xref: /linux/drivers/net/ethernet/intel/i40e/i40e_common.c (revision 04317b129e4eb5c6f4a58bb899b2019c1545320b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2021 Intel Corporation. */
3 
4 #include <linux/avf/virtchnl.h>
5 #include <linux/delay.h>
6 #include <linux/etherdevice.h>
7 #include <linux/pci.h>
8 #include "i40e_adminq_cmd.h"
9 #include "i40e_devids.h"
10 #include "i40e_prototype.h"
11 #include "i40e_register.h"
12 
13 /**
14  * i40e_set_mac_type - Sets MAC type
15  * @hw: pointer to the HW structure
16  *
17  * This function sets the mac type of the adapter based on the
18  * vendor ID and device ID stored in the hw structure.
19  **/
20 int i40e_set_mac_type(struct i40e_hw *hw)
21 {
22 	int status = 0;
23 
24 	if (hw->vendor_id == PCI_VENDOR_ID_INTEL) {
25 		switch (hw->device_id) {
26 		case I40E_DEV_ID_SFP_XL710:
27 		case I40E_DEV_ID_QEMU:
28 		case I40E_DEV_ID_KX_B:
29 		case I40E_DEV_ID_KX_C:
30 		case I40E_DEV_ID_QSFP_A:
31 		case I40E_DEV_ID_QSFP_B:
32 		case I40E_DEV_ID_QSFP_C:
33 		case I40E_DEV_ID_1G_BASE_T_BC:
34 		case I40E_DEV_ID_5G_BASE_T_BC:
35 		case I40E_DEV_ID_10G_BASE_T:
36 		case I40E_DEV_ID_10G_BASE_T4:
37 		case I40E_DEV_ID_10G_BASE_T_BC:
38 		case I40E_DEV_ID_10G_B:
39 		case I40E_DEV_ID_10G_SFP:
40 		case I40E_DEV_ID_20G_KR2:
41 		case I40E_DEV_ID_20G_KR2_A:
42 		case I40E_DEV_ID_25G_B:
43 		case I40E_DEV_ID_25G_SFP28:
44 		case I40E_DEV_ID_X710_N3000:
45 		case I40E_DEV_ID_XXV710_N3000:
46 			hw->mac.type = I40E_MAC_XL710;
47 			break;
48 		case I40E_DEV_ID_KX_X722:
49 		case I40E_DEV_ID_QSFP_X722:
50 		case I40E_DEV_ID_SFP_X722:
51 		case I40E_DEV_ID_1G_BASE_T_X722:
52 		case I40E_DEV_ID_10G_BASE_T_X722:
53 		case I40E_DEV_ID_SFP_I_X722:
54 		case I40E_DEV_ID_SFP_X722_A:
55 			hw->mac.type = I40E_MAC_X722;
56 			break;
57 		default:
58 			hw->mac.type = I40E_MAC_GENERIC;
59 			break;
60 		}
61 	} else {
62 		status = -ENODEV;
63 	}
64 
65 	hw_dbg(hw, "i40e_set_mac_type found mac: %d, returns: %d\n",
66 		  hw->mac.type, status);
67 	return status;
68 }
69 
70 /**
71  * i40e_aq_str - convert AQ err code to a string
72  * @hw: pointer to the HW structure
73  * @aq_err: the AQ error code to convert
74  **/
75 const char *i40e_aq_str(struct i40e_hw *hw, enum i40e_admin_queue_err aq_err)
76 {
77 	switch (aq_err) {
78 	case I40E_AQ_RC_OK:
79 		return "OK";
80 	case I40E_AQ_RC_EPERM:
81 		return "I40E_AQ_RC_EPERM";
82 	case I40E_AQ_RC_ENOENT:
83 		return "I40E_AQ_RC_ENOENT";
84 	case I40E_AQ_RC_ESRCH:
85 		return "I40E_AQ_RC_ESRCH";
86 	case I40E_AQ_RC_EINTR:
87 		return "I40E_AQ_RC_EINTR";
88 	case I40E_AQ_RC_EIO:
89 		return "I40E_AQ_RC_EIO";
90 	case I40E_AQ_RC_ENXIO:
91 		return "I40E_AQ_RC_ENXIO";
92 	case I40E_AQ_RC_E2BIG:
93 		return "I40E_AQ_RC_E2BIG";
94 	case I40E_AQ_RC_EAGAIN:
95 		return "I40E_AQ_RC_EAGAIN";
96 	case I40E_AQ_RC_ENOMEM:
97 		return "I40E_AQ_RC_ENOMEM";
98 	case I40E_AQ_RC_EACCES:
99 		return "I40E_AQ_RC_EACCES";
100 	case I40E_AQ_RC_EFAULT:
101 		return "I40E_AQ_RC_EFAULT";
102 	case I40E_AQ_RC_EBUSY:
103 		return "I40E_AQ_RC_EBUSY";
104 	case I40E_AQ_RC_EEXIST:
105 		return "I40E_AQ_RC_EEXIST";
106 	case I40E_AQ_RC_EINVAL:
107 		return "I40E_AQ_RC_EINVAL";
108 	case I40E_AQ_RC_ENOTTY:
109 		return "I40E_AQ_RC_ENOTTY";
110 	case I40E_AQ_RC_ENOSPC:
111 		return "I40E_AQ_RC_ENOSPC";
112 	case I40E_AQ_RC_ENOSYS:
113 		return "I40E_AQ_RC_ENOSYS";
114 	case I40E_AQ_RC_ERANGE:
115 		return "I40E_AQ_RC_ERANGE";
116 	case I40E_AQ_RC_EFLUSHED:
117 		return "I40E_AQ_RC_EFLUSHED";
118 	case I40E_AQ_RC_BAD_ADDR:
119 		return "I40E_AQ_RC_BAD_ADDR";
120 	case I40E_AQ_RC_EMODE:
121 		return "I40E_AQ_RC_EMODE";
122 	case I40E_AQ_RC_EFBIG:
123 		return "I40E_AQ_RC_EFBIG";
124 	}
125 
126 	snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
127 	return hw->err_str;
128 }
129 
130 /**
131  * i40e_debug_aq
132  * @hw: debug mask related to admin queue
133  * @mask: debug mask
134  * @desc: pointer to admin queue descriptor
135  * @buffer: pointer to command buffer
136  * @buf_len: max length of buffer
137  *
138  * Dumps debug log about adminq command with descriptor contents.
139  **/
140 void i40e_debug_aq(struct i40e_hw *hw, enum i40e_debug_mask mask, void *desc,
141 		   void *buffer, u16 buf_len)
142 {
143 	struct i40e_aq_desc *aq_desc = (struct i40e_aq_desc *)desc;
144 	u32 effective_mask = hw->debug_mask & mask;
145 	char prefix[27];
146 	u16 len;
147 	u8 *buf = (u8 *)buffer;
148 
149 	if (!effective_mask || !desc)
150 		return;
151 
152 	len = le16_to_cpu(aq_desc->datalen);
153 
154 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
155 		   "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
156 		   le16_to_cpu(aq_desc->opcode),
157 		   le16_to_cpu(aq_desc->flags),
158 		   le16_to_cpu(aq_desc->datalen),
159 		   le16_to_cpu(aq_desc->retval));
160 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
161 		   "\tcookie (h,l) 0x%08X 0x%08X\n",
162 		   le32_to_cpu(aq_desc->cookie_high),
163 		   le32_to_cpu(aq_desc->cookie_low));
164 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
165 		   "\tparam (0,1)  0x%08X 0x%08X\n",
166 		   le32_to_cpu(aq_desc->params.internal.param0),
167 		   le32_to_cpu(aq_desc->params.internal.param1));
168 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
169 		   "\taddr (h,l)   0x%08X 0x%08X\n",
170 		   le32_to_cpu(aq_desc->params.external.addr_high),
171 		   le32_to_cpu(aq_desc->params.external.addr_low));
172 
173 	if (buffer && buf_len != 0 && len != 0 &&
174 	    (effective_mask & I40E_DEBUG_AQ_DESC_BUFFER)) {
175 		i40e_debug(hw, mask, "AQ CMD Buffer:\n");
176 		if (buf_len < len)
177 			len = buf_len;
178 
179 		snprintf(prefix, sizeof(prefix),
180 			 "i40e %02x:%02x.%x: \t0x",
181 			 hw->bus.bus_id,
182 			 hw->bus.device,
183 			 hw->bus.func);
184 
185 		print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET,
186 			       16, 1, buf, len, false);
187 	}
188 }
189 
190 /**
191  * i40e_check_asq_alive
192  * @hw: pointer to the hw struct
193  *
194  * Returns true if Queue is enabled else false.
195  **/
196 bool i40e_check_asq_alive(struct i40e_hw *hw)
197 {
198 	if (hw->aq.asq.len)
199 		return !!(rd32(hw, hw->aq.asq.len) &
200 			  I40E_PF_ATQLEN_ATQENABLE_MASK);
201 	else
202 		return false;
203 }
204 
205 /**
206  * i40e_aq_queue_shutdown
207  * @hw: pointer to the hw struct
208  * @unloading: is the driver unloading itself
209  *
210  * Tell the Firmware that we're shutting down the AdminQ and whether
211  * or not the driver is unloading as well.
212  **/
213 int i40e_aq_queue_shutdown(struct i40e_hw *hw,
214 			   bool unloading)
215 {
216 	struct i40e_aq_desc desc;
217 	struct i40e_aqc_queue_shutdown *cmd =
218 		(struct i40e_aqc_queue_shutdown *)&desc.params.raw;
219 	int status;
220 
221 	i40e_fill_default_direct_cmd_desc(&desc,
222 					  i40e_aqc_opc_queue_shutdown);
223 
224 	if (unloading)
225 		cmd->driver_unloading = cpu_to_le32(I40E_AQ_DRIVER_UNLOADING);
226 	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
227 
228 	return status;
229 }
230 
231 /**
232  * i40e_aq_get_set_rss_lut
233  * @hw: pointer to the hardware structure
234  * @vsi_id: vsi fw index
235  * @pf_lut: for PF table set true, for VSI table set false
236  * @lut: pointer to the lut buffer provided by the caller
237  * @lut_size: size of the lut buffer
238  * @set: set true to set the table, false to get the table
239  *
240  * Internal function to get or set RSS look up table
241  **/
242 static int i40e_aq_get_set_rss_lut(struct i40e_hw *hw,
243 				   u16 vsi_id, bool pf_lut,
244 				   u8 *lut, u16 lut_size,
245 				   bool set)
246 {
247 	struct i40e_aq_desc desc;
248 	struct i40e_aqc_get_set_rss_lut *cmd_resp =
249 		   (struct i40e_aqc_get_set_rss_lut *)&desc.params.raw;
250 	int status;
251 
252 	if (set)
253 		i40e_fill_default_direct_cmd_desc(&desc,
254 						  i40e_aqc_opc_set_rss_lut);
255 	else
256 		i40e_fill_default_direct_cmd_desc(&desc,
257 						  i40e_aqc_opc_get_rss_lut);
258 
259 	/* Indirect command */
260 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
261 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
262 
263 	cmd_resp->vsi_id =
264 			cpu_to_le16((u16)((vsi_id <<
265 					  I40E_AQC_SET_RSS_LUT_VSI_ID_SHIFT) &
266 					  I40E_AQC_SET_RSS_LUT_VSI_ID_MASK));
267 	cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_LUT_VSI_VALID);
268 
269 	if (pf_lut)
270 		cmd_resp->flags |= cpu_to_le16((u16)
271 					((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_PF <<
272 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
273 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
274 	else
275 		cmd_resp->flags |= cpu_to_le16((u16)
276 					((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_VSI <<
277 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
278 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
279 
280 	status = i40e_asq_send_command(hw, &desc, lut, lut_size, NULL);
281 
282 	return status;
283 }
284 
285 /**
286  * i40e_aq_get_rss_lut
287  * @hw: pointer to the hardware structure
288  * @vsi_id: vsi fw index
289  * @pf_lut: for PF table set true, for VSI table set false
290  * @lut: pointer to the lut buffer provided by the caller
291  * @lut_size: size of the lut buffer
292  *
293  * get the RSS lookup table, PF or VSI type
294  **/
295 int i40e_aq_get_rss_lut(struct i40e_hw *hw, u16 vsi_id,
296 			bool pf_lut, u8 *lut, u16 lut_size)
297 {
298 	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size,
299 				       false);
300 }
301 
302 /**
303  * i40e_aq_set_rss_lut
304  * @hw: pointer to the hardware structure
305  * @vsi_id: vsi fw index
306  * @pf_lut: for PF table set true, for VSI table set false
307  * @lut: pointer to the lut buffer provided by the caller
308  * @lut_size: size of the lut buffer
309  *
310  * set the RSS lookup table, PF or VSI type
311  **/
312 int i40e_aq_set_rss_lut(struct i40e_hw *hw, u16 vsi_id,
313 			bool pf_lut, u8 *lut, u16 lut_size)
314 {
315 	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
316 }
317 
318 /**
319  * i40e_aq_get_set_rss_key
320  * @hw: pointer to the hw struct
321  * @vsi_id: vsi fw index
322  * @key: pointer to key info struct
323  * @set: set true to set the key, false to get the key
324  *
325  * get the RSS key per VSI
326  **/
327 static int i40e_aq_get_set_rss_key(struct i40e_hw *hw,
328 				   u16 vsi_id,
329 				   struct i40e_aqc_get_set_rss_key_data *key,
330 				   bool set)
331 {
332 	struct i40e_aq_desc desc;
333 	struct i40e_aqc_get_set_rss_key *cmd_resp =
334 			(struct i40e_aqc_get_set_rss_key *)&desc.params.raw;
335 	u16 key_size = sizeof(struct i40e_aqc_get_set_rss_key_data);
336 	int status;
337 
338 	if (set)
339 		i40e_fill_default_direct_cmd_desc(&desc,
340 						  i40e_aqc_opc_set_rss_key);
341 	else
342 		i40e_fill_default_direct_cmd_desc(&desc,
343 						  i40e_aqc_opc_get_rss_key);
344 
345 	/* Indirect command */
346 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
347 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
348 
349 	cmd_resp->vsi_id =
350 			cpu_to_le16((u16)((vsi_id <<
351 					  I40E_AQC_SET_RSS_KEY_VSI_ID_SHIFT) &
352 					  I40E_AQC_SET_RSS_KEY_VSI_ID_MASK));
353 	cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_KEY_VSI_VALID);
354 
355 	status = i40e_asq_send_command(hw, &desc, key, key_size, NULL);
356 
357 	return status;
358 }
359 
360 /**
361  * i40e_aq_get_rss_key
362  * @hw: pointer to the hw struct
363  * @vsi_id: vsi fw index
364  * @key: pointer to key info struct
365  *
366  **/
367 int i40e_aq_get_rss_key(struct i40e_hw *hw,
368 			u16 vsi_id,
369 			struct i40e_aqc_get_set_rss_key_data *key)
370 {
371 	return i40e_aq_get_set_rss_key(hw, vsi_id, key, false);
372 }
373 
374 /**
375  * i40e_aq_set_rss_key
376  * @hw: pointer to the hw struct
377  * @vsi_id: vsi fw index
378  * @key: pointer to key info struct
379  *
380  * set the RSS key per VSI
381  **/
382 int i40e_aq_set_rss_key(struct i40e_hw *hw,
383 			u16 vsi_id,
384 			struct i40e_aqc_get_set_rss_key_data *key)
385 {
386 	return i40e_aq_get_set_rss_key(hw, vsi_id, key, true);
387 }
388 
389 /* The i40e_ptype_lookup table is used to convert from the 8-bit ptype in the
390  * hardware to a bit-field that can be used by SW to more easily determine the
391  * packet type.
392  *
393  * Macros are used to shorten the table lines and make this table human
394  * readable.
395  *
396  * We store the PTYPE in the top byte of the bit field - this is just so that
397  * we can check that the table doesn't have a row missing, as the index into
398  * the table should be the PTYPE.
