 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12373 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12374 } else if (vsi->type == I40E_VSI_SRIOV) { 12375 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12376 return -EINVAL; 12377 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12378 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12379 } else { 12380 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12381 } 12382 } 12383 i40e_flush(hw); 12384 12385 return 0; 12386 } 12387 12388 /** 12389 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12390 * @vsi: Pointer to VSI structure 12391 * @seed: Buffer to store the keys 12392 * @lut: Buffer to store the lookup table entries 12393 * @lut_size: Size of buffer to store the lookup table entries 12394 * 12395 * Returns 0 on success, negative on failure 12396 */ 12397 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12398 u8 *lut, u16 lut_size) 12399 { 12400 struct i40e_pf *pf = vsi->back; 12401 struct i40e_hw *hw = &pf->hw; 12402 u16 i; 12403 12404 if (seed) { 12405 u32 *seed_dw = (u32 *)seed; 12406 12407 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12408 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12409 } 12410 if (lut) { 12411 u32 *lut_dw = (u32 *)lut; 12412 12413 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12414 return -EINVAL; 12415 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12416 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12417 } 12418 12419 return 0; 12420 } 12421 12422 /** 12423 * i40e_config_rss - Configure RSS keys and lut 12424 * @vsi: Pointer to VSI structure 12425 * @seed: RSS hash seed 12426 * @lut: Lookup table 12427 * @lut_size: Lookup table size 12428 * 12429 * Returns 0 on success, negative on failure 12430 */ 12431 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12432 { 12433 struct i40e_pf *pf = vsi->back; 12434 12435 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12436 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12437 else 12438 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12439 } 12440 12441 /** 12442 * i40e_get_rss - Get RSS keys and lut 12443 * @vsi: Pointer to VSI structure 12444 * @seed: Buffer to store the keys 12445 * @lut: Buffer to store the lookup table entries 12446 * @lut_size: Size of buffer to store the lookup table entries 12447 * 12448 * Returns 0 on success, negative on failure 12449 */ 12450 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12451 { 12452 struct i40e_pf *pf = vsi->back; 12453 12454 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12455 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12456 else 12457 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12458 } 12459 12460 /** 12461 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12462 * @pf: Pointer to board private structure 12463 * @lut: Lookup table 12464 * @rss_table_size: Lookup table size 12465 * @rss_size: Range of queue number for hashing 12466 */ 12467 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12468 u16 rss_table_size, u16 rss_size) 12469 { 12470 u16 i; 12471 12472 for (i = 0; i < rss_table_size; i++) 12473 lut[i] = i % rss_size; 12474 } 12475 12476 /** 12477 * i40e_pf_config_rss - Prepare for RSS if used 12478 * @pf: board private structure 12479 **/ 12480 static int i40e_pf_config_rss(struct i40e_pf *pf) 12481 { 12482 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12483 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12484 u8 *lut; 12485 struct i40e_hw *hw = &pf->hw; 12486 u32 reg_val; 12487 u64 hena; 12488 int ret; 12489 12490 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12491 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12492 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12493 hena |= i40e_pf_get_default_rss_hashcfg(pf); 12494 12495 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12496 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12497 12498 /* Determine the RSS table size based on the hardware capabilities */ 12499 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12500 reg_val = (pf->rss_table_size == 512) ? 12501 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12502 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12503 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12504 12505 /* Determine the RSS size of the VSI */ 12506 if (!vsi->rss_size) { 12507 u16 qcount; 12508 /* If the firmware does something weird during VSI init, we 12509 * could end up with zero TCs. Check for that to avoid 12510 * divide-by-zero. It probably won't pass traffic, but it also 12511 * won't panic. 12512 */ 12513 qcount = vsi->num_queue_pairs / 12514 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12515 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12516 } 12517 if (!vsi->rss_size) 12518 return -EINVAL; 12519 12520 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12521 if (!lut) 12522 return -ENOMEM; 12523 12524 /* Use user configured lut if there is one, otherwise use default */ 12525 if (vsi->rss_lut_user) 12526 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12527 else 12528 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12529 12530 /* Use user configured hash key if there is one, otherwise 12531 * use default. 12532 */ 12533 if (vsi->rss_hkey_user) 12534 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12535 else 12536 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12537 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12538 kfree(lut); 12539 12540 return ret; 12541 } 12542 12543 /** 12544 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12545 * @pf: board private structure 12546 * @queue_count: the requested queue count for rss. 12547 * 12548 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12549 * count which may be different from the requested queue count. 12550 * Note: expects to be called while under rtnl_lock() 12551 **/ 12552 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12553 { 12554 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12555 int new_rss_size; 12556 12557 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12558 return 0; 12559 12560 queue_count = min_t(int, queue_count, num_online_cpus()); 12561 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12562 12563 if (queue_count != vsi->num_queue_pairs) { 12564 u16 qcount; 12565 12566 vsi->req_queue_pairs = queue_count; 12567 i40e_prep_for_reset(pf); 12568 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12569 return pf->alloc_rss_size; 12570 12571 pf->alloc_rss_size = new_rss_size; 12572 12573 i40e_reset_and_rebuild(pf, true, true); 12574 12575 /* Discard the user configured hash keys and lut, if less 12576 * queues are enabled. 12577 */ 12578 if (queue_count < vsi->rss_size) { 12579 i40e_clear_rss_config_user(vsi); 12580 dev_dbg(&pf->pdev->dev, 12581 "discard user configured hash keys and lut\n"); 12582 } 12583 12584 /* Reset vsi->rss_size, as number of enabled queues changed */ 12585 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12586 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12587 12588 i40e_pf_config_rss(pf); 12589 } 12590 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12591 vsi->req_queue_pairs, pf->rss_size_max); 12592 return pf->alloc_rss_size; 12593 } 12594 12595 /** 12596 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12597 * @pf: board private structure 12598 **/ 12599 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12600 { 12601 bool min_valid, max_valid; 12602 u32 max_bw, min_bw; 12603 int status; 12604 12605 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12606 &min_valid, &max_valid); 12607 12608 if (!status) { 12609 if (min_valid) 12610 pf->min_bw = min_bw; 12611 if (max_valid) 12612 pf->max_bw = max_bw; 12613 } 12614 12615 return status; 12616 } 12617 12618 /** 12619 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12620 * @pf: board private structure 12621 **/ 12622 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12623 { 12624 struct i40e_aqc_configure_partition_bw_data bw_data; 12625 int status; 12626 12627 memset(&bw_data, 0, sizeof(bw_data)); 12628 12629 /* Set the valid bit for this PF */ 12630 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12631 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12632 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12633 12634 /* Set the new bandwidths */ 12635 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12636 12637 return status; 12638 } 12639 12640 /** 12641 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12642 * if total port shutdown feature is enabled for this PF 12643 * @pf: board private structure 12644 **/ 12645 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12646 { 12647 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12648 #define I40E_FEATURES_ENABLE_PTR 0x2A 12649 #define I40E_CURRENT_SETTING_PTR 0x2B 12650 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12651 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12652 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12653 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12654 u16 sr_emp_sr_settings_ptr = 0; 12655 u16 features_enable = 0; 12656 u16 link_behavior = 0; 12657 int read_status = 0; 12658 bool ret = false; 12659 12660 read_status = i40e_read_nvm_word(&pf->hw, 12661 I40E_SR_EMP_SR_SETTINGS_PTR, 12662 &sr_emp_sr_settings_ptr); 12663 if (read_status) 12664 goto err_nvm; 12665 read_status = i40e_read_nvm_word(&pf->hw, 12666 sr_emp_sr_settings_ptr + 12667 I40E_FEATURES_ENABLE_PTR, 12668 &features_enable); 12669 if (read_status) 12670 goto err_nvm; 12671 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12672 read_status = i40e_read_nvm_module_data(&pf->hw, 12673 I40E_SR_EMP_SR_SETTINGS_PTR, 12674 I40E_CURRENT_SETTING_PTR, 12675 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12676 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12677 &link_behavior); 12678 if (read_status) 12679 goto err_nvm; 12680 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12681 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12682 } 12683 return ret; 12684 12685 err_nvm: 12686 dev_warn(&pf->pdev->dev, 12687 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12688 ERR_PTR(read_status)); 12689 return ret; 12690 } 12691 12692 /** 12693 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12694 * @pf: board private structure to initialize 12695 * 12696 * i40e_sw_init initializes the Adapter private data structure. 12697 * Fields are initialized based on PCI device information and 12698 * OS network device settings (MTU size). 12699 **/ 12700 static int i40e_sw_init(struct i40e_pf *pf) 12701 { 12702 int err = 0; 12703 int size; 12704 u16 pow; 12705 12706 /* Set default capability flags */ 12707 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12708 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12709 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12710 12711 /* Set default ITR */ 12712 pf->rx_itr_default = I40E_ITR_RX_DEF; 12713 pf->tx_itr_default = I40E_ITR_TX_DEF; 12714 12715 /* Depending on PF configurations, it is possible that the RSS 12716 * maximum might end up larger than the available queues 12717 */ 12718 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12719 pf->alloc_rss_size = 1; 12720 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12721 pf->rss_size_max = min_t(int, pf->rss_size_max, 12722 pf->hw.func_caps.num_tx_qp); 12723 12724 /* find the next higher power-of-2 of num cpus */ 12725 pow = roundup_pow_of_two(num_online_cpus()); 12726 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12727 12728 if (pf->hw.func_caps.rss) { 12729 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12730 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12731 num_online_cpus()); 12732 } 12733 12734 /* MFP mode enabled */ 12735 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12736 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12737 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12738 if (i40e_get_partition_bw_setting(pf)) { 12739 dev_warn(&pf->pdev->dev, 12740 "Could not get partition bw settings\n"); 12741 } else { 12742 dev_info(&pf->pdev->dev, 12743 "Partition BW Min = %8.8x, Max = %8.8x\n", 12744 pf->min_bw, pf->max_bw); 12745 12746 /* nudge the Tx scheduler */ 12747 i40e_set_partition_bw_setting(pf); 12748 } 12749 } 12750 12751 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12752 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12753 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12754 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12755 pf->hw.num_partitions > 1) 12756 dev_info(&pf->pdev->dev, 12757 "Flow Director Sideband mode Disabled in MFP mode\n"); 12758 else 12759 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12760 pf->fdir_pf_filter_count = 12761 pf->hw.func_caps.fd_filters_guaranteed; 12762 pf->hw.fdir_shared_filter_count = 12763 pf->hw.func_caps.fd_filters_best_effort; 12764 } 12765 12766 /* Enable HW ATR eviction if possible */ 12767 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12768 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12769 12770 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12771 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12772 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12773 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12774 } 12775 12776 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12777 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12778 /* IWARP needs one extra vector for CQP just like MISC.*/ 12779 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12780 } 12781 /* Stopping FW LLDP engine is supported on XL710 and X722 12782 * starting from FW versions determined in i40e_init_adminq. 12783 * Stopping the FW LLDP engine is not supported on XL710 12784 * if NPAR is functioning so unset this hw flag in this case. 12785 */ 12786 if (pf->hw.mac.type == I40E_MAC_XL710 && 12787 pf->hw.func_caps.npar_enable) 12788 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12789 12790 #ifdef CONFIG_PCI_IOV 12791 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12792 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12793 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12794 pf->num_req_vfs = min_t(int, 12795 pf->hw.func_caps.num_vfs, 12796 I40E_MAX_VF_COUNT); 12797 } 12798 #endif /* CONFIG_PCI_IOV */ 12799 pf->lan_veb = I40E_NO_VEB; 12800 pf->lan_vsi = I40E_NO_VSI; 12801 12802 /* By default FW has this off for performance reasons */ 12803 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12804 12805 /* set up queue assignment tracking */ 12806 size = sizeof(struct i40e_lump_tracking) 12807 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12808 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12809 if (!pf->qp_pile) { 12810 err = -ENOMEM; 12811 goto sw_init_done; 12812 } 12813 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12814 12815 pf->tx_timeout_recovery_level = 1; 12816 12817 if (pf->hw.mac.type != I40E_MAC_X722 && 12818 i40e_is_total_port_shutdown_enabled(pf)) { 12819 /* Link down on close must be on when total port shutdown 12820 * is enabled for a given port 12821 */ 12822 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12823 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12824 dev_info(&pf->pdev->dev, 12825 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12826 } 12827 mutex_init(&pf->switch_mutex); 12828 12829 sw_init_done: 12830 return err; 12831 } 12832 12833 /** 12834 * i40e_set_ntuple - set the ntuple feature flag and take action 12835 * @pf: board private structure to initialize 12836 * @features: the feature set that the stack is suggesting 12837 * 12838 * returns a bool to indicate if reset needs to happen 12839 **/ 12840 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12841 { 12842 bool need_reset = false; 12843 12844 /* Check if Flow Director n-tuple support was enabled or disabled. If 12845 * the state changed, we need to reset. 