1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <generated/utsrelease.h> 5 #include <linux/crash_dump.h> 6 #include <linux/net/intel/libie/pctype.h> 7 #include <linux/if_bridge.h> 8 #include <linux/if_macvlan.h> 9 #include <linux/module.h> 10 #include <net/pkt_cls.h> 11 #include <net/xdp_sock_drv.h> 12 13 /* Local includes */ 14 #include "i40e.h" 15 #include "i40e_devids.h" 16 #include "i40e_diag.h" 17 #include "i40e_lan_hmc.h" 18 #include "i40e_virtchnl_pf.h" 19 #include "i40e_xsk.h" 20 21 /* All i40e tracepoints are defined by the include below, which 22 * must be included exactly once across the whole kernel with 23 * CREATE_TRACE_POINTS defined 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "i40e_trace.h" 27 28 const char i40e_driver_name[] = "i40e"; 29 static const char i40e_driver_string[] = 30 "Intel(R) Ethernet Connection XL710 Network Driver"; 31 32 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 33 34 /* a bit of forward declarations */ 35 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 36 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 37 static int i40e_add_vsi(struct i40e_vsi *vsi); 38 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 39 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 40 static int i40e_setup_misc_vector(struct i40e_pf *pf); 41 static void i40e_determine_queue_usage(struct i40e_pf *pf); 42 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 43 static void i40e_prep_for_reset(struct i40e_pf *pf); 44 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 45 bool lock_acquired); 46 static int i40e_reset(struct i40e_pf *pf); 47 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 48 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 49 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 50 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 51 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 52 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 53 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 54 static int i40e_get_capabilities(struct i40e_pf *pf, 55 enum i40e_admin_queue_opc list_type); 56 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 57 58 /* i40e_pci_tbl - PCI Device ID Table 59 * 60 * Last entry must be all 0s 61 * 62 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 63 * Class, Class Mask, private data (not used) } 64 */ 65 static const struct pci_device_id i40e_pci_tbl[] = { 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 91 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 92 /* required last entry */ 93 {0, } 94 }; 95 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 96 97 #define I40E_MAX_VF_COUNT 128 98 static int debug = -1; 99 module_param(debug, uint, 0); 100 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 101 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_IMPORT_NS("LIBIE"); 104 MODULE_LICENSE("GPL v2"); 105 106 static struct workqueue_struct *i40e_wq; 107 108 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f, 109 struct net_device *netdev, int delta) 110 { 111 struct netdev_hw_addr_list *ha_list; 112 struct netdev_hw_addr *ha; 113 114 if (!f || !netdev) 115 return; 116 117 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr)) 118 ha_list = &netdev->uc; 119 else 120 ha_list = &netdev->mc; 121 122 netdev_hw_addr_list_for_each(ha, ha_list) { 123 if (ether_addr_equal(ha->addr, f->macaddr)) { 124 ha->refcount += delta; 125 if (ha->refcount <= 0) 126 ha->refcount = 1; 127 break; 128 } 129 } 130 } 131 132 /** 133 * i40e_hw_to_dev - get device pointer from the hardware structure 134 * @hw: pointer to the device HW structure 135 **/ 136 struct device *i40e_hw_to_dev(struct i40e_hw *hw) 137 { 138 struct i40e_pf *pf = i40e_hw_to_pf(hw); 139 140 return &pf->pdev->dev; 141 } 142 143 /** 144 * i40e_allocate_dma_mem - OS specific memory alloc for shared code 145 * @hw: pointer to the HW structure 146 * @mem: ptr to mem struct to fill out 147 * @size: size of memory requested 148 * @alignment: what to align the allocation to 149 **/ 150 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem, 151 u64 size, u32 alignment) 152 { 153 struct i40e_pf *pf = i40e_hw_to_pf(hw); 154 155 mem->size = ALIGN(size, alignment); 156 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 157 GFP_KERNEL); 158 if (!mem->va) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 /** 165 * i40e_free_dma_mem - OS specific memory free for shared code 166 * @hw: pointer to the HW structure 167 * @mem: ptr to mem struct to free 168 **/ 169 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem) 170 { 171 struct i40e_pf *pf = i40e_hw_to_pf(hw); 172 173 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 174 mem->va = NULL; 175 mem->pa = 0; 176 mem->size = 0; 177 178 return 0; 179 } 180 181 /** 182 * i40e_allocate_virt_mem - OS specific memory alloc for shared code 183 * @hw: pointer to the HW structure 184 * @mem: ptr to mem struct to fill out 185 * @size: size of memory requested 186 **/ 187 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem, 188 u32 size) 189 { 190 mem->size = size; 191 mem->va = kzalloc(size, GFP_KERNEL); 192 193 if (!mem->va) 194 return -ENOMEM; 195 196 return 0; 197 } 198 199 /** 200 * i40e_free_virt_mem - OS specific memory free for shared code 201 * @hw: pointer to the HW structure 202 * @mem: ptr to mem struct to free 203 **/ 204 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem) 205 { 206 /* it's ok to kfree a NULL pointer */ 207 kfree(mem->va); 208 mem->va = NULL; 209 mem->size = 0; 210 211 return 0; 212 } 213 214 /** 215 * i40e_get_lump - find a lump of free generic resource 216 * @pf: board private structure 217 * @pile: the pile of resource to search 218 * @needed: the number of items needed 219 * @id: an owner id to stick on the items assigned 220 * 221 * Returns the base item index of the lump, or negative for error 222 **/ 223 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 224 u16 needed, u16 id) 225 { 226 int ret = -ENOMEM; 227 int i, j; 228 229 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 230 dev_info(&pf->pdev->dev, 231 "param err: pile=%s needed=%d id=0x%04x\n", 232 pile ? "<valid>" : "<null>", needed, id); 233 return -EINVAL; 234 } 235 236 /* Allocate last queue in the pile for FDIR VSI queue 237 * so it doesn't fragment the qp_pile 238 */ 239 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) { 240 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) { 241 dev_err(&pf->pdev->dev, 242 "Cannot allocate queue %d for I40E_VSI_FDIR\n", 243 pile->num_entries - 1); 244 return -ENOMEM; 245 } 246 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT; 247 return pile->num_entries - 1; 248 } 249 250 i = 0; 251 while (i < pile->num_entries) { 252 /* skip already allocated entries */ 253 if (pile->list[i] & I40E_PILE_VALID_BIT) { 254 i++; 255 continue; 256 } 257 258 /* do we have enough in this lump? */ 259 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 260 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 261 break; 262 } 263 264 if (j == needed) { 265 /* there was enough, so assign it to the requestor */ 266 for (j = 0; j < needed; j++) 267 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 268 ret = i; 269 break; 270 } 271 272 /* not enough, so skip over it and continue looking */ 273 i += j; 274 } 275 276 return ret; 277 } 278 279 /** 280 * i40e_put_lump - return a lump of generic resource 281 * @pile: the pile of resource to search 282 * @index: the base item index 283 * @id: the owner id of the items assigned 284 * 285 * Returns the count of items in the lump 286 **/ 287 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 288 { 289 int valid_id = (id | I40E_PILE_VALID_BIT); 290 int count = 0; 291 u16 i; 292 293 if (!pile || index >= pile->num_entries) 294 return -EINVAL; 295 296 for (i = index; 297 i < pile->num_entries && pile->list[i] == valid_id; 298 i++) { 299 pile->list[i] = 0; 300 count++; 301 } 302 303 304 return count; 305 } 306 307 /** 308 * i40e_find_vsi_from_id - searches for the vsi with the given id 309 * @pf: the pf structure to search for the vsi 310 * @id: id of the vsi it is searching for 311 **/ 312 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 313 { 314 struct i40e_vsi *vsi; 315 int i; 316 317 i40e_pf_for_each_vsi(pf, i, vsi) 318 if (vsi->id == id) 319 return vsi; 320 321 return NULL; 322 } 323 324 /** 325 * i40e_service_event_schedule - Schedule the service task to wake up 326 * @pf: board private structure 327 * 328 * If not already scheduled, this puts the task into the work queue 329 **/ 330 void i40e_service_event_schedule(struct i40e_pf *pf) 331 { 332 if ((!test_bit(__I40E_DOWN, pf->state) && 333 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 334 test_bit(__I40E_RECOVERY_MODE, pf->state)) 335 queue_work(i40e_wq, &pf->service_task); 336 } 337 338 /** 339 * i40e_tx_timeout - Respond to a Tx Hang 340 * @netdev: network interface device structure 341 * @txqueue: queue number timing out 342 * 343 * If any port has noticed a Tx timeout, it is likely that the whole 344 * device is munged, not just the one netdev port, so go for the full 345 * reset. 346 **/ 347 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 348 { 349 struct i40e_netdev_priv *np = netdev_priv(netdev); 350 struct i40e_vsi *vsi = np->vsi; 351 struct i40e_pf *pf = vsi->back; 352 struct i40e_ring *tx_ring = NULL; 353 unsigned int i; 354 u32 head, val; 355 356 pf->tx_timeout_count++; 357 358 /* with txqueue index, find the tx_ring struct */ 359 for (i = 0; i < vsi->num_queue_pairs; i++) { 360 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 361 if (txqueue == 362 vsi->tx_rings[i]->queue_index) { 363 tx_ring = vsi->tx_rings[i]; 364 break; 365 } 366 } 367 } 368 369 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 370 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 371 else if (time_before(jiffies, 372 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 373 return; /* don't do any new action before the next timeout */ 374 375 /* don't kick off another recovery if one is already pending */ 376 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 377 return; 378 379 if (tx_ring) { 380 head = i40e_get_head(tx_ring); 381 /* Read interrupt register */ 382 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 383 val = rd32(&pf->hw, 384 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 385 tx_ring->vsi->base_vector - 1)); 386 else 387 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 388 389 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 390 vsi->seid, txqueue, tx_ring->next_to_clean, 391 head, tx_ring->next_to_use, 392 readl(tx_ring->tail), val); 393 } 394 395 pf->tx_timeout_last_recovery = jiffies; 396 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 397 pf->tx_timeout_recovery_level, txqueue); 398 399 switch (pf->tx_timeout_recovery_level) { 400 case 1: 401 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 402 break; 403 case 2: 404 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 405 break; 406 case 3: 407 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 408 break; 409 default: 410 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n"); 411 set_bit(__I40E_DOWN_REQUESTED, pf->state); 412 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state); 413 break; 414 } 415 416 i40e_service_event_schedule(pf); 417 pf->tx_timeout_recovery_level++; 418 } 419 420 /** 421 * i40e_get_vsi_stats_struct - Get System Network Statistics 422 * @vsi: the VSI we care about 423 * 424 * Returns the address of the device statistics structure. 425 * The statistics are actually updated from the service task. 426 **/ 427 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 428 { 429 return &vsi->net_stats; 430 } 431 432 /** 433 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 434 * @ring: Tx ring to get statistics from 435 * @stats: statistics entry to be updated 436 **/ 437 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 438 struct rtnl_link_stats64 *stats) 439 { 440 u64 bytes, packets; 441 unsigned int start; 442 443 do { 444 start = u64_stats_fetch_begin(&ring->syncp); 445 packets = ring->stats.packets; 446 bytes = ring->stats.bytes; 447 } while (u64_stats_fetch_retry(&ring->syncp, start)); 448 449 stats->tx_packets += packets; 450 stats->tx_bytes += bytes; 451 } 452 453 /** 454 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 455 * @netdev: network interface device structure 456 * @stats: data structure to store statistics 457 * 458 * Returns the address of the device statistics structure. 459 * The statistics are actually updated from the service task. 460 **/ 461 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 462 struct rtnl_link_stats64 *stats) 463 { 464 struct i40e_netdev_priv *np = netdev_priv(netdev); 465 struct i40e_vsi *vsi = np->vsi; 466 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 467 struct i40e_ring *ring; 468 int i; 469 470 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 471 return; 472 473 if (!vsi->tx_rings) 474 return; 475 476 rcu_read_lock(); 477 for (i = 0; i < vsi->num_queue_pairs; i++) { 478 u64 bytes, packets; 479 unsigned int start; 480 481 ring = READ_ONCE(vsi->tx_rings[i]); 482 if (!ring) 483 continue; 484 i40e_get_netdev_stats_struct_tx(ring, stats); 485 486 if (i40e_enabled_xdp_vsi(vsi)) { 487 ring = READ_ONCE(vsi->xdp_rings[i]); 488 if (!ring) 489 continue; 490 i40e_get_netdev_stats_struct_tx(ring, stats); 491 } 492 493 ring = READ_ONCE(vsi->rx_rings[i]); 494 if (!ring) 495 continue; 496 do { 497 start = u64_stats_fetch_begin(&ring->syncp); 498 packets = ring->stats.packets; 499 bytes = ring->stats.bytes; 500 } while (u64_stats_fetch_retry(&ring->syncp, start)); 501 502 stats->rx_packets += packets; 503 stats->rx_bytes += bytes; 504 505 } 506 rcu_read_unlock(); 507 508 /* following stats updated by i40e_watchdog_subtask() */ 509 stats->multicast = vsi_stats->multicast; 510 stats->tx_errors = vsi_stats->tx_errors; 511 stats->tx_dropped = vsi_stats->tx_dropped; 512 stats->rx_errors = vsi_stats->rx_errors; 513 stats->rx_dropped = vsi_stats->rx_dropped; 514 stats->rx_missed_errors = vsi_stats->rx_missed_errors; 515 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 516 stats->rx_length_errors = vsi_stats->rx_length_errors; 517 } 518 519 /** 520 * i40e_vsi_reset_stats - Resets all stats of the given vsi 521 * @vsi: the VSI to have its stats reset 522 **/ 523 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 524 { 525 struct rtnl_link_stats64 *ns; 526 int i; 527 528 if (!vsi) 529 return; 530 531 ns = i40e_get_vsi_stats_struct(vsi); 532 memset(ns, 0, sizeof(*ns)); 533 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 534 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 535 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 536 if (vsi->rx_rings && vsi->rx_rings[0]) { 537 for (i = 0; i < vsi->num_queue_pairs; i++) { 538 memset(&vsi->rx_rings[i]->stats, 0, 539 sizeof(vsi->rx_rings[i]->stats)); 540 memset(&vsi->rx_rings[i]->rx_stats, 0, 541 sizeof(vsi->rx_rings[i]->rx_stats)); 542 memset(&vsi->tx_rings[i]->stats, 0, 543 sizeof(vsi->tx_rings[i]->stats)); 544 memset(&vsi->tx_rings[i]->tx_stats, 0, 545 sizeof(vsi->tx_rings[i]->tx_stats)); 546 } 547 } 548 vsi->stat_offsets_loaded = false; 549 } 550 551 /** 552 * i40e_pf_reset_stats - Reset all of the stats for the given PF 553 * @pf: the PF to be reset 554 **/ 555 void i40e_pf_reset_stats(struct i40e_pf *pf) 556 { 557 struct i40e_veb *veb; 558 int i; 559 560 memset(&pf->stats, 0, sizeof(pf->stats)); 561 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 562 pf->stat_offsets_loaded = false; 563 564 i40e_pf_for_each_veb(pf, i, veb) { 565 memset(&veb->stats, 0, sizeof(veb->stats)); 566 memset(&veb->stats_offsets, 0, sizeof(veb->stats_offsets)); 567 memset(&veb->tc_stats, 0, sizeof(veb->tc_stats)); 568 memset(&veb->tc_stats_offsets, 0, sizeof(veb->tc_stats_offsets)); 569 veb->stat_offsets_loaded = false; 570 } 571 pf->hw_csum_rx_error = 0; 572 } 573 574 /** 575 * i40e_compute_pci_to_hw_id - compute index form PCI function. 576 * @vsi: ptr to the VSI to read from. 577 * @hw: ptr to the hardware info. 578 **/ 579 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw) 580 { 581 int pf_count = i40e_get_pf_count(hw); 582 583 if (vsi->type == I40E_VSI_SRIOV) 584 return (hw->port * BIT(7)) / pf_count + vsi->vf_id; 585 586 return hw->port + BIT(7); 587 } 588 589 /** 590 * i40e_stat_update64 - read and update a 64 bit stat from the chip. 591 * @hw: ptr to the hardware info. 592 * @hireg: the high 32 bit reg to read. 593 * @loreg: the low 32 bit reg to read. 594 * @offset_loaded: has the initial offset been loaded yet. 595 * @offset: ptr to current offset value. 596 * @stat: ptr to the stat. 597 * 598 * Since the device stats are not reset at PFReset, they will not 599 * be zeroed when the driver starts. We'll save the first values read 600 * and use them as offsets to be subtracted from the raw values in order 601 * to report stats that count from zero. 602 **/ 603 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg, 604 bool offset_loaded, u64 *offset, u64 *stat) 605 { 606 u64 new_data; 607 608 new_data = rd64(hw, loreg); 609 610 if (!offset_loaded || new_data < *offset) 611 *offset = new_data; 612 *stat = new_data - *offset; 613 } 614 615 /** 616 * i40e_stat_update48 - read and update a 48 bit stat from the chip 617 * @hw: ptr to the hardware info 618 * @hireg: the high 32 bit reg to read 619 * @loreg: the low 32 bit reg to read 620 * @offset_loaded: has the initial offset been loaded yet 621 * @offset: ptr to current offset value 622 * @stat: ptr to the stat 623 * 624 * Since the device stats are not reset at PFReset, they likely will not 625 * be zeroed when the driver starts. We'll save the first values read 626 * and use them as offsets to be subtracted from the raw values in order 627 * to report stats that count from zero. In the process, we also manage 628 * the potential roll-over. 629 **/ 630 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 631 bool offset_loaded, u64 *offset, u64 *stat) 632 { 633 u64 new_data; 634 635 if (hw->device_id == I40E_DEV_ID_QEMU) { 636 new_data = rd32(hw, loreg); 637 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 638 } else { 639 new_data = rd64(hw, loreg); 640 } 641 if (!offset_loaded) 642 *offset = new_data; 643 if (likely(new_data >= *offset)) 644 *stat = new_data - *offset; 645 else 646 *stat = (new_data + BIT_ULL(48)) - *offset; 647 *stat &= 0xFFFFFFFFFFFFULL; 648 } 649 650 /** 651 * i40e_stat_update32 - read and update a 32 bit stat from the chip 652 * @hw: ptr to the hardware info 653 * @reg: the hw reg to read 654 * @offset_loaded: has the initial offset been loaded yet 655 * @offset: ptr to current offset value 656 * @stat: ptr to the stat 657 **/ 658 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 659 bool offset_loaded, u64 *offset, u64 *stat) 660 { 661 u32 new_data; 662 663 new_data = rd32(hw, reg); 664 if (!offset_loaded) 665 *offset = new_data; 666 if (likely(new_data >= *offset)) 667 *stat = (u32)(new_data - *offset); 668 else 669 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 670 } 671 672 /** 673 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 674 * @hw: ptr to the hardware info 675 * @reg: the hw reg to read and clear 676 * @stat: ptr to the stat 677 **/ 678 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 679 { 680 u32 new_data = rd32(hw, reg); 681 682 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 683 *stat += new_data; 684 } 685 686 /** 687 * i40e_stats_update_rx_discards - update rx_discards. 688 * @vsi: ptr to the VSI to be updated. 689 * @hw: ptr to the hardware info. 690 * @stat_idx: VSI's stat_counter_idx. 691 * @offset_loaded: ptr to the VSI's stat_offsets_loaded. 692 * @stat_offset: ptr to stat_offset to store first read of specific register. 693 * @stat: ptr to VSI's stat to be updated. 694 **/ 695 static void 696 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw, 697 int stat_idx, bool offset_loaded, 698 struct i40e_eth_stats *stat_offset, 699 struct i40e_eth_stats *stat) 700 { 701 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded, 702 &stat_offset->rx_discards, &stat->rx_discards); 703 i40e_stat_update64(hw, 704 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)), 705 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)), 706 offset_loaded, &stat_offset->rx_discards_other, 707 &stat->rx_discards_other); 708 } 709 710 /** 711 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 712 * @vsi: the VSI to be updated 713 **/ 714 void i40e_update_eth_stats(struct i40e_vsi *vsi) 715 { 716 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 717 struct i40e_pf *pf = vsi->back; 718 struct i40e_hw *hw = &pf->hw; 719 struct i40e_eth_stats *oes; 720 struct i40e_eth_stats *es; /* device's eth stats */ 721 722 es = &vsi->eth_stats; 723 oes = &vsi->eth_stats_offsets; 724 725 /* Gather up the stats that the hw collects */ 726 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 727 vsi->stat_offsets_loaded, 728 &oes->tx_errors, &es->tx_errors); 729 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 730 vsi->stat_offsets_loaded, 731 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 732 733 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 734 I40E_GLV_GORCL(stat_idx), 735 vsi->stat_offsets_loaded, 736 &oes->rx_bytes, &es->rx_bytes); 737 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 738 I40E_GLV_UPRCL(stat_idx), 739 vsi->stat_offsets_loaded, 740 &oes->rx_unicast, &es->rx_unicast); 741 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 742 I40E_GLV_MPRCL(stat_idx), 743 vsi->stat_offsets_loaded, 744 &oes->rx_multicast, &es->rx_multicast); 745 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 746 I40E_GLV_BPRCL(stat_idx), 747 vsi->stat_offsets_loaded, 748 &oes->rx_broadcast, &es->rx_broadcast); 749 750 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 751 I40E_GLV_GOTCL(stat_idx), 752 vsi->stat_offsets_loaded, 753 &oes->tx_bytes, &es->tx_bytes); 754 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 755 I40E_GLV_UPTCL(stat_idx), 756 vsi->stat_offsets_loaded, 757 &oes->tx_unicast, &es->tx_unicast); 758 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 759 I40E_GLV_MPTCL(stat_idx), 760 vsi->stat_offsets_loaded, 761 &oes->tx_multicast, &es->tx_multicast); 762 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 763 I40E_GLV_BPTCL(stat_idx), 764 vsi->stat_offsets_loaded, 765 &oes->tx_broadcast, &es->tx_broadcast); 766 767 i40e_stats_update_rx_discards(vsi, hw, stat_idx, 768 vsi->stat_offsets_loaded, oes, es); 769 770 vsi->stat_offsets_loaded = true; 771 } 772 773 /** 774 * i40e_update_veb_stats - Update Switch component statistics 775 * @veb: the VEB being updated 776 **/ 777 void i40e_update_veb_stats(struct i40e_veb *veb) 778 { 779 struct i40e_pf *pf = veb->pf; 780 struct i40e_hw *hw = &pf->hw; 781 struct i40e_eth_stats *oes; 782 struct i40e_eth_stats *es; /* device's eth stats */ 783 struct i40e_veb_tc_stats *veb_oes; 784 struct i40e_veb_tc_stats *veb_es; 785 int i, idx = 0; 786 787 idx = veb->stats_idx; 788 es = &veb->stats; 789 oes = &veb->stats_offsets; 790 veb_es = &veb->tc_stats; 791 veb_oes = &veb->tc_stats_offsets; 792 793 /* Gather up the stats that the hw collects */ 794 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 795 veb->stat_offsets_loaded, 796 &oes->tx_discards, &es->tx_discards); 797 if (hw->revision_id > 0) 798 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 799 veb->stat_offsets_loaded, 800 &oes->rx_unknown_protocol, 801 &es->rx_unknown_protocol); 802 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 803 veb->stat_offsets_loaded, 804 &oes->rx_bytes, &es->rx_bytes); 805 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 806 veb->stat_offsets_loaded, 807 &oes->rx_unicast, &es->rx_unicast); 808 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 809 veb->stat_offsets_loaded, 810 &oes->rx_multicast, &es->rx_multicast); 811 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 812 veb->stat_offsets_loaded, 813 &oes->rx_broadcast, &es->rx_broadcast); 814 815 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 816 veb->stat_offsets_loaded, 817 &oes->tx_bytes, &es->tx_bytes); 818 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 819 veb->stat_offsets_loaded, 820 &oes->tx_unicast, &es->tx_unicast); 821 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 822 veb->stat_offsets_loaded, 823 &oes->tx_multicast, &es->tx_multicast); 824 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 825 veb->stat_offsets_loaded, 826 &oes->tx_broadcast, &es->tx_broadcast); 827 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 828 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 829 I40E_GLVEBTC_RPCL(i, idx), 830 veb->stat_offsets_loaded, 831 &veb_oes->tc_rx_packets[i], 832 &veb_es->tc_rx_packets[i]); 833 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 834 I40E_GLVEBTC_RBCL(i, idx), 835 veb->stat_offsets_loaded, 836 &veb_oes->tc_rx_bytes[i], 837 &veb_es->tc_rx_bytes[i]); 838 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 839 I40E_GLVEBTC_TPCL(i, idx), 840 veb->stat_offsets_loaded, 841 &veb_oes->tc_tx_packets[i], 842 &veb_es->tc_tx_packets[i]); 843 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 844 I40E_GLVEBTC_TBCL(i, idx), 845 veb->stat_offsets_loaded, 846 &veb_oes->tc_tx_bytes[i], 847 &veb_es->tc_tx_bytes[i]); 848 } 849 veb->stat_offsets_loaded = true; 850 } 851 852 /** 853 * i40e_update_vsi_stats - Update the vsi statistics counters. 854 * @vsi: the VSI to be updated 855 * 856 * There are a few instances where we store the same stat in a 857 * couple of different structs. This is partly because we have 858 * the netdev stats that need to be filled out, which is slightly 859 * different from the "eth_stats" defined by the chip and used in 860 * VF communications. We sort it out here. 861 **/ 862 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 863 { 864 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy; 865 struct i40e_pf *pf = vsi->back; 866 struct rtnl_link_stats64 *ons; 867 struct rtnl_link_stats64 *ns; /* netdev stats */ 868 struct i40e_eth_stats *oes; 869 struct i40e_eth_stats *es; /* device's eth stats */ 870 u64 tx_restart, tx_busy; 871 struct i40e_ring *p; 872 u64 bytes, packets; 873 unsigned int start; 874 u64 tx_linearize; 875 u64 tx_force_wb; 876 u64 tx_stopped; 877 u64 rx_p, rx_b; 878 u64 tx_p, tx_b; 879 u16 q; 880 881 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 882 test_bit(__I40E_CONFIG_BUSY, pf->state)) 883 return; 884 885 ns = i40e_get_vsi_stats_struct(vsi); 886 ons = &vsi->net_stats_offsets; 887 es = &vsi->eth_stats; 888 oes = &vsi->eth_stats_offsets; 889 890 /* Gather up the netdev and vsi stats that the driver collects 891 * on the fly during packet processing 892 */ 893 rx_b = rx_p = 0; 894 tx_b = tx_p = 0; 895 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 896 tx_stopped = 0; 897 rx_page = 0; 898 rx_buf = 0; 899 rx_reuse = 0; 900 rx_alloc = 0; 901 rx_waive = 0; 902 rx_busy = 0; 903 rcu_read_lock(); 904 for (q = 0; q < vsi->num_queue_pairs; q++) { 905 /* locate Tx ring */ 906 p = READ_ONCE(vsi->tx_rings[q]); 907 if (!p) 908 continue; 909 910 do { 911 start = u64_stats_fetch_begin(&p->syncp); 912 packets = p->stats.packets; 913 bytes = p->stats.bytes; 914 } while (u64_stats_fetch_retry(&p->syncp, start)); 915 tx_b += bytes; 916 tx_p += packets; 917 tx_restart += p->tx_stats.restart_queue; 918 tx_busy += p->tx_stats.tx_busy; 919 tx_linearize += p->tx_stats.tx_linearize; 920 tx_force_wb += p->tx_stats.tx_force_wb; 921 tx_stopped += p->tx_stats.tx_stopped; 922 923 /* locate Rx ring */ 924 p = READ_ONCE(vsi->rx_rings[q]); 925 if (!p) 926 continue; 927 928 do { 929 start = u64_stats_fetch_begin(&p->syncp); 930 packets = p->stats.packets; 931 bytes = p->stats.bytes; 932 } while (u64_stats_fetch_retry(&p->syncp, start)); 933 rx_b += bytes; 934 rx_p += packets; 935 rx_buf += p->rx_stats.alloc_buff_failed; 936 rx_page += p->rx_stats.alloc_page_failed; 937 rx_reuse += p->rx_stats.page_reuse_count; 938 rx_alloc += p->rx_stats.page_alloc_count; 939 rx_waive += p->rx_stats.page_waive_count; 940 rx_busy += p->rx_stats.page_busy_count; 941 942 if (i40e_enabled_xdp_vsi(vsi)) { 943 /* locate XDP ring */ 944 p = READ_ONCE(vsi->xdp_rings[q]); 945 if (!p) 946 continue; 947 948 do { 949 start = u64_stats_fetch_begin(&p->syncp); 950 packets = p->stats.packets; 951 bytes = p->stats.bytes; 952 } while (u64_stats_fetch_retry(&p->syncp, start)); 953 tx_b += bytes; 954 tx_p += packets; 955 tx_restart += p->tx_stats.restart_queue; 956 tx_busy += p->tx_stats.tx_busy; 957 tx_linearize += p->tx_stats.tx_linearize; 958 tx_force_wb += p->tx_stats.tx_force_wb; 959 } 960 } 961 rcu_read_unlock(); 962 vsi->tx_restart = tx_restart; 963 vsi->tx_busy = tx_busy; 964 vsi->tx_linearize = tx_linearize; 965 vsi->tx_force_wb = tx_force_wb; 966 vsi->tx_stopped = tx_stopped; 967 vsi->rx_page_failed = rx_page; 968 vsi->rx_buf_failed = rx_buf; 969 vsi->rx_page_reuse = rx_reuse; 970 vsi->rx_page_alloc = rx_alloc; 971 vsi->rx_page_waive = rx_waive; 972 vsi->rx_page_busy = rx_busy; 973 974 ns->rx_packets = rx_p; 975 ns->rx_bytes = rx_b; 976 ns->tx_packets = tx_p; 977 ns->tx_bytes = tx_b; 978 979 /* update netdev stats from eth stats */ 980 i40e_update_eth_stats(vsi); 981 ons->tx_errors = oes->tx_errors; 982 ns->tx_errors = es->tx_errors; 983 ons->multicast = oes->rx_multicast; 984 ns->multicast = es->rx_multicast; 985 ons->rx_dropped = oes->rx_discards_other; 986 ns->rx_dropped = es->rx_discards_other; 987 ons->rx_missed_errors = oes->rx_discards; 988 ns->rx_missed_errors = es->rx_discards; 989 ons->tx_dropped = oes->tx_discards; 990 ns->tx_dropped = es->tx_discards; 991 992 /* pull in a couple PF stats if this is the main vsi */ 993 if (vsi->type == I40E_VSI_MAIN) { 994 ns->rx_crc_errors = pf->stats.crc_errors; 995 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 996 ns->rx_length_errors = pf->stats.rx_length_errors; 997 } 998 } 999 1000 /** 1001 * i40e_update_pf_stats - Update the PF statistics counters. 1002 * @pf: the PF to be updated 1003 **/ 1004 static void i40e_update_pf_stats(struct i40e_pf *pf) 1005 { 1006 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 1007 struct i40e_hw_port_stats *nsd = &pf->stats; 1008 struct i40e_hw *hw = &pf->hw; 1009 u32 val; 1010 int i; 1011 1012 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 1013 I40E_GLPRT_GORCL(hw->port), 1014 pf->stat_offsets_loaded, 1015 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 1016 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 1017 I40E_GLPRT_GOTCL(hw->port), 1018 pf->stat_offsets_loaded, 1019 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 1020 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->eth.rx_discards, 1023 &nsd->eth.rx_discards); 1024 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 1025 I40E_GLPRT_UPRCL(hw->port), 1026 pf->stat_offsets_loaded, 1027 &osd->eth.rx_unicast, 1028 &nsd->eth.rx_unicast); 1029 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 1030 I40E_GLPRT_MPRCL(hw->port), 1031 pf->stat_offsets_loaded, 1032 &osd->eth.rx_multicast, 1033 &nsd->eth.rx_multicast); 1034 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 1035 I40E_GLPRT_BPRCL(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->eth.rx_broadcast, 1038 &nsd->eth.rx_broadcast); 1039 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 1040 I40E_GLPRT_UPTCL(hw->port), 1041 pf->stat_offsets_loaded, 1042 &osd->eth.tx_unicast, 1043 &nsd->eth.tx_unicast); 1044 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 1045 I40E_GLPRT_MPTCL(hw->port), 1046 pf->stat_offsets_loaded, 1047 &osd->eth.tx_multicast, 1048 &nsd->eth.tx_multicast); 1049 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 1050 I40E_GLPRT_BPTCL(hw->port), 1051 pf->stat_offsets_loaded, 1052 &osd->eth.tx_broadcast, 1053 &nsd->eth.tx_broadcast); 1054 1055 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 1056 pf->stat_offsets_loaded, 1057 &osd->tx_dropped_link_down, 1058 &nsd->tx_dropped_link_down); 1059 1060 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 1061 pf->stat_offsets_loaded, 1062 &osd->crc_errors, &nsd->crc_errors); 1063 1064 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 1065 pf->stat_offsets_loaded, 1066 &osd->illegal_bytes, &nsd->illegal_bytes); 1067 1068 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 1069 pf->stat_offsets_loaded, 1070 &osd->mac_local_faults, 1071 &nsd->mac_local_faults); 1072 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 1073 pf->stat_offsets_loaded, 1074 &osd->mac_remote_faults, 1075 &nsd->mac_remote_faults); 1076 1077 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 1078 pf->stat_offsets_loaded, 1079 &osd->rx_length_errors, 1080 &nsd->rx_length_errors); 1081 1082 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 1083 pf->stat_offsets_loaded, 1084 &osd->link_xon_rx, &nsd->link_xon_rx); 1085 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 1086 pf->stat_offsets_loaded, 1087 &osd->link_xon_tx, &nsd->link_xon_tx); 1088 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 1089 pf->stat_offsets_loaded, 1090 &osd->link_xoff_rx, &nsd->link_xoff_rx); 1091 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 1092 pf->stat_offsets_loaded, 1093 &osd->link_xoff_tx, &nsd->link_xoff_tx); 1094 1095 for (i = 0; i < 8; i++) { 1096 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 1097 pf->stat_offsets_loaded, 1098 &osd->priority_xoff_rx[i], 1099 &nsd->priority_xoff_rx[i]); 1100 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 1101 pf->stat_offsets_loaded, 1102 &osd->priority_xon_rx[i], 1103 &nsd->priority_xon_rx[i]); 1104 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 1105 pf->stat_offsets_loaded, 1106 &osd->priority_xon_tx[i], 1107 &nsd->priority_xon_tx[i]); 1108 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 1109 pf->stat_offsets_loaded, 1110 &osd->priority_xoff_tx[i], 1111 &nsd->priority_xoff_tx[i]); 1112 i40e_stat_update32(hw, 1113 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 1114 pf->stat_offsets_loaded, 1115 &osd->priority_xon_2_xoff[i], 1116 &nsd->priority_xon_2_xoff[i]); 1117 } 1118 1119 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 1120 I40E_GLPRT_PRC64L(hw->port), 1121 pf->stat_offsets_loaded, 1122 &osd->rx_size_64, &nsd->rx_size_64); 1123 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 1124 I40E_GLPRT_PRC127L(hw->port), 1125 pf->stat_offsets_loaded, 1126 &osd->rx_size_127, &nsd->rx_size_127); 1127 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1128 I40E_GLPRT_PRC255L(hw->port), 1129 pf->stat_offsets_loaded, 1130 &osd->rx_size_255, &nsd->rx_size_255); 1131 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1132 I40E_GLPRT_PRC511L(hw->port), 1133 pf->stat_offsets_loaded, 1134 &osd->rx_size_511, &nsd->rx_size_511); 1135 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1136 I40E_GLPRT_PRC1023L(hw->port), 1137 pf->stat_offsets_loaded, 1138 &osd->rx_size_1023, &nsd->rx_size_1023); 1139 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1140 I40E_GLPRT_PRC1522L(hw->port), 1141 pf->stat_offsets_loaded, 1142 &osd->rx_size_1522, &nsd->rx_size_1522); 1143 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1144 I40E_GLPRT_PRC9522L(hw->port), 1145 pf->stat_offsets_loaded, 1146 &osd->rx_size_big, &nsd->rx_size_big); 1147 1148 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1149 I40E_GLPRT_PTC64L(hw->port), 1150 pf->stat_offsets_loaded, 1151 &osd->tx_size_64, &nsd->tx_size_64); 1152 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1153 I40E_GLPRT_PTC127L(hw->port), 1154 pf->stat_offsets_loaded, 1155 &osd->tx_size_127, &nsd->tx_size_127); 1156 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1157 I40E_GLPRT_PTC255L(hw->port), 1158 pf->stat_offsets_loaded, 1159 &osd->tx_size_255, &nsd->tx_size_255); 1160 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1161 I40E_GLPRT_PTC511L(hw->port), 1162 pf->stat_offsets_loaded, 1163 &osd->tx_size_511, &nsd->tx_size_511); 1164 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1165 I40E_GLPRT_PTC1023L(hw->port), 1166 pf->stat_offsets_loaded, 1167 &osd->tx_size_1023, &nsd->tx_size_1023); 1168 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1169 I40E_GLPRT_PTC1522L(hw->port), 1170 pf->stat_offsets_loaded, 1171 &osd->tx_size_1522, &nsd->tx_size_1522); 1172 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1173 I40E_GLPRT_PTC9522L(hw->port), 1174 pf->stat_offsets_loaded, 1175 &osd->tx_size_big, &nsd->tx_size_big); 1176 1177 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1178 pf->stat_offsets_loaded, 1179 &osd->rx_undersize, &nsd->rx_undersize); 1180 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1181 pf->stat_offsets_loaded, 1182 &osd->rx_fragments, &nsd->rx_fragments); 1183 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1184 pf->stat_offsets_loaded, 1185 &osd->rx_oversize, &nsd->rx_oversize); 1186 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1187 pf->stat_offsets_loaded, 1188 &osd->rx_jabber, &nsd->rx_jabber); 1189 1190 /* FDIR stats */ 1191 i40e_stat_update_and_clear32(hw, 1192 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1193 &nsd->fd_atr_match); 1194 i40e_stat_update_and_clear32(hw, 1195 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1196 &nsd->fd_sb_match); 1197 i40e_stat_update_and_clear32(hw, 1198 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1199 &nsd->fd_atr_tunnel_match); 1200 1201 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1202 nsd->tx_lpi_status = 1203 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val); 1204 nsd->rx_lpi_status = 1205 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val); 1206 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1207 pf->stat_offsets_loaded, 1208 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1209 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1210 pf->stat_offsets_loaded, 1211 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1212 1213 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 1214 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1215 nsd->fd_sb_status = true; 1216 else 1217 nsd->fd_sb_status = false; 1218 1219 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 1220 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1221 nsd->fd_atr_status = true; 1222 else 1223 nsd->fd_atr_status = false; 1224 1225 pf->stat_offsets_loaded = true; 1226 } 1227 1228 /** 1229 * i40e_update_stats - Update the various statistics counters. 1230 * @vsi: the VSI to be updated 1231 * 1232 * Update the various stats for this VSI and its related entities. 1233 **/ 1234 void i40e_update_stats(struct i40e_vsi *vsi) 1235 { 1236 struct i40e_pf *pf = vsi->back; 1237 1238 if (vsi->type == I40E_VSI_MAIN) 1239 i40e_update_pf_stats(pf); 1240 1241 i40e_update_vsi_stats(vsi); 1242 } 1243 1244 /** 1245 * i40e_count_filters - counts VSI mac filters 1246 * @vsi: the VSI to be searched 1247 * 1248 * Returns count of mac filters 1249 **/ 1250 int i40e_count_filters(struct i40e_vsi *vsi) 1251 { 1252 struct i40e_mac_filter *f; 1253 struct hlist_node *h; 1254 int bkt; 1255 int cnt = 0; 1256 1257 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1258 if (f->state == I40E_FILTER_NEW || 1259 f->state == I40E_FILTER_NEW_SYNC || 1260 f->state == I40E_FILTER_ACTIVE) 1261 ++cnt; 1262 } 1263 1264 return cnt; 1265 } 1266 1267 /** 1268 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1269 * @vsi: the VSI to be searched 1270 * @macaddr: the MAC address 1271 * @vlan: the vlan 1272 * 1273 * Returns ptr to the filter object or NULL 1274 **/ 1275 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1276 const u8 *macaddr, s16 vlan) 1277 { 1278 struct i40e_mac_filter *f; 1279 u64 key; 1280 1281 if (!vsi || !macaddr) 1282 return NULL; 1283 1284 key = i40e_addr_to_hkey(macaddr); 1285 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1286 if ((ether_addr_equal(macaddr, f->macaddr)) && 1287 (vlan == f->vlan)) 1288 return f; 1289 } 1290 return NULL; 1291 } 1292 1293 /** 1294 * i40e_find_mac - Find a mac addr in the macvlan filters list 1295 * @vsi: the VSI to be searched 1296 * @macaddr: the MAC address we are searching for 1297 * 1298 * Returns the first filter with the provided MAC address or NULL if 1299 * MAC address was not found 1300 **/ 1301 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1302 { 1303 struct i40e_mac_filter *f; 1304 u64 key; 1305 1306 if (!vsi || !macaddr) 1307 return NULL; 1308 1309 key = i40e_addr_to_hkey(macaddr); 1310 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1311 if ((ether_addr_equal(macaddr, f->macaddr))) 1312 return f; 1313 } 1314 return NULL; 1315 } 1316 1317 /** 1318 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1319 * @vsi: the VSI to be searched 1320 * 1321 * Returns true if VSI is in vlan mode or false otherwise 1322 **/ 1323 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1324 { 1325 /* If we have a PVID, always operate in VLAN mode */ 1326 if (vsi->info.pvid) 1327 return true; 1328 1329 /* We need to operate in VLAN mode whenever we have any filters with 1330 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1331 * time, incurring search cost repeatedly. However, we can notice two 1332 * things: 1333 * 1334 * 1) the only place where we can gain a VLAN filter is in 1335 * i40e_add_filter. 1336 * 1337 * 2) the only place where filters are actually removed is in 1338 * i40e_sync_filters_subtask. 1339 * 1340 * Thus, we can simply use a boolean value, has_vlan_filters which we 1341 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1342 * we have to perform the full search after deleting filters in 1343 * i40e_sync_filters_subtask, but we already have to search 1344 * filters here and can perform the check at the same time. This 1345 * results in avoiding embedding a loop for VLAN mode inside another 1346 * loop over all the filters, and should maintain correctness as noted 1347 * above. 1348 */ 1349 return vsi->has_vlan_filter; 1350 } 1351 1352 /** 1353 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1354 * @vsi: the VSI to configure 1355 * @tmp_add_list: list of filters ready to be added 1356 * @tmp_del_list: list of filters ready to be deleted 1357 * @vlan_filters: the number of active VLAN filters 1358 * 1359 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1360 * behave as expected. If we have any active VLAN filters remaining or about 1361 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1362 * so that they only match against untagged traffic. If we no longer have any 1363 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1364 * so that they match against both tagged and untagged traffic. In this way, 1365 * we ensure that we correctly receive the desired traffic. This ensures that 1366 * when we have an active VLAN we will receive only untagged traffic and 1367 * traffic matching active VLANs. If we have no active VLANs then we will 1368 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1369 * 1370 * Finally, in a similar fashion, this function also corrects filters when 1371 * there is an active PVID assigned to this VSI. 1372 * 1373 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1374 * 1375 * This function is only expected to be called from within 1376 * i40e_sync_vsi_filters. 1377 * 1378 * NOTE: This function expects to be called while under the 1379 * mac_filter_hash_lock 1380 */ 1381 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1382 struct hlist_head *tmp_add_list, 1383 struct hlist_head *tmp_del_list, 1384 int vlan_filters) 1385 { 1386 s16 pvid = le16_to_cpu(vsi->info.pvid); 1387 struct i40e_mac_filter *f, *add_head; 1388 struct i40e_new_mac_filter *new; 1389 struct hlist_node *h; 1390 int bkt, new_vlan; 1391 1392 /* To determine if a particular filter needs to be replaced we 1393 * have the three following conditions: 1394 * 1395 * a) if we have a PVID assigned, then all filters which are 1396 * not marked as VLAN=PVID must be replaced with filters that 1397 * are. 1398 * b) otherwise, if we have any active VLANS, all filters 1399 * which are marked as VLAN=-1 must be replaced with 1400 * filters marked as VLAN=0 1401 * c) finally, if we do not have any active VLANS, all filters 1402 * which are marked as VLAN=0 must be replaced with filters 1403 * marked as VLAN=-1 1404 */ 1405 1406 /* Update the filters about to be added in place */ 1407 hlist_for_each_entry(new, tmp_add_list, hlist) { 1408 if (pvid && new->f->vlan != pvid) 1409 new->f->vlan = pvid; 1410 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1411 new->f->vlan = 0; 1412 else if (!vlan_filters && new->f->vlan == 0) 1413 new->f->vlan = I40E_VLAN_ANY; 1414 } 1415 1416 /* Update the remaining active filters */ 1417 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1418 /* Combine the checks for whether a filter needs to be changed 1419 * and then determine the new VLAN inside the if block, in 1420 * order to avoid duplicating code for adding the new filter 1421 * then deleting the old filter. 1422 */ 1423 if ((pvid && f->vlan != pvid) || 1424 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1425 (!vlan_filters && f->vlan == 0)) { 1426 /* Determine the new vlan we will be adding */ 1427 if (pvid) 1428 new_vlan = pvid; 1429 else if (vlan_filters) 1430 new_vlan = 0; 1431 else 1432 new_vlan = I40E_VLAN_ANY; 1433 1434 /* Create the new filter */ 1435 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1436 if (!add_head) 1437 return -ENOMEM; 1438 1439 /* Create a temporary i40e_new_mac_filter */ 1440 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1441 if (!new) 1442 return -ENOMEM; 1443 1444 new->f = add_head; 1445 new->state = add_head->state; 1446 if (add_head->state == I40E_FILTER_NEW) 1447 add_head->state = I40E_FILTER_NEW_SYNC; 1448 1449 /* Add the new filter to the tmp list */ 1450 hlist_add_head(&new->hlist, tmp_add_list); 1451 1452 /* Put the original filter into the delete list */ 1453 f->state = I40E_FILTER_REMOVE; 1454 hash_del(&f->hlist); 1455 hlist_add_head(&f->hlist, tmp_del_list); 1456 } 1457 } 1458 1459 vsi->has_vlan_filter = !!vlan_filters; 1460 1461 return 0; 1462 } 1463 1464 /** 1465 * i40e_get_vf_new_vlan - Get new vlan id on a vf 1466 * @vsi: the vsi to configure 1467 * @new_mac: new mac filter to be added 1468 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL 1469 * @vlan_filters: the number of active VLAN filters 1470 * @trusted: flag if the VF is trusted 1471 * 1472 * Get new VLAN id based on current VLAN filters, trust, PVID 1473 * and vf-vlan-prune-disable flag. 1474 * 1475 * Returns the value of the new vlan filter or 1476 * the old value if no new filter is needed. 1477 */ 1478 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi, 1479 struct i40e_new_mac_filter *new_mac, 1480 struct i40e_mac_filter *f, 1481 int vlan_filters, 1482 bool trusted) 1483 { 1484 s16 pvid = le16_to_cpu(vsi->info.pvid); 1485 struct i40e_pf *pf = vsi->back; 1486 bool is_any; 1487 1488 if (new_mac) 1489 f = new_mac->f; 1490 1491 if (pvid && f->vlan != pvid) 1492 return pvid; 1493 1494 is_any = (trusted || 1495 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags)); 1496 1497 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) || 1498 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) || 1499 (is_any && !vlan_filters && f->vlan == 0)) { 1500 if (is_any) 1501 return I40E_VLAN_ANY; 1502 else 1503 return 0; 1504 } 1505 1506 return f->vlan; 1507 } 1508 1509 /** 1510 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary 1511 * @vsi: the vsi to configure 1512 * @tmp_add_list: list of filters ready to be added 1513 * @tmp_del_list: list of filters ready to be deleted 1514 * @vlan_filters: the number of active VLAN filters 1515 * @trusted: flag if the VF is trusted 1516 * 1517 * Correct VF VLAN filters based on current VLAN filters, trust, PVID 1518 * and vf-vlan-prune-disable flag. 1519 * 1520 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1521 * 1522 * This function is only expected to be called from within 1523 * i40e_sync_vsi_filters. 1524 * 1525 * NOTE: This function expects to be called while under the 1526 * mac_filter_hash_lock 1527 */ 1528 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi, 1529 struct hlist_head *tmp_add_list, 1530 struct hlist_head *tmp_del_list, 1531 int vlan_filters, 1532 bool trusted) 1533 { 1534 struct i40e_mac_filter *f, *add_head; 1535 struct i40e_new_mac_filter *new_mac; 1536 struct hlist_node *h; 1537 int bkt, new_vlan; 1538 1539 hlist_for_each_entry(new_mac, tmp_add_list, hlist) { 1540 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL, 1541 vlan_filters, trusted); 1542 } 1543 1544 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1545 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters, 1546 trusted); 1547 if (new_vlan != f->vlan) { 1548 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1549 if (!add_head) 1550 return -ENOMEM; 1551 /* Create a temporary i40e_new_mac_filter */ 1552 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC); 1553 if (!new_mac) 1554 return -ENOMEM; 1555 new_mac->f = add_head; 1556 new_mac->state = add_head->state; 1557 if (add_head->state == I40E_FILTER_NEW) 1558 add_head->state = I40E_FILTER_NEW_SYNC; 1559 1560 /* Add the new filter to the tmp list */ 1561 hlist_add_head(&new_mac->hlist, tmp_add_list); 1562 1563 /* Put the original filter into the delete list */ 1564 f->state = I40E_FILTER_REMOVE; 1565 hash_del(&f->hlist); 1566 hlist_add_head(&f->hlist, tmp_del_list); 1567 } 1568 } 1569 1570 vsi->has_vlan_filter = !!vlan_filters; 1571 return 0; 1572 } 1573 1574 /** 1575 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1576 * @vsi: the PF Main VSI - inappropriate for any other VSI 1577 * @macaddr: the MAC address 1578 * 1579 * Remove whatever filter the firmware set up so the driver can manage 1580 * its own filtering intelligently. 1581 **/ 1582 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1583 { 1584 struct i40e_aqc_remove_macvlan_element_data element; 1585 struct i40e_pf *pf = vsi->back; 1586 1587 /* Only appropriate for the PF main VSI */ 1588 if (vsi->type != I40E_VSI_MAIN) 1589 return; 1590 1591 memset(&element, 0, sizeof(element)); 1592 ether_addr_copy(element.mac_addr, macaddr); 1593 element.vlan_tag = 0; 1594 /* Ignore error returns, some firmware does it this way... */ 1595 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1596 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1597 1598 memset(&element, 0, sizeof(element)); 1599 ether_addr_copy(element.mac_addr, macaddr); 1600 element.vlan_tag = 0; 1601 /* ...and some firmware does it this way. */ 1602 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1603 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1604 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1605 } 1606 1607 /** 1608 * i40e_add_filter - Add a mac/vlan filter to the VSI 1609 * @vsi: the VSI to be searched 1610 * @macaddr: the MAC address 1611 * @vlan: the vlan 1612 * 1613 * Returns ptr to the filter object or NULL when no memory available. 1614 * 1615 * NOTE: This function is expected to be called with mac_filter_hash_lock 1616 * being held. 1617 **/ 1618 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1619 const u8 *macaddr, s16 vlan) 1620 { 1621 struct i40e_mac_filter *f; 1622 u64 key; 1623 1624 if (!vsi || !macaddr) 1625 return NULL; 1626 1627 f = i40e_find_filter(vsi, macaddr, vlan); 1628 if (!f) { 1629 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1630 if (!f) 1631 return NULL; 1632 1633 /* Update the boolean indicating if we need to function in 1634 * VLAN mode. 1635 */ 1636 if (vlan >= 0) 1637 vsi->has_vlan_filter = true; 1638 1639 ether_addr_copy(f->macaddr, macaddr); 1640 f->vlan = vlan; 1641 f->state = I40E_FILTER_NEW; 1642 INIT_HLIST_NODE(&f->hlist); 1643 1644 key = i40e_addr_to_hkey(macaddr); 1645 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1646 1647 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1648 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1649 } 1650 1651 /* If we're asked to add a filter that has been marked for removal, it 1652 * is safe to simply restore it to active state. __i40e_del_filter 1653 * will have simply deleted any filters which were previously marked 1654 * NEW or FAILED, so if it is currently marked REMOVE it must have 1655 * previously been ACTIVE. Since we haven't yet run the sync filters 1656 * task, just restore this filter to the ACTIVE state so that the 1657 * sync task leaves it in place 1658 */ 1659 if (f->state == I40E_FILTER_REMOVE) 1660 f->state = I40E_FILTER_ACTIVE; 1661 1662 return f; 1663 } 1664 1665 /** 1666 * __i40e_del_filter - Remove a specific filter from the VSI 1667 * @vsi: VSI to remove from 1668 * @f: the filter to remove from the list 1669 * 1670 * This function requires you've found * the exact filter you will remove 1671 * already, such as via i40e_find_filter or i40e_find_mac. 1672 * 1673 * NOTE: This function is expected to be called with mac_filter_hash_lock 1674 * being held. 1675 * ANOTHER NOTE: This function MUST be called from within the context of 1676 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1677 * instead of list_for_each_entry(). 1678 **/ 1679 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1680 { 1681 if (!f) 1682 return; 1683 1684 /* If the filter was never added to firmware then we can just delete it 1685 * directly and we don't want to set the status to remove or else an 1686 * admin queue command will unnecessarily fire. 1687 */ 1688 if ((f->state == I40E_FILTER_FAILED) || 1689 (f->state == I40E_FILTER_NEW)) { 1690 hash_del(&f->hlist); 1691 kfree(f); 1692 } else { 1693 f->state = I40E_FILTER_REMOVE; 1694 } 1695 1696 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1697 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1698 } 1699 1700 /** 1701 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1702 * @vsi: the VSI to be searched 1703 * @macaddr: the mac address to be filtered 1704 * 1705 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1706 * go through all the macvlan filters and add a macvlan filter for each 1707 * unique vlan that already exists. If a PVID has been assigned, instead only 1708 * add the macaddr to that VLAN. 1709 * 1710 * Returns last filter added on success, else NULL 1711 **/ 1712 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1713 const u8 *macaddr) 1714 { 1715 struct i40e_mac_filter *f, *add = NULL; 1716 struct hlist_node *h; 1717 int bkt; 1718 1719 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1720 if (vsi->info.pvid) 1721 return i40e_add_filter(vsi, macaddr, 1722 le16_to_cpu(vsi->info.pvid)); 1723 1724 if (!i40e_is_vsi_in_vlan(vsi)) 1725 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1726 1727 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1728 if (f->state == I40E_FILTER_REMOVE) 1729 continue; 1730 add = i40e_add_filter(vsi, macaddr, f->vlan); 1731 if (!add) 1732 return NULL; 1733 } 1734 1735 return add; 1736 } 1737 1738 /** 1739 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1740 * @vsi: the VSI to be searched 1741 * @macaddr: the mac address to be removed 1742 * 1743 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1744 * associated with. 1745 * 1746 * Returns 0 for success, or error 1747 **/ 1748 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1749 { 1750 struct i40e_mac_filter *f; 1751 struct hlist_node *h; 1752 bool found = false; 1753 int bkt; 1754 1755 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1756 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1757 if (ether_addr_equal(macaddr, f->macaddr)) { 1758 __i40e_del_filter(vsi, f); 1759 found = true; 1760 } 1761 } 1762 1763 if (found) 1764 return 0; 1765 else 1766 return -ENOENT; 1767 } 1768 1769 /** 1770 * i40e_set_mac - NDO callback to set mac address 1771 * @netdev: network interface device structure 1772 * @p: pointer to an address structure 1773 * 1774 * Returns 0 on success, negative on failure 1775 **/ 1776 static int i40e_set_mac(struct net_device *netdev, void *p) 1777 { 1778 struct i40e_netdev_priv *np = netdev_priv(netdev); 1779 struct i40e_vsi *vsi = np->vsi; 1780 struct i40e_pf *pf = vsi->back; 1781 struct i40e_hw *hw = &pf->hw; 1782 struct sockaddr *addr = p; 1783 1784 if (!is_valid_ether_addr(addr->sa_data)) 1785 return -EADDRNOTAVAIL; 1786 1787 if (test_bit(__I40E_DOWN, pf->state) || 1788 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1789 return -EADDRNOTAVAIL; 1790 1791 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1792 netdev_info(netdev, "returning to hw mac address %pM\n", 1793 hw->mac.addr); 1794 else 1795 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1796 1797 /* Copy the address first, so that we avoid a possible race with 1798 * .set_rx_mode(). 1799 * - Remove old address from MAC filter 1800 * - Copy new address 1801 * - Add new address to MAC filter 1802 */ 1803 spin_lock_bh(&vsi->mac_filter_hash_lock); 1804 i40e_del_mac_filter(vsi, netdev->dev_addr); 1805 eth_hw_addr_set(netdev, addr->sa_data); 1806 i40e_add_mac_filter(vsi, netdev->dev_addr); 1807 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1808 1809 if (vsi->type == I40E_VSI_MAIN) { 1810 int ret; 1811 1812 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1813 addr->sa_data, NULL); 1814 if (ret) 1815 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n", 1816 ERR_PTR(ret), 1817 i40e_aq_str(hw, hw->aq.asq_last_status)); 1818 } 1819 1820 /* schedule our worker thread which will take care of 1821 * applying the new filter changes 1822 */ 1823 i40e_service_event_schedule(pf); 1824 return 0; 1825 } 1826 1827 /** 1828 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1829 * @vsi: vsi structure 1830 * @seed: RSS hash seed 1831 * @lut: pointer to lookup table of lut_size 1832 * @lut_size: size of the lookup table 1833 **/ 1834 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1835 u8 *lut, u16 lut_size) 1836 { 1837 struct i40e_pf *pf = vsi->back; 1838 struct i40e_hw *hw = &pf->hw; 1839 int ret = 0; 1840 1841 if (seed) { 1842 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1843 (struct i40e_aqc_get_set_rss_key_data *)seed; 1844 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1845 if (ret) { 1846 dev_info(&pf->pdev->dev, 1847 "Cannot set RSS key, err %pe aq_err %s\n", 1848 ERR_PTR(ret), 1849 i40e_aq_str(hw, hw->aq.asq_last_status)); 1850 return ret; 1851 } 1852 } 1853 if (lut) { 1854 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1855 1856 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1857 if (ret) { 1858 dev_info(&pf->pdev->dev, 1859 "Cannot set RSS lut, err %pe aq_err %s\n", 1860 ERR_PTR(ret), 1861 i40e_aq_str(hw, hw->aq.asq_last_status)); 1862 return ret; 1863 } 1864 } 1865 return ret; 1866 } 1867 1868 /** 1869 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1870 * @vsi: VSI structure 1871 **/ 1872 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1873 { 1874 struct i40e_pf *pf = vsi->back; 1875 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1876 u8 *lut; 1877 int ret; 1878 1879 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 1880 return 0; 1881 if (!vsi->rss_size) 1882 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1883 vsi->num_queue_pairs); 1884 if (!vsi->rss_size) 1885 return -EINVAL; 1886 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1887 if (!lut) 1888 return -ENOMEM; 1889 1890 /* Use the user configured hash keys and lookup table if there is one, 1891 * otherwise use default 1892 */ 1893 if (vsi->rss_lut_user) 1894 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1895 else 1896 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1897 if (vsi->rss_hkey_user) 1898 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1899 else 1900 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1901 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1902 kfree(lut); 1903 return ret; 1904 } 1905 1906 /** 1907 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1908 * @vsi: the VSI being configured, 1909 * @ctxt: VSI context structure 1910 * @enabled_tc: number of traffic classes to enable 1911 * 1912 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1913 **/ 1914 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1915 struct i40e_vsi_context *ctxt, 1916 u8 enabled_tc) 1917 { 1918 u16 qcount = 0, max_qcount, qmap, sections = 0; 1919 int i, override_q, pow, num_qps, ret; 1920 u8 netdev_tc = 0, offset = 0; 1921 1922 if (vsi->type != I40E_VSI_MAIN) 1923 return -EINVAL; 1924 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1925 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1926 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1927 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1928 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1929 1930 /* find the next higher power-of-2 of num queue pairs */ 1931 pow = ilog2(num_qps); 1932 if (!is_power_of_2(num_qps)) 1933 pow++; 1934 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1935 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1936 1937 /* Setup queue offset/count for all TCs for given VSI */ 1938 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1939 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1940 /* See if the given TC is enabled for the given VSI */ 1941 if (vsi->tc_config.enabled_tc & BIT(i)) { 1942 offset = vsi->mqprio_qopt.qopt.offset[i]; 1943 qcount = vsi->mqprio_qopt.qopt.count[i]; 1944 if (qcount > max_qcount) 1945 max_qcount = qcount; 1946 vsi->tc_config.tc_info[i].qoffset = offset; 1947 vsi->tc_config.tc_info[i].qcount = qcount; 1948 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1949 } else { 1950 /* TC is not enabled so set the offset to 1951 * default queue and allocate one queue 1952 * for the given TC. 1953 */ 1954 vsi->tc_config.tc_info[i].qoffset = 0; 1955 vsi->tc_config.tc_info[i].qcount = 1; 1956 vsi->tc_config.tc_info[i].netdev_tc = 0; 1957 } 1958 } 1959 1960 /* Set actual Tx/Rx queue pairs */ 1961 vsi->num_queue_pairs = offset + qcount; 1962 1963 /* Setup queue TC[0].qmap for given VSI context */ 1964 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1965 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1966 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1967 ctxt->info.valid_sections |= cpu_to_le16(sections); 1968 1969 /* Reconfigure RSS for main VSI with max queue count */ 1970 vsi->rss_size = max_qcount; 1971 ret = i40e_vsi_config_rss(vsi); 1972 if (ret) { 1973 dev_info(&vsi->back->pdev->dev, 1974 "Failed to reconfig rss for num_queues (%u)\n", 1975 max_qcount); 1976 return ret; 1977 } 1978 vsi->reconfig_rss = true; 1979 dev_dbg(&vsi->back->pdev->dev, 1980 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1981 1982 /* Find queue count available for channel VSIs and starting offset 1983 * for channel VSIs 1984 */ 1985 override_q = vsi->mqprio_qopt.qopt.count[0]; 1986 if (override_q && override_q < vsi->num_queue_pairs) { 1987 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1988 vsi->next_base_queue = override_q; 1989 } 1990 return 0; 1991 } 1992 1993 /** 1994 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1995 * @vsi: the VSI being setup 1996 * @ctxt: VSI context structure 1997 * @enabled_tc: Enabled TCs bitmap 1998 * @is_add: True if called before Add VSI 1999 * 2000 * Setup VSI queue mapping for enabled traffic classes. 2001 **/ 2002 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 2003 struct i40e_vsi_context *ctxt, 2004 u8 enabled_tc, 2005 bool is_add) 2006 { 2007 struct i40e_pf *pf = vsi->back; 2008 u16 num_tc_qps = 0; 2009 u16 sections = 0; 2010 u8 netdev_tc = 0; 2011 u16 numtc = 1; 2012 u16 qcount; 2013 u8 offset; 2014 u16 qmap; 2015 int i; 2016 2017 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 2018 offset = 0; 2019 /* zero out queue mapping, it will get updated on the end of the function */ 2020 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping)); 2021 2022 if (vsi->type == I40E_VSI_MAIN) { 2023 /* This code helps add more queue to the VSI if we have 2024 * more cores than RSS can support, the higher cores will 2025 * be served by ATR or other filters. Furthermore, the 2026 * non-zero req_queue_pairs says that user requested a new 2027 * queue count via ethtool's set_channels, so use this 2028 * value for queues distribution across traffic classes 2029 * We need at least one queue pair for the interface 2030 * to be usable as we see in else statement. 