399  *
400  * Typical work flow:
401  *
402  * IF NOT i40e_ptype_lookup[ptype].known
403  * THEN
404  *      Packet is unknown
405  * ELSE IF i40e_ptype_lookup[ptype].outer_ip == I40E_RX_PTYPE_OUTER_IP
406  *      Use the rest of the fields to look at the tunnels, inner protocols, etc
407  * ELSE
408  *      Use the enum i40e_rx_l2_ptype to decode the packet type
409  * ENDIF
410  */
411 
412 /* macro to make the table lines short, use explicit indexing with [PTYPE] */
413 #define I40E_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
414 	[PTYPE] = { \
415 		1, \
416 		I40E_RX_PTYPE_OUTER_##OUTER_IP, \
417 		I40E_RX_PTYPE_OUTER_##OUTER_IP_VER, \
418 		I40E_RX_PTYPE_##OUTER_FRAG, \
419 		I40E_RX_PTYPE_TUNNEL_##T, \
420 		I40E_RX_PTYPE_TUNNEL_END_##TE, \
421 		I40E_RX_PTYPE_##TEF, \
422 		I40E_RX_PTYPE_INNER_PROT_##I, \
423 		I40E_RX_PTYPE_PAYLOAD_LAYER_##PL }
424 
425 #define I40E_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
426 
427 /* shorter macros makes the table fit but are terse */
428 #define I40E_RX_PTYPE_NOF		I40E_RX_PTYPE_NOT_FRAG
429 #define I40E_RX_PTYPE_FRG		I40E_RX_PTYPE_FRAG
430 #define I40E_RX_PTYPE_INNER_PROT_TS	I40E_RX_PTYPE_INNER_PROT_TIMESYNC
431 
432 /* Lookup table mapping in the 8-bit HW PTYPE to the bit field for decoding */
433 struct i40e_rx_ptype_decoded i40e_ptype_lookup[BIT(8)] = {
434 	/* L2 Packet types */
435 	I40E_PTT_UNUSED_ENTRY(0),
436 	I40E_PTT(1,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
437 	I40E_PTT(2,  L2, NONE, NOF, NONE, NONE, NOF, TS,   PAY2),
438 	I40E_PTT(3,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
439 	I40E_PTT_UNUSED_ENTRY(4),
440 	I40E_PTT_UNUSED_ENTRY(5),
441 	I40E_PTT(6,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
442 	I40E_PTT(7,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
443 	I40E_PTT_UNUSED_ENTRY(8),
444 	I40E_PTT_UNUSED_ENTRY(9),
445 	I40E_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
446 	I40E_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
447 	I40E_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
448 	I40E_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
449 	I40E_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
450 	I40E_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
451 	I40E_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
452 	I40E_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
453 	I40E_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
454 	I40E_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
455 	I40E_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
456 	I40E_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
457 
458 	/* Non Tunneled IPv4 */
459 	I40E_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
460 	I40E_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
461 	I40E_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP,  PAY4),
462 	I40E_PTT_UNUSED_ENTRY(25),
463 	I40E_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP,  PAY4),
464 	I40E_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
465 	I40E_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
466 
467 	/* IPv4 --> IPv4 */
468 	I40E_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
469 	I40E_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
470 	I40E_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
471 	I40E_PTT_UNUSED_ENTRY(32),
472 	I40E_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
473 	I40E_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
474 	I40E_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
475 
476 	/* IPv4 --> IPv6 */
477 	I40E_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
478 	I40E_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
479 	I40E_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
480 	I40E_PTT_UNUSED_ENTRY(39),
481 	I40E_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
482 	I40E_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
483 	I40E_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
484 
485 	/* IPv4 --> GRE/NAT */
486 	I40E_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
487 
488 	/* IPv4 --> GRE/NAT --> IPv4 */
489 	I40E_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
490 	I40E_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
491 	I40E_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
492 	I40E_PTT_UNUSED_ENTRY(47),
493 	I40E_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
494 	I40E_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
495 	I40E_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
496 
497 	/* IPv4 --> GRE/NAT --> IPv6 */
498 	I40E_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
499 	I40E_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
500 	I40E_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
501 	I40E_PTT_UNUSED_ENTRY(54),
502 	I40E_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
503 	I40E_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
504 	I40E_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
505 
506 	/* IPv4 --> GRE/NAT --> MAC */
507 	I40E_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
508 
509 	/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
510 	I40E_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
511 	I40E_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
512 	I40E_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
513 	I40E_PTT_UNUSED_ENTRY(62),
514 	I40E_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
515 	I40E_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
516 	I40E_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
517 
518 	/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
519 	I40E_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
520 	I40E_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
521 	I40E_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
522 	I40E_PTT_UNUSED_ENTRY(69),
523 	I40E_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
524 	I40E_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
525 	I40E_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
526 
527 	/* IPv4 --> GRE/NAT --> MAC/VLAN */
528 	I40E_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
529 
530 	/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
531 	I40E_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
532 	I40E_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
533 	I40E_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
534 	I40E_PTT_UNUSED_ENTRY(77),
535 	I40E_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
536 	I40E_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
537 	I40E_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
538 
539 	/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
540 	I40E_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
541 	I40E_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
542 	I40E_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
543 	I40E_PTT_UNUSED_ENTRY(84),
544 	I40E_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
545 	I40E_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
546 	I40E_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
547 
548 	/* Non Tunneled IPv6 */
549 	I40E_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
550 	I40E_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
551 	I40E_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP,  PAY4),
552 	I40E_PTT_UNUSED_ENTRY(91),
553 	I40E_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP,  PAY4),
554 	I40E_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
555 	I40E_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
556 
557 	/* IPv6 --> IPv4 */
558 	I40E_PTT(95,  IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
559 	I40E_PTT(96,  IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
560 	I40E_PTT(97,  IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
561 	I40E_PTT_UNUSED_ENTRY(98),
562 	I40E_PTT(99,  IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
563 	I40E_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
564 	I40E_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
565 
566 	/* IPv6 --> IPv6 */
567 	I40E_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
568 	I40E_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
569 	I40E_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
570 	I40E_PTT_UNUSED_ENTRY(105),
571 	I40E_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
572 	I40E_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
573 	I40E_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
574 
575 	/* IPv6 --> GRE/NAT */
576 	I40E_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
577 
578 	/* IPv6 --> GRE/NAT -> IPv4 */
579 	I40E_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
580 	I40E_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
581 	I40E_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
582 	I40E_PTT_UNUSED_ENTRY(113),
583 	I40E_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
584 	I40E_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
585 	I40E_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
586 
587 	/* IPv6 --> GRE/NAT -> IPv6 */
588 	I40E_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
589 	I40E_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
590 	I40E_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
591 	I40E_PTT_UNUSED_ENTRY(120),
592 	I40E_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
593 	I40E_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
594 	I40E_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
595 
596 	/* IPv6 --> GRE/NAT -> MAC */
597 	I40E_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
598 
599 	/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
600 	I40E_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
601 	I40E_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
602 	I40E_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
603 	I40E_PTT_UNUSED_ENTRY(128),
604 	I40E_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
605 	I40E_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
606 	I40E_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
607 
608 	/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
609 	I40E_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
610 	I40E_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
611 	I40E_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
612 	I40E_PTT_UNUSED_ENTRY(135),
613 	I40E_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
614 	I40E_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
615 	I40E_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
616 
617 	/* IPv6 --> GRE/NAT -> MAC/VLAN */
618 	I40E_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
619 
620 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
621 	I40E_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
622 	I40E_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
623 	I40E_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
624 	I40E_PTT_UNUSED_ENTRY(143),
625 	I40E_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
626 	I40E_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
627 	I40E_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
628 
629 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
630 	I40E_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
631 	I40E_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
632 	I40E_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
633 	I40E_PTT_UNUSED_ENTRY(150),
634 	I40E_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
635 	I40E_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
636 	I40E_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
637 
638 	/* unused entries */
639 	[154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
640 };
641 
642 /**
643  * i40e_init_shared_code - Initialize the shared code
644  * @hw: pointer to hardware structure
645  *
646  * This assigns the MAC type and PHY code and inits the NVM.
647  * Does not touch the hardware. This function must be called prior to any
648  * other function in the shared code. The i40e_hw structure should be
649  * memset to 0 prior to calling this function.  The following fields in
650  * hw structure should be filled in prior to calling this function:
651  * hw_addr, back, device_id, vendor_id, subsystem_device_id,
652  * subsystem_vendor_id, and revision_id
653  **/
654 int i40e_init_shared_code(struct i40e_hw *hw)
655 {
656 	u32 port, ari, func_rid;
657 	int status = 0;
658 
659 	i40e_set_mac_type(hw);
660 
661 	switch (hw->mac.type) {
662 	case I40E_MAC_XL710:
663 	case I40E_MAC_X722:
664 		break;
665 	default:
666 		return -ENODEV;
667 	}
668 
669 	hw->phy.get_link_info = true;
670 
671 	/* Determine port number and PF number*/
672 	port = (rd32(hw, I40E_PFGEN_PORTNUM) & I40E_PFGEN_PORTNUM_PORT_NUM_MASK)
673 					   >> I40E_PFGEN_PORTNUM_PORT_NUM_SHIFT;
674 	hw->port = (u8)port;
675 	ari = (rd32(hw, I40E_GLPCI_CAPSUP) & I40E_GLPCI_CAPSUP_ARI_EN_MASK) >>
676 						 I40E_GLPCI_CAPSUP_ARI_EN_SHIFT;
677 	func_rid = rd32(hw, I40E_PF_FUNC_RID);
678 	if (ari)
679 		hw->pf_id = (u8)(func_rid & 0xff);
680 	else
681 		hw->pf_id = (u8)(func_rid & 0x7);
682 
683 	status = i40e_init_nvm(hw);
684 	return status;
685 }
686 
687 /**
688  * i40e_aq_mac_address_read - Retrieve the MAC addresses
689  * @hw: pointer to the hw struct
690  * @flags: a return indicator of what addresses were added to the addr store
691  * @addrs: the requestor's mac addr store
692  * @cmd_details: pointer to command details structure or NULL
693  **/
694 static int
695 i40e_aq_mac_address_read(struct i40e_hw *hw,
696 			 u16 *flags,
697 			 struct i40e_aqc_mac_address_read_data *addrs,
698 			 struct i40e_asq_cmd_details *cmd_details)
699 {
700 	struct i40e_aq_desc desc;
701 	struct i40e_aqc_mac_address_read *cmd_data =
702 		(struct i40e_aqc_mac_address_read *)&desc.params.raw;
703 	int status;
704 
705 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_mac_address_read);
706 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF);
707 
708 	status = i40e_asq_send_command(hw, &desc, addrs,
709 				       sizeof(*addrs), cmd_details);
710 	*flags = le16_to_cpu(cmd_data->command_flags);
711 
712 	return status;
713 }
714 
715 /**
716  * i40e_aq_mac_address_write - Change the MAC addresses
717  * @hw: pointer to the hw struct
718  * @flags: indicates which MAC to be written
719  * @mac_addr: address to write
720  * @cmd_details: pointer to command details structure or NULL
721  **/
722 int i40e_aq_mac_address_write(struct i40e_hw *hw,
723 			      u16 flags, u8 *mac_addr,
724 			      struct i40e_asq_cmd_details *cmd_details)
725 {
726 	struct i40e_aq_desc desc;
727 	struct i40e_aqc_mac_address_write *cmd_data =
728 		(struct i40e_aqc_mac_address_write *)&desc.params.raw;
729 	int status;
730 
731 	i40e_fill_default_direct_cmd_desc(&desc,
732 					  i40e_aqc_opc_mac_address_write);
733 	cmd_data->command_flags = cpu_to_le16(flags);
734 	cmd_data->mac_sah = cpu_to_le16((u16)mac_addr[0] << 8 | mac_addr[1]);
735 	cmd_data->mac_sal = cpu_to_le32(((u32)mac_addr[2] << 24) |
736 					((u32)mac_addr[3] << 16) |
737 					((u32)mac_addr[4] << 8) |
738 					mac_addr[5]);
739 
740 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
741 
742 	return status;
743 }
744 
745 /**
746  * i40e_get_mac_addr - get MAC address
747  * @hw: pointer to the HW structure
748  * @mac_addr: pointer to MAC address
749  *
750  * Reads the adapter's MAC address from register
751  **/
752 int i40e_get_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
753 {
754 	struct i40e_aqc_mac_address_read_data addrs;
755 	u16 flags = 0;
756 	int status;
757 
758 	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
759 
760 	if (flags & I40E_AQC_LAN_ADDR_VALID)
761 		ether_addr_copy(mac_addr, addrs.pf_lan_mac);
762 
763 	return status;
764 }
765 
766 /**
767  * i40e_get_port_mac_addr - get Port MAC address
768  * @hw: pointer to the HW structure
769  * @mac_addr: pointer to Port MAC address
770  *
771  * Reads the adapter's Port MAC address
772  **/
773 int i40e_get_port_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
774 {
775 	struct i40e_aqc_mac_address_read_data addrs;
776 	u16 flags = 0;
777 	int status;
778 
779 	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
780 	if (status)
781 		return status;
782 
783 	if (flags & I40E_AQC_PORT_ADDR_VALID)
784 		ether_addr_copy(mac_addr, addrs.port_mac);
785 	else
786 		status = -EINVAL;
787 
788 	return status;
789 }
790 
791 /**
792  * i40e_pre_tx_queue_cfg - pre tx queue configure
793  * @hw: pointer to the HW structure
794  * @queue: target PF queue index
795  * @enable: state change request
796  *
797  * Handles hw requirement to indicate intention to enable
798  * or disable target queue.
799  **/
800 void i40e_pre_tx_queue_cfg(struct i40e_hw *hw, u32 queue, bool enable)
801 {
802 	u32 abs_queue_idx = hw->func_caps.base_queue + queue;
803 	u32 reg_block = 0;
804 	u32 reg_val;
805 
806 	if (abs_queue_idx >= 128) {
807 		reg_block = abs_queue_idx / 128;
808 		abs_queue_idx %= 128;
809 	}
810 
811 	reg_val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
812 	reg_val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
813 	reg_val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
814 
815 	if (enable)
816 		reg_val |= I40E_GLLAN_TXPRE_QDIS_CLEAR_QDIS_MASK;
817 	else
818 		reg_val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
819 
820 	wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), reg_val);
821 }
822 
823 /**
824  *  i40e_read_pba_string - Reads part number string from EEPROM
825  *  @hw: pointer to hardware structure
826  *  @pba_num: stores the part number string from the EEPROM
827  *  @pba_num_size: part number string buffer length
828  *
829  *  Reads the part number string from the EEPROM.