12846 */ 12847 if (features & NETIF_F_NTUPLE) { 12848 /* Enable filters and mark for reset */ 12849 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12850 need_reset = true; 12851 /* enable FD_SB only if there is MSI-X vector and no cloud 12852 * filters exist 12853 */ 12854 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12855 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12856 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12857 } 12858 } else { 12859 /* turn off filters, mark for reset and clear SW filter list */ 12860 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12861 need_reset = true; 12862 i40e_fdir_filter_exit(pf); 12863 } 12864 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12865 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12866 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12867 12868 /* reset fd counters */ 12869 pf->fd_add_err = 0; 12870 pf->fd_atr_cnt = 0; 12871 /* if ATR was auto disabled it can be re-enabled. */ 12872 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12873 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12874 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12875 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12876 } 12877 return need_reset; 12878 } 12879 12880 /** 12881 * i40e_clear_rss_lut - clear the rx hash lookup table 12882 * @vsi: the VSI being configured 12883 **/ 12884 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12885 { 12886 struct i40e_pf *pf = vsi->back; 12887 struct i40e_hw *hw = &pf->hw; 12888 u16 vf_id = vsi->vf_id; 12889 u8 i; 12890 12891 if (vsi->type == I40E_VSI_MAIN) { 12892 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12893 wr32(hw, I40E_PFQF_HLUT(i), 0); 12894 } else if (vsi->type == I40E_VSI_SRIOV) { 12895 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12896 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12897 } else { 12898 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12899 } 12900 } 12901 12902 /** 12903 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12904 * @vsi: ptr to VSI 12905 * @ena: flag to indicate the on/off setting 12906 */ 12907 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12908 { 12909 bool if_running = netif_running(vsi->netdev) && 12910 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12911 int ret; 12912 12913 if (if_running) 12914 i40e_down(vsi); 12915 12916 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12917 if (ret) 12918 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12919 if (if_running) 12920 i40e_up(vsi); 12921 12922 return ret; 12923 } 12924 12925 /** 12926 * i40e_set_features - set the netdev feature flags 12927 * @netdev: ptr to the netdev being adjusted 12928 * @features: the feature set that the stack is suggesting 12929 * Note: expects to be called while under rtnl_lock() 12930 **/ 12931 static int i40e_set_features(struct net_device *netdev, 12932 netdev_features_t features) 12933 { 12934 struct i40e_netdev_priv *np = netdev_priv(netdev); 12935 struct i40e_vsi *vsi = np->vsi; 12936 struct i40e_pf *pf = vsi->back; 12937 bool need_reset; 12938 12939 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12940 i40e_pf_config_rss(pf); 12941 else if (!(features & NETIF_F_RXHASH) && 12942 netdev->features & NETIF_F_RXHASH) 12943 i40e_clear_rss_lut(vsi); 12944 12945 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12946 i40e_vlan_stripping_enable(vsi); 12947 else 12948 i40e_vlan_stripping_disable(vsi); 12949 12950 if (!(features & NETIF_F_HW_TC) && 12951 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12952 dev_err(&pf->pdev->dev, 12953 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12954 return -EINVAL; 12955 } 12956 12957 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12958 i40e_del_all_macvlans(vsi); 12959 12960 need_reset = i40e_set_ntuple(pf, features); 12961 12962 if (need_reset) 12963 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12964 12965 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 12966 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 12967 12968 return 0; 12969 } 12970 12971 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12972 unsigned int table, unsigned int idx, 12973 struct udp_tunnel_info *ti) 12974 { 12975 struct i40e_netdev_priv *np = netdev_priv(netdev); 12976 struct i40e_hw *hw = &np->vsi->back->hw; 12977 u8 type, filter_index; 12978 int ret; 12979 12980 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 12981 I40E_AQC_TUNNEL_TYPE_NGE; 12982 12983 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 12984 NULL); 12985 if (ret) { 12986 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 12987 ERR_PTR(ret), 12988 i40e_aq_str(hw, hw->aq.asq_last_status)); 12989 return -EIO; 12990 } 12991 12992 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 12993 return 0; 12994 } 12995 12996 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 12997 unsigned int table, unsigned int idx, 12998 struct udp_tunnel_info *ti) 12999 { 13000 struct i40e_netdev_priv *np = netdev_priv(netdev); 13001 struct i40e_hw *hw = &np->vsi->back->hw; 13002 int ret; 13003 13004 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 13005 if (ret) { 13006 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 13007 ERR_PTR(ret), 13008 i40e_aq_str(hw, hw->aq.asq_last_status)); 13009 return -EIO; 13010 } 13011 13012 return 0; 13013 } 13014 13015 static int i40e_get_phys_port_id(struct net_device *netdev, 13016 struct netdev_phys_item_id *ppid) 13017 { 13018 struct i40e_netdev_priv *np = netdev_priv(netdev); 13019 struct i40e_pf *pf = np->vsi->back; 13020 struct i40e_hw *hw = &pf->hw; 13021 13022 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13023 return -EOPNOTSUPP; 13024 13025 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13026 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13027 13028 return 0; 13029 } 13030 13031 /** 13032 * i40e_ndo_fdb_add - add an entry to the hardware database 13033 * @ndm: the input from the stack 13034 * @tb: pointer to array of nladdr (unused) 13035 * @dev: the net device pointer 13036 * @addr: the MAC address entry being added 13037 * @vid: VLAN ID 13038 * @flags: instructions from stack about fdb operation 13039 * @notified: whether notification was emitted 13040 * @extack: netlink extended ack, unused currently 13041 */ 13042 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13043 struct net_device *dev, 13044 const unsigned char *addr, u16 vid, 13045 u16 flags, bool *notified, 13046 struct netlink_ext_ack *extack) 13047 { 13048 struct i40e_netdev_priv *np = netdev_priv(dev); 13049 struct i40e_pf *pf = np->vsi->back; 13050 int err = 0; 13051 13052 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13053 return -EOPNOTSUPP; 13054 13055 if (vid) { 13056 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13057 return -EINVAL; 13058 } 13059 13060 /* Hardware does not support aging addresses so if a 13061 * ndm_state is given only allow permanent addresses 13062 */ 13063 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13064 netdev_info(dev, "FDB only supports static addresses\n"); 13065 return -EINVAL; 13066 } 13067 13068 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13069 err = dev_uc_add_excl(dev, addr); 13070 else if (is_multicast_ether_addr(addr)) 13071 err = dev_mc_add_excl(dev, addr); 13072 else 13073 err = -EINVAL; 13074 13075 /* Only return duplicate errors if NLM_F_EXCL is set */ 13076 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13077 err = 0; 13078 13079 return err; 13080 } 13081 13082 /** 13083 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13084 * @dev: the netdev being configured 13085 * @nlh: RTNL message 13086 * @flags: bridge flags 13087 * @extack: netlink extended ack 13088 * 13089 * Inserts a new hardware bridge if not already created and 13090 * enables the bridging mode requested (VEB or VEPA). If the 13091 * hardware bridge has already been inserted and the request 13092 * is to change the mode then that requires a PF reset to 13093 * allow rebuild of the components with required hardware 13094 * bridge mode enabled. 13095 * 13096 * Note: expects to be called while under rtnl_lock() 13097 **/ 13098 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13099 struct nlmsghdr *nlh, 13100 u16 flags, 13101 struct netlink_ext_ack *extack) 13102 { 13103 struct i40e_netdev_priv *np = netdev_priv(dev); 13104 struct i40e_vsi *vsi = np->vsi; 13105 struct i40e_pf *pf = vsi->back; 13106 struct nlattr *attr, *br_spec; 13107 struct i40e_veb *veb; 13108 int rem; 13109 13110 /* Only for PF VSI for now */ 13111 if (vsi->type != I40E_VSI_MAIN) 13112 return -EOPNOTSUPP; 13113 13114 /* Find the HW bridge for PF VSI */ 13115 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13116 13117 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13118 if (!br_spec) 13119 return -EINVAL; 13120 13121 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 13122 __u16 mode = nla_get_u16(attr); 13123 13124 if ((mode != BRIDGE_MODE_VEPA) && 13125 (mode != BRIDGE_MODE_VEB)) 13126 return -EINVAL; 13127 13128 /* Insert a new HW bridge */ 13129 if (!veb) { 13130 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 13131 vsi->tc_config.enabled_tc); 13132 if (veb) { 13133 veb->bridge_mode = mode; 13134 i40e_config_bridge_mode(veb); 13135 } else { 13136 /* No Bridge HW offload available */ 13137 return -ENOENT; 13138 } 13139 break; 13140 } else if (mode != veb->bridge_mode) { 13141 /* Existing HW bridge but different mode needs reset */ 13142 veb->bridge_mode = mode; 13143 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13144 if (mode == BRIDGE_MODE_VEB) 13145 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13146 else 13147 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13148 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13149 break; 13150 } 13151 } 13152 13153 return 0; 13154 } 13155 13156 /** 13157 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13158 * @skb: skb buff 13159 * @pid: process id 13160 * @seq: RTNL message seq # 13161 * @dev: the netdev being configured 13162 * @filter_mask: unused 13163 * @nlflags: netlink flags passed in 13164 * 13165 * Return the mode in which the hardware bridge is operating in 13166 * i.e VEB or VEPA. 13167 **/ 13168 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13169 struct net_device *dev, 13170 u32 __always_unused filter_mask, 13171 int nlflags) 13172 { 13173 struct i40e_netdev_priv *np = netdev_priv(dev); 13174 struct i40e_vsi *vsi = np->vsi; 13175 struct i40e_pf *pf = vsi->back; 13176 struct i40e_veb *veb; 13177 13178 /* Only for PF VSI for now */ 13179 if (vsi->type != I40E_VSI_MAIN) 13180 return -EOPNOTSUPP; 13181 13182 /* Find the HW bridge for the PF VSI */ 13183 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13184 if (!veb) 13185 return 0; 13186 13187 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13188 0, 0, nlflags, filter_mask, NULL); 13189 } 13190 13191 /** 13192 * i40e_features_check - Validate encapsulated packet conforms to limits 13193 * @skb: skb buff 13194 * @dev: This physical port's netdev 13195 * @features: Offload features that the stack believes apply 13196 **/ 13197 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13198 struct net_device *dev, 13199 netdev_features_t features) 13200 { 13201 size_t len; 13202 13203 /* No point in doing any of this if neither checksum nor GSO are 13204 * being requested for this frame. We can rule out both by just 13205 * checking for CHECKSUM_PARTIAL 13206 */ 13207 if (skb->ip_summed != CHECKSUM_PARTIAL) 13208 return features; 13209 13210 /* We cannot support GSO if the MSS is going to be less than 13211 * 64 bytes. If it is then we need to drop support for GSO. 13212 */ 13213 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13214 features &= ~NETIF_F_GSO_MASK; 13215 13216 /* MACLEN can support at most 63 words */ 13217 len = skb_network_offset(skb); 13218 if (len & ~(63 * 2)) 13219 goto out_err; 13220 13221 /* IPLEN and EIPLEN can support at most 127 dwords */ 13222 len = skb_network_header_len(skb); 13223 if (len & ~(127 * 4)) 13224 goto out_err; 13225 13226 if (skb->encapsulation) { 13227 /* L4TUNLEN can support 127 words */ 13228 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13229 if (len & ~(127 * 2)) 13230 goto out_err; 13231 13232 /* IPLEN can support at most 127 dwords */ 13233 len = skb_inner_transport_header(skb) - 13234 skb_inner_network_header(skb); 13235 if (len & ~(127 * 4)) 13236 goto out_err; 13237 } 13238 13239 /* No need to validate L4LEN as TCP is the only protocol with a 13240 * flexible value and we support all possible values supported 13241 * by TCP, which is at most 15 dwords 13242 */ 13243 13244 return features; 13245 out_err: 13246 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13247 } 13248 13249 /** 13250 * i40e_xdp_setup - add/remove an XDP program 13251 * @vsi: VSI to changed 13252 * @prog: XDP program 13253 * @extack: netlink extended ack 13254 **/ 13255 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13256 struct netlink_ext_ack *extack) 13257 { 13258 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13259 struct i40e_pf *pf = vsi->back; 13260 struct bpf_prog *old_prog; 13261 bool need_reset; 13262 int i; 13263 13264 /* VSI shall be deleted in a moment, block loading new programs */ 13265 if (prog && test_bit(__I40E_IN_REMOVE, pf->state)) 13266 return -EINVAL; 13267 13268 /* Don't allow frames that span over multiple buffers */ 13269 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13270 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13271 return -EINVAL; 13272 } 13273 13274 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13275 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13276 if (need_reset) 13277 i40e_prep_for_reset(pf); 13278 13279 old_prog = xchg(&vsi->xdp_prog, prog); 13280 13281 if (need_reset) { 13282 if (!prog) { 13283 xdp_features_clear_redirect_target(vsi->netdev); 13284 /* Wait until ndo_xsk_wakeup completes. */ 13285 synchronize_rcu(); 13286 } 13287 i40e_reset_and_rebuild(pf, true, true); 13288 } 13289 13290 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13291 if (i40e_realloc_rx_bi_zc(vsi, true)) 13292 return -ENOMEM; 13293 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13294 if (i40e_realloc_rx_bi_zc(vsi, false)) 13295 return -ENOMEM; 13296 } 13297 13298 for (i = 0; i < vsi->num_queue_pairs; i++) 13299 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13300 13301 if (old_prog) 13302 bpf_prog_put(old_prog); 13303 13304 /* Kick start the NAPI context if there is an AF_XDP socket open 13305 * on that queue id. This so that receiving will start. 13306 */ 13307 if (need_reset && prog) { 13308 for (i = 0; i < vsi->num_queue_pairs; i++) 13309 if (vsi->xdp_rings[i]->xsk_pool) 13310 (void)i40e_xsk_wakeup(vsi->netdev, i, 13311 XDP_WAKEUP_RX); 13312 xdp_features_set_redirect_target(vsi->netdev, true); 13313 } 13314 13315 return 0; 13316 } 13317 13318 /** 13319 * i40e_enter_busy_conf - Enters busy config state 13320 * @vsi: vsi 13321 * 13322 * Returns 0 on success, <0 for failure. 13323 **/ 13324 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13325 { 13326 struct i40e_pf *pf = vsi->back; 13327 int timeout = 50; 13328 13329 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13330 timeout--; 13331 if (!timeout) 13332 return -EBUSY; 13333 usleep_range(1000, 2000); 13334 } 13335 13336 return 0; 13337 } 13338 13339 /** 13340 * i40e_exit_busy_conf - Exits busy config state 13341 * @vsi: vsi 13342 **/ 13343 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13344 { 13345 struct i40e_pf *pf = vsi->back; 13346 13347 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13348 } 13349 13350 /** 13351 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13352 * @vsi: vsi 13353 * @queue_pair: queue pair 13354 **/ 13355 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13356 { 13357 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13358 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13359 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13360 sizeof(vsi->tx_rings[queue_pair]->stats)); 13361 if (i40e_enabled_xdp_vsi(vsi)) { 13362 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13363 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13364 } 13365 } 13366 13367 /** 13368 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13369 * @vsi: vsi 13370 * @queue_pair: queue pair 13371 **/ 13372 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13373 { 13374 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13375 if (i40e_enabled_xdp_vsi(vsi)) { 13376 /* Make sure that in-progress ndo_xdp_xmit calls are 13377 * completed. 13378 */ 13379 synchronize_rcu(); 13380 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13381 } 13382 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13383 } 13384 13385 /** 13386 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13387 * @vsi: vsi 13388 * @queue_pair: queue pair 13389 * @enable: true for enable, false for disable 13390 **/ 13391 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13392 bool enable) 13393 { 13394 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13395 struct i40e_q_vector *q_vector = rxr->q_vector; 13396 13397 if (!vsi->netdev) 13398 return; 13399 13400 /* All rings in a qp belong to the same qvector. */ 13401 if (q_vector->rx.ring || q_vector->tx.ring) { 13402 if (enable) 13403 napi_enable(&q_vector->napi); 13404 else 13405 napi_disable(&q_vector->napi); 13406 } 13407 } 13408 13409 /** 13410 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13411 * @vsi: vsi 13412 * @queue_pair: queue pair 13413 * @enable: true for enable, false for disable 13414 * 13415 * Returns 0 on success, <0 on failure. 13416 **/ 13417 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13418 bool enable) 13419 { 13420 struct i40e_pf *pf = vsi->back; 13421 int pf_q, ret = 0; 13422 13423 pf_q = vsi->base_queue + queue_pair; 13424 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13425 false /*is xdp*/, enable); 13426 if (ret) { 13427 dev_info(&pf->pdev->dev, 13428 "VSI seid %d Tx ring %d %sable timeout\n", 13429 vsi->seid, pf_q, (enable ? "en" : "dis")); 13430 return ret; 13431 } 13432 13433 i40e_control_rx_q(pf, pf_q, enable); 13434 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13435 if (ret) { 13436 dev_info(&pf->pdev->dev, 13437 "VSI seid %d Rx ring %d %sable timeout\n", 13438 vsi->seid, pf_q, (enable ? "en" : "dis")); 13439 return ret; 13440 } 13441 13442 /* Due to HW errata, on Rx disable only, the register can 13443 * indicate done before it really is. Needs 50ms to be sure 13444 */ 13445 if (!enable) 13446 mdelay(50); 13447 13448 if (!i40e_enabled_xdp_vsi(vsi)) 13449 return ret; 13450 13451 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13452 pf_q + vsi->alloc_queue_pairs, 13453 true /*is xdp*/, enable); 13454 if (ret) { 13455 dev_info(&pf->pdev->dev, 13456 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13457 vsi->seid, pf_q, (enable ? "en" : "dis")); 13458 } 13459 13460 return ret; 13461 } 13462 13463 /** 13464 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13465 * @vsi: vsi 13466 * @queue_pair: queue_pair 13467 **/ 13468 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13469 { 13470 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13471 struct i40e_pf *pf = vsi->back; 13472 struct i40e_hw *hw = &pf->hw; 13473 13474 /* All rings in a qp belong to the same qvector. */ 13475 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13476 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13477 else 13478 i40e_irq_dynamic_enable_icr0(pf); 13479 13480 i40e_flush(hw); 13481 } 13482 13483 /** 13484 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13485 * @vsi: vsi 13486 * @queue_pair: queue_pair 13487 **/ 13488 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13489 { 13490 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13491 struct i40e_pf *pf = vsi->back; 13492 struct i40e_hw *hw = &pf->hw; 13493 13494 /* For simplicity, instead of removing the qp interrupt causes 13495 * from the interrupt linked list, we simply disable the interrupt, and 13496 * leave the list intact. 