xref: /linux/drivers/net/ethernet/intel/i40e/i40e_common.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2021 Intel Corporation. */
3 
4 #include <linux/avf/virtchnl.h>
5 #include <linux/bitfield.h>
6 #include <linux/delay.h>
7 #include <linux/etherdevice.h>
8 #include <linux/pci.h>
9 #include "i40e_adminq_cmd.h"
10 #include "i40e_devids.h"
11 #include "i40e_prototype.h"
12 #include "i40e_register.h"
13 
14 /**
15  * i40e_set_mac_type - Sets MAC type
16  * @hw: pointer to the HW structure
17  *
18  * This function sets the mac type of the adapter based on the
19  * vendor ID and device ID stored in the hw structure.
20  **/
21 int i40e_set_mac_type(struct i40e_hw *hw)
22 {
23 	int status = 0;
24 
25 	if (hw->vendor_id == PCI_VENDOR_ID_INTEL) {
26 		switch (hw->device_id) {
27 		case I40E_DEV_ID_SFP_XL710:
28 		case I40E_DEV_ID_QEMU:
29 		case I40E_DEV_ID_KX_B:
30 		case I40E_DEV_ID_KX_C:
31 		case I40E_DEV_ID_QSFP_A:
32 		case I40E_DEV_ID_QSFP_B:
33 		case I40E_DEV_ID_QSFP_C:
34 		case I40E_DEV_ID_1G_BASE_T_BC:
35 		case I40E_DEV_ID_5G_BASE_T_BC:
36 		case I40E_DEV_ID_10G_BASE_T:
37 		case I40E_DEV_ID_10G_BASE_T4:
38 		case I40E_DEV_ID_10G_BASE_T_BC:
39 		case I40E_DEV_ID_10G_B:
40 		case I40E_DEV_ID_10G_SFP:
41 		case I40E_DEV_ID_20G_KR2:
42 		case I40E_DEV_ID_20G_KR2_A:
43 		case I40E_DEV_ID_25G_B:
44 		case I40E_DEV_ID_25G_SFP28:
45 		case I40E_DEV_ID_X710_N3000:
46 		case I40E_DEV_ID_XXV710_N3000:
47 			hw->mac.type = I40E_MAC_XL710;
48 			break;
49 		case I40E_DEV_ID_KX_X722:
50 		case I40E_DEV_ID_QSFP_X722:
51 		case I40E_DEV_ID_SFP_X722:
52 		case I40E_DEV_ID_1G_BASE_T_X722:
53 		case I40E_DEV_ID_10G_BASE_T_X722:
54 		case I40E_DEV_ID_SFP_I_X722:
55 		case I40E_DEV_ID_SFP_X722_A:
56 			hw->mac.type = I40E_MAC_X722;
57 			break;
58 		default:
59 			hw->mac.type = I40E_MAC_GENERIC;
60 			break;
61 		}
62 	} else {
63 		status = -ENODEV;
64 	}
65 
66 	hw_dbg(hw, "i40e_set_mac_type found mac: %d, returns: %d\n",
67 		  hw->mac.type, status);
68 	return status;
69 }
70 
71 /**
72  * i40e_aq_str - convert AQ err code to a string
73  * @hw: pointer to the HW structure
74  * @aq_err: the AQ error code to convert
75  **/
76 const char *i40e_aq_str(struct i40e_hw *hw, enum i40e_admin_queue_err aq_err)
77 {
78 	switch (aq_err) {
79 	case I40E_AQ_RC_OK:
80 		return "OK";
81 	case I40E_AQ_RC_EPERM:
82 		return "I40E_AQ_RC_EPERM";
83 	case I40E_AQ_RC_ENOENT:
84 		return "I40E_AQ_RC_ENOENT";
85 	case I40E_AQ_RC_ESRCH:
86 		return "I40E_AQ_RC_ESRCH";
87 	case I40E_AQ_RC_EINTR:
88 		return "I40E_AQ_RC_EINTR";
89 	case I40E_AQ_RC_EIO:
90 		return "I40E_AQ_RC_EIO";
91 	case I40E_AQ_RC_ENXIO:
92 		return "I40E_AQ_RC_ENXIO";
93 	case I40E_AQ_RC_E2BIG:
94 		return "I40E_AQ_RC_E2BIG";
95 	case I40E_AQ_RC_EAGAIN:
96 		return "I40E_AQ_RC_EAGAIN";
97 	case I40E_AQ_RC_ENOMEM:
98 		return "I40E_AQ_RC_ENOMEM";
99 	case I40E_AQ_RC_EACCES:
100 		return "I40E_AQ_RC_EACCES";
101 	case I40E_AQ_RC_EFAULT:
102 		return "I40E_AQ_RC_EFAULT";
103 	case I40E_AQ_RC_EBUSY:
104 		return "I40E_AQ_RC_EBUSY";
105 	case I40E_AQ_RC_EEXIST:
106 		return "I40E_AQ_RC_EEXIST";
107 	case I40E_AQ_RC_EINVAL:
108 		return "I40E_AQ_RC_EINVAL";
109 	case I40E_AQ_RC_ENOTTY:
110 		return "I40E_AQ_RC_ENOTTY";
111 	case I40E_AQ_RC_ENOSPC:
112 		return "I40E_AQ_RC_ENOSPC";
113 	case I40E_AQ_RC_ENOSYS:
114 		return "I40E_AQ_RC_ENOSYS";
115 	case I40E_AQ_RC_ERANGE:
116 		return "I40E_AQ_RC_ERANGE";
117 	case I40E_AQ_RC_EFLUSHED:
118 		return "I40E_AQ_RC_EFLUSHED";
119 	case I40E_AQ_RC_BAD_ADDR:
120 		return "I40E_AQ_RC_BAD_ADDR";
121 	case I40E_AQ_RC_EMODE:
122 		return "I40E_AQ_RC_EMODE";
123 	case I40E_AQ_RC_EFBIG:
124 		return "I40E_AQ_RC_EFBIG";
125 	}
126 
127 	snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
128 	return hw->err_str;
129 }
130 
131 /**
132  * i40e_debug_aq
133  * @hw: debug mask related to admin queue
134  * @mask: debug mask
135  * @desc: pointer to admin queue descriptor
136  * @buffer: pointer to command buffer
137  * @buf_len: max length of buffer
138  *
139  * Dumps debug log about adminq command with descriptor contents.
140  **/
141 void i40e_debug_aq(struct i40e_hw *hw, enum i40e_debug_mask mask, void *desc,
142 		   void *buffer, u16 buf_len)
143 {
144 	struct i40e_aq_desc *aq_desc = (struct i40e_aq_desc *)desc;
145 	u32 effective_mask = hw->debug_mask & mask;
146 	char prefix[27];
147 	u16 len;
148 	u8 *buf = (u8 *)buffer;
149 
150 	if (!effective_mask || !desc)
151 		return;
152 
153 	len = le16_to_cpu(aq_desc->datalen);
154 
155 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
156 		   "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
157 		   le16_to_cpu(aq_desc->opcode),
158 		   le16_to_cpu(aq_desc->flags),
159 		   le16_to_cpu(aq_desc->datalen),
160 		   le16_to_cpu(aq_desc->retval));
161 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
162 		   "\tcookie (h,l) 0x%08X 0x%08X\n",
163 		   le32_to_cpu(aq_desc->cookie_high),
164 		   le32_to_cpu(aq_desc->cookie_low));
165 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
166 		   "\tparam (0,1)  0x%08X 0x%08X\n",
167 		   le32_to_cpu(aq_desc->params.internal.param0),
168 		   le32_to_cpu(aq_desc->params.internal.param1));
169 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
170 		   "\taddr (h,l)   0x%08X 0x%08X\n",
171 		   le32_to_cpu(aq_desc->params.external.addr_high),
172 		   le32_to_cpu(aq_desc->params.external.addr_low));
173 
174 	if (buffer && buf_len != 0 && len != 0 &&
175 	    (effective_mask & I40E_DEBUG_AQ_DESC_BUFFER)) {
176 		i40e_debug(hw, mask, "AQ CMD Buffer:\n");
177 		if (buf_len < len)
178 			len = buf_len;
179 
180 		snprintf(prefix, sizeof(prefix),
181 			 "i40e %02x:%02x.%x: \t0x",
182 			 hw->bus.bus_id,
183 			 hw->bus.device,
184 			 hw->bus.func);
185 
186 		print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET,
187 			       16, 1, buf, len, false);
188 	}
189 }
190 
191 /**
192  * i40e_check_asq_alive
193  * @hw: pointer to the hw struct
194  *
195  * Returns true if Queue is enabled else false.
196  **/
197 bool i40e_check_asq_alive(struct i40e_hw *hw)
198 {
199 	/* Check if the queue is initialized */
200 	if (!hw->aq.asq.count)
201 		return false;
202 
203 	return !!(rd32(hw, I40E_PF_ATQLEN) & I40E_PF_ATQLEN_ATQENABLE_MASK);
204 }
205 
206 /**
207  * i40e_aq_queue_shutdown
208  * @hw: pointer to the hw struct
209  * @unloading: is the driver unloading itself
210  *
211  * Tell the Firmware that we're shutting down the AdminQ and whether
212  * or not the driver is unloading as well.
213  **/
214 int i40e_aq_queue_shutdown(struct i40e_hw *hw,
215 			   bool unloading)
216 {
217 	struct i40e_aq_desc desc;
218 	struct i40e_aqc_queue_shutdown *cmd =
219 		(struct i40e_aqc_queue_shutdown *)&desc.params.raw;
220 	int status;
221 
222 	i40e_fill_default_direct_cmd_desc(&desc,
223 					  i40e_aqc_opc_queue_shutdown);
224 
225 	if (unloading)
226 		cmd->driver_unloading = cpu_to_le32(I40E_AQ_DRIVER_UNLOADING);
227 	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
228 
229 	return status;
230 }
231 
232 /**
233  * i40e_aq_get_set_rss_lut
234  * @hw: pointer to the hardware structure
235  * @vsi_id: vsi fw index
236  * @pf_lut: for PF table set true, for VSI table set false
237  * @lut: pointer to the lut buffer provided by the caller
238  * @lut_size: size of the lut buffer
239  * @set: set true to set the table, false to get the table
240  *
241  * Internal function to get or set RSS look up table
242  **/
243 static int i40e_aq_get_set_rss_lut(struct i40e_hw *hw,
244 				   u16 vsi_id, bool pf_lut,
245 				   u8 *lut, u16 lut_size,
246 				   bool set)
247 {
248 	struct i40e_aq_desc desc;
249 	struct i40e_aqc_get_set_rss_lut *cmd_resp =
250 		   (struct i40e_aqc_get_set_rss_lut *)&desc.params.raw;
251 	int status;
252 	u16 flags;
253 
254 	if (set)
255 		i40e_fill_default_direct_cmd_desc(&desc,
256 						  i40e_aqc_opc_set_rss_lut);
257 	else
258 		i40e_fill_default_direct_cmd_desc(&desc,
259 						  i40e_aqc_opc_get_rss_lut);
260 
261 	/* Indirect command */
262 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
263 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
264 
265 	vsi_id = FIELD_PREP(I40E_AQC_SET_RSS_LUT_VSI_ID_MASK, vsi_id) |
266 		 FIELD_PREP(I40E_AQC_SET_RSS_LUT_VSI_VALID, 1);
267 	cmd_resp->vsi_id = cpu_to_le16(vsi_id);
268 
269 	if (pf_lut)
270 		flags = FIELD_PREP(I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK,
271 				   I40E_AQC_SET_RSS_LUT_TABLE_TYPE_PF);
272 	else
273 		flags = FIELD_PREP(I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK,
274 				   I40E_AQC_SET_RSS_LUT_TABLE_TYPE_VSI);
275 
276 	cmd_resp->flags = cpu_to_le16(flags);
277 	status = i40e_asq_send_command(hw, &desc, lut, lut_size, NULL);
278 
279 	return status;
280 }
281 
282 /**
283  * i40e_aq_get_rss_lut
284  * @hw: pointer to the hardware structure
285  * @vsi_id: vsi fw index
286  * @pf_lut: for PF table set true, for VSI table set false
287  * @lut: pointer to the lut buffer provided by the caller
288  * @lut_size: size of the lut buffer
289  *
290  * get the RSS lookup table, PF or VSI type
291  **/
292 int i40e_aq_get_rss_lut(struct i40e_hw *hw, u16 vsi_id,
293 			bool pf_lut, u8 *lut, u16 lut_size)
294 {
295 	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size,
296 				       false);
297 }
298 
299 /**
300  * i40e_aq_set_rss_lut
301  * @hw: pointer to the hardware structure
302  * @vsi_id: vsi fw index
303  * @pf_lut: for PF table set true, for VSI table set false
304  * @lut: pointer to the lut buffer provided by the caller
305  * @lut_size: size of the lut buffer
306  *
307  * set the RSS lookup table, PF or VSI type
308  **/
309 int i40e_aq_set_rss_lut(struct i40e_hw *hw, u16 vsi_id,
310 			bool pf_lut, u8 *lut, u16 lut_size)
311 {
312 	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
313 }
314 
315 /**
316  * i40e_aq_get_set_rss_key
317  * @hw: pointer to the hw struct
318  * @vsi_id: vsi fw index
319  * @key: pointer to key info struct
320  * @set: set true to set the key, false to get the key
321  *
322  * get the RSS key per VSI
323  **/
324 static int i40e_aq_get_set_rss_key(struct i40e_hw *hw,
325 				   u16 vsi_id,
326 				   struct i40e_aqc_get_set_rss_key_data *key,
327 				   bool set)
328 {
329 	struct i40e_aq_desc desc;
330 	struct i40e_aqc_get_set_rss_key *cmd_resp =
331 			(struct i40e_aqc_get_set_rss_key *)&desc.params.raw;
332 	u16 key_size = sizeof(struct i40e_aqc_get_set_rss_key_data);
333 	int status;
334 
335 	if (set)
336 		i40e_fill_default_direct_cmd_desc(&desc,
337 						  i40e_aqc_opc_set_rss_key);
338 	else
339 		i40e_fill_default_direct_cmd_desc(&desc,
340 						  i40e_aqc_opc_get_rss_key);
341 
342 	/* Indirect command */
343 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
344 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
345 
346 	vsi_id = FIELD_PREP(I40E_AQC_SET_RSS_KEY_VSI_ID_MASK, vsi_id) |
347 		 FIELD_PREP(I40E_AQC_SET_RSS_KEY_VSI_VALID, 1);
348 	cmd_resp->vsi_id = cpu_to_le16(vsi_id);
349 
350 	status = i40e_asq_send_command(hw, &desc, key, key_size, NULL);
351 
352 	return status;
353 }
354 
355 /**
356  * i40e_aq_get_rss_key
357  * @hw: pointer to the hw struct
358  * @vsi_id: vsi fw index
359  * @key: pointer to key info struct
360  *
361  **/
362 int i40e_aq_get_rss_key(struct i40e_hw *hw,
363 			u16 vsi_id,
364 			struct i40e_aqc_get_set_rss_key_data *key)
365 {
366 	return i40e_aq_get_set_rss_key(hw, vsi_id, key, false);
367 }
368 
369 /**
370  * i40e_aq_set_rss_key
371  * @hw: pointer to the hw struct
372  * @vsi_id: vsi fw index
373  * @key: pointer to key info struct
374  *
375  * set the RSS key per VSI
376  **/
377 int i40e_aq_set_rss_key(struct i40e_hw *hw,
378 			u16 vsi_id,
379 			struct i40e_aqc_get_set_rss_key_data *key)
380 {
381 	return i40e_aq_get_set_rss_key(hw, vsi_id, key, true);
382 }
383 
384 /* The i40e_ptype_lookup table is used to convert from the 8-bit ptype in the
385  * hardware to a bit-field that can be used by SW to more easily determine the
386  * packet type.
387  *
388  * Macros are used to shorten the table lines and make this table human
389  * readable.
390  *
391  * We store the PTYPE in the top byte of the bit field - this is just so that
392  * we can check that the table doesn't have a row missing, as the index into
393  * the table should be the PTYPE.
394  *
395  * Typical work flow:
396  *
397  * IF NOT i40e_ptype_lookup[ptype].known
398  * THEN
399  *      Packet is unknown
400  * ELSE IF i40e_ptype_lookup[ptype].outer_ip == I40E_RX_PTYPE_OUTER_IP
401  *      Use the rest of the fields to look at the tunnels, inner protocols, etc
402  * ELSE
403  *      Use the enum i40e_rx_l2_ptype to decode the packet type
404  * ENDIF
405  */
406 
407 /* macro to make the table lines short, use explicit indexing with [PTYPE] */
408 #define I40E_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
409 	[PTYPE] = { \
410 		1, \
411 		I40E_RX_PTYPE_OUTER_##OUTER_IP, \
412 		I40E_RX_PTYPE_OUTER_##OUTER_IP_VER, \
413 		I40E_RX_PTYPE_##OUTER_FRAG, \
414 		I40E_RX_PTYPE_TUNNEL_##T, \
415 		I40E_RX_PTYPE_TUNNEL_END_##TE, \
416 		I40E_RX_PTYPE_##TEF, \
417 		I40E_RX_PTYPE_INNER_PROT_##I, \
418 		I40E_RX_PTYPE_PAYLOAD_LAYER_##PL }
419 
420 #define I40E_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
421 
422 /* shorter macros makes the table fit but are terse */
423 #define I40E_RX_PTYPE_NOF		I40E_RX_PTYPE_NOT_FRAG
424 #define I40E_RX_PTYPE_FRG		I40E_RX_PTYPE_FRAG
425 #define I40E_RX_PTYPE_INNER_PROT_TS	I40E_RX_PTYPE_INNER_PROT_TIMESYNC
426 
427 /* Lookup table mapping in the 8-bit HW PTYPE to the bit field for decoding */
428 struct i40e_rx_ptype_decoded i40e_ptype_lookup[BIT(8)] = {
429 	/* L2 Packet types */
430 	I40E_PTT_UNUSED_ENTRY(0),
431 	I40E_PTT(1,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
432 	I40E_PTT(2,  L2, NONE, NOF, NONE, NONE, NOF, TS,   PAY2),
433 	I40E_PTT(3,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
434 	I40E_PTT_UNUSED_ENTRY(4),
435 	I40E_PTT_UNUSED_ENTRY(5),
436 	I40E_PTT(6,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
437 	I40E_PTT(7,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
438 	I40E_PTT_UNUSED_ENTRY(8),
439 	I40E_PTT_UNUSED_ENTRY(9),
440 	I40E_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
441 	I40E_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
442 	I40E_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
443 	I40E_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
444 	I40E_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
445 	I40E_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
446 	I40E_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
447 	I40E_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
448 	I40E_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
449 	I40E_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
450 	I40E_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
451 	I40E_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
452 
453 	/* Non Tunneled IPv4 */
454 	I40E_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
455 	I40E_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
456 	I40E_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP,  PAY4),
457 	I40E_PTT_UNUSED_ENTRY(25),
458 	I40E_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP,  PAY4),
459 	I40E_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
460 	I40E_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
461 
462 	/* IPv4 --> IPv4 */
463 	I40E_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
464 	I40E_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
465 	I40E_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
466 	I40E_PTT_UNUSED_ENTRY(32),
467 	I40E_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
468 	I40E_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
469 	I40E_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
470 
471 	/* IPv4 --> IPv6 */
472 	I40E_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
473 	I40E_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
474 	I40E_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
475 	I40E_PTT_UNUSED_ENTRY(39),
476 	I40E_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
477 	I40E_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
478 	I40E_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
479 
480 	/* IPv4 --> GRE/NAT */
481 	I40E_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
482 
483 	/* IPv4 --> GRE/NAT --> IPv4 */
484 	I40E_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
485 	I40E_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
486 	I40E_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
487 	I40E_PTT_UNUSED_ENTRY(47),
488 	I40E_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
489 	I40E_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
490 	I40E_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
491 
492 	/* IPv4 --> GRE/NAT --> IPv6 */
493 	I40E_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
494 	I40E_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
495 	I40E_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
496 	I40E_PTT_UNUSED_ENTRY(54),
497 	I40E_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
498 	I40E_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
499 	I40E_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
500 
501 	/* IPv4 --> GRE/NAT --> MAC */
502 	I40E_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
503 
504 	/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
505 	I40E_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
506 	I40E_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
507 	I40E_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
508 	I40E_PTT_UNUSED_ENTRY(62),
509 	I40E_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
510 	I40E_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
511 	I40E_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
512 
513 	/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
514 	I40E_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
515 	I40E_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
516 	I40E_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
517 	I40E_PTT_UNUSED_ENTRY(69),
518 	I40E_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
519 	I40E_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
520 	I40E_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
521 
522 	/* IPv4 --> GRE/NAT --> MAC/VLAN */
523 	I40E_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
524 
525 	/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
526 	I40E_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
527 	I40E_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
528 	I40E_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
529 	I40E_PTT_UNUSED_ENTRY(77),
530 	I40E_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
531 	I40E_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
532 	I40E_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
533 
534 	/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
535 	I40E_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
536 	I40E_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
537 	I40E_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
538 	I40E_PTT_UNUSED_ENTRY(84),
539 	I40E_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
540 	I40E_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
541 	I40E_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
542 
543 	/* Non Tunneled IPv6 */
544 	I40E_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
545 	I40E_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
546 	I40E_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP,  PAY4),
547 	I40E_PTT_UNUSED_ENTRY(91),
548 	I40E_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP,  PAY4),
549 	I40E_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
550 	I40E_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
551 
552 	/* IPv6 --> IPv4 */
553 	I40E_PTT(95,  IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
554 	I40E_PTT(96,  IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
555 	I40E_PTT(97,  IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
556 	I40E_PTT_UNUSED_ENTRY(98),
557 	I40E_PTT(99,  IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
558 	I40E_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
559 	I40E_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
560 
561 	/* IPv6 --> IPv6 */
562 	I40E_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
563 	I40E_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
564 	I40E_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
565 	I40E_PTT_UNUSED_ENTRY(105),
566 	I40E_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
567 	I40E_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
568 	I40E_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
569 
570 	/* IPv6 --> GRE/NAT */
571 	I40E_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
572 
573 	/* IPv6 --> GRE/NAT -> IPv4 */
574 	I40E_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
575 	I40E_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
576 	I40E_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
577 	I40E_PTT_UNUSED_ENTRY(113),
578 	I40E_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
579 	I40E_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
580 	I40E_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
581 
582 	/* IPv6 --> GRE/NAT -> IPv6 */
583 	I40E_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
584 	I40E_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
585 	I40E_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
586 	I40E_PTT_UNUSED_ENTRY(120),
587 	I40E_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
588 	I40E_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
589 	I40E_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
590 
591 	/* IPv6 --> GRE/NAT -> MAC */
592 	I40E_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
593 
594 	/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
595 	I40E_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
596 	I40E_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
597 	I40E_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
598 	I40E_PTT_UNUSED_ENTRY(128),
599 	I40E_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
600 	I40E_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
601 	I40E_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
602 
603 	/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
604 	I40E_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
605 	I40E_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
606 	I40E_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
607 	I40E_PTT_UNUSED_ENTRY(135),
608 	I40E_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
609 	I40E_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
610 	I40E_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
611 
612 	/* IPv6 --> GRE/NAT -> MAC/VLAN */
613 	I40E_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
614 
615 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
616 	I40E_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
617 	I40E_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
618 	I40E_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
619 	I40E_PTT_UNUSED_ENTRY(143),
620 	I40E_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
621 	I40E_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
622 	I40E_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
623 
624 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
625 	I40E_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
626 	I40E_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
627 	I40E_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
628 	I40E_PTT_UNUSED_ENTRY(150),
629 	I40E_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
630 	I40E_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
631 	I40E_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
632 
633 	/* unused entries */
634 	[154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
635 };
636 
637 /**
638  * i40e_init_shared_code - Initialize the shared code
639  * @hw: pointer to hardware structure
640  *
641  * This assigns the MAC type and PHY code and inits the NVM.
642  * Does not touch the hardware. This function must be called prior to any
643  * other function in the shared code. The i40e_hw structure should be
644  * memset to 0 prior to calling this function.  The following fields in
645  * hw structure should be filled in prior to calling this function:
646  * hw_addr, back, device_id, vendor_id, subsystem_device_id,
647  * subsystem_vendor_id, and revision_id
648  **/
649 int i40e_init_shared_code(struct i40e_hw *hw)
650 {
651 	u32 port, ari, func_rid;
652 	int status = 0;
653 
654 	i40e_set_mac_type(hw);
655 
656 	switch (hw->mac.type) {
657 	case I40E_MAC_XL710:
658 	case I40E_MAC_X722:
659 		break;
660 	default:
661 		return -ENODEV;
662 	}
663 
664 	hw->phy.get_link_info = true;
665 
666 	/* Determine port number and PF number*/
667 	port = FIELD_GET(I40E_PFGEN_PORTNUM_PORT_NUM_MASK,
668 			 rd32(hw, I40E_PFGEN_PORTNUM));
669 	hw->port = (u8)port;
670 	ari = FIELD_GET(I40E_GLPCI_CAPSUP_ARI_EN_MASK,
671 			rd32(hw, I40E_GLPCI_CAPSUP));
672 	func_rid = rd32(hw, I40E_PF_FUNC_RID);
673 	if (ari)
674 		hw->pf_id = (u8)(func_rid & 0xff);
675 	else
676 		hw->pf_id = (u8)(func_rid & 0x7);
677 
678 	status = i40e_init_nvm(hw);
679 	return status;
680 }
681 
682 /**
683  * i40e_aq_mac_address_read - Retrieve the MAC addresses
684  * @hw: pointer to the hw struct
685  * @flags: a return indicator of what addresses were added to the addr store
686  * @addrs: the requestor's mac addr store
687  * @cmd_details: pointer to command details structure or NULL
688  **/
689 static int
690 i40e_aq_mac_address_read(struct i40e_hw *hw,
691 			 u16 *flags,
692 			 struct i40e_aqc_mac_address_read_data *addrs,
693 			 struct i40e_asq_cmd_details *cmd_details)
694 {
695 	struct i40e_aq_desc desc;
696 	struct i40e_aqc_mac_address_read *cmd_data =
697 		(struct i40e_aqc_mac_address_read *)&desc.params.raw;
698 	int status;
699 
700 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_mac_address_read);
701 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF);
702 
703 	status = i40e_asq_send_command(hw, &desc, addrs,
704 				       sizeof(*addrs), cmd_details);
705 	*flags = le16_to_cpu(cmd_data->command_flags);
706 
707 	return status;
708 }
709 
710 /**
711  * i40e_aq_mac_address_write - Change the MAC addresses
712  * @hw: pointer to the hw struct
713  * @flags: indicates which MAC to be written
714  * @mac_addr: address to write
715  * @cmd_details: pointer to command details structure or NULL
716  **/
717 int i40e_aq_mac_address_write(struct i40e_hw *hw,
718 			      u16 flags, u8 *mac_addr,
719 			      struct i40e_asq_cmd_details *cmd_details)
720 {
721 	struct i40e_aq_desc desc;
722 	struct i40e_aqc_mac_address_write *cmd_data =
723 		(struct i40e_aqc_mac_address_write *)&desc.params.raw;
724 	int status;
725 
726 	i40e_fill_default_direct_cmd_desc(&desc,
727 					  i40e_aqc_opc_mac_address_write);
728 	cmd_data->command_flags = cpu_to_le16(flags);
729 	cmd_data->mac_sah = cpu_to_le16((u16)mac_addr[0] << 8 | mac_addr[1]);
730 	cmd_data->mac_sal = cpu_to_le32(((u32)mac_addr[2] << 24) |
731 					((u32)mac_addr[3] << 16) |
732 					((u32)mac_addr[4] << 8) |
733 					mac_addr[5]);
734 
735 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
736 
737 	return status;
738 }
739 
740 /**
741  * i40e_get_mac_addr - get MAC address
742  * @hw: pointer to the HW structure
743  * @mac_addr: pointer to MAC address
744  *
745  * Reads the adapter's MAC address from register
746  **/
747 int i40e_get_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
748 {
749 	struct i40e_aqc_mac_address_read_data addrs;
750 	u16 flags = 0;
751 	int status;
752 
753 	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
754 
755 	if (flags & I40E_AQC_LAN_ADDR_VALID)
756 		ether_addr_copy(mac_addr, addrs.pf_lan_mac);
757 
758 	return status;
759 }
760 
761 /**
762  * i40e_get_port_mac_addr - get Port MAC address
763  * @hw: pointer to the HW structure
764  * @mac_addr: pointer to Port MAC address
765  *
766  * Reads the adapter's Port MAC address
767  **/
768 int i40e_get_port_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
769 {
770 	struct i40e_aqc_mac_address_read_data addrs;
771 	u16 flags = 0;
772 	int status;
773 
774 	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
775 	if (status)
776 		return status;
777 
778 	if (flags & I40E_AQC_PORT_ADDR_VALID)
779 		ether_addr_copy(mac_addr, addrs.port_mac);
780 	else
781 		status = -EINVAL;
782 
783 	return status;
784 }
785 
786 /**
787  * i40e_pre_tx_queue_cfg - pre tx queue configure
788  * @hw: pointer to the HW structure
789  * @queue: target PF queue index
790  * @enable: state change request
791  *
792  * Handles hw requirement to indicate intention to enable
793  * or disable target queue.