830  **/
831 int i40e_read_pba_string(struct i40e_hw *hw, u8 *pba_num,
832 			 u32 pba_num_size)
833 {
834 	u16 pba_word = 0;
835 	u16 pba_size = 0;
836 	u16 pba_ptr = 0;
837 	int status = 0;
838 	u16 i = 0;
839 
840 	status = i40e_read_nvm_word(hw, I40E_SR_PBA_FLAGS, &pba_word);
841 	if (status || (pba_word != 0xFAFA)) {
842 		hw_dbg(hw, "Failed to read PBA flags or flag is invalid.\n");
843 		return status;
844 	}
845 
846 	status = i40e_read_nvm_word(hw, I40E_SR_PBA_BLOCK_PTR, &pba_ptr);
847 	if (status) {
848 		hw_dbg(hw, "Failed to read PBA Block pointer.\n");
849 		return status;
850 	}
851 
852 	status = i40e_read_nvm_word(hw, pba_ptr, &pba_size);
853 	if (status) {
854 		hw_dbg(hw, "Failed to read PBA Block size.\n");
855 		return status;
856 	}
857 
858 	/* Subtract one to get PBA word count (PBA Size word is included in
859 	 * total size)
860 	 */
861 	pba_size--;
862 	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
863 		hw_dbg(hw, "Buffer too small for PBA data.\n");
864 		return -EINVAL;
865 	}
866 
867 	for (i = 0; i < pba_size; i++) {
868 		status = i40e_read_nvm_word(hw, (pba_ptr + 1) + i, &pba_word);
869 		if (status) {
870 			hw_dbg(hw, "Failed to read PBA Block word %d.\n", i);
871 			return status;
872 		}
873 
874 		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
875 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
876 	}
877 	pba_num[(pba_size * 2)] = '\0';
878 
879 	return status;
880 }
881 
882 /**
883  * i40e_get_media_type - Gets media type
884  * @hw: pointer to the hardware structure
885  **/
886 static enum i40e_media_type i40e_get_media_type(struct i40e_hw *hw)
887 {
888 	enum i40e_media_type media;
889 
890 	switch (hw->phy.link_info.phy_type) {
891 	case I40E_PHY_TYPE_10GBASE_SR:
892 	case I40E_PHY_TYPE_10GBASE_LR:
893 	case I40E_PHY_TYPE_1000BASE_SX:
894 	case I40E_PHY_TYPE_1000BASE_LX:
895 	case I40E_PHY_TYPE_40GBASE_SR4:
896 	case I40E_PHY_TYPE_40GBASE_LR4:
897 	case I40E_PHY_TYPE_25GBASE_LR:
898 	case I40E_PHY_TYPE_25GBASE_SR:
899 		media = I40E_MEDIA_TYPE_FIBER;
900 		break;
901 	case I40E_PHY_TYPE_100BASE_TX:
902 	case I40E_PHY_TYPE_1000BASE_T:
903 	case I40E_PHY_TYPE_2_5GBASE_T_LINK_STATUS:
904 	case I40E_PHY_TYPE_5GBASE_T_LINK_STATUS:
905 	case I40E_PHY_TYPE_10GBASE_T:
906 		media = I40E_MEDIA_TYPE_BASET;
907 		break;
908 	case I40E_PHY_TYPE_10GBASE_CR1_CU:
909 	case I40E_PHY_TYPE_40GBASE_CR4_CU:
910 	case I40E_PHY_TYPE_10GBASE_CR1:
911 	case I40E_PHY_TYPE_40GBASE_CR4:
912 	case I40E_PHY_TYPE_10GBASE_SFPP_CU:
913 	case I40E_PHY_TYPE_40GBASE_AOC:
914 	case I40E_PHY_TYPE_10GBASE_AOC:
915 	case I40E_PHY_TYPE_25GBASE_CR:
916 	case I40E_PHY_TYPE_25GBASE_AOC:
917 	case I40E_PHY_TYPE_25GBASE_ACC:
918 		media = I40E_MEDIA_TYPE_DA;
919 		break;
920 	case I40E_PHY_TYPE_1000BASE_KX:
921 	case I40E_PHY_TYPE_10GBASE_KX4:
922 	case I40E_PHY_TYPE_10GBASE_KR:
923 	case I40E_PHY_TYPE_40GBASE_KR4:
924 	case I40E_PHY_TYPE_20GBASE_KR2:
925 	case I40E_PHY_TYPE_25GBASE_KR:
926 		media = I40E_MEDIA_TYPE_BACKPLANE;
927 		break;
928 	case I40E_PHY_TYPE_SGMII:
929 	case I40E_PHY_TYPE_XAUI:
930 	case I40E_PHY_TYPE_XFI:
931 	case I40E_PHY_TYPE_XLAUI:
932 	case I40E_PHY_TYPE_XLPPI:
933 	default:
934 		media = I40E_MEDIA_TYPE_UNKNOWN;
935 		break;
936 	}
937 
938 	return media;
939 }
940 
941 /**
942  * i40e_poll_globr - Poll for Global Reset completion
943  * @hw: pointer to the hardware structure
944  * @retry_limit: how many times to retry before failure
945  **/
946 static int i40e_poll_globr(struct i40e_hw *hw,
947 			   u32 retry_limit)
948 {
949 	u32 cnt, reg = 0;
950 
951 	for (cnt = 0; cnt < retry_limit; cnt++) {
952 		reg = rd32(hw, I40E_GLGEN_RSTAT);
953 		if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK))
954 			return 0;
955 		msleep(100);
956 	}
957 
958 	hw_dbg(hw, "Global reset failed.\n");
959 	hw_dbg(hw, "I40E_GLGEN_RSTAT = 0x%x\n", reg);
960 
961 	return -EIO;
962 }
963 
964 #define I40E_PF_RESET_WAIT_COUNT_A0	200
965 #define I40E_PF_RESET_WAIT_COUNT	200
966 /**
967  * i40e_pf_reset - Reset the PF
968  * @hw: pointer to the hardware structure
969  *
970  * Assuming someone else has triggered a global reset,
971  * assure the global reset is complete and then reset the PF
972  **/
973 int i40e_pf_reset(struct i40e_hw *hw)
974 {
975 	u32 cnt = 0;
976 	u32 cnt1 = 0;
977 	u32 reg = 0;
978 	u32 grst_del;
979 
980 	/* Poll for Global Reset steady state in case of recent GRST.
981 	 * The grst delay value is in 100ms units, and we'll wait a
982 	 * couple counts longer to be sure we don't just miss the end.
983 	 */
984 	grst_del = (rd32(hw, I40E_GLGEN_RSTCTL) &
985 		    I40E_GLGEN_RSTCTL_GRSTDEL_MASK) >>
986 		    I40E_GLGEN_RSTCTL_GRSTDEL_SHIFT;
987 
988 	/* It can take upto 15 secs for GRST steady state.
989 	 * Bump it to 16 secs max to be safe.
990 	 */
991 	grst_del = grst_del * 20;
992 
993 	for (cnt = 0; cnt < grst_del; cnt++) {
994 		reg = rd32(hw, I40E_GLGEN_RSTAT);
995 		if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK))
996 			break;
997 		msleep(100);
998 	}
999 	if (reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK) {
1000 		hw_dbg(hw, "Global reset polling failed to complete.\n");
1001 		return -EIO;
1002 	}
1003 
1004 	/* Now Wait for the FW to be ready */
1005 	for (cnt1 = 0; cnt1 < I40E_PF_RESET_WAIT_COUNT; cnt1++) {
1006 		reg = rd32(hw, I40E_GLNVM_ULD);
1007 		reg &= (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1008 			I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK);
1009 		if (reg == (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1010 			    I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK)) {
1011 			hw_dbg(hw, "Core and Global modules ready %d\n", cnt1);
1012 			break;
1013 		}
1014 		usleep_range(10000, 20000);
1015 	}
1016 	if (!(reg & (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1017 		     I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK))) {
1018 		hw_dbg(hw, "wait for FW Reset complete timedout\n");
1019 		hw_dbg(hw, "I40E_GLNVM_ULD = 0x%x\n", reg);
1020 		return -EIO;
1021 	}
1022 
1023 	/* If there was a Global Reset in progress when we got here,
1024 	 * we don't need to do the PF Reset
1025 	 */
1026 	if (!cnt) {
1027 		u32 reg2 = 0;
1028 		if (hw->revision_id == 0)
1029 			cnt = I40E_PF_RESET_WAIT_COUNT_A0;
1030 		else
1031 			cnt = I40E_PF_RESET_WAIT_COUNT;
1032 		reg = rd32(hw, I40E_PFGEN_CTRL);
1033 		wr32(hw, I40E_PFGEN_CTRL,
1034 		     (reg | I40E_PFGEN_CTRL_PFSWR_MASK));
1035 		for (; cnt; cnt--) {
1036 			reg = rd32(hw, I40E_PFGEN_CTRL);
1037 			if (!(reg & I40E_PFGEN_CTRL_PFSWR_MASK))
1038 				break;
1039 			reg2 = rd32(hw, I40E_GLGEN_RSTAT);
1040 			if (reg2 & I40E_GLGEN_RSTAT_DEVSTATE_MASK)
1041 				break;
1042 			usleep_range(1000, 2000);
1043 		}
1044 		if (reg2 & I40E_GLGEN_RSTAT_DEVSTATE_MASK) {
1045 			if (i40e_poll_globr(hw, grst_del))
1046 				return -EIO;
1047 		} else if (reg & I40E_PFGEN_CTRL_PFSWR_MASK) {
1048 			hw_dbg(hw, "PF reset polling failed to complete.\n");
1049 			return -EIO;
1050 		}
1051 	}
1052 
1053 	i40e_clear_pxe_mode(hw);
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * i40e_clear_hw - clear out any left over hw state
1060  * @hw: pointer to the hw struct
1061  *
1062  * Clear queues and interrupts, typically called at init time,
1063  * but after the capabilities have been found so we know how many
1064  * queues and msix vectors have been allocated.
1065  **/
1066 void i40e_clear_hw(struct i40e_hw *hw)
1067 {
1068 	u32 num_queues, base_queue;
1069 	u32 num_pf_int;
1070 	u32 num_vf_int;
1071 	u32 num_vfs;
1072 	u32 i, j;
1073 	u32 val;
1074 	u32 eol = 0x7ff;
1075 
1076 	/* get number of interrupts, queues, and VFs */
1077 	val = rd32(hw, I40E_GLPCI_CNF2);
1078 	num_pf_int = (val & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1079 		     I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1080 	num_vf_int = (val & I40E_GLPCI_CNF2_MSI_X_VF_N_MASK) >>
1081 		     I40E_GLPCI_CNF2_MSI_X_VF_N_SHIFT;
1082 
1083 	val = rd32(hw, I40E_PFLAN_QALLOC);
1084 	base_queue = (val & I40E_PFLAN_QALLOC_FIRSTQ_MASK) >>
1085 		     I40E_PFLAN_QALLOC_FIRSTQ_SHIFT;
1086 	j = (val & I40E_PFLAN_QALLOC_LASTQ_MASK) >>
1087 	    I40E_PFLAN_QALLOC_LASTQ_SHIFT;
1088 	if (val & I40E_PFLAN_QALLOC_VALID_MASK)
1089 		num_queues = (j - base_queue) + 1;
1090 	else
1091 		num_queues = 0;
1092 
1093 	val = rd32(hw, I40E_PF_VT_PFALLOC);
1094 	i = (val & I40E_PF_VT_PFALLOC_FIRSTVF_MASK) >>
1095 	    I40E_PF_VT_PFALLOC_FIRSTVF_SHIFT;
1096 	j = (val & I40E_PF_VT_PFALLOC_LASTVF_MASK) >>
1097 	    I40E_PF_VT_PFALLOC_LASTVF_SHIFT;
1098 	if (val & I40E_PF_VT_PFALLOC_VALID_MASK)
1099 		num_vfs = (j - i) + 1;
1100 	else
1101 		num_vfs = 0;
1102 
1103 	/* stop all the interrupts */
1104 	wr32(hw, I40E_PFINT_ICR0_ENA, 0);
1105 	val = 0x3 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT;
1106 	for (i = 0; i < num_pf_int - 2; i++)
1107 		wr32(hw, I40E_PFINT_DYN_CTLN(i), val);
1108 
1109 	/* Set the FIRSTQ_INDX field to 0x7FF in PFINT_LNKLSTx */
1110 	val = eol << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1111 	wr32(hw, I40E_PFINT_LNKLST0, val);
1112 	for (i = 0; i < num_pf_int - 2; i++)
1113 		wr32(hw, I40E_PFINT_LNKLSTN(i), val);
1114 	val = eol << I40E_VPINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1115 	for (i = 0; i < num_vfs; i++)
1116 		wr32(hw, I40E_VPINT_LNKLST0(i), val);
1117 	for (i = 0; i < num_vf_int - 2; i++)
1118 		wr32(hw, I40E_VPINT_LNKLSTN(i), val);
1119 
1120 	/* warn the HW of the coming Tx disables */
1121 	for (i = 0; i < num_queues; i++) {
1122 		u32 abs_queue_idx = base_queue + i;
1123 		u32 reg_block = 0;
1124 
1125 		if (abs_queue_idx >= 128) {
1126 			reg_block = abs_queue_idx / 128;
1127 			abs_queue_idx %= 128;
1128 		}
1129 
1130 		val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
1131 		val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
1132 		val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
1133 		val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
1134 
1135 		wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), val);
1136 	}
1137 	udelay(400);
1138 
1139 	/* stop all the queues */
1140 	for (i = 0; i < num_queues; i++) {
1141 		wr32(hw, I40E_QINT_TQCTL(i), 0);
1142 		wr32(hw, I40E_QTX_ENA(i), 0);
1143 		wr32(hw, I40E_QINT_RQCTL(i), 0);
1144 		wr32(hw, I40E_QRX_ENA(i), 0);
1145 	}
1146 
1147 	/* short wait for all queue disables to settle */
1148 	udelay(50);
1149 }
1150 
1151 /**
1152  * i40e_clear_pxe_mode - clear pxe operations mode
1153  * @hw: pointer to the hw struct
1154  *
1155  * Make sure all PXE mode settings are cleared, including things
1156  * like descriptor fetch/write-back mode.
1157  **/
1158 void i40e_clear_pxe_mode(struct i40e_hw *hw)
1159 {
1160 	u32 reg;
1161 
1162 	if (i40e_check_asq_alive(hw))
1163 		i40e_aq_clear_pxe_mode(hw, NULL);
1164 
1165 	/* Clear single descriptor fetch/write-back mode */
1166 	reg = rd32(hw, I40E_GLLAN_RCTL_0);
1167 
1168 	if (hw->revision_id == 0) {
1169 		/* As a work around clear PXE_MODE instead of setting it */
1170 		wr32(hw, I40E_GLLAN_RCTL_0, (reg & (~I40E_GLLAN_RCTL_0_PXE_MODE_MASK)));
1171 	} else {
1172 		wr32(hw, I40E_GLLAN_RCTL_0, (reg | I40E_GLLAN_RCTL_0_PXE_MODE_MASK));
1173 	}
1174 }
1175 
1176 /**
1177  * i40e_led_is_mine - helper to find matching led
1178  * @hw: pointer to the hw struct
1179  * @idx: index into GPIO registers
1180  *
1181  * returns: 0 if no match, otherwise the value of the GPIO_CTL register
1182  */
1183 static u32 i40e_led_is_mine(struct i40e_hw *hw, int idx)
1184 {
1185 	u32 gpio_val = 0;
1186 	u32 port;
1187 
1188 	if (!I40E_IS_X710TL_DEVICE(hw->device_id) &&
1189 	    !hw->func_caps.led[idx])
1190 		return 0;
1191 	gpio_val = rd32(hw, I40E_GLGEN_GPIO_CTL(idx));
1192 	port = (gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_MASK) >>
1193 		I40E_GLGEN_GPIO_CTL_PRT_NUM_SHIFT;
1194 
1195 	/* if PRT_NUM_NA is 1 then this LED is not port specific, OR
1196 	 * if it is not our port then ignore
1197 	 */
1198 	if ((gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_NA_MASK) ||
1199 	    (port != hw->port))
1200 		return 0;
1201 
1202 	return gpio_val;
1203 }
1204 
1205 #define I40E_FW_LED BIT(4)
1206 #define I40E_LED_MODE_VALID (I40E_GLGEN_GPIO_CTL_LED_MODE_MASK >> \
1207 			     I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT)
1208 
1209 #define I40E_LED0 22
1210 
1211 #define I40E_PIN_FUNC_SDP 0x0
1212 #define I40E_PIN_FUNC_LED 0x1
1213 
1214 /**
1215  * i40e_led_get - return current on/off mode
1216  * @hw: pointer to the hw struct
1217  *
1218  * The value returned is the 'mode' field as defined in the
1219  * GPIO register definitions: 0x0 = off, 0xf = on, and other
1220  * values are variations of possible behaviors relating to
1221  * blink, link, and wire.