13497 * 13498 * All rings in a qp belong to the same qvector. 13499 */ 13500 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13501 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13502 13503 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13504 i40e_flush(hw); 13505 synchronize_irq(pf->msix_entries[intpf].vector); 13506 } else { 13507 /* Legacy and MSI mode - this stops all interrupt handling */ 13508 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13509 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13510 i40e_flush(hw); 13511 synchronize_irq(pf->pdev->irq); 13512 } 13513 } 13514 13515 /** 13516 * i40e_queue_pair_disable - Disables a queue pair 13517 * @vsi: vsi 13518 * @queue_pair: queue pair 13519 * 13520 * Returns 0 on success, <0 on failure. 13521 **/ 13522 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13523 { 13524 int err; 13525 13526 err = i40e_enter_busy_conf(vsi); 13527 if (err) 13528 return err; 13529 13530 i40e_queue_pair_disable_irq(vsi, queue_pair); 13531 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13532 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13533 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13534 i40e_queue_pair_clean_rings(vsi, queue_pair); 13535 i40e_queue_pair_reset_stats(vsi, queue_pair); 13536 13537 return err; 13538 } 13539 13540 /** 13541 * i40e_queue_pair_enable - Enables a queue pair 13542 * @vsi: vsi 13543 * @queue_pair: queue pair 13544 * 13545 * Returns 0 on success, <0 on failure. 13546 **/ 13547 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13548 { 13549 int err; 13550 13551 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13552 if (err) 13553 return err; 13554 13555 if (i40e_enabled_xdp_vsi(vsi)) { 13556 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13557 if (err) 13558 return err; 13559 } 13560 13561 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13562 if (err) 13563 return err; 13564 13565 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13566 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13567 i40e_queue_pair_enable_irq(vsi, queue_pair); 13568 13569 i40e_exit_busy_conf(vsi); 13570 13571 return err; 13572 } 13573 13574 /** 13575 * i40e_xdp - implements ndo_bpf for i40e 13576 * @dev: netdevice 13577 * @xdp: XDP command 13578 **/ 13579 static int i40e_xdp(struct net_device *dev, 13580 struct netdev_bpf *xdp) 13581 { 13582 struct i40e_netdev_priv *np = netdev_priv(dev); 13583 struct i40e_vsi *vsi = np->vsi; 13584 13585 if (vsi->type != I40E_VSI_MAIN) 13586 return -EINVAL; 13587 13588 switch (xdp->command) { 13589 case XDP_SETUP_PROG: 13590 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13591 case XDP_SETUP_XSK_POOL: 13592 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13593 xdp->xsk.queue_id); 13594 default: 13595 return -EINVAL; 13596 } 13597 } 13598 13599 static const struct net_device_ops i40e_netdev_ops = { 13600 .ndo_open = i40e_open, 13601 .ndo_stop = i40e_close, 13602 .ndo_start_xmit = i40e_lan_xmit_frame, 13603 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13604 .ndo_set_rx_mode = i40e_set_rx_mode, 13605 .ndo_validate_addr = eth_validate_addr, 13606 .ndo_set_mac_address = i40e_set_mac, 13607 .ndo_change_mtu = i40e_change_mtu, 13608 .ndo_tx_timeout = i40e_tx_timeout, 13609 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13610 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13611 #ifdef CONFIG_NET_POLL_CONTROLLER 13612 .ndo_poll_controller = i40e_netpoll, 13613 #endif 13614 .ndo_setup_tc = __i40e_setup_tc, 13615 .ndo_select_queue = i40e_lan_select_queue, 13616 .ndo_set_features = i40e_set_features, 13617 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13618 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13619 .ndo_get_vf_stats = i40e_get_vf_stats, 13620 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13621 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13622 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13623 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13624 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13625 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13626 .ndo_fdb_add = i40e_ndo_fdb_add, 13627 .ndo_features_check = i40e_features_check, 13628 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13629 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13630 .ndo_bpf = i40e_xdp, 13631 .ndo_xdp_xmit = i40e_xdp_xmit, 13632 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13633 .ndo_dfwd_add_station = i40e_fwd_add, 13634 .ndo_dfwd_del_station = i40e_fwd_del, 13635 .ndo_hwtstamp_get = i40e_ptp_hwtstamp_get, 13636 .ndo_hwtstamp_set = i40e_ptp_hwtstamp_set, 13637 }; 13638 13639 /** 13640 * i40e_config_netdev - Setup the netdev flags 13641 * @vsi: the VSI being configured 13642 * 13643 * Returns 0 on success, negative value on failure 13644 **/ 13645 static int i40e_config_netdev(struct i40e_vsi *vsi) 13646 { 13647 struct i40e_pf *pf = vsi->back; 13648 struct i40e_hw *hw = &pf->hw; 13649 struct i40e_netdev_priv *np; 13650 struct net_device *netdev; 13651 u8 broadcast[ETH_ALEN]; 13652 u8 mac_addr[ETH_ALEN]; 13653 int etherdev_size; 13654 netdev_features_t hw_enc_features; 13655 netdev_features_t hw_features; 13656 13657 etherdev_size = sizeof(struct i40e_netdev_priv); 13658 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13659 if (!netdev) 13660 return -ENOMEM; 13661 13662 vsi->netdev = netdev; 13663 np = netdev_priv(netdev); 13664 np->vsi = vsi; 13665 13666 hw_enc_features = NETIF_F_SG | 13667 NETIF_F_HW_CSUM | 13668 NETIF_F_HIGHDMA | 13669 NETIF_F_SOFT_FEATURES | 13670 NETIF_F_TSO | 13671 NETIF_F_TSO_ECN | 13672 NETIF_F_TSO6 | 13673 NETIF_F_GSO_GRE | 13674 NETIF_F_GSO_GRE_CSUM | 13675 NETIF_F_GSO_PARTIAL | 13676 NETIF_F_GSO_IPXIP4 | 13677 NETIF_F_GSO_IPXIP6 | 13678 NETIF_F_GSO_UDP_TUNNEL | 13679 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13680 NETIF_F_GSO_UDP_L4 | 13681 NETIF_F_SCTP_CRC | 13682 NETIF_F_RXHASH | 13683 NETIF_F_RXCSUM | 13684 0; 13685 13686 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13687 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13688 13689 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13690 13691 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13692 13693 netdev->hw_enc_features |= hw_enc_features; 13694 13695 /* record features VLANs can make use of */ 13696 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13697 13698 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13699 NETIF_F_GSO_GRE_CSUM | \ 13700 NETIF_F_GSO_IPXIP4 | \ 13701 NETIF_F_GSO_IPXIP6 | \ 13702 NETIF_F_GSO_UDP_TUNNEL | \ 13703 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13704 13705 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13706 netdev->features |= NETIF_F_GSO_PARTIAL | 13707 I40E_GSO_PARTIAL_FEATURES; 13708 13709 netdev->mpls_features |= NETIF_F_SG; 13710 netdev->mpls_features |= NETIF_F_HW_CSUM; 13711 netdev->mpls_features |= NETIF_F_TSO; 13712 netdev->mpls_features |= NETIF_F_TSO6; 13713 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13714 13715 /* enable macvlan offloads */ 13716 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13717 13718 hw_features = hw_enc_features | 13719 NETIF_F_HW_VLAN_CTAG_TX | 13720 NETIF_F_HW_VLAN_CTAG_RX; 13721 13722 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13723 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13724 13725 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13726 13727 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13728 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13729 13730 netdev->features &= ~NETIF_F_HW_TC; 13731 13732 if (vsi->type == I40E_VSI_MAIN) { 13733 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13734 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13735 /* The following steps are necessary for two reasons. First, 13736 * some older NVM configurations load a default MAC-VLAN 13737 * filter that will accept any tagged packet, and we want to 13738 * replace this with a normal filter. Additionally, it is 13739 * possible our MAC address was provided by the platform using 13740 * Open Firmware or similar. 13741 * 13742 * Thus, we need to remove the default filter and install one 13743 * specific to the MAC address. 13744 */ 13745 i40e_rm_default_mac_filter(vsi, mac_addr); 13746 spin_lock_bh(&vsi->mac_filter_hash_lock); 13747 i40e_add_mac_filter(vsi, mac_addr); 13748 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13749 13750 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13751 NETDEV_XDP_ACT_REDIRECT | 13752 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13753 NETDEV_XDP_ACT_RX_SG; 13754 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13755 } else { 13756 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13757 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13758 * the end, which is 4 bytes long, so force truncation of the 13759 * original name by IFNAMSIZ - 4 13760 */ 13761 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 13762 13763 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", IFNAMSIZ - 4, 13764 main_vsi->netdev->name); 13765 eth_random_addr(mac_addr); 13766 13767 spin_lock_bh(&vsi->mac_filter_hash_lock); 13768 i40e_add_mac_filter(vsi, mac_addr); 13769 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13770 } 13771 13772 /* Add the broadcast filter so that we initially will receive 13773 * broadcast packets. Note that when a new VLAN is first added the 13774 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13775 * specific filters as part of transitioning into "vlan" operation. 13776 * When more VLANs are added, the driver will copy each existing MAC 13777 * filter and add it for the new VLAN. 13778 * 13779 * Broadcast filters are handled specially by 13780 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13781 * promiscuous bit instead of adding this directly as a MAC/VLAN 13782 * filter. The subtask will update the correct broadcast promiscuous 13783 * bits as VLANs become active or inactive. 13784 */ 13785 eth_broadcast_addr(broadcast); 13786 spin_lock_bh(&vsi->mac_filter_hash_lock); 13787 i40e_add_mac_filter(vsi, broadcast); 13788 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13789 13790 eth_hw_addr_set(netdev, mac_addr); 13791 ether_addr_copy(netdev->perm_addr, mac_addr); 13792 13793 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13794 netdev->neigh_priv_len = sizeof(u32) * 4; 13795 13796 netdev->priv_flags |= IFF_UNICAST_FLT; 13797 netdev->priv_flags |= IFF_SUPP_NOFCS; 13798 /* Setup netdev TC information */ 13799 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13800 13801 netdev->netdev_ops = &i40e_netdev_ops; 13802 netdev->watchdog_timeo = 5 * HZ; 13803 i40e_set_ethtool_ops(netdev); 13804 13805 /* MTU range: 68 - 9706 */ 13806 netdev->min_mtu = ETH_MIN_MTU; 13807 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13808 13809 return 0; 13810 } 13811 13812 /** 13813 * i40e_vsi_delete - Delete a VSI from the switch 13814 * @vsi: the VSI being removed 13815 * 13816 * Returns 0 on success, negative value on failure 13817 **/ 13818 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13819 { 13820 /* remove default VSI is not allowed */ 13821 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13822 return; 13823 13824 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13825 } 13826 13827 /** 13828 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13829 * @vsi: the VSI being queried 13830 * 13831 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13832 **/ 13833 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13834 { 13835 struct i40e_veb *veb; 13836 struct i40e_pf *pf = vsi->back; 13837 13838 /* Uplink is not a bridge so default to VEB */ 13839 if (vsi->veb_idx >= I40E_MAX_VEB) 13840 return 1; 13841 13842 veb = pf->veb[vsi->veb_idx]; 13843 if (!veb) { 13844 dev_info(&pf->pdev->dev, 13845 "There is no veb associated with the bridge\n"); 13846 return -ENOENT; 13847 } 13848 13849 /* Uplink is a bridge in VEPA mode */ 13850 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13851 return 0; 13852 } else { 13853 /* Uplink is a bridge in VEB mode */ 13854 return 1; 13855 } 13856 13857 /* VEPA is now default bridge, so return 0 */ 13858 return 0; 13859 } 13860 13861 /** 13862 * i40e_add_vsi - Add a VSI to the switch 13863 * @vsi: the VSI being configured 13864 * 13865 * This initializes a VSI context depending on the VSI type to be added and 13866 * passes it down to the add_vsi aq command. 13867 **/ 13868 static int i40e_add_vsi(struct i40e_vsi *vsi) 13869 { 13870 int ret = -ENODEV; 13871 struct i40e_pf *pf = vsi->back; 13872 struct i40e_hw *hw = &pf->hw; 13873 struct i40e_vsi_context ctxt; 13874 struct i40e_mac_filter *f; 13875 struct hlist_node *h; 13876 int bkt; 13877 13878 u8 enabled_tc = 0x1; /* TC0 enabled */ 13879 int f_count = 0; 13880 13881 memset(&ctxt, 0, sizeof(ctxt)); 13882 switch (vsi->type) { 13883 case I40E_VSI_MAIN: 13884 /* The PF's main VSI is already setup as part of the 13885 * device initialization, so we'll not bother with 13886 * the add_vsi call, but we will retrieve the current 13887 * VSI context. 13888 */ 13889 ctxt.seid = pf->main_vsi_seid; 13890 ctxt.pf_num = pf->hw.pf_id; 13891 ctxt.vf_num = 0; 13892 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13893 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13894 if (ret) { 13895 dev_info(&pf->pdev->dev, 13896 "couldn't get PF vsi config, err %pe aq_err %s\n", 13897 ERR_PTR(ret), 13898 i40e_aq_str(&pf->hw, 13899 pf->hw.aq.asq_last_status)); 13900 return -ENOENT; 13901 } 13902 vsi->info = ctxt.info; 13903 vsi->info.valid_sections = 0; 13904 13905 vsi->seid = ctxt.seid; 13906 vsi->id = ctxt.vsi_number; 13907 13908 enabled_tc = i40e_pf_get_tc_map(pf); 13909 13910 /* Source pruning is enabled by default, so the flag is 13911 * negative logic - if it's set, we need to fiddle with 13912 * the VSI to disable source pruning. 13913 */ 13914 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13915 memset(&ctxt, 0, sizeof(ctxt)); 13916 ctxt.seid = pf->main_vsi_seid; 13917 ctxt.pf_num = pf->hw.pf_id; 13918 ctxt.vf_num = 0; 13919 ctxt.info.valid_sections |= 13920 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13921 ctxt.info.switch_id = 13922 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13923 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13924 if (ret) { 13925 dev_info(&pf->pdev->dev, 13926 "update vsi failed, err %d aq_err %s\n", 13927 ret, 13928 i40e_aq_str(&pf->hw, 13929 pf->hw.aq.asq_last_status)); 13930 ret = -ENOENT; 13931 goto err; 13932 } 13933 } 13934 13935 /* MFP mode setup queue map and update VSI */ 13936 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13937 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13938 memset(&ctxt, 0, sizeof(ctxt)); 13939 ctxt.seid = pf->main_vsi_seid; 13940 ctxt.pf_num = pf->hw.pf_id; 13941 ctxt.vf_num = 0; 13942 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13943 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13944 if (ret) { 13945 dev_info(&pf->pdev->dev, 13946 "update vsi failed, err %pe aq_err %s\n", 13947 ERR_PTR(ret), 13948 i40e_aq_str(&pf->hw, 13949 pf->hw.aq.asq_last_status)); 13950 ret = -ENOENT; 13951 goto err; 13952 } 13953 /* update the local VSI info queue map */ 13954 i40e_vsi_update_queue_map(vsi, &ctxt); 13955 vsi->info.valid_sections = 0; 13956 } else { 13957 /* Default/Main VSI is only enabled for TC0 13958 * reconfigure it to enable all TCs that are 13959 * available on the port in SFP mode. 13960 * For MFP case the iSCSI PF would use this 13961 * flow to enable LAN+iSCSI TC. 13962 */ 13963 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13964 if (ret) { 13965 /* Single TC condition is not fatal, 13966 * message and continue 13967 */ 13968 dev_info(&pf->pdev->dev, 13969 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 13970 enabled_tc, 13971 ERR_PTR(ret), 13972 i40e_aq_str(&pf->hw, 13973 pf->hw.aq.asq_last_status)); 13974 } 13975 } 13976 break; 13977 13978 case I40E_VSI_FDIR: 13979 ctxt.pf_num = hw->pf_id; 13980 ctxt.vf_num = 0; 13981 ctxt.uplink_seid = vsi->uplink_seid; 13982 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13983 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13984 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 13985 (i40e_is_vsi_uplink_mode_veb(vsi))) { 13986 ctxt.info.valid_sections |= 13987 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13988 ctxt.info.switch_id = 13989 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13990 } 13991 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13992 break; 13993 13994 case I40E_VSI_VMDQ2: 13995 ctxt.pf_num = hw->pf_id; 13996 ctxt.vf_num = 0; 13997 ctxt.uplink_seid = vsi->uplink_seid; 13998 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13999 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 14000 14001 /* This VSI is connected to VEB so the switch_id 14002 * should be set to zero by default. 