1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/if_bridge.h> 7 #include <linux/if_macvlan.h> 8 #include <linux/module.h> 9 #include <net/pkt_cls.h> 10 #include <net/xdp_sock_drv.h> 11 12 /* Local includes */ 13 #include "i40e.h" 14 #include "i40e_devids.h" 15 #include "i40e_diag.h" 16 #include "i40e_lan_hmc.h" 17 #include "i40e_virtchnl_pf.h" 18 #include "i40e_xsk.h" 19 20 /* All i40e tracepoints are defined by the include below, which 21 * must be included exactly once across the whole kernel with 22 * CREATE_TRACE_POINTS defined 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "i40e_trace.h" 26 27 const char i40e_driver_name[] = "i40e"; 28 static const char i40e_driver_string[] = 29 "Intel(R) Ethernet Connection XL710 Network Driver"; 30 31 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 32 33 /* a bit of forward declarations */ 34 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 35 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 36 static int i40e_add_vsi(struct i40e_vsi *vsi); 37 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 38 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 39 static int i40e_setup_misc_vector(struct i40e_pf *pf); 40 static void i40e_determine_queue_usage(struct i40e_pf *pf); 41 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 42 static void i40e_prep_for_reset(struct i40e_pf *pf); 43 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 44 bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 48 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 49 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 50 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 51 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 52 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 53 static int i40e_get_capabilities(struct i40e_pf *pf, 54 enum i40e_admin_queue_opc list_type); 55 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 56 57 /* i40e_pci_tbl - PCI Device ID Table 58 * 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id i40e_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_LICENSE("GPL v2"); 104 105 static struct workqueue_struct *i40e_wq; 106 107 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 108 struct net_device *netdev, int delta) 109 { 110 struct netdev_hw_addr_list *ha_list; 111 struct netdev_hw_addr *ha; 112 113 if (!f || !netdev) 114 return; 115 116 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr)) 117 ha_list = &netdev->uc; 118 else 119 ha_list = &netdev->mc; 120 121 netdev_hw_addr_list_for_each(ha, ha_list) { 122 if (ether_addr_equal(ha->addr, f->macaddr)) { 123 ha->refcount += delta; 124 if (ha->refcount <= 0) 125 ha->refcount = 1; 126 break; 127 } 128 } 129 } 130 131 /** 132 * i40e_hw_to_dev - get device pointer from the hardware structure 133 * @hw: pointer to the device HW structure 134 **/ 135 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 136 { 137 struct i40e_pf *pf = i40e_hw_to_pf(hw); 138 139 return &pf->pdev->dev; 140 } 141 142 /** 143 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 144 * @hw: pointer to the HW structure 145 * @mem: ptr to mem struct to fill out 146 * @size: size of memory requested 147 * @alignment: what to align the allocation to 148 **/ 149 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 150 u64 size, u32 alignment) 151 { 152 struct i40e_pf *pf = i40e_hw_to_pf(hw); 153 154 mem->size = ALIGN(size, alignment); 155 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 156 GFP_KERNEL); 157 if (!mem->va) 158 return -ENOMEM; 159 160 return 0; 161 } 162 163 /** 164 * i40e_free_dma_mem - OS specific memory free for shared code 165 * @hw: pointer to the HW structure 166 * @mem: ptr to mem struct to free 167 **/ 168 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 169 { 170 struct i40e_pf *pf = i40e_hw_to_pf(hw); 171 172 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 173 mem->va = NULL; 174 mem->pa = 0; 175 mem->size = 0; 176 177 return 0; 178 } 179 180 /** 181 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 182 * @hw: pointer to the HW structure 183 * @mem: ptr to mem struct to fill out 184 * @size: size of memory requested 185 **/ 186 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 187 u32 size) 188 { 189 mem->size = size; 190 mem->va = kzalloc(size, GFP_KERNEL); 191 192 if (!mem->va) 193 return -ENOMEM; 194 195 return 0; 196 } 197 198 /** 199 * i40e_free_virt_mem - OS specific memory free for shared code 200 * @hw: pointer to the HW structure 201 * @mem: ptr to mem struct to free 202 **/ 203 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 204 { 205 /* it's ok to kfree a NULL pointer */ 206 kfree(mem->va); 207 mem->va = NULL; 208 mem->size = 0; 209 210 return 0; 211 } 212 213 /** 214 * i40e_get_lump - find a lump of free generic resource 215 * @pf: board private structure 216 * @pile: the pile of resource to search 217 * @needed: the number of items needed 218 * @id: an owner id to stick on the items assigned 219 * 220 * Returns the base item index of the lump, or negative for error 221 **/ 222 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 223 u16 needed, u16 id) 224 { 225 int ret = -ENOMEM; 226 int i, j; 227 228 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 229 dev_info(&pf->pdev->dev, 230 "param err: pile=%s needed=%d id=0x%04x\n", 231 pile ? "<valid>" : "<null>", needed, id); 232 return -EINVAL; 233 } 234 235 /* Allocate last queue in the pile for FDIR VSI queue 236 * so it doesn't fragment the qp_pile 237 */ 238 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 239 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 240 dev_err(&pf->pdev->dev, 241 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 242 pile->num_entries - 1); 243 return -ENOMEM; 244 } 245 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 246 return pile->num_entries - 1; 247 } 248 249 i = 0; 250 while (i < pile->num_entries) { 251 /* skip already allocated entries */ 252 if (pile->list[i] & I40E_PILE_VALID_BIT) { 253 i++; 254 continue; 255 } 256 257 /* do we have enough in this lump? */ 258 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 259 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 260 break; 261 } 262 263 if (j == needed) { 264 /* there was enough, so assign it to the requestor */ 265 for (j = 0; j < needed; j++) 266 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 267 ret = i; 268 break; 269 } 270 271 /* not enough, so skip over it and continue looking */ 272 i += j; 273 } 274 275 return ret; 276 } 277 278 /** 279 * i40e_put_lump - return a lump of generic resource 280 * @pile: the pile of resource to search 281 * @index: the base item index 282 * @id: the owner id of the items assigned 283 * 284 * Returns the count of items in the lump 285 **/ 286 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 287 { 288 int valid_id = (id | I40E_PILE_VALID_BIT); 289 int count = 0; 290 u16 i; 291 292 if (!pile || index >= pile->num_entries) 293 return -EINVAL; 294 295 for (i = index; 296 i < pile->num_entries && pile->list[i] == valid_id; 297 i++) { 298 pile->list[i] = 0; 299 count++; 300 } 301 302 303 return count; 304 } 305 306 /** 307 * i40e_find_vsi_from_id - searches for the vsi with the given id 308 * @pf: the pf structure to search for the vsi 309 * @id: id of the vsi it is searching for 310 **/ 311 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 312 { 313 int i; 314 315 for (i = 0; i < pf->num_alloc_vsi; i++) 316 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 317 return pf->vsi[i]; 318 319 return NULL; 320 } 321 322 /** 323 * i40e_service_event_schedule - Schedule the service task to wake up 324 * @pf: board private structure 325 * 326 * If not already scheduled, this puts the task into the work queue 327 **/ 328 void i40e_service_event_schedule(struct i40e_pf *pf) 329 { 330 if ((!test_bit(__I40E_DOWN, pf->state) && 331 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 332 test_bit(__I40E_RECOVERY_MODE, pf->state)) 333 queue_work(i40e_wq, &pf->service_task); 334 } 335 336 /** 337 * i40e_tx_timeout - Respond to a Tx Hang 338 * @netdev: network interface device structure 339 * @txqueue: queue number timing out 340 * 341 * If any port has noticed a Tx timeout, it is likely that the whole 342 * device is munged, not just the one netdev port, so go for the full 343 * reset. 344 **/ 345 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 346 { 347 struct i40e_netdev_priv *np = netdev_priv(netdev); 348 struct i40e_vsi *vsi = np->vsi; 349 struct i40e_pf *pf = vsi->back; 350 struct i40e_ring *tx_ring = NULL; 351 unsigned int i; 352 u32 head, val; 353 354 pf->tx_timeout_count++; 355 356 /* with txqueue index, find the tx_ring struct */ 357 for (i = 0; i < vsi->num_queue_pairs; i++) { 358 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 359 if (txqueue == 360 vsi->tx_rings[i]->queue_index) { 361 tx_ring = vsi->tx_rings[i]; 362 break; 363 } 364 } 365 } 366 367 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 368 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 369 else if (time_before(jiffies, 370 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 371 return; /* don't do any new action before the next timeout */ 372 373 /* don't kick off another recovery if one is already pending */ 374 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 375 return; 376 377 if (tx_ring) { 378 head = i40e_get_head(tx_ring); 379 /* Read interrupt register */ 380 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 381 val = rd32(&pf->hw, 382 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 383 tx_ring->vsi->base_vector - 1)); 384 else 385 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 386 387 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 388 vsi->seid, txqueue, tx_ring->next_to_clean, 389 head, tx_ring->next_to_use, 390 readl(tx_ring->tail), val); 391 } 392 393 pf->tx_timeout_last_recovery = jiffies; 394 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 395 pf->tx_timeout_recovery_level, txqueue); 396 397 switch (pf->tx_timeout_recovery_level) { 398 case 1: 399 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 400 break; 401 case 2: 402 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 403 break; 404 case 3: 405 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 406 break; 407 default: 408 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 409 set_bit(__I40E_DOWN_REQUESTED, pf->state); 410 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 411 break; 412 } 413 414 i40e_service_event_schedule(pf); 415 pf->tx_timeout_recovery_level++; 416 } 417 418 /** 419 * i40e_get_vsi_stats_struct - Get System Network Statistics 420 * @vsi: the VSI we care about 421 * 422 * Returns the address of the device statistics structure. 423 * The statistics are actually updated from the service task. 424 **/ 425 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 426 { 427 return &vsi->net_stats; 428 } 429 430 /** 431 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 432 * @ring: Tx ring to get statistics from 433 * @stats: statistics entry to be updated 434 **/ 435 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 436 struct rtnl_link_stats64 *stats) 437 { 438 u64 bytes, packets; 439 unsigned int start; 440 441 do { 442 start = u64_stats_fetch_begin(&ring->syncp); 443 packets = ring->stats.packets; 444 bytes = ring->stats.bytes; 445 } while (u64_stats_fetch_retry(&ring->syncp, start)); 446 447 stats->tx_packets += packets; 448 stats->tx_bytes += bytes; 449 } 450 451 /** 452 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 453 * @netdev: network interface device structure 454 * @stats: data structure to store statistics 455 * 456 * Returns the address of the device statistics structure. 457 * The statistics are actually updated from the service task. 458 **/ 459 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 460 struct rtnl_link_stats64 *stats) 461 { 462 struct i40e_netdev_priv *np = netdev_priv(netdev); 463 struct i40e_vsi *vsi = np->vsi; 464 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 465 struct i40e_ring *ring; 466 int i; 467 468 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 469 return; 470 471 if (!vsi->tx_rings) 472 return; 473 474 rcu_read_lock(); 475 for (i = 0; i < vsi->num_queue_pairs; i++) { 476 u64 bytes, packets; 477 unsigned int start; 478 479 ring = READ_ONCE(vsi->tx_rings[i]); 480 if (!ring) 481 continue; 482 i40e_get_netdev_stats_struct_tx(ring, stats); 483 484 if (i40e_enabled_xdp_vsi(vsi)) { 485 ring = READ_ONCE(vsi->xdp_rings[i]); 486 if (!ring) 487 continue; 488 i40e_get_netdev_stats_struct_tx(ring, stats); 489 } 490 491 ring = READ_ONCE(vsi->rx_rings[i]); 492 if (!ring) 493 continue; 494 do { 495 start = u64_stats_fetch_begin(&ring->syncp); 496 packets = ring->stats.packets; 497 bytes = ring->stats.bytes; 498 } while (u64_stats_fetch_retry(&ring->syncp, start)); 499 500 stats->rx_packets += packets; 501 stats->rx_bytes += bytes; 502 503 } 504 rcu_read_unlock(); 505 506 /* following stats updated by i40e_watchdog_subtask() */ 507 stats->multicast = vsi_stats->multicast; 508 stats->tx_errors = vsi_stats->tx_errors; 509 stats->tx_dropped = vsi_stats->tx_dropped; 510 stats->rx_errors = vsi_stats->rx_errors; 511 stats->rx_dropped = vsi_stats->rx_dropped; 512 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 513 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 514 stats->rx_length_errors = vsi_stats->rx_length_errors; 515 } 516 517 /** 518 * i40e_vsi_reset_stats - Resets all stats of the given vsi 519 * @vsi: the VSI to have its stats reset 520 **/ 521 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 522 { 523 struct rtnl_link_stats64 *ns; 524 int i; 525 526 if (!vsi) 527 return; 528 529 ns = i40e_get_vsi_stats_struct(vsi); 530 memset(ns, 0, sizeof(*ns)); 531 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 532 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 533 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 534 if (vsi->rx_rings && vsi->rx_rings[0]) { 535 for (i = 0; i < vsi->num_queue_pairs; i++) { 536 memset(&vsi->rx_rings[i]->stats, 0, 537 sizeof(vsi->rx_rings[i]->stats)); 538 memset(&vsi->rx_rings[i]->rx_stats, 0, 539 sizeof(vsi->rx_rings[i]->rx_stats)); 540 memset(&vsi->tx_rings[i]->stats, 0, 541 sizeof(vsi->tx_rings[i]->stats)); 542 memset(&vsi->tx_rings[i]->tx_stats, 0, 543 sizeof(vsi->tx_rings[i]->tx_stats)); 544 } 545 } 546 vsi->stat_offsets_loaded = false; 547 } 548 549 /** 550 * i40e_pf_reset_stats - Reset all of the stats for the given PF 551 * @pf: the PF to be reset 552 **/ 553 void i40e_pf_reset_stats(struct i40e_pf *pf) 554 { 555 int i; 556 557 memset(&pf->stats, 0, sizeof(pf->stats)); 558 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 559 pf->stat_offsets_loaded = false; 560 561 for (i = 0; i < I40E_MAX_VEB; i++) { 562 if (pf->veb[i]) { 563 memset(&pf->veb[i]->stats, 0, 564 sizeof(pf->veb[i]->stats)); 565 memset(&pf->veb[i]->stats_offsets, 0, 566 sizeof(pf->veb[i]->stats_offsets)); 567 memset(&pf->veb[i]->tc_stats, 0, 568 sizeof(pf->veb[i]->tc_stats)); 569 memset(&pf->veb[i]->tc_stats_offsets, 0, 570 sizeof(pf->veb[i]->tc_stats_offsets)); 571 pf->veb[i]->stat_offsets_loaded = false; 572 } 573 } 574 pf->hw_csum_rx_error = 0; 575 } 576 577 /** 578 * i40e_compute_pci_to_hw_id - compute index form PCI function. 579 * @vsi: ptr to the VSI to read from. 580 * @hw: ptr to the hardware info. 581 **/ 582 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 583 { 584 int pf_count = i40e_get_pf_count(hw); 585 586 if (vsi->type == I40E_VSI_SRIOV) 587 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 588 589 return hw->port + BIT(7); 590 } 591 592 /** 593 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 594 * @hw: ptr to the hardware info. 595 * @hireg: the high 32 bit reg to read. 596 * @loreg: the low 32 bit reg to read. 597 * @offset_loaded: has the initial offset been loaded yet. 598 * @offset: ptr to current offset value. 599 * @stat: ptr to the stat. 600 * 601 * Since the device stats are not reset at PFReset, they will not 602 * be zeroed when the driver starts. We'll save the first values read 603 * and use them as offsets to be subtracted from the raw values in order 604 * to report stats that count from zero. 605 **/ 606 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 607 bool offset_loaded, u64 *offset, u64 *stat) 608 { 609 u64 new_data; 610 611 new_data = rd64(hw, loreg); 612 613 if (!offset_loaded || new_data < *offset) 614 *offset = new_data; 615 *stat = new_data - *offset; 616 } 617 618 /** 619 * i40e_stat_update48 - read and update a 48 bit stat from the chip 620 * @hw: ptr to the hardware info 621 * @hireg: the high 32 bit reg to read 622 * @loreg: the low 32 bit reg to read 623 * @offset_loaded: has the initial offset been loaded yet 624 * @offset: ptr to current offset value 625 * @stat: ptr to the stat 626 * 627 * Since the device stats are not reset at PFReset, they likely will not 628 * be zeroed when the driver starts. We'll save the first values read 629 * and use them as offsets to be subtracted from the raw values in order 630 * to report stats that count from zero. In the process, we also manage 631 * the potential roll-over. 632 **/ 633 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 634 bool offset_loaded, u64 *offset, u64 *stat) 635 { 636 u64 new_data; 637 638 if (hw->device_id == I40E_DEV_ID_QEMU) { 639 new_data = rd32(hw, loreg); 640 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 641 } else { 642 new_data = rd64(hw, loreg); 643 } 644 if (!offset_loaded) 645 *offset = new_data; 646 if (likely(new_data >= *offset)) 647 *stat = new_data - *offset; 648 else 649 *stat = (new_data + BIT_ULL(48)) - *offset; 650 *stat &= 0xFFFFFFFFFFFFULL; 651 } 652 653 /** 654 * i40e_stat_update32 - read and update a 32 bit stat from the chip 655 * @hw: ptr to the hardware info 656 * @reg: the hw reg to read 657 * @offset_loaded: has the initial offset been loaded yet 658 * @offset: ptr to current offset value 659 * @stat: ptr to the stat 660 **/ 661 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 662 bool offset_loaded, u64 *offset, u64 *stat) 663 { 664 u32 new_data; 665 666 new_data = rd32(hw, reg); 667 if (!offset_loaded) 668 *offset = new_data; 669 if (likely(new_data >= *offset)) 670 *stat = (u32)(new_data - *offset); 671 else 672 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 673 } 674 675 /** 676 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 677 * @hw: ptr to the hardware info 678 * @reg: the hw reg to read and clear 679 * @stat: ptr to the stat 680 **/ 681 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 682 { 683 u32 new_data = rd32(hw, reg); 684 685 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 686 *stat += new_data; 687 } 688 689 /** 690 * i40e_stats_update_rx_discards - update rx_discards. 691 * @vsi: ptr to the VSI to be updated. 692 * @hw: ptr to the hardware info. 693 * @stat_idx: VSI's stat_counter_idx. 694 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 695 * @stat_offset: ptr to stat_offset to store first read of specific register. 696 * @stat: ptr to VSI's stat to be updated. 697 **/ 698 static void 699 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 700 int stat_idx, bool offset_loaded, 701 struct i40e_eth_stats *stat_offset, 702 struct i40e_eth_stats *stat) 703 { 704 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 705 &stat_offset->rx_discards, &stat->rx_discards); 706 i40e_stat_update64(hw, 707 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 708 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 709 offset_loaded, &stat_offset->rx_discards_other, 710 &stat->rx_discards_other); 711 } 712 713 /** 714 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 715 * @vsi: the VSI to be updated 716 **/ 717 void i40e_update_eth_stats(struct i40e_vsi *vsi) 718 { 719 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 720 struct i40e_pf *pf = vsi->back; 721 struct i40e_hw *hw = &pf->hw; 722 struct i40e_eth_stats *oes; 723 struct i40e_eth_stats *es; /* device's eth stats */ 724 725 es = &vsi->eth_stats; 726 oes = &vsi->eth_stats_offsets; 727 728 /* Gather up the stats that the hw collects */ 729 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 730 vsi->stat_offsets_loaded, 731 &oes->tx_errors, &es->tx_errors); 732 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 733 vsi->stat_offsets_loaded, 734 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 735 736 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 737 I40E_GLV_GORCL(stat_idx), 738 vsi->stat_offsets_loaded, 739 &oes->rx_bytes, &es->rx_bytes); 740 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 741 I40E_GLV_UPRCL(stat_idx), 742 vsi->stat_offsets_loaded, 743 &oes->rx_unicast, &es->rx_unicast); 744 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 745 I40E_GLV_MPRCL(stat_idx), 746 vsi->stat_offsets_loaded, 747 &oes->rx_multicast, &es->rx_multicast); 748 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 749 I40E_GLV_BPRCL(stat_idx), 750 vsi->stat_offsets_loaded, 751 &oes->rx_broadcast, &es->rx_broadcast); 752 753 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 754 I40E_GLV_GOTCL(stat_idx), 755 vsi->stat_offsets_loaded, 756 &oes->tx_bytes, &es->tx_bytes); 757 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 758 I40E_GLV_UPTCL(stat_idx), 759 vsi->stat_offsets_loaded, 760 &oes->tx_unicast, &es->tx_unicast); 761 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 762 I40E_GLV_MPTCL(stat_idx), 763 vsi->stat_offsets_loaded, 764 &oes->tx_multicast, &es->tx_multicast); 765 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 766 I40E_GLV_BPTCL(stat_idx), 767 vsi->stat_offsets_loaded, 768 &oes->tx_broadcast, &es->tx_broadcast); 769 770 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 771 vsi->stat_offsets_loaded, oes, es); 772 773 vsi->stat_offsets_loaded = true; 774 } 775 776 /** 777 * i40e_update_veb_stats - Update Switch component statistics 778 * @veb: the VEB being updated 779 **/ 780 void i40e_update_veb_stats(struct i40e_veb *veb) 781 { 782 struct i40e_pf *pf = veb->pf; 783 struct i40e_hw *hw = &pf->hw; 784 struct i40e_eth_stats *oes; 785 struct i40e_eth_stats *es; /* device's eth stats */ 786 struct i40e_veb_tc_stats *veb_oes; 787 struct i40e_veb_tc_stats *veb_es; 788 int i, idx = 0; 789 790 idx = veb->stats_idx; 791 es = &veb->stats; 792 oes = &veb->stats_offsets; 793 veb_es = &veb->tc_stats; 794 veb_oes = &veb->tc_stats_offsets; 795 796 /* Gather up the stats that the hw collects */ 797 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 798 veb->stat_offsets_loaded, 799 &oes->tx_discards, &es->tx_discards); 800 if (hw->revision_id > 0) 801 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 802 veb->stat_offsets_loaded, 803 &oes->rx_unknown_protocol, 804 &es->rx_unknown_protocol); 805 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 806 veb->stat_offsets_loaded, 807 &oes->rx_bytes, &es->rx_bytes); 808 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 809 veb->stat_offsets_loaded, 810 &oes->rx_unicast, &es->rx_unicast); 811 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 812 veb->stat_offsets_loaded, 813 &oes->rx_multicast, &es->rx_multicast); 814 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 815 veb->stat_offsets_loaded, 816 &oes->rx_broadcast, &es->rx_broadcast); 817 818 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 819 veb->stat_offsets_loaded, 820 &oes->tx_bytes, &es->tx_bytes); 821 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 822 veb->stat_offsets_loaded, 823 &oes->tx_unicast, &es->tx_unicast); 824 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 825 veb->stat_offsets_loaded, 826 &oes->tx_multicast, &es->tx_multicast); 827 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 828 veb->stat_offsets_loaded, 829 &oes->tx_broadcast, &es->tx_broadcast); 830 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 831 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 832 I40E_GLVEBTC_RPCL(i, idx), 833 veb->stat_offsets_loaded, 834 &veb_oes->tc_rx_packets[i], 835 &veb_es->tc_rx_packets[i]); 836 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 837 I40E_GLVEBTC_RBCL(i, idx), 838 veb->stat_offsets_loaded, 839 &veb_oes->tc_rx_bytes[i], 840 &veb_es->tc_rx_bytes[i]); 841 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 842 I40E_GLVEBTC_TPCL(i, idx), 843 veb->stat_offsets_loaded, 844 &veb_oes->tc_tx_packets[i], 845 &veb_es->tc_tx_packets[i]); 846 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 847 I40E_GLVEBTC_TBCL(i, idx), 848 veb->stat_offsets_loaded, 849 &veb_oes->tc_tx_bytes[i], 850 &veb_es->tc_tx_bytes[i]); 851 } 852 veb->stat_offsets_loaded = true; 853 } 854 855 /** 856 * i40e_update_vsi_stats - Update the vsi statistics counters. 857 * @vsi: the VSI to be updated 858 * 859 * There are a few instances where we store the same stat in a 860 * couple of different structs. This is partly because we have 861 * the netdev stats that need to be filled out, which is slightly 862 * different from the "eth_stats" defined by the chip and used in 863 * VF communications. We sort it out here. 864 **/ 865 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 866 { 867 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 868 struct i40e_pf *pf = vsi->back; 869 struct rtnl_link_stats64 *ons; 870 struct rtnl_link_stats64 *ns; /* netdev stats */ 871 struct i40e_eth_stats *oes; 872 struct i40e_eth_stats *es; /* device's eth stats */ 873 u64 tx_restart, tx_busy; 874 struct i40e_ring *p; 875 u64 bytes, packets; 876 unsigned int start; 877 u64 tx_linearize; 878 u64 tx_force_wb; 879 u64 tx_stopped; 880 u64 rx_p, rx_b; 881 u64 tx_p, tx_b; 882 u16 q; 883 884 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 885 test_bit(__I40E_CONFIG_BUSY, pf->state)) 886 return; 887 888 ns = i40e_get_vsi_stats_struct(vsi); 889 ons = &vsi->net_stats_offsets; 890 es = &vsi->eth_stats; 891 oes = &vsi->eth_stats_offsets; 892 893 /* Gather up the netdev and vsi stats that the driver collects 894 * on the fly during packet processing 895 */ 896 rx_b = rx_p = 0; 897 tx_b = tx_p = 0; 898 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 899 tx_stopped = 0; 900 rx_page = 0; 901 rx_buf = 0; 902 rx_reuse = 0; 903 rx_alloc = 0; 904 rx_waive = 0; 905 rx_busy = 0; 906 rcu_read_lock(); 907 for (q = 0; q < vsi->num_queue_pairs; q++) { 908 /* locate Tx ring */ 909 p = READ_ONCE(vsi->tx_rings[q]); 910 if (!p) 911 continue; 912 913 do { 914 start = u64_stats_fetch_begin(&p->syncp); 915 packets = p->stats.packets; 916 bytes = p->stats.bytes; 917 } while (u64_stats_fetch_retry(&p->syncp, start)); 918 tx_b += bytes; 919 tx_p += packets; 920 tx_restart += p->tx_stats.restart_queue; 921 tx_busy += p->tx_stats.tx_busy; 922 tx_linearize += p->tx_stats.tx_linearize; 923 tx_force_wb += p->tx_stats.tx_force_wb; 924 tx_stopped += p->tx_stats.tx_stopped; 925 926 /* locate Rx ring */ 927 p = READ_ONCE(vsi->rx_rings[q]); 928 if (!p) 929 continue; 930 931 do { 932 start = u64_stats_fetch_begin(&p->syncp); 933 packets = p->stats.packets; 934 bytes = p->stats.bytes; 935 } while (u64_stats_fetch_retry(&p->syncp, start)); 936 rx_b += bytes; 937 rx_p += packets; 938 rx_buf += p->rx_stats.alloc_buff_failed; 939 rx_page += p->rx_stats.alloc_page_failed; 940 rx_reuse += p->rx_stats.page_reuse_count; 941 rx_alloc += p->rx_stats.page_alloc_count; 942 rx_waive += p->rx_stats.page_waive_count; 943 rx_busy += p->rx_stats.page_busy_count; 944 945 if (i40e_enabled_xdp_vsi(vsi)) { 946 /* locate XDP ring */ 947 p = READ_ONCE(vsi->xdp_rings[q]); 948 if (!p) 949 continue; 950 951 do { 952 start = u64_stats_fetch_begin(&p->syncp); 953 packets = p->stats.packets; 954 bytes = p->stats.bytes; 955 } while (u64_stats_fetch_retry(&p->syncp, start)); 956 tx_b += bytes; 957 tx_p += packets; 958 tx_restart += p->tx_stats.restart_queue; 959 tx_busy += p->tx_stats.tx_busy; 960 tx_linearize += p->tx_stats.tx_linearize; 961 tx_force_wb += p->tx_stats.tx_force_wb; 962 } 963 } 964 rcu_read_unlock(); 965 vsi->tx_restart = tx_restart; 966 vsi->tx_busy = tx_busy; 967 vsi->tx_linearize = tx_linearize; 968 vsi->tx_force_wb = tx_force_wb; 969 vsi->tx_stopped = tx_stopped; 970 vsi->rx_page_failed = rx_page; 971 vsi->rx_buf_failed = rx_buf; 972 vsi->rx_page_reuse = rx_reuse; 973 vsi->rx_page_alloc = rx_alloc; 974 vsi->rx_page_waive = rx_waive; 975 vsi->rx_page_busy = rx_busy; 976 977 ns->rx_packets = rx_p; 978 ns->rx_bytes = rx_b; 979 ns->tx_packets = tx_p; 980 ns->tx_bytes = tx_b; 981 982 /* update netdev stats from eth stats */ 983 i40e_update_eth_stats(vsi); 984 ons->tx_errors = oes->tx_errors; 985 ns->tx_errors = es->tx_errors; 986 ons->multicast = oes->rx_multicast; 987 ns->multicast = es->rx_multicast; 988 ons->rx_dropped = oes->rx_discards_other; 989 ns->rx_dropped = es->rx_discards_other; 990 ons->rx_missed_errors = oes->rx_discards; 991 ns->rx_missed_errors = es->rx_discards; 992 ons->tx_dropped = oes->tx_discards; 993 ns->tx_dropped = es->tx_discards; 994 995 /* pull in a couple PF stats if this is the main vsi */ 996 if (vsi == pf->vsi[pf->lan_vsi]) { 997 ns->rx_crc_errors = pf->stats.crc_errors; 998 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 999 ns->rx_length_errors = pf->stats.rx_length_errors; 1000 } 1001 } 1002 1003 /** 1004 * i40e_update_pf_stats - Update the PF statistics counters. 1005 * @pf: the PF to be updated 1006 **/ 1007 static void i40e_update_pf_stats(struct i40e_pf *pf) 1008 { 1009 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1010 struct i40e_hw_port_stats *nsd = &pf->stats; 1011 struct i40e_hw *hw = &pf->hw; 1012 u32 val; 1013 int i; 1014 1015 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1016 I40E_GLPRT_GORCL(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1019 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1020 I40E_GLPRT_GOTCL(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1023 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1024 pf->stat_offsets_loaded, 1025 &osd->eth.rx_discards, 1026 &nsd->eth.rx_discards); 1027 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1028 I40E_GLPRT_UPRCL(hw->port), 1029 pf->stat_offsets_loaded, 1030 &osd->eth.rx_unicast, 1031 &nsd->eth.rx_unicast); 1032 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1033 I40E_GLPRT_MPRCL(hw->port), 1034 pf->stat_offsets_loaded, 1035 &osd->eth.rx_multicast, 1036 &nsd->eth.rx_multicast); 1037 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1038 I40E_GLPRT_BPRCL(hw->port), 1039 pf->stat_offsets_loaded, 1040 &osd->eth.rx_broadcast, 1041 &nsd->eth.rx_broadcast); 1042 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1043 I40E_GLPRT_UPTCL(hw->port), 1044 pf->stat_offsets_loaded, 1045 &osd->eth.tx_unicast, 1046 &nsd->eth.tx_unicast); 1047 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1048 I40E_GLPRT_MPTCL(hw->port), 1049 pf->stat_offsets_loaded, 1050 &osd->eth.tx_multicast, 1051 &nsd->eth.tx_multicast); 1052 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1053 I40E_GLPRT_BPTCL(hw->port), 1054 pf->stat_offsets_loaded, 1055 &osd->eth.tx_broadcast, 1056 &nsd->eth.tx_broadcast); 1057 1058 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1059 pf->stat_offsets_loaded, 1060 &osd->tx_dropped_link_down, 1061 &nsd->tx_dropped_link_down); 1062 1063 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1064 pf->stat_offsets_loaded, 1065 &osd->crc_errors, &nsd->crc_errors); 1066 1067 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1068 pf->stat_offsets_loaded, 1069 &osd->illegal_bytes, &nsd->illegal_bytes); 1070 1071 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1072 pf->stat_offsets_loaded, 1073 &osd->mac_local_faults, 1074 &nsd->mac_local_faults); 1075 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1076 pf->stat_offsets_loaded, 1077 &osd->mac_remote_faults, 1078 &nsd->mac_remote_faults); 1079 1080 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1081 pf->stat_offsets_loaded, 1082 &osd->rx_length_errors, 1083 &nsd->rx_length_errors); 1084 1085 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1086 pf->stat_offsets_loaded, 1087 &osd->link_xon_rx, &nsd->link_xon_rx); 1088 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1089 pf->stat_offsets_loaded, 1090 &osd->link_xon_tx, &nsd->link_xon_tx); 1091 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1092 pf->stat_offsets_loaded, 1093 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1094 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1095 pf->stat_offsets_loaded, 1096 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1097 1098 for (i = 0; i < 8; i++) { 1099 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1100 pf->stat_offsets_loaded, 1101 &osd->priority_xoff_rx[i], 1102 &nsd->priority_xoff_rx[i]); 1103 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1104 pf->stat_offsets_loaded, 1105 &osd->priority_xon_rx[i], 1106 &nsd->priority_xon_rx[i]); 1107 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1108 pf->stat_offsets_loaded, 1109 &osd->priority_xon_tx[i], 1110 &nsd->priority_xon_tx[i]); 1111 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1112 pf->stat_offsets_loaded, 1113 &osd->priority_xoff_tx[i], 1114 &nsd->priority_xoff_tx[i]); 1115 i40e_stat_update32(hw, 1116 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1117 pf->stat_offsets_loaded, 1118 &osd->priority_xon_2_xoff[i], 1119 &nsd->priority_xon_2_xoff[i]); 1120 } 1121 1122 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1123 I40E_GLPRT_PRC64L(hw->port), 1124 pf->stat_offsets_loaded, 1125 &osd->rx_size_64, &nsd->rx_size_64); 1126 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1127 I40E_GLPRT_PRC127L(hw->port), 1128 pf->stat_offsets_loaded, 1129 &osd->rx_size_127, &nsd->rx_size_127); 1130 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1131 I40E_GLPRT_PRC255L(hw->port), 1132 pf->stat_offsets_loaded, 1133 &osd->rx_size_255, &nsd->rx_size_255); 1134 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1135 I40E_GLPRT_PRC511L(hw->port), 1136 pf->stat_offsets_loaded, 1137 &osd->rx_size_511, &nsd->rx_size_511); 1138 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1139 I40E_GLPRT_PRC1023L(hw->port), 1140 pf->stat_offsets_loaded, 1141 &osd->rx_size_1023, &nsd->rx_size_1023); 1142 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1143 I40E_GLPRT_PRC1522L(hw->port), 1144 pf->stat_offsets_loaded, 1145 &osd->rx_size_1522, &nsd->rx_size_1522); 1146 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1147 I40E_GLPRT_PRC9522L(hw->port), 1148 pf->stat_offsets_loaded, 1149 &osd->rx_size_big, &nsd->rx_size_big); 1150 1151 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1152 I40E_GLPRT_PTC64L(hw->port), 1153 pf->stat_offsets_loaded, 1154 &osd->tx_size_64, &nsd->tx_size_64); 1155 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1156 I40E_GLPRT_PTC127L(hw->port), 1157 pf->stat_offsets_loaded, 1158 &osd->tx_size_127, &nsd->tx_size_127); 1159 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1160 I40E_GLPRT_PTC255L(hw->port), 1161 pf->stat_offsets_loaded, 1162 &osd->tx_size_255, &nsd->tx_size_255); 1163 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1164 I40E_GLPRT_PTC511L(hw->port), 1165 pf->stat_offsets_loaded, 1166 &osd->tx_size_511, &nsd->tx_size_511); 1167 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1168 I40E_GLPRT_PTC1023L(hw->port), 1169 pf->stat_offsets_loaded, 1170 &osd->tx_size_1023, &nsd->tx_size_1023); 1171 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1172 I40E_GLPRT_PTC1522L(hw->port), 1173 pf->stat_offsets_loaded, 1174 &osd->tx_size_1522, &nsd->tx_size_1522); 1175 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1176 I40E_GLPRT_PTC9522L(hw->port), 1177 pf->stat_offsets_loaded, 1178 &osd->tx_size_big, &nsd->tx_size_big); 1179 1180 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1181 pf->stat_offsets_loaded, 1182 &osd->rx_undersize, &nsd->rx_undersize); 1183 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1184 pf->stat_offsets_loaded, 1185 &osd->rx_fragments, &nsd->rx_fragments); 1186 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1187 pf->stat_offsets_loaded, 1188 &osd->rx_oversize, &nsd->rx_oversize); 1189 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1190 pf->stat_offsets_loaded, 1191 &osd->rx_jabber, &nsd->rx_jabber); 1192 1193 /* FDIR stats */ 1194 i40e_stat_update_and_clear32(hw, 1195 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1196 &nsd->fd_atr_match); 1197 i40e_stat_update_and_clear32(hw, 1198 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1199 &nsd->fd_sb_match); 1200 i40e_stat_update_and_clear32(hw, 1201 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1202 &nsd->fd_atr_tunnel_match); 1203 1204 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1205 nsd->tx_lpi_status = 1206 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val); 1207 nsd->rx_lpi_status = 1208 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val); 1209 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1210 pf->stat_offsets_loaded, 1211 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1212 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1213 pf->stat_offsets_loaded, 1214 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1215 1216 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1217 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1218 nsd->fd_sb_status = true; 1219 else 1220 nsd->fd_sb_status = false; 1221 1222 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1223 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1224 nsd->fd_atr_status = true; 1225 else 1226 nsd->fd_atr_status = false; 1227 1228 pf->stat_offsets_loaded = true; 1229 } 1230 1231 /** 1232 * i40e_update_stats - Update the various statistics counters. 1233 * @vsi: the VSI to be updated 1234 * 1235 * Update the various stats for this VSI and its related entities. 1236 **/ 1237 void i40e_update_stats(struct i40e_vsi *vsi) 1238 { 1239 struct i40e_pf *pf = vsi->back; 1240 1241 if (vsi == pf->vsi[pf->lan_vsi]) 1242 i40e_update_pf_stats(pf); 1243 1244 i40e_update_vsi_stats(vsi); 1245 } 1246 1247 /** 1248 * i40e_count_filters - counts VSI mac filters 1249 * @vsi: the VSI to be searched 1250 * 1251 * Returns count of mac filters 1252 **/ 1253 int i40e_count_filters(struct i40e_vsi *vsi) 1254 { 1255 struct i40e_mac_filter *f; 1256 struct hlist_node *h; 1257 int bkt; 1258 int cnt = 0; 1259 1260 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1261 ++cnt; 1262 1263 return cnt; 1264 } 1265 1266 /** 1267 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1268 * @vsi: the VSI to be searched 1269 * @macaddr: the MAC address 1270 * @vlan: the vlan 1271 * 1272 * Returns ptr to the filter object or NULL 1273 **/ 1274 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1275 const u8 *macaddr, s16 vlan) 1276 { 1277 struct i40e_mac_filter *f; 1278 u64 key; 1279 1280 if (!vsi || !macaddr) 1281 return NULL; 1282 1283 key = i40e_addr_to_hkey(macaddr); 1284 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1285 if ((ether_addr_equal(macaddr, f->macaddr)) && 1286 (vlan == f->vlan)) 1287 return f; 1288 } 1289 return NULL; 1290 } 1291 1292 /** 1293 * i40e_find_mac - Find a mac addr in the macvlan filters list 1294 * @vsi: the VSI to be searched 1295 * @macaddr: the MAC address we are searching for 1296 * 1297 * Returns the first filter with the provided MAC address or NULL if 1298 * MAC address was not found 1299 **/ 1300 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1301 { 1302 struct i40e_mac_filter *f; 1303 u64 key; 1304 1305 if (!vsi || !macaddr) 1306 return NULL; 1307 1308 key = i40e_addr_to_hkey(macaddr); 1309 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1310 if ((ether_addr_equal(macaddr, f->macaddr))) 1311 return f; 1312 } 1313 return NULL; 1314 } 1315 1316 /** 1317 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1318 * @vsi: the VSI to be searched 1319 * 1320 * Returns true if VSI is in vlan mode or false otherwise 1321 **/ 1322 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1323 { 1324 /* If we have a PVID, always operate in VLAN mode */ 1325 if (vsi->info.pvid) 1326 return true; 1327 1328 /* We need to operate in VLAN mode whenever we have any filters with 1329 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1330 * time, incurring search cost repeatedly. However, we can notice two 1331 * things: 1332 * 1333 * 1) the only place where we can gain a VLAN filter is in 1334 * i40e_add_filter. 1335 * 1336 * 2) the only place where filters are actually removed is in 1337 * i40e_sync_filters_subtask. 1338 * 1339 * Thus, we can simply use a boolean value, has_vlan_filters which we 1340 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1341 * we have to perform the full search after deleting filters in 1342 * i40e_sync_filters_subtask, but we already have to search 1343 * filters here and can perform the check at the same time. This 1344 * results in avoiding embedding a loop for VLAN mode inside another 1345 * loop over all the filters, and should maintain correctness as noted 1346 * above. 1347 */ 1348 return vsi->has_vlan_filter; 1349 } 1350 1351 /** 1352 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1353 * @vsi: the VSI to configure 1354 * @tmp_add_list: list of filters ready to be added 1355 * @tmp_del_list: list of filters ready to be deleted 1356 * @vlan_filters: the number of active VLAN filters 1357 * 1358 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1359 * behave as expected. If we have any active VLAN filters remaining or about 1360 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1361 * so that they only match against untagged traffic. If we no longer have any 1362 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1363 * so that they match against both tagged and untagged traffic. In this way, 1364 * we ensure that we correctly receive the desired traffic. This ensures that 1365 * when we have an active VLAN we will receive only untagged traffic and 1366 * traffic matching active VLANs. If we have no active VLANs then we will 1367 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1368 * 1369 * Finally, in a similar fashion, this function also corrects filters when 1370 * there is an active PVID assigned to this VSI. 1371 * 1372 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1373 * 1374 * This function is only expected to be called from within 1375 * i40e_sync_vsi_filters. 1376 * 1377 * NOTE: This function expects to be called while under the 1378 * mac_filter_hash_lock 1379 */ 1380 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1381 struct hlist_head *tmp_add_list, 1382 struct hlist_head *tmp_del_list, 1383 int vlan_filters) 1384 { 1385 s16 pvid = le16_to_cpu(vsi->info.pvid); 1386 struct i40e_mac_filter *f, *add_head; 1387 struct i40e_new_mac_filter *new; 1388 struct hlist_node *h; 1389 int bkt, new_vlan; 1390 1391 /* To determine if a particular filter needs to be replaced we 1392 * have the three following conditions: 1393 * 1394 * a) if we have a PVID assigned, then all filters which are 1395 * not marked as VLAN=PVID must be replaced with filters that 1396 * are. 1397 * b) otherwise, if we have any active VLANS, all filters 1398 * which are marked as VLAN=-1 must be replaced with 1399 * filters marked as VLAN=0 1400 * c) finally, if we do not have any active VLANS, all filters 1401 * which are marked as VLAN=0 must be replaced with filters 1402 * marked as VLAN=-1 1403 */ 1404 1405 /* Update the filters about to be added in place */ 1406 hlist_for_each_entry(new, tmp_add_list, hlist) { 1407 if (pvid && new->f->vlan != pvid) 1408 new->f->vlan = pvid; 1409 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1410 new->f->vlan = 0; 1411 else if (!vlan_filters && new->f->vlan == 0) 1412 new->f->vlan = I40E_VLAN_ANY; 1413 } 1414 1415 /* Update the remaining active filters */ 1416 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1417 /* Combine the checks for whether a filter needs to be changed 1418 * and then determine the new VLAN inside the if block, in 1419 * order to avoid duplicating code for adding the new filter 1420 * then deleting the old filter. 1421 */ 1422 if ((pvid && f->vlan != pvid) || 1423 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1424 (!vlan_filters && f->vlan == 0)) { 1425 /* Determine the new vlan we will be adding */ 1426 if (pvid) 1427 new_vlan = pvid; 1428 else if (vlan_filters) 1429 new_vlan = 0; 1430 else 1431 new_vlan = I40E_VLAN_ANY; 1432 1433 /* Create the new filter */ 1434 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1435 if (!add_head) 1436 return -ENOMEM; 1437 1438 /* Create a temporary i40e_new_mac_filter */ 1439 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1440 if (!new) 1441 return -ENOMEM; 1442 1443 new->f = add_head; 1444 new->state = add_head->state; 1445 1446 /* Add the new filter to the tmp list */ 1447 hlist_add_head(&new->hlist, tmp_add_list); 1448 1449 /* Put the original filter into the delete list */ 1450 f->state = I40E_FILTER_REMOVE; 1451 hash_del(&f->hlist); 1452 hlist_add_head(&f->hlist, tmp_del_list); 1453 } 1454 } 1455 1456 vsi->has_vlan_filter = !!vlan_filters; 1457 1458 return 0; 1459 } 1460 1461 /** 1462 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1463 * @vsi: the vsi to configure 1464 * @new_mac: new mac filter to be added 1465 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1466 * @vlan_filters: the number of active VLAN filters 1467 * @trusted: flag if the VF is trusted 1468 * 1469 * Get new VLAN id based on current VLAN filters, trust, PVID 1470 * and vf-vlan-prune-disable flag. 1471 * 1472 * Returns the value of the new vlan filter or 1473 * the old value if no new filter is needed. 1474 */ 1475 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1476 struct i40e_new_mac_filter *new_mac, 1477 struct i40e_mac_filter *f, 1478 int vlan_filters, 1479 bool trusted) 1480 { 1481 s16 pvid = le16_to_cpu(vsi->info.pvid); 1482 struct i40e_pf *pf = vsi->back; 1483 bool is_any; 1484 1485 if (new_mac) 1486 f = new_mac->f; 1487 1488 if (pvid && f->vlan != pvid) 1489 return pvid; 1490 1491 is_any = (trusted || 1492 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1493 1494 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1495 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1496 (is_any && !vlan_filters && f->vlan == 0)) { 1497 if (is_any) 1498 return I40E_VLAN_ANY; 1499 else 1500 return 0; 1501 } 1502 1503 return f->vlan; 1504 } 1505 1506 /** 1507 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1508 * @vsi: the vsi to configure 1509 * @tmp_add_list: list of filters ready to be added 1510 * @tmp_del_list: list of filters ready to be deleted 1511 * @vlan_filters: the number of active VLAN filters 1512 * @trusted: flag if the VF is trusted 1513 * 1514 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1515 * and vf-vlan-prune-disable flag. 1516 * 1517 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1518 * 1519 * This function is only expected to be called from within 1520 * i40e_sync_vsi_filters. 1521 * 1522 * NOTE: This function expects to be called while under the 1523 * mac_filter_hash_lock 1524 */ 1525 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1526 struct hlist_head *tmp_add_list, 1527 struct hlist_head *tmp_del_list, 1528 int vlan_filters, 1529 bool trusted) 1530 { 1531 struct i40e_mac_filter *f, *add_head; 1532 struct i40e_new_mac_filter *new_mac; 1533 struct hlist_node *h; 1534 int bkt, new_vlan; 1535 1536 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1537 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1538 vlan_filters, trusted); 1539 } 1540 1541 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1542 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1543 trusted); 1544 if (new_vlan != f->vlan) { 1545 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1546 if (!add_head) 1547 return -ENOMEM; 1548 /* Create a temporary i40e_new_mac_filter */ 1549 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1550 if (!new_mac) 1551 return -ENOMEM; 1552 new_mac->f = add_head; 1553 new_mac->state = add_head->state; 1554 1555 /* Add the new filter to the tmp list */ 1556 hlist_add_head(&new_mac->hlist, tmp_add_list); 1557 1558 /* Put the original filter into the delete list */ 1559 f->state = I40E_FILTER_REMOVE; 1560 hash_del(&f->hlist); 1561 hlist_add_head(&f->hlist, tmp_del_list); 1562 } 1563 } 1564 1565 vsi->has_vlan_filter = !!vlan_filters; 1566 return 0; 1567 } 1568 1569 /** 1570 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1571 * @vsi: the PF Main VSI - inappropriate for any other VSI 1572 * @macaddr: the MAC address 1573 * 1574 * Remove whatever filter the firmware set up so the driver can manage 1575 * its own filtering intelligently. 1576 **/ 1577 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1578 { 1579 struct i40e_aqc_remove_macvlan_element_data element; 1580 struct i40e_pf *pf = vsi->back; 1581 1582 /* Only appropriate for the PF main VSI */ 1583 if (vsi->type != I40E_VSI_MAIN) 1584 return; 1585 1586 memset(&element, 0, sizeof(element)); 1587 ether_addr_copy(element.mac_addr, macaddr); 1588 element.vlan_tag = 0; 1589 /* Ignore error returns, some firmware does it this way... */ 1590 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1591 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1592 1593 memset(&element, 0, sizeof(element)); 1594 ether_addr_copy(element.mac_addr, macaddr); 1595 element.vlan_tag = 0; 1596 /* ...and some firmware does it this way. */ 1597 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1598 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1599 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1600 } 1601 1602 /** 1603 * i40e_add_filter - Add a mac/vlan filter to the VSI 1604 * @vsi: the VSI to be searched 1605 * @macaddr: the MAC address 1606 * @vlan: the vlan 1607 * 1608 * Returns ptr to the filter object or NULL when no memory available. 1609 * 1610 * NOTE: This function is expected to be called with mac_filter_hash_lock 1611 * being held. 1612 **/ 1613 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1614 const u8 *macaddr, s16 vlan) 1615 { 1616 struct i40e_mac_filter *f; 1617 u64 key; 1618 1619 if (!vsi || !macaddr) 1620 return NULL; 1621 1622 f = i40e_find_filter(vsi, macaddr, vlan); 1623 if (!f) { 1624 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1625 if (!f) 1626 return NULL; 1627 1628 /* Update the boolean indicating if we need to function in 1629 * VLAN mode. 1630 */ 1631 if (vlan >= 0) 1632 vsi->has_vlan_filter = true; 1633 1634 ether_addr_copy(f->macaddr, macaddr); 1635 f->vlan = vlan; 1636 f->state = I40E_FILTER_NEW; 1637 INIT_HLIST_NODE(&f->hlist); 1638 1639 key = i40e_addr_to_hkey(macaddr); 1640 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1641 1642 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1643 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1644 } 1645 1646 /* If we're asked to add a filter that has been marked for removal, it 1647 * is safe to simply restore it to active state. __i40e_del_filter 1648 * will have simply deleted any filters which were previously marked 1649 * NEW or FAILED, so if it is currently marked REMOVE it must have 1650 * previously been ACTIVE. Since we haven't yet run the sync filters 1651 * task, just restore this filter to the ACTIVE state so that the 1652 * sync task leaves it in place 1653 */ 1654 if (f->state == I40E_FILTER_REMOVE) 1655 f->state = I40E_FILTER_ACTIVE; 1656 1657 return f; 1658 } 1659 1660 /** 1661 * __i40e_del_filter - Remove a specific filter from the VSI 1662 * @vsi: VSI to remove from 1663 * @f: the filter to remove from the list 1664 * 1665 * This function should be called instead of i40e_del_filter only if you know 1666 * the exact filter you will remove already, such as via i40e_find_filter or 1667 * i40e_find_mac. 1668 * 1669 * NOTE: This function is expected to be called with mac_filter_hash_lock 1670 * being held. 1671 * ANOTHER NOTE: This function MUST be called from within the context of 1672 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1673 * instead of list_for_each_entry(). 1674 **/ 1675 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1676 { 1677 if (!f) 1678 return; 1679 1680 /* If the filter was never added to firmware then we can just delete it 1681 * directly and we don't want to set the status to remove or else an 1682 * admin queue command will unnecessarily fire. 1683 */ 1684 if ((f->state == I40E_FILTER_FAILED) || 1685 (f->state == I40E_FILTER_NEW)) { 1686 hash_del(&f->hlist); 1687 kfree(f); 1688 } else { 1689 f->state = I40E_FILTER_REMOVE; 1690 } 1691 1692 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1693 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1694 } 1695 1696 /** 1697 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1698 * @vsi: the VSI to be searched 1699 * @macaddr: the MAC address 1700 * @vlan: the VLAN 1701 * 1702 * NOTE: This function is expected to be called with mac_filter_hash_lock 1703 * being held. 1704 * ANOTHER NOTE: This function MUST be called from within the context of 1705 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1706 * instead of list_for_each_entry(). 1707 **/ 1708 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1709 { 1710 struct i40e_mac_filter *f; 1711 1712 if (!vsi || !macaddr) 1713 return; 1714 1715 f = i40e_find_filter(vsi, macaddr, vlan); 1716 __i40e_del_filter(vsi, f); 1717 } 1718 1719 /** 1720 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1721 * @vsi: the VSI to be searched 1722 * @macaddr: the mac address to be filtered 1723 * 1724 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1725 * go through all the macvlan filters and add a macvlan filter for each 1726 * unique vlan that already exists. If a PVID has been assigned, instead only 1727 * add the macaddr to that VLAN. 1728 * 1729 * Returns last filter added on success, else NULL 1730 **/ 1731 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1732 const u8 *macaddr) 1733 { 1734 struct i40e_mac_filter *f, *add = NULL; 1735 struct hlist_node *h; 1736 int bkt; 1737 1738 if (vsi->info.pvid) 1739 return i40e_add_filter(vsi, macaddr, 1740 le16_to_cpu(vsi->info.pvid)); 1741 1742 if (!i40e_is_vsi_in_vlan(vsi)) 1743 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1744 1745 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1746 if (f->state == I40E_FILTER_REMOVE) 1747 continue; 1748 add = i40e_add_filter(vsi, macaddr, f->vlan); 1749 if (!add) 1750 return NULL; 1751 } 1752 1753 return add; 1754 } 1755 1756 /** 1757 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1758 * @vsi: the VSI to be searched 1759 * @macaddr: the mac address to be removed 1760 * 1761 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1762 * associated with. 1763 * 1764 * Returns 0 for success, or error 1765 **/ 1766 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1767 { 1768 struct i40e_mac_filter *f; 1769 struct hlist_node *h; 1770 bool found = false; 1771 int bkt; 1772 1773 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1774 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1775 if (ether_addr_equal(macaddr, f->macaddr)) { 1776 __i40e_del_filter(vsi, f); 1777 found = true; 1778 } 1779 } 1780 1781 if (found) 1782 return 0; 1783 else 1784 return -ENOENT; 1785 } 1786 1787 /** 1788 * i40e_set_mac - NDO callback to set mac address 1789 * @netdev: network interface device structure 1790 * @p: pointer to an address structure 1791 * 1792 * Returns 0 on success, negative on failure 1793 **/ 1794 static int i40e_set_mac(struct net_device *netdev, void *p) 1795 { 1796 struct i40e_netdev_priv *np = netdev_priv(netdev); 1797 struct i40e_vsi *vsi = np->vsi; 1798 struct i40e_pf *pf = vsi->back; 1799 struct i40e_hw *hw = &pf->hw; 1800 struct sockaddr *addr = p; 1801 1802 if (!is_valid_ether_addr(addr->sa_data)) 1803 return -EADDRNOTAVAIL; 1804 1805 if (test_bit(__I40E_DOWN, pf->state) || 1806 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1807 return -EADDRNOTAVAIL; 1808 1809 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1810 netdev_info(netdev, "returning to hw mac address %pM\n", 1811 hw->mac.addr); 1812 else 1813 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1814 1815 /* Copy the address first, so that we avoid a possible race with 1816 * .set_rx_mode(). 1817 * - Remove old address from MAC filter 1818 * - Copy new address 1819 * - Add new address to MAC filter 1820 */ 1821 spin_lock_bh(&vsi->mac_filter_hash_lock); 1822 i40e_del_mac_filter(vsi, netdev->dev_addr); 1823 eth_hw_addr_set(netdev, addr->sa_data); 1824 i40e_add_mac_filter(vsi, netdev->dev_addr); 1825 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1826 1827 if (vsi->type == I40E_VSI_MAIN) { 1828 int ret; 1829 1830 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1831 addr->sa_data, NULL); 1832 if (ret) 1833 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1834 ERR_PTR(ret), 1835 i40e_aq_str(hw, hw->aq.asq_last_status)); 1836 } 1837 1838 /* schedule our worker thread which will take care of 1839 * applying the new filter changes 1840 */ 1841 i40e_service_event_schedule(pf); 1842 return 0; 1843 } 1844 1845 /** 1846 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1847 * @vsi: vsi structure 1848 * @seed: RSS hash seed 1849 * @lut: pointer to lookup table of lut_size 1850 * @lut_size: size of the lookup table 1851 **/ 1852 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1853 u8 *lut, u16 lut_size) 1854 { 1855 struct i40e_pf *pf = vsi->back; 1856 struct i40e_hw *hw = &pf->hw; 1857 int ret = 0; 1858 1859 if (seed) { 1860 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1861 (struct i40e_aqc_get_set_rss_key_data *)seed; 1862 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1863 if (ret) { 1864 dev_info(&pf->pdev->dev, 1865 "Cannot set RSS key, err %pe aq_err %s\n", 1866 ERR_PTR(ret), 1867 i40e_aq_str(hw, hw->aq.asq_last_status)); 1868 return ret; 1869 } 1870 } 1871 if (lut) { 1872 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1873 1874 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1875 if (ret) { 1876 dev_info(&pf->pdev->dev, 1877 "Cannot set RSS lut, err %pe aq_err %s\n", 1878 ERR_PTR(ret), 1879 i40e_aq_str(hw, hw->aq.asq_last_status)); 1880 return ret; 1881 } 1882 } 1883 return ret; 1884 } 1885 1886 /** 1887 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1888 * @vsi: VSI structure 1889 **/ 1890 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1891 { 1892 struct i40e_pf *pf = vsi->back; 1893 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1894 u8 *lut; 1895 int ret; 1896 1897 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1898 return 0; 1899 if (!vsi->rss_size) 1900 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1901 vsi->num_queue_pairs); 1902 if (!vsi->rss_size) 1903 return -EINVAL; 1904 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1905 if (!lut) 1906 return -ENOMEM; 1907 1908 /* Use the user configured hash keys and lookup table if there is one, 1909 * otherwise use default 1910 */ 1911 if (vsi->rss_lut_user) 1912 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1913 else 1914 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1915 if (vsi->rss_hkey_user) 1916 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1917 else 1918 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1919 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1920 kfree(lut); 1921 return ret; 1922 } 1923 1924 /** 1925 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1926 * @vsi: the VSI being configured, 1927 * @ctxt: VSI context structure 1928 * @enabled_tc: number of traffic classes to enable 1929 * 1930 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1931 **/ 1932 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1933 struct i40e_vsi_context *ctxt, 1934 u8 enabled_tc) 1935 { 1936 u16 qcount = 0, max_qcount, qmap, sections = 0; 1937 int i, override_q, pow, num_qps, ret; 1938 u8 netdev_tc = 0, offset = 0; 1939 1940 if (vsi->type != I40E_VSI_MAIN) 1941 return -EINVAL; 1942 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1943 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1944 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1945 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1946 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1947 1948 /* find the next higher power-of-2 of num queue pairs */ 1949 pow = ilog2(num_qps); 1950 if (!is_power_of_2(num_qps)) 1951 pow++; 1952 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1953 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1954 1955 /* Setup queue offset/count for all TCs for given VSI */ 1956 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1957 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1958 /* See if the given TC is enabled for the given VSI */ 1959 if (vsi->tc_config.enabled_tc & BIT(i)) { 1960 offset = vsi->mqprio_qopt.qopt.offset[i]; 1961 qcount = vsi->mqprio_qopt.qopt.count[i]; 1962 if (qcount > max_qcount) 1963 max_qcount = qcount; 1964 vsi->tc_config.tc_info[i].qoffset = offset; 1965 vsi->tc_config.tc_info[i].qcount = qcount; 1966 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1967 } else { 1968 /* TC is not enabled so set the offset to 1969 * default queue and allocate one queue 1970 * for the given TC. 1971 */ 1972 vsi->tc_config.tc_info[i].qoffset = 0; 1973 vsi->tc_config.tc_info[i].qcount = 1; 1974 vsi->tc_config.tc_info[i].netdev_tc = 0; 1975 } 1976 } 1977 1978 /* Set actual Tx/Rx queue pairs */ 1979 vsi->num_queue_pairs = offset + qcount; 1980 1981 /* Setup queue TC[0].qmap for given VSI context */ 1982 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1983 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1984 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1985 ctxt->info.valid_sections |= cpu_to_le16(sections); 1986 1987 /* Reconfigure RSS for main VSI with max queue count */ 1988 vsi->rss_size = max_qcount; 1989 ret = i40e_vsi_config_rss(vsi); 1990 if (ret) { 1991 dev_info(&vsi->back->pdev->dev, 1992 "Failed to reconfig rss for num_queues (%u)\n", 1993 max_qcount); 1994 return ret; 1995 } 1996 vsi->reconfig_rss = true; 1997 dev_dbg(&vsi->back->pdev->dev, 1998 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1999 2000 /* Find queue count available for channel VSIs and starting offset 2001 * for channel VSIs 2002 */ 2003 override_q = vsi->mqprio_qopt.qopt.count[0]; 2004 if (override_q && override_q < vsi->num_queue_pairs) { 2005 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 2006 vsi->next_base_queue = override_q; 2007 } 2008 return 0; 2009 } 2010 2011 /** 2012 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 2013 * @vsi: the VSI being setup 2014 * @ctxt: VSI context structure 2015 * @enabled_tc: Enabled TCs bitmap 2016 * @is_add: True if called before Add VSI 2017 * 2018 * Setup VSI queue mapping for enabled traffic classes. 2019 **/ 2020 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2021 struct i40e_vsi_context *ctxt, 2022 u8 enabled_tc, 2023 bool is_add) 2024 { 2025 struct i40e_pf *pf = vsi->back; 2026 u16 num_tc_qps = 0; 2027 u16 sections = 0; 2028 u8 netdev_tc = 0; 2029 u16 numtc = 1; 2030 u16 qcount; 2031 u8 offset; 2032 u16 qmap; 2033 int i; 2034 2035 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2036 offset = 0; 2037 /* zero out queue mapping, it will get updated on the end of the function */ 2038 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2039 2040 if (vsi->type == I40E_VSI_MAIN) { 2041 /* This code helps add more queue to the VSI if we have 2042 * more cores than RSS can support, the higher cores will 2043 * be served by ATR or other filters. Furthermore, the 2044 * non-zero req_queue_pairs says that user requested a new 2045 * queue count via ethtool's set_channels, so use this 2046 * value for queues distribution across traffic classes 2047 * We need at least one queue pair for the interface 2048 * to be usable as we see in else statement. 