1222  **/
1223 u32 i40e_led_get(struct i40e_hw *hw)
1224 {
1225 	u32 mode = 0;
1226 	int i;
1227 
1228 	/* as per the documentation GPIO 22-29 are the LED
1229 	 * GPIO pins named LED0..LED7
1230 	 */
1231 	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1232 		u32 gpio_val = i40e_led_is_mine(hw, i);
1233 
1234 		if (!gpio_val)
1235 			continue;
1236 
1237 		mode = (gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK) >>
1238 			I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT;
1239 		break;
1240 	}
1241 
1242 	return mode;
1243 }
1244 
1245 /**
1246  * i40e_led_set - set new on/off mode
1247  * @hw: pointer to the hw struct
1248  * @mode: 0=off, 0xf=on (else see manual for mode details)
1249  * @blink: true if the LED should blink when on, false if steady
1250  *
1251  * if this function is used to turn on the blink it should
1252  * be used to disable the blink when restoring the original state.
1253  **/
1254 void i40e_led_set(struct i40e_hw *hw, u32 mode, bool blink)
1255 {
1256 	int i;
1257 
1258 	if (mode & ~I40E_LED_MODE_VALID) {
1259 		hw_dbg(hw, "invalid mode passed in %X\n", mode);
1260 		return;
1261 	}
1262 
1263 	/* as per the documentation GPIO 22-29 are the LED
1264 	 * GPIO pins named LED0..LED7
1265 	 */
1266 	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1267 		u32 gpio_val = i40e_led_is_mine(hw, i);
1268 
1269 		if (!gpio_val)
1270 			continue;
1271 
1272 		if (I40E_IS_X710TL_DEVICE(hw->device_id)) {
1273 			u32 pin_func = 0;
1274 
1275 			if (mode & I40E_FW_LED)
1276 				pin_func = I40E_PIN_FUNC_SDP;
1277 			else
1278 				pin_func = I40E_PIN_FUNC_LED;
1279 
1280 			gpio_val &= ~I40E_GLGEN_GPIO_CTL_PIN_FUNC_MASK;
1281 			gpio_val |= ((pin_func <<
1282 				     I40E_GLGEN_GPIO_CTL_PIN_FUNC_SHIFT) &
1283 				     I40E_GLGEN_GPIO_CTL_PIN_FUNC_MASK);
1284 		}
1285 		gpio_val &= ~I40E_GLGEN_GPIO_CTL_LED_MODE_MASK;
1286 		/* this & is a bit of paranoia, but serves as a range check */
1287 		gpio_val |= ((mode << I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT) &
1288 			     I40E_GLGEN_GPIO_CTL_LED_MODE_MASK);
1289 
1290 		if (blink)
1291 			gpio_val |= BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1292 		else
1293 			gpio_val &= ~BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1294 
1295 		wr32(hw, I40E_GLGEN_GPIO_CTL(i), gpio_val);
1296 		break;
1297 	}
1298 }
1299 
1300 /* Admin command wrappers */
1301 
1302 /**
1303  * i40e_aq_get_phy_capabilities
1304  * @hw: pointer to the hw struct
1305  * @abilities: structure for PHY capabilities to be filled
1306  * @qualified_modules: report Qualified Modules
1307  * @report_init: report init capabilities (active are default)
1308  * @cmd_details: pointer to command details structure or NULL
1309  *
1310  * Returns the various PHY abilities supported on the Port.
1311  **/
1312 int
1313 i40e_aq_get_phy_capabilities(struct i40e_hw *hw,
1314 			     bool qualified_modules, bool report_init,
1315 			     struct i40e_aq_get_phy_abilities_resp *abilities,
1316 			     struct i40e_asq_cmd_details *cmd_details)
1317 {
1318 	u16 abilities_size = sizeof(struct i40e_aq_get_phy_abilities_resp);
1319 	u16 max_delay = I40E_MAX_PHY_TIMEOUT, total_delay = 0;
1320 	struct i40e_aq_desc desc;
1321 	int status;
1322 
1323 	if (!abilities)
1324 		return -EINVAL;
1325 
1326 	do {
1327 		i40e_fill_default_direct_cmd_desc(&desc,
1328 					       i40e_aqc_opc_get_phy_abilities);
1329 
1330 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
1331 		if (abilities_size > I40E_AQ_LARGE_BUF)
1332 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
1333 
1334 		if (qualified_modules)
1335 			desc.params.external.param0 |=
1336 			cpu_to_le32(I40E_AQ_PHY_REPORT_QUALIFIED_MODULES);
1337 
1338 		if (report_init)
1339 			desc.params.external.param0 |=
1340 			cpu_to_le32(I40E_AQ_PHY_REPORT_INITIAL_VALUES);
1341 
1342 		status = i40e_asq_send_command(hw, &desc, abilities,
1343 					       abilities_size, cmd_details);
1344 
1345 		switch (hw->aq.asq_last_status) {
1346 		case I40E_AQ_RC_EIO:
1347 			status = -EIO;
1348 			break;
1349 		case I40E_AQ_RC_EAGAIN:
1350 			usleep_range(1000, 2000);
1351 			total_delay++;
1352 			status = -EIO;
1353 			break;
1354 		/* also covers I40E_AQ_RC_OK */
1355 		default:
1356 			break;
1357 		}
1358 
1359 	} while ((hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN) &&
1360 		(total_delay < max_delay));
1361 
1362 	if (status)
1363 		return status;
1364 
1365 	if (report_init) {
1366 		if (hw->mac.type ==  I40E_MAC_XL710 &&
1367 		    hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1368 		    hw->aq.api_min_ver >= I40E_MINOR_VER_GET_LINK_INFO_XL710) {
1369 			status = i40e_aq_get_link_info(hw, true, NULL, NULL);
1370 		} else {
1371 			hw->phy.phy_types = le32_to_cpu(abilities->phy_type);
1372 			hw->phy.phy_types |=
1373 					((u64)abilities->phy_type_ext << 32);
1374 		}
1375 	}
1376 
1377 	return status;
1378 }
1379 
1380 /**
1381  * i40e_aq_set_phy_config
1382  * @hw: pointer to the hw struct
1383  * @config: structure with PHY configuration to be set
1384  * @cmd_details: pointer to command details structure or NULL
1385  *
1386  * Set the various PHY configuration parameters
1387  * supported on the Port.One or more of the Set PHY config parameters may be
1388  * ignored in an MFP mode as the PF may not have the privilege to set some
1389  * of the PHY Config parameters. This status will be indicated by the
1390  * command response.
1391  **/
1392 int i40e_aq_set_phy_config(struct i40e_hw *hw,
1393 			   struct i40e_aq_set_phy_config *config,
1394 			   struct i40e_asq_cmd_details *cmd_details)
1395 {
1396 	struct i40e_aq_desc desc;
1397 	struct i40e_aq_set_phy_config *cmd =
1398 			(struct i40e_aq_set_phy_config *)&desc.params.raw;
1399 	int status;
1400 
1401 	if (!config)
1402 		return -EINVAL;
1403 
1404 	i40e_fill_default_direct_cmd_desc(&desc,
1405 					  i40e_aqc_opc_set_phy_config);
1406 
1407 	*cmd = *config;
1408 
1409 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1410 
1411 	return status;
1412 }
1413 
1414 static noinline_for_stack int
1415 i40e_set_fc_status(struct i40e_hw *hw,
1416 		   struct i40e_aq_get_phy_abilities_resp *abilities,
1417 		   bool atomic_restart)
1418 {
1419 	struct i40e_aq_set_phy_config config;
1420 	enum i40e_fc_mode fc_mode = hw->fc.requested_mode;
1421 	u8 pause_mask = 0x0;
1422 
1423 	switch (fc_mode) {
1424 	case I40E_FC_FULL:
1425 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1426 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1427 		break;
1428 	case I40E_FC_RX_PAUSE:
1429 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1430 		break;
1431 	case I40E_FC_TX_PAUSE:
1432 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1433 		break;
1434 	default:
1435 		break;
1436 	}
1437 
1438 	memset(&config, 0, sizeof(struct i40e_aq_set_phy_config));
1439 	/* clear the old pause settings */
1440 	config.abilities = abilities->abilities & ~(I40E_AQ_PHY_FLAG_PAUSE_TX) &
1441 			   ~(I40E_AQ_PHY_FLAG_PAUSE_RX);
1442 	/* set the new abilities */
1443 	config.abilities |= pause_mask;
1444 	/* If the abilities have changed, then set the new config */
1445 	if (config.abilities == abilities->abilities)
1446 		return 0;
1447 
1448 	/* Auto restart link so settings take effect */
1449 	if (atomic_restart)
1450 		config.abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
1451 	/* Copy over all the old settings */
1452 	config.phy_type = abilities->phy_type;
1453 	config.phy_type_ext = abilities->phy_type_ext;
1454 	config.link_speed = abilities->link_speed;
1455 	config.eee_capability = abilities->eee_capability;
1456 	config.eeer = abilities->eeer_val;
1457 	config.low_power_ctrl = abilities->d3_lpan;
1458 	config.fec_config = abilities->fec_cfg_curr_mod_ext_info &
1459 			    I40E_AQ_PHY_FEC_CONFIG_MASK;
1460 
1461 	return i40e_aq_set_phy_config(hw, &config, NULL);
1462 }
1463 
1464 /**
1465  * i40e_set_fc
1466  * @hw: pointer to the hw struct
1467  * @aq_failures: buffer to return AdminQ failure information
1468  * @atomic_restart: whether to enable atomic link restart
1469  *
1470  * Set the requested flow control mode using set_phy_config.
1471  **/
1472 int i40e_set_fc(struct i40e_hw *hw, u8 *aq_failures,
1473 		bool atomic_restart)
1474 {
1475 	struct i40e_aq_get_phy_abilities_resp abilities;
1476 	int status;
1477 
1478 	*aq_failures = 0x0;
1479 
1480 	/* Get the current phy config */
1481 	status = i40e_aq_get_phy_capabilities(hw, false, false, &abilities,
1482 					      NULL);
1483 	if (status) {
1484 		*aq_failures |= I40E_SET_FC_AQ_FAIL_GET;
1485 		return status;
1486 	}
1487 
1488 	status = i40e_set_fc_status(hw, &abilities, atomic_restart);
1489 	if (status)
1490 		*aq_failures |= I40E_SET_FC_AQ_FAIL_SET;
1491 
1492 	/* Update the link info */
1493 	status = i40e_update_link_info(hw);
1494 	if (status) {
1495 		/* Wait a little bit (on 40G cards it sometimes takes a really
1496 		 * long time for link to come back from the atomic reset)
1497 		 * and try once more
1498 		 */
1499 		msleep(1000);
1500 		status = i40e_update_link_info(hw);
1501 	}
1502 	if (status)
1503 		*aq_failures |= I40E_SET_FC_AQ_FAIL_UPDATE;
1504 
1505 	return status;
1506 }
1507 
1508 /**
1509  * i40e_aq_clear_pxe_mode
1510  * @hw: pointer to the hw struct
1511  * @cmd_details: pointer to command details structure or NULL
1512  *
1513  * Tell the firmware that the driver is taking over from PXE
1514  **/
1515 int i40e_aq_clear_pxe_mode(struct i40e_hw *hw,
1516 			   struct i40e_asq_cmd_details *cmd_details)
1517 {
1518 	struct i40e_aq_desc desc;
1519 	struct i40e_aqc_clear_pxe *cmd =
1520 		(struct i40e_aqc_clear_pxe *)&desc.params.raw;
1521 	int status;
1522 
1523 	i40e_fill_default_direct_cmd_desc(&desc,
1524 					  i40e_aqc_opc_clear_pxe_mode);
1525 
1526 	cmd->rx_cnt = 0x2;
1527 
1528 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1529 
1530 	wr32(hw, I40E_GLLAN_RCTL_0, 0x1);
1531 
1532 	return status;
1533 }
1534 
1535 /**
1536  * i40e_aq_set_link_restart_an
1537  * @hw: pointer to the hw struct
1538  * @enable_link: if true: enable link, if false: disable link
1539  * @cmd_details: pointer to command details structure or NULL
1540  *
1541  * Sets up the link and restarts the Auto-Negotiation over the link.
1542  **/
1543 int i40e_aq_set_link_restart_an(struct i40e_hw *hw,
1544 				bool enable_link,
1545 				struct i40e_asq_cmd_details *cmd_details)
1546 {
1547 	struct i40e_aq_desc desc;
1548 	struct i40e_aqc_set_link_restart_an *cmd =
1549 		(struct i40e_aqc_set_link_restart_an *)&desc.params.raw;
1550 	int status;
1551 
1552 	i40e_fill_default_direct_cmd_desc(&desc,
1553 					  i40e_aqc_opc_set_link_restart_an);
1554 
1555 	cmd->command = I40E_AQ_PHY_RESTART_AN;
1556 	if (enable_link)
1557 		cmd->command |= I40E_AQ_PHY_LINK_ENABLE;
1558 	else
1559 		cmd->command &= ~I40E_AQ_PHY_LINK_ENABLE;
1560 
1561 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1562 
1563 	return status;
1564 }
1565 
1566 /**
1567  * i40e_aq_get_link_info
1568  * @hw: pointer to the hw struct
1569  * @enable_lse: enable/disable LinkStatusEvent reporting
1570  * @link: pointer to link status structure - optional
1571  * @cmd_details: pointer to command details structure or NULL
1572  *
1573  * Returns the link status of the adapter.
1574  **/
1575 int i40e_aq_get_link_info(struct i40e_hw *hw,
1576 			  bool enable_lse, struct i40e_link_status *link,
1577 			  struct i40e_asq_cmd_details *cmd_details)
1578 {
1579 	struct i40e_aq_desc desc;
1580 	struct i40e_aqc_get_link_status *resp =
1581 		(struct i40e_aqc_get_link_status *)&desc.params.raw;
1582 	struct i40e_link_status *hw_link_info = &hw->phy.link_info;
1583 	bool tx_pause, rx_pause;
1584 	u16 command_flags;
1585 	int status;
1586 
1587 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_link_status);
1588 
1589 	if (enable_lse)
1590 		command_flags = I40E_AQ_LSE_ENABLE;
1591 	else
1592 		command_flags = I40E_AQ_LSE_DISABLE;
1593 	resp->command_flags = cpu_to_le16(command_flags);
1594 
1595 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1596 
1597 	if (status)
1598 		goto aq_get_link_info_exit;
1599 
1600 	/* save off old link status information */
1601 	hw->phy.link_info_old = *hw_link_info;
1602 
1603 	/* update link status */
1604 	hw_link_info->phy_type = (enum i40e_aq_phy_type)resp->phy_type;
1605 	hw->phy.media_type = i40e_get_media_type(hw);
1606 	hw_link_info->link_speed = (enum i40e_aq_link_speed)resp->link_speed;
1607 	hw_link_info->link_info = resp->link_info;
1608 	hw_link_info->an_info = resp->an_info;
1609 	hw_link_info->fec_info = resp->config & (I40E_AQ_CONFIG_FEC_KR_ENA |
1610 						 I40E_AQ_CONFIG_FEC_RS_ENA);
1611 	hw_link_info->ext_info = resp->ext_info;
1612 	hw_link_info->loopback = resp->loopback & I40E_AQ_LOOPBACK_MASK;
1613 	hw_link_info->max_frame_size = le16_to_cpu(resp->max_frame_size);
1614 	hw_link_info->pacing = resp->config & I40E_AQ_CONFIG_PACING_MASK;
1615 
1616 	/* update fc info */
1617 	tx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_TX);
1618 	rx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_RX);
1619 	if (tx_pause & rx_pause)
1620 		hw->fc.current_mode = I40E_FC_FULL;
1621 	else if (tx_pause)
1622 		hw->fc.current_mode = I40E_FC_TX_PAUSE;
1623 	else if (rx_pause)
1624 		hw->fc.current_mode = I40E_FC_RX_PAUSE;
1625 	else
1626 		hw->fc.current_mode = I40E_FC_NONE;
1627 
1628 	if (resp->config & I40E_AQ_CONFIG_CRC_ENA)
1629 		hw_link_info->crc_enable = true;
1630 	else
1631 		hw_link_info->crc_enable = false;
1632 
1633 	if (resp->command_flags & cpu_to_le16(I40E_AQ_LSE_IS_ENABLED))
1634 		hw_link_info->lse_enable = true;
1635 	else
1636 		hw_link_info->lse_enable = false;
1637 
1638 	if ((hw->mac.type == I40E_MAC_XL710) &&
1639 	    (hw->aq.fw_maj_ver < 4 || (hw->aq.fw_maj_ver == 4 &&
1640 	     hw->aq.fw_min_ver < 40)) && hw_link_info->phy_type == 0xE)
1641 		hw_link_info->phy_type = I40E_PHY_TYPE_10GBASE_SFPP_CU;
1642 
1643 	if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE &&
1644 	    hw->mac.type != I40E_MAC_X722) {
1645 		__le32 tmp;
1646 
1647 		memcpy(&tmp, resp->link_type, sizeof(tmp));
1648 		hw->phy.phy_types = le32_to_cpu(tmp);
1649 		hw->phy.phy_types |= ((u64)resp->link_type_ext << 32);
1650 	}
1651 
1652 	/* save link status information */
1653 	if (link)
1654 		*link = *hw_link_info;
1655 
1656 	/* flag cleared so helper functions don't call AQ again */
1657 	hw->phy.get_link_info = false;
1658 
1659 aq_get_link_info_exit:
1660 	return status;
1661 }
1662 
1663 /**
1664  * i40e_aq_set_phy_int_mask
1665  * @hw: pointer to the hw struct
1666  * @mask: interrupt mask to be set
1667  * @cmd_details: pointer to command details structure or NULL
1668  *
1669  * Set link interrupt mask.