14003 */ 14004 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14005 ctxt.info.valid_sections |= 14006 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14007 ctxt.info.switch_id = 14008 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14009 } 14010 14011 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14012 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14013 break; 14014 14015 case I40E_VSI_SRIOV: 14016 ctxt.pf_num = hw->pf_id; 14017 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14018 ctxt.uplink_seid = vsi->uplink_seid; 14019 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14020 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14021 14022 /* This VSI is connected to VEB so the switch_id 14023 * should be set to zero by default. 14024 */ 14025 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14026 ctxt.info.valid_sections |= 14027 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14028 ctxt.info.switch_id = 14029 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14030 } 14031 14032 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14033 ctxt.info.valid_sections |= 14034 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14035 ctxt.info.queueing_opt_flags |= 14036 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14037 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14038 } 14039 14040 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14041 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14042 if (pf->vf[vsi->vf_id].spoofchk) { 14043 ctxt.info.valid_sections |= 14044 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14045 ctxt.info.sec_flags |= 14046 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14047 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14048 } 14049 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14050 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14051 break; 14052 14053 case I40E_VSI_IWARP: 14054 /* send down message to iWARP */ 14055 break; 14056 14057 default: 14058 return -ENODEV; 14059 } 14060 14061 if (vsi->type != I40E_VSI_MAIN) { 14062 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14063 if (ret) { 14064 dev_info(&vsi->back->pdev->dev, 14065 "add vsi failed, err %pe aq_err %s\n", 14066 ERR_PTR(ret), 14067 i40e_aq_str(&pf->hw, 14068 pf->hw.aq.asq_last_status)); 14069 ret = -ENOENT; 14070 goto err; 14071 } 14072 vsi->info = ctxt.info; 14073 vsi->info.valid_sections = 0; 14074 vsi->seid = ctxt.seid; 14075 vsi->id = ctxt.vsi_number; 14076 } 14077 14078 spin_lock_bh(&vsi->mac_filter_hash_lock); 14079 vsi->active_filters = 0; 14080 /* If macvlan filters already exist, force them to get loaded */ 14081 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14082 f->state = I40E_FILTER_NEW; 14083 f_count++; 14084 } 14085 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14086 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14087 14088 if (f_count) { 14089 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14090 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14091 } 14092 14093 /* Update VSI BW information */ 14094 ret = i40e_vsi_get_bw_info(vsi); 14095 if (ret) { 14096 dev_info(&pf->pdev->dev, 14097 "couldn't get vsi bw info, err %pe aq_err %s\n", 14098 ERR_PTR(ret), 14099 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14100 /* VSI is already added so not tearing that up */ 14101 ret = 0; 14102 } 14103 14104 err: 14105 return ret; 14106 } 14107 14108 /** 14109 * i40e_vsi_release - Delete a VSI and free its resources 14110 * @vsi: the VSI being removed 14111 * 14112 * Returns 0 on success or < 0 on error 14113 **/ 14114 int i40e_vsi_release(struct i40e_vsi *vsi) 14115 { 14116 struct i40e_mac_filter *f; 14117 struct hlist_node *h; 14118 struct i40e_veb *veb; 14119 struct i40e_pf *pf; 14120 u16 uplink_seid; 14121 int i, n, bkt; 14122 14123 pf = vsi->back; 14124 14125 /* release of a VEB-owner or last VSI is not allowed */ 14126 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14127 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14128 vsi->seid, vsi->uplink_seid); 14129 return -ENODEV; 14130 } 14131 if (vsi->type == I40E_VSI_MAIN && !test_bit(__I40E_DOWN, pf->state)) { 14132 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14133 return -ENODEV; 14134 } 14135 set_bit(__I40E_VSI_RELEASING, vsi->state); 14136 uplink_seid = vsi->uplink_seid; 14137 14138 if (vsi->type != I40E_VSI_SRIOV) { 14139 if (vsi->netdev_registered) { 14140 vsi->netdev_registered = false; 14141 if (vsi->netdev) { 14142 /* results in a call to i40e_close() */ 14143 unregister_netdev(vsi->netdev); 14144 } 14145 } else { 14146 i40e_vsi_close(vsi); 14147 } 14148 i40e_vsi_disable_irq(vsi); 14149 } 14150 14151 if (vsi->type == I40E_VSI_MAIN) 14152 i40e_devlink_destroy_port(pf); 14153 14154 spin_lock_bh(&vsi->mac_filter_hash_lock); 14155 14156 /* clear the sync flag on all filters */ 14157 if (vsi->netdev) { 14158 __dev_uc_unsync(vsi->netdev, NULL); 14159 __dev_mc_unsync(vsi->netdev, NULL); 14160 } 14161 14162 /* make sure any remaining filters are marked for deletion */ 14163 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14164 __i40e_del_filter(vsi, f); 14165 14166 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14167 14168 i40e_sync_vsi_filters(vsi); 14169 14170 i40e_vsi_delete(vsi); 14171 i40e_vsi_free_q_vectors(vsi); 14172 if (vsi->netdev) { 14173 free_netdev(vsi->netdev); 14174 vsi->netdev = NULL; 14175 } 14176 i40e_vsi_clear_rings(vsi); 14177 i40e_vsi_clear(vsi); 14178 14179 /* If this was the last thing on the VEB, except for the 14180 * controlling VSI, remove the VEB, which puts the controlling 14181 * VSI onto the uplink port. 14182 * 14183 * Well, okay, there's one more exception here: don't remove 14184 * the floating VEBs yet. We'll wait for an explicit remove request 14185 * from up the network stack. 14186 */ 14187 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14188 if (veb && veb->uplink_seid) { 14189 n = 0; 14190 14191 /* Count non-controlling VSIs present on the VEB */ 14192 i40e_pf_for_each_vsi(pf, i, vsi) 14193 if (vsi->uplink_seid == uplink_seid && 14194 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14195 n++; 14196 14197 /* If there is no VSI except the control one then release 14198 * the VEB and put the control VSI onto VEB uplink. 14199 */ 14200 if (!n) 14201 i40e_veb_release(veb); 14202 } 14203 14204 return 0; 14205 } 14206 14207 /** 14208 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14209 * @vsi: ptr to the VSI 14210 * 14211 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14212 * corresponding SW VSI structure and initializes num_queue_pairs for the 14213 * newly allocated VSI. 14214 * 14215 * Returns 0 on success or negative on failure 14216 **/ 14217 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14218 { 14219 int ret = -ENOENT; 14220 struct i40e_pf *pf = vsi->back; 14221 14222 if (vsi->q_vectors[0]) { 14223 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14224 vsi->seid); 14225 return -EEXIST; 14226 } 14227 14228 if (vsi->base_vector) { 14229 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14230 vsi->seid, vsi->base_vector); 14231 return -EEXIST; 14232 } 14233 14234 ret = i40e_vsi_alloc_q_vectors(vsi); 14235 if (ret) { 14236 dev_info(&pf->pdev->dev, 14237 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14238 vsi->num_q_vectors, vsi->seid, ret); 14239 vsi->num_q_vectors = 0; 14240 goto vector_setup_out; 14241 } 14242 14243 /* In Legacy mode, we do not have to get any other vector since we 14244 * piggyback on the misc/ICR0 for queue interrupts. 14245 */ 14246 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14247 return ret; 14248 if (vsi->num_q_vectors) 14249 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14250 vsi->num_q_vectors, vsi->idx); 14251 if (vsi->base_vector < 0) { 14252 dev_info(&pf->pdev->dev, 14253 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14254 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14255 i40e_vsi_free_q_vectors(vsi); 14256 ret = -ENOENT; 14257 goto vector_setup_out; 14258 } 14259 14260 vector_setup_out: 14261 return ret; 14262 } 14263 14264 /** 14265 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14266 * @vsi: pointer to the vsi. 14267 * 14268 * This re-allocates a vsi's queue resources. 14269 * 14270 * Returns pointer to the successfully allocated and configured VSI sw struct 14271 * on success, otherwise returns NULL on failure. 14272 **/ 14273 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14274 { 14275 struct i40e_vsi *main_vsi; 14276 u16 alloc_queue_pairs; 14277 struct i40e_pf *pf; 14278 int ret; 14279 14280 if (!vsi) 14281 return NULL; 14282 14283 pf = vsi->back; 14284 14285 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14286 i40e_vsi_clear_rings(vsi); 14287 14288 i40e_vsi_free_arrays(vsi, false); 14289 i40e_set_num_rings_in_vsi(vsi); 14290 ret = i40e_vsi_alloc_arrays(vsi, false); 14291 if (ret) 14292 goto err_vsi; 14293 14294 alloc_queue_pairs = vsi->alloc_queue_pairs * 14295 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14296 14297 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14298 if (ret < 0) { 14299 dev_info(&pf->pdev->dev, 14300 "failed to get tracking for %d queues for VSI %d err %d\n", 14301 alloc_queue_pairs, vsi->seid, ret); 14302 goto err_vsi; 14303 } 14304 vsi->base_queue = ret; 14305 14306 /* Update the FW view of the VSI. Force a reset of TC and queue 14307 * layout configurations. 14308 */ 14309 main_vsi = i40e_pf_get_main_vsi(pf); 14310 main_vsi->seid = pf->main_vsi_seid; 14311 i40e_vsi_reconfig_tc(main_vsi); 14312 14313 if (vsi->type == I40E_VSI_MAIN) 14314 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14315 14316 /* assign it some queues */ 14317 ret = i40e_alloc_rings(vsi); 14318 if (ret) 14319 goto err_rings; 14320 14321 /* map all of the rings to the q_vectors */ 14322 i40e_vsi_map_rings_to_vectors(vsi); 14323 return vsi; 14324 14325 err_rings: 14326 i40e_vsi_free_q_vectors(vsi); 14327 if (vsi->netdev_registered) { 14328 vsi->netdev_registered = false; 14329 unregister_netdev(vsi->netdev); 14330 free_netdev(vsi->netdev); 14331 vsi->netdev = NULL; 14332 } 14333 if (vsi->type == I40E_VSI_MAIN) 14334 i40e_devlink_destroy_port(pf); 14335 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14336 err_vsi: 14337 i40e_vsi_clear(vsi); 14338 return NULL; 14339 } 14340 14341 /** 14342 * i40e_vsi_setup - Set up a VSI by a given type 14343 * @pf: board private structure 14344 * @type: VSI type 14345 * @uplink_seid: the switch element to link to 14346 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14347 * 14348 * This allocates the sw VSI structure and its queue resources, then add a VSI 14349 * to the identified VEB. 14350 * 14351 * Returns pointer to the successfully allocated and configure VSI sw struct on 14352 * success, otherwise returns NULL on failure. 14353 **/ 14354 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14355 u16 uplink_seid, u32 param1) 14356 { 14357 struct i40e_vsi *vsi = NULL; 14358 struct i40e_veb *veb = NULL; 14359 u16 alloc_queue_pairs; 14360 int v_idx; 14361 int ret; 14362 14363 /* The requested uplink_seid must be either 14364 * - the PF's port seid 14365 * no VEB is needed because this is the PF 14366 * or this is a Flow Director special case VSI 14367 * - seid of an existing VEB 14368 * - seid of a VSI that owns an existing VEB 14369 * - seid of a VSI that doesn't own a VEB 14370 * a new VEB is created and the VSI becomes the owner 14371 * - seid of the PF VSI, which is what creates the first VEB 14372 * this is a special case of the previous 14373 * 14374 * Find which uplink_seid we were given and create a new VEB if needed 14375 */ 14376 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14377 if (!veb && uplink_seid != pf->mac_seid) { 14378 vsi = i40e_pf_get_vsi_by_seid(pf, uplink_seid); 14379 if (!vsi) { 14380 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14381 uplink_seid); 14382 return NULL; 14383 } 14384 14385 if (vsi->uplink_seid == pf->mac_seid) 14386 veb = i40e_veb_setup(pf, pf->mac_seid, vsi->seid, 14387 vsi->tc_config.enabled_tc); 14388 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14389 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 14390 vsi->tc_config.enabled_tc); 14391 if (veb) { 14392 if (vsi->type != I40E_VSI_MAIN) { 14393 dev_info(&vsi->back->pdev->dev, 14394 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14395 return NULL; 14396 } 14397 /* We come up by default in VEPA mode if SRIOV is not 14398 * already enabled, in which case we can't force VEPA 14399 * mode. 14400 */ 14401 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14402 veb->bridge_mode = BRIDGE_MODE_VEPA; 14403 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14404 } 14405 i40e_config_bridge_mode(veb); 14406 } 14407 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 14408 if (!veb) { 14409 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14410 return NULL; 14411 } 14412 14413 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14414 uplink_seid = veb->seid; 14415 } 14416 14417 /* get vsi sw struct */ 14418 v_idx = i40e_vsi_mem_alloc(pf, type); 14419 if (v_idx < 0) 14420 goto err_alloc; 14421 vsi = pf->vsi[v_idx]; 14422 if (!vsi) 14423 goto err_alloc; 14424 vsi->type = type; 14425 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14426 14427 if (type == I40E_VSI_MAIN) 14428 pf->lan_vsi = v_idx; 14429 else if (type == I40E_VSI_SRIOV) 14430 vsi->vf_id = param1; 14431 /* assign it some queues */ 14432 alloc_queue_pairs = vsi->alloc_queue_pairs * 14433 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14434 14435 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14436 if (ret < 0) { 14437 dev_info(&pf->pdev->dev, 14438 "failed to get tracking for %d queues for VSI %d err=%d\n", 14439 alloc_queue_pairs, vsi->seid, ret); 14440 goto err_vsi; 14441 } 14442 vsi->base_queue = ret; 14443 14444 /* get a VSI from the hardware */ 14445 vsi->uplink_seid = uplink_seid; 14446 ret = i40e_add_vsi(vsi); 14447 if (ret) 14448 goto err_vsi; 14449 14450 switch (vsi->type) { 14451 /* setup the netdev if needed */ 14452 case I40E_VSI_MAIN: 14453 case I40E_VSI_VMDQ2: 14454 ret = i40e_config_netdev(vsi); 14455 if (ret) 14456 goto err_netdev; 14457 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14458 if (ret) 14459 goto err_netdev; 14460 if (vsi->type == I40E_VSI_MAIN) { 14461 ret = i40e_devlink_create_port(pf); 14462 if (ret) 14463 goto err_netdev; 14464 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14465 } 14466 ret = register_netdev(vsi->netdev); 14467 if (ret) 14468 goto err_dl_port; 14469 vsi->netdev_registered = true; 14470 netif_carrier_off(vsi->netdev); 14471 #ifdef CONFIG_I40E_DCB 14472 /* Setup DCB netlink interface */ 14473 i40e_dcbnl_setup(vsi); 14474 #endif /* CONFIG_I40E_DCB */ 14475 fallthrough; 14476 case I40E_VSI_FDIR: 14477 /* set up vectors and rings if needed */ 14478 ret = i40e_vsi_setup_vectors(vsi); 14479 if (ret) 14480 goto err_msix; 14481 14482 ret = i40e_alloc_rings(vsi); 14483 if (ret) 14484 goto err_rings; 14485 14486 /* map all of the rings to the q_vectors */ 14487 i40e_vsi_map_rings_to_vectors(vsi); 14488 14489 i40e_vsi_reset_stats(vsi); 14490 break; 14491 default: 14492 /* no netdev or rings for the other VSI types */ 14493 break; 14494 } 14495 14496 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14497 vsi->type == I40E_VSI_VMDQ2) { 14498 ret = i40e_vsi_config_rss(vsi); 14499 if (ret) 14500 goto err_config; 14501 } 14502 return vsi; 14503 14504 err_config: 14505 i40e_vsi_clear_rings(vsi); 14506 err_rings: 14507 i40e_vsi_free_q_vectors(vsi); 14508 err_msix: 14509 if (vsi->netdev_registered) { 14510 vsi->netdev_registered = false; 14511 unregister_netdev(vsi->netdev); 14512 free_netdev(vsi->netdev); 14513 vsi->netdev = NULL; 14514 } 14515 err_dl_port: 14516 if (vsi->type == I40E_VSI_MAIN) 14517 i40e_devlink_destroy_port(pf); 14518 err_netdev: 14519 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14520 err_vsi: 14521 i40e_vsi_clear(vsi); 14522 err_alloc: 14523 return NULL; 14524 } 14525 14526 /** 14527 * i40e_veb_get_bw_info - Query VEB BW information 14528 * @veb: the veb to query 14529 * 14530 * Query the Tx scheduler BW configuration data for given VEB 14531 **/ 14532 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14533 { 14534 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14535 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14536 struct i40e_pf *pf = veb->pf; 14537 struct i40e_hw *hw = &pf->hw; 14538 u32 tc_bw_max; 14539 int ret = 0; 14540 int i; 14541 14542 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14543 &bw_data, NULL); 14544 if (ret) { 14545 dev_info(&pf->pdev->dev, 14546 "query veb bw config failed, err %pe aq_err %s\n", 14547 ERR_PTR(ret), 14548 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14549 goto out; 14550 } 14551 14552 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14553 &ets_data, NULL); 14554 if (ret) { 14555 dev_info(&pf->pdev->dev, 14556 "query veb bw ets config failed, err %pe aq_err %s\n", 14557 ERR_PTR(ret), 14558 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14559 goto out; 14560 } 14561 14562 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14563 