794  **/
795 void i40e_pre_tx_queue_cfg(struct i40e_hw *hw, u32 queue, bool enable)
796 {
797 	u32 abs_queue_idx = hw->func_caps.base_queue + queue;
798 	u32 reg_block = 0;
799 	u32 reg_val;
800 
801 	if (abs_queue_idx >= 128) {
802 		reg_block = abs_queue_idx / 128;
803 		abs_queue_idx %= 128;
804 	}
805 
806 	reg_val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
807 	reg_val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
808 	reg_val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
809 
810 	if (enable)
811 		reg_val |= I40E_GLLAN_TXPRE_QDIS_CLEAR_QDIS_MASK;
812 	else
813 		reg_val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
814 
815 	wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), reg_val);
816 }
817 
818 /**
819  *  i40e_get_pba_string - Reads part number string from EEPROM
820  *  @hw: pointer to hardware structure
821  *
822  *  Reads the part number string from the EEPROM and stores it
823  *  into newly allocated buffer and saves resulting pointer
824  *  to i40e_hw->pba_id field.
825  **/
826 void i40e_get_pba_string(struct i40e_hw *hw)
827 {
828 #define I40E_NVM_PBA_FLAGS_BLK_PRESENT	0xFAFA
829 	u16 pba_word = 0;
830 	u16 pba_size = 0;
831 	u16 pba_ptr = 0;
832 	int status;
833 	char *ptr;
834 	u16 i;
835 
836 	status = i40e_read_nvm_word(hw, I40E_SR_PBA_FLAGS, &pba_word);
837 	if (status) {
838 		hw_dbg(hw, "Failed to read PBA flags.\n");
839 		return;
840 	}
841 	if (pba_word != I40E_NVM_PBA_FLAGS_BLK_PRESENT) {
842 		hw_dbg(hw, "PBA block is not present.\n");
843 		return;
844 	}
845 
846 	status = i40e_read_nvm_word(hw, I40E_SR_PBA_BLOCK_PTR, &pba_ptr);
847 	if (status) {
848 		hw_dbg(hw, "Failed to read PBA Block pointer.\n");
849 		return;
850 	}
851 
852 	status = i40e_read_nvm_word(hw, pba_ptr, &pba_size);
853 	if (status) {
854 		hw_dbg(hw, "Failed to read PBA Block size.\n");
855 		return;
856 	}
857 
858 	/* Subtract one to get PBA word count (PBA Size word is included in
859 	 * total size) and advance pointer to first PBA word.
860 	 */
861 	pba_size--;
862 	pba_ptr++;
863 	if (!pba_size) {
864 		hw_dbg(hw, "PBA ID is empty.\n");
865 		return;
866 	}
867 
868 	ptr = devm_kzalloc(i40e_hw_to_dev(hw), pba_size * 2 + 1, GFP_KERNEL);
869 	if (!ptr)
870 		return;
871 	hw->pba_id = ptr;
872 
873 	for (i = 0; i < pba_size; i++) {
874 		status = i40e_read_nvm_word(hw, pba_ptr + i, &pba_word);
875 		if (status) {
876 			hw_dbg(hw, "Failed to read PBA Block word %d.\n", i);
877 			devm_kfree(i40e_hw_to_dev(hw), hw->pba_id);
878 			hw->pba_id = NULL;
879 			return;
880 		}
881 
882 		*ptr++ = (pba_word >> 8) & 0xFF;
883 		*ptr++ = pba_word & 0xFF;
884 	}
885 }
886 
887 /**
888  * i40e_get_media_type - Gets media type
889  * @hw: pointer to the hardware structure
890  **/
891 static enum i40e_media_type i40e_get_media_type(struct i40e_hw *hw)
892 {
893 	enum i40e_media_type media;
894 
895 	switch (hw->phy.link_info.phy_type) {
896 	case I40E_PHY_TYPE_10GBASE_SR:
897 	case I40E_PHY_TYPE_10GBASE_LR:
898 	case I40E_PHY_TYPE_1000BASE_SX:
899 	case I40E_PHY_TYPE_1000BASE_LX:
900 	case I40E_PHY_TYPE_40GBASE_SR4:
901 	case I40E_PHY_TYPE_40GBASE_LR4:
902 	case I40E_PHY_TYPE_25GBASE_LR:
903 	case I40E_PHY_TYPE_25GBASE_SR:
904 		media = I40E_MEDIA_TYPE_FIBER;
905 		break;
906 	case I40E_PHY_TYPE_100BASE_TX:
907 	case I40E_PHY_TYPE_1000BASE_T:
908 	case I40E_PHY_TYPE_2_5GBASE_T_LINK_STATUS:
909 	case I40E_PHY_TYPE_5GBASE_T_LINK_STATUS:
910 	case I40E_PHY_TYPE_10GBASE_T:
911 		media = I40E_MEDIA_TYPE_BASET;
912 		break;
913 	case I40E_PHY_TYPE_10GBASE_CR1_CU:
914 	case I40E_PHY_TYPE_40GBASE_CR4_CU:
915 	case I40E_PHY_TYPE_10GBASE_CR1:
916 	case I40E_PHY_TYPE_40GBASE_CR4:
917 	case I40E_PHY_TYPE_10GBASE_SFPP_CU:
918 	case I40E_PHY_TYPE_40GBASE_AOC:
919 	case I40E_PHY_TYPE_10GBASE_AOC:
920 	case I40E_PHY_TYPE_25GBASE_CR:
921 	case I40E_PHY_TYPE_25GBASE_AOC:
922 	case I40E_PHY_TYPE_25GBASE_ACC:
923 		media = I40E_MEDIA_TYPE_DA;
924 		break;
925 	case I40E_PHY_TYPE_1000BASE_KX:
926 	case I40E_PHY_TYPE_10GBASE_KX4:
927 	case I40E_PHY_TYPE_10GBASE_KR:
928 	case I40E_PHY_TYPE_40GBASE_KR4:
929 	case I40E_PHY_TYPE_20GBASE_KR2:
930 	case I40E_PHY_TYPE_25GBASE_KR:
931 		media = I40E_MEDIA_TYPE_BACKPLANE;
932 		break;
933 	case I40E_PHY_TYPE_SGMII:
934 	case I40E_PHY_TYPE_XAUI:
935 	case I40E_PHY_TYPE_XFI:
936 	case I40E_PHY_TYPE_XLAUI:
937 	case I40E_PHY_TYPE_XLPPI:
938 	default:
939 		media = I40E_MEDIA_TYPE_UNKNOWN;
940 		break;
941 	}
942 
943 	return media;
944 }
945 
946 /**
947  * i40e_poll_globr - Poll for Global Reset completion
948  * @hw: pointer to the hardware structure
949  * @retry_limit: how many times to retry before failure
950  **/
951 static int i40e_poll_globr(struct i40e_hw *hw,
952 			   u32 retry_limit)
953 {
954 	u32 cnt, reg = 0;
955 
956 	for (cnt = 0; cnt < retry_limit; cnt++) {
957 		reg = rd32(hw, I40E_GLGEN_RSTAT);
958 		if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK))
959 			return 0;
960 		msleep(100);
961 	}
962 
963 	hw_dbg(hw, "Global reset failed.\n");
964 	hw_dbg(hw, "I40E_GLGEN_RSTAT = 0x%x\n", reg);
965 
966 	return -EIO;
967 }
968 
969 #define I40E_PF_RESET_WAIT_COUNT_A0	200
970 #define I40E_PF_RESET_WAIT_COUNT	200
971 /**
972  * i40e_pf_reset - Reset the PF
973  * @hw: pointer to the hardware structure
974  *
975  * Assuming someone else has triggered a global reset,
976  * assure the global reset is complete and then reset the PF
977  **/
978 int i40e_pf_reset(struct i40e_hw *hw)
979 {
980 	u32 cnt = 0;
981 	u32 cnt1 = 0;
982 	u32 reg = 0;
983 	u32 grst_del;
984 
985 	/* Poll for Global Reset steady state in case of recent GRST.
986 	 * The grst delay value is in 100ms units, and we'll wait a
987 	 * couple counts longer to be sure we don't just miss the end.
988 	 */
989 	grst_del = FIELD_GET(I40E_GLGEN_RSTCTL_GRSTDEL_MASK,
990 			     rd32(hw, I40E_GLGEN_RSTCTL));
991 
992 	/* It can take upto 15 secs for GRST steady state.
993 	 * Bump it to 16 secs max to be safe.
994 	 */
995 	grst_del = grst_del * 20;
996 
997 	for (cnt = 0; cnt < grst_del; cnt++) {
998 		reg = rd32(hw, I40E_GLGEN_RSTAT);
999 		if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK))
1000 			break;
1001 		msleep(100);
1002 	}
1003 	if (reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK) {
1004 		hw_dbg(hw, "Global reset polling failed to complete.\n");
1005 		return -EIO;
1006 	}
1007 
1008 	/* Now Wait for the FW to be ready */
1009 	for (cnt1 = 0; cnt1 < I40E_PF_RESET_WAIT_COUNT; cnt1++) {
1010 		reg = rd32(hw, I40E_GLNVM_ULD);
1011 		reg &= (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1012 			I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK);
1013 		if (reg == (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1014 			    I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK)) {
1015 			hw_dbg(hw, "Core and Global modules ready %d\n", cnt1);
1016 			break;
1017 		}
1018 		usleep_range(10000, 20000);
1019 	}
1020 	if (!(reg & (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1021 		     I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK))) {
1022 		hw_dbg(hw, "wait for FW Reset complete timedout\n");
1023 		hw_dbg(hw, "I40E_GLNVM_ULD = 0x%x\n", reg);
1024 		return -EIO;
1025 	}
1026 
1027 	/* If there was a Global Reset in progress when we got here,
1028 	 * we don't need to do the PF Reset
1029 	 */
1030 	if (!cnt) {
1031 		u32 reg2 = 0;
1032 		if (hw->revision_id == 0)
1033 			cnt = I40E_PF_RESET_WAIT_COUNT_A0;
1034 		else
1035 			cnt = I40E_PF_RESET_WAIT_COUNT;
1036 		reg = rd32(hw, I40E_PFGEN_CTRL);
1037 		wr32(hw, I40E_PFGEN_CTRL,
1038 		     (reg | I40E_PFGEN_CTRL_PFSWR_MASK));
1039 		for (; cnt; cnt--) {
1040 			reg = rd32(hw, I40E_PFGEN_CTRL);
1041 			if (!(reg & I40E_PFGEN_CTRL_PFSWR_MASK))
1042 				break;
1043 			reg2 = rd32(hw, I40E_GLGEN_RSTAT);
1044 			if (reg2 & I40E_GLGEN_RSTAT_DEVSTATE_MASK)
1045 				break;
1046 			usleep_range(1000, 2000);
1047 		}
1048 		if (reg2 & I40E_GLGEN_RSTAT_DEVSTATE_MASK) {
1049 			if (i40e_poll_globr(hw, grst_del))
1050 				return -EIO;
1051 		} else if (reg & I40E_PFGEN_CTRL_PFSWR_MASK) {
1052 			hw_dbg(hw, "PF reset polling failed to complete.\n");
1053 			return -EIO;
1054 		}
1055 	}
1056 
1057 	i40e_clear_pxe_mode(hw);
1058 
1059 	return 0;
1060 }
1061 
1062 /**
1063  * i40e_clear_hw - clear out any left over hw state
1064  * @hw: pointer to the hw struct
1065  *
1066  * Clear queues and interrupts, typically called at init time,
1067  * but after the capabilities have been found so we know how many
1068  * queues and msix vectors have been allocated.
1069  **/
1070 void i40e_clear_hw(struct i40e_hw *hw)
1071 {
1072 	u32 num_queues, base_queue;
1073 	u32 num_pf_int;
1074 	u32 num_vf_int;
1075 	u32 num_vfs;
1076 	u32 i, j;
1077 	u32 val;
1078 	u32 eol = 0x7ff;
1079 
1080 	/* get number of interrupts, queues, and VFs */
1081 	val = rd32(hw, I40E_GLPCI_CNF2);
1082 	num_pf_int = FIELD_GET(I40E_GLPCI_CNF2_MSI_X_PF_N_MASK, val);
1083 	num_vf_int = FIELD_GET(I40E_GLPCI_CNF2_MSI_X_VF_N_MASK, val);
1084 
1085 	val = rd32(hw, I40E_PFLAN_QALLOC);
1086 	base_queue = FIELD_GET(I40E_PFLAN_QALLOC_FIRSTQ_MASK, val);
1087 	j = FIELD_GET(I40E_PFLAN_QALLOC_LASTQ_MASK, val);
1088 	if (val & I40E_PFLAN_QALLOC_VALID_MASK && j >= base_queue)
1089 		num_queues = (j - base_queue) + 1;
1090 	else
1091 		num_queues = 0;
1092 
1093 	val = rd32(hw, I40E_PF_VT_PFALLOC);
1094 	i = FIELD_GET(I40E_PF_VT_PFALLOC_FIRSTVF_MASK, val);
1095 	j = FIELD_GET(I40E_PF_VT_PFALLOC_LASTVF_MASK, val);
1096 	if (val & I40E_PF_VT_PFALLOC_VALID_MASK && j >= i)
1097 		num_vfs = (j - i) + 1;
1098 	else
1099 		num_vfs = 0;
1100 
1101 	/* stop all the interrupts */
1102 	wr32(hw, I40E_PFINT_ICR0_ENA, 0);
1103 	val = 0x3 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT;
1104 	for (i = 0; i < num_pf_int - 2; i++)
1105 		wr32(hw, I40E_PFINT_DYN_CTLN(i), val);
1106 
1107 	/* Set the FIRSTQ_INDX field to 0x7FF in PFINT_LNKLSTx */
1108 	val = eol << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1109 	wr32(hw, I40E_PFINT_LNKLST0, val);
1110 	for (i = 0; i < num_pf_int - 2; i++)
1111 		wr32(hw, I40E_PFINT_LNKLSTN(i), val);
1112 	val = eol << I40E_VPINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1113 	for (i = 0; i < num_vfs; i++)
1114 		wr32(hw, I40E_VPINT_LNKLST0(i), val);
1115 	for (i = 0; i < num_vf_int - 2; i++)
1116 		wr32(hw, I40E_VPINT_LNKLSTN(i), val);
1117 
1118 	/* warn the HW of the coming Tx disables */
1119 	for (i = 0; i < num_queues; i++) {
1120 		u32 abs_queue_idx = base_queue + i;
1121 		u32 reg_block = 0;
1122 
1123 		if (abs_queue_idx >= 128) {
1124 			reg_block = abs_queue_idx / 128;
1125 			abs_queue_idx %= 128;
1126 		}
1127 
1128 		val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
1129 		val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
1130 		val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
1131 		val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
1132 
1133 		wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), val);
1134 	}
1135 	udelay(400);
1136 
1137 	/* stop all the queues */
1138 	for (i = 0; i < num_queues; i++) {
1139 		wr32(hw, I40E_QINT_TQCTL(i), 0);
1140 		wr32(hw, I40E_QTX_ENA(i), 0);
1141 		wr32(hw, I40E_QINT_RQCTL(i), 0);
1142 		wr32(hw, I40E_QRX_ENA(i), 0);
1143 	}
1144 
1145 	/* short wait for all queue disables to settle */
1146 	udelay(50);
1147 }
1148 
1149 /**
1150  * i40e_clear_pxe_mode - clear pxe operations mode
1151  * @hw: pointer to the hw struct
1152  *
1153  * Make sure all PXE mode settings are cleared, including things
1154  * like descriptor fetch/write-back mode.
1155  **/
1156 void i40e_clear_pxe_mode(struct i40e_hw *hw)
1157 {
1158 	u32 reg;
1159 
1160 	if (i40e_check_asq_alive(hw))
1161 		i40e_aq_clear_pxe_mode(hw, NULL);
1162 
1163 	/* Clear single descriptor fetch/write-back mode */
1164 	reg = rd32(hw, I40E_GLLAN_RCTL_0);
1165 
1166 	if (hw->revision_id == 0) {
1167 		/* As a work around clear PXE_MODE instead of setting it */
1168 		wr32(hw, I40E_GLLAN_RCTL_0, (reg & (~I40E_GLLAN_RCTL_0_PXE_MODE_MASK)));
1169 	} else {
1170 		wr32(hw, I40E_GLLAN_RCTL_0, (reg | I40E_GLLAN_RCTL_0_PXE_MODE_MASK));
1171 	}
1172 }
1173 
1174 /**
1175  * i40e_led_is_mine - helper to find matching led
1176  * @hw: pointer to the hw struct
1177  * @idx: index into GPIO registers
1178  *
1179  * returns: 0 if no match, otherwise the value of the GPIO_CTL register
1180  */
1181 static u32 i40e_led_is_mine(struct i40e_hw *hw, int idx)
1182 {
1183 	u32 gpio_val = 0;
1184 	u32 port;
1185 
1186 	if (!I40E_IS_X710TL_DEVICE(hw->device_id) &&
1187 	    !hw->func_caps.led[idx])
1188 		return 0;
1189 	gpio_val = rd32(hw, I40E_GLGEN_GPIO_CTL(idx));
1190 	port = FIELD_GET(I40E_GLGEN_GPIO_CTL_PRT_NUM_MASK, gpio_val);
1191 
1192 	/* if PRT_NUM_NA is 1 then this LED is not port specific, OR
1193 	 * if it is not our port then ignore
1194 	 */
1195 	if ((gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_NA_MASK) ||
1196 	    (port != hw->port))
1197 		return 0;
1198 
1199 	return gpio_val;
1200 }
1201 
1202 #define I40E_FW_LED BIT(4)
1203 #define I40E_LED_MODE_VALID (I40E_GLGEN_GPIO_CTL_LED_MODE_MASK >> \
1204 			     I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT)
1205 
1206 #define I40E_LED0 22
1207 
1208 #define I40E_PIN_FUNC_SDP 0x0
1209 #define I40E_PIN_FUNC_LED 0x1
1210 
1211 /**
1212  * i40e_led_get - return current on/off mode
1213  * @hw: pointer to the hw struct
1214  *
1215  * The value returned is the 'mode' field as defined in the
1216  * GPIO register definitions: 0x0 = off, 0xf = on, and other
1217  * values are variations of possible behaviors relating to
1218  * blink, link, and wire.
1219  **/
1220 u32 i40e_led_get(struct i40e_hw *hw)
1221 {
1222 	u32 mode = 0;
1223 	int i;
1224 
1225 	/* as per the documentation GPIO 22-29 are the LED
1226 	 * GPIO pins named LED0..LED7
1227 	 */
1228 	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1229 		u32 gpio_val = i40e_led_is_mine(hw, i);
1230 
1231 		if (!gpio_val)
1232 			continue;
1233 
1234 		mode = FIELD_GET(I40E_GLGEN_GPIO_CTL_LED_MODE_MASK, gpio_val);
1235 		break;
1236 	}
1237 
1238 	return mode;
1239 }
1240 
1241 /**
1242  * i40e_led_set - set new on/off mode
1243  * @hw: pointer to the hw struct
1244  * @mode: 0=off, 0xf=on (else see manual for mode details)
1245  * @blink: true if the LED should blink when on, false if steady
1246  *
1247  * if this function is used to turn on the blink it should
1248  * be used to disable the blink when restoring the original state.
1249  **/
1250 void i40e_led_set(struct i40e_hw *hw, u32 mode, bool blink)
1251 {
1252 	int i;
1253 
1254 	if (mode & ~I40E_LED_MODE_VALID) {
1255 		hw_dbg(hw, "invalid mode passed in %X\n", mode);
1256 		return;
1257 	}
1258 
1259 	/* as per the documentation GPIO 22-29 are the LED
1260 	 * GPIO pins named LED0..LED7
1261 	 */
1262 	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1263 		u32 gpio_val = i40e_led_is_mine(hw, i);
1264 
1265 		if (!gpio_val)
1266 			continue;
1267 
1268 		if (I40E_IS_X710TL_DEVICE(hw->device_id)) {
1269 			u32 pin_func = 0;
1270 
1271 			if (mode & I40E_FW_LED)
1272 				pin_func = I40E_PIN_FUNC_SDP;
1273 			else
1274 				pin_func = I40E_PIN_FUNC_LED;
1275 
1276 			gpio_val &= ~I40E_GLGEN_GPIO_CTL_PIN_FUNC_MASK;
1277 			gpio_val |=
1278 				FIELD_PREP(I40E_GLGEN_GPIO_CTL_PIN_FUNC_MASK,
1279 					   pin_func);
1280 		}
1281 		gpio_val &= ~I40E_GLGEN_GPIO_CTL_LED_MODE_MASK;
1282 		/* this & is a bit of paranoia, but serves as a range check */
1283 		gpio_val |= FIELD_PREP(I40E_GLGEN_GPIO_CTL_LED_MODE_MASK,
1284 				       mode);
1285 
1286 		if (blink)
1287 			gpio_val |= BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1288 		else
1289 			gpio_val &= ~BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1290 
1291 		wr32(hw, I40E_GLGEN_GPIO_CTL(i), gpio_val);
1292 		break;
1293 	}
1294 }
1295 
1296 /* Admin command wrappers */
1297 
1298 /**
1299  * i40e_aq_get_phy_capabilities
1300  * @hw: pointer to the hw struct
1301  * @abilities: structure for PHY capabilities to be filled
1302  * @qualified_modules: report Qualified Modules
1303  * @report_init: report init capabilities (active are default)
1304  * @cmd_details: pointer to command details structure or NULL
1305  *
1306  * Returns the various PHY abilities supported on the Port.
1307  **/
1308 int
1309 i40e_aq_get_phy_capabilities(struct i40e_hw *hw,
1310 			     bool qualified_modules, bool report_init,
1311 			     struct i40e_aq_get_phy_abilities_resp *abilities,
1312 			     struct i40e_asq_cmd_details *cmd_details)
1313 {
1314 	u16 abilities_size = sizeof(struct i40e_aq_get_phy_abilities_resp);
1315 	u16 max_delay = I40E_MAX_PHY_TIMEOUT, total_delay = 0;
1316 	struct i40e_aq_desc desc;
1317 	int status;
1318 
1319 	if (!abilities)
1320 		return -EINVAL;
1321 
1322 	do {
1323 		i40e_fill_default_direct_cmd_desc(&desc,
1324 					       i40e_aqc_opc_get_phy_abilities);
1325 
1326 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
1327 		if (abilities_size > I40E_AQ_LARGE_BUF)
1328 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
1329 
1330 		if (qualified_modules)
1331 			desc.params.external.param0 |=
1332 			cpu_to_le32(I40E_AQ_PHY_REPORT_QUALIFIED_MODULES);
1333 
1334 		if (report_init)
1335 			desc.params.external.param0 |=
1336 			cpu_to_le32(I40E_AQ_PHY_REPORT_INITIAL_VALUES);
1337 
1338 		status = i40e_asq_send_command(hw, &desc, abilities,
1339 					       abilities_size, cmd_details);
1340 
1341 		switch (hw->aq.asq_last_status) {
1342 		case I40E_AQ_RC_EIO:
1343 			status = -EIO;
1344 			break;
1345 		case I40E_AQ_RC_EAGAIN:
1346 			usleep_range(1000, 2000);
1347 			total_delay++;
1348 			status = -EIO;
1349 			break;
1350 		/* also covers I40E_AQ_RC_OK */
1351 		default:
1352 			break;
1353 		}
1354 
1355 	} while ((hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN) &&
1356 		(total_delay < max_delay));
1357 
1358 	if (status)
1359 		return status;
1360 
1361 	if (report_init) {
1362 		if (hw->mac.type ==  I40E_MAC_XL710 &&
1363 		    i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR,
1364 					  I40E_MINOR_VER_GET_LINK_INFO_XL710)) {
1365 			status = i40e_aq_get_link_info(hw, true, NULL, NULL);
1366 		} else {
1367 			hw->phy.phy_types = le32_to_cpu(abilities->phy_type);
1368 			hw->phy.phy_types |=
1369 					((u64)abilities->phy_type_ext << 32);
1370 		}
1371 	}
1372 
1373 	return status;
1374 }
1375 
1376 /**
1377  * i40e_aq_set_phy_config
1378  * @hw: pointer to the hw struct
1379  * @config: structure with PHY configuration to be set
1380  * @cmd_details: pointer to command details structure or NULL
1381  *
1382  * Set the various PHY configuration parameters
1383  * supported on the Port.One or more of the Set PHY config parameters may be
1384  * ignored in an MFP mode as the PF may not have the privilege to set some
1385  * of the PHY Config parameters. This status will be indicated by the
1386  * command response.
1387  **/
1388 int i40e_aq_set_phy_config(struct i40e_hw *hw,
1389 			   struct i40e_aq_set_phy_config *config,
1390 			   struct i40e_asq_cmd_details *cmd_details)
1391 {
1392 	struct i40e_aq_desc desc;
1393 	struct i40e_aq_set_phy_config *cmd =
1394 			(struct i40e_aq_set_phy_config *)&desc.params.raw;
1395 	int status;
1396 
1397 	if (!config)
1398 		return -EINVAL;
1399 
1400 	i40e_fill_default_direct_cmd_desc(&desc,
1401 					  i40e_aqc_opc_set_phy_config);
1402 
1403 	*cmd = *config;
1404 
1405 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1406 
1407 	return status;
1408 }
1409 
1410 static noinline_for_stack int
1411 i40e_set_fc_status(struct i40e_hw *hw,
1412 		   struct i40e_aq_get_phy_abilities_resp *abilities,
1413 		   bool atomic_restart)
1414 {
1415 	struct i40e_aq_set_phy_config config;
1416 	enum i40e_fc_mode fc_mode = hw->fc.requested_mode;
1417 	u8 pause_mask = 0x0;
1418 
1419 	switch (fc_mode) {
1420 	case I40E_FC_FULL:
1421 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1422 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1423 		break;
1424 	case I40E_FC_RX_PAUSE:
1425 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1426 		break;
1427 	case I40E_FC_TX_PAUSE:
1428 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1429 		break;
1430 	default:
1431 		break;
1432 	}
1433 
1434 	memset(&config, 0, sizeof(struct i40e_aq_set_phy_config));
1435 	/* clear the old pause settings */
1436 	config.abilities = abilities->abilities & ~(I40E_AQ_PHY_FLAG_PAUSE_TX) &
1437 			   ~(I40E_AQ_PHY_FLAG_PAUSE_RX);
1438 	/* set the new abilities */
1439 	config.abilities |= pause_mask;
1440 	/* If the abilities have changed, then set the new config */
1441 	if (config.abilities == abilities->abilities)
1442 		return 0;
1443 
1444 	/* Auto restart link so settings take effect */
1445 	if (atomic_restart)
1446 		config.abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
1447 	/* Copy over all the old settings */
1448 	config.phy_type = abilities->phy_type;
1449 	config.phy_type_ext = abilities->phy_type_ext;
1450 	config.link_speed = abilities->link_speed;
1451 	config.eee_capability = abilities->eee_capability;
1452 	config.eeer = abilities->eeer_val;
1453 	config.low_power_ctrl = abilities->d3_lpan;
1454 	config.fec_config = abilities->fec_cfg_curr_mod_ext_info &
1455 			    I40E_AQ_PHY_FEC_CONFIG_MASK;
1456 
1457 	return i40e_aq_set_phy_config(hw, &config, NULL);
1458 }
1459 
1460 /**
1461  * i40e_set_fc
1462  * @hw: pointer to the hw struct
1463  * @aq_failures: buffer to return AdminQ failure information
1464  * @atomic_restart: whether to enable atomic link restart
1465  *
1466  * Set the requested flow control mode using set_phy_config.
1467  **/
1468 int i40e_set_fc(struct i40e_hw *hw, u8 *aq_failures,
1469 		bool atomic_restart)
1470 {
1471 	struct i40e_aq_get_phy_abilities_resp abilities;
1472 	int status;
1473 
1474 	*aq_failures = 0x0;
1475 
1476 	/* Get the current phy config */
1477 	status = i40e_aq_get_phy_capabilities(hw, false, false, &abilities,
1478 					      NULL);
1479 	if (status) {
1480 		*aq_failures |= I40E_SET_FC_AQ_FAIL_GET;
1481 		return status;
1482 	}
1483 
1484 	status = i40e_set_fc_status(hw, &abilities, atomic_restart);
1485 	if (status)
1486 		*aq_failures |= I40E_SET_FC_AQ_FAIL_SET;
1487 
1488 	/* Update the link info */
1489 	status = i40e_update_link_info(hw);
1490 	if (status) {
1491 		/* Wait a little bit (on 40G cards it sometimes takes a really
1492 		 * long time for link to come back from the atomic reset)
1493 		 * and try once more
1494 		 */
1495 		msleep(1000);
1496 		status = i40e_update_link_info(hw);
1497 	}
1498 	if (status)
1499 		*aq_failures |= I40E_SET_FC_AQ_FAIL_UPDATE;
1500 
1501 	return status;
1502 }
1503 
1504 /**
1505  * i40e_aq_clear_pxe_mode
1506  * @hw: pointer to the hw struct
1507  * @cmd_details: pointer to command details structure or NULL
1508  *
1509  * Tell the firmware that the driver is taking over from PXE
1510  **/
1511 int i40e_aq_clear_pxe_mode(struct i40e_hw *hw,
1512 			   struct i40e_asq_cmd_details *cmd_details)
1513 {
1514 	struct i40e_aq_desc desc;
1515 	struct i40e_aqc_clear_pxe *cmd =
1516 		(struct i40e_aqc_clear_pxe *)&desc.params.raw;
1517 	int status;
1518 
1519 	i40e_fill_default_direct_cmd_desc(&desc,
1520 					  i40e_aqc_opc_clear_pxe_mode);
1521 
1522 	cmd->rx_cnt = 0x2;
1523 
1524 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1525 
1526 	wr32(hw, I40E_GLLAN_RCTL_0, 0x1);
1527 
1528 	return status;
1529 }
1530 
1531 /**
1532  * i40e_aq_set_link_restart_an
1533  * @hw: pointer to the hw struct
1534  * @enable_link: if true: enable link, if false: disable link
1535  * @cmd_details: pointer to command details structure or NULL
1536  *
1537  * Sets up the link and restarts the Auto-Negotiation over the link.