1670  **/
1671 int i40e_aq_set_phy_int_mask(struct i40e_hw *hw,
1672 			     u16 mask,
1673 			     struct i40e_asq_cmd_details *cmd_details)
1674 {
1675 	struct i40e_aq_desc desc;
1676 	struct i40e_aqc_set_phy_int_mask *cmd =
1677 		(struct i40e_aqc_set_phy_int_mask *)&desc.params.raw;
1678 	int status;
1679 
1680 	i40e_fill_default_direct_cmd_desc(&desc,
1681 					  i40e_aqc_opc_set_phy_int_mask);
1682 
1683 	cmd->event_mask = cpu_to_le16(mask);
1684 
1685 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1686 
1687 	return status;
1688 }
1689 
1690 /**
1691  * i40e_aq_set_mac_loopback
1692  * @hw: pointer to the HW struct
1693  * @ena_lpbk: Enable or Disable loopback
1694  * @cmd_details: pointer to command details structure or NULL
1695  *
1696  * Enable/disable loopback on a given port
1697  */
1698 int i40e_aq_set_mac_loopback(struct i40e_hw *hw, bool ena_lpbk,
1699 			     struct i40e_asq_cmd_details *cmd_details)
1700 {
1701 	struct i40e_aq_desc desc;
1702 	struct i40e_aqc_set_lb_mode *cmd =
1703 		(struct i40e_aqc_set_lb_mode *)&desc.params.raw;
1704 
1705 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_lb_modes);
1706 	if (ena_lpbk) {
1707 		if (hw->nvm.version <= I40E_LEGACY_LOOPBACK_NVM_VER)
1708 			cmd->lb_mode = cpu_to_le16(I40E_AQ_LB_MAC_LOCAL_LEGACY);
1709 		else
1710 			cmd->lb_mode = cpu_to_le16(I40E_AQ_LB_MAC_LOCAL);
1711 	}
1712 
1713 	return i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1714 }
1715 
1716 /**
1717  * i40e_aq_set_phy_debug
1718  * @hw: pointer to the hw struct
1719  * @cmd_flags: debug command flags
1720  * @cmd_details: pointer to command details structure or NULL
1721  *
1722  * Reset the external PHY.
1723  **/
1724 int i40e_aq_set_phy_debug(struct i40e_hw *hw, u8 cmd_flags,
1725 			  struct i40e_asq_cmd_details *cmd_details)
1726 {
1727 	struct i40e_aq_desc desc;
1728 	struct i40e_aqc_set_phy_debug *cmd =
1729 		(struct i40e_aqc_set_phy_debug *)&desc.params.raw;
1730 	int status;
1731 
1732 	i40e_fill_default_direct_cmd_desc(&desc,
1733 					  i40e_aqc_opc_set_phy_debug);
1734 
1735 	cmd->command_flags = cmd_flags;
1736 
1737 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1738 
1739 	return status;
1740 }
1741 
1742 /**
1743  * i40e_is_aq_api_ver_ge
1744  * @aq: pointer to AdminQ info containing HW API version to compare
1745  * @maj: API major value
1746  * @min: API minor value
1747  *
1748  * Assert whether current HW API version is greater/equal than provided.
1749  **/
1750 static bool i40e_is_aq_api_ver_ge(struct i40e_adminq_info *aq, u16 maj,
1751 				  u16 min)
1752 {
1753 	return (aq->api_maj_ver > maj ||
1754 		(aq->api_maj_ver == maj && aq->api_min_ver >= min));
1755 }
1756 
1757 /**
1758  * i40e_aq_add_vsi
1759  * @hw: pointer to the hw struct
1760  * @vsi_ctx: pointer to a vsi context struct
1761  * @cmd_details: pointer to command details structure or NULL
1762  *
1763  * Add a VSI context to the hardware.
1764 **/
1765 int i40e_aq_add_vsi(struct i40e_hw *hw,
1766 		    struct i40e_vsi_context *vsi_ctx,
1767 		    struct i40e_asq_cmd_details *cmd_details)
1768 {
1769 	struct i40e_aq_desc desc;
1770 	struct i40e_aqc_add_get_update_vsi *cmd =
1771 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
1772 	struct i40e_aqc_add_get_update_vsi_completion *resp =
1773 		(struct i40e_aqc_add_get_update_vsi_completion *)
1774 		&desc.params.raw;
1775 	int status;
1776 
1777 	i40e_fill_default_direct_cmd_desc(&desc,
1778 					  i40e_aqc_opc_add_vsi);
1779 
1780 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->uplink_seid);
1781 	cmd->connection_type = vsi_ctx->connection_type;
1782 	cmd->vf_id = vsi_ctx->vf_num;
1783 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1784 
1785 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
1786 
1787 	status = i40e_asq_send_command_atomic(hw, &desc, &vsi_ctx->info,
1788 					      sizeof(vsi_ctx->info),
1789 					      cmd_details, true);
1790 
1791 	if (status)
1792 		goto aq_add_vsi_exit;
1793 
1794 	vsi_ctx->seid = le16_to_cpu(resp->seid);
1795 	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
1796 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
1797 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1798 
1799 aq_add_vsi_exit:
1800 	return status;
1801 }
1802 
1803 /**
1804  * i40e_aq_set_default_vsi
1805  * @hw: pointer to the hw struct
1806  * @seid: vsi number
1807  * @cmd_details: pointer to command details structure or NULL
1808  **/
1809 int i40e_aq_set_default_vsi(struct i40e_hw *hw,
1810 			    u16 seid,
1811 			    struct i40e_asq_cmd_details *cmd_details)
1812 {
1813 	struct i40e_aq_desc desc;
1814 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1815 		(struct i40e_aqc_set_vsi_promiscuous_modes *)
1816 		&desc.params.raw;
1817 	int status;
1818 
1819 	i40e_fill_default_direct_cmd_desc(&desc,
1820 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1821 
1822 	cmd->promiscuous_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1823 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1824 	cmd->seid = cpu_to_le16(seid);
1825 
1826 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1827 
1828 	return status;
1829 }
1830 
1831 /**
1832  * i40e_aq_clear_default_vsi
1833  * @hw: pointer to the hw struct
1834  * @seid: vsi number
1835  * @cmd_details: pointer to command details structure or NULL
1836  **/
1837 int i40e_aq_clear_default_vsi(struct i40e_hw *hw,
1838 			      u16 seid,
1839 			      struct i40e_asq_cmd_details *cmd_details)
1840 {
1841 	struct i40e_aq_desc desc;
1842 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1843 		(struct i40e_aqc_set_vsi_promiscuous_modes *)
1844 		&desc.params.raw;
1845 	int status;
1846 
1847 	i40e_fill_default_direct_cmd_desc(&desc,
1848 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1849 
1850 	cmd->promiscuous_flags = cpu_to_le16(0);
1851 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1852 	cmd->seid = cpu_to_le16(seid);
1853 
1854 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1855 
1856 	return status;
1857 }
1858 
1859 /**
1860  * i40e_aq_set_vsi_unicast_promiscuous
1861  * @hw: pointer to the hw struct
1862  * @seid: vsi number
1863  * @set: set unicast promiscuous enable/disable
1864  * @cmd_details: pointer to command details structure or NULL
1865  * @rx_only_promisc: flag to decide if egress traffic gets mirrored in promisc
1866  **/
1867 int i40e_aq_set_vsi_unicast_promiscuous(struct i40e_hw *hw,
1868 					u16 seid, bool set,
1869 					struct i40e_asq_cmd_details *cmd_details,
1870 					bool rx_only_promisc)
1871 {
1872 	struct i40e_aq_desc desc;
1873 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1874 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1875 	u16 flags = 0;
1876 	int status;
1877 
1878 	i40e_fill_default_direct_cmd_desc(&desc,
1879 					i40e_aqc_opc_set_vsi_promiscuous_modes);
1880 
1881 	if (set) {
1882 		flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
1883 		if (rx_only_promisc && i40e_is_aq_api_ver_ge(&hw->aq, 1, 5))
1884 			flags |= I40E_AQC_SET_VSI_PROMISC_RX_ONLY;
1885 	}
1886 
1887 	cmd->promiscuous_flags = cpu_to_le16(flags);
1888 
1889 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
1890 	if (i40e_is_aq_api_ver_ge(&hw->aq, 1, 5))
1891 		cmd->valid_flags |=
1892 			cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_RX_ONLY);
1893 
1894 	cmd->seid = cpu_to_le16(seid);
1895 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1896 
1897 	return status;
1898 }
1899 
1900 /**
1901  * i40e_aq_set_vsi_multicast_promiscuous
1902  * @hw: pointer to the hw struct
1903  * @seid: vsi number
1904  * @set: set multicast promiscuous enable/disable
1905  * @cmd_details: pointer to command details structure or NULL
1906  **/
1907 int i40e_aq_set_vsi_multicast_promiscuous(struct i40e_hw *hw,
1908 					  u16 seid, bool set,
1909 					  struct i40e_asq_cmd_details *cmd_details)
1910 {
1911 	struct i40e_aq_desc desc;
1912 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1913 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1914 	u16 flags = 0;
1915 	int status;
1916 
1917 	i40e_fill_default_direct_cmd_desc(&desc,
1918 					i40e_aqc_opc_set_vsi_promiscuous_modes);
1919 
1920 	if (set)
1921 		flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
1922 
1923 	cmd->promiscuous_flags = cpu_to_le16(flags);
1924 
1925 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
1926 
1927 	cmd->seid = cpu_to_le16(seid);
1928 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1929 
1930 	return status;
1931 }
1932 
1933 /**
1934  * i40e_aq_set_vsi_mc_promisc_on_vlan
1935  * @hw: pointer to the hw struct
1936  * @seid: vsi number
1937  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
1938  * @vid: The VLAN tag filter - capture any multicast packet with this VLAN tag
1939  * @cmd_details: pointer to command details structure or NULL
1940  **/
1941 int i40e_aq_set_vsi_mc_promisc_on_vlan(struct i40e_hw *hw,
1942 				       u16 seid, bool enable,
1943 				       u16 vid,
1944 				       struct i40e_asq_cmd_details *cmd_details)
1945 {
1946 	struct i40e_aq_desc desc;
1947 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1948 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1949 	u16 flags = 0;
1950 	int status;
1951 
1952 	i40e_fill_default_direct_cmd_desc(&desc,
1953 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1954 
1955 	if (enable)
1956 		flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
1957 
1958 	cmd->promiscuous_flags = cpu_to_le16(flags);
1959 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
1960 	cmd->seid = cpu_to_le16(seid);
1961 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
1962 
1963 	status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0,
1964 					      cmd_details, true);
1965 
1966 	return status;
1967 }
1968 
1969 /**
1970  * i40e_aq_set_vsi_uc_promisc_on_vlan
1971  * @hw: pointer to the hw struct
1972  * @seid: vsi number
1973  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
1974  * @vid: The VLAN tag filter - capture any unicast packet with this VLAN tag
1975  * @cmd_details: pointer to command details structure or NULL
1976  **/
1977 int i40e_aq_set_vsi_uc_promisc_on_vlan(struct i40e_hw *hw,
1978 				       u16 seid, bool enable,
1979 				       u16 vid,
1980 				       struct i40e_asq_cmd_details *cmd_details)
1981 {
1982 	struct i40e_aq_desc desc;
1983 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1984 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1985 	u16 flags = 0;
1986 	int status;
1987 
1988 	i40e_fill_default_direct_cmd_desc(&desc,
1989 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1990 
1991 	if (enable) {
1992 		flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
1993 		if (i40e_is_aq_api_ver_ge(&hw->aq, 1, 5))
1994 			flags |= I40E_AQC_SET_VSI_PROMISC_RX_ONLY;
1995 	}
1996 
1997 	cmd->promiscuous_flags = cpu_to_le16(flags);
1998 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
1999 	if (i40e_is_aq_api_ver_ge(&hw->aq, 1, 5))
2000 		cmd->valid_flags |=
2001 			cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_RX_ONLY);
2002 	cmd->seid = cpu_to_le16(seid);
2003 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
2004 
2005 	status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0,
2006 					      cmd_details, true);
2007 
2008 	return status;
2009 }
2010 
2011 /**
2012  * i40e_aq_set_vsi_bc_promisc_on_vlan
2013  * @hw: pointer to the hw struct
2014  * @seid: vsi number
2015  * @enable: set broadcast promiscuous enable/disable for a given VLAN
2016  * @vid: The VLAN tag filter - capture any broadcast packet with this VLAN tag
2017  * @cmd_details: pointer to command details structure or NULL
2018  **/
2019 int i40e_aq_set_vsi_bc_promisc_on_vlan(struct i40e_hw *hw,
2020 				       u16 seid, bool enable, u16 vid,
2021 				       struct i40e_asq_cmd_details *cmd_details)
2022 {
2023 	struct i40e_aq_desc desc;
2024 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2025 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2026 	u16 flags = 0;
2027 	int status;
2028 
2029 	i40e_fill_default_direct_cmd_desc(&desc,
2030 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2031 
2032 	if (enable)
2033 		flags |= I40E_AQC_SET_VSI_PROMISC_BROADCAST;
2034 
2035 	cmd->promiscuous_flags = cpu_to_le16(flags);
2036 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2037 	cmd->seid = cpu_to_le16(seid);
2038 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
2039 
2040 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2041 
2042 	return status;
2043 }
2044 
2045 /**
2046  * i40e_aq_set_vsi_broadcast
2047  * @hw: pointer to the hw struct
2048  * @seid: vsi number
2049  * @set_filter: true to set filter, false to clear filter
2050  * @cmd_details: pointer to command details structure or NULL
2051  *
2052  * Set or clear the broadcast promiscuous flag (filter) for a given VSI.