veb->bw_max_quanta = ets_data.tc_bw_max; 14564 veb->is_abs_credits = bw_data.absolute_credits_enable; 14565 veb->enabled_tc = ets_data.tc_valid_bits; 14566 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14567 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14568 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14569 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14570 veb->bw_tc_limit_credits[i] = 14571 le16_to_cpu(bw_data.tc_bw_limits[i]); 14572 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14573 } 14574 14575 out: 14576 return ret; 14577 } 14578 14579 /** 14580 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14581 * @pf: board private structure 14582 * 14583 * On error: returns error code (negative) 14584 * On success: returns vsi index in PF (positive) 14585 **/ 14586 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14587 { 14588 int ret = -ENOENT; 14589 struct i40e_veb *veb; 14590 int i; 14591 14592 /* Need to protect the allocation of switch elements at the PF level */ 14593 mutex_lock(&pf->switch_mutex); 14594 14595 /* VEB list may be fragmented if VEB creation/destruction has 14596 * been happening. We can afford to do a quick scan to look 14597 * for any free slots in the list. 14598 * 14599 * find next empty veb slot, looping back around if necessary 14600 */ 14601 i = 0; 14602 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14603 i++; 14604 if (i >= I40E_MAX_VEB) { 14605 ret = -ENOMEM; 14606 goto err_alloc_veb; /* out of VEB slots! */ 14607 } 14608 14609 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14610 if (!veb) { 14611 ret = -ENOMEM; 14612 goto err_alloc_veb; 14613 } 14614 veb->pf = pf; 14615 veb->idx = i; 14616 veb->enabled_tc = 1; 14617 14618 pf->veb[i] = veb; 14619 ret = i; 14620 err_alloc_veb: 14621 mutex_unlock(&pf->switch_mutex); 14622 return ret; 14623 } 14624 14625 /** 14626 * i40e_switch_branch_release - Delete a branch of the switch tree 14627 * @branch: where to start deleting 14628 * 14629 * This uses recursion to find the tips of the branch to be 14630 * removed, deleting until we get back to and can delete this VEB. 14631 **/ 14632 static void i40e_switch_branch_release(struct i40e_veb *branch) 14633 { 14634 struct i40e_pf *pf = branch->pf; 14635 u16 branch_seid = branch->seid; 14636 u16 veb_idx = branch->idx; 14637 struct i40e_vsi *vsi; 14638 struct i40e_veb *veb; 14639 int i; 14640 14641 /* release any VEBs on this VEB - RECURSION */ 14642 i40e_pf_for_each_veb(pf, i, veb) 14643 if (veb->uplink_seid == branch->seid) 14644 i40e_switch_branch_release(veb); 14645 14646 /* Release the VSIs on this VEB, but not the owner VSI. 14647 * 14648 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14649 * the VEB itself, so don't use (*branch) after this loop. 14650 */ 14651 i40e_pf_for_each_vsi(pf, i, vsi) 14652 if (vsi->uplink_seid == branch_seid && 14653 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14654 i40e_vsi_release(vsi); 14655 14656 /* There's one corner case where the VEB might not have been 14657 * removed, so double check it here and remove it if needed. 14658 * This case happens if the veb was created from the debugfs 14659 * commands and no VSIs were added to it. 14660 */ 14661 if (pf->veb[veb_idx]) 14662 i40e_veb_release(pf->veb[veb_idx]); 14663 } 14664 14665 /** 14666 * i40e_veb_clear - remove veb struct 14667 * @veb: the veb to remove 14668 **/ 14669 static void i40e_veb_clear(struct i40e_veb *veb) 14670 { 14671 if (!veb) 14672 return; 14673 14674 if (veb->pf) { 14675 struct i40e_pf *pf = veb->pf; 14676 14677 mutex_lock(&pf->switch_mutex); 14678 if (pf->veb[veb->idx] == veb) 14679 pf->veb[veb->idx] = NULL; 14680 mutex_unlock(&pf->switch_mutex); 14681 } 14682 14683 kfree(veb); 14684 } 14685 14686 /** 14687 * i40e_veb_release - Delete a VEB and free its resources 14688 * @veb: the VEB being removed 14689 **/ 14690 void i40e_veb_release(struct i40e_veb *veb) 14691 { 14692 struct i40e_vsi *vsi, *vsi_it; 14693 struct i40e_pf *pf; 14694 int i, n = 0; 14695 14696 pf = veb->pf; 14697 14698 /* find the remaining VSI and check for extras */ 14699 i40e_pf_for_each_vsi(pf, i, vsi_it) 14700 if (vsi_it->uplink_seid == veb->seid) { 14701 if (vsi_it->flags & I40E_VSI_FLAG_VEB_OWNER) 14702 vsi = vsi_it; 14703 n++; 14704 } 14705 14706 /* Floating VEB has to be empty and regular one must have 14707 * single owner VSI. 14708 */ 14709 if ((veb->uplink_seid && n != 1) || (!veb->uplink_seid && n != 0)) { 14710 dev_info(&pf->pdev->dev, 14711 "can't remove VEB %d with %d VSIs left\n", 14712 veb->seid, n); 14713 return; 14714 } 14715 14716 /* For regular VEB move the owner VSI to uplink port */ 14717 if (veb->uplink_seid) { 14718 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14719 vsi->uplink_seid = veb->uplink_seid; 14720 vsi->veb_idx = I40E_NO_VEB; 14721 } 14722 14723 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14724 i40e_veb_clear(veb); 14725 } 14726 14727 /** 14728 * i40e_add_veb - create the VEB in the switch 14729 * @veb: the VEB to be instantiated 14730 * @vsi: the controlling VSI 14731 **/ 14732 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14733 { 14734 struct i40e_pf *pf = veb->pf; 14735 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14736 int ret; 14737 14738 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi ? vsi->seid : 0, 14739 veb->enabled_tc, vsi ? false : true, 14740 &veb->seid, enable_stats, NULL); 14741 14742 /* get a VEB from the hardware */ 14743 if (ret) { 14744 dev_info(&pf->pdev->dev, 14745 "couldn't add VEB, err %pe aq_err %s\n", 14746 ERR_PTR(ret), 14747 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14748 return -EPERM; 14749 } 14750 14751 /* get statistics counter */ 14752 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14753 &veb->stats_idx, NULL, NULL, NULL); 14754 if (ret) { 14755 dev_info(&pf->pdev->dev, 14756 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14757 ERR_PTR(ret), 14758 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14759 return -EPERM; 14760 } 14761 ret = i40e_veb_get_bw_info(veb); 14762 if (ret) { 14763 dev_info(&pf->pdev->dev, 14764 "couldn't get VEB bw info, err %pe aq_err %s\n", 14765 ERR_PTR(ret), 14766 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14767 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14768 return -ENOENT; 14769 } 14770 14771 if (vsi) { 14772 vsi->uplink_seid = veb->seid; 14773 vsi->veb_idx = veb->idx; 14774 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14775 } 14776 14777 return 0; 14778 } 14779 14780 /** 14781 * i40e_veb_setup - Set up a VEB 14782 * @pf: board private structure 14783 * @uplink_seid: the switch element to link to 14784 * @vsi_seid: the initial VSI seid 14785 * @enabled_tc: Enabled TC bit-map 14786 * 14787 * This allocates the sw VEB structure and links it into the switch 14788 * It is possible and legal for this to be a duplicate of an already 14789 * existing VEB. It is also possible for both uplink and vsi seids 14790 * to be zero, in order to create a floating VEB. 14791 * 14792 * Returns pointer to the successfully allocated VEB sw struct on 14793 * success, otherwise returns NULL on failure. 14794 **/ 14795 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 uplink_seid, 14796 u16 vsi_seid, u8 enabled_tc) 14797 { 14798 struct i40e_vsi *vsi = NULL; 14799 struct i40e_veb *veb; 14800 int veb_idx; 14801 int ret; 14802 14803 /* if one seid is 0, the other must be 0 to create a floating relay */ 14804 if ((uplink_seid == 0 || vsi_seid == 0) && 14805 (uplink_seid + vsi_seid != 0)) { 14806 dev_info(&pf->pdev->dev, 14807 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14808 uplink_seid, vsi_seid); 14809 return NULL; 14810 } 14811 14812 /* make sure there is such a vsi and uplink */ 14813 if (vsi_seid) { 14814 vsi = i40e_pf_get_vsi_by_seid(pf, vsi_seid); 14815 if (!vsi) { 14816 dev_err(&pf->pdev->dev, "vsi seid %d not found\n", 14817 vsi_seid); 14818 return NULL; 14819 } 14820 } 14821 14822 /* get veb sw struct */ 14823 veb_idx = i40e_veb_mem_alloc(pf); 14824 if (veb_idx < 0) 14825 goto err_alloc; 14826 veb = pf->veb[veb_idx]; 14827 veb->uplink_seid = uplink_seid; 14828 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14829 14830 /* create the VEB in the switch */ 14831 ret = i40e_add_veb(veb, vsi); 14832 if (ret) 14833 goto err_veb; 14834 14835 if (vsi && vsi->idx == pf->lan_vsi) 14836 pf->lan_veb = veb->idx; 14837 14838 return veb; 14839 14840 err_veb: 14841 i40e_veb_clear(veb); 14842 err_alloc: 14843 return NULL; 14844 } 14845 14846 /** 14847 * i40e_setup_pf_switch_element - set PF vars based on switch type 14848 * @pf: board private structure 14849 * @ele: element we are building info from 14850 * @num_reported: total number of elements 14851 * @printconfig: should we print the contents 14852 * 14853 * helper function to assist in extracting a few useful SEID values. 14854 **/ 14855 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14856 struct i40e_aqc_switch_config_element_resp *ele, 14857 u16 num_reported, bool printconfig) 14858 { 14859 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14860 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14861 u8 element_type = ele->element_type; 14862 u16 seid = le16_to_cpu(ele->seid); 14863 struct i40e_veb *veb; 14864 14865 if (printconfig) 14866 dev_info(&pf->pdev->dev, 14867 "type=%d seid=%d uplink=%d downlink=%d\n", 14868 element_type, seid, uplink_seid, downlink_seid); 14869 14870 switch (element_type) { 14871 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14872 pf->mac_seid = seid; 14873 break; 14874 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14875 /* Main VEB? */ 14876 if (uplink_seid != pf->mac_seid) 14877 break; 14878 veb = i40e_pf_get_main_veb(pf); 14879 if (!veb) { 14880 int v; 14881 14882 /* find existing or else empty VEB */ 14883 veb = i40e_pf_get_veb_by_seid(pf, seid); 14884 if (veb) { 14885 pf->lan_veb = veb->idx; 14886 } else { 14887 v = i40e_veb_mem_alloc(pf); 14888 if (v < 0) 14889 break; 14890 pf->lan_veb = v; 14891 } 14892 } 14893 14894 /* Try to get again main VEB as pf->lan_veb may have changed */ 14895 veb = i40e_pf_get_main_veb(pf); 14896 if (!veb) 14897 break; 14898 14899 veb->seid = seid; 14900 veb->uplink_seid = pf->mac_seid; 14901 veb->pf = pf; 14902 break; 14903 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14904 if (num_reported != 1) 14905 break; 14906 /* This is immediately after a reset so we can assume this is 14907 * the PF's VSI 14908 */ 14909 pf->mac_seid = uplink_seid; 14910 pf->main_vsi_seid = seid; 14911 if (printconfig) 14912 dev_info(&pf->pdev->dev, 14913 "pf_seid=%d main_vsi_seid=%d\n", 14914 downlink_seid, pf->main_vsi_seid); 14915 break; 14916 case I40E_SWITCH_ELEMENT_TYPE_PF: 14917 case I40E_SWITCH_ELEMENT_TYPE_VF: 14918 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14919 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14920 case I40E_SWITCH_ELEMENT_TYPE_PE: 14921 case I40E_SWITCH_ELEMENT_TYPE_PA: 14922 /* ignore these for now */ 14923 break; 14924 default: 14925 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14926 element_type, seid); 14927 break; 14928 } 14929 } 14930 14931 /** 14932 * i40e_fetch_switch_configuration - Get switch config from firmware 14933 * @pf: board private structure 14934 * @printconfig: should we print the contents 14935 * 14936 * Get the current switch configuration from the device and 14937 * extract a few useful SEID values. 14938 **/ 14939 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14940 { 14941 struct i40e_aqc_get_switch_config_resp *sw_config; 14942 u16 next_seid = 0; 14943 int ret = 0; 14944 u8 *aq_buf; 14945 int i; 14946 14947 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14948 if (!aq_buf) 14949 return -ENOMEM; 14950 14951 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14952 do { 14953 u16 num_reported, num_total; 14954 14955 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14956 I40E_AQ_LARGE_BUF, 14957 &next_seid, NULL); 14958 if (ret) { 14959 dev_info(&pf->pdev->dev, 14960 "get switch config failed err %d aq_err %s\n", 14961 ret, 14962 i40e_aq_str(&pf->hw, 14963 pf->hw.aq.asq_last_status)); 14964 kfree(aq_buf); 14965 return -ENOENT; 14966 } 14967 14968 num_reported = le16_to_cpu(sw_config->header.num_reported); 14969 num_total = le16_to_cpu(sw_config->header.num_total); 14970 14971 if (printconfig) 14972 dev_info(&pf->pdev->dev, 14973 "header: %d reported %d total\n", 14974 num_reported, num_total); 14975 14976 for (i = 0; i < num_reported; i++) { 14977 struct i40e_aqc_switch_config_element_resp *ele = 14978 &sw_config->element[i]; 14979 14980 i40e_setup_pf_switch_element(pf, ele, num_reported, 14981 printconfig); 14982 } 14983 } while (next_seid != 0); 14984 14985 kfree(aq_buf); 14986 return ret; 14987 } 14988 14989 /** 14990 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 14991 * @pf: board private structure 14992 * @reinit: if the Main VSI needs to re-initialized. 14993 * @lock_acquired: indicates whether or not the lock has been acquired 14994 * 14995 * Returns 0 on success, negative value on failure 14996 **/ 14997 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 14998 { 14999 struct i40e_vsi *main_vsi; 15000 u16 flags = 0; 15001 int ret; 15002 15003 /* find out what's out there already */ 15004 ret = i40e_fetch_switch_configuration(pf, false); 15005 if (ret) { 15006 dev_info(&pf->pdev->dev, 15007 "couldn't fetch switch config, err %pe aq_err %s\n", 15008 ERR_PTR(ret), 15009 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15010 return ret; 15011 } 15012 i40e_pf_reset_stats(pf); 15013 15014 /* set the switch config bit for the whole device to 15015 * support limited promisc or true promisc 15016 * when user requests promisc. The default is limited 15017 * promisc. 15018 */ 15019 15020 if ((pf->hw.pf_id == 0) && 15021 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15022 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15023 pf->last_sw_conf_flags = flags; 15024 } 15025 15026 if (pf->hw.pf_id == 0) { 15027 u16 valid_flags; 15028 15029 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15030 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15031 NULL); 15032 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15033 dev_info(&pf->pdev->dev, 15034 "couldn't set switch config bits, err %pe aq_err %s\n", 15035 ERR_PTR(ret), 15036 i40e_aq_str(&pf->hw, 15037 pf->hw.aq.asq_last_status)); 15038 /* not a fatal problem, just keep going */ 15039 } 15040 pf->last_sw_conf_valid_flags = valid_flags; 15041 } 15042 15043 /* first time setup */ 15044 main_vsi = i40e_pf_get_main_vsi(pf); 15045 if (!main_vsi || reinit) { 15046 struct i40e_veb *veb; 15047 u16 uplink_seid; 15048 15049 /* Set up the PF VSI associated with the PF's main VSI 15050 * that is already in the HW switch 15051 */ 15052 veb = i40e_pf_get_main_veb(pf); 15053 if (veb) 15054 uplink_seid = veb->seid; 15055 else 15056 uplink_seid = pf->mac_seid; 15057 if (!main_vsi) 15058 main_vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, 15059 uplink_seid, 0); 15060 else if (reinit) 15061 main_vsi = i40e_vsi_reinit_setup(main_vsi); 15062 if (!main_vsi) { 15063 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15064 i40e_cloud_filter_exit(pf); 15065 i40e_fdir_teardown(pf); 15066 return -EAGAIN; 15067 } 15068 } else { 15069 /* force a reset of TC and queue layout configurations */ 15070 main_vsi->seid = pf->main_vsi_seid; 15071 i40e_vsi_reconfig_tc(main_vsi); 15072 } 15073 i40e_vlan_stripping_disable(main_vsi); 15074 15075 i40e_fdir_sb_setup(pf); 15076 15077 /* Setup static PF queue filter control settings */ 15078 ret = i40e_setup_pf_filter_control(pf); 15079 if (ret) { 15080 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15081 ret); 15082 /* Failure here should not stop continuing other steps */ 15083 } 15084 15085 /* enable RSS in the HW, even for only one queue, as the stack can use 15086 * the hash 15087 */ 15088 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15089 i40e_pf_config_rss(pf); 15090 15091 /* fill in link information and enable LSE reporting */ 15092 i40e_link_event(pf); 15093 15094 i40e_ptp_init(pf); 15095 15096 if (!lock_acquired) 15097 rtnl_lock(); 15098 15099 /* repopulate tunnel port filters */ 15100 udp_tunnel_nic_reset_ntf(main_vsi->netdev); 15101 15102 if (!lock_acquired) 15103 rtnl_unlock(); 15104 15105 return ret; 15106 } 15107 15108 /** 15109 * i40e_determine_queue_usage - Work out queue distribution 15110 * @pf: board private structure 15111 **/ 15112 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15113 { 15114 int queues_left; 15115 int q_max; 15116 15117 pf->num_lan_qps = 0; 15118 15119 /* Find the max queues to be put into basic use. We'll always be 15120 * using TC0, whether or not DCB is running, and TC0 will get the 15121 * big RSS set. 15122 */ 15123 queues_left = pf->hw.func_caps.num_tx_qp; 15124 15125 if ((queues_left == 1) || 15126 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15127 /* one qp for PF, no queues for anything else */ 15128 queues_left = 0; 15129 pf->alloc_rss_size = pf->num_lan_qps = 1; 15130 15131 /* make sure all the fancies are disabled */ 15132 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15133 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15134 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15135 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15136 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15137 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15138 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15139 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15140 