1538  **/
1539 int i40e_aq_set_link_restart_an(struct i40e_hw *hw,
1540 				bool enable_link,
1541 				struct i40e_asq_cmd_details *cmd_details)
1542 {
1543 	struct i40e_aq_desc desc;
1544 	struct i40e_aqc_set_link_restart_an *cmd =
1545 		(struct i40e_aqc_set_link_restart_an *)&desc.params.raw;
1546 	int status;
1547 
1548 	i40e_fill_default_direct_cmd_desc(&desc,
1549 					  i40e_aqc_opc_set_link_restart_an);
1550 
1551 	cmd->command = I40E_AQ_PHY_RESTART_AN;
1552 	if (enable_link)
1553 		cmd->command |= I40E_AQ_PHY_LINK_ENABLE;
1554 	else
1555 		cmd->command &= ~I40E_AQ_PHY_LINK_ENABLE;
1556 
1557 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1558 
1559 	return status;
1560 }
1561 
1562 /**
1563  * i40e_aq_get_link_info
1564  * @hw: pointer to the hw struct
1565  * @enable_lse: enable/disable LinkStatusEvent reporting
1566  * @link: pointer to link status structure - optional
1567  * @cmd_details: pointer to command details structure or NULL
1568  *
1569  * Returns the link status of the adapter.
1570  **/
1571 int i40e_aq_get_link_info(struct i40e_hw *hw,
1572 			  bool enable_lse, struct i40e_link_status *link,
1573 			  struct i40e_asq_cmd_details *cmd_details)
1574 {
1575 	struct i40e_aq_desc desc;
1576 	struct i40e_aqc_get_link_status *resp =
1577 		(struct i40e_aqc_get_link_status *)&desc.params.raw;
1578 	struct i40e_link_status *hw_link_info = &hw->phy.link_info;
1579 	bool tx_pause, rx_pause;
1580 	u16 command_flags;
1581 	int status;
1582 
1583 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_link_status);
1584 
1585 	if (enable_lse)
1586 		command_flags = I40E_AQ_LSE_ENABLE;
1587 	else
1588 		command_flags = I40E_AQ_LSE_DISABLE;
1589 	resp->command_flags = cpu_to_le16(command_flags);
1590 
1591 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1592 
1593 	if (status)
1594 		goto aq_get_link_info_exit;
1595 
1596 	/* save off old link status information */
1597 	hw->phy.link_info_old = *hw_link_info;
1598 
1599 	/* update link status */
1600 	hw_link_info->phy_type = (enum i40e_aq_phy_type)resp->phy_type;
1601 	hw->phy.media_type = i40e_get_media_type(hw);
1602 	hw_link_info->link_speed = (enum i40e_aq_link_speed)resp->link_speed;
1603 	hw_link_info->link_info = resp->link_info;
1604 	hw_link_info->an_info = resp->an_info;
1605 	hw_link_info->fec_info = resp->config & (I40E_AQ_CONFIG_FEC_KR_ENA |
1606 						 I40E_AQ_CONFIG_FEC_RS_ENA);
1607 	hw_link_info->ext_info = resp->ext_info;
1608 	hw_link_info->loopback = resp->loopback & I40E_AQ_LOOPBACK_MASK;
1609 	hw_link_info->max_frame_size = le16_to_cpu(resp->max_frame_size);
1610 	hw_link_info->pacing = resp->config & I40E_AQ_CONFIG_PACING_MASK;
1611 
1612 	/* update fc info */
1613 	tx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_TX);
1614 	rx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_RX);
1615 	if (tx_pause & rx_pause)
1616 		hw->fc.current_mode = I40E_FC_FULL;
1617 	else if (tx_pause)
1618 		hw->fc.current_mode = I40E_FC_TX_PAUSE;
1619 	else if (rx_pause)
1620 		hw->fc.current_mode = I40E_FC_RX_PAUSE;
1621 	else
1622 		hw->fc.current_mode = I40E_FC_NONE;
1623 
1624 	if (resp->config & I40E_AQ_CONFIG_CRC_ENA)
1625 		hw_link_info->crc_enable = true;
1626 	else
1627 		hw_link_info->crc_enable = false;
1628 
1629 	if (resp->command_flags & cpu_to_le16(I40E_AQ_LSE_IS_ENABLED))
1630 		hw_link_info->lse_enable = true;
1631 	else
1632 		hw_link_info->lse_enable = false;
1633 
1634 	if (hw->mac.type == I40E_MAC_XL710 && i40e_is_fw_ver_lt(hw, 4, 40) &&
1635 	    hw_link_info->phy_type == 0xE)
1636 		hw_link_info->phy_type = I40E_PHY_TYPE_10GBASE_SFPP_CU;
1637 
1638 	if (test_bit(I40E_HW_CAP_AQ_PHY_ACCESS, hw->caps) &&
1639 	    hw->mac.type != I40E_MAC_X722) {
1640 		__le32 tmp;
1641 
1642 		memcpy(&tmp, resp->link_type, sizeof(tmp));
1643 		hw->phy.phy_types = le32_to_cpu(tmp);
1644 		hw->phy.phy_types |= ((u64)resp->link_type_ext << 32);
1645 	}
1646 
1647 	/* save link status information */
1648 	if (link)
1649 		*link = *hw_link_info;
1650 
1651 	/* flag cleared so helper functions don't call AQ again */
1652 	hw->phy.get_link_info = false;
1653 
1654 aq_get_link_info_exit:
1655 	return status;
1656 }
1657 
1658 /**
1659  * i40e_aq_set_phy_int_mask
1660  * @hw: pointer to the hw struct
1661  * @mask: interrupt mask to be set
1662  * @cmd_details: pointer to command details structure or NULL
1663  *
1664  * Set link interrupt mask.
1665  **/
1666 int i40e_aq_set_phy_int_mask(struct i40e_hw *hw,
1667 			     u16 mask,
1668 			     struct i40e_asq_cmd_details *cmd_details)
1669 {
1670 	struct i40e_aq_desc desc;
1671 	struct i40e_aqc_set_phy_int_mask *cmd =
1672 		(struct i40e_aqc_set_phy_int_mask *)&desc.params.raw;
1673 	int status;
1674 
1675 	i40e_fill_default_direct_cmd_desc(&desc,
1676 					  i40e_aqc_opc_set_phy_int_mask);
1677 
1678 	cmd->event_mask = cpu_to_le16(mask);
1679 
1680 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1681 
1682 	return status;
1683 }
1684 
1685 /**
1686  * i40e_aq_set_mac_loopback
1687  * @hw: pointer to the HW struct
1688  * @ena_lpbk: Enable or Disable loopback
1689  * @cmd_details: pointer to command details structure or NULL
1690  *
1691  * Enable/disable loopback on a given port
1692  */
1693 int i40e_aq_set_mac_loopback(struct i40e_hw *hw, bool ena_lpbk,
1694 			     struct i40e_asq_cmd_details *cmd_details)
1695 {
1696 	struct i40e_aq_desc desc;
1697 	struct i40e_aqc_set_lb_mode *cmd =
1698 		(struct i40e_aqc_set_lb_mode *)&desc.params.raw;
1699 
1700 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_lb_modes);
1701 	if (ena_lpbk) {
1702 		if (hw->nvm.version <= I40E_LEGACY_LOOPBACK_NVM_VER)
1703 			cmd->lb_mode = cpu_to_le16(I40E_AQ_LB_MAC_LOCAL_LEGACY);
1704 		else
1705 			cmd->lb_mode = cpu_to_le16(I40E_AQ_LB_MAC_LOCAL);
1706 	}
1707 
1708 	return i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1709 }
1710 
1711 /**
1712  * i40e_aq_set_phy_debug
1713  * @hw: pointer to the hw struct
1714  * @cmd_flags: debug command flags
1715  * @cmd_details: pointer to command details structure or NULL
1716  *
1717  * Reset the external PHY.
1718  **/
1719 int i40e_aq_set_phy_debug(struct i40e_hw *hw, u8 cmd_flags,
1720 			  struct i40e_asq_cmd_details *cmd_details)
1721 {
1722 	struct i40e_aq_desc desc;
1723 	struct i40e_aqc_set_phy_debug *cmd =
1724 		(struct i40e_aqc_set_phy_debug *)&desc.params.raw;
1725 	int status;
1726 
1727 	i40e_fill_default_direct_cmd_desc(&desc,
1728 					  i40e_aqc_opc_set_phy_debug);
1729 
1730 	cmd->command_flags = cmd_flags;
1731 
1732 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1733 
1734 	return status;
1735 }
1736 
1737 /**
1738  * i40e_aq_add_vsi
1739  * @hw: pointer to the hw struct
1740  * @vsi_ctx: pointer to a vsi context struct
1741  * @cmd_details: pointer to command details structure or NULL
1742  *
1743  * Add a VSI context to the hardware.
1744 **/
1745 int i40e_aq_add_vsi(struct i40e_hw *hw,
1746 		    struct i40e_vsi_context *vsi_ctx,
1747 		    struct i40e_asq_cmd_details *cmd_details)
1748 {
1749 	struct i40e_aq_desc desc;
1750 	struct i40e_aqc_add_get_update_vsi *cmd =
1751 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
1752 	struct i40e_aqc_add_get_update_vsi_completion *resp =
1753 		(struct i40e_aqc_add_get_update_vsi_completion *)
1754 		&desc.params.raw;
1755 	int status;
1756 
1757 	i40e_fill_default_direct_cmd_desc(&desc,
1758 					  i40e_aqc_opc_add_vsi);
1759 
1760 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->uplink_seid);
1761 	cmd->connection_type = vsi_ctx->connection_type;
1762 	cmd->vf_id = vsi_ctx->vf_num;
1763 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1764 
1765 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
1766 
1767 	status = i40e_asq_send_command_atomic(hw, &desc, &vsi_ctx->info,
1768 					      sizeof(vsi_ctx->info),
1769 					      cmd_details, true);
1770 
1771 	if (status)
1772 		goto aq_add_vsi_exit;
1773 
1774 	vsi_ctx->seid = le16_to_cpu(resp->seid);
1775 	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
1776 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
1777 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1778 
1779 aq_add_vsi_exit:
1780 	return status;
1781 }
1782 
1783 /**
1784  * i40e_aq_set_default_vsi
1785  * @hw: pointer to the hw struct
1786  * @seid: vsi number
1787  * @cmd_details: pointer to command details structure or NULL
1788  **/
1789 int i40e_aq_set_default_vsi(struct i40e_hw *hw,
1790 			    u16 seid,
1791 			    struct i40e_asq_cmd_details *cmd_details)
1792 {
1793 	struct i40e_aq_desc desc;
1794 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1795 		(struct i40e_aqc_set_vsi_promiscuous_modes *)
1796 		&desc.params.raw;
1797 	int status;
1798 
1799 	i40e_fill_default_direct_cmd_desc(&desc,
1800 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1801 
1802 	cmd->promiscuous_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1803 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1804 	cmd->seid = cpu_to_le16(seid);
1805 
1806 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1807 
1808 	return status;
1809 }
1810 
1811 /**
1812  * i40e_aq_clear_default_vsi
1813  * @hw: pointer to the hw struct
1814  * @seid: vsi number
1815  * @cmd_details: pointer to command details structure or NULL
1816  **/
1817 int i40e_aq_clear_default_vsi(struct i40e_hw *hw,
1818 			      u16 seid,
1819 			      struct i40e_asq_cmd_details *cmd_details)
1820 {
1821 	struct i40e_aq_desc desc;
1822 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1823 		(struct i40e_aqc_set_vsi_promiscuous_modes *)
1824 		&desc.params.raw;
1825 	int status;
1826 
1827 	i40e_fill_default_direct_cmd_desc(&desc,
1828 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1829 
1830 	cmd->promiscuous_flags = cpu_to_le16(0);
1831 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1832 	cmd->seid = cpu_to_le16(seid);
1833 
1834 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1835 
1836 	return status;
1837 }
1838 
1839 /**
1840  * i40e_aq_set_vsi_unicast_promiscuous
1841  * @hw: pointer to the hw struct
1842  * @seid: vsi number
1843  * @set: set unicast promiscuous enable/disable
1844  * @cmd_details: pointer to command details structure or NULL
1845  * @rx_only_promisc: flag to decide if egress traffic gets mirrored in promisc
1846  **/
1847 int i40e_aq_set_vsi_unicast_promiscuous(struct i40e_hw *hw,
1848 					u16 seid, bool set,
1849 					struct i40e_asq_cmd_details *cmd_details,
1850 					bool rx_only_promisc)
1851 {
1852 	struct i40e_aq_desc desc;
1853 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1854 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1855 	u16 flags = 0;
1856 	int status;
1857 
1858 	i40e_fill_default_direct_cmd_desc(&desc,
1859 					i40e_aqc_opc_set_vsi_promiscuous_modes);
1860 
1861 	if (set) {
1862 		flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
1863 		if (rx_only_promisc && i40e_is_aq_api_ver_ge(hw, 1, 5))
1864 			flags |= I40E_AQC_SET_VSI_PROMISC_RX_ONLY;
1865 	}
1866 
1867 	cmd->promiscuous_flags = cpu_to_le16(flags);
1868 
1869 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
1870 	if (i40e_is_aq_api_ver_ge(hw, 1, 5))
1871 		cmd->valid_flags |=
1872 			cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_RX_ONLY);
1873 
1874 	cmd->seid = cpu_to_le16(seid);
1875 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1876 
1877 	return status;
1878 }
1879 
1880 /**
1881  * i40e_aq_set_vsi_multicast_promiscuous
1882  * @hw: pointer to the hw struct
1883  * @seid: vsi number
1884  * @set: set multicast promiscuous enable/disable
1885  * @cmd_details: pointer to command details structure or NULL
1886  **/
1887 int i40e_aq_set_vsi_multicast_promiscuous(struct i40e_hw *hw,
1888 					  u16 seid, bool set,
1889 					  struct i40e_asq_cmd_details *cmd_details)
1890 {
1891 	struct i40e_aq_desc desc;
1892 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1893 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1894 	u16 flags = 0;
1895 	int status;
1896 
1897 	i40e_fill_default_direct_cmd_desc(&desc,
1898 					i40e_aqc_opc_set_vsi_promiscuous_modes);
1899 
1900 	if (set)
1901 		flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
1902 
1903 	cmd->promiscuous_flags = cpu_to_le16(flags);
1904 
1905 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
1906 
1907 	cmd->seid = cpu_to_le16(seid);
1908 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1909 
1910 	return status;
1911 }
1912 
1913 /**
1914  * i40e_aq_set_vsi_mc_promisc_on_vlan
1915  * @hw: pointer to the hw struct
1916  * @seid: vsi number
1917  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
1918  * @vid: The VLAN tag filter - capture any multicast packet with this VLAN tag
1919  * @cmd_details: pointer to command details structure or NULL
1920  **/
1921 int i40e_aq_set_vsi_mc_promisc_on_vlan(struct i40e_hw *hw,
1922 				       u16 seid, bool enable,
1923 				       u16 vid,
1924 				       struct i40e_asq_cmd_details *cmd_details)
1925 {
1926 	struct i40e_aq_desc desc;
1927 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1928 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1929 	u16 flags = 0;
1930 	int status;
1931 
1932 	i40e_fill_default_direct_cmd_desc(&desc,
1933 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1934 
1935 	if (enable)
1936 		flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
1937 
1938 	cmd->promiscuous_flags = cpu_to_le16(flags);
1939 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
1940 	cmd->seid = cpu_to_le16(seid);
1941 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
1942 
1943 	status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0,
1944 					      cmd_details, true);
1945 
1946 	return status;
1947 }
1948 
1949 /**
1950  * i40e_aq_set_vsi_uc_promisc_on_vlan
1951  * @hw: pointer to the hw struct
1952  * @seid: vsi number
1953  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
1954  * @vid: The VLAN tag filter - capture any unicast packet with this VLAN tag
1955  * @cmd_details: pointer to command details structure or NULL
1956  **/
1957 int i40e_aq_set_vsi_uc_promisc_on_vlan(struct i40e_hw *hw,
1958 				       u16 seid, bool enable,
1959 				       u16 vid,
1960 				       struct i40e_asq_cmd_details *cmd_details)
1961 {
1962 	struct i40e_aq_desc desc;
1963 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1964 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1965 	u16 flags = 0;
1966 	int status;
1967 
1968 	i40e_fill_default_direct_cmd_desc(&desc,
1969 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1970 
1971 	if (enable) {
1972 		flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
1973 		if (i40e_is_aq_api_ver_ge(hw, 1, 5))
1974 			flags |= I40E_AQC_SET_VSI_PROMISC_RX_ONLY;
1975 	}
1976 
1977 	cmd->promiscuous_flags = cpu_to_le16(flags);
1978 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
1979 	if (i40e_is_aq_api_ver_ge(hw, 1, 5))
1980 		cmd->valid_flags |=
1981 			cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_RX_ONLY);
1982 	cmd->seid = cpu_to_le16(seid);
1983 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
1984 
1985 	status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0,
1986 					      cmd_details, true);
1987 
1988 	return status;
1989 }
1990 
1991 /**
1992  * i40e_aq_set_vsi_bc_promisc_on_vlan
1993  * @hw: pointer to the hw struct
1994  * @seid: vsi number
1995  * @enable: set broadcast promiscuous enable/disable for a given VLAN
1996  * @vid: The VLAN tag filter - capture any broadcast packet with this VLAN tag
1997  * @cmd_details: pointer to command details structure or NULL
1998  **/
1999 int i40e_aq_set_vsi_bc_promisc_on_vlan(struct i40e_hw *hw,
2000 				       u16 seid, bool enable, u16 vid,
2001 				       struct i40e_asq_cmd_details *cmd_details)
2002 {
2003 	struct i40e_aq_desc desc;
2004 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2005 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2006 	u16 flags = 0;
2007 	int status;
2008 
2009 	i40e_fill_default_direct_cmd_desc(&desc,
2010 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2011 
2012 	if (enable)
2013 		flags |= I40E_AQC_SET_VSI_PROMISC_BROADCAST;
2014 
2015 	cmd->promiscuous_flags = cpu_to_le16(flags);
2016 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2017 	cmd->seid = cpu_to_le16(seid);
2018 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
2019 
2020 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2021 
2022 	return status;
2023 }
2024 
2025 /**
2026  * i40e_aq_set_vsi_broadcast
2027  * @hw: pointer to the hw struct
2028  * @seid: vsi number
2029  * @set_filter: true to set filter, false to clear filter
2030  * @cmd_details: pointer to command details structure or NULL
2031  *
2032  * Set or clear the broadcast promiscuous flag (filter) for a given VSI.
2033  **/
2034 int i40e_aq_set_vsi_broadcast(struct i40e_hw *hw,
2035 			      u16 seid, bool set_filter,
2036 			      struct i40e_asq_cmd_details *cmd_details)
2037 {
2038 	struct i40e_aq_desc desc;
2039 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2040 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2041 	int status;
2042 
2043 	i40e_fill_default_direct_cmd_desc(&desc,
2044 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2045 
2046 	if (set_filter)
2047 		cmd->promiscuous_flags
2048 			    |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2049 	else
2050 		cmd->promiscuous_flags
2051 			    &= cpu_to_le16(~I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2052 
2053 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2054 	cmd->seid = cpu_to_le16(seid);
2055 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2056 
2057 	return status;
2058 }
2059 
2060 /**
2061  * i40e_aq_set_vsi_vlan_promisc - control the VLAN promiscuous setting
2062  * @hw: pointer to the hw struct
2063  * @seid: vsi number
2064  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
2065  * @cmd_details: pointer to command details structure or NULL
2066  **/
2067 int i40e_aq_set_vsi_vlan_promisc(struct i40e_hw *hw,
2068 				 u16 seid, bool enable,
2069 				 struct i40e_asq_cmd_details *cmd_details)
2070 {
2071 	struct i40e_aq_desc desc;
2072 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2073 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2074 	u16 flags = 0;
2075 	int status;
2076 
2077 	i40e_fill_default_direct_cmd_desc(&desc,
2078 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2079 	if (enable)
2080 		flags |= I40E_AQC_SET_VSI_PROMISC_VLAN;
2081 
2082 	cmd->promiscuous_flags = cpu_to_le16(flags);
2083 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_VLAN);
2084 	cmd->seid = cpu_to_le16(seid);
2085 
2086 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2087 
2088 	return status;
2089 }
2090 
2091 /**
2092  * i40e_aq_get_vsi_params - get VSI configuration info
2093  * @hw: pointer to the hw struct
2094  * @vsi_ctx: pointer to a vsi context struct
2095  * @cmd_details: pointer to command details structure or NULL
2096  **/
2097 int i40e_aq_get_vsi_params(struct i40e_hw *hw,
2098 			   struct i40e_vsi_context *vsi_ctx,
2099 			   struct i40e_asq_cmd_details *cmd_details)
2100 {
2101 	struct i40e_aq_desc desc;
2102 	struct i40e_aqc_add_get_update_vsi *cmd =
2103 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2104 	struct i40e_aqc_add_get_update_vsi_completion *resp =
2105 		(struct i40e_aqc_add_get_update_vsi_completion *)
2106 		&desc.params.raw;
2107 	int status;
2108 
2109 	i40e_fill_default_direct_cmd_desc(&desc,
2110 					  i40e_aqc_opc_get_vsi_parameters);
2111 
2112 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2113 
2114 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2115 
2116 	status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
2117 				    sizeof(vsi_ctx->info), NULL);
2118 
2119 	if (status)
2120 		goto aq_get_vsi_params_exit;
2121 
2122 	vsi_ctx->seid = le16_to_cpu(resp->seid);
2123 	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
2124 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
2125 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
2126 
2127 aq_get_vsi_params_exit:
2128 	return status;
2129 }
2130 
2131 /**
2132  * i40e_aq_update_vsi_params
2133  * @hw: pointer to the hw struct
2134  * @vsi_ctx: pointer to a vsi context struct
2135  * @cmd_details: pointer to command details structure or NULL
2136  *
2137  * Update a VSI context.
2138  **/
2139 int i40e_aq_update_vsi_params(struct i40e_hw *hw,
2140 			      struct i40e_vsi_context *vsi_ctx,
2141 			      struct i40e_asq_cmd_details *cmd_details)
2142 {
2143 	struct i40e_aq_desc desc;
2144 	struct i40e_aqc_add_get_update_vsi *cmd =
2145 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2146 	struct i40e_aqc_add_get_update_vsi_completion *resp =
2147 		(struct i40e_aqc_add_get_update_vsi_completion *)
2148 		&desc.params.raw;
2149 	int status;
2150 
2151 	i40e_fill_default_direct_cmd_desc(&desc,
2152 					  i40e_aqc_opc_update_vsi_parameters);
2153 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2154 
2155 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2156 
2157 	status = i40e_asq_send_command_atomic(hw, &desc, &vsi_ctx->info,
2158 					      sizeof(vsi_ctx->info),
2159 					      cmd_details, true);
2160 
2161 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
2162 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
2163 
2164 	return status;
2165 }
2166 
2167 /**
2168  * i40e_aq_get_switch_config
2169  * @hw: pointer to the hardware structure
2170  * @buf: pointer to the result buffer
2171  * @buf_size: length of input buffer
2172  * @start_seid: seid to start for the report, 0 == beginning
2173  * @cmd_details: pointer to command details structure or NULL
2174  *
2175  * Fill the buf with switch configuration returned from AdminQ command
2176  **/
2177 int i40e_aq_get_switch_config(struct i40e_hw *hw,
2178 			      struct i40e_aqc_get_switch_config_resp *buf,
2179 			      u16 buf_size, u16 *start_seid,
2180 			      struct i40e_asq_cmd_details *cmd_details)
2181 {
2182 	struct i40e_aq_desc desc;
2183 	struct i40e_aqc_switch_seid *scfg =
2184 		(struct i40e_aqc_switch_seid *)&desc.params.raw;
2185 	int status;
2186 
2187 	i40e_fill_default_direct_cmd_desc(&desc,
2188 					  i40e_aqc_opc_get_switch_config);
2189 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2190 	if (buf_size > I40E_AQ_LARGE_BUF)
2191 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2192 	scfg->seid = cpu_to_le16(*start_seid);
2193 
2194 	status = i40e_asq_send_command(hw, &desc, buf, buf_size, cmd_details);
2195 	*start_seid = le16_to_cpu(scfg->seid);
2196 
2197 	return status;
2198 }
2199 
2200 /**
2201  * i40e_aq_set_switch_config
2202  * @hw: pointer to the hardware structure
2203  * @flags: bit flag values to set
2204  * @mode: cloud filter mode
2205  * @valid_flags: which bit flags to set
2206  * @mode: cloud filter mode
2207  * @cmd_details: pointer to command details structure or NULL
2208  *
2209  * Set switch configuration bits
2210  **/
2211 int i40e_aq_set_switch_config(struct i40e_hw *hw,
2212 			      u16 flags,
2213 			      u16 valid_flags, u8 mode,
2214 			      struct i40e_asq_cmd_details *cmd_details)
2215 {
2216 	struct i40e_aq_desc desc;
2217 	struct i40e_aqc_set_switch_config *scfg =
2218 		(struct i40e_aqc_set_switch_config *)&desc.params.raw;
2219 	int status;
2220 
2221 	i40e_fill_default_direct_cmd_desc(&desc,
2222 					  i40e_aqc_opc_set_switch_config);
2223 	scfg->flags = cpu_to_le16(flags);
2224 	scfg->valid_flags = cpu_to_le16(valid_flags);
2225 	scfg->mode = mode;
2226 	if (test_bit(I40E_HW_CAP_802_1AD, hw->caps)) {
2227 		scfg->switch_tag = cpu_to_le16(hw->switch_tag);
2228 		scfg->first_tag = cpu_to_le16(hw->first_tag);
2229 		scfg->second_tag = cpu_to_le16(hw->second_tag);
2230 	}
2231 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2232 
2233 	return status;
2234 }
2235 
2236 /**
2237  * i40e_aq_get_firmware_version
2238  * @hw: pointer to the hw struct
2239  * @fw_major_version: firmware major version
2240  * @fw_minor_version: firmware minor version
2241  * @fw_build: firmware build number
2242  * @api_major_version: major queue version
2243  * @api_minor_version: minor queue version
2244  * @cmd_details: pointer to command details structure or NULL
2245  *
2246  * Get the firmware version from the admin queue commands
2247  **/
2248 int i40e_aq_get_firmware_version(struct i40e_hw *hw,
2249 				 u16 *fw_major_version, u16 *fw_minor_version,
2250 				 u32 *fw_build,
2251 				 u16 *api_major_version, u16 *api_minor_version,
2252 				 struct i40e_asq_cmd_details *cmd_details)
2253 {
2254 	struct i40e_aq_desc desc;
2255 	struct i40e_aqc_get_version *resp =
2256 		(struct i40e_aqc_get_version *)&desc.params.raw;
2257 	int status;
2258 
2259 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_version);
2260 
2261 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2262 
2263 	if (!status) {
2264 		if (fw_major_version)
2265 			*fw_major_version = le16_to_cpu(resp->fw_major);
2266 		if (fw_minor_version)
2267 			*fw_minor_version = le16_to_cpu(resp->fw_minor);
2268 		if (fw_build)
2269 			*fw_build = le32_to_cpu(resp->fw_build);
2270 		if (api_major_version)
2271 			*api_major_version = le16_to_cpu(resp->api_major);
2272 		if (api_minor_version)
2273 			*api_minor_version = le16_to_cpu(resp->api_minor);
2274 	}
2275 
2276 	return status;
2277 }
2278 
2279 /**
2280  * i40e_aq_send_driver_version
2281  * @hw: pointer to the hw struct
2282  * @dv: driver's major, minor version
2283  * @cmd_details: pointer to command details structure or NULL
2284  *
2285  * Send the driver version to the firmware
2286  **/
2287 int i40e_aq_send_driver_version(struct i40e_hw *hw,
2288 				struct i40e_driver_version *dv,
2289 				struct i40e_asq_cmd_details *cmd_details)
2290 {
2291 	struct i40e_aq_desc desc;
2292 	struct i40e_aqc_driver_version *cmd =
2293 		(struct i40e_aqc_driver_version *)&desc.params.raw;
2294 	int status;
2295 	u16 len;
2296 
2297 	if (dv == NULL)
2298 		return -EINVAL;
2299 
2300 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_driver_version);
2301 
2302 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD);
2303 	cmd->driver_major_ver = dv->major_version;
2304 	cmd->driver_minor_ver = dv->minor_version;
2305 	cmd->driver_build_ver = dv->build_version;
2306 	cmd->driver_subbuild_ver = dv->subbuild_version;
2307 
2308 	len = 0;
2309 	while (len < sizeof(dv->driver_string) &&
2310 	       (dv->driver_string[len] < 0x80) &&
2311 	       dv->driver_string[len])
2312 		len++;
2313 	status = i40e_asq_send_command(hw, &desc, dv->driver_string,
2314 				       len, cmd_details);
2315 
2316 	return status;
2317 }
2318 
2319 /**
2320  * i40e_get_link_status - get status of the HW network link
2321  * @hw: pointer to the hw struct
2322  * @link_up: pointer to bool (true/false = linkup/linkdown)
2323  *
2324  * Variable link_up true if link is up, false if link is down.