2053  **/
2054 int i40e_aq_set_vsi_broadcast(struct i40e_hw *hw,
2055 			      u16 seid, bool set_filter,
2056 			      struct i40e_asq_cmd_details *cmd_details)
2057 {
2058 	struct i40e_aq_desc desc;
2059 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2060 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2061 	int status;
2062 
2063 	i40e_fill_default_direct_cmd_desc(&desc,
2064 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2065 
2066 	if (set_filter)
2067 		cmd->promiscuous_flags
2068 			    |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2069 	else
2070 		cmd->promiscuous_flags
2071 			    &= cpu_to_le16(~I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2072 
2073 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2074 	cmd->seid = cpu_to_le16(seid);
2075 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2076 
2077 	return status;
2078 }
2079 
2080 /**
2081  * i40e_aq_set_vsi_vlan_promisc - control the VLAN promiscuous setting
2082  * @hw: pointer to the hw struct
2083  * @seid: vsi number
2084  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
2085  * @cmd_details: pointer to command details structure or NULL
2086  **/
2087 int i40e_aq_set_vsi_vlan_promisc(struct i40e_hw *hw,
2088 				 u16 seid, bool enable,
2089 				 struct i40e_asq_cmd_details *cmd_details)
2090 {
2091 	struct i40e_aq_desc desc;
2092 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2093 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2094 	u16 flags = 0;
2095 	int status;
2096 
2097 	i40e_fill_default_direct_cmd_desc(&desc,
2098 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2099 	if (enable)
2100 		flags |= I40E_AQC_SET_VSI_PROMISC_VLAN;
2101 
2102 	cmd->promiscuous_flags = cpu_to_le16(flags);
2103 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_VLAN);
2104 	cmd->seid = cpu_to_le16(seid);
2105 
2106 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2107 
2108 	return status;
2109 }
2110 
2111 /**
2112  * i40e_aq_get_vsi_params - get VSI configuration info
2113  * @hw: pointer to the hw struct
2114  * @vsi_ctx: pointer to a vsi context struct
2115  * @cmd_details: pointer to command details structure or NULL
2116  **/
2117 int i40e_aq_get_vsi_params(struct i40e_hw *hw,
2118 			   struct i40e_vsi_context *vsi_ctx,
2119 			   struct i40e_asq_cmd_details *cmd_details)
2120 {
2121 	struct i40e_aq_desc desc;
2122 	struct i40e_aqc_add_get_update_vsi *cmd =
2123 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2124 	struct i40e_aqc_add_get_update_vsi_completion *resp =
2125 		(struct i40e_aqc_add_get_update_vsi_completion *)
2126 		&desc.params.raw;
2127 	int status;
2128 
2129 	i40e_fill_default_direct_cmd_desc(&desc,
2130 					  i40e_aqc_opc_get_vsi_parameters);
2131 
2132 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2133 
2134 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2135 
2136 	status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
2137 				    sizeof(vsi_ctx->info), NULL);
2138 
2139 	if (status)
2140 		goto aq_get_vsi_params_exit;
2141 
2142 	vsi_ctx->seid = le16_to_cpu(resp->seid);
2143 	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
2144 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
2145 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
2146 
2147 aq_get_vsi_params_exit:
2148 	return status;
2149 }
2150 
2151 /**
2152  * i40e_aq_update_vsi_params
2153  * @hw: pointer to the hw struct
2154  * @vsi_ctx: pointer to a vsi context struct
2155  * @cmd_details: pointer to command details structure or NULL
2156  *
2157  * Update a VSI context.
2158  **/
2159 int i40e_aq_update_vsi_params(struct i40e_hw *hw,
2160 			      struct i40e_vsi_context *vsi_ctx,
2161 			      struct i40e_asq_cmd_details *cmd_details)
2162 {
2163 	struct i40e_aq_desc desc;
2164 	struct i40e_aqc_add_get_update_vsi *cmd =
2165 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2166 	struct i40e_aqc_add_get_update_vsi_completion *resp =
2167 		(struct i40e_aqc_add_get_update_vsi_completion *)
2168 		&desc.params.raw;
2169 	int status;
2170 
2171 	i40e_fill_default_direct_cmd_desc(&desc,
2172 					  i40e_aqc_opc_update_vsi_parameters);
2173 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2174 
2175 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2176 
2177 	status = i40e_asq_send_command_atomic(hw, &desc, &vsi_ctx->info,
2178 					      sizeof(vsi_ctx->info),
2179 					      cmd_details, true);
2180 
2181 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
2182 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
2183 
2184 	return status;
2185 }
2186 
2187 /**
2188  * i40e_aq_get_switch_config
2189  * @hw: pointer to the hardware structure
2190  * @buf: pointer to the result buffer
2191  * @buf_size: length of input buffer
2192  * @start_seid: seid to start for the report, 0 == beginning
2193  * @cmd_details: pointer to command details structure or NULL
2194  *
2195  * Fill the buf with switch configuration returned from AdminQ command
2196  **/
2197 int i40e_aq_get_switch_config(struct i40e_hw *hw,
2198 			      struct i40e_aqc_get_switch_config_resp *buf,
2199 			      u16 buf_size, u16 *start_seid,
2200 			      struct i40e_asq_cmd_details *cmd_details)
2201 {
2202 	struct i40e_aq_desc desc;
2203 	struct i40e_aqc_switch_seid *scfg =
2204 		(struct i40e_aqc_switch_seid *)&desc.params.raw;
2205 	int status;
2206 
2207 	i40e_fill_default_direct_cmd_desc(&desc,
2208 					  i40e_aqc_opc_get_switch_config);
2209 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2210 	if (buf_size > I40E_AQ_LARGE_BUF)
2211 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2212 	scfg->seid = cpu_to_le16(*start_seid);
2213 
2214 	status = i40e_asq_send_command(hw, &desc, buf, buf_size, cmd_details);
2215 	*start_seid = le16_to_cpu(scfg->seid);
2216 
2217 	return status;
2218 }
2219 
2220 /**
2221  * i40e_aq_set_switch_config
2222  * @hw: pointer to the hardware structure
2223  * @flags: bit flag values to set
2224  * @mode: cloud filter mode
2225  * @valid_flags: which bit flags to set
2226  * @mode: cloud filter mode
2227  * @cmd_details: pointer to command details structure or NULL
2228  *
2229  * Set switch configuration bits
2230  **/
2231 int i40e_aq_set_switch_config(struct i40e_hw *hw,
2232 			      u16 flags,
2233 			      u16 valid_flags, u8 mode,
2234 			      struct i40e_asq_cmd_details *cmd_details)
2235 {
2236 	struct i40e_aq_desc desc;
2237 	struct i40e_aqc_set_switch_config *scfg =
2238 		(struct i40e_aqc_set_switch_config *)&desc.params.raw;
2239 	int status;
2240 
2241 	i40e_fill_default_direct_cmd_desc(&desc,
2242 					  i40e_aqc_opc_set_switch_config);
2243 	scfg->flags = cpu_to_le16(flags);
2244 	scfg->valid_flags = cpu_to_le16(valid_flags);
2245 	scfg->mode = mode;
2246 	if (hw->flags & I40E_HW_FLAG_802_1AD_CAPABLE) {
2247 		scfg->switch_tag = cpu_to_le16(hw->switch_tag);
2248 		scfg->first_tag = cpu_to_le16(hw->first_tag);
2249 		scfg->second_tag = cpu_to_le16(hw->second_tag);
2250 	}
2251 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2252 
2253 	return status;
2254 }
2255 
2256 /**
2257  * i40e_aq_get_firmware_version
2258  * @hw: pointer to the hw struct
2259  * @fw_major_version: firmware major version
2260  * @fw_minor_version: firmware minor version
2261  * @fw_build: firmware build number
2262  * @api_major_version: major queue version
2263  * @api_minor_version: minor queue version
2264  * @cmd_details: pointer to command details structure or NULL
2265  *
2266  * Get the firmware version from the admin queue commands
2267  **/
2268 int i40e_aq_get_firmware_version(struct i40e_hw *hw,
2269 				 u16 *fw_major_version, u16 *fw_minor_version,
2270 				 u32 *fw_build,
2271 				 u16 *api_major_version, u16 *api_minor_version,
2272 				 struct i40e_asq_cmd_details *cmd_details)
2273 {
2274 	struct i40e_aq_desc desc;
2275 	struct i40e_aqc_get_version *resp =
2276 		(struct i40e_aqc_get_version *)&desc.params.raw;
2277 	int status;
2278 
2279 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_version);
2280 
2281 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2282 
2283 	if (!status) {
2284 		if (fw_major_version)
2285 			*fw_major_version = le16_to_cpu(resp->fw_major);
2286 		if (fw_minor_version)
2287 			*fw_minor_version = le16_to_cpu(resp->fw_minor);
2288 		if (fw_build)
2289 			*fw_build = le32_to_cpu(resp->fw_build);
2290 		if (api_major_version)
2291 			*api_major_version = le16_to_cpu(resp->api_major);
2292 		if (api_minor_version)
2293 			*api_minor_version = le16_to_cpu(resp->api_minor);
2294 	}
2295 
2296 	return status;
2297 }
2298 
2299 /**
2300  * i40e_aq_send_driver_version
2301  * @hw: pointer to the hw struct
2302  * @dv: driver's major, minor version
2303  * @cmd_details: pointer to command details structure or NULL
2304  *
2305  * Send the driver version to the firmware
2306  **/
2307 int i40e_aq_send_driver_version(struct i40e_hw *hw,
2308 				struct i40e_driver_version *dv,
2309 				struct i40e_asq_cmd_details *cmd_details)
2310 {
2311 	struct i40e_aq_desc desc;
2312 	struct i40e_aqc_driver_version *cmd =
2313 		(struct i40e_aqc_driver_version *)&desc.params.raw;
2314 	int status;
2315 	u16 len;
2316 
2317 	if (dv == NULL)
2318 		return -EINVAL;
2319 
2320 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_driver_version);
2321 
2322 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD);
2323 	cmd->driver_major_ver = dv->major_version;
2324 	cmd->driver_minor_ver = dv->minor_version;
2325 	cmd->driver_build_ver = dv->build_version;
2326 	cmd->driver_subbuild_ver = dv->subbuild_version;
2327 
2328 	len = 0;
2329 	while (len < sizeof(dv->driver_string) &&
2330 	       (dv->driver_string[len] < 0x80) &&
2331 	       dv->driver_string[len])
2332 		len++;
2333 	status = i40e_asq_send_command(hw, &desc, dv->driver_string,
2334 				       len, cmd_details);
2335 
2336 	return status;
2337 }
2338 
2339 /**
2340  * i40e_get_link_status - get status of the HW network link
2341  * @hw: pointer to the hw struct
2342  * @link_up: pointer to bool (true/false = linkup/linkdown)
2343  *
2344  * Variable link_up true if link is up, false if link is down.
2345  * The variable link_up is invalid if returned value of status != 0
2346  *
2347  * Side effect: LinkStatusEvent reporting becomes enabled
2348  **/
2349 int i40e_get_link_status(struct i40e_hw *hw, bool *link_up)
2350 {
2351 	int status = 0;
2352 
2353 	if (hw->phy.get_link_info) {
2354 		status = i40e_update_link_info(hw);
2355 
2356 		if (status)
2357 			i40e_debug(hw, I40E_DEBUG_LINK, "get link failed: status %d\n",
2358 				   status);
2359 	}
2360 
2361 	*link_up = hw->phy.link_info.link_info & I40E_AQ_LINK_UP;
2362 
2363 	return status;
2364 }
2365 
2366 /**
2367  * i40e_update_link_info - update status of the HW network link
2368  * @hw: pointer to the hw struct
2369  **/
2370 noinline_for_stack int i40e_update_link_info(struct i40e_hw *hw)
2371 {
2372 	struct i40e_aq_get_phy_abilities_resp abilities;
2373 	int status = 0;
2374 
2375 	status = i40e_aq_get_link_info(hw, true, NULL, NULL);
2376 	if (status)
2377 		return status;
2378 
2379 	/* extra checking needed to ensure link info to user is timely */
2380 	if ((hw->phy.link_info.link_info & I40E_AQ_MEDIA_AVAILABLE) &&
2381 	    ((hw->phy.link_info.link_info & I40E_AQ_LINK_UP) ||
2382 	     !(hw->phy.link_info_old.link_info & I40E_AQ_LINK_UP))) {
2383 		status = i40e_aq_get_phy_capabilities(hw, false, false,
2384 						      &abilities, NULL);
2385 		if (status)
2386 			return status;
2387 
2388 		if (abilities.fec_cfg_curr_mod_ext_info &
2389 		    I40E_AQ_ENABLE_FEC_AUTO)
2390 			hw->phy.link_info.req_fec_info =
2391 				(I40E_AQ_REQUEST_FEC_KR |
2392 				 I40E_AQ_REQUEST_FEC_RS);
2393 		else
2394 			hw->phy.link_info.req_fec_info =
2395 				abilities.fec_cfg_curr_mod_ext_info &
2396 				(I40E_AQ_REQUEST_FEC_KR |
2397 				 I40E_AQ_REQUEST_FEC_RS);
2398 
2399 		memcpy(hw->phy.link_info.module_type, &abilities.module_type,
2400 		       sizeof(hw->phy.link_info.module_type));
2401 	}
2402 
2403 	return status;
2404 }
2405 
2406 /**
2407  * i40e_aq_add_veb - Insert a VEB between the VSI and the MAC
2408  * @hw: pointer to the hw struct
2409  * @uplink_seid: the MAC or other gizmo SEID
2410  * @downlink_seid: the VSI SEID
2411  * @enabled_tc: bitmap of TCs to be enabled
2412  * @default_port: true for default port VSI, false for control port
2413  * @veb_seid: pointer to where to put the resulting VEB SEID
2414  * @enable_stats: true to turn on VEB stats
2415  * @cmd_details: pointer to command details structure or NULL
2416  *
2417  * This asks the FW to add a VEB between the uplink and downlink
2418  * elements.  If the uplink SEID is 0, this will be a floating VEB.
2419  **/
2420 int i40e_aq_add_veb(struct i40e_hw *hw, u16 uplink_seid,
2421 		    u16 downlink_seid, u8 enabled_tc,
2422 		    bool default_port, u16 *veb_seid,
2423 		    bool enable_stats,
2424 		    struct i40e_asq_cmd_details *cmd_details)
2425 {
2426 	struct i40e_aq_desc desc;
2427 	struct i40e_aqc_add_veb *cmd =
2428 		(struct i40e_aqc_add_veb *)&desc.params.raw;
2429 	struct i40e_aqc_add_veb_completion *resp =
2430 		(struct i40e_aqc_add_veb_completion *)&desc.params.raw;
2431 	u16 veb_flags = 0;
2432 	int status;
2433 
2434 	/* SEIDs need to either both be set or both be 0 for floating VEB */
2435 	if (!!uplink_seid != !!downlink_seid)
2436 		return -EINVAL;
2437 
2438 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_veb);
2439 
2440 	cmd->uplink_seid = cpu_to_le16(uplink_seid);
2441 	cmd->downlink_seid = cpu_to_le16(downlink_seid);
2442 	cmd->enable_tcs = enabled_tc;
2443 	if (!uplink_seid)
2444 		veb_flags |= I40E_AQC_ADD_VEB_FLOATING;
2445 	if (default_port)
2446 		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DEFAULT;
2447 	else
2448 		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DATA;
2449 
2450 	/* reverse logic here: set the bitflag to disable the stats */
2451 	if (!enable_stats)
2452 		veb_flags |= I40E_AQC_ADD_VEB_ENABLE_DISABLE_STATS;
2453 
2454 	cmd->veb_flags = cpu_to_le16(veb_flags);
2455 
2456 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2457 
2458 	if (!status && veb_seid)
2459 		*veb_seid = le16_to_cpu(resp->veb_seid);
2460 
2461 	return status;
2462 }
2463 
2464 /**
2465  * i40e_aq_get_veb_parameters - Retrieve VEB parameters
2466  * @hw: pointer to the hw struct
2467  * @veb_seid: the SEID of the VEB to query
2468  * @switch_id: the uplink switch id
2469  * @floating: set to true if the VEB is floating
2470  * @statistic_index: index of the stats counter block for this VEB
2471  * @vebs_used: number of VEB's used by function
2472  * @vebs_free: total VEB's not reserved by any function
2473  * @cmd_details: pointer to command details structure or NULL
2474  *
2475  * This retrieves the parameters for a particular VEB, specified by
2476  * uplink_seid, and returns them to the caller.