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15141 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15142 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15143 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15144 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15145 /* one qp for PF */ 15146 pf->alloc_rss_size = pf->num_lan_qps = 1; 15147 queues_left -= pf->num_lan_qps; 15148 15149 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15150 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15151 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15152 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15153 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15154 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15155 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15156 } else { 15157 /* Not enough queues for all TCs */ 15158 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15159 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15160 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15161 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15162 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15163 } 15164 15165 /* limit lan qps to the smaller of qps, cpus or msix */ 15166 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15167 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15168 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15169 pf->num_lan_qps = q_max; 15170 15171 queues_left -= pf->num_lan_qps; 15172 } 15173 15174 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15175 if (queues_left > 1) { 15176 queues_left -= 1; /* save 1 queue for FD */ 15177 } else { 15178 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15179 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15180 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15181 } 15182 } 15183 15184 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15185 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15186 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15187 (queues_left / pf->num_vf_qps)); 15188 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15189 } 15190 15191 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15192 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15193 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15194 (queues_left / pf->num_vmdq_qps)); 15195 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15196 } 15197 15198 pf->queues_left = queues_left; 15199 dev_dbg(&pf->pdev->dev, 15200 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15201 pf->hw.func_caps.num_tx_qp, 15202 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15203 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15204 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15205 queues_left); 15206 } 15207 15208 /** 15209 * i40e_setup_pf_filter_control - Setup PF static filter control 15210 * @pf: PF to be setup 15211 * 15212 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15213 * settings. If PE/FCoE are enabled then it will also set the per PF 15214 * based filter sizes required for them. It also enables Flow director, 15215 * ethertype and macvlan type filter settings for the pf. 15216 * 15217 * Returns 0 on success, negative on failure 15218 **/ 15219 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15220 { 15221 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15222 15223 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15224 15225 /* Flow Director is enabled */ 15226 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15227 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15228 settings->enable_fdir = true; 15229 15230 /* Ethtype and MACVLAN filters enabled for PF */ 15231 settings->enable_ethtype = true; 15232 settings->enable_macvlan = true; 15233 15234 if (i40e_set_filter_control(&pf->hw, settings)) 15235 return -ENOENT; 15236 15237 return 0; 15238 } 15239 15240 #define INFO_STRING_LEN 255 15241 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15242 static void i40e_print_features(struct i40e_pf *pf) 15243 { 15244 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 15245 struct i40e_hw *hw = &pf->hw; 15246 char *buf; 15247 int i; 15248 15249 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15250 if (!buf) 15251 return; 15252 15253 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15254 #ifdef CONFIG_PCI_IOV 15255 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15256 #endif 15257 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15258 pf->hw.func_caps.num_vsis, main_vsi->num_queue_pairs); 15259 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15260 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15261 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15262 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15263 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15264 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15265 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15266 } 15267 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15268 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15269 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15270 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15271 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15272 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15273 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15274 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15275 else 15276 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15277 15278 dev_info(&pf->pdev->dev, "%s\n", buf); 15279 kfree(buf); 15280 WARN_ON(i > INFO_STRING_LEN); 15281 } 15282 15283 /** 15284 * i40e_get_platform_mac_addr - get platform-specific MAC address 15285 * @pdev: PCI device information struct 15286 * @pf: board private structure 15287 * 15288 * Look up the MAC address for the device. First we'll try 15289 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15290 * specific fallback. Otherwise, we'll default to the stored value in 15291 * firmware. 15292 **/ 15293 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15294 { 15295 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15296 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15297 } 15298 15299 /** 15300 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15301 * @fec_cfg: FEC option to set in flags 15302 * @flags: ptr to flags in which we set FEC option 15303 **/ 15304 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15305 { 15306 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15307 set_bit(I40E_FLAG_RS_FEC, flags); 15308 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15309 } 15310 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15311 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15312 set_bit(I40E_FLAG_RS_FEC, flags); 15313 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15314 } 15315 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15316 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15317 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15318 clear_bit(I40E_FLAG_RS_FEC, flags); 15319 } 15320 if (fec_cfg == 0) { 15321 clear_bit(I40E_FLAG_RS_FEC, flags); 15322 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15323 } 15324 } 15325 15326 /** 15327 * i40e_check_recovery_mode - check if we are running transition firmware 15328 * @pf: board private structure 15329 * 15330 * Check registers indicating the firmware runs in recovery mode. Sets the 15331 * appropriate driver state. 15332 * 15333 * Returns true if the recovery mode was detected, false otherwise 15334 **/ 15335 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15336 { 15337 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15338 15339 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15340 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15341 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15342 set_bit(__I40E_RECOVERY_MODE, pf->state); 15343 15344 return true; 15345 } 15346 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15347 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15348 15349 return false; 15350 } 15351 15352 /** 15353 * i40e_pf_loop_reset - perform reset in a loop. 15354 * @pf: board private structure 15355 * 15356 * This function is useful when a NIC is about to enter recovery mode. 15357 * When a NIC's internal data structures are corrupted the NIC's 15358 * firmware is going to enter recovery mode. 15359 * Right after a POR it takes about 7 minutes for firmware to enter 15360 * recovery mode. Until that time a NIC is in some kind of intermediate 15361 * state. After that time period the NIC almost surely enters 15362 * recovery mode. The only way for a driver to detect intermediate 15363 * state is to issue a series of pf-resets and check a return value. 15364 * If a PF reset returns success then the firmware could be in recovery 15365 * mode so the caller of this code needs to check for recovery mode 15366 * if this function returns success. There is a little chance that 15367 * firmware will hang in intermediate state forever. 15368 * Since waiting 7 minutes is quite a lot of time this function waits 15369 * 10 seconds and then gives up by returning an error. 15370 * 15371 * Return 0 on success, negative on failure. 15372 **/ 15373 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15374 { 15375 /* wait max 10 seconds for PF reset to succeed */ 15376 const unsigned long time_end = jiffies + 10 * HZ; 15377 struct i40e_hw *hw = &pf->hw; 15378 int ret; 15379 15380 ret = i40e_pf_reset(hw); 15381 while (ret != 0 && time_before(jiffies, time_end)) { 15382 usleep_range(10000, 20000); 15383 ret = i40e_pf_reset(hw); 15384 } 15385 15386 if (ret == 0) 15387 pf->pfr_count++; 15388 else 15389 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15390 15391 return ret; 15392 } 15393 15394 /** 15395 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15396 * @pf: board private structure 15397 * 15398 * Check FW registers to determine if FW issued unexpected EMP Reset. 15399 * Every time when unexpected EMP Reset occurs the FW increments 15400 * a counter of unexpected EMP Resets. When the counter reaches 10 15401 * the FW should enter the Recovery mode 15402 * 15403 * Returns true if FW issued unexpected EMP Reset 15404 **/ 15405 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15406 { 15407 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15408 I40E_GL_FWSTS_FWS1B_MASK; 15409 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15410 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15411 } 15412 15413 /** 15414 * i40e_handle_resets - handle EMP resets and PF resets 15415 * @pf: board private structure 15416 * 15417 * Handle both EMP resets and PF resets and conclude whether there are 15418 * any issues regarding these resets. If there are any issues then 15419 * generate log entry. 15420 * 15421 * Return 0 if NIC is healthy or negative value when there are issues 15422 * with resets 15423 **/ 15424 static int i40e_handle_resets(struct i40e_pf *pf) 15425 { 15426 const int pfr = i40e_pf_loop_reset(pf); 15427 const bool is_empr = i40e_check_fw_empr(pf); 15428 15429 if (is_empr || pfr != 0) 15430 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15431 15432 return is_empr ? -EIO : pfr; 15433 } 15434 15435 /** 15436 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15437 * @pf: board private structure 15438 * @hw: ptr to the hardware info 15439 * 15440 * This function does a minimal setup of all subsystems needed for running 15441 * recovery mode. 15442 * 15443 * Returns 0 on success, negative on failure 15444 **/ 15445 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15446 { 15447 struct i40e_vsi *vsi; 15448 int err; 15449 int v_idx; 15450 15451 pci_set_drvdata(pf->pdev, pf); 15452 pci_save_state(pf->pdev); 15453 15454 /* set up periodic task facility */ 15455 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15456 pf->service_timer_period = HZ; 15457 15458 INIT_WORK(&pf->service_task, i40e_service_task); 15459 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15460 15461 err = i40e_init_interrupt_scheme(pf); 15462 if (err) 15463 goto err_switch_setup; 15464 15465 /* The number of VSIs reported by the FW is the minimum guaranteed 15466 * to us; HW supports far more and we share the remaining pool with 15467 * the other PFs. We allocate space for more than the guarantee with 15468 * the understanding that we might not get them all later. 15469 */ 15470 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15471 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15472 else 15473 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15474 15475 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15476 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15477 GFP_KERNEL); 15478 if (!pf->vsi) { 15479 err = -ENOMEM; 15480 goto err_switch_setup; 15481 } 15482 15483 /* We allocate one VSI which is needed as absolute minimum 15484 * in order to register the netdev 15485 */ 15486 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15487 if (v_idx < 0) { 15488 err = v_idx; 15489 goto err_switch_setup; 15490 } 15491 pf->lan_vsi = v_idx; 15492 vsi = pf->vsi[v_idx]; 15493 if (!vsi) { 15494 err = -EFAULT; 15495 goto err_switch_setup; 15496 } 15497 vsi->alloc_queue_pairs = 1; 15498 err = i40e_config_netdev(vsi); 15499 if (err) 15500 goto err_switch_setup; 15501 err = register_netdev(vsi->netdev); 15502 if (err) 15503 goto err_switch_setup; 15504 vsi->netdev_registered = true; 15505 i40e_dbg_pf_init(pf); 15506 15507 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15508 if (err) 15509 goto err_switch_setup; 15510 15511 /* tell the firmware that we're starting */ 15512 i40e_send_version(pf); 15513 15514 /* since everything's happy, start the service_task timer */ 15515 mod_timer(&pf->service_timer, 15516 round_jiffies(jiffies + pf->service_timer_period)); 15517 15518 return 0; 15519 15520 err_switch_setup: 15521 i40e_reset_interrupt_capability(pf); 15522 timer_shutdown_sync(&pf->service_timer); 15523 i40e_shutdown_adminq(hw); 15524 iounmap(hw->hw_addr); 15525 pci_release_mem_regions(pf->pdev); 15526 pci_disable_device(pf->pdev); 15527 i40e_free_pf(pf); 15528 15529 return err; 15530 } 15531 15532 /** 15533 * i40e_set_subsystem_device_id - set subsystem device id 15534 * @hw: pointer to the hardware info 15535 * 15536 * Set PCI subsystem device id either from a pci_dev structure or 15537 * a specific FW register. 15538 **/ 15539 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15540 { 15541 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15542 15543 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15544 pf->pdev->subsystem_device : 15545 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15546 } 15547 15548 /** 15549 * i40e_probe - Device initialization routine 15550 * @pdev: PCI device information struct 15551 * @ent: entry in i40e_pci_tbl 15552 * 15553 * i40e_probe initializes a PF identified by a pci_dev structure. 15554 * The OS initialization, configuring of the PF private structure, 15555 * and a hardware reset occur. 15556 * 15557 * Returns 0 on success, negative on failure 15558 **/ 15559 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15560 { 15561 struct i40e_aq_get_phy_abilities_resp abilities; 15562 #ifdef CONFIG_I40E_DCB 15563 enum i40e_get_fw_lldp_status_resp lldp_status; 15564 #endif /* CONFIG_I40E_DCB */ 15565 struct i40e_vsi *vsi; 15566 struct i40e_pf *pf; 15567 struct i40e_hw *hw; 15568 u16 wol_nvm_bits; 15569 char nvm_ver[32]; 15570 u16 link_status; 15571 #ifdef CONFIG_I40E_DCB 15572 int status; 15573 #endif /* CONFIG_I40E_DCB */ 15574 int err; 15575 u32 val; 15576 15577 err = pci_enable_device_mem(pdev); 15578 if (err) 15579 return err; 15580 15581 /* set up for high or low dma */ 15582 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15583 if (err) { 15584 dev_err(&pdev->dev, 15585 "DMA configuration failed: 0x%x\n", err); 15586 goto err_dma; 15587 } 15588 15589 /* set up pci connections */ 15590 err = pci_request_mem_regions(pdev, i40e_driver_name); 15591 if (err) { 15592 dev_info(&pdev->dev, 15593 "pci_request_selected_regions failed %d\n", err); 15594 goto err_pci_reg; 15595 } 15596 15597 pci_set_master(pdev); 15598 15599 /* Now that we have a PCI connection, we need to do the 15600 * low level device setup. This is primarily setting up 15601 * the Admin Queue structures and then querying for the 15602 * device's current profile information. 15603 */ 15604 pf = i40e_alloc_pf(&pdev->dev); 15605 if (!pf) { 15606 err = -ENOMEM; 15607 goto err_pf_alloc; 15608 } 15609 pf->next_vsi = 0; 15610 pf->pdev = pdev; 15611 set_bit(__I40E_DOWN, pf->state); 15612 15613 hw = &pf->hw; 15614 15615 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15616 I40E_MAX_CSR_SPACE); 15617 /* We believe that the highest register to read is 15618 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15619 * is not less than that before mapping to prevent a 15620 * kernel panic. 15621 */ 15622 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15623 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15624 pf->ioremap_len); 15625 err = -ENOMEM; 15626 goto err_ioremap; 15627 } 15628 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15629 if (!hw->hw_addr) { 15630 err = -EIO; 15631 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15632 (unsigned int)pci_resource_start(pdev, 0), 15633 pf->ioremap_len, err); 15634 goto err_ioremap; 15635 } 15636 hw->vendor_id = pdev->vendor; 15637 hw->device_id = pdev->device; 15638 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15639 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15640 i40e_set_subsystem_device_id(hw); 15641 hw->bus.device = PCI_SLOT(pdev->devfn); 15642 hw->bus.func = PCI_FUNC(pdev->devfn); 15643 hw->bus.bus_id = pdev->bus->number; 15644 15645 /* Select something other than the 802.1ad ethertype for the 15646 * switch to use internally and drop on ingress. 