2325  * The variable link_up is invalid if returned value of status != 0
2326  *
2327  * Side effect: LinkStatusEvent reporting becomes enabled
2328  **/
2329 int i40e_get_link_status(struct i40e_hw *hw, bool *link_up)
2330 {
2331 	int status = 0;
2332 
2333 	if (hw->phy.get_link_info) {
2334 		status = i40e_update_link_info(hw);
2335 
2336 		if (status)
2337 			i40e_debug(hw, I40E_DEBUG_LINK, "get link failed: status %d\n",
2338 				   status);
2339 	}
2340 
2341 	*link_up = hw->phy.link_info.link_info & I40E_AQ_LINK_UP;
2342 
2343 	return status;
2344 }
2345 
2346 /**
2347  * i40e_update_link_info - update status of the HW network link
2348  * @hw: pointer to the hw struct
2349  **/
2350 noinline_for_stack int i40e_update_link_info(struct i40e_hw *hw)
2351 {
2352 	struct i40e_aq_get_phy_abilities_resp abilities;
2353 	int status = 0;
2354 
2355 	status = i40e_aq_get_link_info(hw, true, NULL, NULL);
2356 	if (status)
2357 		return status;
2358 
2359 	/* extra checking needed to ensure link info to user is timely */
2360 	if ((hw->phy.link_info.link_info & I40E_AQ_MEDIA_AVAILABLE) &&
2361 	    ((hw->phy.link_info.link_info & I40E_AQ_LINK_UP) ||
2362 	     !(hw->phy.link_info_old.link_info & I40E_AQ_LINK_UP))) {
2363 		status = i40e_aq_get_phy_capabilities(hw, false, false,
2364 						      &abilities, NULL);
2365 		if (status)
2366 			return status;
2367 
2368 		if (abilities.fec_cfg_curr_mod_ext_info &
2369 		    I40E_AQ_ENABLE_FEC_AUTO)
2370 			hw->phy.link_info.req_fec_info =
2371 				(I40E_AQ_REQUEST_FEC_KR |
2372 				 I40E_AQ_REQUEST_FEC_RS);
2373 		else
2374 			hw->phy.link_info.req_fec_info =
2375 				abilities.fec_cfg_curr_mod_ext_info &
2376 				(I40E_AQ_REQUEST_FEC_KR |
2377 				 I40E_AQ_REQUEST_FEC_RS);
2378 
2379 		memcpy(hw->phy.link_info.module_type, &abilities.module_type,
2380 		       sizeof(hw->phy.link_info.module_type));
2381 	}
2382 
2383 	return status;
2384 }
2385 
2386 /**
2387  * i40e_aq_add_veb - Insert a VEB between the VSI and the MAC
2388  * @hw: pointer to the hw struct
2389  * @uplink_seid: the MAC or other gizmo SEID
2390  * @downlink_seid: the VSI SEID
2391  * @enabled_tc: bitmap of TCs to be enabled
2392  * @default_port: true for default port VSI, false for control port
2393  * @veb_seid: pointer to where to put the resulting VEB SEID
2394  * @enable_stats: true to turn on VEB stats
2395  * @cmd_details: pointer to command details structure or NULL
2396  *
2397  * This asks the FW to add a VEB between the uplink and downlink
2398  * elements.  If the uplink SEID is 0, this will be a floating VEB.
2399  **/
2400 int i40e_aq_add_veb(struct i40e_hw *hw, u16 uplink_seid,
2401 		    u16 downlink_seid, u8 enabled_tc,
2402 		    bool default_port, u16 *veb_seid,
2403 		    bool enable_stats,
2404 		    struct i40e_asq_cmd_details *cmd_details)
2405 {
2406 	struct i40e_aq_desc desc;
2407 	struct i40e_aqc_add_veb *cmd =
2408 		(struct i40e_aqc_add_veb *)&desc.params.raw;
2409 	struct i40e_aqc_add_veb_completion *resp =
2410 		(struct i40e_aqc_add_veb_completion *)&desc.params.raw;
2411 	u16 veb_flags = 0;
2412 	int status;
2413 
2414 	/* SEIDs need to either both be set or both be 0 for floating VEB */
2415 	if (!!uplink_seid != !!downlink_seid)
2416 		return -EINVAL;
2417 
2418 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_veb);
2419 
2420 	cmd->uplink_seid = cpu_to_le16(uplink_seid);
2421 	cmd->downlink_seid = cpu_to_le16(downlink_seid);
2422 	cmd->enable_tcs = enabled_tc;
2423 	if (!uplink_seid)
2424 		veb_flags |= I40E_AQC_ADD_VEB_FLOATING;
2425 	if (default_port)
2426 		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DEFAULT;
2427 	else
2428 		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DATA;
2429 
2430 	/* reverse logic here: set the bitflag to disable the stats */
2431 	if (!enable_stats)
2432 		veb_flags |= I40E_AQC_ADD_VEB_ENABLE_DISABLE_STATS;
2433 
2434 	cmd->veb_flags = cpu_to_le16(veb_flags);
2435 
2436 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2437 
2438 	if (!status && veb_seid)
2439 		*veb_seid = le16_to_cpu(resp->veb_seid);
2440 
2441 	return status;
2442 }
2443 
2444 /**
2445  * i40e_aq_get_veb_parameters - Retrieve VEB parameters
2446  * @hw: pointer to the hw struct
2447  * @veb_seid: the SEID of the VEB to query
2448  * @switch_id: the uplink switch id
2449  * @floating: set to true if the VEB is floating
2450  * @statistic_index: index of the stats counter block for this VEB
2451  * @vebs_used: number of VEB's used by function
2452  * @vebs_free: total VEB's not reserved by any function
2453  * @cmd_details: pointer to command details structure or NULL
2454  *
2455  * This retrieves the parameters for a particular VEB, specified by
2456  * uplink_seid, and returns them to the caller.
2457  **/
2458 int i40e_aq_get_veb_parameters(struct i40e_hw *hw,
2459 			       u16 veb_seid, u16 *switch_id,
2460 			       bool *floating, u16 *statistic_index,
2461 			       u16 *vebs_used, u16 *vebs_free,
2462 			       struct i40e_asq_cmd_details *cmd_details)
2463 {
2464 	struct i40e_aq_desc desc;
2465 	struct i40e_aqc_get_veb_parameters_completion *cmd_resp =
2466 		(struct i40e_aqc_get_veb_parameters_completion *)
2467 		&desc.params.raw;
2468 	int status;
2469 
2470 	if (veb_seid == 0)
2471 		return -EINVAL;
2472 
2473 	i40e_fill_default_direct_cmd_desc(&desc,
2474 					  i40e_aqc_opc_get_veb_parameters);
2475 	cmd_resp->seid = cpu_to_le16(veb_seid);
2476 
2477 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2478 	if (status)
2479 		goto get_veb_exit;
2480 
2481 	if (switch_id)
2482 		*switch_id = le16_to_cpu(cmd_resp->switch_id);
2483 	if (statistic_index)
2484 		*statistic_index = le16_to_cpu(cmd_resp->statistic_index);
2485 	if (vebs_used)
2486 		*vebs_used = le16_to_cpu(cmd_resp->vebs_used);
2487 	if (vebs_free)
2488 		*vebs_free = le16_to_cpu(cmd_resp->vebs_free);
2489 	if (floating) {
2490 		u16 flags = le16_to_cpu(cmd_resp->veb_flags);
2491 
2492 		if (flags & I40E_AQC_ADD_VEB_FLOATING)
2493 			*floating = true;
2494 		else
2495 			*floating = false;
2496 	}
2497 
2498 get_veb_exit:
2499 	return status;
2500 }
2501 
2502 /**
2503  * i40e_prepare_add_macvlan
2504  * @mv_list: list of macvlans to be added
2505  * @desc: pointer to AQ descriptor structure
2506  * @count: length of the list
2507  * @seid: VSI for the mac address
2508  *
2509  * Internal helper function that prepares the add macvlan request
2510  * and returns the buffer size.
2511  **/
2512 static u16
2513 i40e_prepare_add_macvlan(struct i40e_aqc_add_macvlan_element_data *mv_list,
2514 			 struct i40e_aq_desc *desc, u16 count, u16 seid)
2515 {
2516 	struct i40e_aqc_macvlan *cmd =
2517 		(struct i40e_aqc_macvlan *)&desc->params.raw;
2518 	u16 buf_size;
2519 	int i;
2520 
2521 	buf_size = count * sizeof(*mv_list);
2522 
2523 	/* prep the rest of the request */
2524 	i40e_fill_default_direct_cmd_desc(desc, i40e_aqc_opc_add_macvlan);
2525 	cmd->num_addresses = cpu_to_le16(count);
2526 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2527 	cmd->seid[1] = 0;
2528 	cmd->seid[2] = 0;
2529 
2530 	for (i = 0; i < count; i++)
2531 		if (is_multicast_ether_addr(mv_list[i].mac_addr))
2532 			mv_list[i].flags |=
2533 			       cpu_to_le16(I40E_AQC_MACVLAN_ADD_USE_SHARED_MAC);
2534 
2535 	desc->flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2536 	if (buf_size > I40E_AQ_LARGE_BUF)
2537 		desc->flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2538 
2539 	return buf_size;
2540 }
2541 
2542 /**
2543  * i40e_aq_add_macvlan
2544  * @hw: pointer to the hw struct
2545  * @seid: VSI for the mac address
2546  * @mv_list: list of macvlans to be added
2547  * @count: length of the list
2548  * @cmd_details: pointer to command details structure or NULL
2549  *
2550  * Add MAC/VLAN addresses to the HW filtering
2551  **/
2552 int
2553 i40e_aq_add_macvlan(struct i40e_hw *hw, u16 seid,
2554 		    struct i40e_aqc_add_macvlan_element_data *mv_list,
2555 		    u16 count, struct i40e_asq_cmd_details *cmd_details)
2556 {
2557 	struct i40e_aq_desc desc;
2558 	u16 buf_size;
2559 
2560 	if (count == 0 || !mv_list || !hw)
2561 		return -EINVAL;
2562 
2563 	buf_size = i40e_prepare_add_macvlan(mv_list, &desc, count, seid);
2564 
2565 	return i40e_asq_send_command_atomic(hw, &desc, mv_list, buf_size,
2566 					    cmd_details, true);
2567 }
2568 
2569 /**
2570  * i40e_aq_add_macvlan_v2
2571  * @hw: pointer to the hw struct
2572  * @seid: VSI for the mac address
2573  * @mv_list: list of macvlans to be added
2574  * @count: length of the list
2575  * @cmd_details: pointer to command details structure or NULL
2576  * @aq_status: pointer to Admin Queue status return value
2577  *
2578  * Add MAC/VLAN addresses to the HW filtering.
2579  * The _v2 version returns the last Admin Queue status in aq_status
2580  * to avoid race conditions in access to hw->aq.asq_last_status.
2581  * It also calls _v2 versions of asq_send_command functions to
2582  * get the aq_status on the stack.
2583  **/
2584 int
2585 i40e_aq_add_macvlan_v2(struct i40e_hw *hw, u16 seid,
2586 		       struct i40e_aqc_add_macvlan_element_data *mv_list,
2587 		       u16 count, struct i40e_asq_cmd_details *cmd_details,
2588 		       enum i40e_admin_queue_err *aq_status)
2589 {
2590 	struct i40e_aq_desc desc;
2591 	u16 buf_size;
2592 
2593 	if (count == 0 || !mv_list || !hw)
2594 		return -EINVAL;
2595 
2596 	buf_size = i40e_prepare_add_macvlan(mv_list, &desc, count, seid);
2597 
2598 	return i40e_asq_send_command_atomic_v2(hw, &desc, mv_list, buf_size,
2599 					       cmd_details, true, aq_status);
2600 }
2601 
2602 /**
2603  * i40e_aq_remove_macvlan
2604  * @hw: pointer to the hw struct
2605  * @seid: VSI for the mac address
2606  * @mv_list: list of macvlans to be removed
2607  * @count: length of the list
2608  * @cmd_details: pointer to command details structure or NULL
2609  *
2610  * Remove MAC/VLAN addresses from the HW filtering
2611  **/
2612 int
2613 i40e_aq_remove_macvlan(struct i40e_hw *hw, u16 seid,
2614 		       struct i40e_aqc_remove_macvlan_element_data *mv_list,
2615 		       u16 count, struct i40e_asq_cmd_details *cmd_details)
2616 {
2617 	struct i40e_aq_desc desc;
2618 	struct i40e_aqc_macvlan *cmd =
2619 		(struct i40e_aqc_macvlan *)&desc.params.raw;
2620 	u16 buf_size;
2621 	int status;
2622 
2623 	if (count == 0 || !mv_list || !hw)
2624 		return -EINVAL;
2625 
2626 	buf_size = count * sizeof(*mv_list);
2627 
2628 	/* prep the rest of the request */
2629 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan);
2630 	cmd->num_addresses = cpu_to_le16(count);
2631 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2632 	cmd->seid[1] = 0;
2633 	cmd->seid[2] = 0;
2634 
2635 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2636 	if (buf_size > I40E_AQ_LARGE_BUF)
2637 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2638 
2639 	status = i40e_asq_send_command_atomic(hw, &desc, mv_list, buf_size,
2640 					      cmd_details, true);
2641 
2642 	return status;
2643 }
2644 
2645 /**
2646  * i40e_aq_remove_macvlan_v2
2647  * @hw: pointer to the hw struct
2648  * @seid: VSI for the mac address
2649  * @mv_list: list of macvlans to be removed
2650  * @count: length of the list
2651  * @cmd_details: pointer to command details structure or NULL
2652  * @aq_status: pointer to Admin Queue status return value
2653  *
2654  * Remove MAC/VLAN addresses from the HW filtering.
2655  * The _v2 version returns the last Admin Queue status in aq_status
2656  * to avoid race conditions in access to hw->aq.asq_last_status.
2657  * It also calls _v2 versions of asq_send_command functions to
2658  * get the aq_status on the stack.
2659  **/
2660 int
2661 i40e_aq_remove_macvlan_v2(struct i40e_hw *hw, u16 seid,
2662 			  struct i40e_aqc_remove_macvlan_element_data *mv_list,
2663 			  u16 count, struct i40e_asq_cmd_details *cmd_details,
2664 			  enum i40e_admin_queue_err *aq_status)
2665 {
2666 	struct i40e_aqc_macvlan *cmd;
2667 	struct i40e_aq_desc desc;
2668 	u16 buf_size;
2669 
2670 	if (count == 0 || !mv_list || !hw)
2671 		return -EINVAL;
2672 
2673 	buf_size = count * sizeof(*mv_list);
2674 
2675 	/* prep the rest of the request */
2676 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan);
2677 	cmd = (struct i40e_aqc_macvlan *)&desc.params.raw;
2678 	cmd->num_addresses = cpu_to_le16(count);
2679 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2680 	cmd->seid[1] = 0;
2681 	cmd->seid[2] = 0;
2682 
2683 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2684 	if (buf_size > I40E_AQ_LARGE_BUF)
2685 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2686 
2687 	return i40e_asq_send_command_atomic_v2(hw, &desc, mv_list, buf_size,
2688 						 cmd_details, true, aq_status);
2689 }
2690 
2691 /**
2692  * i40e_mirrorrule_op - Internal helper function to add/delete mirror rule
2693  * @hw: pointer to the hw struct
2694  * @opcode: AQ opcode for add or delete mirror rule
2695  * @sw_seid: Switch SEID (to which rule refers)
2696  * @rule_type: Rule Type (ingress/egress/VLAN)
2697  * @id: Destination VSI SEID or Rule ID
2698  * @count: length of the list
2699  * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2700  * @cmd_details: pointer to command details structure or NULL
2701  * @rule_id: Rule ID returned from FW
2702  * @rules_used: Number of rules used in internal switch
2703  * @rules_free: Number of rules free in internal switch
2704  *
2705  * Add/Delete a mirror rule to a specific switch. Mirror rules are supported for
2706  * VEBs/VEPA elements only
2707  **/
2708 static int i40e_mirrorrule_op(struct i40e_hw *hw,
2709 			      u16 opcode, u16 sw_seid, u16 rule_type, u16 id,
2710 			      u16 count, __le16 *mr_list,
2711 			      struct i40e_asq_cmd_details *cmd_details,
2712 			      u16 *rule_id, u16 *rules_used, u16 *rules_free)
2713 {
2714 	struct i40e_aq_desc desc;
2715 	struct i40e_aqc_add_delete_mirror_rule *cmd =
2716 		(struct i40e_aqc_add_delete_mirror_rule *)&desc.params.raw;
2717 	struct i40e_aqc_add_delete_mirror_rule_completion *resp =
2718 	(struct i40e_aqc_add_delete_mirror_rule_completion *)&desc.params.raw;
2719 	u16 buf_size;
2720 	int status;
2721 
2722 	buf_size = count * sizeof(*mr_list);
2723 
2724 	/* prep the rest of the request */
2725 	i40e_fill_default_direct_cmd_desc(&desc, opcode);
2726 	cmd->seid = cpu_to_le16(sw_seid);
2727 	cmd->rule_type = cpu_to_le16(rule_type &
2728 				     I40E_AQC_MIRROR_RULE_TYPE_MASK);
2729 	cmd->num_entries = cpu_to_le16(count);
2730 	/* Dest VSI for add, rule_id for delete */
2731 	cmd->destination = cpu_to_le16(id);
2732 	if (mr_list) {
2733 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2734 						I40E_AQ_FLAG_RD));
2735 		if (buf_size > I40E_AQ_LARGE_BUF)
2736 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2737 	}
2738 
2739 	status = i40e_asq_send_command(hw, &desc, mr_list, buf_size,
2740 				       cmd_details);
2741 	if (!status ||
2742 	    hw->aq.asq_last_status == I40E_AQ_RC_ENOSPC) {
2743 		if (rule_id)
2744 			*rule_id = le16_to_cpu(resp->rule_id);
2745 		if (rules_used)
2746 			*rules_used = le16_to_cpu(resp->mirror_rules_used);
2747 		if (rules_free)
2748 			*rules_free = le16_to_cpu(resp->mirror_rules_free);
2749 	}
2750 	return status;
2751 }
2752 
2753 /**
2754  * i40e_aq_add_mirrorrule - add a mirror rule
2755  * @hw: pointer to the hw struct
2756  * @sw_seid: Switch SEID (to which rule refers)
2757  * @rule_type: Rule Type (ingress/egress/VLAN)
2758  * @dest_vsi: SEID of VSI to which packets will be mirrored
2759  * @count: length of the list
2760  * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2761  * @cmd_details: pointer to command details structure or NULL
2762  * @rule_id: Rule ID returned from FW
2763  * @rules_used: Number of rules used in internal switch
2764  * @rules_free: Number of rules free in internal switch
2765  *
2766  * Add mirror rule. Mirror rules are supported for VEBs or VEPA elements only
2767  **/
2768 int i40e_aq_add_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2769 			   u16 rule_type, u16 dest_vsi, u16 count,
2770 			   __le16 *mr_list,
2771 			   struct i40e_asq_cmd_details *cmd_details,
2772 			   u16 *rule_id, u16 *rules_used, u16 *rules_free)
2773 {
2774 	if (!(rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_INGRESS ||
2775 	    rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_EGRESS)) {
2776 		if (count == 0 || !mr_list)
2777 			return -EINVAL;
2778 	}
2779 
2780 	return i40e_mirrorrule_op(hw, i40e_aqc_opc_add_mirror_rule, sw_seid,
2781 				  rule_type, dest_vsi, count, mr_list,
2782 				  cmd_details, rule_id, rules_used, rules_free);
2783 }
2784 
2785 /**
2786  * i40e_aq_delete_mirrorrule - delete a mirror rule
2787  * @hw: pointer to the hw struct
2788  * @sw_seid: Switch SEID (to which rule refers)
2789  * @rule_type: Rule Type (ingress/egress/VLAN)
2790  * @count: length of the list
2791  * @rule_id: Rule ID that is returned in the receive desc as part of
2792  *		add_mirrorrule.
2793  * @mr_list: list of mirrored VLAN IDs to be removed
2794  * @cmd_details: pointer to command details structure or NULL
2795  * @rules_used: Number of rules used in internal switch
2796  * @rules_free: Number of rules free in internal switch
2797  *
2798  * Delete a mirror rule. Mirror rules are supported for VEBs/VEPA elements only
2799  **/
2800 int i40e_aq_delete_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2801 			      u16 rule_type, u16 rule_id, u16 count,
2802 			      __le16 *mr_list,
2803 			      struct i40e_asq_cmd_details *cmd_details,
2804 			      u16 *rules_used, u16 *rules_free)
2805 {
2806 	/* Rule ID has to be valid except rule_type: INGRESS VLAN mirroring */
2807 	if (rule_type == I40E_AQC_MIRROR_RULE_TYPE_VLAN) {
2808 		/* count and mr_list shall be valid for rule_type INGRESS VLAN
2809 		 * mirroring. For other rule_type, count and rule_type should
2810 		 * not matter.
2811 		 */
2812 		if (count == 0 || !mr_list)
2813 			return -EINVAL;
2814 	}
2815 
2816 	return i40e_mirrorrule_op(hw, i40e_aqc_opc_delete_mirror_rule, sw_seid,
2817 				  rule_type, rule_id, count, mr_list,
2818 				  cmd_details, NULL, rules_used, rules_free);
2819 }
2820 
2821 /**
2822  * i40e_aq_send_msg_to_vf
2823  * @hw: pointer to the hardware structure
2824  * @vfid: VF id to send msg
2825  * @v_opcode: opcodes for VF-PF communication
2826  * @v_retval: return error code
2827  * @msg: pointer to the msg buffer
2828  * @msglen: msg length
2829  * @cmd_details: pointer to command details
2830  *
2831  * send msg to vf
2832  **/
2833 int i40e_aq_send_msg_to_vf(struct i40e_hw *hw, u16 vfid,
2834 			   u32 v_opcode, u32 v_retval, u8 *msg, u16 msglen,
2835 			   struct i40e_asq_cmd_details *cmd_details)
2836 {
2837 	struct i40e_aq_desc desc;
2838 	struct i40e_aqc_pf_vf_message *cmd =
2839 		(struct i40e_aqc_pf_vf_message *)&desc.params.raw;
2840 	int status;
2841 
2842 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_send_msg_to_vf);
2843 	cmd->id = cpu_to_le32(vfid);
2844 	desc.cookie_high = cpu_to_le32(v_opcode);
2845 	desc.cookie_low = cpu_to_le32(v_retval);
2846 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_SI);
2847 	if (msglen) {
2848 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2849 						I40E_AQ_FLAG_RD));
2850 		if (msglen > I40E_AQ_LARGE_BUF)
2851 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2852 		desc.datalen = cpu_to_le16(msglen);
2853 	}
2854 	status = i40e_asq_send_command(hw, &desc, msg, msglen, cmd_details);
2855 
2856 	return status;
2857 }
2858 
2859 /**
2860  * i40e_aq_debug_read_register
2861  * @hw: pointer to the hw struct
2862  * @reg_addr: register address
2863  * @reg_val: register value
2864  * @cmd_details: pointer to command details structure or NULL
2865  *
2866  * Read the register using the admin queue commands
2867  **/
2868 int i40e_aq_debug_read_register(struct i40e_hw *hw,
2869 				u32 reg_addr, u64 *reg_val,
2870 				struct i40e_asq_cmd_details *cmd_details)
2871 {
2872 	struct i40e_aq_desc desc;
2873 	struct i40e_aqc_debug_reg_read_write *cmd_resp =
2874 		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2875 	int status;
2876 
2877 	if (reg_val == NULL)
2878 		return -EINVAL;
2879 
2880 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_read_reg);
2881 
2882 	cmd_resp->address = cpu_to_le32(reg_addr);
2883 
2884 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2885 
2886 	if (!status) {
2887 		*reg_val = ((u64)le32_to_cpu(cmd_resp->value_high) << 32) |
2888 			   (u64)le32_to_cpu(cmd_resp->value_low);
2889 	}
2890 
2891 	return status;
2892 }
2893 
2894 /**
2895  * i40e_aq_debug_write_register
2896  * @hw: pointer to the hw struct
2897  * @reg_addr: register address
2898  * @reg_val: register value
2899  * @cmd_details: pointer to command details structure or NULL
2900  *
2901  * Write to a register using the admin queue commands
2902  **/
2903 int i40e_aq_debug_write_register(struct i40e_hw *hw,
2904 				 u32 reg_addr, u64 reg_val,
2905 				 struct i40e_asq_cmd_details *cmd_details)
2906 {
2907 	struct i40e_aq_desc desc;
2908 	struct i40e_aqc_debug_reg_read_write *cmd =
2909 		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2910 	int status;
2911 
2912 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_write_reg);
2913 
2914 	cmd->address = cpu_to_le32(reg_addr);
2915 	cmd->value_high = cpu_to_le32((u32)(reg_val >> 32));
2916 	cmd->value_low = cpu_to_le32((u32)(reg_val & 0xFFFFFFFF));
2917 
2918 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2919 
2920 	return status;
2921 }
2922 
2923 /**
2924  * i40e_aq_request_resource
2925  * @hw: pointer to the hw struct
2926  * @resource: resource id
2927  * @access: access type
2928  * @sdp_number: resource number
2929  * @timeout: the maximum time in ms that the driver may hold the resource
2930  * @cmd_details: pointer to command details structure or NULL
2931  *
2932  * requests common resource using the admin queue commands
2933  **/
2934 int i40e_aq_request_resource(struct i40e_hw *hw,
2935 			     enum i40e_aq_resources_ids resource,
2936 			     enum i40e_aq_resource_access_type access,
2937 			     u8 sdp_number, u64 *timeout,
2938 			     struct i40e_asq_cmd_details *cmd_details)
2939 {
2940 	struct i40e_aq_desc desc;
2941 	struct i40e_aqc_request_resource *cmd_resp =
2942 		(struct i40e_aqc_request_resource *)&desc.params.raw;
2943 	int status;
2944 
2945 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_request_resource);
2946 
2947 	cmd_resp->resource_id = cpu_to_le16(resource);
2948 	cmd_resp->access_type = cpu_to_le16(access);
2949 	cmd_resp->resource_number = cpu_to_le32(sdp_number);
2950 
2951 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2952 	/* The completion specifies the maximum time in ms that the driver
2953 	 * may hold the resource in the Timeout field.
2954 	 * If the resource is held by someone else, the command completes with
2955 	 * busy return value and the timeout field indicates the maximum time
2956 	 * the current owner of the resource has to free it.