2049 */ 2050 if (vsi->req_queue_pairs > 0) 2051 vsi->num_queue_pairs = vsi->req_queue_pairs; 2052 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2053 vsi->num_queue_pairs = pf->num_lan_msix; 2054 else 2055 vsi->num_queue_pairs = 1; 2056 } 2057 2058 /* Number of queues per enabled TC */ 2059 if (vsi->type == I40E_VSI_MAIN || 2060 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2061 num_tc_qps = vsi->num_queue_pairs; 2062 else 2063 num_tc_qps = vsi->alloc_queue_pairs; 2064 2065 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2066 /* Find numtc from enabled TC bitmap */ 2067 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2068 if (enabled_tc & BIT(i)) /* TC is enabled */ 2069 numtc++; 2070 } 2071 if (!numtc) { 2072 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2073 numtc = 1; 2074 } 2075 num_tc_qps = num_tc_qps / numtc; 2076 num_tc_qps = min_t(int, num_tc_qps, 2077 i40e_pf_get_max_q_per_tc(pf)); 2078 } 2079 2080 vsi->tc_config.numtc = numtc; 2081 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2082 2083 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2084 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2085 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2086 2087 /* Setup queue offset/count for all TCs for given VSI */ 2088 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2089 /* See if the given TC is enabled for the given VSI */ 2090 if (vsi->tc_config.enabled_tc & BIT(i)) { 2091 /* TC is enabled */ 2092 int pow, num_qps; 2093 2094 switch (vsi->type) { 2095 case I40E_VSI_MAIN: 2096 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2097 pf->flags) && 2098 !test_bit(I40E_FLAG_FD_ATR_ENA, 2099 pf->flags)) || 2100 vsi->tc_config.enabled_tc != 1) { 2101 qcount = min_t(int, pf->alloc_rss_size, 2102 num_tc_qps); 2103 break; 2104 } 2105 fallthrough; 2106 case I40E_VSI_FDIR: 2107 case I40E_VSI_SRIOV: 2108 case I40E_VSI_VMDQ2: 2109 default: 2110 qcount = num_tc_qps; 2111 WARN_ON(i != 0); 2112 break; 2113 } 2114 vsi->tc_config.tc_info[i].qoffset = offset; 2115 vsi->tc_config.tc_info[i].qcount = qcount; 2116 2117 /* find the next higher power-of-2 of num queue pairs */ 2118 num_qps = qcount; 2119 pow = 0; 2120 while (num_qps && (BIT_ULL(pow) < qcount)) { 2121 pow++; 2122 num_qps >>= 1; 2123 } 2124 2125 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2126 qmap = 2127 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2128 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2129 2130 offset += qcount; 2131 } else { 2132 /* TC is not enabled so set the offset to 2133 * default queue and allocate one queue 2134 * for the given TC. 2135 */ 2136 vsi->tc_config.tc_info[i].qoffset = 0; 2137 vsi->tc_config.tc_info[i].qcount = 1; 2138 vsi->tc_config.tc_info[i].netdev_tc = 0; 2139 2140 qmap = 0; 2141 } 2142 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2143 } 2144 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2145 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2146 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2147 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2148 vsi->num_queue_pairs = offset; 2149 2150 /* Scheduler section valid can only be set for ADD VSI */ 2151 if (is_add) { 2152 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2153 2154 ctxt->info.up_enable_bits = enabled_tc; 2155 } 2156 if (vsi->type == I40E_VSI_SRIOV) { 2157 ctxt->info.mapping_flags |= 2158 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2159 for (i = 0; i < vsi->num_queue_pairs; i++) 2160 ctxt->info.queue_mapping[i] = 2161 cpu_to_le16(vsi->base_queue + i); 2162 } else { 2163 ctxt->info.mapping_flags |= 2164 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2165 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2166 } 2167 ctxt->info.valid_sections |= cpu_to_le16(sections); 2168 } 2169 2170 /** 2171 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2172 * @netdev: the netdevice 2173 * @addr: address to add 2174 * 2175 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2176 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2177 */ 2178 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2179 { 2180 struct i40e_netdev_priv *np = netdev_priv(netdev); 2181 struct i40e_vsi *vsi = np->vsi; 2182 2183 if (i40e_add_mac_filter(vsi, addr)) 2184 return 0; 2185 else 2186 return -ENOMEM; 2187 } 2188 2189 /** 2190 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2191 * @netdev: the netdevice 2192 * @addr: address to add 2193 * 2194 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2195 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2196 */ 2197 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2198 { 2199 struct i40e_netdev_priv *np = netdev_priv(netdev); 2200 struct i40e_vsi *vsi = np->vsi; 2201 2202 /* Under some circumstances, we might receive a request to delete 2203 * our own device address from our uc list. Because we store the 2204 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2205 * such requests and not delete our device address from this list. 2206 */ 2207 if (ether_addr_equal(addr, netdev->dev_addr)) 2208 return 0; 2209 2210 i40e_del_mac_filter(vsi, addr); 2211 2212 return 0; 2213 } 2214 2215 /** 2216 * i40e_set_rx_mode - NDO callback to set the netdev filters 2217 * @netdev: network interface device structure 2218 **/ 2219 static void i40e_set_rx_mode(struct net_device *netdev) 2220 { 2221 struct i40e_netdev_priv *np = netdev_priv(netdev); 2222 struct i40e_vsi *vsi = np->vsi; 2223 2224 spin_lock_bh(&vsi->mac_filter_hash_lock); 2225 2226 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2227 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2228 2229 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2230 2231 /* check for other flag changes */ 2232 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2233 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2234 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2235 } 2236 } 2237 2238 /** 2239 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2240 * @vsi: Pointer to VSI struct 2241 * @from: Pointer to list which contains MAC filter entries - changes to 2242 * those entries needs to be undone. 2243 * 2244 * MAC filter entries from this list were slated for deletion. 2245 **/ 2246 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2247 struct hlist_head *from) 2248 { 2249 struct i40e_mac_filter *f; 2250 struct hlist_node *h; 2251 2252 hlist_for_each_entry_safe(f, h, from, hlist) { 2253 u64 key = i40e_addr_to_hkey(f->macaddr); 2254 2255 /* Move the element back into MAC filter list*/ 2256 hlist_del(&f->hlist); 2257 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2258 } 2259 } 2260 2261 /** 2262 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2263 * @vsi: Pointer to vsi struct 2264 * @from: Pointer to list which contains MAC filter entries - changes to 2265 * those entries needs to be undone. 2266 * 2267 * MAC filter entries from this list were slated for addition. 2268 **/ 2269 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2270 struct hlist_head *from) 2271 { 2272 struct i40e_new_mac_filter *new; 2273 struct hlist_node *h; 2274 2275 hlist_for_each_entry_safe(new, h, from, hlist) { 2276 /* We can simply free the wrapper structure */ 2277 hlist_del(&new->hlist); 2278 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2279 kfree(new); 2280 } 2281 } 2282 2283 /** 2284 * i40e_next_filter - Get the next non-broadcast filter from a list 2285 * @next: pointer to filter in list 2286 * 2287 * Returns the next non-broadcast filter in the list. Required so that we 2288 * ignore broadcast filters within the list, since these are not handled via 2289 * the normal firmware update path. 2290 */ 2291 static 2292 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2293 { 2294 hlist_for_each_entry_continue(next, hlist) { 2295 if (!is_broadcast_ether_addr(next->f->macaddr)) 2296 return next; 2297 } 2298 2299 return NULL; 2300 } 2301 2302 /** 2303 * i40e_update_filter_state - Update filter state based on return data 2304 * from firmware 2305 * @count: Number of filters added 2306 * @add_list: return data from fw 2307 * @add_head: pointer to first filter in current batch 2308 * 2309 * MAC filter entries from list were slated to be added to device. Returns 2310 * number of successful filters. Note that 0 does NOT mean success! 2311 **/ 2312 static int 2313 i40e_update_filter_state(int count, 2314 struct i40e_aqc_add_macvlan_element_data *add_list, 2315 struct i40e_new_mac_filter *add_head) 2316 { 2317 int retval = 0; 2318 int i; 2319 2320 for (i = 0; i < count; i++) { 2321 /* Always check status of each filter. We don't need to check 2322 * the firmware return status because we pre-set the filter 2323 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2324 * request to the adminq. Thus, if it no longer matches then 2325 * we know the filter is active. 2326 */ 2327 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2328 add_head->state = I40E_FILTER_FAILED; 2329 } else { 2330 add_head->state = I40E_FILTER_ACTIVE; 2331 retval++; 2332 } 2333 2334 add_head = i40e_next_filter(add_head); 2335 if (!add_head) 2336 break; 2337 } 2338 2339 return retval; 2340 } 2341 2342 /** 2343 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2344 * @vsi: ptr to the VSI 2345 * @vsi_name: name to display in messages 2346 * @list: the list of filters to send to firmware 2347 * @num_del: the number of filters to delete 2348 * @retval: Set to -EIO on failure to delete 2349 * 2350 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2351 * *retval instead of a return value so that success does not force ret_val to 2352 * be set to 0. This ensures that a sequence of calls to this function 2353 * preserve the previous value of *retval on successful delete. 2354 */ 2355 static 2356 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2357 struct i40e_aqc_remove_macvlan_element_data *list, 2358 int num_del, int *retval) 2359 { 2360 struct i40e_hw *hw = &vsi->back->hw; 2361 enum i40e_admin_queue_err aq_status; 2362 int aq_ret; 2363 2364 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2365 &aq_status); 2366 2367 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2368 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2369 *retval = -EIO; 2370 dev_info(&vsi->back->pdev->dev, 2371 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2372 vsi_name, ERR_PTR(aq_ret), 2373 i40e_aq_str(hw, aq_status)); 2374 } 2375 } 2376 2377 /** 2378 * i40e_aqc_add_filters - Request firmware to add a set of filters 2379 * @vsi: ptr to the VSI 2380 * @vsi_name: name to display in messages 2381 * @list: the list of filters to send to firmware 2382 * @add_head: Position in the add hlist 2383 * @num_add: the number of filters to add 2384 * 2385 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2386 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2387 * space for more filters. 2388 */ 2389 static 2390 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2391 struct i40e_aqc_add_macvlan_element_data *list, 2392 struct i40e_new_mac_filter *add_head, 2393 int num_add) 2394 { 2395 struct i40e_hw *hw = &vsi->back->hw; 2396 enum i40e_admin_queue_err aq_status; 2397 int fcnt; 2398 2399 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2400 fcnt = i40e_update_filter_state(num_add, list, add_head); 2401 2402 if (fcnt != num_add) { 2403 if (vsi->type == I40E_VSI_MAIN) { 2404 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2405 dev_warn(&vsi->back->pdev->dev, 2406 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2407 i40e_aq_str(hw, aq_status), vsi_name); 2408 } else if (vsi->type == I40E_VSI_SRIOV || 2409 vsi->type == I40E_VSI_VMDQ1 || 2410 vsi->type == I40E_VSI_VMDQ2) { 2411 dev_warn(&vsi->back->pdev->dev, 2412 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2413 i40e_aq_str(hw, aq_status), vsi_name, 2414 vsi_name); 2415 } else { 2416 dev_warn(&vsi->back->pdev->dev, 2417 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2418 i40e_aq_str(hw, aq_status), vsi_name, 2419 vsi->type); 2420 } 2421 } 2422 } 2423 2424 /** 2425 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2426 * @vsi: pointer to the VSI 2427 * @vsi_name: the VSI name 2428 * @f: filter data 2429 * 2430 * This function sets or clears the promiscuous broadcast flags for VLAN 2431 * filters in order to properly receive broadcast frames. Assumes that only 2432 * broadcast filters are passed. 2433 * 2434 * Returns status indicating success or failure; 2435 **/ 2436 static int 2437 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2438 struct i40e_mac_filter *f) 2439 { 2440 bool enable = f->state == I40E_FILTER_NEW; 2441 struct i40e_hw *hw = &vsi->back->hw; 2442 int aq_ret; 2443 2444 if (f->vlan == I40E_VLAN_ANY) { 2445 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2446 vsi->seid, 2447 enable, 2448 NULL); 2449 } else { 2450 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2451 vsi->seid, 2452 enable, 2453 f->vlan, 2454 NULL); 2455 } 2456 2457 if (aq_ret) { 2458 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2459 dev_warn(&vsi->back->pdev->dev, 2460 "Error %s, forcing overflow promiscuous on %s\n", 2461 i40e_aq_str(hw, hw->aq.asq_last_status), 2462 vsi_name); 2463 } 2464 2465 return aq_ret; 2466 } 2467 2468 /** 2469 * i40e_set_promiscuous - set promiscuous mode 2470 * @pf: board private structure 2471 * @promisc: promisc on or off 2472 * 2473 * There are different ways of setting promiscuous mode on a PF depending on 2474 * what state/environment we're in. This identifies and sets it appropriately. 2475 * Returns 0 on success. 2476 **/ 2477 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2478 { 2479 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2480 struct i40e_hw *hw = &pf->hw; 2481 int aq_ret; 2482 2483 if (vsi->type == I40E_VSI_MAIN && 2484 pf->lan_veb != I40E_NO_VEB && 2485 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2486 /* set defport ON for Main VSI instead of true promisc 2487 * this way we will get all unicast/multicast and VLAN 2488 * promisc behavior but will not get VF or VMDq traffic 2489 * replicated on the Main VSI. 2490 */ 2491 if (promisc) 2492 aq_ret = i40e_aq_set_default_vsi(hw, 2493 vsi->seid, 2494 NULL); 2495 else 2496 aq_ret = i40e_aq_clear_default_vsi(hw, 2497 vsi->seid, 2498 NULL); 2499 if (aq_ret) { 2500 dev_info(&pf->pdev->dev, 2501 "Set default VSI failed, err %pe, aq_err %s\n", 2502 ERR_PTR(aq_ret), 2503 i40e_aq_str(hw, hw->aq.asq_last_status)); 2504 } 2505 } else { 2506 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2507 hw, 2508 vsi->seid, 2509 promisc, NULL, 2510 true); 2511 if (aq_ret) { 2512 dev_info(&pf->pdev->dev, 2513 "set unicast promisc failed, err %pe, aq_err %s\n", 2514 ERR_PTR(aq_ret), 2515 i40e_aq_str(hw, hw->aq.asq_last_status)); 2516 } 2517 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2518 hw, 2519 vsi->seid, 2520 promisc, NULL); 2521 if (aq_ret) { 2522 dev_info(&pf->pdev->dev, 2523 "set multicast promisc failed, err %pe, aq_err %s\n", 2524 ERR_PTR(aq_ret), 2525 i40e_aq_str(hw, hw->aq.asq_last_status)); 2526 } 2527 } 2528 2529 if (!aq_ret) 2530 pf->cur_promisc = promisc; 2531 2532 return aq_ret; 2533 } 2534 2535 /** 2536 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2537 * @vsi: ptr to the VSI 2538 * 2539 * Push any outstanding VSI filter changes through the AdminQ. 2540 * 2541 * Returns 0 or error value 2542 **/ 2543 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2544 { 2545 struct hlist_head tmp_add_list, tmp_del_list; 2546 struct i40e_mac_filter *f; 2547 struct i40e_new_mac_filter *new, *add_head = NULL; 2548 struct i40e_hw *hw = &vsi->back->hw; 2549 bool old_overflow, new_overflow; 2550 unsigned int failed_filters = 0; 2551 unsigned int vlan_filters = 0; 2552 char vsi_name[16] = "PF"; 2553 int filter_list_len = 0; 2554 u32 changed_flags = 0; 2555 struct hlist_node *h; 2556 struct i40e_pf *pf; 2557 int num_add = 0; 2558 int num_del = 0; 2559 int aq_ret = 0; 2560 int retval = 0; 2561 u16 cmd_flags; 2562 int list_size; 2563 int bkt; 2564 2565 /* empty array typed pointers, kcalloc later */ 2566 struct i40e_aqc_add_macvlan_element_data *add_list; 2567 struct i40e_aqc_remove_macvlan_element_data *del_list; 2568 2569 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2570 usleep_range(1000, 2000); 2571 pf = vsi->back; 2572 2573 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2574 2575 if (vsi->netdev) { 2576 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2577 vsi->current_netdev_flags = vsi->netdev->flags; 2578 } 2579 2580 INIT_HLIST_HEAD(&tmp_add_list); 2581 INIT_HLIST_HEAD(&tmp_del_list); 2582 2583 if (vsi->type == I40E_VSI_SRIOV) 2584 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2585 else if (vsi->type != I40E_VSI_MAIN) 2586 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2587 2588 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2589 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2590 2591 spin_lock_bh(&vsi->mac_filter_hash_lock); 2592 /* Create a list of filters to delete. */ 2593 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2594 if (f->state == I40E_FILTER_REMOVE) { 2595 /* Move the element into temporary del_list */ 2596 hash_del(&f->hlist); 2597 hlist_add_head(&f->hlist, &tmp_del_list); 2598 2599 /* Avoid counting removed filters */ 2600 continue; 2601 } 2602 if (f->state == I40E_FILTER_NEW) { 2603 /* Create a temporary i40e_new_mac_filter */ 2604 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2605 if (!new) 2606 goto err_no_memory_locked; 2607 2608 /* Store pointer to the real filter */ 2609 new->f = f; 2610 new->state = f->state; 2611 2612 /* Add it to the hash list */ 2613 hlist_add_head(&new->hlist, &tmp_add_list); 2614 } 2615 2616 /* Count the number of active (current and new) VLAN 2617 * filters we have now. Does not count filters which 2618 * are marked for deletion. 2619 */ 2620 if (f->vlan > 0) 2621 vlan_filters++; 2622 } 2623 2624 if (vsi->type != I40E_VSI_SRIOV) 2625 retval = i40e_correct_mac_vlan_filters 2626 (vsi, &tmp_add_list, &tmp_del_list, 2627 vlan_filters); 2628 else if (pf->vf) 2629 retval = i40e_correct_vf_mac_vlan_filters 2630 (vsi, &tmp_add_list, &tmp_del_list, 2631 vlan_filters, pf->vf[vsi->vf_id].trusted); 2632 2633 hlist_for_each_entry(new, &tmp_add_list, hlist) 2634 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2635 2636 if (retval) 2637 goto err_no_memory_locked; 2638 2639 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2640 } 2641 2642 /* Now process 'del_list' outside the lock */ 2643 if (!hlist_empty(&tmp_del_list)) { 2644 filter_list_len = hw->aq.asq_buf_size / 2645 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2646 list_size = filter_list_len * 2647 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2648 del_list = kzalloc(list_size, GFP_ATOMIC); 2649 if (!del_list) 2650 goto err_no_memory; 2651 2652 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2653 cmd_flags = 0; 2654 2655 /* handle broadcast filters by updating the broadcast 2656 * promiscuous flag and release filter list. 2657 */ 2658 if (is_broadcast_ether_addr(f->macaddr)) { 2659 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2660 2661 hlist_del(&f->hlist); 2662 kfree(f); 2663 continue; 2664 } 2665 2666 /* add to delete list */ 2667 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2668 if (f->vlan == I40E_VLAN_ANY) { 2669 del_list[num_del].vlan_tag = 0; 2670 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2671 } else { 2672 del_list[num_del].vlan_tag = 2673 cpu_to_le16((u16)(f->vlan)); 2674 } 2675 2676 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2677 del_list[num_del].flags = cmd_flags; 2678 num_del++; 2679 2680 /* flush a full buffer */ 2681 if (num_del == filter_list_len) { 2682 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2683 num_del, &retval); 2684 memset(del_list, 0, list_size); 2685 num_del = 0; 2686 } 2687 /* Release memory for MAC filter entries which were 2688 * synced up with HW. 2689 */ 2690 hlist_del(&f->hlist); 2691 kfree(f); 2692 } 2693 2694 if (num_del) { 2695 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2696 num_del, &retval); 2697 } 2698 2699 kfree(del_list); 2700 del_list = NULL; 2701 } 2702 2703 if (!hlist_empty(&tmp_add_list)) { 2704 /* Do all the adds now. */ 2705 filter_list_len = hw->aq.asq_buf_size / 2706 sizeof(struct i40e_aqc_add_macvlan_element_data); 2707 list_size = filter_list_len * 2708 sizeof(struct i40e_aqc_add_macvlan_element_data); 2709 add_list = kzalloc(list_size, GFP_ATOMIC); 2710 if (!add_list) 2711 goto err_no_memory; 2712 2713 num_add = 0; 2714 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2715 /* handle broadcast filters by updating the broadcast 2716 * promiscuous flag instead of adding a MAC filter. 2717 */ 2718 if (is_broadcast_ether_addr(new->f->macaddr)) { 2719 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2720 new->f)) 2721 new->state = I40E_FILTER_FAILED; 2722 else 2723 new->state = I40E_FILTER_ACTIVE; 2724 continue; 2725 } 2726 2727 /* add to add array */ 2728 if (num_add == 0) 2729 add_head = new; 2730 cmd_flags = 0; 2731 ether_addr_copy(add_list[num_add].mac_addr, 2732 new->f->macaddr); 2733 if (new->f->vlan == I40E_VLAN_ANY) { 2734 add_list[num_add].vlan_tag = 0; 2735 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2736 } else { 2737 add_list[num_add].vlan_tag = 2738 cpu_to_le16((u16)(new->f->vlan)); 2739 } 2740 add_list[num_add].queue_number = 0; 2741 /* set invalid match method for later detection */ 2742 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2743 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2744 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2745 num_add++; 2746 2747 /* flush a full buffer */ 2748 if (num_add == filter_list_len) { 2749 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2750 add_head, num_add); 2751 memset(add_list, 0, list_size); 2752 num_add = 0; 2753 } 2754 } 2755 if (num_add) { 2756 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2757 num_add); 2758 } 2759 /* Now move all of the filters from the temp add list back to 2760 * the VSI's list. 2761 */ 2762 spin_lock_bh(&vsi->mac_filter_hash_lock); 2763 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2764 /* Only update the state if we're still NEW */ 2765 if (new->f->state == I40E_FILTER_NEW) 2766 new->f->state = new->state; 2767 hlist_del(&new->hlist); 2768 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2769 kfree(new); 2770 } 2771 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2772 kfree(add_list); 2773 add_list = NULL; 2774 } 2775 2776 /* Determine the number of active and failed filters. */ 2777 spin_lock_bh(&vsi->mac_filter_hash_lock); 2778 vsi->active_filters = 0; 2779 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2780 if (f->state == I40E_FILTER_ACTIVE) 2781 vsi->active_filters++; 2782 else if (f->state == I40E_FILTER_FAILED) 2783 failed_filters++; 2784 } 2785 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2786 2787 /* Check if we are able to exit overflow promiscuous mode. We can 2788 * safely exit if we didn't just enter, we no longer have any failed 2789 * filters, and we have reduced filters below the threshold value. 2790 */ 2791 if (old_overflow && !failed_filters && 2792 vsi->active_filters < vsi->promisc_threshold) { 2793 dev_info(&pf->pdev->dev, 2794 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2795 vsi_name); 2796 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2797 vsi->promisc_threshold = 0; 2798 } 2799 2800 /* if the VF is not trusted do not do promisc */ 2801 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2802 !pf->vf[vsi->vf_id].trusted) { 2803 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2804 goto out; 2805 } 2806 2807 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2808 2809 /* If we are entering overflow promiscuous, we need to calculate a new 2810 * threshold for when we are safe to exit 2811 */ 2812 if (!old_overflow && new_overflow) 2813 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2814 2815 /* check for changes in promiscuous modes */ 2816 if (changed_flags & IFF_ALLMULTI) { 2817 bool cur_multipromisc; 2818 2819 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2820 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2821 vsi->seid, 2822 cur_multipromisc, 2823 NULL); 2824 if (aq_ret) { 2825 retval = i40e_aq_rc_to_posix(aq_ret, 2826 hw->aq.asq_last_status); 2827 dev_info(&pf->pdev->dev, 2828 "set multi promisc failed on %s, err %pe aq_err %s\n", 2829 vsi_name, 2830 ERR_PTR(aq_ret), 2831 i40e_aq_str(hw, hw->aq.asq_last_status)); 2832 } else { 2833 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2834 cur_multipromisc ? "entering" : "leaving"); 2835 } 2836 } 2837 2838 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2839 bool cur_promisc; 2840 2841 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2842 new_overflow); 2843 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2844 if (aq_ret) { 2845 retval = i40e_aq_rc_to_posix(aq_ret, 2846 hw->aq.asq_last_status); 2847 dev_info(&pf->pdev->dev, 2848 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2849 cur_promisc ? "on" : "off", 2850 vsi_name, 2851 ERR_PTR(aq_ret), 2852 i40e_aq_str(hw, hw->aq.asq_last_status)); 2853 } 2854 } 2855 out: 2856 /* if something went wrong then set the changed flag so we try again */ 2857 if (retval) 2858 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2859 2860 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2861 return retval; 2862 2863 err_no_memory: 2864 /* Restore elements on the temporary add and delete lists */ 2865 spin_lock_bh(&vsi->mac_filter_hash_lock); 2866 err_no_memory_locked: 2867 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2868 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2869 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2870 2871 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2872 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2873 return -ENOMEM; 2874 } 2875 2876 /** 2877 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2878 * @pf: board private structure 2879 **/ 2880 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2881 { 2882 int v; 2883 2884 if (!pf) 2885 return; 2886 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2887 return; 2888 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2889 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2890 return; 2891 } 2892 2893 for (v = 0; v < pf->num_alloc_vsi; v++) { 2894 if (pf->vsi[v] && 2895 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2896 !test_bit(__I40E_VSI_RELEASING, pf->vsi[v]->state)) { 2897 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2898 2899 if (ret) { 2900 /* come back and try again later */ 2901 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2902 pf->state); 2903 break; 2904 } 2905 } 2906 } 2907 } 2908 2909 /** 2910 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2911 * 2912 * @vsi: VSI to calculate rx_buf_len from 2913 */ 2914 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2915 { 2916 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2917 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2918 2919 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2920 } 2921 2922 /** 2923 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2924 * @vsi: the vsi 2925 * @xdp_prog: XDP program 2926 **/ 2927 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2928 struct bpf_prog *xdp_prog) 2929 { 2930 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2931 u16 chain_len; 2932 2933 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2934 chain_len = 1; 2935 else 2936 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2937 2938 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2939 } 2940 2941 /** 2942 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2943 * @netdev: network interface device structure 2944 * @new_mtu: new value for maximum frame size 2945 * 2946 * Returns 0 on success, negative on failure 2947 **/ 2948 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2949 { 2950 struct i40e_netdev_priv *np = netdev_priv(netdev); 2951 struct i40e_vsi *vsi = np->vsi; 2952 struct i40e_pf *pf = vsi->back; 2953 int frame_size; 2954 2955 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2956 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2957 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2958 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2959 return -EINVAL; 2960 } 2961 2962 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2963 netdev->mtu, new_mtu); 2964 netdev->mtu = new_mtu; 2965 if (netif_running(netdev)) 2966 i40e_vsi_reinit_locked(vsi); 2967 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2968 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2969 return 0; 2970 } 2971 2972 /** 2973 * i40e_ioctl - Access the hwtstamp interface 2974 * @netdev: network interface device structure 2975 * @ifr: interface request data 2976 * @cmd: ioctl command 2977 **/ 2978 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2979 { 2980 struct i40e_netdev_priv *np = netdev_priv(netdev); 2981 struct i40e_pf *pf = np->vsi->back; 2982 2983 switch (cmd) { 2984 case SIOCGHWTSTAMP: 2985 return i40e_ptp_get_ts_config(pf, ifr); 2986 case SIOCSHWTSTAMP: 2987 return i40e_ptp_set_ts_config(pf, ifr); 2988 default: 2989 return -EOPNOTSUPP; 2990 } 2991 } 2992 2993 /** 2994 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2995 * @vsi: the vsi being adjusted 2996 **/ 2997 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2998 { 2999 struct i40e_vsi_context ctxt; 3000 int ret; 3001 3002 /* Don't modify stripping options if a port VLAN is active */ 3003 if (vsi->info.pvid) 3004 return; 3005 3006 if ((vsi->info.valid_sections & 3007 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3008 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 3009 return; /* already enabled */ 3010 3011 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3012 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3013 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 3014 3015 ctxt.seid = vsi->seid; 3016 ctxt.info = vsi->info; 3017 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3018 if (ret) { 3019 dev_info(&vsi->back->pdev->dev, 3020 "update vlan stripping failed, err %pe aq_err %s\n", 3021 ERR_PTR(ret), 3022 i40e_aq_str(&vsi->back->hw, 3023 vsi->back->hw.aq.asq_last_status)); 3024 } 3025 } 3026 3027 /** 3028 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 3029 * @vsi: the vsi being adjusted 3030 **/ 3031 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 3032 { 3033 struct i40e_vsi_context ctxt; 3034 int ret; 3035 3036 /* Don't modify stripping options if a port VLAN is active */ 3037 if (vsi->info.pvid) 3038 return; 3039 3040 if ((vsi->info.valid_sections & 3041 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3042 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3043 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3044 return; /* already disabled */ 3045 3046 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3047 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3048 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3049 3050 ctxt.seid = vsi->seid; 3051 ctxt.info = vsi->info; 3052 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3053 if (ret) { 3054 dev_info(&vsi->back->pdev->dev, 3055 "update vlan stripping failed, err %pe aq_err %s\n", 3056 ERR_PTR(ret), 3057 i40e_aq_str(&vsi->back->hw, 3058 vsi->back->hw.aq.asq_last_status)); 3059 } 3060 } 3061 3062 /** 3063 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3064 * @vsi: the vsi being configured 3065 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3066 * 3067 * This is a helper function for adding a new MAC/VLAN filter with the 3068 * specified VLAN for each existing MAC address already in the hash table. 3069 * This function does *not* perform any accounting to update filters based on 3070 * VLAN mode. 3071 * 3072 * NOTE: this function expects to be called while under the 3073 * mac_filter_hash_lock 3074 **/ 3075 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3076 { 3077 struct i40e_mac_filter *f, *add_f; 3078 struct hlist_node *h; 3079 int bkt; 3080 3081 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3082 /* If we're asked to add a filter that has been marked for 3083 * removal, it is safe to simply restore it to active state. 3084 * __i40e_del_filter will have simply deleted any filters which 3085 * were previously marked NEW or FAILED, so if it is currently 3086 * marked REMOVE it must have previously been ACTIVE. Since we 3087 * haven't yet run the sync filters task, just restore this 3088 * filter to the ACTIVE state so that the sync task leaves it 3089 * in place. 3090 */ 3091 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3092 f->state = I40E_FILTER_ACTIVE; 3093 continue; 3094 } else if (f->state == I40E_FILTER_REMOVE) { 3095 continue; 3096 } 3097 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3098 if (!add_f) { 3099 dev_info(&vsi->back->pdev->dev, 3100 "Could not add vlan filter %d for %pM\n", 3101 vid, f->macaddr); 3102 return -ENOMEM; 3103 } 3104 } 3105 3106 return 0; 3107 } 3108 3109 /** 3110 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3111 * @vsi: the VSI being configured 3112 * @vid: VLAN id to be added 3113 **/ 3114 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3115 { 3116 int err; 3117 3118 if (vsi->info.pvid) 3119 return -EINVAL; 3120 3121 /* The network stack will attempt to add VID=0, with the intention to 3122 * receive priority tagged packets with a VLAN of 0. Our HW receives 3123 * these packets by default when configured to receive untagged 3124 * packets, so we don't need to add a filter for this case. 3125 * Additionally, HW interprets adding a VID=0 filter as meaning to 3126 * receive *only* tagged traffic and stops receiving untagged traffic. 3127 * Thus, we do not want to actually add a filter for VID=0 3128 */ 3129 if (!vid) 3130 return 0; 3131 3132 /* Locked once because all functions invoked below iterates list*/ 3133 spin_lock_bh(&vsi->mac_filter_hash_lock); 3134 err = i40e_add_vlan_all_mac(vsi, vid); 3135 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3136 if (err) 3137 return err; 3138 3139 /* schedule our worker thread which will take care of 3140 * applying the new filter changes 3141 */ 3142 i40e_service_event_schedule(vsi->back); 3143 return 0; 3144 } 3145 3146 /** 3147 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3148 * @vsi: the vsi being configured 3149 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3150 * 3151 * This function should be used to remove all VLAN filters which match the 3152 * given VID. It does not schedule the service event and does not take the 3153 * mac_filter_hash_lock so it may be combined with other operations under 3154 * a single invocation of the mac_filter_hash_lock. 3155 * 3156 * NOTE: this function expects to be called while under the 3157 * mac_filter_hash_lock 3158 */ 3159 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3160 { 3161 struct i40e_mac_filter *f; 3162 struct hlist_node *h; 3163 int bkt; 3164 3165 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3166 if (f->vlan == vid) 3167 __i40e_del_filter(vsi, f); 3168 } 3169 } 3170 3171 /** 3172 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3173 * @vsi: the VSI being configured 3174 * @vid: VLAN id to be removed 3175 **/ 3176 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3177 { 3178 if (!vid || vsi->info.pvid) 3179 return; 3180 3181 spin_lock_bh(&vsi->mac_filter_hash_lock); 3182 i40e_rm_vlan_all_mac(vsi, vid); 3183 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3184 3185 /* schedule our worker thread which will take care of 3186 * applying the new filter changes 3187 */ 3188 i40e_service_event_schedule(vsi->back); 3189 } 3190 3191 /** 3192 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3193 * @netdev: network interface to be adjusted 3194 * @proto: unused protocol value 3195 * @vid: vlan id to be added 3196 * 3197 * net_device_ops implementation for adding vlan ids 3198 **/ 3199 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3200 __always_unused __be16 proto, u16 vid) 3201 { 3202 struct i40e_netdev_priv *np = netdev_priv(netdev); 3203 struct i40e_vsi *vsi = np->vsi; 3204 int ret = 0; 3205 3206 if (vid >= VLAN_N_VID) 3207 return -EINVAL; 3208 3209 ret = i40e_vsi_add_vlan(vsi, vid); 3210 if (!ret) 3211 set_bit(vid, vsi->active_vlans); 3212 3213 return ret; 3214 } 3215 3216 /** 3217 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3218 * @netdev: network interface to be adjusted 3219 * @proto: unused protocol value 3220 * @vid: vlan id to be added 3221 **/ 3222 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3223 __always_unused __be16 proto, u16 vid) 3224 { 3225 struct i40e_netdev_priv *np = netdev_priv(netdev); 3226 struct i40e_vsi *vsi = np->vsi; 3227 3228 if (vid >= VLAN_N_VID) 3229 return; 3230 set_bit(vid, vsi->active_vlans); 3231 } 3232 3233 /** 3234 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3235 * @netdev: network interface to be adjusted 3236 * @proto: unused protocol value 3237 * @vid: vlan id to be removed 3238 * 3239 * net_device_ops implementation for removing vlan ids 3240 **/ 3241 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3242 __always_unused __be16 proto, u16 vid) 3243 { 3244 struct i40e_netdev_priv *np = netdev_priv(netdev); 3245 struct i40e_vsi *vsi = np->vsi; 3246 3247 /* return code is ignored as there is nothing a user 3248 * can do about failure to remove and a log message was 3249 * already printed from the other function 3250 */ 3251 i40e_vsi_kill_vlan(vsi, vid); 3252 3253 clear_bit(vid, vsi->active_vlans); 3254 3255 return 0; 3256 } 3257 3258 /** 3259 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3260 * @vsi: the vsi being brought back up 3261 **/ 3262 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3263 { 3264 u16 vid; 3265 3266 if (!vsi->netdev) 3267 return; 3268 3269 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3270 i40e_vlan_stripping_enable(vsi); 3271 else 3272 i40e_vlan_stripping_disable(vsi); 3273 3274 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3275 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3276 vid); 3277 } 3278 3279 /** 3280 * i40e_vsi_add_pvid - Add pvid for the VSI 3281 * @vsi: the vsi being adjusted 3282 * @vid: the vlan id to set as a PVID 3283 **/ 3284 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3285 { 3286 struct i40e_vsi_context ctxt; 3287 int ret; 3288 3289 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3290 vsi->info.pvid = cpu_to_le16(vid); 3291 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3292 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3293 I40E_AQ_VSI_PVLAN_EMOD_STR; 3294 3295 ctxt.seid = vsi->seid; 3296 ctxt.info = vsi->info; 3297 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3298 if (ret) { 3299 dev_info(&vsi->back->pdev->dev, 3300 "add pvid failed, err %pe aq_err %s\n", 3301 ERR_PTR(ret), 3302 i40e_aq_str(&vsi->back->hw, 3303 vsi->back->hw.aq.asq_last_status)); 3304 return -ENOENT; 3305 } 3306 3307 return 0; 3308 } 3309 3310 /** 3311 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3312 * @vsi: the vsi being adjusted 3313 * 3314 * Just use the vlan_rx_register() service to put it back to normal 3315 **/ 3316 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3317 { 3318 vsi->info.pvid = 0; 3319 3320 i40e_vlan_stripping_disable(vsi); 3321 } 3322 3323 /** 3324 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3325 * @vsi: ptr to the VSI 3326 * 3327 * If this function returns with an error, then it's possible one or 3328 * more of the rings is populated (while the rest are not). It is the 3329 * callers duty to clean those orphaned rings. 3330 * 3331 * Return 0 on success, negative on failure 3332 **/ 3333 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3334 { 3335 int i, err = 0; 3336 3337 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3338 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3339 3340 if (!i40e_enabled_xdp_vsi(vsi)) 3341 return err; 3342 3343 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3344 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3345 3346 return err; 3347 } 3348 3349 /** 3350 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3351 * @vsi: ptr to the VSI 3352 * 3353 * Free VSI's transmit software resources 3354 **/ 3355 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3356 { 3357 int i; 3358 3359 if (vsi->tx_rings) { 3360 for (i = 0; i < vsi->num_queue_pairs; i++) 3361 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3362 i40e_free_tx_resources(vsi->tx_rings[i]); 3363 } 3364 3365 if (vsi->xdp_rings) { 3366 for (i = 0; i < vsi->num_queue_pairs; i++) 3367 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3368 i40e_free_tx_resources(vsi->xdp_rings[i]); 3369 } 3370 } 3371 3372 /** 3373 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3374 * @vsi: ptr to the VSI 3375 * 3376 * If this function returns with an error, then it's possible one or 3377 * more of the rings is populated (while the rest are not). It is the 3378 * callers duty to clean those orphaned rings. 3379 * 3380 * Return 0 on success, negative on failure 3381 **/ 3382 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3383 { 3384 int i, err = 0; 3385 3386 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3387 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3388 return err; 3389 } 3390 3391 /** 3392 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3393 * @vsi: ptr to the VSI 3394 * 3395 * Free all receive software resources 3396 **/ 3397 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3398 { 3399 int i; 3400 3401 if (!vsi->rx_rings) 3402 return; 3403 3404 for (i = 0; i < vsi->num_queue_pairs; i++) 3405 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3406 i40e_free_rx_resources(vsi->rx_rings[i]); 3407 } 3408 3409 /** 3410 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3411 * @ring: The Tx ring to configure 3412 * 3413 * This enables/disables XPS for a given Tx descriptor ring 3414 * based on the TCs enabled for the VSI that ring belongs to. 3415 **/ 3416 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3417 { 3418 int cpu; 3419 3420 if (!ring->q_vector || !ring->netdev || ring->ch) 3421 return; 3422 3423 /* We only initialize XPS once, so as not to overwrite user settings */ 3424 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3425 return; 3426 3427 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3428 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3429 ring->queue_index); 3430 } 3431 3432 /** 3433 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3434 * @ring: The Tx or Rx ring 3435 * 3436 * Returns the AF_XDP buffer pool or NULL. 3437 **/ 3438 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3439 { 3440 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3441 int qid = ring->queue_index; 3442 3443 if (ring_is_xdp(ring)) 3444 qid -= ring->vsi->alloc_queue_pairs; 3445 3446 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3447 return NULL; 3448 3449 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3450 } 3451 3452 /** 3453 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3454 * @ring: The Tx ring to configure 3455 * 3456 * Configure the Tx descriptor ring in the HMC context. 3457 **/ 3458 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3459 { 3460 struct i40e_vsi *vsi = ring->vsi; 3461 u16 pf_q = vsi->base_queue + ring->queue_index; 3462 struct i40e_hw *hw = &vsi->back->hw; 3463 struct i40e_hmc_obj_txq tx_ctx; 3464 u32 qtx_ctl = 0; 3465 int err = 0; 3466 3467 if (ring_is_xdp(ring)) 3468 ring->xsk_pool = i40e_xsk_pool(ring); 3469 3470 /* some ATR related tx ring init */ 3471 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3472 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3473 ring->atr_count = 0; 3474 } else { 3475 ring->atr_sample_rate = 0; 3476 } 3477 3478 /* configure XPS */ 3479 i40e_config_xps_tx_ring(ring); 3480 3481 /* clear the context structure first */ 3482 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3483 3484 tx_ctx.new_context = 1; 3485 tx_ctx.base = (ring->dma / 128); 3486 tx_ctx.qlen = ring->count; 3487 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3488 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3489 tx_ctx.fd_ena = 1; 3490 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3491 tx_ctx.timesync_ena = 1; 3492 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3493 if (vsi->type != I40E_VSI_FDIR) 3494 tx_ctx.head_wb_ena = 1; 3495 tx_ctx.head_wb_addr = ring->dma + 3496 (ring->count * sizeof(struct i40e_tx_desc)); 3497 3498 /* As part of VSI creation/update, FW allocates certain 3499 * Tx arbitration queue sets for each TC enabled for 3500 * the VSI. The FW returns the handles to these queue 3501 * sets as part of the response buffer to Add VSI, 3502 * Update VSI, etc. AQ commands. It is expected that 3503 * these queue set handles be associated with the Tx 3504 * queues by the driver as part of the TX queue context 3505 * initialization. This has to be done regardless of 3506 * DCB as by default everything is mapped to TC0. 3507 */ 3508 3509 if (ring->ch) 3510 tx_ctx.rdylist = 3511 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3512 3513 else 3514 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3515 3516 tx_ctx.rdylist_act = 0; 3517 3518 /* clear the context in the HMC */ 3519 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3520 if (err) { 3521 dev_info(&vsi->back->pdev->dev, 3522 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3523 ring->queue_index, pf_q, err); 3524 return -ENOMEM; 3525 } 3526 3527 /* set the context in the HMC */ 3528 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3529 if (err) { 3530 dev_info(&vsi->back->pdev->dev, 3531 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3532 ring->queue_index, pf_q, err); 3533 return -ENOMEM; 3534 } 3535 3536 /* Now associate this queue with this PCI function */ 3537 if (ring->ch) { 3538 if (ring->ch->type == I40E_VSI_VMDQ2) 3539 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3540 else 3541 return -EINVAL; 3542 3543 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3544 ring->ch->vsi_number); 3545 } else { 3546 if (vsi->type == I40E_VSI_VMDQ2) { 3547 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3548 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3549 vsi->id); 3550 } else { 3551 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3552 } 3553 } 3554 3555 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id); 3556 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3557 i40e_flush(hw); 3558 3559 /* cache tail off for easier writes later */ 3560 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3561 3562 return 0; 3563 } 3564 3565 /** 3566 * i40e_rx_offset - Return expected offset into page to access data 3567 * @rx_ring: Ring we are requesting offset of 3568 * 3569 * Returns the offset value for ring into the data buffer. 3570 */ 3571 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3572 { 3573 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3574 } 3575 3576 /** 3577 * i40e_configure_rx_ring - Configure a receive ring context 3578 * @ring: The Rx ring to configure 3579 * 3580 * Configure the Rx descriptor ring in the HMC context. 3581 **/ 3582 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3583 { 3584 struct i40e_vsi *vsi = ring->vsi; 3585 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3586 u16 pf_q = vsi->base_queue + ring->queue_index; 3587 struct i40e_hw *hw = &vsi->back->hw; 3588 struct i40e_hmc_obj_rxq rx_ctx; 3589 int err = 0; 3590 bool ok; 3591 3592 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3593 3594 /* clear the context structure first */ 3595 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3596 3597 ring->rx_buf_len = vsi->rx_buf_len; 3598 3599 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 3600 if (ring->vsi->type != I40E_VSI_MAIN) 3601 goto skip; 3602 3603 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 3604 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3605 ring->queue_index, 3606 ring->q_vector->napi.napi_id, 3607 ring->rx_buf_len); 3608 if (err) 3609 return err; 3610 } 3611 3612 ring->xsk_pool = i40e_xsk_pool(ring); 3613 if (ring->xsk_pool) { 3614 xdp_rxq_info_unreg(&ring->xdp_rxq); 3615 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool); 3616 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3617 ring->queue_index, 3618 ring->q_vector->napi.napi_id, 3619 ring->rx_buf_len); 3620 if (err) 3621 return err; 3622 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3623 MEM_TYPE_XSK_BUFF_POOL, 3624 NULL); 3625 if (err) 3626 return err; 3627 dev_info(&vsi->back->pdev->dev, 3628 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3629 ring->queue_index); 3630 3631 } else { 3632 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3633 MEM_TYPE_PAGE_SHARED, 3634 NULL); 3635 if (err) 3636 return err; 3637 } 3638 3639 skip: 3640 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3641 3642 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3643 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3644 3645 rx_ctx.base = (ring->dma / 128); 3646 rx_ctx.qlen = ring->count; 3647 3648 /* use 16 byte descriptors */ 3649 rx_ctx.dsize = 0; 3650 3651 /* descriptor type is always zero 3652 * rx_ctx.dtype = 0; 3653 */ 3654 rx_ctx.hsplit_0 = 0; 3655 3656 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3657 if (hw->revision_id == 0) 3658 rx_ctx.lrxqthresh = 0; 3659 else 3660 rx_ctx.lrxqthresh = 1; 3661 rx_ctx.crcstrip = 1; 3662 rx_ctx.l2tsel = 1; 3663 /* this controls whether VLAN is stripped from inner headers */ 3664 rx_ctx.showiv = 0; 3665 /* set the prefena field to 1 because the manual says to */ 3666 rx_ctx.prefena = 1; 3667 3668 /* clear the context in the HMC */ 3669 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3670 if (err) { 3671 dev_info(&vsi->back->pdev->dev, 3672 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3673 ring->queue_index, pf_q, err); 3674 return -ENOMEM; 3675 } 3676 3677 /* set the context in the HMC */ 3678 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3679 if (err) { 3680 dev_info(&vsi->back->pdev->dev, 3681 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3682 ring->queue_index, pf_q, err); 3683 return -ENOMEM; 3684 } 3685 3686 /* configure Rx buffer alignment */ 3687 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3688 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3689 dev_info(&vsi->back->pdev->dev, 3690 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3691 return -EOPNOTSUPP; 3692 } 3693 clear_ring_build_skb_enabled(ring); 3694 } else { 3695 set_ring_build_skb_enabled(ring); 3696 } 3697 3698 ring->rx_offset = i40e_rx_offset(ring); 3699 3700 /* cache tail for quicker writes, and clear the reg before use */ 3701 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3702 writel(0, ring->tail); 3703 3704 if (ring->xsk_pool) { 3705 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3706 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3707 } else { 3708 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3709 } 3710 if (!ok) { 3711 /* Log this in case the user has forgotten to give the kernel 3712 * any buffers, even later in the application. 3713 */ 3714 dev_info(&vsi->back->pdev->dev, 3715 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3716 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3717 ring->queue_index, pf_q); 3718 } 3719 3720 return 0; 3721 } 3722 3723 /** 3724 * i40e_vsi_configure_tx - Configure the VSI for Tx 3725 * @vsi: VSI structure describing this set of rings and resources 3726 * 3727 * Configure the Tx VSI for operation. 3728 **/ 3729 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3730 { 3731 int err = 0; 3732 u16 i; 3733 3734 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3735 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3736 3737 if (err || !i40e_enabled_xdp_vsi(vsi)) 3738 return err; 3739 3740 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3741 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3742 3743 return err; 3744 } 3745 3746 /** 3747 * i40e_vsi_configure_rx - Configure the VSI for Rx 3748 * @vsi: the VSI being configured 3749 * 3750 * Configure the Rx VSI for operation. 3751 **/ 3752 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3753 { 3754 int err = 0; 3755 u16 i; 3756 3757 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3758 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3759 3760 #if (PAGE_SIZE < 8192) 3761 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3762 vsi->netdev->mtu <= ETH_DATA_LEN) { 3763 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3764 vsi->max_frame = vsi->rx_buf_len; 3765 } 3766 #endif 3767 3768 /* set up individual rings */ 3769 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3770 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3771 3772 return err; 3773 } 3774 3775 /** 3776 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3777 * @vsi: ptr to the VSI 3778 **/ 3779 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3780 { 3781 struct i40e_ring *tx_ring, *rx_ring; 3782 u16 qoffset, qcount; 3783 int i, n; 3784 3785 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3786 /* Reset the TC information */ 3787 for (i = 0; i < vsi->num_queue_pairs; i++) { 3788 rx_ring = vsi->rx_rings[i]; 3789 tx_ring = vsi->tx_rings[i]; 3790 rx_ring->dcb_tc = 0; 3791 tx_ring->dcb_tc = 0; 3792 } 3793 return; 3794 } 3795 3796 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3797 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3798 continue; 3799 3800 qoffset = vsi->tc_config.tc_info[n].qoffset; 3801 qcount = vsi->tc_config.tc_info[n].qcount; 3802 for (i = qoffset; i < (qoffset + qcount); i++) { 3803 rx_ring = vsi->rx_rings[i]; 3804 tx_ring = vsi->tx_rings[i]; 3805 rx_ring->dcb_tc = n; 3806 tx_ring->dcb_tc = n; 3807 } 3808 } 3809 } 3810 3811 /** 3812 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3813 * @vsi: ptr to the VSI 3814 **/ 3815 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3816 { 3817 if (vsi->netdev) 3818 i40e_set_rx_mode(vsi->netdev); 3819 } 3820 3821 /** 3822 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3823 * @pf: Pointer to the targeted PF 3824 * 3825 * Set all flow director counters to 0. 3826 */ 3827 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3828 { 3829 pf->fd_tcp4_filter_cnt = 0; 3830 pf->fd_udp4_filter_cnt = 0; 3831 pf->fd_sctp4_filter_cnt = 0; 3832 pf->fd_ip4_filter_cnt = 0; 3833 pf->fd_tcp6_filter_cnt = 0; 3834 pf->fd_udp6_filter_cnt = 0; 3835 pf->fd_sctp6_filter_cnt = 0; 3836 pf->fd_ip6_filter_cnt = 0; 3837 } 3838 3839 /** 3840 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3841 * @vsi: Pointer to the targeted VSI 3842 * 3843 * This function replays the hlist on the hw where all the SB Flow Director 3844 * filters were saved. 3845 **/ 3846 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3847 { 3848 struct i40e_fdir_filter *filter; 3849 struct i40e_pf *pf = vsi->back; 3850 struct hlist_node *node; 3851 3852 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3853 return; 3854 3855 /* Reset FDir counters as we're replaying all existing filters */ 3856 i40e_reset_fdir_filter_cnt(pf); 3857 3858 hlist_for_each_entry_safe(filter, node, 3859 &pf->fdir_filter_list, fdir_node) { 3860 i40e_add_del_fdir(vsi, filter, true); 3861 } 3862 } 3863 3864 /** 3865 * i40e_vsi_configure - Set up the VSI for action 3866 * @vsi: the VSI being configured 3867 **/ 3868 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3869 { 3870 int err; 3871 3872 i40e_set_vsi_rx_mode(vsi); 3873 i40e_restore_vlan(vsi); 3874 i40e_vsi_config_dcb_rings(vsi); 3875 err = i40e_vsi_configure_tx(vsi); 3876 if (!err) 3877 err = i40e_vsi_configure_rx(vsi); 3878 3879 return err; 3880 } 3881 3882 /** 3883 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3884 * @vsi: the VSI being configured 3885 **/ 3886 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3887 { 3888 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3889 struct i40e_pf *pf = vsi->back; 3890 struct i40e_hw *hw = &pf->hw; 3891 u16 vector; 3892 int i, q; 3893 u32 qp; 3894 3895 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3896 * and PFINT_LNKLSTn registers, e.g.: 3897 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3898 */ 3899 qp = vsi->base_queue; 3900 vector = vsi->base_vector; 3901 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3902 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3903 3904 q_vector->rx.next_update = jiffies + 1; 3905 q_vector->rx.target_itr = 3906 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3907 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3908 q_vector->rx.target_itr >> 1); 3909 q_vector->rx.current_itr = q_vector->rx.target_itr; 3910 3911 q_vector->tx.next_update = jiffies + 1; 3912 q_vector->tx.target_itr = 3913 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3914 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3915 q_vector->tx.target_itr >> 1); 3916 q_vector->tx.current_itr = q_vector->tx.target_itr; 3917 3918 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3919 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3920 3921 /* begin of linked list for RX queue assigned to this vector */ 3922 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3923 for (q = 0; q < q_vector->num_ringpairs; q++) { 3924 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3925 u32 val; 3926 3927 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3928 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3929 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3930 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3931 (I40E_QUEUE_TYPE_TX << 3932 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3933 3934 wr32(hw, I40E_QINT_RQCTL(qp), val); 3935 3936 if (has_xdp) { 3937 /* TX queue with next queue set to TX */ 3938 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3939 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3940 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3941 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3942 (I40E_QUEUE_TYPE_TX << 3943 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3944 3945 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3946 } 3947 /* TX queue with next RX or end of linked list */ 3948 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3949 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3950 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3951 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3952 (I40E_QUEUE_TYPE_RX << 3953 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3954 3955 /* Terminate the linked list */ 3956 if (q == (q_vector->num_ringpairs - 1)) 3957 val |= (I40E_QUEUE_END_OF_LIST << 3958 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3959 3960 wr32(hw, I40E_QINT_TQCTL(qp), val); 3961 qp++; 3962 } 3963 } 3964 3965 i40e_flush(hw); 3966 } 3967 3968 /** 3969 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3970 * @pf: pointer to private device data structure 3971 **/ 3972 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3973 { 3974 struct i40e_hw *hw = &pf->hw; 3975 u32 val; 3976 3977 /* clear things first */ 3978 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3979 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3980 3981 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3982 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3983 I40E_PFINT_ICR0_ENA_GRST_MASK | 3984 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3985 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3986 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3987 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3988 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3989 3990 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 3991 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3992 3993 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3994 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3995 3996 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3997 3998 /* SW_ITR_IDX = 0, but don't change INTENA */ 3999 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 4000 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 4001 4002 /* OTHER_ITR_IDX = 0 */ 4003 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 4004 } 4005 4006 /** 4007 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 4008 * @vsi: the VSI being configured 4009 **/ 4010 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 4011 { 4012 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 4013 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4014 struct i40e_pf *pf = vsi->back; 4015 struct i40e_hw *hw = &pf->hw; 4016 4017 /* set the ITR configuration */ 4018 q_vector->rx.next_update = jiffies + 1; 4019 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 4020 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 4021 q_vector->rx.current_itr = q_vector->rx.target_itr; 4022 q_vector->tx.next_update = jiffies + 1; 4023 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 4024 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 4025 q_vector->tx.current_itr = q_vector->tx.target_itr; 4026 4027 i40e_enable_misc_int_causes(pf); 4028 4029 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4030 wr32(hw, I40E_PFINT_LNKLST0, 0); 4031 4032 /* Associate the queue pair to the vector and enable the queue 4033 * interrupt RX queue in linked list with next queue set to TX 4034 */ 4035 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4036 4037 if (i40e_enabled_xdp_vsi(vsi)) { 4038 /* TX queue in linked list with next queue set to TX */ 4039 wr32(hw, I40E_QINT_TQCTL(nextqp), 4040 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4041 } 4042 4043 /* last TX queue so the next RX queue doesn't matter */ 4044 wr32(hw, I40E_QINT_TQCTL(0), 4045 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4046 i40e_flush(hw); 4047 } 4048 4049 /** 4050 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4051 * @pf: board private structure 4052 **/ 4053 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4054 { 4055 struct i40e_hw *hw = &pf->hw; 4056 4057 wr32(hw, I40E_PFINT_DYN_CTL0, 4058 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4059 i40e_flush(hw); 4060 } 4061 4062 /** 4063 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4064 * @pf: board private structure 4065 **/ 4066 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4067 { 4068 struct i40e_hw *hw = &pf->hw; 4069 u32 val; 4070 4071 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4072 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4073 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4074 4075 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4076 i40e_flush(hw); 4077 } 4078 4079 /** 4080 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4081 * @irq: interrupt number 4082 * @data: pointer to a q_vector 4083 **/ 4084 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4085 { 4086 struct i40e_q_vector *q_vector = data; 4087 4088 if (!q_vector->tx.ring && !q_vector->rx.ring) 4089 return IRQ_HANDLED; 4090 4091 napi_schedule_irqoff(&q_vector->napi); 4092 4093 return IRQ_HANDLED; 4094 } 4095 4096 /** 4097 * i40e_irq_affinity_notify - Callback for affinity changes 4098 * @notify: context as to what irq was changed 4099 * @mask: the new affinity mask 4100 * 4101 * This is a callback function used by the irq_set_affinity_notifier function 4102 * so that we may register to receive changes to the irq affinity masks. 4103 **/ 4104 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4105 const cpumask_t *mask) 4106 { 4107 struct i40e_q_vector *q_vector = 4108 container_of(notify, struct i40e_q_vector, affinity_notify); 4109 4110 cpumask_copy(&q_vector->affinity_mask, mask); 4111 } 4112 4113 /** 4114 * i40e_irq_affinity_release - Callback for affinity notifier release 4115 * @ref: internal core kernel usage 4116 * 4117 * This is a callback function used by the irq_set_affinity_notifier function 4118 * to inform the current notification subscriber that they will no longer 4119 * receive notifications. 4120 **/ 4121 static void i40e_irq_affinity_release(struct kref *ref) {} 4122 4123 /** 4124 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4125 * @vsi: the VSI being configured 4126 * @basename: name for the vector 4127 * 4128 * Allocates MSI-X vectors and requests interrupts from the kernel. 4129 **/ 4130 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4131 { 4132 int q_vectors = vsi->num_q_vectors; 4133 struct i40e_pf *pf = vsi->back; 4134 int base = vsi->base_vector; 4135 int rx_int_idx = 0; 4136 int tx_int_idx = 0; 4137 int vector, err; 4138 int irq_num; 4139 int cpu; 4140 4141 for (vector = 0; vector < q_vectors; vector++) { 4142 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4143 4144 irq_num = pf->msix_entries[base + vector].vector; 4145 4146 if (q_vector->tx.ring && q_vector->rx.ring) { 4147 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4148 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4149 tx_int_idx++; 4150 } else if (q_vector->rx.ring) { 4151 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4152 "%s-%s-%d", basename, "rx", rx_int_idx++); 4153 } else if (q_vector->tx.ring) { 4154 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4155 "%s-%s-%d", basename, "tx", tx_int_idx++); 4156 } else { 4157 /* skip this unused q_vector */ 4158 continue; 4159 } 4160 err = request_irq(irq_num, 4161 vsi->irq_handler, 4162 0, 4163 q_vector->name, 4164 q_vector); 4165 if (err) { 4166 dev_info(&pf->pdev->dev, 4167 "MSIX request_irq failed, error: %d\n", err); 4168 goto free_queue_irqs; 4169 } 4170 4171 /* register for affinity change notifications */ 4172 q_vector->irq_num = irq_num; 4173 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4174 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4175 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4176 /* Spread affinity hints out across online CPUs. 4177 * 4178 * get_cpu_mask returns a static constant mask with 4179 * a permanent lifetime so it's ok to pass to 4180 * irq_update_affinity_hint without making a copy. 4181 */ 4182 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4183 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4184 } 4185 4186 vsi->irqs_ready = true; 4187 return 0; 4188 4189 free_queue_irqs: 4190 while (vector) { 4191 vector--; 4192 irq_num = pf->msix_entries[base + vector].vector; 4193 irq_set_affinity_notifier(irq_num, NULL); 4194 irq_update_affinity_hint(irq_num, NULL); 4195 free_irq(irq_num, &vsi->q_vectors[vector]); 4196 } 4197 return err; 4198 } 4199 4200 /** 4201 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4202 * @vsi: the VSI being un-configured 4203 **/ 4204 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4205 { 4206 struct i40e_pf *pf = vsi->back; 4207 struct i40e_hw *hw = &pf->hw; 4208 int base = vsi->base_vector; 4209 int i; 4210 4211 /* disable interrupt causation from each queue */ 4212 for (i = 0; i < vsi->num_queue_pairs; i++) { 4213 u32 val; 4214 4215 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4216 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4217 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4218 4219 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4220 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4221 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4222 4223 if (!i40e_enabled_xdp_vsi(vsi)) 4224 continue; 4225 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4226 } 4227 4228 /* disable each interrupt */ 4229 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4230 for (i = vsi->base_vector; 4231 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4232 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4233 4234 i40e_flush(hw); 4235 for (i = 0; i < vsi->num_q_vectors; i++) 4236 synchronize_irq(pf->msix_entries[i + base].vector); 4237 } else { 4238 /* Legacy and MSI mode - this stops all interrupt handling */ 4239 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4240 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4241 i40e_flush(hw); 4242 synchronize_irq(pf->pdev->irq); 4243 } 4244 } 4245 4246 /** 4247 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4248 * @vsi: the VSI being configured 4249 **/ 4250 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4251 { 4252 struct i40e_pf *pf = vsi->back; 4253 int i; 4254 4255 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4256 for (i = 0; i < vsi->num_q_vectors; i++) 4257 i40e_irq_dynamic_enable(vsi, i); 4258 } else { 4259 i40e_irq_dynamic_enable_icr0(pf); 4260 } 4261 4262 i40e_flush(&pf->hw); 4263 return 0; 4264 } 4265 4266 /** 4267 * i40e_free_misc_vector - Free the vector that handles non-queue events 4268 * @pf: board private structure 4269 **/ 4270 static void i40e_free_misc_vector(struct i40e_pf *pf) 4271 { 4272 /* Disable ICR 0 */ 4273 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4274 i40e_flush(&pf->hw); 4275 4276 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4277 free_irq(pf->msix_entries[0].vector, pf); 4278 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4279 } 4280 } 4281 4282 /** 4283 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4284 * @irq: interrupt number 4285 * @data: pointer to a q_vector 4286 * 4287 * This is the handler used for all MSI/Legacy interrupts, and deals 4288 * with both queue and non-queue interrupts. This is also used in 4289 * MSIX mode to handle the non-queue interrupts. 