15647 */ 15648 hw->switch_tag = 0xffff; 15649 hw->first_tag = ETH_P_8021AD; 15650 hw->second_tag = ETH_P_8021Q; 15651 15652 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15653 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15654 INIT_LIST_HEAD(&pf->ddp_old_prof); 15655 15656 /* set up the locks for the AQ, do this only once in probe 15657 * and destroy them only once in remove 15658 */ 15659 mutex_init(&hw->aq.asq_mutex); 15660 mutex_init(&hw->aq.arq_mutex); 15661 15662 pf->msg_enable = netif_msg_init(debug, 15663 NETIF_MSG_DRV | 15664 NETIF_MSG_PROBE | 15665 NETIF_MSG_LINK); 15666 if (debug < -1) 15667 pf->hw.debug_mask = debug; 15668 15669 /* do a special CORER for clearing PXE mode once at init */ 15670 if (hw->revision_id == 0 && 15671 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15672 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15673 i40e_flush(hw); 15674 msleep(200); 15675 pf->corer_count++; 15676 15677 i40e_clear_pxe_mode(hw); 15678 } 15679 15680 /* Reset here to make sure all is clean and to define PF 'n' */ 15681 i40e_clear_hw(hw); 15682 15683 err = i40e_set_mac_type(hw); 15684 if (err) { 15685 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15686 err); 15687 goto err_pf_reset; 15688 } 15689 15690 err = i40e_handle_resets(pf); 15691 if (err) 15692 goto err_pf_reset; 15693 15694 i40e_check_recovery_mode(pf); 15695 15696 if (is_kdump_kernel()) { 15697 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15698 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15699 } else { 15700 hw->aq.num_arq_entries = I40E_AQ_LEN; 15701 hw->aq.num_asq_entries = I40E_AQ_LEN; 15702 } 15703 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15704 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15705 15706 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15707 "%s-%s:misc", 15708 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15709 15710 err = i40e_init_shared_code(hw); 15711 if (err) { 15712 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15713 err); 15714 goto err_pf_reset; 15715 } 15716 15717 /* set up a default setting for link flow control */ 15718 pf->hw.fc.requested_mode = I40E_FC_NONE; 15719 15720 err = i40e_init_adminq(hw); 15721 if (err) { 15722 if (err == -EIO) 15723 dev_info(&pdev->dev, 15724 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15725 hw->aq.api_maj_ver, 15726 hw->aq.api_min_ver, 15727 I40E_FW_API_VERSION_MAJOR, 15728 I40E_FW_MINOR_VERSION(hw)); 15729 else 15730 dev_info(&pdev->dev, 15731 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15732 15733 goto err_pf_reset; 15734 } 15735 i40e_get_oem_version(hw); 15736 i40e_get_pba_string(hw); 15737 15738 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15739 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15740 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15741 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15742 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15743 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15744 hw->subsystem_device_id); 15745 15746 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15747 I40E_FW_MINOR_VERSION(hw) + 1)) 15748 dev_dbg(&pdev->dev, 15749 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15750 hw->aq.api_maj_ver, 15751 hw->aq.api_min_ver, 15752 I40E_FW_API_VERSION_MAJOR, 15753 I40E_FW_MINOR_VERSION(hw)); 15754 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15755 dev_info(&pdev->dev, 15756 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15757 hw->aq.api_maj_ver, 15758 hw->aq.api_min_ver, 15759 I40E_FW_API_VERSION_MAJOR, 15760 I40E_FW_MINOR_VERSION(hw)); 15761 15762 i40e_verify_eeprom(pf); 15763 15764 /* Rev 0 hardware was never productized */ 15765 if (hw->revision_id < 1) 15766 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15767 15768 i40e_clear_pxe_mode(hw); 15769 15770 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15771 if (err) 15772 goto err_adminq_setup; 15773 15774 err = i40e_sw_init(pf); 15775 if (err) { 15776 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15777 goto err_sw_init; 15778 } 15779 15780 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15781 return i40e_init_recovery_mode(pf, hw); 15782 15783 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15784 hw->func_caps.num_rx_qp, 0, 0); 15785 if (err) { 15786 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15787 goto err_init_lan_hmc; 15788 } 15789 15790 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15791 if (err) { 15792 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15793 err = -ENOENT; 15794 goto err_configure_lan_hmc; 15795 } 15796 15797 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15798 * Ignore error return codes because if it was already disabled via 15799 * hardware settings this will fail 15800 */ 15801 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15802 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15803 i40e_aq_stop_lldp(hw, true, false, NULL); 15804 } 15805 15806 /* allow a platform config to override the HW addr */ 15807 i40e_get_platform_mac_addr(pdev, pf); 15808 15809 if (!is_valid_ether_addr(hw->mac.addr)) { 15810 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15811 err = -EIO; 15812 goto err_mac_addr; 15813 } 15814 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15815 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15816 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15817 if (is_valid_ether_addr(hw->mac.port_addr)) 15818 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15819 15820 i40e_ptp_alloc_pins(pf); 15821 pci_set_drvdata(pdev, pf); 15822 pci_save_state(pdev); 15823 15824 #ifdef CONFIG_I40E_DCB 15825 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15826 (!status && 15827 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15828 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15829 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15830 dev_info(&pdev->dev, 15831 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15832 "FW LLDP is disabled\n" : 15833 "FW LLDP is enabled\n"); 15834 15835 /* Enable FW to write default DCB config on link-up */ 15836 i40e_aq_set_dcb_parameters(hw, true, NULL); 15837 15838 err = i40e_init_pf_dcb(pf); 15839 if (err) { 15840 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15841 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15842 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15843 /* Continue without DCB enabled */ 15844 } 15845 #endif /* CONFIG_I40E_DCB */ 15846 15847 /* set up periodic task facility */ 15848 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15849 pf->service_timer_period = HZ; 15850 15851 INIT_WORK(&pf->service_task, i40e_service_task); 15852 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15853 15854 /* NVM bit on means WoL disabled for the port */ 15855 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15856 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15857 pf->wol_en = false; 15858 else 15859 pf->wol_en = true; 15860 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15861 15862 /* set up the main switch operations */ 15863 i40e_determine_queue_usage(pf); 15864 err = i40e_init_interrupt_scheme(pf); 15865 if (err) 15866 goto err_switch_setup; 15867 15868 /* Reduce Tx and Rx pairs for kdump 15869 * When MSI-X is enabled, it's not allowed to use more TC queue 15870 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15871 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15872 */ 15873 if (is_kdump_kernel()) 15874 pf->num_lan_msix = 1; 15875 15876 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15877 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15878 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15879 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15880 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15881 UDP_TUNNEL_TYPE_GENEVE; 15882 15883 /* The number of VSIs reported by the FW is the minimum guaranteed 15884 * to us; HW supports far more and we share the remaining pool with 15885 * the other PFs. We allocate space for more than the guarantee with 15886 * the understanding that we might not get them all later. 15887 */ 15888 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15889 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15890 else 15891 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15892 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15893 dev_warn(&pf->pdev->dev, 15894 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15895 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15896 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15897 } 15898 15899 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15900 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15901 GFP_KERNEL); 15902 if (!pf->vsi) { 15903 err = -ENOMEM; 15904 goto err_switch_setup; 15905 } 15906 15907 #ifdef CONFIG_PCI_IOV 15908 /* prep for VF support */ 15909 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15910 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15911 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15912 if (pci_num_vf(pdev)) 15913 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15914 } 15915 #endif 15916 err = i40e_setup_pf_switch(pf, false, false); 15917 if (err) { 15918 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15919 goto err_vsis; 15920 } 15921 15922 vsi = i40e_pf_get_main_vsi(pf); 15923 INIT_LIST_HEAD(&vsi->ch_list); 15924 15925 /* if FDIR VSI was set up, start it now */ 15926 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 15927 if (vsi) 15928 i40e_vsi_open(vsi); 15929 15930 /* The driver only wants link up/down and module qualification 15931 * reports from firmware. Note the negative logic. 15932 */ 15933 err = i40e_aq_set_phy_int_mask(&pf->hw, 15934 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15935 I40E_AQ_EVENT_MEDIA_NA | 15936 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15937 if (err) 15938 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 15939 ERR_PTR(err), 15940 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15941 15942 /* VF MDD event logs are rate limited to one second intervals */ 15943 ratelimit_state_init(&pf->mdd_message_rate_limit, 1 * HZ, 1); 15944 15945 /* Reconfigure hardware for allowing smaller MSS in the case 15946 * of TSO, so that we avoid the MDD being fired and causing 15947 * a reset in the case of small MSS+TSO. 15948 */ 15949 val = rd32(hw, I40E_REG_MSS); 15950 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15951 val &= ~I40E_REG_MSS_MIN_MASK; 15952 val |= I40E_64BYTE_MSS; 15953 wr32(hw, I40E_REG_MSS, val); 15954 } 15955 15956 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 15957 msleep(75); 15958 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15959 if (err) 15960 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 15961 ERR_PTR(err), 15962 i40e_aq_str(&pf->hw, 15963 pf->hw.aq.asq_last_status)); 15964 } 15965 /* The main driver is (mostly) up and happy. We need to set this state 15966 * before setting up the misc vector or we get a race and the vector 15967 * ends up disabled forever. 15968 */ 15969 clear_bit(__I40E_DOWN, pf->state); 15970 15971 /* In case of MSIX we are going to setup the misc vector right here 15972 * to handle admin queue events etc. In case of legacy and MSI 15973 * the misc functionality and queue processing is combined in 15974 * the same vector and that gets setup at open. 15975 */ 15976 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15977 err = i40e_setup_misc_vector(pf); 15978 if (err) { 15979 dev_info(&pdev->dev, 15980 "setup of misc vector failed: %d\n", err); 15981 i40e_cloud_filter_exit(pf); 15982 i40e_fdir_teardown(pf); 15983 goto err_vsis; 15984 } 15985 } 15986 15987 #ifdef CONFIG_PCI_IOV 15988 /* prep for VF support */ 15989 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15990 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15991 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15992 /* disable link interrupts for VFs */ 15993 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 15994 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 15995 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 15996 i40e_flush(hw); 15997 15998 if (pci_num_vf(pdev)) { 15999 dev_info(&pdev->dev, 16000 "Active VFs found, allocating resources.\n"); 16001 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 16002 if (err) 16003 dev_info(&pdev->dev, 16004 "Error %d allocating resources for existing VFs\n", 16005 err); 16006 } 16007 } 16008 #endif /* CONFIG_PCI_IOV */ 16009 16010 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16011 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16012 pf->num_iwarp_msix, 16013 I40E_IWARP_IRQ_PILE_ID); 16014 if (pf->iwarp_base_vector < 0) { 16015 dev_info(&pdev->dev, 16016 "failed to get tracking for %d vectors for IWARP err=%d\n", 16017 pf->num_iwarp_msix, pf->iwarp_base_vector); 16018 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16019 } 16020 } 16021 16022 i40e_dbg_pf_init(pf); 16023 16024 /* tell the firmware that we're starting */ 16025 i40e_send_version(pf); 16026 16027 /* since everything's happy, start the service_task timer */ 16028 mod_timer(&pf->service_timer, 16029 round_jiffies(jiffies + pf->service_timer_period)); 16030 16031 /* add this PF to client device list and launch a client service task */ 16032 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16033 err = i40e_lan_add_device(pf); 16034 if (err) 16035 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16036 err); 16037 } 16038 16039 #define PCI_SPEED_SIZE 8 16040 #define PCI_WIDTH_SIZE 8 16041 /* Devices on the IOSF bus do not have this information 16042 * and will report PCI Gen 1 x 1 by default so don't bother 16043 * checking them. 16044 */ 16045 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16046 char speed[PCI_SPEED_SIZE] = "Unknown"; 16047 char width[PCI_WIDTH_SIZE] = "Unknown"; 16048 16049 /* Get the negotiated link width and speed from PCI config 16050 * space 16051 */ 16052 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16053 &link_status); 16054 16055 i40e_set_pci_config_data(hw, link_status); 16056 16057 switch (hw->bus.speed) { 16058 case i40e_bus_speed_8000: 16059 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16060 case i40e_bus_speed_5000: 16061 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16062 case i40e_bus_speed_2500: 16063 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16064 default: 16065 break; 16066 } 16067 switch (hw->bus.width) { 16068 case i40e_bus_width_pcie_x8: 16069 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16070 case i40e_bus_width_pcie_x4: 16071 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16072 case i40e_bus_width_pcie_x2: 16073 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16074 case i40e_bus_width_pcie_x1: 16075 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16076 default: 16077 break; 16078 } 16079 16080 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16081 speed, width); 16082 16083 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16084 hw->bus.speed < i40e_bus_speed_8000) { 16085 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16086 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16087 } 16088 } 16089 16090 /* get the requested speeds from the fw */ 16091 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16092 if (err) 16093 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16094 ERR_PTR(err), 16095 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16096 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16097 16098 /* set the FEC config due to the board capabilities */ 16099 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16100 16101 /* get the supported phy types from the fw */ 16102 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16103 if (err) 16104 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16105 ERR_PTR(err), 16106 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16107 16108 /* make sure the MFS hasn't been set lower than the default */ 16109 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16110 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK, 16111 rd32(&pf->hw, I40E_PRTGL_SAH)); 16112 if (val < MAX_FRAME_SIZE_DEFAULT) 16113 dev_warn(&pdev->dev, "MFS for port %x (%d) has been set below the default (%d)\n", 16114 pf->hw.port, val, MAX_FRAME_SIZE_DEFAULT); 16115 16116 /* Add a filter to drop all Flow control frames from any VSI from being 16117 * transmitted. By doing so we stop a malicious VF from sending out 16118 * PAUSE or PFC frames and potentially controlling traffic for other 16119 * PF/VF VSIs. 16120 * The FW can still send Flow control frames if enabled. 