2957 	 */
2958 	if (!status || hw->aq.asq_last_status == I40E_AQ_RC_EBUSY)
2959 		*timeout = le32_to_cpu(cmd_resp->timeout);
2960 
2961 	return status;
2962 }
2963 
2964 /**
2965  * i40e_aq_release_resource
2966  * @hw: pointer to the hw struct
2967  * @resource: resource id
2968  * @sdp_number: resource number
2969  * @cmd_details: pointer to command details structure or NULL
2970  *
2971  * release common resource using the admin queue commands
2972  **/
2973 int i40e_aq_release_resource(struct i40e_hw *hw,
2974 			     enum i40e_aq_resources_ids resource,
2975 			     u8 sdp_number,
2976 			     struct i40e_asq_cmd_details *cmd_details)
2977 {
2978 	struct i40e_aq_desc desc;
2979 	struct i40e_aqc_request_resource *cmd =
2980 		(struct i40e_aqc_request_resource *)&desc.params.raw;
2981 	int status;
2982 
2983 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_release_resource);
2984 
2985 	cmd->resource_id = cpu_to_le16(resource);
2986 	cmd->resource_number = cpu_to_le32(sdp_number);
2987 
2988 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2989 
2990 	return status;
2991 }
2992 
2993 /**
2994  * i40e_aq_read_nvm
2995  * @hw: pointer to the hw struct
2996  * @module_pointer: module pointer location in words from the NVM beginning
2997  * @offset: byte offset from the module beginning
2998  * @length: length of the section to be read (in bytes from the offset)
2999  * @data: command buffer (size [bytes] = length)
3000  * @last_command: tells if this is the last command in a series
3001  * @cmd_details: pointer to command details structure or NULL
3002  *
3003  * Read the NVM using the admin queue commands
3004  **/
3005 int i40e_aq_read_nvm(struct i40e_hw *hw, u8 module_pointer,
3006 		     u32 offset, u16 length, void *data,
3007 		     bool last_command,
3008 		     struct i40e_asq_cmd_details *cmd_details)
3009 {
3010 	struct i40e_aq_desc desc;
3011 	struct i40e_aqc_nvm_update *cmd =
3012 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3013 	int status;
3014 
3015 	/* In offset the highest byte must be zeroed. */
3016 	if (offset & 0xFF000000) {
3017 		status = -EINVAL;
3018 		goto i40e_aq_read_nvm_exit;
3019 	}
3020 
3021 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_read);
3022 
3023 	/* If this is the last command in a series, set the proper flag. */
3024 	if (last_command)
3025 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3026 	cmd->module_pointer = module_pointer;
3027 	cmd->offset = cpu_to_le32(offset);
3028 	cmd->length = cpu_to_le16(length);
3029 
3030 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3031 	if (length > I40E_AQ_LARGE_BUF)
3032 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3033 
3034 	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
3035 
3036 i40e_aq_read_nvm_exit:
3037 	return status;
3038 }
3039 
3040 /**
3041  * i40e_aq_erase_nvm
3042  * @hw: pointer to the hw struct
3043  * @module_pointer: module pointer location in words from the NVM beginning
3044  * @offset: offset in the module (expressed in 4 KB from module's beginning)
3045  * @length: length of the section to be erased (expressed in 4 KB)
3046  * @last_command: tells if this is the last command in a series
3047  * @cmd_details: pointer to command details structure or NULL
3048  *
3049  * Erase the NVM sector using the admin queue commands
3050  **/
3051 int i40e_aq_erase_nvm(struct i40e_hw *hw, u8 module_pointer,
3052 		      u32 offset, u16 length, bool last_command,
3053 		      struct i40e_asq_cmd_details *cmd_details)
3054 {
3055 	struct i40e_aq_desc desc;
3056 	struct i40e_aqc_nvm_update *cmd =
3057 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3058 	int status;
3059 
3060 	/* In offset the highest byte must be zeroed. */
3061 	if (offset & 0xFF000000) {
3062 		status = -EINVAL;
3063 		goto i40e_aq_erase_nvm_exit;
3064 	}
3065 
3066 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_erase);
3067 
3068 	/* If this is the last command in a series, set the proper flag. */
3069 	if (last_command)
3070 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3071 	cmd->module_pointer = module_pointer;
3072 	cmd->offset = cpu_to_le32(offset);
3073 	cmd->length = cpu_to_le16(length);
3074 
3075 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3076 
3077 i40e_aq_erase_nvm_exit:
3078 	return status;
3079 }
3080 
3081 /**
3082  * i40e_parse_discover_capabilities
3083  * @hw: pointer to the hw struct
3084  * @buff: pointer to a buffer containing device/function capability records
3085  * @cap_count: number of capability records in the list
3086  * @list_type_opc: type of capabilities list to parse
3087  *
3088  * Parse the device/function capabilities list.
3089  **/
3090 static void i40e_parse_discover_capabilities(struct i40e_hw *hw, void *buff,
3091 				     u32 cap_count,
3092 				     enum i40e_admin_queue_opc list_type_opc)
3093 {
3094 	struct i40e_aqc_list_capabilities_element_resp *cap;
3095 	u32 valid_functions, num_functions;
3096 	u32 number, logical_id, phys_id;
3097 	struct i40e_hw_capabilities *p;
3098 	u16 id, ocp_cfg_word0;
3099 	u8 major_rev;
3100 	int status;
3101 	u32 i = 0;
3102 
3103 	cap = (struct i40e_aqc_list_capabilities_element_resp *) buff;
3104 
3105 	if (list_type_opc == i40e_aqc_opc_list_dev_capabilities)
3106 		p = &hw->dev_caps;
3107 	else if (list_type_opc == i40e_aqc_opc_list_func_capabilities)
3108 		p = &hw->func_caps;
3109 	else
3110 		return;
3111 
3112 	for (i = 0; i < cap_count; i++, cap++) {
3113 		id = le16_to_cpu(cap->id);
3114 		number = le32_to_cpu(cap->number);
3115 		logical_id = le32_to_cpu(cap->logical_id);
3116 		phys_id = le32_to_cpu(cap->phys_id);
3117 		major_rev = cap->major_rev;
3118 
3119 		switch (id) {
3120 		case I40E_AQ_CAP_ID_SWITCH_MODE:
3121 			p->switch_mode = number;
3122 			break;
3123 		case I40E_AQ_CAP_ID_MNG_MODE:
3124 			p->management_mode = number;
3125 			if (major_rev > 1) {
3126 				p->mng_protocols_over_mctp = logical_id;
3127 				i40e_debug(hw, I40E_DEBUG_INIT,
3128 					   "HW Capability: Protocols over MCTP = %d\n",
3129 					   p->mng_protocols_over_mctp);
3130 			} else {
3131 				p->mng_protocols_over_mctp = 0;
3132 			}
3133 			break;
3134 		case I40E_AQ_CAP_ID_NPAR_ACTIVE:
3135 			p->npar_enable = number;
3136 			break;
3137 		case I40E_AQ_CAP_ID_OS2BMC_CAP:
3138 			p->os2bmc = number;
3139 			break;
3140 		case I40E_AQ_CAP_ID_FUNCTIONS_VALID:
3141 			p->valid_functions = number;
3142 			break;
3143 		case I40E_AQ_CAP_ID_SRIOV:
3144 			if (number == 1)
3145 				p->sr_iov_1_1 = true;
3146 			break;
3147 		case I40E_AQ_CAP_ID_VF:
3148 			p->num_vfs = number;
3149 			p->vf_base_id = logical_id;
3150 			break;
3151 		case I40E_AQ_CAP_ID_VMDQ:
3152 			if (number == 1)
3153 				p->vmdq = true;
3154 			break;
3155 		case I40E_AQ_CAP_ID_8021QBG:
3156 			if (number == 1)
3157 				p->evb_802_1_qbg = true;
3158 			break;
3159 		case I40E_AQ_CAP_ID_8021QBR:
3160 			if (number == 1)
3161 				p->evb_802_1_qbh = true;
3162 			break;
3163 		case I40E_AQ_CAP_ID_VSI:
3164 			p->num_vsis = number;
3165 			break;
3166 		case I40E_AQ_CAP_ID_DCB:
3167 			if (number == 1) {
3168 				p->dcb = true;
3169 				p->enabled_tcmap = logical_id;
3170 				p->maxtc = phys_id;
3171 			}
3172 			break;
3173 		case I40E_AQ_CAP_ID_FCOE:
3174 			if (number == 1)
3175 				p->fcoe = true;
3176 			break;
3177 		case I40E_AQ_CAP_ID_ISCSI:
3178 			if (number == 1)
3179 				p->iscsi = true;
3180 			break;
3181 		case I40E_AQ_CAP_ID_RSS:
3182 			p->rss = true;
3183 			p->rss_table_size = number;
3184 			p->rss_table_entry_width = logical_id;
3185 			break;
3186 		case I40E_AQ_CAP_ID_RXQ:
3187 			p->num_rx_qp = number;
3188 			p->base_queue = phys_id;
3189 			break;
3190 		case I40E_AQ_CAP_ID_TXQ:
3191 			p->num_tx_qp = number;
3192 			p->base_queue = phys_id;
3193 			break;
3194 		case I40E_AQ_CAP_ID_MSIX:
3195 			p->num_msix_vectors = number;
3196 			i40e_debug(hw, I40E_DEBUG_INIT,
3197 				   "HW Capability: MSIX vector count = %d\n",
3198 				   p->num_msix_vectors);
3199 			break;
3200 		case I40E_AQ_CAP_ID_VF_MSIX:
3201 			p->num_msix_vectors_vf = number;
3202 			break;
3203 		case I40E_AQ_CAP_ID_FLEX10:
3204 			if (major_rev == 1) {
3205 				if (number == 1) {
3206 					p->flex10_enable = true;
3207 					p->flex10_capable = true;
3208 				}
3209 			} else {
3210 				/* Capability revision >= 2 */
3211 				if (number & 1)
3212 					p->flex10_enable = true;
3213 				if (number & 2)
3214 					p->flex10_capable = true;
3215 			}
3216 			p->flex10_mode = logical_id;
3217 			p->flex10_status = phys_id;
3218 			break;
3219 		case I40E_AQ_CAP_ID_CEM:
3220 			if (number == 1)
3221 				p->mgmt_cem = true;
3222 			break;
3223 		case I40E_AQ_CAP_ID_IWARP:
3224 			if (number == 1)
3225 				p->iwarp = true;
3226 			break;
3227 		case I40E_AQ_CAP_ID_LED:
3228 			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3229 				p->led[phys_id] = true;
3230 			break;
3231 		case I40E_AQ_CAP_ID_SDP:
3232 			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3233 				p->sdp[phys_id] = true;
3234 			break;
3235 		case I40E_AQ_CAP_ID_MDIO:
3236 			if (number == 1) {
3237 				p->mdio_port_num = phys_id;
3238 				p->mdio_port_mode = logical_id;
3239 			}
3240 			break;
3241 		case I40E_AQ_CAP_ID_1588:
3242 			if (number == 1)
3243 				p->ieee_1588 = true;
3244 			break;
3245 		case I40E_AQ_CAP_ID_FLOW_DIRECTOR:
3246 			p->fd = true;
3247 			p->fd_filters_guaranteed = number;
3248 			p->fd_filters_best_effort = logical_id;
3249 			break;
3250 		case I40E_AQ_CAP_ID_WSR_PROT:
3251 			p->wr_csr_prot = (u64)number;
3252 			p->wr_csr_prot |= (u64)logical_id << 32;
3253 			break;
3254 		case I40E_AQ_CAP_ID_NVM_MGMT:
3255 			if (number & I40E_NVM_MGMT_SEC_REV_DISABLED)
3256 				p->sec_rev_disabled = true;
3257 			if (number & I40E_NVM_MGMT_UPDATE_DISABLED)
3258 				p->update_disabled = true;
3259 			break;
3260 		default:
3261 			break;
3262 		}
3263 	}
3264 
3265 	if (p->fcoe)
3266 		i40e_debug(hw, I40E_DEBUG_ALL, "device is FCoE capable\n");
3267 
3268 	/* Software override ensuring FCoE is disabled if npar or mfp
3269 	 * mode because it is not supported in these modes.
3270 	 */
3271 	if (p->npar_enable || p->flex10_enable)
3272 		p->fcoe = false;
3273 
3274 	/* count the enabled ports (aka the "not disabled" ports) */
3275 	hw->num_ports = 0;
3276 	for (i = 0; i < 4; i++) {
3277 		u32 port_cfg_reg = I40E_PRTGEN_CNF + (4 * i);
3278 		u64 port_cfg = 0;
3279 
3280 		/* use AQ read to get the physical register offset instead
3281 		 * of the port relative offset
3282 		 */
3283 		i40e_aq_debug_read_register(hw, port_cfg_reg, &port_cfg, NULL);
3284 		if (!(port_cfg & I40E_PRTGEN_CNF_PORT_DIS_MASK))
3285 			hw->num_ports++;
3286 	}
3287 
3288 	/* OCP cards case: if a mezz is removed the Ethernet port is at
3289 	 * disabled state in PRTGEN_CNF register. Additional NVM read is
3290 	 * needed in order to check if we are dealing with OCP card.
3291 	 * Those cards have 4 PFs at minimum, so using PRTGEN_CNF for counting
3292 	 * physical ports results in wrong partition id calculation and thus
3293 	 * not supporting WoL.
3294 	 */
3295 	if (hw->mac.type == I40E_MAC_X722) {
3296 		if (!i40e_acquire_nvm(hw, I40E_RESOURCE_READ)) {
3297 			status = i40e_aq_read_nvm(hw, I40E_SR_EMP_MODULE_PTR,
3298 						  2 * I40E_SR_OCP_CFG_WORD0,
3299 						  sizeof(ocp_cfg_word0),
3300 						  &ocp_cfg_word0, true, NULL);
3301 			if (!status &&
3302 			    (ocp_cfg_word0 & I40E_SR_OCP_ENABLED))
3303 				hw->num_ports = 4;
3304 			i40e_release_nvm(hw);
3305 		}
3306 	}
3307 
3308 	valid_functions = p->valid_functions;
3309 	num_functions = 0;
3310 	while (valid_functions) {
3311 		if (valid_functions & 1)
3312 			num_functions++;
3313 		valid_functions >>= 1;
3314 	}
3315 
3316 	/* partition id is 1-based, and functions are evenly spread
3317 	 * across the ports as partitions
3318 	 */
3319 	if (hw->num_ports != 0) {
3320 		hw->partition_id = (hw->pf_id / hw->num_ports) + 1;
3321 		hw->num_partitions = num_functions / hw->num_ports;
3322 	}
3323 
3324 	/* additional HW specific goodies that might
3325 	 * someday be HW version specific
3326 	 */
3327 	p->rx_buf_chain_len = I40E_MAX_CHAINED_RX_BUFFERS;
3328 }
3329 
3330 /**
3331  * i40e_aq_discover_capabilities
3332  * @hw: pointer to the hw struct
3333  * @buff: a virtual buffer to hold the capabilities
3334  * @buff_size: Size of the virtual buffer
3335  * @data_size: Size of the returned data, or buff size needed if AQ err==ENOMEM
3336  * @list_type_opc: capabilities type to discover - pass in the command opcode
3337  * @cmd_details: pointer to command details structure or NULL
3338  *
3339  * Get the device capabilities descriptions from the firmware
3340  **/
3341 int i40e_aq_discover_capabilities(struct i40e_hw *hw,
3342 				  void *buff, u16 buff_size, u16 *data_size,
3343 				  enum i40e_admin_queue_opc list_type_opc,
3344 				  struct i40e_asq_cmd_details *cmd_details)
3345 {
3346 	struct i40e_aqc_list_capabilites *cmd;
3347 	struct i40e_aq_desc desc;
3348 	int status = 0;
3349 
3350 	cmd = (struct i40e_aqc_list_capabilites *)&desc.params.raw;
3351 
3352 	if (list_type_opc != i40e_aqc_opc_list_func_capabilities &&
3353 		list_type_opc != i40e_aqc_opc_list_dev_capabilities) {
3354 		status = -EINVAL;
3355 		goto exit;
3356 	}
3357 
3358 	i40e_fill_default_direct_cmd_desc(&desc, list_type_opc);
3359 
3360 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3361 	if (buff_size > I40E_AQ_LARGE_BUF)
3362 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3363 
3364 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3365 	*data_size = le16_to_cpu(desc.datalen);
3366 
3367 	if (status)
3368 		goto exit;
3369 
3370 	i40e_parse_discover_capabilities(hw, buff, le32_to_cpu(cmd->count),
3371 					 list_type_opc);
3372 
3373 exit:
3374 	return status;
3375 }
3376 
3377 /**
3378  * i40e_aq_update_nvm
3379  * @hw: pointer to the hw struct
3380  * @module_pointer: module pointer location in words from the NVM beginning
3381  * @offset: byte offset from the module beginning
3382  * @length: length of the section to be written (in bytes from the offset)
3383  * @data: command buffer (size [bytes] = length)
3384  * @last_command: tells if this is the last command in a series
3385  * @preservation_flags: Preservation mode flags
3386  * @cmd_details: pointer to command details structure or NULL
3387  *
3388  * Update the NVM using the admin queue commands
3389  **/
3390 int i40e_aq_update_nvm(struct i40e_hw *hw, u8 module_pointer,
3391 		       u32 offset, u16 length, void *data,
3392 		       bool last_command, u8 preservation_flags,
3393 		       struct i40e_asq_cmd_details *cmd_details)
3394 {
3395 	struct i40e_aq_desc desc;
3396 	struct i40e_aqc_nvm_update *cmd =
3397 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3398 	int status;
3399 
3400 	/* In offset the highest byte must be zeroed. */
3401 	if (offset & 0xFF000000) {
3402 		status = -EINVAL;
3403 		goto i40e_aq_update_nvm_exit;
3404 	}
3405 
3406 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update);
3407 
3408 	/* If this is the last command in a series, set the proper flag. */
3409 	if (last_command)
3410 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3411 	if (hw->mac.type == I40E_MAC_X722) {
3412 		if (preservation_flags == I40E_NVM_PRESERVATION_FLAGS_SELECTED)
3413 			cmd->command_flags |=
3414 				(I40E_AQ_NVM_PRESERVATION_FLAGS_SELECTED <<
3415 				 I40E_AQ_NVM_PRESERVATION_FLAGS_SHIFT);
3416 		else if (preservation_flags == I40E_NVM_PRESERVATION_FLAGS_ALL)
3417 			cmd->command_flags |=
3418 				(I40E_AQ_NVM_PRESERVATION_FLAGS_ALL <<
3419 				 I40E_AQ_NVM_PRESERVATION_FLAGS_SHIFT);
3420 	}
3421 	cmd->module_pointer = module_pointer;
3422 	cmd->offset = cpu_to_le32(offset);
3423 	cmd->length = cpu_to_le16(length);
3424 
3425 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
3426 	if (length > I40E_AQ_LARGE_BUF)
3427 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3428 
3429 	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
3430 
3431 i40e_aq_update_nvm_exit:
3432 	return status;
3433 }
3434 
3435 /**
3436  * i40e_aq_rearrange_nvm
3437  * @hw: pointer to the hw struct
3438  * @rearrange_nvm: defines direction of rearrangement
3439  * @cmd_details: pointer to command details structure or NULL
3440  *
3441  * Rearrange NVM structure, available only for transition FW
3442  **/
3443 int i40e_aq_rearrange_nvm(struct i40e_hw *hw,
3444 			  u8 rearrange_nvm,
3445 			  struct i40e_asq_cmd_details *cmd_details)
3446 {
3447 	struct i40e_aqc_nvm_update *cmd;
3448 	struct i40e_aq_desc desc;
3449 	int status;
3450 
3451 	cmd = (struct i40e_aqc_nvm_update *)&desc.params.raw;
3452 
3453 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update);
3454 
3455 	rearrange_nvm &= (I40E_AQ_NVM_REARRANGE_TO_FLAT |
3456 			 I40E_AQ_NVM_REARRANGE_TO_STRUCT);
3457 
3458 	if (!rearrange_nvm) {
3459 		status = -EINVAL;
3460 		goto i40e_aq_rearrange_nvm_exit;
3461 	}
3462 
3463 	cmd->command_flags |= rearrange_nvm;
3464 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3465 
3466 i40e_aq_rearrange_nvm_exit:
3467 	return status;
3468 }
3469 
3470 /**
3471  * i40e_aq_get_lldp_mib
3472  * @hw: pointer to the hw struct
3473  * @bridge_type: type of bridge requested
3474  * @mib_type: Local, Remote or both Local and Remote MIBs
3475  * @buff: pointer to a user supplied buffer to store the MIB block
3476  * @buff_size: size of the buffer (in bytes)
3477  * @local_len : length of the returned Local LLDP MIB
3478  * @remote_len: length of the returned Remote LLDP MIB
3479  * @cmd_details: pointer to command details structure or NULL
3480  *
3481  * Requests the complete LLDP MIB (entire packet).
3482  **/
3483 int i40e_aq_get_lldp_mib(struct i40e_hw *hw, u8 bridge_type,
3484 			 u8 mib_type, void *buff, u16 buff_size,
3485 			 u16 *local_len, u16 *remote_len,
3486 			 struct i40e_asq_cmd_details *cmd_details)
3487 {
3488 	struct i40e_aq_desc desc;
3489 	struct i40e_aqc_lldp_get_mib *cmd =
3490 		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3491 	struct i40e_aqc_lldp_get_mib *resp =
3492 		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3493 	int status;
3494 
3495 	if (buff_size == 0 || !buff)
3496 		return -EINVAL;
3497 
3498 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_get_mib);
3499 	/* Indirect Command */
3500 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3501 
3502 	cmd->type = mib_type & I40E_AQ_LLDP_MIB_TYPE_MASK;
3503 	cmd->type |= FIELD_PREP(I40E_AQ_LLDP_BRIDGE_TYPE_MASK, bridge_type);
3504 
3505 	desc.datalen = cpu_to_le16(buff_size);
3506 
3507 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3508 	if (buff_size > I40E_AQ_LARGE_BUF)
3509 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3510 
3511 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3512 	if (!status) {
3513 		if (local_len != NULL)
3514 			*local_len = le16_to_cpu(resp->local_len);
3515 		if (remote_len != NULL)
3516 			*remote_len = le16_to_cpu(resp->remote_len);
3517 	}
3518 
3519 	return status;
3520 }
3521 
3522 /**
3523  * i40e_aq_set_lldp_mib - Set the LLDP MIB
3524  * @hw: pointer to the hw struct
3525  * @mib_type: Local, Remote or both Local and Remote MIBs
3526  * @buff: pointer to a user supplied buffer to store the MIB block
3527  * @buff_size: size of the buffer (in bytes)
3528  * @cmd_details: pointer to command details structure or NULL
3529  *
3530  * Set the LLDP MIB.
3531  **/
3532 int
3533 i40e_aq_set_lldp_mib(struct i40e_hw *hw,
3534 		     u8 mib_type, void *buff, u16 buff_size,
3535 		     struct i40e_asq_cmd_details *cmd_details)
3536 {
3537 	struct i40e_aqc_lldp_set_local_mib *cmd;
3538 	struct i40e_aq_desc desc;
3539 	int status;
3540 
3541 	cmd = (struct i40e_aqc_lldp_set_local_mib *)&desc.params.raw;
3542 	if (buff_size == 0 || !buff)
3543 		return -EINVAL;
3544 
3545 	i40e_fill_default_direct_cmd_desc(&desc,
3546 					  i40e_aqc_opc_lldp_set_local_mib);
3547 	/* Indirect Command */
3548 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
3549 	if (buff_size > I40E_AQ_LARGE_BUF)
3550 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3551 	desc.datalen = cpu_to_le16(buff_size);
3552 
3553 	cmd->type = mib_type;
3554 	cmd->length = cpu_to_le16(buff_size);
3555 	cmd->address_high = cpu_to_le32(upper_32_bits((uintptr_t)buff));
3556 	cmd->address_low = cpu_to_le32(lower_32_bits((uintptr_t)buff));
3557 
3558 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3559 	return status;
3560 }
3561 
3562 /**
3563  * i40e_aq_cfg_lldp_mib_change_event
3564  * @hw: pointer to the hw struct
3565  * @enable_update: Enable or Disable event posting
3566  * @cmd_details: pointer to command details structure or NULL
3567  *
3568  * Enable or Disable posting of an event on ARQ when LLDP MIB
3569  * associated with the interface changes
3570  **/
3571 int i40e_aq_cfg_lldp_mib_change_event(struct i40e_hw *hw,
3572 				      bool enable_update,
3573 				      struct i40e_asq_cmd_details *cmd_details)
3574 {
3575 	struct i40e_aq_desc desc;
3576 	struct i40e_aqc_lldp_update_mib *cmd =
3577 		(struct i40e_aqc_lldp_update_mib *)&desc.params.raw;
3578 	int status;
3579 
3580 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_update_mib);
3581 
3582 	if (!enable_update)
3583 		cmd->command |= I40E_AQ_LLDP_MIB_UPDATE_DISABLE;
3584 
3585 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3586 
3587 	return status;
3588 }
3589 
3590 /**
3591  * i40e_aq_restore_lldp
3592  * @hw: pointer to the hw struct
3593  * @setting: pointer to factory setting variable or NULL
3594  * @restore: True if factory settings should be restored
3595  * @cmd_details: pointer to command details structure or NULL
3596  *
3597  * Restore LLDP Agent factory settings if @restore set to True. In other case
3598  * only returns factory setting in AQ response.
3599  **/
3600 int
3601 i40e_aq_restore_lldp(struct i40e_hw *hw, u8 *setting, bool restore,
3602 		     struct i40e_asq_cmd_details *cmd_details)
3603 {
3604 	struct i40e_aq_desc desc;
3605 	struct i40e_aqc_lldp_restore *cmd =
3606 		(struct i40e_aqc_lldp_restore *)&desc.params.raw;
3607 	int status;
3608 
3609 	if (!test_bit(I40E_HW_CAP_FW_LLDP_PERSISTENT, hw->caps)) {
3610 		i40e_debug(hw, I40E_DEBUG_ALL,
3611 			   "Restore LLDP not supported by current FW version.\n");
3612 		return -ENODEV;
3613 	}
3614 
3615 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_restore);
3616 
3617 	if (restore)
3618 		cmd->command |= I40E_AQ_LLDP_AGENT_RESTORE;
3619 
3620 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3621 
3622 	if (setting)
3623 		*setting = cmd->command & 1;
3624 
3625 	return status;
3626 }
3627 
3628 /**
3629  * i40e_aq_stop_lldp
3630  * @hw: pointer to the hw struct
3631  * @shutdown_agent: True if LLDP Agent needs to be Shutdown
3632  * @persist: True if stop of LLDP should be persistent across power cycles
3633  * @cmd_details: pointer to command details structure or NULL
3634  *
3635  * Stop or Shutdown the embedded LLDP Agent
3636  **/
3637 int i40e_aq_stop_lldp(struct i40e_hw *hw, bool shutdown_agent,
3638 		      bool persist,
3639 		      struct i40e_asq_cmd_details *cmd_details)
3640 {
3641 	struct i40e_aq_desc desc;
3642 	struct i40e_aqc_lldp_stop *cmd =
3643 		(struct i40e_aqc_lldp_stop *)&desc.params.raw;
3644 	int status;
3645 
3646 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_stop);
3647 
3648 	if (shutdown_agent)
3649 		cmd->command |= I40E_AQ_LLDP_AGENT_SHUTDOWN;
3650 
3651 	if (persist) {
3652 		if (test_bit(I40E_HW_CAP_FW_LLDP_PERSISTENT, hw->caps))
3653 			cmd->command |= I40E_AQ_LLDP_AGENT_STOP_PERSIST;
3654 		else
3655 			i40e_debug(hw, I40E_DEBUG_ALL,
3656 				   "Persistent Stop LLDP not supported by current FW version.\n");
3657 	}
3658 
3659 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3660 
3661 	return status;
3662 }
3663 
3664 /**
3665  * i40e_aq_start_lldp
3666  * @hw: pointer to the hw struct
3667  * @persist: True if start of LLDP should be persistent across power cycles
3668  * @cmd_details: pointer to command details structure or NULL
3669  *
3670  * Start the embedded LLDP Agent on all ports.
3671  **/
3672 int i40e_aq_start_lldp(struct i40e_hw *hw, bool persist,
3673 		       struct i40e_asq_cmd_details *cmd_details)
3674 {
3675 	struct i40e_aq_desc desc;
3676 	struct i40e_aqc_lldp_start *cmd =
3677 		(struct i40e_aqc_lldp_start *)&desc.params.raw;
3678 	int status;
3679 
3680 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_start);
3681 
3682 	cmd->command = I40E_AQ_LLDP_AGENT_START;
3683 
3684 	if (persist) {
3685 		if (test_bit(I40E_HW_CAP_FW_LLDP_PERSISTENT, hw->caps))
3686 			cmd->command |= I40E_AQ_LLDP_AGENT_START_PERSIST;
3687 		else
3688 			i40e_debug(hw, I40E_DEBUG_ALL,
3689 				   "Persistent Start LLDP not supported by current FW version.\n");
3690 	}
3691 
3692 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3693 
3694 	return status;
3695 }
3696 
3697 /**
3698  * i40e_aq_set_dcb_parameters
3699  * @hw: pointer to the hw struct
3700  * @cmd_details: pointer to command details structure or NULL
3701  * @dcb_enable: True if DCB configuration needs to be applied
3702  *
3703  **/
3704 int
3705 i40e_aq_set_dcb_parameters(struct i40e_hw *hw, bool dcb_enable,
3706 			   struct i40e_asq_cmd_details *cmd_details)
3707 {
3708 	struct i40e_aq_desc desc;
3709 	struct i40e_aqc_set_dcb_parameters *cmd =
3710 		(struct i40e_aqc_set_dcb_parameters *)&desc.params.raw;
3711 	int status;
3712 
3713 	if (!test_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, hw->caps))
3714 		return -ENODEV;
3715 
3716 	i40e_fill_default_direct_cmd_desc(&desc,
3717 					  i40e_aqc_opc_set_dcb_parameters);
3718 
3719 	if (dcb_enable) {
3720 		cmd->valid_flags = I40E_DCB_VALID;
3721 		cmd->command = I40E_AQ_DCB_SET_AGENT;
3722 	}
3723 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3724 
3725 	return status;
3726 }
3727 
3728 /**
3729  * i40e_aq_get_cee_dcb_config
3730  * @hw: pointer to the hw struct
3731  * @buff: response buffer that stores CEE operational configuration
3732  * @buff_size: size of the buffer passed
3733  * @cmd_details: pointer to command details structure or NULL
3734  *
3735  * Get CEE DCBX mode operational configuration from firmware
3736  **/
3737 int i40e_aq_get_cee_dcb_config(struct i40e_hw *hw,
3738 			       void *buff, u16 buff_size,
3739 			       struct i40e_asq_cmd_details *cmd_details)
3740 {
3741 	struct i40e_aq_desc desc;
3742 	int status;
3743 
3744 	if (buff_size == 0 || !buff)
3745 		return -EINVAL;
3746 
3747 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_cee_dcb_cfg);
3748 
3749 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3750 	status = i40e_asq_send_command(hw, &desc, (void *)buff, buff_size,
3751 				       cmd_details);
3752 
3753 	return status;
3754 }
3755 
3756 /**
3757  * i40e_aq_add_udp_tunnel
3758  * @hw: pointer to the hw struct
3759  * @udp_port: the UDP port to add in Host byte order
3760  * @protocol_index: protocol index type
3761  * @filter_index: pointer to filter index
3762  * @cmd_details: pointer to command details structure or NULL
3763  *
3764  * Note: Firmware expects the udp_port value to be in Little Endian format,
3765  * and this function will call cpu_to_le16 to convert from Host byte order to
3766  * Little Endian order.