4290 **/ 4291 static irqreturn_t i40e_intr(int irq, void *data) 4292 { 4293 struct i40e_pf *pf = (struct i40e_pf *)data; 4294 struct i40e_hw *hw = &pf->hw; 4295 irqreturn_t ret = IRQ_NONE; 4296 u32 icr0, icr0_remaining; 4297 u32 val, ena_mask; 4298 4299 icr0 = rd32(hw, I40E_PFINT_ICR0); 4300 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4301 4302 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4303 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4304 goto enable_intr; 4305 4306 /* if interrupt but no bits showing, must be SWINT */ 4307 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4308 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4309 pf->sw_int_count++; 4310 4311 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4312 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4313 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4314 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4315 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4316 } 4317 4318 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4319 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4320 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4321 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4322 4323 /* We do not have a way to disarm Queue causes while leaving 4324 * interrupt enabled for all other causes, ideally 4325 * interrupt should be disabled while we are in NAPI but 4326 * this is not a performance path and napi_schedule() 4327 * can deal with rescheduling. 4328 */ 4329 if (!test_bit(__I40E_DOWN, pf->state)) 4330 napi_schedule_irqoff(&q_vector->napi); 4331 } 4332 4333 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4334 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4335 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4336 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4337 } 4338 4339 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4340 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4341 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4342 } 4343 4344 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4345 /* disable any further VFLR event notifications */ 4346 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4347 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4348 4349 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4350 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4351 } else { 4352 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4353 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4354 } 4355 } 4356 4357 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4358 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4359 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4360 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4361 val = rd32(hw, I40E_GLGEN_RSTAT); 4362 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val); 4363 if (val == I40E_RESET_CORER) { 4364 pf->corer_count++; 4365 } else if (val == I40E_RESET_GLOBR) { 4366 pf->globr_count++; 4367 } else if (val == I40E_RESET_EMPR) { 4368 pf->empr_count++; 4369 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4370 } 4371 } 4372 4373 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4374 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4375 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4376 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4377 rd32(hw, I40E_PFHMC_ERRORINFO), 4378 rd32(hw, I40E_PFHMC_ERRORDATA)); 4379 } 4380 4381 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4382 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4383 4384 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4385 schedule_work(&pf->ptp_extts0_work); 4386 4387 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4388 i40e_ptp_tx_hwtstamp(pf); 4389 4390 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4391 } 4392 4393 /* If a critical error is pending we have no choice but to reset the 4394 * device. 4395 * Report and mask out any remaining unexpected interrupts. 4396 */ 4397 icr0_remaining = icr0 & ena_mask; 4398 if (icr0_remaining) { 4399 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4400 icr0_remaining); 4401 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4402 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4403 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4404 dev_info(&pf->pdev->dev, "device will be reset\n"); 4405 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4406 i40e_service_event_schedule(pf); 4407 } 4408 ena_mask &= ~icr0_remaining; 4409 } 4410 ret = IRQ_HANDLED; 4411 4412 enable_intr: 4413 /* re-enable interrupt causes */ 4414 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4415 if (!test_bit(__I40E_DOWN, pf->state) || 4416 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4417 i40e_service_event_schedule(pf); 4418 i40e_irq_dynamic_enable_icr0(pf); 4419 } 4420 4421 return ret; 4422 } 4423 4424 /** 4425 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4426 * @tx_ring: tx ring to clean 4427 * @budget: how many cleans we're allowed 4428 * 4429 * Returns true if there's any budget left (e.g. the clean is finished) 4430 **/ 4431 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4432 { 4433 struct i40e_vsi *vsi = tx_ring->vsi; 4434 u16 i = tx_ring->next_to_clean; 4435 struct i40e_tx_buffer *tx_buf; 4436 struct i40e_tx_desc *tx_desc; 4437 4438 tx_buf = &tx_ring->tx_bi[i]; 4439 tx_desc = I40E_TX_DESC(tx_ring, i); 4440 i -= tx_ring->count; 4441 4442 do { 4443 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4444 4445 /* if next_to_watch is not set then there is no work pending */ 4446 if (!eop_desc) 4447 break; 4448 4449 /* prevent any other reads prior to eop_desc */ 4450 smp_rmb(); 4451 4452 /* if the descriptor isn't done, no work yet to do */ 4453 if (!(eop_desc->cmd_type_offset_bsz & 4454 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4455 break; 4456 4457 /* clear next_to_watch to prevent false hangs */ 4458 tx_buf->next_to_watch = NULL; 4459 4460 tx_desc->buffer_addr = 0; 4461 tx_desc->cmd_type_offset_bsz = 0; 4462 /* move past filter desc */ 4463 tx_buf++; 4464 tx_desc++; 4465 i++; 4466 if (unlikely(!i)) { 4467 i -= tx_ring->count; 4468 tx_buf = tx_ring->tx_bi; 4469 tx_desc = I40E_TX_DESC(tx_ring, 0); 4470 } 4471 /* unmap skb header data */ 4472 dma_unmap_single(tx_ring->dev, 4473 dma_unmap_addr(tx_buf, dma), 4474 dma_unmap_len(tx_buf, len), 4475 DMA_TO_DEVICE); 4476 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4477 kfree(tx_buf->raw_buf); 4478 4479 tx_buf->raw_buf = NULL; 4480 tx_buf->tx_flags = 0; 4481 tx_buf->next_to_watch = NULL; 4482 dma_unmap_len_set(tx_buf, len, 0); 4483 tx_desc->buffer_addr = 0; 4484 tx_desc->cmd_type_offset_bsz = 0; 4485 4486 /* move us past the eop_desc for start of next FD desc */ 4487 tx_buf++; 4488 tx_desc++; 4489 i++; 4490 if (unlikely(!i)) { 4491 i -= tx_ring->count; 4492 tx_buf = tx_ring->tx_bi; 4493 tx_desc = I40E_TX_DESC(tx_ring, 0); 4494 } 4495 4496 /* update budget accounting */ 4497 budget--; 4498 } while (likely(budget)); 4499 4500 i += tx_ring->count; 4501 tx_ring->next_to_clean = i; 4502 4503 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4504 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4505 4506 return budget > 0; 4507 } 4508 4509 /** 4510 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4511 * @irq: interrupt number 4512 * @data: pointer to a q_vector 4513 **/ 4514 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4515 { 4516 struct i40e_q_vector *q_vector = data; 4517 struct i40e_vsi *vsi; 4518 4519 if (!q_vector->tx.ring) 4520 return IRQ_HANDLED; 4521 4522 vsi = q_vector->tx.ring->vsi; 4523 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4524 4525 return IRQ_HANDLED; 4526 } 4527 4528 /** 4529 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4530 * @vsi: the VSI being configured 4531 * @v_idx: vector index 4532 * @qp_idx: queue pair index 4533 **/ 4534 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4535 { 4536 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4537 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4538 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4539 4540 tx_ring->q_vector = q_vector; 4541 tx_ring->next = q_vector->tx.ring; 4542 q_vector->tx.ring = tx_ring; 4543 q_vector->tx.count++; 4544 4545 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4546 if (i40e_enabled_xdp_vsi(vsi)) { 4547 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4548 4549 xdp_ring->q_vector = q_vector; 4550 xdp_ring->next = q_vector->tx.ring; 4551 q_vector->tx.ring = xdp_ring; 4552 q_vector->tx.count++; 4553 } 4554 4555 rx_ring->q_vector = q_vector; 4556 rx_ring->next = q_vector->rx.ring; 4557 q_vector->rx.ring = rx_ring; 4558 q_vector->rx.count++; 4559 } 4560 4561 /** 4562 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4563 * @vsi: the VSI being configured 4564 * 4565 * This function maps descriptor rings to the queue-specific vectors 4566 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4567 * one vector per queue pair, but on a constrained vector budget, we 4568 * group the queue pairs as "efficiently" as possible. 4569 **/ 4570 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4571 { 4572 int qp_remaining = vsi->num_queue_pairs; 4573 int q_vectors = vsi->num_q_vectors; 4574 int num_ringpairs; 4575 int v_start = 0; 4576 int qp_idx = 0; 4577 4578 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4579 * group them so there are multiple queues per vector. 4580 * It is also important to go through all the vectors available to be 4581 * sure that if we don't use all the vectors, that the remaining vectors 4582 * are cleared. This is especially important when decreasing the 4583 * number of queues in use. 4584 */ 4585 for (; v_start < q_vectors; v_start++) { 4586 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4587 4588 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4589 4590 q_vector->num_ringpairs = num_ringpairs; 4591 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4592 4593 q_vector->rx.count = 0; 4594 q_vector->tx.count = 0; 4595 q_vector->rx.ring = NULL; 4596 q_vector->tx.ring = NULL; 4597 4598 while (num_ringpairs--) { 4599 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4600 qp_idx++; 4601 qp_remaining--; 4602 } 4603 } 4604 } 4605 4606 /** 4607 * i40e_vsi_request_irq - Request IRQ from the OS 4608 * @vsi: the VSI being configured 4609 * @basename: name for the vector 4610 **/ 4611 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4612 { 4613 struct i40e_pf *pf = vsi->back; 4614 int err; 4615 4616 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4617 err = i40e_vsi_request_irq_msix(vsi, basename); 4618 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4619 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4620 pf->int_name, pf); 4621 else 4622 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4623 pf->int_name, pf); 4624 4625 if (err) 4626 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4627 4628 return err; 4629 } 4630 4631 #ifdef CONFIG_NET_POLL_CONTROLLER 4632 /** 4633 * i40e_netpoll - A Polling 'interrupt' handler 4634 * @netdev: network interface device structure 4635 * 4636 * This is used by netconsole to send skbs without having to re-enable 4637 * interrupts. It's not called while the normal interrupt routine is executing. 4638 **/ 4639 static void i40e_netpoll(struct net_device *netdev) 4640 { 4641 struct i40e_netdev_priv *np = netdev_priv(netdev); 4642 struct i40e_vsi *vsi = np->vsi; 4643 struct i40e_pf *pf = vsi->back; 4644 int i; 4645 4646 /* if interface is down do nothing */ 4647 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4648 return; 4649 4650 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4651 for (i = 0; i < vsi->num_q_vectors; i++) 4652 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4653 } else { 4654 i40e_intr(pf->pdev->irq, netdev); 4655 } 4656 } 4657 #endif 4658 4659 #define I40E_QTX_ENA_WAIT_COUNT 50 4660 4661 /** 4662 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4663 * @pf: the PF being configured 4664 * @pf_q: the PF queue 4665 * @enable: enable or disable state of the queue 4666 * 4667 * This routine will wait for the given Tx queue of the PF to reach the 4668 * enabled or disabled state. 4669 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4670 * multiple retries; else will return 0 in case of success. 4671 **/ 4672 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4673 { 4674 int i; 4675 u32 tx_reg; 4676 4677 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4678 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4679 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4680 break; 4681 4682 usleep_range(10, 20); 4683 } 4684 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4685 return -ETIMEDOUT; 4686 4687 return 0; 4688 } 4689 4690 /** 4691 * i40e_control_tx_q - Start or stop a particular Tx queue 4692 * @pf: the PF structure 4693 * @pf_q: the PF queue to configure 4694 * @enable: start or stop the queue 4695 * 4696 * This function enables or disables a single queue. Note that any delay 4697 * required after the operation is expected to be handled by the caller of 4698 * this function. 4699 **/ 4700 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4701 { 4702 struct i40e_hw *hw = &pf->hw; 4703 u32 tx_reg; 4704 int i; 4705 4706 /* warn the TX unit of coming changes */ 4707 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4708 if (!enable) 4709 usleep_range(10, 20); 4710 4711 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4712 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4713 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4714 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4715 break; 4716 usleep_range(1000, 2000); 4717 } 4718 4719 /* Skip if the queue is already in the requested state */ 4720 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4721 return; 4722 4723 /* turn on/off the queue */ 4724 if (enable) { 4725 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4726 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4727 } else { 4728 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4729 } 4730 4731 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4732 } 4733 4734 /** 4735 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4736 * @seid: VSI SEID 4737 * @pf: the PF structure 4738 * @pf_q: the PF queue to configure 4739 * @is_xdp: true if the queue is used for XDP 4740 * @enable: start or stop the queue 4741 **/ 4742 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4743 bool is_xdp, bool enable) 4744 { 4745 int ret; 4746 4747 i40e_control_tx_q(pf, pf_q, enable); 4748 4749 /* wait for the change to finish */ 4750 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4751 if (ret) { 4752 dev_info(&pf->pdev->dev, 4753 "VSI seid %d %sTx ring %d %sable timeout\n", 4754 seid, (is_xdp ? "XDP " : ""), pf_q, 4755 (enable ? "en" : "dis")); 4756 } 4757 4758 return ret; 4759 } 4760 4761 /** 4762 * i40e_vsi_enable_tx - Start a VSI's rings 4763 * @vsi: the VSI being configured 4764 **/ 4765 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4766 { 4767 struct i40e_pf *pf = vsi->back; 4768 int i, pf_q, ret = 0; 4769 4770 pf_q = vsi->base_queue; 4771 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4772 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4773 pf_q, 4774 false /*is xdp*/, true); 4775 if (ret) 4776 break; 4777 4778 if (!i40e_enabled_xdp_vsi(vsi)) 4779 continue; 4780 4781 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4782 pf_q + vsi->alloc_queue_pairs, 4783 true /*is xdp*/, true); 4784 if (ret) 4785 break; 4786 } 4787 return ret; 4788 } 4789 4790 /** 4791 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4792 * @pf: the PF being configured 4793 * @pf_q: the PF queue 4794 * @enable: enable or disable state of the queue 4795 * 4796 * This routine will wait for the given Rx queue of the PF to reach the 4797 * enabled or disabled state. 4798 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4799 * multiple retries; else will return 0 in case of success. 4800 **/ 4801 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4802 { 4803 int i; 4804 u32 rx_reg; 4805 4806 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4807 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4808 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4809 break; 4810 4811 usleep_range(10, 20); 4812 } 4813 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4814 return -ETIMEDOUT; 4815 4816 return 0; 4817 } 4818 4819 /** 4820 * i40e_control_rx_q - Start or stop a particular Rx queue 4821 * @pf: the PF structure 4822 * @pf_q: the PF queue to configure 4823 * @enable: start or stop the queue 4824 * 4825 * This function enables or disables a single queue. Note that 4826 * any delay required after the operation is expected to be 4827 * handled by the caller of this function. 4828 **/ 4829 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4830 { 4831 struct i40e_hw *hw = &pf->hw; 4832 u32 rx_reg; 4833 int i; 4834 4835 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4836 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4837 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4838 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4839 break; 4840 usleep_range(1000, 2000); 4841 } 4842 4843 /* Skip if the queue is already in the requested state */ 4844 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4845 return; 4846 4847 /* turn on/off the queue */ 4848 if (enable) 4849 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4850 else 4851 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4852 4853 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4854 } 4855 4856 /** 4857 * i40e_control_wait_rx_q 4858 * @pf: the PF structure 4859 * @pf_q: queue being configured 4860 * @enable: start or stop the rings 4861 * 4862 * This function enables or disables a single queue along with waiting 4863 * for the change to finish. The caller of this function should handle 4864 * the delays needed in the case of disabling queues. 4865 **/ 4866 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4867 { 4868 int ret = 0; 4869 4870 i40e_control_rx_q(pf, pf_q, enable); 4871 4872 /* wait for the change to finish */ 4873 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4874 if (ret) 4875 return ret; 4876 4877 return ret; 4878 } 4879 4880 /** 4881 * i40e_vsi_enable_rx - Start a VSI's rings 4882 * @vsi: the VSI being configured 4883 **/ 4884 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4885 { 4886 struct i40e_pf *pf = vsi->back; 4887 int i, pf_q, ret = 0; 4888 4889 pf_q = vsi->base_queue; 4890 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4891 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4892 if (ret) { 4893 dev_info(&pf->pdev->dev, 4894 "VSI seid %d Rx ring %d enable timeout\n", 4895 vsi->seid, pf_q); 4896 break; 4897 } 4898 } 4899 4900 return ret; 4901 } 4902 4903 /** 4904 * i40e_vsi_start_rings - Start a VSI's rings 4905 * @vsi: the VSI being configured 4906 **/ 4907 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4908 { 4909 int ret = 0; 4910 4911 /* do rx first for enable and last for disable */ 4912 ret = i40e_vsi_enable_rx(vsi); 4913 if (ret) 4914 return ret; 4915 ret = i40e_vsi_enable_tx(vsi); 4916 4917 return ret; 4918 } 4919 4920 #define I40E_DISABLE_TX_GAP_MSEC 50 4921 4922 /** 4923 * i40e_vsi_stop_rings - Stop a VSI's rings 4924 * @vsi: the VSI being configured 4925 **/ 4926 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4927 { 4928 struct i40e_pf *pf = vsi->back; 4929 int pf_q, err, q_end; 4930 4931 /* When port TX is suspended, don't wait */ 4932 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4933 return i40e_vsi_stop_rings_no_wait(vsi); 4934 4935 q_end = vsi->base_queue + vsi->num_queue_pairs; 4936 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) 4937 i40e_pre_tx_queue_cfg(&pf->hw, (u32)pf_q, false); 4938 4939 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) { 4940 err = i40e_control_wait_rx_q(pf, pf_q, false); 4941 if (err) 4942 dev_info(&pf->pdev->dev, 4943 "VSI seid %d Rx ring %d disable timeout\n", 4944 vsi->seid, pf_q); 4945 } 4946 4947 msleep(I40E_DISABLE_TX_GAP_MSEC); 4948 pf_q = vsi->base_queue; 4949 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) 4950 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4951 4952 i40e_vsi_wait_queues_disabled(vsi); 4953 } 4954 4955 /** 4956 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4957 * @vsi: the VSI being shutdown 4958 * 4959 * This function stops all the rings for a VSI but does not delay to verify 4960 * that rings have been disabled. It is expected that the caller is shutting 4961 * down multiple VSIs at once and will delay together for all the VSIs after 4962 * initiating the shutdown. This is particularly useful for shutting down lots 4963 * of VFs together. Otherwise, a large delay can be incurred while configuring 4964 * each VSI in serial. 4965 **/ 4966 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4967 { 4968 struct i40e_pf *pf = vsi->back; 4969 int i, pf_q; 4970 4971 pf_q = vsi->base_queue; 4972 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4973 i40e_control_tx_q(pf, pf_q, false); 4974 i40e_control_rx_q(pf, pf_q, false); 4975 } 4976 } 4977 4978 /** 4979 * i40e_vsi_free_irq - Free the irq association with the OS 4980 * @vsi: the VSI being configured 4981 **/ 4982 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4983 { 4984 struct i40e_pf *pf = vsi->back; 4985 struct i40e_hw *hw = &pf->hw; 4986 int base = vsi->base_vector; 4987 u32 val, qp; 4988 int i; 4989 4990 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4991 if (!vsi->q_vectors) 4992 return; 4993 4994 if (!vsi->irqs_ready) 4995 return; 4996 4997 vsi->irqs_ready = false; 4998 for (i = 0; i < vsi->num_q_vectors; i++) { 4999 int irq_num; 5000 u16 vector; 5001 5002 vector = i + base; 5003 irq_num = pf->msix_entries[vector].vector; 5004 5005 /* free only the irqs that were actually requested */ 5006 if (!vsi->q_vectors[i] || 5007 !vsi->q_vectors[i]->num_ringpairs) 5008 continue; 5009 5010 /* clear the affinity notifier in the IRQ descriptor */ 5011 irq_set_affinity_notifier(irq_num, NULL); 5012 /* remove our suggested affinity mask for this IRQ */ 5013 irq_update_affinity_hint(irq_num, NULL); 5014 free_irq(irq_num, vsi->q_vectors[i]); 5015 5016 /* Tear down the interrupt queue link list 5017 * 5018 * We know that they come in pairs and always 5019 * the Rx first, then the Tx. To clear the 5020 * link list, stick the EOL value into the 5021 * next_q field of the registers. 5022 */ 5023 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 5024 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, 5025 val); 5026 val |= I40E_QUEUE_END_OF_LIST 5027 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5028 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 5029 5030 while (qp != I40E_QUEUE_END_OF_LIST) { 5031 u32 next; 5032 5033 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5034 5035 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5036 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5037 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5038 I40E_QINT_RQCTL_INTEVENT_MASK); 5039 5040 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5041 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5042 5043 wr32(hw, I40E_QINT_RQCTL(qp), val); 5044 5045 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5046 5047 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK, 5048 val); 5049 5050 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5051 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5052 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5053 I40E_QINT_TQCTL_INTEVENT_MASK); 5054 5055 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5056 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5057 5058 wr32(hw, I40E_QINT_TQCTL(qp), val); 5059 qp = next; 5060 } 5061 } 5062 } else { 5063 free_irq(pf->pdev->irq, pf); 5064 5065 val = rd32(hw, I40E_PFINT_LNKLST0); 5066 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val); 5067 val |= I40E_QUEUE_END_OF_LIST 5068 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5069 wr32(hw, I40E_PFINT_LNKLST0, val); 5070 5071 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5072 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5073 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5074 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5075 I40E_QINT_RQCTL_INTEVENT_MASK); 5076 5077 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5078 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5079 5080 wr32(hw, I40E_QINT_RQCTL(qp), val); 5081 5082 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5083 5084 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5085 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5086 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5087 I40E_QINT_TQCTL_INTEVENT_MASK); 5088 5089 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5090 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5091 5092 wr32(hw, I40E_QINT_TQCTL(qp), val); 5093 } 5094 } 5095 5096 /** 5097 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5098 * @vsi: the VSI being configured 5099 * @v_idx: Index of vector to be freed 5100 * 5101 * This function frees the memory allocated to the q_vector. In addition if 5102 * NAPI is enabled it will delete any references to the NAPI struct prior 5103 * to freeing the q_vector. 5104 **/ 5105 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5106 { 5107 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5108 struct i40e_ring *ring; 5109 5110 if (!q_vector) 5111 return; 5112 5113 /* disassociate q_vector from rings */ 5114 i40e_for_each_ring(ring, q_vector->tx) 5115 ring->q_vector = NULL; 5116 5117 i40e_for_each_ring(ring, q_vector->rx) 5118 ring->q_vector = NULL; 5119 5120 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5121 if (vsi->netdev) 5122 netif_napi_del(&q_vector->napi); 5123 5124 vsi->q_vectors[v_idx] = NULL; 5125 5126 kfree_rcu(q_vector, rcu); 5127 } 5128 5129 /** 5130 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5131 * @vsi: the VSI being un-configured 5132 * 5133 * This frees the memory allocated to the q_vectors and 5134 * deletes references to the NAPI struct. 5135 **/ 5136 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5137 { 5138 int v_idx; 5139 5140 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5141 i40e_free_q_vector(vsi, v_idx); 5142 } 5143 5144 /** 5145 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5146 * @pf: board private structure 5147 **/ 5148 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5149 { 5150 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5151 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5152 pci_disable_msix(pf->pdev); 5153 kfree(pf->msix_entries); 5154 pf->msix_entries = NULL; 5155 kfree(pf->irq_pile); 5156 pf->irq_pile = NULL; 5157 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5158 pci_disable_msi(pf->pdev); 5159 } 5160 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5161 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5162 } 5163 5164 /** 5165 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5166 * @pf: board private structure 5167 * 5168 * We go through and clear interrupt specific resources and reset the structure 5169 * to pre-load conditions 5170 **/ 5171 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5172 { 5173 int i; 5174 5175 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5176 i40e_free_misc_vector(pf); 5177 5178 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5179 I40E_IWARP_IRQ_PILE_ID); 5180 5181 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5182 for (i = 0; i < pf->num_alloc_vsi; i++) 5183 if (pf->vsi[i]) 5184 i40e_vsi_free_q_vectors(pf->vsi[i]); 5185 i40e_reset_interrupt_capability(pf); 5186 } 5187 5188 /** 5189 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5190 * @vsi: the VSI being configured 5191 **/ 5192 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5193 { 5194 int q_idx; 5195 5196 if (!vsi->netdev) 5197 return; 5198 5199 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5200 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5201 5202 if (q_vector->rx.ring || q_vector->tx.ring) 5203 napi_enable(&q_vector->napi); 5204 } 5205 } 5206 5207 /** 5208 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5209 * @vsi: the VSI being configured 5210 **/ 5211 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5212 { 5213 int q_idx; 5214 5215 if (!vsi->netdev) 5216 return; 5217 5218 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5219 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5220 5221 if (q_vector->rx.ring || q_vector->tx.ring) 5222 napi_disable(&q_vector->napi); 5223 } 5224 } 5225 5226 /** 5227 * i40e_vsi_close - Shut down a VSI 5228 * @vsi: the vsi to be quelled 5229 **/ 5230 static void i40e_vsi_close(struct i40e_vsi *vsi) 5231 { 5232 struct i40e_pf *pf = vsi->back; 5233 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5234 i40e_down(vsi); 5235 i40e_vsi_free_irq(vsi); 5236 i40e_vsi_free_tx_resources(vsi); 5237 i40e_vsi_free_rx_resources(vsi); 5238 vsi->current_netdev_flags = 0; 5239 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5240 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5241 set_bit(__I40E_CLIENT_RESET, pf->state); 5242 } 5243 5244 /** 5245 * i40e_quiesce_vsi - Pause a given VSI 5246 * @vsi: the VSI being paused 5247 **/ 5248 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5249 { 5250 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5251 return; 5252 5253 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5254 if (vsi->netdev && netif_running(vsi->netdev)) 5255 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5256 else 5257 i40e_vsi_close(vsi); 5258 } 5259 5260 /** 5261 * i40e_unquiesce_vsi - Resume a given VSI 5262 * @vsi: the VSI being resumed 5263 **/ 5264 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5265 { 5266 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5267 return; 5268 5269 if (vsi->netdev && netif_running(vsi->netdev)) 5270 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5271 else 5272 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5273 } 5274 5275 /** 5276 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5277 * @pf: the PF 5278 **/ 5279 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5280 { 5281 int v; 5282 5283 for (v = 0; v < pf->num_alloc_vsi; v++) { 5284 if (pf->vsi[v]) 5285 i40e_quiesce_vsi(pf->vsi[v]); 5286 } 5287 } 5288 5289 /** 5290 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5291 * @pf: the PF 5292 **/ 5293 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5294 { 5295 int v; 5296 5297 for (v = 0; v < pf->num_alloc_vsi; v++) { 5298 if (pf->vsi[v]) 5299 i40e_unquiesce_vsi(pf->vsi[v]); 5300 } 5301 } 5302 5303 /** 5304 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5305 * @vsi: the VSI being configured 5306 * 5307 * Wait until all queues on a given VSI have been disabled. 5308 **/ 5309 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5310 { 5311 struct i40e_pf *pf = vsi->back; 5312 int i, pf_q, ret; 5313 5314 pf_q = vsi->base_queue; 5315 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5316 /* Check and wait for the Tx queue */ 5317 ret = i40e_pf_txq_wait(pf, pf_q, false); 5318 if (ret) { 5319 dev_info(&pf->pdev->dev, 5320 "VSI seid %d Tx ring %d disable timeout\n", 5321 vsi->seid, pf_q); 5322 return ret; 5323 } 5324 5325 if (!i40e_enabled_xdp_vsi(vsi)) 5326 goto wait_rx; 5327 5328 /* Check and wait for the XDP Tx queue */ 5329 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5330 false); 5331 if (ret) { 5332 dev_info(&pf->pdev->dev, 5333 "VSI seid %d XDP Tx ring %d disable timeout\n", 5334 vsi->seid, pf_q); 5335 return ret; 5336 } 5337 wait_rx: 5338 /* Check and wait for the Rx queue */ 5339 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5340 if (ret) { 5341 dev_info(&pf->pdev->dev, 5342 "VSI seid %d Rx ring %d disable timeout\n", 5343 vsi->seid, pf_q); 5344 return ret; 5345 } 5346 } 5347 5348 return 0; 5349 } 5350 5351 #ifdef CONFIG_I40E_DCB 5352 /** 5353 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5354 * @pf: the PF 5355 * 5356 * This function waits for the queues to be in disabled state for all the 5357 * VSIs that are managed by this PF. 5358 **/ 5359 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5360 { 5361 int v, ret = 0; 5362 5363 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 5364 if (pf->vsi[v]) { 5365 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5366 if (ret) 5367 break; 5368 } 5369 } 5370 5371 return ret; 5372 } 5373 5374 #endif 5375 5376 /** 5377 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5378 * @pf: pointer to PF 5379 * 5380 * Get TC map for ISCSI PF type that will include iSCSI TC 5381 * and LAN TC. 5382 **/ 5383 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5384 { 5385 struct i40e_dcb_app_priority_table app; 5386 struct i40e_hw *hw = &pf->hw; 5387 u8 enabled_tc = 1; /* TC0 is always enabled */ 5388 u8 tc, i; 5389 /* Get the iSCSI APP TLV */ 5390 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5391 5392 for (i = 0; i < dcbcfg->numapps; i++) { 5393 app = dcbcfg->app[i]; 5394 if (app.selector == I40E_APP_SEL_TCPIP && 5395 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5396 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5397 enabled_tc |= BIT(tc); 5398 break; 5399 } 5400 } 5401 5402 return enabled_tc; 5403 } 5404 5405 /** 5406 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5407 * @dcbcfg: the corresponding DCBx configuration structure 5408 * 5409 * Return the number of TCs from given DCBx configuration 5410 **/ 5411 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5412 { 5413 int i, tc_unused = 0; 5414 u8 num_tc = 0; 5415 u8 ret = 0; 5416 5417 /* Scan the ETS Config Priority Table to find 5418 * traffic class enabled for a given priority 5419 * and create a bitmask of enabled TCs 5420 */ 5421 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5422 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5423 5424 /* Now scan the bitmask to check for 5425 * contiguous TCs starting with TC0 5426 */ 5427 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5428 if (num_tc & BIT(i)) { 5429 if (!tc_unused) { 5430 ret++; 5431 } else { 5432 pr_err("Non-contiguous TC - Disabling DCB\n"); 5433 return 1; 5434 } 5435 } else { 5436 tc_unused = 1; 5437 } 5438 } 5439 5440 /* There is always at least TC0 */ 5441 if (!ret) 5442 ret = 1; 5443 5444 return ret; 5445 } 5446 5447 /** 5448 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5449 * @dcbcfg: the corresponding DCBx configuration structure 5450 * 5451 * Query the current DCB configuration and return the number of 5452 * traffic classes enabled from the given DCBX config 5453 **/ 5454 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5455 { 5456 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5457 u8 enabled_tc = 1; 5458 u8 i; 5459 5460 for (i = 0; i < num_tc; i++) 5461 enabled_tc |= BIT(i); 5462 5463 return enabled_tc; 5464 } 5465 5466 /** 5467 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5468 * @pf: PF being queried 5469 * 5470 * Query the current MQPRIO configuration and return the number of 5471 * traffic classes enabled. 5472 **/ 5473 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5474 { 5475 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5476 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5477 u8 enabled_tc = 1, i; 5478 5479 for (i = 1; i < num_tc; i++) 5480 enabled_tc |= BIT(i); 5481 return enabled_tc; 5482 } 5483 5484 /** 5485 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5486 * @pf: PF being queried 5487 * 5488 * Return number of traffic classes enabled for the given PF 5489 **/ 5490 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5491 { 5492 struct i40e_hw *hw = &pf->hw; 5493 u8 i, enabled_tc = 1; 5494 u8 num_tc = 0; 5495 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5496 5497 if (i40e_is_tc_mqprio_enabled(pf)) 5498 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5499 5500 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5501 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5502 return 1; 5503 5504 /* SFP mode will be enabled for all TCs on port */ 5505 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5506 return i40e_dcb_get_num_tc(dcbcfg); 5507 5508 /* MFP mode return count of enabled TCs for this PF */ 5509 if (pf->hw.func_caps.iscsi) 5510 enabled_tc = i40e_get_iscsi_tc_map(pf); 5511 else 5512 return 1; /* Only TC0 */ 5513 5514 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5515 if (enabled_tc & BIT(i)) 5516 num_tc++; 5517 } 5518 return num_tc; 5519 } 5520 5521 /** 5522 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5523 * @pf: PF being queried 5524 * 5525 * Return a bitmap for enabled traffic classes for this PF. 5526 **/ 5527 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5528 { 5529 if (i40e_is_tc_mqprio_enabled(pf)) 5530 return i40e_mqprio_get_enabled_tc(pf); 5531 5532 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5533 * default TC 5534 */ 5535 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5536 return I40E_DEFAULT_TRAFFIC_CLASS; 5537 5538 /* SFP mode we want PF to be enabled for all TCs */ 5539 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5540 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5541 5542 /* MFP enabled and iSCSI PF type */ 5543 if (pf->hw.func_caps.iscsi) 5544 return i40e_get_iscsi_tc_map(pf); 5545 else 5546 return I40E_DEFAULT_TRAFFIC_CLASS; 5547 } 5548 5549 /** 5550 * i40e_vsi_get_bw_info - Query VSI BW Information 5551 * @vsi: the VSI being queried 5552 * 5553 * Returns 0 on success, negative value on failure 5554 **/ 5555 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5556 { 5557 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5558 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5559 struct i40e_pf *pf = vsi->back; 5560 struct i40e_hw *hw = &pf->hw; 5561 u32 tc_bw_max; 5562 int ret; 5563 int i; 5564 5565 /* Get the VSI level BW configuration */ 5566 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5567 if (ret) { 5568 dev_info(&pf->pdev->dev, 5569 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5570 ERR_PTR(ret), 5571 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5572 return -EINVAL; 5573 } 5574 5575 /* Get the VSI level BW configuration per TC */ 5576 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5577 NULL); 5578 if (ret) { 5579 dev_info(&pf->pdev->dev, 5580 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5581 ERR_PTR(ret), 5582 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5583 return -EINVAL; 5584 } 5585 5586 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5587 dev_info(&pf->pdev->dev, 5588 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5589 bw_config.tc_valid_bits, 5590 bw_ets_config.tc_valid_bits); 5591 /* Still continuing */ 5592 } 5593 5594 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5595 vsi->bw_max_quanta = bw_config.max_bw; 5596 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5597 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5598 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5599 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5600 vsi->bw_ets_limit_credits[i] = 5601 le16_to_cpu(bw_ets_config.credits[i]); 5602 /* 3 bits out of 4 for each TC */ 5603 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5604 } 5605 5606 return 0; 5607 } 5608 5609 /** 5610 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5611 * @vsi: the VSI being configured 5612 * @enabled_tc: TC bitmap 5613 * @bw_share: BW shared credits per TC 5614 * 5615 * Returns 0 on success, negative value on failure 5616 **/ 5617 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5618 u8 *bw_share) 5619 { 5620 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5621 struct i40e_pf *pf = vsi->back; 5622 int ret; 5623 int i; 5624 5625 /* There is no need to reset BW when mqprio mode is on. */ 5626 if (i40e_is_tc_mqprio_enabled(pf)) 5627 return 0; 5628 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5629 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5630 if (ret) 5631 dev_info(&pf->pdev->dev, 5632 "Failed to reset tx rate for vsi->seid %u\n", 5633 vsi->seid); 5634 return ret; 5635 } 5636 memset(&bw_data, 0, sizeof(bw_data)); 5637 bw_data.tc_valid_bits = enabled_tc; 5638 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5639 bw_data.tc_bw_credits[i] = bw_share[i]; 5640 5641 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5642 if (ret) { 5643 dev_info(&pf->pdev->dev, 5644 "AQ command Config VSI BW allocation per TC failed = %d\n", 5645 pf->hw.aq.asq_last_status); 5646 return -EINVAL; 5647 } 5648 5649 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5650 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5651 5652 return 0; 5653 } 5654 5655 /** 5656 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5657 * @vsi: the VSI being configured 5658 * @enabled_tc: TC map to be enabled 5659 * 5660 **/ 5661 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5662 { 5663 struct net_device *netdev = vsi->netdev; 5664 struct i40e_pf *pf = vsi->back; 5665 struct i40e_hw *hw = &pf->hw; 5666 u8 netdev_tc = 0; 5667 int i; 5668 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5669 5670 if (!netdev) 5671 return; 5672 5673 if (!enabled_tc) { 5674 netdev_reset_tc(netdev); 5675 return; 5676 } 5677 5678 /* Set up actual enabled TCs on the VSI */ 5679 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5680 return; 5681 5682 /* set per TC queues for the VSI */ 5683 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5684 /* Only set TC queues for enabled tcs 5685 * 5686 * e.g. For a VSI that has TC0 and TC3 enabled the 5687 * enabled_tc bitmap would be 0x00001001; the driver 5688 * will set the numtc for netdev as 2 that will be 5689 * referenced by the netdev layer as TC 0 and 1. 5690 */ 5691 if (vsi->tc_config.enabled_tc & BIT(i)) 5692 netdev_set_tc_queue(netdev, 5693 vsi->tc_config.tc_info[i].netdev_tc, 5694 vsi->tc_config.tc_info[i].qcount, 5695 vsi->tc_config.tc_info[i].qoffset); 5696 } 5697 5698 if (i40e_is_tc_mqprio_enabled(pf)) 5699 return; 5700 5701 /* Assign UP2TC map for the VSI */ 5702 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5703 /* Get the actual TC# for the UP */ 5704 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5705 /* Get the mapped netdev TC# for the UP */ 5706 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5707 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5708 } 5709 } 5710 5711 /** 5712 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5713 * @vsi: the VSI being configured 5714 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5715 **/ 5716 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5717 struct i40e_vsi_context *ctxt) 5718 { 5719 /* copy just the sections touched not the entire info 5720 * since not all sections are valid as returned by 5721 * update vsi params 5722 */ 5723 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5724 memcpy(&vsi->info.queue_mapping, 5725 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5726 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5727 sizeof(vsi->info.tc_mapping)); 5728 } 5729 5730 /** 5731 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5732 * @vsi: the VSI being reconfigured 5733 * @vsi_offset: offset from main VF VSI 5734 */ 5735 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5736 { 5737 struct i40e_vsi_context ctxt = {}; 5738 struct i40e_pf *pf; 5739 struct i40e_hw *hw; 5740 int ret; 5741 5742 if (!vsi) 5743 return -EINVAL; 5744 pf = vsi->back; 5745 hw = &pf->hw; 5746 5747 ctxt.seid = vsi->seid; 5748 ctxt.pf_num = hw->pf_id; 5749 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5750 ctxt.uplink_seid = vsi->uplink_seid; 5751 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5752 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5753 ctxt.info = vsi->info; 5754 5755 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5756 false); 5757 if (vsi->reconfig_rss) { 5758 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5759 vsi->num_queue_pairs); 5760 ret = i40e_vsi_config_rss(vsi); 5761 if (ret) { 5762 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5763 return ret; 5764 } 5765 vsi->reconfig_rss = false; 5766 } 5767 5768 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5769 if (ret) { 5770 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5771 ERR_PTR(ret), 5772 i40e_aq_str(hw, hw->aq.asq_last_status)); 5773 return ret; 5774 } 5775 /* update the local VSI info with updated queue map */ 5776 i40e_vsi_update_queue_map(vsi, &ctxt); 5777 vsi->info.valid_sections = 0; 5778 5779 return ret; 5780 } 5781 5782 /** 5783 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5784 * @vsi: VSI to be configured 5785 * @enabled_tc: TC bitmap 5786 * 5787 * This configures a particular VSI for TCs that are mapped to the 5788 * given TC bitmap. It uses default bandwidth share for TCs across 5789 * VSIs to configure TC for a particular VSI. 5790 * 5791 * NOTE: 5792 * It is expected that the VSI queues have been quisced before calling 5793 * this function. 5794 **/ 5795 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5796 { 5797 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5798 struct i40e_pf *pf = vsi->back; 5799 struct i40e_hw *hw = &pf->hw; 5800 struct i40e_vsi_context ctxt; 5801 int ret = 0; 5802 int i; 5803 5804 /* Check if enabled_tc is same as existing or new TCs */ 5805 if (vsi->tc_config.enabled_tc == enabled_tc && 5806 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5807 return ret; 5808 5809 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5810 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5811 if (enabled_tc & BIT(i)) 5812 bw_share[i] = 1; 5813 } 5814 5815 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5816 if (ret) { 5817 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5818 5819 dev_info(&pf->pdev->dev, 5820 "Failed configuring TC map %d for VSI %d\n", 5821 enabled_tc, vsi->seid); 5822 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5823 &bw_config, NULL); 5824 if (ret) { 5825 dev_info(&pf->pdev->dev, 5826 "Failed querying vsi bw info, err %pe aq_err %s\n", 5827 ERR_PTR(ret), 5828 i40e_aq_str(hw, hw->aq.asq_last_status)); 5829 goto out; 5830 } 5831 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5832 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5833 5834 if (!valid_tc) 5835 valid_tc = bw_config.tc_valid_bits; 5836 /* Always enable TC0, no matter what */ 5837 valid_tc |= 1; 5838 dev_info(&pf->pdev->dev, 5839 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5840 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5841 enabled_tc = valid_tc; 5842 } 5843 5844 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5845 if (ret) { 5846 dev_err(&pf->pdev->dev, 5847 "Unable to configure TC map %d for VSI %d\n", 5848 enabled_tc, vsi->seid); 5849 goto out; 5850 } 5851 } 5852 5853 /* Update Queue Pairs Mapping for currently enabled UPs */ 5854 ctxt.seid = vsi->seid; 5855 ctxt.pf_num = vsi->back->hw.pf_id; 5856 ctxt.vf_num = 0; 5857 ctxt.uplink_seid = vsi->uplink_seid; 5858 ctxt.info = vsi->info; 5859 if (i40e_is_tc_mqprio_enabled(pf)) { 5860 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5861 if (ret) 5862 goto out; 5863 } else { 5864 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5865 } 5866 5867 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5868 * queues changed. 5869 */ 5870 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5871 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5872 vsi->num_queue_pairs); 5873 ret = i40e_vsi_config_rss(vsi); 5874 if (ret) { 5875 dev_info(&vsi->back->pdev->dev, 5876 "Failed to reconfig rss for num_queues\n"); 5877 return ret; 5878 } 5879 vsi->reconfig_rss = false; 5880 } 5881 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5882 ctxt.info.valid_sections |= 5883 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5884 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5885 } 5886 5887 /* Update the VSI after updating the VSI queue-mapping 5888 * information 5889 */ 5890 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5891 if (ret) { 5892 dev_info(&pf->pdev->dev, 5893 "Update vsi tc config failed, err %pe aq_err %s\n", 5894 ERR_PTR(ret), 5895 i40e_aq_str(hw, hw->aq.asq_last_status)); 5896 goto out; 5897 } 5898 /* update the local VSI info with updated queue map */ 5899 i40e_vsi_update_queue_map(vsi, &ctxt); 5900 vsi->info.valid_sections = 0; 5901 5902 /* Update current VSI BW information */ 5903 ret = i40e_vsi_get_bw_info(vsi); 5904 if (ret) { 5905 dev_info(&pf->pdev->dev, 5906 "Failed updating vsi bw info, err %pe aq_err %s\n", 5907 ERR_PTR(ret), 5908 i40e_aq_str(hw, hw->aq.asq_last_status)); 5909 goto out; 5910 } 5911 5912 /* Update the netdev TC setup */ 5913 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5914 out: 5915 return ret; 5916 } 5917 5918 /** 5919 * i40e_get_link_speed - Returns link speed for the interface 5920 * @vsi: VSI to be configured 5921 * 5922 **/ 5923 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5924 { 5925 struct i40e_pf *pf = vsi->back; 5926 5927 switch (pf->hw.phy.link_info.link_speed) { 5928 case I40E_LINK_SPEED_40GB: 5929 return 40000; 5930 case I40E_LINK_SPEED_25GB: 5931 return 25000; 5932 case I40E_LINK_SPEED_20GB: 5933 return 20000; 5934 case I40E_LINK_SPEED_10GB: 5935 return 10000; 5936 case I40E_LINK_SPEED_1GB: 5937 return 1000; 5938 default: 5939 return -EINVAL; 5940 } 5941 } 5942 5943 /** 5944 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5945 * @vsi: Pointer to vsi structure 5946 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5947 * 5948 * Helper function to convert units before send to set BW limit 5949 **/ 5950 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5951 { 5952 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5953 dev_warn(&vsi->back->pdev->dev, 5954 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5955 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5956 } else { 5957 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5958 } 5959 5960 return max_tx_rate; 5961 } 5962 5963 /** 5964 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5965 * @vsi: VSI to be configured 5966 * @seid: seid of the channel/VSI 5967 * @max_tx_rate: max TX rate to be configured as BW limit 5968 * 5969 * Helper function to set BW limit for a given VSI 5970 **/ 5971 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5972 { 5973 struct i40e_pf *pf = vsi->back; 5974 u64 credits = 0; 5975 int speed = 0; 5976 int ret = 0; 5977 5978 speed = i40e_get_link_speed(vsi); 5979 if (max_tx_rate > speed) { 5980 dev_err(&pf->pdev->dev, 5981 "Invalid max tx rate %llu specified for VSI seid %d.", 5982 max_tx_rate, seid); 5983 return -EINVAL; 5984 } 5985 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 5986 dev_warn(&pf->pdev->dev, 5987 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5988 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5989 } 5990 5991 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5992 credits = max_tx_rate; 5993 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5994 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5995 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5996 if (ret) 5997 dev_err(&pf->pdev->dev, 5998 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 5999 max_tx_rate, seid, ERR_PTR(ret), 6000 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6001 return ret; 6002 } 6003 6004 /** 6005 * i40e_remove_queue_channels - Remove queue channels for the TCs 6006 * @vsi: VSI to be configured 6007 * 6008 * Remove queue channels for the TCs 6009 **/ 6010 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 6011 { 6012 enum i40e_admin_queue_err last_aq_status; 6013 struct i40e_cloud_filter *cfilter; 6014 struct i40e_channel *ch, *ch_tmp; 6015 struct i40e_pf *pf = vsi->back; 6016 struct hlist_node *node; 6017 int ret, i; 6018 6019 /* Reset rss size that was stored when reconfiguring rss for 6020 * channel VSIs with non-power-of-2 queue count. 6021 */ 6022 vsi->current_rss_size = 0; 6023 6024 /* perform cleanup for channels if they exist */ 6025 if (list_empty(&vsi->ch_list)) 6026 return; 6027 6028 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6029 struct i40e_vsi *p_vsi; 6030 6031 list_del(&ch->list); 6032 p_vsi = ch->parent_vsi; 6033 if (!p_vsi || !ch->initialized) { 6034 kfree(ch); 6035 continue; 6036 } 6037 /* Reset queue contexts */ 6038 for (i = 0; i < ch->num_queue_pairs; i++) { 6039 struct i40e_ring *tx_ring, *rx_ring; 6040 u16 pf_q; 6041 6042 pf_q = ch->base_queue + i; 6043 tx_ring = vsi->tx_rings[pf_q]; 6044 tx_ring->ch = NULL; 6045 6046 rx_ring = vsi->rx_rings[pf_q]; 6047 rx_ring->ch = NULL; 6048 } 6049 6050 /* Reset BW configured for this VSI via mqprio */ 6051 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6052 if (ret) 6053 dev_info(&vsi->back->pdev->dev, 6054 "Failed to reset tx rate for ch->seid %u\n", 6055 ch->seid); 6056 6057 /* delete cloud filters associated with this channel */ 6058 hlist_for_each_entry_safe(cfilter, node, 6059 &pf->cloud_filter_list, cloud_node) { 6060 if (cfilter->seid != ch->seid) 6061 continue; 6062 6063 hash_del(&cfilter->cloud_node); 6064 if (cfilter->dst_port) 6065 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6066 cfilter, 6067 false); 6068 else 6069 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6070 false); 6071 last_aq_status = pf->hw.aq.asq_last_status; 6072 if (ret) 6073 dev_info(&pf->pdev->dev, 6074 "Failed to delete cloud filter, err %pe aq_err %s\n", 6075 ERR_PTR(ret), 6076 i40e_aq_str(&pf->hw, last_aq_status)); 6077 kfree(cfilter); 6078 } 6079 6080 /* delete VSI from FW */ 6081 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6082 NULL); 6083 if (ret) 6084 dev_err(&vsi->back->pdev->dev, 6085 "unable to remove channel (%d) for parent VSI(%d)\n", 6086 ch->seid, p_vsi->seid); 6087 kfree(ch); 6088 } 6089 INIT_LIST_HEAD(&vsi->ch_list); 6090 } 6091 6092 /** 6093 * i40e_get_max_queues_for_channel 6094 * @vsi: ptr to VSI to which channels are associated with 6095 * 6096 * Helper function which returns max value among the queue counts set on the 6097 * channels/TCs created. 6098 **/ 6099 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6100 { 6101 struct i40e_channel *ch, *ch_tmp; 6102 int max = 0; 6103 6104 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6105 if (!ch->initialized) 6106 continue; 6107 if (ch->num_queue_pairs > max) 6108 max = ch->num_queue_pairs; 6109 } 6110 6111 return max; 6112 } 6113 6114 /** 6115 * i40e_validate_num_queues - validate num_queues w.r.t channel 6116 * @pf: ptr to PF device 6117 * @num_queues: number of queues 6118 * @vsi: the parent VSI 6119 * @reconfig_rss: indicates should the RSS be reconfigured or not 6120 * 6121 * This function validates number of queues in the context of new channel 6122 * which is being established and determines if RSS should be reconfigured 6123 * or not for parent VSI. 6124 **/ 6125 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6126 struct i40e_vsi *vsi, bool *reconfig_rss) 6127 { 6128 int max_ch_queues; 6129 6130 if (!reconfig_rss) 6131 return -EINVAL; 6132 6133 *reconfig_rss = false; 6134 if (vsi->current_rss_size) { 6135 if (num_queues > vsi->current_rss_size) { 6136 dev_dbg(&pf->pdev->dev, 6137 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6138 num_queues, vsi->current_rss_size); 6139 return -EINVAL; 6140 } else if ((num_queues < vsi->current_rss_size) && 6141 (!is_power_of_2(num_queues))) { 6142 dev_dbg(&pf->pdev->dev, 6143 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6144 num_queues, vsi->current_rss_size); 6145 return -EINVAL; 6146 } 6147 } 6148 6149 if (!is_power_of_2(num_queues)) { 6150 /* Find the max num_queues configured for channel if channel 6151 * exist. 6152 * if channel exist, then enforce 'num_queues' to be more than 6153 * max ever queues configured for channel. 6154 */ 6155 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6156 if (num_queues < max_ch_queues) { 6157 dev_dbg(&pf->pdev->dev, 6158 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6159 num_queues, max_ch_queues); 6160 return -EINVAL; 6161 } 6162 *reconfig_rss = true; 6163 } 6164 6165 return 0; 6166 } 6167 6168 /** 6169 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6170 * @vsi: the VSI being setup 6171 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6172 * 6173 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6174 **/ 6175 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6176 { 6177 struct i40e_pf *pf = vsi->back; 6178 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6179 struct i40e_hw *hw = &pf->hw; 6180 int local_rss_size; 6181 u8 *lut; 6182 int ret; 6183 6184 if (!vsi->rss_size) 6185 return -EINVAL; 6186 6187 if (rss_size > vsi->rss_size) 6188 return -EINVAL; 6189 6190 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6191 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6192 if (!lut) 6193 return -ENOMEM; 6194 6195 /* Ignoring user configured lut if there is one */ 6196 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6197 6198 /* Use user configured hash key if there is one, otherwise 6199 * use default. 6200 */ 6201 if (vsi->rss_hkey_user) 6202 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6203 else 6204 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6205 6206 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6207 if (ret) { 6208 dev_info(&pf->pdev->dev, 6209 "Cannot set RSS lut, err %pe aq_err %s\n", 6210 ERR_PTR(ret), 6211 i40e_aq_str(hw, hw->aq.asq_last_status)); 6212 kfree(lut); 6213 return ret; 6214 } 6215 kfree(lut); 6216 6217 /* Do the update w.r.t. storing rss_size */ 6218 if (!vsi->orig_rss_size) 6219 vsi->orig_rss_size = vsi->rss_size; 6220 vsi->current_rss_size = local_rss_size; 6221 6222 return ret; 6223 } 6224 6225 /** 6226 * i40e_channel_setup_queue_map - Setup a channel queue map 6227 * @pf: ptr to PF device 6228 * @ctxt: VSI context structure 6229 * @ch: ptr to channel structure 6230 * 6231 * Setup queue map for a specific channel 6232 **/ 6233 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6234 struct i40e_vsi_context *ctxt, 6235 struct i40e_channel *ch) 6236 { 6237 u16 qcount, qmap, sections = 0; 6238 u8 offset = 0; 6239 int pow; 6240 6241 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6242 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6243 6244 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6245 ch->num_queue_pairs = qcount; 6246 6247 /* find the next higher power-of-2 of num queue pairs */ 6248 pow = ilog2(qcount); 6249 if (!is_power_of_2(qcount)) 6250 pow++; 6251 6252 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6253 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6254 6255 /* Setup queue TC[0].qmap for given VSI context */ 6256 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6257 6258 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6259 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6260 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6261 ctxt->info.valid_sections |= cpu_to_le16(sections); 6262 } 6263 6264 /** 6265 * i40e_add_channel - add a channel by adding VSI 6266 * @pf: ptr to PF device 6267 * @uplink_seid: underlying HW switching element (VEB) ID 6268 * @ch: ptr to channel structure 6269 * 6270 * Add a channel (VSI) using add_vsi and queue_map 6271 **/ 6272 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6273 struct i40e_channel *ch) 6274 { 6275 struct i40e_hw *hw = &pf->hw; 6276 struct i40e_vsi_context ctxt; 6277 u8 enabled_tc = 0x1; /* TC0 enabled */ 6278 int ret; 6279 6280 if (ch->type != I40E_VSI_VMDQ2) { 6281 dev_info(&pf->pdev->dev, 6282 "add new vsi failed, ch->type %d\n", ch->type); 6283 return -EINVAL; 6284 } 6285 6286 memset(&ctxt, 0, sizeof(ctxt)); 6287 ctxt.pf_num = hw->pf_id; 6288 ctxt.vf_num = 0; 6289 ctxt.uplink_seid = uplink_seid; 6290 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6291 if (ch->type == I40E_VSI_VMDQ2) 6292 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6293 6294 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6295 ctxt.info.valid_sections |= 6296 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6297 ctxt.info.switch_id = 6298 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6299 } 6300 6301 /* Set queue map for a given VSI context */ 6302 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6303 6304 /* Now time to create VSI */ 6305 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6306 if (ret) { 6307 dev_info(&pf->pdev->dev, 6308 "add new vsi failed, err %pe aq_err %s\n", 6309 ERR_PTR(ret), 6310 i40e_aq_str(&pf->hw, 6311 pf->hw.aq.asq_last_status)); 6312 return -ENOENT; 6313 } 6314 6315 /* Success, update channel, set enabled_tc only if the channel 6316 * is not a macvlan 6317 */ 6318 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6319 ch->seid = ctxt.seid; 6320 ch->vsi_number = ctxt.vsi_number; 6321 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6322 6323 /* copy just the sections touched not the entire info 6324 * since not all sections are valid as returned by 6325 * update vsi params 6326 */ 6327 ch->info.mapping_flags = ctxt.info.mapping_flags; 6328 memcpy(&ch->info.queue_mapping, 6329 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6330 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6331 sizeof(ctxt.info.tc_mapping)); 6332 6333 return 0; 6334 } 6335 6336 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6337 u8 *bw_share) 6338 { 6339 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6340 int ret; 6341 int i; 6342 6343 memset(&bw_data, 0, sizeof(bw_data)); 6344 bw_data.tc_valid_bits = ch->enabled_tc; 6345 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6346 bw_data.tc_bw_credits[i] = bw_share[i]; 6347 6348 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6349 &bw_data, NULL); 6350 if (ret) { 6351 dev_info(&vsi->back->pdev->dev, 6352 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6353 vsi->back->hw.aq.asq_last_status, ch->seid); 6354 return -EINVAL; 6355 } 6356 6357 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6358 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6359 6360 return 0; 6361 } 6362 6363 /** 6364 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6365 * @pf: ptr to PF device 6366 * @vsi: the VSI being setup 6367 * @ch: ptr to channel structure 6368 * 6369 * Configure TX rings associated with channel (VSI) since queues are being 6370 * from parent VSI. 6371 **/ 6372 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6373 struct i40e_vsi *vsi, 6374 struct i40e_channel *ch) 6375 { 6376 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6377 int ret; 6378 int i; 6379 6380 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6381 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6382 if (ch->enabled_tc & BIT(i)) 6383 bw_share[i] = 1; 6384 } 6385 6386 /* configure BW for new VSI */ 6387 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6388 if (ret) { 6389 dev_info(&vsi->back->pdev->dev, 6390 "Failed configuring TC map %d for channel (seid %u)\n", 6391 ch->enabled_tc, ch->seid); 6392 return ret; 6393 } 6394 6395 for (i = 0; i < ch->num_queue_pairs; i++) { 6396 struct i40e_ring *tx_ring, *rx_ring; 6397 u16 pf_q; 6398 6399 pf_q = ch->base_queue + i; 6400 6401 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6402 * context 6403 */ 6404 tx_ring = vsi->tx_rings[pf_q]; 6405 tx_ring->ch = ch; 6406 6407 /* Get the RX ring ptr */ 6408 rx_ring = vsi->rx_rings[pf_q]; 6409 rx_ring->ch = ch; 6410 } 6411 6412 return 0; 6413 } 6414 6415 /** 6416 * i40e_setup_hw_channel - setup new channel 6417 * @pf: ptr to PF device 6418 * @vsi: the VSI being setup 6419 * @ch: ptr to channel structure 6420 * @uplink_seid: underlying HW switching element (VEB) ID 6421 * @type: type of channel to be created (VMDq2/VF) 6422 * 6423 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6424 * and configures TX rings accordingly 6425 **/ 6426 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6427 struct i40e_vsi *vsi, 6428 struct i40e_channel *ch, 6429 u16 uplink_seid, u8 type) 6430 { 6431 int ret; 6432 6433 ch->initialized = false; 6434 ch->base_queue = vsi->next_base_queue; 6435 ch->type = type; 6436 6437 /* Proceed with creation of channel (VMDq2) VSI */ 6438 ret = i40e_add_channel(pf, uplink_seid, ch); 6439 if (ret) { 6440 dev_info(&pf->pdev->dev, 6441 "failed to add_channel using uplink_seid %u\n", 6442 uplink_seid); 6443 return ret; 6444 } 6445 6446 /* Mark the successful creation of channel */ 6447 ch->initialized = true; 6448 6449 /* Reconfigure TX queues using QTX_CTL register */ 6450 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6451 if (ret) { 6452 dev_info(&pf->pdev->dev, 6453 "failed to configure TX rings for channel %u\n", 6454 ch->seid); 6455 return ret; 6456 } 6457 6458 /* update 'next_base_queue' */ 6459 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6460 dev_dbg(&pf->pdev->dev, 6461 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6462 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6463 ch->num_queue_pairs, 6464 vsi->next_base_queue); 6465 return ret; 6466 } 6467 6468 /** 6469 * i40e_setup_channel - setup new channel using uplink element 6470 * @pf: ptr to PF device 6471 * @vsi: pointer to the VSI to set up the channel within 6472 * @ch: ptr to channel structure 6473 * 6474 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6475 * and uplink switching element (uplink_seid) 6476 **/ 6477 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6478 struct i40e_channel *ch) 6479 { 6480 u8 vsi_type; 6481 u16 seid; 6482 int ret; 6483 6484 if (vsi->type == I40E_VSI_MAIN) { 6485 vsi_type = I40E_VSI_VMDQ2; 6486 } else { 6487 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6488 vsi->type); 6489 return false; 6490 } 6491 6492 /* underlying switching element */ 6493 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6494 6495 /* create channel (VSI), configure TX rings */ 6496 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6497 if (ret) { 6498 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6499 return false; 6500 } 6501 6502 return ch->initialized ? true : false; 6503 } 6504 6505 /** 6506 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6507 * @vsi: ptr to VSI which has PF backing 6508 * 6509 * Sets up switch mode correctly if it needs to be changed and perform 6510 * what are allowed modes. 