2031 */ 2032 if (vsi->req_queue_pairs > 0) 2033 vsi->num_queue_pairs = vsi->req_queue_pairs; 2034 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2035 vsi->num_queue_pairs = pf->num_lan_msix; 2036 else 2037 vsi->num_queue_pairs = 1; 2038 } 2039 2040 /* Number of queues per enabled TC */ 2041 if (vsi->type == I40E_VSI_MAIN || 2042 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0)) 2043 num_tc_qps = vsi->num_queue_pairs; 2044 else 2045 num_tc_qps = vsi->alloc_queue_pairs; 2046 2047 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 2048 /* Find numtc from enabled TC bitmap */ 2049 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2050 if (enabled_tc & BIT(i)) /* TC is enabled */ 2051 numtc++; 2052 } 2053 if (!numtc) { 2054 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 2055 numtc = 1; 2056 } 2057 num_tc_qps = num_tc_qps / numtc; 2058 num_tc_qps = min_t(int, num_tc_qps, 2059 i40e_pf_get_max_q_per_tc(pf)); 2060 } 2061 2062 vsi->tc_config.numtc = numtc; 2063 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 2064 2065 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 2066 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 2067 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 2068 2069 /* Setup queue offset/count for all TCs for given VSI */ 2070 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 2071 /* See if the given TC is enabled for the given VSI */ 2072 if (vsi->tc_config.enabled_tc & BIT(i)) { 2073 /* TC is enabled */ 2074 int pow, num_qps; 2075 2076 switch (vsi->type) { 2077 case I40E_VSI_MAIN: 2078 if ((!test_bit(I40E_FLAG_FD_SB_ENA, 2079 pf->flags) && 2080 !test_bit(I40E_FLAG_FD_ATR_ENA, 2081 pf->flags)) || 2082 vsi->tc_config.enabled_tc != 1) { 2083 qcount = min_t(int, pf->alloc_rss_size, 2084 num_tc_qps); 2085 break; 2086 } 2087 fallthrough; 2088 case I40E_VSI_FDIR: 2089 case I40E_VSI_SRIOV: 2090 case I40E_VSI_VMDQ2: 2091 default: 2092 qcount = num_tc_qps; 2093 WARN_ON(i != 0); 2094 break; 2095 } 2096 vsi->tc_config.tc_info[i].qoffset = offset; 2097 vsi->tc_config.tc_info[i].qcount = qcount; 2098 2099 /* find the next higher power-of-2 of num queue pairs */ 2100 num_qps = qcount; 2101 pow = 0; 2102 while (num_qps && (BIT_ULL(pow) < qcount)) { 2103 pow++; 2104 num_qps >>= 1; 2105 } 2106 2107 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 2108 qmap = 2109 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 2110 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 2111 2112 offset += qcount; 2113 } else { 2114 /* TC is not enabled so set the offset to 2115 * default queue and allocate one queue 2116 * for the given TC. 2117 */ 2118 vsi->tc_config.tc_info[i].qoffset = 0; 2119 vsi->tc_config.tc_info[i].qcount = 1; 2120 vsi->tc_config.tc_info[i].netdev_tc = 0; 2121 2122 qmap = 0; 2123 } 2124 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 2125 } 2126 /* Do not change previously set num_queue_pairs for PFs and VFs*/ 2127 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) || 2128 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) || 2129 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV)) 2130 vsi->num_queue_pairs = offset; 2131 2132 /* Scheduler section valid can only be set for ADD VSI */ 2133 if (is_add) { 2134 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 2135 2136 ctxt->info.up_enable_bits = enabled_tc; 2137 } 2138 if (vsi->type == I40E_VSI_SRIOV) { 2139 ctxt->info.mapping_flags |= 2140 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 2141 for (i = 0; i < vsi->num_queue_pairs; i++) 2142 ctxt->info.queue_mapping[i] = 2143 cpu_to_le16(vsi->base_queue + i); 2144 } else { 2145 ctxt->info.mapping_flags |= 2146 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 2147 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 2148 } 2149 ctxt->info.valid_sections |= cpu_to_le16(sections); 2150 } 2151 2152 /** 2153 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 2154 * @netdev: the netdevice 2155 * @addr: address to add 2156 * 2157 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2158 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2159 */ 2160 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 2161 { 2162 struct i40e_netdev_priv *np = netdev_priv(netdev); 2163 struct i40e_vsi *vsi = np->vsi; 2164 2165 if (i40e_add_mac_filter(vsi, addr)) 2166 return 0; 2167 else 2168 return -ENOMEM; 2169 } 2170 2171 /** 2172 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2173 * @netdev: the netdevice 2174 * @addr: address to add 2175 * 2176 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 2177 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 2178 */ 2179 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 2180 { 2181 struct i40e_netdev_priv *np = netdev_priv(netdev); 2182 struct i40e_vsi *vsi = np->vsi; 2183 2184 /* Under some circumstances, we might receive a request to delete 2185 * our own device address from our uc list. Because we store the 2186 * device address in the VSI's MAC/VLAN filter list, we need to ignore 2187 * such requests and not delete our device address from this list. 2188 */ 2189 if (ether_addr_equal(addr, netdev->dev_addr)) 2190 return 0; 2191 2192 i40e_del_mac_filter(vsi, addr); 2193 2194 return 0; 2195 } 2196 2197 /** 2198 * i40e_set_rx_mode - NDO callback to set the netdev filters 2199 * @netdev: network interface device structure 2200 **/ 2201 static void i40e_set_rx_mode(struct net_device *netdev) 2202 { 2203 struct i40e_netdev_priv *np = netdev_priv(netdev); 2204 struct i40e_vsi *vsi = np->vsi; 2205 2206 spin_lock_bh(&vsi->mac_filter_hash_lock); 2207 2208 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2209 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 2210 2211 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2212 2213 /* check for other flag changes */ 2214 if (vsi->current_netdev_flags != vsi->netdev->flags) { 2215 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2216 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 2217 } 2218 } 2219 2220 /** 2221 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 2222 * @vsi: Pointer to VSI struct 2223 * @from: Pointer to list which contains MAC filter entries - changes to 2224 * those entries needs to be undone. 2225 * 2226 * MAC filter entries from this list were slated for deletion. 2227 **/ 2228 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 2229 struct hlist_head *from) 2230 { 2231 struct i40e_mac_filter *f; 2232 struct hlist_node *h; 2233 2234 hlist_for_each_entry_safe(f, h, from, hlist) { 2235 u64 key = i40e_addr_to_hkey(f->macaddr); 2236 2237 /* Move the element back into MAC filter list*/ 2238 hlist_del(&f->hlist); 2239 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2240 } 2241 } 2242 2243 /** 2244 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2245 * @vsi: Pointer to vsi struct 2246 * @from: Pointer to list which contains MAC filter entries - changes to 2247 * those entries needs to be undone. 2248 * 2249 * MAC filter entries from this list were slated for addition. 2250 **/ 2251 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2252 struct hlist_head *from) 2253 { 2254 struct i40e_new_mac_filter *new; 2255 struct hlist_node *h; 2256 2257 hlist_for_each_entry_safe(new, h, from, hlist) { 2258 /* We can simply free the wrapper structure */ 2259 hlist_del(&new->hlist); 2260 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2261 kfree(new); 2262 } 2263 } 2264 2265 /** 2266 * i40e_next_filter - Get the next non-broadcast filter from a list 2267 * @next: pointer to filter in list 2268 * 2269 * Returns the next non-broadcast filter in the list. Required so that we 2270 * ignore broadcast filters within the list, since these are not handled via 2271 * the normal firmware update path. 2272 */ 2273 static 2274 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2275 { 2276 hlist_for_each_entry_continue(next, hlist) { 2277 if (!is_broadcast_ether_addr(next->f->macaddr)) 2278 return next; 2279 } 2280 2281 return NULL; 2282 } 2283 2284 /** 2285 * i40e_update_filter_state - Update filter state based on return data 2286 * from firmware 2287 * @count: Number of filters added 2288 * @add_list: return data from fw 2289 * @add_head: pointer to first filter in current batch 2290 * 2291 * MAC filter entries from list were slated to be added to device. Returns 2292 * number of successful filters. Note that 0 does NOT mean success! 2293 **/ 2294 static int 2295 i40e_update_filter_state(int count, 2296 struct i40e_aqc_add_macvlan_element_data *add_list, 2297 struct i40e_new_mac_filter *add_head) 2298 { 2299 int retval = 0; 2300 int i; 2301 2302 for (i = 0; i < count; i++) { 2303 /* Always check status of each filter. We don't need to check 2304 * the firmware return status because we pre-set the filter 2305 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2306 * request to the adminq. Thus, if it no longer matches then 2307 * we know the filter is active. 2308 */ 2309 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2310 add_head->state = I40E_FILTER_FAILED; 2311 } else { 2312 add_head->state = I40E_FILTER_ACTIVE; 2313 retval++; 2314 } 2315 2316 add_head = i40e_next_filter(add_head); 2317 if (!add_head) 2318 break; 2319 } 2320 2321 return retval; 2322 } 2323 2324 /** 2325 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2326 * @vsi: ptr to the VSI 2327 * @vsi_name: name to display in messages 2328 * @list: the list of filters to send to firmware 2329 * @num_del: the number of filters to delete 2330 * @retval: Set to -EIO on failure to delete 2331 * 2332 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2333 * *retval instead of a return value so that success does not force ret_val to 2334 * be set to 0. This ensures that a sequence of calls to this function 2335 * preserve the previous value of *retval on successful delete. 2336 */ 2337 static 2338 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2339 struct i40e_aqc_remove_macvlan_element_data *list, 2340 int num_del, int *retval) 2341 { 2342 struct i40e_hw *hw = &vsi->back->hw; 2343 enum i40e_admin_queue_err aq_status; 2344 int aq_ret; 2345 2346 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL, 2347 &aq_status); 2348 2349 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2350 if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) { 2351 *retval = -EIO; 2352 dev_info(&vsi->back->pdev->dev, 2353 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n", 2354 vsi_name, ERR_PTR(aq_ret), 2355 i40e_aq_str(hw, aq_status)); 2356 } 2357 } 2358 2359 /** 2360 * i40e_aqc_add_filters - Request firmware to add a set of filters 2361 * @vsi: ptr to the VSI 2362 * @vsi_name: name to display in messages 2363 * @list: the list of filters to send to firmware 2364 * @add_head: Position in the add hlist 2365 * @num_add: the number of filters to add 2366 * 2367 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2368 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2369 * space for more filters. 2370 */ 2371 static 2372 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2373 struct i40e_aqc_add_macvlan_element_data *list, 2374 struct i40e_new_mac_filter *add_head, 2375 int num_add) 2376 { 2377 struct i40e_hw *hw = &vsi->back->hw; 2378 enum i40e_admin_queue_err aq_status; 2379 int fcnt; 2380 2381 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status); 2382 fcnt = i40e_update_filter_state(num_add, list, add_head); 2383 2384 if (fcnt != num_add) { 2385 if (vsi->type == I40E_VSI_MAIN) { 2386 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2387 dev_warn(&vsi->back->pdev->dev, 2388 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2389 i40e_aq_str(hw, aq_status), vsi_name); 2390 } else if (vsi->type == I40E_VSI_SRIOV || 2391 vsi->type == I40E_VSI_VMDQ1 || 2392 vsi->type == I40E_VSI_VMDQ2) { 2393 dev_warn(&vsi->back->pdev->dev, 2394 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2395 i40e_aq_str(hw, aq_status), vsi_name, 2396 vsi_name); 2397 } else { 2398 dev_warn(&vsi->back->pdev->dev, 2399 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2400 i40e_aq_str(hw, aq_status), vsi_name, 2401 vsi->type); 2402 } 2403 } 2404 } 2405 2406 /** 2407 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2408 * @vsi: pointer to the VSI 2409 * @vsi_name: the VSI name 2410 * @f: filter data 2411 * 2412 * This function sets or clears the promiscuous broadcast flags for VLAN 2413 * filters in order to properly receive broadcast frames. Assumes that only 2414 * broadcast filters are passed. 2415 * 2416 * Returns status indicating success or failure; 2417 **/ 2418 static int 2419 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2420 struct i40e_mac_filter *f) 2421 { 2422 bool enable = f->state == I40E_FILTER_NEW || 2423 f->state == I40E_FILTER_NEW_SYNC; 2424 struct i40e_hw *hw = &vsi->back->hw; 2425 int aq_ret; 2426 2427 if (f->vlan == I40E_VLAN_ANY) { 2428 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2429 vsi->seid, 2430 enable, 2431 NULL); 2432 } else { 2433 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2434 vsi->seid, 2435 enable, 2436 f->vlan, 2437 NULL); 2438 } 2439 2440 if (aq_ret) { 2441 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2442 dev_warn(&vsi->back->pdev->dev, 2443 "Error %s, forcing overflow promiscuous on %s\n", 2444 i40e_aq_str(hw, hw->aq.asq_last_status), 2445 vsi_name); 2446 } 2447 2448 return aq_ret; 2449 } 2450 2451 /** 2452 * i40e_set_promiscuous - set promiscuous mode 2453 * @pf: board private structure 2454 * @promisc: promisc on or off 2455 * 2456 * There are different ways of setting promiscuous mode on a PF depending on 2457 * what state/environment we're in. This identifies and sets it appropriately. 2458 * Returns 0 on success. 2459 **/ 2460 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2461 { 2462 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 2463 struct i40e_hw *hw = &pf->hw; 2464 int aq_ret; 2465 2466 if (vsi->type == I40E_VSI_MAIN && 2467 i40e_pf_get_main_veb(pf) && 2468 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 2469 /* set defport ON for Main VSI instead of true promisc 2470 * this way we will get all unicast/multicast and VLAN 2471 * promisc behavior but will not get VF or VMDq traffic 2472 * replicated on the Main VSI. 2473 */ 2474 if (promisc) 2475 aq_ret = i40e_aq_set_default_vsi(hw, 2476 vsi->seid, 2477 NULL); 2478 else 2479 aq_ret = i40e_aq_clear_default_vsi(hw, 2480 vsi->seid, 2481 NULL); 2482 if (aq_ret) { 2483 dev_info(&pf->pdev->dev, 2484 "Set default VSI failed, err %pe, aq_err %s\n", 2485 ERR_PTR(aq_ret), 2486 i40e_aq_str(hw, hw->aq.asq_last_status)); 2487 } 2488 } else { 2489 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2490 hw, 2491 vsi->seid, 2492 promisc, NULL, 2493 true); 2494 if (aq_ret) { 2495 dev_info(&pf->pdev->dev, 2496 "set unicast promisc failed, err %pe, aq_err %s\n", 2497 ERR_PTR(aq_ret), 2498 i40e_aq_str(hw, hw->aq.asq_last_status)); 2499 } 2500 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2501 hw, 2502 vsi->seid, 2503 promisc, NULL); 2504 if (aq_ret) { 2505 dev_info(&pf->pdev->dev, 2506 "set multicast promisc failed, err %pe, aq_err %s\n", 2507 ERR_PTR(aq_ret), 2508 i40e_aq_str(hw, hw->aq.asq_last_status)); 2509 } 2510 } 2511 2512 if (!aq_ret) 2513 pf->cur_promisc = promisc; 2514 2515 return aq_ret; 2516 } 2517 2518 /** 2519 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2520 * @vsi: ptr to the VSI 2521 * 2522 * Push any outstanding VSI filter changes through the AdminQ. 2523 * 2524 * Returns 0 or error value 2525 **/ 2526 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2527 { 2528 struct hlist_head tmp_add_list, tmp_del_list; 2529 struct i40e_mac_filter *f; 2530 struct i40e_new_mac_filter *new, *add_head = NULL; 2531 struct i40e_hw *hw = &vsi->back->hw; 2532 bool old_overflow, new_overflow; 2533 unsigned int failed_filters = 0; 2534 unsigned int vlan_filters = 0; 2535 char vsi_name[16] = "PF"; 2536 int filter_list_len = 0; 2537 u32 changed_flags = 0; 2538 struct hlist_node *h; 2539 struct i40e_pf *pf; 2540 int num_add = 0; 2541 int num_del = 0; 2542 int aq_ret = 0; 2543 int retval = 0; 2544 u16 cmd_flags; 2545 int list_size; 2546 int bkt; 2547 2548 /* empty array typed pointers, kcalloc later */ 2549 struct i40e_aqc_add_macvlan_element_data *add_list; 2550 struct i40e_aqc_remove_macvlan_element_data *del_list; 2551 2552 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2553 usleep_range(1000, 2000); 2554 pf = vsi->back; 2555 2556 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2557 2558 if (vsi->netdev) { 2559 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2560 vsi->current_netdev_flags = vsi->netdev->flags; 2561 } 2562 2563 INIT_HLIST_HEAD(&tmp_add_list); 2564 INIT_HLIST_HEAD(&tmp_del_list); 2565 2566 if (vsi->type == I40E_VSI_SRIOV) 2567 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2568 else if (vsi->type != I40E_VSI_MAIN) 2569 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2570 2571 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2572 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2573 2574 spin_lock_bh(&vsi->mac_filter_hash_lock); 2575 /* Create a list of filters to delete. */ 2576 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2577 if (f->state == I40E_FILTER_REMOVE) { 2578 /* Move the element into temporary del_list */ 2579 hash_del(&f->hlist); 2580 hlist_add_head(&f->hlist, &tmp_del_list); 2581 2582 /* Avoid counting removed filters */ 2583 continue; 2584 } 2585 if (f->state == I40E_FILTER_NEW) { 2586 /* Create a temporary i40e_new_mac_filter */ 2587 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2588 if (!new) 2589 goto err_no_memory_locked; 2590 2591 /* Store pointer to the real filter */ 2592 new->f = f; 2593 new->state = f->state; 2594 2595 /* Add it to the hash list */ 2596 hlist_add_head(&new->hlist, &tmp_add_list); 2597 f->state = I40E_FILTER_NEW_SYNC; 2598 } 2599 2600 /* Count the number of active (current and new) VLAN 2601 * filters we have now. Does not count filters which 2602 * are marked for deletion. 2603 */ 2604 if (f->vlan > 0) 2605 vlan_filters++; 2606 } 2607 2608 if (vsi->type != I40E_VSI_SRIOV) 2609 retval = i40e_correct_mac_vlan_filters 2610 (vsi, &tmp_add_list, &tmp_del_list, 2611 vlan_filters); 2612 else if (pf->vf) 2613 retval = i40e_correct_vf_mac_vlan_filters 2614 (vsi, &tmp_add_list, &tmp_del_list, 2615 vlan_filters, pf->vf[vsi->vf_id].trusted); 2616 2617 hlist_for_each_entry(new, &tmp_add_list, hlist) 2618 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1); 2619 2620 if (retval) 2621 goto err_no_memory_locked; 2622 2623 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2624 } 2625 2626 /* Now process 'del_list' outside the lock */ 2627 if (!hlist_empty(&tmp_del_list)) { 2628 filter_list_len = hw->aq.asq_buf_size / 2629 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2630 list_size = filter_list_len * 2631 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2632 del_list = kzalloc(list_size, GFP_ATOMIC); 2633 if (!del_list) 2634 goto err_no_memory; 2635 2636 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2637 cmd_flags = 0; 2638 2639 /* handle broadcast filters by updating the broadcast 2640 * promiscuous flag and release filter list. 2641 */ 2642 if (is_broadcast_ether_addr(f->macaddr)) { 2643 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2644 2645 hlist_del(&f->hlist); 2646 kfree(f); 2647 continue; 2648 } 2649 2650 /* add to delete list */ 2651 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2652 if (f->vlan == I40E_VLAN_ANY) { 2653 del_list[num_del].vlan_tag = 0; 2654 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2655 } else { 2656 del_list[num_del].vlan_tag = 2657 cpu_to_le16((u16)(f->vlan)); 2658 } 2659 2660 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2661 del_list[num_del].flags = cmd_flags; 2662 num_del++; 2663 2664 /* flush a full buffer */ 2665 if (num_del == filter_list_len) { 2666 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2667 num_del, &retval); 2668 memset(del_list, 0, list_size); 2669 num_del = 0; 2670 } 2671 /* Release memory for MAC filter entries which were 2672 * synced up with HW. 2673 */ 2674 hlist_del(&f->hlist); 2675 kfree(f); 2676 } 2677 2678 if (num_del) { 2679 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2680 num_del, &retval); 2681 } 2682 2683 kfree(del_list); 2684 del_list = NULL; 2685 } 2686 2687 if (!hlist_empty(&tmp_add_list)) { 2688 /* Do all the adds now. */ 2689 filter_list_len = hw->aq.asq_buf_size / 2690 sizeof(struct i40e_aqc_add_macvlan_element_data); 2691 list_size = filter_list_len * 2692 sizeof(struct i40e_aqc_add_macvlan_element_data); 2693 add_list = kzalloc(list_size, GFP_ATOMIC); 2694 if (!add_list) 2695 goto err_no_memory; 2696 2697 num_add = 0; 2698 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2699 /* handle broadcast filters by updating the broadcast 2700 * promiscuous flag instead of adding a MAC filter. 2701 */ 2702 if (is_broadcast_ether_addr(new->f->macaddr)) { 2703 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2704 new->f)) 2705 new->state = I40E_FILTER_FAILED; 2706 else 2707 new->state = I40E_FILTER_ACTIVE; 2708 continue; 2709 } 2710 2711 /* add to add array */ 2712 if (num_add == 0) 2713 add_head = new; 2714 cmd_flags = 0; 2715 ether_addr_copy(add_list[num_add].mac_addr, 2716 new->f->macaddr); 2717 if (new->f->vlan == I40E_VLAN_ANY) { 2718 add_list[num_add].vlan_tag = 0; 2719 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2720 } else { 2721 add_list[num_add].vlan_tag = 2722 cpu_to_le16((u16)(new->f->vlan)); 2723 } 2724 add_list[num_add].queue_number = 0; 2725 /* set invalid match method for later detection */ 2726 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2727 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2728 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2729 num_add++; 2730 2731 /* flush a full buffer */ 2732 if (num_add == filter_list_len) { 2733 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2734 add_head, num_add); 2735 memset(add_list, 0, list_size); 2736 num_add = 0; 2737 } 2738 } 2739 if (num_add) { 2740 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2741 num_add); 2742 } 2743 /* Now move all of the filters from the temp add list back to 2744 * the VSI's list. 2745 */ 2746 spin_lock_bh(&vsi->mac_filter_hash_lock); 2747 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2748 /* Only update the state if we're still NEW */ 2749 if (new->f->state == I40E_FILTER_NEW || 2750 new->f->state == I40E_FILTER_NEW_SYNC) 2751 new->f->state = new->state; 2752 hlist_del(&new->hlist); 2753 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1); 2754 kfree(new); 2755 } 2756 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2757 kfree(add_list); 2758 add_list = NULL; 2759 } 2760 2761 /* Determine the number of active and failed filters. */ 2762 spin_lock_bh(&vsi->mac_filter_hash_lock); 2763 vsi->active_filters = 0; 2764 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2765 if (f->state == I40E_FILTER_ACTIVE) 2766 vsi->active_filters++; 2767 else if (f->state == I40E_FILTER_FAILED) 2768 failed_filters++; 2769 } 2770 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2771 2772 /* Check if we are able to exit overflow promiscuous mode. We can 2773 * safely exit if we didn't just enter, we no longer have any failed 2774 * filters, and we have reduced filters below the threshold value. 2775 */ 2776 if (old_overflow && !failed_filters && 2777 vsi->active_filters < vsi->promisc_threshold) { 2778 dev_info(&pf->pdev->dev, 2779 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2780 vsi_name); 2781 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2782 vsi->promisc_threshold = 0; 2783 } 2784 2785 /* if the VF is not trusted do not do promisc */ 2786 if (vsi->type == I40E_VSI_SRIOV && pf->vf && 2787 !pf->vf[vsi->vf_id].trusted) { 2788 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2789 goto out; 2790 } 2791 2792 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2793 2794 /* If we are entering overflow promiscuous, we need to calculate a new 2795 * threshold for when we are safe to exit 2796 */ 2797 if (!old_overflow && new_overflow) 2798 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2799 2800 /* check for changes in promiscuous modes */ 2801 if (changed_flags & IFF_ALLMULTI) { 2802 bool cur_multipromisc; 2803 2804 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2805 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2806 vsi->seid, 2807 cur_multipromisc, 2808 NULL); 2809 if (aq_ret) { 2810 retval = i40e_aq_rc_to_posix(aq_ret, 2811 hw->aq.asq_last_status); 2812 dev_info(&pf->pdev->dev, 2813 "set multi promisc failed on %s, err %pe aq_err %s\n", 2814 vsi_name, 2815 ERR_PTR(aq_ret), 2816 i40e_aq_str(hw, hw->aq.asq_last_status)); 2817 } else { 2818 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2819 cur_multipromisc ? "entering" : "leaving"); 2820 } 2821 } 2822 2823 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2824 bool cur_promisc; 2825 2826 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2827 new_overflow); 2828 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2829 if (aq_ret) { 2830 retval = i40e_aq_rc_to_posix(aq_ret, 2831 hw->aq.asq_last_status); 2832 dev_info(&pf->pdev->dev, 2833 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n", 2834 cur_promisc ? "on" : "off", 2835 vsi_name, 2836 ERR_PTR(aq_ret), 2837 i40e_aq_str(hw, hw->aq.asq_last_status)); 2838 } 2839 } 2840 out: 2841 /* if something went wrong then set the changed flag so we try again */ 2842 if (retval) 2843 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2844 2845 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2846 return retval; 2847 2848 err_no_memory: 2849 /* Restore elements on the temporary add and delete lists */ 2850 spin_lock_bh(&vsi->mac_filter_hash_lock); 2851 err_no_memory_locked: 2852 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2853 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2854 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2855 2856 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2857 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2858 return -ENOMEM; 2859 } 2860 2861 /** 2862 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2863 * @pf: board private structure 2864 **/ 2865 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2866 { 2867 struct i40e_vsi *vsi; 2868 int v; 2869 2870 if (!pf) 2871 return; 2872 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2873 return; 2874 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2875 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2876 return; 2877 } 2878 2879 i40e_pf_for_each_vsi(pf, v, vsi) { 2880 if ((vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) && 2881 !test_bit(__I40E_VSI_RELEASING, vsi->state)) { 2882 int ret = i40e_sync_vsi_filters(vsi); 2883 2884 if (ret) { 2885 /* come back and try again later */ 2886 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2887 pf->state); 2888 break; 2889 } 2890 } 2891 } 2892 } 2893 2894 /** 2895 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length 2896 * 2897 * @vsi: VSI to calculate rx_buf_len from 2898 */ 2899 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi) 2900 { 2901 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) 2902 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048); 2903 2904 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048; 2905 } 2906 2907 /** 2908 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI 2909 * @vsi: the vsi 2910 * @xdp_prog: XDP program 2911 **/ 2912 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi, 2913 struct bpf_prog *xdp_prog) 2914 { 2915 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 2916 u16 chain_len; 2917 2918 if (xdp_prog && !xdp_prog->aux->xdp_has_frags) 2919 chain_len = 1; 2920 else 2921 chain_len = I40E_MAX_CHAINED_RX_BUFFERS; 2922 2923 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER); 2924 } 2925 2926 /** 2927 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2928 * @netdev: network interface device structure 2929 * @new_mtu: new value for maximum frame size 2930 * 2931 * Returns 0 on success, negative on failure 2932 **/ 2933 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2934 { 2935 struct i40e_netdev_priv *np = netdev_priv(netdev); 2936 struct i40e_vsi *vsi = np->vsi; 2937 struct i40e_pf *pf = vsi->back; 2938 int frame_size; 2939 2940 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 2941 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) { 2942 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n", 2943 new_mtu, frame_size - I40E_PACKET_HDR_PAD); 2944 return -EINVAL; 2945 } 2946 2947 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2948 netdev->mtu, new_mtu); 2949 WRITE_ONCE(netdev->mtu, new_mtu); 2950 if (netif_running(netdev)) 2951 i40e_vsi_reinit_locked(vsi); 2952 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2953 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2954 return 0; 2955 } 2956 2957 /** 2958 * i40e_ioctl - Access the hwtstamp interface 2959 * @netdev: network interface device structure 2960 * @ifr: interface request data 2961 * @cmd: ioctl command 2962 **/ 2963 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2964 { 2965 struct i40e_netdev_priv *np = netdev_priv(netdev); 2966 struct i40e_pf *pf = np->vsi->back; 2967 2968 switch (cmd) { 2969 case SIOCGHWTSTAMP: 2970 return i40e_ptp_get_ts_config(pf, ifr); 2971 case SIOCSHWTSTAMP: 2972 return i40e_ptp_set_ts_config(pf, ifr); 2973 default: 2974 return -EOPNOTSUPP; 2975 } 2976 } 2977 2978 /** 2979 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2980 * @vsi: the vsi being adjusted 2981 **/ 2982 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2983 { 2984 struct i40e_vsi_context ctxt; 2985 int ret; 2986 2987 /* Don't modify stripping options if a port VLAN is active */ 2988 if (vsi->info.pvid) 2989 return; 2990 2991 if ((vsi->info.valid_sections & 2992 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2993 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2994 return; /* already enabled */ 2995 2996 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2997 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2998 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2999 3000 ctxt.seid = vsi->seid; 3001 ctxt.info = vsi->info; 3002 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3003 if (ret) { 3004 dev_info(&vsi->back->pdev->dev, 3005 "update vlan stripping failed, err %pe aq_err %s\n", 3006 ERR_PTR(ret), 3007 i40e_aq_str(&vsi->back->hw, 3008 vsi->back->hw.aq.asq_last_status)); 3009 } 3010 } 3011 3012 /** 3013 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 3014 * @vsi: the vsi being adjusted 3015 **/ 3016 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 3017 { 3018 struct i40e_vsi_context ctxt; 3019 int ret; 3020 3021 /* Don't modify stripping options if a port VLAN is active */ 3022 if (vsi->info.pvid) 3023 return; 3024 3025 if ((vsi->info.valid_sections & 3026 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 3027 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 3028 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 3029 return; /* already disabled */ 3030 3031 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3032 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 3033 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 3034 3035 ctxt.seid = vsi->seid; 3036 ctxt.info = vsi->info; 3037 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3038 if (ret) { 3039 dev_info(&vsi->back->pdev->dev, 3040 "update vlan stripping failed, err %pe aq_err %s\n", 3041 ERR_PTR(ret), 3042 i40e_aq_str(&vsi->back->hw, 3043 vsi->back->hw.aq.asq_last_status)); 3044 } 3045 } 3046 3047 /** 3048 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 3049 * @vsi: the vsi being configured 3050 * @vid: vlan id to be added (0 = untagged only , -1 = any) 3051 * 3052 * This is a helper function for adding a new MAC/VLAN filter with the 3053 * specified VLAN for each existing MAC address already in the hash table. 3054 * This function does *not* perform any accounting to update filters based on 3055 * VLAN mode. 3056 * 3057 * NOTE: this function expects to be called while under the 3058 * mac_filter_hash_lock 3059 **/ 3060 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3061 { 3062 struct i40e_mac_filter *f, *add_f; 3063 struct hlist_node *h; 3064 int bkt; 3065 3066 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3067 /* If we're asked to add a filter that has been marked for 3068 * removal, it is safe to simply restore it to active state. 3069 * __i40e_del_filter will have simply deleted any filters which 3070 * were previously marked NEW or FAILED, so if it is currently 3071 * marked REMOVE it must have previously been ACTIVE. Since we 3072 * haven't yet run the sync filters task, just restore this 3073 * filter to the ACTIVE state so that the sync task leaves it 3074 * in place. 3075 */ 3076 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) { 3077 f->state = I40E_FILTER_ACTIVE; 3078 continue; 3079 } else if (f->state == I40E_FILTER_REMOVE) { 3080 continue; 3081 } 3082 add_f = i40e_add_filter(vsi, f->macaddr, vid); 3083 if (!add_f) { 3084 dev_info(&vsi->back->pdev->dev, 3085 "Could not add vlan filter %d for %pM\n", 3086 vid, f->macaddr); 3087 return -ENOMEM; 3088 } 3089 } 3090 3091 return 0; 3092 } 3093 3094 /** 3095 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 3096 * @vsi: the VSI being configured 3097 * @vid: VLAN id to be added 3098 **/ 3099 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 3100 { 3101 int err; 3102 3103 if (vsi->info.pvid) 3104 return -EINVAL; 3105 3106 /* The network stack will attempt to add VID=0, with the intention to 3107 * receive priority tagged packets with a VLAN of 0. Our HW receives 3108 * these packets by default when configured to receive untagged 3109 * packets, so we don't need to add a filter for this case. 3110 * Additionally, HW interprets adding a VID=0 filter as meaning to 3111 * receive *only* tagged traffic and stops receiving untagged traffic. 3112 * Thus, we do not want to actually add a filter for VID=0 3113 */ 3114 if (!vid) 3115 return 0; 3116 3117 /* Locked once because all functions invoked below iterates list*/ 3118 spin_lock_bh(&vsi->mac_filter_hash_lock); 3119 err = i40e_add_vlan_all_mac(vsi, vid); 3120 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3121 if (err) 3122 return err; 3123 3124 /* schedule our worker thread which will take care of 3125 * applying the new filter changes 3126 */ 3127 i40e_service_event_schedule(vsi->back); 3128 return 0; 3129 } 3130 3131 /** 3132 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 3133 * @vsi: the vsi being configured 3134 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 3135 * 3136 * This function should be used to remove all VLAN filters which match the 3137 * given VID. It does not schedule the service event and does not take the 3138 * mac_filter_hash_lock so it may be combined with other operations under 3139 * a single invocation of the mac_filter_hash_lock. 3140 * 3141 * NOTE: this function expects to be called while under the 3142 * mac_filter_hash_lock 3143 */ 3144 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 3145 { 3146 struct i40e_mac_filter *f; 3147 struct hlist_node *h; 3148 int bkt; 3149 3150 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 3151 if (f->vlan == vid) 3152 __i40e_del_filter(vsi, f); 3153 } 3154 } 3155 3156 /** 3157 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 3158 * @vsi: the VSI being configured 3159 * @vid: VLAN id to be removed 3160 **/ 3161 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 3162 { 3163 if (!vid || vsi->info.pvid) 3164 return; 3165 3166 spin_lock_bh(&vsi->mac_filter_hash_lock); 3167 i40e_rm_vlan_all_mac(vsi, vid); 3168 spin_unlock_bh(&vsi->mac_filter_hash_lock); 3169 3170 /* schedule our worker thread which will take care of 3171 * applying the new filter changes 3172 */ 3173 i40e_service_event_schedule(vsi->back); 3174 } 3175 3176 /** 3177 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 3178 * @netdev: network interface to be adjusted 3179 * @proto: unused protocol value 3180 * @vid: vlan id to be added 3181 * 3182 * net_device_ops implementation for adding vlan ids 3183 **/ 3184 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 3185 __always_unused __be16 proto, u16 vid) 3186 { 3187 struct i40e_netdev_priv *np = netdev_priv(netdev); 3188 struct i40e_vsi *vsi = np->vsi; 3189 int ret = 0; 3190 3191 if (vid >= VLAN_N_VID) 3192 return -EINVAL; 3193 3194 ret = i40e_vsi_add_vlan(vsi, vid); 3195 if (!ret) 3196 set_bit(vid, vsi->active_vlans); 3197 3198 return ret; 3199 } 3200 3201 /** 3202 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 3203 * @netdev: network interface to be adjusted 3204 * @proto: unused protocol value 3205 * @vid: vlan id to be added 3206 **/ 3207 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 3208 __always_unused __be16 proto, u16 vid) 3209 { 3210 struct i40e_netdev_priv *np = netdev_priv(netdev); 3211 struct i40e_vsi *vsi = np->vsi; 3212 3213 if (vid >= VLAN_N_VID) 3214 return; 3215 set_bit(vid, vsi->active_vlans); 3216 } 3217 3218 /** 3219 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 3220 * @netdev: network interface to be adjusted 3221 * @proto: unused protocol value 3222 * @vid: vlan id to be removed 3223 * 3224 * net_device_ops implementation for removing vlan ids 3225 **/ 3226 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 3227 __always_unused __be16 proto, u16 vid) 3228 { 3229 struct i40e_netdev_priv *np = netdev_priv(netdev); 3230 struct i40e_vsi *vsi = np->vsi; 3231 3232 /* return code is ignored as there is nothing a user 3233 * can do about failure to remove and a log message was 3234 * already printed from the other function 3235 */ 3236 i40e_vsi_kill_vlan(vsi, vid); 3237 3238 clear_bit(vid, vsi->active_vlans); 3239 3240 return 0; 3241 } 3242 3243 /** 3244 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 3245 * @vsi: the vsi being brought back up 3246 **/ 3247 static void i40e_restore_vlan(struct i40e_vsi *vsi) 3248 { 3249 u16 vid; 3250 3251 if (!vsi->netdev) 3252 return; 3253 3254 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3255 i40e_vlan_stripping_enable(vsi); 3256 else 3257 i40e_vlan_stripping_disable(vsi); 3258 3259 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 3260 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 3261 vid); 3262 } 3263 3264 /** 3265 * i40e_vsi_add_pvid - Add pvid for the VSI 3266 * @vsi: the vsi being adjusted 3267 * @vid: the vlan id to set as a PVID 3268 **/ 3269 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 3270 { 3271 struct i40e_vsi_context ctxt; 3272 int ret; 3273 3274 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 3275 vsi->info.pvid = cpu_to_le16(vid); 3276 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 3277 I40E_AQ_VSI_PVLAN_INSERT_PVID | 3278 I40E_AQ_VSI_PVLAN_EMOD_STR; 3279 3280 ctxt.seid = vsi->seid; 3281 ctxt.info = vsi->info; 3282 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 3283 if (ret) { 3284 dev_info(&vsi->back->pdev->dev, 3285 "add pvid failed, err %pe aq_err %s\n", 3286 ERR_PTR(ret), 3287 i40e_aq_str(&vsi->back->hw, 3288 vsi->back->hw.aq.asq_last_status)); 3289 return -ENOENT; 3290 } 3291 3292 return 0; 3293 } 3294 3295 /** 3296 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3297 * @vsi: the vsi being adjusted 3298 * 3299 * Just use the vlan_rx_register() service to put it back to normal 3300 **/ 3301 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3302 { 3303 vsi->info.pvid = 0; 3304 3305 i40e_vlan_stripping_disable(vsi); 3306 } 3307 3308 /** 3309 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3310 * @vsi: ptr to the VSI 3311 * 3312 * If this function returns with an error, then it's possible one or 3313 * more of the rings is populated (while the rest are not). It is the 3314 * callers duty to clean those orphaned rings. 3315 * 3316 * Return 0 on success, negative on failure 3317 **/ 3318 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3319 { 3320 int i, err = 0; 3321 3322 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3323 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3324 3325 if (!i40e_enabled_xdp_vsi(vsi)) 3326 return err; 3327 3328 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3329 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3330 3331 return err; 3332 } 3333 3334 /** 3335 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3336 * @vsi: ptr to the VSI 3337 * 3338 * Free VSI's transmit software resources 3339 **/ 3340 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3341 { 3342 int i; 3343 3344 if (vsi->tx_rings) { 3345 for (i = 0; i < vsi->num_queue_pairs; i++) 3346 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3347 i40e_free_tx_resources(vsi->tx_rings[i]); 3348 } 3349 3350 if (vsi->xdp_rings) { 3351 for (i = 0; i < vsi->num_queue_pairs; i++) 3352 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3353 i40e_free_tx_resources(vsi->xdp_rings[i]); 3354 } 3355 } 3356 3357 /** 3358 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3359 * @vsi: ptr to the VSI 3360 * 3361 * If this function returns with an error, then it's possible one or 3362 * more of the rings is populated (while the rest are not). It is the 3363 * callers duty to clean those orphaned rings. 3364 * 3365 * Return 0 on success, negative on failure 3366 **/ 3367 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3368 { 3369 int i, err = 0; 3370 3371 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3372 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3373 return err; 3374 } 3375 3376 /** 3377 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3378 * @vsi: ptr to the VSI 3379 * 3380 * Free all receive software resources 3381 **/ 3382 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3383 { 3384 int i; 3385 3386 if (!vsi->rx_rings) 3387 return; 3388 3389 for (i = 0; i < vsi->num_queue_pairs; i++) 3390 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3391 i40e_free_rx_resources(vsi->rx_rings[i]); 3392 } 3393 3394 /** 3395 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3396 * @ring: The Tx ring to configure 3397 * 3398 * This enables/disables XPS for a given Tx descriptor ring 3399 * based on the TCs enabled for the VSI that ring belongs to. 3400 **/ 3401 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3402 { 3403 int cpu; 3404 3405 if (!ring->q_vector || !ring->netdev || ring->ch) 3406 return; 3407 3408 /* We only initialize XPS once, so as not to overwrite user settings */ 3409 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3410 return; 3411 3412 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3413 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3414 ring->queue_index); 3415 } 3416 3417 /** 3418 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3419 * @ring: The Tx or Rx ring 3420 * 3421 * Returns the AF_XDP buffer pool or NULL. 3422 **/ 3423 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3424 { 3425 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3426 int qid = ring->queue_index; 3427 3428 if (ring_is_xdp(ring)) 3429 qid -= ring->vsi->alloc_queue_pairs; 3430 3431 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3432 return NULL; 3433 3434 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3435 } 3436 3437 /** 3438 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3439 * @ring: The Tx ring to configure 3440 * 3441 * Configure the Tx descriptor ring in the HMC context. 3442 **/ 3443 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3444 { 3445 struct i40e_vsi *vsi = ring->vsi; 3446 u16 pf_q = vsi->base_queue + ring->queue_index; 3447 struct i40e_hw *hw = &vsi->back->hw; 3448 struct i40e_hmc_obj_txq tx_ctx; 3449 u32 qtx_ctl = 0; 3450 int err = 0; 3451 3452 if (ring_is_xdp(ring)) 3453 ring->xsk_pool = i40e_xsk_pool(ring); 3454 3455 /* some ATR related tx ring init */ 3456 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) { 3457 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 3458 ring->atr_count = 0; 3459 } else { 3460 ring->atr_sample_rate = 0; 3461 } 3462 3463 /* configure XPS */ 3464 i40e_config_xps_tx_ring(ring); 3465 3466 /* clear the context structure first */ 3467 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3468 3469 tx_ctx.new_context = 1; 3470 tx_ctx.base = (ring->dma / 128); 3471 tx_ctx.qlen = ring->count; 3472 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) || 3473 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) 3474 tx_ctx.fd_ena = 1; 3475 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags)) 3476 tx_ctx.timesync_ena = 1; 3477 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3478 if (vsi->type != I40E_VSI_FDIR) 3479 tx_ctx.head_wb_ena = 1; 3480 tx_ctx.head_wb_addr = ring->dma + 3481 (ring->count * sizeof(struct i40e_tx_desc)); 3482 3483 /* As part of VSI creation/update, FW allocates certain 3484 * Tx arbitration queue sets for each TC enabled for 3485 * the VSI. The FW returns the handles to these queue 3486 * sets as part of the response buffer to Add VSI, 3487 * Update VSI, etc. AQ commands. It is expected that 3488 * these queue set handles be associated with the Tx 3489 * queues by the driver as part of the TX queue context 3490 * initialization. This has to be done regardless of 3491 * DCB as by default everything is mapped to TC0. 3492 */ 3493 3494 if (ring->ch) 3495 tx_ctx.rdylist = 3496 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3497 3498 else 3499 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3500 3501 tx_ctx.rdylist_act = 0; 3502 3503 /* clear the context in the HMC */ 3504 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3505 if (err) { 3506 dev_info(&vsi->back->pdev->dev, 3507 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3508 ring->queue_index, pf_q, err); 3509 return -ENOMEM; 3510 } 3511 3512 /* set the context in the HMC */ 3513 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3514 if (err) { 3515 dev_info(&vsi->back->pdev->dev, 3516 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3517 ring->queue_index, pf_q, err); 3518 return -ENOMEM; 3519 } 3520 3521 /* Now associate this queue with this PCI function */ 3522 if (ring->ch) { 3523 if (ring->ch->type == I40E_VSI_VMDQ2) 3524 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3525 else 3526 return -EINVAL; 3527 3528 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3529 ring->ch->vsi_number); 3530 } else { 3531 if (vsi->type == I40E_VSI_VMDQ2) { 3532 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3533 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK, 3534 vsi->id); 3535 } else { 3536 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3537 } 3538 } 3539 3540 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id); 3541 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3542 i40e_flush(hw); 3543 3544 /* cache tail off for easier writes later */ 3545 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3546 3547 return 0; 3548 } 3549 3550 /** 3551 * i40e_rx_offset - Return expected offset into page to access data 3552 * @rx_ring: Ring we are requesting offset of 3553 * 3554 * Returns the offset value for ring into the data buffer. 3555 */ 3556 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3557 { 3558 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3559 } 3560 3561 /** 3562 * i40e_configure_rx_ring - Configure a receive ring context 3563 * @ring: The Rx ring to configure 3564 * 3565 * Configure the Rx descriptor ring in the HMC context. 3566 **/ 3567 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3568 { 3569 struct i40e_vsi *vsi = ring->vsi; 3570 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3571 u16 pf_q = vsi->base_queue + ring->queue_index; 3572 struct i40e_hw *hw = &vsi->back->hw; 3573 struct i40e_hmc_obj_rxq rx_ctx; 3574 int err = 0; 3575 bool ok; 3576 3577 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3578 3579 /* clear the context structure first */ 3580 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3581 3582 ring->rx_buf_len = vsi->rx_buf_len; 3583 3584 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 3585 if (ring->vsi->type != I40E_VSI_MAIN) 3586 goto skip; 3587 3588 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 3589 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3590 ring->queue_index, 3591 ring->q_vector->napi.napi_id, 3592 ring->rx_buf_len); 3593 if (err) 3594 return err; 3595 } 3596 3597 ring->xsk_pool = i40e_xsk_pool(ring); 3598 if (ring->xsk_pool) { 3599 xdp_rxq_info_unreg(&ring->xdp_rxq); 3600 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool); 3601 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 3602 ring->queue_index, 3603 ring->q_vector->napi.napi_id, 3604 ring->rx_buf_len); 3605 if (err) 3606 return err; 3607 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3608 MEM_TYPE_XSK_BUFF_POOL, 3609 NULL); 3610 if (err) 3611 return err; 3612 dev_info(&vsi->back->pdev->dev, 3613 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3614 ring->queue_index); 3615 3616 } else { 3617 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3618 MEM_TYPE_PAGE_SHARED, 3619 NULL); 3620 if (err) 3621 return err; 3622 } 3623 3624 skip: 3625 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq); 3626 3627 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3628 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3629 3630 rx_ctx.base = (ring->dma / 128); 3631 rx_ctx.qlen = ring->count; 3632 3633 /* use 16 byte descriptors */ 3634 rx_ctx.dsize = 0; 3635 3636 /* descriptor type is always zero 3637 * rx_ctx.dtype = 0; 3638 */ 3639 rx_ctx.hsplit_0 = 0; 3640 3641 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3642 if (hw->revision_id == 0) 3643 rx_ctx.lrxqthresh = 0; 3644 else 3645 rx_ctx.lrxqthresh = 1; 3646 rx_ctx.crcstrip = 1; 3647 rx_ctx.l2tsel = 1; 3648 /* this controls whether VLAN is stripped from inner headers */ 3649 rx_ctx.showiv = 0; 3650 /* set the prefena field to 1 because the manual says to */ 3651 rx_ctx.prefena = 1; 3652 3653 /* clear the context in the HMC */ 3654 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3655 if (err) { 3656 dev_info(&vsi->back->pdev->dev, 3657 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3658 ring->queue_index, pf_q, err); 3659 return -ENOMEM; 3660 } 3661 3662 /* set the context in the HMC */ 3663 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3664 if (err) { 3665 dev_info(&vsi->back->pdev->dev, 3666 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3667 ring->queue_index, pf_q, err); 3668 return -ENOMEM; 3669 } 3670 3671 /* configure Rx buffer alignment */ 3672 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) { 3673 if (I40E_2K_TOO_SMALL_WITH_PADDING) { 3674 dev_info(&vsi->back->pdev->dev, 3675 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n"); 3676 return -EOPNOTSUPP; 3677 } 3678 clear_ring_build_skb_enabled(ring); 3679 } else { 3680 set_ring_build_skb_enabled(ring); 3681 } 3682 3683 ring->rx_offset = i40e_rx_offset(ring); 3684 3685 /* cache tail for quicker writes, and clear the reg before use */ 3686 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3687 writel(0, ring->tail); 3688 3689 if (ring->xsk_pool) { 3690 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3691 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3692 } else { 3693 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3694 } 3695 if (!ok) { 3696 /* Log this in case the user has forgotten to give the kernel 3697 * any buffers, even later in the application. 3698 */ 3699 dev_info(&vsi->back->pdev->dev, 3700 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3701 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3702 ring->queue_index, pf_q); 3703 } 3704 3705 return 0; 3706 } 3707 3708 /** 3709 * i40e_vsi_configure_tx - Configure the VSI for Tx 3710 * @vsi: VSI structure describing this set of rings and resources 3711 * 3712 * Configure the Tx VSI for operation. 3713 **/ 3714 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3715 { 3716 int err = 0; 3717 u16 i; 3718 3719 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3720 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3721 3722 if (err || !i40e_enabled_xdp_vsi(vsi)) 3723 return err; 3724 3725 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3726 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3727 3728 return err; 3729 } 3730 3731 /** 3732 * i40e_vsi_configure_rx - Configure the VSI for Rx 3733 * @vsi: the VSI being configured 3734 * 3735 * Configure the Rx VSI for operation. 3736 **/ 3737 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3738 { 3739 int err = 0; 3740 u16 i; 3741 3742 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog); 3743 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi); 3744 3745 #if (PAGE_SIZE < 8192) 3746 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING && 3747 vsi->netdev->mtu <= ETH_DATA_LEN) { 3748 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3749 vsi->max_frame = vsi->rx_buf_len; 3750 } 3751 #endif 3752 3753 /* set up individual rings */ 3754 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3755 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3756 3757 return err; 3758 } 3759 3760 /** 3761 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3762 * @vsi: ptr to the VSI 3763 **/ 3764 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3765 { 3766 struct i40e_ring *tx_ring, *rx_ring; 3767 u16 qoffset, qcount; 3768 int i, n; 3769 3770 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) { 3771 /* Reset the TC information */ 3772 for (i = 0; i < vsi->num_queue_pairs; i++) { 3773 rx_ring = vsi->rx_rings[i]; 3774 tx_ring = vsi->tx_rings[i]; 3775 rx_ring->dcb_tc = 0; 3776 tx_ring->dcb_tc = 0; 3777 } 3778 return; 3779 } 3780 3781 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3782 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3783 continue; 3784 3785 qoffset = vsi->tc_config.tc_info[n].qoffset; 3786 qcount = vsi->tc_config.tc_info[n].qcount; 3787 for (i = qoffset; i < (qoffset + qcount); i++) { 3788 rx_ring = vsi->rx_rings[i]; 3789 tx_ring = vsi->tx_rings[i]; 3790 rx_ring->dcb_tc = n; 3791 tx_ring->dcb_tc = n; 3792 } 3793 } 3794 } 3795 3796 /** 3797 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3798 * @vsi: ptr to the VSI 3799 **/ 3800 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3801 { 3802 if (vsi->netdev) 3803 i40e_set_rx_mode(vsi->netdev); 3804 } 3805 3806 /** 3807 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3808 * @pf: Pointer to the targeted PF 3809 * 3810 * Set all flow director counters to 0. 3811 */ 3812 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3813 { 3814 pf->fd_tcp4_filter_cnt = 0; 3815 pf->fd_udp4_filter_cnt = 0; 3816 pf->fd_sctp4_filter_cnt = 0; 3817 pf->fd_ip4_filter_cnt = 0; 3818 pf->fd_tcp6_filter_cnt = 0; 3819 pf->fd_udp6_filter_cnt = 0; 3820 pf->fd_sctp6_filter_cnt = 0; 3821 pf->fd_ip6_filter_cnt = 0; 3822 } 3823 3824 /** 3825 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3826 * @vsi: Pointer to the targeted VSI 3827 * 3828 * This function replays the hlist on the hw where all the SB Flow Director 3829 * filters were saved. 3830 **/ 3831 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3832 { 3833 struct i40e_fdir_filter *filter; 3834 struct i40e_pf *pf = vsi->back; 3835 struct hlist_node *node; 3836 3837 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 3838 return; 3839 3840 /* Reset FDir counters as we're replaying all existing filters */ 3841 i40e_reset_fdir_filter_cnt(pf); 3842 3843 hlist_for_each_entry_safe(filter, node, 3844 &pf->fdir_filter_list, fdir_node) { 3845 i40e_add_del_fdir(vsi, filter, true); 3846 } 3847 } 3848 3849 /** 3850 * i40e_vsi_configure - Set up the VSI for action 3851 * @vsi: the VSI being configured 3852 **/ 3853 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3854 { 3855 int err; 3856 3857 i40e_set_vsi_rx_mode(vsi); 3858 i40e_restore_vlan(vsi); 3859 i40e_vsi_config_dcb_rings(vsi); 3860 err = i40e_vsi_configure_tx(vsi); 3861 if (!err) 3862 err = i40e_vsi_configure_rx(vsi); 3863 3864 return err; 3865 } 3866 3867 /** 3868 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3869 * @vsi: the VSI being configured 3870 **/ 3871 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3872 { 3873 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3874 struct i40e_pf *pf = vsi->back; 3875 struct i40e_hw *hw = &pf->hw; 3876 u16 vector; 3877 int i, q; 3878 u32 qp; 3879 3880 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3881 * and PFINT_LNKLSTn registers, e.g.: 3882 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3883 */ 3884 qp = vsi->base_queue; 3885 vector = vsi->base_vector; 3886 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3887 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3888 3889 q_vector->rx.next_update = jiffies + 1; 3890 q_vector->rx.target_itr = 3891 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3892 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3893 q_vector->rx.target_itr >> 1); 3894 q_vector->rx.current_itr = q_vector->rx.target_itr; 3895 3896 q_vector->tx.next_update = jiffies + 1; 3897 q_vector->tx.target_itr = 3898 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3899 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3900 q_vector->tx.target_itr >> 1); 3901 q_vector->tx.current_itr = q_vector->tx.target_itr; 3902 3903 /* Set ITR for software interrupts triggered after exiting 3904 * busy-loop polling. 3905 */ 3906 wr32(hw, I40E_PFINT_ITRN(I40E_SW_ITR, vector - 1), 3907 I40E_ITR_20K); 3908 3909 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3910 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3911 3912 /* begin of linked list for RX queue assigned to this vector */ 3913 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3914 for (q = 0; q < q_vector->num_ringpairs; q++) { 3915 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3916 u32 val; 3917 3918 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3919 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3920 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3921 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3922 (I40E_QUEUE_TYPE_TX << 3923 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3924 3925 wr32(hw, I40E_QINT_RQCTL(qp), val); 3926 3927 if (has_xdp) { 3928 /* TX queue with next queue set to TX */ 3929 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3930 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3931 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3932 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3933 (I40E_QUEUE_TYPE_TX << 3934 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3935 3936 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3937 } 3938 /* TX queue with next RX or end of linked list */ 3939 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3940 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3941 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3942 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3943 (I40E_QUEUE_TYPE_RX << 3944 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3945 3946 /* Terminate the linked list */ 3947 if (q == (q_vector->num_ringpairs - 1)) 3948 val |= (I40E_QUEUE_END_OF_LIST << 3949 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3950 3951 wr32(hw, I40E_QINT_TQCTL(qp), val); 3952 qp++; 3953 } 3954 } 3955 3956 i40e_flush(hw); 3957 } 3958 3959 /** 3960 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3961 * @pf: pointer to private device data structure 3962 **/ 3963 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3964 { 3965 struct i40e_hw *hw = &pf->hw; 3966 u32 val; 3967 3968 /* clear things first */ 3969 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3970 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3971 3972 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3973 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3974 I40E_PFINT_ICR0_ENA_GRST_MASK | 3975 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3976 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3977 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3978 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3979 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3980 3981 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 3982 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3983 3984 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 3985 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3986 3987 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3988 3989 /* SW_ITR_IDX = 0, but don't change INTENA */ 3990 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3991 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3992 3993 /* OTHER_ITR_IDX = 0 */ 3994 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3995 } 3996 3997 /** 3998 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3999 * @vsi: the VSI being configured 4000 **/ 4001 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 4002 { 4003 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 4004 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4005 struct i40e_pf *pf = vsi->back; 4006 struct i40e_hw *hw = &pf->hw; 4007 4008 /* set the ITR configuration */ 4009 q_vector->rx.next_update = jiffies + 1; 4010 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 4011 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 4012 q_vector->rx.current_itr = q_vector->rx.target_itr; 4013 q_vector->tx.next_update = jiffies + 1; 4014 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 4015 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 4016 q_vector->tx.current_itr = q_vector->tx.target_itr; 4017 4018 i40e_enable_misc_int_causes(pf); 4019 4020 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 4021 wr32(hw, I40E_PFINT_LNKLST0, 0); 4022 4023 /* Associate the queue pair to the vector and enable the queue 4024 * interrupt RX queue in linked list with next queue set to TX 4025 */ 4026 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX)); 4027 4028 if (i40e_enabled_xdp_vsi(vsi)) { 4029 /* TX queue in linked list with next queue set to TX */ 4030 wr32(hw, I40E_QINT_TQCTL(nextqp), 4031 I40E_QINT_TQCTL_VAL(nextqp, 0, TX)); 4032 } 4033 4034 /* last TX queue so the next RX queue doesn't matter */ 4035 wr32(hw, I40E_QINT_TQCTL(0), 4036 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX)); 4037 i40e_flush(hw); 4038 } 4039 4040 /** 4041 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 4042 * @pf: board private structure 4043 **/ 4044 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 4045 { 4046 struct i40e_hw *hw = &pf->hw; 4047 4048 wr32(hw, I40E_PFINT_DYN_CTL0, 4049 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 4050 i40e_flush(hw); 4051 } 4052 4053 /** 4054 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 4055 * @pf: board private structure 4056 **/ 4057 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 4058 { 4059 struct i40e_hw *hw = &pf->hw; 4060 u32 val; 4061 4062 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 4063 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 4064 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 4065 4066 wr32(hw, I40E_PFINT_DYN_CTL0, val); 4067 i40e_flush(hw); 4068 } 4069 4070 /** 4071 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 4072 * @irq: interrupt number 4073 * @data: pointer to a q_vector 4074 **/ 4075 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 4076 { 4077 struct i40e_q_vector *q_vector = data; 4078 4079 if (!q_vector->tx.ring && !q_vector->rx.ring) 4080 return IRQ_HANDLED; 4081 4082 napi_schedule_irqoff(&q_vector->napi); 4083 4084 return IRQ_HANDLED; 4085 } 4086 4087 /** 4088 * i40e_irq_affinity_notify - Callback for affinity changes 4089 * @notify: context as to what irq was changed 4090 * @mask: the new affinity mask 4091 * 4092 * This is a callback function used by the irq_set_affinity_notifier function 4093 * so that we may register to receive changes to the irq affinity masks. 4094 **/ 4095 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 4096 const cpumask_t *mask) 4097 { 4098 struct i40e_q_vector *q_vector = 4099 container_of(notify, struct i40e_q_vector, affinity_notify); 4100 4101 cpumask_copy(&q_vector->affinity_mask, mask); 4102 } 4103 4104 /** 4105 * i40e_irq_affinity_release - Callback for affinity notifier release 4106 * @ref: internal core kernel usage 4107 * 4108 * This is a callback function used by the irq_set_affinity_notifier function 4109 * to inform the current notification subscriber that they will no longer 4110 * receive notifications. 4111 **/ 4112 static void i40e_irq_affinity_release(struct kref *ref) {} 4113 4114 /** 4115 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 4116 * @vsi: the VSI being configured 4117 * @basename: name for the vector 4118 * 4119 * Allocates MSI-X vectors and requests interrupts from the kernel. 