16121 */ 16122 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16123 pf->main_vsi_seid); 16124 16125 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16126 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16127 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16128 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16129 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16130 /* print a string summarizing features */ 16131 i40e_print_features(pf); 16132 16133 i40e_devlink_register(pf); 16134 16135 return 0; 16136 16137 /* Unwind what we've done if something failed in the setup */ 16138 err_vsis: 16139 set_bit(__I40E_DOWN, pf->state); 16140 i40e_clear_interrupt_scheme(pf); 16141 kfree(pf->vsi); 16142 err_switch_setup: 16143 i40e_reset_interrupt_capability(pf); 16144 timer_shutdown_sync(&pf->service_timer); 16145 err_mac_addr: 16146 err_configure_lan_hmc: 16147 (void)i40e_shutdown_lan_hmc(hw); 16148 err_init_lan_hmc: 16149 kfree(pf->qp_pile); 16150 err_sw_init: 16151 err_adminq_setup: 16152 err_pf_reset: 16153 iounmap(hw->hw_addr); 16154 err_ioremap: 16155 i40e_free_pf(pf); 16156 err_pf_alloc: 16157 pci_release_mem_regions(pdev); 16158 err_pci_reg: 16159 err_dma: 16160 pci_disable_device(pdev); 16161 return err; 16162 } 16163 16164 /** 16165 * i40e_remove - Device removal routine 16166 * @pdev: PCI device information struct 16167 * 16168 * i40e_remove is called by the PCI subsystem to alert the driver 16169 * that is should release a PCI device. This could be caused by a 16170 * Hot-Plug event, or because the driver is going to be removed from 16171 * memory. 16172 **/ 16173 static void i40e_remove(struct pci_dev *pdev) 16174 { 16175 struct i40e_pf *pf = pci_get_drvdata(pdev); 16176 struct i40e_hw *hw = &pf->hw; 16177 struct i40e_vsi *vsi; 16178 struct i40e_veb *veb; 16179 int ret_code; 16180 int i; 16181 16182 i40e_devlink_unregister(pf); 16183 16184 i40e_dbg_pf_exit(pf); 16185 16186 i40e_ptp_stop(pf); 16187 16188 /* Disable RSS in hw */ 16189 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16190 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16191 16192 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16193 * flags, once they are set, i40e_rebuild should not be called as 16194 * i40e_prep_for_reset always returns early. 16195 */ 16196 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16197 usleep_range(1000, 2000); 16198 set_bit(__I40E_IN_REMOVE, pf->state); 16199 16200 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16201 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16202 i40e_free_vfs(pf); 16203 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16204 } 16205 /* no more scheduling of any task */ 16206 set_bit(__I40E_SUSPENDED, pf->state); 16207 set_bit(__I40E_DOWN, pf->state); 16208 if (pf->service_timer.function) 16209 timer_shutdown_sync(&pf->service_timer); 16210 if (pf->service_task.func) 16211 cancel_work_sync(&pf->service_task); 16212 16213 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16214 struct i40e_vsi *vsi = pf->vsi[0]; 16215 16216 /* We know that we have allocated only one vsi for this PF, 16217 * it was just for registering netdevice, so the interface 16218 * could be visible in the 'ifconfig' output 16219 */ 16220 unregister_netdev(vsi->netdev); 16221 free_netdev(vsi->netdev); 16222 16223 goto unmap; 16224 } 16225 16226 /* Client close must be called explicitly here because the timer 16227 * has been stopped. 16228 */ 16229 i40e_notify_client_of_netdev_close(pf, false); 16230 16231 i40e_fdir_teardown(pf); 16232 16233 /* If there is a switch structure or any orphans, remove them. 16234 * This will leave only the PF's VSI remaining. 16235 */ 16236 i40e_pf_for_each_veb(pf, i, veb) 16237 if (veb->uplink_seid == pf->mac_seid || 16238 veb->uplink_seid == 0) 16239 i40e_switch_branch_release(veb); 16240 16241 /* Now we can shutdown the PF's VSIs, just before we kill 16242 * adminq and hmc. 16243 */ 16244 i40e_pf_for_each_vsi(pf, i, vsi) { 16245 i40e_vsi_close(vsi); 16246 i40e_vsi_release(vsi); 16247 pf->vsi[i] = NULL; 16248 } 16249 16250 i40e_cloud_filter_exit(pf); 16251 16252 /* remove attached clients */ 16253 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16254 ret_code = i40e_lan_del_device(pf); 16255 if (ret_code) 16256 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16257 ret_code); 16258 } 16259 16260 /* shutdown and destroy the HMC */ 16261 if (hw->hmc.hmc_obj) { 16262 ret_code = i40e_shutdown_lan_hmc(hw); 16263 if (ret_code) 16264 dev_warn(&pdev->dev, 16265 "Failed to destroy the HMC resources: %d\n", 16266 ret_code); 16267 } 16268 16269 unmap: 16270 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16271 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16272 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16273 free_irq(pf->pdev->irq, pf); 16274 16275 /* shutdown the adminq */ 16276 i40e_shutdown_adminq(hw); 16277 16278 /* destroy the locks only once, here */ 16279 mutex_destroy(&hw->aq.arq_mutex); 16280 mutex_destroy(&hw->aq.asq_mutex); 16281 16282 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16283 rtnl_lock(); 16284 i40e_clear_interrupt_scheme(pf); 16285 i40e_pf_for_each_vsi(pf, i, vsi) { 16286 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16287 i40e_vsi_clear_rings(vsi); 16288 16289 i40e_vsi_clear(vsi); 16290 pf->vsi[i] = NULL; 16291 } 16292 rtnl_unlock(); 16293 16294 i40e_pf_for_each_veb(pf, i, veb) { 16295 kfree(veb); 16296 pf->veb[i] = NULL; 16297 } 16298 16299 kfree(pf->qp_pile); 16300 kfree(pf->vsi); 16301 16302 iounmap(hw->hw_addr); 16303 i40e_free_pf(pf); 16304 pci_release_mem_regions(pdev); 16305 16306 pci_disable_device(pdev); 16307 } 16308 16309 /** 16310 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16311 * using the mac_address_write admin q function 16312 * @pf: pointer to i40e_pf struct 16313 **/ 16314 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16315 { 16316 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 16317 struct i40e_hw *hw = &pf->hw; 16318 u8 mac_addr[6]; 16319 u16 flags = 0; 16320 int ret; 16321 16322 /* Get current MAC address in case it's an LAA */ 16323 if (main_vsi && main_vsi->netdev) { 16324 ether_addr_copy(mac_addr, main_vsi->netdev->dev_addr); 16325 } else { 16326 dev_err(&pf->pdev->dev, 16327 "Failed to retrieve MAC address; using default\n"); 16328 ether_addr_copy(mac_addr, hw->mac.addr); 16329 } 16330 16331 /* The FW expects the mac address write cmd to first be called with 16332 * one of these flags before calling it again with the multicast 16333 * enable flags. 16334 */ 16335 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16336 16337 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16338 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16339 16340 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16341 if (ret) { 16342 dev_err(&pf->pdev->dev, 16343 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16344 return; 16345 } 16346 16347 flags = I40E_AQC_MC_MAG_EN 16348 | I40E_AQC_WOL_PRESERVE_ON_PFR 16349 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16350 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16351 if (ret) 16352 dev_err(&pf->pdev->dev, 16353 "Failed to enable Multicast Magic Packet wake up\n"); 16354 } 16355 16356 /** 16357 * i40e_io_suspend - suspend all IO operations 16358 * @pf: pointer to i40e_pf struct 16359 * 16360 **/ 16361 static int i40e_io_suspend(struct i40e_pf *pf) 16362 { 16363 struct i40e_hw *hw = &pf->hw; 16364 16365 set_bit(__I40E_DOWN, pf->state); 16366 16367 /* Ensure service task will not be running */ 16368 timer_delete_sync(&pf->service_timer); 16369 cancel_work_sync(&pf->service_task); 16370 16371 /* Client close must be called explicitly here because the timer 16372 * has been stopped. 16373 */ 16374 i40e_notify_client_of_netdev_close(pf, false); 16375 16376 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16377 pf->wol_en) 16378 i40e_enable_mc_magic_wake(pf); 16379 16380 /* Since we're going to destroy queues during the 16381 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16382 * whole section 16383 */ 16384 rtnl_lock(); 16385 16386 i40e_prep_for_reset(pf); 16387 16388 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16389 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16390 16391 /* Clear the interrupt scheme and release our IRQs so that the system 16392 * can safely hibernate even when there are a large number of CPUs. 16393 * Otherwise hibernation might fail when mapping all the vectors back 16394 * to CPU0. 16395 */ 16396 i40e_clear_interrupt_scheme(pf); 16397 16398 rtnl_unlock(); 16399 16400 return 0; 16401 } 16402 16403 /** 16404 * i40e_io_resume - resume IO operations 16405 * @pf: pointer to i40e_pf struct 16406 * 16407 **/ 16408 static int i40e_io_resume(struct i40e_pf *pf) 16409 { 16410 struct device *dev = &pf->pdev->dev; 16411 int err; 16412 16413 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16414 * since we're going to be restoring queues 16415 */ 16416 rtnl_lock(); 16417 16418 /* We cleared the interrupt scheme when we suspended, so we need to 16419 * restore it now to resume device functionality. 16420 */ 16421 err = i40e_restore_interrupt_scheme(pf); 16422 if (err) { 16423 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16424 err); 16425 } 16426 16427 clear_bit(__I40E_DOWN, pf->state); 16428 i40e_reset_and_rebuild(pf, false, true); 16429 16430 rtnl_unlock(); 16431 16432 /* Clear suspended state last after everything is recovered */ 16433 clear_bit(__I40E_SUSPENDED, pf->state); 16434 16435 /* Restart the service task */ 16436 mod_timer(&pf->service_timer, 16437 round_jiffies(jiffies + pf->service_timer_period)); 16438 16439 return 0; 16440 } 16441 16442 /** 16443 * i40e_pci_error_detected - warning that something funky happened in PCI land 16444 * @pdev: PCI device information struct 16445 * @error: the type of PCI error 16446 * 16447 * Called to warn that something happened and the error handling steps 16448 * are in progress. Allows the driver to quiesce things, be ready for 16449 * remediation. 16450 **/ 16451 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16452 pci_channel_state_t error) 16453 { 16454 struct i40e_pf *pf = pci_get_drvdata(pdev); 16455 16456 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16457 16458 if (!pf) { 16459 dev_info(&pdev->dev, 16460 "Cannot recover - error happened during device probe\n"); 16461 return PCI_ERS_RESULT_DISCONNECT; 16462 } 16463 16464 /* shutdown all operations */ 16465 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16466 i40e_io_suspend(pf); 16467 16468 /* Request a slot reset */ 16469 return PCI_ERS_RESULT_NEED_RESET; 16470 } 16471 16472 /** 16473 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16474 * @pdev: PCI device information struct 16475 * 16476 * Called to find if the driver can work with the device now that 16477 * the pci slot has been reset. If a basic connection seems good 16478 * (registers are readable and have sane content) then return a 16479 * happy little PCI_ERS_RESULT_xxx. 16480 **/ 16481 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16482 { 16483 struct i40e_pf *pf = pci_get_drvdata(pdev); 16484 pci_ers_result_t result; 16485 u32 reg; 16486 16487 dev_dbg(&pdev->dev, "%s\n", __func__); 16488 /* enable I/O and memory of the device */ 16489 if (pci_enable_device(pdev)) { 16490 dev_info(&pdev->dev, 16491 "Cannot re-enable PCI device after reset.\n"); 16492 result = PCI_ERS_RESULT_DISCONNECT; 16493 } else { 16494 pci_set_master(pdev); 16495 pci_restore_state(pdev); 16496 pci_save_state(pdev); 16497 pci_wake_from_d3(pdev, false); 16498 16499 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16500 if (reg == 0) 16501 result = PCI_ERS_RESULT_RECOVERED; 16502 else 16503 result = PCI_ERS_RESULT_DISCONNECT; 16504 } 16505 16506 return result; 16507 } 16508 16509 /** 16510 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16511 * @pdev: PCI device information struct 16512 */ 16513 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16514 { 16515 struct i40e_pf *pf = pci_get_drvdata(pdev); 16516 16517 i40e_prep_for_reset(pf); 16518 } 16519 16520 /** 16521 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16522 * @pdev: PCI device information struct 16523 */ 16524 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16525 { 16526 struct i40e_pf *pf = pci_get_drvdata(pdev); 16527 16528 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16529 return; 16530 16531 i40e_reset_and_rebuild(pf, false, false); 16532 #ifdef CONFIG_PCI_IOV 16533 i40e_restore_all_vfs_msi_state(pdev); 16534 #endif /* CONFIG_PCI_IOV */ 16535 } 16536 16537 /** 16538 * i40e_pci_error_resume - restart operations after PCI error recovery 16539 * @pdev: PCI device information struct 16540 * 16541 * Called to allow the driver to bring things back up after PCI error 16542 * and/or reset recovery has finished. 16543 **/ 16544 static void i40e_pci_error_resume(struct pci_dev *pdev) 16545 { 16546 struct i40e_pf *pf = pci_get_drvdata(pdev); 16547 16548 dev_dbg(&pdev->dev, "%s\n", __func__); 16549 if (test_bit(__I40E_SUSPENDED, pf->state)) 16550 return; 16551 16552 i40e_io_resume(pf); 16553 } 16554 16555 /** 16556 * i40e_shutdown - PCI callback for shutting down 16557 * @pdev: PCI device information struct 16558 **/ 16559 static void i40e_shutdown(struct pci_dev *pdev) 16560 { 16561 struct i40e_pf *pf = pci_get_drvdata(pdev); 16562 struct i40e_hw *hw = &pf->hw; 16563 16564 set_bit(__I40E_SUSPENDED, pf->state); 16565 set_bit(__I40E_DOWN, pf->state); 16566 16567 timer_delete_sync(&pf->service_timer); 16568 cancel_work_sync(&pf->service_task); 16569 i40e_cloud_filter_exit(pf); 16570 i40e_fdir_teardown(pf); 16571 16572 /* Client close must be called explicitly here because the timer 16573 * has been stopped. 16574 */ 16575 i40e_notify_client_of_netdev_close(pf, false); 16576 16577 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16578 pf->wol_en) 16579 i40e_enable_mc_magic_wake(pf); 16580 16581 i40e_prep_for_reset(pf); 16582 16583 wr32(hw, I40E_PFPM_APM, 16584 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16585 wr32(hw, I40E_PFPM_WUFC, 16586 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16587 16588 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16589 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16590 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16591 free_irq(pf->pdev->irq, pf); 16592 16593 /* Since we're going to destroy queues during the 16594 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16595 * whole section 16596 */ 16597 rtnl_lock(); 16598 i40e_clear_interrupt_scheme(pf); 16599 rtnl_unlock(); 16600 16601 if (system_state == SYSTEM_POWER_OFF) { 16602 pci_wake_from_d3(pdev, pf->wol_en); 16603 pci_set_power_state(pdev, PCI_D3hot); 16604 } 16605 } 16606 16607 /** 16608 * i40e_suspend - PM callback for moving to D3 16609 * @dev: generic device information structure 16610 **/ 16611 static int i40e_suspend(struct device *dev) 16612 { 16613 struct i40e_pf *pf = dev_get_drvdata(dev); 16614 16615 /* If we're already suspended, then there is nothing to do */ 16616 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16617 return 0; 16618 return i40e_io_suspend(pf); 16619 } 16620 16621 /** 16622 * i40e_resume - PM callback for waking up from D3 16623 * @dev: generic device information structure 16624 **/ 16625 static int i40e_resume(struct device *dev) 16626 { 16627 struct i40e_pf *pf = dev_get_drvdata(dev); 16628 16629 /* If we're not suspended, then there is nothing to do */ 16630 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16631 return 0; 16632 return i40e_io_resume(pf); 16633 } 16634 16635 static const struct pci_error_handlers i40e_err_handler = { 16636 .error_detected = i40e_pci_error_detected, 16637 .slot_reset = i40e_pci_error_slot_reset, 16638 .reset_prepare = i40e_pci_error_reset_prepare, 16639 .reset_done = i40e_pci_error_reset_done, 16640 .resume = i40e_pci_error_resume, 16641 }; 16642 16643 static DEFINE_SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16644 16645 static struct pci_driver i40e_driver = { 16646 .name = i40e_driver_name, 16647 .id_table = i40e_pci_tbl, 16648 .probe = i40e_probe, 16649 .remove = i40e_remove, 16650 .driver.pm = pm_sleep_ptr(&i40e_pm_ops), 16651 .shutdown = i40e_shutdown, 16652 .err_handler = &i40e_err_handler, 16653 .sriov_configure = i40e_pci_sriov_configure, 16654 }; 16655 16656 /** 16657 * i40e_init_module - Driver registration routine 16658 * 16659 * i40e_init_module is the first routine called when the driver is 16660 * loaded. All it does is register with the PCI subsystem. 16661 **/ 16662 static int __init i40e_init_module(void) 16663 { 16664 int err; 16665 16666 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16667 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16668 16669 /* There is no need to throttle the number of active tasks because 16670 * each device limits its own task using a state bit for scheduling 16671 * the service task, and the device tasks do not interfere with each 16672 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16673 * since we need to be able to guarantee forward progress even under 16674 * memory pressure. 16675 */ 16676 i40e_wq = alloc_workqueue("%s", 0, 0, i40e_driver_name); 16677 if (!i40e_wq) { 16678 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16679 return -ENOMEM; 16680 } 16681 16682 i40e_dbg_init(); 16683 err = pci_register_driver(&i40e_driver); 16684 if (err) { 16685 destroy_workqueue(i40e_wq); 16686 i40e_dbg_exit(); 16687 return err; 16688 } 16689 16690 return 0; 16691 } 16692 module_init(i40e_init_module); 16693 16694 /** 16695 * i40e_exit_module - Driver exit cleanup routine 16696 * 16697 * i40e_exit_module is called just before the driver is removed 16698 * from memory. 16699 **/ 16700 static void __exit i40e_exit_module(void) 16701 { 16702 pci_unregister_driver(&i40e_driver); 16703 destroy_workqueue(i40e_wq); 16704 ida_destroy(&i40e_client_ida); 16705 i40e_dbg_exit(); 16706 } 16707 module_exit(i40e_exit_module); 16708