6511 **/ 6512 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6513 { 6514 u8 mode; 6515 struct i40e_pf *pf = vsi->back; 6516 struct i40e_hw *hw = &pf->hw; 6517 int ret; 6518 6519 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6520 if (ret) 6521 return -EINVAL; 6522 6523 if (hw->dev_caps.switch_mode) { 6524 /* if switch mode is set, support mode2 (non-tunneled for 6525 * cloud filter) for now 6526 */ 6527 u32 switch_mode = hw->dev_caps.switch_mode & 6528 I40E_SWITCH_MODE_MASK; 6529 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6530 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6531 return 0; 6532 dev_err(&pf->pdev->dev, 6533 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6534 hw->dev_caps.switch_mode); 6535 return -EINVAL; 6536 } 6537 } 6538 6539 /* Set Bit 7 to be valid */ 6540 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6541 6542 /* Set L4type for TCP support */ 6543 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6544 6545 /* Set cloud filter mode */ 6546 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6547 6548 /* Prep mode field for set_switch_config */ 6549 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6550 pf->last_sw_conf_valid_flags, 6551 mode, NULL); 6552 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6553 dev_err(&pf->pdev->dev, 6554 "couldn't set switch config bits, err %pe aq_err %s\n", 6555 ERR_PTR(ret), 6556 i40e_aq_str(hw, 6557 hw->aq.asq_last_status)); 6558 6559 return ret; 6560 } 6561 6562 /** 6563 * i40e_create_queue_channel - function to create channel 6564 * @vsi: VSI to be configured 6565 * @ch: ptr to channel (it contains channel specific params) 6566 * 6567 * This function creates channel (VSI) using num_queues specified by user, 6568 * reconfigs RSS if needed. 6569 **/ 6570 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6571 struct i40e_channel *ch) 6572 { 6573 struct i40e_pf *pf = vsi->back; 6574 bool reconfig_rss; 6575 int err; 6576 6577 if (!ch) 6578 return -EINVAL; 6579 6580 if (!ch->num_queue_pairs) { 6581 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6582 ch->num_queue_pairs); 6583 return -EINVAL; 6584 } 6585 6586 /* validate user requested num_queues for channel */ 6587 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6588 &reconfig_rss); 6589 if (err) { 6590 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6591 ch->num_queue_pairs); 6592 return -EINVAL; 6593 } 6594 6595 /* By default we are in VEPA mode, if this is the first VF/VMDq 6596 * VSI to be added switch to VEB mode. 6597 */ 6598 6599 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6600 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6601 6602 if (vsi->type == I40E_VSI_MAIN) { 6603 if (i40e_is_tc_mqprio_enabled(pf)) 6604 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6605 else 6606 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6607 } 6608 /* now onwards for main VSI, number of queues will be value 6609 * of TC0's queue count 6610 */ 6611 } 6612 6613 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6614 * it should be more than num_queues 6615 */ 6616 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6617 dev_dbg(&pf->pdev->dev, 6618 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6619 vsi->cnt_q_avail, ch->num_queue_pairs); 6620 return -EINVAL; 6621 } 6622 6623 /* reconfig_rss only if vsi type is MAIN_VSI */ 6624 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6625 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6626 if (err) { 6627 dev_info(&pf->pdev->dev, 6628 "Error: unable to reconfig rss for num_queues (%u)\n", 6629 ch->num_queue_pairs); 6630 return -EINVAL; 6631 } 6632 } 6633 6634 if (!i40e_setup_channel(pf, vsi, ch)) { 6635 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6636 return -EINVAL; 6637 } 6638 6639 dev_info(&pf->pdev->dev, 6640 "Setup channel (id:%u) utilizing num_queues %d\n", 6641 ch->seid, ch->num_queue_pairs); 6642 6643 /* configure VSI for BW limit */ 6644 if (ch->max_tx_rate) { 6645 u64 credits = ch->max_tx_rate; 6646 6647 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6648 return -EINVAL; 6649 6650 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6651 dev_dbg(&pf->pdev->dev, 6652 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6653 ch->max_tx_rate, 6654 credits, 6655 ch->seid); 6656 } 6657 6658 /* in case of VF, this will be main SRIOV VSI */ 6659 ch->parent_vsi = vsi; 6660 6661 /* and update main_vsi's count for queue_available to use */ 6662 vsi->cnt_q_avail -= ch->num_queue_pairs; 6663 6664 return 0; 6665 } 6666 6667 /** 6668 * i40e_configure_queue_channels - Add queue channel for the given TCs 6669 * @vsi: VSI to be configured 6670 * 6671 * Configures queue channel mapping to the given TCs 6672 **/ 6673 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6674 { 6675 struct i40e_channel *ch; 6676 u64 max_rate = 0; 6677 int ret = 0, i; 6678 6679 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6680 vsi->tc_seid_map[0] = vsi->seid; 6681 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6682 if (vsi->tc_config.enabled_tc & BIT(i)) { 6683 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6684 if (!ch) { 6685 ret = -ENOMEM; 6686 goto err_free; 6687 } 6688 6689 INIT_LIST_HEAD(&ch->list); 6690 ch->num_queue_pairs = 6691 vsi->tc_config.tc_info[i].qcount; 6692 ch->base_queue = 6693 vsi->tc_config.tc_info[i].qoffset; 6694 6695 /* Bandwidth limit through tc interface is in bytes/s, 6696 * change to Mbit/s 6697 */ 6698 max_rate = vsi->mqprio_qopt.max_rate[i]; 6699 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6700 ch->max_tx_rate = max_rate; 6701 6702 list_add_tail(&ch->list, &vsi->ch_list); 6703 6704 ret = i40e_create_queue_channel(vsi, ch); 6705 if (ret) { 6706 dev_err(&vsi->back->pdev->dev, 6707 "Failed creating queue channel with TC%d: queues %d\n", 6708 i, ch->num_queue_pairs); 6709 goto err_free; 6710 } 6711 vsi->tc_seid_map[i] = ch->seid; 6712 } 6713 } 6714 6715 /* reset to reconfigure TX queue contexts */ 6716 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6717 return ret; 6718 6719 err_free: 6720 i40e_remove_queue_channels(vsi); 6721 return ret; 6722 } 6723 6724 /** 6725 * i40e_veb_config_tc - Configure TCs for given VEB 6726 * @veb: given VEB 6727 * @enabled_tc: TC bitmap 6728 * 6729 * Configures given TC bitmap for VEB (switching) element 6730 **/ 6731 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6732 { 6733 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6734 struct i40e_pf *pf = veb->pf; 6735 int ret = 0; 6736 int i; 6737 6738 /* No TCs or already enabled TCs just return */ 6739 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6740 return ret; 6741 6742 bw_data.tc_valid_bits = enabled_tc; 6743 /* bw_data.absolute_credits is not set (relative) */ 6744 6745 /* Enable ETS TCs with equal BW Share for now */ 6746 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6747 if (enabled_tc & BIT(i)) 6748 bw_data.tc_bw_share_credits[i] = 1; 6749 } 6750 6751 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6752 &bw_data, NULL); 6753 if (ret) { 6754 dev_info(&pf->pdev->dev, 6755 "VEB bw config failed, err %pe aq_err %s\n", 6756 ERR_PTR(ret), 6757 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6758 goto out; 6759 } 6760 6761 /* Update the BW information */ 6762 ret = i40e_veb_get_bw_info(veb); 6763 if (ret) { 6764 dev_info(&pf->pdev->dev, 6765 "Failed getting veb bw config, err %pe aq_err %s\n", 6766 ERR_PTR(ret), 6767 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6768 } 6769 6770 out: 6771 return ret; 6772 } 6773 6774 #ifdef CONFIG_I40E_DCB 6775 /** 6776 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6777 * @pf: PF struct 6778 * 6779 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6780 * the caller would've quiesce all the VSIs before calling 6781 * this function 6782 **/ 6783 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6784 { 6785 u8 tc_map = 0; 6786 int ret; 6787 u8 v; 6788 6789 /* Enable the TCs available on PF to all VEBs */ 6790 tc_map = i40e_pf_get_tc_map(pf); 6791 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6792 return; 6793 6794 for (v = 0; v < I40E_MAX_VEB; v++) { 6795 if (!pf->veb[v]) 6796 continue; 6797 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6798 if (ret) { 6799 dev_info(&pf->pdev->dev, 6800 "Failed configuring TC for VEB seid=%d\n", 6801 pf->veb[v]->seid); 6802 /* Will try to configure as many components */ 6803 } 6804 } 6805 6806 /* Update each VSI */ 6807 for (v = 0; v < pf->num_alloc_vsi; v++) { 6808 if (!pf->vsi[v]) 6809 continue; 6810 6811 /* - Enable all TCs for the LAN VSI 6812 * - For all others keep them at TC0 for now 6813 */ 6814 if (v == pf->lan_vsi) 6815 tc_map = i40e_pf_get_tc_map(pf); 6816 else 6817 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6818 6819 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6820 if (ret) { 6821 dev_info(&pf->pdev->dev, 6822 "Failed configuring TC for VSI seid=%d\n", 6823 pf->vsi[v]->seid); 6824 /* Will try to configure as many components */ 6825 } else { 6826 /* Re-configure VSI vectors based on updated TC map */ 6827 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6828 if (pf->vsi[v]->netdev) 6829 i40e_dcbnl_set_all(pf->vsi[v]); 6830 } 6831 } 6832 } 6833 6834 /** 6835 * i40e_resume_port_tx - Resume port Tx 6836 * @pf: PF struct 6837 * 6838 * Resume a port's Tx and issue a PF reset in case of failure to 6839 * resume. 6840 **/ 6841 static int i40e_resume_port_tx(struct i40e_pf *pf) 6842 { 6843 struct i40e_hw *hw = &pf->hw; 6844 int ret; 6845 6846 ret = i40e_aq_resume_port_tx(hw, NULL); 6847 if (ret) { 6848 dev_info(&pf->pdev->dev, 6849 "Resume Port Tx failed, err %pe aq_err %s\n", 6850 ERR_PTR(ret), 6851 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6852 /* Schedule PF reset to recover */ 6853 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6854 i40e_service_event_schedule(pf); 6855 } 6856 6857 return ret; 6858 } 6859 6860 /** 6861 * i40e_suspend_port_tx - Suspend port Tx 6862 * @pf: PF struct 6863 * 6864 * Suspend a port's Tx and issue a PF reset in case of failure. 6865 **/ 6866 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6867 { 6868 struct i40e_hw *hw = &pf->hw; 6869 int ret; 6870 6871 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6872 if (ret) { 6873 dev_info(&pf->pdev->dev, 6874 "Suspend Port Tx failed, err %pe aq_err %s\n", 6875 ERR_PTR(ret), 6876 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6877 /* Schedule PF reset to recover */ 6878 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6879 i40e_service_event_schedule(pf); 6880 } 6881 6882 return ret; 6883 } 6884 6885 /** 6886 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6887 * @pf: PF being configured 6888 * @new_cfg: New DCBX configuration 6889 * 6890 * Program DCB settings into HW and reconfigure VEB/VSIs on 6891 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6892 **/ 6893 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6894 struct i40e_dcbx_config *new_cfg) 6895 { 6896 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6897 int ret; 6898 6899 /* Check if need reconfiguration */ 6900 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6901 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6902 return 0; 6903 } 6904 6905 /* Config change disable all VSIs */ 6906 i40e_pf_quiesce_all_vsi(pf); 6907 6908 /* Copy the new config to the current config */ 6909 *old_cfg = *new_cfg; 6910 old_cfg->etsrec = old_cfg->etscfg; 6911 ret = i40e_set_dcb_config(&pf->hw); 6912 if (ret) { 6913 dev_info(&pf->pdev->dev, 6914 "Set DCB Config failed, err %pe aq_err %s\n", 6915 ERR_PTR(ret), 6916 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6917 goto out; 6918 } 6919 6920 /* Changes in configuration update VEB/VSI */ 6921 i40e_dcb_reconfigure(pf); 6922 out: 6923 /* In case of reset do not try to resume anything */ 6924 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6925 /* Re-start the VSIs if disabled */ 6926 ret = i40e_resume_port_tx(pf); 6927 /* In case of error no point in resuming VSIs */ 6928 if (ret) 6929 goto err; 6930 i40e_pf_unquiesce_all_vsi(pf); 6931 } 6932 err: 6933 return ret; 6934 } 6935 6936 /** 6937 * i40e_hw_dcb_config - Program new DCBX settings into HW 6938 * @pf: PF being configured 6939 * @new_cfg: New DCBX configuration 6940 * 6941 * Program DCB settings into HW and reconfigure VEB/VSIs on 6942 * given PF 6943 **/ 6944 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6945 { 6946 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6947 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6948 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6949 struct i40e_dcbx_config *old_cfg; 6950 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6951 struct i40e_rx_pb_config pb_cfg; 6952 struct i40e_hw *hw = &pf->hw; 6953 u8 num_ports = hw->num_ports; 6954 bool need_reconfig; 6955 int ret = -EINVAL; 6956 u8 lltc_map = 0; 6957 u8 tc_map = 0; 6958 u8 new_numtc; 6959 u8 i; 6960 6961 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6962 /* Un-pack information to Program ETS HW via shared API 6963 * numtc, tcmap 6964 * LLTC map 6965 * ETS/NON-ETS arbiter mode 6966 * max exponent (credit refills) 6967 * Total number of ports 6968 * PFC priority bit-map 6969 * Priority Table 6970 * BW % per TC 6971 * Arbiter mode between UPs sharing same TC 6972 * TSA table (ETS or non-ETS) 6973 * EEE enabled or not 6974 * MFS TC table 6975 */ 6976 6977 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6978 6979 memset(&ets_data, 0, sizeof(ets_data)); 6980 for (i = 0; i < new_numtc; i++) { 6981 tc_map |= BIT(i); 6982 switch (new_cfg->etscfg.tsatable[i]) { 6983 case I40E_IEEE_TSA_ETS: 6984 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6985 ets_data.tc_bw_share_credits[i] = 6986 new_cfg->etscfg.tcbwtable[i]; 6987 break; 6988 case I40E_IEEE_TSA_STRICT: 6989 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6990 lltc_map |= BIT(i); 6991 ets_data.tc_bw_share_credits[i] = 6992 I40E_DCB_STRICT_PRIO_CREDITS; 6993 break; 6994 default: 6995 /* Invalid TSA type */ 6996 need_reconfig = false; 6997 goto out; 6998 } 6999 } 7000 7001 old_cfg = &hw->local_dcbx_config; 7002 /* Check if need reconfiguration */ 7003 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 7004 7005 /* If needed, enable/disable frame tagging, disable all VSIs 7006 * and suspend port tx 7007 */ 7008 if (need_reconfig) { 7009 /* Enable DCB tagging only when more than one TC */ 7010 if (new_numtc > 1) 7011 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7012 else 7013 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7014 7015 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7016 /* Reconfiguration needed quiesce all VSIs */ 7017 i40e_pf_quiesce_all_vsi(pf); 7018 ret = i40e_suspend_port_tx(pf); 7019 if (ret) 7020 goto err; 7021 } 7022 7023 /* Configure Port ETS Tx Scheduler */ 7024 ets_data.tc_valid_bits = tc_map; 7025 ets_data.tc_strict_priority_flags = lltc_map; 7026 ret = i40e_aq_config_switch_comp_ets 7027 (hw, pf->mac_seid, &ets_data, 7028 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7029 if (ret) { 7030 dev_info(&pf->pdev->dev, 7031 "Modify Port ETS failed, err %pe aq_err %s\n", 7032 ERR_PTR(ret), 7033 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7034 goto out; 7035 } 7036 7037 /* Configure Rx ETS HW */ 7038 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7039 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7040 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7041 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7042 I40E_DCB_DEFAULT_MAX_EXPONENT, 7043 lltc_map); 7044 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7045 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7046 prio_type); 7047 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7048 new_cfg->etscfg.prioritytable); 7049 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7050 7051 /* Configure Rx Packet Buffers in HW */ 7052 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7053 mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu; 7054 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7055 } 7056 7057 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7058 false, new_cfg->pfc.pfcenable, 7059 mfs_tc, &pb_cfg); 7060 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7061 7062 /* Update the local Rx Packet buffer config */ 7063 pf->pb_cfg = pb_cfg; 7064 7065 /* Inform the FW about changes to DCB configuration */ 7066 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7067 if (ret) { 7068 dev_info(&pf->pdev->dev, 7069 "DCB Updated failed, err %pe aq_err %s\n", 7070 ERR_PTR(ret), 7071 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7072 goto out; 7073 } 7074 7075 /* Update the port DCBx configuration */ 7076 *old_cfg = *new_cfg; 7077 7078 /* Changes in configuration update VEB/VSI */ 7079 i40e_dcb_reconfigure(pf); 7080 out: 7081 /* Re-start the VSIs if disabled */ 7082 if (need_reconfig) { 7083 ret = i40e_resume_port_tx(pf); 7084 7085 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7086 /* In case of error no point in resuming VSIs */ 7087 if (ret) 7088 goto err; 7089 7090 /* Wait for the PF's queues to be disabled */ 7091 ret = i40e_pf_wait_queues_disabled(pf); 7092 if (ret) { 7093 /* Schedule PF reset to recover */ 7094 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7095 i40e_service_event_schedule(pf); 7096 goto err; 7097 } else { 7098 i40e_pf_unquiesce_all_vsi(pf); 7099 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7100 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7101 } 7102 /* registers are set, lets apply */ 7103 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7104 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7105 } 7106 7107 err: 7108 return ret; 7109 } 7110 7111 /** 7112 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7113 * @pf: PF being queried 7114 * 7115 * Set default DCB configuration in case DCB is to be done in SW. 7116 **/ 7117 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7118 { 7119 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7120 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7121 struct i40e_hw *hw = &pf->hw; 7122 int err; 7123 7124 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7125 /* Update the local cached instance with TC0 ETS */ 7126 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7127 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7128 pf->tmp_cfg.etscfg.maxtcs = 0; 7129 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7130 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7131 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7132 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7133 /* FW needs one App to configure HW */ 7134 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7135 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7136 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7137 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7138 7139 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7140 } 7141 7142 memset(&ets_data, 0, sizeof(ets_data)); 7143 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7144 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7145 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7146 7147 /* Enable ETS on the Physical port */ 7148 err = i40e_aq_config_switch_comp_ets 7149 (hw, pf->mac_seid, &ets_data, 7150 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7151 if (err) { 7152 dev_info(&pf->pdev->dev, 7153 "Enable Port ETS failed, err %pe aq_err %s\n", 7154 ERR_PTR(err), 7155 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7156 err = -ENOENT; 7157 goto out; 7158 } 7159 7160 /* Update the local cached instance with TC0 ETS */ 7161 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7162 dcb_cfg->etscfg.cbs = 0; 7163 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7164 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7165 7166 out: 7167 return err; 7168 } 7169 7170 /** 7171 * i40e_init_pf_dcb - Initialize DCB configuration 7172 * @pf: PF being configured 7173 * 7174 * Query the current DCB configuration and cache it 7175 * in the hardware structure 7176 **/ 7177 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7178 { 7179 struct i40e_hw *hw = &pf->hw; 7180 int err; 7181 7182 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7183 * Also do not enable DCBx if FW LLDP agent is disabled 7184 */ 7185 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7186 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7187 err = -EOPNOTSUPP; 7188 goto out; 7189 } 7190 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7191 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7192 err = i40e_dcb_sw_default_config(pf); 7193 if (err) { 7194 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7195 goto out; 7196 } 7197 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7198 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7199 DCB_CAP_DCBX_VER_IEEE; 7200 /* at init capable but disabled */ 7201 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7202 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7203 goto out; 7204 } 7205 err = i40e_init_dcb(hw, true); 7206 if (!err) { 7207 /* Device/Function is not DCBX capable */ 7208 if ((!hw->func_caps.dcb) || 7209 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7210 dev_info(&pf->pdev->dev, 7211 "DCBX offload is not supported or is disabled for this PF.\n"); 7212 } else { 7213 /* When status is not DISABLED then DCBX in FW */ 7214 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7215 DCB_CAP_DCBX_VER_IEEE; 7216 7217 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7218 /* Enable DCB tagging only when more than one TC 7219 * or explicitly disable if only one TC 7220 */ 7221 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7222 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7223 else 7224 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7225 dev_dbg(&pf->pdev->dev, 7226 "DCBX offload is supported for this PF.\n"); 7227 } 7228 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7229 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7230 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7231 } else { 7232 dev_info(&pf->pdev->dev, 7233 "Query for DCB configuration failed, err %pe aq_err %s\n", 7234 ERR_PTR(err), 7235 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7236 } 7237 7238 out: 7239 return err; 7240 } 7241 #endif /* CONFIG_I40E_DCB */ 7242 7243 /** 7244 * i40e_print_link_message - print link up or down 7245 * @vsi: the VSI for which link needs a message 7246 * @isup: true of link is up, false otherwise 7247 */ 7248 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7249 { 7250 enum i40e_aq_link_speed new_speed; 7251 struct i40e_pf *pf = vsi->back; 7252 char *speed = "Unknown"; 7253 char *fc = "Unknown"; 7254 char *fec = ""; 7255 char *req_fec = ""; 7256 char *an = ""; 7257 7258 if (isup) 7259 new_speed = pf->hw.phy.link_info.link_speed; 7260 else 7261 new_speed = I40E_LINK_SPEED_UNKNOWN; 7262 7263 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7264 return; 7265 vsi->current_isup = isup; 7266 vsi->current_speed = new_speed; 7267 if (!isup) { 7268 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7269 return; 7270 } 7271 7272 /* Warn user if link speed on NPAR enabled partition is not at 7273 * least 10GB 7274 */ 7275 if (pf->hw.func_caps.npar_enable && 7276 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7277 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7278 netdev_warn(vsi->netdev, 7279 "The partition detected link speed that is less than 10Gbps\n"); 7280 7281 switch (pf->hw.phy.link_info.link_speed) { 7282 case I40E_LINK_SPEED_40GB: 7283 speed = "40 G"; 7284 break; 7285 case I40E_LINK_SPEED_20GB: 7286 speed = "20 G"; 7287 break; 7288 case I40E_LINK_SPEED_25GB: 7289 speed = "25 G"; 7290 break; 7291 case I40E_LINK_SPEED_10GB: 7292 speed = "10 G"; 7293 break; 7294 case I40E_LINK_SPEED_5GB: 7295 speed = "5 G"; 7296 break; 7297 case I40E_LINK_SPEED_2_5GB: 7298 speed = "2.5 G"; 7299 break; 7300 case I40E_LINK_SPEED_1GB: 7301 speed = "1000 M"; 7302 break; 7303 case I40E_LINK_SPEED_100MB: 7304 speed = "100 M"; 7305 break; 7306 default: 7307 break; 7308 } 7309 7310 switch (pf->hw.fc.current_mode) { 7311 case I40E_FC_FULL: 7312 fc = "RX/TX"; 7313 break; 7314 case I40E_FC_TX_PAUSE: 7315 fc = "TX"; 7316 break; 7317 case I40E_FC_RX_PAUSE: 7318 fc = "RX"; 7319 break; 7320 default: 7321 fc = "None"; 7322 break; 7323 } 7324 7325 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7326 req_fec = "None"; 7327 fec = "None"; 7328 an = "False"; 7329 7330 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7331 an = "True"; 7332 7333 if (pf->hw.phy.link_info.fec_info & 7334 I40E_AQ_CONFIG_FEC_KR_ENA) 7335 fec = "CL74 FC-FEC/BASE-R"; 7336 else if (pf->hw.phy.link_info.fec_info & 7337 I40E_AQ_CONFIG_FEC_RS_ENA) 7338 fec = "CL108 RS-FEC"; 7339 7340 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7341 * both RS and FC are requested 7342 */ 7343 if (vsi->back->hw.phy.link_info.req_fec_info & 7344 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7345 if (vsi->back->hw.phy.link_info.req_fec_info & 7346 I40E_AQ_REQUEST_FEC_RS) 7347 req_fec = "CL108 RS-FEC"; 7348 else 7349 req_fec = "CL74 FC-FEC/BASE-R"; 7350 } 7351 netdev_info(vsi->netdev, 7352 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7353 speed, req_fec, fec, an, fc); 7354 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7355 req_fec = "None"; 7356 fec = "None"; 7357 an = "False"; 7358 7359 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7360 an = "True"; 7361 7362 if (pf->hw.phy.link_info.fec_info & 7363 I40E_AQ_CONFIG_FEC_KR_ENA) 7364 fec = "CL74 FC-FEC/BASE-R"; 7365 7366 if (pf->hw.phy.link_info.req_fec_info & 7367 I40E_AQ_REQUEST_FEC_KR) 7368 req_fec = "CL74 FC-FEC/BASE-R"; 7369 7370 netdev_info(vsi->netdev, 7371 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7372 speed, req_fec, fec, an, fc); 7373 } else { 7374 netdev_info(vsi->netdev, 7375 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7376 speed, fc); 7377 } 7378 7379 } 7380 7381 /** 7382 * i40e_up_complete - Finish the last steps of bringing up a connection 7383 * @vsi: the VSI being configured 7384 **/ 7385 static int i40e_up_complete(struct i40e_vsi *vsi) 7386 { 7387 struct i40e_pf *pf = vsi->back; 7388 int err; 7389 7390 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7391 i40e_vsi_configure_msix(vsi); 7392 else 7393 i40e_configure_msi_and_legacy(vsi); 7394 7395 /* start rings */ 7396 err = i40e_vsi_start_rings(vsi); 7397 if (err) 7398 return err; 7399 7400 clear_bit(__I40E_VSI_DOWN, vsi->state); 7401 i40e_napi_enable_all(vsi); 7402 i40e_vsi_enable_irq(vsi); 7403 7404 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7405 (vsi->netdev)) { 7406 i40e_print_link_message(vsi, true); 7407 netif_tx_start_all_queues(vsi->netdev); 7408 netif_carrier_on(vsi->netdev); 7409 } 7410 7411 /* replay FDIR SB filters */ 7412 if (vsi->type == I40E_VSI_FDIR) { 7413 /* reset fd counters */ 7414 pf->fd_add_err = 0; 7415 pf->fd_atr_cnt = 0; 7416 i40e_fdir_filter_restore(vsi); 7417 } 7418 7419 /* On the next run of the service_task, notify any clients of the new 7420 * opened netdev 7421 */ 7422 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7423 i40e_service_event_schedule(pf); 7424 7425 return 0; 7426 } 7427 7428 /** 7429 * i40e_vsi_reinit_locked - Reset the VSI 7430 * @vsi: the VSI being configured 7431 * 7432 * Rebuild the ring structs after some configuration 7433 * has changed, e.g. MTU size. 7434 **/ 7435 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7436 { 7437 struct i40e_pf *pf = vsi->back; 7438 7439 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7440 usleep_range(1000, 2000); 7441 i40e_down(vsi); 7442 7443 i40e_up(vsi); 7444 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7445 } 7446 7447 /** 7448 * i40e_force_link_state - Force the link status 7449 * @pf: board private structure 7450 * @is_up: whether the link state should be forced up or down 7451 **/ 7452 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7453 { 7454 struct i40e_aq_get_phy_abilities_resp abilities; 7455 struct i40e_aq_set_phy_config config = {0}; 7456 bool non_zero_phy_type = is_up; 7457 struct i40e_hw *hw = &pf->hw; 7458 u64 mask; 7459 u8 speed; 7460 int err; 7461 7462 /* Card might've been put in an unstable state by other drivers 7463 * and applications, which causes incorrect speed values being 7464 * set on startup. In order to clear speed registers, we call 7465 * get_phy_capabilities twice, once to get initial state of 7466 * available speeds, and once to get current PHY config. 7467 */ 7468 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7469 NULL); 7470 if (err) { 7471 dev_err(&pf->pdev->dev, 7472 "failed to get phy cap., ret = %pe last_status = %s\n", 7473 ERR_PTR(err), 7474 i40e_aq_str(hw, hw->aq.asq_last_status)); 7475 return err; 7476 } 7477 speed = abilities.link_speed; 7478 7479 /* Get the current phy config */ 7480 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7481 NULL); 7482 if (err) { 7483 dev_err(&pf->pdev->dev, 7484 "failed to get phy cap., ret = %pe last_status = %s\n", 7485 ERR_PTR(err), 7486 i40e_aq_str(hw, hw->aq.asq_last_status)); 7487 return err; 7488 } 7489 7490 /* If link needs to go up, but was not forced to go down, 7491 * and its speed values are OK, no need for a flap 7492 * if non_zero_phy_type was set, still need to force up 7493 */ 7494 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7495 non_zero_phy_type = true; 7496 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7497 return 0; 7498 7499 /* To force link we need to set bits for all supported PHY types, 7500 * but there are now more than 32, so we need to split the bitmap 7501 * across two fields. 7502 */ 7503 mask = I40E_PHY_TYPES_BITMASK; 7504 config.phy_type = 7505 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7506 config.phy_type_ext = 7507 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7508 /* Copy the old settings, except of phy_type */ 7509 config.abilities = abilities.abilities; 7510 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7511 if (is_up) 7512 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7513 else 7514 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7515 } 7516 if (abilities.link_speed != 0) 7517 config.link_speed = abilities.link_speed; 7518 else 7519 config.link_speed = speed; 7520 config.eee_capability = abilities.eee_capability; 7521 config.eeer = abilities.eeer_val; 7522 config.low_power_ctrl = abilities.d3_lpan; 7523 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7524 I40E_AQ_PHY_FEC_CONFIG_MASK; 7525 err = i40e_aq_set_phy_config(hw, &config, NULL); 7526 7527 if (err) { 7528 dev_err(&pf->pdev->dev, 7529 "set phy config ret = %pe last_status = %s\n", 7530 ERR_PTR(err), 7531 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7532 return err; 7533 } 7534 7535 /* Update the link info */ 7536 err = i40e_update_link_info(hw); 7537 if (err) { 7538 /* Wait a little bit (on 40G cards it sometimes takes a really 7539 * long time for link to come back from the atomic reset) 7540 * and try once more 7541 */ 7542 msleep(1000); 7543 i40e_update_link_info(hw); 7544 } 7545 7546 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7547 7548 return 0; 7549 } 7550 7551 /** 7552 * i40e_up - Bring the connection back up after being down 7553 * @vsi: the VSI being configured 7554 **/ 7555 int i40e_up(struct i40e_vsi *vsi) 7556 { 7557 int err; 7558 7559 if (vsi->type == I40E_VSI_MAIN && 7560 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7561 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7562 i40e_force_link_state(vsi->back, true); 7563 7564 err = i40e_vsi_configure(vsi); 7565 if (!err) 7566 err = i40e_up_complete(vsi); 7567 7568 return err; 7569 } 7570 7571 /** 7572 * i40e_down - Shutdown the connection processing 7573 * @vsi: the VSI being stopped 7574 **/ 7575 void i40e_down(struct i40e_vsi *vsi) 7576 { 7577 int i; 7578 7579 /* It is assumed that the caller of this function 7580 * sets the vsi->state __I40E_VSI_DOWN bit. 7581 */ 7582 if (vsi->netdev) { 7583 netif_carrier_off(vsi->netdev); 7584 netif_tx_disable(vsi->netdev); 7585 } 7586 i40e_vsi_disable_irq(vsi); 7587 i40e_vsi_stop_rings(vsi); 7588 if (vsi->type == I40E_VSI_MAIN && 7589 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7590 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7591 i40e_force_link_state(vsi->back, false); 7592 i40e_napi_disable_all(vsi); 7593 7594 for (i = 0; i < vsi->num_queue_pairs; i++) { 7595 i40e_clean_tx_ring(vsi->tx_rings[i]); 7596 if (i40e_enabled_xdp_vsi(vsi)) { 7597 /* Make sure that in-progress ndo_xdp_xmit and 7598 * ndo_xsk_wakeup calls are completed. 7599 */ 7600 synchronize_rcu(); 7601 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7602 } 7603 i40e_clean_rx_ring(vsi->rx_rings[i]); 7604 } 7605 7606 } 7607 7608 /** 7609 * i40e_validate_mqprio_qopt- validate queue mapping info 7610 * @vsi: the VSI being configured 7611 * @mqprio_qopt: queue parametrs 7612 **/ 7613 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7614 struct tc_mqprio_qopt_offload *mqprio_qopt) 7615 { 7616 u64 sum_max_rate = 0; 7617 u64 max_rate = 0; 7618 int i; 7619 7620 if (mqprio_qopt->qopt.offset[0] != 0 || 7621 mqprio_qopt->qopt.num_tc < 1 || 7622 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7623 return -EINVAL; 7624 for (i = 0; ; i++) { 7625 if (!mqprio_qopt->qopt.count[i]) 7626 return -EINVAL; 7627 if (mqprio_qopt->min_rate[i]) { 7628 dev_err(&vsi->back->pdev->dev, 7629 "Invalid min tx rate (greater than 0) specified\n"); 7630 return -EINVAL; 7631 } 7632 max_rate = mqprio_qopt->max_rate[i]; 7633 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7634 sum_max_rate += max_rate; 7635 7636 if (i >= mqprio_qopt->qopt.num_tc - 1) 7637 break; 7638 if (mqprio_qopt->qopt.offset[i + 1] != 7639 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7640 return -EINVAL; 7641 } 7642 if (vsi->num_queue_pairs < 7643 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7644 dev_err(&vsi->back->pdev->dev, 7645 "Failed to create traffic channel, insufficient number of queues.\n"); 7646 return -EINVAL; 7647 } 7648 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7649 dev_err(&vsi->back->pdev->dev, 7650 "Invalid max tx rate specified\n"); 7651 return -EINVAL; 7652 } 7653 return 0; 7654 } 7655 7656 /** 7657 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7658 * @vsi: the VSI being configured 7659 **/ 7660 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7661 { 7662 u16 qcount; 7663 int i; 7664 7665 /* Only TC0 is enabled */ 7666 vsi->tc_config.numtc = 1; 7667 vsi->tc_config.enabled_tc = 1; 7668 qcount = min_t(int, vsi->alloc_queue_pairs, 7669 i40e_pf_get_max_q_per_tc(vsi->back)); 7670 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7671 /* For the TC that is not enabled set the offset to default 7672 * queue and allocate one queue for the given TC. 7673 */ 7674 vsi->tc_config.tc_info[i].qoffset = 0; 7675 if (i == 0) 7676 vsi->tc_config.tc_info[i].qcount = qcount; 7677 else 7678 vsi->tc_config.tc_info[i].qcount = 1; 7679 vsi->tc_config.tc_info[i].netdev_tc = 0; 7680 } 7681 } 7682 7683 /** 7684 * i40e_del_macvlan_filter 7685 * @hw: pointer to the HW structure 7686 * @seid: seid of the channel VSI 7687 * @macaddr: the mac address to apply as a filter 7688 * @aq_err: store the admin Q error 7689 * 7690 * This function deletes a mac filter on the channel VSI which serves as the 7691 * macvlan. Returns 0 on success. 7692 **/ 7693 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7694 const u8 *macaddr, int *aq_err) 7695 { 7696 struct i40e_aqc_remove_macvlan_element_data element; 7697 int status; 7698 7699 memset(&element, 0, sizeof(element)); 7700 ether_addr_copy(element.mac_addr, macaddr); 7701 element.vlan_tag = 0; 7702 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7703 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7704 *aq_err = hw->aq.asq_last_status; 7705 7706 return status; 7707 } 7708 7709 /** 7710 * i40e_add_macvlan_filter 7711 * @hw: pointer to the HW structure 7712 * @seid: seid of the channel VSI 7713 * @macaddr: the mac address to apply as a filter 7714 * @aq_err: store the admin Q error 7715 * 7716 * This function adds a mac filter on the channel VSI which serves as the 7717 * macvlan. Returns 0 on success. 7718 **/ 7719 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7720 const u8 *macaddr, int *aq_err) 7721 { 7722 struct i40e_aqc_add_macvlan_element_data element; 7723 u16 cmd_flags = 0; 7724 int status; 7725 7726 ether_addr_copy(element.mac_addr, macaddr); 7727 element.vlan_tag = 0; 7728 element.queue_number = 0; 7729 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7730 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7731 element.flags = cpu_to_le16(cmd_flags); 7732 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7733 *aq_err = hw->aq.asq_last_status; 7734 7735 return status; 7736 } 7737 7738 /** 7739 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7740 * @vsi: the VSI we want to access 7741 * @ch: the channel we want to access 7742 */ 7743 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7744 { 7745 struct i40e_ring *tx_ring, *rx_ring; 7746 u16 pf_q; 7747 int i; 7748 7749 for (i = 0; i < ch->num_queue_pairs; i++) { 7750 pf_q = ch->base_queue + i; 7751 tx_ring = vsi->tx_rings[pf_q]; 7752 tx_ring->ch = NULL; 7753 rx_ring = vsi->rx_rings[pf_q]; 7754 rx_ring->ch = NULL; 7755 } 7756 } 7757 7758 /** 7759 * i40e_free_macvlan_channels 7760 * @vsi: the VSI we want to access 7761 * 7762 * This function frees the Qs of the channel VSI from 7763 * the stack and also deletes the channel VSIs which 7764 * serve as macvlans. 7765 */ 7766 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7767 { 7768 struct i40e_channel *ch, *ch_tmp; 7769 int ret; 7770 7771 if (list_empty(&vsi->macvlan_list)) 7772 return; 7773 7774 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7775 struct i40e_vsi *parent_vsi; 7776 7777 if (i40e_is_channel_macvlan(ch)) { 7778 i40e_reset_ch_rings(vsi, ch); 7779 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7780 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7781 netdev_set_sb_channel(ch->fwd->netdev, 0); 7782 kfree(ch->fwd); 7783 ch->fwd = NULL; 7784 } 7785 7786 list_del(&ch->list); 7787 parent_vsi = ch->parent_vsi; 7788 if (!parent_vsi || !ch->initialized) { 7789 kfree(ch); 7790 continue; 7791 } 7792 7793 /* remove the VSI */ 7794 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7795 NULL); 7796 if (ret) 7797 dev_err(&vsi->back->pdev->dev, 7798 "unable to remove channel (%d) for parent VSI(%d)\n", 7799 ch->seid, parent_vsi->seid); 7800 kfree(ch); 7801 } 7802 vsi->macvlan_cnt = 0; 7803 } 7804 7805 /** 7806 * i40e_fwd_ring_up - bring the macvlan device up 7807 * @vsi: the VSI we want to access 7808 * @vdev: macvlan netdevice 7809 * @fwd: the private fwd structure 7810 */ 7811 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7812 struct i40e_fwd_adapter *fwd) 7813 { 7814 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7815 int ret = 0, num_tc = 1, i, aq_err; 7816 struct i40e_pf *pf = vsi->back; 7817 struct i40e_hw *hw = &pf->hw; 7818 7819 /* Go through the list and find an available channel */ 7820 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7821 if (!i40e_is_channel_macvlan(iter)) { 7822 iter->fwd = fwd; 7823 /* record configuration for macvlan interface in vdev */ 7824 for (i = 0; i < num_tc; i++) 7825 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7826 i, 7827 iter->num_queue_pairs, 7828 iter->base_queue); 7829 for (i = 0; i < iter->num_queue_pairs; i++) { 7830 struct i40e_ring *tx_ring, *rx_ring; 7831 u16 pf_q; 7832 7833 pf_q = iter->base_queue + i; 7834 7835 /* Get to TX ring ptr */ 7836 tx_ring = vsi->tx_rings[pf_q]; 7837 tx_ring->ch = iter; 7838 7839 /* Get the RX ring ptr */ 7840 rx_ring = vsi->rx_rings[pf_q]; 7841 rx_ring->ch = iter; 7842 } 7843 ch = iter; 7844 break; 7845 } 7846 } 7847 7848 if (!ch) 7849 return -EINVAL; 7850 7851 /* Guarantee all rings are updated before we update the 7852 * MAC address filter. 7853 */ 7854 wmb(); 7855 7856 /* Add a mac filter */ 7857 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7858 if (ret) { 7859 /* if we cannot add the MAC rule then disable the offload */ 7860 macvlan_release_l2fw_offload(vdev); 7861 for (i = 0; i < ch->num_queue_pairs; i++) { 7862 struct i40e_ring *rx_ring; 7863 u16 pf_q; 7864 7865 pf_q = ch->base_queue + i; 7866 rx_ring = vsi->rx_rings[pf_q]; 7867 rx_ring->netdev = NULL; 7868 } 7869 dev_info(&pf->pdev->dev, 7870 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7871 ERR_PTR(ret), 7872 i40e_aq_str(hw, aq_err)); 7873 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7874 } 7875 7876 return ret; 7877 } 7878 7879 /** 7880 * i40e_setup_macvlans - create the channels which will be macvlans 7881 * @vsi: the VSI we want to access 7882 * @macvlan_cnt: no. of macvlans to be setup 7883 * @qcnt: no. of Qs per macvlan 7884 * @vdev: macvlan netdevice 7885 */ 7886 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7887 struct net_device *vdev) 7888 { 7889 struct i40e_pf *pf = vsi->back; 7890 struct i40e_hw *hw = &pf->hw; 7891 struct i40e_vsi_context ctxt; 7892 u16 sections, qmap, num_qps; 7893 struct i40e_channel *ch; 7894 int i, pow, ret = 0; 7895 u8 offset = 0; 7896 7897 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7898 return -EINVAL; 7899 7900 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7901 7902 /* find the next higher power-of-2 of num queue pairs */ 7903 pow = fls(roundup_pow_of_two(num_qps) - 1); 7904 7905 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7906 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7907 7908 /* Setup context bits for the main VSI */ 7909 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7910 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7911 memset(&ctxt, 0, sizeof(ctxt)); 7912 ctxt.seid = vsi->seid; 7913 ctxt.pf_num = vsi->back->hw.pf_id; 7914 ctxt.vf_num = 0; 7915 ctxt.uplink_seid = vsi->uplink_seid; 7916 ctxt.info = vsi->info; 7917 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7918 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7919 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7920 ctxt.info.valid_sections |= cpu_to_le16(sections); 7921 7922 /* Reconfigure RSS for main VSI with new max queue count */ 7923 vsi->rss_size = max_t(u16, num_qps, qcnt); 7924 ret = i40e_vsi_config_rss(vsi); 7925 if (ret) { 7926 dev_info(&pf->pdev->dev, 7927 "Failed to reconfig RSS for num_queues (%u)\n", 7928 vsi->rss_size); 7929 return ret; 7930 } 7931 vsi->reconfig_rss = true; 7932 dev_dbg(&vsi->back->pdev->dev, 7933 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7934 vsi->next_base_queue = num_qps; 7935 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7936 7937 /* Update the VSI after updating the VSI queue-mapping 7938 * information 7939 */ 7940 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7941 if (ret) { 7942 dev_info(&pf->pdev->dev, 7943 "Update vsi tc config failed, err %pe aq_err %s\n", 7944 ERR_PTR(ret), 7945 i40e_aq_str(hw, hw->aq.asq_last_status)); 7946 return ret; 7947 } 7948 /* update the local VSI info with updated queue map */ 7949 i40e_vsi_update_queue_map(vsi, &ctxt); 7950 vsi->info.valid_sections = 0; 7951 7952 /* Create channels for macvlans */ 7953 INIT_LIST_HEAD(&vsi->macvlan_list); 7954 for (i = 0; i < macvlan_cnt; i++) { 7955 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7956 if (!ch) { 7957 ret = -ENOMEM; 7958 goto err_free; 7959 } 7960 INIT_LIST_HEAD(&ch->list); 7961 ch->num_queue_pairs = qcnt; 7962 if (!i40e_setup_channel(pf, vsi, ch)) { 7963 ret = -EINVAL; 7964 kfree(ch); 7965 goto err_free; 7966 } 7967 ch->parent_vsi = vsi; 7968 vsi->cnt_q_avail -= ch->num_queue_pairs; 7969 vsi->macvlan_cnt++; 7970 list_add_tail(&ch->list, &vsi->macvlan_list); 7971 } 7972 7973 return ret; 7974 7975 err_free: 7976 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7977 i40e_free_macvlan_channels(vsi); 7978 7979 return ret; 7980 } 7981 7982 /** 7983 * i40e_fwd_add - configure macvlans 7984 * @netdev: net device to configure 7985 * @vdev: macvlan netdevice 7986 **/ 7987 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7988 { 7989 struct i40e_netdev_priv *np = netdev_priv(netdev); 7990 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7991 struct i40e_vsi *vsi = np->vsi; 7992 struct i40e_pf *pf = vsi->back; 7993 struct i40e_fwd_adapter *fwd; 7994 int avail_macvlan, ret; 7995 7996 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 7997 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7998 return ERR_PTR(-EINVAL); 7999 } 8000 if (i40e_is_tc_mqprio_enabled(pf)) { 8001 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 8002 return ERR_PTR(-EINVAL); 8003 } 8004 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 8005 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 8006 return ERR_PTR(-EINVAL); 8007 } 8008 8009 /* The macvlan device has to be a single Q device so that the 8010 * tc_to_txq field can be reused to pick the tx queue. 8011 */ 8012 if (netif_is_multiqueue(vdev)) 8013 return ERR_PTR(-ERANGE); 8014 8015 if (!vsi->macvlan_cnt) { 8016 /* reserve bit 0 for the pf device */ 8017 set_bit(0, vsi->fwd_bitmask); 8018 8019 /* Try to reserve as many queues as possible for macvlans. First 8020 * reserve 3/4th of max vectors, then half, then quarter and 8021 * calculate Qs per macvlan as you go 8022 */ 8023 vectors = pf->num_lan_msix; 8024 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8025 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8026 q_per_macvlan = 4; 8027 macvlan_cnt = (vectors - 32) / 4; 8028 } else if (vectors <= 64 && vectors > 32) { 8029 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8030 q_per_macvlan = 2; 8031 macvlan_cnt = (vectors - 16) / 2; 8032 } else if (vectors <= 32 && vectors > 16) { 8033 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8034 q_per_macvlan = 1; 8035 macvlan_cnt = vectors - 16; 8036 } else if (vectors <= 16 && vectors > 8) { 8037 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8038 q_per_macvlan = 1; 8039 macvlan_cnt = vectors - 8; 8040 } else { 8041 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8042 q_per_macvlan = 1; 8043 macvlan_cnt = vectors - 1; 8044 } 8045 8046 if (macvlan_cnt == 0) 8047 return ERR_PTR(-EBUSY); 8048 8049 /* Quiesce VSI queues */ 8050 i40e_quiesce_vsi(vsi); 8051 8052 /* sets up the macvlans but does not "enable" them */ 8053 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8054 vdev); 8055 if (ret) 8056 return ERR_PTR(ret); 8057 8058 /* Unquiesce VSI */ 8059 i40e_unquiesce_vsi(vsi); 8060 } 8061 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8062 vsi->macvlan_cnt); 8063 if (avail_macvlan >= I40E_MAX_MACVLANS) 8064 return ERR_PTR(-EBUSY); 8065 8066 /* create the fwd struct */ 8067 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8068 if (!fwd) 8069 return ERR_PTR(-ENOMEM); 8070 8071 set_bit(avail_macvlan, vsi->fwd_bitmask); 8072 fwd->bit_no = avail_macvlan; 8073 netdev_set_sb_channel(vdev, avail_macvlan); 8074 fwd->netdev = vdev; 8075 8076 if (!netif_running(netdev)) 8077 return fwd; 8078 8079 /* Set fwd ring up */ 8080 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8081 if (ret) { 8082 /* unbind the queues and drop the subordinate channel config */ 8083 netdev_unbind_sb_channel(netdev, vdev); 8084 netdev_set_sb_channel(vdev, 0); 8085 8086 kfree(fwd); 8087 return ERR_PTR(-EINVAL); 8088 } 8089 8090 return fwd; 8091 } 8092 8093 /** 8094 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8095 * @vsi: the VSI we want to access 8096 */ 8097 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8098 { 8099 struct i40e_channel *ch, *ch_tmp; 8100 struct i40e_pf *pf = vsi->back; 8101 struct i40e_hw *hw = &pf->hw; 8102 int aq_err, ret = 0; 8103 8104 if (list_empty(&vsi->macvlan_list)) 8105 return; 8106 8107 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8108 if (i40e_is_channel_macvlan(ch)) { 8109 ret = i40e_del_macvlan_filter(hw, ch->seid, 8110 i40e_channel_mac(ch), 8111 &aq_err); 8112 if (!ret) { 8113 /* Reset queue contexts */ 8114 i40e_reset_ch_rings(vsi, ch); 8115 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8116 netdev_unbind_sb_channel(vsi->netdev, 8117 ch->fwd->netdev); 8118 netdev_set_sb_channel(ch->fwd->netdev, 0); 8119 kfree(ch->fwd); 8120 ch->fwd = NULL; 8121 } 8122 } 8123 } 8124 } 8125 8126 /** 8127 * i40e_fwd_del - delete macvlan interfaces 8128 * @netdev: net device to configure 8129 * @vdev: macvlan netdevice 8130 */ 8131 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8132 { 8133 struct i40e_netdev_priv *np = netdev_priv(netdev); 8134 struct i40e_fwd_adapter *fwd = vdev; 8135 struct i40e_channel *ch, *ch_tmp; 8136 struct i40e_vsi *vsi = np->vsi; 8137 struct i40e_pf *pf = vsi->back; 8138 struct i40e_hw *hw = &pf->hw; 8139 int aq_err, ret = 0; 8140 8141 /* Find the channel associated with the macvlan and del mac filter */ 8142 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8143 if (i40e_is_channel_macvlan(ch) && 8144 ether_addr_equal(i40e_channel_mac(ch), 8145 fwd->netdev->dev_addr)) { 8146 ret = i40e_del_macvlan_filter(hw, ch->seid, 8147 i40e_channel_mac(ch), 8148 &aq_err); 8149 if (!ret) { 8150 /* Reset queue contexts */ 8151 i40e_reset_ch_rings(vsi, ch); 8152 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8153 netdev_unbind_sb_channel(netdev, fwd->netdev); 8154 netdev_set_sb_channel(fwd->netdev, 0); 8155 kfree(ch->fwd); 8156 ch->fwd = NULL; 8157 } else { 8158 dev_info(&pf->pdev->dev, 8159 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8160 ERR_PTR(ret), 8161 i40e_aq_str(hw, aq_err)); 8162 } 8163 break; 8164 } 8165 } 8166 } 8167 8168 /** 8169 * i40e_setup_tc - configure multiple traffic classes 8170 * @netdev: net device to configure 8171 * @type_data: tc offload data 8172 **/ 8173 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8174 { 8175 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8176 struct i40e_netdev_priv *np = netdev_priv(netdev); 8177 struct i40e_vsi *vsi = np->vsi; 8178 struct i40e_pf *pf = vsi->back; 8179 u8 enabled_tc = 0, num_tc, hw; 8180 bool need_reset = false; 8181 int old_queue_pairs; 8182 int ret = -EINVAL; 8183 u16 mode; 8184 int i; 8185 8186 old_queue_pairs = vsi->num_queue_pairs; 8187 num_tc = mqprio_qopt->qopt.num_tc; 8188 hw = mqprio_qopt->qopt.hw; 8189 mode = mqprio_qopt->mode; 8190 if (!hw) { 8191 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8192 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8193 goto config_tc; 8194 } 8195 8196 /* Check if MFP enabled */ 8197 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8198 netdev_info(netdev, 8199 "Configuring TC not supported in MFP mode\n"); 8200 return ret; 8201 } 8202 switch (mode) { 8203 case TC_MQPRIO_MODE_DCB: 8204 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8205 8206 /* Check if DCB enabled to continue */ 8207 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8208 netdev_info(netdev, 8209 "DCB is not enabled for adapter\n"); 8210 return ret; 8211 } 8212 8213 /* Check whether tc count is within enabled limit */ 8214 if (num_tc > i40e_pf_get_num_tc(pf)) { 8215 netdev_info(netdev, 8216 "TC count greater than enabled on link for adapter\n"); 8217 return ret; 8218 } 8219 break; 8220 case TC_MQPRIO_MODE_CHANNEL: 8221 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8222 netdev_info(netdev, 8223 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8224 return ret; 8225 } 8226 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8227 return ret; 8228 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8229 if (ret) 8230 return ret; 8231 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8232 sizeof(*mqprio_qopt)); 8233 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8234 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8235 break; 8236 default: 8237 return -EINVAL; 8238 } 8239 8240 config_tc: 8241 /* Generate TC map for number of tc requested */ 8242 for (i = 0; i < num_tc; i++) 8243 enabled_tc |= BIT(i); 8244 8245 /* Requesting same TC configuration as already enabled */ 8246 if (enabled_tc == vsi->tc_config.enabled_tc && 8247 mode != TC_MQPRIO_MODE_CHANNEL) 8248 return 0; 8249 8250 /* Quiesce VSI queues */ 8251 i40e_quiesce_vsi(vsi); 8252 8253 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8254 i40e_remove_queue_channels(vsi); 8255 8256 /* Configure VSI for enabled TCs */ 8257 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8258 if (ret) { 8259 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8260 vsi->seid); 8261 need_reset = true; 8262 goto exit; 8263 } else if (enabled_tc && 8264 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8265 netdev_info(netdev, 8266 "Failed to create channel. Override queues (%u) not power of 2\n", 8267 vsi->tc_config.tc_info[0].qcount); 8268 ret = -EINVAL; 8269 need_reset = true; 8270 goto exit; 8271 } 8272 8273 dev_info(&vsi->back->pdev->dev, 8274 "Setup channel (id:%u) utilizing num_queues %d\n", 8275 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8276 8277 if (i40e_is_tc_mqprio_enabled(pf)) { 8278 if (vsi->mqprio_qopt.max_rate[0]) { 8279 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8280 vsi->mqprio_qopt.max_rate[0]); 8281 8282 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8283 if (!ret) { 8284 u64 credits = max_tx_rate; 8285 8286 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8287 dev_dbg(&vsi->back->pdev->dev, 8288 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8289 max_tx_rate, 8290 credits, 8291 vsi->seid); 8292 } else { 8293 need_reset = true; 8294 goto exit; 8295 } 8296 } 8297 ret = i40e_configure_queue_channels(vsi); 8298 if (ret) { 8299 vsi->num_queue_pairs = old_queue_pairs; 8300 netdev_info(netdev, 8301 "Failed configuring queue channels\n"); 8302 need_reset = true; 8303 goto exit; 8304 } 8305 } 8306 8307 exit: 8308 /* Reset the configuration data to defaults, only TC0 is enabled */ 8309 if (need_reset) { 8310 i40e_vsi_set_default_tc_config(vsi); 8311 need_reset = false; 8312 } 8313 8314 /* Unquiesce VSI */ 8315 i40e_unquiesce_vsi(vsi); 8316 return ret; 8317 } 8318 8319 /** 8320 * i40e_set_cld_element - sets cloud filter element data 8321 * @filter: cloud filter rule 8322 * @cld: ptr to cloud filter element data 8323 * 8324 * This is helper function to copy data into cloud filter element 8325 **/ 8326 static inline void 8327 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8328 struct i40e_aqc_cloud_filters_element_data *cld) 8329 { 8330 u32 ipa; 8331 int i; 8332 8333 memset(cld, 0, sizeof(*cld)); 8334 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8335 ether_addr_copy(cld->inner_mac, filter->src_mac); 8336 8337 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8338 return; 8339 8340 if (filter->n_proto == ETH_P_IPV6) { 8341 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8342 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8343 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8344 8345 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8346 } 8347 } else { 8348 ipa = be32_to_cpu(filter->dst_ipv4); 8349 8350 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8351 } 8352 8353 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8354 8355 /* tenant_id is not supported by FW now, once the support is enabled 8356 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8357 */ 8358 if (filter->tenant_id) 8359 return; 8360 } 8361 8362 /** 8363 * i40e_add_del_cloud_filter - Add/del cloud filter 8364 * @vsi: pointer to VSI 8365 * @filter: cloud filter rule 8366 * @add: if true, add, if false, delete 8367 * 8368 * Add or delete a cloud filter for a specific flow spec. 8369 * Returns 0 if the filter were successfully added. 8370 **/ 8371 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8372 struct i40e_cloud_filter *filter, bool add) 8373 { 8374 struct i40e_aqc_cloud_filters_element_data cld_filter; 8375 struct i40e_pf *pf = vsi->back; 8376 int ret; 8377 static const u16 flag_table[128] = { 8378 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8379 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8380 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8381 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8382 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8383 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8384 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8385 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8386 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8387 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8388 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8389 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8390 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8391 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8392 }; 8393 8394 if (filter->flags >= ARRAY_SIZE(flag_table)) 8395 return -EIO; 8396 8397 memset(&cld_filter, 0, sizeof(cld_filter)); 8398 8399 /* copy element needed to add cloud filter from filter */ 8400 i40e_set_cld_element(filter, &cld_filter); 8401 8402 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8403 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8404 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8405 8406 if (filter->n_proto == ETH_P_IPV6) 8407 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8408 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8409 else 8410 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8411 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8412 8413 if (add) 8414 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8415 &cld_filter, 1); 8416 else 8417 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8418 &cld_filter, 1); 8419 if (ret) 8420 dev_dbg(&pf->pdev->dev, 8421 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8422 add ? "add" : "delete", filter->dst_port, ret, 8423 pf->hw.aq.asq_last_status); 8424 else 8425 dev_info(&pf->pdev->dev, 8426 "%s cloud filter for VSI: %d\n", 8427 add ? "Added" : "Deleted", filter->seid); 8428 return ret; 8429 } 8430 8431 /** 8432 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8433 * @vsi: pointer to VSI 8434 * @filter: cloud filter rule 8435 * @add: if true, add, if false, delete 8436 * 8437 * Add or delete a cloud filter for a specific flow spec using big buffer. 8438 * Returns 0 if the filter were successfully added. 