3767  **/
3768 int i40e_aq_add_udp_tunnel(struct i40e_hw *hw,
3769 			   u16 udp_port, u8 protocol_index,
3770 			   u8 *filter_index,
3771 			   struct i40e_asq_cmd_details *cmd_details)
3772 {
3773 	struct i40e_aq_desc desc;
3774 	struct i40e_aqc_add_udp_tunnel *cmd =
3775 		(struct i40e_aqc_add_udp_tunnel *)&desc.params.raw;
3776 	struct i40e_aqc_del_udp_tunnel_completion *resp =
3777 		(struct i40e_aqc_del_udp_tunnel_completion *)&desc.params.raw;
3778 	int status;
3779 
3780 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_udp_tunnel);
3781 
3782 	cmd->udp_port = cpu_to_le16(udp_port);
3783 	cmd->protocol_type = protocol_index;
3784 
3785 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3786 
3787 	if (!status && filter_index)
3788 		*filter_index = resp->index;
3789 
3790 	return status;
3791 }
3792 
3793 /**
3794  * i40e_aq_del_udp_tunnel
3795  * @hw: pointer to the hw struct
3796  * @index: filter index
3797  * @cmd_details: pointer to command details structure or NULL
3798  **/
3799 int i40e_aq_del_udp_tunnel(struct i40e_hw *hw, u8 index,
3800 			   struct i40e_asq_cmd_details *cmd_details)
3801 {
3802 	struct i40e_aq_desc desc;
3803 	struct i40e_aqc_remove_udp_tunnel *cmd =
3804 		(struct i40e_aqc_remove_udp_tunnel *)&desc.params.raw;
3805 	int status;
3806 
3807 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_del_udp_tunnel);
3808 
3809 	cmd->index = index;
3810 
3811 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3812 
3813 	return status;
3814 }
3815 
3816 /**
3817  * i40e_aq_delete_element - Delete switch element
3818  * @hw: pointer to the hw struct
3819  * @seid: the SEID to delete from the switch
3820  * @cmd_details: pointer to command details structure or NULL
3821  *
3822  * This deletes a switch element from the switch.
3823  **/
3824 int i40e_aq_delete_element(struct i40e_hw *hw, u16 seid,
3825 			   struct i40e_asq_cmd_details *cmd_details)
3826 {
3827 	struct i40e_aq_desc desc;
3828 	struct i40e_aqc_switch_seid *cmd =
3829 		(struct i40e_aqc_switch_seid *)&desc.params.raw;
3830 	int status;
3831 
3832 	if (seid == 0)
3833 		return -EINVAL;
3834 
3835 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_delete_element);
3836 
3837 	cmd->seid = cpu_to_le16(seid);
3838 
3839 	status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0,
3840 					      cmd_details, true);
3841 
3842 	return status;
3843 }
3844 
3845 /**
3846  * i40e_aq_dcb_updated - DCB Updated Command
3847  * @hw: pointer to the hw struct
3848  * @cmd_details: pointer to command details structure or NULL
3849  *
3850  * EMP will return when the shared RPB settings have been
3851  * recomputed and modified. The retval field in the descriptor
3852  * will be set to 0 when RPB is modified.
3853  **/
3854 int i40e_aq_dcb_updated(struct i40e_hw *hw,
3855 			struct i40e_asq_cmd_details *cmd_details)
3856 {
3857 	struct i40e_aq_desc desc;
3858 	int status;
3859 
3860 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_dcb_updated);
3861 
3862 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3863 
3864 	return status;
3865 }
3866 
3867 /**
3868  * i40e_aq_tx_sched_cmd - generic Tx scheduler AQ command handler
3869  * @hw: pointer to the hw struct
3870  * @seid: seid for the physical port/switching component/vsi
3871  * @buff: Indirect buffer to hold data parameters and response
3872  * @buff_size: Indirect buffer size
3873  * @opcode: Tx scheduler AQ command opcode
3874  * @cmd_details: pointer to command details structure or NULL
3875  *
3876  * Generic command handler for Tx scheduler AQ commands
3877  **/
3878 static int i40e_aq_tx_sched_cmd(struct i40e_hw *hw, u16 seid,
3879 				void *buff, u16 buff_size,
3880 				enum i40e_admin_queue_opc opcode,
3881 				struct i40e_asq_cmd_details *cmd_details)
3882 {
3883 	struct i40e_aq_desc desc;
3884 	struct i40e_aqc_tx_sched_ind *cmd =
3885 		(struct i40e_aqc_tx_sched_ind *)&desc.params.raw;
3886 	int status;
3887 	bool cmd_param_flag = false;
3888 
3889 	switch (opcode) {
3890 	case i40e_aqc_opc_configure_vsi_ets_sla_bw_limit:
3891 	case i40e_aqc_opc_configure_vsi_tc_bw:
3892 	case i40e_aqc_opc_enable_switching_comp_ets:
3893 	case i40e_aqc_opc_modify_switching_comp_ets:
3894 	case i40e_aqc_opc_disable_switching_comp_ets:
3895 	case i40e_aqc_opc_configure_switching_comp_ets_bw_limit:
3896 	case i40e_aqc_opc_configure_switching_comp_bw_config:
3897 		cmd_param_flag = true;
3898 		break;
3899 	case i40e_aqc_opc_query_vsi_bw_config:
3900 	case i40e_aqc_opc_query_vsi_ets_sla_config:
3901 	case i40e_aqc_opc_query_switching_comp_ets_config:
3902 	case i40e_aqc_opc_query_port_ets_config:
3903 	case i40e_aqc_opc_query_switching_comp_bw_config:
3904 		cmd_param_flag = false;
3905 		break;
3906 	default:
3907 		return -EINVAL;
3908 	}
3909 
3910 	i40e_fill_default_direct_cmd_desc(&desc, opcode);
3911 
3912 	/* Indirect command */
3913 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3914 	if (cmd_param_flag)
3915 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
3916 	if (buff_size > I40E_AQ_LARGE_BUF)
3917 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3918 
3919 	desc.datalen = cpu_to_le16(buff_size);
3920 
3921 	cmd->vsi_seid = cpu_to_le16(seid);
3922 
3923 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3924 
3925 	return status;
3926 }
3927 
3928 /**
3929  * i40e_aq_config_vsi_bw_limit - Configure VSI BW Limit
3930  * @hw: pointer to the hw struct
3931  * @seid: VSI seid
3932  * @credit: BW limit credits (0 = disabled)
3933  * @max_credit: Max BW limit credits
3934  * @cmd_details: pointer to command details structure or NULL
3935  **/
3936 int i40e_aq_config_vsi_bw_limit(struct i40e_hw *hw,
3937 				u16 seid, u16 credit, u8 max_credit,
3938 				struct i40e_asq_cmd_details *cmd_details)
3939 {
3940 	struct i40e_aq_desc desc;
3941 	struct i40e_aqc_configure_vsi_bw_limit *cmd =
3942 		(struct i40e_aqc_configure_vsi_bw_limit *)&desc.params.raw;
3943 	int status;
3944 
3945 	i40e_fill_default_direct_cmd_desc(&desc,
3946 					  i40e_aqc_opc_configure_vsi_bw_limit);
3947 
3948 	cmd->vsi_seid = cpu_to_le16(seid);
3949 	cmd->credit = cpu_to_le16(credit);
3950 	cmd->max_credit = max_credit;
3951 
3952 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3953 
3954 	return status;
3955 }
3956 
3957 /**
3958  * i40e_aq_config_vsi_tc_bw - Config VSI BW Allocation per TC
3959  * @hw: pointer to the hw struct
3960  * @seid: VSI seid
3961  * @bw_data: Buffer holding enabled TCs, relative TC BW limit/credits
3962  * @cmd_details: pointer to command details structure or NULL
3963  **/
3964 int i40e_aq_config_vsi_tc_bw(struct i40e_hw *hw,
3965 			     u16 seid,
3966 			     struct i40e_aqc_configure_vsi_tc_bw_data *bw_data,
3967 			     struct i40e_asq_cmd_details *cmd_details)
3968 {
3969 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3970 				    i40e_aqc_opc_configure_vsi_tc_bw,
3971 				    cmd_details);
3972 }
3973 
3974 /**
3975  * i40e_aq_config_switch_comp_ets - Enable/Disable/Modify ETS on the port
3976  * @hw: pointer to the hw struct
3977  * @seid: seid of the switching component connected to Physical Port
3978  * @ets_data: Buffer holding ETS parameters
3979  * @opcode: Tx scheduler AQ command opcode
3980  * @cmd_details: pointer to command details structure or NULL
3981  **/
3982 int
3983 i40e_aq_config_switch_comp_ets(struct i40e_hw *hw,
3984 			       u16 seid,
3985 			       struct i40e_aqc_configure_switching_comp_ets_data *ets_data,
3986 			       enum i40e_admin_queue_opc opcode,
3987 			       struct i40e_asq_cmd_details *cmd_details)
3988 {
3989 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)ets_data,
3990 				    sizeof(*ets_data), opcode, cmd_details);
3991 }
3992 
3993 /**
3994  * i40e_aq_config_switch_comp_bw_config - Config Switch comp BW Alloc per TC
3995  * @hw: pointer to the hw struct
3996  * @seid: seid of the switching component
3997  * @bw_data: Buffer holding enabled TCs, relative/absolute TC BW limit/credits
3998  * @cmd_details: pointer to command details structure or NULL
3999  **/
4000 int
4001 i40e_aq_config_switch_comp_bw_config(struct i40e_hw *hw,
4002 	u16 seid,
4003 	struct i40e_aqc_configure_switching_comp_bw_config_data *bw_data,
4004 	struct i40e_asq_cmd_details *cmd_details)
4005 {
4006 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4007 			    i40e_aqc_opc_configure_switching_comp_bw_config,
4008 			    cmd_details);
4009 }
4010 
4011 /**
4012  * i40e_aq_query_vsi_bw_config - Query VSI BW configuration
4013  * @hw: pointer to the hw struct
4014  * @seid: seid of the VSI
4015  * @bw_data: Buffer to hold VSI BW configuration
4016  * @cmd_details: pointer to command details structure or NULL
4017  **/
4018 int
4019 i40e_aq_query_vsi_bw_config(struct i40e_hw *hw,
4020 			    u16 seid,
4021 			    struct i40e_aqc_query_vsi_bw_config_resp *bw_data,
4022 			    struct i40e_asq_cmd_details *cmd_details)
4023 {
4024 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4025 				    i40e_aqc_opc_query_vsi_bw_config,
4026 				    cmd_details);
4027 }
4028 
4029 /**
4030  * i40e_aq_query_vsi_ets_sla_config - Query VSI BW configuration per TC
4031  * @hw: pointer to the hw struct
4032  * @seid: seid of the VSI
4033  * @bw_data: Buffer to hold VSI BW configuration per TC
4034  * @cmd_details: pointer to command details structure or NULL
4035  **/
4036 int
4037 i40e_aq_query_vsi_ets_sla_config(struct i40e_hw *hw,
4038 				 u16 seid,
4039 				 struct i40e_aqc_query_vsi_ets_sla_config_resp *bw_data,
4040 				 struct i40e_asq_cmd_details *cmd_details)
4041 {
4042 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4043 				    i40e_aqc_opc_query_vsi_ets_sla_config,
4044 				    cmd_details);
4045 }
4046 
4047 /**
4048  * i40e_aq_query_switch_comp_ets_config - Query Switch comp BW config per TC
4049  * @hw: pointer to the hw struct
4050  * @seid: seid of the switching component
4051  * @bw_data: Buffer to hold switching component's per TC BW config
4052  * @cmd_details: pointer to command details structure or NULL
4053  **/
4054 int
4055 i40e_aq_query_switch_comp_ets_config(struct i40e_hw *hw,
4056 				     u16 seid,
4057 				     struct i40e_aqc_query_switching_comp_ets_config_resp *bw_data,
4058 				     struct i40e_asq_cmd_details *cmd_details)
4059 {
4060 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4061 				   i40e_aqc_opc_query_switching_comp_ets_config,
4062 				   cmd_details);
4063 }
4064 
4065 /**
4066  * i40e_aq_query_port_ets_config - Query Physical Port ETS configuration
4067  * @hw: pointer to the hw struct
4068  * @seid: seid of the VSI or switching component connected to Physical Port
4069  * @bw_data: Buffer to hold current ETS configuration for the Physical Port
4070  * @cmd_details: pointer to command details structure or NULL
4071  **/
4072 int
4073 i40e_aq_query_port_ets_config(struct i40e_hw *hw,
4074 			      u16 seid,
4075 			      struct i40e_aqc_query_port_ets_config_resp *bw_data,
4076 			      struct i40e_asq_cmd_details *cmd_details)
4077 {
4078 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4079 				    i40e_aqc_opc_query_port_ets_config,
4080 				    cmd_details);
4081 }
4082 
4083 /**
4084  * i40e_aq_query_switch_comp_bw_config - Query Switch comp BW configuration
4085  * @hw: pointer to the hw struct
4086  * @seid: seid of the switching component
4087  * @bw_data: Buffer to hold switching component's BW configuration
4088  * @cmd_details: pointer to command details structure or NULL
4089  **/
4090 int
4091 i40e_aq_query_switch_comp_bw_config(struct i40e_hw *hw,
4092 				    u16 seid,
4093 				    struct i40e_aqc_query_switching_comp_bw_config_resp *bw_data,
4094 				    struct i40e_asq_cmd_details *cmd_details)
4095 {
4096 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4097 				    i40e_aqc_opc_query_switching_comp_bw_config,
4098 				    cmd_details);
4099 }
4100 
4101 /**
4102  * i40e_validate_filter_settings
4103  * @hw: pointer to the hardware structure
4104  * @settings: Filter control settings
4105  *
4106  * Check and validate the filter control settings passed.
4107  * The function checks for the valid filter/context sizes being
4108  * passed for FCoE and PE.
4109  *
4110  * Returns 0 if the values passed are valid and within
4111  * range else returns an error.
4112  **/
4113 static int
4114 i40e_validate_filter_settings(struct i40e_hw *hw,
4115 			      struct i40e_filter_control_settings *settings)
4116 {
4117 	u32 fcoe_cntx_size, fcoe_filt_size;
4118 	u32 fcoe_fmax;
4119 	u32 val;
4120 
4121 	/* Validate FCoE settings passed */
4122 	switch (settings->fcoe_filt_num) {
4123 	case I40E_HASH_FILTER_SIZE_1K:
4124 	case I40E_HASH_FILTER_SIZE_2K:
4125 	case I40E_HASH_FILTER_SIZE_4K:
4126 	case I40E_HASH_FILTER_SIZE_8K:
4127 	case I40E_HASH_FILTER_SIZE_16K:
4128 	case I40E_HASH_FILTER_SIZE_32K:
4129 		fcoe_filt_size = I40E_HASH_FILTER_BASE_SIZE;
4130 		fcoe_filt_size <<= (u32)settings->fcoe_filt_num;
4131 		break;
4132 	default:
4133 		return -EINVAL;
4134 	}
4135 
4136 	switch (settings->fcoe_cntx_num) {
4137 	case I40E_DMA_CNTX_SIZE_512:
4138 	case I40E_DMA_CNTX_SIZE_1K:
4139 	case I40E_DMA_CNTX_SIZE_2K:
4140 	case I40E_DMA_CNTX_SIZE_4K:
4141 		fcoe_cntx_size = I40E_DMA_CNTX_BASE_SIZE;
4142 		fcoe_cntx_size <<= (u32)settings->fcoe_cntx_num;
4143 		break;
4144 	default:
4145 		return -EINVAL;
4146 	}
4147 
4148 	/* Validate PE settings passed */
4149 	switch (settings->pe_filt_num) {
4150 	case I40E_HASH_FILTER_SIZE_1K:
4151 	case I40E_HASH_FILTER_SIZE_2K:
4152 	case I40E_HASH_FILTER_SIZE_4K:
4153 	case I40E_HASH_FILTER_SIZE_8K:
4154 	case I40E_HASH_FILTER_SIZE_16K:
4155 	case I40E_HASH_FILTER_SIZE_32K:
4156 	case I40E_HASH_FILTER_SIZE_64K:
4157 	case I40E_HASH_FILTER_SIZE_128K:
4158 	case I40E_HASH_FILTER_SIZE_256K:
4159 	case I40E_HASH_FILTER_SIZE_512K:
4160 	case I40E_HASH_FILTER_SIZE_1M:
4161 		break;
4162 	default:
4163 		return -EINVAL;
4164 	}
4165 
4166 	switch (settings->pe_cntx_num) {
4167 	case I40E_DMA_CNTX_SIZE_512:
4168 	case I40E_DMA_CNTX_SIZE_1K:
4169 	case I40E_DMA_CNTX_SIZE_2K:
4170 	case I40E_DMA_CNTX_SIZE_4K:
4171 	case I40E_DMA_CNTX_SIZE_8K:
4172 	case I40E_DMA_CNTX_SIZE_16K:
4173 	case I40E_DMA_CNTX_SIZE_32K:
4174 	case I40E_DMA_CNTX_SIZE_64K:
4175 	case I40E_DMA_CNTX_SIZE_128K:
4176 	case I40E_DMA_CNTX_SIZE_256K:
4177 		break;
4178 	default:
4179 		return -EINVAL;
4180 	}
4181 
4182 	/* FCHSIZE + FCDSIZE should not be greater than PMFCOEFMAX */
4183 	val = rd32(hw, I40E_GLHMC_FCOEFMAX);
4184 	fcoe_fmax = FIELD_GET(I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_MASK, val);
4185 	if (fcoe_filt_size + fcoe_cntx_size >  fcoe_fmax)
4186 		return -EINVAL;
4187 
4188 	return 0;
4189 }
4190 
4191 /**
4192  * i40e_set_filter_control
4193  * @hw: pointer to the hardware structure
4194  * @settings: Filter control settings
4195  *
4196  * Set the Queue Filters for PE/FCoE and enable filters required
4197  * for a single PF. It is expected that these settings are programmed
4198  * at the driver initialization time.
4199  **/
4200 int i40e_set_filter_control(struct i40e_hw *hw,
4201 			    struct i40e_filter_control_settings *settings)
4202 {
4203 	u32 hash_lut_size = 0;
4204 	int ret = 0;
4205 	u32 val;
4206 
4207 	if (!settings)
4208 		return -EINVAL;
4209 
4210 	/* Validate the input settings */
4211 	ret = i40e_validate_filter_settings(hw, settings);
4212 	if (ret)
4213 		return ret;
4214 
4215 	/* Read the PF Queue Filter control register */
4216 	val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
4217 
4218 	/* Program required PE hash buckets for the PF */
4219 	val &= ~I40E_PFQF_CTL_0_PEHSIZE_MASK;
4220 	val |= FIELD_PREP(I40E_PFQF_CTL_0_PEHSIZE_MASK, settings->pe_filt_num);
4221 	/* Program required PE contexts for the PF */
4222 	val &= ~I40E_PFQF_CTL_0_PEDSIZE_MASK;
4223 	val |= FIELD_PREP(I40E_PFQF_CTL_0_PEDSIZE_MASK, settings->pe_cntx_num);
4224 
4225 	/* Program required FCoE hash buckets for the PF */
4226 	val &= ~I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
4227 	val |= FIELD_PREP(I40E_PFQF_CTL_0_PFFCHSIZE_MASK,
4228 			  settings->fcoe_filt_num);
4229 	/* Program required FCoE DDP contexts for the PF */
4230 	val &= ~I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
4231 	val |= FIELD_PREP(I40E_PFQF_CTL_0_PFFCDSIZE_MASK,
4232 			  settings->fcoe_cntx_num);
4233 
4234 	/* Program Hash LUT size for the PF */
4235 	val &= ~I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
4236 	if (settings->hash_lut_size == I40E_HASH_LUT_SIZE_512)
4237 		hash_lut_size = 1;
4238 	val |= FIELD_PREP(I40E_PFQF_CTL_0_HASHLUTSIZE_MASK, hash_lut_size);
4239 
4240 	/* Enable FDIR, Ethertype and MACVLAN filters for PF and VFs */
4241 	if (settings->enable_fdir)
4242 		val |= I40E_PFQF_CTL_0_FD_ENA_MASK;
4243 	if (settings->enable_ethtype)
4244 		val |= I40E_PFQF_CTL_0_ETYPE_ENA_MASK;
4245 	if (settings->enable_macvlan)
4246 		val |= I40E_PFQF_CTL_0_MACVLAN_ENA_MASK;
4247 
4248 	i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, val);
4249 
4250 	return 0;
4251 }
4252 
4253 /**
4254  * i40e_aq_add_rem_control_packet_filter - Add or Remove Control Packet Filter
4255  * @hw: pointer to the hw struct
4256  * @mac_addr: MAC address to use in the filter
4257  * @ethtype: Ethertype to use in the filter
4258  * @flags: Flags that needs to be applied to the filter
4259  * @vsi_seid: seid of the control VSI
4260  * @queue: VSI queue number to send the packet to
4261  * @is_add: Add control packet filter if True else remove
4262  * @stats: Structure to hold information on control filter counts
4263  * @cmd_details: pointer to command details structure or NULL
4264  *
4265  * This command will Add or Remove control packet filter for a control VSI.
4266  * In return it will update the total number of perfect filter count in
4267  * the stats member.
4268  **/
4269 int i40e_aq_add_rem_control_packet_filter(struct i40e_hw *hw,
4270 					  u8 *mac_addr, u16 ethtype, u16 flags,
4271 					  u16 vsi_seid, u16 queue, bool is_add,
4272 					  struct i40e_control_filter_stats *stats,
4273 					  struct i40e_asq_cmd_details *cmd_details)
4274 {
4275 	struct i40e_aq_desc desc;
4276 	struct i40e_aqc_add_remove_control_packet_filter *cmd =
4277 		(struct i40e_aqc_add_remove_control_packet_filter *)
4278 		&desc.params.raw;
4279 	struct i40e_aqc_add_remove_control_packet_filter_completion *resp =
4280 		(struct i40e_aqc_add_remove_control_packet_filter_completion *)
4281 		&desc.params.raw;
4282 	int status;
4283 
4284 	if (vsi_seid == 0)
4285 		return -EINVAL;
4286 
4287 	if (is_add) {
4288 		i40e_fill_default_direct_cmd_desc(&desc,
4289 				i40e_aqc_opc_add_control_packet_filter);
4290 		cmd->queue = cpu_to_le16(queue);
4291 	} else {
4292 		i40e_fill_default_direct_cmd_desc(&desc,
4293 				i40e_aqc_opc_remove_control_packet_filter);
4294 	}
4295 
4296 	if (mac_addr)
4297 		ether_addr_copy(cmd->mac, mac_addr);
4298 
4299 	cmd->etype = cpu_to_le16(ethtype);
4300 	cmd->flags = cpu_to_le16(flags);
4301 	cmd->seid = cpu_to_le16(vsi_seid);
4302 
4303 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4304 
4305 	if (!status && stats) {
4306 		stats->mac_etype_used = le16_to_cpu(resp->mac_etype_used);
4307 		stats->etype_used = le16_to_cpu(resp->etype_used);
4308 		stats->mac_etype_free = le16_to_cpu(resp->mac_etype_free);
4309 		stats->etype_free = le16_to_cpu(resp->etype_free);
4310 	}
4311 
4312 	return status;
4313 }
4314 
4315 /**
4316  * i40e_add_filter_to_drop_tx_flow_control_frames- filter to drop flow control
4317  * @hw: pointer to the hw struct
4318  * @seid: VSI seid to add ethertype filter from
4319  **/
4320 void i40e_add_filter_to_drop_tx_flow_control_frames(struct i40e_hw *hw,
4321 						    u16 seid)
4322 {
4323 #define I40E_FLOW_CONTROL_ETHTYPE 0x8808
4324 	u16 flag = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC |
4325 		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP |
4326 		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX;
4327 	u16 ethtype = I40E_FLOW_CONTROL_ETHTYPE;
4328 	int status;
4329 
4330 	status = i40e_aq_add_rem_control_packet_filter(hw, NULL, ethtype, flag,
4331 						       seid, 0, true, NULL,
4332 						       NULL);
4333 	if (status)
4334 		hw_dbg(hw, "Ethtype Filter Add failed: Error pruning Tx flow control frames\n");
4335 }
4336 
4337 /**
4338  * i40e_aq_alternate_read
4339  * @hw: pointer to the hardware structure
4340  * @reg_addr0: address of first dword to be read
4341  * @reg_val0: pointer for data read from 'reg_addr0'
4342  * @reg_addr1: address of second dword to be read
4343  * @reg_val1: pointer for data read from 'reg_addr1'
4344  *
4345  * Read one or two dwords from alternate structure. Fields are indicated
4346  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
4347  * is not passed then only register at 'reg_addr0' is read.
4348  *
4349  **/
4350 static int i40e_aq_alternate_read(struct i40e_hw *hw,
4351 				  u32 reg_addr0, u32 *reg_val0,
4352 				  u32 reg_addr1, u32 *reg_val1)
4353 {
4354 	struct i40e_aq_desc desc;
4355 	struct i40e_aqc_alternate_write *cmd_resp =
4356 		(struct i40e_aqc_alternate_write *)&desc.params.raw;
4357 	int status;
4358 
4359 	if (!reg_val0)
4360 		return -EINVAL;
4361 
4362 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_alternate_read);
4363 	cmd_resp->address0 = cpu_to_le32(reg_addr0);
4364 	cmd_resp->address1 = cpu_to_le32(reg_addr1);
4365 
4366 	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
4367 
4368 	if (!status) {
4369 		*reg_val0 = le32_to_cpu(cmd_resp->data0);
4370 
4371 		if (reg_val1)
4372 			*reg_val1 = le32_to_cpu(cmd_resp->data1);
4373 	}
4374 
4375 	return status;
4376 }
4377 
4378 /**
4379  * i40e_aq_suspend_port_tx
4380  * @hw: pointer to the hardware structure
4381  * @seid: port seid
4382  * @cmd_details: pointer to command details structure or NULL
4383  *
4384  * Suspend port's Tx traffic
4385  **/
4386 int i40e_aq_suspend_port_tx(struct i40e_hw *hw, u16 seid,
4387 			    struct i40e_asq_cmd_details *cmd_details)
4388 {
4389 	struct i40e_aqc_tx_sched_ind *cmd;
4390 	struct i40e_aq_desc desc;
4391 	int status;
4392 
4393 	cmd = (struct i40e_aqc_tx_sched_ind *)&desc.params.raw;
4394 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_suspend_port_tx);
4395 	cmd->vsi_seid = cpu_to_le16(seid);
4396 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4397 
4398 	return status;
4399 }
4400 
4401 /**
4402  * i40e_aq_resume_port_tx
4403  * @hw: pointer to the hardware structure
4404  * @cmd_details: pointer to command details structure or NULL
4405  *
4406  * Resume port's Tx traffic
4407  **/
4408 int i40e_aq_resume_port_tx(struct i40e_hw *hw,
4409 			   struct i40e_asq_cmd_details *cmd_details)
4410 {
4411 	struct i40e_aq_desc desc;
4412 	int status;
4413 
4414 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_resume_port_tx);
4415 
4416 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4417 
4418 	return status;
4419 }
4420 
4421 /**
4422  * i40e_set_pci_config_data - store PCI bus info
4423  * @hw: pointer to hardware structure
4424  * @link_status: the link status word from PCI config space
4425  *
4426  * Stores the PCI bus info (speed, width, type) within the i40e_hw structure
4427  **/
4428 void i40e_set_pci_config_data(struct i40e_hw *hw, u16 link_status)
4429 {
4430 	hw->bus.type = i40e_bus_type_pci_express;
4431 
4432 	switch (link_status & PCI_EXP_LNKSTA_NLW) {
4433 	case PCI_EXP_LNKSTA_NLW_X1:
4434 		hw->bus.width = i40e_bus_width_pcie_x1;
4435 		break;
4436 	case PCI_EXP_LNKSTA_NLW_X2:
4437 		hw->bus.width = i40e_bus_width_pcie_x2;
4438 		break;
4439 	case PCI_EXP_LNKSTA_NLW_X4:
4440 		hw->bus.width = i40e_bus_width_pcie_x4;
4441 		break;
4442 	case PCI_EXP_LNKSTA_NLW_X8:
4443 		hw->bus.width = i40e_bus_width_pcie_x8;
4444 		break;
4445 	default:
4446 		hw->bus.width = i40e_bus_width_unknown;
4447 		break;
4448 	}
4449 
4450 	switch (link_status & PCI_EXP_LNKSTA_CLS) {
4451 	case PCI_EXP_LNKSTA_CLS_2_5GB:
4452 		hw->bus.speed = i40e_bus_speed_2500;
4453 		break;
4454 	case PCI_EXP_LNKSTA_CLS_5_0GB:
4455 		hw->bus.speed = i40e_bus_speed_5000;
4456 		break;
4457 	case PCI_EXP_LNKSTA_CLS_8_0GB:
4458 		hw->bus.speed = i40e_bus_speed_8000;
4459 		break;
4460 	default:
4461 		hw->bus.speed = i40e_bus_speed_unknown;
4462 		break;
4463 	}
4464 }
4465 
4466 /**
4467  * i40e_aq_debug_dump
4468  * @hw: pointer to the hardware structure
4469  * @cluster_id: specific cluster to dump
4470  * @table_id: table id within cluster
4471  * @start_index: index of line in the block to read
4472  * @buff_size: dump buffer size
4473  * @buff: dump buffer
4474  * @ret_buff_size: actual buffer size returned
4475  * @ret_next_table: next block to read
4476  * @ret_next_index: next index to read
4477  * @cmd_details: pointer to command details structure or NULL
4478  *
4479  * Dump internal FW/HW data for debug purposes.