2477  **/
2478 int i40e_aq_get_veb_parameters(struct i40e_hw *hw,
2479 			       u16 veb_seid, u16 *switch_id,
2480 			       bool *floating, u16 *statistic_index,
2481 			       u16 *vebs_used, u16 *vebs_free,
2482 			       struct i40e_asq_cmd_details *cmd_details)
2483 {
2484 	struct i40e_aq_desc desc;
2485 	struct i40e_aqc_get_veb_parameters_completion *cmd_resp =
2486 		(struct i40e_aqc_get_veb_parameters_completion *)
2487 		&desc.params.raw;
2488 	int status;
2489 
2490 	if (veb_seid == 0)
2491 		return -EINVAL;
2492 
2493 	i40e_fill_default_direct_cmd_desc(&desc,
2494 					  i40e_aqc_opc_get_veb_parameters);
2495 	cmd_resp->seid = cpu_to_le16(veb_seid);
2496 
2497 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2498 	if (status)
2499 		goto get_veb_exit;
2500 
2501 	if (switch_id)
2502 		*switch_id = le16_to_cpu(cmd_resp->switch_id);
2503 	if (statistic_index)
2504 		*statistic_index = le16_to_cpu(cmd_resp->statistic_index);
2505 	if (vebs_used)
2506 		*vebs_used = le16_to_cpu(cmd_resp->vebs_used);
2507 	if (vebs_free)
2508 		*vebs_free = le16_to_cpu(cmd_resp->vebs_free);
2509 	if (floating) {
2510 		u16 flags = le16_to_cpu(cmd_resp->veb_flags);
2511 
2512 		if (flags & I40E_AQC_ADD_VEB_FLOATING)
2513 			*floating = true;
2514 		else
2515 			*floating = false;
2516 	}
2517 
2518 get_veb_exit:
2519 	return status;
2520 }
2521 
2522 /**
2523  * i40e_prepare_add_macvlan
2524  * @mv_list: list of macvlans to be added
2525  * @desc: pointer to AQ descriptor structure
2526  * @count: length of the list
2527  * @seid: VSI for the mac address
2528  *
2529  * Internal helper function that prepares the add macvlan request
2530  * and returns the buffer size.
2531  **/
2532 static u16
2533 i40e_prepare_add_macvlan(struct i40e_aqc_add_macvlan_element_data *mv_list,
2534 			 struct i40e_aq_desc *desc, u16 count, u16 seid)
2535 {
2536 	struct i40e_aqc_macvlan *cmd =
2537 		(struct i40e_aqc_macvlan *)&desc->params.raw;
2538 	u16 buf_size;
2539 	int i;
2540 
2541 	buf_size = count * sizeof(*mv_list);
2542 
2543 	/* prep the rest of the request */
2544 	i40e_fill_default_direct_cmd_desc(desc, i40e_aqc_opc_add_macvlan);
2545 	cmd->num_addresses = cpu_to_le16(count);
2546 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2547 	cmd->seid[1] = 0;
2548 	cmd->seid[2] = 0;
2549 
2550 	for (i = 0; i < count; i++)
2551 		if (is_multicast_ether_addr(mv_list[i].mac_addr))
2552 			mv_list[i].flags |=
2553 			       cpu_to_le16(I40E_AQC_MACVLAN_ADD_USE_SHARED_MAC);
2554 
2555 	desc->flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2556 	if (buf_size > I40E_AQ_LARGE_BUF)
2557 		desc->flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2558 
2559 	return buf_size;
2560 }
2561 
2562 /**
2563  * i40e_aq_add_macvlan
2564  * @hw: pointer to the hw struct
2565  * @seid: VSI for the mac address
2566  * @mv_list: list of macvlans to be added
2567  * @count: length of the list
2568  * @cmd_details: pointer to command details structure or NULL
2569  *
2570  * Add MAC/VLAN addresses to the HW filtering
2571  **/
2572 int
2573 i40e_aq_add_macvlan(struct i40e_hw *hw, u16 seid,
2574 		    struct i40e_aqc_add_macvlan_element_data *mv_list,
2575 		    u16 count, struct i40e_asq_cmd_details *cmd_details)
2576 {
2577 	struct i40e_aq_desc desc;
2578 	u16 buf_size;
2579 
2580 	if (count == 0 || !mv_list || !hw)
2581 		return -EINVAL;
2582 
2583 	buf_size = i40e_prepare_add_macvlan(mv_list, &desc, count, seid);
2584 
2585 	return i40e_asq_send_command_atomic(hw, &desc, mv_list, buf_size,
2586 					    cmd_details, true);
2587 }
2588 
2589 /**
2590  * i40e_aq_add_macvlan_v2
2591  * @hw: pointer to the hw struct
2592  * @seid: VSI for the mac address
2593  * @mv_list: list of macvlans to be added
2594  * @count: length of the list
2595  * @cmd_details: pointer to command details structure or NULL
2596  * @aq_status: pointer to Admin Queue status return value
2597  *
2598  * Add MAC/VLAN addresses to the HW filtering.
2599  * The _v2 version returns the last Admin Queue status in aq_status
2600  * to avoid race conditions in access to hw->aq.asq_last_status.
2601  * It also calls _v2 versions of asq_send_command functions to
2602  * get the aq_status on the stack.
2603  **/
2604 int
2605 i40e_aq_add_macvlan_v2(struct i40e_hw *hw, u16 seid,
2606 		       struct i40e_aqc_add_macvlan_element_data *mv_list,
2607 		       u16 count, struct i40e_asq_cmd_details *cmd_details,
2608 		       enum i40e_admin_queue_err *aq_status)
2609 {
2610 	struct i40e_aq_desc desc;
2611 	u16 buf_size;
2612 
2613 	if (count == 0 || !mv_list || !hw)
2614 		return -EINVAL;
2615 
2616 	buf_size = i40e_prepare_add_macvlan(mv_list, &desc, count, seid);
2617 
2618 	return i40e_asq_send_command_atomic_v2(hw, &desc, mv_list, buf_size,
2619 					       cmd_details, true, aq_status);
2620 }
2621 
2622 /**
2623  * i40e_aq_remove_macvlan
2624  * @hw: pointer to the hw struct
2625  * @seid: VSI for the mac address
2626  * @mv_list: list of macvlans to be removed
2627  * @count: length of the list
2628  * @cmd_details: pointer to command details structure or NULL
2629  *
2630  * Remove MAC/VLAN addresses from the HW filtering
2631  **/
2632 int
2633 i40e_aq_remove_macvlan(struct i40e_hw *hw, u16 seid,
2634 		       struct i40e_aqc_remove_macvlan_element_data *mv_list,
2635 		       u16 count, struct i40e_asq_cmd_details *cmd_details)
2636 {
2637 	struct i40e_aq_desc desc;
2638 	struct i40e_aqc_macvlan *cmd =
2639 		(struct i40e_aqc_macvlan *)&desc.params.raw;
2640 	u16 buf_size;
2641 	int status;
2642 
2643 	if (count == 0 || !mv_list || !hw)
2644 		return -EINVAL;
2645 
2646 	buf_size = count * sizeof(*mv_list);
2647 
2648 	/* prep the rest of the request */
2649 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan);
2650 	cmd->num_addresses = cpu_to_le16(count);
2651 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2652 	cmd->seid[1] = 0;
2653 	cmd->seid[2] = 0;
2654 
2655 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2656 	if (buf_size > I40E_AQ_LARGE_BUF)
2657 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2658 
2659 	status = i40e_asq_send_command_atomic(hw, &desc, mv_list, buf_size,
2660 					      cmd_details, true);
2661 
2662 	return status;
2663 }
2664 
2665 /**
2666  * i40e_aq_remove_macvlan_v2
2667  * @hw: pointer to the hw struct
2668  * @seid: VSI for the mac address
2669  * @mv_list: list of macvlans to be removed
2670  * @count: length of the list
2671  * @cmd_details: pointer to command details structure or NULL
2672  * @aq_status: pointer to Admin Queue status return value
2673  *
2674  * Remove MAC/VLAN addresses from the HW filtering.
2675  * The _v2 version returns the last Admin Queue status in aq_status
2676  * to avoid race conditions in access to hw->aq.asq_last_status.
2677  * It also calls _v2 versions of asq_send_command functions to
2678  * get the aq_status on the stack.
2679  **/
2680 int
2681 i40e_aq_remove_macvlan_v2(struct i40e_hw *hw, u16 seid,
2682 			  struct i40e_aqc_remove_macvlan_element_data *mv_list,
2683 			  u16 count, struct i40e_asq_cmd_details *cmd_details,
2684 			  enum i40e_admin_queue_err *aq_status)
2685 {
2686 	struct i40e_aqc_macvlan *cmd;
2687 	struct i40e_aq_desc desc;
2688 	u16 buf_size;
2689 
2690 	if (count == 0 || !mv_list || !hw)
2691 		return -EINVAL;
2692 
2693 	buf_size = count * sizeof(*mv_list);
2694 
2695 	/* prep the rest of the request */
2696 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan);
2697 	cmd = (struct i40e_aqc_macvlan *)&desc.params.raw;
2698 	cmd->num_addresses = cpu_to_le16(count);
2699 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2700 	cmd->seid[1] = 0;
2701 	cmd->seid[2] = 0;
2702 
2703 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2704 	if (buf_size > I40E_AQ_LARGE_BUF)
2705 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2706 
2707 	return i40e_asq_send_command_atomic_v2(hw, &desc, mv_list, buf_size,
2708 						 cmd_details, true, aq_status);
2709 }
2710 
2711 /**
2712  * i40e_mirrorrule_op - Internal helper function to add/delete mirror rule
2713  * @hw: pointer to the hw struct
2714  * @opcode: AQ opcode for add or delete mirror rule
2715  * @sw_seid: Switch SEID (to which rule refers)
2716  * @rule_type: Rule Type (ingress/egress/VLAN)
2717  * @id: Destination VSI SEID or Rule ID
2718  * @count: length of the list
2719  * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2720  * @cmd_details: pointer to command details structure or NULL
2721  * @rule_id: Rule ID returned from FW
2722  * @rules_used: Number of rules used in internal switch
2723  * @rules_free: Number of rules free in internal switch
2724  *
2725  * Add/Delete a mirror rule to a specific switch. Mirror rules are supported for
2726  * VEBs/VEPA elements only
2727  **/
2728 static int i40e_mirrorrule_op(struct i40e_hw *hw,
2729 			      u16 opcode, u16 sw_seid, u16 rule_type, u16 id,
2730 			      u16 count, __le16 *mr_list,
2731 			      struct i40e_asq_cmd_details *cmd_details,
2732 			      u16 *rule_id, u16 *rules_used, u16 *rules_free)
2733 {
2734 	struct i40e_aq_desc desc;
2735 	struct i40e_aqc_add_delete_mirror_rule *cmd =
2736 		(struct i40e_aqc_add_delete_mirror_rule *)&desc.params.raw;
2737 	struct i40e_aqc_add_delete_mirror_rule_completion *resp =
2738 	(struct i40e_aqc_add_delete_mirror_rule_completion *)&desc.params.raw;
2739 	u16 buf_size;
2740 	int status;
2741 
2742 	buf_size = count * sizeof(*mr_list);
2743 
2744 	/* prep the rest of the request */
2745 	i40e_fill_default_direct_cmd_desc(&desc, opcode);
2746 	cmd->seid = cpu_to_le16(sw_seid);
2747 	cmd->rule_type = cpu_to_le16(rule_type &
2748 				     I40E_AQC_MIRROR_RULE_TYPE_MASK);
2749 	cmd->num_entries = cpu_to_le16(count);
2750 	/* Dest VSI for add, rule_id for delete */
2751 	cmd->destination = cpu_to_le16(id);
2752 	if (mr_list) {
2753 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2754 						I40E_AQ_FLAG_RD));
2755 		if (buf_size > I40E_AQ_LARGE_BUF)
2756 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2757 	}
2758 
2759 	status = i40e_asq_send_command(hw, &desc, mr_list, buf_size,
2760 				       cmd_details);
2761 	if (!status ||
2762 	    hw->aq.asq_last_status == I40E_AQ_RC_ENOSPC) {
2763 		if (rule_id)
2764 			*rule_id = le16_to_cpu(resp->rule_id);
2765 		if (rules_used)
2766 			*rules_used = le16_to_cpu(resp->mirror_rules_used);
2767 		if (rules_free)
2768 			*rules_free = le16_to_cpu(resp->mirror_rules_free);
2769 	}
2770 	return status;
2771 }
2772 
2773 /**
2774  * i40e_aq_add_mirrorrule - add a mirror rule
2775  * @hw: pointer to the hw struct
2776  * @sw_seid: Switch SEID (to which rule refers)
2777  * @rule_type: Rule Type (ingress/egress/VLAN)
2778  * @dest_vsi: SEID of VSI to which packets will be mirrored
2779  * @count: length of the list
2780  * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2781  * @cmd_details: pointer to command details structure or NULL
2782  * @rule_id: Rule ID returned from FW
2783  * @rules_used: Number of rules used in internal switch
2784  * @rules_free: Number of rules free in internal switch
2785  *
2786  * Add mirror rule. Mirror rules are supported for VEBs or VEPA elements only
2787  **/
2788 int i40e_aq_add_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2789 			   u16 rule_type, u16 dest_vsi, u16 count,
2790 			   __le16 *mr_list,
2791 			   struct i40e_asq_cmd_details *cmd_details,
2792 			   u16 *rule_id, u16 *rules_used, u16 *rules_free)
2793 {
2794 	if (!(rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_INGRESS ||
2795 	    rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_EGRESS)) {
2796 		if (count == 0 || !mr_list)
2797 			return -EINVAL;
2798 	}
2799 
2800 	return i40e_mirrorrule_op(hw, i40e_aqc_opc_add_mirror_rule, sw_seid,
2801 				  rule_type, dest_vsi, count, mr_list,
2802 				  cmd_details, rule_id, rules_used, rules_free);
2803 }
2804 
2805 /**
2806  * i40e_aq_delete_mirrorrule - delete a mirror rule
2807  * @hw: pointer to the hw struct
2808  * @sw_seid: Switch SEID (to which rule refers)
2809  * @rule_type: Rule Type (ingress/egress/VLAN)
2810  * @count: length of the list
2811  * @rule_id: Rule ID that is returned in the receive desc as part of
2812  *		add_mirrorrule.
2813  * @mr_list: list of mirrored VLAN IDs to be removed
2814  * @cmd_details: pointer to command details structure or NULL
2815  * @rules_used: Number of rules used in internal switch
2816  * @rules_free: Number of rules free in internal switch
2817  *
2818  * Delete a mirror rule. Mirror rules are supported for VEBs/VEPA elements only
2819  **/
2820 int i40e_aq_delete_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2821 			      u16 rule_type, u16 rule_id, u16 count,
2822 			      __le16 *mr_list,
2823 			      struct i40e_asq_cmd_details *cmd_details,
2824 			      u16 *rules_used, u16 *rules_free)
2825 {
2826 	/* Rule ID has to be valid except rule_type: INGRESS VLAN mirroring */
2827 	if (rule_type == I40E_AQC_MIRROR_RULE_TYPE_VLAN) {
2828 		/* count and mr_list shall be valid for rule_type INGRESS VLAN
2829 		 * mirroring. For other rule_type, count and rule_type should
2830 		 * not matter.