4120 **/ 4121 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 4122 { 4123 int q_vectors = vsi->num_q_vectors; 4124 struct i40e_pf *pf = vsi->back; 4125 int base = vsi->base_vector; 4126 int rx_int_idx = 0; 4127 int tx_int_idx = 0; 4128 int vector, err; 4129 int irq_num; 4130 int cpu; 4131 4132 for (vector = 0; vector < q_vectors; vector++) { 4133 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 4134 4135 irq_num = pf->msix_entries[base + vector].vector; 4136 4137 if (q_vector->tx.ring && q_vector->rx.ring) { 4138 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4139 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 4140 tx_int_idx++; 4141 } else if (q_vector->rx.ring) { 4142 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4143 "%s-%s-%d", basename, "rx", rx_int_idx++); 4144 } else if (q_vector->tx.ring) { 4145 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 4146 "%s-%s-%d", basename, "tx", tx_int_idx++); 4147 } else { 4148 /* skip this unused q_vector */ 4149 continue; 4150 } 4151 err = request_irq(irq_num, 4152 vsi->irq_handler, 4153 0, 4154 q_vector->name, 4155 q_vector); 4156 if (err) { 4157 dev_info(&pf->pdev->dev, 4158 "MSIX request_irq failed, error: %d\n", err); 4159 goto free_queue_irqs; 4160 } 4161 4162 /* register for affinity change notifications */ 4163 q_vector->irq_num = irq_num; 4164 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 4165 q_vector->affinity_notify.release = i40e_irq_affinity_release; 4166 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 4167 /* Spread affinity hints out across online CPUs. 4168 * 4169 * get_cpu_mask returns a static constant mask with 4170 * a permanent lifetime so it's ok to pass to 4171 * irq_update_affinity_hint without making a copy. 4172 */ 4173 cpu = cpumask_local_spread(q_vector->v_idx, -1); 4174 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 4175 } 4176 4177 vsi->irqs_ready = true; 4178 return 0; 4179 4180 free_queue_irqs: 4181 while (vector) { 4182 vector--; 4183 irq_num = pf->msix_entries[base + vector].vector; 4184 irq_set_affinity_notifier(irq_num, NULL); 4185 irq_update_affinity_hint(irq_num, NULL); 4186 free_irq(irq_num, &vsi->q_vectors[vector]); 4187 } 4188 return err; 4189 } 4190 4191 /** 4192 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 4193 * @vsi: the VSI being un-configured 4194 **/ 4195 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 4196 { 4197 struct i40e_pf *pf = vsi->back; 4198 struct i40e_hw *hw = &pf->hw; 4199 int base = vsi->base_vector; 4200 int i; 4201 4202 /* disable interrupt causation from each queue */ 4203 for (i = 0; i < vsi->num_queue_pairs; i++) { 4204 u32 val; 4205 4206 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 4207 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 4208 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 4209 4210 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 4211 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 4212 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 4213 4214 if (!i40e_enabled_xdp_vsi(vsi)) 4215 continue; 4216 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 4217 } 4218 4219 /* disable each interrupt */ 4220 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4221 for (i = vsi->base_vector; 4222 i < (vsi->num_q_vectors + vsi->base_vector); i++) 4223 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 4224 4225 i40e_flush(hw); 4226 for (i = 0; i < vsi->num_q_vectors; i++) 4227 synchronize_irq(pf->msix_entries[i + base].vector); 4228 } else { 4229 /* Legacy and MSI mode - this stops all interrupt handling */ 4230 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 4231 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 4232 i40e_flush(hw); 4233 synchronize_irq(pf->pdev->irq); 4234 } 4235 } 4236 4237 /** 4238 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 4239 * @vsi: the VSI being configured 4240 **/ 4241 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 4242 { 4243 struct i40e_pf *pf = vsi->back; 4244 int i; 4245 4246 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4247 for (i = 0; i < vsi->num_q_vectors; i++) 4248 i40e_irq_dynamic_enable(vsi, i); 4249 } else { 4250 i40e_irq_dynamic_enable_icr0(pf); 4251 } 4252 4253 i40e_flush(&pf->hw); 4254 return 0; 4255 } 4256 4257 /** 4258 * i40e_free_misc_vector - Free the vector that handles non-queue events 4259 * @pf: board private structure 4260 **/ 4261 static void i40e_free_misc_vector(struct i40e_pf *pf) 4262 { 4263 /* Disable ICR 0 */ 4264 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 4265 i40e_flush(&pf->hw); 4266 4267 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) { 4268 free_irq(pf->msix_entries[0].vector, pf); 4269 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 4270 } 4271 } 4272 4273 /** 4274 * i40e_intr - MSI/Legacy and non-queue interrupt handler 4275 * @irq: interrupt number 4276 * @data: pointer to a q_vector 4277 * 4278 * This is the handler used for all MSI/Legacy interrupts, and deals 4279 * with both queue and non-queue interrupts. This is also used in 4280 * MSIX mode to handle the non-queue interrupts. 4281 **/ 4282 static irqreturn_t i40e_intr(int irq, void *data) 4283 { 4284 struct i40e_pf *pf = (struct i40e_pf *)data; 4285 struct i40e_hw *hw = &pf->hw; 4286 irqreturn_t ret = IRQ_NONE; 4287 u32 icr0, icr0_remaining; 4288 u32 val, ena_mask; 4289 4290 icr0 = rd32(hw, I40E_PFINT_ICR0); 4291 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 4292 4293 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4294 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4295 goto enable_intr; 4296 4297 /* if interrupt but no bits showing, must be SWINT */ 4298 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4299 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4300 pf->sw_int_count++; 4301 4302 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 4303 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4304 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4305 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4306 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4307 } 4308 4309 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4310 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4311 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 4312 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4313 4314 /* We do not have a way to disarm Queue causes while leaving 4315 * interrupt enabled for all other causes, ideally 4316 * interrupt should be disabled while we are in NAPI but 4317 * this is not a performance path and napi_schedule() 4318 * can deal with rescheduling. 4319 */ 4320 if (!test_bit(__I40E_DOWN, pf->state)) 4321 napi_schedule_irqoff(&q_vector->napi); 4322 } 4323 4324 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4325 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4326 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4327 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4328 } 4329 4330 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4331 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4332 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4333 } 4334 4335 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4336 /* disable any further VFLR event notifications */ 4337 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4338 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4339 4340 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4341 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4342 } else { 4343 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4344 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4345 } 4346 } 4347 4348 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4349 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4350 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4351 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4352 val = rd32(hw, I40E_GLGEN_RSTAT); 4353 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val); 4354 if (val == I40E_RESET_CORER) { 4355 pf->corer_count++; 4356 } else if (val == I40E_RESET_GLOBR) { 4357 pf->globr_count++; 4358 } else if (val == I40E_RESET_EMPR) { 4359 pf->empr_count++; 4360 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4361 } 4362 } 4363 4364 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4365 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4366 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4367 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4368 rd32(hw, I40E_PFHMC_ERRORINFO), 4369 rd32(hw, I40E_PFHMC_ERRORDATA)); 4370 } 4371 4372 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4373 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4374 4375 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4376 schedule_work(&pf->ptp_extts0_work); 4377 4378 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4379 i40e_ptp_tx_hwtstamp(pf); 4380 4381 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4382 } 4383 4384 /* If a critical error is pending we have no choice but to reset the 4385 * device. 4386 * Report and mask out any remaining unexpected interrupts. 4387 */ 4388 icr0_remaining = icr0 & ena_mask; 4389 if (icr0_remaining) { 4390 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4391 icr0_remaining); 4392 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4393 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4394 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4395 dev_info(&pf->pdev->dev, "device will be reset\n"); 4396 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4397 i40e_service_event_schedule(pf); 4398 } 4399 ena_mask &= ~icr0_remaining; 4400 } 4401 ret = IRQ_HANDLED; 4402 4403 enable_intr: 4404 /* re-enable interrupt causes */ 4405 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4406 if (!test_bit(__I40E_DOWN, pf->state) || 4407 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4408 i40e_service_event_schedule(pf); 4409 i40e_irq_dynamic_enable_icr0(pf); 4410 } 4411 4412 return ret; 4413 } 4414 4415 /** 4416 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4417 * @tx_ring: tx ring to clean 4418 * @budget: how many cleans we're allowed 4419 * 4420 * Returns true if there's any budget left (e.g. the clean is finished) 4421 **/ 4422 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4423 { 4424 struct i40e_vsi *vsi = tx_ring->vsi; 4425 u16 i = tx_ring->next_to_clean; 4426 struct i40e_tx_buffer *tx_buf; 4427 struct i40e_tx_desc *tx_desc; 4428 4429 tx_buf = &tx_ring->tx_bi[i]; 4430 tx_desc = I40E_TX_DESC(tx_ring, i); 4431 i -= tx_ring->count; 4432 4433 do { 4434 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4435 4436 /* if next_to_watch is not set then there is no work pending */ 4437 if (!eop_desc) 4438 break; 4439 4440 /* prevent any other reads prior to eop_desc */ 4441 smp_rmb(); 4442 4443 /* if the descriptor isn't done, no work yet to do */ 4444 if (!(eop_desc->cmd_type_offset_bsz & 4445 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4446 break; 4447 4448 /* clear next_to_watch to prevent false hangs */ 4449 tx_buf->next_to_watch = NULL; 4450 4451 tx_desc->buffer_addr = 0; 4452 tx_desc->cmd_type_offset_bsz = 0; 4453 /* move past filter desc */ 4454 tx_buf++; 4455 tx_desc++; 4456 i++; 4457 if (unlikely(!i)) { 4458 i -= tx_ring->count; 4459 tx_buf = tx_ring->tx_bi; 4460 tx_desc = I40E_TX_DESC(tx_ring, 0); 4461 } 4462 /* unmap skb header data */ 4463 dma_unmap_single(tx_ring->dev, 4464 dma_unmap_addr(tx_buf, dma), 4465 dma_unmap_len(tx_buf, len), 4466 DMA_TO_DEVICE); 4467 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4468 kfree(tx_buf->raw_buf); 4469 4470 tx_buf->raw_buf = NULL; 4471 tx_buf->tx_flags = 0; 4472 tx_buf->next_to_watch = NULL; 4473 dma_unmap_len_set(tx_buf, len, 0); 4474 tx_desc->buffer_addr = 0; 4475 tx_desc->cmd_type_offset_bsz = 0; 4476 4477 /* move us past the eop_desc for start of next FD desc */ 4478 tx_buf++; 4479 tx_desc++; 4480 i++; 4481 if (unlikely(!i)) { 4482 i -= tx_ring->count; 4483 tx_buf = tx_ring->tx_bi; 4484 tx_desc = I40E_TX_DESC(tx_ring, 0); 4485 } 4486 4487 /* update budget accounting */ 4488 budget--; 4489 } while (likely(budget)); 4490 4491 i += tx_ring->count; 4492 tx_ring->next_to_clean = i; 4493 4494 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) 4495 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4496 4497 return budget > 0; 4498 } 4499 4500 /** 4501 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4502 * @irq: interrupt number 4503 * @data: pointer to a q_vector 4504 **/ 4505 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4506 { 4507 struct i40e_q_vector *q_vector = data; 4508 struct i40e_vsi *vsi; 4509 4510 if (!q_vector->tx.ring) 4511 return IRQ_HANDLED; 4512 4513 vsi = q_vector->tx.ring->vsi; 4514 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4515 4516 return IRQ_HANDLED; 4517 } 4518 4519 /** 4520 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4521 * @vsi: the VSI being configured 4522 * @v_idx: vector index 4523 * @qp_idx: queue pair index 4524 **/ 4525 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4526 { 4527 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4528 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4529 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4530 4531 tx_ring->q_vector = q_vector; 4532 tx_ring->next = q_vector->tx.ring; 4533 q_vector->tx.ring = tx_ring; 4534 q_vector->tx.count++; 4535 4536 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4537 if (i40e_enabled_xdp_vsi(vsi)) { 4538 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4539 4540 xdp_ring->q_vector = q_vector; 4541 xdp_ring->next = q_vector->tx.ring; 4542 q_vector->tx.ring = xdp_ring; 4543 q_vector->tx.count++; 4544 } 4545 4546 rx_ring->q_vector = q_vector; 4547 rx_ring->next = q_vector->rx.ring; 4548 q_vector->rx.ring = rx_ring; 4549 q_vector->rx.count++; 4550 } 4551 4552 /** 4553 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4554 * @vsi: the VSI being configured 4555 * 4556 * This function maps descriptor rings to the queue-specific vectors 4557 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4558 * one vector per queue pair, but on a constrained vector budget, we 4559 * group the queue pairs as "efficiently" as possible. 4560 **/ 4561 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4562 { 4563 int qp_remaining = vsi->num_queue_pairs; 4564 int q_vectors = vsi->num_q_vectors; 4565 int num_ringpairs; 4566 int v_start = 0; 4567 int qp_idx = 0; 4568 4569 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4570 * group them so there are multiple queues per vector. 4571 * It is also important to go through all the vectors available to be 4572 * sure that if we don't use all the vectors, that the remaining vectors 4573 * are cleared. This is especially important when decreasing the 4574 * number of queues in use. 4575 */ 4576 for (; v_start < q_vectors; v_start++) { 4577 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4578 4579 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4580 4581 q_vector->num_ringpairs = num_ringpairs; 4582 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4583 4584 q_vector->rx.count = 0; 4585 q_vector->tx.count = 0; 4586 q_vector->rx.ring = NULL; 4587 q_vector->tx.ring = NULL; 4588 4589 while (num_ringpairs--) { 4590 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4591 qp_idx++; 4592 qp_remaining--; 4593 } 4594 } 4595 } 4596 4597 /** 4598 * i40e_vsi_request_irq - Request IRQ from the OS 4599 * @vsi: the VSI being configured 4600 * @basename: name for the vector 4601 **/ 4602 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4603 { 4604 struct i40e_pf *pf = vsi->back; 4605 int err; 4606 4607 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 4608 err = i40e_vsi_request_irq_msix(vsi, basename); 4609 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) 4610 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4611 pf->int_name, pf); 4612 else 4613 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4614 pf->int_name, pf); 4615 4616 if (err) 4617 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4618 4619 return err; 4620 } 4621 4622 #ifdef CONFIG_NET_POLL_CONTROLLER 4623 /** 4624 * i40e_netpoll - A Polling 'interrupt' handler 4625 * @netdev: network interface device structure 4626 * 4627 * This is used by netconsole to send skbs without having to re-enable 4628 * interrupts. It's not called while the normal interrupt routine is executing. 4629 **/ 4630 static void i40e_netpoll(struct net_device *netdev) 4631 { 4632 struct i40e_netdev_priv *np = netdev_priv(netdev); 4633 struct i40e_vsi *vsi = np->vsi; 4634 struct i40e_pf *pf = vsi->back; 4635 int i; 4636 4637 /* if interface is down do nothing */ 4638 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4639 return; 4640 4641 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4642 for (i = 0; i < vsi->num_q_vectors; i++) 4643 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4644 } else { 4645 i40e_intr(pf->pdev->irq, netdev); 4646 } 4647 } 4648 #endif 4649 4650 #define I40E_QTX_ENA_WAIT_COUNT 50 4651 4652 /** 4653 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4654 * @pf: the PF being configured 4655 * @pf_q: the PF queue 4656 * @enable: enable or disable state of the queue 4657 * 4658 * This routine will wait for the given Tx queue of the PF to reach the 4659 * enabled or disabled state. 4660 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4661 * multiple retries; else will return 0 in case of success. 4662 **/ 4663 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4664 { 4665 int i; 4666 u32 tx_reg; 4667 4668 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4669 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4670 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4671 break; 4672 4673 usleep_range(10, 20); 4674 } 4675 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4676 return -ETIMEDOUT; 4677 4678 return 0; 4679 } 4680 4681 /** 4682 * i40e_control_tx_q - Start or stop a particular Tx queue 4683 * @pf: the PF structure 4684 * @pf_q: the PF queue to configure 4685 * @enable: start or stop the queue 4686 * 4687 * This function enables or disables a single queue. Note that any delay 4688 * required after the operation is expected to be handled by the caller of 4689 * this function. 4690 **/ 4691 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4692 { 4693 struct i40e_hw *hw = &pf->hw; 4694 u32 tx_reg; 4695 int i; 4696 4697 /* warn the TX unit of coming changes */ 4698 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4699 if (!enable) 4700 usleep_range(10, 20); 4701 4702 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4703 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4704 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4705 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4706 break; 4707 usleep_range(1000, 2000); 4708 } 4709 4710 /* Skip if the queue is already in the requested state */ 4711 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4712 return; 4713 4714 /* turn on/off the queue */ 4715 if (enable) { 4716 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4717 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4718 } else { 4719 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4720 } 4721 4722 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4723 } 4724 4725 /** 4726 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4727 * @seid: VSI SEID 4728 * @pf: the PF structure 4729 * @pf_q: the PF queue to configure 4730 * @is_xdp: true if the queue is used for XDP 4731 * @enable: start or stop the queue 4732 **/ 4733 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4734 bool is_xdp, bool enable) 4735 { 4736 int ret; 4737 4738 i40e_control_tx_q(pf, pf_q, enable); 4739 4740 /* wait for the change to finish */ 4741 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4742 if (ret) { 4743 dev_info(&pf->pdev->dev, 4744 "VSI seid %d %sTx ring %d %sable timeout\n", 4745 seid, (is_xdp ? "XDP " : ""), pf_q, 4746 (enable ? "en" : "dis")); 4747 } 4748 4749 return ret; 4750 } 4751 4752 /** 4753 * i40e_vsi_enable_tx - Start a VSI's rings 4754 * @vsi: the VSI being configured 4755 **/ 4756 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4757 { 4758 struct i40e_pf *pf = vsi->back; 4759 int i, pf_q, ret = 0; 4760 4761 pf_q = vsi->base_queue; 4762 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4763 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4764 pf_q, 4765 false /*is xdp*/, true); 4766 if (ret) 4767 break; 4768 4769 if (!i40e_enabled_xdp_vsi(vsi)) 4770 continue; 4771 4772 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4773 pf_q + vsi->alloc_queue_pairs, 4774 true /*is xdp*/, true); 4775 if (ret) 4776 break; 4777 } 4778 return ret; 4779 } 4780 4781 /** 4782 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4783 * @pf: the PF being configured 4784 * @pf_q: the PF queue 4785 * @enable: enable or disable state of the queue 4786 * 4787 * This routine will wait for the given Rx queue of the PF to reach the 4788 * enabled or disabled state. 4789 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4790 * multiple retries; else will return 0 in case of success. 4791 **/ 4792 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4793 { 4794 int i; 4795 u32 rx_reg; 4796 4797 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4798 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4799 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4800 break; 4801 4802 usleep_range(10, 20); 4803 } 4804 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4805 return -ETIMEDOUT; 4806 4807 return 0; 4808 } 4809 4810 /** 4811 * i40e_control_rx_q - Start or stop a particular Rx queue 4812 * @pf: the PF structure 4813 * @pf_q: the PF queue to configure 4814 * @enable: start or stop the queue 4815 * 4816 * This function enables or disables a single queue. Note that 4817 * any delay required after the operation is expected to be 4818 * handled by the caller of this function. 4819 **/ 4820 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4821 { 4822 struct i40e_hw *hw = &pf->hw; 4823 u32 rx_reg; 4824 int i; 4825 4826 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4827 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4828 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4829 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4830 break; 4831 usleep_range(1000, 2000); 4832 } 4833 4834 /* Skip if the queue is already in the requested state */ 4835 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4836 return; 4837 4838 /* turn on/off the queue */ 4839 if (enable) 4840 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4841 else 4842 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4843 4844 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4845 } 4846 4847 /** 4848 * i40e_control_wait_rx_q 4849 * @pf: the PF structure 4850 * @pf_q: queue being configured 4851 * @enable: start or stop the rings 4852 * 4853 * This function enables or disables a single queue along with waiting 4854 * for the change to finish. The caller of this function should handle 4855 * the delays needed in the case of disabling queues. 4856 **/ 4857 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4858 { 4859 int ret = 0; 4860 4861 i40e_control_rx_q(pf, pf_q, enable); 4862 4863 /* wait for the change to finish */ 4864 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4865 if (ret) 4866 return ret; 4867 4868 return ret; 4869 } 4870 4871 /** 4872 * i40e_vsi_enable_rx - Start a VSI's rings 4873 * @vsi: the VSI being configured 4874 **/ 4875 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4876 { 4877 struct i40e_pf *pf = vsi->back; 4878 int i, pf_q, ret = 0; 4879 4880 pf_q = vsi->base_queue; 4881 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4882 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4883 if (ret) { 4884 dev_info(&pf->pdev->dev, 4885 "VSI seid %d Rx ring %d enable timeout\n", 4886 vsi->seid, pf_q); 4887 break; 4888 } 4889 } 4890 4891 return ret; 4892 } 4893 4894 /** 4895 * i40e_vsi_start_rings - Start a VSI's rings 4896 * @vsi: the VSI being configured 4897 **/ 4898 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4899 { 4900 int ret = 0; 4901 4902 /* do rx first for enable and last for disable */ 4903 ret = i40e_vsi_enable_rx(vsi); 4904 if (ret) 4905 return ret; 4906 ret = i40e_vsi_enable_tx(vsi); 4907 4908 return ret; 4909 } 4910 4911 #define I40E_DISABLE_TX_GAP_MSEC 50 4912 4913 /** 4914 * i40e_vsi_stop_rings - Stop a VSI's rings 4915 * @vsi: the VSI being configured 4916 **/ 4917 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4918 { 4919 struct i40e_pf *pf = vsi->back; 4920 u32 pf_q, tx_q_end, rx_q_end; 4921 4922 /* When port TX is suspended, don't wait */ 4923 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4924 return i40e_vsi_stop_rings_no_wait(vsi); 4925 4926 tx_q_end = vsi->base_queue + 4927 vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 4928 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4929 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false); 4930 4931 rx_q_end = vsi->base_queue + vsi->num_queue_pairs; 4932 for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++) 4933 i40e_control_rx_q(pf, pf_q, false); 4934 4935 msleep(I40E_DISABLE_TX_GAP_MSEC); 4936 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++) 4937 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4938 4939 i40e_vsi_wait_queues_disabled(vsi); 4940 } 4941 4942 /** 4943 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4944 * @vsi: the VSI being shutdown 4945 * 4946 * This function stops all the rings for a VSI but does not delay to verify 4947 * that rings have been disabled. It is expected that the caller is shutting 4948 * down multiple VSIs at once and will delay together for all the VSIs after 4949 * initiating the shutdown. This is particularly useful for shutting down lots 4950 * of VFs together. Otherwise, a large delay can be incurred while configuring 4951 * each VSI in serial. 4952 **/ 4953 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4954 { 4955 struct i40e_pf *pf = vsi->back; 4956 int i, pf_q; 4957 4958 pf_q = vsi->base_queue; 4959 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4960 i40e_control_tx_q(pf, pf_q, false); 4961 i40e_control_rx_q(pf, pf_q, false); 4962 } 4963 } 4964 4965 /** 4966 * i40e_vsi_free_irq - Free the irq association with the OS 4967 * @vsi: the VSI being configured 4968 **/ 4969 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4970 { 4971 struct i40e_pf *pf = vsi->back; 4972 struct i40e_hw *hw = &pf->hw; 4973 int base = vsi->base_vector; 4974 u32 val, qp; 4975 int i; 4976 4977 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 4978 if (!vsi->q_vectors) 4979 return; 4980 4981 if (!vsi->irqs_ready) 4982 return; 4983 4984 vsi->irqs_ready = false; 4985 for (i = 0; i < vsi->num_q_vectors; i++) { 4986 int irq_num; 4987 u16 vector; 4988 4989 vector = i + base; 4990 irq_num = pf->msix_entries[vector].vector; 4991 4992 /* free only the irqs that were actually requested */ 4993 if (!vsi->q_vectors[i] || 4994 !vsi->q_vectors[i]->num_ringpairs) 4995 continue; 4996 4997 /* clear the affinity notifier in the IRQ descriptor */ 4998 irq_set_affinity_notifier(irq_num, NULL); 4999 /* remove our suggested affinity mask for this IRQ */ 5000 irq_update_affinity_hint(irq_num, NULL); 5001 free_irq(irq_num, vsi->q_vectors[i]); 5002 5003 /* Tear down the interrupt queue link list 5004 * 5005 * We know that they come in pairs and always 5006 * the Rx first, then the Tx. To clear the 5007 * link list, stick the EOL value into the 5008 * next_q field of the registers. 5009 */ 5010 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 5011 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, 5012 val); 5013 val |= I40E_QUEUE_END_OF_LIST 5014 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 5015 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 5016 5017 while (qp != I40E_QUEUE_END_OF_LIST) { 5018 u32 next; 5019 5020 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5021 5022 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5023 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5024 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5025 I40E_QINT_RQCTL_INTEVENT_MASK); 5026 5027 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5028 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5029 5030 wr32(hw, I40E_QINT_RQCTL(qp), val); 5031 5032 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5033 5034 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK, 5035 val); 5036 5037 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5038 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5039 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5040 I40E_QINT_TQCTL_INTEVENT_MASK); 5041 5042 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5043 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5044 5045 wr32(hw, I40E_QINT_TQCTL(qp), val); 5046 qp = next; 5047 } 5048 } 5049 } else { 5050 free_irq(pf->pdev->irq, pf); 5051 5052 val = rd32(hw, I40E_PFINT_LNKLST0); 5053 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val); 5054 val |= I40E_QUEUE_END_OF_LIST 5055 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 5056 wr32(hw, I40E_PFINT_LNKLST0, val); 5057 5058 val = rd32(hw, I40E_QINT_RQCTL(qp)); 5059 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 5060 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 5061 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 5062 I40E_QINT_RQCTL_INTEVENT_MASK); 5063 5064 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 5065 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 5066 5067 wr32(hw, I40E_QINT_RQCTL(qp), val); 5068 5069 val = rd32(hw, I40E_QINT_TQCTL(qp)); 5070 5071 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 5072 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 5073 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 5074 I40E_QINT_TQCTL_INTEVENT_MASK); 5075 5076 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 5077 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 5078 5079 wr32(hw, I40E_QINT_TQCTL(qp), val); 5080 } 5081 } 5082 5083 /** 5084 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 5085 * @vsi: the VSI being configured 5086 * @v_idx: Index of vector to be freed 5087 * 5088 * This function frees the memory allocated to the q_vector. In addition if 5089 * NAPI is enabled it will delete any references to the NAPI struct prior 5090 * to freeing the q_vector. 5091 **/ 5092 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 5093 { 5094 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 5095 struct i40e_ring *ring; 5096 5097 if (!q_vector) 5098 return; 5099 5100 /* disassociate q_vector from rings */ 5101 i40e_for_each_ring(ring, q_vector->tx) 5102 ring->q_vector = NULL; 5103 5104 i40e_for_each_ring(ring, q_vector->rx) 5105 ring->q_vector = NULL; 5106 5107 /* only VSI w/ an associated netdev is set up w/ NAPI */ 5108 if (vsi->netdev) 5109 netif_napi_del(&q_vector->napi); 5110 5111 vsi->q_vectors[v_idx] = NULL; 5112 5113 kfree_rcu(q_vector, rcu); 5114 } 5115 5116 /** 5117 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 5118 * @vsi: the VSI being un-configured 5119 * 5120 * This frees the memory allocated to the q_vectors and 5121 * deletes references to the NAPI struct. 5122 **/ 5123 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 5124 { 5125 int v_idx; 5126 5127 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 5128 i40e_free_q_vector(vsi, v_idx); 5129 } 5130 5131 /** 5132 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 5133 * @pf: board private structure 5134 **/ 5135 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 5136 { 5137 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 5138 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 5139 pci_disable_msix(pf->pdev); 5140 kfree(pf->msix_entries); 5141 pf->msix_entries = NULL; 5142 kfree(pf->irq_pile); 5143 pf->irq_pile = NULL; 5144 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 5145 pci_disable_msi(pf->pdev); 5146 } 5147 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 5148 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 5149 } 5150 5151 /** 5152 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 5153 * @pf: board private structure 5154 * 5155 * We go through and clear interrupt specific resources and reset the structure 5156 * to pre-load conditions 5157 **/ 5158 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 5159 { 5160 struct i40e_vsi *vsi; 5161 int i; 5162 5163 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) 5164 i40e_free_misc_vector(pf); 5165 5166 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 5167 I40E_IWARP_IRQ_PILE_ID); 5168 5169 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 5170 5171 i40e_pf_for_each_vsi(pf, i, vsi) 5172 i40e_vsi_free_q_vectors(vsi); 5173 5174 i40e_reset_interrupt_capability(pf); 5175 } 5176 5177 /** 5178 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5179 * @vsi: the VSI being configured 5180 **/ 5181 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 5182 { 5183 int q_idx; 5184 5185 if (!vsi->netdev) 5186 return; 5187 5188 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5189 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5190 5191 if (q_vector->rx.ring || q_vector->tx.ring) 5192 napi_enable(&q_vector->napi); 5193 } 5194 } 5195 5196 /** 5197 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5198 * @vsi: the VSI being configured 5199 **/ 5200 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 5201 { 5202 int q_idx; 5203 5204 if (!vsi->netdev) 5205 return; 5206 5207 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 5208 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 5209 5210 if (q_vector->rx.ring || q_vector->tx.ring) 5211 napi_disable(&q_vector->napi); 5212 } 5213 } 5214 5215 /** 5216 * i40e_vsi_close - Shut down a VSI 5217 * @vsi: the vsi to be quelled 5218 **/ 5219 static void i40e_vsi_close(struct i40e_vsi *vsi) 5220 { 5221 struct i40e_pf *pf = vsi->back; 5222 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 5223 i40e_down(vsi); 5224 i40e_vsi_free_irq(vsi); 5225 i40e_vsi_free_tx_resources(vsi); 5226 i40e_vsi_free_rx_resources(vsi); 5227 vsi->current_netdev_flags = 0; 5228 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 5229 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 5230 set_bit(__I40E_CLIENT_RESET, pf->state); 5231 } 5232 5233 /** 5234 * i40e_quiesce_vsi - Pause a given VSI 5235 * @vsi: the VSI being paused 5236 **/ 5237 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 5238 { 5239 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 5240 return; 5241 5242 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 5243 if (vsi->netdev && netif_running(vsi->netdev)) 5244 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 5245 else 5246 i40e_vsi_close(vsi); 5247 } 5248 5249 /** 5250 * i40e_unquiesce_vsi - Resume a given VSI 5251 * @vsi: the VSI being resumed 5252 **/ 5253 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 5254 { 5255 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 5256 return; 5257 5258 if (vsi->netdev && netif_running(vsi->netdev)) 5259 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 5260 else 5261 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 5262 } 5263 5264 /** 5265 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 5266 * @pf: the PF 5267 **/ 5268 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 5269 { 5270 struct i40e_vsi *vsi; 5271 int v; 5272 5273 i40e_pf_for_each_vsi(pf, v, vsi) 5274 i40e_quiesce_vsi(vsi); 5275 } 5276 5277 /** 5278 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 5279 * @pf: the PF 5280 **/ 5281 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 5282 { 5283 struct i40e_vsi *vsi; 5284 int v; 5285 5286 i40e_pf_for_each_vsi(pf, v, vsi) 5287 i40e_unquiesce_vsi(vsi); 5288 } 5289 5290 /** 5291 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5292 * @vsi: the VSI being configured 5293 * 5294 * Wait until all queues on a given VSI have been disabled. 5295 **/ 5296 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5297 { 5298 struct i40e_pf *pf = vsi->back; 5299 int i, pf_q, ret; 5300 5301 pf_q = vsi->base_queue; 5302 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5303 /* Check and wait for the Tx queue */ 5304 ret = i40e_pf_txq_wait(pf, pf_q, false); 5305 if (ret) { 5306 dev_info(&pf->pdev->dev, 5307 "VSI seid %d Tx ring %d disable timeout\n", 5308 vsi->seid, pf_q); 5309 return ret; 5310 } 5311 5312 if (!i40e_enabled_xdp_vsi(vsi)) 5313 goto wait_rx; 5314 5315 /* Check and wait for the XDP Tx queue */ 5316 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5317 false); 5318 if (ret) { 5319 dev_info(&pf->pdev->dev, 5320 "VSI seid %d XDP Tx ring %d disable timeout\n", 5321 vsi->seid, pf_q); 5322 return ret; 5323 } 5324 wait_rx: 5325 /* Check and wait for the Rx queue */ 5326 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5327 if (ret) { 5328 dev_info(&pf->pdev->dev, 5329 "VSI seid %d Rx ring %d disable timeout\n", 5330 vsi->seid, pf_q); 5331 return ret; 5332 } 5333 } 5334 5335 return 0; 5336 } 5337 5338 #ifdef CONFIG_I40E_DCB 5339 /** 5340 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5341 * @pf: the PF 5342 * 5343 * This function waits for the queues to be in disabled state for all the 5344 * VSIs that are managed by this PF. 5345 **/ 5346 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5347 { 5348 struct i40e_vsi *vsi; 5349 int v, ret = 0; 5350 5351 i40e_pf_for_each_vsi(pf, v, vsi) { 5352 ret = i40e_vsi_wait_queues_disabled(vsi); 5353 if (ret) 5354 break; 5355 } 5356 5357 return ret; 5358 } 5359 5360 #endif 5361 5362 /** 5363 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5364 * @pf: pointer to PF 5365 * 5366 * Get TC map for ISCSI PF type that will include iSCSI TC 5367 * and LAN TC. 5368 **/ 5369 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5370 { 5371 struct i40e_dcb_app_priority_table app; 5372 struct i40e_hw *hw = &pf->hw; 5373 u8 enabled_tc = 1; /* TC0 is always enabled */ 5374 u8 tc, i; 5375 /* Get the iSCSI APP TLV */ 5376 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5377 5378 for (i = 0; i < dcbcfg->numapps; i++) { 5379 app = dcbcfg->app[i]; 5380 if (app.selector == I40E_APP_SEL_TCPIP && 5381 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5382 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5383 enabled_tc |= BIT(tc); 5384 break; 5385 } 5386 } 5387 5388 return enabled_tc; 5389 } 5390 5391 /** 5392 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5393 * @dcbcfg: the corresponding DCBx configuration structure 5394 * 5395 * Return the number of TCs from given DCBx configuration 5396 **/ 5397 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5398 { 5399 int i, tc_unused = 0; 5400 u8 num_tc = 0; 5401 u8 ret = 0; 5402 5403 /* Scan the ETS Config Priority Table to find 5404 * traffic class enabled for a given priority 5405 * and create a bitmask of enabled TCs 5406 */ 5407 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5408 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5409 5410 /* Now scan the bitmask to check for 5411 * contiguous TCs starting with TC0 5412 */ 5413 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5414 if (num_tc & BIT(i)) { 5415 if (!tc_unused) { 5416 ret++; 5417 } else { 5418 pr_err("Non-contiguous TC - Disabling DCB\n"); 5419 return 1; 5420 } 5421 } else { 5422 tc_unused = 1; 5423 } 5424 } 5425 5426 /* There is always at least TC0 */ 5427 if (!ret) 5428 ret = 1; 5429 5430 return ret; 5431 } 5432 5433 /** 5434 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5435 * @dcbcfg: the corresponding DCBx configuration structure 5436 * 5437 * Query the current DCB configuration and return the number of 5438 * traffic classes enabled from the given DCBX config 5439 **/ 5440 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5441 { 5442 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5443 u8 enabled_tc = 1; 5444 u8 i; 5445 5446 for (i = 0; i < num_tc; i++) 5447 enabled_tc |= BIT(i); 5448 5449 return enabled_tc; 5450 } 5451 5452 /** 5453 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5454 * @pf: PF being queried 5455 * 5456 * Query the current MQPRIO configuration and return the number of 5457 * traffic classes enabled. 5458 **/ 5459 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5460 { 5461 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5462 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5463 u8 enabled_tc = 1, i; 5464 5465 for (i = 1; i < num_tc; i++) 5466 enabled_tc |= BIT(i); 5467 return enabled_tc; 5468 } 5469 5470 /** 5471 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5472 * @pf: PF being queried 5473 * 5474 * Return number of traffic classes enabled for the given PF 5475 **/ 5476 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5477 { 5478 u8 i, enabled_tc = 1; 5479 u8 num_tc = 0; 5480 5481 if (i40e_is_tc_mqprio_enabled(pf)) { 5482 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 5483 5484 return vsi->mqprio_qopt.qopt.num_tc; 5485 } 5486 5487 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5488 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5489 return 1; 5490 5491 /* SFP mode will be enabled for all TCs on port */ 5492 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5493 return i40e_dcb_get_num_tc(&pf->hw.local_dcbx_config); 5494 5495 /* MFP mode return count of enabled TCs for this PF */ 5496 if (pf->hw.func_caps.iscsi) 5497 enabled_tc = i40e_get_iscsi_tc_map(pf); 5498 else 5499 return 1; /* Only TC0 */ 5500 5501 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5502 if (enabled_tc & BIT(i)) 5503 num_tc++; 5504 } 5505 return num_tc; 5506 } 5507 5508 /** 5509 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5510 * @pf: PF being queried 5511 * 5512 * Return a bitmap for enabled traffic classes for this PF. 5513 **/ 5514 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5515 { 5516 if (i40e_is_tc_mqprio_enabled(pf)) 5517 return i40e_mqprio_get_enabled_tc(pf); 5518 5519 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5520 * default TC 5521 */ 5522 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) 5523 return I40E_DEFAULT_TRAFFIC_CLASS; 5524 5525 /* SFP mode we want PF to be enabled for all TCs */ 5526 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 5527 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5528 5529 /* MFP enabled and iSCSI PF type */ 5530 if (pf->hw.func_caps.iscsi) 5531 return i40e_get_iscsi_tc_map(pf); 5532 else 5533 return I40E_DEFAULT_TRAFFIC_CLASS; 5534 } 5535 5536 /** 5537 * i40e_vsi_get_bw_info - Query VSI BW Information 5538 * @vsi: the VSI being queried 5539 * 5540 * Returns 0 on success, negative value on failure 5541 **/ 5542 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5543 { 5544 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5545 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5546 struct i40e_pf *pf = vsi->back; 5547 struct i40e_hw *hw = &pf->hw; 5548 u32 tc_bw_max; 5549 int ret; 5550 int i; 5551 5552 /* Get the VSI level BW configuration */ 5553 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5554 if (ret) { 5555 dev_info(&pf->pdev->dev, 5556 "couldn't get PF vsi bw config, err %pe aq_err %s\n", 5557 ERR_PTR(ret), 5558 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5559 return -EINVAL; 5560 } 5561 5562 /* Get the VSI level BW configuration per TC */ 5563 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5564 NULL); 5565 if (ret) { 5566 dev_info(&pf->pdev->dev, 5567 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n", 5568 ERR_PTR(ret), 5569 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5570 return -EINVAL; 5571 } 5572 5573 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5574 dev_info(&pf->pdev->dev, 5575 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5576 bw_config.tc_valid_bits, 5577 bw_ets_config.tc_valid_bits); 5578 /* Still continuing */ 5579 } 5580 5581 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5582 vsi->bw_max_quanta = bw_config.max_bw; 5583 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5584 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5585 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5586 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5587 vsi->bw_ets_limit_credits[i] = 5588 le16_to_cpu(bw_ets_config.credits[i]); 5589 /* 3 bits out of 4 for each TC */ 5590 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5591 } 5592 5593 return 0; 5594 } 5595 5596 /** 5597 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5598 * @vsi: the VSI being configured 5599 * @enabled_tc: TC bitmap 5600 * @bw_share: BW shared credits per TC 5601 * 5602 * Returns 0 on success, negative value on failure 5603 **/ 5604 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5605 u8 *bw_share) 5606 { 5607 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5608 struct i40e_pf *pf = vsi->back; 5609 int ret; 5610 int i; 5611 5612 /* There is no need to reset BW when mqprio mode is on. */ 5613 if (i40e_is_tc_mqprio_enabled(pf)) 5614 return 0; 5615 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 5616 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5617 if (ret) 5618 dev_info(&pf->pdev->dev, 5619 "Failed to reset tx rate for vsi->seid %u\n", 5620 vsi->seid); 5621 return ret; 5622 } 5623 memset(&bw_data, 0, sizeof(bw_data)); 5624 bw_data.tc_valid_bits = enabled_tc; 5625 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5626 bw_data.tc_bw_credits[i] = bw_share[i]; 5627 5628 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5629 if (ret) { 5630 dev_info(&pf->pdev->dev, 5631 "AQ command Config VSI BW allocation per TC failed = %d\n", 5632 pf->hw.aq.asq_last_status); 5633 return -EINVAL; 5634 } 5635 5636 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5637 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5638 5639 return 0; 5640 } 5641 5642 /** 5643 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5644 * @vsi: the VSI being configured 5645 * @enabled_tc: TC map to be enabled 5646 * 5647 **/ 5648 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5649 { 5650 struct net_device *netdev = vsi->netdev; 5651 struct i40e_pf *pf = vsi->back; 5652 struct i40e_hw *hw = &pf->hw; 5653 u8 netdev_tc = 0; 5654 int i; 5655 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5656 5657 if (!netdev) 5658 return; 5659 5660 if (!enabled_tc) { 5661 netdev_reset_tc(netdev); 5662 return; 5663 } 5664 5665 /* Set up actual enabled TCs on the VSI */ 5666 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5667 return; 5668 5669 /* set per TC queues for the VSI */ 5670 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5671 /* Only set TC queues for enabled tcs 5672 * 5673 * e.g. For a VSI that has TC0 and TC3 enabled the 5674 * enabled_tc bitmap would be 0x00001001; the driver 5675 * will set the numtc for netdev as 2 that will be 5676 * referenced by the netdev layer as TC 0 and 1. 5677 */ 5678 if (vsi->tc_config.enabled_tc & BIT(i)) 5679 netdev_set_tc_queue(netdev, 5680 vsi->tc_config.tc_info[i].netdev_tc, 5681 vsi->tc_config.tc_info[i].qcount, 5682 vsi->tc_config.tc_info[i].qoffset); 5683 } 5684 5685 if (i40e_is_tc_mqprio_enabled(pf)) 5686 return; 5687 5688 /* Assign UP2TC map for the VSI */ 5689 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5690 /* Get the actual TC# for the UP */ 5691 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5692 /* Get the mapped netdev TC# for the UP */ 5693 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5694 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5695 } 5696 } 5697 5698 /** 5699 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5700 * @vsi: the VSI being configured 5701 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5702 **/ 5703 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5704 struct i40e_vsi_context *ctxt) 5705 { 5706 /* copy just the sections touched not the entire info 5707 * since not all sections are valid as returned by 5708 * update vsi params 5709 */ 5710 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5711 memcpy(&vsi->info.queue_mapping, 5712 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5713 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5714 sizeof(vsi->info.tc_mapping)); 5715 } 5716 5717 /** 5718 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI 5719 * @vsi: the VSI being reconfigured 5720 * @vsi_offset: offset from main VF VSI 5721 */ 5722 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset) 5723 { 5724 struct i40e_vsi_context ctxt = {}; 5725 struct i40e_pf *pf; 5726 struct i40e_hw *hw; 5727 int ret; 5728 5729 if (!vsi) 5730 return -EINVAL; 5731 pf = vsi->back; 5732 hw = &pf->hw; 5733 5734 ctxt.seid = vsi->seid; 5735 ctxt.pf_num = hw->pf_id; 5736 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset; 5737 ctxt.uplink_seid = vsi->uplink_seid; 5738 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5739 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 5740 ctxt.info = vsi->info; 5741 5742 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc, 5743 false); 5744 if (vsi->reconfig_rss) { 5745 vsi->rss_size = min_t(int, pf->alloc_rss_size, 5746 vsi->num_queue_pairs); 5747 ret = i40e_vsi_config_rss(vsi); 5748 if (ret) { 5749 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n"); 5750 return ret; 5751 } 5752 vsi->reconfig_rss = false; 5753 } 5754 5755 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5756 if (ret) { 5757 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n", 5758 ERR_PTR(ret), 5759 i40e_aq_str(hw, hw->aq.asq_last_status)); 5760 return ret; 5761 } 5762 /* update the local VSI info with updated queue map */ 5763 i40e_vsi_update_queue_map(vsi, &ctxt); 5764 vsi->info.valid_sections = 0; 5765 5766 return ret; 5767 } 5768 5769 /** 5770 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5771 * @vsi: VSI to be configured 5772 * @enabled_tc: TC bitmap 5773 * 5774 * This configures a particular VSI for TCs that are mapped to the 5775 * given TC bitmap. It uses default bandwidth share for TCs across 5776 * VSIs to configure TC for a particular VSI. 5777 * 5778 * NOTE: 5779 * It is expected that the VSI queues have been quisced before calling 5780 * this function. 5781 **/ 5782 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5783 { 5784 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5785 struct i40e_pf *pf = vsi->back; 5786 struct i40e_hw *hw = &pf->hw; 5787 struct i40e_vsi_context ctxt; 5788 int ret = 0; 5789 int i; 5790 5791 /* Check if enabled_tc is same as existing or new TCs */ 5792 if (vsi->tc_config.enabled_tc == enabled_tc && 5793 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5794 return ret; 5795 5796 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5797 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5798 if (enabled_tc & BIT(i)) 5799 bw_share[i] = 1; 5800 } 5801 5802 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5803 if (ret) { 5804 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5805 5806 dev_info(&pf->pdev->dev, 5807 "Failed configuring TC map %d for VSI %d\n", 5808 enabled_tc, vsi->seid); 5809 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5810 &bw_config, NULL); 5811 if (ret) { 5812 dev_info(&pf->pdev->dev, 5813 "Failed querying vsi bw info, err %pe aq_err %s\n", 5814 ERR_PTR(ret), 5815 i40e_aq_str(hw, hw->aq.asq_last_status)); 5816 goto out; 5817 } 5818 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5819 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5820 5821 if (!valid_tc) 5822 valid_tc = bw_config.tc_valid_bits; 5823 /* Always enable TC0, no matter what */ 5824 valid_tc |= 1; 5825 dev_info(&pf->pdev->dev, 5826 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5827 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5828 enabled_tc = valid_tc; 5829 } 5830 5831 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5832 if (ret) { 5833 dev_err(&pf->pdev->dev, 5834 "Unable to configure TC map %d for VSI %d\n", 5835 enabled_tc, vsi->seid); 5836 goto out; 5837 } 5838 } 5839 5840 /* Update Queue Pairs Mapping for currently enabled UPs */ 5841 ctxt.seid = vsi->seid; 5842 ctxt.pf_num = vsi->back->hw.pf_id; 5843 ctxt.vf_num = 0; 5844 ctxt.uplink_seid = vsi->uplink_seid; 5845 ctxt.info = vsi->info; 5846 if (i40e_is_tc_mqprio_enabled(pf)) { 5847 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5848 if (ret) 5849 goto out; 5850 } else { 5851 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5852 } 5853 5854 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5855 * queues changed. 5856 */ 5857 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5858 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5859 vsi->num_queue_pairs); 5860 ret = i40e_vsi_config_rss(vsi); 5861 if (ret) { 5862 dev_info(&vsi->back->pdev->dev, 5863 "Failed to reconfig rss for num_queues\n"); 5864 return ret; 5865 } 5866 vsi->reconfig_rss = false; 5867 } 5868 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 5869 ctxt.info.valid_sections |= 5870 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5871 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5872 } 5873 5874 /* Update the VSI after updating the VSI queue-mapping 5875 * information 5876 */ 5877 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5878 if (ret) { 5879 dev_info(&pf->pdev->dev, 5880 "Update vsi tc config failed, err %pe aq_err %s\n", 5881 ERR_PTR(ret), 5882 i40e_aq_str(hw, hw->aq.asq_last_status)); 5883 goto out; 5884 } 5885 /* update the local VSI info with updated queue map */ 5886 i40e_vsi_update_queue_map(vsi, &ctxt); 5887 vsi->info.valid_sections = 0; 5888 5889 /* Update current VSI BW information */ 5890 ret = i40e_vsi_get_bw_info(vsi); 5891 if (ret) { 5892 dev_info(&pf->pdev->dev, 5893 "Failed updating vsi bw info, err %pe aq_err %s\n", 5894 ERR_PTR(ret), 5895 i40e_aq_str(hw, hw->aq.asq_last_status)); 5896 goto out; 5897 } 5898 5899 /* Update the netdev TC setup */ 5900 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5901 out: 5902 return ret; 5903 } 5904 5905 /** 5906 * i40e_vsi_reconfig_tc - Reconfigure VSI Tx Scheduler for stored TC map 5907 * @vsi: VSI to be reconfigured 5908 * 5909 * This reconfigures a particular VSI for TCs that are mapped to the 5910 * TC bitmap stored previously for the VSI. 5911 * 5912 * Context: It is expected that the VSI queues have been quisced before 5913 * calling this function. 5914 * 5915 * Return: 0 on success, negative value on failure 5916 **/ 5917 static int i40e_vsi_reconfig_tc(struct i40e_vsi *vsi) 5918 { 5919 u8 enabled_tc; 5920 5921 enabled_tc = vsi->tc_config.enabled_tc; 5922 vsi->tc_config.enabled_tc = 0; 5923 5924 return i40e_vsi_config_tc(vsi, enabled_tc); 5925 } 5926 5927 /** 5928 * i40e_get_link_speed - Returns link speed for the interface 5929 * @vsi: VSI to be configured 5930 * 5931 **/ 5932 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5933 { 5934 struct i40e_pf *pf = vsi->back; 5935 5936 switch (pf->hw.phy.link_info.link_speed) { 5937 case I40E_LINK_SPEED_40GB: 5938 return 40000; 5939 case I40E_LINK_SPEED_25GB: 5940 return 25000; 5941 case I40E_LINK_SPEED_20GB: 5942 return 20000; 5943 case I40E_LINK_SPEED_10GB: 5944 return 10000; 5945 case I40E_LINK_SPEED_1GB: 5946 return 1000; 5947 default: 5948 return -EINVAL; 5949 } 5950 } 5951 5952 /** 5953 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits 5954 * @vsi: Pointer to vsi structure 5955 * @max_tx_rate: max TX rate in bytes to be converted into Mbits 5956 * 5957 * Helper function to convert units before send to set BW limit 5958 **/ 5959 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate) 5960 { 5961 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) { 5962 dev_warn(&vsi->back->pdev->dev, 5963 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5964 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5965 } else { 5966 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 5967 } 5968 5969 return max_tx_rate; 5970 } 5971 5972 /** 5973 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5974 * @vsi: VSI to be configured 5975 * @seid: seid of the channel/VSI 5976 * @max_tx_rate: max TX rate to be configured as BW limit 5977 * 5978 * Helper function to set BW limit for a given VSI 5979 **/ 5980 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5981 { 5982 struct i40e_pf *pf = vsi->back; 5983 u64 credits = 0; 5984 int speed = 0; 5985 int ret = 0; 5986 5987 speed = i40e_get_link_speed(vsi); 5988 if (max_tx_rate > speed) { 5989 dev_err(&pf->pdev->dev, 5990 "Invalid max tx rate %llu specified for VSI seid %d.", 5991 max_tx_rate, seid); 5992 return -EINVAL; 5993 } 5994 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) { 5995 dev_warn(&pf->pdev->dev, 5996 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5997 max_tx_rate = I40E_BW_CREDIT_DIVISOR; 5998 } 5999 6000 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 6001 credits = max_tx_rate; 6002 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6003 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 6004 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 6005 if (ret) 6006 dev_err(&pf->pdev->dev, 6007 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n", 6008 max_tx_rate, seid, ERR_PTR(ret), 6009 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6010 return ret; 6011 } 6012 6013 /** 6014 * i40e_remove_queue_channels - Remove queue channels for the TCs 6015 * @vsi: VSI to be configured 6016 * 6017 * Remove queue channels for the TCs 6018 **/ 6019 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 6020 { 6021 enum i40e_admin_queue_err last_aq_status; 6022 struct i40e_cloud_filter *cfilter; 6023 struct i40e_channel *ch, *ch_tmp; 6024 struct i40e_pf *pf = vsi->back; 6025 struct hlist_node *node; 6026 int ret, i; 6027 6028 /* Reset rss size that was stored when reconfiguring rss for 6029 * channel VSIs with non-power-of-2 queue count. 6030 */ 6031 vsi->current_rss_size = 0; 6032 6033 /* perform cleanup for channels if they exist */ 6034 if (list_empty(&vsi->ch_list)) 6035 return; 6036 6037 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6038 struct i40e_vsi *p_vsi; 6039 6040 list_del(&ch->list); 6041 p_vsi = ch->parent_vsi; 6042 if (!p_vsi || !ch->initialized) { 6043 kfree(ch); 6044 continue; 6045 } 6046 /* Reset queue contexts */ 6047 for (i = 0; i < ch->num_queue_pairs; i++) { 6048 struct i40e_ring *tx_ring, *rx_ring; 6049 u16 pf_q; 6050 6051 pf_q = ch->base_queue + i; 6052 tx_ring = vsi->tx_rings[pf_q]; 6053 tx_ring->ch = NULL; 6054 6055 rx_ring = vsi->rx_rings[pf_q]; 6056 rx_ring->ch = NULL; 6057 } 6058 6059 /* Reset BW configured for this VSI via mqprio */ 6060 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 6061 if (ret) 6062 dev_info(&vsi->back->pdev->dev, 6063 "Failed to reset tx rate for ch->seid %u\n", 6064 ch->seid); 6065 6066 /* delete cloud filters associated with this channel */ 6067 hlist_for_each_entry_safe(cfilter, node, 6068 &pf->cloud_filter_list, cloud_node) { 6069 if (cfilter->seid != ch->seid) 6070 continue; 6071 6072 hash_del(&cfilter->cloud_node); 6073 if (cfilter->dst_port) 6074 ret = i40e_add_del_cloud_filter_big_buf(vsi, 6075 cfilter, 6076 false); 6077 else 6078 ret = i40e_add_del_cloud_filter(vsi, cfilter, 6079 false); 6080 last_aq_status = pf->hw.aq.asq_last_status; 6081 if (ret) 6082 dev_info(&pf->pdev->dev, 6083 "Failed to delete cloud filter, err %pe aq_err %s\n", 6084 ERR_PTR(ret), 6085 i40e_aq_str(&pf->hw, last_aq_status)); 6086 kfree(cfilter); 6087 } 6088 6089 /* delete VSI from FW */ 6090 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 6091 NULL); 6092 if (ret) 6093 dev_err(&vsi->back->pdev->dev, 6094 "unable to remove channel (%d) for parent VSI(%d)\n", 6095 ch->seid, p_vsi->seid); 6096 kfree(ch); 6097 } 6098 INIT_LIST_HEAD(&vsi->ch_list); 6099 } 6100 6101 /** 6102 * i40e_get_max_queues_for_channel 6103 * @vsi: ptr to VSI to which channels are associated with 6104 * 6105 * Helper function which returns max value among the queue counts set on the 6106 * channels/TCs created. 6107 **/ 6108 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 6109 { 6110 struct i40e_channel *ch, *ch_tmp; 6111 int max = 0; 6112 6113 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 6114 if (!ch->initialized) 6115 continue; 6116 if (ch->num_queue_pairs > max) 6117 max = ch->num_queue_pairs; 6118 } 6119 6120 return max; 6121 } 6122 6123 /** 6124 * i40e_validate_num_queues - validate num_queues w.r.t channel 6125 * @pf: ptr to PF device 6126 * @num_queues: number of queues 6127 * @vsi: the parent VSI 6128 * @reconfig_rss: indicates should the RSS be reconfigured or not 6129 * 6130 * This function validates number of queues in the context of new channel 6131 * which is being established and determines if RSS should be reconfigured 6132 * or not for parent VSI. 6133 **/ 6134 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 6135 struct i40e_vsi *vsi, bool *reconfig_rss) 6136 { 6137 int max_ch_queues; 6138 6139 if (!reconfig_rss) 6140 return -EINVAL; 6141 6142 *reconfig_rss = false; 6143 if (vsi->current_rss_size) { 6144 if (num_queues > vsi->current_rss_size) { 6145 dev_dbg(&pf->pdev->dev, 6146 "Error: num_queues (%d) > vsi's current_size(%d)\n", 6147 num_queues, vsi->current_rss_size); 6148 return -EINVAL; 6149 } else if ((num_queues < vsi->current_rss_size) && 6150 (!is_power_of_2(num_queues))) { 6151 dev_dbg(&pf->pdev->dev, 6152 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 6153 num_queues, vsi->current_rss_size); 6154 return -EINVAL; 6155 } 6156 } 6157 6158 if (!is_power_of_2(num_queues)) { 6159 /* Find the max num_queues configured for channel if channel 6160 * exist. 6161 * if channel exist, then enforce 'num_queues' to be more than 6162 * max ever queues configured for channel. 6163 */ 6164 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 6165 if (num_queues < max_ch_queues) { 6166 dev_dbg(&pf->pdev->dev, 6167 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 6168 num_queues, max_ch_queues); 6169 return -EINVAL; 6170 } 6171 *reconfig_rss = true; 6172 } 6173 6174 return 0; 6175 } 6176 6177 /** 6178 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 6179 * @vsi: the VSI being setup 6180 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 6181 * 6182 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 6183 **/ 6184 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 6185 { 6186 struct i40e_pf *pf = vsi->back; 6187 u8 seed[I40E_HKEY_ARRAY_SIZE]; 6188 struct i40e_hw *hw = &pf->hw; 6189 int local_rss_size; 6190 u8 *lut; 6191 int ret; 6192 6193 if (!vsi->rss_size) 6194 return -EINVAL; 6195 6196 if (rss_size > vsi->rss_size) 6197 return -EINVAL; 6198 6199 local_rss_size = min_t(int, vsi->rss_size, rss_size); 6200 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 6201 if (!lut) 6202 return -ENOMEM; 6203 6204 /* Ignoring user configured lut if there is one */ 6205 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 6206 6207 /* Use user configured hash key if there is one, otherwise 6208 * use default. 