8439 **/ 8440 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8441 struct i40e_cloud_filter *filter, 8442 bool add) 8443 { 8444 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8445 struct i40e_pf *pf = vsi->back; 8446 int ret; 8447 8448 /* Both (src/dst) valid mac_addr are not supported */ 8449 if ((is_valid_ether_addr(filter->dst_mac) && 8450 is_valid_ether_addr(filter->src_mac)) || 8451 (is_multicast_ether_addr(filter->dst_mac) && 8452 is_multicast_ether_addr(filter->src_mac))) 8453 return -EOPNOTSUPP; 8454 8455 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8456 * ports are not supported via big buffer now. 8457 */ 8458 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8459 return -EOPNOTSUPP; 8460 8461 /* adding filter using src_port/src_ip is not supported at this stage */ 8462 if (filter->src_port || 8463 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8464 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8465 return -EOPNOTSUPP; 8466 8467 memset(&cld_filter, 0, sizeof(cld_filter)); 8468 8469 /* copy element needed to add cloud filter from filter */ 8470 i40e_set_cld_element(filter, &cld_filter.element); 8471 8472 if (is_valid_ether_addr(filter->dst_mac) || 8473 is_valid_ether_addr(filter->src_mac) || 8474 is_multicast_ether_addr(filter->dst_mac) || 8475 is_multicast_ether_addr(filter->src_mac)) { 8476 /* MAC + IP : unsupported mode */ 8477 if (filter->dst_ipv4) 8478 return -EOPNOTSUPP; 8479 8480 /* since we validated that L4 port must be valid before 8481 * we get here, start with respective "flags" value 8482 * and update if vlan is present or not 8483 */ 8484 cld_filter.element.flags = 8485 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8486 8487 if (filter->vlan_id) { 8488 cld_filter.element.flags = 8489 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8490 } 8491 8492 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8493 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8494 cld_filter.element.flags = 8495 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8496 if (filter->n_proto == ETH_P_IPV6) 8497 cld_filter.element.flags |= 8498 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8499 else 8500 cld_filter.element.flags |= 8501 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8502 } else { 8503 dev_err(&pf->pdev->dev, 8504 "either mac or ip has to be valid for cloud filter\n"); 8505 return -EINVAL; 8506 } 8507 8508 /* Now copy L4 port in Byte 6..7 in general fields */ 8509 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8510 be16_to_cpu(filter->dst_port); 8511 8512 if (add) { 8513 /* Validate current device switch mode, change if necessary */ 8514 ret = i40e_validate_and_set_switch_mode(vsi); 8515 if (ret) { 8516 dev_err(&pf->pdev->dev, 8517 "failed to set switch mode, ret %d\n", 8518 ret); 8519 return ret; 8520 } 8521 8522 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8523 &cld_filter, 1); 8524 } else { 8525 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8526 &cld_filter, 1); 8527 } 8528 8529 if (ret) 8530 dev_dbg(&pf->pdev->dev, 8531 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8532 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8533 else 8534 dev_info(&pf->pdev->dev, 8535 "%s cloud filter for VSI: %d, L4 port: %d\n", 8536 add ? "add" : "delete", filter->seid, 8537 ntohs(filter->dst_port)); 8538 return ret; 8539 } 8540 8541 /** 8542 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8543 * @vsi: Pointer to VSI 8544 * @f: Pointer to struct flow_cls_offload 8545 * @filter: Pointer to cloud filter structure 8546 * 8547 **/ 8548 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8549 struct flow_cls_offload *f, 8550 struct i40e_cloud_filter *filter) 8551 { 8552 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8553 struct flow_dissector *dissector = rule->match.dissector; 8554 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8555 struct i40e_pf *pf = vsi->back; 8556 u8 field_flags = 0; 8557 8558 if (dissector->used_keys & 8559 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8560 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8561 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8562 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8563 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8564 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8565 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8566 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8567 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8568 dissector->used_keys); 8569 return -EOPNOTSUPP; 8570 } 8571 8572 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8573 struct flow_match_enc_keyid match; 8574 8575 flow_rule_match_enc_keyid(rule, &match); 8576 if (match.mask->keyid != 0) 8577 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8578 8579 filter->tenant_id = be32_to_cpu(match.key->keyid); 8580 } 8581 8582 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8583 struct flow_match_basic match; 8584 8585 flow_rule_match_basic(rule, &match); 8586 n_proto_key = ntohs(match.key->n_proto); 8587 n_proto_mask = ntohs(match.mask->n_proto); 8588 8589 if (n_proto_key == ETH_P_ALL) { 8590 n_proto_key = 0; 8591 n_proto_mask = 0; 8592 } 8593 filter->n_proto = n_proto_key & n_proto_mask; 8594 filter->ip_proto = match.key->ip_proto; 8595 } 8596 8597 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8598 struct flow_match_eth_addrs match; 8599 8600 flow_rule_match_eth_addrs(rule, &match); 8601 8602 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8603 if (!is_zero_ether_addr(match.mask->dst)) { 8604 if (is_broadcast_ether_addr(match.mask->dst)) { 8605 field_flags |= I40E_CLOUD_FIELD_OMAC; 8606 } else { 8607 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8608 match.mask->dst); 8609 return -EIO; 8610 } 8611 } 8612 8613 if (!is_zero_ether_addr(match.mask->src)) { 8614 if (is_broadcast_ether_addr(match.mask->src)) { 8615 field_flags |= I40E_CLOUD_FIELD_IMAC; 8616 } else { 8617 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8618 match.mask->src); 8619 return -EIO; 8620 } 8621 } 8622 ether_addr_copy(filter->dst_mac, match.key->dst); 8623 ether_addr_copy(filter->src_mac, match.key->src); 8624 } 8625 8626 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8627 struct flow_match_vlan match; 8628 8629 flow_rule_match_vlan(rule, &match); 8630 if (match.mask->vlan_id) { 8631 if (match.mask->vlan_id == VLAN_VID_MASK) { 8632 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8633 8634 } else { 8635 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8636 match.mask->vlan_id); 8637 return -EIO; 8638 } 8639 } 8640 8641 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8642 } 8643 8644 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8645 struct flow_match_control match; 8646 8647 flow_rule_match_control(rule, &match); 8648 addr_type = match.key->addr_type; 8649 } 8650 8651 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8652 struct flow_match_ipv4_addrs match; 8653 8654 flow_rule_match_ipv4_addrs(rule, &match); 8655 if (match.mask->dst) { 8656 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8657 field_flags |= I40E_CLOUD_FIELD_IIP; 8658 } else { 8659 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8660 &match.mask->dst); 8661 return -EIO; 8662 } 8663 } 8664 8665 if (match.mask->src) { 8666 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8667 field_flags |= I40E_CLOUD_FIELD_IIP; 8668 } else { 8669 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8670 &match.mask->src); 8671 return -EIO; 8672 } 8673 } 8674 8675 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8676 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8677 return -EIO; 8678 } 8679 filter->dst_ipv4 = match.key->dst; 8680 filter->src_ipv4 = match.key->src; 8681 } 8682 8683 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8684 struct flow_match_ipv6_addrs match; 8685 8686 flow_rule_match_ipv6_addrs(rule, &match); 8687 8688 /* src and dest IPV6 address should not be LOOPBACK 8689 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8690 */ 8691 if (ipv6_addr_loopback(&match.key->dst) || 8692 ipv6_addr_loopback(&match.key->src)) { 8693 dev_err(&pf->pdev->dev, 8694 "Bad ipv6, addr is LOOPBACK\n"); 8695 return -EIO; 8696 } 8697 if (!ipv6_addr_any(&match.mask->dst) || 8698 !ipv6_addr_any(&match.mask->src)) 8699 field_flags |= I40E_CLOUD_FIELD_IIP; 8700 8701 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8702 sizeof(filter->src_ipv6)); 8703 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8704 sizeof(filter->dst_ipv6)); 8705 } 8706 8707 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8708 struct flow_match_ports match; 8709 8710 flow_rule_match_ports(rule, &match); 8711 if (match.mask->src) { 8712 if (match.mask->src == cpu_to_be16(0xffff)) { 8713 field_flags |= I40E_CLOUD_FIELD_IIP; 8714 } else { 8715 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8716 be16_to_cpu(match.mask->src)); 8717 return -EIO; 8718 } 8719 } 8720 8721 if (match.mask->dst) { 8722 if (match.mask->dst == cpu_to_be16(0xffff)) { 8723 field_flags |= I40E_CLOUD_FIELD_IIP; 8724 } else { 8725 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8726 be16_to_cpu(match.mask->dst)); 8727 return -EIO; 8728 } 8729 } 8730 8731 filter->dst_port = match.key->dst; 8732 filter->src_port = match.key->src; 8733 8734 switch (filter->ip_proto) { 8735 case IPPROTO_TCP: 8736 case IPPROTO_UDP: 8737 break; 8738 default: 8739 dev_err(&pf->pdev->dev, 8740 "Only UDP and TCP transport are supported\n"); 8741 return -EINVAL; 8742 } 8743 } 8744 filter->flags = field_flags; 8745 return 0; 8746 } 8747 8748 /** 8749 * i40e_handle_tclass: Forward to a traffic class on the device 8750 * @vsi: Pointer to VSI 8751 * @tc: traffic class index on the device 8752 * @filter: Pointer to cloud filter structure 8753 * 8754 **/ 8755 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8756 struct i40e_cloud_filter *filter) 8757 { 8758 struct i40e_channel *ch, *ch_tmp; 8759 8760 /* direct to a traffic class on the same device */ 8761 if (tc == 0) { 8762 filter->seid = vsi->seid; 8763 return 0; 8764 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8765 if (!filter->dst_port) { 8766 dev_err(&vsi->back->pdev->dev, 8767 "Specify destination port to direct to traffic class that is not default\n"); 8768 return -EINVAL; 8769 } 8770 if (list_empty(&vsi->ch_list)) 8771 return -EINVAL; 8772 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8773 list) { 8774 if (ch->seid == vsi->tc_seid_map[tc]) 8775 filter->seid = ch->seid; 8776 } 8777 return 0; 8778 } 8779 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8780 return -EINVAL; 8781 } 8782 8783 /** 8784 * i40e_configure_clsflower - Configure tc flower filters 8785 * @vsi: Pointer to VSI 8786 * @cls_flower: Pointer to struct flow_cls_offload 8787 * 8788 **/ 8789 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8790 struct flow_cls_offload *cls_flower) 8791 { 8792 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8793 struct i40e_cloud_filter *filter = NULL; 8794 struct i40e_pf *pf = vsi->back; 8795 int err = 0; 8796 8797 if (tc < 0) { 8798 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8799 return -EOPNOTSUPP; 8800 } 8801 8802 if (!tc) { 8803 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8804 return -EINVAL; 8805 } 8806 8807 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8808 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8809 return -EBUSY; 8810 8811 if (pf->fdir_pf_active_filters || 8812 (!hlist_empty(&pf->fdir_filter_list))) { 8813 dev_err(&vsi->back->pdev->dev, 8814 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8815 return -EINVAL; 8816 } 8817 8818 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8819 dev_err(&vsi->back->pdev->dev, 8820 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8821 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8822 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8823 } 8824 8825 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8826 if (!filter) 8827 return -ENOMEM; 8828 8829 filter->cookie = cls_flower->cookie; 8830 8831 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8832 if (err < 0) 8833 goto err; 8834 8835 err = i40e_handle_tclass(vsi, tc, filter); 8836 if (err < 0) 8837 goto err; 8838 8839 /* Add cloud filter */ 8840 if (filter->dst_port) 8841 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8842 else 8843 err = i40e_add_del_cloud_filter(vsi, filter, true); 8844 8845 if (err) { 8846 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8847 err); 8848 goto err; 8849 } 8850 8851 /* add filter to the ordered list */ 8852 INIT_HLIST_NODE(&filter->cloud_node); 8853 8854 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8855 8856 pf->num_cloud_filters++; 8857 8858 return err; 8859 err: 8860 kfree(filter); 8861 return err; 8862 } 8863 8864 /** 8865 * i40e_find_cloud_filter - Find the could filter in the list 8866 * @vsi: Pointer to VSI 8867 * @cookie: filter specific cookie 8868 * 8869 **/ 8870 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8871 unsigned long *cookie) 8872 { 8873 struct i40e_cloud_filter *filter = NULL; 8874 struct hlist_node *node2; 8875 8876 hlist_for_each_entry_safe(filter, node2, 8877 &vsi->back->cloud_filter_list, cloud_node) 8878 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8879 return filter; 8880 return NULL; 8881 } 8882 8883 /** 8884 * i40e_delete_clsflower - Remove tc flower filters 8885 * @vsi: Pointer to VSI 8886 * @cls_flower: Pointer to struct flow_cls_offload 8887 * 8888 **/ 8889 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8890 struct flow_cls_offload *cls_flower) 8891 { 8892 struct i40e_cloud_filter *filter = NULL; 8893 struct i40e_pf *pf = vsi->back; 8894 int err = 0; 8895 8896 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8897 8898 if (!filter) 8899 return -EINVAL; 8900 8901 hash_del(&filter->cloud_node); 8902 8903 if (filter->dst_port) 8904 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8905 else 8906 err = i40e_add_del_cloud_filter(vsi, filter, false); 8907 8908 kfree(filter); 8909 if (err) { 8910 dev_err(&pf->pdev->dev, 8911 "Failed to delete cloud filter, err %pe\n", 8912 ERR_PTR(err)); 8913 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8914 } 8915 8916 pf->num_cloud_filters--; 8917 if (!pf->num_cloud_filters) 8918 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8919 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8920 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8921 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8922 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8923 } 8924 return 0; 8925 } 8926 8927 /** 8928 * i40e_setup_tc_cls_flower - flower classifier offloads 8929 * @np: net device to configure 8930 * @cls_flower: offload data 8931 **/ 8932 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8933 struct flow_cls_offload *cls_flower) 8934 { 8935 struct i40e_vsi *vsi = np->vsi; 8936 8937 switch (cls_flower->command) { 8938 case FLOW_CLS_REPLACE: 8939 return i40e_configure_clsflower(vsi, cls_flower); 8940 case FLOW_CLS_DESTROY: 8941 return i40e_delete_clsflower(vsi, cls_flower); 8942 case FLOW_CLS_STATS: 8943 return -EOPNOTSUPP; 8944 default: 8945 return -EOPNOTSUPP; 8946 } 8947 } 8948 8949 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8950 void *cb_priv) 8951 { 8952 struct i40e_netdev_priv *np = cb_priv; 8953 8954 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8955 return -EOPNOTSUPP; 8956 8957 switch (type) { 8958 case TC_SETUP_CLSFLOWER: 8959 return i40e_setup_tc_cls_flower(np, type_data); 8960 8961 default: 8962 return -EOPNOTSUPP; 8963 } 8964 } 8965 8966 static LIST_HEAD(i40e_block_cb_list); 8967 8968 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8969 void *type_data) 8970 { 8971 struct i40e_netdev_priv *np = netdev_priv(netdev); 8972 8973 switch (type) { 8974 case TC_SETUP_QDISC_MQPRIO: 8975 return i40e_setup_tc(netdev, type_data); 8976 case TC_SETUP_BLOCK: 8977 return flow_block_cb_setup_simple(type_data, 8978 &i40e_block_cb_list, 8979 i40e_setup_tc_block_cb, 8980 np, np, true); 8981 default: 8982 return -EOPNOTSUPP; 8983 } 8984 } 8985 8986 /** 8987 * i40e_open - Called when a network interface is made active 8988 * @netdev: network interface device structure 8989 * 8990 * The open entry point is called when a network interface is made 8991 * active by the system (IFF_UP). At this point all resources needed 8992 * for transmit and receive operations are allocated, the interrupt 8993 * handler is registered with the OS, the netdev watchdog subtask is 8994 * enabled, and the stack is notified that the interface is ready. 8995 * 8996 * Returns 0 on success, negative value on failure 8997 **/ 8998 int i40e_open(struct net_device *netdev) 8999 { 9000 struct i40e_netdev_priv *np = netdev_priv(netdev); 9001 struct i40e_vsi *vsi = np->vsi; 9002 struct i40e_pf *pf = vsi->back; 9003 int err; 9004 9005 /* disallow open during test or if eeprom is broken */ 9006 if (test_bit(__I40E_TESTING, pf->state) || 9007 test_bit(__I40E_BAD_EEPROM, pf->state)) 9008 return -EBUSY; 9009 9010 netif_carrier_off(netdev); 9011 9012 if (i40e_force_link_state(pf, true)) 9013 return -EAGAIN; 9014 9015 err = i40e_vsi_open(vsi); 9016 if (err) 9017 return err; 9018 9019 /* configure global TSO hardware offload settings */ 9020 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9021 TCP_FLAG_FIN) >> 16); 9022 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9023 TCP_FLAG_FIN | 9024 TCP_FLAG_CWR) >> 16); 9025 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9026 udp_tunnel_get_rx_info(netdev); 9027 9028 return 0; 9029 } 9030 9031 /** 9032 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9033 * @vsi: vsi structure 9034 * 9035 * This updates netdev's number of tx/rx queues 9036 * 9037 * Returns status of setting tx/rx queues 9038 **/ 9039 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9040 { 9041 int ret; 9042 9043 ret = netif_set_real_num_rx_queues(vsi->netdev, 9044 vsi->num_queue_pairs); 9045 if (ret) 9046 return ret; 9047 9048 return netif_set_real_num_tx_queues(vsi->netdev, 9049 vsi->num_queue_pairs); 9050 } 9051 9052 /** 9053 * i40e_vsi_open - 9054 * @vsi: the VSI to open 9055 * 9056 * Finish initialization of the VSI. 9057 * 9058 * Returns 0 on success, negative value on failure 9059 * 9060 * Note: expects to be called while under rtnl_lock() 9061 **/ 9062 int i40e_vsi_open(struct i40e_vsi *vsi) 9063 { 9064 struct i40e_pf *pf = vsi->back; 9065 char int_name[I40E_INT_NAME_STR_LEN]; 9066 int err; 9067 9068 /* allocate descriptors */ 9069 err = i40e_vsi_setup_tx_resources(vsi); 9070 if (err) 9071 goto err_setup_tx; 9072 err = i40e_vsi_setup_rx_resources(vsi); 9073 if (err) 9074 goto err_setup_rx; 9075 9076 err = i40e_vsi_configure(vsi); 9077 if (err) 9078 goto err_setup_rx; 9079 9080 if (vsi->netdev) { 9081 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9082 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9083 err = i40e_vsi_request_irq(vsi, int_name); 9084 if (err) 9085 goto err_setup_rx; 9086 9087 /* Notify the stack of the actual queue counts. */ 9088 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9089 if (err) 9090 goto err_set_queues; 9091 9092 } else if (vsi->type == I40E_VSI_FDIR) { 9093 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9094 dev_driver_string(&pf->pdev->dev), 9095 dev_name(&pf->pdev->dev)); 9096 err = i40e_vsi_request_irq(vsi, int_name); 9097 if (err) 9098 goto err_setup_rx; 9099 9100 } else { 9101 err = -EINVAL; 9102 goto err_setup_rx; 9103 } 9104 9105 err = i40e_up_complete(vsi); 9106 if (err) 9107 goto err_up_complete; 9108 9109 return 0; 9110 9111 err_up_complete: 9112 i40e_down(vsi); 9113 err_set_queues: 9114 i40e_vsi_free_irq(vsi); 9115 err_setup_rx: 9116 i40e_vsi_free_rx_resources(vsi); 9117 err_setup_tx: 9118 i40e_vsi_free_tx_resources(vsi); 9119 if (vsi == pf->vsi[pf->lan_vsi]) 9120 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9121 9122 return err; 9123 } 9124 9125 /** 9126 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9127 * @pf: Pointer to PF 9128 * 9129 * This function destroys the hlist where all the Flow Director 9130 * filters were saved. 9131 **/ 9132 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9133 { 9134 struct i40e_fdir_filter *filter; 9135 struct i40e_flex_pit *pit_entry, *tmp; 9136 struct hlist_node *node2; 9137 9138 hlist_for_each_entry_safe(filter, node2, 9139 &pf->fdir_filter_list, fdir_node) { 9140 hlist_del(&filter->fdir_node); 9141 kfree(filter); 9142 } 9143 9144 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9145 list_del(&pit_entry->list); 9146 kfree(pit_entry); 9147 } 9148 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9149 9150 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9151 list_del(&pit_entry->list); 9152 kfree(pit_entry); 9153 } 9154 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9155 9156 pf->fdir_pf_active_filters = 0; 9157 i40e_reset_fdir_filter_cnt(pf); 9158 9159 /* Reprogram the default input set for TCP/IPv4 */ 9160 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9161 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9162 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9163 9164 /* Reprogram the default input set for TCP/IPv6 */ 9165 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 9166 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9167 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9168 9169 /* Reprogram the default input set for UDP/IPv4 */ 9170 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 9171 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9172 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9173 9174 /* Reprogram the default input set for UDP/IPv6 */ 9175 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 9176 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9177 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9178 9179 /* Reprogram the default input set for SCTP/IPv4 */ 9180 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 9181 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9182 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9183 9184 /* Reprogram the default input set for SCTP/IPv6 */ 9185 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 9186 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9187 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9188 9189 /* Reprogram the default input set for Other/IPv4 */ 9190 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 9191 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9192 9193 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 9194 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9195 9196 /* Reprogram the default input set for Other/IPv6 */ 9197 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 9198 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9199 9200 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 9201 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9202 } 9203 9204 /** 9205 * i40e_cloud_filter_exit - Cleans up the cloud filters 9206 * @pf: Pointer to PF 9207 * 9208 * This function destroys the hlist where all the cloud filters 9209 * were saved. 9210 **/ 9211 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9212 { 9213 struct i40e_cloud_filter *cfilter; 9214 struct hlist_node *node; 9215 9216 hlist_for_each_entry_safe(cfilter, node, 9217 &pf->cloud_filter_list, cloud_node) { 9218 hlist_del(&cfilter->cloud_node); 9219 kfree(cfilter); 9220 } 9221 pf->num_cloud_filters = 0; 9222 9223 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9224 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9225 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9226 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9227 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9228 } 9229 } 9230 9231 /** 9232 * i40e_close - Disables a network interface 9233 * @netdev: network interface device structure 9234 * 9235 * The close entry point is called when an interface is de-activated 9236 * by the OS. The hardware is still under the driver's control, but 9237 * this netdev interface is disabled. 9238 * 9239 * Returns 0, this is not allowed to fail 9240 **/ 9241 int i40e_close(struct net_device *netdev) 9242 { 9243 struct i40e_netdev_priv *np = netdev_priv(netdev); 9244 struct i40e_vsi *vsi = np->vsi; 9245 9246 i40e_vsi_close(vsi); 9247 9248 return 0; 9249 } 9250 9251 /** 9252 * i40e_do_reset - Start a PF or Core Reset sequence 9253 * @pf: board private structure 9254 * @reset_flags: which reset is requested 9255 * @lock_acquired: indicates whether or not the lock has been acquired 9256 * before this function was called. 9257 * 9258 * The essential difference in resets is that the PF Reset 9259 * doesn't clear the packet buffers, doesn't reset the PE 9260 * firmware, and doesn't bother the other PFs on the chip. 9261 **/ 9262 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9263 { 9264 u32 val; 9265 9266 /* do the biggest reset indicated */ 9267 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9268 9269 /* Request a Global Reset 9270 * 9271 * This will start the chip's countdown to the actual full 9272 * chip reset event, and a warning interrupt to be sent 9273 * to all PFs, including the requestor. Our handler 9274 * for the warning interrupt will deal with the shutdown 9275 * and recovery of the switch setup. 9276 */ 9277 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9278 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9279 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9280 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9281 9282 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9283 9284 /* Request a Core Reset 9285 * 9286 * Same as Global Reset, except does *not* include the MAC/PHY 9287 */ 9288 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9289 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9290 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9291 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9292 i40e_flush(&pf->hw); 9293 9294 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9295 9296 /* Request a PF Reset 9297 * 9298 * Resets only the PF-specific registers 9299 * 9300 * This goes directly to the tear-down and rebuild of 9301 * the switch, since we need to do all the recovery as 9302 * for the Core Reset. 9303 */ 9304 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9305 i40e_handle_reset_warning(pf, lock_acquired); 9306 9307 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9308 /* Request a PF Reset 9309 * 9310 * Resets PF and reinitializes PFs VSI. 9311 */ 9312 i40e_prep_for_reset(pf); 9313 i40e_reset_and_rebuild(pf, true, lock_acquired); 9314 dev_info(&pf->pdev->dev, 9315 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9316 "FW LLDP is disabled\n" : 9317 "FW LLDP is enabled\n"); 9318 9319 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9320 int v; 9321 9322 /* Find the VSI(s) that requested a re-init */ 9323 dev_info(&pf->pdev->dev, 9324 "VSI reinit requested\n"); 9325 for (v = 0; v < pf->num_alloc_vsi; v++) { 9326 struct i40e_vsi *vsi = pf->vsi[v]; 9327 9328 if (vsi != NULL && 9329 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9330 vsi->state)) 9331 i40e_vsi_reinit_locked(pf->vsi[v]); 9332 } 9333 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9334 int v; 9335 9336 /* Find the VSI(s) that needs to be brought down */ 9337 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9338 for (v = 0; v < pf->num_alloc_vsi; v++) { 9339 struct i40e_vsi *vsi = pf->vsi[v]; 9340 9341 if (vsi != NULL && 9342 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9343 vsi->state)) { 9344 set_bit(__I40E_VSI_DOWN, vsi->state); 9345 i40e_down(vsi); 9346 } 9347 } 9348 } else { 9349 dev_info(&pf->pdev->dev, 9350 "bad reset request 0x%08x\n", reset_flags); 9351 } 9352 } 9353 9354 #ifdef CONFIG_I40E_DCB 9355 /** 9356 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9357 * @pf: board private structure 9358 * @old_cfg: current DCB config 9359 * @new_cfg: new DCB config 9360 **/ 9361 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9362 struct i40e_dcbx_config *old_cfg, 9363 struct i40e_dcbx_config *new_cfg) 9364 { 9365 bool need_reconfig = false; 9366 9367 /* Check if ETS configuration has changed */ 9368 if (memcmp(&new_cfg->etscfg, 9369 &old_cfg->etscfg, 9370 sizeof(new_cfg->etscfg))) { 9371 /* If Priority Table has changed reconfig is needed */ 9372 if (memcmp(&new_cfg->etscfg.prioritytable, 9373 &old_cfg->etscfg.prioritytable, 9374 sizeof(new_cfg->etscfg.prioritytable))) { 9375 need_reconfig = true; 9376 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9377 } 9378 9379 if (memcmp(&new_cfg->etscfg.tcbwtable, 9380 &old_cfg->etscfg.tcbwtable, 9381 sizeof(new_cfg->etscfg.tcbwtable))) 9382 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9383 9384 if (memcmp(&new_cfg->etscfg.tsatable, 9385 &old_cfg->etscfg.tsatable, 9386 sizeof(new_cfg->etscfg.tsatable))) 9387 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9388 } 9389 9390 /* Check if PFC configuration has changed */ 9391 if (memcmp(&new_cfg->pfc, 9392 &old_cfg->pfc, 9393 sizeof(new_cfg->pfc))) { 9394 need_reconfig = true; 9395 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9396 } 9397 9398 /* Check if APP Table has changed */ 9399 if (memcmp(&new_cfg->app, 9400 &old_cfg->app, 9401 sizeof(new_cfg->app))) { 9402 need_reconfig = true; 9403 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9404 } 9405 9406 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9407 return need_reconfig; 9408 } 9409 9410 /** 9411 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9412 * @pf: board private structure 9413 * @e: event info posted on ARQ 9414 **/ 9415 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9416 struct i40e_arq_event_info *e) 9417 { 9418 struct i40e_aqc_lldp_get_mib *mib = 9419 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9420 struct i40e_hw *hw = &pf->hw; 9421 struct i40e_dcbx_config tmp_dcbx_cfg; 9422 bool need_reconfig = false; 9423 int ret = 0; 9424 u8 type; 9425 9426 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9427 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9428 (hw->phy.link_info.link_speed & 9429 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9430 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9431 /* let firmware decide if the DCB should be disabled */ 9432 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9433 9434 /* Not DCB capable or capability disabled */ 9435 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9436 return ret; 9437 9438 /* Ignore if event is not for Nearest Bridge */ 9439 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9440 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9441 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9442 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9443 return ret; 9444 9445 /* Check MIB Type and return if event for Remote MIB update */ 9446 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9447 dev_dbg(&pf->pdev->dev, 9448 "LLDP event mib type %s\n", type ? "remote" : "local"); 9449 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9450 /* Update the remote cached instance and return */ 9451 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9452 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9453 &hw->remote_dcbx_config); 9454 goto exit; 9455 } 9456 9457 /* Store the old configuration */ 9458 tmp_dcbx_cfg = hw->local_dcbx_config; 9459 9460 /* Reset the old DCBx configuration data */ 9461 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9462 /* Get updated DCBX data from firmware */ 9463 ret = i40e_get_dcb_config(&pf->hw); 9464 if (ret) { 9465 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9466 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9467 (hw->phy.link_info.link_speed & 9468 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9469 dev_warn(&pf->pdev->dev, 9470 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9471 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9472 } else { 9473 dev_info(&pf->pdev->dev, 9474 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9475 ERR_PTR(ret), 9476 i40e_aq_str(&pf->hw, 9477 pf->hw.aq.asq_last_status)); 9478 } 9479 goto exit; 9480 } 9481 9482 /* No change detected in DCBX configs */ 9483 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9484 sizeof(tmp_dcbx_cfg))) { 9485 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9486 goto exit; 9487 } 9488 9489 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9490 &hw->local_dcbx_config); 9491 9492 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9493 9494 if (!need_reconfig) 9495 goto exit; 9496 9497 /* Enable DCB tagging only when more than one TC */ 9498 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9499 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9500 else 9501 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9502 9503 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9504 /* Reconfiguration needed quiesce all VSIs */ 9505 i40e_pf_quiesce_all_vsi(pf); 9506 9507 /* Changes in configuration update VEB/VSI */ 9508 i40e_dcb_reconfigure(pf); 9509 9510 ret = i40e_resume_port_tx(pf); 9511 9512 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9513 /* In case of error no point in resuming VSIs */ 9514 if (ret) 9515 goto exit; 9516 9517 /* Wait for the PF's queues to be disabled */ 9518 ret = i40e_pf_wait_queues_disabled(pf); 9519 if (ret) { 9520 /* Schedule PF reset to recover */ 9521 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9522 i40e_service_event_schedule(pf); 9523 } else { 9524 i40e_pf_unquiesce_all_vsi(pf); 9525 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9526 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9527 } 9528 9529 exit: 9530 return ret; 9531 } 9532 #endif /* CONFIG_I40E_DCB */ 9533 9534 /** 9535 * i40e_do_reset_safe - Protected reset path for userland calls. 9536 * @pf: board private structure 9537 * @reset_flags: which reset is requested 9538 * 9539 **/ 9540 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9541 { 9542 rtnl_lock(); 9543 i40e_do_reset(pf, reset_flags, true); 9544 rtnl_unlock(); 9545 } 9546 9547 /** 9548 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9549 * @pf: board private structure 9550 * @e: event info posted on ARQ 9551 * 9552 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9553 * and VF queues 9554 **/ 9555 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9556 struct i40e_arq_event_info *e) 9557 { 9558 struct i40e_aqc_lan_overflow *data = 9559 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9560 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9561 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9562 struct i40e_hw *hw = &pf->hw; 9563 struct i40e_vf *vf; 9564 u16 vf_id; 9565 9566 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9567 queue, qtx_ctl); 9568 9569 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) != 9570 I40E_QTX_CTL_VF_QUEUE) 9571 return; 9572 9573 /* Queue belongs to VF, find the VF and issue VF reset */ 9574 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl); 9575 vf_id -= hw->func_caps.vf_base_id; 9576 vf = &pf->vf[vf_id]; 9577 i40e_vc_notify_vf_reset(vf); 9578 /* Allow VF to process pending reset notification */ 9579 msleep(20); 9580 i40e_reset_vf(vf, false); 9581 } 9582 9583 /** 9584 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9585 * @pf: board private structure 9586 **/ 9587 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9588 { 9589 u32 val, fcnt_prog; 9590 9591 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9592 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9593 return fcnt_prog; 9594 } 9595 9596 /** 9597 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9598 * @pf: board private structure 9599 **/ 9600 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9601 { 9602 u32 val, fcnt_prog; 9603 9604 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9605 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9606 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val); 9607 return fcnt_prog; 9608 } 9609 9610 /** 9611 * i40e_get_global_fd_count - Get total FD filters programmed on device 9612 * @pf: board private structure 9613 **/ 9614 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9615 { 9616 u32 val, fcnt_prog; 9617 9618 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9619 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9620 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val); 9621 return fcnt_prog; 9622 } 9623 9624 /** 9625 * i40e_reenable_fdir_sb - Restore FDir SB capability 9626 * @pf: board private structure 9627 **/ 9628 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9629 { 9630 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9631 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9632 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9633 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9634 } 9635 9636 /** 9637 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9638 * @pf: board private structure 9639 **/ 9640 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9641 { 9642 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9643 /* ATR uses the same filtering logic as SB rules. It only 9644 * functions properly if the input set mask is at the default 9645 * settings. It is safe to restore the default input set 9646 * because there are no active TCPv4 filter rules. 9647 */ 9648 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9649 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9650 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9651 9652 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9653 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9654 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9655 } 9656 } 9657 9658 /** 9659 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9660 * @pf: board private structure 9661 * @filter: FDir filter to remove 9662 */ 9663 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9664 struct i40e_fdir_filter *filter) 9665 { 9666 /* Update counters */ 9667 pf->fdir_pf_active_filters--; 9668 pf->fd_inv = 0; 9669 9670 switch (filter->flow_type) { 9671 case TCP_V4_FLOW: 9672 pf->fd_tcp4_filter_cnt--; 9673 break; 9674 case UDP_V4_FLOW: 9675 pf->fd_udp4_filter_cnt--; 9676 break; 9677 case SCTP_V4_FLOW: 9678 pf->fd_sctp4_filter_cnt--; 9679 break; 9680 case TCP_V6_FLOW: 9681 pf->fd_tcp6_filter_cnt--; 9682 break; 9683 case UDP_V6_FLOW: 9684 pf->fd_udp6_filter_cnt--; 9685 break; 9686 case SCTP_V6_FLOW: 9687 pf->fd_udp6_filter_cnt--; 9688 break; 9689 case IP_USER_FLOW: 9690 switch (filter->ipl4_proto) { 9691 case IPPROTO_TCP: 9692 pf->fd_tcp4_filter_cnt--; 9693 break; 9694 case IPPROTO_UDP: 9695 pf->fd_udp4_filter_cnt--; 9696 break; 9697 case IPPROTO_SCTP: 9698 pf->fd_sctp4_filter_cnt--; 9699 break; 9700 case IPPROTO_IP: 9701 pf->fd_ip4_filter_cnt--; 9702 break; 9703 } 9704 break; 9705 case IPV6_USER_FLOW: 9706 switch (filter->ipl4_proto) { 9707 case IPPROTO_TCP: 9708 pf->fd_tcp6_filter_cnt--; 9709 break; 9710 case IPPROTO_UDP: 9711 pf->fd_udp6_filter_cnt--; 9712 break; 9713 case IPPROTO_SCTP: 9714 pf->fd_sctp6_filter_cnt--; 9715 break; 9716 case IPPROTO_IP: 9717 pf->fd_ip6_filter_cnt--; 9718 break; 9719 } 9720 break; 9721 } 9722 9723 /* Remove the filter from the list and free memory */ 9724 hlist_del(&filter->fdir_node); 9725 kfree(filter); 9726 } 9727 9728 /** 9729 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9730 * @pf: board private structure 9731 **/ 9732 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9733 { 9734 struct i40e_fdir_filter *filter; 9735 u32 fcnt_prog, fcnt_avail; 9736 struct hlist_node *node; 9737 9738 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9739 return; 9740 9741 /* Check if we have enough room to re-enable FDir SB capability. */ 9742 fcnt_prog = i40e_get_global_fd_count(pf); 9743 fcnt_avail = pf->fdir_pf_filter_count; 9744 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9745 (pf->fd_add_err == 0) || 9746 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9747 i40e_reenable_fdir_sb(pf); 9748 9749 /* We should wait for even more space before re-enabling ATR. 9750 * Additionally, we cannot enable ATR as long as we still have TCP SB 9751 * rules active. 9752 */ 9753 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9754 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9755 i40e_reenable_fdir_atr(pf); 9756 9757 /* if hw had a problem adding a filter, delete it */ 9758 if (pf->fd_inv > 0) { 9759 hlist_for_each_entry_safe(filter, node, 9760 &pf->fdir_filter_list, fdir_node) 9761 if (filter->fd_id == pf->fd_inv) 9762 i40e_delete_invalid_filter(pf, filter); 9763 } 9764 } 9765 9766 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9767 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9768 /** 9769 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9770 * @pf: board private structure 9771 **/ 9772 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9773 { 9774 unsigned long min_flush_time; 9775 int flush_wait_retry = 50; 9776 bool disable_atr = false; 9777 int fd_room; 9778 int reg; 9779 9780 if (!time_after(jiffies, pf->fd_flush_timestamp + 9781 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9782 return; 9783 9784 /* If the flush is happening too quick and we have mostly SB rules we 9785 * should not re-enable ATR for some time. 9786 */ 9787 min_flush_time = pf->fd_flush_timestamp + 9788 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9789 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9790 9791 if (!(time_after(jiffies, min_flush_time)) && 9792 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9793 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9794 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9795 disable_atr = true; 9796 } 9797 9798 pf->fd_flush_timestamp = jiffies; 9799 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9800 /* flush all filters */ 9801 wr32(&pf->hw, I40E_PFQF_CTL_1, 9802 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9803 i40e_flush(&pf->hw); 9804 pf->fd_flush_cnt++; 9805 pf->fd_add_err = 0; 9806 do { 9807 /* Check FD flush status every 5-6msec */ 9808 usleep_range(5000, 6000); 9809 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9810 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9811 break; 9812 } while (flush_wait_retry--); 9813 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9814 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9815 } else { 9816 /* replay sideband filters */ 9817 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 9818 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9819 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9820 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9821 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9822 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9823 } 9824 } 9825 9826 /** 9827 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9828 * @pf: board private structure 9829 **/ 9830 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9831 { 9832 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9833 } 9834 9835 /** 9836 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9837 * @pf: board private structure 9838 **/ 9839 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9840 { 9841 9842 /* if interface is down do nothing */ 9843 if (test_bit(__I40E_DOWN, pf->state)) 9844 return; 9845 9846 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9847 i40e_fdir_flush_and_replay(pf); 9848 9849 i40e_fdir_check_and_reenable(pf); 9850 9851 } 9852 9853 /** 9854 * i40e_vsi_link_event - notify VSI of a link event 9855 * @vsi: vsi to be notified 9856 * @link_up: link up or down 9857 **/ 9858 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9859 { 9860 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9861 return; 9862 9863 switch (vsi->type) { 9864 case I40E_VSI_MAIN: 9865 if (!vsi->netdev || !vsi->netdev_registered) 9866 break; 9867 9868 if (link_up) { 9869 netif_carrier_on(vsi->netdev); 9870 netif_tx_wake_all_queues(vsi->netdev); 9871 } else { 9872 netif_carrier_off(vsi->netdev); 9873 netif_tx_stop_all_queues(vsi->netdev); 9874 } 9875 break; 9876 9877 case I40E_VSI_SRIOV: 9878 case I40E_VSI_VMDQ2: 9879 case I40E_VSI_CTRL: 9880 case I40E_VSI_IWARP: 9881 case I40E_VSI_MIRROR: 9882 default: 9883 /* there is no notification for other VSIs */ 9884 break; 9885 } 9886 } 9887 9888 /** 9889 * i40e_veb_link_event - notify elements on the veb of a link event 9890 * @veb: veb to be notified 9891 * @link_up: link up or down 9892 **/ 9893 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9894 { 9895 struct i40e_pf *pf; 9896 int i; 9897 9898 if (!veb || !veb->pf) 9899 return; 9900 pf = veb->pf; 9901 9902 /* depth first... */ 9903 for (i = 0; i < I40E_MAX_VEB; i++) 9904 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9905 i40e_veb_link_event(pf->veb[i], link_up); 9906 9907 /* ... now the local VSIs */ 9908 for (i = 0; i < pf->num_alloc_vsi; i++) 9909 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9910 i40e_vsi_link_event(pf->vsi[i], link_up); 9911 } 9912 9913 /** 9914 * i40e_link_event - Update netif_carrier status 9915 * @pf: board private structure 9916 **/ 9917 static void i40e_link_event(struct i40e_pf *pf) 9918 { 9919 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9920 u8 new_link_speed, old_link_speed; 9921 bool new_link, old_link; 9922 int status; 9923 #ifdef CONFIG_I40E_DCB 9924 int err; 9925 #endif /* CONFIG_I40E_DCB */ 9926 9927 /* set this to force the get_link_status call to refresh state */ 9928 pf->hw.phy.get_link_info = true; 9929 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9930 status = i40e_get_link_status(&pf->hw, &new_link); 9931 9932 /* On success, disable temp link polling */ 9933 if (status == 0) { 9934 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9935 } else { 9936 /* Enable link polling temporarily until i40e_get_link_status 9937 * returns 0 9938 */ 9939 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9940 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9941 status); 9942 return; 9943 } 9944 9945 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9946 new_link_speed = pf->hw.phy.link_info.link_speed; 9947 9948 if (new_link == old_link && 9949 new_link_speed == old_link_speed && 9950 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9951 new_link == netif_carrier_ok(vsi->netdev))) 9952 return; 9953 9954 i40e_print_link_message(vsi, new_link); 9955 9956 /* Notify the base of the switch tree connected to 9957 * the link. Floating VEBs are not notified. 9958 */ 9959 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9960 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9961 else 9962 i40e_vsi_link_event(vsi, new_link); 9963 9964 if (pf->vf) 9965 i40e_vc_notify_link_state(pf); 9966 9967 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 9968 i40e_ptp_set_increment(pf); 9969 #ifdef CONFIG_I40E_DCB 9970 if (new_link == old_link) 9971 return; 9972 /* Not SW DCB so firmware will take care of default settings */ 9973 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9974 return; 9975 9976 /* We cover here only link down, as after link up in case of SW DCB 9977 * SW LLDP agent will take care of setting it up 9978 */ 9979 if (!new_link) { 9980 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9981 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9982 err = i40e_dcb_sw_default_config(pf); 9983 if (err) { 9984 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9985 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9986 } else { 9987 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9988 DCB_CAP_DCBX_VER_IEEE; 9989 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9990 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9991 } 9992 } 9993 #endif /* CONFIG_I40E_DCB */ 9994 } 9995 9996 /** 9997 * i40e_watchdog_subtask - periodic checks not using event driven response 9998 * @pf: board private structure 9999 **/ 10000 static void i40e_watchdog_subtask(struct i40e_pf *pf) 10001 { 10002 int i; 10003 10004 /* if interface is down do nothing */ 10005 if (test_bit(__I40E_DOWN, pf->state) || 10006 test_bit(__I40E_CONFIG_BUSY, pf->state)) 10007 return; 10008 10009 /* make sure we don't do these things too often */ 10010 if (time_before(jiffies, (pf->service_timer_previous + 10011 pf->service_timer_period))) 10012 return; 10013 pf->service_timer_previous = jiffies; 10014 10015 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 10016 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 10017 i40e_link_event(pf); 10018 10019 /* Update the stats for active netdevs so the network stack 10020 * can look at updated numbers whenever it cares to 10021 */ 10022 for (i = 0; i < pf->num_alloc_vsi; i++) 10023 if (pf->vsi[i] && pf->vsi[i]->netdev) 10024 i40e_update_stats(pf->vsi[i]); 10025 10026 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10027 /* Update the stats for the active switching components */ 10028 for (i = 0; i < I40E_MAX_VEB; i++) 10029 if (pf->veb[i]) 10030 i40e_update_veb_stats(pf->veb[i]); 10031 } 10032 10033 i40e_ptp_rx_hang(pf); 10034 i40e_ptp_tx_hang(pf); 10035 } 10036 10037 /** 10038 * i40e_reset_subtask - Set up for resetting the device and driver 10039 * @pf: board private structure 10040 **/ 10041 static void i40e_reset_subtask(struct i40e_pf *pf) 10042 { 10043 u32 reset_flags = 0; 10044 10045 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10046 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10047 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10048 } 10049 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10050 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10051 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10052 } 10053 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10054 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10055 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10056 } 10057 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10058 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10059 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10060 } 10061 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10062 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10063 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10064 } 10065 10066 /* If there's a recovery already waiting, it takes 10067 * precedence before starting a new reset sequence. 10068 */ 10069 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10070 i40e_prep_for_reset(pf); 10071 i40e_reset(pf); 10072 i40e_rebuild(pf, false, false); 10073 } 10074 10075 /* If we're already down or resetting, just bail */ 10076 if (reset_flags && 10077 !test_bit(__I40E_DOWN, pf->state) && 10078 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10079 i40e_do_reset(pf, reset_flags, false); 10080 } 10081 } 10082 10083 /** 10084 * i40e_handle_link_event - Handle link event 10085 * @pf: board private structure 10086 * @e: event info posted on ARQ 10087 **/ 10088 static void i40e_handle_link_event(struct i40e_pf *pf, 10089 struct i40e_arq_event_info *e) 10090 { 10091 struct i40e_aqc_get_link_status *status = 10092 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10093 10094 /* Do a new status request to re-enable LSE reporting 10095 * and load new status information into the hw struct 10096 * This completely ignores any state information 10097 * in the ARQ event info, instead choosing to always 10098 * issue the AQ update link status command. 10099 */ 10100 i40e_link_event(pf); 10101 10102 /* Check if module meets thermal requirements */ 10103 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10104 dev_err(&pf->pdev->dev, 10105 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10106 dev_err(&pf->pdev->dev, 10107 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10108 } else { 10109 /* check for unqualified module, if link is down, suppress 10110 * the message if link was forced to be down. 10111 */ 10112 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10113 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10114 (!(status->link_info & I40E_AQ_LINK_UP)) && 10115 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10116 dev_err(&pf->pdev->dev, 10117 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10118 dev_err(&pf->pdev->dev, 10119 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10120 } 10121 } 10122 } 10123 10124 /** 10125 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10126 * @pf: board private structure 10127 **/ 10128 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10129 { 10130 struct i40e_arq_event_info event; 10131 struct i40e_hw *hw = &pf->hw; 10132 u16 pending, i = 0; 10133 u16 opcode; 10134 u32 oldval; 10135 int ret; 10136 u32 val; 10137 10138 /* Do not run clean AQ when PF reset fails */ 10139 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10140 return; 10141 10142 /* check for error indications */ 10143 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10144 oldval = val; 10145 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10146 if (hw->debug_mask & I40E_DEBUG_AQ) 10147 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10148 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10149 } 10150 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10151 if (hw->debug_mask & I40E_DEBUG_AQ) 10152 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10153 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10154 pf->arq_overflows++; 10155 } 10156 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10157 if (hw->debug_mask & I40E_DEBUG_AQ) 10158 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10159 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10160 } 10161 if (oldval != val) 10162 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10163 10164 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10165 oldval = val; 10166 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10167 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10168 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10169 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10170 } 10171 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10172 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10173 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10174 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10175 } 10176 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10177 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10178 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10179 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10180 } 10181 if (oldval != val) 10182 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10183 10184 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10185 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10186 if (!event.msg_buf) 10187 return; 10188 10189 do { 10190 ret = i40e_clean_arq_element(hw, &event, &pending); 10191 if (ret == -EALREADY) 10192 break; 10193 else if (ret) { 10194 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10195 break; 10196 } 10197 10198 opcode = le16_to_cpu(event.desc.opcode); 10199 switch (opcode) { 10200 10201 case i40e_aqc_opc_get_link_status: 10202 rtnl_lock(); 10203 i40e_handle_link_event(pf, &event); 10204 rtnl_unlock(); 10205 break; 10206 case i40e_aqc_opc_send_msg_to_pf: 10207 ret = i40e_vc_process_vf_msg(pf, 10208 le16_to_cpu(event.desc.retval), 10209 le32_to_cpu(event.desc.cookie_high), 10210 le32_to_cpu(event.desc.cookie_low), 10211 event.msg_buf, 10212 event.msg_len); 10213 break; 10214 case i40e_aqc_opc_lldp_update_mib: 10215 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10216 #ifdef CONFIG_I40E_DCB 10217 rtnl_lock(); 10218 i40e_handle_lldp_event(pf, &event); 10219 rtnl_unlock(); 10220 #endif /* CONFIG_I40E_DCB */ 10221 break; 10222 case i40e_aqc_opc_event_lan_overflow: 10223 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10224 i40e_handle_lan_overflow_event(pf, &event); 10225 break; 10226 case i40e_aqc_opc_send_msg_to_peer: 10227 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10228 break; 10229 case i40e_aqc_opc_nvm_erase: 10230 case i40e_aqc_opc_nvm_update: 10231 case i40e_aqc_opc_oem_post_update: 10232 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10233 "ARQ NVM operation 0x%04x completed\n", 10234 opcode); 10235 break; 10236 default: 10237 dev_info(&pf->pdev->dev, 10238 "ARQ: Unknown event 0x%04x ignored\n", 10239 opcode); 10240 break; 10241 } 10242 } while (i++ < I40E_AQ_WORK_LIMIT); 10243 10244 if (i < I40E_AQ_WORK_LIMIT) 10245 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10246 10247 /* re-enable Admin queue interrupt cause */ 10248 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10249 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10250 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10251 i40e_flush(hw); 10252 10253 kfree(event.msg_buf); 10254 } 10255 10256 /** 10257 * i40e_verify_eeprom - make sure eeprom is good to use 10258 * @pf: board private structure 10259 **/ 10260 static void i40e_verify_eeprom(struct i40e_pf *pf) 10261 { 10262 int err; 10263 10264 err = i40e_diag_eeprom_test(&pf->hw); 10265 if (err) { 10266 /* retry in case of garbage read */ 10267 err = i40e_diag_eeprom_test(&pf->hw); 10268 if (err) { 10269 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10270 err); 10271 set_bit(__I40E_BAD_EEPROM, pf->state); 10272 } 10273 } 10274 10275 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10276 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10277 clear_bit(__I40E_BAD_EEPROM, pf->state); 10278 } 10279 } 10280 10281 /** 10282 * i40e_enable_pf_switch_lb 10283 * @pf: pointer to the PF structure 10284 * 10285 * enable switch loop back or die - no point in a return value 10286 **/ 10287 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10288 { 10289 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10290 struct i40e_vsi_context ctxt; 10291 int ret; 10292 10293 ctxt.seid = pf->main_vsi_seid; 10294 ctxt.pf_num = pf->hw.pf_id; 10295 ctxt.vf_num = 0; 10296 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10297 if (ret) { 10298 dev_info(&pf->pdev->dev, 10299 "couldn't get PF vsi config, err %pe aq_err %s\n", 10300 ERR_PTR(ret), 10301 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10302 return; 10303 } 10304 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10305 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10306 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10307 10308 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10309 if (ret) { 10310 dev_info(&pf->pdev->dev, 10311 "update vsi switch failed, err %pe aq_err %s\n", 10312 ERR_PTR(ret), 10313 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10314 } 10315 } 10316 10317 /** 10318 * i40e_disable_pf_switch_lb 10319 * @pf: pointer to the PF structure 10320 * 10321 * disable switch loop back or die - no point in a return value 10322 **/ 10323 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10324 { 10325 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10326 struct i40e_vsi_context ctxt; 10327 int ret; 10328 10329 ctxt.seid = pf->main_vsi_seid; 10330 ctxt.pf_num = pf->hw.pf_id; 10331 ctxt.vf_num = 0; 10332 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10333 if (ret) { 10334 dev_info(&pf->pdev->dev, 10335 "couldn't get PF vsi config, err %pe aq_err %s\n", 10336 ERR_PTR(ret), 10337 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10338 return; 10339 } 10340 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10341 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10342 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10343 10344 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10345 if (ret) { 10346 dev_info(&pf->pdev->dev, 10347 "update vsi switch failed, err %pe aq_err %s\n", 10348 ERR_PTR(ret), 10349 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10350 } 10351 } 10352 10353 /** 10354 * i40e_config_bridge_mode - Configure the HW bridge mode 10355 * @veb: pointer to the bridge instance 10356 * 10357 * Configure the loop back mode for the LAN VSI that is downlink to the 10358 * specified HW bridge instance. It is expected this function is called 10359 * when a new HW bridge is instantiated. 10360 **/ 10361 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10362 { 10363 struct i40e_pf *pf = veb->pf; 10364 10365 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10366 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10367 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10368 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10369 i40e_disable_pf_switch_lb(pf); 10370 else 10371 i40e_enable_pf_switch_lb(pf); 10372 } 10373 10374 /** 10375 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 10376 * @veb: pointer to the VEB instance 10377 * 10378 * This is a recursive function that first builds the attached VSIs then 10379 * recurses in to build the next layer of VEB. We track the connections 10380 * through our own index numbers because the seid's from the HW could 10381 * change across the reset. 10382 **/ 10383 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10384 { 10385 struct i40e_vsi *ctl_vsi = NULL; 10386 struct i40e_pf *pf = veb->pf; 10387 int v, veb_idx; 10388 int ret; 10389 10390 /* build VSI that owns this VEB, temporarily attached to base VEB */ 10391 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 10392 if (pf->vsi[v] && 10393 pf->vsi[v]->veb_idx == veb->idx && 10394 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 10395 ctl_vsi = pf->vsi[v]; 10396 break; 10397 } 10398 } 10399 if (!ctl_vsi) { 10400 dev_info(&pf->pdev->dev, 10401 "missing owner VSI for veb_idx %d\n", veb->idx); 10402 ret = -ENOENT; 10403 goto end_reconstitute; 10404 } 10405 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 10406 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 10407 ret = i40e_add_vsi(ctl_vsi); 10408 if (ret) { 10409 dev_info(&pf->pdev->dev, 10410 "rebuild of veb_idx %d owner VSI failed: %d\n", 10411 veb->idx, ret); 10412 goto end_reconstitute; 10413 } 10414 i40e_vsi_reset_stats(ctl_vsi); 10415 10416 /* create the VEB in the switch and move the VSI onto the VEB */ 10417 ret = i40e_add_veb(veb, ctl_vsi); 10418 if (ret) 10419 goto end_reconstitute; 10420 10421 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10422 veb->bridge_mode = BRIDGE_MODE_VEB; 10423 else 10424 veb->bridge_mode = BRIDGE_MODE_VEPA; 10425 i40e_config_bridge_mode(veb); 10426 10427 /* create the remaining VSIs attached to this VEB */ 10428 for (v = 0; v < pf->num_alloc_vsi; v++) { 10429 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 10430 continue; 10431 10432 if (pf->vsi[v]->veb_idx == veb->idx) { 10433 struct i40e_vsi *vsi = pf->vsi[v]; 10434 10435 vsi->uplink_seid = veb->seid; 10436 ret = i40e_add_vsi(vsi); 10437 if (ret) { 10438 dev_info(&pf->pdev->dev, 10439 "rebuild of vsi_idx %d failed: %d\n", 10440 v, ret); 10441 goto end_reconstitute; 10442 } 10443 i40e_vsi_reset_stats(vsi); 10444 } 10445 } 10446 10447 /* create any VEBs attached to this VEB - RECURSION */ 10448 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 10449 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 10450 pf->veb[veb_idx]->uplink_seid = veb->seid; 10451 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 10452 if (ret) 10453 break; 10454 } 10455 } 10456 10457 end_reconstitute: 10458 return ret; 10459 } 10460 10461 /** 10462 * i40e_get_capabilities - get info about the HW 10463 * @pf: the PF struct 10464 * @list_type: AQ capability to be queried 10465 **/ 10466 static int i40e_get_capabilities(struct i40e_pf *pf, 10467 enum i40e_admin_queue_opc list_type) 10468 { 10469 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10470 u16 data_size; 10471 int buf_len; 10472 int err; 10473 10474 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10475 do { 10476 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10477 if (!cap_buf) 10478 return -ENOMEM; 10479 10480 /* this loads the data into the hw struct for us */ 10481 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10482 &data_size, list_type, 10483 NULL); 10484 /* data loaded, buffer no longer needed */ 10485 kfree(cap_buf); 10486 10487 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10488 /* retry with a larger buffer */ 10489 buf_len = data_size; 10490 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10491 dev_info(&pf->pdev->dev, 10492 "capability discovery failed, err %pe aq_err %s\n", 10493 ERR_PTR(err), 10494 i40e_aq_str(&pf->hw, 10495 pf->hw.aq.asq_last_status)); 10496 return -ENODEV; 10497 } 10498 } while (err); 10499 10500 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10501 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10502 dev_info(&pf->pdev->dev, 10503 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10504 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10505 pf->hw.func_caps.num_msix_vectors, 10506 pf->hw.func_caps.num_msix_vectors_vf, 10507 pf->hw.func_caps.fd_filters_guaranteed, 10508 pf->hw.func_caps.fd_filters_best_effort, 10509 pf->hw.func_caps.num_tx_qp, 10510 pf->hw.func_caps.num_vsis); 10511 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10512 dev_info(&pf->pdev->dev, 10513 "switch_mode=0x%04x, function_valid=0x%08x\n", 10514 pf->hw.dev_caps.switch_mode, 10515 pf->hw.dev_caps.valid_functions); 10516 dev_info(&pf->pdev->dev, 10517 "SR-IOV=%d, num_vfs for all function=%u\n", 10518 pf->hw.dev_caps.sr_iov_1_1, 10519 pf->hw.dev_caps.num_vfs); 10520 dev_info(&pf->pdev->dev, 10521 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10522 pf->hw.dev_caps.num_vsis, 10523 pf->hw.dev_caps.num_rx_qp, 10524 pf->hw.dev_caps.num_tx_qp); 10525 } 10526 } 10527 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10528 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10529 + pf->hw.func_caps.num_vfs) 10530 if (pf->hw.revision_id == 0 && 10531 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10532 dev_info(&pf->pdev->dev, 10533 "got num_vsis %d, setting num_vsis to %d\n", 10534 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10535 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10536 } 10537 } 10538 return 0; 10539 } 10540 10541 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10542 10543 /** 10544 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10545 * @pf: board private structure 10546 **/ 10547 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10548 { 10549 struct i40e_vsi *vsi; 10550 10551 /* quick workaround for an NVM issue that leaves a critical register 10552 * uninitialized 10553 */ 10554 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10555 static const u32 hkey[] = { 10556 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10557 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10558 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10559 0x95b3a76d}; 10560 int i; 10561 10562 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10563 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10564 } 10565 10566 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10567 return; 10568 10569 /* find existing VSI and see if it needs configuring */ 10570 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10571 10572 /* create a new VSI if none exists */ 10573 if (!vsi) { 10574 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 10575 pf->vsi[pf->lan_vsi]->seid, 0); 10576 if (!vsi) { 10577 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10578 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10579 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10580 return; 10581 } 10582 } 10583 10584 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10585 } 10586 10587 /** 10588 * i40e_fdir_teardown - release the Flow Director resources 10589 * @pf: board private structure 10590 **/ 10591 static void i40e_fdir_teardown(struct i40e_pf *pf) 10592 { 10593 struct i40e_vsi *vsi; 10594 10595 i40e_fdir_filter_exit(pf); 10596 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10597 if (vsi) 10598 i40e_vsi_release(vsi); 10599 } 10600 10601 /** 10602 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10603 * @vsi: PF main vsi 10604 * @seid: seid of main or channel VSIs 10605 * 10606 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10607 * existed before reset 10608 **/ 10609 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10610 { 10611 struct i40e_cloud_filter *cfilter; 10612 struct i40e_pf *pf = vsi->back; 10613 struct hlist_node *node; 10614 int ret; 10615 10616 /* Add cloud filters back if they exist */ 10617 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10618 cloud_node) { 10619 if (cfilter->seid != seid) 10620 continue; 10621 10622 if (cfilter->dst_port) 10623 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10624 true); 10625 else 10626 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10627 10628 if (ret) { 10629 dev_dbg(&pf->pdev->dev, 10630 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10631 ERR_PTR(ret), 10632 i40e_aq_str(&pf->hw, 10633 pf->hw.aq.asq_last_status)); 10634 return ret; 10635 } 10636 } 10637 return 0; 10638 } 10639 10640 /** 10641 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10642 * @vsi: PF main vsi 10643 * 10644 * Rebuilds channel VSIs if they existed before reset 10645 **/ 10646 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10647 { 10648 struct i40e_channel *ch, *ch_tmp; 10649 int ret; 10650 10651 if (list_empty(&vsi->ch_list)) 10652 return 0; 10653 10654 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10655 if (!ch->initialized) 10656 break; 10657 /* Proceed with creation of channel (VMDq2) VSI */ 10658 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10659 if (ret) { 10660 dev_info(&vsi->back->pdev->dev, 10661 "failed to rebuild channels using uplink_seid %u\n", 10662 vsi->uplink_seid); 10663 return ret; 10664 } 10665 /* Reconfigure TX queues using QTX_CTL register */ 10666 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10667 if (ret) { 10668 dev_info(&vsi->back->pdev->dev, 10669 "failed to configure TX rings for channel %u\n", 10670 ch->seid); 10671 return ret; 10672 } 10673 /* update 'next_base_queue' */ 10674 vsi->next_base_queue = vsi->next_base_queue + 10675 ch->num_queue_pairs; 10676 if (ch->max_tx_rate) { 10677 u64 credits = ch->max_tx_rate; 10678 10679 if (i40e_set_bw_limit(vsi, ch->seid, 10680 ch->max_tx_rate)) 10681 return -EINVAL; 10682 10683 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10684 dev_dbg(&vsi->back->pdev->dev, 10685 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10686 ch->max_tx_rate, 10687 credits, 10688 ch->seid); 10689 } 10690 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10691 if (ret) { 10692 dev_dbg(&vsi->back->pdev->dev, 10693 "Failed to rebuild cloud filters for channel VSI %u\n", 10694 ch->seid); 10695 return ret; 10696 } 10697 } 10698 return 0; 10699 } 10700 10701 /** 10702 * i40e_clean_xps_state - clean xps state for every tx_ring 10703 * @vsi: ptr to the VSI 10704 **/ 10705 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10706 { 10707 int i; 10708 10709 if (vsi->tx_rings) 10710 for (i = 0; i < vsi->num_queue_pairs; i++) 10711 if (vsi->tx_rings[i]) 10712 clear_bit(__I40E_TX_XPS_INIT_DONE, 10713 vsi->tx_rings[i]->state); 10714 } 10715 10716 /** 10717 * i40e_prep_for_reset - prep for the core to reset 10718 * @pf: board private structure 10719 * 10720 * Close up the VFs and other things in prep for PF Reset. 