4480  *
4481  **/
4482 int i40e_aq_debug_dump(struct i40e_hw *hw, u8 cluster_id,
4483 		       u8 table_id, u32 start_index, u16 buff_size,
4484 		       void *buff, u16 *ret_buff_size,
4485 		       u8 *ret_next_table, u32 *ret_next_index,
4486 		       struct i40e_asq_cmd_details *cmd_details)
4487 {
4488 	struct i40e_aq_desc desc;
4489 	struct i40e_aqc_debug_dump_internals *cmd =
4490 		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4491 	struct i40e_aqc_debug_dump_internals *resp =
4492 		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4493 	int status;
4494 
4495 	if (buff_size == 0 || !buff)
4496 		return -EINVAL;
4497 
4498 	i40e_fill_default_direct_cmd_desc(&desc,
4499 					  i40e_aqc_opc_debug_dump_internals);
4500 	/* Indirect Command */
4501 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4502 	if (buff_size > I40E_AQ_LARGE_BUF)
4503 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4504 
4505 	cmd->cluster_id = cluster_id;
4506 	cmd->table_id = table_id;
4507 	cmd->idx = cpu_to_le32(start_index);
4508 
4509 	desc.datalen = cpu_to_le16(buff_size);
4510 
4511 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
4512 	if (!status) {
4513 		if (ret_buff_size)
4514 			*ret_buff_size = le16_to_cpu(desc.datalen);
4515 		if (ret_next_table)
4516 			*ret_next_table = resp->table_id;
4517 		if (ret_next_index)
4518 			*ret_next_index = le32_to_cpu(resp->idx);
4519 	}
4520 
4521 	return status;
4522 }
4523 
4524 /**
4525  * i40e_read_bw_from_alt_ram
4526  * @hw: pointer to the hardware structure
4527  * @max_bw: pointer for max_bw read
4528  * @min_bw: pointer for min_bw read
4529  * @min_valid: pointer for bool that is true if min_bw is a valid value
4530  * @max_valid: pointer for bool that is true if max_bw is a valid value
4531  *
4532  * Read bw from the alternate ram for the given pf
4533  **/
4534 int i40e_read_bw_from_alt_ram(struct i40e_hw *hw,
4535 			      u32 *max_bw, u32 *min_bw,
4536 			      bool *min_valid, bool *max_valid)
4537 {
4538 	u32 max_bw_addr, min_bw_addr;
4539 	int status;
4540 
4541 	/* Calculate the address of the min/max bw registers */
4542 	max_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4543 		      I40E_ALT_STRUCT_MAX_BW_OFFSET +
4544 		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4545 	min_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4546 		      I40E_ALT_STRUCT_MIN_BW_OFFSET +
4547 		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4548 
4549 	/* Read the bandwidths from alt ram */
4550 	status = i40e_aq_alternate_read(hw, max_bw_addr, max_bw,
4551 					min_bw_addr, min_bw);
4552 
4553 	if (*min_bw & I40E_ALT_BW_VALID_MASK)
4554 		*min_valid = true;
4555 	else
4556 		*min_valid = false;
4557 
4558 	if (*max_bw & I40E_ALT_BW_VALID_MASK)
4559 		*max_valid = true;
4560 	else
4561 		*max_valid = false;
4562 
4563 	return status;
4564 }
4565 
4566 /**
4567  * i40e_aq_configure_partition_bw
4568  * @hw: pointer to the hardware structure
4569  * @bw_data: Buffer holding valid pfs and bw limits
4570  * @cmd_details: pointer to command details
4571  *
4572  * Configure partitions guaranteed/max bw
4573  **/
4574 int
4575 i40e_aq_configure_partition_bw(struct i40e_hw *hw,
4576 			       struct i40e_aqc_configure_partition_bw_data *bw_data,
4577 			       struct i40e_asq_cmd_details *cmd_details)
4578 {
4579 	u16 bwd_size = sizeof(*bw_data);
4580 	struct i40e_aq_desc desc;
4581 	int status;
4582 
4583 	i40e_fill_default_direct_cmd_desc(&desc,
4584 					  i40e_aqc_opc_configure_partition_bw);
4585 
4586 	/* Indirect command */
4587 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4588 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
4589 
4590 	if (bwd_size > I40E_AQ_LARGE_BUF)
4591 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4592 
4593 	desc.datalen = cpu_to_le16(bwd_size);
4594 
4595 	status = i40e_asq_send_command(hw, &desc, bw_data, bwd_size,
4596 				       cmd_details);
4597 
4598 	return status;
4599 }
4600 
4601 /**
4602  * i40e_read_phy_register_clause22
4603  * @hw: pointer to the HW structure
4604  * @reg: register address in the page
4605  * @phy_addr: PHY address on MDIO interface
4606  * @value: PHY register value
4607  *
4608  * Reads specified PHY register value
4609  **/
4610 int i40e_read_phy_register_clause22(struct i40e_hw *hw,
4611 				    u16 reg, u8 phy_addr, u16 *value)
4612 {
4613 	u8 port_num = (u8)hw->func_caps.mdio_port_num;
4614 	int status = -EIO;
4615 	u32 command = 0;
4616 	u16 retry = 1000;
4617 
4618 	command = (reg << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4619 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4620 		  (I40E_MDIO_CLAUSE22_OPCODE_READ_MASK) |
4621 		  (I40E_MDIO_CLAUSE22_STCODE_MASK) |
4622 		  (I40E_GLGEN_MSCA_MDICMD_MASK);
4623 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4624 	do {
4625 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4626 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4627 			status = 0;
4628 			break;
4629 		}
4630 		udelay(10);
4631 		retry--;
4632 	} while (retry);
4633 
4634 	if (status) {
4635 		i40e_debug(hw, I40E_DEBUG_PHY,
4636 			   "PHY: Can't write command to external PHY.\n");
4637 	} else {
4638 		command = rd32(hw, I40E_GLGEN_MSRWD(port_num));
4639 		*value = FIELD_GET(I40E_GLGEN_MSRWD_MDIRDDATA_MASK, command);
4640 	}
4641 
4642 	return status;
4643 }
4644 
4645 /**
4646  * i40e_write_phy_register_clause22
4647  * @hw: pointer to the HW structure
4648  * @reg: register address in the page
4649  * @phy_addr: PHY address on MDIO interface
4650  * @value: PHY register value
4651  *
4652  * Writes specified PHY register value
4653  **/
4654 int i40e_write_phy_register_clause22(struct i40e_hw *hw,
4655 				     u16 reg, u8 phy_addr, u16 value)
4656 {
4657 	u8 port_num = (u8)hw->func_caps.mdio_port_num;
4658 	int status = -EIO;
4659 	u32 command  = 0;
4660 	u16 retry = 1000;
4661 
4662 	command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT;
4663 	wr32(hw, I40E_GLGEN_MSRWD(port_num), command);
4664 
4665 	command = (reg << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4666 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4667 		  (I40E_MDIO_CLAUSE22_OPCODE_WRITE_MASK) |
4668 		  (I40E_MDIO_CLAUSE22_STCODE_MASK) |
4669 		  (I40E_GLGEN_MSCA_MDICMD_MASK);
4670 
4671 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4672 	do {
4673 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4674 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4675 			status = 0;
4676 			break;
4677 		}
4678 		udelay(10);
4679 		retry--;
4680 	} while (retry);
4681 
4682 	return status;
4683 }
4684 
4685 /**
4686  * i40e_read_phy_register_clause45
4687  * @hw: pointer to the HW structure
4688  * @page: registers page number
4689  * @reg: register address in the page
4690  * @phy_addr: PHY address on MDIO interface
4691  * @value: PHY register value
4692  *
4693  * Reads specified PHY register value
4694  **/
4695 int i40e_read_phy_register_clause45(struct i40e_hw *hw,
4696 				    u8 page, u16 reg, u8 phy_addr, u16 *value)
4697 {
4698 	u8 port_num = hw->func_caps.mdio_port_num;
4699 	int status = -EIO;
4700 	u32 command = 0;
4701 	u16 retry = 1000;
4702 
4703 	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4704 		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4705 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4706 		  (I40E_MDIO_CLAUSE45_OPCODE_ADDRESS_MASK) |
4707 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4708 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4709 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4710 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4711 	do {
4712 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4713 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4714 			status = 0;
4715 			break;
4716 		}
4717 		usleep_range(10, 20);
4718 		retry--;
4719 	} while (retry);
4720 
4721 	if (status) {
4722 		i40e_debug(hw, I40E_DEBUG_PHY,
4723 			   "PHY: Can't write command to external PHY.\n");
4724 		goto phy_read_end;
4725 	}
4726 
4727 	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4728 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4729 		  (I40E_MDIO_CLAUSE45_OPCODE_READ_MASK) |
4730 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4731 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4732 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4733 	status = -EIO;
4734 	retry = 1000;
4735 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4736 	do {
4737 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4738 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4739 			status = 0;
4740 			break;
4741 		}
4742 		usleep_range(10, 20);
4743 		retry--;
4744 	} while (retry);
4745 
4746 	if (!status) {
4747 		command = rd32(hw, I40E_GLGEN_MSRWD(port_num));
4748 		*value = FIELD_GET(I40E_GLGEN_MSRWD_MDIRDDATA_MASK, command);
4749 	} else {
4750 		i40e_debug(hw, I40E_DEBUG_PHY,
4751 			   "PHY: Can't read register value from external PHY.\n");
4752 	}
4753 
4754 phy_read_end:
4755 	return status;
4756 }
4757 
4758 /**
4759  * i40e_write_phy_register_clause45
4760  * @hw: pointer to the HW structure
4761  * @page: registers page number
4762  * @reg: register address in the page
4763  * @phy_addr: PHY address on MDIO interface
4764  * @value: PHY register value
4765  *
4766  * Writes value to specified PHY register
4767  **/
4768 int i40e_write_phy_register_clause45(struct i40e_hw *hw,
4769 				     u8 page, u16 reg, u8 phy_addr, u16 value)
4770 {
4771 	u8 port_num = hw->func_caps.mdio_port_num;
4772 	int status = -EIO;
4773 	u16 retry = 1000;
4774 	u32 command = 0;
4775 
4776 	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4777 		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4778 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4779 		  (I40E_MDIO_CLAUSE45_OPCODE_ADDRESS_MASK) |
4780 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4781 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4782 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4783 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4784 	do {
4785 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4786 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4787 			status = 0;
4788 			break;
4789 		}
4790 		usleep_range(10, 20);
4791 		retry--;
4792 	} while (retry);
4793 	if (status) {
4794 		i40e_debug(hw, I40E_DEBUG_PHY,
4795 			   "PHY: Can't write command to external PHY.\n");
4796 		goto phy_write_end;
4797 	}
4798 
4799 	command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT;
4800 	wr32(hw, I40E_GLGEN_MSRWD(port_num), command);
4801 
4802 	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4803 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4804 		  (I40E_MDIO_CLAUSE45_OPCODE_WRITE_MASK) |
4805 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4806 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4807 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4808 	status = -EIO;
4809 	retry = 1000;
4810 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4811 	do {
4812 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4813 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4814 			status = 0;
4815 			break;
4816 		}
4817 		usleep_range(10, 20);
4818 		retry--;
4819 	} while (retry);
4820 
4821 phy_write_end:
4822 	return status;
4823 }
4824 
4825 /**
4826  * i40e_write_phy_register
4827  * @hw: pointer to the HW structure
4828  * @page: registers page number
4829  * @reg: register address in the page
4830  * @phy_addr: PHY address on MDIO interface
4831  * @value: PHY register value
4832  *
4833  * Writes value to specified PHY register
4834  **/
4835 int i40e_write_phy_register(struct i40e_hw *hw,
4836 			    u8 page, u16 reg, u8 phy_addr, u16 value)
4837 {
4838 	int status;
4839 
4840 	switch (hw->device_id) {
4841 	case I40E_DEV_ID_1G_BASE_T_X722:
4842 		status = i40e_write_phy_register_clause22(hw, reg, phy_addr,
4843 							  value);
4844 		break;
4845 	case I40E_DEV_ID_1G_BASE_T_BC:
4846 	case I40E_DEV_ID_5G_BASE_T_BC:
4847 	case I40E_DEV_ID_10G_BASE_T:
4848 	case I40E_DEV_ID_10G_BASE_T4:
4849 	case I40E_DEV_ID_10G_BASE_T_BC:
4850 	case I40E_DEV_ID_10G_BASE_T_X722:
4851 	case I40E_DEV_ID_25G_B:
4852 	case I40E_DEV_ID_25G_SFP28:
4853 		status = i40e_write_phy_register_clause45(hw, page, reg,
4854 							  phy_addr, value);
4855 		break;
4856 	default:
4857 		status = -EIO;
4858 		break;
4859 	}
4860 
4861 	return status;
4862 }
4863 
4864 /**
4865  * i40e_read_phy_register
4866  * @hw: pointer to the HW structure
4867  * @page: registers page number
4868  * @reg: register address in the page
4869  * @phy_addr: PHY address on MDIO interface
4870  * @value: PHY register value
4871  *
4872  * Reads specified PHY register value
4873  **/
4874 int i40e_read_phy_register(struct i40e_hw *hw,
4875 			   u8 page, u16 reg, u8 phy_addr, u16 *value)
4876 {
4877 	int status;
4878 
4879 	switch (hw->device_id) {
4880 	case I40E_DEV_ID_1G_BASE_T_X722:
4881 		status = i40e_read_phy_register_clause22(hw, reg, phy_addr,
4882 							 value);
4883 		break;
4884 	case I40E_DEV_ID_1G_BASE_T_BC:
4885 	case I40E_DEV_ID_5G_BASE_T_BC:
4886 	case I40E_DEV_ID_10G_BASE_T:
4887 	case I40E_DEV_ID_10G_BASE_T4:
4888 	case I40E_DEV_ID_10G_BASE_T_BC:
4889 	case I40E_DEV_ID_10G_BASE_T_X722:
4890 	case I40E_DEV_ID_25G_B:
4891 	case I40E_DEV_ID_25G_SFP28:
4892 		status = i40e_read_phy_register_clause45(hw, page, reg,
4893 							 phy_addr, value);
4894 		break;
4895 	default:
4896 		status = -EIO;
4897 		break;
4898 	}
4899 
4900 	return status;
4901 }
4902 
4903 /**
4904  * i40e_get_phy_address
4905  * @hw: pointer to the HW structure
4906  * @dev_num: PHY port num that address we want
4907  *
4908  * Gets PHY address for current port
4909  **/
4910 u8 i40e_get_phy_address(struct i40e_hw *hw, u8 dev_num)
4911 {
4912 	u8 port_num = hw->func_caps.mdio_port_num;
4913 	u32 reg_val = rd32(hw, I40E_GLGEN_MDIO_I2C_SEL(port_num));
4914 
4915 	return (u8)(reg_val >> ((dev_num + 1) * 5)) & 0x1f;
4916 }
4917 
4918 /**
4919  * i40e_blink_phy_link_led
4920  * @hw: pointer to the HW structure
4921  * @time: time how long led will blinks in secs
4922  * @interval: gap between LED on and off in msecs
4923  *
4924  * Blinks PHY link LED
4925  **/
4926 int i40e_blink_phy_link_led(struct i40e_hw *hw,
4927 			    u32 time, u32 interval)
4928 {
4929 	u16 led_addr = I40E_PHY_LED_PROV_REG_1;
4930 	u16 gpio_led_port;
4931 	u8 phy_addr = 0;
4932 	int status = 0;
4933 	u16 led_ctl;
4934 	u8 port_num;
4935 	u16 led_reg;
4936 	u32 i;
4937 
4938 	i = rd32(hw, I40E_PFGEN_PORTNUM);
4939 	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
4940 	phy_addr = i40e_get_phy_address(hw, port_num);
4941 
4942 	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
4943 	     led_addr++) {
4944 		status = i40e_read_phy_register_clause45(hw,
4945 							 I40E_PHY_COM_REG_PAGE,
4946 							 led_addr, phy_addr,
4947 							 &led_reg);
4948 		if (status)
4949 			goto phy_blinking_end;
4950 		led_ctl = led_reg;
4951 		if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
4952 			led_reg = 0;
4953 			status = i40e_write_phy_register_clause45(hw,
4954 							 I40E_PHY_COM_REG_PAGE,
4955 							 led_addr, phy_addr,
4956 							 led_reg);
4957 			if (status)
4958 				goto phy_blinking_end;
4959 			break;
4960 		}
4961 	}
4962 
4963 	if (time > 0 && interval > 0) {
4964 		for (i = 0; i < time * 1000; i += interval) {
4965 			status = i40e_read_phy_register_clause45(hw,
4966 						I40E_PHY_COM_REG_PAGE,
4967 						led_addr, phy_addr, &led_reg);
4968 			if (status)
4969 				goto restore_config;
4970 			if (led_reg & I40E_PHY_LED_MANUAL_ON)
4971 				led_reg = 0;
4972 			else
4973 				led_reg = I40E_PHY_LED_MANUAL_ON;
4974 			status = i40e_write_phy_register_clause45(hw,
4975 						I40E_PHY_COM_REG_PAGE,
4976 						led_addr, phy_addr, led_reg);
4977 			if (status)
4978 				goto restore_config;
4979 			msleep(interval);
4980 		}
4981 	}
4982 
4983 restore_config:
4984 	status = i40e_write_phy_register_clause45(hw,
4985 						  I40E_PHY_COM_REG_PAGE,
4986 						  led_addr, phy_addr, led_ctl);
4987 
4988 phy_blinking_end:
4989 	return status;
4990 }
4991 
4992 /**
4993  * i40e_led_get_reg - read LED register
4994  * @hw: pointer to the HW structure
4995  * @led_addr: LED register address
4996  * @reg_val: read register value
4997  **/
4998 static int i40e_led_get_reg(struct i40e_hw *hw, u16 led_addr,
4999 			    u32 *reg_val)
5000 {
5001 	u8 phy_addr = 0;
5002 	u8 port_num;
5003 	int status;
5004 	u32 i;
5005 
5006 	*reg_val = 0;
5007 	if (test_bit(I40E_HW_CAP_AQ_PHY_ACCESS, hw->caps)) {
5008 		status =
5009 		       i40e_aq_get_phy_register(hw,
5010 						I40E_AQ_PHY_REG_ACCESS_EXTERNAL,
5011 						I40E_PHY_COM_REG_PAGE, true,
5012 						I40E_PHY_LED_PROV_REG_1,
5013 						reg_val, NULL);
5014 	} else {
5015 		i = rd32(hw, I40E_PFGEN_PORTNUM);
5016 		port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
5017 		phy_addr = i40e_get_phy_address(hw, port_num);
5018 		status = i40e_read_phy_register_clause45(hw,
5019 							 I40E_PHY_COM_REG_PAGE,
5020 							 led_addr, phy_addr,
5021 							 (u16 *)reg_val);
5022 	}
5023 	return status;
5024 }
5025 
5026 /**
5027  * i40e_led_set_reg - write LED register
5028  * @hw: pointer to the HW structure
5029  * @led_addr: LED register address
5030  * @reg_val: register value to write
5031  **/
5032 static int i40e_led_set_reg(struct i40e_hw *hw, u16 led_addr,
5033 			    u32 reg_val)
5034 {
5035 	u8 phy_addr = 0;
5036 	u8 port_num;
5037 	int status;
5038 	u32 i;
5039 
5040 	if (test_bit(I40E_HW_CAP_AQ_PHY_ACCESS, hw->caps)) {
5041 		status =
5042 		       i40e_aq_set_phy_register(hw,
5043 						I40E_AQ_PHY_REG_ACCESS_EXTERNAL,
5044 						I40E_PHY_COM_REG_PAGE, true,
5045 						I40E_PHY_LED_PROV_REG_1,
5046 						reg_val, NULL);
5047 	} else {
5048 		i = rd32(hw, I40E_PFGEN_PORTNUM);
5049 		port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
5050 		phy_addr = i40e_get_phy_address(hw, port_num);
5051 		status = i40e_write_phy_register_clause45(hw,
5052 							  I40E_PHY_COM_REG_PAGE,
5053 							  led_addr, phy_addr,
5054 							  (u16)reg_val);
5055 	}
5056 
5057 	return status;
5058 }
5059 
5060 /**
5061  * i40e_led_get_phy - return current on/off mode
5062  * @hw: pointer to the hw struct
5063  * @led_addr: address of led register to use
5064  * @val: original value of register to use
5065  *
5066  **/
5067 int i40e_led_get_phy(struct i40e_hw *hw, u16 *led_addr,
5068 		     u16 *val)
5069 {
5070 	u16 gpio_led_port;
5071 	u8 phy_addr = 0;
5072 	u32 reg_val_aq;
5073 	int status = 0;
5074 	u16 temp_addr;
5075 	u16 reg_val;
5076 	u8 port_num;
5077 	u32 i;
5078 
5079 	if (test_bit(I40E_HW_CAP_AQ_PHY_ACCESS, hw->caps)) {
5080 		status =
5081 		      i40e_aq_get_phy_register(hw,
5082 					       I40E_AQ_PHY_REG_ACCESS_EXTERNAL,
5083 					       I40E_PHY_COM_REG_PAGE, true,
5084 					       I40E_PHY_LED_PROV_REG_1,
5085 					       &reg_val_aq, NULL);
5086 		if (status == 0)
5087 			*val = (u16)reg_val_aq;
5088 		return status;
5089 	}
5090 	temp_addr = I40E_PHY_LED_PROV_REG_1;
5091 	i = rd32(hw, I40E_PFGEN_PORTNUM);
5092 	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
5093 	phy_addr = i40e_get_phy_address(hw, port_num);
5094 
5095 	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
5096 	     temp_addr++) {
5097 		status = i40e_read_phy_register_clause45(hw,
5098 							 I40E_PHY_COM_REG_PAGE,
5099 							 temp_addr, phy_addr,
5100 							 &reg_val);
5101 		if (status)
5102 			return status;
5103 		*val = reg_val;
5104 		if (reg_val & I40E_PHY_LED_LINK_MODE_MASK) {
5105 			*led_addr = temp_addr;
5106 			break;
5107 		}
5108 	}
5109 	return status;
5110 }
5111 
5112 /**
5113  * i40e_led_set_phy
5114  * @hw: pointer to the HW structure
5115  * @on: true or false
5116  * @led_addr: address of led register to use
5117  * @mode: original val plus bit for set or ignore
5118  *
5119  * Set led's on or off when controlled by the PHY
5120  *
5121  **/
5122 int i40e_led_set_phy(struct i40e_hw *hw, bool on,
5123 		     u16 led_addr, u32 mode)
5124 {
5125 	u32 led_ctl = 0;
5126 	u32 led_reg = 0;
5127 	int status = 0;
5128 
5129 	status = i40e_led_get_reg(hw, led_addr, &led_reg);
5130 	if (status)
5131 		return status;
5132 	led_ctl = led_reg;
5133 	if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
5134 		led_reg = 0;
5135 		status = i40e_led_set_reg(hw, led_addr, led_reg);
5136 		if (status)
5137 			return status;
5138 	}
5139 	status = i40e_led_get_reg(hw, led_addr, &led_reg);
5140 	if (status)
5141 		goto restore_config;
5142 	if (on)
5143 		led_reg = I40E_PHY_LED_MANUAL_ON;
5144 	else
5145 		led_reg = 0;
5146 
5147 	status = i40e_led_set_reg(hw, led_addr, led_reg);
5148 	if (status)
5149 		goto restore_config;
5150 	if (mode & I40E_PHY_LED_MODE_ORIG) {
5151 		led_ctl = (mode & I40E_PHY_LED_MODE_MASK);
5152 		status = i40e_led_set_reg(hw, led_addr, led_ctl);
5153 	}
5154 	return status;
5155 
5156 restore_config:
5157 	status = i40e_led_set_reg(hw, led_addr, led_ctl);
5158 	return status;
5159 }
5160 
5161 /**
5162  * i40e_aq_rx_ctl_read_register - use FW to read from an Rx control register
5163  * @hw: pointer to the hw struct
5164  * @reg_addr: register address
5165  * @reg_val: ptr to register value
5166  * @cmd_details: pointer to command details structure or NULL
5167  *
5168  * Use the firmware to read the Rx control register,
5169  * especially useful if the Rx unit is under heavy pressure
5170  **/
5171 int i40e_aq_rx_ctl_read_register(struct i40e_hw *hw,
5172 				 u32 reg_addr, u32 *reg_val,
5173 				 struct i40e_asq_cmd_details *cmd_details)
5174 {
5175 	struct i40e_aq_desc desc;
5176 	struct i40e_aqc_rx_ctl_reg_read_write *cmd_resp =
5177 		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
5178 	int status;
5179 
5180 	if (!reg_val)
5181 		return -EINVAL;
5182 
5183 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_read);
5184 
5185 	cmd_resp->address = cpu_to_le32(reg_addr);
5186 
5187 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5188 
5189 	if (status == 0)
5190 		*reg_val = le32_to_cpu(cmd_resp->value);
5191 
5192 	return status;
5193 }
5194 
5195 /**
5196  * i40e_read_rx_ctl - read from an Rx control register
5197  * @hw: pointer to the hw struct
5198  * @reg_addr: register address
5199  **/
5200 u32 i40e_read_rx_ctl(struct i40e_hw *hw, u32 reg_addr)
5201 {
5202 	bool use_register = false;
5203 	int status = 0;
5204 	int retry = 5;
5205 	u32 val = 0;
5206 
5207 	if (i40e_is_aq_api_ver_lt(hw, 1, 5) || hw->mac.type == I40E_MAC_X722)
5208 		use_register = true;
5209 
5210 	if (!use_register) {
5211 do_retry:
5212 		status = i40e_aq_rx_ctl_read_register(hw, reg_addr, &val, NULL);
5213 		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
5214 			usleep_range(1000, 2000);
5215 			retry--;
5216 			goto do_retry;
5217 		}
5218 	}
5219 
5220 	/* if the AQ access failed, try the old-fashioned way */
5221 	if (status || use_register)
5222 		val = rd32(hw, reg_addr);
5223 
5224 	return val;
5225 }
5226 
5227 /**
5228  * i40e_aq_rx_ctl_write_register
5229  * @hw: pointer to the hw struct
5230  * @reg_addr: register address
5231  * @reg_val: register value
5232  * @cmd_details: pointer to command details structure or NULL
5233  *
5234  * Use the firmware to write to an Rx control register,
5235  * especially useful if the Rx unit is under heavy pressure
5236  **/
5237 int i40e_aq_rx_ctl_write_register(struct i40e_hw *hw,
5238 				  u32 reg_addr, u32 reg_val,
5239 				  struct i40e_asq_cmd_details *cmd_details)
5240 {
5241 	struct i40e_aq_desc desc;
5242 	struct i40e_aqc_rx_ctl_reg_read_write *cmd =
5243 		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
5244 	int status;
5245 
5246 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_write);
5247 
5248 	cmd->address = cpu_to_le32(reg_addr);
5249 	cmd->value = cpu_to_le32(reg_val);
5250 
5251 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5252 
5253 	return status;
5254 }
5255 
5256 /**
5257  * i40e_write_rx_ctl - write to an Rx control register
5258  * @hw: pointer to the hw struct
5259  * @reg_addr: register address
5260  * @reg_val: register value
5261  **/
5262 void i40e_write_rx_ctl(struct i40e_hw *hw, u32 reg_addr, u32 reg_val)
5263 {
5264 	bool use_register = false;
5265 	int status = 0;
5266 	int retry = 5;
5267 
5268 	if (i40e_is_aq_api_ver_lt(hw, 1, 5) || hw->mac.type == I40E_MAC_X722)
5269 		use_register = true;
5270 
5271 	if (!use_register) {
5272 do_retry:
5273 		status = i40e_aq_rx_ctl_write_register(hw, reg_addr,
5274 						       reg_val, NULL);
5275 		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
5276 			usleep_range(1000, 2000);
5277 			retry--;
5278 			goto do_retry;
5279 		}
5280 	}
5281 
5282 	/* if the AQ access failed, try the old-fashioned way */
5283 	if (status || use_register)
5284 		wr32(hw, reg_addr, reg_val);
5285 }
5286 
5287 /**
5288  * i40e_mdio_if_number_selection - MDIO I/F number selection
5289  * @hw: pointer to the hw struct
5290  * @set_mdio: use MDIO I/F number specified by mdio_num
5291  * @mdio_num: MDIO I/F number
5292  * @cmd: pointer to PHY Register command structure
5293  **/
5294 static void i40e_mdio_if_number_selection(struct i40e_hw *hw, bool set_mdio,
5295 					  u8 mdio_num,
5296 					  struct i40e_aqc_phy_register_access *cmd)
5297 {
5298 	if (!set_mdio ||
5299 	    cmd->phy_interface != I40E_AQ_PHY_REG_ACCESS_EXTERNAL)
5300 		return;
5301 
5302 	if (test_bit(I40E_HW_CAP_AQ_PHY_ACCESS_EXTENDED, hw->caps)) {
5303 		cmd->cmd_flags |=
5304 			I40E_AQ_PHY_REG_ACCESS_SET_MDIO_IF_NUMBER |
5305 			FIELD_PREP(I40E_AQ_PHY_REG_ACCESS_MDIO_IF_NUMBER_MASK,
5306 				   mdio_num);
5307 	} else {
5308 		i40e_debug(hw, I40E_DEBUG_PHY, "MDIO I/F number selection not supported by current FW version.\n");
5309 	}
5310 }
5311 
5312 /**
5313  * i40e_aq_set_phy_register_ext
5314  * @hw: pointer to the hw struct
5315  * @phy_select: select which phy should be accessed
5316  * @dev_addr: PHY device address
5317  * @page_change: flag to indicate if phy page should be updated
5318  * @set_mdio: use MDIO I/F number specified by mdio_num
5319  * @mdio_num: MDIO I/F number
5320  * @reg_addr: PHY register address
5321  * @reg_val: new register value
5322  * @cmd_details: pointer to command details structure or NULL
5323  *
5324  * Write the external PHY register.