6209 */ 6210 if (vsi->rss_hkey_user) 6211 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 6212 else 6213 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 6214 6215 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 6216 if (ret) { 6217 dev_info(&pf->pdev->dev, 6218 "Cannot set RSS lut, err %pe aq_err %s\n", 6219 ERR_PTR(ret), 6220 i40e_aq_str(hw, hw->aq.asq_last_status)); 6221 kfree(lut); 6222 return ret; 6223 } 6224 kfree(lut); 6225 6226 /* Do the update w.r.t. storing rss_size */ 6227 if (!vsi->orig_rss_size) 6228 vsi->orig_rss_size = vsi->rss_size; 6229 vsi->current_rss_size = local_rss_size; 6230 6231 return ret; 6232 } 6233 6234 /** 6235 * i40e_channel_setup_queue_map - Setup a channel queue map 6236 * @pf: ptr to PF device 6237 * @ctxt: VSI context structure 6238 * @ch: ptr to channel structure 6239 * 6240 * Setup queue map for a specific channel 6241 **/ 6242 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 6243 struct i40e_vsi_context *ctxt, 6244 struct i40e_channel *ch) 6245 { 6246 u16 qcount, qmap, sections = 0; 6247 u8 offset = 0; 6248 int pow; 6249 6250 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 6251 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 6252 6253 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 6254 ch->num_queue_pairs = qcount; 6255 6256 /* find the next higher power-of-2 of num queue pairs */ 6257 pow = ilog2(qcount); 6258 if (!is_power_of_2(qcount)) 6259 pow++; 6260 6261 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 6262 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 6263 6264 /* Setup queue TC[0].qmap for given VSI context */ 6265 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 6266 6267 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 6268 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 6269 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 6270 ctxt->info.valid_sections |= cpu_to_le16(sections); 6271 } 6272 6273 /** 6274 * i40e_add_channel - add a channel by adding VSI 6275 * @pf: ptr to PF device 6276 * @uplink_seid: underlying HW switching element (VEB) ID 6277 * @ch: ptr to channel structure 6278 * 6279 * Add a channel (VSI) using add_vsi and queue_map 6280 **/ 6281 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 6282 struct i40e_channel *ch) 6283 { 6284 struct i40e_hw *hw = &pf->hw; 6285 struct i40e_vsi_context ctxt; 6286 u8 enabled_tc = 0x1; /* TC0 enabled */ 6287 int ret; 6288 6289 if (ch->type != I40E_VSI_VMDQ2) { 6290 dev_info(&pf->pdev->dev, 6291 "add new vsi failed, ch->type %d\n", ch->type); 6292 return -EINVAL; 6293 } 6294 6295 memset(&ctxt, 0, sizeof(ctxt)); 6296 ctxt.pf_num = hw->pf_id; 6297 ctxt.vf_num = 0; 6298 ctxt.uplink_seid = uplink_seid; 6299 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 6300 if (ch->type == I40E_VSI_VMDQ2) 6301 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 6302 6303 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6304 ctxt.info.valid_sections |= 6305 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 6306 ctxt.info.switch_id = 6307 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 6308 } 6309 6310 /* Set queue map for a given VSI context */ 6311 i40e_channel_setup_queue_map(pf, &ctxt, ch); 6312 6313 /* Now time to create VSI */ 6314 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 6315 if (ret) { 6316 dev_info(&pf->pdev->dev, 6317 "add new vsi failed, err %pe aq_err %s\n", 6318 ERR_PTR(ret), 6319 i40e_aq_str(&pf->hw, 6320 pf->hw.aq.asq_last_status)); 6321 return -ENOENT; 6322 } 6323 6324 /* Success, update channel, set enabled_tc only if the channel 6325 * is not a macvlan 6326 */ 6327 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 6328 ch->seid = ctxt.seid; 6329 ch->vsi_number = ctxt.vsi_number; 6330 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 6331 6332 /* copy just the sections touched not the entire info 6333 * since not all sections are valid as returned by 6334 * update vsi params 6335 */ 6336 ch->info.mapping_flags = ctxt.info.mapping_flags; 6337 memcpy(&ch->info.queue_mapping, 6338 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 6339 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 6340 sizeof(ctxt.info.tc_mapping)); 6341 6342 return 0; 6343 } 6344 6345 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 6346 u8 *bw_share) 6347 { 6348 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 6349 int ret; 6350 int i; 6351 6352 memset(&bw_data, 0, sizeof(bw_data)); 6353 bw_data.tc_valid_bits = ch->enabled_tc; 6354 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6355 bw_data.tc_bw_credits[i] = bw_share[i]; 6356 6357 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 6358 &bw_data, NULL); 6359 if (ret) { 6360 dev_info(&vsi->back->pdev->dev, 6361 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 6362 vsi->back->hw.aq.asq_last_status, ch->seid); 6363 return -EINVAL; 6364 } 6365 6366 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6367 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6368 6369 return 0; 6370 } 6371 6372 /** 6373 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6374 * @pf: ptr to PF device 6375 * @vsi: the VSI being setup 6376 * @ch: ptr to channel structure 6377 * 6378 * Configure TX rings associated with channel (VSI) since queues are being 6379 * from parent VSI. 6380 **/ 6381 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6382 struct i40e_vsi *vsi, 6383 struct i40e_channel *ch) 6384 { 6385 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6386 int ret; 6387 int i; 6388 6389 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6390 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6391 if (ch->enabled_tc & BIT(i)) 6392 bw_share[i] = 1; 6393 } 6394 6395 /* configure BW for new VSI */ 6396 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6397 if (ret) { 6398 dev_info(&vsi->back->pdev->dev, 6399 "Failed configuring TC map %d for channel (seid %u)\n", 6400 ch->enabled_tc, ch->seid); 6401 return ret; 6402 } 6403 6404 for (i = 0; i < ch->num_queue_pairs; i++) { 6405 struct i40e_ring *tx_ring, *rx_ring; 6406 u16 pf_q; 6407 6408 pf_q = ch->base_queue + i; 6409 6410 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6411 * context 6412 */ 6413 tx_ring = vsi->tx_rings[pf_q]; 6414 tx_ring->ch = ch; 6415 6416 /* Get the RX ring ptr */ 6417 rx_ring = vsi->rx_rings[pf_q]; 6418 rx_ring->ch = ch; 6419 } 6420 6421 return 0; 6422 } 6423 6424 /** 6425 * i40e_setup_hw_channel - setup new channel 6426 * @pf: ptr to PF device 6427 * @vsi: the VSI being setup 6428 * @ch: ptr to channel structure 6429 * @uplink_seid: underlying HW switching element (VEB) ID 6430 * @type: type of channel to be created (VMDq2/VF) 6431 * 6432 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6433 * and configures TX rings accordingly 6434 **/ 6435 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6436 struct i40e_vsi *vsi, 6437 struct i40e_channel *ch, 6438 u16 uplink_seid, u8 type) 6439 { 6440 int ret; 6441 6442 ch->initialized = false; 6443 ch->base_queue = vsi->next_base_queue; 6444 ch->type = type; 6445 6446 /* Proceed with creation of channel (VMDq2) VSI */ 6447 ret = i40e_add_channel(pf, uplink_seid, ch); 6448 if (ret) { 6449 dev_info(&pf->pdev->dev, 6450 "failed to add_channel using uplink_seid %u\n", 6451 uplink_seid); 6452 return ret; 6453 } 6454 6455 /* Mark the successful creation of channel */ 6456 ch->initialized = true; 6457 6458 /* Reconfigure TX queues using QTX_CTL register */ 6459 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6460 if (ret) { 6461 dev_info(&pf->pdev->dev, 6462 "failed to configure TX rings for channel %u\n", 6463 ch->seid); 6464 return ret; 6465 } 6466 6467 /* update 'next_base_queue' */ 6468 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6469 dev_dbg(&pf->pdev->dev, 6470 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6471 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6472 ch->num_queue_pairs, 6473 vsi->next_base_queue); 6474 return ret; 6475 } 6476 6477 /** 6478 * i40e_setup_channel - setup new channel using uplink element 6479 * @pf: ptr to PF device 6480 * @vsi: pointer to the VSI to set up the channel within 6481 * @ch: ptr to channel structure 6482 * 6483 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6484 * and uplink switching element (uplink_seid) 6485 **/ 6486 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6487 struct i40e_channel *ch) 6488 { 6489 struct i40e_vsi *main_vsi; 6490 u8 vsi_type; 6491 u16 seid; 6492 int ret; 6493 6494 if (vsi->type == I40E_VSI_MAIN) { 6495 vsi_type = I40E_VSI_VMDQ2; 6496 } else { 6497 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6498 vsi->type); 6499 return false; 6500 } 6501 6502 /* underlying switching element */ 6503 main_vsi = i40e_pf_get_main_vsi(pf); 6504 seid = main_vsi->uplink_seid; 6505 6506 /* create channel (VSI), configure TX rings */ 6507 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6508 if (ret) { 6509 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6510 return false; 6511 } 6512 6513 return ch->initialized ? true : false; 6514 } 6515 6516 /** 6517 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6518 * @vsi: ptr to VSI which has PF backing 6519 * 6520 * Sets up switch mode correctly if it needs to be changed and perform 6521 * what are allowed modes. 6522 **/ 6523 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6524 { 6525 u8 mode; 6526 struct i40e_pf *pf = vsi->back; 6527 struct i40e_hw *hw = &pf->hw; 6528 int ret; 6529 6530 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6531 if (ret) 6532 return -EINVAL; 6533 6534 if (hw->dev_caps.switch_mode) { 6535 /* if switch mode is set, support mode2 (non-tunneled for 6536 * cloud filter) for now 6537 */ 6538 u32 switch_mode = hw->dev_caps.switch_mode & 6539 I40E_SWITCH_MODE_MASK; 6540 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6541 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6542 return 0; 6543 dev_err(&pf->pdev->dev, 6544 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6545 hw->dev_caps.switch_mode); 6546 return -EINVAL; 6547 } 6548 } 6549 6550 /* Set Bit 7 to be valid */ 6551 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6552 6553 /* Set L4type for TCP support */ 6554 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6555 6556 /* Set cloud filter mode */ 6557 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6558 6559 /* Prep mode field for set_switch_config */ 6560 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6561 pf->last_sw_conf_valid_flags, 6562 mode, NULL); 6563 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6564 dev_err(&pf->pdev->dev, 6565 "couldn't set switch config bits, err %pe aq_err %s\n", 6566 ERR_PTR(ret), 6567 i40e_aq_str(hw, 6568 hw->aq.asq_last_status)); 6569 6570 return ret; 6571 } 6572 6573 /** 6574 * i40e_create_queue_channel - function to create channel 6575 * @vsi: VSI to be configured 6576 * @ch: ptr to channel (it contains channel specific params) 6577 * 6578 * This function creates channel (VSI) using num_queues specified by user, 6579 * reconfigs RSS if needed. 6580 **/ 6581 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6582 struct i40e_channel *ch) 6583 { 6584 struct i40e_pf *pf = vsi->back; 6585 bool reconfig_rss; 6586 int err; 6587 6588 if (!ch) 6589 return -EINVAL; 6590 6591 if (!ch->num_queue_pairs) { 6592 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6593 ch->num_queue_pairs); 6594 return -EINVAL; 6595 } 6596 6597 /* validate user requested num_queues for channel */ 6598 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6599 &reconfig_rss); 6600 if (err) { 6601 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6602 ch->num_queue_pairs); 6603 return -EINVAL; 6604 } 6605 6606 /* By default we are in VEPA mode, if this is the first VF/VMDq 6607 * VSI to be added switch to VEB mode. 6608 */ 6609 6610 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 6611 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 6612 6613 if (vsi->type == I40E_VSI_MAIN) { 6614 if (i40e_is_tc_mqprio_enabled(pf)) 6615 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 6616 else 6617 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG); 6618 } 6619 /* now onwards for main VSI, number of queues will be value 6620 * of TC0's queue count 6621 */ 6622 } 6623 6624 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6625 * it should be more than num_queues 6626 */ 6627 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6628 dev_dbg(&pf->pdev->dev, 6629 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6630 vsi->cnt_q_avail, ch->num_queue_pairs); 6631 return -EINVAL; 6632 } 6633 6634 /* reconfig_rss only if vsi type is MAIN_VSI */ 6635 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6636 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6637 if (err) { 6638 dev_info(&pf->pdev->dev, 6639 "Error: unable to reconfig rss for num_queues (%u)\n", 6640 ch->num_queue_pairs); 6641 return -EINVAL; 6642 } 6643 } 6644 6645 if (!i40e_setup_channel(pf, vsi, ch)) { 6646 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6647 return -EINVAL; 6648 } 6649 6650 dev_info(&pf->pdev->dev, 6651 "Setup channel (id:%u) utilizing num_queues %d\n", 6652 ch->seid, ch->num_queue_pairs); 6653 6654 /* configure VSI for BW limit */ 6655 if (ch->max_tx_rate) { 6656 u64 credits = ch->max_tx_rate; 6657 6658 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6659 return -EINVAL; 6660 6661 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6662 dev_dbg(&pf->pdev->dev, 6663 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6664 ch->max_tx_rate, 6665 credits, 6666 ch->seid); 6667 } 6668 6669 /* in case of VF, this will be main SRIOV VSI */ 6670 ch->parent_vsi = vsi; 6671 6672 /* and update main_vsi's count for queue_available to use */ 6673 vsi->cnt_q_avail -= ch->num_queue_pairs; 6674 6675 return 0; 6676 } 6677 6678 /** 6679 * i40e_configure_queue_channels - Add queue channel for the given TCs 6680 * @vsi: VSI to be configured 6681 * 6682 * Configures queue channel mapping to the given TCs 6683 **/ 6684 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6685 { 6686 struct i40e_channel *ch; 6687 u64 max_rate = 0; 6688 int ret = 0, i; 6689 6690 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6691 vsi->tc_seid_map[0] = vsi->seid; 6692 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6693 if (vsi->tc_config.enabled_tc & BIT(i)) { 6694 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6695 if (!ch) { 6696 ret = -ENOMEM; 6697 goto err_free; 6698 } 6699 6700 INIT_LIST_HEAD(&ch->list); 6701 ch->num_queue_pairs = 6702 vsi->tc_config.tc_info[i].qcount; 6703 ch->base_queue = 6704 vsi->tc_config.tc_info[i].qoffset; 6705 6706 /* Bandwidth limit through tc interface is in bytes/s, 6707 * change to Mbit/s 6708 */ 6709 max_rate = vsi->mqprio_qopt.max_rate[i]; 6710 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6711 ch->max_tx_rate = max_rate; 6712 6713 list_add_tail(&ch->list, &vsi->ch_list); 6714 6715 ret = i40e_create_queue_channel(vsi, ch); 6716 if (ret) { 6717 dev_err(&vsi->back->pdev->dev, 6718 "Failed creating queue channel with TC%d: queues %d\n", 6719 i, ch->num_queue_pairs); 6720 goto err_free; 6721 } 6722 vsi->tc_seid_map[i] = ch->seid; 6723 } 6724 } 6725 6726 /* reset to reconfigure TX queue contexts */ 6727 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true); 6728 return ret; 6729 6730 err_free: 6731 i40e_remove_queue_channels(vsi); 6732 return ret; 6733 } 6734 6735 /** 6736 * i40e_veb_config_tc - Configure TCs for given VEB 6737 * @veb: given VEB 6738 * @enabled_tc: TC bitmap 6739 * 6740 * Configures given TC bitmap for VEB (switching) element 6741 **/ 6742 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6743 { 6744 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6745 struct i40e_pf *pf = veb->pf; 6746 int ret = 0; 6747 int i; 6748 6749 /* No TCs or already enabled TCs just return */ 6750 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6751 return ret; 6752 6753 bw_data.tc_valid_bits = enabled_tc; 6754 /* bw_data.absolute_credits is not set (relative) */ 6755 6756 /* Enable ETS TCs with equal BW Share for now */ 6757 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6758 if (enabled_tc & BIT(i)) 6759 bw_data.tc_bw_share_credits[i] = 1; 6760 } 6761 6762 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6763 &bw_data, NULL); 6764 if (ret) { 6765 dev_info(&pf->pdev->dev, 6766 "VEB bw config failed, err %pe aq_err %s\n", 6767 ERR_PTR(ret), 6768 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6769 goto out; 6770 } 6771 6772 /* Update the BW information */ 6773 ret = i40e_veb_get_bw_info(veb); 6774 if (ret) { 6775 dev_info(&pf->pdev->dev, 6776 "Failed getting veb bw config, err %pe aq_err %s\n", 6777 ERR_PTR(ret), 6778 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6779 } 6780 6781 out: 6782 return ret; 6783 } 6784 6785 #ifdef CONFIG_I40E_DCB 6786 /** 6787 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6788 * @pf: PF struct 6789 * 6790 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6791 * the caller would've quiesce all the VSIs before calling 6792 * this function 6793 **/ 6794 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6795 { 6796 struct i40e_vsi *vsi; 6797 struct i40e_veb *veb; 6798 u8 tc_map = 0; 6799 int ret; 6800 int v; 6801 6802 /* Enable the TCs available on PF to all VEBs */ 6803 tc_map = i40e_pf_get_tc_map(pf); 6804 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6805 return; 6806 6807 i40e_pf_for_each_veb(pf, v, veb) { 6808 ret = i40e_veb_config_tc(veb, tc_map); 6809 if (ret) { 6810 dev_info(&pf->pdev->dev, 6811 "Failed configuring TC for VEB seid=%d\n", 6812 veb->seid); 6813 /* Will try to configure as many components */ 6814 } 6815 } 6816 6817 /* Update each VSI */ 6818 i40e_pf_for_each_vsi(pf, v, vsi) { 6819 /* - Enable all TCs for the LAN VSI 6820 * - For all others keep them at TC0 for now 6821 */ 6822 if (vsi->type == I40E_VSI_MAIN) 6823 tc_map = i40e_pf_get_tc_map(pf); 6824 else 6825 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6826 6827 ret = i40e_vsi_config_tc(vsi, tc_map); 6828 if (ret) { 6829 dev_info(&pf->pdev->dev, 6830 "Failed configuring TC for VSI seid=%d\n", 6831 vsi->seid); 6832 /* Will try to configure as many components */ 6833 } else { 6834 /* Re-configure VSI vectors based on updated TC map */ 6835 i40e_vsi_map_rings_to_vectors(vsi); 6836 if (vsi->netdev) 6837 i40e_dcbnl_set_all(vsi); 6838 } 6839 } 6840 } 6841 6842 /** 6843 * i40e_resume_port_tx - Resume port Tx 6844 * @pf: PF struct 6845 * 6846 * Resume a port's Tx and issue a PF reset in case of failure to 6847 * resume. 6848 **/ 6849 static int i40e_resume_port_tx(struct i40e_pf *pf) 6850 { 6851 struct i40e_hw *hw = &pf->hw; 6852 int ret; 6853 6854 ret = i40e_aq_resume_port_tx(hw, NULL); 6855 if (ret) { 6856 dev_info(&pf->pdev->dev, 6857 "Resume Port Tx failed, err %pe aq_err %s\n", 6858 ERR_PTR(ret), 6859 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6860 /* Schedule PF reset to recover */ 6861 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6862 i40e_service_event_schedule(pf); 6863 } 6864 6865 return ret; 6866 } 6867 6868 /** 6869 * i40e_suspend_port_tx - Suspend port Tx 6870 * @pf: PF struct 6871 * 6872 * Suspend a port's Tx and issue a PF reset in case of failure. 6873 **/ 6874 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6875 { 6876 struct i40e_hw *hw = &pf->hw; 6877 int ret; 6878 6879 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6880 if (ret) { 6881 dev_info(&pf->pdev->dev, 6882 "Suspend Port Tx failed, err %pe aq_err %s\n", 6883 ERR_PTR(ret), 6884 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6885 /* Schedule PF reset to recover */ 6886 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6887 i40e_service_event_schedule(pf); 6888 } 6889 6890 return ret; 6891 } 6892 6893 /** 6894 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6895 * @pf: PF being configured 6896 * @new_cfg: New DCBX configuration 6897 * 6898 * Program DCB settings into HW and reconfigure VEB/VSIs on 6899 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6900 **/ 6901 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6902 struct i40e_dcbx_config *new_cfg) 6903 { 6904 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6905 int ret; 6906 6907 /* Check if need reconfiguration */ 6908 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6909 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6910 return 0; 6911 } 6912 6913 /* Config change disable all VSIs */ 6914 i40e_pf_quiesce_all_vsi(pf); 6915 6916 /* Copy the new config to the current config */ 6917 *old_cfg = *new_cfg; 6918 old_cfg->etsrec = old_cfg->etscfg; 6919 ret = i40e_set_dcb_config(&pf->hw); 6920 if (ret) { 6921 dev_info(&pf->pdev->dev, 6922 "Set DCB Config failed, err %pe aq_err %s\n", 6923 ERR_PTR(ret), 6924 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6925 goto out; 6926 } 6927 6928 /* Changes in configuration update VEB/VSI */ 6929 i40e_dcb_reconfigure(pf); 6930 out: 6931 /* In case of reset do not try to resume anything */ 6932 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6933 /* Re-start the VSIs if disabled */ 6934 ret = i40e_resume_port_tx(pf); 6935 /* In case of error no point in resuming VSIs */ 6936 if (ret) 6937 goto err; 6938 i40e_pf_unquiesce_all_vsi(pf); 6939 } 6940 err: 6941 return ret; 6942 } 6943 6944 /** 6945 * i40e_hw_dcb_config - Program new DCBX settings into HW 6946 * @pf: PF being configured 6947 * @new_cfg: New DCBX configuration 6948 * 6949 * Program DCB settings into HW and reconfigure VEB/VSIs on 6950 * given PF 6951 **/ 6952 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6953 { 6954 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6955 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6956 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6957 struct i40e_dcbx_config *old_cfg; 6958 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6959 struct i40e_rx_pb_config pb_cfg; 6960 struct i40e_hw *hw = &pf->hw; 6961 u8 num_ports = hw->num_ports; 6962 bool need_reconfig; 6963 int ret = -EINVAL; 6964 u8 lltc_map = 0; 6965 u8 tc_map = 0; 6966 u8 new_numtc; 6967 u8 i; 6968 6969 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6970 /* Un-pack information to Program ETS HW via shared API 6971 * numtc, tcmap 6972 * LLTC map 6973 * ETS/NON-ETS arbiter mode 6974 * max exponent (credit refills) 6975 * Total number of ports 6976 * PFC priority bit-map 6977 * Priority Table 6978 * BW % per TC 6979 * Arbiter mode between UPs sharing same TC 6980 * TSA table (ETS or non-ETS) 6981 * EEE enabled or not 6982 * MFS TC table 6983 */ 6984 6985 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6986 6987 memset(&ets_data, 0, sizeof(ets_data)); 6988 for (i = 0; i < new_numtc; i++) { 6989 tc_map |= BIT(i); 6990 switch (new_cfg->etscfg.tsatable[i]) { 6991 case I40E_IEEE_TSA_ETS: 6992 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6993 ets_data.tc_bw_share_credits[i] = 6994 new_cfg->etscfg.tcbwtable[i]; 6995 break; 6996 case I40E_IEEE_TSA_STRICT: 6997 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6998 lltc_map |= BIT(i); 6999 ets_data.tc_bw_share_credits[i] = 7000 I40E_DCB_STRICT_PRIO_CREDITS; 7001 break; 7002 default: 7003 /* Invalid TSA type */ 7004 need_reconfig = false; 7005 goto out; 7006 } 7007 } 7008 7009 old_cfg = &hw->local_dcbx_config; 7010 /* Check if need reconfiguration */ 7011 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 7012 7013 /* If needed, enable/disable frame tagging, disable all VSIs 7014 * and suspend port tx 7015 */ 7016 if (need_reconfig) { 7017 /* Enable DCB tagging only when more than one TC */ 7018 if (new_numtc > 1) 7019 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7020 else 7021 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7022 7023 set_bit(__I40E_PORT_SUSPENDED, pf->state); 7024 /* Reconfiguration needed quiesce all VSIs */ 7025 i40e_pf_quiesce_all_vsi(pf); 7026 ret = i40e_suspend_port_tx(pf); 7027 if (ret) 7028 goto err; 7029 } 7030 7031 /* Configure Port ETS Tx Scheduler */ 7032 ets_data.tc_valid_bits = tc_map; 7033 ets_data.tc_strict_priority_flags = lltc_map; 7034 ret = i40e_aq_config_switch_comp_ets 7035 (hw, pf->mac_seid, &ets_data, 7036 i40e_aqc_opc_modify_switching_comp_ets, NULL); 7037 if (ret) { 7038 dev_info(&pf->pdev->dev, 7039 "Modify Port ETS failed, err %pe aq_err %s\n", 7040 ERR_PTR(ret), 7041 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7042 goto out; 7043 } 7044 7045 /* Configure Rx ETS HW */ 7046 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 7047 i40e_dcb_hw_set_num_tc(hw, new_numtc); 7048 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 7049 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 7050 I40E_DCB_DEFAULT_MAX_EXPONENT, 7051 lltc_map); 7052 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 7053 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 7054 prio_type); 7055 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 7056 new_cfg->etscfg.prioritytable); 7057 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 7058 7059 /* Configure Rx Packet Buffers in HW */ 7060 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7061 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 7062 7063 mfs_tc[i] = main_vsi->netdev->mtu; 7064 mfs_tc[i] += I40E_PACKET_HDR_PAD; 7065 } 7066 7067 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 7068 false, new_cfg->pfc.pfcenable, 7069 mfs_tc, &pb_cfg); 7070 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 7071 7072 /* Update the local Rx Packet buffer config */ 7073 pf->pb_cfg = pb_cfg; 7074 7075 /* Inform the FW about changes to DCB configuration */ 7076 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 7077 if (ret) { 7078 dev_info(&pf->pdev->dev, 7079 "DCB Updated failed, err %pe aq_err %s\n", 7080 ERR_PTR(ret), 7081 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7082 goto out; 7083 } 7084 7085 /* Update the port DCBx configuration */ 7086 *old_cfg = *new_cfg; 7087 7088 /* Changes in configuration update VEB/VSI */ 7089 i40e_dcb_reconfigure(pf); 7090 out: 7091 /* Re-start the VSIs if disabled */ 7092 if (need_reconfig) { 7093 ret = i40e_resume_port_tx(pf); 7094 7095 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 7096 /* In case of error no point in resuming VSIs */ 7097 if (ret) 7098 goto err; 7099 7100 /* Wait for the PF's queues to be disabled */ 7101 ret = i40e_pf_wait_queues_disabled(pf); 7102 if (ret) { 7103 /* Schedule PF reset to recover */ 7104 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 7105 i40e_service_event_schedule(pf); 7106 goto err; 7107 } else { 7108 i40e_pf_unquiesce_all_vsi(pf); 7109 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7110 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 7111 } 7112 /* registers are set, lets apply */ 7113 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) 7114 ret = i40e_hw_set_dcb_config(pf, new_cfg); 7115 } 7116 7117 err: 7118 return ret; 7119 } 7120 7121 /** 7122 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 7123 * @pf: PF being queried 7124 * 7125 * Set default DCB configuration in case DCB is to be done in SW. 7126 **/ 7127 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 7128 { 7129 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 7130 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 7131 struct i40e_hw *hw = &pf->hw; 7132 int err; 7133 7134 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) { 7135 /* Update the local cached instance with TC0 ETS */ 7136 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 7137 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7138 pf->tmp_cfg.etscfg.maxtcs = 0; 7139 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7140 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 7141 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 7142 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 7143 /* FW needs one App to configure HW */ 7144 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 7145 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 7146 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 7147 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 7148 7149 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 7150 } 7151 7152 memset(&ets_data, 0, sizeof(ets_data)); 7153 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 7154 ets_data.tc_strict_priority_flags = 0; /* ETS */ 7155 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 7156 7157 /* Enable ETS on the Physical port */ 7158 err = i40e_aq_config_switch_comp_ets 7159 (hw, pf->mac_seid, &ets_data, 7160 i40e_aqc_opc_enable_switching_comp_ets, NULL); 7161 if (err) { 7162 dev_info(&pf->pdev->dev, 7163 "Enable Port ETS failed, err %pe aq_err %s\n", 7164 ERR_PTR(err), 7165 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7166 err = -ENOENT; 7167 goto out; 7168 } 7169 7170 /* Update the local cached instance with TC0 ETS */ 7171 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 7172 dcb_cfg->etscfg.cbs = 0; 7173 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 7174 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 7175 7176 out: 7177 return err; 7178 } 7179 7180 /** 7181 * i40e_init_pf_dcb - Initialize DCB configuration 7182 * @pf: PF being configured 7183 * 7184 * Query the current DCB configuration and cache it 7185 * in the hardware structure 7186 **/ 7187 static int i40e_init_pf_dcb(struct i40e_pf *pf) 7188 { 7189 struct i40e_hw *hw = &pf->hw; 7190 int err; 7191 7192 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 7193 * Also do not enable DCBx if FW LLDP agent is disabled 7194 */ 7195 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) { 7196 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 7197 err = -EOPNOTSUPP; 7198 goto out; 7199 } 7200 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) { 7201 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 7202 err = i40e_dcb_sw_default_config(pf); 7203 if (err) { 7204 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 7205 goto out; 7206 } 7207 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 7208 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 7209 DCB_CAP_DCBX_VER_IEEE; 7210 /* at init capable but disabled */ 7211 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7212 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7213 goto out; 7214 } 7215 err = i40e_init_dcb(hw, true); 7216 if (!err) { 7217 /* Device/Function is not DCBX capable */ 7218 if ((!hw->func_caps.dcb) || 7219 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 7220 dev_info(&pf->pdev->dev, 7221 "DCBX offload is not supported or is disabled for this PF.\n"); 7222 } else { 7223 /* When status is not DISABLED then DCBX in FW */ 7224 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 7225 DCB_CAP_DCBX_VER_IEEE; 7226 7227 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 7228 /* Enable DCB tagging only when more than one TC 7229 * or explicitly disable if only one TC 7230 */ 7231 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 7232 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 7233 else 7234 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 7235 dev_dbg(&pf->pdev->dev, 7236 "DCBX offload is supported for this PF.\n"); 7237 } 7238 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 7239 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 7240 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags); 7241 } else { 7242 dev_info(&pf->pdev->dev, 7243 "Query for DCB configuration failed, err %pe aq_err %s\n", 7244 ERR_PTR(err), 7245 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7246 } 7247 7248 out: 7249 return err; 7250 } 7251 #endif /* CONFIG_I40E_DCB */ 7252 7253 static void i40e_print_link_message_eee(struct i40e_vsi *vsi, 7254 const char *speed, const char *fc) 7255 { 7256 struct ethtool_keee kedata; 7257 7258 memzero_explicit(&kedata, sizeof(kedata)); 7259 if (vsi->netdev->ethtool_ops->get_eee) 7260 vsi->netdev->ethtool_ops->get_eee(vsi->netdev, &kedata); 7261 7262 if (!linkmode_empty(kedata.supported)) 7263 netdev_info(vsi->netdev, 7264 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s, EEE: %s\n", 7265 speed, fc, 7266 kedata.eee_enabled ? "Enabled" : "Disabled"); 7267 else 7268 netdev_info(vsi->netdev, 7269 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7270 speed, fc); 7271 } 7272 7273 /** 7274 * i40e_print_link_message - print link up or down 7275 * @vsi: the VSI for which link needs a message 7276 * @isup: true of link is up, false otherwise 7277 */ 7278 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 7279 { 7280 enum i40e_aq_link_speed new_speed; 7281 struct i40e_pf *pf = vsi->back; 7282 char *speed = "Unknown"; 7283 char *fc = "Unknown"; 7284 char *fec = ""; 7285 char *req_fec = ""; 7286 char *an = ""; 7287 7288 if (isup) 7289 new_speed = pf->hw.phy.link_info.link_speed; 7290 else 7291 new_speed = I40E_LINK_SPEED_UNKNOWN; 7292 7293 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 7294 return; 7295 vsi->current_isup = isup; 7296 vsi->current_speed = new_speed; 7297 if (!isup) { 7298 netdev_info(vsi->netdev, "NIC Link is Down\n"); 7299 return; 7300 } 7301 7302 /* Warn user if link speed on NPAR enabled partition is not at 7303 * least 10GB 7304 */ 7305 if (pf->hw.func_caps.npar_enable && 7306 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 7307 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 7308 netdev_warn(vsi->netdev, 7309 "The partition detected link speed that is less than 10Gbps\n"); 7310 7311 switch (pf->hw.phy.link_info.link_speed) { 7312 case I40E_LINK_SPEED_40GB: 7313 speed = "40 G"; 7314 break; 7315 case I40E_LINK_SPEED_20GB: 7316 speed = "20 G"; 7317 break; 7318 case I40E_LINK_SPEED_25GB: 7319 speed = "25 G"; 7320 break; 7321 case I40E_LINK_SPEED_10GB: 7322 speed = "10 G"; 7323 break; 7324 case I40E_LINK_SPEED_5GB: 7325 speed = "5 G"; 7326 break; 7327 case I40E_LINK_SPEED_2_5GB: 7328 speed = "2.5 G"; 7329 break; 7330 case I40E_LINK_SPEED_1GB: 7331 speed = "1000 M"; 7332 break; 7333 case I40E_LINK_SPEED_100MB: 7334 speed = "100 M"; 7335 break; 7336 default: 7337 break; 7338 } 7339 7340 switch (pf->hw.fc.current_mode) { 7341 case I40E_FC_FULL: 7342 fc = "RX/TX"; 7343 break; 7344 case I40E_FC_TX_PAUSE: 7345 fc = "TX"; 7346 break; 7347 case I40E_FC_RX_PAUSE: 7348 fc = "RX"; 7349 break; 7350 default: 7351 fc = "None"; 7352 break; 7353 } 7354 7355 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 7356 req_fec = "None"; 7357 fec = "None"; 7358 an = "False"; 7359 7360 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7361 an = "True"; 7362 7363 if (pf->hw.phy.link_info.fec_info & 7364 I40E_AQ_CONFIG_FEC_KR_ENA) 7365 fec = "CL74 FC-FEC/BASE-R"; 7366 else if (pf->hw.phy.link_info.fec_info & 7367 I40E_AQ_CONFIG_FEC_RS_ENA) 7368 fec = "CL108 RS-FEC"; 7369 7370 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7371 * both RS and FC are requested 7372 */ 7373 if (vsi->back->hw.phy.link_info.req_fec_info & 7374 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7375 if (vsi->back->hw.phy.link_info.req_fec_info & 7376 I40E_AQ_REQUEST_FEC_RS) 7377 req_fec = "CL108 RS-FEC"; 7378 else 7379 req_fec = "CL74 FC-FEC/BASE-R"; 7380 } 7381 netdev_info(vsi->netdev, 7382 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7383 speed, req_fec, fec, an, fc); 7384 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7385 req_fec = "None"; 7386 fec = "None"; 7387 an = "False"; 7388 7389 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7390 an = "True"; 7391 7392 if (pf->hw.phy.link_info.fec_info & 7393 I40E_AQ_CONFIG_FEC_KR_ENA) 7394 fec = "CL74 FC-FEC/BASE-R"; 7395 7396 if (pf->hw.phy.link_info.req_fec_info & 7397 I40E_AQ_REQUEST_FEC_KR) 7398 req_fec = "CL74 FC-FEC/BASE-R"; 7399 7400 netdev_info(vsi->netdev, 7401 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7402 speed, req_fec, fec, an, fc); 7403 } else { 7404 i40e_print_link_message_eee(vsi, speed, fc); 7405 } 7406 7407 } 7408 7409 /** 7410 * i40e_up_complete - Finish the last steps of bringing up a connection 7411 * @vsi: the VSI being configured 7412 **/ 7413 static int i40e_up_complete(struct i40e_vsi *vsi) 7414 { 7415 struct i40e_pf *pf = vsi->back; 7416 int err; 7417 7418 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 7419 i40e_vsi_configure_msix(vsi); 7420 else 7421 i40e_configure_msi_and_legacy(vsi); 7422 7423 /* start rings */ 7424 err = i40e_vsi_start_rings(vsi); 7425 if (err) 7426 return err; 7427 7428 clear_bit(__I40E_VSI_DOWN, vsi->state); 7429 i40e_napi_enable_all(vsi); 7430 i40e_vsi_enable_irq(vsi); 7431 7432 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7433 (vsi->netdev)) { 7434 i40e_print_link_message(vsi, true); 7435 netif_tx_start_all_queues(vsi->netdev); 7436 netif_carrier_on(vsi->netdev); 7437 } 7438 7439 /* replay FDIR SB filters */ 7440 if (vsi->type == I40E_VSI_FDIR) { 7441 /* reset fd counters */ 7442 pf->fd_add_err = 0; 7443 pf->fd_atr_cnt = 0; 7444 i40e_fdir_filter_restore(vsi); 7445 } 7446 7447 /* On the next run of the service_task, notify any clients of the new 7448 * opened netdev 7449 */ 7450 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7451 i40e_service_event_schedule(pf); 7452 7453 return 0; 7454 } 7455 7456 /** 7457 * i40e_vsi_reinit_locked - Reset the VSI 7458 * @vsi: the VSI being configured 7459 * 7460 * Rebuild the ring structs after some configuration 7461 * has changed, e.g. MTU size. 7462 **/ 7463 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7464 { 7465 struct i40e_pf *pf = vsi->back; 7466 7467 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7468 usleep_range(1000, 2000); 7469 i40e_down(vsi); 7470 7471 i40e_up(vsi); 7472 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7473 } 7474 7475 /** 7476 * i40e_force_link_state - Force the link status 7477 * @pf: board private structure 7478 * @is_up: whether the link state should be forced up or down 7479 **/ 7480 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7481 { 7482 struct i40e_aq_get_phy_abilities_resp abilities; 7483 struct i40e_aq_set_phy_config config = {0}; 7484 bool non_zero_phy_type = is_up; 7485 struct i40e_hw *hw = &pf->hw; 7486 u64 mask; 7487 u8 speed; 7488 int err; 7489 7490 /* Card might've been put in an unstable state by other drivers 7491 * and applications, which causes incorrect speed values being 7492 * set on startup. In order to clear speed registers, we call 7493 * get_phy_capabilities twice, once to get initial state of 7494 * available speeds, and once to get current PHY config. 7495 */ 7496 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7497 NULL); 7498 if (err) { 7499 dev_err(&pf->pdev->dev, 7500 "failed to get phy cap., ret = %pe last_status = %s\n", 7501 ERR_PTR(err), 7502 i40e_aq_str(hw, hw->aq.asq_last_status)); 7503 return err; 7504 } 7505 speed = abilities.link_speed; 7506 7507 /* Get the current phy config */ 7508 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7509 NULL); 7510 if (err) { 7511 dev_err(&pf->pdev->dev, 7512 "failed to get phy cap., ret = %pe last_status = %s\n", 7513 ERR_PTR(err), 7514 i40e_aq_str(hw, hw->aq.asq_last_status)); 7515 return err; 7516 } 7517 7518 /* If link needs to go up, but was not forced to go down, 7519 * and its speed values are OK, no need for a flap 7520 * if non_zero_phy_type was set, still need to force up 7521 */ 7522 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) 7523 non_zero_phy_type = true; 7524 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7525 return 0; 7526 7527 /* To force link we need to set bits for all supported PHY types, 7528 * but there are now more than 32, so we need to split the bitmap 7529 * across two fields. 7530 */ 7531 mask = I40E_PHY_TYPES_BITMASK; 7532 config.phy_type = 7533 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7534 config.phy_type_ext = 7535 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7536 /* Copy the old settings, except of phy_type */ 7537 config.abilities = abilities.abilities; 7538 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 7539 if (is_up) 7540 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7541 else 7542 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7543 } 7544 if (abilities.link_speed != 0) 7545 config.link_speed = abilities.link_speed; 7546 else 7547 config.link_speed = speed; 7548 config.eee_capability = abilities.eee_capability; 7549 config.eeer = abilities.eeer_val; 7550 config.low_power_ctrl = abilities.d3_lpan; 7551 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7552 I40E_AQ_PHY_FEC_CONFIG_MASK; 7553 err = i40e_aq_set_phy_config(hw, &config, NULL); 7554 7555 if (err) { 7556 dev_err(&pf->pdev->dev, 7557 "set phy config ret = %pe last_status = %s\n", 7558 ERR_PTR(err), 7559 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7560 return err; 7561 } 7562 7563 /* Update the link info */ 7564 err = i40e_update_link_info(hw); 7565 if (err) { 7566 /* Wait a little bit (on 40G cards it sometimes takes a really 7567 * long time for link to come back from the atomic reset) 7568 * and try once more 7569 */ 7570 msleep(1000); 7571 i40e_update_link_info(hw); 7572 } 7573 7574 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7575 7576 return 0; 7577 } 7578 7579 /** 7580 * i40e_up - Bring the connection back up after being down 7581 * @vsi: the VSI being configured 7582 **/ 7583 int i40e_up(struct i40e_vsi *vsi) 7584 { 7585 int err; 7586 7587 if (vsi->type == I40E_VSI_MAIN && 7588 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7589 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7590 i40e_force_link_state(vsi->back, true); 7591 7592 err = i40e_vsi_configure(vsi); 7593 if (!err) 7594 err = i40e_up_complete(vsi); 7595 7596 return err; 7597 } 7598 7599 /** 7600 * i40e_down - Shutdown the connection processing 7601 * @vsi: the VSI being stopped 7602 **/ 7603 void i40e_down(struct i40e_vsi *vsi) 7604 { 7605 int i; 7606 7607 /* It is assumed that the caller of this function 7608 * sets the vsi->state __I40E_VSI_DOWN bit. 7609 */ 7610 if (vsi->netdev) { 7611 netif_carrier_off(vsi->netdev); 7612 netif_tx_disable(vsi->netdev); 7613 } 7614 i40e_vsi_disable_irq(vsi); 7615 i40e_vsi_stop_rings(vsi); 7616 if (vsi->type == I40E_VSI_MAIN && 7617 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) || 7618 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags))) 7619 i40e_force_link_state(vsi->back, false); 7620 i40e_napi_disable_all(vsi); 7621 7622 for (i = 0; i < vsi->num_queue_pairs; i++) { 7623 i40e_clean_tx_ring(vsi->tx_rings[i]); 7624 if (i40e_enabled_xdp_vsi(vsi)) { 7625 /* Make sure that in-progress ndo_xdp_xmit and 7626 * ndo_xsk_wakeup calls are completed. 7627 */ 7628 synchronize_rcu(); 7629 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7630 } 7631 i40e_clean_rx_ring(vsi->rx_rings[i]); 7632 } 7633 7634 } 7635 7636 /** 7637 * i40e_validate_mqprio_qopt- validate queue mapping info 7638 * @vsi: the VSI being configured 7639 * @mqprio_qopt: queue parametrs 7640 **/ 7641 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7642 struct tc_mqprio_qopt_offload *mqprio_qopt) 7643 { 7644 u64 sum_max_rate = 0; 7645 u64 max_rate = 0; 7646 int i; 7647 7648 if (mqprio_qopt->qopt.offset[0] != 0 || 7649 mqprio_qopt->qopt.num_tc < 1 || 7650 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7651 return -EINVAL; 7652 for (i = 0; ; i++) { 7653 if (!mqprio_qopt->qopt.count[i]) 7654 return -EINVAL; 7655 if (mqprio_qopt->min_rate[i]) { 7656 dev_err(&vsi->back->pdev->dev, 7657 "Invalid min tx rate (greater than 0) specified\n"); 7658 return -EINVAL; 7659 } 7660 max_rate = mqprio_qopt->max_rate[i]; 7661 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7662 sum_max_rate += max_rate; 7663 7664 if (i >= mqprio_qopt->qopt.num_tc - 1) 7665 break; 7666 if (mqprio_qopt->qopt.offset[i + 1] != 7667 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7668 return -EINVAL; 7669 } 7670 if (vsi->num_queue_pairs < 7671 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7672 dev_err(&vsi->back->pdev->dev, 7673 "Failed to create traffic channel, insufficient number of queues.\n"); 7674 return -EINVAL; 7675 } 7676 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7677 dev_err(&vsi->back->pdev->dev, 7678 "Invalid max tx rate specified\n"); 7679 return -EINVAL; 7680 } 7681 return 0; 7682 } 7683 7684 /** 7685 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7686 * @vsi: the VSI being configured 7687 **/ 7688 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7689 { 7690 u16 qcount; 7691 int i; 7692 7693 /* Only TC0 is enabled */ 7694 vsi->tc_config.numtc = 1; 7695 vsi->tc_config.enabled_tc = 1; 7696 qcount = min_t(int, vsi->alloc_queue_pairs, 7697 i40e_pf_get_max_q_per_tc(vsi->back)); 7698 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7699 /* For the TC that is not enabled set the offset to default 7700 * queue and allocate one queue for the given TC. 7701 */ 7702 vsi->tc_config.tc_info[i].qoffset = 0; 7703 if (i == 0) 7704 vsi->tc_config.tc_info[i].qcount = qcount; 7705 else 7706 vsi->tc_config.tc_info[i].qcount = 1; 7707 vsi->tc_config.tc_info[i].netdev_tc = 0; 7708 } 7709 } 7710 7711 /** 7712 * i40e_del_macvlan_filter 7713 * @hw: pointer to the HW structure 7714 * @seid: seid of the channel VSI 7715 * @macaddr: the mac address to apply as a filter 7716 * @aq_err: store the admin Q error 7717 * 7718 * This function deletes a mac filter on the channel VSI which serves as the 7719 * macvlan. Returns 0 on success. 7720 **/ 7721 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7722 const u8 *macaddr, int *aq_err) 7723 { 7724 struct i40e_aqc_remove_macvlan_element_data element; 7725 int status; 7726 7727 memset(&element, 0, sizeof(element)); 7728 ether_addr_copy(element.mac_addr, macaddr); 7729 element.vlan_tag = 0; 7730 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7731 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7732 *aq_err = hw->aq.asq_last_status; 7733 7734 return status; 7735 } 7736 7737 /** 7738 * i40e_add_macvlan_filter 7739 * @hw: pointer to the HW structure 7740 * @seid: seid of the channel VSI 7741 * @macaddr: the mac address to apply as a filter 7742 * @aq_err: store the admin Q error 7743 * 7744 * This function adds a mac filter on the channel VSI which serves as the 7745 * macvlan. Returns 0 on success. 7746 **/ 7747 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7748 const u8 *macaddr, int *aq_err) 7749 { 7750 struct i40e_aqc_add_macvlan_element_data element; 7751 u16 cmd_flags = 0; 7752 int status; 7753 7754 ether_addr_copy(element.mac_addr, macaddr); 7755 element.vlan_tag = 0; 7756 element.queue_number = 0; 7757 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7758 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7759 element.flags = cpu_to_le16(cmd_flags); 7760 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7761 *aq_err = hw->aq.asq_last_status; 7762 7763 return status; 7764 } 7765 7766 /** 7767 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7768 * @vsi: the VSI we want to access 7769 * @ch: the channel we want to access 7770 */ 7771 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7772 { 7773 struct i40e_ring *tx_ring, *rx_ring; 7774 u16 pf_q; 7775 int i; 7776 7777 for (i = 0; i < ch->num_queue_pairs; i++) { 7778 pf_q = ch->base_queue + i; 7779 tx_ring = vsi->tx_rings[pf_q]; 7780 tx_ring->ch = NULL; 7781 rx_ring = vsi->rx_rings[pf_q]; 7782 rx_ring->ch = NULL; 7783 } 7784 } 7785 7786 /** 7787 * i40e_free_macvlan_channels 7788 * @vsi: the VSI we want to access 7789 * 7790 * This function frees the Qs of the channel VSI from 7791 * the stack and also deletes the channel VSIs which 7792 * serve as macvlans. 7793 */ 7794 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7795 { 7796 struct i40e_channel *ch, *ch_tmp; 7797 int ret; 7798 7799 if (list_empty(&vsi->macvlan_list)) 7800 return; 7801 7802 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7803 struct i40e_vsi *parent_vsi; 7804 7805 if (i40e_is_channel_macvlan(ch)) { 7806 i40e_reset_ch_rings(vsi, ch); 7807 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7808 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7809 netdev_set_sb_channel(ch->fwd->netdev, 0); 7810 kfree(ch->fwd); 7811 ch->fwd = NULL; 7812 } 7813 7814 list_del(&ch->list); 7815 parent_vsi = ch->parent_vsi; 7816 if (!parent_vsi || !ch->initialized) { 7817 kfree(ch); 7818 continue; 7819 } 7820 7821 /* remove the VSI */ 7822 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7823 NULL); 7824 if (ret) 7825 dev_err(&vsi->back->pdev->dev, 7826 "unable to remove channel (%d) for parent VSI(%d)\n", 7827 ch->seid, parent_vsi->seid); 7828 kfree(ch); 7829 } 7830 vsi->macvlan_cnt = 0; 7831 } 7832 7833 /** 7834 * i40e_fwd_ring_up - bring the macvlan device up 7835 * @vsi: the VSI we want to access 7836 * @vdev: macvlan netdevice 7837 * @fwd: the private fwd structure 7838 */ 7839 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7840 struct i40e_fwd_adapter *fwd) 7841 { 7842 struct i40e_channel *ch = NULL, *ch_tmp, *iter; 7843 int ret = 0, num_tc = 1, i, aq_err; 7844 struct i40e_pf *pf = vsi->back; 7845 struct i40e_hw *hw = &pf->hw; 7846 7847 /* Go through the list and find an available channel */ 7848 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) { 7849 if (!i40e_is_channel_macvlan(iter)) { 7850 iter->fwd = fwd; 7851 /* record configuration for macvlan interface in vdev */ 7852 for (i = 0; i < num_tc; i++) 7853 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7854 i, 7855 iter->num_queue_pairs, 7856 iter->base_queue); 7857 for (i = 0; i < iter->num_queue_pairs; i++) { 7858 struct i40e_ring *tx_ring, *rx_ring; 7859 u16 pf_q; 7860 7861 pf_q = iter->base_queue + i; 7862 7863 /* Get to TX ring ptr */ 7864 tx_ring = vsi->tx_rings[pf_q]; 7865 tx_ring->ch = iter; 7866 7867 /* Get the RX ring ptr */ 7868 rx_ring = vsi->rx_rings[pf_q]; 7869 rx_ring->ch = iter; 7870 } 7871 ch = iter; 7872 break; 7873 } 7874 } 7875 7876 if (!ch) 7877 return -EINVAL; 7878 7879 /* Guarantee all rings are updated before we update the 7880 * MAC address filter. 7881 */ 7882 wmb(); 7883 7884 /* Add a mac filter */ 7885 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7886 if (ret) { 7887 /* if we cannot add the MAC rule then disable the offload */ 7888 macvlan_release_l2fw_offload(vdev); 7889 for (i = 0; i < ch->num_queue_pairs; i++) { 7890 struct i40e_ring *rx_ring; 7891 u16 pf_q; 7892 7893 pf_q = ch->base_queue + i; 7894 rx_ring = vsi->rx_rings[pf_q]; 7895 rx_ring->netdev = NULL; 7896 } 7897 dev_info(&pf->pdev->dev, 7898 "Error adding mac filter on macvlan err %pe, aq_err %s\n", 7899 ERR_PTR(ret), 7900 i40e_aq_str(hw, aq_err)); 7901 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7902 } 7903 7904 return ret; 7905 } 7906 7907 /** 7908 * i40e_setup_macvlans - create the channels which will be macvlans 7909 * @vsi: the VSI we want to access 7910 * @macvlan_cnt: no. of macvlans to be setup 7911 * @qcnt: no. of Qs per macvlan 7912 * @vdev: macvlan netdevice 7913 */ 7914 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7915 struct net_device *vdev) 7916 { 7917 struct i40e_pf *pf = vsi->back; 7918 struct i40e_hw *hw = &pf->hw; 7919 struct i40e_vsi_context ctxt; 7920 u16 sections, qmap, num_qps; 7921 struct i40e_channel *ch; 7922 int i, pow, ret = 0; 7923 u8 offset = 0; 7924 7925 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7926 return -EINVAL; 7927 7928 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7929 7930 /* find the next higher power-of-2 of num queue pairs */ 7931 pow = fls(roundup_pow_of_two(num_qps) - 1); 7932 7933 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7934 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7935 7936 /* Setup context bits for the main VSI */ 7937 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7938 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7939 memset(&ctxt, 0, sizeof(ctxt)); 7940 ctxt.seid = vsi->seid; 7941 ctxt.pf_num = vsi->back->hw.pf_id; 7942 ctxt.vf_num = 0; 7943 ctxt.uplink_seid = vsi->uplink_seid; 7944 ctxt.info = vsi->info; 7945 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7946 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7947 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7948 ctxt.info.valid_sections |= cpu_to_le16(sections); 7949 7950 /* Reconfigure RSS for main VSI with new max queue count */ 7951 vsi->rss_size = max_t(u16, num_qps, qcnt); 7952 ret = i40e_vsi_config_rss(vsi); 7953 if (ret) { 7954 dev_info(&pf->pdev->dev, 7955 "Failed to reconfig RSS for num_queues (%u)\n", 7956 vsi->rss_size); 7957 return ret; 7958 } 7959 vsi->reconfig_rss = true; 7960 dev_dbg(&vsi->back->pdev->dev, 7961 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7962 vsi->next_base_queue = num_qps; 7963 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7964 7965 /* Update the VSI after updating the VSI queue-mapping 7966 * information 7967 */ 7968 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7969 if (ret) { 7970 dev_info(&pf->pdev->dev, 7971 "Update vsi tc config failed, err %pe aq_err %s\n", 7972 ERR_PTR(ret), 7973 i40e_aq_str(hw, hw->aq.asq_last_status)); 7974 return ret; 7975 } 7976 /* update the local VSI info with updated queue map */ 7977 i40e_vsi_update_queue_map(vsi, &ctxt); 7978 vsi->info.valid_sections = 0; 7979 7980 /* Create channels for macvlans */ 7981 INIT_LIST_HEAD(&vsi->macvlan_list); 7982 for (i = 0; i < macvlan_cnt; i++) { 7983 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7984 if (!ch) { 7985 ret = -ENOMEM; 7986 goto err_free; 7987 } 7988 INIT_LIST_HEAD(&ch->list); 7989 ch->num_queue_pairs = qcnt; 7990 if (!i40e_setup_channel(pf, vsi, ch)) { 7991 ret = -EINVAL; 7992 kfree(ch); 7993 goto err_free; 7994 } 7995 ch->parent_vsi = vsi; 7996 vsi->cnt_q_avail -= ch->num_queue_pairs; 7997 vsi->macvlan_cnt++; 7998 list_add_tail(&ch->list, &vsi->macvlan_list); 7999 } 8000 8001 return ret; 8002 8003 err_free: 8004 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 8005 i40e_free_macvlan_channels(vsi); 8006 8007 return ret; 8008 } 8009 8010 /** 8011 * i40e_fwd_add - configure macvlans 8012 * @netdev: net device to configure 8013 * @vdev: macvlan netdevice 8014 **/ 8015 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 8016 { 8017 struct i40e_netdev_priv *np = netdev_priv(netdev); 8018 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 8019 struct i40e_vsi *vsi = np->vsi; 8020 struct i40e_pf *pf = vsi->back; 8021 struct i40e_fwd_adapter *fwd; 8022 int avail_macvlan, ret; 8023 8024 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8025 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 8026 return ERR_PTR(-EINVAL); 8027 } 8028 if (i40e_is_tc_mqprio_enabled(pf)) { 8029 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 8030 return ERR_PTR(-EINVAL); 8031 } 8032 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 8033 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 8034 return ERR_PTR(-EINVAL); 8035 } 8036 8037 /* The macvlan device has to be a single Q device so that the 8038 * tc_to_txq field can be reused to pick the tx queue. 8039 */ 8040 if (netif_is_multiqueue(vdev)) 8041 return ERR_PTR(-ERANGE); 8042 8043 if (!vsi->macvlan_cnt) { 8044 /* reserve bit 0 for the pf device */ 8045 set_bit(0, vsi->fwd_bitmask); 8046 8047 /* Try to reserve as many queues as possible for macvlans. First 8048 * reserve 3/4th of max vectors, then half, then quarter and 8049 * calculate Qs per macvlan as you go 8050 */ 8051 vectors = pf->num_lan_msix; 8052 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 8053 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 8054 q_per_macvlan = 4; 8055 macvlan_cnt = (vectors - 32) / 4; 8056 } else if (vectors <= 64 && vectors > 32) { 8057 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 8058 q_per_macvlan = 2; 8059 macvlan_cnt = (vectors - 16) / 2; 8060 } else if (vectors <= 32 && vectors > 16) { 8061 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 8062 q_per_macvlan = 1; 8063 macvlan_cnt = vectors - 16; 8064 } else if (vectors <= 16 && vectors > 8) { 8065 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 8066 q_per_macvlan = 1; 8067 macvlan_cnt = vectors - 8; 8068 } else { 8069 /* allocate 1 Q per macvlan and 1 Q to the PF */ 8070 q_per_macvlan = 1; 8071 macvlan_cnt = vectors - 1; 8072 } 8073 8074 if (macvlan_cnt == 0) 8075 return ERR_PTR(-EBUSY); 8076 8077 /* Quiesce VSI queues */ 8078 i40e_quiesce_vsi(vsi); 8079 8080 /* sets up the macvlans but does not "enable" them */ 8081 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 8082 vdev); 8083 if (ret) 8084 return ERR_PTR(ret); 8085 8086 /* Unquiesce VSI */ 8087 i40e_unquiesce_vsi(vsi); 8088 } 8089 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 8090 vsi->macvlan_cnt); 8091 if (avail_macvlan >= I40E_MAX_MACVLANS) 8092 return ERR_PTR(-EBUSY); 8093 8094 /* create the fwd struct */ 8095 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 8096 if (!fwd) 8097 return ERR_PTR(-ENOMEM); 8098 8099 set_bit(avail_macvlan, vsi->fwd_bitmask); 8100 fwd->bit_no = avail_macvlan; 8101 netdev_set_sb_channel(vdev, avail_macvlan); 8102 fwd->netdev = vdev; 8103 8104 if (!netif_running(netdev)) 8105 return fwd; 8106 8107 /* Set fwd ring up */ 8108 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 8109 if (ret) { 8110 /* unbind the queues and drop the subordinate channel config */ 8111 netdev_unbind_sb_channel(netdev, vdev); 8112 netdev_set_sb_channel(vdev, 0); 8113 8114 kfree(fwd); 8115 return ERR_PTR(-EINVAL); 8116 } 8117 8118 return fwd; 8119 } 8120 8121 /** 8122 * i40e_del_all_macvlans - Delete all the mac filters on the channels 8123 * @vsi: the VSI we want to access 8124 */ 8125 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 8126 { 8127 struct i40e_channel *ch, *ch_tmp; 8128 struct i40e_pf *pf = vsi->back; 8129 struct i40e_hw *hw = &pf->hw; 8130 int aq_err, ret = 0; 8131 8132 if (list_empty(&vsi->macvlan_list)) 8133 return; 8134 8135 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8136 if (i40e_is_channel_macvlan(ch)) { 8137 ret = i40e_del_macvlan_filter(hw, ch->seid, 8138 i40e_channel_mac(ch), 8139 &aq_err); 8140 if (!ret) { 8141 /* Reset queue contexts */ 8142 i40e_reset_ch_rings(vsi, ch); 8143 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8144 netdev_unbind_sb_channel(vsi->netdev, 8145 ch->fwd->netdev); 8146 netdev_set_sb_channel(ch->fwd->netdev, 0); 8147 kfree(ch->fwd); 8148 ch->fwd = NULL; 8149 } 8150 } 8151 } 8152 } 8153 8154 /** 8155 * i40e_fwd_del - delete macvlan interfaces 8156 * @netdev: net device to configure 8157 * @vdev: macvlan netdevice 8158 */ 8159 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 8160 { 8161 struct i40e_netdev_priv *np = netdev_priv(netdev); 8162 struct i40e_fwd_adapter *fwd = vdev; 8163 struct i40e_channel *ch, *ch_tmp; 8164 struct i40e_vsi *vsi = np->vsi; 8165 struct i40e_pf *pf = vsi->back; 8166 struct i40e_hw *hw = &pf->hw; 8167 int aq_err, ret = 0; 8168 8169 /* Find the channel associated with the macvlan and del mac filter */ 8170 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 8171 if (i40e_is_channel_macvlan(ch) && 8172 ether_addr_equal(i40e_channel_mac(ch), 8173 fwd->netdev->dev_addr)) { 8174 ret = i40e_del_macvlan_filter(hw, ch->seid, 8175 i40e_channel_mac(ch), 8176 &aq_err); 8177 if (!ret) { 8178 /* Reset queue contexts */ 8179 i40e_reset_ch_rings(vsi, ch); 8180 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 8181 netdev_unbind_sb_channel(netdev, fwd->netdev); 8182 netdev_set_sb_channel(fwd->netdev, 0); 8183 kfree(ch->fwd); 8184 ch->fwd = NULL; 8185 } else { 8186 dev_info(&pf->pdev->dev, 8187 "Error deleting mac filter on macvlan err %pe, aq_err %s\n", 8188 ERR_PTR(ret), 8189 i40e_aq_str(hw, aq_err)); 8190 } 8191 break; 8192 } 8193 } 8194 } 8195 8196 /** 8197 * i40e_setup_tc - configure multiple traffic classes 8198 * @netdev: net device to configure 8199 * @type_data: tc offload data 8200 **/ 8201 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 8202 { 8203 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8204 struct i40e_netdev_priv *np = netdev_priv(netdev); 8205 struct i40e_vsi *vsi = np->vsi; 8206 struct i40e_pf *pf = vsi->back; 8207 u8 enabled_tc = 0, num_tc, hw; 8208 bool need_reset = false; 8209 int old_queue_pairs; 8210 int ret = -EINVAL; 8211 u16 mode; 8212 int i; 8213 8214 old_queue_pairs = vsi->num_queue_pairs; 8215 num_tc = mqprio_qopt->qopt.num_tc; 8216 hw = mqprio_qopt->qopt.hw; 8217 mode = mqprio_qopt->mode; 8218 if (!hw) { 8219 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8220 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8221 goto config_tc; 8222 } 8223 8224 /* Check if MFP enabled */ 8225 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) { 8226 netdev_info(netdev, 8227 "Configuring TC not supported in MFP mode\n"); 8228 return ret; 8229 } 8230 switch (mode) { 8231 case TC_MQPRIO_MODE_DCB: 8232 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8233 8234 /* Check if DCB enabled to continue */ 8235 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8236 netdev_info(netdev, 8237 "DCB is not enabled for adapter\n"); 8238 return ret; 8239 } 8240 8241 /* Check whether tc count is within enabled limit */ 8242 if (num_tc > i40e_pf_get_num_tc(pf)) { 8243 netdev_info(netdev, 8244 "TC count greater than enabled on link for adapter\n"); 8245 return ret; 8246 } 8247 break; 8248 case TC_MQPRIO_MODE_CHANNEL: 8249 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) { 8250 netdev_info(netdev, 8251 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 8252 return ret; 8253 } 8254 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 8255 return ret; 8256 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 8257 if (ret) 8258 return ret; 8259 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 8260 sizeof(*mqprio_qopt)); 8261 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags); 8262 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 8263 break; 8264 default: 8265 return -EINVAL; 8266 } 8267 8268 config_tc: 8269 /* Generate TC map for number of tc requested */ 8270 for (i = 0; i < num_tc; i++) 8271 enabled_tc |= BIT(i); 8272 8273 /* Requesting same TC configuration as already enabled */ 8274 if (enabled_tc == vsi->tc_config.enabled_tc && 8275 mode != TC_MQPRIO_MODE_CHANNEL) 8276 return 0; 8277 8278 /* Quiesce VSI queues */ 8279 i40e_quiesce_vsi(vsi); 8280 8281 if (!hw && !i40e_is_tc_mqprio_enabled(pf)) 8282 i40e_remove_queue_channels(vsi); 8283 8284 /* Configure VSI for enabled TCs */ 8285 ret = i40e_vsi_config_tc(vsi, enabled_tc); 8286 if (ret) { 8287 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 8288 vsi->seid); 8289 need_reset = true; 8290 goto exit; 8291 } else if (enabled_tc && 8292 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) { 8293 netdev_info(netdev, 8294 "Failed to create channel. Override queues (%u) not power of 2\n", 8295 vsi->tc_config.tc_info[0].qcount); 8296 ret = -EINVAL; 8297 need_reset = true; 8298 goto exit; 8299 } 8300 8301 dev_info(&vsi->back->pdev->dev, 8302 "Setup channel (id:%u) utilizing num_queues %d\n", 8303 vsi->seid, vsi->tc_config.tc_info[0].qcount); 8304 8305 if (i40e_is_tc_mqprio_enabled(pf)) { 8306 if (vsi->mqprio_qopt.max_rate[0]) { 8307 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 8308 vsi->mqprio_qopt.max_rate[0]); 8309 8310 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 8311 if (!ret) { 8312 u64 credits = max_tx_rate; 8313 8314 do_div(credits, I40E_BW_CREDIT_DIVISOR); 8315 dev_dbg(&vsi->back->pdev->dev, 8316 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 8317 max_tx_rate, 8318 credits, 8319 vsi->seid); 8320 } else { 8321 need_reset = true; 8322 goto exit; 8323 } 8324 } 8325 ret = i40e_configure_queue_channels(vsi); 8326 if (ret) { 8327 vsi->num_queue_pairs = old_queue_pairs; 8328 netdev_info(netdev, 8329 "Failed configuring queue channels\n"); 8330 need_reset = true; 8331 goto exit; 8332 } 8333 } 8334 8335 exit: 8336 /* Reset the configuration data to defaults, only TC0 is enabled */ 8337 if (need_reset) { 8338 i40e_vsi_set_default_tc_config(vsi); 8339 need_reset = false; 8340 } 8341 8342 /* Unquiesce VSI */ 8343 i40e_unquiesce_vsi(vsi); 8344 return ret; 8345 } 8346 8347 /** 8348 * i40e_set_cld_element - sets cloud filter element data 8349 * @filter: cloud filter rule 8350 * @cld: ptr to cloud filter element data 8351 * 8352 * This is helper function to copy data into cloud filter element 8353 **/ 8354 static inline void 8355 i40e_set_cld_element(struct i40e_cloud_filter *filter, 8356 struct i40e_aqc_cloud_filters_element_data *cld) 8357 { 8358 u32 ipa; 8359 int i; 8360 8361 memset(cld, 0, sizeof(*cld)); 8362 ether_addr_copy(cld->outer_mac, filter->dst_mac); 8363 ether_addr_copy(cld->inner_mac, filter->src_mac); 8364 8365 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8366 return; 8367 8368 if (filter->n_proto == ETH_P_IPV6) { 8369 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8370 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8371 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8372 8373 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8374 } 8375 } else { 8376 ipa = be32_to_cpu(filter->dst_ipv4); 8377 8378 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8379 } 8380 8381 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8382 8383 /* tenant_id is not supported by FW now, once the support is enabled 8384 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8385 */ 8386 if (filter->tenant_id) 8387 return; 8388 } 8389 8390 /** 8391 * i40e_add_del_cloud_filter - Add/del cloud filter 8392 * @vsi: pointer to VSI 8393 * @filter: cloud filter rule 8394 * @add: if true, add, if false, delete 8395 * 8396 * Add or delete a cloud filter for a specific flow spec. 8397 * Returns 0 if the filter were successfully added. 8398 **/ 8399 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8400 struct i40e_cloud_filter *filter, bool add) 8401 { 8402 struct i40e_aqc_cloud_filters_element_data cld_filter; 8403 struct i40e_pf *pf = vsi->back; 8404 int ret; 8405 static const u16 flag_table[128] = { 8406 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8407 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8408 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8409 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8410 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8411 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8412 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8413 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8414 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8415 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8416 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8417 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8418 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8419 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8420 }; 8421 8422 if (filter->flags >= ARRAY_SIZE(flag_table)) 8423 return -EIO; 8424 8425 memset(&cld_filter, 0, sizeof(cld_filter)); 8426 8427 /* copy element needed to add cloud filter from filter */ 8428 i40e_set_cld_element(filter, &cld_filter); 8429 8430 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8431 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8432 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8433 8434 if (filter->n_proto == ETH_P_IPV6) 8435 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8436 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8437 else 8438 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8439 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8440 8441 if (add) 8442 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8443 &cld_filter, 1); 8444 else 8445 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8446 &cld_filter, 1); 8447 if (ret) 8448 dev_dbg(&pf->pdev->dev, 8449 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8450 add ? "add" : "delete", filter->dst_port, ret, 8451 pf->hw.aq.asq_last_status); 8452 else 8453 dev_info(&pf->pdev->dev, 8454 "%s cloud filter for VSI: %d\n", 8455 add ? "Added" : "Deleted", filter->seid); 8456 return ret; 8457 } 8458 8459 /** 8460 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8461 * @vsi: pointer to VSI 8462 * @filter: cloud filter rule 8463 * @add: if true, add, if false, delete 8464 * 8465 * Add or delete a cloud filter for a specific flow spec using big buffer. 8466 * Returns 0 if the filter were successfully added. 