10721 **/ 10722 static void i40e_prep_for_reset(struct i40e_pf *pf) 10723 { 10724 struct i40e_hw *hw = &pf->hw; 10725 int ret = 0; 10726 u32 v; 10727 10728 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10729 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10730 return; 10731 if (i40e_check_asq_alive(&pf->hw)) 10732 i40e_vc_notify_reset(pf); 10733 10734 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10735 10736 /* quiesce the VSIs and their queues that are not already DOWN */ 10737 i40e_pf_quiesce_all_vsi(pf); 10738 10739 for (v = 0; v < pf->num_alloc_vsi; v++) { 10740 if (pf->vsi[v]) { 10741 i40e_clean_xps_state(pf->vsi[v]); 10742 pf->vsi[v]->seid = 0; 10743 } 10744 } 10745 10746 i40e_shutdown_adminq(&pf->hw); 10747 10748 /* call shutdown HMC */ 10749 if (hw->hmc.hmc_obj) { 10750 ret = i40e_shutdown_lan_hmc(hw); 10751 if (ret) 10752 dev_warn(&pf->pdev->dev, 10753 "shutdown_lan_hmc failed: %d\n", ret); 10754 } 10755 10756 /* Save the current PTP time so that we can restore the time after the 10757 * reset completes. 10758 */ 10759 i40e_ptp_save_hw_time(pf); 10760 } 10761 10762 /** 10763 * i40e_send_version - update firmware with driver version 10764 * @pf: PF struct 10765 */ 10766 static void i40e_send_version(struct i40e_pf *pf) 10767 { 10768 struct i40e_driver_version dv; 10769 10770 dv.major_version = 0xff; 10771 dv.minor_version = 0xff; 10772 dv.build_version = 0xff; 10773 dv.subbuild_version = 0; 10774 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10775 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10776 } 10777 10778 /** 10779 * i40e_get_oem_version - get OEM specific version information 10780 * @hw: pointer to the hardware structure 10781 **/ 10782 static void i40e_get_oem_version(struct i40e_hw *hw) 10783 { 10784 u16 block_offset = 0xffff; 10785 u16 block_length = 0; 10786 u16 capabilities = 0; 10787 u16 gen_snap = 0; 10788 u16 release = 0; 10789 10790 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10791 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10792 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10793 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10794 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10795 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10796 #define I40E_NVM_OEM_LENGTH 3 10797 10798 /* Check if pointer to OEM version block is valid. */ 10799 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10800 if (block_offset == 0xffff) 10801 return; 10802 10803 /* Check if OEM version block has correct length. */ 10804 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10805 &block_length); 10806 if (block_length < I40E_NVM_OEM_LENGTH) 10807 return; 10808 10809 /* Check if OEM version format is as expected. */ 10810 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10811 &capabilities); 10812 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10813 return; 10814 10815 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10816 &gen_snap); 10817 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10818 &release); 10819 hw->nvm.oem_ver = 10820 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10821 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10822 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10823 } 10824 10825 /** 10826 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10827 * @pf: board private structure 10828 **/ 10829 static int i40e_reset(struct i40e_pf *pf) 10830 { 10831 struct i40e_hw *hw = &pf->hw; 10832 int ret; 10833 10834 ret = i40e_pf_reset(hw); 10835 if (ret) { 10836 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10837 set_bit(__I40E_RESET_FAILED, pf->state); 10838 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10839 } else { 10840 pf->pfr_count++; 10841 } 10842 return ret; 10843 } 10844 10845 /** 10846 * i40e_rebuild - rebuild using a saved config 10847 * @pf: board private structure 10848 * @reinit: if the Main VSI needs to re-initialized. 10849 * @lock_acquired: indicates whether or not the lock has been acquired 10850 * before this function was called. 10851 **/ 10852 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10853 { 10854 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10855 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10856 struct i40e_hw *hw = &pf->hw; 10857 int ret; 10858 u32 val; 10859 int v; 10860 10861 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10862 is_recovery_mode_reported) 10863 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 10864 10865 if (test_bit(__I40E_DOWN, pf->state) && 10866 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10867 goto clear_recovery; 10868 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10869 10870 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10871 ret = i40e_init_adminq(&pf->hw); 10872 if (ret) { 10873 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10874 ERR_PTR(ret), 10875 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10876 goto clear_recovery; 10877 } 10878 i40e_get_oem_version(&pf->hw); 10879 10880 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10881 /* The following delay is necessary for firmware update. */ 10882 mdelay(1000); 10883 } 10884 10885 /* re-verify the eeprom if we just had an EMP reset */ 10886 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10887 i40e_verify_eeprom(pf); 10888 10889 /* if we are going out of or into recovery mode we have to act 10890 * accordingly with regard to resources initialization 10891 * and deinitialization 10892 */ 10893 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10894 if (i40e_get_capabilities(pf, 10895 i40e_aqc_opc_list_func_capabilities)) 10896 goto end_unlock; 10897 10898 if (is_recovery_mode_reported) { 10899 /* we're staying in recovery mode so we'll reinitialize 10900 * misc vector here 10901 */ 10902 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10903 goto end_unlock; 10904 } else { 10905 if (!lock_acquired) 10906 rtnl_lock(); 10907 /* we're going out of recovery mode so we'll free 10908 * the IRQ allocated specifically for recovery mode 10909 * and restore the interrupt scheme 10910 */ 10911 free_irq(pf->pdev->irq, pf); 10912 i40e_clear_interrupt_scheme(pf); 10913 if (i40e_restore_interrupt_scheme(pf)) 10914 goto end_unlock; 10915 } 10916 10917 /* tell the firmware that we're starting */ 10918 i40e_send_version(pf); 10919 10920 /* bail out in case recovery mode was detected, as there is 10921 * no need for further configuration. 10922 */ 10923 goto end_unlock; 10924 } 10925 10926 i40e_clear_pxe_mode(hw); 10927 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10928 if (ret) 10929 goto end_core_reset; 10930 10931 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10932 hw->func_caps.num_rx_qp, 0, 0); 10933 if (ret) { 10934 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10935 goto end_core_reset; 10936 } 10937 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10938 if (ret) { 10939 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10940 goto end_core_reset; 10941 } 10942 10943 #ifdef CONFIG_I40E_DCB 10944 /* Enable FW to write a default DCB config on link-up 10945 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10946 * is not supported with new link speed 10947 */ 10948 if (i40e_is_tc_mqprio_enabled(pf)) { 10949 i40e_aq_set_dcb_parameters(hw, false, NULL); 10950 } else { 10951 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10952 (hw->phy.link_info.link_speed & 10953 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10954 i40e_aq_set_dcb_parameters(hw, false, NULL); 10955 dev_warn(&pf->pdev->dev, 10956 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10957 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10958 } else { 10959 i40e_aq_set_dcb_parameters(hw, true, NULL); 10960 ret = i40e_init_pf_dcb(pf); 10961 if (ret) { 10962 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10963 ret); 10964 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10965 /* Continue without DCB enabled */ 10966 } 10967 } 10968 } 10969 10970 #endif /* CONFIG_I40E_DCB */ 10971 if (!lock_acquired) 10972 rtnl_lock(); 10973 ret = i40e_setup_pf_switch(pf, reinit, true); 10974 if (ret) 10975 goto end_unlock; 10976 10977 /* The driver only wants link up/down and module qualification 10978 * reports from firmware. Note the negative logic. 10979 */ 10980 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10981 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10982 I40E_AQ_EVENT_MEDIA_NA | 10983 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10984 if (ret) 10985 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 10986 ERR_PTR(ret), 10987 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10988 10989 /* Rebuild the VSIs and VEBs that existed before reset. 10990 * They are still in our local switch element arrays, so only 10991 * need to rebuild the switch model in the HW. 10992 * 10993 * If there were VEBs but the reconstitution failed, we'll try 10994 * to recover minimal use by getting the basic PF VSI working. 10995 */ 10996 if (vsi->uplink_seid != pf->mac_seid) { 10997 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10998 /* find the one VEB connected to the MAC, and find orphans */ 10999 for (v = 0; v < I40E_MAX_VEB; v++) { 11000 if (!pf->veb[v]) 11001 continue; 11002 11003 if (pf->veb[v]->uplink_seid == pf->mac_seid || 11004 pf->veb[v]->uplink_seid == 0) { 11005 ret = i40e_reconstitute_veb(pf->veb[v]); 11006 11007 if (!ret) 11008 continue; 11009 11010 /* If Main VEB failed, we're in deep doodoo, 11011 * so give up rebuilding the switch and set up 11012 * for minimal rebuild of PF VSI. 11013 * If orphan failed, we'll report the error 11014 * but try to keep going. 11015 */ 11016 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 11017 dev_info(&pf->pdev->dev, 11018 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 11019 ret); 11020 vsi->uplink_seid = pf->mac_seid; 11021 break; 11022 } else if (pf->veb[v]->uplink_seid == 0) { 11023 dev_info(&pf->pdev->dev, 11024 "rebuild of orphan VEB failed: %d\n", 11025 ret); 11026 } 11027 } 11028 } 11029 } 11030 11031 if (vsi->uplink_seid == pf->mac_seid) { 11032 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11033 /* no VEB, so rebuild only the Main VSI */ 11034 ret = i40e_add_vsi(vsi); 11035 if (ret) { 11036 dev_info(&pf->pdev->dev, 11037 "rebuild of Main VSI failed: %d\n", ret); 11038 goto end_unlock; 11039 } 11040 } 11041 11042 if (vsi->mqprio_qopt.max_rate[0]) { 11043 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11044 vsi->mqprio_qopt.max_rate[0]); 11045 u64 credits = 0; 11046 11047 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11048 if (ret) 11049 goto end_unlock; 11050 11051 credits = max_tx_rate; 11052 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11053 dev_dbg(&vsi->back->pdev->dev, 11054 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11055 max_tx_rate, 11056 credits, 11057 vsi->seid); 11058 } 11059 11060 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11061 if (ret) 11062 goto end_unlock; 11063 11064 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11065 * for this main VSI if they exist 11066 */ 11067 ret = i40e_rebuild_channels(vsi); 11068 if (ret) 11069 goto end_unlock; 11070 11071 /* Reconfigure hardware for allowing smaller MSS in the case 11072 * of TSO, so that we avoid the MDD being fired and causing 11073 * a reset in the case of small MSS+TSO. 11074 */ 11075 #define I40E_REG_MSS 0x000E64DC 11076 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11077 #define I40E_64BYTE_MSS 0x400000 11078 val = rd32(hw, I40E_REG_MSS); 11079 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11080 val &= ~I40E_REG_MSS_MIN_MASK; 11081 val |= I40E_64BYTE_MSS; 11082 wr32(hw, I40E_REG_MSS, val); 11083 } 11084 11085 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11086 msleep(75); 11087 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11088 if (ret) 11089 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11090 ERR_PTR(ret), 11091 i40e_aq_str(&pf->hw, 11092 pf->hw.aq.asq_last_status)); 11093 } 11094 /* reinit the misc interrupt */ 11095 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11096 ret = i40e_setup_misc_vector(pf); 11097 if (ret) 11098 goto end_unlock; 11099 } 11100 11101 /* Add a filter to drop all Flow control frames from any VSI from being 11102 * transmitted. By doing so we stop a malicious VF from sending out 11103 * PAUSE or PFC frames and potentially controlling traffic for other 11104 * PF/VF VSIs. 11105 * The FW can still send Flow control frames if enabled. 11106 */ 11107 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11108 pf->main_vsi_seid); 11109 11110 /* restart the VSIs that were rebuilt and running before the reset */ 11111 i40e_pf_unquiesce_all_vsi(pf); 11112 11113 /* Release the RTNL lock before we start resetting VFs */ 11114 if (!lock_acquired) 11115 rtnl_unlock(); 11116 11117 /* Restore promiscuous settings */ 11118 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11119 if (ret) 11120 dev_warn(&pf->pdev->dev, 11121 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11122 pf->cur_promisc ? "on" : "off", 11123 ERR_PTR(ret), 11124 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11125 11126 i40e_reset_all_vfs(pf, true); 11127 11128 /* tell the firmware that we're starting */ 11129 i40e_send_version(pf); 11130 11131 /* We've already released the lock, so don't do it again */ 11132 goto end_core_reset; 11133 11134 end_unlock: 11135 if (!lock_acquired) 11136 rtnl_unlock(); 11137 end_core_reset: 11138 clear_bit(__I40E_RESET_FAILED, pf->state); 11139 clear_recovery: 11140 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11141 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11142 } 11143 11144 /** 11145 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11146 * @pf: board private structure 11147 * @reinit: if the Main VSI needs to re-initialized. 11148 * @lock_acquired: indicates whether or not the lock has been acquired 11149 * before this function was called. 11150 **/ 11151 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11152 bool lock_acquired) 11153 { 11154 int ret; 11155 11156 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11157 return; 11158 /* Now we wait for GRST to settle out. 11159 * We don't have to delete the VEBs or VSIs from the hw switch 11160 * because the reset will make them disappear. 11161 */ 11162 ret = i40e_reset(pf); 11163 if (!ret) 11164 i40e_rebuild(pf, reinit, lock_acquired); 11165 } 11166 11167 /** 11168 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11169 * @pf: board private structure 11170 * 11171 * Close up the VFs and other things in prep for a Core Reset, 11172 * then get ready to rebuild the world. 11173 * @lock_acquired: indicates whether or not the lock has been acquired 11174 * before this function was called. 11175 **/ 11176 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11177 { 11178 i40e_prep_for_reset(pf); 11179 i40e_reset_and_rebuild(pf, false, lock_acquired); 11180 } 11181 11182 /** 11183 * i40e_handle_mdd_event 11184 * @pf: pointer to the PF structure 11185 * 11186 * Called from the MDD irq handler to identify possibly malicious vfs 11187 **/ 11188 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11189 { 11190 struct i40e_hw *hw = &pf->hw; 11191 bool mdd_detected = false; 11192 struct i40e_vf *vf; 11193 u32 reg; 11194 int i; 11195 11196 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 11197 return; 11198 11199 /* find what triggered the MDD event */ 11200 reg = rd32(hw, I40E_GL_MDET_TX); 11201 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11202 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg); 11203 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg); 11204 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg); 11205 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) - 11206 pf->hw.func_caps.base_queue; 11207 if (netif_msg_tx_err(pf)) 11208 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11209 event, queue, pf_num, vf_num); 11210 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11211 mdd_detected = true; 11212 } 11213 reg = rd32(hw, I40E_GL_MDET_RX); 11214 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11215 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg); 11216 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg); 11217 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) - 11218 pf->hw.func_caps.base_queue; 11219 if (netif_msg_rx_err(pf)) 11220 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11221 event, queue, func); 11222 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11223 mdd_detected = true; 11224 } 11225 11226 if (mdd_detected) { 11227 reg = rd32(hw, I40E_PF_MDET_TX); 11228 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11229 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11230 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11231 } 11232 reg = rd32(hw, I40E_PF_MDET_RX); 11233 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11234 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11235 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11236 } 11237 } 11238 11239 /* see if one of the VFs needs its hand slapped */ 11240 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11241 vf = &(pf->vf[i]); 11242 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11243 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11244 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11245 vf->num_mdd_events++; 11246 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 11247 i); 11248 dev_info(&pf->pdev->dev, 11249 "Use PF Control I/F to re-enable the VF\n"); 11250 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11251 } 11252 11253 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11254 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11255 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11256 vf->num_mdd_events++; 11257 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 11258 i); 11259 dev_info(&pf->pdev->dev, 11260 "Use PF Control I/F to re-enable the VF\n"); 11261 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11262 } 11263 } 11264 11265 /* re-enable mdd interrupt cause */ 11266 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 11267 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11268 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11269 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11270 i40e_flush(hw); 11271 } 11272 11273 /** 11274 * i40e_service_task - Run the driver's async subtasks 11275 * @work: pointer to work_struct containing our data 11276 **/ 11277 static void i40e_service_task(struct work_struct *work) 11278 { 11279 struct i40e_pf *pf = container_of(work, 11280 struct i40e_pf, 11281 service_task); 11282 unsigned long start_time = jiffies; 11283 11284 /* don't bother with service tasks if a reset is in progress */ 11285 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11286 test_bit(__I40E_SUSPENDED, pf->state)) 11287 return; 11288 11289 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11290 return; 11291 11292 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11293 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 11294 i40e_sync_filters_subtask(pf); 11295 i40e_reset_subtask(pf); 11296 i40e_handle_mdd_event(pf); 11297 i40e_vc_process_vflr_event(pf); 11298 i40e_watchdog_subtask(pf); 11299 i40e_fdir_reinit_subtask(pf); 11300 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11301 /* Client subtask will reopen next time through. */ 11302 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 11303 true); 11304 } else { 11305 i40e_client_subtask(pf); 11306 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11307 pf->state)) 11308 i40e_notify_client_of_l2_param_changes( 11309 pf->vsi[pf->lan_vsi]); 11310 } 11311 i40e_sync_filters_subtask(pf); 11312 } else { 11313 i40e_reset_subtask(pf); 11314 } 11315 11316 i40e_clean_adminq_subtask(pf); 11317 11318 /* flush memory to make sure state is correct before next watchdog */ 11319 smp_mb__before_atomic(); 11320 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11321 11322 /* If the tasks have taken longer than one timer cycle or there 11323 * is more work to be done, reschedule the service task now 11324 * rather than wait for the timer to tick again. 11325 */ 11326 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11327 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11328 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11329 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11330 i40e_service_event_schedule(pf); 11331 } 11332 11333 /** 11334 * i40e_service_timer - timer callback 11335 * @t: timer list pointer 11336 **/ 11337 static void i40e_service_timer(struct timer_list *t) 11338 { 11339 struct i40e_pf *pf = from_timer(pf, t, service_timer); 11340 11341 mod_timer(&pf->service_timer, 11342 round_jiffies(jiffies + pf->service_timer_period)); 11343 i40e_service_event_schedule(pf); 11344 } 11345 11346 /** 11347 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11348 * @vsi: the VSI being configured 11349 **/ 11350 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11351 { 11352 struct i40e_pf *pf = vsi->back; 11353 11354 switch (vsi->type) { 11355 case I40E_VSI_MAIN: 11356 vsi->alloc_queue_pairs = pf->num_lan_qps; 11357 if (!vsi->num_tx_desc) 11358 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11359 I40E_REQ_DESCRIPTOR_MULTIPLE); 11360 if (!vsi->num_rx_desc) 11361 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11362 I40E_REQ_DESCRIPTOR_MULTIPLE); 11363 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11364 vsi->num_q_vectors = pf->num_lan_msix; 11365 else 11366 vsi->num_q_vectors = 1; 11367 11368 break; 11369 11370 case I40E_VSI_FDIR: 11371 vsi->alloc_queue_pairs = 1; 11372 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11373 I40E_REQ_DESCRIPTOR_MULTIPLE); 11374 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11375 I40E_REQ_DESCRIPTOR_MULTIPLE); 11376 vsi->num_q_vectors = pf->num_fdsb_msix; 11377 break; 11378 11379 case I40E_VSI_VMDQ2: 11380 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11381 if (!vsi->num_tx_desc) 11382 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11383 I40E_REQ_DESCRIPTOR_MULTIPLE); 11384 if (!vsi->num_rx_desc) 11385 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11386 I40E_REQ_DESCRIPTOR_MULTIPLE); 11387 vsi->num_q_vectors = pf->num_vmdq_msix; 11388 break; 11389 11390 case I40E_VSI_SRIOV: 11391 vsi->alloc_queue_pairs = pf->num_vf_qps; 11392 if (!vsi->num_tx_desc) 11393 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11394 I40E_REQ_DESCRIPTOR_MULTIPLE); 11395 if (!vsi->num_rx_desc) 11396 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11397 I40E_REQ_DESCRIPTOR_MULTIPLE); 11398 break; 11399 11400 default: 11401 WARN_ON(1); 11402 return -ENODATA; 11403 } 11404 11405 if (is_kdump_kernel()) { 11406 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11407 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11408 } 11409 11410 return 0; 11411 } 11412 11413 /** 11414 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11415 * @vsi: VSI pointer 11416 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11417 * 11418 * On error: returns error code (negative) 11419 * On success: returns 0 11420 **/ 11421 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11422 { 11423 struct i40e_ring **next_rings; 11424 int size; 11425 int ret = 0; 11426 11427 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11428 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11429 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11430 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11431 if (!vsi->tx_rings) 11432 return -ENOMEM; 11433 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11434 if (i40e_enabled_xdp_vsi(vsi)) { 11435 vsi->xdp_rings = next_rings; 11436 next_rings += vsi->alloc_queue_pairs; 11437 } 11438 vsi->rx_rings = next_rings; 11439 11440 if (alloc_qvectors) { 11441 /* allocate memory for q_vector pointers */ 11442 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11443 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11444 if (!vsi->q_vectors) { 11445 ret = -ENOMEM; 11446 goto err_vectors; 11447 } 11448 } 11449 return ret; 11450 11451 err_vectors: 11452 kfree(vsi->tx_rings); 11453 return ret; 11454 } 11455 11456 /** 11457 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11458 * @pf: board private structure 11459 * @type: type of VSI 11460 * 11461 * On error: returns error code (negative) 11462 * On success: returns vsi index in PF (positive) 11463 **/ 11464 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11465 { 11466 int ret = -ENODEV; 11467 struct i40e_vsi *vsi; 11468 int vsi_idx; 11469 int i; 11470 11471 /* Need to protect the allocation of the VSIs at the PF level */ 11472 mutex_lock(&pf->switch_mutex); 11473 11474 /* VSI list may be fragmented if VSI creation/destruction has 11475 * been happening. We can afford to do a quick scan to look 11476 * for any free VSIs in the list. 11477 * 11478 * find next empty vsi slot, looping back around if necessary 11479 */ 11480 i = pf->next_vsi; 11481 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11482 i++; 11483 if (i >= pf->num_alloc_vsi) { 11484 i = 0; 11485 while (i < pf->next_vsi && pf->vsi[i]) 11486 i++; 11487 } 11488 11489 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11490 vsi_idx = i; /* Found one! */ 11491 } else { 11492 ret = -ENODEV; 11493 goto unlock_pf; /* out of VSI slots! */ 11494 } 11495 pf->next_vsi = ++i; 11496 11497 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11498 if (!vsi) { 11499 ret = -ENOMEM; 11500 goto unlock_pf; 11501 } 11502 vsi->type = type; 11503 vsi->back = pf; 11504 set_bit(__I40E_VSI_DOWN, vsi->state); 11505 vsi->flags = 0; 11506 vsi->idx = vsi_idx; 11507 vsi->int_rate_limit = 0; 11508 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11509 pf->rss_table_size : 64; 11510 vsi->netdev_registered = false; 11511 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11512 hash_init(vsi->mac_filter_hash); 11513 vsi->irqs_ready = false; 11514 11515 if (type == I40E_VSI_MAIN) { 11516 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11517 if (!vsi->af_xdp_zc_qps) 11518 goto err_rings; 11519 } 11520 11521 ret = i40e_set_num_rings_in_vsi(vsi); 11522 if (ret) 11523 goto err_rings; 11524 11525 ret = i40e_vsi_alloc_arrays(vsi, true); 11526 if (ret) 11527 goto err_rings; 11528 11529 /* Setup default MSIX irq handler for VSI */ 11530 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11531 11532 /* Initialize VSI lock */ 11533 spin_lock_init(&vsi->mac_filter_hash_lock); 11534 pf->vsi[vsi_idx] = vsi; 11535 ret = vsi_idx; 11536 goto unlock_pf; 11537 11538 err_rings: 11539 bitmap_free(vsi->af_xdp_zc_qps); 11540 pf->next_vsi = i - 1; 11541 kfree(vsi); 11542 unlock_pf: 11543 mutex_unlock(&pf->switch_mutex); 11544 return ret; 11545 } 11546 11547 /** 11548 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11549 * @vsi: VSI pointer 11550 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11551 * 11552 * On error: returns error code (negative) 11553 * On success: returns 0 11554 **/ 11555 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11556 { 11557 /* free the ring and vector containers */ 11558 if (free_qvectors) { 11559 kfree(vsi->q_vectors); 11560 vsi->q_vectors = NULL; 11561 } 11562 kfree(vsi->tx_rings); 11563 vsi->tx_rings = NULL; 11564 vsi->rx_rings = NULL; 11565 vsi->xdp_rings = NULL; 11566 } 11567 11568 /** 11569 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11570 * and lookup table 11571 * @vsi: Pointer to VSI structure 11572 */ 11573 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11574 { 11575 if (!vsi) 11576 return; 11577 11578 kfree(vsi->rss_hkey_user); 11579 vsi->rss_hkey_user = NULL; 11580 11581 kfree(vsi->rss_lut_user); 11582 vsi->rss_lut_user = NULL; 11583 } 11584 11585 /** 11586 * i40e_vsi_clear - Deallocate the VSI provided 11587 * @vsi: the VSI being un-configured 11588 **/ 11589 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11590 { 11591 struct i40e_pf *pf; 11592 11593 if (!vsi) 11594 return 0; 11595 11596 if (!vsi->back) 11597 goto free_vsi; 11598 pf = vsi->back; 11599 11600 mutex_lock(&pf->switch_mutex); 11601 if (!pf->vsi[vsi->idx]) { 11602 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11603 vsi->idx, vsi->idx, vsi->type); 11604 goto unlock_vsi; 11605 } 11606 11607 if (pf->vsi[vsi->idx] != vsi) { 11608 dev_err(&pf->pdev->dev, 11609 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11610 pf->vsi[vsi->idx]->idx, 11611 pf->vsi[vsi->idx]->type, 11612 vsi->idx, vsi->type); 11613 goto unlock_vsi; 11614 } 11615 11616 /* updates the PF for this cleared vsi */ 11617 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11618 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11619 11620 bitmap_free(vsi->af_xdp_zc_qps); 11621 i40e_vsi_free_arrays(vsi, true); 11622 i40e_clear_rss_config_user(vsi); 11623 11624 pf->vsi[vsi->idx] = NULL; 11625 if (vsi->idx < pf->next_vsi) 11626 pf->next_vsi = vsi->idx; 11627 11628 unlock_vsi: 11629 mutex_unlock(&pf->switch_mutex); 11630 free_vsi: 11631 kfree(vsi); 11632 11633 return 0; 11634 } 11635 11636 /** 11637 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11638 * @vsi: the VSI being cleaned 11639 **/ 11640 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11641 { 11642 int i; 11643 11644 if (vsi->tx_rings && vsi->tx_rings[0]) { 11645 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11646 kfree_rcu(vsi->tx_rings[i], rcu); 11647 WRITE_ONCE(vsi->tx_rings[i], NULL); 11648 WRITE_ONCE(vsi->rx_rings[i], NULL); 11649 if (vsi->xdp_rings) 11650 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11651 } 11652 } 11653 } 11654 11655 /** 11656 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11657 * @vsi: the VSI being configured 11658 **/ 11659 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11660 { 11661 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11662 struct i40e_pf *pf = vsi->back; 11663 struct i40e_ring *ring; 11664 11665 /* Set basic values in the rings to be used later during open() */ 11666 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11667 /* allocate space for both Tx and Rx in one shot */ 11668 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11669 if (!ring) 11670 goto err_out; 11671 11672 ring->queue_index = i; 11673 ring->reg_idx = vsi->base_queue + i; 11674 ring->ring_active = false; 11675 ring->vsi = vsi; 11676 ring->netdev = vsi->netdev; 11677 ring->dev = &pf->pdev->dev; 11678 ring->count = vsi->num_tx_desc; 11679 ring->size = 0; 11680 ring->dcb_tc = 0; 11681 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11682 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11683 ring->itr_setting = pf->tx_itr_default; 11684 WRITE_ONCE(vsi->tx_rings[i], ring++); 11685 11686 if (!i40e_enabled_xdp_vsi(vsi)) 11687 goto setup_rx; 11688 11689 ring->queue_index = vsi->alloc_queue_pairs + i; 11690 ring->reg_idx = vsi->base_queue + ring->queue_index; 11691 ring->ring_active = false; 11692 ring->vsi = vsi; 11693 ring->netdev = NULL; 11694 ring->dev = &pf->pdev->dev; 11695 ring->count = vsi->num_tx_desc; 11696 ring->size = 0; 11697 ring->dcb_tc = 0; 11698 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11699 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11700 set_ring_xdp(ring); 11701 ring->itr_setting = pf->tx_itr_default; 11702 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11703 11704 setup_rx: 11705 ring->queue_index = i; 11706 ring->reg_idx = vsi->base_queue + i; 11707 ring->ring_active = false; 11708 ring->vsi = vsi; 11709 ring->netdev = vsi->netdev; 11710 ring->dev = &pf->pdev->dev; 11711 ring->count = vsi->num_rx_desc; 11712 ring->size = 0; 11713 ring->dcb_tc = 0; 11714 ring->itr_setting = pf->rx_itr_default; 11715 WRITE_ONCE(vsi->rx_rings[i], ring); 11716 } 11717 11718 return 0; 11719 11720 err_out: 11721 i40e_vsi_clear_rings(vsi); 11722 return -ENOMEM; 11723 } 11724 11725 /** 11726 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11727 * @pf: board private structure 11728 * @vectors: the number of MSI-X vectors to request 11729 * 11730 * Returns the number of vectors reserved, or error 11731 **/ 11732 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11733 { 11734 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11735 I40E_MIN_MSIX, vectors); 11736 if (vectors < 0) { 11737 dev_info(&pf->pdev->dev, 11738 "MSI-X vector reservation failed: %d\n", vectors); 11739 vectors = 0; 11740 } 11741 11742 return vectors; 11743 } 11744 11745 /** 11746 * i40e_init_msix - Setup the MSIX capability 11747 * @pf: board private structure 11748 * 11749 * Work with the OS to set up the MSIX vectors needed. 11750 * 11751 * Returns the number of vectors reserved or negative on failure 11752 **/ 11753 static int i40e_init_msix(struct i40e_pf *pf) 11754 { 11755 struct i40e_hw *hw = &pf->hw; 11756 int cpus, extra_vectors; 11757 int vectors_left; 11758 int v_budget, i; 11759 int v_actual; 11760 int iwarp_requested = 0; 11761 11762 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11763 return -ENODEV; 11764 11765 /* The number of vectors we'll request will be comprised of: 11766 * - Add 1 for "other" cause for Admin Queue events, etc. 11767 * - The number of LAN queue pairs 11768 * - Queues being used for RSS. 11769 * We don't need as many as max_rss_size vectors. 11770 * use rss_size instead in the calculation since that 11771 * is governed by number of cpus in the system. 11772 * - assumes symmetric Tx/Rx pairing 11773 * - The number of VMDq pairs 11774 * - The CPU count within the NUMA node if iWARP is enabled 11775 * Once we count this up, try the request. 11776 * 11777 * If we can't get what we want, we'll simplify to nearly nothing 11778 * and try again. If that still fails, we punt. 11779 */ 11780 vectors_left = hw->func_caps.num_msix_vectors; 11781 v_budget = 0; 11782 11783 /* reserve one vector for miscellaneous handler */ 11784 if (vectors_left) { 11785 v_budget++; 11786 vectors_left--; 11787 } 11788 11789 /* reserve some vectors for the main PF traffic queues. Initially we 11790 * only reserve at most 50% of the available vectors, in the case that 11791 * the number of online CPUs is large. This ensures that we can enable 11792 * extra features as well. Once we've enabled the other features, we 11793 * will use any remaining vectors to reach as close as we can to the 11794 * number of online CPUs. 11795 */ 11796 cpus = num_online_cpus(); 11797 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11798 vectors_left -= pf->num_lan_msix; 11799 11800 /* reserve one vector for sideband flow director */ 11801 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11802 if (vectors_left) { 11803 pf->num_fdsb_msix = 1; 11804 v_budget++; 11805 vectors_left--; 11806 } else { 11807 pf->num_fdsb_msix = 0; 11808 } 11809 } 11810 11811 /* can we reserve enough for iWARP? */ 11812 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11813 iwarp_requested = pf->num_iwarp_msix; 11814 11815 if (!vectors_left) 11816 pf->num_iwarp_msix = 0; 11817 else if (vectors_left < pf->num_iwarp_msix) 11818 pf->num_iwarp_msix = 1; 11819 v_budget += pf->num_iwarp_msix; 11820 vectors_left -= pf->num_iwarp_msix; 11821 } 11822 11823 /* any vectors left over go for VMDq support */ 11824 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11825 if (!vectors_left) { 11826 pf->num_vmdq_msix = 0; 11827 pf->num_vmdq_qps = 0; 11828 } else { 11829 int vmdq_vecs_wanted = 11830 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11831 int vmdq_vecs = 11832 min_t(int, vectors_left, vmdq_vecs_wanted); 11833 11834 /* if we're short on vectors for what's desired, we limit 11835 * the queues per vmdq. If this is still more than are 11836 * available, the user will need to change the number of 11837 * queues/vectors used by the PF later with the ethtool 11838 * channels command 11839 */ 11840 if (vectors_left < vmdq_vecs_wanted) { 11841 pf->num_vmdq_qps = 1; 11842 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11843 vmdq_vecs = min_t(int, 11844 vectors_left, 11845 vmdq_vecs_wanted); 11846 } 11847 pf->num_vmdq_msix = pf->num_vmdq_qps; 11848 11849 v_budget += vmdq_vecs; 11850 vectors_left -= vmdq_vecs; 11851 } 11852 } 11853 11854 /* On systems with a large number of SMP cores, we previously limited 11855 * the number of vectors for num_lan_msix to be at most 50% of the 11856 * available vectors, to allow for other features. Now, we add back 11857 * the remaining vectors. However, we ensure that the total 11858 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11859 * calculate the number of vectors we can add without going over the 11860 * cap of CPUs. For systems with a small number of CPUs this will be 11861 * zero. 11862 */ 11863 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11864 pf->num_lan_msix += extra_vectors; 11865 vectors_left -= extra_vectors; 11866 11867 WARN(vectors_left < 0, 11868 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11869 11870 v_budget += pf->num_lan_msix; 11871 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11872 GFP_KERNEL); 11873 if (!pf->msix_entries) 11874 return -ENOMEM; 11875 11876 for (i = 0; i < v_budget; i++) 11877 pf->msix_entries[i].entry = i; 11878 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11879 11880 if (v_actual < I40E_MIN_MSIX) { 11881 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11882 kfree(pf->msix_entries); 11883 pf->msix_entries = NULL; 11884 pci_disable_msix(pf->pdev); 11885 return -ENODEV; 11886 11887 } else if (v_actual == I40E_MIN_MSIX) { 11888 /* Adjust for minimal MSIX use */ 11889 pf->num_vmdq_vsis = 0; 11890 pf->num_vmdq_qps = 0; 11891 pf->num_lan_qps = 1; 11892 pf->num_lan_msix = 1; 11893 11894 } else if (v_actual != v_budget) { 11895 /* If we have limited resources, we will start with no vectors 11896 * for the special features and then allocate vectors to some 11897 * of these features based on the policy and at the end disable 11898 * the features that did not get any vectors. 11899 */ 11900 int vec; 11901 11902 dev_info(&pf->pdev->dev, 11903 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11904 v_actual, v_budget); 11905 /* reserve the misc vector */ 11906 vec = v_actual - 1; 11907 11908 /* Scale vector usage down */ 11909 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11910 pf->num_vmdq_vsis = 1; 11911 pf->num_vmdq_qps = 1; 11912 11913 /* partition out the remaining vectors */ 11914 switch (vec) { 11915 case 2: 11916 pf->num_lan_msix = 1; 11917 break; 11918 case 3: 11919 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11920 pf->num_lan_msix = 1; 11921 pf->num_iwarp_msix = 1; 11922 } else { 11923 pf->num_lan_msix = 2; 11924 } 11925 break; 11926 default: 11927 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11928 pf->num_iwarp_msix = min_t(int, (vec / 3), 11929 iwarp_requested); 11930 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11931 I40E_DEFAULT_NUM_VMDQ_VSI); 11932 } else { 11933 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11934 I40E_DEFAULT_NUM_VMDQ_VSI); 11935 } 11936 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11937 pf->num_fdsb_msix = 1; 11938 vec--; 11939 } 11940 pf->num_lan_msix = min_t(int, 11941 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11942 pf->num_lan_msix); 11943 pf->num_lan_qps = pf->num_lan_msix; 11944 break; 11945 } 11946 } 11947 11948 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 11949 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11950 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 11951 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 11952 } 11953 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 11954 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11955 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 11956 } 11957 11958 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 11959 pf->num_iwarp_msix == 0) { 11960 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11961 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 11962 } 11963 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11964 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11965 pf->num_lan_msix, 11966 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11967 pf->num_fdsb_msix, 11968 pf->num_iwarp_msix); 11969 11970 return v_actual; 11971 } 11972 11973 /** 11974 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11975 * @vsi: the VSI being configured 11976 * @v_idx: index of the vector in the vsi struct 11977 * 11978 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11979 **/ 11980 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 11981 { 11982 struct i40e_q_vector *q_vector; 11983 11984 /* allocate q_vector */ 11985 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11986 if (!q_vector) 11987 return -ENOMEM; 11988 11989 q_vector->vsi = vsi; 11990 q_vector->v_idx = v_idx; 11991 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11992 11993 if (vsi->netdev) 11994 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 11995 11996 /* tie q_vector and vsi together */ 11997 vsi->q_vectors[v_idx] = q_vector; 11998 11999 return 0; 12000 } 12001 12002 /** 12003 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 12004 * @vsi: the VSI being configured 12005 * 12006 * We allocate one q_vector per queue interrupt. If allocation fails we 12007 * return -ENOMEM. 12008 **/ 12009 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 12010 { 12011 struct i40e_pf *pf = vsi->back; 12012 int err, v_idx, num_q_vectors; 12013 12014 /* if not MSIX, give the one vector only to the LAN VSI */ 12015 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12016 num_q_vectors = vsi->num_q_vectors; 12017 else if (vsi == pf->vsi[pf->lan_vsi]) 12018 num_q_vectors = 1; 12019 else 12020 return -EINVAL; 12021 12022 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 12023 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 12024 if (err) 12025 goto err_out; 12026 } 12027 12028 return 0; 12029 12030 err_out: 12031 while (v_idx--) 12032 i40e_free_q_vector(vsi, v_idx); 12033 12034 return err; 12035 } 12036 12037 /** 12038 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12039 * @pf: board private structure to initialize 12040 **/ 12041 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12042 { 12043 int vectors = 0; 12044 ssize_t size; 12045 12046 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12047 vectors = i40e_init_msix(pf); 12048 if (vectors < 0) { 12049 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12050 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12051 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12052 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12053 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12054 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12055 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12056 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12057 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12058 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12059 12060 /* rework the queue expectations without MSIX */ 12061 i40e_determine_queue_usage(pf); 12062 } 12063 } 12064 12065 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12066 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12067 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12068 vectors = pci_enable_msi(pf->pdev); 12069 if (vectors < 0) { 12070 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12071 vectors); 12072 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12073 } 12074 vectors = 1; /* one MSI or Legacy vector */ 12075 } 12076 12077 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12078 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12079 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12080 12081 /* set up vector assignment tracking */ 12082 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12083 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12084 if (!pf->irq_pile) 12085 return -ENOMEM; 12086 12087 pf->irq_pile->num_entries = vectors; 12088 12089 /* track first vector for misc interrupts, ignore return */ 12090 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12091 12092 return 0; 12093 } 12094 12095 /** 12096 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12097 * @pf: private board data structure 12098 * 12099 * Restore the interrupt scheme that was cleared when we suspended the 12100 * device. This should be called during resume to re-allocate the q_vectors 12101 * and reacquire IRQs. 12102 */ 12103 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12104 { 12105 int err, i; 12106 12107 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12108 * scheme. We need to re-enabled them here in order to attempt to 12109 * re-acquire the MSI or MSI-X vectors 12110 */ 12111 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12112 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12113 12114 err = i40e_init_interrupt_scheme(pf); 12115 if (err) 12116 return err; 12117 12118 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12119 * rings together again. 12120 */ 12121 for (i = 0; i < pf->num_alloc_vsi; i++) { 12122 if (pf->vsi[i]) { 12123 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 12124 if (err) 12125 goto err_unwind; 12126 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 12127 } 12128 } 12129 12130 err = i40e_setup_misc_vector(pf); 12131 if (err) 12132 goto err_unwind; 12133 12134 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12135 i40e_client_update_msix_info(pf); 12136 12137 return 0; 12138 12139 err_unwind: 12140 while (i--) { 12141 if (pf->vsi[i]) 12142 i40e_vsi_free_q_vectors(pf->vsi[i]); 12143 } 12144 12145 return err; 12146 } 12147 12148 /** 12149 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12150 * non queue events in recovery mode 12151 * @pf: board private structure 12152 * 12153 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12154 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12155 * This is handled differently than in recovery mode since no Tx/Rx resources 12156 * are being allocated. 12157 **/ 12158 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12159 { 12160 int err; 12161 12162 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12163 err = i40e_setup_misc_vector(pf); 12164 12165 if (err) { 12166 dev_info(&pf->pdev->dev, 12167 "MSI-X misc vector request failed, error %d\n", 12168 err); 12169 return err; 12170 } 12171 } else { 12172 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12173 12174 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12175 pf->int_name, pf); 12176 12177 if (err) { 12178 dev_info(&pf->pdev->dev, 12179 "MSI/legacy misc vector request failed, error %d\n", 12180 err); 12181 return err; 12182 } 12183 i40e_enable_misc_int_causes(pf); 12184 i40e_irq_dynamic_enable_icr0(pf); 12185 } 12186 12187 return 0; 12188 } 12189 12190 /** 12191 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12192 * @pf: board private structure 12193 * 12194 * This sets up the handler for MSIX 0, which is used to manage the 12195 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12196 * when in MSI or Legacy interrupt mode. 12197 **/ 12198 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12199 { 12200 struct i40e_hw *hw = &pf->hw; 12201 int err = 0; 12202 12203 /* Only request the IRQ once, the first time through. */ 12204 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12205 err = request_irq(pf->msix_entries[0].vector, 12206 i40e_intr, 0, pf->int_name, pf); 12207 if (err) { 12208 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12209 dev_info(&pf->pdev->dev, 12210 "request_irq for %s failed: %d\n", 12211 pf->int_name, err); 12212 return -EFAULT; 12213 } 12214 } 12215 12216 i40e_enable_misc_int_causes(pf); 12217 12218 /* associate no queues to the misc vector */ 12219 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12220 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12221 12222 i40e_flush(hw); 12223 12224 i40e_irq_dynamic_enable_icr0(pf); 12225 12226 return err; 12227 } 12228 12229 /** 12230 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12231 * @vsi: Pointer to vsi structure 12232 * @seed: Buffter to store the hash keys 12233 * @lut: Buffer to store the lookup table entries 12234 * @lut_size: Size of buffer to store the lookup table entries 12235 * 12236 * Return 0 on success, negative on failure 12237 */ 12238 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12239 u8 *lut, u16 lut_size) 12240 { 12241 struct i40e_pf *pf = vsi->back; 12242 struct i40e_hw *hw = &pf->hw; 12243 int ret = 0; 12244 12245 if (seed) { 12246 ret = i40e_aq_get_rss_key(hw, vsi->id, 12247 (struct i40e_aqc_get_set_rss_key_data *)seed); 12248 if (ret) { 12249 dev_info(&pf->pdev->dev, 12250 "Cannot get RSS key, err %pe aq_err %s\n", 12251 ERR_PTR(ret), 12252 i40e_aq_str(&pf->hw, 12253 pf->hw.aq.asq_last_status)); 12254 return ret; 12255 } 12256 } 12257 12258 if (lut) { 12259 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12260 12261 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12262 if (ret) { 12263 dev_info(&pf->pdev->dev, 12264 "Cannot get RSS lut, err %pe aq_err %s\n", 12265 ERR_PTR(ret), 12266 i40e_aq_str(&pf->hw, 12267 pf->hw.aq.asq_last_status)); 12268 return ret; 12269 } 12270 } 12271 12272 return ret; 12273 } 12274 12275 /** 12276 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12277 * @vsi: Pointer to vsi structure 12278 * @seed: RSS hash seed 12279 * @lut: Lookup table 12280 * @lut_size: Lookup table size 12281 * 12282 * Returns 0 on success, negative on failure 12283 **/ 12284 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12285 const u8 *lut, u16 lut_size) 12286 { 12287 struct i40e_pf *pf = vsi->back; 12288 struct i40e_hw *hw = &pf->hw; 12289 u16 vf_id = vsi->vf_id; 12290 u8 i; 12291 12292 /* Fill out hash function seed */ 12293 if (seed) { 12294 u32 *seed_dw = (u32 *)seed; 12295 12296 if (vsi->type == I40E_VSI_MAIN) { 12297 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12298 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12299 } else if (vsi->type == I40E_VSI_SRIOV) { 12300 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12301 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12302 } else { 12303 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12304 } 12305 } 12306 12307 if (lut) { 12308 u32 *lut_dw = (u32 *)lut; 12309 12310 if (vsi->type == I40E_VSI_MAIN) { 12311 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12312 return -EINVAL; 12313 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12314 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12315 } else if (vsi->type == I40E_VSI_SRIOV) { 12316 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12317 return -EINVAL; 12318 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12319 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12320 } else { 12321 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12322 } 12323 } 12324 i40e_flush(hw); 12325 12326 return 0; 12327 } 12328 12329 /** 12330 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12331 * @vsi: Pointer to VSI structure 12332 * @seed: Buffer to store the keys 12333 * @lut: Buffer to store the lookup table entries 12334 * @lut_size: Size of buffer to store the lookup table entries 12335 * 12336 * Returns 0 on success, negative on failure 12337 */ 12338 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12339 u8 *lut, u16 lut_size) 12340 { 12341 struct i40e_pf *pf = vsi->back; 12342 struct i40e_hw *hw = &pf->hw; 12343 u16 i; 12344 12345 if (seed) { 12346 u32 *seed_dw = (u32 *)seed; 12347 12348 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12349 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12350 } 12351 if (lut) { 12352 u32 *lut_dw = (u32 *)lut; 12353 12354 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12355 return -EINVAL; 12356 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12357 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12358 } 12359 12360 return 0; 12361 } 12362 12363 /** 12364 * i40e_config_rss - Configure RSS keys and lut 12365 * @vsi: Pointer to VSI structure 12366 * @seed: RSS hash seed 12367 * @lut: Lookup table 12368 * @lut_size: Lookup table size 12369 * 12370 * Returns 0 on success, negative on failure 12371 */ 12372 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12373 { 12374 struct i40e_pf *pf = vsi->back; 12375 12376 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12377 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12378 else 12379 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12380 } 12381 12382 /** 12383 * i40e_get_rss - Get RSS keys and lut 12384 * @vsi: Pointer to VSI structure 12385 * @seed: Buffer to store the keys 12386 * @lut: Buffer to store the lookup table entries 12387 * @lut_size: Size of buffer to store the lookup table entries 12388 * 12389 * Returns 0 on success, negative on failure 12390 */ 12391 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12392 { 12393 struct i40e_pf *pf = vsi->back; 12394 12395 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12396 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12397 else 12398 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12399 } 12400 12401 /** 12402 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12403 * @pf: Pointer to board private structure 12404 * @lut: Lookup table 12405 * @rss_table_size: Lookup table size 12406 * @rss_size: Range of queue number for hashing 12407 */ 12408 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12409 u16 rss_table_size, u16 rss_size) 12410 { 12411 u16 i; 12412 12413 for (i = 0; i < rss_table_size; i++) 12414 lut[i] = i % rss_size; 12415 } 12416 12417 /** 12418 * i40e_pf_config_rss - Prepare for RSS if used 12419 * @pf: board private structure 12420 **/ 12421 static int i40e_pf_config_rss(struct i40e_pf *pf) 12422 { 12423 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12424 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12425 u8 *lut; 12426 struct i40e_hw *hw = &pf->hw; 12427 u32 reg_val; 12428 u64 hena; 12429 int ret; 12430 12431 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12432 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12433 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12434 hena |= i40e_pf_get_default_rss_hena(pf); 12435 12436 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12437 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12438 12439 /* Determine the RSS table size based on the hardware capabilities */ 12440 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12441 reg_val = (pf->rss_table_size == 512) ? 12442 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12443 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12444 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12445 12446 /* Determine the RSS size of the VSI */ 12447 if (!vsi->rss_size) { 12448 u16 qcount; 12449 /* If the firmware does something weird during VSI init, we 12450 * could end up with zero TCs. Check for that to avoid 12451 * divide-by-zero. It probably won't pass traffic, but it also 12452 * won't panic. 12453 */ 12454 qcount = vsi->num_queue_pairs / 12455 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12456 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12457 } 12458 if (!vsi->rss_size) 12459 return -EINVAL; 12460 12461 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12462 if (!lut) 12463 return -ENOMEM; 12464 12465 /* Use user configured lut if there is one, otherwise use default */ 12466 if (vsi->rss_lut_user) 12467 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12468 else 12469 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12470 12471 /* Use user configured hash key if there is one, otherwise 12472 * use default. 12473 */ 12474 if (vsi->rss_hkey_user) 12475 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12476 else 12477 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12478 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12479 kfree(lut); 12480 12481 return ret; 12482 } 12483 12484 /** 12485 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12486 * @pf: board private structure 12487 * @queue_count: the requested queue count for rss. 12488 * 12489 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12490 * count which may be different from the requested queue count. 12491 * Note: expects to be called while under rtnl_lock() 12492 **/ 12493 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12494 { 12495 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12496 int new_rss_size; 12497 12498 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12499 return 0; 12500 12501 queue_count = min_t(int, queue_count, num_online_cpus()); 12502 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12503 12504 if (queue_count != vsi->num_queue_pairs) { 12505 u16 qcount; 12506 12507 vsi->req_queue_pairs = queue_count; 12508 i40e_prep_for_reset(pf); 12509 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12510 return pf->alloc_rss_size; 12511 12512 pf->alloc_rss_size = new_rss_size; 12513 12514 i40e_reset_and_rebuild(pf, true, true); 12515 12516 /* Discard the user configured hash keys and lut, if less 12517 * queues are enabled. 12518 */ 12519 if (queue_count < vsi->rss_size) { 12520 i40e_clear_rss_config_user(vsi); 12521 dev_dbg(&pf->pdev->dev, 12522 "discard user configured hash keys and lut\n"); 12523 } 12524 12525 /* Reset vsi->rss_size, as number of enabled queues changed */ 12526 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12527 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12528 12529 i40e_pf_config_rss(pf); 12530 } 12531 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12532 vsi->req_queue_pairs, pf->rss_size_max); 12533 return pf->alloc_rss_size; 12534 } 12535 12536 /** 12537 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12538 * @pf: board private structure 12539 **/ 12540 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12541 { 12542 bool min_valid, max_valid; 12543 u32 max_bw, min_bw; 12544 int status; 12545 12546 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12547 &min_valid, &max_valid); 12548 12549 if (!status) { 12550 if (min_valid) 12551 pf->min_bw = min_bw; 12552 if (max_valid) 12553 pf->max_bw = max_bw; 12554 } 12555 12556 return status; 12557 } 12558 12559 /** 12560 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12561 * @pf: board private structure 12562 **/ 12563 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12564 { 12565 struct i40e_aqc_configure_partition_bw_data bw_data; 12566 int status; 12567 12568 memset(&bw_data, 0, sizeof(bw_data)); 12569 12570 /* Set the valid bit for this PF */ 12571 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12572 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12573 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12574 12575 /* Set the new bandwidths */ 12576 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12577 12578 return status; 12579 } 12580 12581 /** 12582 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12583 * @pf: board private structure 12584 **/ 12585 int i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12586 { 12587 /* Commit temporary BW setting to permanent NVM image */ 12588 enum i40e_admin_queue_err last_aq_status; 12589 u16 nvm_word; 12590 int ret; 12591 12592 if (pf->hw.partition_id != 1) { 12593 dev_info(&pf->pdev->dev, 12594 "Commit BW only works on partition 1! This is partition %d", 12595 pf->hw.partition_id); 12596 ret = -EOPNOTSUPP; 12597 goto bw_commit_out; 12598 } 12599 12600 /* Acquire NVM for read access */ 12601 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12602 last_aq_status = pf->hw.aq.asq_last_status; 12603 if (ret) { 12604 dev_info(&pf->pdev->dev, 12605 "Cannot acquire NVM for read access, err %pe aq_err %s\n", 12606 ERR_PTR(ret), 12607 i40e_aq_str(&pf->hw, last_aq_status)); 12608 goto bw_commit_out; 12609 } 12610 12611 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12612 ret = i40e_aq_read_nvm(&pf->hw, 12613 I40E_SR_NVM_CONTROL_WORD, 12614 0x10, sizeof(nvm_word), &nvm_word, 12615 false, NULL); 12616 /* Save off last admin queue command status before releasing 12617 * the NVM 12618 */ 12619 last_aq_status = pf->hw.aq.asq_last_status; 12620 i40e_release_nvm(&pf->hw); 12621 if (ret) { 12622 dev_info(&pf->pdev->dev, "NVM read error, err %pe aq_err %s\n", 12623 ERR_PTR(ret), 12624 i40e_aq_str(&pf->hw, last_aq_status)); 12625 goto bw_commit_out; 12626 } 12627 12628 /* Wait a bit for NVM release to complete */ 12629 msleep(50); 12630 12631 /* Acquire NVM for write access */ 12632 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12633 last_aq_status = pf->hw.aq.asq_last_status; 12634 if (ret) { 12635 dev_info(&pf->pdev->dev, 12636 "Cannot acquire NVM for write access, err %pe aq_err %s\n", 12637 ERR_PTR(ret), 12638 i40e_aq_str(&pf->hw, last_aq_status)); 12639 goto bw_commit_out; 12640 } 12641 /* Write it back out unchanged to initiate update NVM, 12642 * which will force a write of the shadow (alt) RAM to 12643 * the NVM - thus storing the bandwidth values permanently. 12644 */ 12645 ret = i40e_aq_update_nvm(&pf->hw, 12646 I40E_SR_NVM_CONTROL_WORD, 12647 0x10, sizeof(nvm_word), 12648 &nvm_word, true, 0, NULL); 12649 /* Save off last admin queue command status before releasing 12650 * the NVM 12651 */ 12652 last_aq_status = pf->hw.aq.asq_last_status; 12653 i40e_release_nvm(&pf->hw); 12654 if (ret) 12655 dev_info(&pf->pdev->dev, 12656 "BW settings NOT SAVED, err %pe aq_err %s\n", 12657 ERR_PTR(ret), 12658 i40e_aq_str(&pf->hw, last_aq_status)); 12659 bw_commit_out: 12660 12661 return ret; 12662 } 12663 12664 /** 12665 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12666 * if total port shutdown feature is enabled for this PF 12667 * @pf: board private structure 12668 **/ 12669 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12670 { 12671 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12672 #define I40E_FEATURES_ENABLE_PTR 0x2A 12673 #define I40E_CURRENT_SETTING_PTR 0x2B 12674 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12675 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12676 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12677 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12678 u16 sr_emp_sr_settings_ptr = 0; 12679 u16 features_enable = 0; 12680 u16 link_behavior = 0; 12681 int read_status = 0; 12682 bool ret = false; 12683 12684 read_status = i40e_read_nvm_word(&pf->hw, 12685 I40E_SR_EMP_SR_SETTINGS_PTR, 12686 &sr_emp_sr_settings_ptr); 12687 if (read_status) 12688 goto err_nvm; 12689 read_status = i40e_read_nvm_word(&pf->hw, 12690 sr_emp_sr_settings_ptr + 12691 I40E_FEATURES_ENABLE_PTR, 12692 &features_enable); 12693 if (read_status) 12694 goto err_nvm; 12695 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12696 read_status = i40e_read_nvm_module_data(&pf->hw, 12697 I40E_SR_EMP_SR_SETTINGS_PTR, 12698 I40E_CURRENT_SETTING_PTR, 12699 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12700 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12701 &link_behavior); 12702 if (read_status) 12703 goto err_nvm; 12704 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12705 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12706 } 12707 return ret; 12708 12709 err_nvm: 12710 dev_warn(&pf->pdev->dev, 12711 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12712 ERR_PTR(read_status)); 12713 return ret; 12714 } 12715 12716 /** 12717 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12718 * @pf: board private structure to initialize 12719 * 12720 * i40e_sw_init initializes the Adapter private data structure. 