5325  * NOTE: In common cases MDIO I/F number should not be changed, thats why you
5326  * may use simple wrapper i40e_aq_set_phy_register.
5327  **/
5328 int i40e_aq_set_phy_register_ext(struct i40e_hw *hw,
5329 				 u8 phy_select, u8 dev_addr, bool page_change,
5330 				 bool set_mdio, u8 mdio_num,
5331 				 u32 reg_addr, u32 reg_val,
5332 				 struct i40e_asq_cmd_details *cmd_details)
5333 {
5334 	struct i40e_aq_desc desc;
5335 	struct i40e_aqc_phy_register_access *cmd =
5336 		(struct i40e_aqc_phy_register_access *)&desc.params.raw;
5337 	int status;
5338 
5339 	i40e_fill_default_direct_cmd_desc(&desc,
5340 					  i40e_aqc_opc_set_phy_register);
5341 
5342 	cmd->phy_interface = phy_select;
5343 	cmd->dev_address = dev_addr;
5344 	cmd->reg_address = cpu_to_le32(reg_addr);
5345 	cmd->reg_value = cpu_to_le32(reg_val);
5346 
5347 	i40e_mdio_if_number_selection(hw, set_mdio, mdio_num, cmd);
5348 
5349 	if (!page_change)
5350 		cmd->cmd_flags = I40E_AQ_PHY_REG_ACCESS_DONT_CHANGE_QSFP_PAGE;
5351 
5352 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5353 
5354 	return status;
5355 }
5356 
5357 /**
5358  * i40e_aq_get_phy_register_ext
5359  * @hw: pointer to the hw struct
5360  * @phy_select: select which phy should be accessed
5361  * @dev_addr: PHY device address
5362  * @page_change: flag to indicate if phy page should be updated
5363  * @set_mdio: use MDIO I/F number specified by mdio_num
5364  * @mdio_num: MDIO I/F number
5365  * @reg_addr: PHY register address
5366  * @reg_val: read register value
5367  * @cmd_details: pointer to command details structure or NULL
5368  *
5369  * Read the external PHY register.
5370  * NOTE: In common cases MDIO I/F number should not be changed, thats why you
5371  * may use simple wrapper i40e_aq_get_phy_register.
5372  **/
5373 int i40e_aq_get_phy_register_ext(struct i40e_hw *hw,
5374 				 u8 phy_select, u8 dev_addr, bool page_change,
5375 				 bool set_mdio, u8 mdio_num,
5376 				 u32 reg_addr, u32 *reg_val,
5377 				 struct i40e_asq_cmd_details *cmd_details)
5378 {
5379 	struct i40e_aq_desc desc;
5380 	struct i40e_aqc_phy_register_access *cmd =
5381 		(struct i40e_aqc_phy_register_access *)&desc.params.raw;
5382 	int status;
5383 
5384 	i40e_fill_default_direct_cmd_desc(&desc,
5385 					  i40e_aqc_opc_get_phy_register);
5386 
5387 	cmd->phy_interface = phy_select;
5388 	cmd->dev_address = dev_addr;
5389 	cmd->reg_address = cpu_to_le32(reg_addr);
5390 
5391 	i40e_mdio_if_number_selection(hw, set_mdio, mdio_num, cmd);
5392 
5393 	if (!page_change)
5394 		cmd->cmd_flags = I40E_AQ_PHY_REG_ACCESS_DONT_CHANGE_QSFP_PAGE;
5395 
5396 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5397 	if (!status)
5398 		*reg_val = le32_to_cpu(cmd->reg_value);
5399 
5400 	return status;
5401 }
5402 
5403 /**
5404  * i40e_aq_write_ddp - Write dynamic device personalization (ddp)
5405  * @hw: pointer to the hw struct
5406  * @buff: command buffer (size in bytes = buff_size)
5407  * @buff_size: buffer size in bytes
5408  * @track_id: package tracking id
5409  * @error_offset: returns error offset
5410  * @error_info: returns error information
5411  * @cmd_details: pointer to command details structure or NULL
5412  **/
5413 int i40e_aq_write_ddp(struct i40e_hw *hw, void *buff,
5414 		      u16 buff_size, u32 track_id,
5415 		      u32 *error_offset, u32 *error_info,
5416 		      struct i40e_asq_cmd_details *cmd_details)
5417 {
5418 	struct i40e_aq_desc desc;
5419 	struct i40e_aqc_write_personalization_profile *cmd =
5420 		(struct i40e_aqc_write_personalization_profile *)
5421 		&desc.params.raw;
5422 	struct i40e_aqc_write_ddp_resp *resp;
5423 	int status;
5424 
5425 	i40e_fill_default_direct_cmd_desc(&desc,
5426 					  i40e_aqc_opc_write_personalization_profile);
5427 
5428 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD);
5429 	if (buff_size > I40E_AQ_LARGE_BUF)
5430 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
5431 
5432 	desc.datalen = cpu_to_le16(buff_size);
5433 
5434 	cmd->profile_track_id = cpu_to_le32(track_id);
5435 
5436 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
5437 	if (!status) {
5438 		resp = (struct i40e_aqc_write_ddp_resp *)&desc.params.raw;
5439 		if (error_offset)
5440 			*error_offset = le32_to_cpu(resp->error_offset);
5441 		if (error_info)
5442 			*error_info = le32_to_cpu(resp->error_info);
5443 	}
5444 
5445 	return status;
5446 }
5447 
5448 /**
5449  * i40e_aq_get_ddp_list - Read dynamic device personalization (ddp)
5450  * @hw: pointer to the hw struct
5451  * @buff: command buffer (size in bytes = buff_size)
5452  * @buff_size: buffer size in bytes
5453  * @flags: AdminQ command flags
5454  * @cmd_details: pointer to command details structure or NULL
5455  **/
5456 int i40e_aq_get_ddp_list(struct i40e_hw *hw, void *buff,
5457 			 u16 buff_size, u8 flags,
5458 			 struct i40e_asq_cmd_details *cmd_details)
5459 {
5460 	struct i40e_aq_desc desc;
5461 	struct i40e_aqc_get_applied_profiles *cmd =
5462 		(struct i40e_aqc_get_applied_profiles *)&desc.params.raw;
5463 	int status;
5464 
5465 	i40e_fill_default_direct_cmd_desc(&desc,
5466 					  i40e_aqc_opc_get_personalization_profile_list);
5467 
5468 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
5469 	if (buff_size > I40E_AQ_LARGE_BUF)
5470 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
5471 	desc.datalen = cpu_to_le16(buff_size);
5472 
5473 	cmd->flags = flags;
5474 
5475 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
5476 
5477 	return status;
5478 }
5479 
5480 /**
5481  * i40e_find_segment_in_package
5482  * @segment_type: the segment type to search for (i.e., SEGMENT_TYPE_I40E)
5483  * @pkg_hdr: pointer to the package header to be searched
5484  *
5485  * This function searches a package file for a particular segment type. On
5486  * success it returns a pointer to the segment header, otherwise it will
5487  * return NULL.
5488  **/
5489 struct i40e_generic_seg_header *
5490 i40e_find_segment_in_package(u32 segment_type,
5491 			     struct i40e_package_header *pkg_hdr)
5492 {
5493 	struct i40e_generic_seg_header *segment;
5494 	u32 i;
5495 
5496 	/* Search all package segments for the requested segment type */
5497 	for (i = 0; i < pkg_hdr->segment_count; i++) {
5498 		segment =
5499 			(struct i40e_generic_seg_header *)((u8 *)pkg_hdr +
5500 			 pkg_hdr->segment_offset[i]);
5501 
5502 		if (segment->type == segment_type)
5503 			return segment;
5504 	}
5505 
5506 	return NULL;
5507 }
5508 
5509 /* Get section table in profile */
5510 #define I40E_SECTION_TABLE(profile, sec_tbl)				\
5511 	do {								\
5512 		struct i40e_profile_segment *p = (profile);		\
5513 		u32 count;						\
5514 		u32 *nvm;						\
5515 		count = p->device_table_count;				\
5516 		nvm = (u32 *)&p->device_table[count];			\
5517 		sec_tbl = (struct i40e_section_table *)&nvm[nvm[0] + 1]; \
5518 	} while (0)
5519 
5520 /* Get section header in profile */
5521 #define I40E_SECTION_HEADER(profile, offset)				\
5522 	(struct i40e_profile_section_header *)((u8 *)(profile) + (offset))
5523 
5524 /**
5525  * i40e_find_section_in_profile
5526  * @section_type: the section type to search for (i.e., SECTION_TYPE_NOTE)
5527  * @profile: pointer to the i40e segment header to be searched
5528  *
5529  * This function searches i40e segment for a particular section type. On
5530  * success it returns a pointer to the section header, otherwise it will
5531  * return NULL.
5532  **/
5533 struct i40e_profile_section_header *
5534 i40e_find_section_in_profile(u32 section_type,
5535 			     struct i40e_profile_segment *profile)
5536 {
5537 	struct i40e_profile_section_header *sec;
5538 	struct i40e_section_table *sec_tbl;
5539 	u32 sec_off;
5540 	u32 i;
5541 
5542 	if (profile->header.type != SEGMENT_TYPE_I40E)
5543 		return NULL;
5544 
5545 	I40E_SECTION_TABLE(profile, sec_tbl);
5546 
5547 	for (i = 0; i < sec_tbl->section_count; i++) {
5548 		sec_off = sec_tbl->section_offset[i];
5549 		sec = I40E_SECTION_HEADER(profile, sec_off);
5550 		if (sec->section.type == section_type)
5551 			return sec;
5552 	}
5553 
5554 	return NULL;
5555 }
5556 
5557 /**
5558  * i40e_ddp_exec_aq_section - Execute generic AQ for DDP
5559  * @hw: pointer to the hw struct
5560  * @aq: command buffer containing all data to execute AQ
5561  **/
5562 static int i40e_ddp_exec_aq_section(struct i40e_hw *hw,
5563 				    struct i40e_profile_aq_section *aq)
5564 {
5565 	struct i40e_aq_desc desc;
5566 	u8 *msg = NULL;
5567 	u16 msglen;
5568 	int status;
5569 
5570 	i40e_fill_default_direct_cmd_desc(&desc, aq->opcode);
5571 	desc.flags |= cpu_to_le16(aq->flags);
5572 	memcpy(desc.params.raw, aq->param, sizeof(desc.params.raw));
5573 
5574 	msglen = aq->datalen;
5575 	if (msglen) {
5576 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
5577 						I40E_AQ_FLAG_RD));
5578 		if (msglen > I40E_AQ_LARGE_BUF)
5579 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
5580 		desc.datalen = cpu_to_le16(msglen);
5581 		msg = &aq->data[0];
5582 	}
5583 
5584 	status = i40e_asq_send_command(hw, &desc, msg, msglen, NULL);
5585 
5586 	if (status) {
5587 		i40e_debug(hw, I40E_DEBUG_PACKAGE,
5588 			   "unable to exec DDP AQ opcode %u, error %d\n",
5589 			   aq->opcode, status);
5590 		return status;
5591 	}
5592 
5593 	/* copy returned desc to aq_buf */
5594 	memcpy(aq->param, desc.params.raw, sizeof(desc.params.raw));
5595 
5596 	return 0;
5597 }
5598 
5599 /**
5600  * i40e_validate_profile
5601  * @hw: pointer to the hardware structure
5602  * @profile: pointer to the profile segment of the package to be validated
5603  * @track_id: package tracking id
5604  * @rollback: flag if the profile is for rollback.
5605  *
5606  * Validates supported devices and profile's sections.
5607  */
5608 static int
5609 i40e_validate_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile,
5610 		      u32 track_id, bool rollback)
5611 {
5612 	struct i40e_profile_section_header *sec = NULL;
5613 	struct i40e_section_table *sec_tbl;
5614 	u32 vendor_dev_id;
5615 	int status = 0;
5616 	u32 dev_cnt;
5617 	u32 sec_off;
5618 	u32 i;
5619 
5620 	if (track_id == I40E_DDP_TRACKID_INVALID) {
5621 		i40e_debug(hw, I40E_DEBUG_PACKAGE, "Invalid track_id\n");
5622 		return -EOPNOTSUPP;
5623 	}
5624 
5625 	dev_cnt = profile->device_table_count;
5626 	for (i = 0; i < dev_cnt; i++) {
5627 		vendor_dev_id = profile->device_table[i].vendor_dev_id;
5628 		if ((vendor_dev_id >> 16) == PCI_VENDOR_ID_INTEL &&
5629 		    hw->device_id == (vendor_dev_id & 0xFFFF))
5630 			break;
5631 	}
5632 	if (dev_cnt && i == dev_cnt) {
5633 		i40e_debug(hw, I40E_DEBUG_PACKAGE,
5634 			   "Device doesn't support DDP\n");
5635 		return -ENODEV;
5636 	}
5637 
5638 	I40E_SECTION_TABLE(profile, sec_tbl);
5639 
5640 	/* Validate sections types */
5641 	for (i = 0; i < sec_tbl->section_count; i++) {
5642 		sec_off = sec_tbl->section_offset[i];
5643 		sec = I40E_SECTION_HEADER(profile, sec_off);
5644 		if (rollback) {
5645 			if (sec->section.type == SECTION_TYPE_MMIO ||
5646 			    sec->section.type == SECTION_TYPE_AQ ||
5647 			    sec->section.type == SECTION_TYPE_RB_AQ) {
5648 				i40e_debug(hw, I40E_DEBUG_PACKAGE,
5649 					   "Not a roll-back package\n");
5650 				return -EOPNOTSUPP;
5651 			}
5652 		} else {
5653 			if (sec->section.type == SECTION_TYPE_RB_AQ ||
5654 			    sec->section.type == SECTION_TYPE_RB_MMIO) {
5655 				i40e_debug(hw, I40E_DEBUG_PACKAGE,
5656 					   "Not an original package\n");
5657 				return -EOPNOTSUPP;
5658 			}
5659 		}
5660 	}
5661 
5662 	return status;
5663 }
5664 
5665 /**
5666  * i40e_write_profile
5667  * @hw: pointer to the hardware structure
5668  * @profile: pointer to the profile segment of the package to be downloaded
5669  * @track_id: package tracking id
5670  *
5671  * Handles the download of a complete package.
5672  */
5673 int
5674 i40e_write_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile,
5675 		   u32 track_id)
5676 {
5677 	struct i40e_profile_section_header *sec = NULL;
5678 	struct i40e_profile_aq_section *ddp_aq;
5679 	struct i40e_section_table *sec_tbl;
5680 	u32 offset = 0, info = 0;
5681 	u32 section_size = 0;
5682 	int status = 0;
5683 	u32 sec_off;
5684 	u32 i;
5685 
5686 	status = i40e_validate_profile(hw, profile, track_id, false);
5687 	if (status)
5688 		return status;
5689 
5690 	I40E_SECTION_TABLE(profile, sec_tbl);
5691 
5692 	for (i = 0; i < sec_tbl->section_count; i++) {
5693 		sec_off = sec_tbl->section_offset[i];
5694 		sec = I40E_SECTION_HEADER(profile, sec_off);
5695 		/* Process generic admin command */
5696 		if (sec->section.type == SECTION_TYPE_AQ) {
5697 			ddp_aq = (struct i40e_profile_aq_section *)&sec[1];
5698 			status = i40e_ddp_exec_aq_section(hw, ddp_aq);
5699 			if (status) {
5700 				i40e_debug(hw, I40E_DEBUG_PACKAGE,
5701 					   "Failed to execute aq: section %d, opcode %u\n",
5702 					   i, ddp_aq->opcode);
5703 				break;
5704 			}
5705 			sec->section.type = SECTION_TYPE_RB_AQ;
5706 		}
5707 
5708 		/* Skip any non-mmio sections */
5709 		if (sec->section.type != SECTION_TYPE_MMIO)
5710 			continue;
5711 
5712 		section_size = sec->section.size +
5713 			sizeof(struct i40e_profile_section_header);
5714 
5715 		/* Write MMIO section */
5716 		status = i40e_aq_write_ddp(hw, (void *)sec, (u16)section_size,
5717 					   track_id, &offset, &info, NULL);
5718 		if (status) {
5719 			i40e_debug(hw, I40E_DEBUG_PACKAGE,
5720 				   "Failed to write profile: section %d, offset %d, info %d\n",
5721 				   i, offset, info);
5722 			break;
5723 		}
5724 	}
5725 	return status;
5726 }
5727 
5728 /**
5729  * i40e_rollback_profile
5730  * @hw: pointer to the hardware structure
5731  * @profile: pointer to the profile segment of the package to be removed
5732  * @track_id: package tracking id
5733  *
5734  * Rolls back previously loaded package.
5735  */
5736 int
5737 i40e_rollback_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile,
5738 		      u32 track_id)
5739 {
5740 	struct i40e_profile_section_header *sec = NULL;
5741 	struct i40e_section_table *sec_tbl;
5742 	u32 offset = 0, info = 0;
5743 	u32 section_size = 0;
5744 	int status = 0;
5745 	u32 sec_off;
5746 	int i;
5747 
5748 	status = i40e_validate_profile(hw, profile, track_id, true);
5749 	if (status)
5750 		return status;
5751 
5752 	I40E_SECTION_TABLE(profile, sec_tbl);
5753 
5754 	/* For rollback write sections in reverse */
5755 	for (i = sec_tbl->section_count - 1; i >= 0; i--) {
5756 		sec_off = sec_tbl->section_offset[i];
5757 		sec = I40E_SECTION_HEADER(profile, sec_off);
5758 
5759 		/* Skip any non-rollback sections */
5760 		if (sec->section.type != SECTION_TYPE_RB_MMIO)
5761 			continue;
5762 
5763 		section_size = sec->section.size +
5764 			sizeof(struct i40e_profile_section_header);
5765 
5766 		/* Write roll-back MMIO section */
5767 		status = i40e_aq_write_ddp(hw, (void *)sec, (u16)section_size,
5768 					   track_id, &offset, &info, NULL);
5769 		if (status) {
5770 			i40e_debug(hw, I40E_DEBUG_PACKAGE,
5771 				   "Failed to write profile: section %d, offset %d, info %d\n",
5772 				   i, offset, info);
5773 			break;
5774 		}
5775 	}
5776 	return status;
5777 }
5778 
5779 /**
5780  * i40e_add_pinfo_to_list
5781  * @hw: pointer to the hardware structure
5782  * @profile: pointer to the profile segment of the package
5783  * @profile_info_sec: buffer for information section
5784  * @track_id: package tracking id
5785  *
5786  * Register a profile to the list of loaded profiles.
5787  */
5788 int
5789 i40e_add_pinfo_to_list(struct i40e_hw *hw,
5790 		       struct i40e_profile_segment *profile,
5791 		       u8 *profile_info_sec, u32 track_id)
5792 {
5793 	struct i40e_profile_section_header *sec = NULL;
5794 	struct i40e_profile_info *pinfo;
5795 	u32 offset = 0, info = 0;
5796 	int status = 0;
5797 
5798 	sec = (struct i40e_profile_section_header *)profile_info_sec;
5799 	sec->tbl_size = 1;
5800 	sec->data_end = sizeof(struct i40e_profile_section_header) +
5801 			sizeof(struct i40e_profile_info);
5802 	sec->section.type = SECTION_TYPE_INFO;
5803 	sec->section.offset = sizeof(struct i40e_profile_section_header);
5804 	sec->section.size = sizeof(struct i40e_profile_info);
5805 	pinfo = (struct i40e_profile_info *)(profile_info_sec +
5806 					     sec->section.offset);
5807 	pinfo->track_id = track_id;
5808 	pinfo->version = profile->version;
5809 	pinfo->op = I40E_DDP_ADD_TRACKID;
5810 	memcpy(pinfo->name, profile->name, I40E_DDP_NAME_SIZE);
5811 
5812 	status = i40e_aq_write_ddp(hw, (void *)sec, sec->data_end,
5813 				   track_id, &offset, &info, NULL);
5814 
5815 	return status;
5816 }
5817 
5818 /**
5819  * i40e_aq_add_cloud_filters
5820  * @hw: pointer to the hardware structure
5821  * @seid: VSI seid to add cloud filters from
5822  * @filters: Buffer which contains the filters to be added
5823  * @filter_count: number of filters contained in the buffer
5824  *
5825  * Set the cloud filters for a given VSI.  The contents of the
5826  * i40e_aqc_cloud_filters_element_data are filled in by the caller
5827  * of the function.
5828  *
5829  **/
5830 int
5831 i40e_aq_add_cloud_filters(struct i40e_hw *hw, u16 seid,
5832 			  struct i40e_aqc_cloud_filters_element_data *filters,
5833 			  u8 filter_count)
5834 {
5835 	struct i40e_aq_desc desc;
5836 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5837 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5838 	u16 buff_len;
5839 	int status;
5840 
5841 	i40e_fill_default_direct_cmd_desc(&desc,
5842 					  i40e_aqc_opc_add_cloud_filters);
5843 
5844 	buff_len = filter_count * sizeof(*filters);
5845 	desc.datalen = cpu_to_le16(buff_len);
5846 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5847 	cmd->num_filters = filter_count;
5848 	cmd->seid = cpu_to_le16(seid);
5849 
5850 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
5851 
5852 	return status;
5853 }
5854 
5855 /**
5856  * i40e_aq_add_cloud_filters_bb
5857  * @hw: pointer to the hardware structure
5858  * @seid: VSI seid to add cloud filters from
5859  * @filters: Buffer which contains the filters in big buffer to be added
5860  * @filter_count: number of filters contained in the buffer
5861  *
5862  * Set the big buffer cloud filters for a given VSI.  The contents of the
5863  * i40e_aqc_cloud_filters_element_bb are filled in by the caller of the
5864  * function.
5865  *
5866  **/
5867 int
5868 i40e_aq_add_cloud_filters_bb(struct i40e_hw *hw, u16 seid,
5869 			     struct i40e_aqc_cloud_filters_element_bb *filters,
5870 			     u8 filter_count)
5871 {
5872 	struct i40e_aq_desc desc;
5873 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5874 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5875 	u16 buff_len;
5876 	int status;
5877 	int i;
5878 
5879 	i40e_fill_default_direct_cmd_desc(&desc,
5880 					  i40e_aqc_opc_add_cloud_filters);
5881 
5882 	buff_len = filter_count * sizeof(*filters);
5883 	desc.datalen = cpu_to_le16(buff_len);
5884 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5885 	cmd->num_filters = filter_count;
5886 	cmd->seid = cpu_to_le16(seid);
5887 	cmd->big_buffer_flag = I40E_AQC_ADD_CLOUD_CMD_BB;
5888 
5889 	for (i = 0; i < filter_count; i++) {
5890 		u16 tnl_type;
5891 		u32 ti;
5892 
5893 		tnl_type = le16_get_bits(filters[i].element.flags,
5894 					 I40E_AQC_ADD_CLOUD_TNL_TYPE_MASK);
5895 
5896 		/* Due to hardware eccentricities, the VNI for Geneve is shifted
5897 		 * one more byte further than normally used for Tenant ID in
5898 		 * other tunnel types.
5899 		 */
5900 		if (tnl_type == I40E_AQC_ADD_CLOUD_TNL_TYPE_GENEVE) {
5901 			ti = le32_to_cpu(filters[i].element.tenant_id);
5902 			filters[i].element.tenant_id = cpu_to_le32(ti << 8);
5903 		}
5904 	}
5905 
5906 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
5907 
5908 	return status;
5909 }
5910 
5911 /**
5912  * i40e_aq_rem_cloud_filters
5913  * @hw: pointer to the hardware structure
5914  * @seid: VSI seid to remove cloud filters from
5915  * @filters: Buffer which contains the filters to be removed
5916  * @filter_count: number of filters contained in the buffer
5917  *
5918  * Remove the cloud filters for a given VSI.  The contents of the
5919  * i40e_aqc_cloud_filters_element_data are filled in by the caller
5920  * of the function.
5921  *
5922  **/
5923 int
5924 i40e_aq_rem_cloud_filters(struct i40e_hw *hw, u16 seid,
5925 			  struct i40e_aqc_cloud_filters_element_data *filters,
5926 			  u8 filter_count)
5927 {
5928 	struct i40e_aq_desc desc;
5929 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5930 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5931 	u16 buff_len;
5932 	int status;
5933 
5934 	i40e_fill_default_direct_cmd_desc(&desc,
5935 					  i40e_aqc_opc_remove_cloud_filters);
5936 
5937 	buff_len = filter_count * sizeof(*filters);
5938 	desc.datalen = cpu_to_le16(buff_len);
5939 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5940 	cmd->num_filters = filter_count;
5941 	cmd->seid = cpu_to_le16(seid);
5942 
5943 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
5944 
5945 	return status;
5946 }
5947 
5948 /**
5949  * i40e_aq_rem_cloud_filters_bb
5950  * @hw: pointer to the hardware structure
5951  * @seid: VSI seid to remove cloud filters from
5952  * @filters: Buffer which contains the filters in big buffer to be removed
5953  * @filter_count: number of filters contained in the buffer
5954  *
5955  * Remove the big buffer cloud filters for a given VSI.  The contents of the
5956  * i40e_aqc_cloud_filters_element_bb are filled in by the caller of the
5957  * function.
5958  *
5959  **/
5960 int
5961 i40e_aq_rem_cloud_filters_bb(struct i40e_hw *hw, u16 seid,
5962 			     struct i40e_aqc_cloud_filters_element_bb *filters,
5963 			     u8 filter_count)
5964 {
5965 	struct i40e_aq_desc desc;
5966 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5967 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5968 	u16 buff_len;
5969 	int status;
5970 	int i;
5971 
5972 	i40e_fill_default_direct_cmd_desc(&desc,
5973 					  i40e_aqc_opc_remove_cloud_filters);
5974 
5975 	buff_len = filter_count * sizeof(*filters);
5976 	desc.datalen = cpu_to_le16(buff_len);
5977 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5978 	cmd->num_filters = filter_count;
5979 	cmd->seid = cpu_to_le16(seid);
5980 	cmd->big_buffer_flag = I40E_AQC_ADD_CLOUD_CMD_BB;
5981 
5982 	for (i = 0; i < filter_count; i++) {
5983 		u16 tnl_type;
5984 		u32 ti;
5985 
5986 		tnl_type = le16_get_bits(filters[i].element.flags,
5987 					 I40E_AQC_ADD_CLOUD_TNL_TYPE_MASK);
5988 
5989 		/* Due to hardware eccentricities, the VNI for Geneve is shifted
5990 		 * one more byte further than normally used for Tenant ID in
5991 		 * other tunnel types.
5992 		 */
5993 		if (tnl_type == I40E_AQC_ADD_CLOUD_TNL_TYPE_GENEVE) {
5994 			ti = le32_to_cpu(filters[i].element.tenant_id);
5995 			filters[i].element.tenant_id = cpu_to_le32(ti << 8);
5996 		}
5997 	}
5998 
5999 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
6000 
6001 	return status;
6002 }
6003