8467 **/ 8468 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8469 struct i40e_cloud_filter *filter, 8470 bool add) 8471 { 8472 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8473 struct i40e_pf *pf = vsi->back; 8474 int ret; 8475 8476 /* Both (src/dst) valid mac_addr are not supported */ 8477 if ((is_valid_ether_addr(filter->dst_mac) && 8478 is_valid_ether_addr(filter->src_mac)) || 8479 (is_multicast_ether_addr(filter->dst_mac) && 8480 is_multicast_ether_addr(filter->src_mac))) 8481 return -EOPNOTSUPP; 8482 8483 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8484 * ports are not supported via big buffer now. 8485 */ 8486 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8487 return -EOPNOTSUPP; 8488 8489 /* adding filter using src_port/src_ip is not supported at this stage */ 8490 if (filter->src_port || 8491 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8492 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8493 return -EOPNOTSUPP; 8494 8495 memset(&cld_filter, 0, sizeof(cld_filter)); 8496 8497 /* copy element needed to add cloud filter from filter */ 8498 i40e_set_cld_element(filter, &cld_filter.element); 8499 8500 if (is_valid_ether_addr(filter->dst_mac) || 8501 is_valid_ether_addr(filter->src_mac) || 8502 is_multicast_ether_addr(filter->dst_mac) || 8503 is_multicast_ether_addr(filter->src_mac)) { 8504 /* MAC + IP : unsupported mode */ 8505 if (filter->dst_ipv4) 8506 return -EOPNOTSUPP; 8507 8508 /* since we validated that L4 port must be valid before 8509 * we get here, start with respective "flags" value 8510 * and update if vlan is present or not 8511 */ 8512 cld_filter.element.flags = 8513 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8514 8515 if (filter->vlan_id) { 8516 cld_filter.element.flags = 8517 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8518 } 8519 8520 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8521 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8522 cld_filter.element.flags = 8523 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8524 if (filter->n_proto == ETH_P_IPV6) 8525 cld_filter.element.flags |= 8526 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8527 else 8528 cld_filter.element.flags |= 8529 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8530 } else { 8531 dev_err(&pf->pdev->dev, 8532 "either mac or ip has to be valid for cloud filter\n"); 8533 return -EINVAL; 8534 } 8535 8536 /* Now copy L4 port in Byte 6..7 in general fields */ 8537 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8538 be16_to_cpu(filter->dst_port); 8539 8540 if (add) { 8541 /* Validate current device switch mode, change if necessary */ 8542 ret = i40e_validate_and_set_switch_mode(vsi); 8543 if (ret) { 8544 dev_err(&pf->pdev->dev, 8545 "failed to set switch mode, ret %d\n", 8546 ret); 8547 return ret; 8548 } 8549 8550 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8551 &cld_filter, 1); 8552 } else { 8553 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8554 &cld_filter, 1); 8555 } 8556 8557 if (ret) 8558 dev_dbg(&pf->pdev->dev, 8559 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8560 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8561 else 8562 dev_info(&pf->pdev->dev, 8563 "%s cloud filter for VSI: %d, L4 port: %d\n", 8564 add ? "add" : "delete", filter->seid, 8565 ntohs(filter->dst_port)); 8566 return ret; 8567 } 8568 8569 /** 8570 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8571 * @vsi: Pointer to VSI 8572 * @f: Pointer to struct flow_cls_offload 8573 * @filter: Pointer to cloud filter structure 8574 * 8575 **/ 8576 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8577 struct flow_cls_offload *f, 8578 struct i40e_cloud_filter *filter) 8579 { 8580 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8581 struct flow_dissector *dissector = rule->match.dissector; 8582 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8583 struct i40e_pf *pf = vsi->back; 8584 u8 field_flags = 0; 8585 8586 if (dissector->used_keys & 8587 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 8588 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 8589 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8590 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 8591 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8592 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8593 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 8594 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8595 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n", 8596 dissector->used_keys); 8597 return -EOPNOTSUPP; 8598 } 8599 8600 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8601 struct flow_match_enc_keyid match; 8602 8603 flow_rule_match_enc_keyid(rule, &match); 8604 if (match.mask->keyid != 0) 8605 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8606 8607 filter->tenant_id = be32_to_cpu(match.key->keyid); 8608 } 8609 8610 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8611 struct flow_match_basic match; 8612 8613 flow_rule_match_basic(rule, &match); 8614 n_proto_key = ntohs(match.key->n_proto); 8615 n_proto_mask = ntohs(match.mask->n_proto); 8616 8617 if (n_proto_key == ETH_P_ALL) { 8618 n_proto_key = 0; 8619 n_proto_mask = 0; 8620 } 8621 filter->n_proto = n_proto_key & n_proto_mask; 8622 filter->ip_proto = match.key->ip_proto; 8623 } 8624 8625 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8626 struct flow_match_eth_addrs match; 8627 8628 flow_rule_match_eth_addrs(rule, &match); 8629 8630 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8631 if (!is_zero_ether_addr(match.mask->dst)) { 8632 if (is_broadcast_ether_addr(match.mask->dst)) { 8633 field_flags |= I40E_CLOUD_FIELD_OMAC; 8634 } else { 8635 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8636 match.mask->dst); 8637 return -EIO; 8638 } 8639 } 8640 8641 if (!is_zero_ether_addr(match.mask->src)) { 8642 if (is_broadcast_ether_addr(match.mask->src)) { 8643 field_flags |= I40E_CLOUD_FIELD_IMAC; 8644 } else { 8645 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8646 match.mask->src); 8647 return -EIO; 8648 } 8649 } 8650 ether_addr_copy(filter->dst_mac, match.key->dst); 8651 ether_addr_copy(filter->src_mac, match.key->src); 8652 } 8653 8654 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8655 struct flow_match_vlan match; 8656 8657 flow_rule_match_vlan(rule, &match); 8658 if (match.mask->vlan_id) { 8659 if (match.mask->vlan_id == VLAN_VID_MASK) { 8660 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8661 8662 } else { 8663 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8664 match.mask->vlan_id); 8665 return -EIO; 8666 } 8667 } 8668 8669 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8670 } 8671 8672 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8673 struct flow_match_control match; 8674 8675 flow_rule_match_control(rule, &match); 8676 addr_type = match.key->addr_type; 8677 8678 if (flow_rule_has_control_flags(match.mask->flags, 8679 f->common.extack)) 8680 return -EOPNOTSUPP; 8681 } 8682 8683 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8684 struct flow_match_ipv4_addrs match; 8685 8686 flow_rule_match_ipv4_addrs(rule, &match); 8687 if (match.mask->dst) { 8688 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8689 field_flags |= I40E_CLOUD_FIELD_IIP; 8690 } else { 8691 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8692 &match.mask->dst); 8693 return -EIO; 8694 } 8695 } 8696 8697 if (match.mask->src) { 8698 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8699 field_flags |= I40E_CLOUD_FIELD_IIP; 8700 } else { 8701 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8702 &match.mask->src); 8703 return -EIO; 8704 } 8705 } 8706 8707 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8708 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8709 return -EIO; 8710 } 8711 filter->dst_ipv4 = match.key->dst; 8712 filter->src_ipv4 = match.key->src; 8713 } 8714 8715 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8716 struct flow_match_ipv6_addrs match; 8717 8718 flow_rule_match_ipv6_addrs(rule, &match); 8719 8720 /* src and dest IPV6 address should not be LOOPBACK 8721 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8722 */ 8723 if (ipv6_addr_loopback(&match.key->dst) || 8724 ipv6_addr_loopback(&match.key->src)) { 8725 dev_err(&pf->pdev->dev, 8726 "Bad ipv6, addr is LOOPBACK\n"); 8727 return -EIO; 8728 } 8729 if (!ipv6_addr_any(&match.mask->dst) || 8730 !ipv6_addr_any(&match.mask->src)) 8731 field_flags |= I40E_CLOUD_FIELD_IIP; 8732 8733 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8734 sizeof(filter->src_ipv6)); 8735 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8736 sizeof(filter->dst_ipv6)); 8737 } 8738 8739 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8740 struct flow_match_ports match; 8741 8742 flow_rule_match_ports(rule, &match); 8743 if (match.mask->src) { 8744 if (match.mask->src == cpu_to_be16(0xffff)) { 8745 field_flags |= I40E_CLOUD_FIELD_IIP; 8746 } else { 8747 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8748 be16_to_cpu(match.mask->src)); 8749 return -EIO; 8750 } 8751 } 8752 8753 if (match.mask->dst) { 8754 if (match.mask->dst == cpu_to_be16(0xffff)) { 8755 field_flags |= I40E_CLOUD_FIELD_IIP; 8756 } else { 8757 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8758 be16_to_cpu(match.mask->dst)); 8759 return -EIO; 8760 } 8761 } 8762 8763 filter->dst_port = match.key->dst; 8764 filter->src_port = match.key->src; 8765 8766 switch (filter->ip_proto) { 8767 case IPPROTO_TCP: 8768 case IPPROTO_UDP: 8769 break; 8770 default: 8771 dev_err(&pf->pdev->dev, 8772 "Only UDP and TCP transport are supported\n"); 8773 return -EINVAL; 8774 } 8775 } 8776 filter->flags = field_flags; 8777 return 0; 8778 } 8779 8780 /** 8781 * i40e_handle_tclass: Forward to a traffic class on the device 8782 * @vsi: Pointer to VSI 8783 * @tc: traffic class index on the device 8784 * @filter: Pointer to cloud filter structure 8785 * 8786 **/ 8787 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8788 struct i40e_cloud_filter *filter) 8789 { 8790 struct i40e_channel *ch, *ch_tmp; 8791 8792 /* direct to a traffic class on the same device */ 8793 if (tc == 0) { 8794 filter->seid = vsi->seid; 8795 return 0; 8796 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8797 if (!filter->dst_port) { 8798 dev_err(&vsi->back->pdev->dev, 8799 "Specify destination port to direct to traffic class that is not default\n"); 8800 return -EINVAL; 8801 } 8802 if (list_empty(&vsi->ch_list)) 8803 return -EINVAL; 8804 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8805 list) { 8806 if (ch->seid == vsi->tc_seid_map[tc]) 8807 filter->seid = ch->seid; 8808 } 8809 return 0; 8810 } 8811 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8812 return -EINVAL; 8813 } 8814 8815 /** 8816 * i40e_configure_clsflower - Configure tc flower filters 8817 * @vsi: Pointer to VSI 8818 * @cls_flower: Pointer to struct flow_cls_offload 8819 * 8820 **/ 8821 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8822 struct flow_cls_offload *cls_flower) 8823 { 8824 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8825 struct i40e_cloud_filter *filter = NULL; 8826 struct i40e_pf *pf = vsi->back; 8827 int err = 0; 8828 8829 if (tc < 0) { 8830 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8831 return -EOPNOTSUPP; 8832 } 8833 8834 if (!tc) { 8835 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination"); 8836 return -EINVAL; 8837 } 8838 8839 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8840 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8841 return -EBUSY; 8842 8843 if (pf->fdir_pf_active_filters || 8844 (!hlist_empty(&pf->fdir_filter_list))) { 8845 dev_err(&vsi->back->pdev->dev, 8846 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8847 return -EINVAL; 8848 } 8849 8850 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) { 8851 dev_err(&vsi->back->pdev->dev, 8852 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8853 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags); 8854 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags); 8855 } 8856 8857 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8858 if (!filter) 8859 return -ENOMEM; 8860 8861 filter->cookie = cls_flower->cookie; 8862 8863 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8864 if (err < 0) 8865 goto err; 8866 8867 err = i40e_handle_tclass(vsi, tc, filter); 8868 if (err < 0) 8869 goto err; 8870 8871 /* Add cloud filter */ 8872 if (filter->dst_port) 8873 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8874 else 8875 err = i40e_add_del_cloud_filter(vsi, filter, true); 8876 8877 if (err) { 8878 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n", 8879 err); 8880 goto err; 8881 } 8882 8883 /* add filter to the ordered list */ 8884 INIT_HLIST_NODE(&filter->cloud_node); 8885 8886 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8887 8888 pf->num_cloud_filters++; 8889 8890 return err; 8891 err: 8892 kfree(filter); 8893 return err; 8894 } 8895 8896 /** 8897 * i40e_find_cloud_filter - Find the could filter in the list 8898 * @vsi: Pointer to VSI 8899 * @cookie: filter specific cookie 8900 * 8901 **/ 8902 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8903 unsigned long *cookie) 8904 { 8905 struct i40e_cloud_filter *filter = NULL; 8906 struct hlist_node *node2; 8907 8908 hlist_for_each_entry_safe(filter, node2, 8909 &vsi->back->cloud_filter_list, cloud_node) 8910 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8911 return filter; 8912 return NULL; 8913 } 8914 8915 /** 8916 * i40e_delete_clsflower - Remove tc flower filters 8917 * @vsi: Pointer to VSI 8918 * @cls_flower: Pointer to struct flow_cls_offload 8919 * 8920 **/ 8921 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8922 struct flow_cls_offload *cls_flower) 8923 { 8924 struct i40e_cloud_filter *filter = NULL; 8925 struct i40e_pf *pf = vsi->back; 8926 int err = 0; 8927 8928 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8929 8930 if (!filter) 8931 return -EINVAL; 8932 8933 hash_del(&filter->cloud_node); 8934 8935 if (filter->dst_port) 8936 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8937 else 8938 err = i40e_add_del_cloud_filter(vsi, filter, false); 8939 8940 kfree(filter); 8941 if (err) { 8942 dev_err(&pf->pdev->dev, 8943 "Failed to delete cloud filter, err %pe\n", 8944 ERR_PTR(err)); 8945 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8946 } 8947 8948 pf->num_cloud_filters--; 8949 if (!pf->num_cloud_filters) 8950 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 8951 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 8952 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 8953 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 8954 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 8955 } 8956 return 0; 8957 } 8958 8959 /** 8960 * i40e_setup_tc_cls_flower - flower classifier offloads 8961 * @np: net device to configure 8962 * @cls_flower: offload data 8963 **/ 8964 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8965 struct flow_cls_offload *cls_flower) 8966 { 8967 struct i40e_vsi *vsi = np->vsi; 8968 8969 switch (cls_flower->command) { 8970 case FLOW_CLS_REPLACE: 8971 return i40e_configure_clsflower(vsi, cls_flower); 8972 case FLOW_CLS_DESTROY: 8973 return i40e_delete_clsflower(vsi, cls_flower); 8974 case FLOW_CLS_STATS: 8975 return -EOPNOTSUPP; 8976 default: 8977 return -EOPNOTSUPP; 8978 } 8979 } 8980 8981 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8982 void *cb_priv) 8983 { 8984 struct i40e_netdev_priv *np = cb_priv; 8985 8986 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8987 return -EOPNOTSUPP; 8988 8989 switch (type) { 8990 case TC_SETUP_CLSFLOWER: 8991 return i40e_setup_tc_cls_flower(np, type_data); 8992 8993 default: 8994 return -EOPNOTSUPP; 8995 } 8996 } 8997 8998 static LIST_HEAD(i40e_block_cb_list); 8999 9000 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9001 void *type_data) 9002 { 9003 struct i40e_netdev_priv *np = netdev_priv(netdev); 9004 9005 switch (type) { 9006 case TC_SETUP_QDISC_MQPRIO: 9007 return i40e_setup_tc(netdev, type_data); 9008 case TC_SETUP_BLOCK: 9009 return flow_block_cb_setup_simple(type_data, 9010 &i40e_block_cb_list, 9011 i40e_setup_tc_block_cb, 9012 np, np, true); 9013 default: 9014 return -EOPNOTSUPP; 9015 } 9016 } 9017 9018 /** 9019 * i40e_open - Called when a network interface is made active 9020 * @netdev: network interface device structure 9021 * 9022 * The open entry point is called when a network interface is made 9023 * active by the system (IFF_UP). At this point all resources needed 9024 * for transmit and receive operations are allocated, the interrupt 9025 * handler is registered with the OS, the netdev watchdog subtask is 9026 * enabled, and the stack is notified that the interface is ready. 9027 * 9028 * Returns 0 on success, negative value on failure 9029 **/ 9030 int i40e_open(struct net_device *netdev) 9031 { 9032 struct i40e_netdev_priv *np = netdev_priv(netdev); 9033 struct i40e_vsi *vsi = np->vsi; 9034 struct i40e_pf *pf = vsi->back; 9035 int err; 9036 9037 /* disallow open during test or if eeprom is broken */ 9038 if (test_bit(__I40E_TESTING, pf->state) || 9039 test_bit(__I40E_BAD_EEPROM, pf->state)) 9040 return -EBUSY; 9041 9042 netif_carrier_off(netdev); 9043 9044 if (i40e_force_link_state(pf, true)) 9045 return -EAGAIN; 9046 9047 err = i40e_vsi_open(vsi); 9048 if (err) 9049 return err; 9050 9051 /* configure global TSO hardware offload settings */ 9052 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 9053 TCP_FLAG_FIN) >> 16); 9054 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 9055 TCP_FLAG_FIN | 9056 TCP_FLAG_CWR) >> 16); 9057 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 9058 udp_tunnel_get_rx_info(netdev); 9059 9060 return 0; 9061 } 9062 9063 /** 9064 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues 9065 * @vsi: vsi structure 9066 * 9067 * This updates netdev's number of tx/rx queues 9068 * 9069 * Returns status of setting tx/rx queues 9070 **/ 9071 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi) 9072 { 9073 int ret; 9074 9075 ret = netif_set_real_num_rx_queues(vsi->netdev, 9076 vsi->num_queue_pairs); 9077 if (ret) 9078 return ret; 9079 9080 return netif_set_real_num_tx_queues(vsi->netdev, 9081 vsi->num_queue_pairs); 9082 } 9083 9084 /** 9085 * i40e_vsi_open - 9086 * @vsi: the VSI to open 9087 * 9088 * Finish initialization of the VSI. 9089 * 9090 * Returns 0 on success, negative value on failure 9091 * 9092 * Note: expects to be called while under rtnl_lock() 9093 **/ 9094 int i40e_vsi_open(struct i40e_vsi *vsi) 9095 { 9096 struct i40e_pf *pf = vsi->back; 9097 char int_name[I40E_INT_NAME_STR_LEN]; 9098 int err; 9099 9100 /* allocate descriptors */ 9101 err = i40e_vsi_setup_tx_resources(vsi); 9102 if (err) 9103 goto err_setup_tx; 9104 err = i40e_vsi_setup_rx_resources(vsi); 9105 if (err) 9106 goto err_setup_rx; 9107 9108 err = i40e_vsi_configure(vsi); 9109 if (err) 9110 goto err_setup_rx; 9111 9112 if (vsi->netdev) { 9113 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 9114 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 9115 err = i40e_vsi_request_irq(vsi, int_name); 9116 if (err) 9117 goto err_setup_rx; 9118 9119 /* Notify the stack of the actual queue counts. */ 9120 err = i40e_netif_set_realnum_tx_rx_queues(vsi); 9121 if (err) 9122 goto err_set_queues; 9123 9124 } else if (vsi->type == I40E_VSI_FDIR) { 9125 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 9126 dev_driver_string(&pf->pdev->dev), 9127 dev_name(&pf->pdev->dev)); 9128 err = i40e_vsi_request_irq(vsi, int_name); 9129 if (err) 9130 goto err_setup_rx; 9131 9132 } else { 9133 err = -EINVAL; 9134 goto err_setup_rx; 9135 } 9136 9137 err = i40e_up_complete(vsi); 9138 if (err) 9139 goto err_up_complete; 9140 9141 return 0; 9142 9143 err_up_complete: 9144 i40e_down(vsi); 9145 err_set_queues: 9146 i40e_vsi_free_irq(vsi); 9147 err_setup_rx: 9148 i40e_vsi_free_rx_resources(vsi); 9149 err_setup_tx: 9150 i40e_vsi_free_tx_resources(vsi); 9151 if (vsi->type == I40E_VSI_MAIN) 9152 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 9153 9154 return err; 9155 } 9156 9157 /** 9158 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 9159 * @pf: Pointer to PF 9160 * 9161 * This function destroys the hlist where all the Flow Director 9162 * filters were saved. 9163 **/ 9164 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 9165 { 9166 struct i40e_fdir_filter *filter; 9167 struct i40e_flex_pit *pit_entry, *tmp; 9168 struct hlist_node *node2; 9169 9170 hlist_for_each_entry_safe(filter, node2, 9171 &pf->fdir_filter_list, fdir_node) { 9172 hlist_del(&filter->fdir_node); 9173 kfree(filter); 9174 } 9175 9176 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 9177 list_del(&pit_entry->list); 9178 kfree(pit_entry); 9179 } 9180 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 9181 9182 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 9183 list_del(&pit_entry->list); 9184 kfree(pit_entry); 9185 } 9186 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 9187 9188 pf->fdir_pf_active_filters = 0; 9189 i40e_reset_fdir_filter_cnt(pf); 9190 9191 /* Reprogram the default input set for TCP/IPv4 */ 9192 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP, 9193 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9194 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9195 9196 /* Reprogram the default input set for TCP/IPv6 */ 9197 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP, 9198 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9199 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9200 9201 /* Reprogram the default input set for UDP/IPv4 */ 9202 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP, 9203 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9204 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9205 9206 /* Reprogram the default input set for UDP/IPv6 */ 9207 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP, 9208 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9209 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9210 9211 /* Reprogram the default input set for SCTP/IPv4 */ 9212 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP, 9213 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9214 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9215 9216 /* Reprogram the default input set for SCTP/IPv6 */ 9217 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP, 9218 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 9219 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9220 9221 /* Reprogram the default input set for Other/IPv4 */ 9222 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER, 9223 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9224 9225 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_FRAG_IPV4, 9226 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9227 9228 /* Reprogram the default input set for Other/IPv6 */ 9229 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER, 9230 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9231 9232 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_FRAG_IPV6, 9233 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 9234 } 9235 9236 /** 9237 * i40e_cloud_filter_exit - Cleans up the cloud filters 9238 * @pf: Pointer to PF 9239 * 9240 * This function destroys the hlist where all the cloud filters 9241 * were saved. 9242 **/ 9243 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 9244 { 9245 struct i40e_cloud_filter *cfilter; 9246 struct hlist_node *node; 9247 9248 hlist_for_each_entry_safe(cfilter, node, 9249 &pf->cloud_filter_list, cloud_node) { 9250 hlist_del(&cfilter->cloud_node); 9251 kfree(cfilter); 9252 } 9253 pf->num_cloud_filters = 0; 9254 9255 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) && 9256 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) { 9257 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 9258 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags); 9259 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 9260 } 9261 } 9262 9263 /** 9264 * i40e_close - Disables a network interface 9265 * @netdev: network interface device structure 9266 * 9267 * The close entry point is called when an interface is de-activated 9268 * by the OS. The hardware is still under the driver's control, but 9269 * this netdev interface is disabled. 9270 * 9271 * Returns 0, this is not allowed to fail 9272 **/ 9273 int i40e_close(struct net_device *netdev) 9274 { 9275 struct i40e_netdev_priv *np = netdev_priv(netdev); 9276 struct i40e_vsi *vsi = np->vsi; 9277 9278 i40e_vsi_close(vsi); 9279 9280 return 0; 9281 } 9282 9283 /** 9284 * i40e_do_reset - Start a PF or Core Reset sequence 9285 * @pf: board private structure 9286 * @reset_flags: which reset is requested 9287 * @lock_acquired: indicates whether or not the lock has been acquired 9288 * before this function was called. 9289 * 9290 * The essential difference in resets is that the PF Reset 9291 * doesn't clear the packet buffers, doesn't reset the PE 9292 * firmware, and doesn't bother the other PFs on the chip. 9293 **/ 9294 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 9295 { 9296 struct i40e_vsi *vsi; 9297 u32 val; 9298 int i; 9299 9300 /* do the biggest reset indicated */ 9301 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 9302 9303 /* Request a Global Reset 9304 * 9305 * This will start the chip's countdown to the actual full 9306 * chip reset event, and a warning interrupt to be sent 9307 * to all PFs, including the requestor. Our handler 9308 * for the warning interrupt will deal with the shutdown 9309 * and recovery of the switch setup. 9310 */ 9311 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 9312 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9313 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 9314 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9315 9316 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 9317 9318 /* Request a Core Reset 9319 * 9320 * Same as Global Reset, except does *not* include the MAC/PHY 9321 */ 9322 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 9323 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 9324 val |= I40E_GLGEN_RTRIG_CORER_MASK; 9325 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 9326 i40e_flush(&pf->hw); 9327 9328 } else if (reset_flags & I40E_PF_RESET_FLAG) { 9329 9330 /* Request a PF Reset 9331 * 9332 * Resets only the PF-specific registers 9333 * 9334 * This goes directly to the tear-down and rebuild of 9335 * the switch, since we need to do all the recovery as 9336 * for the Core Reset. 9337 */ 9338 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 9339 i40e_handle_reset_warning(pf, lock_acquired); 9340 9341 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 9342 /* Request a PF Reset 9343 * 9344 * Resets PF and reinitializes PFs VSI. 9345 */ 9346 i40e_prep_for_reset(pf); 9347 i40e_reset_and_rebuild(pf, true, lock_acquired); 9348 dev_info(&pf->pdev->dev, 9349 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 9350 "FW LLDP is disabled\n" : 9351 "FW LLDP is enabled\n"); 9352 9353 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 9354 /* Find the VSI(s) that requested a re-init */ 9355 dev_info(&pf->pdev->dev, "VSI reinit requested\n"); 9356 9357 i40e_pf_for_each_vsi(pf, i, vsi) { 9358 if (test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 9359 vsi->state)) 9360 i40e_vsi_reinit_locked(vsi); 9361 } 9362 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 9363 /* Find the VSI(s) that needs to be brought down */ 9364 dev_info(&pf->pdev->dev, "VSI down requested\n"); 9365 9366 i40e_pf_for_each_vsi(pf, i, vsi) { 9367 if (test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 9368 vsi->state)) { 9369 set_bit(__I40E_VSI_DOWN, vsi->state); 9370 i40e_down(vsi); 9371 } 9372 } 9373 } else { 9374 dev_info(&pf->pdev->dev, 9375 "bad reset request 0x%08x\n", reset_flags); 9376 } 9377 } 9378 9379 #ifdef CONFIG_I40E_DCB 9380 /** 9381 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 9382 * @pf: board private structure 9383 * @old_cfg: current DCB config 9384 * @new_cfg: new DCB config 9385 **/ 9386 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9387 struct i40e_dcbx_config *old_cfg, 9388 struct i40e_dcbx_config *new_cfg) 9389 { 9390 bool need_reconfig = false; 9391 9392 /* Check if ETS configuration has changed */ 9393 if (memcmp(&new_cfg->etscfg, 9394 &old_cfg->etscfg, 9395 sizeof(new_cfg->etscfg))) { 9396 /* If Priority Table has changed reconfig is needed */ 9397 if (memcmp(&new_cfg->etscfg.prioritytable, 9398 &old_cfg->etscfg.prioritytable, 9399 sizeof(new_cfg->etscfg.prioritytable))) { 9400 need_reconfig = true; 9401 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9402 } 9403 9404 if (memcmp(&new_cfg->etscfg.tcbwtable, 9405 &old_cfg->etscfg.tcbwtable, 9406 sizeof(new_cfg->etscfg.tcbwtable))) 9407 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9408 9409 if (memcmp(&new_cfg->etscfg.tsatable, 9410 &old_cfg->etscfg.tsatable, 9411 sizeof(new_cfg->etscfg.tsatable))) 9412 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9413 } 9414 9415 /* Check if PFC configuration has changed */ 9416 if (memcmp(&new_cfg->pfc, 9417 &old_cfg->pfc, 9418 sizeof(new_cfg->pfc))) { 9419 need_reconfig = true; 9420 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9421 } 9422 9423 /* Check if APP Table has changed */ 9424 if (memcmp(&new_cfg->app, 9425 &old_cfg->app, 9426 sizeof(new_cfg->app))) { 9427 need_reconfig = true; 9428 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9429 } 9430 9431 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9432 return need_reconfig; 9433 } 9434 9435 /** 9436 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9437 * @pf: board private structure 9438 * @e: event info posted on ARQ 9439 **/ 9440 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9441 struct i40e_arq_event_info *e) 9442 { 9443 struct i40e_aqc_lldp_get_mib *mib = 9444 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9445 struct i40e_hw *hw = &pf->hw; 9446 struct i40e_dcbx_config tmp_dcbx_cfg; 9447 bool need_reconfig = false; 9448 int ret = 0; 9449 u8 type; 9450 9451 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9452 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9453 (hw->phy.link_info.link_speed & 9454 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9455 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9456 /* let firmware decide if the DCB should be disabled */ 9457 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9458 9459 /* Not DCB capable or capability disabled */ 9460 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 9461 return ret; 9462 9463 /* Ignore if event is not for Nearest Bridge */ 9464 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9465 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9466 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9467 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9468 return ret; 9469 9470 /* Check MIB Type and return if event for Remote MIB update */ 9471 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9472 dev_dbg(&pf->pdev->dev, 9473 "LLDP event mib type %s\n", type ? "remote" : "local"); 9474 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9475 /* Update the remote cached instance and return */ 9476 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9477 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9478 &hw->remote_dcbx_config); 9479 goto exit; 9480 } 9481 9482 /* Store the old configuration */ 9483 tmp_dcbx_cfg = hw->local_dcbx_config; 9484 9485 /* Reset the old DCBx configuration data */ 9486 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9487 /* Get updated DCBX data from firmware */ 9488 ret = i40e_get_dcb_config(&pf->hw); 9489 if (ret) { 9490 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9491 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9492 (hw->phy.link_info.link_speed & 9493 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9494 dev_warn(&pf->pdev->dev, 9495 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9496 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9497 } else { 9498 dev_info(&pf->pdev->dev, 9499 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n", 9500 ERR_PTR(ret), 9501 i40e_aq_str(&pf->hw, 9502 pf->hw.aq.asq_last_status)); 9503 } 9504 goto exit; 9505 } 9506 9507 /* No change detected in DCBX configs */ 9508 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9509 sizeof(tmp_dcbx_cfg))) { 9510 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9511 goto exit; 9512 } 9513 9514 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9515 &hw->local_dcbx_config); 9516 9517 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9518 9519 if (!need_reconfig) 9520 goto exit; 9521 9522 /* Enable DCB tagging only when more than one TC */ 9523 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9524 set_bit(I40E_FLAG_DCB_ENA, pf->flags); 9525 else 9526 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9527 9528 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9529 /* Reconfiguration needed quiesce all VSIs */ 9530 i40e_pf_quiesce_all_vsi(pf); 9531 9532 /* Changes in configuration update VEB/VSI */ 9533 i40e_dcb_reconfigure(pf); 9534 9535 ret = i40e_resume_port_tx(pf); 9536 9537 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9538 /* In case of error no point in resuming VSIs */ 9539 if (ret) 9540 goto exit; 9541 9542 /* Wait for the PF's queues to be disabled */ 9543 ret = i40e_pf_wait_queues_disabled(pf); 9544 if (ret) { 9545 /* Schedule PF reset to recover */ 9546 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9547 i40e_service_event_schedule(pf); 9548 } else { 9549 i40e_pf_unquiesce_all_vsi(pf); 9550 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9551 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9552 } 9553 9554 exit: 9555 return ret; 9556 } 9557 #endif /* CONFIG_I40E_DCB */ 9558 9559 /** 9560 * i40e_do_reset_safe - Protected reset path for userland calls. 9561 * @pf: board private structure 9562 * @reset_flags: which reset is requested 9563 * 9564 **/ 9565 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9566 { 9567 rtnl_lock(); 9568 i40e_do_reset(pf, reset_flags, true); 9569 rtnl_unlock(); 9570 } 9571 9572 /** 9573 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9574 * @pf: board private structure 9575 * @e: event info posted on ARQ 9576 * 9577 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9578 * and VF queues 9579 **/ 9580 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9581 struct i40e_arq_event_info *e) 9582 { 9583 struct i40e_aqc_lan_overflow *data = 9584 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9585 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9586 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9587 struct i40e_hw *hw = &pf->hw; 9588 struct i40e_vf *vf; 9589 u16 vf_id; 9590 9591 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9592 queue, qtx_ctl); 9593 9594 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) != 9595 I40E_QTX_CTL_VF_QUEUE) 9596 return; 9597 9598 /* Queue belongs to VF, find the VF and issue VF reset */ 9599 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl); 9600 vf_id -= hw->func_caps.vf_base_id; 9601 vf = &pf->vf[vf_id]; 9602 i40e_vc_notify_vf_reset(vf); 9603 /* Allow VF to process pending reset notification */ 9604 msleep(20); 9605 i40e_reset_vf(vf, false); 9606 } 9607 9608 /** 9609 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9610 * @pf: board private structure 9611 **/ 9612 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9613 { 9614 u32 val, fcnt_prog; 9615 9616 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9617 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9618 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val); 9619 return fcnt_prog; 9620 } 9621 9622 /** 9623 * i40e_get_global_fd_count - Get total FD filters programmed on device 9624 * @pf: board private structure 9625 **/ 9626 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9627 { 9628 u32 val, fcnt_prog; 9629 9630 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9631 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9632 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val); 9633 return fcnt_prog; 9634 } 9635 9636 /** 9637 * i40e_reenable_fdir_sb - Restore FDir SB capability 9638 * @pf: board private structure 9639 **/ 9640 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9641 { 9642 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9643 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 9644 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9645 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9646 } 9647 9648 /** 9649 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9650 * @pf: board private structure 9651 **/ 9652 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9653 { 9654 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9655 /* ATR uses the same filtering logic as SB rules. It only 9656 * functions properly if the input set mask is at the default 9657 * settings. It is safe to restore the default input set 9658 * because there are no active TCPv4 filter rules. 9659 */ 9660 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP, 9661 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9662 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9663 9664 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 9665 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9666 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9667 } 9668 } 9669 9670 /** 9671 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9672 * @pf: board private structure 9673 * @filter: FDir filter to remove 9674 */ 9675 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9676 struct i40e_fdir_filter *filter) 9677 { 9678 /* Update counters */ 9679 pf->fdir_pf_active_filters--; 9680 pf->fd_inv = 0; 9681 9682 switch (filter->flow_type) { 9683 case TCP_V4_FLOW: 9684 pf->fd_tcp4_filter_cnt--; 9685 break; 9686 case UDP_V4_FLOW: 9687 pf->fd_udp4_filter_cnt--; 9688 break; 9689 case SCTP_V4_FLOW: 9690 pf->fd_sctp4_filter_cnt--; 9691 break; 9692 case TCP_V6_FLOW: 9693 pf->fd_tcp6_filter_cnt--; 9694 break; 9695 case UDP_V6_FLOW: 9696 pf->fd_udp6_filter_cnt--; 9697 break; 9698 case SCTP_V6_FLOW: 9699 pf->fd_udp6_filter_cnt--; 9700 break; 9701 case IP_USER_FLOW: 9702 switch (filter->ipl4_proto) { 9703 case IPPROTO_TCP: 9704 pf->fd_tcp4_filter_cnt--; 9705 break; 9706 case IPPROTO_UDP: 9707 pf->fd_udp4_filter_cnt--; 9708 break; 9709 case IPPROTO_SCTP: 9710 pf->fd_sctp4_filter_cnt--; 9711 break; 9712 case IPPROTO_IP: 9713 pf->fd_ip4_filter_cnt--; 9714 break; 9715 } 9716 break; 9717 case IPV6_USER_FLOW: 9718 switch (filter->ipl4_proto) { 9719 case IPPROTO_TCP: 9720 pf->fd_tcp6_filter_cnt--; 9721 break; 9722 case IPPROTO_UDP: 9723 pf->fd_udp6_filter_cnt--; 9724 break; 9725 case IPPROTO_SCTP: 9726 pf->fd_sctp6_filter_cnt--; 9727 break; 9728 case IPPROTO_IP: 9729 pf->fd_ip6_filter_cnt--; 9730 break; 9731 } 9732 break; 9733 } 9734 9735 /* Remove the filter from the list and free memory */ 9736 hlist_del(&filter->fdir_node); 9737 kfree(filter); 9738 } 9739 9740 /** 9741 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9742 * @pf: board private structure 9743 **/ 9744 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9745 { 9746 struct i40e_fdir_filter *filter; 9747 u32 fcnt_prog, fcnt_avail; 9748 struct hlist_node *node; 9749 9750 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9751 return; 9752 9753 /* Check if we have enough room to re-enable FDir SB capability. */ 9754 fcnt_prog = i40e_get_global_fd_count(pf); 9755 fcnt_avail = pf->fdir_pf_filter_count; 9756 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9757 (pf->fd_add_err == 0) || 9758 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9759 i40e_reenable_fdir_sb(pf); 9760 9761 /* We should wait for even more space before re-enabling ATR. 9762 * Additionally, we cannot enable ATR as long as we still have TCP SB 9763 * rules active. 9764 */ 9765 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9766 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9767 i40e_reenable_fdir_atr(pf); 9768 9769 /* if hw had a problem adding a filter, delete it */ 9770 if (pf->fd_inv > 0) { 9771 hlist_for_each_entry_safe(filter, node, 9772 &pf->fdir_filter_list, fdir_node) 9773 if (filter->fd_id == pf->fd_inv) 9774 i40e_delete_invalid_filter(pf, filter); 9775 } 9776 } 9777 9778 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9779 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9780 /** 9781 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9782 * @pf: board private structure 9783 **/ 9784 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9785 { 9786 unsigned long min_flush_time; 9787 int flush_wait_retry = 50; 9788 bool disable_atr = false; 9789 int fd_room; 9790 int reg; 9791 9792 if (!time_after(jiffies, pf->fd_flush_timestamp + 9793 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9794 return; 9795 9796 /* If the flush is happening too quick and we have mostly SB rules we 9797 * should not re-enable ATR for some time. 9798 */ 9799 min_flush_time = pf->fd_flush_timestamp + 9800 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9801 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9802 9803 if (!(time_after(jiffies, min_flush_time)) && 9804 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9805 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9806 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9807 disable_atr = true; 9808 } 9809 9810 pf->fd_flush_timestamp = jiffies; 9811 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9812 /* flush all filters */ 9813 wr32(&pf->hw, I40E_PFQF_CTL_1, 9814 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9815 i40e_flush(&pf->hw); 9816 pf->fd_flush_cnt++; 9817 pf->fd_add_err = 0; 9818 do { 9819 /* Check FD flush status every 5-6msec */ 9820 usleep_range(5000, 6000); 9821 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9822 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9823 break; 9824 } while (flush_wait_retry--); 9825 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9826 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9827 } else { 9828 /* replay sideband filters */ 9829 i40e_fdir_filter_restore(i40e_pf_get_main_vsi(pf)); 9830 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9831 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9832 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9833 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9834 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9835 } 9836 } 9837 9838 /** 9839 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9840 * @pf: board private structure 9841 **/ 9842 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9843 { 9844 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9845 } 9846 9847 /** 9848 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9849 * @pf: board private structure 9850 **/ 9851 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9852 { 9853 9854 /* if interface is down do nothing */ 9855 if (test_bit(__I40E_DOWN, pf->state)) 9856 return; 9857 9858 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9859 i40e_fdir_flush_and_replay(pf); 9860 9861 i40e_fdir_check_and_reenable(pf); 9862 9863 } 9864 9865 /** 9866 * i40e_vsi_link_event - notify VSI of a link event 9867 * @vsi: vsi to be notified 9868 * @link_up: link up or down 9869 **/ 9870 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9871 { 9872 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9873 return; 9874 9875 switch (vsi->type) { 9876 case I40E_VSI_MAIN: 9877 if (!vsi->netdev || !vsi->netdev_registered) 9878 break; 9879 9880 if (link_up) { 9881 netif_carrier_on(vsi->netdev); 9882 netif_tx_wake_all_queues(vsi->netdev); 9883 } else { 9884 netif_carrier_off(vsi->netdev); 9885 netif_tx_stop_all_queues(vsi->netdev); 9886 } 9887 break; 9888 9889 case I40E_VSI_SRIOV: 9890 case I40E_VSI_VMDQ2: 9891 case I40E_VSI_CTRL: 9892 case I40E_VSI_IWARP: 9893 case I40E_VSI_MIRROR: 9894 default: 9895 /* there is no notification for other VSIs */ 9896 break; 9897 } 9898 } 9899 9900 /** 9901 * i40e_veb_link_event - notify elements on the veb of a link event 9902 * @veb: veb to be notified 9903 * @link_up: link up or down 9904 **/ 9905 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9906 { 9907 struct i40e_vsi *vsi; 9908 struct i40e_pf *pf; 9909 int i; 9910 9911 if (!veb || !veb->pf) 9912 return; 9913 pf = veb->pf; 9914 9915 /* Send link event to contained VSIs */ 9916 i40e_pf_for_each_vsi(pf, i, vsi) 9917 if (vsi->uplink_seid == veb->seid) 9918 i40e_vsi_link_event(vsi, link_up); 9919 } 9920 9921 /** 9922 * i40e_link_event - Update netif_carrier status 9923 * @pf: board private structure 9924 **/ 9925 static void i40e_link_event(struct i40e_pf *pf) 9926 { 9927 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 9928 struct i40e_veb *veb = i40e_pf_get_main_veb(pf); 9929 u8 new_link_speed, old_link_speed; 9930 bool new_link, old_link; 9931 int status; 9932 #ifdef CONFIG_I40E_DCB 9933 int err; 9934 #endif /* CONFIG_I40E_DCB */ 9935 9936 /* set this to force the get_link_status call to refresh state */ 9937 pf->hw.phy.get_link_info = true; 9938 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9939 status = i40e_get_link_status(&pf->hw, &new_link); 9940 9941 /* On success, disable temp link polling */ 9942 if (status == 0) { 9943 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9944 } else { 9945 /* Enable link polling temporarily until i40e_get_link_status 9946 * returns 0 9947 */ 9948 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9949 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9950 status); 9951 return; 9952 } 9953 9954 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9955 new_link_speed = pf->hw.phy.link_info.link_speed; 9956 9957 if (new_link == old_link && 9958 new_link_speed == old_link_speed && 9959 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9960 new_link == netif_carrier_ok(vsi->netdev))) 9961 return; 9962 9963 if (!new_link && old_link) 9964 pf->link_down_events++; 9965 9966 i40e_print_link_message(vsi, new_link); 9967 9968 /* Notify the base of the switch tree connected to 9969 * the link. Floating VEBs are not notified. 9970 */ 9971 if (veb) 9972 i40e_veb_link_event(veb, new_link); 9973 else 9974 i40e_vsi_link_event(vsi, new_link); 9975 9976 if (pf->vf) 9977 i40e_vc_notify_link_state(pf); 9978 9979 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 9980 i40e_ptp_set_increment(pf); 9981 #ifdef CONFIG_I40E_DCB 9982 if (new_link == old_link) 9983 return; 9984 /* Not SW DCB so firmware will take care of default settings */ 9985 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9986 return; 9987 9988 /* We cover here only link down, as after link up in case of SW DCB 9989 * SW LLDP agent will take care of setting it up 9990 */ 9991 if (!new_link) { 9992 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9993 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9994 err = i40e_dcb_sw_default_config(pf); 9995 if (err) { 9996 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 9997 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 9998 } else { 9999 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 10000 DCB_CAP_DCBX_VER_IEEE; 10001 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10002 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 10003 } 10004 } 10005 #endif /* CONFIG_I40E_DCB */ 10006 } 10007 10008 /** 10009 * i40e_watchdog_subtask - periodic checks not using event driven response 10010 * @pf: board private structure 10011 **/ 10012 static void i40e_watchdog_subtask(struct i40e_pf *pf) 10013 { 10014 struct i40e_vsi *vsi; 10015 struct i40e_veb *veb; 10016 int i; 10017 10018 /* if interface is down do nothing */ 10019 if (test_bit(__I40E_DOWN, pf->state) || 10020 test_bit(__I40E_CONFIG_BUSY, pf->state)) 10021 return; 10022 10023 /* make sure we don't do these things too often */ 10024 if (time_before(jiffies, (pf->service_timer_previous + 10025 pf->service_timer_period))) 10026 return; 10027 pf->service_timer_previous = jiffies; 10028 10029 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) || 10030 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 10031 i40e_link_event(pf); 10032 10033 /* Update the stats for active netdevs so the network stack 10034 * can look at updated numbers whenever it cares to 10035 */ 10036 i40e_pf_for_each_vsi(pf, i, vsi) 10037 if (vsi->netdev) 10038 i40e_update_stats(vsi); 10039 10040 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) { 10041 /* Update the stats for the active switching components */ 10042 i40e_pf_for_each_veb(pf, i, veb) 10043 i40e_update_veb_stats(veb); 10044 } 10045 10046 i40e_ptp_rx_hang(pf); 10047 i40e_ptp_tx_hang(pf); 10048 } 10049 10050 /** 10051 * i40e_reset_subtask - Set up for resetting the device and driver 10052 * @pf: board private structure 10053 **/ 10054 static void i40e_reset_subtask(struct i40e_pf *pf) 10055 { 10056 u32 reset_flags = 0; 10057 10058 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 10059 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 10060 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 10061 } 10062 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 10063 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 10064 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 10065 } 10066 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 10067 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 10068 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 10069 } 10070 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 10071 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 10072 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 10073 } 10074 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 10075 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 10076 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 10077 } 10078 10079 /* If there's a recovery already waiting, it takes 10080 * precedence before starting a new reset sequence. 10081 */ 10082 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 10083 i40e_prep_for_reset(pf); 10084 i40e_reset(pf); 10085 i40e_rebuild(pf, false, false); 10086 } 10087 10088 /* If we're already down or resetting, just bail */ 10089 if (reset_flags && 10090 !test_bit(__I40E_DOWN, pf->state) && 10091 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 10092 i40e_do_reset(pf, reset_flags, false); 10093 } 10094 } 10095 10096 /** 10097 * i40e_handle_link_event - Handle link event 10098 * @pf: board private structure 10099 * @e: event info posted on ARQ 10100 **/ 10101 static void i40e_handle_link_event(struct i40e_pf *pf, 10102 struct i40e_arq_event_info *e) 10103 { 10104 struct i40e_aqc_get_link_status *status = 10105 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 10106 10107 /* Do a new status request to re-enable LSE reporting 10108 * and load new status information into the hw struct 10109 * This completely ignores any state information 10110 * in the ARQ event info, instead choosing to always 10111 * issue the AQ update link status command. 10112 */ 10113 i40e_link_event(pf); 10114 10115 /* Check if module meets thermal requirements */ 10116 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 10117 dev_err(&pf->pdev->dev, 10118 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 10119 dev_err(&pf->pdev->dev, 10120 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10121 } else { 10122 /* check for unqualified module, if link is down, suppress 10123 * the message if link was forced to be down. 10124 */ 10125 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 10126 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 10127 (!(status->link_info & I40E_AQ_LINK_UP)) && 10128 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) { 10129 dev_err(&pf->pdev->dev, 10130 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 10131 dev_err(&pf->pdev->dev, 10132 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 10133 } 10134 } 10135 } 10136 10137 /** 10138 * i40e_clean_adminq_subtask - Clean the AdminQ rings 10139 * @pf: board private structure 10140 **/ 10141 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 10142 { 10143 struct i40e_arq_event_info event; 10144 struct i40e_hw *hw = &pf->hw; 10145 u16 pending, i = 0; 10146 u16 opcode; 10147 u32 oldval; 10148 int ret; 10149 u32 val; 10150 10151 /* Do not run clean AQ when PF reset fails */ 10152 if (test_bit(__I40E_RESET_FAILED, pf->state)) 10153 return; 10154 10155 /* check for error indications */ 10156 val = rd32(&pf->hw, I40E_PF_ARQLEN); 10157 oldval = val; 10158 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 10159 if (hw->debug_mask & I40E_DEBUG_AQ) 10160 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 10161 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 10162 } 10163 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 10164 if (hw->debug_mask & I40E_DEBUG_AQ) 10165 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 10166 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 10167 pf->arq_overflows++; 10168 } 10169 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 10170 if (hw->debug_mask & I40E_DEBUG_AQ) 10171 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 10172 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 10173 } 10174 if (oldval != val) 10175 wr32(&pf->hw, I40E_PF_ARQLEN, val); 10176 10177 val = rd32(&pf->hw, I40E_PF_ATQLEN); 10178 oldval = val; 10179 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 10180 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10181 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 10182 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 10183 } 10184 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 10185 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10186 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 10187 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 10188 } 10189 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 10190 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 10191 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 10192 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 10193 } 10194 if (oldval != val) 10195 wr32(&pf->hw, I40E_PF_ATQLEN, val); 10196 10197 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 10198 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 10199 if (!event.msg_buf) 10200 return; 10201 10202 do { 10203 ret = i40e_clean_arq_element(hw, &event, &pending); 10204 if (ret == -EALREADY) 10205 break; 10206 else if (ret) { 10207 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 10208 break; 10209 } 10210 10211 opcode = le16_to_cpu(event.desc.opcode); 10212 switch (opcode) { 10213 10214 case i40e_aqc_opc_get_link_status: 10215 rtnl_lock(); 10216 i40e_handle_link_event(pf, &event); 10217 rtnl_unlock(); 10218 break; 10219 case i40e_aqc_opc_send_msg_to_pf: 10220 ret = i40e_vc_process_vf_msg(pf, 10221 le16_to_cpu(event.desc.retval), 10222 le32_to_cpu(event.desc.cookie_high), 10223 le32_to_cpu(event.desc.cookie_low), 10224 event.msg_buf, 10225 event.msg_len); 10226 break; 10227 case i40e_aqc_opc_lldp_update_mib: 10228 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 10229 #ifdef CONFIG_I40E_DCB 10230 rtnl_lock(); 10231 i40e_handle_lldp_event(pf, &event); 10232 rtnl_unlock(); 10233 #endif /* CONFIG_I40E_DCB */ 10234 break; 10235 case i40e_aqc_opc_event_lan_overflow: 10236 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 10237 i40e_handle_lan_overflow_event(pf, &event); 10238 break; 10239 case i40e_aqc_opc_send_msg_to_peer: 10240 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 10241 break; 10242 case i40e_aqc_opc_nvm_erase: 10243 case i40e_aqc_opc_nvm_update: 10244 case i40e_aqc_opc_oem_post_update: 10245 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 10246 "ARQ NVM operation 0x%04x completed\n", 10247 opcode); 10248 break; 10249 default: 10250 dev_info(&pf->pdev->dev, 10251 "ARQ: Unknown event 0x%04x ignored\n", 10252 opcode); 10253 break; 10254 } 10255 } while (i++ < I40E_AQ_WORK_LIMIT); 10256 10257 if (i < I40E_AQ_WORK_LIMIT) 10258 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 10259 10260 /* re-enable Admin queue interrupt cause */ 10261 val = rd32(hw, I40E_PFINT_ICR0_ENA); 10262 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 10263 wr32(hw, I40E_PFINT_ICR0_ENA, val); 10264 i40e_flush(hw); 10265 10266 kfree(event.msg_buf); 10267 } 10268 10269 /** 10270 * i40e_verify_eeprom - make sure eeprom is good to use 10271 * @pf: board private structure 10272 **/ 10273 static void i40e_verify_eeprom(struct i40e_pf *pf) 10274 { 10275 int err; 10276 10277 err = i40e_diag_eeprom_test(&pf->hw); 10278 if (err) { 10279 /* retry in case of garbage read */ 10280 err = i40e_diag_eeprom_test(&pf->hw); 10281 if (err) { 10282 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 10283 err); 10284 set_bit(__I40E_BAD_EEPROM, pf->state); 10285 } 10286 } 10287 10288 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 10289 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 10290 clear_bit(__I40E_BAD_EEPROM, pf->state); 10291 } 10292 } 10293 10294 /** 10295 * i40e_enable_pf_switch_lb 10296 * @pf: pointer to the PF structure 10297 * 10298 * enable switch loop back or die - no point in a return value 10299 **/ 10300 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 10301 { 10302 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10303 struct i40e_vsi_context ctxt; 10304 int ret; 10305 10306 ctxt.seid = pf->main_vsi_seid; 10307 ctxt.pf_num = pf->hw.pf_id; 10308 ctxt.vf_num = 0; 10309 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10310 if (ret) { 10311 dev_info(&pf->pdev->dev, 10312 "couldn't get PF vsi config, err %pe aq_err %s\n", 10313 ERR_PTR(ret), 10314 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10315 return; 10316 } 10317 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10318 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10319 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10320 10321 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10322 if (ret) { 10323 dev_info(&pf->pdev->dev, 10324 "update vsi switch failed, err %pe aq_err %s\n", 10325 ERR_PTR(ret), 10326 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10327 } 10328 } 10329 10330 /** 10331 * i40e_disable_pf_switch_lb 10332 * @pf: pointer to the PF structure 10333 * 10334 * disable switch loop back or die - no point in a return value 10335 **/ 10336 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 10337 { 10338 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10339 struct i40e_vsi_context ctxt; 10340 int ret; 10341 10342 ctxt.seid = pf->main_vsi_seid; 10343 ctxt.pf_num = pf->hw.pf_id; 10344 ctxt.vf_num = 0; 10345 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 10346 if (ret) { 10347 dev_info(&pf->pdev->dev, 10348 "couldn't get PF vsi config, err %pe aq_err %s\n", 10349 ERR_PTR(ret), 10350 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10351 return; 10352 } 10353 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 10354 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 10355 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 10356 10357 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 10358 if (ret) { 10359 dev_info(&pf->pdev->dev, 10360 "update vsi switch failed, err %pe aq_err %s\n", 10361 ERR_PTR(ret), 10362 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10363 } 10364 } 10365 10366 /** 10367 * i40e_config_bridge_mode - Configure the HW bridge mode 10368 * @veb: pointer to the bridge instance 10369 * 10370 * Configure the loop back mode for the LAN VSI that is downlink to the 10371 * specified HW bridge instance. It is expected this function is called 10372 * when a new HW bridge is instantiated. 10373 **/ 10374 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10375 { 10376 struct i40e_pf *pf = veb->pf; 10377 10378 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10379 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10380 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10381 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10382 i40e_disable_pf_switch_lb(pf); 10383 else 10384 i40e_enable_pf_switch_lb(pf); 10385 } 10386 10387 /** 10388 * i40e_reconstitute_veb - rebuild the VEB and VSIs connected to it 10389 * @veb: pointer to the VEB instance 10390 * 10391 * This is a function that builds the attached VSIs. We track the connections 10392 * through our own index numbers because the seid's from the HW could change 10393 * across the reset. 10394 **/ 10395 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10396 { 10397 struct i40e_vsi *ctl_vsi = NULL; 10398 struct i40e_pf *pf = veb->pf; 10399 struct i40e_vsi *vsi; 10400 int v, ret; 10401 10402 /* As we do not maintain PV (port virtualizer) switch element then 10403 * there can be only one non-floating VEB that have uplink to MAC SEID 10404 * and its control VSI is the main one. 10405 */ 10406 if (WARN_ON(veb->uplink_seid && veb->uplink_seid != pf->mac_seid)) { 10407 dev_err(&pf->pdev->dev, 10408 "Invalid uplink SEID for VEB %d\n", veb->idx); 10409 return -ENOENT; 10410 } 10411 10412 if (veb->uplink_seid == pf->mac_seid) { 10413 /* Check that the LAN VSI has VEB owning flag set */ 10414 ctl_vsi = i40e_pf_get_main_vsi(pf); 10415 10416 if (WARN_ON(ctl_vsi->veb_idx != veb->idx || 10417 !(ctl_vsi->flags & I40E_VSI_FLAG_VEB_OWNER))) { 10418 dev_err(&pf->pdev->dev, 10419 "Invalid control VSI for VEB %d\n", veb->idx); 10420 return -ENOENT; 10421 } 10422 10423 /* Add the control VSI to switch */ 10424 ret = i40e_add_vsi(ctl_vsi); 10425 if (ret) { 10426 dev_err(&pf->pdev->dev, 10427 "Rebuild of owner VSI for VEB %d failed: %d\n", 10428 veb->idx, ret); 10429 return ret; 10430 } 10431 10432 i40e_vsi_reset_stats(ctl_vsi); 10433 } 10434 10435 /* create the VEB in the switch and move the VSI onto the VEB */ 10436 ret = i40e_add_veb(veb, ctl_vsi); 10437 if (ret) 10438 return ret; 10439 10440 if (veb->uplink_seid) { 10441 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 10442 veb->bridge_mode = BRIDGE_MODE_VEB; 10443 else 10444 veb->bridge_mode = BRIDGE_MODE_VEPA; 10445 i40e_config_bridge_mode(veb); 10446 } 10447 10448 /* create the remaining VSIs attached to this VEB */ 10449 i40e_pf_for_each_vsi(pf, v, vsi) { 10450 if (vsi == ctl_vsi) 10451 continue; 10452 10453 if (vsi->veb_idx == veb->idx) { 10454 vsi->uplink_seid = veb->seid; 10455 ret = i40e_add_vsi(vsi); 10456 if (ret) { 10457 dev_info(&pf->pdev->dev, 10458 "rebuild of vsi_idx %d failed: %d\n", 10459 v, ret); 10460 return ret; 10461 } 10462 i40e_vsi_reset_stats(vsi); 10463 } 10464 } 10465 10466 return ret; 10467 } 10468 10469 /** 10470 * i40e_get_capabilities - get info about the HW 10471 * @pf: the PF struct 10472 * @list_type: AQ capability to be queried 10473 **/ 10474 static int i40e_get_capabilities(struct i40e_pf *pf, 10475 enum i40e_admin_queue_opc list_type) 10476 { 10477 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10478 u16 data_size; 10479 int buf_len; 10480 int err; 10481 10482 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10483 do { 10484 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10485 if (!cap_buf) 10486 return -ENOMEM; 10487 10488 /* this loads the data into the hw struct for us */ 10489 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10490 &data_size, list_type, 10491 NULL); 10492 /* data loaded, buffer no longer needed */ 10493 kfree(cap_buf); 10494 10495 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10496 /* retry with a larger buffer */ 10497 buf_len = data_size; 10498 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) { 10499 dev_info(&pf->pdev->dev, 10500 "capability discovery failed, err %pe aq_err %s\n", 10501 ERR_PTR(err), 10502 i40e_aq_str(&pf->hw, 10503 pf->hw.aq.asq_last_status)); 10504 return -ENODEV; 10505 } 10506 } while (err); 10507 10508 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10509 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10510 dev_info(&pf->pdev->dev, 10511 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10512 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10513 pf->hw.func_caps.num_msix_vectors, 10514 pf->hw.func_caps.num_msix_vectors_vf, 10515 pf->hw.func_caps.fd_filters_guaranteed, 10516 pf->hw.func_caps.fd_filters_best_effort, 10517 pf->hw.func_caps.num_tx_qp, 10518 pf->hw.func_caps.num_vsis); 10519 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10520 dev_info(&pf->pdev->dev, 10521 "switch_mode=0x%04x, function_valid=0x%08x\n", 10522 pf->hw.dev_caps.switch_mode, 10523 pf->hw.dev_caps.valid_functions); 10524 dev_info(&pf->pdev->dev, 10525 "SR-IOV=%d, num_vfs for all function=%u\n", 10526 pf->hw.dev_caps.sr_iov_1_1, 10527 pf->hw.dev_caps.num_vfs); 10528 dev_info(&pf->pdev->dev, 10529 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10530 pf->hw.dev_caps.num_vsis, 10531 pf->hw.dev_caps.num_rx_qp, 10532 pf->hw.dev_caps.num_tx_qp); 10533 } 10534 } 10535 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10536 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10537 + pf->hw.func_caps.num_vfs) 10538 if (pf->hw.revision_id == 0 && 10539 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10540 dev_info(&pf->pdev->dev, 10541 "got num_vsis %d, setting num_vsis to %d\n", 10542 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10543 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10544 } 10545 } 10546 return 0; 10547 } 10548 10549 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10550 10551 /** 10552 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10553 * @pf: board private structure 10554 **/ 10555 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10556 { 10557 struct i40e_vsi *main_vsi, *vsi; 10558 10559 /* quick workaround for an NVM issue that leaves a critical register 10560 * uninitialized 10561 */ 10562 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10563 static const u32 hkey[] = { 10564 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10565 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10566 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10567 0x95b3a76d}; 10568 int i; 10569 10570 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10571 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10572 } 10573 10574 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 10575 return; 10576 10577 /* find existing VSI and see if it needs configuring */ 10578 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10579 10580 /* create a new VSI if none exists */ 10581 if (!vsi) { 10582 main_vsi = i40e_pf_get_main_vsi(pf); 10583 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, main_vsi->seid, 0); 10584 if (!vsi) { 10585 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10586 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 10587 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 10588 return; 10589 } 10590 } 10591 10592 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10593 } 10594 10595 /** 10596 * i40e_fdir_teardown - release the Flow Director resources 10597 * @pf: board private structure 10598 **/ 10599 static void i40e_fdir_teardown(struct i40e_pf *pf) 10600 { 10601 struct i40e_vsi *vsi; 10602 10603 i40e_fdir_filter_exit(pf); 10604 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10605 if (vsi) 10606 i40e_vsi_release(vsi); 10607 } 10608 10609 /** 10610 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10611 * @vsi: PF main vsi 10612 * @seid: seid of main or channel VSIs 10613 * 10614 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10615 * existed before reset 10616 **/ 10617 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10618 { 10619 struct i40e_cloud_filter *cfilter; 10620 struct i40e_pf *pf = vsi->back; 10621 struct hlist_node *node; 10622 int ret; 10623 10624 /* Add cloud filters back if they exist */ 10625 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10626 cloud_node) { 10627 if (cfilter->seid != seid) 10628 continue; 10629 10630 if (cfilter->dst_port) 10631 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10632 true); 10633 else 10634 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10635 10636 if (ret) { 10637 dev_dbg(&pf->pdev->dev, 10638 "Failed to rebuild cloud filter, err %pe aq_err %s\n", 10639 ERR_PTR(ret), 10640 i40e_aq_str(&pf->hw, 10641 pf->hw.aq.asq_last_status)); 10642 return ret; 10643 } 10644 } 10645 return 0; 10646 } 10647 10648 /** 10649 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10650 * @vsi: PF main vsi 10651 * 10652 * Rebuilds channel VSIs if they existed before reset 10653 **/ 10654 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10655 { 10656 struct i40e_channel *ch, *ch_tmp; 10657 int ret; 10658 10659 if (list_empty(&vsi->ch_list)) 10660 return 0; 10661 10662 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10663 if (!ch->initialized) 10664 break; 10665 /* Proceed with creation of channel (VMDq2) VSI */ 10666 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10667 if (ret) { 10668 dev_info(&vsi->back->pdev->dev, 10669 "failed to rebuild channels using uplink_seid %u\n", 10670 vsi->uplink_seid); 10671 return ret; 10672 } 10673 /* Reconfigure TX queues using QTX_CTL register */ 10674 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10675 if (ret) { 10676 dev_info(&vsi->back->pdev->dev, 10677 "failed to configure TX rings for channel %u\n", 10678 ch->seid); 10679 return ret; 10680 } 10681 /* update 'next_base_queue' */ 10682 vsi->next_base_queue = vsi->next_base_queue + 10683 ch->num_queue_pairs; 10684 if (ch->max_tx_rate) { 10685 u64 credits = ch->max_tx_rate; 10686 10687 if (i40e_set_bw_limit(vsi, ch->seid, 10688 ch->max_tx_rate)) 10689 return -EINVAL; 10690 10691 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10692 dev_dbg(&vsi->back->pdev->dev, 10693 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10694 ch->max_tx_rate, 10695 credits, 10696 ch->seid); 10697 } 10698 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10699 if (ret) { 10700 dev_dbg(&vsi->back->pdev->dev, 10701 "Failed to rebuild cloud filters for channel VSI %u\n", 10702 ch->seid); 10703 return ret; 10704 } 10705 } 10706 return 0; 10707 } 10708 10709 /** 10710 * i40e_clean_xps_state - clean xps state for every tx_ring 10711 * @vsi: ptr to the VSI 10712 **/ 10713 static void i40e_clean_xps_state(struct i40e_vsi *vsi) 10714 { 10715 int i; 10716 10717 if (vsi->tx_rings) 10718 for (i = 0; i < vsi->num_queue_pairs; i++) 10719 if (vsi->tx_rings[i]) 10720 clear_bit(__I40E_TX_XPS_INIT_DONE, 10721 vsi->tx_rings[i]->state); 10722 } 10723 10724 /** 10725 * i40e_prep_for_reset - prep for the core to reset 10726 * @pf: board private structure 10727 * 10728 * Close up the VFs and other things in prep for PF Reset. 