12721 * Fields are initialized based on PCI device information and 12722 * OS network device settings (MTU size). 12723 **/ 12724 static int i40e_sw_init(struct i40e_pf *pf) 12725 { 12726 int err = 0; 12727 int size; 12728 u16 pow; 12729 12730 /* Set default capability flags */ 12731 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12732 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12733 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12734 12735 /* Set default ITR */ 12736 pf->rx_itr_default = I40E_ITR_RX_DEF; 12737 pf->tx_itr_default = I40E_ITR_TX_DEF; 12738 12739 /* Depending on PF configurations, it is possible that the RSS 12740 * maximum might end up larger than the available queues 12741 */ 12742 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12743 pf->alloc_rss_size = 1; 12744 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12745 pf->rss_size_max = min_t(int, pf->rss_size_max, 12746 pf->hw.func_caps.num_tx_qp); 12747 12748 /* find the next higher power-of-2 of num cpus */ 12749 pow = roundup_pow_of_two(num_online_cpus()); 12750 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12751 12752 if (pf->hw.func_caps.rss) { 12753 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12754 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12755 num_online_cpus()); 12756 } 12757 12758 /* MFP mode enabled */ 12759 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12760 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12761 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12762 if (i40e_get_partition_bw_setting(pf)) { 12763 dev_warn(&pf->pdev->dev, 12764 "Could not get partition bw settings\n"); 12765 } else { 12766 dev_info(&pf->pdev->dev, 12767 "Partition BW Min = %8.8x, Max = %8.8x\n", 12768 pf->min_bw, pf->max_bw); 12769 12770 /* nudge the Tx scheduler */ 12771 i40e_set_partition_bw_setting(pf); 12772 } 12773 } 12774 12775 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12776 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12777 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12778 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12779 pf->hw.num_partitions > 1) 12780 dev_info(&pf->pdev->dev, 12781 "Flow Director Sideband mode Disabled in MFP mode\n"); 12782 else 12783 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12784 pf->fdir_pf_filter_count = 12785 pf->hw.func_caps.fd_filters_guaranteed; 12786 pf->hw.fdir_shared_filter_count = 12787 pf->hw.func_caps.fd_filters_best_effort; 12788 } 12789 12790 /* Enable HW ATR eviction if possible */ 12791 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12792 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12793 12794 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12795 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12796 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12797 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12798 } 12799 12800 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12801 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12802 /* IWARP needs one extra vector for CQP just like MISC.*/ 12803 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12804 } 12805 /* Stopping FW LLDP engine is supported on XL710 and X722 12806 * starting from FW versions determined in i40e_init_adminq. 12807 * Stopping the FW LLDP engine is not supported on XL710 12808 * if NPAR is functioning so unset this hw flag in this case. 12809 */ 12810 if (pf->hw.mac.type == I40E_MAC_XL710 && 12811 pf->hw.func_caps.npar_enable) 12812 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12813 12814 #ifdef CONFIG_PCI_IOV 12815 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12816 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12817 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12818 pf->num_req_vfs = min_t(int, 12819 pf->hw.func_caps.num_vfs, 12820 I40E_MAX_VF_COUNT); 12821 } 12822 #endif /* CONFIG_PCI_IOV */ 12823 pf->lan_veb = I40E_NO_VEB; 12824 pf->lan_vsi = I40E_NO_VSI; 12825 12826 /* By default FW has this off for performance reasons */ 12827 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12828 12829 /* set up queue assignment tracking */ 12830 size = sizeof(struct i40e_lump_tracking) 12831 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12832 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12833 if (!pf->qp_pile) { 12834 err = -ENOMEM; 12835 goto sw_init_done; 12836 } 12837 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12838 12839 pf->tx_timeout_recovery_level = 1; 12840 12841 if (pf->hw.mac.type != I40E_MAC_X722 && 12842 i40e_is_total_port_shutdown_enabled(pf)) { 12843 /* Link down on close must be on when total port shutdown 12844 * is enabled for a given port 12845 */ 12846 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12847 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12848 dev_info(&pf->pdev->dev, 12849 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12850 } 12851 mutex_init(&pf->switch_mutex); 12852 12853 sw_init_done: 12854 return err; 12855 } 12856 12857 /** 12858 * i40e_set_ntuple - set the ntuple feature flag and take action 12859 * @pf: board private structure to initialize 12860 * @features: the feature set that the stack is suggesting 12861 * 12862 * returns a bool to indicate if reset needs to happen 12863 **/ 12864 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12865 { 12866 bool need_reset = false; 12867 12868 /* Check if Flow Director n-tuple support was enabled or disabled. If 12869 * the state changed, we need to reset. 12870 */ 12871 if (features & NETIF_F_NTUPLE) { 12872 /* Enable filters and mark for reset */ 12873 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12874 need_reset = true; 12875 /* enable FD_SB only if there is MSI-X vector and no cloud 12876 * filters exist 12877 */ 12878 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12879 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12880 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12881 } 12882 } else { 12883 /* turn off filters, mark for reset and clear SW filter list */ 12884 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12885 need_reset = true; 12886 i40e_fdir_filter_exit(pf); 12887 } 12888 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12889 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12890 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12891 12892 /* reset fd counters */ 12893 pf->fd_add_err = 0; 12894 pf->fd_atr_cnt = 0; 12895 /* if ATR was auto disabled it can be re-enabled. */ 12896 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12897 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12898 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12899 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12900 } 12901 return need_reset; 12902 } 12903 12904 /** 12905 * i40e_clear_rss_lut - clear the rx hash lookup table 12906 * @vsi: the VSI being configured 12907 **/ 12908 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12909 { 12910 struct i40e_pf *pf = vsi->back; 12911 struct i40e_hw *hw = &pf->hw; 12912 u16 vf_id = vsi->vf_id; 12913 u8 i; 12914 12915 if (vsi->type == I40E_VSI_MAIN) { 12916 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12917 wr32(hw, I40E_PFQF_HLUT(i), 0); 12918 } else if (vsi->type == I40E_VSI_SRIOV) { 12919 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12920 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12921 } else { 12922 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12923 } 12924 } 12925 12926 /** 12927 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12928 * @vsi: ptr to VSI 12929 * @ena: flag to indicate the on/off setting 12930 */ 12931 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12932 { 12933 bool if_running = netif_running(vsi->netdev) && 12934 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12935 int ret; 12936 12937 if (if_running) 12938 i40e_down(vsi); 12939 12940 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12941 if (ret) 12942 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12943 if (if_running) 12944 i40e_up(vsi); 12945 12946 return ret; 12947 } 12948 12949 /** 12950 * i40e_set_features - set the netdev feature flags 12951 * @netdev: ptr to the netdev being adjusted 12952 * @features: the feature set that the stack is suggesting 12953 * Note: expects to be called while under rtnl_lock() 12954 **/ 12955 static int i40e_set_features(struct net_device *netdev, 12956 netdev_features_t features) 12957 { 12958 struct i40e_netdev_priv *np = netdev_priv(netdev); 12959 struct i40e_vsi *vsi = np->vsi; 12960 struct i40e_pf *pf = vsi->back; 12961 bool need_reset; 12962 12963 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12964 i40e_pf_config_rss(pf); 12965 else if (!(features & NETIF_F_RXHASH) && 12966 netdev->features & NETIF_F_RXHASH) 12967 i40e_clear_rss_lut(vsi); 12968 12969 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12970 i40e_vlan_stripping_enable(vsi); 12971 else 12972 i40e_vlan_stripping_disable(vsi); 12973 12974 if (!(features & NETIF_F_HW_TC) && 12975 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12976 dev_err(&pf->pdev->dev, 12977 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12978 return -EINVAL; 12979 } 12980 12981 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12982 i40e_del_all_macvlans(vsi); 12983 12984 need_reset = i40e_set_ntuple(pf, features); 12985 12986 if (need_reset) 12987 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12988 12989 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 12990 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 12991 12992 return 0; 12993 } 12994 12995 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12996 unsigned int table, unsigned int idx, 12997 struct udp_tunnel_info *ti) 12998 { 12999 struct i40e_netdev_priv *np = netdev_priv(netdev); 13000 struct i40e_hw *hw = &np->vsi->back->hw; 13001 u8 type, filter_index; 13002 int ret; 13003 13004 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 13005 I40E_AQC_TUNNEL_TYPE_NGE; 13006 13007 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 13008 NULL); 13009 if (ret) { 13010 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 13011 ERR_PTR(ret), 13012 i40e_aq_str(hw, hw->aq.asq_last_status)); 13013 return -EIO; 13014 } 13015 13016 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 13017 return 0; 13018 } 13019 13020 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 13021 unsigned int table, unsigned int idx, 13022 struct udp_tunnel_info *ti) 13023 { 13024 struct i40e_netdev_priv *np = netdev_priv(netdev); 13025 struct i40e_hw *hw = &np->vsi->back->hw; 13026 int ret; 13027 13028 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 13029 if (ret) { 13030 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 13031 ERR_PTR(ret), 13032 i40e_aq_str(hw, hw->aq.asq_last_status)); 13033 return -EIO; 13034 } 13035 13036 return 0; 13037 } 13038 13039 static int i40e_get_phys_port_id(struct net_device *netdev, 13040 struct netdev_phys_item_id *ppid) 13041 { 13042 struct i40e_netdev_priv *np = netdev_priv(netdev); 13043 struct i40e_pf *pf = np->vsi->back; 13044 struct i40e_hw *hw = &pf->hw; 13045 13046 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13047 return -EOPNOTSUPP; 13048 13049 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13050 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13051 13052 return 0; 13053 } 13054 13055 /** 13056 * i40e_ndo_fdb_add - add an entry to the hardware database 13057 * @ndm: the input from the stack 13058 * @tb: pointer to array of nladdr (unused) 13059 * @dev: the net device pointer 13060 * @addr: the MAC address entry being added 13061 * @vid: VLAN ID 13062 * @flags: instructions from stack about fdb operation 13063 * @extack: netlink extended ack, unused currently 13064 */ 13065 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13066 struct net_device *dev, 13067 const unsigned char *addr, u16 vid, 13068 u16 flags, 13069 struct netlink_ext_ack *extack) 13070 { 13071 struct i40e_netdev_priv *np = netdev_priv(dev); 13072 struct i40e_pf *pf = np->vsi->back; 13073 int err = 0; 13074 13075 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13076 return -EOPNOTSUPP; 13077 13078 if (vid) { 13079 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13080 return -EINVAL; 13081 } 13082 13083 /* Hardware does not support aging addresses so if a 13084 * ndm_state is given only allow permanent addresses 13085 */ 13086 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13087 netdev_info(dev, "FDB only supports static addresses\n"); 13088 return -EINVAL; 13089 } 13090 13091 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13092 err = dev_uc_add_excl(dev, addr); 13093 else if (is_multicast_ether_addr(addr)) 13094 err = dev_mc_add_excl(dev, addr); 13095 else 13096 err = -EINVAL; 13097 13098 /* Only return duplicate errors if NLM_F_EXCL is set */ 13099 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13100 err = 0; 13101 13102 return err; 13103 } 13104 13105 /** 13106 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13107 * @dev: the netdev being configured 13108 * @nlh: RTNL message 13109 * @flags: bridge flags 13110 * @extack: netlink extended ack 13111 * 13112 * Inserts a new hardware bridge if not already created and 13113 * enables the bridging mode requested (VEB or VEPA). If the 13114 * hardware bridge has already been inserted and the request 13115 * is to change the mode then that requires a PF reset to 13116 * allow rebuild of the components with required hardware 13117 * bridge mode enabled. 13118 * 13119 * Note: expects to be called while under rtnl_lock() 13120 **/ 13121 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13122 struct nlmsghdr *nlh, 13123 u16 flags, 13124 struct netlink_ext_ack *extack) 13125 { 13126 struct i40e_netdev_priv *np = netdev_priv(dev); 13127 struct i40e_vsi *vsi = np->vsi; 13128 struct i40e_pf *pf = vsi->back; 13129 struct i40e_veb *veb = NULL; 13130 struct nlattr *attr, *br_spec; 13131 int i, rem; 13132 13133 /* Only for PF VSI for now */ 13134 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13135 return -EOPNOTSUPP; 13136 13137 /* Find the HW bridge for PF VSI */ 13138 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13139 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13140 veb = pf->veb[i]; 13141 } 13142 13143 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13144 if (!br_spec) 13145 return -EINVAL; 13146 13147 nla_for_each_nested(attr, br_spec, rem) { 13148 __u16 mode; 13149 13150 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13151 continue; 13152 13153 mode = nla_get_u16(attr); 13154 if ((mode != BRIDGE_MODE_VEPA) && 13155 (mode != BRIDGE_MODE_VEB)) 13156 return -EINVAL; 13157 13158 /* Insert a new HW bridge */ 13159 if (!veb) { 13160 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 13161 vsi->tc_config.enabled_tc); 13162 if (veb) { 13163 veb->bridge_mode = mode; 13164 i40e_config_bridge_mode(veb); 13165 } else { 13166 /* No Bridge HW offload available */ 13167 return -ENOENT; 13168 } 13169 break; 13170 } else if (mode != veb->bridge_mode) { 13171 /* Existing HW bridge but different mode needs reset */ 13172 veb->bridge_mode = mode; 13173 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13174 if (mode == BRIDGE_MODE_VEB) 13175 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13176 else 13177 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13178 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13179 break; 13180 } 13181 } 13182 13183 return 0; 13184 } 13185 13186 /** 13187 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13188 * @skb: skb buff 13189 * @pid: process id 13190 * @seq: RTNL message seq # 13191 * @dev: the netdev being configured 13192 * @filter_mask: unused 13193 * @nlflags: netlink flags passed in 13194 * 13195 * Return the mode in which the hardware bridge is operating in 13196 * i.e VEB or VEPA. 13197 **/ 13198 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13199 struct net_device *dev, 13200 u32 __always_unused filter_mask, 13201 int nlflags) 13202 { 13203 struct i40e_netdev_priv *np = netdev_priv(dev); 13204 struct i40e_vsi *vsi = np->vsi; 13205 struct i40e_pf *pf = vsi->back; 13206 struct i40e_veb *veb = NULL; 13207 int i; 13208 13209 /* Only for PF VSI for now */ 13210 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 13211 return -EOPNOTSUPP; 13212 13213 /* Find the HW bridge for the PF VSI */ 13214 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13215 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13216 veb = pf->veb[i]; 13217 } 13218 13219 if (!veb) 13220 return 0; 13221 13222 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13223 0, 0, nlflags, filter_mask, NULL); 13224 } 13225 13226 /** 13227 * i40e_features_check - Validate encapsulated packet conforms to limits 13228 * @skb: skb buff 13229 * @dev: This physical port's netdev 13230 * @features: Offload features that the stack believes apply 13231 **/ 13232 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13233 struct net_device *dev, 13234 netdev_features_t features) 13235 { 13236 size_t len; 13237 13238 /* No point in doing any of this if neither checksum nor GSO are 13239 * being requested for this frame. We can rule out both by just 13240 * checking for CHECKSUM_PARTIAL 13241 */ 13242 if (skb->ip_summed != CHECKSUM_PARTIAL) 13243 return features; 13244 13245 /* We cannot support GSO if the MSS is going to be less than 13246 * 64 bytes. If it is then we need to drop support for GSO. 13247 */ 13248 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13249 features &= ~NETIF_F_GSO_MASK; 13250 13251 /* MACLEN can support at most 63 words */ 13252 len = skb_network_header(skb) - skb->data; 13253 if (len & ~(63 * 2)) 13254 goto out_err; 13255 13256 /* IPLEN and EIPLEN can support at most 127 dwords */ 13257 len = skb_transport_header(skb) - skb_network_header(skb); 13258 if (len & ~(127 * 4)) 13259 goto out_err; 13260 13261 if (skb->encapsulation) { 13262 /* L4TUNLEN can support 127 words */ 13263 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13264 if (len & ~(127 * 2)) 13265 goto out_err; 13266 13267 /* IPLEN can support at most 127 dwords */ 13268 len = skb_inner_transport_header(skb) - 13269 skb_inner_network_header(skb); 13270 if (len & ~(127 * 4)) 13271 goto out_err; 13272 } 13273 13274 /* No need to validate L4LEN as TCP is the only protocol with a 13275 * flexible value and we support all possible values supported 13276 * by TCP, which is at most 15 dwords 13277 */ 13278 13279 return features; 13280 out_err: 13281 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13282 } 13283 13284 /** 13285 * i40e_xdp_setup - add/remove an XDP program 13286 * @vsi: VSI to changed 13287 * @prog: XDP program 13288 * @extack: netlink extended ack 13289 **/ 13290 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13291 struct netlink_ext_ack *extack) 13292 { 13293 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13294 struct i40e_pf *pf = vsi->back; 13295 struct bpf_prog *old_prog; 13296 bool need_reset; 13297 int i; 13298 13299 /* Don't allow frames that span over multiple buffers */ 13300 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13301 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13302 return -EINVAL; 13303 } 13304 13305 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13306 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13307 13308 if (need_reset) 13309 i40e_prep_for_reset(pf); 13310 13311 /* VSI shall be deleted in a moment, just return EINVAL */ 13312 if (test_bit(__I40E_IN_REMOVE, pf->state)) 13313 return -EINVAL; 13314 13315 old_prog = xchg(&vsi->xdp_prog, prog); 13316 13317 if (need_reset) { 13318 if (!prog) { 13319 xdp_features_clear_redirect_target(vsi->netdev); 13320 /* Wait until ndo_xsk_wakeup completes. */ 13321 synchronize_rcu(); 13322 } 13323 i40e_reset_and_rebuild(pf, true, true); 13324 } 13325 13326 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13327 if (i40e_realloc_rx_bi_zc(vsi, true)) 13328 return -ENOMEM; 13329 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13330 if (i40e_realloc_rx_bi_zc(vsi, false)) 13331 return -ENOMEM; 13332 } 13333 13334 for (i = 0; i < vsi->num_queue_pairs; i++) 13335 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13336 13337 if (old_prog) 13338 bpf_prog_put(old_prog); 13339 13340 /* Kick start the NAPI context if there is an AF_XDP socket open 13341 * on that queue id. This so that receiving will start. 13342 */ 13343 if (need_reset && prog) { 13344 for (i = 0; i < vsi->num_queue_pairs; i++) 13345 if (vsi->xdp_rings[i]->xsk_pool) 13346 (void)i40e_xsk_wakeup(vsi->netdev, i, 13347 XDP_WAKEUP_RX); 13348 xdp_features_set_redirect_target(vsi->netdev, true); 13349 } 13350 13351 return 0; 13352 } 13353 13354 /** 13355 * i40e_enter_busy_conf - Enters busy config state 13356 * @vsi: vsi 13357 * 13358 * Returns 0 on success, <0 for failure. 13359 **/ 13360 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13361 { 13362 struct i40e_pf *pf = vsi->back; 13363 int timeout = 50; 13364 13365 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13366 timeout--; 13367 if (!timeout) 13368 return -EBUSY; 13369 usleep_range(1000, 2000); 13370 } 13371 13372 return 0; 13373 } 13374 13375 /** 13376 * i40e_exit_busy_conf - Exits busy config state 13377 * @vsi: vsi 13378 **/ 13379 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13380 { 13381 struct i40e_pf *pf = vsi->back; 13382 13383 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13384 } 13385 13386 /** 13387 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13388 * @vsi: vsi 13389 * @queue_pair: queue pair 13390 **/ 13391 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13392 { 13393 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13394 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13395 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13396 sizeof(vsi->tx_rings[queue_pair]->stats)); 13397 if (i40e_enabled_xdp_vsi(vsi)) { 13398 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13399 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13400 } 13401 } 13402 13403 /** 13404 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13405 * @vsi: vsi 13406 * @queue_pair: queue pair 13407 **/ 13408 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13409 { 13410 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13411 if (i40e_enabled_xdp_vsi(vsi)) { 13412 /* Make sure that in-progress ndo_xdp_xmit calls are 13413 * completed. 13414 */ 13415 synchronize_rcu(); 13416 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13417 } 13418 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13419 } 13420 13421 /** 13422 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13423 * @vsi: vsi 13424 * @queue_pair: queue pair 13425 * @enable: true for enable, false for disable 13426 **/ 13427 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13428 bool enable) 13429 { 13430 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13431 struct i40e_q_vector *q_vector = rxr->q_vector; 13432 13433 if (!vsi->netdev) 13434 return; 13435 13436 /* All rings in a qp belong to the same qvector. */ 13437 if (q_vector->rx.ring || q_vector->tx.ring) { 13438 if (enable) 13439 napi_enable(&q_vector->napi); 13440 else 13441 napi_disable(&q_vector->napi); 13442 } 13443 } 13444 13445 /** 13446 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13447 * @vsi: vsi 13448 * @queue_pair: queue pair 13449 * @enable: true for enable, false for disable 13450 * 13451 * Returns 0 on success, <0 on failure. 13452 **/ 13453 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13454 bool enable) 13455 { 13456 struct i40e_pf *pf = vsi->back; 13457 int pf_q, ret = 0; 13458 13459 pf_q = vsi->base_queue + queue_pair; 13460 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13461 false /*is xdp*/, enable); 13462 if (ret) { 13463 dev_info(&pf->pdev->dev, 13464 "VSI seid %d Tx ring %d %sable timeout\n", 13465 vsi->seid, pf_q, (enable ? "en" : "dis")); 13466 return ret; 13467 } 13468 13469 i40e_control_rx_q(pf, pf_q, enable); 13470 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13471 if (ret) { 13472 dev_info(&pf->pdev->dev, 13473 "VSI seid %d Rx ring %d %sable timeout\n", 13474 vsi->seid, pf_q, (enable ? "en" : "dis")); 13475 return ret; 13476 } 13477 13478 /* Due to HW errata, on Rx disable only, the register can 13479 * indicate done before it really is. Needs 50ms to be sure 13480 */ 13481 if (!enable) 13482 mdelay(50); 13483 13484 if (!i40e_enabled_xdp_vsi(vsi)) 13485 return ret; 13486 13487 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13488 pf_q + vsi->alloc_queue_pairs, 13489 true /*is xdp*/, enable); 13490 if (ret) { 13491 dev_info(&pf->pdev->dev, 13492 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13493 vsi->seid, pf_q, (enable ? "en" : "dis")); 13494 } 13495 13496 return ret; 13497 } 13498 13499 /** 13500 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13501 * @vsi: vsi 13502 * @queue_pair: queue_pair 13503 **/ 13504 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13505 { 13506 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13507 struct i40e_pf *pf = vsi->back; 13508 struct i40e_hw *hw = &pf->hw; 13509 13510 /* All rings in a qp belong to the same qvector. */ 13511 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13512 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13513 else 13514 i40e_irq_dynamic_enable_icr0(pf); 13515 13516 i40e_flush(hw); 13517 } 13518 13519 /** 13520 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13521 * @vsi: vsi 13522 * @queue_pair: queue_pair 13523 **/ 13524 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13525 { 13526 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13527 struct i40e_pf *pf = vsi->back; 13528 struct i40e_hw *hw = &pf->hw; 13529 13530 /* For simplicity, instead of removing the qp interrupt causes 13531 * from the interrupt linked list, we simply disable the interrupt, and 13532 * leave the list intact. 13533 * 13534 * All rings in a qp belong to the same qvector. 13535 */ 13536 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13537 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13538 13539 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13540 i40e_flush(hw); 13541 synchronize_irq(pf->msix_entries[intpf].vector); 13542 } else { 13543 /* Legacy and MSI mode - this stops all interrupt handling */ 13544 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13545 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13546 i40e_flush(hw); 13547 synchronize_irq(pf->pdev->irq); 13548 } 13549 } 13550 13551 /** 13552 * i40e_queue_pair_disable - Disables a queue pair 13553 * @vsi: vsi 13554 * @queue_pair: queue pair 13555 * 13556 * Returns 0 on success, <0 on failure. 13557 **/ 13558 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13559 { 13560 int err; 13561 13562 err = i40e_enter_busy_conf(vsi); 13563 if (err) 13564 return err; 13565 13566 i40e_queue_pair_disable_irq(vsi, queue_pair); 13567 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13568 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13569 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13570 i40e_queue_pair_clean_rings(vsi, queue_pair); 13571 i40e_queue_pair_reset_stats(vsi, queue_pair); 13572 13573 return err; 13574 } 13575 13576 /** 13577 * i40e_queue_pair_enable - Enables a queue pair 13578 * @vsi: vsi 13579 * @queue_pair: queue pair 13580 * 13581 * Returns 0 on success, <0 on failure. 13582 **/ 13583 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13584 { 13585 int err; 13586 13587 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13588 if (err) 13589 return err; 13590 13591 if (i40e_enabled_xdp_vsi(vsi)) { 13592 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13593 if (err) 13594 return err; 13595 } 13596 13597 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13598 if (err) 13599 return err; 13600 13601 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13602 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13603 i40e_queue_pair_enable_irq(vsi, queue_pair); 13604 13605 i40e_exit_busy_conf(vsi); 13606 13607 return err; 13608 } 13609 13610 /** 13611 * i40e_xdp - implements ndo_bpf for i40e 13612 * @dev: netdevice 13613 * @xdp: XDP command 13614 **/ 13615 static int i40e_xdp(struct net_device *dev, 13616 struct netdev_bpf *xdp) 13617 { 13618 struct i40e_netdev_priv *np = netdev_priv(dev); 13619 struct i40e_vsi *vsi = np->vsi; 13620 13621 if (vsi->type != I40E_VSI_MAIN) 13622 return -EINVAL; 13623 13624 switch (xdp->command) { 13625 case XDP_SETUP_PROG: 13626 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13627 case XDP_SETUP_XSK_POOL: 13628 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13629 xdp->xsk.queue_id); 13630 default: 13631 return -EINVAL; 13632 } 13633 } 13634 13635 static const struct net_device_ops i40e_netdev_ops = { 13636 .ndo_open = i40e_open, 13637 .ndo_stop = i40e_close, 13638 .ndo_start_xmit = i40e_lan_xmit_frame, 13639 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13640 .ndo_set_rx_mode = i40e_set_rx_mode, 13641 .ndo_validate_addr = eth_validate_addr, 13642 .ndo_set_mac_address = i40e_set_mac, 13643 .ndo_change_mtu = i40e_change_mtu, 13644 .ndo_eth_ioctl = i40e_ioctl, 13645 .ndo_tx_timeout = i40e_tx_timeout, 13646 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13647 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13648 #ifdef CONFIG_NET_POLL_CONTROLLER 13649 .ndo_poll_controller = i40e_netpoll, 13650 #endif 13651 .ndo_setup_tc = __i40e_setup_tc, 13652 .ndo_select_queue = i40e_lan_select_queue, 13653 .ndo_set_features = i40e_set_features, 13654 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13655 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13656 .ndo_get_vf_stats = i40e_get_vf_stats, 13657 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13658 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13659 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13660 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13661 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13662 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13663 .ndo_fdb_add = i40e_ndo_fdb_add, 13664 .ndo_features_check = i40e_features_check, 13665 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13666 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13667 .ndo_bpf = i40e_xdp, 13668 .ndo_xdp_xmit = i40e_xdp_xmit, 13669 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13670 .ndo_dfwd_add_station = i40e_fwd_add, 13671 .ndo_dfwd_del_station = i40e_fwd_del, 13672 }; 13673 13674 /** 13675 * i40e_config_netdev - Setup the netdev flags 13676 * @vsi: the VSI being configured 13677 * 13678 * Returns 0 on success, negative value on failure 13679 **/ 13680 static int i40e_config_netdev(struct i40e_vsi *vsi) 13681 { 13682 struct i40e_pf *pf = vsi->back; 13683 struct i40e_hw *hw = &pf->hw; 13684 struct i40e_netdev_priv *np; 13685 struct net_device *netdev; 13686 u8 broadcast[ETH_ALEN]; 13687 u8 mac_addr[ETH_ALEN]; 13688 int etherdev_size; 13689 netdev_features_t hw_enc_features; 13690 netdev_features_t hw_features; 13691 13692 etherdev_size = sizeof(struct i40e_netdev_priv); 13693 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13694 if (!netdev) 13695 return -ENOMEM; 13696 13697 vsi->netdev = netdev; 13698 np = netdev_priv(netdev); 13699 np->vsi = vsi; 13700 13701 hw_enc_features = NETIF_F_SG | 13702 NETIF_F_HW_CSUM | 13703 NETIF_F_HIGHDMA | 13704 NETIF_F_SOFT_FEATURES | 13705 NETIF_F_TSO | 13706 NETIF_F_TSO_ECN | 13707 NETIF_F_TSO6 | 13708 NETIF_F_GSO_GRE | 13709 NETIF_F_GSO_GRE_CSUM | 13710 NETIF_F_GSO_PARTIAL | 13711 NETIF_F_GSO_IPXIP4 | 13712 NETIF_F_GSO_IPXIP6 | 13713 NETIF_F_GSO_UDP_TUNNEL | 13714 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13715 NETIF_F_GSO_UDP_L4 | 13716 NETIF_F_SCTP_CRC | 13717 NETIF_F_RXHASH | 13718 NETIF_F_RXCSUM | 13719 0; 13720 13721 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13722 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13723 13724 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13725 13726 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13727 13728 netdev->hw_enc_features |= hw_enc_features; 13729 13730 /* record features VLANs can make use of */ 13731 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13732 13733 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13734 NETIF_F_GSO_GRE_CSUM | \ 13735 NETIF_F_GSO_IPXIP4 | \ 13736 NETIF_F_GSO_IPXIP6 | \ 13737 NETIF_F_GSO_UDP_TUNNEL | \ 13738 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13739 13740 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13741 netdev->features |= NETIF_F_GSO_PARTIAL | 13742 I40E_GSO_PARTIAL_FEATURES; 13743 13744 netdev->mpls_features |= NETIF_F_SG; 13745 netdev->mpls_features |= NETIF_F_HW_CSUM; 13746 netdev->mpls_features |= NETIF_F_TSO; 13747 netdev->mpls_features |= NETIF_F_TSO6; 13748 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13749 13750 /* enable macvlan offloads */ 13751 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13752 13753 hw_features = hw_enc_features | 13754 NETIF_F_HW_VLAN_CTAG_TX | 13755 NETIF_F_HW_VLAN_CTAG_RX; 13756 13757 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13758 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13759 13760 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13761 13762 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13763 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13764 13765 netdev->features &= ~NETIF_F_HW_TC; 13766 13767 if (vsi->type == I40E_VSI_MAIN) { 13768 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13769 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13770 /* The following steps are necessary for two reasons. First, 13771 * some older NVM configurations load a default MAC-VLAN 13772 * filter that will accept any tagged packet, and we want to 13773 * replace this with a normal filter. Additionally, it is 13774 * possible our MAC address was provided by the platform using 13775 * Open Firmware or similar. 13776 * 13777 * Thus, we need to remove the default filter and install one 13778 * specific to the MAC address. 13779 */ 13780 i40e_rm_default_mac_filter(vsi, mac_addr); 13781 spin_lock_bh(&vsi->mac_filter_hash_lock); 13782 i40e_add_mac_filter(vsi, mac_addr); 13783 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13784 13785 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13786 NETDEV_XDP_ACT_REDIRECT | 13787 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13788 NETDEV_XDP_ACT_RX_SG; 13789 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13790 } else { 13791 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13792 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13793 * the end, which is 4 bytes long, so force truncation of the 13794 * original name by IFNAMSIZ - 4 13795 */ 13796 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 13797 IFNAMSIZ - 4, 13798 pf->vsi[pf->lan_vsi]->netdev->name); 13799 eth_random_addr(mac_addr); 13800 13801 spin_lock_bh(&vsi->mac_filter_hash_lock); 13802 i40e_add_mac_filter(vsi, mac_addr); 13803 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13804 } 13805 13806 /* Add the broadcast filter so that we initially will receive 13807 * broadcast packets. Note that when a new VLAN is first added the 13808 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13809 * specific filters as part of transitioning into "vlan" operation. 13810 * When more VLANs are added, the driver will copy each existing MAC 13811 * filter and add it for the new VLAN. 13812 * 13813 * Broadcast filters are handled specially by 13814 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13815 * promiscuous bit instead of adding this directly as a MAC/VLAN 13816 * filter. The subtask will update the correct broadcast promiscuous 13817 * bits as VLANs become active or inactive. 13818 */ 13819 eth_broadcast_addr(broadcast); 13820 spin_lock_bh(&vsi->mac_filter_hash_lock); 13821 i40e_add_mac_filter(vsi, broadcast); 13822 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13823 13824 eth_hw_addr_set(netdev, mac_addr); 13825 ether_addr_copy(netdev->perm_addr, mac_addr); 13826 13827 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13828 netdev->neigh_priv_len = sizeof(u32) * 4; 13829 13830 netdev->priv_flags |= IFF_UNICAST_FLT; 13831 netdev->priv_flags |= IFF_SUPP_NOFCS; 13832 /* Setup netdev TC information */ 13833 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13834 13835 netdev->netdev_ops = &i40e_netdev_ops; 13836 netdev->watchdog_timeo = 5 * HZ; 13837 i40e_set_ethtool_ops(netdev); 13838 13839 /* MTU range: 68 - 9706 */ 13840 netdev->min_mtu = ETH_MIN_MTU; 13841 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13842 13843 return 0; 13844 } 13845 13846 /** 13847 * i40e_vsi_delete - Delete a VSI from the switch 13848 * @vsi: the VSI being removed 13849 * 13850 * Returns 0 on success, negative value on failure 13851 **/ 13852 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13853 { 13854 /* remove default VSI is not allowed */ 13855 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13856 return; 13857 13858 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13859 } 13860 13861 /** 13862 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13863 * @vsi: the VSI being queried 13864 * 13865 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13866 **/ 13867 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13868 { 13869 struct i40e_veb *veb; 13870 struct i40e_pf *pf = vsi->back; 13871 13872 /* Uplink is not a bridge so default to VEB */ 13873 if (vsi->veb_idx >= I40E_MAX_VEB) 13874 return 1; 13875 13876 veb = pf->veb[vsi->veb_idx]; 13877 if (!veb) { 13878 dev_info(&pf->pdev->dev, 13879 "There is no veb associated with the bridge\n"); 13880 return -ENOENT; 13881 } 13882 13883 /* Uplink is a bridge in VEPA mode */ 13884 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13885 return 0; 13886 } else { 13887 /* Uplink is a bridge in VEB mode */ 13888 return 1; 13889 } 13890 13891 /* VEPA is now default bridge, so return 0 */ 13892 return 0; 13893 } 13894 13895 /** 13896 * i40e_add_vsi - Add a VSI to the switch 13897 * @vsi: the VSI being configured 13898 * 13899 * This initializes a VSI context depending on the VSI type to be added and 13900 * passes it down to the add_vsi aq command. 13901 **/ 13902 static int i40e_add_vsi(struct i40e_vsi *vsi) 13903 { 13904 int ret = -ENODEV; 13905 struct i40e_pf *pf = vsi->back; 13906 struct i40e_hw *hw = &pf->hw; 13907 struct i40e_vsi_context ctxt; 13908 struct i40e_mac_filter *f; 13909 struct hlist_node *h; 13910 int bkt; 13911 13912 u8 enabled_tc = 0x1; /* TC0 enabled */ 13913 int f_count = 0; 13914 13915 memset(&ctxt, 0, sizeof(ctxt)); 13916 switch (vsi->type) { 13917 case I40E_VSI_MAIN: 13918 /* The PF's main VSI is already setup as part of the 13919 * device initialization, so we'll not bother with 13920 * the add_vsi call, but we will retrieve the current 13921 * VSI context. 13922 */ 13923 ctxt.seid = pf->main_vsi_seid; 13924 ctxt.pf_num = pf->hw.pf_id; 13925 ctxt.vf_num = 0; 13926 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13927 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13928 if (ret) { 13929 dev_info(&pf->pdev->dev, 13930 "couldn't get PF vsi config, err %pe aq_err %s\n", 13931 ERR_PTR(ret), 13932 i40e_aq_str(&pf->hw, 13933 pf->hw.aq.asq_last_status)); 13934 return -ENOENT; 13935 } 13936 vsi->info = ctxt.info; 13937 vsi->info.valid_sections = 0; 13938 13939 vsi->seid = ctxt.seid; 13940 vsi->id = ctxt.vsi_number; 13941 13942 enabled_tc = i40e_pf_get_tc_map(pf); 13943 13944 /* Source pruning is enabled by default, so the flag is 13945 * negative logic - if it's set, we need to fiddle with 13946 * the VSI to disable source pruning. 13947 */ 13948 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13949 memset(&ctxt, 0, sizeof(ctxt)); 13950 ctxt.seid = pf->main_vsi_seid; 13951 ctxt.pf_num = pf->hw.pf_id; 13952 ctxt.vf_num = 0; 13953 ctxt.info.valid_sections |= 13954 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13955 ctxt.info.switch_id = 13956 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13957 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13958 if (ret) { 13959 dev_info(&pf->pdev->dev, 13960 "update vsi failed, err %d aq_err %s\n", 13961 ret, 13962 i40e_aq_str(&pf->hw, 13963 pf->hw.aq.asq_last_status)); 13964 ret = -ENOENT; 13965 goto err; 13966 } 13967 } 13968 13969 /* MFP mode setup queue map and update VSI */ 13970 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13971 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13972 memset(&ctxt, 0, sizeof(ctxt)); 13973 ctxt.seid = pf->main_vsi_seid; 13974 ctxt.pf_num = pf->hw.pf_id; 13975 ctxt.vf_num = 0; 13976 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13977 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13978 if (ret) { 13979 dev_info(&pf->pdev->dev, 13980 "update vsi failed, err %pe aq_err %s\n", 13981 ERR_PTR(ret), 13982 i40e_aq_str(&pf->hw, 13983 pf->hw.aq.asq_last_status)); 13984 ret = -ENOENT; 13985 goto err; 13986 } 13987 /* update the local VSI info queue map */ 13988 i40e_vsi_update_queue_map(vsi, &ctxt); 13989 vsi->info.valid_sections = 0; 13990 } else { 13991 /* Default/Main VSI is only enabled for TC0 13992 * reconfigure it to enable all TCs that are 13993 * available on the port in SFP mode. 13994 * For MFP case the iSCSI PF would use this 13995 * flow to enable LAN+iSCSI TC. 13996 */ 13997 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13998 if (ret) { 13999 /* Single TC condition is not fatal, 14000 * message and continue 14001 */ 14002 dev_info(&pf->pdev->dev, 14003 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 14004 enabled_tc, 14005 ERR_PTR(ret), 14006 i40e_aq_str(&pf->hw, 14007 pf->hw.aq.asq_last_status)); 14008 } 14009 } 14010 break; 14011 14012 case I40E_VSI_FDIR: 14013 ctxt.pf_num = hw->pf_id; 14014 ctxt.vf_num = 0; 14015 ctxt.uplink_seid = vsi->uplink_seid; 14016 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14017 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 14018 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 14019 (i40e_is_vsi_uplink_mode_veb(vsi))) { 14020 ctxt.info.valid_sections |= 14021 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14022 ctxt.info.switch_id = 14023 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14024 } 14025 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14026 break; 14027 14028 case I40E_VSI_VMDQ2: 14029 ctxt.pf_num = hw->pf_id; 14030 ctxt.vf_num = 0; 14031 ctxt.uplink_seid = vsi->uplink_seid; 14032 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14033 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 14034 14035 /* This VSI is connected to VEB so the switch_id 14036 * should be set to zero by default. 14037 */ 14038 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14039 ctxt.info.valid_sections |= 14040 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14041 ctxt.info.switch_id = 14042 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14043 } 14044 14045 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14046 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14047 break; 14048 14049 case I40E_VSI_SRIOV: 14050 ctxt.pf_num = hw->pf_id; 14051 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14052 ctxt.uplink_seid = vsi->uplink_seid; 14053 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14054 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14055 14056 /* This VSI is connected to VEB so the switch_id 14057 * should be set to zero by default. 14058 */ 14059 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14060 ctxt.info.valid_sections |= 14061 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14062 ctxt.info.switch_id = 14063 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14064 } 14065 14066 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14067 ctxt.info.valid_sections |= 14068 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14069 ctxt.info.queueing_opt_flags |= 14070 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14071 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14072 } 14073 14074 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14075 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14076 if (pf->vf[vsi->vf_id].spoofchk) { 14077 ctxt.info.valid_sections |= 14078 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14079 ctxt.info.sec_flags |= 14080 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14081 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14082 } 14083 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14084 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14085 break; 14086 14087 case I40E_VSI_IWARP: 14088 /* send down message to iWARP */ 14089 break; 14090 14091 default: 14092 return -ENODEV; 14093 } 14094 14095 if (vsi->type != I40E_VSI_MAIN) { 14096 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14097 if (ret) { 14098 dev_info(&vsi->back->pdev->dev, 14099 "add vsi failed, err %pe aq_err %s\n", 14100 ERR_PTR(ret), 14101 i40e_aq_str(&pf->hw, 14102 pf->hw.aq.asq_last_status)); 14103 ret = -ENOENT; 14104 goto err; 14105 } 14106 vsi->info = ctxt.info; 14107 vsi->info.valid_sections = 0; 14108 vsi->seid = ctxt.seid; 14109 vsi->id = ctxt.vsi_number; 14110 } 14111 14112 spin_lock_bh(&vsi->mac_filter_hash_lock); 14113 vsi->active_filters = 0; 14114 /* If macvlan filters already exist, force them to get loaded */ 14115 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14116 f->state = I40E_FILTER_NEW; 14117 f_count++; 14118 } 14119 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14120 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14121 14122 if (f_count) { 14123 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14124 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14125 } 14126 14127 /* Update VSI BW information */ 14128 ret = i40e_vsi_get_bw_info(vsi); 14129 if (ret) { 14130 dev_info(&pf->pdev->dev, 14131 "couldn't get vsi bw info, err %pe aq_err %s\n", 14132 ERR_PTR(ret), 14133 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14134 /* VSI is already added so not tearing that up */ 14135 ret = 0; 14136 } 14137 14138 err: 14139 return ret; 14140 } 14141 14142 /** 14143 * i40e_vsi_release - Delete a VSI and free its resources 14144 * @vsi: the VSI being removed 14145 * 14146 * Returns 0 on success or < 0 on error 14147 **/ 14148 int i40e_vsi_release(struct i40e_vsi *vsi) 14149 { 14150 struct i40e_mac_filter *f; 14151 struct hlist_node *h; 14152 struct i40e_veb *veb = NULL; 14153 struct i40e_pf *pf; 14154 u16 uplink_seid; 14155 int i, n, bkt; 14156 14157 pf = vsi->back; 14158 14159 /* release of a VEB-owner or last VSI is not allowed */ 14160 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14161 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14162 vsi->seid, vsi->uplink_seid); 14163 return -ENODEV; 14164 } 14165 if (vsi == pf->vsi[pf->lan_vsi] && 14166 !test_bit(__I40E_DOWN, pf->state)) { 14167 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14168 return -ENODEV; 14169 } 14170 set_bit(__I40E_VSI_RELEASING, vsi->state); 14171 uplink_seid = vsi->uplink_seid; 14172 14173 if (vsi->type != I40E_VSI_SRIOV) { 14174 if (vsi->netdev_registered) { 14175 vsi->netdev_registered = false; 14176 if (vsi->netdev) { 14177 /* results in a call to i40e_close() */ 14178 unregister_netdev(vsi->netdev); 14179 } 14180 } else { 14181 i40e_vsi_close(vsi); 14182 } 14183 i40e_vsi_disable_irq(vsi); 14184 } 14185 14186 if (vsi->type == I40E_VSI_MAIN) 14187 i40e_devlink_destroy_port(pf); 14188 14189 spin_lock_bh(&vsi->mac_filter_hash_lock); 14190 14191 /* clear the sync flag on all filters */ 14192 if (vsi->netdev) { 14193 __dev_uc_unsync(vsi->netdev, NULL); 14194 __dev_mc_unsync(vsi->netdev, NULL); 14195 } 14196 14197 /* make sure any remaining filters are marked for deletion */ 14198 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14199 __i40e_del_filter(vsi, f); 14200 14201 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14202 14203 i40e_sync_vsi_filters(vsi); 14204 14205 i40e_vsi_delete(vsi); 14206 i40e_vsi_free_q_vectors(vsi); 14207 if (vsi->netdev) { 14208 free_netdev(vsi->netdev); 14209 vsi->netdev = NULL; 14210 } 14211 i40e_vsi_clear_rings(vsi); 14212 i40e_vsi_clear(vsi); 14213 14214 /* If this was the last thing on the VEB, except for the 14215 * controlling VSI, remove the VEB, which puts the controlling 14216 * VSI onto the next level down in the switch. 14217 * 14218 * Well, okay, there's one more exception here: don't remove 14219 * the orphan VEBs yet. We'll wait for an explicit remove request 14220 * from up the network stack. 14221 */ 14222 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 14223 if (pf->vsi[i] && 14224 pf->vsi[i]->uplink_seid == uplink_seid && 14225 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14226 n++; /* count the VSIs */ 14227 } 14228 } 14229 for (i = 0; i < I40E_MAX_VEB; i++) { 14230 if (!pf->veb[i]) 14231 continue; 14232 if (pf->veb[i]->uplink_seid == uplink_seid) 14233 n++; /* count the VEBs */ 14234 if (pf->veb[i]->seid == uplink_seid) 14235 veb = pf->veb[i]; 14236 } 14237 if (n == 0 && veb && veb->uplink_seid != 0) 14238 i40e_veb_release(veb); 14239 14240 return 0; 14241 } 14242 14243 /** 14244 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14245 * @vsi: ptr to the VSI 14246 * 14247 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14248 * corresponding SW VSI structure and initializes num_queue_pairs for the 14249 * newly allocated VSI. 14250 * 14251 * Returns 0 on success or negative on failure 14252 **/ 14253 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14254 { 14255 int ret = -ENOENT; 14256 struct i40e_pf *pf = vsi->back; 14257 14258 if (vsi->q_vectors[0]) { 14259 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14260 vsi->seid); 14261 return -EEXIST; 14262 } 14263 14264 if (vsi->base_vector) { 14265 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14266 vsi->seid, vsi->base_vector); 14267 return -EEXIST; 14268 } 14269 14270 ret = i40e_vsi_alloc_q_vectors(vsi); 14271 if (ret) { 14272 dev_info(&pf->pdev->dev, 14273 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14274 vsi->num_q_vectors, vsi->seid, ret); 14275 vsi->num_q_vectors = 0; 14276 goto vector_setup_out; 14277 } 14278 14279 /* In Legacy mode, we do not have to get any other vector since we 14280 * piggyback on the misc/ICR0 for queue interrupts. 14281 */ 14282 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14283 return ret; 14284 if (vsi->num_q_vectors) 14285 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14286 vsi->num_q_vectors, vsi->idx); 14287 if (vsi->base_vector < 0) { 14288 dev_info(&pf->pdev->dev, 14289 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14290 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14291 i40e_vsi_free_q_vectors(vsi); 14292 ret = -ENOENT; 14293 goto vector_setup_out; 14294 } 14295 14296 vector_setup_out: 14297 return ret; 14298 } 14299 14300 /** 14301 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14302 * @vsi: pointer to the vsi. 14303 * 14304 * This re-allocates a vsi's queue resources. 14305 * 14306 * Returns pointer to the successfully allocated and configured VSI sw struct 14307 * on success, otherwise returns NULL on failure. 14308 **/ 14309 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14310 { 14311 u16 alloc_queue_pairs; 14312 struct i40e_pf *pf; 14313 u8 enabled_tc; 14314 int ret; 14315 14316 if (!vsi) 14317 return NULL; 14318 14319 pf = vsi->back; 14320 14321 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14322 i40e_vsi_clear_rings(vsi); 14323 14324 i40e_vsi_free_arrays(vsi, false); 14325 i40e_set_num_rings_in_vsi(vsi); 14326 ret = i40e_vsi_alloc_arrays(vsi, false); 14327 if (ret) 14328 goto err_vsi; 14329 14330 alloc_queue_pairs = vsi->alloc_queue_pairs * 14331 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14332 14333 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14334 if (ret < 0) { 14335 dev_info(&pf->pdev->dev, 14336 "failed to get tracking for %d queues for VSI %d err %d\n", 14337 alloc_queue_pairs, vsi->seid, ret); 14338 goto err_vsi; 14339 } 14340 vsi->base_queue = ret; 14341 14342 /* Update the FW view of the VSI. Force a reset of TC and queue 14343 * layout configurations. 14344 */ 14345 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14346 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14347 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14348 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14349 if (vsi->type == I40E_VSI_MAIN) 14350 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14351 14352 /* assign it some queues */ 14353 ret = i40e_alloc_rings(vsi); 14354 if (ret) 14355 goto err_rings; 14356 14357 /* map all of the rings to the q_vectors */ 14358 i40e_vsi_map_rings_to_vectors(vsi); 14359 return vsi; 14360 14361 err_rings: 14362 i40e_vsi_free_q_vectors(vsi); 14363 if (vsi->netdev_registered) { 14364 vsi->netdev_registered = false; 14365 unregister_netdev(vsi->netdev); 14366 free_netdev(vsi->netdev); 14367 vsi->netdev = NULL; 14368 } 14369 if (vsi->type == I40E_VSI_MAIN) 14370 i40e_devlink_destroy_port(pf); 14371 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14372 err_vsi: 14373 i40e_vsi_clear(vsi); 14374 return NULL; 14375 } 14376 14377 /** 14378 * i40e_vsi_setup - Set up a VSI by a given type 14379 * @pf: board private structure 14380 * @type: VSI type 14381 * @uplink_seid: the switch element to link to 14382 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14383 * 14384 * This allocates the sw VSI structure and its queue resources, then add a VSI 14385 * to the identified VEB. 14386 * 14387 * Returns pointer to the successfully allocated and configure VSI sw struct on 14388 * success, otherwise returns NULL on failure. 14389 **/ 14390 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14391 u16 uplink_seid, u32 param1) 14392 { 14393 struct i40e_vsi *vsi = NULL; 14394 struct i40e_veb *veb = NULL; 14395 u16 alloc_queue_pairs; 14396 int ret, i; 14397 int v_idx; 14398 14399 /* The requested uplink_seid must be either 14400 * - the PF's port seid 14401 * no VEB is needed because this is the PF 14402 * or this is a Flow Director special case VSI 14403 * - seid of an existing VEB 14404 * - seid of a VSI that owns an existing VEB 14405 * - seid of a VSI that doesn't own a VEB 14406 * a new VEB is created and the VSI becomes the owner 14407 * - seid of the PF VSI, which is what creates the first VEB 14408 * this is a special case of the previous 14409 * 14410 * Find which uplink_seid we were given and create a new VEB if needed 14411 */ 14412 for (i = 0; i < I40E_MAX_VEB; i++) { 14413 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 14414 veb = pf->veb[i]; 14415 break; 14416 } 14417 } 14418 14419 if (!veb && uplink_seid != pf->mac_seid) { 14420 14421 for (i = 0; i < pf->num_alloc_vsi; i++) { 14422 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 14423 vsi = pf->vsi[i]; 14424 break; 14425 } 14426 } 14427 if (!vsi) { 14428 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14429 uplink_seid); 14430 return NULL; 14431 } 14432 14433 if (vsi->uplink_seid == pf->mac_seid) 14434 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 14435 vsi->tc_config.enabled_tc); 14436 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14437 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 14438 vsi->tc_config.enabled_tc); 14439 if (veb) { 14440 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 14441 dev_info(&vsi->back->pdev->dev, 14442 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14443 return NULL; 14444 } 14445 /* We come up by default in VEPA mode if SRIOV is not 14446 * already enabled, in which case we can't force VEPA 14447 * mode. 14448 */ 14449 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14450 veb->bridge_mode = BRIDGE_MODE_VEPA; 14451 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14452 } 14453 i40e_config_bridge_mode(veb); 14454 } 14455 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 14456 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 14457 veb = pf->veb[i]; 14458 } 14459 if (!veb) { 14460 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14461 return NULL; 14462 } 14463 14464 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14465 uplink_seid = veb->seid; 14466 } 14467 14468 /* get vsi sw struct */ 14469 v_idx = i40e_vsi_mem_alloc(pf, type); 14470 if (v_idx < 0) 14471 goto err_alloc; 14472 vsi = pf->vsi[v_idx]; 14473 if (!vsi) 14474 goto err_alloc; 14475 vsi->type = type; 14476 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14477 14478 if (type == I40E_VSI_MAIN) 14479 pf->lan_vsi = v_idx; 14480 else if (type == I40E_VSI_SRIOV) 14481 vsi->vf_id = param1; 14482 /* assign it some queues */ 14483 alloc_queue_pairs = vsi->alloc_queue_pairs * 14484 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14485 14486 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14487 if (ret < 0) { 14488 dev_info(&pf->pdev->dev, 14489 "failed to get tracking for %d queues for VSI %d err=%d\n", 14490 alloc_queue_pairs, vsi->seid, ret); 14491 goto err_vsi; 14492 } 14493 vsi->base_queue = ret; 14494 14495 /* get a VSI from the hardware */ 14496 vsi->uplink_seid = uplink_seid; 14497 ret = i40e_add_vsi(vsi); 14498 if (ret) 14499 goto err_vsi; 14500 14501 switch (vsi->type) { 14502 /* setup the netdev if needed */ 14503 case I40E_VSI_MAIN: 14504 case I40E_VSI_VMDQ2: 14505 ret = i40e_config_netdev(vsi); 14506 if (ret) 14507 goto err_netdev; 14508 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14509 if (ret) 14510 goto err_netdev; 14511 if (vsi->type == I40E_VSI_MAIN) { 14512 ret = i40e_devlink_create_port(pf); 14513 if (ret) 14514 goto err_netdev; 14515 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14516 } 14517 ret = register_netdev(vsi->netdev); 14518 if (ret) 14519 goto err_dl_port; 14520 vsi->netdev_registered = true; 14521 netif_carrier_off(vsi->netdev); 14522 #ifdef CONFIG_I40E_DCB 14523 /* Setup DCB netlink interface */ 14524 i40e_dcbnl_setup(vsi); 14525 #endif /* CONFIG_I40E_DCB */ 14526 fallthrough; 14527 case I40E_VSI_FDIR: 14528 /* set up vectors and rings if needed */ 14529 ret = i40e_vsi_setup_vectors(vsi); 14530 if (ret) 14531 goto err_msix; 14532 14533 ret = i40e_alloc_rings(vsi); 14534 if (ret) 14535 goto err_rings; 14536 14537 /* map all of the rings to the q_vectors */ 14538 i40e_vsi_map_rings_to_vectors(vsi); 14539 14540 i40e_vsi_reset_stats(vsi); 14541 break; 14542 default: 14543 /* no netdev or rings for the other VSI types */ 14544 break; 14545 } 14546 14547 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14548 vsi->type == I40E_VSI_VMDQ2) { 14549 ret = i40e_vsi_config_rss(vsi); 14550 if (ret) 14551 goto err_config; 14552 } 14553 return vsi; 14554 14555 err_config: 14556 i40e_vsi_clear_rings(vsi); 14557 err_rings: 14558 i40e_vsi_free_q_vectors(vsi); 14559 err_msix: 14560 if (vsi->netdev_registered) { 14561 vsi->netdev_registered = false; 14562 unregister_netdev(vsi->netdev); 14563 free_netdev(vsi->netdev); 14564 vsi->netdev = NULL; 14565 } 14566 err_dl_port: 14567 if (vsi->type == I40E_VSI_MAIN) 14568 i40e_devlink_destroy_port(pf); 14569 err_netdev: 14570 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14571 err_vsi: 14572 i40e_vsi_clear(vsi); 14573 err_alloc: 14574 return NULL; 14575 } 14576 14577 /** 14578 * i40e_veb_get_bw_info - Query VEB BW information 14579 * @veb: the veb to query 14580 * 14581 * Query the Tx scheduler BW configuration data for given VEB 14582 **/ 14583 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14584 { 14585 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14586 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14587 struct i40e_pf *pf = veb->pf; 14588 struct i40e_hw *hw = &pf->hw; 14589 u32 tc_bw_max; 14590 int ret = 0; 14591 int i; 14592 14593 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14594 &bw_data, NULL); 14595 if (ret) { 14596 dev_info(&pf->pdev->dev, 14597 "query veb bw config failed, err %pe aq_err %s\n", 14598 ERR_PTR(ret), 14599 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14600 goto out; 14601 } 14602 14603 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14604 &ets_data, NULL); 14605 if (ret) { 14606 dev_info(&pf->pdev->dev, 14607 "query veb bw ets config failed, err %pe aq_err %s\n", 14608 ERR_PTR(ret), 14609 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14610 goto out; 14611 } 14612 14613 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14614 veb->bw_max_quanta = ets_data.tc_bw_max; 14615 veb->is_abs_credits = bw_data.absolute_credits_enable; 14616 veb->enabled_tc = ets_data.tc_valid_bits; 14617 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14618 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14619 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14620 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14621 veb->bw_tc_limit_credits[i] = 14622 le16_to_cpu(bw_data.tc_bw_limits[i]); 14623 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14624 } 14625 14626 out: 14627 return ret; 14628 } 14629 14630 /** 14631 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14632 * @pf: board private structure 14633 * 14634 * On error: returns error code (negative) 14635 * On success: returns vsi index in PF (positive) 14636 **/ 14637 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14638 { 14639 int ret = -ENOENT; 14640 struct i40e_veb *veb; 14641 int i; 14642 14643 /* Need to protect the allocation of switch elements at the PF level */ 14644 mutex_lock(&pf->switch_mutex); 14645 14646 /* VEB list may be fragmented if VEB creation/destruction has 14647 * been happening. We can afford to do a quick scan to look 14648 * for any free slots in the list. 14649 * 14650 * find next empty veb slot, looping back around if necessary 14651 */ 14652 i = 0; 14653 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14654 i++; 14655 if (i >= I40E_MAX_VEB) { 14656 ret = -ENOMEM; 14657 goto err_alloc_veb; /* out of VEB slots! */ 14658 } 14659 14660 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14661 if (!veb) { 14662 ret = -ENOMEM; 14663 goto err_alloc_veb; 14664 } 14665 veb->pf = pf; 14666 veb->idx = i; 14667 veb->enabled_tc = 1; 14668 14669 pf->veb[i] = veb; 14670 ret = i; 14671 err_alloc_veb: 14672 mutex_unlock(&pf->switch_mutex); 14673 return ret; 14674 } 14675 14676 /** 14677 * i40e_switch_branch_release - Delete a branch of the switch tree 14678 * @branch: where to start deleting 14679 * 14680 * This uses recursion to find the tips of the branch to be 14681 * removed, deleting until we get back to and can delete this VEB. 14682 **/ 14683 static void i40e_switch_branch_release(struct i40e_veb *branch) 14684 { 14685 struct i40e_pf *pf = branch->pf; 14686 u16 branch_seid = branch->seid; 14687 u16 veb_idx = branch->idx; 14688 int i; 14689 14690 /* release any VEBs on this VEB - RECURSION */ 14691 for (i = 0; i < I40E_MAX_VEB; i++) { 14692 if (!pf->veb[i]) 14693 continue; 14694 if (pf->veb[i]->uplink_seid == branch->seid) 14695 i40e_switch_branch_release(pf->veb[i]); 14696 } 14697 14698 /* Release the VSIs on this VEB, but not the owner VSI. 14699 * 14700 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14701 * the VEB itself, so don't use (*branch) after this loop. 14702 */ 14703 for (i = 0; i < pf->num_alloc_vsi; i++) { 14704 if (!pf->vsi[i]) 14705 continue; 14706 if (pf->vsi[i]->uplink_seid == branch_seid && 14707 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14708 i40e_vsi_release(pf->vsi[i]); 14709 } 14710 } 14711 14712 /* There's one corner case where the VEB might not have been 14713 * removed, so double check it here and remove it if needed. 