10729 **/ 10730 static void i40e_prep_for_reset(struct i40e_pf *pf) 10731 { 10732 struct i40e_hw *hw = &pf->hw; 10733 struct i40e_vsi *vsi; 10734 int ret = 0; 10735 u32 v; 10736 10737 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10738 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10739 return; 10740 if (i40e_check_asq_alive(&pf->hw)) 10741 i40e_vc_notify_reset(pf); 10742 10743 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10744 10745 /* quiesce the VSIs and their queues that are not already DOWN */ 10746 i40e_pf_quiesce_all_vsi(pf); 10747 10748 i40e_pf_for_each_vsi(pf, v, vsi) { 10749 i40e_clean_xps_state(vsi); 10750 vsi->seid = 0; 10751 } 10752 10753 i40e_shutdown_adminq(&pf->hw); 10754 10755 /* call shutdown HMC */ 10756 if (hw->hmc.hmc_obj) { 10757 ret = i40e_shutdown_lan_hmc(hw); 10758 if (ret) 10759 dev_warn(&pf->pdev->dev, 10760 "shutdown_lan_hmc failed: %d\n", ret); 10761 } 10762 10763 /* Save the current PTP time so that we can restore the time after the 10764 * reset completes. 10765 */ 10766 i40e_ptp_save_hw_time(pf); 10767 } 10768 10769 /** 10770 * i40e_send_version - update firmware with driver version 10771 * @pf: PF struct 10772 */ 10773 static void i40e_send_version(struct i40e_pf *pf) 10774 { 10775 struct i40e_driver_version dv; 10776 10777 dv.major_version = 0xff; 10778 dv.minor_version = 0xff; 10779 dv.build_version = 0xff; 10780 dv.subbuild_version = 0; 10781 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10782 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10783 } 10784 10785 /** 10786 * i40e_get_oem_version - get OEM specific version information 10787 * @hw: pointer to the hardware structure 10788 **/ 10789 static void i40e_get_oem_version(struct i40e_hw *hw) 10790 { 10791 u16 block_offset = 0xffff; 10792 u16 block_length = 0; 10793 u16 capabilities = 0; 10794 u16 gen_snap = 0; 10795 u16 release = 0; 10796 10797 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10798 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10799 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10800 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10801 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10802 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10803 #define I40E_NVM_OEM_LENGTH 3 10804 10805 /* Check if pointer to OEM version block is valid. */ 10806 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10807 if (block_offset == 0xffff) 10808 return; 10809 10810 /* Check if OEM version block has correct length. */ 10811 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10812 &block_length); 10813 if (block_length < I40E_NVM_OEM_LENGTH) 10814 return; 10815 10816 /* Check if OEM version format is as expected. */ 10817 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10818 &capabilities); 10819 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10820 return; 10821 10822 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10823 &gen_snap); 10824 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10825 &release); 10826 hw->nvm.oem_ver = 10827 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) | 10828 FIELD_PREP(I40E_OEM_RELEASE_MASK, release); 10829 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10830 } 10831 10832 /** 10833 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10834 * @pf: board private structure 10835 **/ 10836 static int i40e_reset(struct i40e_pf *pf) 10837 { 10838 struct i40e_hw *hw = &pf->hw; 10839 int ret; 10840 10841 ret = i40e_pf_reset(hw); 10842 if (ret) { 10843 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10844 set_bit(__I40E_RESET_FAILED, pf->state); 10845 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10846 } else { 10847 pf->pfr_count++; 10848 } 10849 return ret; 10850 } 10851 10852 /** 10853 * i40e_rebuild - rebuild using a saved config 10854 * @pf: board private structure 10855 * @reinit: if the Main VSI needs to re-initialized. 10856 * @lock_acquired: indicates whether or not the lock has been acquired 10857 * before this function was called. 10858 **/ 10859 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10860 { 10861 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf); 10862 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 10863 struct i40e_hw *hw = &pf->hw; 10864 struct i40e_veb *veb; 10865 int ret; 10866 u32 val; 10867 int v; 10868 10869 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10870 is_recovery_mode_reported) 10871 i40e_set_ethtool_ops(vsi->netdev); 10872 10873 if (test_bit(__I40E_DOWN, pf->state) && 10874 !test_bit(__I40E_RECOVERY_MODE, pf->state)) 10875 goto clear_recovery; 10876 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10877 10878 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10879 ret = i40e_init_adminq(&pf->hw); 10880 if (ret) { 10881 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n", 10882 ERR_PTR(ret), 10883 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10884 goto clear_recovery; 10885 } 10886 i40e_get_oem_version(&pf->hw); 10887 10888 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) { 10889 /* The following delay is necessary for firmware update. */ 10890 mdelay(1000); 10891 } 10892 10893 /* re-verify the eeprom if we just had an EMP reset */ 10894 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10895 i40e_verify_eeprom(pf); 10896 10897 /* if we are going out of or into recovery mode we have to act 10898 * accordingly with regard to resources initialization 10899 * and deinitialization 10900 */ 10901 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10902 if (i40e_get_capabilities(pf, 10903 i40e_aqc_opc_list_func_capabilities)) 10904 goto end_unlock; 10905 10906 if (is_recovery_mode_reported) { 10907 /* we're staying in recovery mode so we'll reinitialize 10908 * misc vector here 10909 */ 10910 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10911 goto end_unlock; 10912 } else { 10913 if (!lock_acquired) 10914 rtnl_lock(); 10915 /* we're going out of recovery mode so we'll free 10916 * the IRQ allocated specifically for recovery mode 10917 * and restore the interrupt scheme 10918 */ 10919 free_irq(pf->pdev->irq, pf); 10920 i40e_clear_interrupt_scheme(pf); 10921 if (i40e_restore_interrupt_scheme(pf)) 10922 goto end_unlock; 10923 } 10924 10925 /* tell the firmware that we're starting */ 10926 i40e_send_version(pf); 10927 10928 /* bail out in case recovery mode was detected, as there is 10929 * no need for further configuration. 10930 */ 10931 goto end_unlock; 10932 } 10933 10934 i40e_clear_pxe_mode(hw); 10935 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10936 if (ret) 10937 goto end_core_reset; 10938 10939 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10940 hw->func_caps.num_rx_qp, 0, 0); 10941 if (ret) { 10942 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10943 goto end_core_reset; 10944 } 10945 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10946 if (ret) { 10947 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10948 goto end_core_reset; 10949 } 10950 10951 #ifdef CONFIG_I40E_DCB 10952 /* Enable FW to write a default DCB config on link-up 10953 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10954 * is not supported with new link speed 10955 */ 10956 if (i40e_is_tc_mqprio_enabled(pf)) { 10957 i40e_aq_set_dcb_parameters(hw, false, NULL); 10958 } else { 10959 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10960 (hw->phy.link_info.link_speed & 10961 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10962 i40e_aq_set_dcb_parameters(hw, false, NULL); 10963 dev_warn(&pf->pdev->dev, 10964 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10965 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10966 } else { 10967 i40e_aq_set_dcb_parameters(hw, true, NULL); 10968 ret = i40e_init_pf_dcb(pf); 10969 if (ret) { 10970 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10971 ret); 10972 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 10973 /* Continue without DCB enabled */ 10974 } 10975 } 10976 } 10977 10978 #endif /* CONFIG_I40E_DCB */ 10979 if (!lock_acquired) 10980 rtnl_lock(); 10981 ret = i40e_setup_pf_switch(pf, reinit, true); 10982 if (ret) 10983 goto end_unlock; 10984 10985 /* The driver only wants link up/down and module qualification 10986 * reports from firmware. Note the negative logic. 10987 */ 10988 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10989 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10990 I40E_AQ_EVENT_MEDIA_NA | 10991 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10992 if (ret) 10993 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 10994 ERR_PTR(ret), 10995 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10996 10997 /* Rebuild the VSIs and VEBs that existed before reset. 10998 * They are still in our local switch element arrays, so only 10999 * need to rebuild the switch model in the HW. 11000 * 11001 * If there were VEBs but the reconstitution failed, we'll try 11002 * to recover minimal use by getting the basic PF VSI working. 11003 */ 11004 if (vsi->uplink_seid != pf->mac_seid) { 11005 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 11006 11007 /* Rebuild VEBs */ 11008 i40e_pf_for_each_veb(pf, v, veb) { 11009 ret = i40e_reconstitute_veb(veb); 11010 if (!ret) 11011 continue; 11012 11013 /* If Main VEB failed, we're in deep doodoo, 11014 * so give up rebuilding the switch and set up 11015 * for minimal rebuild of PF VSI. 11016 * If orphan failed, we'll report the error 11017 * but try to keep going. 11018 */ 11019 if (veb->uplink_seid == pf->mac_seid) { 11020 dev_info(&pf->pdev->dev, 11021 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 11022 ret); 11023 vsi->uplink_seid = pf->mac_seid; 11024 break; 11025 } else if (veb->uplink_seid == 0) { 11026 dev_info(&pf->pdev->dev, 11027 "rebuild of orphan VEB failed: %d\n", 11028 ret); 11029 } 11030 } 11031 } 11032 11033 if (vsi->uplink_seid == pf->mac_seid) { 11034 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 11035 /* no VEB, so rebuild only the Main VSI */ 11036 ret = i40e_add_vsi(vsi); 11037 if (ret) { 11038 dev_info(&pf->pdev->dev, 11039 "rebuild of Main VSI failed: %d\n", ret); 11040 goto end_unlock; 11041 } 11042 } 11043 11044 if (vsi->mqprio_qopt.max_rate[0]) { 11045 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi, 11046 vsi->mqprio_qopt.max_rate[0]); 11047 u64 credits = 0; 11048 11049 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 11050 if (ret) 11051 goto end_unlock; 11052 11053 credits = max_tx_rate; 11054 do_div(credits, I40E_BW_CREDIT_DIVISOR); 11055 dev_dbg(&vsi->back->pdev->dev, 11056 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 11057 max_tx_rate, 11058 credits, 11059 vsi->seid); 11060 } 11061 11062 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 11063 if (ret) 11064 goto end_unlock; 11065 11066 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 11067 * for this main VSI if they exist 11068 */ 11069 ret = i40e_rebuild_channels(vsi); 11070 if (ret) 11071 goto end_unlock; 11072 11073 /* Reconfigure hardware for allowing smaller MSS in the case 11074 * of TSO, so that we avoid the MDD being fired and causing 11075 * a reset in the case of small MSS+TSO. 11076 */ 11077 #define I40E_REG_MSS 0x000E64DC 11078 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 11079 #define I40E_64BYTE_MSS 0x400000 11080 val = rd32(hw, I40E_REG_MSS); 11081 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 11082 val &= ~I40E_REG_MSS_MIN_MASK; 11083 val |= I40E_64BYTE_MSS; 11084 wr32(hw, I40E_REG_MSS, val); 11085 } 11086 11087 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 11088 msleep(75); 11089 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 11090 if (ret) 11091 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 11092 ERR_PTR(ret), 11093 i40e_aq_str(&pf->hw, 11094 pf->hw.aq.asq_last_status)); 11095 } 11096 /* reinit the misc interrupt */ 11097 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 11098 ret = i40e_setup_misc_vector(pf); 11099 if (ret) 11100 goto end_unlock; 11101 } 11102 11103 /* Add a filter to drop all Flow control frames from any VSI from being 11104 * transmitted. By doing so we stop a malicious VF from sending out 11105 * PAUSE or PFC frames and potentially controlling traffic for other 11106 * PF/VF VSIs. 11107 * The FW can still send Flow control frames if enabled. 11108 */ 11109 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 11110 pf->main_vsi_seid); 11111 11112 /* restart the VSIs that were rebuilt and running before the reset */ 11113 i40e_pf_unquiesce_all_vsi(pf); 11114 11115 /* Release the RTNL lock before we start resetting VFs */ 11116 if (!lock_acquired) 11117 rtnl_unlock(); 11118 11119 /* Restore promiscuous settings */ 11120 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 11121 if (ret) 11122 dev_warn(&pf->pdev->dev, 11123 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n", 11124 pf->cur_promisc ? "on" : "off", 11125 ERR_PTR(ret), 11126 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 11127 11128 i40e_reset_all_vfs(pf, true); 11129 11130 /* tell the firmware that we're starting */ 11131 i40e_send_version(pf); 11132 11133 /* We've already released the lock, so don't do it again */ 11134 goto end_core_reset; 11135 11136 end_unlock: 11137 if (!lock_acquired) 11138 rtnl_unlock(); 11139 end_core_reset: 11140 clear_bit(__I40E_RESET_FAILED, pf->state); 11141 clear_recovery: 11142 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 11143 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 11144 } 11145 11146 /** 11147 * i40e_reset_and_rebuild - reset and rebuild using a saved config 11148 * @pf: board private structure 11149 * @reinit: if the Main VSI needs to re-initialized. 11150 * @lock_acquired: indicates whether or not the lock has been acquired 11151 * before this function was called. 11152 **/ 11153 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 11154 bool lock_acquired) 11155 { 11156 int ret; 11157 11158 if (test_bit(__I40E_IN_REMOVE, pf->state)) 11159 return; 11160 /* Now we wait for GRST to settle out. 11161 * We don't have to delete the VEBs or VSIs from the hw switch 11162 * because the reset will make them disappear. 11163 */ 11164 ret = i40e_reset(pf); 11165 if (!ret) 11166 i40e_rebuild(pf, reinit, lock_acquired); 11167 else 11168 dev_err(&pf->pdev->dev, "%s: i40e_reset() FAILED", __func__); 11169 } 11170 11171 /** 11172 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 11173 * @pf: board private structure 11174 * 11175 * Close up the VFs and other things in prep for a Core Reset, 11176 * then get ready to rebuild the world. 11177 * @lock_acquired: indicates whether or not the lock has been acquired 11178 * before this function was called. 11179 **/ 11180 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 11181 { 11182 i40e_prep_for_reset(pf); 11183 i40e_reset_and_rebuild(pf, false, lock_acquired); 11184 } 11185 11186 /** 11187 * i40e_print_vf_mdd_event - print VF Tx/Rx malicious driver detect event 11188 * @pf: board private structure 11189 * @vf: pointer to the VF structure 11190 * @is_tx: true - for Tx event, false - for Rx 11191 */ 11192 static void i40e_print_vf_mdd_event(struct i40e_pf *pf, struct i40e_vf *vf, 11193 bool is_tx) 11194 { 11195 dev_err(&pf->pdev->dev, is_tx ? 11196 "%lld Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n" : 11197 "%lld Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n", 11198 is_tx ? vf->mdd_tx_events.count : vf->mdd_rx_events.count, 11199 pf->hw.pf_id, 11200 vf->vf_id, 11201 vf->default_lan_addr.addr, 11202 str_on_off(test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags))); 11203 } 11204 11205 /** 11206 * i40e_print_vfs_mdd_events - print VFs malicious driver detect event 11207 * @pf: pointer to the PF structure 11208 * 11209 * Called from i40e_handle_mdd_event to rate limit and print VFs MDD events. 11210 */ 11211 static void i40e_print_vfs_mdd_events(struct i40e_pf *pf) 11212 { 11213 unsigned int i; 11214 11215 /* check that there are pending MDD events to print */ 11216 if (!test_and_clear_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state)) 11217 return; 11218 11219 if (!__ratelimit(&pf->mdd_message_rate_limit)) 11220 return; 11221 11222 for (i = 0; i < pf->num_alloc_vfs; i++) { 11223 struct i40e_vf *vf = &pf->vf[i]; 11224 bool is_printed = false; 11225 11226 /* only print Rx MDD event message if there are new events */ 11227 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 11228 vf->mdd_rx_events.last_printed = vf->mdd_rx_events.count; 11229 i40e_print_vf_mdd_event(pf, vf, false); 11230 is_printed = true; 11231 } 11232 11233 /* only print Tx MDD event message if there are new events */ 11234 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 11235 vf->mdd_tx_events.last_printed = vf->mdd_tx_events.count; 11236 i40e_print_vf_mdd_event(pf, vf, true); 11237 is_printed = true; 11238 } 11239 11240 if (is_printed && !test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 11241 dev_info(&pf->pdev->dev, 11242 "Use PF Control I/F to re-enable the VF #%d\n", 11243 i); 11244 } 11245 } 11246 11247 /** 11248 * i40e_handle_mdd_event 11249 * @pf: pointer to the PF structure 11250 * 11251 * Called from the MDD irq handler to identify possibly malicious vfs 11252 **/ 11253 static void i40e_handle_mdd_event(struct i40e_pf *pf) 11254 { 11255 struct i40e_hw *hw = &pf->hw; 11256 bool mdd_detected = false; 11257 struct i40e_vf *vf; 11258 u32 reg; 11259 int i; 11260 11261 if (!test_and_clear_bit(__I40E_MDD_EVENT_PENDING, pf->state)) { 11262 /* Since the VF MDD event logging is rate limited, check if 11263 * there are pending MDD events. 11264 */ 11265 i40e_print_vfs_mdd_events(pf); 11266 return; 11267 } 11268 11269 /* find what triggered the MDD event */ 11270 reg = rd32(hw, I40E_GL_MDET_TX); 11271 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 11272 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg); 11273 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg); 11274 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg); 11275 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) - 11276 pf->hw.func_caps.base_queue; 11277 if (netif_msg_tx_err(pf)) 11278 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 11279 event, queue, pf_num, vf_num); 11280 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 11281 mdd_detected = true; 11282 } 11283 reg = rd32(hw, I40E_GL_MDET_RX); 11284 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 11285 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg); 11286 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg); 11287 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) - 11288 pf->hw.func_caps.base_queue; 11289 if (netif_msg_rx_err(pf)) 11290 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 11291 event, queue, func); 11292 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 11293 mdd_detected = true; 11294 } 11295 11296 if (mdd_detected) { 11297 reg = rd32(hw, I40E_PF_MDET_TX); 11298 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 11299 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 11300 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 11301 } 11302 reg = rd32(hw, I40E_PF_MDET_RX); 11303 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 11304 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 11305 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 11306 } 11307 } 11308 11309 /* see if one of the VFs needs its hand slapped */ 11310 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 11311 bool is_mdd_on_tx = false; 11312 bool is_mdd_on_rx = false; 11313 11314 vf = &(pf->vf[i]); 11315 reg = rd32(hw, I40E_VP_MDET_TX(i)); 11316 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 11317 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state); 11318 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 11319 vf->mdd_tx_events.count++; 11320 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11321 is_mdd_on_tx = true; 11322 } 11323 11324 reg = rd32(hw, I40E_VP_MDET_RX(i)); 11325 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 11326 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state); 11327 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 11328 vf->mdd_rx_events.count++; 11329 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 11330 is_mdd_on_rx = true; 11331 } 11332 11333 if ((is_mdd_on_tx || is_mdd_on_rx) && 11334 test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 11335 /* VF MDD event counters will be cleared by 11336 * reset, so print the event prior to reset. 11337 */ 11338 if (is_mdd_on_rx) 11339 i40e_print_vf_mdd_event(pf, vf, false); 11340 if (is_mdd_on_tx) 11341 i40e_print_vf_mdd_event(pf, vf, true); 11342 11343 i40e_vc_reset_vf(vf, true); 11344 } 11345 } 11346 11347 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 11348 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 11349 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 11350 i40e_flush(hw); 11351 11352 i40e_print_vfs_mdd_events(pf); 11353 } 11354 11355 /** 11356 * i40e_service_task - Run the driver's async subtasks 11357 * @work: pointer to work_struct containing our data 11358 **/ 11359 static void i40e_service_task(struct work_struct *work) 11360 { 11361 struct i40e_pf *pf = container_of(work, 11362 struct i40e_pf, 11363 service_task); 11364 unsigned long start_time = jiffies; 11365 11366 /* don't bother with service tasks if a reset is in progress */ 11367 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 11368 test_bit(__I40E_SUSPENDED, pf->state)) 11369 return; 11370 11371 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 11372 return; 11373 11374 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 11375 i40e_detect_recover_hung(pf); 11376 i40e_sync_filters_subtask(pf); 11377 i40e_reset_subtask(pf); 11378 i40e_handle_mdd_event(pf); 11379 i40e_vc_process_vflr_event(pf); 11380 i40e_watchdog_subtask(pf); 11381 i40e_fdir_reinit_subtask(pf); 11382 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 11383 /* Client subtask will reopen next time through. */ 11384 i40e_notify_client_of_netdev_close(pf, true); 11385 } else { 11386 i40e_client_subtask(pf); 11387 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 11388 pf->state)) 11389 i40e_notify_client_of_l2_param_changes(pf); 11390 } 11391 i40e_sync_filters_subtask(pf); 11392 } else { 11393 i40e_reset_subtask(pf); 11394 } 11395 11396 i40e_clean_adminq_subtask(pf); 11397 11398 /* flush memory to make sure state is correct before next watchdog */ 11399 smp_mb__before_atomic(); 11400 clear_bit(__I40E_SERVICE_SCHED, pf->state); 11401 11402 /* If the tasks have taken longer than one timer cycle or there 11403 * is more work to be done, reschedule the service task now 11404 * rather than wait for the timer to tick again. 11405 */ 11406 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 11407 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 11408 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 11409 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 11410 i40e_service_event_schedule(pf); 11411 } 11412 11413 /** 11414 * i40e_service_timer - timer callback 11415 * @t: timer list pointer 11416 **/ 11417 static void i40e_service_timer(struct timer_list *t) 11418 { 11419 struct i40e_pf *pf = timer_container_of(pf, t, service_timer); 11420 11421 mod_timer(&pf->service_timer, 11422 round_jiffies(jiffies + pf->service_timer_period)); 11423 i40e_service_event_schedule(pf); 11424 } 11425 11426 /** 11427 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 11428 * @vsi: the VSI being configured 11429 **/ 11430 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 11431 { 11432 struct i40e_pf *pf = vsi->back; 11433 11434 switch (vsi->type) { 11435 case I40E_VSI_MAIN: 11436 vsi->alloc_queue_pairs = pf->num_lan_qps; 11437 if (!vsi->num_tx_desc) 11438 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11439 I40E_REQ_DESCRIPTOR_MULTIPLE); 11440 if (!vsi->num_rx_desc) 11441 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11442 I40E_REQ_DESCRIPTOR_MULTIPLE); 11443 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11444 vsi->num_q_vectors = pf->num_lan_msix; 11445 else 11446 vsi->num_q_vectors = 1; 11447 11448 break; 11449 11450 case I40E_VSI_FDIR: 11451 vsi->alloc_queue_pairs = 1; 11452 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11453 I40E_REQ_DESCRIPTOR_MULTIPLE); 11454 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11455 I40E_REQ_DESCRIPTOR_MULTIPLE); 11456 vsi->num_q_vectors = pf->num_fdsb_msix; 11457 break; 11458 11459 case I40E_VSI_VMDQ2: 11460 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11461 if (!vsi->num_tx_desc) 11462 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11463 I40E_REQ_DESCRIPTOR_MULTIPLE); 11464 if (!vsi->num_rx_desc) 11465 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11466 I40E_REQ_DESCRIPTOR_MULTIPLE); 11467 vsi->num_q_vectors = pf->num_vmdq_msix; 11468 break; 11469 11470 case I40E_VSI_SRIOV: 11471 vsi->alloc_queue_pairs = pf->num_vf_qps; 11472 if (!vsi->num_tx_desc) 11473 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11474 I40E_REQ_DESCRIPTOR_MULTIPLE); 11475 if (!vsi->num_rx_desc) 11476 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11477 I40E_REQ_DESCRIPTOR_MULTIPLE); 11478 break; 11479 11480 default: 11481 WARN_ON(1); 11482 return -ENODATA; 11483 } 11484 11485 if (is_kdump_kernel()) { 11486 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11487 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11488 } 11489 11490 return 0; 11491 } 11492 11493 /** 11494 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11495 * @vsi: VSI pointer 11496 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11497 * 11498 * On error: returns error code (negative) 11499 * On success: returns 0 11500 **/ 11501 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11502 { 11503 struct i40e_ring **next_rings; 11504 int size; 11505 int ret = 0; 11506 11507 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11508 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11509 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11510 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11511 if (!vsi->tx_rings) 11512 return -ENOMEM; 11513 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11514 if (i40e_enabled_xdp_vsi(vsi)) { 11515 vsi->xdp_rings = next_rings; 11516 next_rings += vsi->alloc_queue_pairs; 11517 } 11518 vsi->rx_rings = next_rings; 11519 11520 if (alloc_qvectors) { 11521 /* allocate memory for q_vector pointers */ 11522 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11523 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11524 if (!vsi->q_vectors) { 11525 ret = -ENOMEM; 11526 goto err_vectors; 11527 } 11528 } 11529 return ret; 11530 11531 err_vectors: 11532 kfree(vsi->tx_rings); 11533 return ret; 11534 } 11535 11536 /** 11537 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11538 * @pf: board private structure 11539 * @type: type of VSI 11540 * 11541 * On error: returns error code (negative) 11542 * On success: returns vsi index in PF (positive) 11543 **/ 11544 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11545 { 11546 int ret = -ENODEV; 11547 struct i40e_vsi *vsi; 11548 int vsi_idx; 11549 int i; 11550 11551 /* Need to protect the allocation of the VSIs at the PF level */ 11552 mutex_lock(&pf->switch_mutex); 11553 11554 /* VSI list may be fragmented if VSI creation/destruction has 11555 * been happening. We can afford to do a quick scan to look 11556 * for any free VSIs in the list. 11557 * 11558 * find next empty vsi slot, looping back around if necessary 11559 */ 11560 i = pf->next_vsi; 11561 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11562 i++; 11563 if (i >= pf->num_alloc_vsi) { 11564 i = 0; 11565 while (i < pf->next_vsi && pf->vsi[i]) 11566 i++; 11567 } 11568 11569 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11570 vsi_idx = i; /* Found one! */ 11571 } else { 11572 ret = -ENODEV; 11573 goto unlock_pf; /* out of VSI slots! */ 11574 } 11575 pf->next_vsi = ++i; 11576 11577 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11578 if (!vsi) { 11579 ret = -ENOMEM; 11580 goto unlock_pf; 11581 } 11582 vsi->type = type; 11583 vsi->back = pf; 11584 set_bit(__I40E_VSI_DOWN, vsi->state); 11585 vsi->flags = 0; 11586 vsi->idx = vsi_idx; 11587 vsi->int_rate_limit = 0; 11588 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11589 pf->rss_table_size : 64; 11590 vsi->netdev_registered = false; 11591 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11592 hash_init(vsi->mac_filter_hash); 11593 vsi->irqs_ready = false; 11594 11595 if (type == I40E_VSI_MAIN) { 11596 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11597 if (!vsi->af_xdp_zc_qps) 11598 goto err_rings; 11599 } 11600 11601 ret = i40e_set_num_rings_in_vsi(vsi); 11602 if (ret) 11603 goto err_rings; 11604 11605 ret = i40e_vsi_alloc_arrays(vsi, true); 11606 if (ret) 11607 goto err_rings; 11608 11609 /* Setup default MSIX irq handler for VSI */ 11610 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11611 11612 /* Initialize VSI lock */ 11613 spin_lock_init(&vsi->mac_filter_hash_lock); 11614 pf->vsi[vsi_idx] = vsi; 11615 ret = vsi_idx; 11616 goto unlock_pf; 11617 11618 err_rings: 11619 bitmap_free(vsi->af_xdp_zc_qps); 11620 pf->next_vsi = i - 1; 11621 kfree(vsi); 11622 unlock_pf: 11623 mutex_unlock(&pf->switch_mutex); 11624 return ret; 11625 } 11626 11627 /** 11628 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11629 * @vsi: VSI pointer 11630 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11631 * 11632 * On error: returns error code (negative) 11633 * On success: returns 0 11634 **/ 11635 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11636 { 11637 /* free the ring and vector containers */ 11638 if (free_qvectors) { 11639 kfree(vsi->q_vectors); 11640 vsi->q_vectors = NULL; 11641 } 11642 kfree(vsi->tx_rings); 11643 vsi->tx_rings = NULL; 11644 vsi->rx_rings = NULL; 11645 vsi->xdp_rings = NULL; 11646 } 11647 11648 /** 11649 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11650 * and lookup table 11651 * @vsi: Pointer to VSI structure 11652 */ 11653 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11654 { 11655 if (!vsi) 11656 return; 11657 11658 kfree(vsi->rss_hkey_user); 11659 vsi->rss_hkey_user = NULL; 11660 11661 kfree(vsi->rss_lut_user); 11662 vsi->rss_lut_user = NULL; 11663 } 11664 11665 /** 11666 * i40e_vsi_clear - Deallocate the VSI provided 11667 * @vsi: the VSI being un-configured 11668 **/ 11669 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11670 { 11671 struct i40e_pf *pf; 11672 11673 if (!vsi) 11674 return 0; 11675 11676 if (!vsi->back) 11677 goto free_vsi; 11678 pf = vsi->back; 11679 11680 mutex_lock(&pf->switch_mutex); 11681 if (!pf->vsi[vsi->idx]) { 11682 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11683 vsi->idx, vsi->idx, vsi->type); 11684 goto unlock_vsi; 11685 } 11686 11687 if (pf->vsi[vsi->idx] != vsi) { 11688 dev_err(&pf->pdev->dev, 11689 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11690 pf->vsi[vsi->idx]->idx, 11691 pf->vsi[vsi->idx]->type, 11692 vsi->idx, vsi->type); 11693 goto unlock_vsi; 11694 } 11695 11696 /* updates the PF for this cleared vsi */ 11697 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11698 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11699 11700 bitmap_free(vsi->af_xdp_zc_qps); 11701 i40e_vsi_free_arrays(vsi, true); 11702 i40e_clear_rss_config_user(vsi); 11703 11704 pf->vsi[vsi->idx] = NULL; 11705 if (vsi->idx < pf->next_vsi) 11706 pf->next_vsi = vsi->idx; 11707 11708 unlock_vsi: 11709 mutex_unlock(&pf->switch_mutex); 11710 free_vsi: 11711 kfree(vsi); 11712 11713 return 0; 11714 } 11715 11716 /** 11717 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11718 * @vsi: the VSI being cleaned 11719 **/ 11720 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11721 { 11722 int i; 11723 11724 if (vsi->tx_rings && vsi->tx_rings[0]) { 11725 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11726 kfree_rcu(vsi->tx_rings[i], rcu); 11727 WRITE_ONCE(vsi->tx_rings[i], NULL); 11728 WRITE_ONCE(vsi->rx_rings[i], NULL); 11729 if (vsi->xdp_rings) 11730 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11731 } 11732 } 11733 } 11734 11735 /** 11736 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11737 * @vsi: the VSI being configured 11738 **/ 11739 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11740 { 11741 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11742 struct i40e_pf *pf = vsi->back; 11743 struct i40e_ring *ring; 11744 11745 /* Set basic values in the rings to be used later during open() */ 11746 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11747 /* allocate space for both Tx and Rx in one shot */ 11748 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11749 if (!ring) 11750 goto err_out; 11751 11752 ring->queue_index = i; 11753 ring->reg_idx = vsi->base_queue + i; 11754 ring->ring_active = false; 11755 ring->vsi = vsi; 11756 ring->netdev = vsi->netdev; 11757 ring->dev = &pf->pdev->dev; 11758 ring->count = vsi->num_tx_desc; 11759 ring->size = 0; 11760 ring->dcb_tc = 0; 11761 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11762 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11763 ring->itr_setting = pf->tx_itr_default; 11764 WRITE_ONCE(vsi->tx_rings[i], ring++); 11765 11766 if (!i40e_enabled_xdp_vsi(vsi)) 11767 goto setup_rx; 11768 11769 ring->queue_index = vsi->alloc_queue_pairs + i; 11770 ring->reg_idx = vsi->base_queue + ring->queue_index; 11771 ring->ring_active = false; 11772 ring->vsi = vsi; 11773 ring->netdev = NULL; 11774 ring->dev = &pf->pdev->dev; 11775 ring->count = vsi->num_tx_desc; 11776 ring->size = 0; 11777 ring->dcb_tc = 0; 11778 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps)) 11779 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11780 set_ring_xdp(ring); 11781 ring->itr_setting = pf->tx_itr_default; 11782 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11783 11784 setup_rx: 11785 ring->queue_index = i; 11786 ring->reg_idx = vsi->base_queue + i; 11787 ring->ring_active = false; 11788 ring->vsi = vsi; 11789 ring->netdev = vsi->netdev; 11790 ring->dev = &pf->pdev->dev; 11791 ring->count = vsi->num_rx_desc; 11792 ring->size = 0; 11793 ring->dcb_tc = 0; 11794 ring->itr_setting = pf->rx_itr_default; 11795 WRITE_ONCE(vsi->rx_rings[i], ring); 11796 } 11797 11798 return 0; 11799 11800 err_out: 11801 i40e_vsi_clear_rings(vsi); 11802 return -ENOMEM; 11803 } 11804 11805 /** 11806 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11807 * @pf: board private structure 11808 * @vectors: the number of MSI-X vectors to request 11809 * 11810 * Returns the number of vectors reserved, or error 11811 **/ 11812 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11813 { 11814 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11815 I40E_MIN_MSIX, vectors); 11816 if (vectors < 0) { 11817 dev_info(&pf->pdev->dev, 11818 "MSI-X vector reservation failed: %d\n", vectors); 11819 vectors = 0; 11820 } 11821 11822 return vectors; 11823 } 11824 11825 /** 11826 * i40e_init_msix - Setup the MSIX capability 11827 * @pf: board private structure 11828 * 11829 * Work with the OS to set up the MSIX vectors needed. 11830 * 11831 * Returns the number of vectors reserved or negative on failure 11832 **/ 11833 static int i40e_init_msix(struct i40e_pf *pf) 11834 { 11835 struct i40e_hw *hw = &pf->hw; 11836 int cpus, extra_vectors; 11837 int vectors_left; 11838 int v_budget, i; 11839 int v_actual; 11840 int iwarp_requested = 0; 11841 11842 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 11843 return -ENODEV; 11844 11845 /* The number of vectors we'll request will be comprised of: 11846 * - Add 1 for "other" cause for Admin Queue events, etc. 11847 * - The number of LAN queue pairs 11848 * - Queues being used for RSS. 11849 * We don't need as many as max_rss_size vectors. 11850 * use rss_size instead in the calculation since that 11851 * is governed by number of cpus in the system. 11852 * - assumes symmetric Tx/Rx pairing 11853 * - The number of VMDq pairs 11854 * - The CPU count within the NUMA node if iWARP is enabled 11855 * Once we count this up, try the request. 11856 * 11857 * If we can't get what we want, we'll simplify to nearly nothing 11858 * and try again. If that still fails, we punt. 11859 */ 11860 vectors_left = hw->func_caps.num_msix_vectors; 11861 v_budget = 0; 11862 11863 /* reserve one vector for miscellaneous handler */ 11864 if (vectors_left) { 11865 v_budget++; 11866 vectors_left--; 11867 } 11868 11869 /* reserve some vectors for the main PF traffic queues. Initially we 11870 * only reserve at most 50% of the available vectors, in the case that 11871 * the number of online CPUs is large. This ensures that we can enable 11872 * extra features as well. Once we've enabled the other features, we 11873 * will use any remaining vectors to reach as close as we can to the 11874 * number of online CPUs. 11875 */ 11876 cpus = num_online_cpus(); 11877 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11878 vectors_left -= pf->num_lan_msix; 11879 11880 /* reserve one vector for sideband flow director */ 11881 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 11882 if (vectors_left) { 11883 pf->num_fdsb_msix = 1; 11884 v_budget++; 11885 vectors_left--; 11886 } else { 11887 pf->num_fdsb_msix = 0; 11888 } 11889 } 11890 11891 /* can we reserve enough for iWARP? */ 11892 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 11893 iwarp_requested = pf->num_iwarp_msix; 11894 11895 if (!vectors_left) 11896 pf->num_iwarp_msix = 0; 11897 else if (vectors_left < pf->num_iwarp_msix) 11898 pf->num_iwarp_msix = 1; 11899 v_budget += pf->num_iwarp_msix; 11900 vectors_left -= pf->num_iwarp_msix; 11901 } 11902 11903 /* any vectors left over go for VMDq support */ 11904 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) { 11905 if (!vectors_left) { 11906 pf->num_vmdq_msix = 0; 11907 pf->num_vmdq_qps = 0; 11908 } else { 11909 int vmdq_vecs_wanted = 11910 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11911 int vmdq_vecs = 11912 min_t(int, vectors_left, vmdq_vecs_wanted); 11913 11914 /* if we're short on vectors for what's desired, we limit 11915 * the queues per vmdq. If this is still more than are 11916 * available, the user will need to change the number of 11917 * queues/vectors used by the PF later with the ethtool 11918 * channels command 11919 */ 11920 if (vectors_left < vmdq_vecs_wanted) { 11921 pf->num_vmdq_qps = 1; 11922 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11923 vmdq_vecs = min_t(int, 11924 vectors_left, 11925 vmdq_vecs_wanted); 11926 } 11927 pf->num_vmdq_msix = pf->num_vmdq_qps; 11928 11929 v_budget += vmdq_vecs; 11930 vectors_left -= vmdq_vecs; 11931 } 11932 } 11933 11934 /* On systems with a large number of SMP cores, we previously limited 11935 * the number of vectors for num_lan_msix to be at most 50% of the 11936 * available vectors, to allow for other features. Now, we add back 11937 * the remaining vectors. However, we ensure that the total 11938 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11939 * calculate the number of vectors we can add without going over the 11940 * cap of CPUs. For systems with a small number of CPUs this will be 11941 * zero. 11942 */ 11943 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11944 pf->num_lan_msix += extra_vectors; 11945 vectors_left -= extra_vectors; 11946 11947 WARN(vectors_left < 0, 11948 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11949 11950 v_budget += pf->num_lan_msix; 11951 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11952 GFP_KERNEL); 11953 if (!pf->msix_entries) 11954 return -ENOMEM; 11955 11956 for (i = 0; i < v_budget; i++) 11957 pf->msix_entries[i].entry = i; 11958 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11959 11960 if (v_actual < I40E_MIN_MSIX) { 11961 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 11962 kfree(pf->msix_entries); 11963 pf->msix_entries = NULL; 11964 pci_disable_msix(pf->pdev); 11965 return -ENODEV; 11966 11967 } else if (v_actual == I40E_MIN_MSIX) { 11968 /* Adjust for minimal MSIX use */ 11969 pf->num_vmdq_vsis = 0; 11970 pf->num_vmdq_qps = 0; 11971 pf->num_lan_qps = 1; 11972 pf->num_lan_msix = 1; 11973 11974 } else if (v_actual != v_budget) { 11975 /* If we have limited resources, we will start with no vectors 11976 * for the special features and then allocate vectors to some 11977 * of these features based on the policy and at the end disable 11978 * the features that did not get any vectors. 11979 */ 11980 int vec; 11981 11982 dev_info(&pf->pdev->dev, 11983 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11984 v_actual, v_budget); 11985 /* reserve the misc vector */ 11986 vec = v_actual - 1; 11987 11988 /* Scale vector usage down */ 11989 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11990 pf->num_vmdq_vsis = 1; 11991 pf->num_vmdq_qps = 1; 11992 11993 /* partition out the remaining vectors */ 11994 switch (vec) { 11995 case 2: 11996 pf->num_lan_msix = 1; 11997 break; 11998 case 3: 11999 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 12000 pf->num_lan_msix = 1; 12001 pf->num_iwarp_msix = 1; 12002 } else { 12003 pf->num_lan_msix = 2; 12004 } 12005 break; 12006 default: 12007 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 12008 pf->num_iwarp_msix = min_t(int, (vec / 3), 12009 iwarp_requested); 12010 pf->num_vmdq_vsis = min_t(int, (vec / 3), 12011 I40E_DEFAULT_NUM_VMDQ_VSI); 12012 } else { 12013 pf->num_vmdq_vsis = min_t(int, (vec / 2), 12014 I40E_DEFAULT_NUM_VMDQ_VSI); 12015 } 12016 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12017 pf->num_fdsb_msix = 1; 12018 vec--; 12019 } 12020 pf->num_lan_msix = min_t(int, 12021 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 12022 pf->num_lan_msix); 12023 pf->num_lan_qps = pf->num_lan_msix; 12024 break; 12025 } 12026 } 12027 12028 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) { 12029 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 12030 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12031 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12032 } 12033 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) { 12034 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 12035 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12036 } 12037 12038 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) && 12039 pf->num_iwarp_msix == 0) { 12040 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 12041 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12042 } 12043 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 12044 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 12045 pf->num_lan_msix, 12046 pf->num_vmdq_msix * pf->num_vmdq_vsis, 12047 pf->num_fdsb_msix, 12048 pf->num_iwarp_msix); 12049 12050 return v_actual; 12051 } 12052 12053 /** 12054 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 12055 * @vsi: the VSI being configured 12056 * @v_idx: index of the vector in the vsi struct 12057 * 12058 * We allocate one q_vector. If allocation fails we return -ENOMEM. 12059 **/ 12060 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 12061 { 12062 struct i40e_q_vector *q_vector; 12063 12064 /* allocate q_vector */ 12065 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 12066 if (!q_vector) 12067 return -ENOMEM; 12068 12069 q_vector->vsi = vsi; 12070 q_vector->v_idx = v_idx; 12071 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 12072 12073 if (vsi->netdev) 12074 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll); 12075 12076 /* tie q_vector and vsi together */ 12077 vsi->q_vectors[v_idx] = q_vector; 12078 12079 return 0; 12080 } 12081 12082 /** 12083 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 12084 * @vsi: the VSI being configured 12085 * 12086 * We allocate one q_vector per queue interrupt. If allocation fails we 12087 * return -ENOMEM. 12088 **/ 12089 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 12090 { 12091 struct i40e_pf *pf = vsi->back; 12092 int err, v_idx, num_q_vectors; 12093 12094 /* if not MSIX, give the one vector only to the LAN VSI */ 12095 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12096 num_q_vectors = vsi->num_q_vectors; 12097 else if (vsi->type == I40E_VSI_MAIN) 12098 num_q_vectors = 1; 12099 else 12100 return -EINVAL; 12101 12102 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 12103 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 12104 if (err) 12105 goto err_out; 12106 } 12107 12108 return 0; 12109 12110 err_out: 12111 while (v_idx--) 12112 i40e_free_q_vector(vsi, v_idx); 12113 12114 return err; 12115 } 12116 12117 /** 12118 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 12119 * @pf: board private structure to initialize 12120 **/ 12121 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 12122 { 12123 int vectors = 0; 12124 ssize_t size; 12125 12126 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12127 vectors = i40e_init_msix(pf); 12128 if (vectors < 0) { 12129 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12130 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12131 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 12132 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 12133 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 12134 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12135 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12136 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12137 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12138 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12139 12140 /* rework the queue expectations without MSIX */ 12141 i40e_determine_queue_usage(pf); 12142 } 12143 } 12144 12145 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 12146 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) { 12147 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 12148 vectors = pci_enable_msi(pf->pdev); 12149 if (vectors < 0) { 12150 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 12151 vectors); 12152 clear_bit(I40E_FLAG_MSI_ENA, pf->flags); 12153 } 12154 vectors = 1; /* one MSI or Legacy vector */ 12155 } 12156 12157 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) && 12158 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 12159 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 12160 12161 /* set up vector assignment tracking */ 12162 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 12163 pf->irq_pile = kzalloc(size, GFP_KERNEL); 12164 if (!pf->irq_pile) 12165 return -ENOMEM; 12166 12167 pf->irq_pile->num_entries = vectors; 12168 12169 /* track first vector for misc interrupts, ignore return */ 12170 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 12171 12172 return 0; 12173 } 12174 12175 /** 12176 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 12177 * @pf: private board data structure 12178 * 12179 * Restore the interrupt scheme that was cleared when we suspended the 12180 * device. This should be called during resume to re-allocate the q_vectors 12181 * and reacquire IRQs. 12182 */ 12183 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 12184 { 12185 struct i40e_vsi *vsi; 12186 int err, i; 12187 12188 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 12189 * scheme. We need to re-enabled them here in order to attempt to 12190 * re-acquire the MSI or MSI-X vectors 12191 */ 12192 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12193 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12194 12195 err = i40e_init_interrupt_scheme(pf); 12196 if (err) 12197 return err; 12198 12199 /* Now that we've re-acquired IRQs, we need to remap the vectors and 12200 * rings together again. 12201 */ 12202 i40e_pf_for_each_vsi(pf, i, vsi) { 12203 err = i40e_vsi_alloc_q_vectors(vsi); 12204 if (err) 12205 goto err_unwind; 12206 12207 i40e_vsi_map_rings_to_vectors(vsi); 12208 } 12209 12210 err = i40e_setup_misc_vector(pf); 12211 if (err) 12212 goto err_unwind; 12213 12214 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) 12215 i40e_client_update_msix_info(pf); 12216 12217 return 0; 12218 12219 err_unwind: 12220 while (i--) { 12221 if (pf->vsi[i]) 12222 i40e_vsi_free_q_vectors(pf->vsi[i]); 12223 } 12224 12225 return err; 12226 } 12227 12228 /** 12229 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 12230 * non queue events in recovery mode 12231 * @pf: board private structure 12232 * 12233 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 12234 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 12235 * This is handled differently than in recovery mode since no Tx/Rx resources 12236 * are being allocated. 12237 **/ 12238 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 12239 { 12240 int err; 12241 12242 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 12243 err = i40e_setup_misc_vector(pf); 12244 12245 if (err) { 12246 dev_info(&pf->pdev->dev, 12247 "MSI-X misc vector request failed, error %d\n", 12248 err); 12249 return err; 12250 } 12251 } else { 12252 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED; 12253 12254 err = request_irq(pf->pdev->irq, i40e_intr, flags, 12255 pf->int_name, pf); 12256 12257 if (err) { 12258 dev_info(&pf->pdev->dev, 12259 "MSI/legacy misc vector request failed, error %d\n", 12260 err); 12261 return err; 12262 } 12263 i40e_enable_misc_int_causes(pf); 12264 i40e_irq_dynamic_enable_icr0(pf); 12265 } 12266 12267 return 0; 12268 } 12269 12270 /** 12271 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 12272 * @pf: board private structure 12273 * 12274 * This sets up the handler for MSIX 0, which is used to manage the 12275 * non-queue interrupts, e.g. AdminQ and errors. This is not used 12276 * when in MSI or Legacy interrupt mode. 12277 **/ 12278 static int i40e_setup_misc_vector(struct i40e_pf *pf) 12279 { 12280 struct i40e_hw *hw = &pf->hw; 12281 int err = 0; 12282 12283 /* Only request the IRQ once, the first time through. */ 12284 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 12285 err = request_irq(pf->msix_entries[0].vector, 12286 i40e_intr, 0, pf->int_name, pf); 12287 if (err) { 12288 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 12289 dev_info(&pf->pdev->dev, 12290 "request_irq for %s failed: %d\n", 12291 pf->int_name, err); 12292 return -EFAULT; 12293 } 12294 } 12295 12296 i40e_enable_misc_int_causes(pf); 12297 12298 /* associate no queues to the misc vector */ 12299 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 12300 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 12301 12302 i40e_flush(hw); 12303 12304 i40e_irq_dynamic_enable_icr0(pf); 12305 12306 return err; 12307 } 12308 12309 /** 12310 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 12311 * @vsi: Pointer to vsi structure 12312 * @seed: Buffter to store the hash keys 12313 * @lut: Buffer to store the lookup table entries 12314 * @lut_size: Size of buffer to store the lookup table entries 12315 * 12316 * Return 0 on success, negative on failure 12317 */ 12318 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 12319 u8 *lut, u16 lut_size) 12320 { 12321 struct i40e_pf *pf = vsi->back; 12322 struct i40e_hw *hw = &pf->hw; 12323 int ret = 0; 12324 12325 if (seed) { 12326 ret = i40e_aq_get_rss_key(hw, vsi->id, 12327 (struct i40e_aqc_get_set_rss_key_data *)seed); 12328 if (ret) { 12329 dev_info(&pf->pdev->dev, 12330 "Cannot get RSS key, err %pe aq_err %s\n", 12331 ERR_PTR(ret), 12332 i40e_aq_str(&pf->hw, 12333 pf->hw.aq.asq_last_status)); 12334 return ret; 12335 } 12336 } 12337 12338 if (lut) { 12339 bool pf_lut = vsi->type == I40E_VSI_MAIN; 12340 12341 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 12342 if (ret) { 12343 dev_info(&pf->pdev->dev, 12344 "Cannot get RSS lut, err %pe aq_err %s\n", 12345 ERR_PTR(ret), 12346 i40e_aq_str(&pf->hw, 12347 pf->hw.aq.asq_last_status)); 12348 return ret; 12349 } 12350 } 12351 12352 return ret; 12353 } 12354 12355 /** 12356 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 12357 * @vsi: Pointer to vsi structure 12358 * @seed: RSS hash seed 12359 * @lut: Lookup table 12360 * @lut_size: Lookup table size 12361 * 12362 * Returns 0 on success, negative on failure 12363 **/ 12364 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 12365 const u8 *lut, u16 lut_size) 12366 { 12367 struct i40e_pf *pf = vsi->back; 12368 struct i40e_hw *hw = &pf->hw; 12369 u16 vf_id = vsi->vf_id; 12370 u8 i; 12371 12372 /* Fill out hash function seed */ 12373 if (seed) { 12374 u32 *seed_dw = (u32 *)seed; 12375 12376 if (vsi->type == I40E_VSI_MAIN) { 12377 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12378 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 12379 } else if (vsi->type == I40E_VSI_SRIOV) { 12380 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 12381 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 12382 } else { 12383 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 12384 } 12385 } 12386 12387 if (lut) { 12388 u32 *lut_dw = (u32 *)lut; 12389 12390 if (vsi->type == I40E_VSI_MAIN) { 12391 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12392 return -EINVAL; 12393 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12394 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 12395 } else if (vsi->type == I40E_VSI_SRIOV) { 12396 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 12397 return -EINVAL; 12398 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12399 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 12400 } else { 12401 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12402 } 12403 } 12404 i40e_flush(hw); 12405 12406 return 0; 12407 } 12408 12409 /** 12410 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 12411 * @vsi: Pointer to VSI structure 12412 * @seed: Buffer to store the keys 12413 * @lut: Buffer to store the lookup table entries 12414 * @lut_size: Size of buffer to store the lookup table entries 12415 * 12416 * Returns 0 on success, negative on failure 12417 */ 12418 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 12419 u8 *lut, u16 lut_size) 12420 { 12421 struct i40e_pf *pf = vsi->back; 12422 struct i40e_hw *hw = &pf->hw; 12423 u16 i; 12424 12425 if (seed) { 12426 u32 *seed_dw = (u32 *)seed; 12427 12428 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 12429 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 12430 } 12431 if (lut) { 12432 u32 *lut_dw = (u32 *)lut; 12433 12434 if (lut_size != I40E_HLUT_ARRAY_SIZE) 12435 return -EINVAL; 12436 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12437 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 12438 } 12439 12440 return 0; 12441 } 12442 12443 /** 12444 * i40e_config_rss - Configure RSS keys and lut 12445 * @vsi: Pointer to VSI structure 12446 * @seed: RSS hash seed 12447 * @lut: Lookup table 12448 * @lut_size: Lookup table size 12449 * 12450 * Returns 0 on success, negative on failure 12451 */ 12452 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12453 { 12454 struct i40e_pf *pf = vsi->back; 12455 12456 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12457 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12458 else 12459 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12460 } 12461 12462 /** 12463 * i40e_get_rss - Get RSS keys and lut 12464 * @vsi: Pointer to VSI structure 12465 * @seed: Buffer to store the keys 12466 * @lut: Buffer to store the lookup table entries 12467 * @lut_size: Size of buffer to store the lookup table entries 12468 * 12469 * Returns 0 on success, negative on failure 12470 */ 12471 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12472 { 12473 struct i40e_pf *pf = vsi->back; 12474 12475 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps)) 12476 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12477 else 12478 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12479 } 12480 12481 /** 12482 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12483 * @pf: Pointer to board private structure 12484 * @lut: Lookup table 12485 * @rss_table_size: Lookup table size 12486 * @rss_size: Range of queue number for hashing 12487 */ 12488 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12489 u16 rss_table_size, u16 rss_size) 12490 { 12491 u16 i; 12492 12493 for (i = 0; i < rss_table_size; i++) 12494 lut[i] = i % rss_size; 12495 } 12496 12497 /** 12498 * i40e_pf_config_rss - Prepare for RSS if used 12499 * @pf: board private structure 12500 **/ 12501 static int i40e_pf_config_rss(struct i40e_pf *pf) 12502 { 12503 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12504 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12505 u8 *lut; 12506 struct i40e_hw *hw = &pf->hw; 12507 u32 reg_val; 12508 u64 hena; 12509 int ret; 12510 12511 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12512 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12513 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12514 hena |= i40e_pf_get_default_rss_hashcfg(pf); 12515 12516 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12517 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12518 12519 /* Determine the RSS table size based on the hardware capabilities */ 12520 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12521 reg_val = (pf->rss_table_size == 512) ? 12522 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12523 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12524 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12525 12526 /* Determine the RSS size of the VSI */ 12527 if (!vsi->rss_size) { 12528 u16 qcount; 12529 /* If the firmware does something weird during VSI init, we 12530 * could end up with zero TCs. Check for that to avoid 12531 * divide-by-zero. It probably won't pass traffic, but it also 12532 * won't panic. 12533 */ 12534 qcount = vsi->num_queue_pairs / 12535 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12536 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12537 } 12538 if (!vsi->rss_size) 12539 return -EINVAL; 12540 12541 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12542 if (!lut) 12543 return -ENOMEM; 12544 12545 /* Use user configured lut if there is one, otherwise use default */ 12546 if (vsi->rss_lut_user) 12547 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12548 else 12549 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12550 12551 /* Use user configured hash key if there is one, otherwise 12552 * use default. 12553 */ 12554 if (vsi->rss_hkey_user) 12555 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12556 else 12557 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12558 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12559 kfree(lut); 12560 12561 return ret; 12562 } 12563 12564 /** 12565 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12566 * @pf: board private structure 12567 * @queue_count: the requested queue count for rss. 12568 * 12569 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12570 * count which may be different from the requested queue count. 12571 * Note: expects to be called while under rtnl_lock() 12572 **/ 12573 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12574 { 12575 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf); 12576 int new_rss_size; 12577 12578 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 12579 return 0; 12580 12581 queue_count = min_t(int, queue_count, num_online_cpus()); 12582 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12583 12584 if (queue_count != vsi->num_queue_pairs) { 12585 u16 qcount; 12586 12587 vsi->req_queue_pairs = queue_count; 12588 i40e_prep_for_reset(pf); 12589 if (test_bit(__I40E_IN_REMOVE, pf->state)) 12590 return pf->alloc_rss_size; 12591 12592 pf->alloc_rss_size = new_rss_size; 12593 12594 i40e_reset_and_rebuild(pf, true, true); 12595 12596 /* Discard the user configured hash keys and lut, if less 12597 * queues are enabled. 12598 */ 12599 if (queue_count < vsi->rss_size) { 12600 i40e_clear_rss_config_user(vsi); 12601 dev_dbg(&pf->pdev->dev, 12602 "discard user configured hash keys and lut\n"); 12603 } 12604 12605 /* Reset vsi->rss_size, as number of enabled queues changed */ 12606 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12607 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12608 12609 i40e_pf_config_rss(pf); 12610 } 12611 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12612 vsi->req_queue_pairs, pf->rss_size_max); 12613 return pf->alloc_rss_size; 12614 } 12615 12616 /** 12617 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12618 * @pf: board private structure 12619 **/ 12620 int i40e_get_partition_bw_setting(struct i40e_pf *pf) 12621 { 12622 bool min_valid, max_valid; 12623 u32 max_bw, min_bw; 12624 int status; 12625 12626 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12627 &min_valid, &max_valid); 12628 12629 if (!status) { 12630 if (min_valid) 12631 pf->min_bw = min_bw; 12632 if (max_valid) 12633 pf->max_bw = max_bw; 12634 } 12635 12636 return status; 12637 } 12638 12639 /** 12640 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12641 * @pf: board private structure 12642 **/ 12643 int i40e_set_partition_bw_setting(struct i40e_pf *pf) 12644 { 12645 struct i40e_aqc_configure_partition_bw_data bw_data; 12646 int status; 12647 12648 memset(&bw_data, 0, sizeof(bw_data)); 12649 12650 /* Set the valid bit for this PF */ 12651 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12652 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12653 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12654 12655 /* Set the new bandwidths */ 12656 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12657 12658 return status; 12659 } 12660 12661 /** 12662 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12663 * if total port shutdown feature is enabled for this PF 12664 * @pf: board private structure 12665 **/ 12666 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12667 { 12668 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12669 #define I40E_FEATURES_ENABLE_PTR 0x2A 12670 #define I40E_CURRENT_SETTING_PTR 0x2B 12671 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12672 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12673 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12674 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12675 u16 sr_emp_sr_settings_ptr = 0; 12676 u16 features_enable = 0; 12677 u16 link_behavior = 0; 12678 int read_status = 0; 12679 bool ret = false; 12680 12681 read_status = i40e_read_nvm_word(&pf->hw, 12682 I40E_SR_EMP_SR_SETTINGS_PTR, 12683 &sr_emp_sr_settings_ptr); 12684 if (read_status) 12685 goto err_nvm; 12686 read_status = i40e_read_nvm_word(&pf->hw, 12687 sr_emp_sr_settings_ptr + 12688 I40E_FEATURES_ENABLE_PTR, 12689 &features_enable); 12690 if (read_status) 12691 goto err_nvm; 12692 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12693 read_status = i40e_read_nvm_module_data(&pf->hw, 12694 I40E_SR_EMP_SR_SETTINGS_PTR, 12695 I40E_CURRENT_SETTING_PTR, 12696 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12697 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12698 &link_behavior); 12699 if (read_status) 12700 goto err_nvm; 12701 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12702 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12703 } 12704 return ret; 12705 12706 err_nvm: 12707 dev_warn(&pf->pdev->dev, 12708 "total-port-shutdown feature is off due to read nvm error: %pe\n", 12709 ERR_PTR(read_status)); 12710 return ret; 12711 } 12712 12713 /** 12714 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12715 * @pf: board private structure to initialize 12716 * 12717 * i40e_sw_init initializes the Adapter private data structure. 12718 * Fields are initialized based on PCI device information and 12719 * OS network device settings (MTU size). 12720 **/ 12721 static int i40e_sw_init(struct i40e_pf *pf) 12722 { 12723 int err = 0; 12724 int size; 12725 u16 pow; 12726 12727 /* Set default capability flags */ 12728 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS); 12729 set_bit(I40E_FLAG_MSI_ENA, pf->flags); 12730 set_bit(I40E_FLAG_MSIX_ENA, pf->flags); 12731 12732 /* Set default ITR */ 12733 pf->rx_itr_default = I40E_ITR_RX_DEF; 12734 pf->tx_itr_default = I40E_ITR_TX_DEF; 12735 12736 /* Depending on PF configurations, it is possible that the RSS 12737 * maximum might end up larger than the available queues 12738 */ 12739 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12740 pf->alloc_rss_size = 1; 12741 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12742 pf->rss_size_max = min_t(int, pf->rss_size_max, 12743 pf->hw.func_caps.num_tx_qp); 12744 12745 /* find the next higher power-of-2 of num cpus */ 12746 pow = roundup_pow_of_two(num_online_cpus()); 12747 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12748 12749 if (pf->hw.func_caps.rss) { 12750 set_bit(I40E_FLAG_RSS_ENA, pf->flags); 12751 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12752 num_online_cpus()); 12753 } 12754 12755 /* MFP mode enabled */ 12756 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12757 set_bit(I40E_FLAG_MFP_ENA, pf->flags); 12758 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12759 if (i40e_get_partition_bw_setting(pf)) { 12760 dev_warn(&pf->pdev->dev, 12761 "Could not get partition bw settings\n"); 12762 } else { 12763 dev_info(&pf->pdev->dev, 12764 "Partition BW Min = %8.8x, Max = %8.8x\n", 12765 pf->min_bw, pf->max_bw); 12766 12767 /* nudge the Tx scheduler */ 12768 i40e_set_partition_bw_setting(pf); 12769 } 12770 } 12771 12772 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12773 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12774 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 12775 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 12776 pf->hw.num_partitions > 1) 12777 dev_info(&pf->pdev->dev, 12778 "Flow Director Sideband mode Disabled in MFP mode\n"); 12779 else 12780 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12781 pf->fdir_pf_filter_count = 12782 pf->hw.func_caps.fd_filters_guaranteed; 12783 pf->hw.fdir_shared_filter_count = 12784 pf->hw.func_caps.fd_filters_best_effort; 12785 } 12786 12787 /* Enable HW ATR eviction if possible */ 12788 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps)) 12789 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags); 12790 12791 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12792 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12793 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 12794 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12795 } 12796 12797 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12798 set_bit(I40E_FLAG_IWARP_ENA, pf->flags); 12799 /* IWARP needs one extra vector for CQP just like MISC.*/ 12800 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12801 } 12802 /* Stopping FW LLDP engine is supported on XL710 and X722 12803 * starting from FW versions determined in i40e_init_adminq. 12804 * Stopping the FW LLDP engine is not supported on XL710 12805 * if NPAR is functioning so unset this hw flag in this case. 12806 */ 12807 if (pf->hw.mac.type == I40E_MAC_XL710 && 12808 pf->hw.func_caps.npar_enable) 12809 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps); 12810 12811 #ifdef CONFIG_PCI_IOV 12812 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12813 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12814 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 12815 pf->num_req_vfs = min_t(int, 12816 pf->hw.func_caps.num_vfs, 12817 I40E_MAX_VF_COUNT); 12818 } 12819 #endif /* CONFIG_PCI_IOV */ 12820 pf->lan_veb = I40E_NO_VEB; 12821 pf->lan_vsi = I40E_NO_VSI; 12822 12823 /* By default FW has this off for performance reasons */ 12824 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 12825 12826 /* set up queue assignment tracking */ 12827 size = sizeof(struct i40e_lump_tracking) 12828 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12829 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12830 if (!pf->qp_pile) { 12831 err = -ENOMEM; 12832 goto sw_init_done; 12833 } 12834 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12835 12836 pf->tx_timeout_recovery_level = 1; 12837 12838 if (pf->hw.mac.type != I40E_MAC_X722 && 12839 i40e_is_total_port_shutdown_enabled(pf)) { 12840 /* Link down on close must be on when total port shutdown 12841 * is enabled for a given port 12842 */ 12843 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 12844 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 12845 dev_info(&pf->pdev->dev, 12846 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12847 } 12848 mutex_init(&pf->switch_mutex); 12849 12850 sw_init_done: 12851 return err; 12852 } 12853 12854 /** 12855 * i40e_set_ntuple - set the ntuple feature flag and take action 12856 * @pf: board private structure to initialize 12857 * @features: the feature set that the stack is suggesting 12858 * 12859 * returns a bool to indicate if reset needs to happen 12860 **/ 12861 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12862 { 12863 bool need_reset = false; 12864 12865 /* Check if Flow Director n-tuple support was enabled or disabled. If 12866 * the state changed, we need to reset. 12867 */ 12868 if (features & NETIF_F_NTUPLE) { 12869 /* Enable filters and mark for reset */ 12870 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) 12871 need_reset = true; 12872 /* enable FD_SB only if there is MSI-X vector and no cloud 12873 * filters exist 12874 */ 12875 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12876 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12877 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12878 } 12879 } else { 12880 /* turn off filters, mark for reset and clear SW filter list */ 12881 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 12882 need_reset = true; 12883 i40e_fdir_filter_exit(pf); 12884 } 12885 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 12886 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12887 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 12888 12889 /* reset fd counters */ 12890 pf->fd_add_err = 0; 12891 pf->fd_atr_cnt = 0; 12892 /* if ATR was auto disabled it can be re-enabled. */ 12893 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12894 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 12895 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12896 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12897 } 12898 return need_reset; 12899 } 12900 12901 /** 12902 * i40e_clear_rss_lut - clear the rx hash lookup table 12903 * @vsi: the VSI being configured 12904 **/ 12905 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12906 { 12907 struct i40e_pf *pf = vsi->back; 12908 struct i40e_hw *hw = &pf->hw; 12909 u16 vf_id = vsi->vf_id; 12910 u8 i; 12911 12912 if (vsi->type == I40E_VSI_MAIN) { 12913 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12914 wr32(hw, I40E_PFQF_HLUT(i), 0); 12915 } else if (vsi->type == I40E_VSI_SRIOV) { 12916 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12917 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12918 } else { 12919 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12920 } 12921 } 12922 12923 /** 12924 * i40e_set_loopback - turn on/off loopback mode on underlying PF 12925 * @vsi: ptr to VSI 12926 * @ena: flag to indicate the on/off setting 12927 */ 12928 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena) 12929 { 12930 bool if_running = netif_running(vsi->netdev) && 12931 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state); 12932 int ret; 12933 12934 if (if_running) 12935 i40e_down(vsi); 12936 12937 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 12938 if (ret) 12939 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 12940 if (if_running) 12941 i40e_up(vsi); 12942 12943 return ret; 12944 } 12945 12946 /** 12947 * i40e_set_features - set the netdev feature flags 12948 * @netdev: ptr to the netdev being adjusted 12949 * @features: the feature set that the stack is suggesting 12950 * Note: expects to be called while under rtnl_lock() 12951 **/ 12952 static int i40e_set_features(struct net_device *netdev, 12953 netdev_features_t features) 12954 { 12955 struct i40e_netdev_priv *np = netdev_priv(netdev); 12956 struct i40e_vsi *vsi = np->vsi; 12957 struct i40e_pf *pf = vsi->back; 12958 bool need_reset; 12959 12960 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12961 i40e_pf_config_rss(pf); 12962 else if (!(features & NETIF_F_RXHASH) && 12963 netdev->features & NETIF_F_RXHASH) 12964 i40e_clear_rss_lut(vsi); 12965 12966 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12967 i40e_vlan_stripping_enable(vsi); 12968 else 12969 i40e_vlan_stripping_disable(vsi); 12970 12971 if (!(features & NETIF_F_HW_TC) && 12972 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12973 dev_err(&pf->pdev->dev, 12974 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12975 return -EINVAL; 12976 } 12977 12978 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12979 i40e_del_all_macvlans(vsi); 12980 12981 need_reset = i40e_set_ntuple(pf, features); 12982 12983 if (need_reset) 12984 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12985 12986 if ((features ^ netdev->features) & NETIF_F_LOOPBACK) 12987 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 12988 12989 return 0; 12990 } 12991 12992 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12993 unsigned int table, unsigned int idx, 12994 struct udp_tunnel_info *ti) 12995 { 12996 struct i40e_netdev_priv *np = netdev_priv(netdev); 12997 struct i40e_hw *hw = &np->vsi->back->hw; 12998 u8 type, filter_index; 12999 int ret; 13000 13001 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 13002 I40E_AQC_TUNNEL_TYPE_NGE; 13003 13004 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 13005 NULL); 13006 if (ret) { 13007 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n", 13008 ERR_PTR(ret), 13009 i40e_aq_str(hw, hw->aq.asq_last_status)); 13010 return -EIO; 13011 } 13012 13013 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 13014 return 0; 13015 } 13016 13017 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 13018 unsigned int table, unsigned int idx, 13019 struct udp_tunnel_info *ti) 13020 { 13021 struct i40e_netdev_priv *np = netdev_priv(netdev); 13022 struct i40e_hw *hw = &np->vsi->back->hw; 13023 int ret; 13024 13025 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 13026 if (ret) { 13027 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n", 13028 ERR_PTR(ret), 13029 i40e_aq_str(hw, hw->aq.asq_last_status)); 13030 return -EIO; 13031 } 13032 13033 return 0; 13034 } 13035 13036 static int i40e_get_phys_port_id(struct net_device *netdev, 13037 struct netdev_phys_item_id *ppid) 13038 { 13039 struct i40e_netdev_priv *np = netdev_priv(netdev); 13040 struct i40e_pf *pf = np->vsi->back; 13041 struct i40e_hw *hw = &pf->hw; 13042 13043 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps)) 13044 return -EOPNOTSUPP; 13045 13046 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 13047 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 13048 13049 return 0; 13050 } 13051 13052 /** 13053 * i40e_ndo_fdb_add - add an entry to the hardware database 13054 * @ndm: the input from the stack 13055 * @tb: pointer to array of nladdr (unused) 13056 * @dev: the net device pointer 13057 * @addr: the MAC address entry being added 13058 * @vid: VLAN ID 13059 * @flags: instructions from stack about fdb operation 13060 * @notified: whether notification was emitted 13061 * @extack: netlink extended ack, unused currently 13062 */ 13063 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 13064 struct net_device *dev, 13065 const unsigned char *addr, u16 vid, 13066 u16 flags, bool *notified, 13067 struct netlink_ext_ack *extack) 13068 { 13069 struct i40e_netdev_priv *np = netdev_priv(dev); 13070 struct i40e_pf *pf = np->vsi->back; 13071 int err = 0; 13072 13073 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) 13074 return -EOPNOTSUPP; 13075 13076 if (vid) { 13077 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 13078 return -EINVAL; 13079 } 13080 13081 /* Hardware does not support aging addresses so if a 13082 * ndm_state is given only allow permanent addresses 13083 */ 13084 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 13085 netdev_info(dev, "FDB only supports static addresses\n"); 13086 return -EINVAL; 13087 } 13088 13089 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 13090 err = dev_uc_add_excl(dev, addr); 13091 else if (is_multicast_ether_addr(addr)) 13092 err = dev_mc_add_excl(dev, addr); 13093 else 13094 err = -EINVAL; 13095 13096 /* Only return duplicate errors if NLM_F_EXCL is set */ 13097 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 13098 err = 0; 13099 13100 return err; 13101 } 13102 13103 /** 13104 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 13105 * @dev: the netdev being configured 13106 * @nlh: RTNL message 13107 * @flags: bridge flags 13108 * @extack: netlink extended ack 13109 * 13110 * Inserts a new hardware bridge if not already created and 13111 * enables the bridging mode requested (VEB or VEPA). If the 13112 * hardware bridge has already been inserted and the request 13113 * is to change the mode then that requires a PF reset to 13114 * allow rebuild of the components with required hardware 13115 * bridge mode enabled. 13116 * 13117 * Note: expects to be called while under rtnl_lock() 13118 **/ 13119 static int i40e_ndo_bridge_setlink(struct net_device *dev, 13120 struct nlmsghdr *nlh, 13121 u16 flags, 13122 struct netlink_ext_ack *extack) 13123 { 13124 struct i40e_netdev_priv *np = netdev_priv(dev); 13125 struct i40e_vsi *vsi = np->vsi; 13126 struct i40e_pf *pf = vsi->back; 13127 struct nlattr *attr, *br_spec; 13128 struct i40e_veb *veb; 13129 int rem; 13130 13131 /* Only for PF VSI for now */ 13132 if (vsi->type != I40E_VSI_MAIN) 13133 return -EOPNOTSUPP; 13134 13135 /* Find the HW bridge for PF VSI */ 13136 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13137 13138 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13139 if (!br_spec) 13140 return -EINVAL; 13141 13142 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 13143 __u16 mode = nla_get_u16(attr); 13144 13145 if ((mode != BRIDGE_MODE_VEPA) && 13146 (mode != BRIDGE_MODE_VEB)) 13147 return -EINVAL; 13148 13149 /* Insert a new HW bridge */ 13150 if (!veb) { 13151 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 13152 vsi->tc_config.enabled_tc); 13153 if (veb) { 13154 veb->bridge_mode = mode; 13155 i40e_config_bridge_mode(veb); 13156 } else { 13157 /* No Bridge HW offload available */ 13158 return -ENOENT; 13159 } 13160 break; 13161 } else if (mode != veb->bridge_mode) { 13162 /* Existing HW bridge but different mode needs reset */ 13163 veb->bridge_mode = mode; 13164 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 13165 if (mode == BRIDGE_MODE_VEB) 13166 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13167 else 13168 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 13169 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 13170 break; 13171 } 13172 } 13173 13174 return 0; 13175 } 13176 13177 /** 13178 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 13179 * @skb: skb buff 13180 * @pid: process id 13181 * @seq: RTNL message seq # 13182 * @dev: the netdev being configured 13183 * @filter_mask: unused 13184 * @nlflags: netlink flags passed in 13185 * 13186 * Return the mode in which the hardware bridge is operating in 13187 * i.e VEB or VEPA. 13188 **/ 13189 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13190 struct net_device *dev, 13191 u32 __always_unused filter_mask, 13192 int nlflags) 13193 { 13194 struct i40e_netdev_priv *np = netdev_priv(dev); 13195 struct i40e_vsi *vsi = np->vsi; 13196 struct i40e_pf *pf = vsi->back; 13197 struct i40e_veb *veb; 13198 13199 /* Only for PF VSI for now */ 13200 if (vsi->type != I40E_VSI_MAIN) 13201 return -EOPNOTSUPP; 13202 13203 /* Find the HW bridge for the PF VSI */ 13204 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 13205 if (!veb) 13206 return 0; 13207 13208 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 13209 0, 0, nlflags, filter_mask, NULL); 13210 } 13211 13212 /** 13213 * i40e_features_check - Validate encapsulated packet conforms to limits 13214 * @skb: skb buff 13215 * @dev: This physical port's netdev 13216 * @features: Offload features that the stack believes apply 13217 **/ 13218 static netdev_features_t i40e_features_check(struct sk_buff *skb, 13219 struct net_device *dev, 13220 netdev_features_t features) 13221 { 13222 size_t len; 13223 13224 /* No point in doing any of this if neither checksum nor GSO are 13225 * being requested for this frame. We can rule out both by just 13226 * checking for CHECKSUM_PARTIAL 13227 */ 13228 if (skb->ip_summed != CHECKSUM_PARTIAL) 13229 return features; 13230 13231 /* We cannot support GSO if the MSS is going to be less than 13232 * 64 bytes. If it is then we need to drop support for GSO. 13233 */ 13234 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 13235 features &= ~NETIF_F_GSO_MASK; 13236 13237 /* MACLEN can support at most 63 words */ 13238 len = skb_network_offset(skb); 13239 if (len & ~(63 * 2)) 13240 goto out_err; 13241 13242 /* IPLEN and EIPLEN can support at most 127 dwords */ 13243 len = skb_network_header_len(skb); 13244 if (len & ~(127 * 4)) 13245 goto out_err; 13246 13247 if (skb->encapsulation) { 13248 /* L4TUNLEN can support 127 words */ 13249 len = skb_inner_network_header(skb) - skb_transport_header(skb); 13250 if (len & ~(127 * 2)) 13251 goto out_err; 13252 13253 /* IPLEN can support at most 127 dwords */ 13254 len = skb_inner_transport_header(skb) - 13255 skb_inner_network_header(skb); 13256 if (len & ~(127 * 4)) 13257 goto out_err; 13258 } 13259 13260 /* No need to validate L4LEN as TCP is the only protocol with a 13261 * flexible value and we support all possible values supported 13262 * by TCP, which is at most 15 dwords 13263 */ 13264 13265 return features; 13266 out_err: 13267 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13268 } 13269 13270 /** 13271 * i40e_xdp_setup - add/remove an XDP program 13272 * @vsi: VSI to changed 13273 * @prog: XDP program 13274 * @extack: netlink extended ack 13275 **/ 13276 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 13277 struct netlink_ext_ack *extack) 13278 { 13279 int frame_size = i40e_max_vsi_frame_size(vsi, prog); 13280 struct i40e_pf *pf = vsi->back; 13281 struct bpf_prog *old_prog; 13282 bool need_reset; 13283 int i; 13284 13285 /* VSI shall be deleted in a moment, block loading new programs */ 13286 if (prog && test_bit(__I40E_IN_REMOVE, pf->state)) 13287 return -EINVAL; 13288 13289 /* Don't allow frames that span over multiple buffers */ 13290 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) { 13291 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags"); 13292 return -EINVAL; 13293 } 13294 13295 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 13296 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 13297 if (need_reset) 13298 i40e_prep_for_reset(pf); 13299 13300 old_prog = xchg(&vsi->xdp_prog, prog); 13301 13302 if (need_reset) { 13303 if (!prog) { 13304 xdp_features_clear_redirect_target(vsi->netdev); 13305 /* Wait until ndo_xsk_wakeup completes. */ 13306 synchronize_rcu(); 13307 } 13308 i40e_reset_and_rebuild(pf, true, true); 13309 } 13310 13311 if (!i40e_enabled_xdp_vsi(vsi) && prog) { 13312 if (i40e_realloc_rx_bi_zc(vsi, true)) 13313 return -ENOMEM; 13314 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) { 13315 if (i40e_realloc_rx_bi_zc(vsi, false)) 13316 return -ENOMEM; 13317 } 13318 13319 for (i = 0; i < vsi->num_queue_pairs; i++) 13320 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 13321 13322 if (old_prog) 13323 bpf_prog_put(old_prog); 13324 13325 /* Kick start the NAPI context if there is an AF_XDP socket open 13326 * on that queue id. This so that receiving will start. 13327 */ 13328 if (need_reset && prog) { 13329 for (i = 0; i < vsi->num_queue_pairs; i++) 13330 if (vsi->xdp_rings[i]->xsk_pool) 13331 (void)i40e_xsk_wakeup(vsi->netdev, i, 13332 XDP_WAKEUP_RX); 13333 xdp_features_set_redirect_target(vsi->netdev, true); 13334 } 13335 13336 return 0; 13337 } 13338 13339 /** 13340 * i40e_enter_busy_conf - Enters busy config state 13341 * @vsi: vsi 13342 * 13343 * Returns 0 on success, <0 for failure. 13344 **/ 13345 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13346 { 13347 struct i40e_pf *pf = vsi->back; 13348 int timeout = 50; 13349 13350 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13351 timeout--; 13352 if (!timeout) 13353 return -EBUSY; 13354 usleep_range(1000, 2000); 13355 } 13356 13357 return 0; 13358 } 13359 13360 /** 13361 * i40e_exit_busy_conf - Exits busy config state 13362 * @vsi: vsi 13363 **/ 13364 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13365 { 13366 struct i40e_pf *pf = vsi->back; 13367 13368 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13369 } 13370 13371 /** 13372 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13373 * @vsi: vsi 13374 * @queue_pair: queue pair 13375 **/ 13376 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13377 { 13378 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13379 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13380 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13381 sizeof(vsi->tx_rings[queue_pair]->stats)); 13382 if (i40e_enabled_xdp_vsi(vsi)) { 13383 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13384 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13385 } 13386 } 13387 13388 /** 13389 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13390 * @vsi: vsi 13391 * @queue_pair: queue pair 13392 **/ 13393 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13394 { 13395 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13396 if (i40e_enabled_xdp_vsi(vsi)) { 13397 /* Make sure that in-progress ndo_xdp_xmit calls are 13398 * completed. 13399 */ 13400 synchronize_rcu(); 13401 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13402 } 13403 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13404 } 13405 13406 /** 13407 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13408 * @vsi: vsi 13409 * @queue_pair: queue pair 13410 * @enable: true for enable, false for disable 13411 **/ 13412 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13413 bool enable) 13414 { 13415 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13416 struct i40e_q_vector *q_vector = rxr->q_vector; 13417 13418 if (!vsi->netdev) 13419 return; 13420 13421 /* All rings in a qp belong to the same qvector. */ 13422 if (q_vector->rx.ring || q_vector->tx.ring) { 13423 if (enable) 13424 napi_enable(&q_vector->napi); 13425 else 13426 napi_disable(&q_vector->napi); 13427 } 13428 } 13429 13430 /** 13431 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13432 * @vsi: vsi 13433 * @queue_pair: queue pair 13434 * @enable: true for enable, false for disable 13435 * 13436 * Returns 0 on success, <0 on failure. 13437 **/ 13438 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13439 bool enable) 13440 { 13441 struct i40e_pf *pf = vsi->back; 13442 int pf_q, ret = 0; 13443 13444 pf_q = vsi->base_queue + queue_pair; 13445 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13446 false /*is xdp*/, enable); 13447 if (ret) { 13448 dev_info(&pf->pdev->dev, 13449 "VSI seid %d Tx ring %d %sable timeout\n", 13450 vsi->seid, pf_q, (enable ? "en" : "dis")); 13451 return ret; 13452 } 13453 13454 i40e_control_rx_q(pf, pf_q, enable); 13455 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13456 if (ret) { 13457 dev_info(&pf->pdev->dev, 13458 "VSI seid %d Rx ring %d %sable timeout\n", 13459 vsi->seid, pf_q, (enable ? "en" : "dis")); 13460 return ret; 13461 } 13462 13463 /* Due to HW errata, on Rx disable only, the register can 13464 * indicate done before it really is. Needs 50ms to be sure 13465 */ 13466 if (!enable) 13467 mdelay(50); 13468 13469 if (!i40e_enabled_xdp_vsi(vsi)) 13470 return ret; 13471 13472 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13473 pf_q + vsi->alloc_queue_pairs, 13474 true /*is xdp*/, enable); 13475 if (ret) { 13476 dev_info(&pf->pdev->dev, 13477 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13478 vsi->seid, pf_q, (enable ? "en" : "dis")); 13479 } 13480 13481 return ret; 13482 } 13483 13484 /** 13485 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13486 * @vsi: vsi 13487 * @queue_pair: queue_pair 13488 **/ 13489 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13490 { 13491 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13492 struct i40e_pf *pf = vsi->back; 13493 struct i40e_hw *hw = &pf->hw; 13494 13495 /* All rings in a qp belong to the same qvector. */ 13496 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 13497 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13498 else 13499 i40e_irq_dynamic_enable_icr0(pf); 13500 13501 i40e_flush(hw); 13502 } 13503 13504 /** 13505 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13506 * @vsi: vsi 13507 * @queue_pair: queue_pair 13508 **/ 13509 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13510 { 13511 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13512 struct i40e_pf *pf = vsi->back; 13513 struct i40e_hw *hw = &pf->hw; 13514 13515 /* For simplicity, instead of removing the qp interrupt causes 13516 * from the interrupt linked list, we simply disable the interrupt, and 13517 * leave the list intact. 13518 * 13519 * All rings in a qp belong to the same qvector. 13520 */ 13521 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 13522 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13523 13524 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13525 i40e_flush(hw); 13526 synchronize_irq(pf->msix_entries[intpf].vector); 13527 } else { 13528 /* Legacy and MSI mode - this stops all interrupt handling */ 13529 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13530 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13531 i40e_flush(hw); 13532 synchronize_irq(pf->pdev->irq); 13533 } 13534 } 13535 13536 /** 13537 * i40e_queue_pair_disable - Disables a queue pair 13538 * @vsi: vsi 13539 * @queue_pair: queue pair 13540 * 13541 * Returns 0 on success, <0 on failure. 13542 **/ 13543 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13544 { 13545 int err; 13546 13547 err = i40e_enter_busy_conf(vsi); 13548 if (err) 13549 return err; 13550 13551 i40e_queue_pair_disable_irq(vsi, queue_pair); 13552 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13553 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13554 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13555 i40e_queue_pair_clean_rings(vsi, queue_pair); 13556 i40e_queue_pair_reset_stats(vsi, queue_pair); 13557 13558 return err; 13559 } 13560 13561 /** 13562 * i40e_queue_pair_enable - Enables a queue pair 13563 * @vsi: vsi 13564 * @queue_pair: queue pair 13565 * 13566 * Returns 0 on success, <0 on failure. 13567 **/ 13568 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13569 { 13570 int err; 13571 13572 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13573 if (err) 13574 return err; 13575 13576 if (i40e_enabled_xdp_vsi(vsi)) { 13577 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13578 if (err) 13579 return err; 13580 } 13581 13582 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13583 if (err) 13584 return err; 13585 13586 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13587 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13588 i40e_queue_pair_enable_irq(vsi, queue_pair); 13589 13590 i40e_exit_busy_conf(vsi); 13591 13592 return err; 13593 } 13594 13595 /** 13596 * i40e_xdp - implements ndo_bpf for i40e 13597 * @dev: netdevice 13598 * @xdp: XDP command 13599 **/ 13600 static int i40e_xdp(struct net_device *dev, 13601 struct netdev_bpf *xdp) 13602 { 13603 struct i40e_netdev_priv *np = netdev_priv(dev); 13604 struct i40e_vsi *vsi = np->vsi; 13605 13606 if (vsi->type != I40E_VSI_MAIN) 13607 return -EINVAL; 13608 13609 switch (xdp->command) { 13610 case XDP_SETUP_PROG: 13611 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13612 case XDP_SETUP_XSK_POOL: 13613 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13614 xdp->xsk.queue_id); 13615 default: 13616 return -EINVAL; 13617 } 13618 } 13619 13620 static const struct net_device_ops i40e_netdev_ops = { 13621 .ndo_open = i40e_open, 13622 .ndo_stop = i40e_close, 13623 .ndo_start_xmit = i40e_lan_xmit_frame, 13624 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13625 .ndo_set_rx_mode = i40e_set_rx_mode, 13626 .ndo_validate_addr = eth_validate_addr, 13627 .ndo_set_mac_address = i40e_set_mac, 13628 .ndo_change_mtu = i40e_change_mtu, 13629 .ndo_eth_ioctl = i40e_ioctl, 13630 .ndo_tx_timeout = i40e_tx_timeout, 13631 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13632 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13633 #ifdef CONFIG_NET_POLL_CONTROLLER 13634 .ndo_poll_controller = i40e_netpoll, 13635 #endif 13636 .ndo_setup_tc = __i40e_setup_tc, 13637 .ndo_select_queue = i40e_lan_select_queue, 13638 .ndo_set_features = i40e_set_features, 13639 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13640 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13641 .ndo_get_vf_stats = i40e_get_vf_stats, 13642 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13643 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13644 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13645 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13646 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13647 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13648 .ndo_fdb_add = i40e_ndo_fdb_add, 13649 .ndo_features_check = i40e_features_check, 13650 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13651 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13652 .ndo_bpf = i40e_xdp, 13653 .ndo_xdp_xmit = i40e_xdp_xmit, 13654 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13655 .ndo_dfwd_add_station = i40e_fwd_add, 13656 .ndo_dfwd_del_station = i40e_fwd_del, 13657 }; 13658 13659 /** 13660 * i40e_config_netdev - Setup the netdev flags 13661 * @vsi: the VSI being configured 13662 * 13663 * Returns 0 on success, negative value on failure 13664 **/ 13665 static int i40e_config_netdev(struct i40e_vsi *vsi) 13666 { 13667 struct i40e_pf *pf = vsi->back; 13668 struct i40e_hw *hw = &pf->hw; 13669 struct i40e_netdev_priv *np; 13670 struct net_device *netdev; 13671 u8 broadcast[ETH_ALEN]; 13672 u8 mac_addr[ETH_ALEN]; 13673 int etherdev_size; 13674 netdev_features_t hw_enc_features; 13675 netdev_features_t hw_features; 13676 13677 etherdev_size = sizeof(struct i40e_netdev_priv); 13678 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13679 if (!netdev) 13680 return -ENOMEM; 13681 13682 vsi->netdev = netdev; 13683 np = netdev_priv(netdev); 13684 np->vsi = vsi; 13685 13686 hw_enc_features = NETIF_F_SG | 13687 NETIF_F_HW_CSUM | 13688 NETIF_F_HIGHDMA | 13689 NETIF_F_SOFT_FEATURES | 13690 NETIF_F_TSO | 13691 NETIF_F_TSO_ECN | 13692 NETIF_F_TSO6 | 13693 NETIF_F_GSO_GRE | 13694 NETIF_F_GSO_GRE_CSUM | 13695 NETIF_F_GSO_PARTIAL | 13696 NETIF_F_GSO_IPXIP4 | 13697 NETIF_F_GSO_IPXIP6 | 13698 NETIF_F_GSO_UDP_TUNNEL | 13699 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13700 NETIF_F_GSO_UDP_L4 | 13701 NETIF_F_SCTP_CRC | 13702 NETIF_F_RXHASH | 13703 NETIF_F_RXCSUM | 13704 0; 13705 13706 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps)) 13707 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13708 13709 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13710 13711 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13712 13713 netdev->hw_enc_features |= hw_enc_features; 13714 13715 /* record features VLANs can make use of */ 13716 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13717 13718 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 13719 NETIF_F_GSO_GRE_CSUM | \ 13720 NETIF_F_GSO_IPXIP4 | \ 13721 NETIF_F_GSO_IPXIP6 | \ 13722 NETIF_F_GSO_UDP_TUNNEL | \ 13723 NETIF_F_GSO_UDP_TUNNEL_CSUM) 13724 13725 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES; 13726 netdev->features |= NETIF_F_GSO_PARTIAL | 13727 I40E_GSO_PARTIAL_FEATURES; 13728 13729 netdev->mpls_features |= NETIF_F_SG; 13730 netdev->mpls_features |= NETIF_F_HW_CSUM; 13731 netdev->mpls_features |= NETIF_F_TSO; 13732 netdev->mpls_features |= NETIF_F_TSO6; 13733 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES; 13734 13735 /* enable macvlan offloads */ 13736 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13737 13738 hw_features = hw_enc_features | 13739 NETIF_F_HW_VLAN_CTAG_TX | 13740 NETIF_F_HW_VLAN_CTAG_RX; 13741 13742 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) 13743 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13744 13745 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK; 13746 13747 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13748 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13749 13750 netdev->features &= ~NETIF_F_HW_TC; 13751 13752 if (vsi->type == I40E_VSI_MAIN) { 13753 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13754 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13755 /* The following steps are necessary for two reasons. First, 13756 * some older NVM configurations load a default MAC-VLAN 13757 * filter that will accept any tagged packet, and we want to 13758 * replace this with a normal filter. Additionally, it is 13759 * possible our MAC address was provided by the platform using 13760 * Open Firmware or similar. 13761 * 13762 * Thus, we need to remove the default filter and install one 13763 * specific to the MAC address. 13764 */ 13765 i40e_rm_default_mac_filter(vsi, mac_addr); 13766 spin_lock_bh(&vsi->mac_filter_hash_lock); 13767 i40e_add_mac_filter(vsi, mac_addr); 13768 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13769 13770 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 13771 NETDEV_XDP_ACT_REDIRECT | 13772 NETDEV_XDP_ACT_XSK_ZEROCOPY | 13773 NETDEV_XDP_ACT_RX_SG; 13774 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD; 13775 } else { 13776 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13777 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13778 * the end, which is 4 bytes long, so force truncation of the 13779 * original name by IFNAMSIZ - 4 13780 */ 13781 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 13782 13783 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", IFNAMSIZ - 4, 13784 main_vsi->netdev->name); 13785 eth_random_addr(mac_addr); 13786 13787 spin_lock_bh(&vsi->mac_filter_hash_lock); 13788 i40e_add_mac_filter(vsi, mac_addr); 13789 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13790 } 13791 13792 /* Add the broadcast filter so that we initially will receive 13793 * broadcast packets. Note that when a new VLAN is first added the 13794 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13795 * specific filters as part of transitioning into "vlan" operation. 13796 * When more VLANs are added, the driver will copy each existing MAC 13797 * filter and add it for the new VLAN. 13798 * 13799 * Broadcast filters are handled specially by 13800 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13801 * promiscuous bit instead of adding this directly as a MAC/VLAN 13802 * filter. The subtask will update the correct broadcast promiscuous 13803 * bits as VLANs become active or inactive. 13804 */ 13805 eth_broadcast_addr(broadcast); 13806 spin_lock_bh(&vsi->mac_filter_hash_lock); 13807 i40e_add_mac_filter(vsi, broadcast); 13808 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13809 13810 eth_hw_addr_set(netdev, mac_addr); 13811 ether_addr_copy(netdev->perm_addr, mac_addr); 13812 13813 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13814 netdev->neigh_priv_len = sizeof(u32) * 4; 13815 13816 netdev->priv_flags |= IFF_UNICAST_FLT; 13817 netdev->priv_flags |= IFF_SUPP_NOFCS; 13818 /* Setup netdev TC information */ 13819 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13820 13821 netdev->netdev_ops = &i40e_netdev_ops; 13822 netdev->watchdog_timeo = 5 * HZ; 13823 i40e_set_ethtool_ops(netdev); 13824 13825 /* MTU range: 68 - 9706 */ 13826 netdev->min_mtu = ETH_MIN_MTU; 13827 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13828 13829 return 0; 13830 } 13831 13832 /** 13833 * i40e_vsi_delete - Delete a VSI from the switch 13834 * @vsi: the VSI being removed 13835 * 13836 * Returns 0 on success, negative value on failure 13837 **/ 13838 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13839 { 13840 /* remove default VSI is not allowed */ 13841 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13842 return; 13843 13844 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13845 } 13846 13847 /** 13848 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13849 * @vsi: the VSI being queried 13850 * 13851 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13852 **/ 13853 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13854 { 13855 struct i40e_veb *veb; 13856 struct i40e_pf *pf = vsi->back; 13857 13858 /* Uplink is not a bridge so default to VEB */ 13859 if (vsi->veb_idx >= I40E_MAX_VEB) 13860 return 1; 13861 13862 veb = pf->veb[vsi->veb_idx]; 13863 if (!veb) { 13864 dev_info(&pf->pdev->dev, 13865 "There is no veb associated with the bridge\n"); 13866 return -ENOENT; 13867 } 13868 13869 /* Uplink is a bridge in VEPA mode */ 13870 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13871 return 0; 13872 } else { 13873 /* Uplink is a bridge in VEB mode */ 13874 return 1; 13875 } 13876 13877 /* VEPA is now default bridge, so return 0 */ 13878 return 0; 13879 } 13880 13881 /** 13882 * i40e_add_vsi - Add a VSI to the switch 13883 * @vsi: the VSI being configured 13884 * 13885 * This initializes a VSI context depending on the VSI type to be added and 13886 * passes it down to the add_vsi aq command. 13887 **/ 13888 static int i40e_add_vsi(struct i40e_vsi *vsi) 13889 { 13890 int ret = -ENODEV; 13891 struct i40e_pf *pf = vsi->back; 13892 struct i40e_hw *hw = &pf->hw; 13893 struct i40e_vsi_context ctxt; 13894 struct i40e_mac_filter *f; 13895 struct hlist_node *h; 13896 int bkt; 13897 13898 u8 enabled_tc = 0x1; /* TC0 enabled */ 13899 int f_count = 0; 13900 13901 memset(&ctxt, 0, sizeof(ctxt)); 13902 switch (vsi->type) { 13903 case I40E_VSI_MAIN: 13904 /* The PF's main VSI is already setup as part of the 13905 * device initialization, so we'll not bother with 13906 * the add_vsi call, but we will retrieve the current 13907 * VSI context. 13908 */ 13909 ctxt.seid = pf->main_vsi_seid; 13910 ctxt.pf_num = pf->hw.pf_id; 13911 ctxt.vf_num = 0; 13912 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13913 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13914 if (ret) { 13915 dev_info(&pf->pdev->dev, 13916 "couldn't get PF vsi config, err %pe aq_err %s\n", 13917 ERR_PTR(ret), 13918 i40e_aq_str(&pf->hw, 13919 pf->hw.aq.asq_last_status)); 13920 return -ENOENT; 13921 } 13922 vsi->info = ctxt.info; 13923 vsi->info.valid_sections = 0; 13924 13925 vsi->seid = ctxt.seid; 13926 vsi->id = ctxt.vsi_number; 13927 13928 enabled_tc = i40e_pf_get_tc_map(pf); 13929 13930 /* Source pruning is enabled by default, so the flag is 13931 * negative logic - if it's set, we need to fiddle with 13932 * the VSI to disable source pruning. 13933 */ 13934 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) { 13935 memset(&ctxt, 0, sizeof(ctxt)); 13936 ctxt.seid = pf->main_vsi_seid; 13937 ctxt.pf_num = pf->hw.pf_id; 13938 ctxt.vf_num = 0; 13939 ctxt.info.valid_sections |= 13940 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13941 ctxt.info.switch_id = 13942 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13943 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13944 if (ret) { 13945 dev_info(&pf->pdev->dev, 13946 "update vsi failed, err %d aq_err %s\n", 13947 ret, 13948 i40e_aq_str(&pf->hw, 13949 pf->hw.aq.asq_last_status)); 13950 ret = -ENOENT; 13951 goto err; 13952 } 13953 } 13954 13955 /* MFP mode setup queue map and update VSI */ 13956 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) && 13957 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13958 memset(&ctxt, 0, sizeof(ctxt)); 13959 ctxt.seid = pf->main_vsi_seid; 13960 ctxt.pf_num = pf->hw.pf_id; 13961 ctxt.vf_num = 0; 13962 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13963 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13964 if (ret) { 13965 dev_info(&pf->pdev->dev, 13966 "update vsi failed, err %pe aq_err %s\n", 13967 ERR_PTR(ret), 13968 i40e_aq_str(&pf->hw, 13969 pf->hw.aq.asq_last_status)); 13970 ret = -ENOENT; 13971 goto err; 13972 } 13973 /* update the local VSI info queue map */ 13974 i40e_vsi_update_queue_map(vsi, &ctxt); 13975 vsi->info.valid_sections = 0; 13976 } else { 13977 /* Default/Main VSI is only enabled for TC0 13978 * reconfigure it to enable all TCs that are 13979 * available on the port in SFP mode. 13980 * For MFP case the iSCSI PF would use this 13981 * flow to enable LAN+iSCSI TC. 13982 */ 13983 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13984 if (ret) { 13985 /* Single TC condition is not fatal, 13986 * message and continue 13987 */ 13988 dev_info(&pf->pdev->dev, 13989 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n", 13990 enabled_tc, 13991 ERR_PTR(ret), 13992 i40e_aq_str(&pf->hw, 13993 pf->hw.aq.asq_last_status)); 13994 } 13995 } 13996 break; 13997 13998 case I40E_VSI_FDIR: 13999 ctxt.pf_num = hw->pf_id; 14000 ctxt.vf_num = 0; 14001 ctxt.uplink_seid = vsi->uplink_seid; 14002 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14003 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 14004 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) && 14005 (i40e_is_vsi_uplink_mode_veb(vsi))) { 14006 ctxt.info.valid_sections |= 14007 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14008 ctxt.info.switch_id = 14009 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14010 } 14011 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14012 break; 14013 14014 case I40E_VSI_VMDQ2: 14015 ctxt.pf_num = hw->pf_id; 14016 ctxt.vf_num = 0; 14017 ctxt.uplink_seid = vsi->uplink_seid; 14018 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14019 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 14020 14021 /* This VSI is connected to VEB so the switch_id 14022 * should be set to zero by default. 14023 */ 14024 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14025 ctxt.info.valid_sections |= 14026 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14027 ctxt.info.switch_id = 14028 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14029 } 14030 14031 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14032 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14033 break; 14034 14035 case I40E_VSI_SRIOV: 14036 ctxt.pf_num = hw->pf_id; 14037 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 14038 ctxt.uplink_seid = vsi->uplink_seid; 14039 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 14040 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 14041 14042 /* This VSI is connected to VEB so the switch_id 14043 * should be set to zero by default. 14044 */ 14045 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 14046 ctxt.info.valid_sections |= 14047 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 14048 ctxt.info.switch_id = 14049 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 14050 } 14051 14052 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) { 14053 ctxt.info.valid_sections |= 14054 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 14055 ctxt.info.queueing_opt_flags |= 14056 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 14057 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 14058 } 14059 14060 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 14061 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 14062 if (pf->vf[vsi->vf_id].spoofchk) { 14063 ctxt.info.valid_sections |= 14064 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 14065 ctxt.info.sec_flags |= 14066 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 14067 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 14068 } 14069 /* Setup the VSI tx/rx queue map for TC0 only for now */ 14070 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 14071 break; 14072 14073 case I40E_VSI_IWARP: 14074 /* send down message to iWARP */ 14075 break; 14076 14077 default: 14078 return -ENODEV; 14079 } 14080 14081 if (vsi->type != I40E_VSI_MAIN) { 14082 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 14083 if (ret) { 14084 dev_info(&vsi->back->pdev->dev, 14085 "add vsi failed, err %pe aq_err %s\n", 14086 ERR_PTR(ret), 14087 i40e_aq_str(&pf->hw, 14088 pf->hw.aq.asq_last_status)); 14089 ret = -ENOENT; 14090 goto err; 14091 } 14092 vsi->info = ctxt.info; 14093 vsi->info.valid_sections = 0; 14094 vsi->seid = ctxt.seid; 14095 vsi->id = ctxt.vsi_number; 14096 } 14097 14098 spin_lock_bh(&vsi->mac_filter_hash_lock); 14099 vsi->active_filters = 0; 14100 /* If macvlan filters already exist, force them to get loaded */ 14101 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 14102 f->state = I40E_FILTER_NEW; 14103 f_count++; 14104 } 14105 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14106 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 14107 14108 if (f_count) { 14109 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 14110 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 14111 } 14112 14113 /* Update VSI BW information */ 14114 ret = i40e_vsi_get_bw_info(vsi); 14115 if (ret) { 14116 dev_info(&pf->pdev->dev, 14117 "couldn't get vsi bw info, err %pe aq_err %s\n", 14118 ERR_PTR(ret), 14119 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14120 /* VSI is already added so not tearing that up */ 14121 ret = 0; 14122 } 14123 14124 err: 14125 return ret; 14126 } 14127 14128 /** 14129 * i40e_vsi_release - Delete a VSI and free its resources 14130 * @vsi: the VSI being removed 14131 * 14132 * Returns 0 on success or < 0 on error 14133 **/ 14134 int i40e_vsi_release(struct i40e_vsi *vsi) 14135 { 14136 struct i40e_mac_filter *f; 14137 struct hlist_node *h; 14138 struct i40e_veb *veb; 14139 struct i40e_pf *pf; 14140 u16 uplink_seid; 14141 int i, n, bkt; 14142 14143 pf = vsi->back; 14144 14145 /* release of a VEB-owner or last VSI is not allowed */ 14146 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 14147 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 14148 vsi->seid, vsi->uplink_seid); 14149 return -ENODEV; 14150 } 14151 if (vsi->type == I40E_VSI_MAIN && !test_bit(__I40E_DOWN, pf->state)) { 14152 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 14153 return -ENODEV; 14154 } 14155 set_bit(__I40E_VSI_RELEASING, vsi->state); 14156 uplink_seid = vsi->uplink_seid; 14157 14158 if (vsi->type != I40E_VSI_SRIOV) { 14159 if (vsi->netdev_registered) { 14160 vsi->netdev_registered = false; 14161 if (vsi->netdev) { 14162 /* results in a call to i40e_close() */ 14163 unregister_netdev(vsi->netdev); 14164 } 14165 } else { 14166 i40e_vsi_close(vsi); 14167 } 14168 i40e_vsi_disable_irq(vsi); 14169 } 14170 14171 if (vsi->type == I40E_VSI_MAIN) 14172 i40e_devlink_destroy_port(pf); 14173 14174 spin_lock_bh(&vsi->mac_filter_hash_lock); 14175 14176 /* clear the sync flag on all filters */ 14177 if (vsi->netdev) { 14178 __dev_uc_unsync(vsi->netdev, NULL); 14179 __dev_mc_unsync(vsi->netdev, NULL); 14180 } 14181 14182 /* make sure any remaining filters are marked for deletion */ 14183 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 14184 __i40e_del_filter(vsi, f); 14185 14186 spin_unlock_bh(&vsi->mac_filter_hash_lock); 14187 14188 i40e_sync_vsi_filters(vsi); 14189 14190 i40e_vsi_delete(vsi); 14191 i40e_vsi_free_q_vectors(vsi); 14192 if (vsi->netdev) { 14193 free_netdev(vsi->netdev); 14194 vsi->netdev = NULL; 14195 } 14196 i40e_vsi_clear_rings(vsi); 14197 i40e_vsi_clear(vsi); 14198 14199 /* If this was the last thing on the VEB, except for the 14200 * controlling VSI, remove the VEB, which puts the controlling 14201 * VSI onto the uplink port. 14202 * 14203 * Well, okay, there's one more exception here: don't remove 14204 * the floating VEBs yet. We'll wait for an explicit remove request 14205 * from up the network stack. 14206 */ 14207 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14208 if (veb && veb->uplink_seid) { 14209 n = 0; 14210 14211 /* Count non-controlling VSIs present on the VEB */ 14212 i40e_pf_for_each_vsi(pf, i, vsi) 14213 if (vsi->uplink_seid == uplink_seid && 14214 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14215 n++; 14216 14217 /* If there is no VSI except the control one then release 14218 * the VEB and put the control VSI onto VEB uplink. 14219 */ 14220 if (!n) 14221 i40e_veb_release(veb); 14222 } 14223 14224 return 0; 14225 } 14226 14227 /** 14228 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 14229 * @vsi: ptr to the VSI 14230 * 14231 * This should only be called after i40e_vsi_mem_alloc() which allocates the 14232 * corresponding SW VSI structure and initializes num_queue_pairs for the 14233 * newly allocated VSI. 14234 * 14235 * Returns 0 on success or negative on failure 14236 **/ 14237 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 14238 { 14239 int ret = -ENOENT; 14240 struct i40e_pf *pf = vsi->back; 14241 14242 if (vsi->q_vectors[0]) { 14243 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 14244 vsi->seid); 14245 return -EEXIST; 14246 } 14247 14248 if (vsi->base_vector) { 14249 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 14250 vsi->seid, vsi->base_vector); 14251 return -EEXIST; 14252 } 14253 14254 ret = i40e_vsi_alloc_q_vectors(vsi); 14255 if (ret) { 14256 dev_info(&pf->pdev->dev, 14257 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 14258 vsi->num_q_vectors, vsi->seid, ret); 14259 vsi->num_q_vectors = 0; 14260 goto vector_setup_out; 14261 } 14262 14263 /* In Legacy mode, we do not have to get any other vector since we 14264 * piggyback on the misc/ICR0 for queue interrupts. 14265 */ 14266 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 14267 return ret; 14268 if (vsi->num_q_vectors) 14269 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 14270 vsi->num_q_vectors, vsi->idx); 14271 if (vsi->base_vector < 0) { 14272 dev_info(&pf->pdev->dev, 14273 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 14274 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 14275 i40e_vsi_free_q_vectors(vsi); 14276 ret = -ENOENT; 14277 goto vector_setup_out; 14278 } 14279 14280 vector_setup_out: 14281 return ret; 14282 } 14283 14284 /** 14285 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 14286 * @vsi: pointer to the vsi. 14287 * 14288 * This re-allocates a vsi's queue resources. 14289 * 14290 * Returns pointer to the successfully allocated and configured VSI sw struct 14291 * on success, otherwise returns NULL on failure. 14292 **/ 14293 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 14294 { 14295 struct i40e_vsi *main_vsi; 14296 u16 alloc_queue_pairs; 14297 struct i40e_pf *pf; 14298 int ret; 14299 14300 if (!vsi) 14301 return NULL; 14302 14303 pf = vsi->back; 14304 14305 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 14306 i40e_vsi_clear_rings(vsi); 14307 14308 i40e_vsi_free_arrays(vsi, false); 14309 i40e_set_num_rings_in_vsi(vsi); 14310 ret = i40e_vsi_alloc_arrays(vsi, false); 14311 if (ret) 14312 goto err_vsi; 14313 14314 alloc_queue_pairs = vsi->alloc_queue_pairs * 14315 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14316 14317 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14318 if (ret < 0) { 14319 dev_info(&pf->pdev->dev, 14320 "failed to get tracking for %d queues for VSI %d err %d\n", 14321 alloc_queue_pairs, vsi->seid, ret); 14322 goto err_vsi; 14323 } 14324 vsi->base_queue = ret; 14325 14326 /* Update the FW view of the VSI. Force a reset of TC and queue 14327 * layout configurations. 14328 */ 14329 main_vsi = i40e_pf_get_main_vsi(pf); 14330 main_vsi->seid = pf->main_vsi_seid; 14331 i40e_vsi_reconfig_tc(main_vsi); 14332 14333 if (vsi->type == I40E_VSI_MAIN) 14334 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 14335 14336 /* assign it some queues */ 14337 ret = i40e_alloc_rings(vsi); 14338 if (ret) 14339 goto err_rings; 14340 14341 /* map all of the rings to the q_vectors */ 14342 i40e_vsi_map_rings_to_vectors(vsi); 14343 return vsi; 14344 14345 err_rings: 14346 i40e_vsi_free_q_vectors(vsi); 14347 if (vsi->netdev_registered) { 14348 vsi->netdev_registered = false; 14349 unregister_netdev(vsi->netdev); 14350 free_netdev(vsi->netdev); 14351 vsi->netdev = NULL; 14352 } 14353 if (vsi->type == I40E_VSI_MAIN) 14354 i40e_devlink_destroy_port(pf); 14355 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14356 err_vsi: 14357 i40e_vsi_clear(vsi); 14358 return NULL; 14359 } 14360 14361 /** 14362 * i40e_vsi_setup - Set up a VSI by a given type 14363 * @pf: board private structure 14364 * @type: VSI type 14365 * @uplink_seid: the switch element to link to 14366 * @param1: usage depends upon VSI type. For VF types, indicates VF id 14367 * 14368 * This allocates the sw VSI structure and its queue resources, then add a VSI 14369 * to the identified VEB. 14370 * 14371 * Returns pointer to the successfully allocated and configure VSI sw struct on 14372 * success, otherwise returns NULL on failure. 14373 **/ 14374 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 14375 u16 uplink_seid, u32 param1) 14376 { 14377 struct i40e_vsi *vsi = NULL; 14378 struct i40e_veb *veb = NULL; 14379 u16 alloc_queue_pairs; 14380 int v_idx; 14381 int ret; 14382 14383 /* The requested uplink_seid must be either 14384 * - the PF's port seid 14385 * no VEB is needed because this is the PF 14386 * or this is a Flow Director special case VSI 14387 * - seid of an existing VEB 14388 * - seid of a VSI that owns an existing VEB 14389 * - seid of a VSI that doesn't own a VEB 14390 * a new VEB is created and the VSI becomes the owner 14391 * - seid of the PF VSI, which is what creates the first VEB 14392 * this is a special case of the previous 14393 * 14394 * Find which uplink_seid we were given and create a new VEB if needed 14395 */ 14396 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid); 14397 if (!veb && uplink_seid != pf->mac_seid) { 14398 vsi = i40e_pf_get_vsi_by_seid(pf, uplink_seid); 14399 if (!vsi) { 14400 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14401 uplink_seid); 14402 return NULL; 14403 } 14404 14405 if (vsi->uplink_seid == pf->mac_seid) 14406 veb = i40e_veb_setup(pf, pf->mac_seid, vsi->seid, 14407 vsi->tc_config.enabled_tc); 14408 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14409 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid, 14410 vsi->tc_config.enabled_tc); 14411 if (veb) { 14412 if (vsi->type != I40E_VSI_MAIN) { 14413 dev_info(&vsi->back->pdev->dev, 14414 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14415 return NULL; 14416 } 14417 /* We come up by default in VEPA mode if SRIOV is not 14418 * already enabled, in which case we can't force VEPA 14419 * mode. 14420 */ 14421 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) { 14422 veb->bridge_mode = BRIDGE_MODE_VEPA; 14423 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 14424 } 14425 i40e_config_bridge_mode(veb); 14426 } 14427 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid); 14428 if (!veb) { 14429 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14430 return NULL; 14431 } 14432 14433 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14434 uplink_seid = veb->seid; 14435 } 14436 14437 /* get vsi sw struct */ 14438 v_idx = i40e_vsi_mem_alloc(pf, type); 14439 if (v_idx < 0) 14440 goto err_alloc; 14441 vsi = pf->vsi[v_idx]; 14442 if (!vsi) 14443 goto err_alloc; 14444 vsi->type = type; 14445 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14446 14447 if (type == I40E_VSI_MAIN) 14448 pf->lan_vsi = v_idx; 14449 else if (type == I40E_VSI_SRIOV) 14450 vsi->vf_id = param1; 14451 /* assign it some queues */ 14452 alloc_queue_pairs = vsi->alloc_queue_pairs * 14453 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14454 14455 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14456 if (ret < 0) { 14457 dev_info(&pf->pdev->dev, 14458 "failed to get tracking for %d queues for VSI %d err=%d\n", 14459 alloc_queue_pairs, vsi->seid, ret); 14460 goto err_vsi; 14461 } 14462 vsi->base_queue = ret; 14463 14464 /* get a VSI from the hardware */ 14465 vsi->uplink_seid = uplink_seid; 14466 ret = i40e_add_vsi(vsi); 14467 if (ret) 14468 goto err_vsi; 14469 14470 switch (vsi->type) { 14471 /* setup the netdev if needed */ 14472 case I40E_VSI_MAIN: 14473 case I40E_VSI_VMDQ2: 14474 ret = i40e_config_netdev(vsi); 14475 if (ret) 14476 goto err_netdev; 14477 ret = i40e_netif_set_realnum_tx_rx_queues(vsi); 14478 if (ret) 14479 goto err_netdev; 14480 if (vsi->type == I40E_VSI_MAIN) { 14481 ret = i40e_devlink_create_port(pf); 14482 if (ret) 14483 goto err_netdev; 14484 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 14485 } 14486 ret = register_netdev(vsi->netdev); 14487 if (ret) 14488 goto err_dl_port; 14489 vsi->netdev_registered = true; 14490 netif_carrier_off(vsi->netdev); 14491 #ifdef CONFIG_I40E_DCB 14492 /* Setup DCB netlink interface */ 14493 i40e_dcbnl_setup(vsi); 14494 #endif /* CONFIG_I40E_DCB */ 14495 fallthrough; 14496 case I40E_VSI_FDIR: 14497 /* set up vectors and rings if needed */ 14498 ret = i40e_vsi_setup_vectors(vsi); 14499 if (ret) 14500 goto err_msix; 14501 14502 ret = i40e_alloc_rings(vsi); 14503 if (ret) 14504 goto err_rings; 14505 14506 /* map all of the rings to the q_vectors */ 14507 i40e_vsi_map_rings_to_vectors(vsi); 14508 14509 i40e_vsi_reset_stats(vsi); 14510 break; 14511 default: 14512 /* no netdev or rings for the other VSI types */ 14513 break; 14514 } 14515 14516 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) && 14517 vsi->type == I40E_VSI_VMDQ2) { 14518 ret = i40e_vsi_config_rss(vsi); 14519 if (ret) 14520 goto err_config; 14521 } 14522 return vsi; 14523 14524 err_config: 14525 i40e_vsi_clear_rings(vsi); 14526 err_rings: 14527 i40e_vsi_free_q_vectors(vsi); 14528 err_msix: 14529 if (vsi->netdev_registered) { 14530 vsi->netdev_registered = false; 14531 unregister_netdev(vsi->netdev); 14532 free_netdev(vsi->netdev); 14533 vsi->netdev = NULL; 14534 } 14535 err_dl_port: 14536 if (vsi->type == I40E_VSI_MAIN) 14537 i40e_devlink_destroy_port(pf); 14538 err_netdev: 14539 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14540 err_vsi: 14541 i40e_vsi_clear(vsi); 14542 err_alloc: 14543 return NULL; 14544 } 14545 14546 /** 14547 * i40e_veb_get_bw_info - Query VEB BW information 14548 * @veb: the veb to query 14549 * 14550 * Query the Tx scheduler BW configuration data for given VEB 14551 **/ 14552 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14553 { 14554 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14555 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14556 struct i40e_pf *pf = veb->pf; 14557 struct i40e_hw *hw = &pf->hw; 14558 u32 tc_bw_max; 14559 int ret = 0; 14560 int i; 14561 14562 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14563 &bw_data, NULL); 14564 if (ret) { 14565 dev_info(&pf->pdev->dev, 14566 "query veb bw config failed, err %pe aq_err %s\n", 14567 ERR_PTR(ret), 14568 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14569 goto out; 14570 } 14571 14572 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14573 &ets_data, NULL); 14574 if (ret) { 14575 dev_info(&pf->pdev->dev, 14576 "query veb bw ets config failed, err %pe aq_err %s\n", 14577 ERR_PTR(ret), 14578 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14579 goto out; 14580 } 14581 14582 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14583 veb->bw_max_quanta = ets_data.tc_bw_max; 14584 veb->is_abs_credits = bw_data.absolute_credits_enable; 14585 veb->enabled_tc = ets_data.tc_valid_bits; 14586 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14587 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14588 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14589 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14590 veb->bw_tc_limit_credits[i] = 14591 le16_to_cpu(bw_data.tc_bw_limits[i]); 14592 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14593 } 14594 14595 out: 14596 return ret; 14597 } 14598 14599 /** 14600 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14601 * @pf: board private structure 14602 * 14603 * On error: returns error code (negative) 14604 * On success: returns vsi index in PF (positive) 14605 **/ 14606 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14607 { 14608 int ret = -ENOENT; 14609 struct i40e_veb *veb; 14610 int i; 14611 14612 /* Need to protect the allocation of switch elements at the PF level */ 14613 mutex_lock(&pf->switch_mutex); 14614 14615 /* VEB list may be fragmented if VEB creation/destruction has 14616 * been happening. We can afford to do a quick scan to look 14617 * for any free slots in the list. 14618 * 14619 * find next empty veb slot, looping back around if necessary 14620 */ 14621 i = 0; 14622 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14623 i++; 14624 if (i >= I40E_MAX_VEB) { 14625 ret = -ENOMEM; 14626 goto err_alloc_veb; /* out of VEB slots! */ 14627 } 14628 14629 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14630 if (!veb) { 14631 ret = -ENOMEM; 14632 goto err_alloc_veb; 14633 } 14634 veb->pf = pf; 14635 veb->idx = i; 14636 veb->enabled_tc = 1; 14637 14638 pf->veb[i] = veb; 14639 ret = i; 14640 err_alloc_veb: 14641 mutex_unlock(&pf->switch_mutex); 14642 return ret; 14643 } 14644 14645 /** 14646 * i40e_switch_branch_release - Delete a branch of the switch tree 14647 * @branch: where to start deleting 14648 * 14649 * This uses recursion to find the tips of the branch to be 14650 * removed, deleting until we get back to and can delete this VEB. 14651 **/ 14652 static void i40e_switch_branch_release(struct i40e_veb *branch) 14653 { 14654 struct i40e_pf *pf = branch->pf; 14655 u16 branch_seid = branch->seid; 14656 u16 veb_idx = branch->idx; 14657 struct i40e_vsi *vsi; 14658 struct i40e_veb *veb; 14659 int i; 14660 14661 /* release any VEBs on this VEB - RECURSION */ 14662 i40e_pf_for_each_veb(pf, i, veb) 14663 if (veb->uplink_seid == branch->seid) 14664 i40e_switch_branch_release(veb); 14665 14666 /* Release the VSIs on this VEB, but not the owner VSI. 14667 * 14668 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14669 * the VEB itself, so don't use (*branch) after this loop. 14670 */ 14671 i40e_pf_for_each_vsi(pf, i, vsi) 14672 if (vsi->uplink_seid == branch_seid && 14673 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14674 i40e_vsi_release(vsi); 14675 14676 /* There's one corner case where the VEB might not have been 14677 * removed, so double check it here and remove it if needed. 