14714 * This case happens if the veb was created from the debugfs 14715 * commands and no VSIs were added to it. 14716 */ 14717 if (pf->veb[veb_idx]) 14718 i40e_veb_release(pf->veb[veb_idx]); 14719 } 14720 14721 /** 14722 * i40e_veb_clear - remove veb struct 14723 * @veb: the veb to remove 14724 **/ 14725 static void i40e_veb_clear(struct i40e_veb *veb) 14726 { 14727 if (!veb) 14728 return; 14729 14730 if (veb->pf) { 14731 struct i40e_pf *pf = veb->pf; 14732 14733 mutex_lock(&pf->switch_mutex); 14734 if (pf->veb[veb->idx] == veb) 14735 pf->veb[veb->idx] = NULL; 14736 mutex_unlock(&pf->switch_mutex); 14737 } 14738 14739 kfree(veb); 14740 } 14741 14742 /** 14743 * i40e_veb_release - Delete a VEB and free its resources 14744 * @veb: the VEB being removed 14745 **/ 14746 void i40e_veb_release(struct i40e_veb *veb) 14747 { 14748 struct i40e_vsi *vsi = NULL; 14749 struct i40e_pf *pf; 14750 int i, n = 0; 14751 14752 pf = veb->pf; 14753 14754 /* find the remaining VSI and check for extras */ 14755 for (i = 0; i < pf->num_alloc_vsi; i++) { 14756 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 14757 n++; 14758 vsi = pf->vsi[i]; 14759 } 14760 } 14761 if (n != 1) { 14762 dev_info(&pf->pdev->dev, 14763 "can't remove VEB %d with %d VSIs left\n", 14764 veb->seid, n); 14765 return; 14766 } 14767 14768 /* move the remaining VSI to uplink veb */ 14769 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14770 if (veb->uplink_seid) { 14771 vsi->uplink_seid = veb->uplink_seid; 14772 if (veb->uplink_seid == pf->mac_seid) 14773 vsi->veb_idx = I40E_NO_VEB; 14774 else 14775 vsi->veb_idx = veb->veb_idx; 14776 } else { 14777 /* floating VEB */ 14778 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 14779 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 14780 } 14781 14782 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14783 i40e_veb_clear(veb); 14784 } 14785 14786 /** 14787 * i40e_add_veb - create the VEB in the switch 14788 * @veb: the VEB to be instantiated 14789 * @vsi: the controlling VSI 14790 **/ 14791 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14792 { 14793 struct i40e_pf *pf = veb->pf; 14794 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14795 int ret; 14796 14797 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 14798 veb->enabled_tc, false, 14799 &veb->seid, enable_stats, NULL); 14800 14801 /* get a VEB from the hardware */ 14802 if (ret) { 14803 dev_info(&pf->pdev->dev, 14804 "couldn't add VEB, err %pe aq_err %s\n", 14805 ERR_PTR(ret), 14806 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14807 return -EPERM; 14808 } 14809 14810 /* get statistics counter */ 14811 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14812 &veb->stats_idx, NULL, NULL, NULL); 14813 if (ret) { 14814 dev_info(&pf->pdev->dev, 14815 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14816 ERR_PTR(ret), 14817 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14818 return -EPERM; 14819 } 14820 ret = i40e_veb_get_bw_info(veb); 14821 if (ret) { 14822 dev_info(&pf->pdev->dev, 14823 "couldn't get VEB bw info, err %pe aq_err %s\n", 14824 ERR_PTR(ret), 14825 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14826 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14827 return -ENOENT; 14828 } 14829 14830 vsi->uplink_seid = veb->seid; 14831 vsi->veb_idx = veb->idx; 14832 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14833 14834 return 0; 14835 } 14836 14837 /** 14838 * i40e_veb_setup - Set up a VEB 14839 * @pf: board private structure 14840 * @flags: VEB setup flags 14841 * @uplink_seid: the switch element to link to 14842 * @vsi_seid: the initial VSI seid 14843 * @enabled_tc: Enabled TC bit-map 14844 * 14845 * This allocates the sw VEB structure and links it into the switch 14846 * It is possible and legal for this to be a duplicate of an already 14847 * existing VEB. It is also possible for both uplink and vsi seids 14848 * to be zero, in order to create a floating VEB. 14849 * 14850 * Returns pointer to the successfully allocated VEB sw struct on 14851 * success, otherwise returns NULL on failure. 14852 **/ 14853 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14854 u16 uplink_seid, u16 vsi_seid, 14855 u8 enabled_tc) 14856 { 14857 struct i40e_veb *veb, *uplink_veb = NULL; 14858 int vsi_idx, veb_idx; 14859 int ret; 14860 14861 /* if one seid is 0, the other must be 0 to create a floating relay */ 14862 if ((uplink_seid == 0 || vsi_seid == 0) && 14863 (uplink_seid + vsi_seid != 0)) { 14864 dev_info(&pf->pdev->dev, 14865 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14866 uplink_seid, vsi_seid); 14867 return NULL; 14868 } 14869 14870 /* make sure there is such a vsi and uplink */ 14871 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14872 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14873 break; 14874 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14875 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14876 vsi_seid); 14877 return NULL; 14878 } 14879 14880 if (uplink_seid && uplink_seid != pf->mac_seid) { 14881 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14882 if (pf->veb[veb_idx] && 14883 pf->veb[veb_idx]->seid == uplink_seid) { 14884 uplink_veb = pf->veb[veb_idx]; 14885 break; 14886 } 14887 } 14888 if (!uplink_veb) { 14889 dev_info(&pf->pdev->dev, 14890 "uplink seid %d not found\n", uplink_seid); 14891 return NULL; 14892 } 14893 } 14894 14895 /* get veb sw struct */ 14896 veb_idx = i40e_veb_mem_alloc(pf); 14897 if (veb_idx < 0) 14898 goto err_alloc; 14899 veb = pf->veb[veb_idx]; 14900 veb->flags = flags; 14901 veb->uplink_seid = uplink_seid; 14902 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14903 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14904 14905 /* create the VEB in the switch */ 14906 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14907 if (ret) 14908 goto err_veb; 14909 if (vsi_idx == pf->lan_vsi) 14910 pf->lan_veb = veb->idx; 14911 14912 return veb; 14913 14914 err_veb: 14915 i40e_veb_clear(veb); 14916 err_alloc: 14917 return NULL; 14918 } 14919 14920 /** 14921 * i40e_setup_pf_switch_element - set PF vars based on switch type 14922 * @pf: board private structure 14923 * @ele: element we are building info from 14924 * @num_reported: total number of elements 14925 * @printconfig: should we print the contents 14926 * 14927 * helper function to assist in extracting a few useful SEID values. 14928 **/ 14929 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14930 struct i40e_aqc_switch_config_element_resp *ele, 14931 u16 num_reported, bool printconfig) 14932 { 14933 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14934 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14935 u8 element_type = ele->element_type; 14936 u16 seid = le16_to_cpu(ele->seid); 14937 14938 if (printconfig) 14939 dev_info(&pf->pdev->dev, 14940 "type=%d seid=%d uplink=%d downlink=%d\n", 14941 element_type, seid, uplink_seid, downlink_seid); 14942 14943 switch (element_type) { 14944 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14945 pf->mac_seid = seid; 14946 break; 14947 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14948 /* Main VEB? */ 14949 if (uplink_seid != pf->mac_seid) 14950 break; 14951 if (pf->lan_veb >= I40E_MAX_VEB) { 14952 int v; 14953 14954 /* find existing or else empty VEB */ 14955 for (v = 0; v < I40E_MAX_VEB; v++) { 14956 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14957 pf->lan_veb = v; 14958 break; 14959 } 14960 } 14961 if (pf->lan_veb >= I40E_MAX_VEB) { 14962 v = i40e_veb_mem_alloc(pf); 14963 if (v < 0) 14964 break; 14965 pf->lan_veb = v; 14966 } 14967 } 14968 if (pf->lan_veb >= I40E_MAX_VEB) 14969 break; 14970 14971 pf->veb[pf->lan_veb]->seid = seid; 14972 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14973 pf->veb[pf->lan_veb]->pf = pf; 14974 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14975 break; 14976 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14977 if (num_reported != 1) 14978 break; 14979 /* This is immediately after a reset so we can assume this is 14980 * the PF's VSI 14981 */ 14982 pf->mac_seid = uplink_seid; 14983 pf->main_vsi_seid = seid; 14984 if (printconfig) 14985 dev_info(&pf->pdev->dev, 14986 "pf_seid=%d main_vsi_seid=%d\n", 14987 downlink_seid, pf->main_vsi_seid); 14988 break; 14989 case I40E_SWITCH_ELEMENT_TYPE_PF: 14990 case I40E_SWITCH_ELEMENT_TYPE_VF: 14991 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14992 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14993 case I40E_SWITCH_ELEMENT_TYPE_PE: 14994 case I40E_SWITCH_ELEMENT_TYPE_PA: 14995 /* ignore these for now */ 14996 break; 14997 default: 14998 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14999 element_type, seid); 15000 break; 15001 } 15002 } 15003 15004 /** 15005 * i40e_fetch_switch_configuration - Get switch config from firmware 15006 * @pf: board private structure 15007 * @printconfig: should we print the contents 15008 * 15009 * Get the current switch configuration from the device and 15010 * extract a few useful SEID values. 15011 **/ 15012 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 15013 { 15014 struct i40e_aqc_get_switch_config_resp *sw_config; 15015 u16 next_seid = 0; 15016 int ret = 0; 15017 u8 *aq_buf; 15018 int i; 15019 15020 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 15021 if (!aq_buf) 15022 return -ENOMEM; 15023 15024 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 15025 do { 15026 u16 num_reported, num_total; 15027 15028 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 15029 I40E_AQ_LARGE_BUF, 15030 &next_seid, NULL); 15031 if (ret) { 15032 dev_info(&pf->pdev->dev, 15033 "get switch config failed err %d aq_err %s\n", 15034 ret, 15035 i40e_aq_str(&pf->hw, 15036 pf->hw.aq.asq_last_status)); 15037 kfree(aq_buf); 15038 return -ENOENT; 15039 } 15040 15041 num_reported = le16_to_cpu(sw_config->header.num_reported); 15042 num_total = le16_to_cpu(sw_config->header.num_total); 15043 15044 if (printconfig) 15045 dev_info(&pf->pdev->dev, 15046 "header: %d reported %d total\n", 15047 num_reported, num_total); 15048 15049 for (i = 0; i < num_reported; i++) { 15050 struct i40e_aqc_switch_config_element_resp *ele = 15051 &sw_config->element[i]; 15052 15053 i40e_setup_pf_switch_element(pf, ele, num_reported, 15054 printconfig); 15055 } 15056 } while (next_seid != 0); 15057 15058 kfree(aq_buf); 15059 return ret; 15060 } 15061 15062 /** 15063 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 15064 * @pf: board private structure 15065 * @reinit: if the Main VSI needs to re-initialized. 15066 * @lock_acquired: indicates whether or not the lock has been acquired 15067 * 15068 * Returns 0 on success, negative value on failure 15069 **/ 15070 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 15071 { 15072 u16 flags = 0; 15073 int ret; 15074 15075 /* find out what's out there already */ 15076 ret = i40e_fetch_switch_configuration(pf, false); 15077 if (ret) { 15078 dev_info(&pf->pdev->dev, 15079 "couldn't fetch switch config, err %pe aq_err %s\n", 15080 ERR_PTR(ret), 15081 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15082 return ret; 15083 } 15084 i40e_pf_reset_stats(pf); 15085 15086 /* set the switch config bit for the whole device to 15087 * support limited promisc or true promisc 15088 * when user requests promisc. The default is limited 15089 * promisc. 15090 */ 15091 15092 if ((pf->hw.pf_id == 0) && 15093 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15094 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15095 pf->last_sw_conf_flags = flags; 15096 } 15097 15098 if (pf->hw.pf_id == 0) { 15099 u16 valid_flags; 15100 15101 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15102 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15103 NULL); 15104 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15105 dev_info(&pf->pdev->dev, 15106 "couldn't set switch config bits, err %pe aq_err %s\n", 15107 ERR_PTR(ret), 15108 i40e_aq_str(&pf->hw, 15109 pf->hw.aq.asq_last_status)); 15110 /* not a fatal problem, just keep going */ 15111 } 15112 pf->last_sw_conf_valid_flags = valid_flags; 15113 } 15114 15115 /* first time setup */ 15116 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 15117 struct i40e_vsi *vsi = NULL; 15118 u16 uplink_seid; 15119 15120 /* Set up the PF VSI associated with the PF's main VSI 15121 * that is already in the HW switch 15122 */ 15123 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 15124 uplink_seid = pf->veb[pf->lan_veb]->seid; 15125 else 15126 uplink_seid = pf->mac_seid; 15127 if (pf->lan_vsi == I40E_NO_VSI) 15128 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 15129 else if (reinit) 15130 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 15131 if (!vsi) { 15132 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15133 i40e_cloud_filter_exit(pf); 15134 i40e_fdir_teardown(pf); 15135 return -EAGAIN; 15136 } 15137 } else { 15138 /* force a reset of TC and queue layout configurations */ 15139 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 15140 15141 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 15142 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 15143 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 15144 } 15145 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 15146 15147 i40e_fdir_sb_setup(pf); 15148 15149 /* Setup static PF queue filter control settings */ 15150 ret = i40e_setup_pf_filter_control(pf); 15151 if (ret) { 15152 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15153 ret); 15154 /* Failure here should not stop continuing other steps */ 15155 } 15156 15157 /* enable RSS in the HW, even for only one queue, as the stack can use 15158 * the hash 15159 */ 15160 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15161 i40e_pf_config_rss(pf); 15162 15163 /* fill in link information and enable LSE reporting */ 15164 i40e_link_event(pf); 15165 15166 i40e_ptp_init(pf); 15167 15168 if (!lock_acquired) 15169 rtnl_lock(); 15170 15171 /* repopulate tunnel port filters */ 15172 udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev); 15173 15174 if (!lock_acquired) 15175 rtnl_unlock(); 15176 15177 return ret; 15178 } 15179 15180 /** 15181 * i40e_determine_queue_usage - Work out queue distribution 15182 * @pf: board private structure 15183 **/ 15184 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15185 { 15186 int queues_left; 15187 int q_max; 15188 15189 pf->num_lan_qps = 0; 15190 15191 /* Find the max queues to be put into basic use. We'll always be 15192 * using TC0, whether or not DCB is running, and TC0 will get the 15193 * big RSS set. 15194 */ 15195 queues_left = pf->hw.func_caps.num_tx_qp; 15196 15197 if ((queues_left == 1) || 15198 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15199 /* one qp for PF, no queues for anything else */ 15200 queues_left = 0; 15201 pf->alloc_rss_size = pf->num_lan_qps = 1; 15202 15203 /* make sure all the fancies are disabled */ 15204 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15205 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15206 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15207 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15208 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15209 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15210 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15211 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15212 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15213 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15214 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15215 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15216 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15217 /* one qp for PF */ 15218 pf->alloc_rss_size = pf->num_lan_qps = 1; 15219 queues_left -= pf->num_lan_qps; 15220 15221 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15222 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15223 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15224 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15225 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15226 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15227 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15228 } else { 15229 /* Not enough queues for all TCs */ 15230 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15231 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15232 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15233 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15234 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15235 } 15236 15237 /* limit lan qps to the smaller of qps, cpus or msix */ 15238 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15239 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15240 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15241 pf->num_lan_qps = q_max; 15242 15243 queues_left -= pf->num_lan_qps; 15244 } 15245 15246 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15247 if (queues_left > 1) { 15248 queues_left -= 1; /* save 1 queue for FD */ 15249 } else { 15250 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15251 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15252 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15253 } 15254 } 15255 15256 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15257 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15258 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15259 (queues_left / pf->num_vf_qps)); 15260 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15261 } 15262 15263 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15264 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15265 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15266 (queues_left / pf->num_vmdq_qps)); 15267 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15268 } 15269 15270 pf->queues_left = queues_left; 15271 dev_dbg(&pf->pdev->dev, 15272 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15273 pf->hw.func_caps.num_tx_qp, 15274 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15275 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15276 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15277 queues_left); 15278 } 15279 15280 /** 15281 * i40e_setup_pf_filter_control - Setup PF static filter control 15282 * @pf: PF to be setup 15283 * 15284 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15285 * settings. If PE/FCoE are enabled then it will also set the per PF 15286 * based filter sizes required for them. It also enables Flow director, 15287 * ethertype and macvlan type filter settings for the pf. 15288 * 15289 * Returns 0 on success, negative on failure 15290 **/ 15291 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15292 { 15293 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15294 15295 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15296 15297 /* Flow Director is enabled */ 15298 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15299 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15300 settings->enable_fdir = true; 15301 15302 /* Ethtype and MACVLAN filters enabled for PF */ 15303 settings->enable_ethtype = true; 15304 settings->enable_macvlan = true; 15305 15306 if (i40e_set_filter_control(&pf->hw, settings)) 15307 return -ENOENT; 15308 15309 return 0; 15310 } 15311 15312 #define INFO_STRING_LEN 255 15313 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15314 static void i40e_print_features(struct i40e_pf *pf) 15315 { 15316 struct i40e_hw *hw = &pf->hw; 15317 char *buf; 15318 int i; 15319 15320 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15321 if (!buf) 15322 return; 15323 15324 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15325 #ifdef CONFIG_PCI_IOV 15326 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15327 #endif 15328 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15329 pf->hw.func_caps.num_vsis, 15330 pf->vsi[pf->lan_vsi]->num_queue_pairs); 15331 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15332 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15333 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15334 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15335 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15336 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15337 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15338 } 15339 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15340 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15341 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15342 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15343 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15344 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15345 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15346 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15347 else 15348 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15349 15350 dev_info(&pf->pdev->dev, "%s\n", buf); 15351 kfree(buf); 15352 WARN_ON(i > INFO_STRING_LEN); 15353 } 15354 15355 /** 15356 * i40e_get_platform_mac_addr - get platform-specific MAC address 15357 * @pdev: PCI device information struct 15358 * @pf: board private structure 15359 * 15360 * Look up the MAC address for the device. First we'll try 15361 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15362 * specific fallback. Otherwise, we'll default to the stored value in 15363 * firmware. 15364 **/ 15365 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15366 { 15367 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15368 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15369 } 15370 15371 /** 15372 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15373 * @fec_cfg: FEC option to set in flags 15374 * @flags: ptr to flags in which we set FEC option 15375 **/ 15376 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15377 { 15378 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15379 set_bit(I40E_FLAG_RS_FEC, flags); 15380 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15381 } 15382 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15383 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15384 set_bit(I40E_FLAG_RS_FEC, flags); 15385 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15386 } 15387 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15388 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15389 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15390 clear_bit(I40E_FLAG_RS_FEC, flags); 15391 } 15392 if (fec_cfg == 0) { 15393 clear_bit(I40E_FLAG_RS_FEC, flags); 15394 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15395 } 15396 } 15397 15398 /** 15399 * i40e_check_recovery_mode - check if we are running transition firmware 15400 * @pf: board private structure 15401 * 15402 * Check registers indicating the firmware runs in recovery mode. Sets the 15403 * appropriate driver state. 15404 * 15405 * Returns true if the recovery mode was detected, false otherwise 15406 **/ 15407 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15408 { 15409 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15410 15411 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15412 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15413 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15414 set_bit(__I40E_RECOVERY_MODE, pf->state); 15415 15416 return true; 15417 } 15418 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15419 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15420 15421 return false; 15422 } 15423 15424 /** 15425 * i40e_pf_loop_reset - perform reset in a loop. 15426 * @pf: board private structure 15427 * 15428 * This function is useful when a NIC is about to enter recovery mode. 15429 * When a NIC's internal data structures are corrupted the NIC's 15430 * firmware is going to enter recovery mode. 15431 * Right after a POR it takes about 7 minutes for firmware to enter 15432 * recovery mode. Until that time a NIC is in some kind of intermediate 15433 * state. After that time period the NIC almost surely enters 15434 * recovery mode. The only way for a driver to detect intermediate 15435 * state is to issue a series of pf-resets and check a return value. 15436 * If a PF reset returns success then the firmware could be in recovery 15437 * mode so the caller of this code needs to check for recovery mode 15438 * if this function returns success. There is a little chance that 15439 * firmware will hang in intermediate state forever. 15440 * Since waiting 7 minutes is quite a lot of time this function waits 15441 * 10 seconds and then gives up by returning an error. 15442 * 15443 * Return 0 on success, negative on failure. 15444 **/ 15445 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15446 { 15447 /* wait max 10 seconds for PF reset to succeed */ 15448 const unsigned long time_end = jiffies + 10 * HZ; 15449 struct i40e_hw *hw = &pf->hw; 15450 int ret; 15451 15452 ret = i40e_pf_reset(hw); 15453 while (ret != 0 && time_before(jiffies, time_end)) { 15454 usleep_range(10000, 20000); 15455 ret = i40e_pf_reset(hw); 15456 } 15457 15458 if (ret == 0) 15459 pf->pfr_count++; 15460 else 15461 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15462 15463 return ret; 15464 } 15465 15466 /** 15467 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15468 * @pf: board private structure 15469 * 15470 * Check FW registers to determine if FW issued unexpected EMP Reset. 15471 * Every time when unexpected EMP Reset occurs the FW increments 15472 * a counter of unexpected EMP Resets. When the counter reaches 10 15473 * the FW should enter the Recovery mode 15474 * 15475 * Returns true if FW issued unexpected EMP Reset 15476 **/ 15477 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15478 { 15479 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15480 I40E_GL_FWSTS_FWS1B_MASK; 15481 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15482 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15483 } 15484 15485 /** 15486 * i40e_handle_resets - handle EMP resets and PF resets 15487 * @pf: board private structure 15488 * 15489 * Handle both EMP resets and PF resets and conclude whether there are 15490 * any issues regarding these resets. If there are any issues then 15491 * generate log entry. 15492 * 15493 * Return 0 if NIC is healthy or negative value when there are issues 15494 * with resets 15495 **/ 15496 static int i40e_handle_resets(struct i40e_pf *pf) 15497 { 15498 const int pfr = i40e_pf_loop_reset(pf); 15499 const bool is_empr = i40e_check_fw_empr(pf); 15500 15501 if (is_empr || pfr != 0) 15502 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15503 15504 return is_empr ? -EIO : pfr; 15505 } 15506 15507 /** 15508 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15509 * @pf: board private structure 15510 * @hw: ptr to the hardware info 15511 * 15512 * This function does a minimal setup of all subsystems needed for running 15513 * recovery mode. 15514 * 15515 * Returns 0 on success, negative on failure 15516 **/ 15517 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15518 { 15519 struct i40e_vsi *vsi; 15520 int err; 15521 int v_idx; 15522 15523 pci_set_drvdata(pf->pdev, pf); 15524 pci_save_state(pf->pdev); 15525 15526 /* set up periodic task facility */ 15527 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15528 pf->service_timer_period = HZ; 15529 15530 INIT_WORK(&pf->service_task, i40e_service_task); 15531 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15532 15533 err = i40e_init_interrupt_scheme(pf); 15534 if (err) 15535 goto err_switch_setup; 15536 15537 /* The number of VSIs reported by the FW is the minimum guaranteed 15538 * to us; HW supports far more and we share the remaining pool with 15539 * the other PFs. We allocate space for more than the guarantee with 15540 * the understanding that we might not get them all later. 15541 */ 15542 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15543 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15544 else 15545 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15546 15547 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15548 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15549 GFP_KERNEL); 15550 if (!pf->vsi) { 15551 err = -ENOMEM; 15552 goto err_switch_setup; 15553 } 15554 15555 /* We allocate one VSI which is needed as absolute minimum 15556 * in order to register the netdev 15557 */ 15558 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15559 if (v_idx < 0) { 15560 err = v_idx; 15561 goto err_switch_setup; 15562 } 15563 pf->lan_vsi = v_idx; 15564 vsi = pf->vsi[v_idx]; 15565 if (!vsi) { 15566 err = -EFAULT; 15567 goto err_switch_setup; 15568 } 15569 vsi->alloc_queue_pairs = 1; 15570 err = i40e_config_netdev(vsi); 15571 if (err) 15572 goto err_switch_setup; 15573 err = register_netdev(vsi->netdev); 15574 if (err) 15575 goto err_switch_setup; 15576 vsi->netdev_registered = true; 15577 i40e_dbg_pf_init(pf); 15578 15579 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15580 if (err) 15581 goto err_switch_setup; 15582 15583 /* tell the firmware that we're starting */ 15584 i40e_send_version(pf); 15585 15586 /* since everything's happy, start the service_task timer */ 15587 mod_timer(&pf->service_timer, 15588 round_jiffies(jiffies + pf->service_timer_period)); 15589 15590 return 0; 15591 15592 err_switch_setup: 15593 i40e_reset_interrupt_capability(pf); 15594 timer_shutdown_sync(&pf->service_timer); 15595 i40e_shutdown_adminq(hw); 15596 iounmap(hw->hw_addr); 15597 pci_release_mem_regions(pf->pdev); 15598 pci_disable_device(pf->pdev); 15599 i40e_free_pf(pf); 15600 15601 return err; 15602 } 15603 15604 /** 15605 * i40e_set_subsystem_device_id - set subsystem device id 15606 * @hw: pointer to the hardware info 15607 * 15608 * Set PCI subsystem device id either from a pci_dev structure or 15609 * a specific FW register. 15610 **/ 15611 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15612 { 15613 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15614 15615 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15616 pf->pdev->subsystem_device : 15617 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15618 } 15619 15620 /** 15621 * i40e_probe - Device initialization routine 15622 * @pdev: PCI device information struct 15623 * @ent: entry in i40e_pci_tbl 15624 * 15625 * i40e_probe initializes a PF identified by a pci_dev structure. 15626 * The OS initialization, configuring of the PF private structure, 15627 * and a hardware reset occur. 15628 * 15629 * Returns 0 on success, negative on failure 15630 **/ 15631 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15632 { 15633 struct i40e_aq_get_phy_abilities_resp abilities; 15634 #ifdef CONFIG_I40E_DCB 15635 enum i40e_get_fw_lldp_status_resp lldp_status; 15636 #endif /* CONFIG_I40E_DCB */ 15637 struct i40e_pf *pf; 15638 struct i40e_hw *hw; 15639 u16 wol_nvm_bits; 15640 char nvm_ver[32]; 15641 u16 link_status; 15642 #ifdef CONFIG_I40E_DCB 15643 int status; 15644 #endif /* CONFIG_I40E_DCB */ 15645 int err; 15646 u32 val; 15647 u32 i; 15648 15649 err = pci_enable_device_mem(pdev); 15650 if (err) 15651 return err; 15652 15653 /* set up for high or low dma */ 15654 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15655 if (err) { 15656 dev_err(&pdev->dev, 15657 "DMA configuration failed: 0x%x\n", err); 15658 goto err_dma; 15659 } 15660 15661 /* set up pci connections */ 15662 err = pci_request_mem_regions(pdev, i40e_driver_name); 15663 if (err) { 15664 dev_info(&pdev->dev, 15665 "pci_request_selected_regions failed %d\n", err); 15666 goto err_pci_reg; 15667 } 15668 15669 pci_set_master(pdev); 15670 15671 /* Now that we have a PCI connection, we need to do the 15672 * low level device setup. This is primarily setting up 15673 * the Admin Queue structures and then querying for the 15674 * device's current profile information. 15675 */ 15676 pf = i40e_alloc_pf(&pdev->dev); 15677 if (!pf) { 15678 err = -ENOMEM; 15679 goto err_pf_alloc; 15680 } 15681 pf->next_vsi = 0; 15682 pf->pdev = pdev; 15683 set_bit(__I40E_DOWN, pf->state); 15684 15685 hw = &pf->hw; 15686 15687 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15688 I40E_MAX_CSR_SPACE); 15689 /* We believe that the highest register to read is 15690 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15691 * is not less than that before mapping to prevent a 15692 * kernel panic. 15693 */ 15694 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15695 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15696 pf->ioremap_len); 15697 err = -ENOMEM; 15698 goto err_ioremap; 15699 } 15700 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15701 if (!hw->hw_addr) { 15702 err = -EIO; 15703 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15704 (unsigned int)pci_resource_start(pdev, 0), 15705 pf->ioremap_len, err); 15706 goto err_ioremap; 15707 } 15708 hw->vendor_id = pdev->vendor; 15709 hw->device_id = pdev->device; 15710 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15711 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15712 i40e_set_subsystem_device_id(hw); 15713 hw->bus.device = PCI_SLOT(pdev->devfn); 15714 hw->bus.func = PCI_FUNC(pdev->devfn); 15715 hw->bus.bus_id = pdev->bus->number; 15716 15717 /* Select something other than the 802.1ad ethertype for the 15718 * switch to use internally and drop on ingress. 15719 */ 15720 hw->switch_tag = 0xffff; 15721 hw->first_tag = ETH_P_8021AD; 15722 hw->second_tag = ETH_P_8021Q; 15723 15724 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15725 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15726 INIT_LIST_HEAD(&pf->ddp_old_prof); 15727 15728 /* set up the locks for the AQ, do this only once in probe 15729 * and destroy them only once in remove 15730 */ 15731 mutex_init(&hw->aq.asq_mutex); 15732 mutex_init(&hw->aq.arq_mutex); 15733 15734 pf->msg_enable = netif_msg_init(debug, 15735 NETIF_MSG_DRV | 15736 NETIF_MSG_PROBE | 15737 NETIF_MSG_LINK); 15738 if (debug < -1) 15739 pf->hw.debug_mask = debug; 15740 15741 /* do a special CORER for clearing PXE mode once at init */ 15742 if (hw->revision_id == 0 && 15743 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15744 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15745 i40e_flush(hw); 15746 msleep(200); 15747 pf->corer_count++; 15748 15749 i40e_clear_pxe_mode(hw); 15750 } 15751 15752 /* Reset here to make sure all is clean and to define PF 'n' */ 15753 i40e_clear_hw(hw); 15754 15755 err = i40e_set_mac_type(hw); 15756 if (err) { 15757 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15758 err); 15759 goto err_pf_reset; 15760 } 15761 15762 err = i40e_handle_resets(pf); 15763 if (err) 15764 goto err_pf_reset; 15765 15766 i40e_check_recovery_mode(pf); 15767 15768 if (is_kdump_kernel()) { 15769 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15770 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15771 } else { 15772 hw->aq.num_arq_entries = I40E_AQ_LEN; 15773 hw->aq.num_asq_entries = I40E_AQ_LEN; 15774 } 15775 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15776 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15777 15778 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15779 "%s-%s:misc", 15780 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15781 15782 err = i40e_init_shared_code(hw); 15783 if (err) { 15784 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15785 err); 15786 goto err_pf_reset; 15787 } 15788 15789 /* set up a default setting for link flow control */ 15790 pf->hw.fc.requested_mode = I40E_FC_NONE; 15791 15792 err = i40e_init_adminq(hw); 15793 if (err) { 15794 if (err == -EIO) 15795 dev_info(&pdev->dev, 15796 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15797 hw->aq.api_maj_ver, 15798 hw->aq.api_min_ver, 15799 I40E_FW_API_VERSION_MAJOR, 15800 I40E_FW_MINOR_VERSION(hw)); 15801 else 15802 dev_info(&pdev->dev, 15803 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15804 15805 goto err_pf_reset; 15806 } 15807 i40e_get_oem_version(hw); 15808 i40e_get_pba_string(hw); 15809 15810 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15811 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15812 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15813 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15814 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15815 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15816 hw->subsystem_device_id); 15817 15818 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15819 I40E_FW_MINOR_VERSION(hw) + 1)) 15820 dev_dbg(&pdev->dev, 15821 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15822 hw->aq.api_maj_ver, 15823 hw->aq.api_min_ver, 15824 I40E_FW_API_VERSION_MAJOR, 15825 I40E_FW_MINOR_VERSION(hw)); 15826 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15827 dev_info(&pdev->dev, 15828 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15829 hw->aq.api_maj_ver, 15830 hw->aq.api_min_ver, 15831 I40E_FW_API_VERSION_MAJOR, 15832 I40E_FW_MINOR_VERSION(hw)); 15833 15834 i40e_verify_eeprom(pf); 15835 15836 /* Rev 0 hardware was never productized */ 15837 if (hw->revision_id < 1) 15838 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15839 15840 i40e_clear_pxe_mode(hw); 15841 15842 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15843 if (err) 15844 goto err_adminq_setup; 15845 15846 err = i40e_sw_init(pf); 15847 if (err) { 15848 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15849 goto err_sw_init; 15850 } 15851 15852 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15853 return i40e_init_recovery_mode(pf, hw); 15854 15855 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15856 hw->func_caps.num_rx_qp, 0, 0); 15857 if (err) { 15858 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15859 goto err_init_lan_hmc; 15860 } 15861 15862 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15863 if (err) { 15864 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15865 err = -ENOENT; 15866 goto err_configure_lan_hmc; 15867 } 15868 15869 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15870 * Ignore error return codes because if it was already disabled via 15871 * hardware settings this will fail 15872 */ 15873 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15874 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15875 i40e_aq_stop_lldp(hw, true, false, NULL); 15876 } 15877 15878 /* allow a platform config to override the HW addr */ 15879 i40e_get_platform_mac_addr(pdev, pf); 15880 15881 if (!is_valid_ether_addr(hw->mac.addr)) { 15882 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15883 err = -EIO; 15884 goto err_mac_addr; 15885 } 15886 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15887 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15888 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15889 if (is_valid_ether_addr(hw->mac.port_addr)) 15890 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15891 15892 i40e_ptp_alloc_pins(pf); 15893 pci_set_drvdata(pdev, pf); 15894 pci_save_state(pdev); 15895 15896 #ifdef CONFIG_I40E_DCB 15897 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15898 (!status && 15899 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15900 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15901 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15902 dev_info(&pdev->dev, 15903 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15904 "FW LLDP is disabled\n" : 15905 "FW LLDP is enabled\n"); 15906 15907 /* Enable FW to write default DCB config on link-up */ 15908 i40e_aq_set_dcb_parameters(hw, true, NULL); 15909 15910 err = i40e_init_pf_dcb(pf); 15911 if (err) { 15912 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15913 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15914 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15915 /* Continue without DCB enabled */ 15916 } 15917 #endif /* CONFIG_I40E_DCB */ 15918 15919 /* set up periodic task facility */ 15920 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15921 pf->service_timer_period = HZ; 15922 15923 INIT_WORK(&pf->service_task, i40e_service_task); 15924 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15925 15926 /* NVM bit on means WoL disabled for the port */ 15927 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15928 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15929 pf->wol_en = false; 15930 else 15931 pf->wol_en = true; 15932 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15933 15934 /* set up the main switch operations */ 15935 i40e_determine_queue_usage(pf); 15936 err = i40e_init_interrupt_scheme(pf); 15937 if (err) 15938 goto err_switch_setup; 15939 15940 /* Reduce Tx and Rx pairs for kdump 15941 * When MSI-X is enabled, it's not allowed to use more TC queue 15942 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15943 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15944 */ 15945 if (is_kdump_kernel()) 15946 pf->num_lan_msix = 1; 15947 15948 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15949 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15950 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15951 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15952 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15953 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15954 UDP_TUNNEL_TYPE_GENEVE; 15955 15956 /* The number of VSIs reported by the FW is the minimum guaranteed 15957 * to us; HW supports far more and we share the remaining pool with 15958 * the other PFs. We allocate space for more than the guarantee with 15959 * the understanding that we might not get them all later. 15960 */ 15961 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15962 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15963 else 15964 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15965 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15966 dev_warn(&pf->pdev->dev, 15967 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15968 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15969 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15970 } 15971 15972 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15973 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15974 GFP_KERNEL); 15975 if (!pf->vsi) { 15976 err = -ENOMEM; 15977 goto err_switch_setup; 15978 } 15979 15980 #ifdef CONFIG_PCI_IOV 15981 /* prep for VF support */ 15982 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15983 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15984 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15985 if (pci_num_vf(pdev)) 15986 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15987 } 15988 #endif 15989 err = i40e_setup_pf_switch(pf, false, false); 15990 if (err) { 15991 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15992 goto err_vsis; 15993 } 15994 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15995 15996 /* if FDIR VSI was set up, start it now */ 15997 for (i = 0; i < pf->num_alloc_vsi; i++) { 15998 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15999 i40e_vsi_open(pf->vsi[i]); 16000 break; 16001 } 16002 } 16003 16004 /* The driver only wants link up/down and module qualification 16005 * reports from firmware. Note the negative logic. 16006 */ 16007 err = i40e_aq_set_phy_int_mask(&pf->hw, 16008 ~(I40E_AQ_EVENT_LINK_UPDOWN | 16009 I40E_AQ_EVENT_MEDIA_NA | 16010 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 16011 if (err) 16012 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 16013 ERR_PTR(err), 16014 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16015 16016 /* Reconfigure hardware for allowing smaller MSS in the case 16017 * of TSO, so that we avoid the MDD being fired and causing 16018 * a reset in the case of small MSS+TSO. 16019 */ 16020 val = rd32(hw, I40E_REG_MSS); 16021 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 16022 val &= ~I40E_REG_MSS_MIN_MASK; 16023 val |= I40E_64BYTE_MSS; 16024 wr32(hw, I40E_REG_MSS, val); 16025 } 16026 16027 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 16028 msleep(75); 16029 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 16030 if (err) 16031 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 16032 ERR_PTR(err), 16033 i40e_aq_str(&pf->hw, 16034 pf->hw.aq.asq_last_status)); 16035 } 16036 /* The main driver is (mostly) up and happy. We need to set this state 16037 * before setting up the misc vector or we get a race and the vector 16038 * ends up disabled forever. 16039 */ 16040 clear_bit(__I40E_DOWN, pf->state); 16041 16042 /* In case of MSIX we are going to setup the misc vector right here 16043 * to handle admin queue events etc. In case of legacy and MSI 16044 * the misc functionality and queue processing is combined in 16045 * the same vector and that gets setup at open. 16046 */ 16047 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 16048 err = i40e_setup_misc_vector(pf); 16049 if (err) { 16050 dev_info(&pdev->dev, 16051 "setup of misc vector failed: %d\n", err); 16052 i40e_cloud_filter_exit(pf); 16053 i40e_fdir_teardown(pf); 16054 goto err_vsis; 16055 } 16056 } 16057 16058 #ifdef CONFIG_PCI_IOV 16059 /* prep for VF support */ 16060 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 16061 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 16062 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 16063 /* disable link interrupts for VFs */ 16064 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 16065 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 16066 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 16067 i40e_flush(hw); 16068 16069 if (pci_num_vf(pdev)) { 16070 dev_info(&pdev->dev, 16071 "Active VFs found, allocating resources.\n"); 16072 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 16073 if (err) 16074 dev_info(&pdev->dev, 16075 "Error %d allocating resources for existing VFs\n", 16076 err); 16077 } 16078 } 16079 #endif /* CONFIG_PCI_IOV */ 16080 16081 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16082 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16083 pf->num_iwarp_msix, 16084 I40E_IWARP_IRQ_PILE_ID); 16085 if (pf->iwarp_base_vector < 0) { 16086 dev_info(&pdev->dev, 16087 "failed to get tracking for %d vectors for IWARP err=%d\n", 16088 pf->num_iwarp_msix, pf->iwarp_base_vector); 16089 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16090 } 16091 } 16092 16093 i40e_dbg_pf_init(pf); 16094 16095 /* tell the firmware that we're starting */ 16096 i40e_send_version(pf); 16097 16098 /* since everything's happy, start the service_task timer */ 16099 mod_timer(&pf->service_timer, 16100 round_jiffies(jiffies + pf->service_timer_period)); 16101 16102 /* add this PF to client device list and launch a client service task */ 16103 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16104 err = i40e_lan_add_device(pf); 16105 if (err) 16106 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16107 err); 16108 } 16109 16110 #define PCI_SPEED_SIZE 8 16111 #define PCI_WIDTH_SIZE 8 16112 /* Devices on the IOSF bus do not have this information 16113 * and will report PCI Gen 1 x 1 by default so don't bother 16114 * checking them. 16115 */ 16116 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16117 char speed[PCI_SPEED_SIZE] = "Unknown"; 16118 char width[PCI_WIDTH_SIZE] = "Unknown"; 16119 16120 /* Get the negotiated link width and speed from PCI config 16121 * space 16122 */ 16123 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16124 &link_status); 16125 16126 i40e_set_pci_config_data(hw, link_status); 16127 16128 switch (hw->bus.speed) { 16129 case i40e_bus_speed_8000: 16130 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16131 case i40e_bus_speed_5000: 16132 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16133 case i40e_bus_speed_2500: 16134 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16135 default: 16136 break; 16137 } 16138 switch (hw->bus.width) { 16139 case i40e_bus_width_pcie_x8: 16140 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16141 case i40e_bus_width_pcie_x4: 16142 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16143 case i40e_bus_width_pcie_x2: 16144 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16145 case i40e_bus_width_pcie_x1: 16146 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16147 default: 16148 break; 16149 } 16150 16151 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16152 speed, width); 16153 16154 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16155 hw->bus.speed < i40e_bus_speed_8000) { 16156 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16157 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16158 } 16159 } 16160 16161 /* get the requested speeds from the fw */ 16162 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16163 if (err) 16164 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16165 ERR_PTR(err), 16166 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16167 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16168 16169 /* set the FEC config due to the board capabilities */ 16170 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16171 16172 /* get the supported phy types from the fw */ 16173 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16174 if (err) 16175 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16176 ERR_PTR(err), 16177 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16178 16179 /* make sure the MFS hasn't been set lower than the default */ 16180 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16181 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK, 16182 rd32(&pf->hw, I40E_PRTGL_SAH)); 16183 if (val < MAX_FRAME_SIZE_DEFAULT) 16184 dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n", 16185 pf->hw.port, val); 16186 16187 /* Add a filter to drop all Flow control frames from any VSI from being 16188 * transmitted. By doing so we stop a malicious VF from sending out 16189 * PAUSE or PFC frames and potentially controlling traffic for other 16190 * PF/VF VSIs. 16191 * The FW can still send Flow control frames if enabled. 16192 */ 16193 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16194 pf->main_vsi_seid); 16195 16196 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16197 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16198 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16199 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16200 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16201 /* print a string summarizing features */ 16202 i40e_print_features(pf); 16203 16204 i40e_devlink_register(pf); 16205 16206 return 0; 16207 16208 /* Unwind what we've done if something failed in the setup */ 16209 err_vsis: 16210 set_bit(__I40E_DOWN, pf->state); 16211 i40e_clear_interrupt_scheme(pf); 16212 kfree(pf->vsi); 16213 err_switch_setup: 16214 i40e_reset_interrupt_capability(pf); 16215 timer_shutdown_sync(&pf->service_timer); 16216 err_mac_addr: 16217 err_configure_lan_hmc: 16218 (void)i40e_shutdown_lan_hmc(hw); 16219 err_init_lan_hmc: 16220 kfree(pf->qp_pile); 16221 err_sw_init: 16222 err_adminq_setup: 16223 err_pf_reset: 16224 iounmap(hw->hw_addr); 16225 err_ioremap: 16226 i40e_free_pf(pf); 16227 err_pf_alloc: 16228 pci_release_mem_regions(pdev); 16229 err_pci_reg: 16230 err_dma: 16231 pci_disable_device(pdev); 16232 return err; 16233 } 16234 16235 /** 16236 * i40e_remove - Device removal routine 16237 * @pdev: PCI device information struct 16238 * 16239 * i40e_remove is called by the PCI subsystem to alert the driver 16240 * that is should release a PCI device. This could be caused by a 16241 * Hot-Plug event, or because the driver is going to be removed from 16242 * memory. 16243 **/ 16244 static void i40e_remove(struct pci_dev *pdev) 16245 { 16246 struct i40e_pf *pf = pci_get_drvdata(pdev); 16247 struct i40e_hw *hw = &pf->hw; 16248 int ret_code; 16249 int i; 16250 16251 i40e_devlink_unregister(pf); 16252 16253 i40e_dbg_pf_exit(pf); 16254 16255 i40e_ptp_stop(pf); 16256 16257 /* Disable RSS in hw */ 16258 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16259 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16260 16261 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16262 * flags, once they are set, i40e_rebuild should not be called as 16263 * i40e_prep_for_reset always returns early. 16264 */ 16265 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16266 usleep_range(1000, 2000); 16267 set_bit(__I40E_IN_REMOVE, pf->state); 16268 16269 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16270 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16271 i40e_free_vfs(pf); 16272 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16273 } 16274 /* no more scheduling of any task */ 16275 set_bit(__I40E_SUSPENDED, pf->state); 16276 set_bit(__I40E_DOWN, pf->state); 16277 if (pf->service_timer.function) 16278 timer_shutdown_sync(&pf->service_timer); 16279 if (pf->service_task.func) 16280 cancel_work_sync(&pf->service_task); 16281 16282 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16283 struct i40e_vsi *vsi = pf->vsi[0]; 16284 16285 /* We know that we have allocated only one vsi for this PF, 16286 * it was just for registering netdevice, so the interface 16287 * could be visible in the 'ifconfig' output 16288 */ 16289 unregister_netdev(vsi->netdev); 16290 free_netdev(vsi->netdev); 16291 16292 goto unmap; 16293 } 16294 16295 /* Client close must be called explicitly here because the timer 16296 * has been stopped. 16297 */ 16298 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16299 16300 i40e_fdir_teardown(pf); 16301 16302 /* If there is a switch structure or any orphans, remove them. 16303 * This will leave only the PF's VSI remaining. 16304 */ 16305 for (i = 0; i < I40E_MAX_VEB; i++) { 16306 if (!pf->veb[i]) 16307 continue; 16308 16309 if (pf->veb[i]->uplink_seid == pf->mac_seid || 16310 pf->veb[i]->uplink_seid == 0) 16311 i40e_switch_branch_release(pf->veb[i]); 16312 } 16313 16314 /* Now we can shutdown the PF's VSIs, just before we kill 16315 * adminq and hmc. 16316 */ 16317 for (i = pf->num_alloc_vsi; i--;) 16318 if (pf->vsi[i]) { 16319 i40e_vsi_close(pf->vsi[i]); 16320 i40e_vsi_release(pf->vsi[i]); 16321 pf->vsi[i] = NULL; 16322 } 16323 16324 i40e_cloud_filter_exit(pf); 16325 16326 /* remove attached clients */ 16327 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16328 ret_code = i40e_lan_del_device(pf); 16329 if (ret_code) 16330 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16331 ret_code); 16332 } 16333 16334 /* shutdown and destroy the HMC */ 16335 if (hw->hmc.hmc_obj) { 16336 ret_code = i40e_shutdown_lan_hmc(hw); 16337 if (ret_code) 16338 dev_warn(&pdev->dev, 16339 "Failed to destroy the HMC resources: %d\n", 16340 ret_code); 16341 } 16342 16343 unmap: 16344 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16345 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16346 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16347 free_irq(pf->pdev->irq, pf); 16348 16349 /* shutdown the adminq */ 16350 i40e_shutdown_adminq(hw); 16351 16352 /* destroy the locks only once, here */ 16353 mutex_destroy(&hw->aq.arq_mutex); 16354 mutex_destroy(&hw->aq.asq_mutex); 16355 16356 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16357 rtnl_lock(); 16358 i40e_clear_interrupt_scheme(pf); 16359 for (i = 0; i < pf->num_alloc_vsi; i++) { 16360 if (pf->vsi[i]) { 16361 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16362 i40e_vsi_clear_rings(pf->vsi[i]); 16363 i40e_vsi_clear(pf->vsi[i]); 16364 pf->vsi[i] = NULL; 16365 } 16366 } 16367 rtnl_unlock(); 16368 16369 for (i = 0; i < I40E_MAX_VEB; i++) { 16370 kfree(pf->veb[i]); 16371 pf->veb[i] = NULL; 16372 } 16373 16374 kfree(pf->qp_pile); 16375 kfree(pf->vsi); 16376 16377 iounmap(hw->hw_addr); 16378 i40e_free_pf(pf); 16379 pci_release_mem_regions(pdev); 16380 16381 pci_disable_device(pdev); 16382 } 16383 16384 /** 16385 * i40e_pci_error_detected - warning that something funky happened in PCI land 16386 * @pdev: PCI device information struct 16387 * @error: the type of PCI error 16388 * 16389 * Called to warn that something happened and the error handling steps 16390 * are in progress. Allows the driver to quiesce things, be ready for 16391 * remediation. 16392 **/ 16393 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16394 pci_channel_state_t error) 16395 { 16396 struct i40e_pf *pf = pci_get_drvdata(pdev); 16397 16398 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16399 16400 if (!pf) { 16401 dev_info(&pdev->dev, 16402 "Cannot recover - error happened during device probe\n"); 16403 return PCI_ERS_RESULT_DISCONNECT; 16404 } 16405 16406 /* shutdown all operations */ 16407 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16408 i40e_prep_for_reset(pf); 16409 16410 /* Request a slot reset */ 16411 return PCI_ERS_RESULT_NEED_RESET; 16412 } 16413 16414 /** 16415 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16416 * @pdev: PCI device information struct 16417 * 16418 * Called to find if the driver can work with the device now that 16419 * the pci slot has been reset. If a basic connection seems good 16420 * (registers are readable and have sane content) then return a 16421 * happy little PCI_ERS_RESULT_xxx. 16422 **/ 16423 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16424 { 16425 struct i40e_pf *pf = pci_get_drvdata(pdev); 16426 pci_ers_result_t result; 16427 u32 reg; 16428 16429 dev_dbg(&pdev->dev, "%s\n", __func__); 16430 if (pci_enable_device_mem(pdev)) { 16431 dev_info(&pdev->dev, 16432 "Cannot re-enable PCI device after reset.\n"); 16433 result = PCI_ERS_RESULT_DISCONNECT; 16434 } else { 16435 pci_set_master(pdev); 16436 pci_restore_state(pdev); 16437 pci_save_state(pdev); 16438 pci_wake_from_d3(pdev, false); 16439 16440 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16441 if (reg == 0) 16442 result = PCI_ERS_RESULT_RECOVERED; 16443 else 16444 result = PCI_ERS_RESULT_DISCONNECT; 16445 } 16446 16447 return result; 16448 } 16449 16450 /** 16451 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16452 * @pdev: PCI device information struct 16453 */ 16454 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16455 { 16456 struct i40e_pf *pf = pci_get_drvdata(pdev); 16457 16458 i40e_prep_for_reset(pf); 16459 } 16460 16461 /** 16462 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16463 * @pdev: PCI device information struct 16464 */ 16465 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16466 { 16467 struct i40e_pf *pf = pci_get_drvdata(pdev); 16468 16469 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16470 return; 16471 16472 i40e_reset_and_rebuild(pf, false, false); 16473 #ifdef CONFIG_PCI_IOV 16474 i40e_restore_all_vfs_msi_state(pdev); 16475 #endif /* CONFIG_PCI_IOV */ 16476 } 16477 16478 /** 16479 * i40e_pci_error_resume - restart operations after PCI error recovery 16480 * @pdev: PCI device information struct 16481 * 16482 * Called to allow the driver to bring things back up after PCI error 16483 * and/or reset recovery has finished. 16484 **/ 16485 static void i40e_pci_error_resume(struct pci_dev *pdev) 16486 { 16487 struct i40e_pf *pf = pci_get_drvdata(pdev); 16488 16489 dev_dbg(&pdev->dev, "%s\n", __func__); 16490 if (test_bit(__I40E_SUSPENDED, pf->state)) 16491 return; 16492 16493 i40e_handle_reset_warning(pf, false); 16494 } 16495 16496 /** 16497 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16498 * using the mac_address_write admin q function 16499 * @pf: pointer to i40e_pf struct 16500 **/ 16501 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16502 { 16503 struct i40e_hw *hw = &pf->hw; 16504 u8 mac_addr[6]; 16505 u16 flags = 0; 16506 int ret; 16507 16508 /* Get current MAC address in case it's an LAA */ 16509 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 16510 ether_addr_copy(mac_addr, 16511 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 16512 } else { 16513 dev_err(&pf->pdev->dev, 16514 "Failed to retrieve MAC address; using default\n"); 16515 ether_addr_copy(mac_addr, hw->mac.addr); 16516 } 16517 16518 /* The FW expects the mac address write cmd to first be called with 16519 * one of these flags before calling it again with the multicast 16520 * enable flags. 16521 */ 16522 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16523 16524 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16525 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16526 16527 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16528 if (ret) { 16529 dev_err(&pf->pdev->dev, 16530 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16531 return; 16532 } 16533 16534 flags = I40E_AQC_MC_MAG_EN 16535 | I40E_AQC_WOL_PRESERVE_ON_PFR 16536 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16537 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16538 if (ret) 16539 dev_err(&pf->pdev->dev, 16540 "Failed to enable Multicast Magic Packet wake up\n"); 16541 } 16542 16543 /** 16544 * i40e_shutdown - PCI callback for shutting down 16545 * @pdev: PCI device information struct 16546 **/ 16547 static void i40e_shutdown(struct pci_dev *pdev) 16548 { 16549 struct i40e_pf *pf = pci_get_drvdata(pdev); 16550 struct i40e_hw *hw = &pf->hw; 16551 16552 set_bit(__I40E_SUSPENDED, pf->state); 16553 set_bit(__I40E_DOWN, pf->state); 16554 16555 del_timer_sync(&pf->service_timer); 16556 cancel_work_sync(&pf->service_task); 16557 i40e_cloud_filter_exit(pf); 16558 i40e_fdir_teardown(pf); 16559 16560 /* Client close must be called explicitly here because the timer 16561 * has been stopped. 16562 */ 16563 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16564 16565 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16566 pf->wol_en) 16567 i40e_enable_mc_magic_wake(pf); 16568 16569 i40e_prep_for_reset(pf); 16570 16571 wr32(hw, I40E_PFPM_APM, 16572 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16573 wr32(hw, I40E_PFPM_WUFC, 16574 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16575 16576 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16577 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16578 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16579 free_irq(pf->pdev->irq, pf); 16580 16581 /* Since we're going to destroy queues during the 16582 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16583 * whole section 16584 */ 16585 rtnl_lock(); 16586 i40e_clear_interrupt_scheme(pf); 16587 rtnl_unlock(); 16588 16589 if (system_state == SYSTEM_POWER_OFF) { 16590 pci_wake_from_d3(pdev, pf->wol_en); 16591 pci_set_power_state(pdev, PCI_D3hot); 16592 } 16593 } 16594 16595 /** 16596 * i40e_suspend - PM callback for moving to D3 16597 * @dev: generic device information structure 16598 **/ 16599 static int __maybe_unused i40e_suspend(struct device *dev) 16600 { 16601 struct i40e_pf *pf = dev_get_drvdata(dev); 16602 struct i40e_hw *hw = &pf->hw; 16603 16604 /* If we're already suspended, then there is nothing to do */ 16605 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16606 return 0; 16607 16608 set_bit(__I40E_DOWN, pf->state); 16609 16610 /* Ensure service task will not be running */ 16611 del_timer_sync(&pf->service_timer); 16612 cancel_work_sync(&pf->service_task); 16613 16614 /* Client close must be called explicitly here because the timer 16615 * has been stopped. 16616 */ 16617 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16618 16619 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16620 pf->wol_en) 16621 i40e_enable_mc_magic_wake(pf); 16622 16623 /* Since we're going to destroy queues during the 16624 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16625 * whole section 16626 */ 16627 rtnl_lock(); 16628 16629 i40e_prep_for_reset(pf); 16630 16631 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16632 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16633 16634 /* Clear the interrupt scheme and release our IRQs so that the system 16635 * can safely hibernate even when there are a large number of CPUs. 16636 * Otherwise hibernation might fail when mapping all the vectors back 16637 * to CPU0. 16638 */ 16639 i40e_clear_interrupt_scheme(pf); 16640 16641 rtnl_unlock(); 16642 16643 return 0; 16644 } 16645 16646 /** 16647 * i40e_resume - PM callback for waking up from D3 16648 * @dev: generic device information structure 16649 **/ 16650 static int __maybe_unused i40e_resume(struct device *dev) 16651 { 16652 struct i40e_pf *pf = dev_get_drvdata(dev); 16653 int err; 16654 16655 /* If we're not suspended, then there is nothing to do */ 16656 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16657 return 0; 16658 16659 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16660 * since we're going to be restoring queues 16661 */ 16662 rtnl_lock(); 16663 16664 /* We cleared the interrupt scheme when we suspended, so we need to 16665 * restore it now to resume device functionality. 16666 */ 16667 err = i40e_restore_interrupt_scheme(pf); 16668 if (err) { 16669 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16670 err); 16671 } 16672 16673 clear_bit(__I40E_DOWN, pf->state); 16674 i40e_reset_and_rebuild(pf, false, true); 16675 16676 rtnl_unlock(); 16677 16678 /* Clear suspended state last after everything is recovered */ 16679 clear_bit(__I40E_SUSPENDED, pf->state); 16680 16681 /* Restart the service task */ 16682 mod_timer(&pf->service_timer, 16683 round_jiffies(jiffies + pf->service_timer_period)); 16684 16685 return 0; 16686 } 16687 16688 static const struct pci_error_handlers i40e_err_handler = { 16689 .error_detected = i40e_pci_error_detected, 16690 .slot_reset = i40e_pci_error_slot_reset, 16691 .reset_prepare = i40e_pci_error_reset_prepare, 16692 .reset_done = i40e_pci_error_reset_done, 16693 .resume = i40e_pci_error_resume, 16694 }; 16695 16696 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16697 16698 static struct pci_driver i40e_driver = { 16699 .name = i40e_driver_name, 16700 .id_table = i40e_pci_tbl, 16701 .probe = i40e_probe, 16702 .remove = i40e_remove, 16703 .driver = { 16704 .pm = &i40e_pm_ops, 16705 }, 16706 .shutdown = i40e_shutdown, 16707 .err_handler = &i40e_err_handler, 16708 .sriov_configure = i40e_pci_sriov_configure, 16709 }; 16710 16711 /** 16712 * i40e_init_module - Driver registration routine 16713 * 16714 * i40e_init_module is the first routine called when the driver is 16715 * loaded. All it does is register with the PCI subsystem. 16716 **/ 16717 static int __init i40e_init_module(void) 16718 { 16719 int err; 16720 16721 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16722 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16723 16724 /* There is no need to throttle the number of active tasks because 16725 * each device limits its own task using a state bit for scheduling 16726 * the service task, and the device tasks do not interfere with each 16727 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16728 * since we need to be able to guarantee forward progress even under 16729 * memory pressure. 16730 */ 16731 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 16732 if (!i40e_wq) { 16733 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16734 return -ENOMEM; 16735 } 16736 16737 i40e_dbg_init(); 16738 err = pci_register_driver(&i40e_driver); 16739 if (err) { 16740 destroy_workqueue(i40e_wq); 16741 i40e_dbg_exit(); 16742 return err; 16743 } 16744 16745 return 0; 16746 } 16747 module_init(i40e_init_module); 16748 16749 /** 16750 * i40e_exit_module - Driver exit cleanup routine 16751 * 16752 * i40e_exit_module is called just before the driver is removed 16753 * from memory. 16754 **/ 16755 static void __exit i40e_exit_module(void) 16756 { 16757 pci_unregister_driver(&i40e_driver); 16758 destroy_workqueue(i40e_wq); 16759 ida_destroy(&i40e_client_ida); 16760 i40e_dbg_exit(); 16761 } 16762 module_exit(i40e_exit_module); 16763