14678 * This case happens if the veb was created from the debugfs 14679 * commands and no VSIs were added to it. 14680 */ 14681 if (pf->veb[veb_idx]) 14682 i40e_veb_release(pf->veb[veb_idx]); 14683 } 14684 14685 /** 14686 * i40e_veb_clear - remove veb struct 14687 * @veb: the veb to remove 14688 **/ 14689 static void i40e_veb_clear(struct i40e_veb *veb) 14690 { 14691 if (!veb) 14692 return; 14693 14694 if (veb->pf) { 14695 struct i40e_pf *pf = veb->pf; 14696 14697 mutex_lock(&pf->switch_mutex); 14698 if (pf->veb[veb->idx] == veb) 14699 pf->veb[veb->idx] = NULL; 14700 mutex_unlock(&pf->switch_mutex); 14701 } 14702 14703 kfree(veb); 14704 } 14705 14706 /** 14707 * i40e_veb_release - Delete a VEB and free its resources 14708 * @veb: the VEB being removed 14709 **/ 14710 void i40e_veb_release(struct i40e_veb *veb) 14711 { 14712 struct i40e_vsi *vsi, *vsi_it; 14713 struct i40e_pf *pf; 14714 int i, n = 0; 14715 14716 pf = veb->pf; 14717 14718 /* find the remaining VSI and check for extras */ 14719 i40e_pf_for_each_vsi(pf, i, vsi_it) 14720 if (vsi_it->uplink_seid == veb->seid) { 14721 if (vsi_it->flags & I40E_VSI_FLAG_VEB_OWNER) 14722 vsi = vsi_it; 14723 n++; 14724 } 14725 14726 /* Floating VEB has to be empty and regular one must have 14727 * single owner VSI. 14728 */ 14729 if ((veb->uplink_seid && n != 1) || (!veb->uplink_seid && n != 0)) { 14730 dev_info(&pf->pdev->dev, 14731 "can't remove VEB %d with %d VSIs left\n", 14732 veb->seid, n); 14733 return; 14734 } 14735 14736 /* For regular VEB move the owner VSI to uplink port */ 14737 if (veb->uplink_seid) { 14738 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14739 vsi->uplink_seid = veb->uplink_seid; 14740 vsi->veb_idx = I40E_NO_VEB; 14741 } 14742 14743 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14744 i40e_veb_clear(veb); 14745 } 14746 14747 /** 14748 * i40e_add_veb - create the VEB in the switch 14749 * @veb: the VEB to be instantiated 14750 * @vsi: the controlling VSI 14751 **/ 14752 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14753 { 14754 struct i40e_pf *pf = veb->pf; 14755 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags); 14756 int ret; 14757 14758 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi ? vsi->seid : 0, 14759 veb->enabled_tc, vsi ? false : true, 14760 &veb->seid, enable_stats, NULL); 14761 14762 /* get a VEB from the hardware */ 14763 if (ret) { 14764 dev_info(&pf->pdev->dev, 14765 "couldn't add VEB, err %pe aq_err %s\n", 14766 ERR_PTR(ret), 14767 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14768 return -EPERM; 14769 } 14770 14771 /* get statistics counter */ 14772 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14773 &veb->stats_idx, NULL, NULL, NULL); 14774 if (ret) { 14775 dev_info(&pf->pdev->dev, 14776 "couldn't get VEB statistics idx, err %pe aq_err %s\n", 14777 ERR_PTR(ret), 14778 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14779 return -EPERM; 14780 } 14781 ret = i40e_veb_get_bw_info(veb); 14782 if (ret) { 14783 dev_info(&pf->pdev->dev, 14784 "couldn't get VEB bw info, err %pe aq_err %s\n", 14785 ERR_PTR(ret), 14786 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14787 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14788 return -ENOENT; 14789 } 14790 14791 if (vsi) { 14792 vsi->uplink_seid = veb->seid; 14793 vsi->veb_idx = veb->idx; 14794 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14795 } 14796 14797 return 0; 14798 } 14799 14800 /** 14801 * i40e_veb_setup - Set up a VEB 14802 * @pf: board private structure 14803 * @uplink_seid: the switch element to link to 14804 * @vsi_seid: the initial VSI seid 14805 * @enabled_tc: Enabled TC bit-map 14806 * 14807 * This allocates the sw VEB structure and links it into the switch 14808 * It is possible and legal for this to be a duplicate of an already 14809 * existing VEB. It is also possible for both uplink and vsi seids 14810 * to be zero, in order to create a floating VEB. 14811 * 14812 * Returns pointer to the successfully allocated VEB sw struct on 14813 * success, otherwise returns NULL on failure. 14814 **/ 14815 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 uplink_seid, 14816 u16 vsi_seid, u8 enabled_tc) 14817 { 14818 struct i40e_vsi *vsi = NULL; 14819 struct i40e_veb *veb; 14820 int veb_idx; 14821 int ret; 14822 14823 /* if one seid is 0, the other must be 0 to create a floating relay */ 14824 if ((uplink_seid == 0 || vsi_seid == 0) && 14825 (uplink_seid + vsi_seid != 0)) { 14826 dev_info(&pf->pdev->dev, 14827 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14828 uplink_seid, vsi_seid); 14829 return NULL; 14830 } 14831 14832 /* make sure there is such a vsi and uplink */ 14833 if (vsi_seid) { 14834 vsi = i40e_pf_get_vsi_by_seid(pf, vsi_seid); 14835 if (!vsi) { 14836 dev_err(&pf->pdev->dev, "vsi seid %d not found\n", 14837 vsi_seid); 14838 return NULL; 14839 } 14840 } 14841 14842 /* get veb sw struct */ 14843 veb_idx = i40e_veb_mem_alloc(pf); 14844 if (veb_idx < 0) 14845 goto err_alloc; 14846 veb = pf->veb[veb_idx]; 14847 veb->uplink_seid = uplink_seid; 14848 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14849 14850 /* create the VEB in the switch */ 14851 ret = i40e_add_veb(veb, vsi); 14852 if (ret) 14853 goto err_veb; 14854 14855 if (vsi && vsi->idx == pf->lan_vsi) 14856 pf->lan_veb = veb->idx; 14857 14858 return veb; 14859 14860 err_veb: 14861 i40e_veb_clear(veb); 14862 err_alloc: 14863 return NULL; 14864 } 14865 14866 /** 14867 * i40e_setup_pf_switch_element - set PF vars based on switch type 14868 * @pf: board private structure 14869 * @ele: element we are building info from 14870 * @num_reported: total number of elements 14871 * @printconfig: should we print the contents 14872 * 14873 * helper function to assist in extracting a few useful SEID values. 14874 **/ 14875 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14876 struct i40e_aqc_switch_config_element_resp *ele, 14877 u16 num_reported, bool printconfig) 14878 { 14879 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14880 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14881 u8 element_type = ele->element_type; 14882 u16 seid = le16_to_cpu(ele->seid); 14883 struct i40e_veb *veb; 14884 14885 if (printconfig) 14886 dev_info(&pf->pdev->dev, 14887 "type=%d seid=%d uplink=%d downlink=%d\n", 14888 element_type, seid, uplink_seid, downlink_seid); 14889 14890 switch (element_type) { 14891 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14892 pf->mac_seid = seid; 14893 break; 14894 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14895 /* Main VEB? */ 14896 if (uplink_seid != pf->mac_seid) 14897 break; 14898 veb = i40e_pf_get_main_veb(pf); 14899 if (!veb) { 14900 int v; 14901 14902 /* find existing or else empty VEB */ 14903 veb = i40e_pf_get_veb_by_seid(pf, seid); 14904 if (veb) { 14905 pf->lan_veb = veb->idx; 14906 } else { 14907 v = i40e_veb_mem_alloc(pf); 14908 if (v < 0) 14909 break; 14910 pf->lan_veb = v; 14911 } 14912 } 14913 14914 /* Try to get again main VEB as pf->lan_veb may have changed */ 14915 veb = i40e_pf_get_main_veb(pf); 14916 if (!veb) 14917 break; 14918 14919 veb->seid = seid; 14920 veb->uplink_seid = pf->mac_seid; 14921 veb->pf = pf; 14922 break; 14923 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14924 if (num_reported != 1) 14925 break; 14926 /* This is immediately after a reset so we can assume this is 14927 * the PF's VSI 14928 */ 14929 pf->mac_seid = uplink_seid; 14930 pf->main_vsi_seid = seid; 14931 if (printconfig) 14932 dev_info(&pf->pdev->dev, 14933 "pf_seid=%d main_vsi_seid=%d\n", 14934 downlink_seid, pf->main_vsi_seid); 14935 break; 14936 case I40E_SWITCH_ELEMENT_TYPE_PF: 14937 case I40E_SWITCH_ELEMENT_TYPE_VF: 14938 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14939 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14940 case I40E_SWITCH_ELEMENT_TYPE_PE: 14941 case I40E_SWITCH_ELEMENT_TYPE_PA: 14942 /* ignore these for now */ 14943 break; 14944 default: 14945 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14946 element_type, seid); 14947 break; 14948 } 14949 } 14950 14951 /** 14952 * i40e_fetch_switch_configuration - Get switch config from firmware 14953 * @pf: board private structure 14954 * @printconfig: should we print the contents 14955 * 14956 * Get the current switch configuration from the device and 14957 * extract a few useful SEID values. 14958 **/ 14959 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14960 { 14961 struct i40e_aqc_get_switch_config_resp *sw_config; 14962 u16 next_seid = 0; 14963 int ret = 0; 14964 u8 *aq_buf; 14965 int i; 14966 14967 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14968 if (!aq_buf) 14969 return -ENOMEM; 14970 14971 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14972 do { 14973 u16 num_reported, num_total; 14974 14975 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14976 I40E_AQ_LARGE_BUF, 14977 &next_seid, NULL); 14978 if (ret) { 14979 dev_info(&pf->pdev->dev, 14980 "get switch config failed err %d aq_err %s\n", 14981 ret, 14982 i40e_aq_str(&pf->hw, 14983 pf->hw.aq.asq_last_status)); 14984 kfree(aq_buf); 14985 return -ENOENT; 14986 } 14987 14988 num_reported = le16_to_cpu(sw_config->header.num_reported); 14989 num_total = le16_to_cpu(sw_config->header.num_total); 14990 14991 if (printconfig) 14992 dev_info(&pf->pdev->dev, 14993 "header: %d reported %d total\n", 14994 num_reported, num_total); 14995 14996 for (i = 0; i < num_reported; i++) { 14997 struct i40e_aqc_switch_config_element_resp *ele = 14998 &sw_config->element[i]; 14999 15000 i40e_setup_pf_switch_element(pf, ele, num_reported, 15001 printconfig); 15002 } 15003 } while (next_seid != 0); 15004 15005 kfree(aq_buf); 15006 return ret; 15007 } 15008 15009 /** 15010 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 15011 * @pf: board private structure 15012 * @reinit: if the Main VSI needs to re-initialized. 15013 * @lock_acquired: indicates whether or not the lock has been acquired 15014 * 15015 * Returns 0 on success, negative value on failure 15016 **/ 15017 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 15018 { 15019 struct i40e_vsi *main_vsi; 15020 u16 flags = 0; 15021 int ret; 15022 15023 /* find out what's out there already */ 15024 ret = i40e_fetch_switch_configuration(pf, false); 15025 if (ret) { 15026 dev_info(&pf->pdev->dev, 15027 "couldn't fetch switch config, err %pe aq_err %s\n", 15028 ERR_PTR(ret), 15029 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15030 return ret; 15031 } 15032 i40e_pf_reset_stats(pf); 15033 15034 /* set the switch config bit for the whole device to 15035 * support limited promisc or true promisc 15036 * when user requests promisc. The default is limited 15037 * promisc. 15038 */ 15039 15040 if ((pf->hw.pf_id == 0) && 15041 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) { 15042 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15043 pf->last_sw_conf_flags = flags; 15044 } 15045 15046 if (pf->hw.pf_id == 0) { 15047 u16 valid_flags; 15048 15049 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 15050 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 15051 NULL); 15052 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 15053 dev_info(&pf->pdev->dev, 15054 "couldn't set switch config bits, err %pe aq_err %s\n", 15055 ERR_PTR(ret), 15056 i40e_aq_str(&pf->hw, 15057 pf->hw.aq.asq_last_status)); 15058 /* not a fatal problem, just keep going */ 15059 } 15060 pf->last_sw_conf_valid_flags = valid_flags; 15061 } 15062 15063 /* first time setup */ 15064 main_vsi = i40e_pf_get_main_vsi(pf); 15065 if (!main_vsi || reinit) { 15066 struct i40e_veb *veb; 15067 u16 uplink_seid; 15068 15069 /* Set up the PF VSI associated with the PF's main VSI 15070 * that is already in the HW switch 15071 */ 15072 veb = i40e_pf_get_main_veb(pf); 15073 if (veb) 15074 uplink_seid = veb->seid; 15075 else 15076 uplink_seid = pf->mac_seid; 15077 if (!main_vsi) 15078 main_vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, 15079 uplink_seid, 0); 15080 else if (reinit) 15081 main_vsi = i40e_vsi_reinit_setup(main_vsi); 15082 if (!main_vsi) { 15083 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 15084 i40e_cloud_filter_exit(pf); 15085 i40e_fdir_teardown(pf); 15086 return -EAGAIN; 15087 } 15088 } else { 15089 /* force a reset of TC and queue layout configurations */ 15090 main_vsi->seid = pf->main_vsi_seid; 15091 i40e_vsi_reconfig_tc(main_vsi); 15092 } 15093 i40e_vlan_stripping_disable(main_vsi); 15094 15095 i40e_fdir_sb_setup(pf); 15096 15097 /* Setup static PF queue filter control settings */ 15098 ret = i40e_setup_pf_filter_control(pf); 15099 if (ret) { 15100 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 15101 ret); 15102 /* Failure here should not stop continuing other steps */ 15103 } 15104 15105 /* enable RSS in the HW, even for only one queue, as the stack can use 15106 * the hash 15107 */ 15108 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15109 i40e_pf_config_rss(pf); 15110 15111 /* fill in link information and enable LSE reporting */ 15112 i40e_link_event(pf); 15113 15114 i40e_ptp_init(pf); 15115 15116 if (!lock_acquired) 15117 rtnl_lock(); 15118 15119 /* repopulate tunnel port filters */ 15120 udp_tunnel_nic_reset_ntf(main_vsi->netdev); 15121 15122 if (!lock_acquired) 15123 rtnl_unlock(); 15124 15125 return ret; 15126 } 15127 15128 /** 15129 * i40e_determine_queue_usage - Work out queue distribution 15130 * @pf: board private structure 15131 **/ 15132 static void i40e_determine_queue_usage(struct i40e_pf *pf) 15133 { 15134 int queues_left; 15135 int q_max; 15136 15137 pf->num_lan_qps = 0; 15138 15139 /* Find the max queues to be put into basic use. We'll always be 15140 * using TC0, whether or not DCB is running, and TC0 will get the 15141 * big RSS set. 15142 */ 15143 queues_left = pf->hw.func_caps.num_tx_qp; 15144 15145 if ((queues_left == 1) || 15146 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15147 /* one qp for PF, no queues for anything else */ 15148 queues_left = 0; 15149 pf->alloc_rss_size = pf->num_lan_qps = 1; 15150 15151 /* make sure all the fancies are disabled */ 15152 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15153 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15154 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15155 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15156 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15157 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15158 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 15159 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15160 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15161 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) && 15162 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && 15163 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) && 15164 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) { 15165 /* one qp for PF */ 15166 pf->alloc_rss_size = pf->num_lan_qps = 1; 15167 queues_left -= pf->num_lan_qps; 15168 15169 clear_bit(I40E_FLAG_RSS_ENA, pf->flags); 15170 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 15171 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15172 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags); 15173 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15174 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags); 15175 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15176 } else { 15177 /* Not enough queues for all TCs */ 15178 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) && 15179 queues_left < I40E_MAX_TRAFFIC_CLASS) { 15180 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15181 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15182 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 15183 } 15184 15185 /* limit lan qps to the smaller of qps, cpus or msix */ 15186 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 15187 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 15188 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 15189 pf->num_lan_qps = q_max; 15190 15191 queues_left -= pf->num_lan_qps; 15192 } 15193 15194 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15195 if (queues_left > 1) { 15196 queues_left -= 1; /* save 1 queue for FD */ 15197 } else { 15198 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags); 15199 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags); 15200 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 15201 } 15202 } 15203 15204 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15205 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 15206 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 15207 (queues_left / pf->num_vf_qps)); 15208 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 15209 } 15210 15211 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && 15212 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 15213 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 15214 (queues_left / pf->num_vmdq_qps)); 15215 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 15216 } 15217 15218 pf->queues_left = queues_left; 15219 dev_dbg(&pf->pdev->dev, 15220 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 15221 pf->hw.func_caps.num_tx_qp, 15222 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags), 15223 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 15224 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 15225 queues_left); 15226 } 15227 15228 /** 15229 * i40e_setup_pf_filter_control - Setup PF static filter control 15230 * @pf: PF to be setup 15231 * 15232 * i40e_setup_pf_filter_control sets up a PF's initial filter control 15233 * settings. If PE/FCoE are enabled then it will also set the per PF 15234 * based filter sizes required for them. It also enables Flow director, 15235 * ethertype and macvlan type filter settings for the pf. 15236 * 15237 * Returns 0 on success, negative on failure 15238 **/ 15239 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 15240 { 15241 struct i40e_filter_control_settings *settings = &pf->filter_settings; 15242 15243 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 15244 15245 /* Flow Director is enabled */ 15246 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) || 15247 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15248 settings->enable_fdir = true; 15249 15250 /* Ethtype and MACVLAN filters enabled for PF */ 15251 settings->enable_ethtype = true; 15252 settings->enable_macvlan = true; 15253 15254 if (i40e_set_filter_control(&pf->hw, settings)) 15255 return -ENOENT; 15256 15257 return 0; 15258 } 15259 15260 #define INFO_STRING_LEN 255 15261 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 15262 static void i40e_print_features(struct i40e_pf *pf) 15263 { 15264 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 15265 struct i40e_hw *hw = &pf->hw; 15266 char *buf; 15267 int i; 15268 15269 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 15270 if (!buf) 15271 return; 15272 15273 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 15274 #ifdef CONFIG_PCI_IOV 15275 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 15276 #endif 15277 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 15278 pf->hw.func_caps.num_vsis, main_vsi->num_queue_pairs); 15279 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags)) 15280 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 15281 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags)) 15282 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 15283 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) { 15284 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 15285 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 15286 } 15287 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) 15288 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 15289 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 15290 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 15291 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags)) 15292 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 15293 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) 15294 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 15295 else 15296 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 15297 15298 dev_info(&pf->pdev->dev, "%s\n", buf); 15299 kfree(buf); 15300 WARN_ON(i > INFO_STRING_LEN); 15301 } 15302 15303 /** 15304 * i40e_get_platform_mac_addr - get platform-specific MAC address 15305 * @pdev: PCI device information struct 15306 * @pf: board private structure 15307 * 15308 * Look up the MAC address for the device. First we'll try 15309 * eth_platform_get_mac_address, which will check Open Firmware, or arch 15310 * specific fallback. Otherwise, we'll default to the stored value in 15311 * firmware. 15312 **/ 15313 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 15314 { 15315 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 15316 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 15317 } 15318 15319 /** 15320 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 15321 * @fec_cfg: FEC option to set in flags 15322 * @flags: ptr to flags in which we set FEC option 15323 **/ 15324 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags) 15325 { 15326 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) { 15327 set_bit(I40E_FLAG_RS_FEC, flags); 15328 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15329 } 15330 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 15331 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 15332 set_bit(I40E_FLAG_RS_FEC, flags); 15333 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15334 } 15335 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 15336 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 15337 set_bit(I40E_FLAG_BASE_R_FEC, flags); 15338 clear_bit(I40E_FLAG_RS_FEC, flags); 15339 } 15340 if (fec_cfg == 0) { 15341 clear_bit(I40E_FLAG_RS_FEC, flags); 15342 clear_bit(I40E_FLAG_BASE_R_FEC, flags); 15343 } 15344 } 15345 15346 /** 15347 * i40e_check_recovery_mode - check if we are running transition firmware 15348 * @pf: board private structure 15349 * 15350 * Check registers indicating the firmware runs in recovery mode. Sets the 15351 * appropriate driver state. 15352 * 15353 * Returns true if the recovery mode was detected, false otherwise 15354 **/ 15355 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 15356 { 15357 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 15358 15359 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 15360 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 15361 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 15362 set_bit(__I40E_RECOVERY_MODE, pf->state); 15363 15364 return true; 15365 } 15366 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15367 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15368 15369 return false; 15370 } 15371 15372 /** 15373 * i40e_pf_loop_reset - perform reset in a loop. 15374 * @pf: board private structure 15375 * 15376 * This function is useful when a NIC is about to enter recovery mode. 15377 * When a NIC's internal data structures are corrupted the NIC's 15378 * firmware is going to enter recovery mode. 15379 * Right after a POR it takes about 7 minutes for firmware to enter 15380 * recovery mode. Until that time a NIC is in some kind of intermediate 15381 * state. After that time period the NIC almost surely enters 15382 * recovery mode. The only way for a driver to detect intermediate 15383 * state is to issue a series of pf-resets and check a return value. 15384 * If a PF reset returns success then the firmware could be in recovery 15385 * mode so the caller of this code needs to check for recovery mode 15386 * if this function returns success. There is a little chance that 15387 * firmware will hang in intermediate state forever. 15388 * Since waiting 7 minutes is quite a lot of time this function waits 15389 * 10 seconds and then gives up by returning an error. 15390 * 15391 * Return 0 on success, negative on failure. 15392 **/ 15393 static int i40e_pf_loop_reset(struct i40e_pf *pf) 15394 { 15395 /* wait max 10 seconds for PF reset to succeed */ 15396 const unsigned long time_end = jiffies + 10 * HZ; 15397 struct i40e_hw *hw = &pf->hw; 15398 int ret; 15399 15400 ret = i40e_pf_reset(hw); 15401 while (ret != 0 && time_before(jiffies, time_end)) { 15402 usleep_range(10000, 20000); 15403 ret = i40e_pf_reset(hw); 15404 } 15405 15406 if (ret == 0) 15407 pf->pfr_count++; 15408 else 15409 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15410 15411 return ret; 15412 } 15413 15414 /** 15415 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15416 * @pf: board private structure 15417 * 15418 * Check FW registers to determine if FW issued unexpected EMP Reset. 15419 * Every time when unexpected EMP Reset occurs the FW increments 15420 * a counter of unexpected EMP Resets. When the counter reaches 10 15421 * the FW should enter the Recovery mode 15422 * 15423 * Returns true if FW issued unexpected EMP Reset 15424 **/ 15425 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15426 { 15427 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15428 I40E_GL_FWSTS_FWS1B_MASK; 15429 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15430 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15431 } 15432 15433 /** 15434 * i40e_handle_resets - handle EMP resets and PF resets 15435 * @pf: board private structure 15436 * 15437 * Handle both EMP resets and PF resets and conclude whether there are 15438 * any issues regarding these resets. If there are any issues then 15439 * generate log entry. 15440 * 15441 * Return 0 if NIC is healthy or negative value when there are issues 15442 * with resets 15443 **/ 15444 static int i40e_handle_resets(struct i40e_pf *pf) 15445 { 15446 const int pfr = i40e_pf_loop_reset(pf); 15447 const bool is_empr = i40e_check_fw_empr(pf); 15448 15449 if (is_empr || pfr != 0) 15450 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15451 15452 return is_empr ? -EIO : pfr; 15453 } 15454 15455 /** 15456 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15457 * @pf: board private structure 15458 * @hw: ptr to the hardware info 15459 * 15460 * This function does a minimal setup of all subsystems needed for running 15461 * recovery mode. 15462 * 15463 * Returns 0 on success, negative on failure 15464 **/ 15465 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15466 { 15467 struct i40e_vsi *vsi; 15468 int err; 15469 int v_idx; 15470 15471 pci_set_drvdata(pf->pdev, pf); 15472 pci_save_state(pf->pdev); 15473 15474 /* set up periodic task facility */ 15475 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15476 pf->service_timer_period = HZ; 15477 15478 INIT_WORK(&pf->service_task, i40e_service_task); 15479 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15480 15481 err = i40e_init_interrupt_scheme(pf); 15482 if (err) 15483 goto err_switch_setup; 15484 15485 /* The number of VSIs reported by the FW is the minimum guaranteed 15486 * to us; HW supports far more and we share the remaining pool with 15487 * the other PFs. We allocate space for more than the guarantee with 15488 * the understanding that we might not get them all later. 15489 */ 15490 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15491 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15492 else 15493 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15494 15495 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15496 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15497 GFP_KERNEL); 15498 if (!pf->vsi) { 15499 err = -ENOMEM; 15500 goto err_switch_setup; 15501 } 15502 15503 /* We allocate one VSI which is needed as absolute minimum 15504 * in order to register the netdev 15505 */ 15506 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15507 if (v_idx < 0) { 15508 err = v_idx; 15509 goto err_switch_setup; 15510 } 15511 pf->lan_vsi = v_idx; 15512 vsi = pf->vsi[v_idx]; 15513 if (!vsi) { 15514 err = -EFAULT; 15515 goto err_switch_setup; 15516 } 15517 vsi->alloc_queue_pairs = 1; 15518 err = i40e_config_netdev(vsi); 15519 if (err) 15520 goto err_switch_setup; 15521 err = register_netdev(vsi->netdev); 15522 if (err) 15523 goto err_switch_setup; 15524 vsi->netdev_registered = true; 15525 i40e_dbg_pf_init(pf); 15526 15527 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15528 if (err) 15529 goto err_switch_setup; 15530 15531 /* tell the firmware that we're starting */ 15532 i40e_send_version(pf); 15533 15534 /* since everything's happy, start the service_task timer */ 15535 mod_timer(&pf->service_timer, 15536 round_jiffies(jiffies + pf->service_timer_period)); 15537 15538 return 0; 15539 15540 err_switch_setup: 15541 i40e_reset_interrupt_capability(pf); 15542 timer_shutdown_sync(&pf->service_timer); 15543 i40e_shutdown_adminq(hw); 15544 iounmap(hw->hw_addr); 15545 pci_release_mem_regions(pf->pdev); 15546 pci_disable_device(pf->pdev); 15547 i40e_free_pf(pf); 15548 15549 return err; 15550 } 15551 15552 /** 15553 * i40e_set_subsystem_device_id - set subsystem device id 15554 * @hw: pointer to the hardware info 15555 * 15556 * Set PCI subsystem device id either from a pci_dev structure or 15557 * a specific FW register. 15558 **/ 15559 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15560 { 15561 struct i40e_pf *pf = i40e_hw_to_pf(hw); 15562 15563 hw->subsystem_device_id = pf->pdev->subsystem_device ? 15564 pf->pdev->subsystem_device : 15565 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15566 } 15567 15568 /** 15569 * i40e_probe - Device initialization routine 15570 * @pdev: PCI device information struct 15571 * @ent: entry in i40e_pci_tbl 15572 * 15573 * i40e_probe initializes a PF identified by a pci_dev structure. 15574 * The OS initialization, configuring of the PF private structure, 15575 * and a hardware reset occur. 15576 * 15577 * Returns 0 on success, negative on failure 15578 **/ 15579 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15580 { 15581 struct i40e_aq_get_phy_abilities_resp abilities; 15582 #ifdef CONFIG_I40E_DCB 15583 enum i40e_get_fw_lldp_status_resp lldp_status; 15584 #endif /* CONFIG_I40E_DCB */ 15585 struct i40e_vsi *vsi; 15586 struct i40e_pf *pf; 15587 struct i40e_hw *hw; 15588 u16 wol_nvm_bits; 15589 char nvm_ver[32]; 15590 u16 link_status; 15591 #ifdef CONFIG_I40E_DCB 15592 int status; 15593 #endif /* CONFIG_I40E_DCB */ 15594 int err; 15595 u32 val; 15596 15597 err = pci_enable_device_mem(pdev); 15598 if (err) 15599 return err; 15600 15601 /* set up for high or low dma */ 15602 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15603 if (err) { 15604 dev_err(&pdev->dev, 15605 "DMA configuration failed: 0x%x\n", err); 15606 goto err_dma; 15607 } 15608 15609 /* set up pci connections */ 15610 err = pci_request_mem_regions(pdev, i40e_driver_name); 15611 if (err) { 15612 dev_info(&pdev->dev, 15613 "pci_request_selected_regions failed %d\n", err); 15614 goto err_pci_reg; 15615 } 15616 15617 pci_set_master(pdev); 15618 15619 /* Now that we have a PCI connection, we need to do the 15620 * low level device setup. This is primarily setting up 15621 * the Admin Queue structures and then querying for the 15622 * device's current profile information. 15623 */ 15624 pf = i40e_alloc_pf(&pdev->dev); 15625 if (!pf) { 15626 err = -ENOMEM; 15627 goto err_pf_alloc; 15628 } 15629 pf->next_vsi = 0; 15630 pf->pdev = pdev; 15631 set_bit(__I40E_DOWN, pf->state); 15632 15633 hw = &pf->hw; 15634 15635 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15636 I40E_MAX_CSR_SPACE); 15637 /* We believe that the highest register to read is 15638 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15639 * is not less than that before mapping to prevent a 15640 * kernel panic. 15641 */ 15642 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15643 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15644 pf->ioremap_len); 15645 err = -ENOMEM; 15646 goto err_ioremap; 15647 } 15648 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15649 if (!hw->hw_addr) { 15650 err = -EIO; 15651 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15652 (unsigned int)pci_resource_start(pdev, 0), 15653 pf->ioremap_len, err); 15654 goto err_ioremap; 15655 } 15656 hw->vendor_id = pdev->vendor; 15657 hw->device_id = pdev->device; 15658 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15659 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15660 i40e_set_subsystem_device_id(hw); 15661 hw->bus.device = PCI_SLOT(pdev->devfn); 15662 hw->bus.func = PCI_FUNC(pdev->devfn); 15663 hw->bus.bus_id = pdev->bus->number; 15664 15665 /* Select something other than the 802.1ad ethertype for the 15666 * switch to use internally and drop on ingress. 15667 */ 15668 hw->switch_tag = 0xffff; 15669 hw->first_tag = ETH_P_8021AD; 15670 hw->second_tag = ETH_P_8021Q; 15671 15672 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15673 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15674 INIT_LIST_HEAD(&pf->ddp_old_prof); 15675 15676 /* set up the locks for the AQ, do this only once in probe 15677 * and destroy them only once in remove 15678 */ 15679 mutex_init(&hw->aq.asq_mutex); 15680 mutex_init(&hw->aq.arq_mutex); 15681 15682 pf->msg_enable = netif_msg_init(debug, 15683 NETIF_MSG_DRV | 15684 NETIF_MSG_PROBE | 15685 NETIF_MSG_LINK); 15686 if (debug < -1) 15687 pf->hw.debug_mask = debug; 15688 15689 /* do a special CORER for clearing PXE mode once at init */ 15690 if (hw->revision_id == 0 && 15691 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15692 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15693 i40e_flush(hw); 15694 msleep(200); 15695 pf->corer_count++; 15696 15697 i40e_clear_pxe_mode(hw); 15698 } 15699 15700 /* Reset here to make sure all is clean and to define PF 'n' */ 15701 i40e_clear_hw(hw); 15702 15703 err = i40e_set_mac_type(hw); 15704 if (err) { 15705 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15706 err); 15707 goto err_pf_reset; 15708 } 15709 15710 err = i40e_handle_resets(pf); 15711 if (err) 15712 goto err_pf_reset; 15713 15714 i40e_check_recovery_mode(pf); 15715 15716 if (is_kdump_kernel()) { 15717 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15718 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15719 } else { 15720 hw->aq.num_arq_entries = I40E_AQ_LEN; 15721 hw->aq.num_asq_entries = I40E_AQ_LEN; 15722 } 15723 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15724 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15725 15726 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15727 "%s-%s:misc", 15728 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15729 15730 err = i40e_init_shared_code(hw); 15731 if (err) { 15732 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15733 err); 15734 goto err_pf_reset; 15735 } 15736 15737 /* set up a default setting for link flow control */ 15738 pf->hw.fc.requested_mode = I40E_FC_NONE; 15739 15740 err = i40e_init_adminq(hw); 15741 if (err) { 15742 if (err == -EIO) 15743 dev_info(&pdev->dev, 15744 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15745 hw->aq.api_maj_ver, 15746 hw->aq.api_min_ver, 15747 I40E_FW_API_VERSION_MAJOR, 15748 I40E_FW_MINOR_VERSION(hw)); 15749 else 15750 dev_info(&pdev->dev, 15751 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15752 15753 goto err_pf_reset; 15754 } 15755 i40e_get_oem_version(hw); 15756 i40e_get_pba_string(hw); 15757 15758 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15759 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver)); 15760 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15761 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15762 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver, 15763 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id, 15764 hw->subsystem_device_id); 15765 15766 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR, 15767 I40E_FW_MINOR_VERSION(hw) + 1)) 15768 dev_dbg(&pdev->dev, 15769 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n", 15770 hw->aq.api_maj_ver, 15771 hw->aq.api_min_ver, 15772 I40E_FW_API_VERSION_MAJOR, 15773 I40E_FW_MINOR_VERSION(hw)); 15774 else if (i40e_is_aq_api_ver_lt(hw, 1, 4)) 15775 dev_info(&pdev->dev, 15776 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15777 hw->aq.api_maj_ver, 15778 hw->aq.api_min_ver, 15779 I40E_FW_API_VERSION_MAJOR, 15780 I40E_FW_MINOR_VERSION(hw)); 15781 15782 i40e_verify_eeprom(pf); 15783 15784 /* Rev 0 hardware was never productized */ 15785 if (hw->revision_id < 1) 15786 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15787 15788 i40e_clear_pxe_mode(hw); 15789 15790 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15791 if (err) 15792 goto err_adminq_setup; 15793 15794 err = i40e_sw_init(pf); 15795 if (err) { 15796 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15797 goto err_sw_init; 15798 } 15799 15800 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15801 return i40e_init_recovery_mode(pf, hw); 15802 15803 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15804 hw->func_caps.num_rx_qp, 0, 0); 15805 if (err) { 15806 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15807 goto err_init_lan_hmc; 15808 } 15809 15810 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15811 if (err) { 15812 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15813 err = -ENOENT; 15814 goto err_configure_lan_hmc; 15815 } 15816 15817 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15818 * Ignore error return codes because if it was already disabled via 15819 * hardware settings this will fail 15820 */ 15821 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) { 15822 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15823 i40e_aq_stop_lldp(hw, true, false, NULL); 15824 } 15825 15826 /* allow a platform config to override the HW addr */ 15827 i40e_get_platform_mac_addr(pdev, pf); 15828 15829 if (!is_valid_ether_addr(hw->mac.addr)) { 15830 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15831 err = -EIO; 15832 goto err_mac_addr; 15833 } 15834 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15835 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15836 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15837 if (is_valid_ether_addr(hw->mac.port_addr)) 15838 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps); 15839 15840 i40e_ptp_alloc_pins(pf); 15841 pci_set_drvdata(pdev, pf); 15842 pci_save_state(pdev); 15843 15844 #ifdef CONFIG_I40E_DCB 15845 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15846 (!status && 15847 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15848 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) : 15849 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)); 15850 dev_info(&pdev->dev, 15851 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ? 15852 "FW LLDP is disabled\n" : 15853 "FW LLDP is enabled\n"); 15854 15855 /* Enable FW to write default DCB config on link-up */ 15856 i40e_aq_set_dcb_parameters(hw, true, NULL); 15857 15858 err = i40e_init_pf_dcb(pf); 15859 if (err) { 15860 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15861 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags); 15862 clear_bit(I40E_FLAG_DCB_ENA, pf->flags); 15863 /* Continue without DCB enabled */ 15864 } 15865 #endif /* CONFIG_I40E_DCB */ 15866 15867 /* set up periodic task facility */ 15868 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15869 pf->service_timer_period = HZ; 15870 15871 INIT_WORK(&pf->service_task, i40e_service_task); 15872 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15873 15874 /* NVM bit on means WoL disabled for the port */ 15875 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15876 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15877 pf->wol_en = false; 15878 else 15879 pf->wol_en = true; 15880 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15881 15882 /* set up the main switch operations */ 15883 i40e_determine_queue_usage(pf); 15884 err = i40e_init_interrupt_scheme(pf); 15885 if (err) 15886 goto err_switch_setup; 15887 15888 /* Reduce Tx and Rx pairs for kdump 15889 * When MSI-X is enabled, it's not allowed to use more TC queue 15890 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15891 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15892 */ 15893 if (is_kdump_kernel()) 15894 pf->num_lan_msix = 1; 15895 15896 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15897 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15898 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15899 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15900 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15901 UDP_TUNNEL_TYPE_GENEVE; 15902 15903 /* The number of VSIs reported by the FW is the minimum guaranteed 15904 * to us; HW supports far more and we share the remaining pool with 15905 * the other PFs. We allocate space for more than the guarantee with 15906 * the understanding that we might not get them all later. 15907 */ 15908 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15909 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15910 else 15911 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15912 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15913 dev_warn(&pf->pdev->dev, 15914 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15915 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15916 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15917 } 15918 15919 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15920 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15921 GFP_KERNEL); 15922 if (!pf->vsi) { 15923 err = -ENOMEM; 15924 goto err_switch_setup; 15925 } 15926 15927 #ifdef CONFIG_PCI_IOV 15928 /* prep for VF support */ 15929 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 15930 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 15931 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15932 if (pci_num_vf(pdev)) 15933 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags); 15934 } 15935 #endif 15936 err = i40e_setup_pf_switch(pf, false, false); 15937 if (err) { 15938 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15939 goto err_vsis; 15940 } 15941 15942 vsi = i40e_pf_get_main_vsi(pf); 15943 INIT_LIST_HEAD(&vsi->ch_list); 15944 15945 /* if FDIR VSI was set up, start it now */ 15946 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 15947 if (vsi) 15948 i40e_vsi_open(vsi); 15949 15950 /* The driver only wants link up/down and module qualification 15951 * reports from firmware. Note the negative logic. 15952 */ 15953 err = i40e_aq_set_phy_int_mask(&pf->hw, 15954 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15955 I40E_AQ_EVENT_MEDIA_NA | 15956 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15957 if (err) 15958 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n", 15959 ERR_PTR(err), 15960 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15961 15962 /* VF MDD event logs are rate limited to one second intervals */ 15963 ratelimit_state_init(&pf->mdd_message_rate_limit, 1 * HZ, 1); 15964 15965 /* Reconfigure hardware for allowing smaller MSS in the case 15966 * of TSO, so that we avoid the MDD being fired and causing 15967 * a reset in the case of small MSS+TSO. 15968 */ 15969 val = rd32(hw, I40E_REG_MSS); 15970 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15971 val &= ~I40E_REG_MSS_MIN_MASK; 15972 val |= I40E_64BYTE_MSS; 15973 wr32(hw, I40E_REG_MSS, val); 15974 } 15975 15976 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) { 15977 msleep(75); 15978 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15979 if (err) 15980 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n", 15981 ERR_PTR(err), 15982 i40e_aq_str(&pf->hw, 15983 pf->hw.aq.asq_last_status)); 15984 } 15985 /* The main driver is (mostly) up and happy. We need to set this state 15986 * before setting up the misc vector or we get a race and the vector 15987 * ends up disabled forever. 15988 */ 15989 clear_bit(__I40E_DOWN, pf->state); 15990 15991 /* In case of MSIX we are going to setup the misc vector right here 15992 * to handle admin queue events etc. In case of legacy and MSI 15993 * the misc functionality and queue processing is combined in 15994 * the same vector and that gets setup at open. 15995 */ 15996 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) { 15997 err = i40e_setup_misc_vector(pf); 15998 if (err) { 15999 dev_info(&pdev->dev, 16000 "setup of misc vector failed: %d\n", err); 16001 i40e_cloud_filter_exit(pf); 16002 i40e_fdir_teardown(pf); 16003 goto err_vsis; 16004 } 16005 } 16006 16007 #ifdef CONFIG_PCI_IOV 16008 /* prep for VF support */ 16009 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) && 16010 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && 16011 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 16012 /* disable link interrupts for VFs */ 16013 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 16014 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 16015 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 16016 i40e_flush(hw); 16017 16018 if (pci_num_vf(pdev)) { 16019 dev_info(&pdev->dev, 16020 "Active VFs found, allocating resources.\n"); 16021 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 16022 if (err) 16023 dev_info(&pdev->dev, 16024 "Error %d allocating resources for existing VFs\n", 16025 err); 16026 } 16027 } 16028 #endif /* CONFIG_PCI_IOV */ 16029 16030 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16031 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 16032 pf->num_iwarp_msix, 16033 I40E_IWARP_IRQ_PILE_ID); 16034 if (pf->iwarp_base_vector < 0) { 16035 dev_info(&pdev->dev, 16036 "failed to get tracking for %d vectors for IWARP err=%d\n", 16037 pf->num_iwarp_msix, pf->iwarp_base_vector); 16038 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags); 16039 } 16040 } 16041 16042 i40e_dbg_pf_init(pf); 16043 16044 /* tell the firmware that we're starting */ 16045 i40e_send_version(pf); 16046 16047 /* since everything's happy, start the service_task timer */ 16048 mod_timer(&pf->service_timer, 16049 round_jiffies(jiffies + pf->service_timer_period)); 16050 16051 /* add this PF to client device list and launch a client service task */ 16052 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16053 err = i40e_lan_add_device(pf); 16054 if (err) 16055 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 16056 err); 16057 } 16058 16059 #define PCI_SPEED_SIZE 8 16060 #define PCI_WIDTH_SIZE 8 16061 /* Devices on the IOSF bus do not have this information 16062 * and will report PCI Gen 1 x 1 by default so don't bother 16063 * checking them. 16064 */ 16065 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) { 16066 char speed[PCI_SPEED_SIZE] = "Unknown"; 16067 char width[PCI_WIDTH_SIZE] = "Unknown"; 16068 16069 /* Get the negotiated link width and speed from PCI config 16070 * space 16071 */ 16072 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 16073 &link_status); 16074 16075 i40e_set_pci_config_data(hw, link_status); 16076 16077 switch (hw->bus.speed) { 16078 case i40e_bus_speed_8000: 16079 strscpy(speed, "8.0", PCI_SPEED_SIZE); break; 16080 case i40e_bus_speed_5000: 16081 strscpy(speed, "5.0", PCI_SPEED_SIZE); break; 16082 case i40e_bus_speed_2500: 16083 strscpy(speed, "2.5", PCI_SPEED_SIZE); break; 16084 default: 16085 break; 16086 } 16087 switch (hw->bus.width) { 16088 case i40e_bus_width_pcie_x8: 16089 strscpy(width, "8", PCI_WIDTH_SIZE); break; 16090 case i40e_bus_width_pcie_x4: 16091 strscpy(width, "4", PCI_WIDTH_SIZE); break; 16092 case i40e_bus_width_pcie_x2: 16093 strscpy(width, "2", PCI_WIDTH_SIZE); break; 16094 case i40e_bus_width_pcie_x1: 16095 strscpy(width, "1", PCI_WIDTH_SIZE); break; 16096 default: 16097 break; 16098 } 16099 16100 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 16101 speed, width); 16102 16103 if (hw->bus.width < i40e_bus_width_pcie_x8 || 16104 hw->bus.speed < i40e_bus_speed_8000) { 16105 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 16106 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 16107 } 16108 } 16109 16110 /* get the requested speeds from the fw */ 16111 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 16112 if (err) 16113 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n", 16114 ERR_PTR(err), 16115 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16116 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 16117 16118 /* set the FEC config due to the board capabilities */ 16119 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags); 16120 16121 /* get the supported phy types from the fw */ 16122 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 16123 if (err) 16124 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n", 16125 ERR_PTR(err), 16126 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 16127 16128 /* make sure the MFS hasn't been set lower than the default */ 16129 #define MAX_FRAME_SIZE_DEFAULT 0x2600 16130 val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK, 16131 rd32(&pf->hw, I40E_PRTGL_SAH)); 16132 if (val < MAX_FRAME_SIZE_DEFAULT) 16133 dev_warn(&pdev->dev, "MFS for port %x (%d) has been set below the default (%d)\n", 16134 pf->hw.port, val, MAX_FRAME_SIZE_DEFAULT); 16135 16136 /* Add a filter to drop all Flow control frames from any VSI from being 16137 * transmitted. By doing so we stop a malicious VF from sending out 16138 * PAUSE or PFC frames and potentially controlling traffic for other 16139 * PF/VF VSIs. 16140 * The FW can still send Flow control frames if enabled. 16141 */ 16142 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 16143 pf->main_vsi_seid); 16144 16145 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 16146 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 16147 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps); 16148 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 16149 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps); 16150 /* print a string summarizing features */ 16151 i40e_print_features(pf); 16152 16153 i40e_devlink_register(pf); 16154 16155 return 0; 16156 16157 /* Unwind what we've done if something failed in the setup */ 16158 err_vsis: 16159 set_bit(__I40E_DOWN, pf->state); 16160 i40e_clear_interrupt_scheme(pf); 16161 kfree(pf->vsi); 16162 err_switch_setup: 16163 i40e_reset_interrupt_capability(pf); 16164 timer_shutdown_sync(&pf->service_timer); 16165 err_mac_addr: 16166 err_configure_lan_hmc: 16167 (void)i40e_shutdown_lan_hmc(hw); 16168 err_init_lan_hmc: 16169 kfree(pf->qp_pile); 16170 err_sw_init: 16171 err_adminq_setup: 16172 err_pf_reset: 16173 iounmap(hw->hw_addr); 16174 err_ioremap: 16175 i40e_free_pf(pf); 16176 err_pf_alloc: 16177 pci_release_mem_regions(pdev); 16178 err_pci_reg: 16179 err_dma: 16180 pci_disable_device(pdev); 16181 return err; 16182 } 16183 16184 /** 16185 * i40e_remove - Device removal routine 16186 * @pdev: PCI device information struct 16187 * 16188 * i40e_remove is called by the PCI subsystem to alert the driver 16189 * that is should release a PCI device. This could be caused by a 16190 * Hot-Plug event, or because the driver is going to be removed from 16191 * memory. 16192 **/ 16193 static void i40e_remove(struct pci_dev *pdev) 16194 { 16195 struct i40e_pf *pf = pci_get_drvdata(pdev); 16196 struct i40e_hw *hw = &pf->hw; 16197 struct i40e_vsi *vsi; 16198 struct i40e_veb *veb; 16199 int ret_code; 16200 int i; 16201 16202 i40e_devlink_unregister(pf); 16203 16204 i40e_dbg_pf_exit(pf); 16205 16206 i40e_ptp_stop(pf); 16207 16208 /* Disable RSS in hw */ 16209 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 16210 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 16211 16212 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE 16213 * flags, once they are set, i40e_rebuild should not be called as 16214 * i40e_prep_for_reset always returns early. 16215 */ 16216 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 16217 usleep_range(1000, 2000); 16218 set_bit(__I40E_IN_REMOVE, pf->state); 16219 16220 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) { 16221 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 16222 i40e_free_vfs(pf); 16223 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags); 16224 } 16225 /* no more scheduling of any task */ 16226 set_bit(__I40E_SUSPENDED, pf->state); 16227 set_bit(__I40E_DOWN, pf->state); 16228 if (pf->service_timer.function) 16229 timer_shutdown_sync(&pf->service_timer); 16230 if (pf->service_task.func) 16231 cancel_work_sync(&pf->service_task); 16232 16233 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 16234 struct i40e_vsi *vsi = pf->vsi[0]; 16235 16236 /* We know that we have allocated only one vsi for this PF, 16237 * it was just for registering netdevice, so the interface 16238 * could be visible in the 'ifconfig' output 16239 */ 16240 unregister_netdev(vsi->netdev); 16241 free_netdev(vsi->netdev); 16242 16243 goto unmap; 16244 } 16245 16246 /* Client close must be called explicitly here because the timer 16247 * has been stopped. 16248 */ 16249 i40e_notify_client_of_netdev_close(pf, false); 16250 16251 i40e_fdir_teardown(pf); 16252 16253 /* If there is a switch structure or any orphans, remove them. 16254 * This will leave only the PF's VSI remaining. 16255 */ 16256 i40e_pf_for_each_veb(pf, i, veb) 16257 if (veb->uplink_seid == pf->mac_seid || 16258 veb->uplink_seid == 0) 16259 i40e_switch_branch_release(veb); 16260 16261 /* Now we can shutdown the PF's VSIs, just before we kill 16262 * adminq and hmc. 16263 */ 16264 i40e_pf_for_each_vsi(pf, i, vsi) { 16265 i40e_vsi_close(vsi); 16266 i40e_vsi_release(vsi); 16267 pf->vsi[i] = NULL; 16268 } 16269 16270 i40e_cloud_filter_exit(pf); 16271 16272 /* remove attached clients */ 16273 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) { 16274 ret_code = i40e_lan_del_device(pf); 16275 if (ret_code) 16276 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 16277 ret_code); 16278 } 16279 16280 /* shutdown and destroy the HMC */ 16281 if (hw->hmc.hmc_obj) { 16282 ret_code = i40e_shutdown_lan_hmc(hw); 16283 if (ret_code) 16284 dev_warn(&pdev->dev, 16285 "Failed to destroy the HMC resources: %d\n", 16286 ret_code); 16287 } 16288 16289 unmap: 16290 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16291 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16292 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16293 free_irq(pf->pdev->irq, pf); 16294 16295 /* shutdown the adminq */ 16296 i40e_shutdown_adminq(hw); 16297 16298 /* destroy the locks only once, here */ 16299 mutex_destroy(&hw->aq.arq_mutex); 16300 mutex_destroy(&hw->aq.asq_mutex); 16301 16302 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 16303 rtnl_lock(); 16304 i40e_clear_interrupt_scheme(pf); 16305 i40e_pf_for_each_vsi(pf, i, vsi) { 16306 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 16307 i40e_vsi_clear_rings(vsi); 16308 16309 i40e_vsi_clear(vsi); 16310 pf->vsi[i] = NULL; 16311 } 16312 rtnl_unlock(); 16313 16314 i40e_pf_for_each_veb(pf, i, veb) { 16315 kfree(veb); 16316 pf->veb[i] = NULL; 16317 } 16318 16319 kfree(pf->qp_pile); 16320 kfree(pf->vsi); 16321 16322 iounmap(hw->hw_addr); 16323 i40e_free_pf(pf); 16324 pci_release_mem_regions(pdev); 16325 16326 pci_disable_device(pdev); 16327 } 16328 16329 /** 16330 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16331 * using the mac_address_write admin q function 16332 * @pf: pointer to i40e_pf struct 16333 **/ 16334 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16335 { 16336 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf); 16337 struct i40e_hw *hw = &pf->hw; 16338 u8 mac_addr[6]; 16339 u16 flags = 0; 16340 int ret; 16341 16342 /* Get current MAC address in case it's an LAA */ 16343 if (main_vsi && main_vsi->netdev) { 16344 ether_addr_copy(mac_addr, main_vsi->netdev->dev_addr); 16345 } else { 16346 dev_err(&pf->pdev->dev, 16347 "Failed to retrieve MAC address; using default\n"); 16348 ether_addr_copy(mac_addr, hw->mac.addr); 16349 } 16350 16351 /* The FW expects the mac address write cmd to first be called with 16352 * one of these flags before calling it again with the multicast 16353 * enable flags. 16354 */ 16355 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16356 16357 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16358 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16359 16360 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16361 if (ret) { 16362 dev_err(&pf->pdev->dev, 16363 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16364 return; 16365 } 16366 16367 flags = I40E_AQC_MC_MAG_EN 16368 | I40E_AQC_WOL_PRESERVE_ON_PFR 16369 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16370 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16371 if (ret) 16372 dev_err(&pf->pdev->dev, 16373 "Failed to enable Multicast Magic Packet wake up\n"); 16374 } 16375 16376 /** 16377 * i40e_io_suspend - suspend all IO operations 16378 * @pf: pointer to i40e_pf struct 16379 * 16380 **/ 16381 static int i40e_io_suspend(struct i40e_pf *pf) 16382 { 16383 struct i40e_hw *hw = &pf->hw; 16384 16385 set_bit(__I40E_DOWN, pf->state); 16386 16387 /* Ensure service task will not be running */ 16388 timer_delete_sync(&pf->service_timer); 16389 cancel_work_sync(&pf->service_task); 16390 16391 /* Client close must be called explicitly here because the timer 16392 * has been stopped. 16393 */ 16394 i40e_notify_client_of_netdev_close(pf, false); 16395 16396 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16397 pf->wol_en) 16398 i40e_enable_mc_magic_wake(pf); 16399 16400 /* Since we're going to destroy queues during the 16401 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16402 * whole section 16403 */ 16404 rtnl_lock(); 16405 16406 i40e_prep_for_reset(pf); 16407 16408 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16409 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16410 16411 /* Clear the interrupt scheme and release our IRQs so that the system 16412 * can safely hibernate even when there are a large number of CPUs. 16413 * Otherwise hibernation might fail when mapping all the vectors back 16414 * to CPU0. 16415 */ 16416 i40e_clear_interrupt_scheme(pf); 16417 16418 rtnl_unlock(); 16419 16420 return 0; 16421 } 16422 16423 /** 16424 * i40e_io_resume - resume IO operations 16425 * @pf: pointer to i40e_pf struct 16426 * 16427 **/ 16428 static int i40e_io_resume(struct i40e_pf *pf) 16429 { 16430 struct device *dev = &pf->pdev->dev; 16431 int err; 16432 16433 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16434 * since we're going to be restoring queues 16435 */ 16436 rtnl_lock(); 16437 16438 /* We cleared the interrupt scheme when we suspended, so we need to 16439 * restore it now to resume device functionality. 16440 */ 16441 err = i40e_restore_interrupt_scheme(pf); 16442 if (err) { 16443 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16444 err); 16445 } 16446 16447 clear_bit(__I40E_DOWN, pf->state); 16448 i40e_reset_and_rebuild(pf, false, true); 16449 16450 rtnl_unlock(); 16451 16452 /* Clear suspended state last after everything is recovered */ 16453 clear_bit(__I40E_SUSPENDED, pf->state); 16454 16455 /* Restart the service task */ 16456 mod_timer(&pf->service_timer, 16457 round_jiffies(jiffies + pf->service_timer_period)); 16458 16459 return 0; 16460 } 16461 16462 /** 16463 * i40e_pci_error_detected - warning that something funky happened in PCI land 16464 * @pdev: PCI device information struct 16465 * @error: the type of PCI error 16466 * 16467 * Called to warn that something happened and the error handling steps 16468 * are in progress. Allows the driver to quiesce things, be ready for 16469 * remediation. 16470 **/ 16471 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 16472 pci_channel_state_t error) 16473 { 16474 struct i40e_pf *pf = pci_get_drvdata(pdev); 16475 16476 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 16477 16478 if (!pf) { 16479 dev_info(&pdev->dev, 16480 "Cannot recover - error happened during device probe\n"); 16481 return PCI_ERS_RESULT_DISCONNECT; 16482 } 16483 16484 /* shutdown all operations */ 16485 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16486 i40e_io_suspend(pf); 16487 16488 /* Request a slot reset */ 16489 return PCI_ERS_RESULT_NEED_RESET; 16490 } 16491 16492 /** 16493 * i40e_pci_error_slot_reset - a PCI slot reset just happened 16494 * @pdev: PCI device information struct 16495 * 16496 * Called to find if the driver can work with the device now that 16497 * the pci slot has been reset. If a basic connection seems good 16498 * (registers are readable and have sane content) then return a 16499 * happy little PCI_ERS_RESULT_xxx. 16500 **/ 16501 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 16502 { 16503 struct i40e_pf *pf = pci_get_drvdata(pdev); 16504 pci_ers_result_t result; 16505 u32 reg; 16506 16507 dev_dbg(&pdev->dev, "%s\n", __func__); 16508 /* enable I/O and memory of the device */ 16509 if (pci_enable_device(pdev)) { 16510 dev_info(&pdev->dev, 16511 "Cannot re-enable PCI device after reset.\n"); 16512 result = PCI_ERS_RESULT_DISCONNECT; 16513 } else { 16514 pci_set_master(pdev); 16515 pci_restore_state(pdev); 16516 pci_save_state(pdev); 16517 pci_wake_from_d3(pdev, false); 16518 16519 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16520 if (reg == 0) 16521 result = PCI_ERS_RESULT_RECOVERED; 16522 else 16523 result = PCI_ERS_RESULT_DISCONNECT; 16524 } 16525 16526 return result; 16527 } 16528 16529 /** 16530 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16531 * @pdev: PCI device information struct 16532 */ 16533 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16534 { 16535 struct i40e_pf *pf = pci_get_drvdata(pdev); 16536 16537 i40e_prep_for_reset(pf); 16538 } 16539 16540 /** 16541 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16542 * @pdev: PCI device information struct 16543 */ 16544 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16545 { 16546 struct i40e_pf *pf = pci_get_drvdata(pdev); 16547 16548 if (test_bit(__I40E_IN_REMOVE, pf->state)) 16549 return; 16550 16551 i40e_reset_and_rebuild(pf, false, false); 16552 #ifdef CONFIG_PCI_IOV 16553 i40e_restore_all_vfs_msi_state(pdev); 16554 #endif /* CONFIG_PCI_IOV */ 16555 } 16556 16557 /** 16558 * i40e_pci_error_resume - restart operations after PCI error recovery 16559 * @pdev: PCI device information struct 16560 * 16561 * Called to allow the driver to bring things back up after PCI error 16562 * and/or reset recovery has finished. 16563 **/ 16564 static void i40e_pci_error_resume(struct pci_dev *pdev) 16565 { 16566 struct i40e_pf *pf = pci_get_drvdata(pdev); 16567 16568 dev_dbg(&pdev->dev, "%s\n", __func__); 16569 if (test_bit(__I40E_SUSPENDED, pf->state)) 16570 return; 16571 16572 i40e_io_resume(pf); 16573 } 16574 16575 /** 16576 * i40e_shutdown - PCI callback for shutting down 16577 * @pdev: PCI device information struct 16578 **/ 16579 static void i40e_shutdown(struct pci_dev *pdev) 16580 { 16581 struct i40e_pf *pf = pci_get_drvdata(pdev); 16582 struct i40e_hw *hw = &pf->hw; 16583 16584 set_bit(__I40E_SUSPENDED, pf->state); 16585 set_bit(__I40E_DOWN, pf->state); 16586 16587 timer_delete_sync(&pf->service_timer); 16588 cancel_work_sync(&pf->service_task); 16589 i40e_cloud_filter_exit(pf); 16590 i40e_fdir_teardown(pf); 16591 16592 /* Client close must be called explicitly here because the timer 16593 * has been stopped. 16594 */ 16595 i40e_notify_client_of_netdev_close(pf, false); 16596 16597 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) && 16598 pf->wol_en) 16599 i40e_enable_mc_magic_wake(pf); 16600 16601 i40e_prep_for_reset(pf); 16602 16603 wr32(hw, I40E_PFPM_APM, 16604 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16605 wr32(hw, I40E_PFPM_WUFC, 16606 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16607 16608 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16609 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16610 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) 16611 free_irq(pf->pdev->irq, pf); 16612 16613 /* Since we're going to destroy queues during the 16614 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16615 * whole section 16616 */ 16617 rtnl_lock(); 16618 i40e_clear_interrupt_scheme(pf); 16619 rtnl_unlock(); 16620 16621 if (system_state == SYSTEM_POWER_OFF) { 16622 pci_wake_from_d3(pdev, pf->wol_en); 16623 pci_set_power_state(pdev, PCI_D3hot); 16624 } 16625 } 16626 16627 /** 16628 * i40e_suspend - PM callback for moving to D3 16629 * @dev: generic device information structure 16630 **/ 16631 static int i40e_suspend(struct device *dev) 16632 { 16633 struct i40e_pf *pf = dev_get_drvdata(dev); 16634 16635 /* If we're already suspended, then there is nothing to do */ 16636 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16637 return 0; 16638 return i40e_io_suspend(pf); 16639 } 16640 16641 /** 16642 * i40e_resume - PM callback for waking up from D3 16643 * @dev: generic device information structure 16644 **/ 16645 static int i40e_resume(struct device *dev) 16646 { 16647 struct i40e_pf *pf = dev_get_drvdata(dev); 16648 16649 /* If we're not suspended, then there is nothing to do */ 16650 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16651 return 0; 16652 return i40e_io_resume(pf); 16653 } 16654 16655 static const struct pci_error_handlers i40e_err_handler = { 16656 .error_detected = i40e_pci_error_detected, 16657 .slot_reset = i40e_pci_error_slot_reset, 16658 .reset_prepare = i40e_pci_error_reset_prepare, 16659 .reset_done = i40e_pci_error_reset_done, 16660 .resume = i40e_pci_error_resume, 16661 }; 16662 16663 static DEFINE_SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16664 16665 static struct pci_driver i40e_driver = { 16666 .name = i40e_driver_name, 16667 .id_table = i40e_pci_tbl, 16668 .probe = i40e_probe, 16669 .remove = i40e_remove, 16670 .driver.pm = pm_sleep_ptr(&i40e_pm_ops), 16671 .shutdown = i40e_shutdown, 16672 .err_handler = &i40e_err_handler, 16673 .sriov_configure = i40e_pci_sriov_configure, 16674 }; 16675 16676 /** 16677 * i40e_init_module - Driver registration routine 16678 * 16679 * i40e_init_module is the first routine called when the driver is 16680 * loaded. All it does is register with the PCI subsystem. 16681 **/ 16682 static int __init i40e_init_module(void) 16683 { 16684 int err; 16685 16686 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16687 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16688 16689 /* There is no need to throttle the number of active tasks because 16690 * each device limits its own task using a state bit for scheduling 16691 * the service task, and the device tasks do not interfere with each 16692 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16693 * since we need to be able to guarantee forward progress even under 16694 * memory pressure. 16695 */ 16696 i40e_wq = alloc_workqueue("%s", 0, 0, i40e_driver_name); 16697 if (!i40e_wq) { 16698 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16699 return -ENOMEM; 16700 } 16701 16702 i40e_dbg_init(); 16703 err = pci_register_driver(&i40e_driver); 16704 if (err) { 16705 destroy_workqueue(i40e_wq); 16706 i40e_dbg_exit(); 16707 return err; 16708 } 16709 16710 return 0; 16711 } 16712 module_init(i40e_init_module); 16713 16714 /** 16715 * i40e_exit_module - Driver exit cleanup routine 16716 * 16717 * i40e_exit_module is called just before the driver is removed 16718 * from memory. 16719 **/ 16720 static void __exit i40e_exit_module(void) 16721 { 16722 pci_unregister_driver(&i40e_driver); 16723 destroy_workqueue(i40e_wq); 16724 ida_destroy(&i40e_client_ida); 16725 i40e_dbg_exit(); 16726 } 16727 module_exit(i40e_exit_module); 16728