2831 		 */
2832 		if (count == 0 || !mr_list)
2833 			return -EINVAL;
2834 	}
2835 
2836 	return i40e_mirrorrule_op(hw, i40e_aqc_opc_delete_mirror_rule, sw_seid,
2837 				  rule_type, rule_id, count, mr_list,
2838 				  cmd_details, NULL, rules_used, rules_free);
2839 }
2840 
2841 /**
2842  * i40e_aq_send_msg_to_vf
2843  * @hw: pointer to the hardware structure
2844  * @vfid: VF id to send msg
2845  * @v_opcode: opcodes for VF-PF communication
2846  * @v_retval: return error code
2847  * @msg: pointer to the msg buffer
2848  * @msglen: msg length
2849  * @cmd_details: pointer to command details
2850  *
2851  * send msg to vf
2852  **/
2853 int i40e_aq_send_msg_to_vf(struct i40e_hw *hw, u16 vfid,
2854 			   u32 v_opcode, u32 v_retval, u8 *msg, u16 msglen,
2855 			   struct i40e_asq_cmd_details *cmd_details)
2856 {
2857 	struct i40e_aq_desc desc;
2858 	struct i40e_aqc_pf_vf_message *cmd =
2859 		(struct i40e_aqc_pf_vf_message *)&desc.params.raw;
2860 	int status;
2861 
2862 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_send_msg_to_vf);
2863 	cmd->id = cpu_to_le32(vfid);
2864 	desc.cookie_high = cpu_to_le32(v_opcode);
2865 	desc.cookie_low = cpu_to_le32(v_retval);
2866 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_SI);
2867 	if (msglen) {
2868 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2869 						I40E_AQ_FLAG_RD));
2870 		if (msglen > I40E_AQ_LARGE_BUF)
2871 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2872 		desc.datalen = cpu_to_le16(msglen);
2873 	}
2874 	status = i40e_asq_send_command(hw, &desc, msg, msglen, cmd_details);
2875 
2876 	return status;
2877 }
2878 
2879 /**
2880  * i40e_aq_debug_read_register
2881  * @hw: pointer to the hw struct
2882  * @reg_addr: register address
2883  * @reg_val: register value
2884  * @cmd_details: pointer to command details structure or NULL
2885  *
2886  * Read the register using the admin queue commands
2887  **/
2888 int i40e_aq_debug_read_register(struct i40e_hw *hw,
2889 				u32 reg_addr, u64 *reg_val,
2890 				struct i40e_asq_cmd_details *cmd_details)
2891 {
2892 	struct i40e_aq_desc desc;
2893 	struct i40e_aqc_debug_reg_read_write *cmd_resp =
2894 		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2895 	int status;
2896 
2897 	if (reg_val == NULL)
2898 		return -EINVAL;
2899 
2900 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_read_reg);
2901 
2902 	cmd_resp->address = cpu_to_le32(reg_addr);
2903 
2904 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2905 
2906 	if (!status) {
2907 		*reg_val = ((u64)le32_to_cpu(cmd_resp->value_high) << 32) |
2908 			   (u64)le32_to_cpu(cmd_resp->value_low);
2909 	}
2910 
2911 	return status;
2912 }
2913 
2914 /**
2915  * i40e_aq_debug_write_register
2916  * @hw: pointer to the hw struct
2917  * @reg_addr: register address
2918  * @reg_val: register value
2919  * @cmd_details: pointer to command details structure or NULL
2920  *
2921  * Write to a register using the admin queue commands
2922  **/
2923 int i40e_aq_debug_write_register(struct i40e_hw *hw,
2924 				 u32 reg_addr, u64 reg_val,
2925 				 struct i40e_asq_cmd_details *cmd_details)
2926 {
2927 	struct i40e_aq_desc desc;
2928 	struct i40e_aqc_debug_reg_read_write *cmd =
2929 		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2930 	int status;
2931 
2932 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_write_reg);
2933 
2934 	cmd->address = cpu_to_le32(reg_addr);
2935 	cmd->value_high = cpu_to_le32((u32)(reg_val >> 32));
2936 	cmd->value_low = cpu_to_le32((u32)(reg_val & 0xFFFFFFFF));
2937 
2938 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2939 
2940 	return status;
2941 }
2942 
2943 /**
2944  * i40e_aq_request_resource
2945  * @hw: pointer to the hw struct
2946  * @resource: resource id
2947  * @access: access type
2948  * @sdp_number: resource number
2949  * @timeout: the maximum time in ms that the driver may hold the resource
2950  * @cmd_details: pointer to command details structure or NULL
2951  *
2952  * requests common resource using the admin queue commands
2953  **/
2954 int i40e_aq_request_resource(struct i40e_hw *hw,
2955 			     enum i40e_aq_resources_ids resource,
2956 			     enum i40e_aq_resource_access_type access,
2957 			     u8 sdp_number, u64 *timeout,
2958 			     struct i40e_asq_cmd_details *cmd_details)
2959 {
2960 	struct i40e_aq_desc desc;
2961 	struct i40e_aqc_request_resource *cmd_resp =
2962 		(struct i40e_aqc_request_resource *)&desc.params.raw;
2963 	int status;
2964 
2965 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_request_resource);
2966 
2967 	cmd_resp->resource_id = cpu_to_le16(resource);
2968 	cmd_resp->access_type = cpu_to_le16(access);
2969 	cmd_resp->resource_number = cpu_to_le32(sdp_number);
2970 
2971 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2972 	/* The completion specifies the maximum time in ms that the driver
2973 	 * may hold the resource in the Timeout field.
2974 	 * If the resource is held by someone else, the command completes with
2975 	 * busy return value and the timeout field indicates the maximum time
2976 	 * the current owner of the resource has to free it.
2977 	 */
2978 	if (!status || hw->aq.asq_last_status == I40E_AQ_RC_EBUSY)
2979 		*timeout = le32_to_cpu(cmd_resp->timeout);
2980 
2981 	return status;
2982 }
2983 
2984 /**
2985  * i40e_aq_release_resource
2986  * @hw: pointer to the hw struct
2987  * @resource: resource id
2988  * @sdp_number: resource number
2989  * @cmd_details: pointer to command details structure or NULL
2990  *
2991  * release common resource using the admin queue commands
2992  **/
2993 int i40e_aq_release_resource(struct i40e_hw *hw,
2994 			     enum i40e_aq_resources_ids resource,
2995 			     u8 sdp_number,
2996 			     struct i40e_asq_cmd_details *cmd_details)
2997 {
2998 	struct i40e_aq_desc desc;
2999 	struct i40e_aqc_request_resource *cmd =
3000 		(struct i40e_aqc_request_resource *)&desc.params.raw;
3001 	int status;
3002 
3003 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_release_resource);
3004 
3005 	cmd->resource_id = cpu_to_le16(resource);
3006 	cmd->resource_number = cpu_to_le32(sdp_number);
3007 
3008 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3009 
3010 	return status;
3011 }
3012 
3013 /**
3014  * i40e_aq_read_nvm
3015  * @hw: pointer to the hw struct
3016  * @module_pointer: module pointer location in words from the NVM beginning
3017  * @offset: byte offset from the module beginning
3018  * @length: length of the section to be read (in bytes from the offset)
3019  * @data: command buffer (size [bytes] = length)
3020  * @last_command: tells if this is the last command in a series
3021  * @cmd_details: pointer to command details structure or NULL
3022  *
3023  * Read the NVM using the admin queue commands
3024  **/
3025 int i40e_aq_read_nvm(struct i40e_hw *hw, u8 module_pointer,
3026 		     u32 offset, u16 length, void *data,
3027 		     bool last_command,
3028 		     struct i40e_asq_cmd_details *cmd_details)
3029 {
3030 	struct i40e_aq_desc desc;
3031 	struct i40e_aqc_nvm_update *cmd =
3032 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3033 	int status;
3034 
3035 	/* In offset the highest byte must be zeroed. */
3036 	if (offset & 0xFF000000) {
3037 		status = -EINVAL;
3038 		goto i40e_aq_read_nvm_exit;
3039 	}
3040 
3041 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_read);
3042 
3043 	/* If this is the last command in a series, set the proper flag. */
3044 	if (last_command)
3045 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3046 	cmd->module_pointer = module_pointer;
3047 	cmd->offset = cpu_to_le32(offset);
3048 	cmd->length = cpu_to_le16(length);
3049 
3050 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3051 	if (length > I40E_AQ_LARGE_BUF)
3052 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3053 
3054 	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
3055 
3056 i40e_aq_read_nvm_exit:
3057 	return status;
3058 }
3059 
3060 /**
3061  * i40e_aq_erase_nvm
3062  * @hw: pointer to the hw struct
3063  * @module_pointer: module pointer location in words from the NVM beginning
3064  * @offset: offset in the module (expressed in 4 KB from module's beginning)
3065  * @length: length of the section to be erased (expressed in 4 KB)
3066  * @last_command: tells if this is the last command in a series
3067  * @cmd_details: pointer to command details structure or NULL
3068  *
3069  * Erase the NVM sector using the admin queue commands
3070  **/
3071 int i40e_aq_erase_nvm(struct i40e_hw *hw, u8 module_pointer,
3072 		      u32 offset, u16 length, bool last_command,
3073 		      struct i40e_asq_cmd_details *cmd_details)
3074 {
3075 	struct i40e_aq_desc desc;
3076 	struct i40e_aqc_nvm_update *cmd =
3077 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3078 	int status;
3079 
3080 	/* In offset the highest byte must be zeroed. */
3081 	if (offset & 0xFF000000) {
3082 		status = -EINVAL;
3083 		goto i40e_aq_erase_nvm_exit;
3084 	}
3085 
3086 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_erase);
3087 
3088 	/* If this is the last command in a series, set the proper flag. */
3089 	if (last_command)
3090 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3091 	cmd->module_pointer = module_pointer;
3092 	cmd->offset = cpu_to_le32(offset);
3093 	cmd->length = cpu_to_le16(length);
3094 
3095 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3096 
3097 i40e_aq_erase_nvm_exit:
3098 	return status;
3099 }
3100 
3101 /**
3102  * i40e_parse_discover_capabilities
3103  * @hw: pointer to the hw struct
3104  * @buff: pointer to a buffer containing device/function capability records
3105  * @cap_count: number of capability records in the list
3106  * @list_type_opc: type of capabilities list to parse
3107  *
3108  * Parse the device/function capabilities list.
3109  **/
3110 static void i40e_parse_discover_capabilities(struct i40e_hw *hw, void *buff,
3111 				     u32 cap_count,
3112 				     enum i40e_admin_queue_opc list_type_opc)
3113 {
3114 	struct i40e_aqc_list_capabilities_element_resp *cap;
3115 	u32 valid_functions, num_functions;
3116 	u32 number, logical_id, phys_id;
3117 	struct i40e_hw_capabilities *p;
3118 	u16 id, ocp_cfg_word0;
3119 	u8 major_rev;
3120 	int status;
3121 	u32 i = 0;
3122 
3123 	cap = (struct i40e_aqc_list_capabilities_element_resp *) buff;
3124 
3125 	if (list_type_opc == i40e_aqc_opc_list_dev_capabilities)
3126 		p = &hw->dev_caps;
3127 	else if (list_type_opc == i40e_aqc_opc_list_func_capabilities)
3128 		p = &hw->func_caps;
3129 	else
3130 		return;
3131 
3132 	for (i = 0; i < cap_count; i++, cap++) {
3133 		id = le16_to_cpu(cap->id);
3134 		number = le32_to_cpu(cap->number);
3135 		logical_id = le32_to_cpu(cap->logical_id);
3136 		phys_id = le32_to_cpu(cap->phys_id);
3137 		major_rev = cap->major_rev;
3138 
3139 		switch (id) {
3140 		case I40E_AQ_CAP_ID_SWITCH_MODE:
3141 			p->switch_mode = number;
3142 			break;
3143 		case I40E_AQ_CAP_ID_MNG_MODE:
3144 			p->management_mode = number;
3145 			if (major_rev > 1) {
3146 				p->mng_protocols_over_mctp = logical_id;
3147 				i40e_debug(hw, I40E_DEBUG_INIT,
3148 					   "HW Capability: Protocols over MCTP = %d\n",
3149 					   p->mng_protocols_over_mctp);
3150 			} else {
3151 				p->mng_protocols_over_mctp = 0;
3152 			}
3153 			break;
3154 		case I40E_AQ_CAP_ID_NPAR_ACTIVE:
3155 			p->npar_enable = number;
3156 			break;
3157 		case I40E_AQ_CAP_ID_OS2BMC_CAP:
3158 			p->os2bmc = number;
3159 			break;
3160 		case I40E_AQ_CAP_ID_FUNCTIONS_VALID:
3161 			p->valid_functions = number;
3162 			break;
3163 		case I40E_AQ_CAP_ID_SRIOV:
3164 			if (number == 1)
3165 				p->sr_iov_1_1 = true;
3166 			break;
3167 		case I40E_AQ_CAP_ID_VF:
3168 			p->num_vfs = number;
3169 			p->vf_base_id = logical_id;
3170 			break;
3171 		case I40E_AQ_CAP_ID_VMDQ:
3172 			if (number == 1)
3173 				p->vmdq = true;
3174 			break;
3175 		case I40E_AQ_CAP_ID_8021QBG:
3176 			if (number == 1)
3177 				p->evb_802_1_qbg = true;
3178 			break;
3179 		case I40E_AQ_CAP_ID_8021QBR:
3180 			if (number == 1)
3181 				p->evb_802_1_qbh = true;
3182 			break;
3183 		case I40E_AQ_CAP_ID_VSI:
3184 			p->num_vsis = number;
3185 			break;
3186 		case I40E_AQ_CAP_ID_DCB:
3187 			if (number == 1) {
3188 				p->dcb = true;
3189 				p->enabled_tcmap = logical_id;
3190 				p->maxtc = phys_id;
3191 			}
3192 			break;
3193 		case I40E_AQ_CAP_ID_FCOE:
3194 			if (number == 1)
3195 				p->fcoe = true;
3196 			break;
3197 		case I40E_AQ_CAP_ID_ISCSI:
3198 			if (number == 1)
3199 				p->iscsi = true;
3200 			break;
3201 		case I40E_AQ_CAP_ID_RSS:
3202 			p->rss = true;
3203 			p->rss_table_size = number;
3204 			p->rss_table_entry_width = logical_id;
3205 			break;
3206 		case I40E_AQ_CAP_ID_RXQ:
3207 			p->num_rx_qp = number;
3208 			p->base_queue = phys_id;
3209 			break;
3210 		case I40E_AQ_CAP_ID_TXQ:
3211 			p->num_tx_qp = number;
3212 			p->base_queue = phys_id;
3213 			break;
3214 		case I40E_AQ_CAP_ID_MSIX:
3215 			p->num_msix_vectors = number;
3216 			i40e_debug(hw, I40E_DEBUG_INIT,
3217 				   "HW Capability: MSIX vector count = %d\n",
3218 				   p->num_msix_vectors);
3219 			break;
3220 		case I40E_AQ_CAP_ID_VF_MSIX:
3221 			p->num_msix_vectors_vf = number;
3222 			break;
3223 		case I40E_AQ_CAP_ID_FLEX10:
3224 			if (major_rev == 1) {
3225 				if (number == 1) {
3226 					p->flex10_enable = true;
3227 					p->flex10_capable = true;
3228 				}
3229 			} else {
3230 				/* Capability revision >= 2 */
3231 				if (number & 1)
3232 					p->flex10_enable = true;
3233 				if (number & 2)
3234 					p->flex10_capable = true;
3235 			}
3236 			p->flex10_mode = logical_id;
3237 			p->flex10_status = phys_id;
3238 			break;
3239 		case I40E_AQ_CAP_ID_CEM:
3240 			if (number == 1)
3241 				p->mgmt_cem = true;
3242 			break;
3243 		case I40E_AQ_CAP_ID_IWARP:
3244 			if (number == 1)
3245 				p->iwarp = true;
3246 			break;
3247 		case I40E_AQ_CAP_ID_LED:
3248 			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3249 				p->led[phys_id] = true;
3250 			break;
3251 		case I40E_AQ_CAP_ID_SDP:
3252 			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3253 				p->sdp[phys_id] = true;
3254 			break;
3255 		case I40E_AQ_CAP_ID_MDIO:
3256 			if (number == 1) {
3257 				p->mdio_port_num = phys_id;
3258 				p->mdio_port_mode = logical_id;
3259 			}
3260 			break;
3261 		case I40E_AQ_CAP_ID_1588:
3262 			if (number == 1)
3263 				p->ieee_1588 = true;
3264 			break;
3265 		case I40E_AQ_CAP_ID_FLOW_DIRECTOR:
3266 			p->fd = true;
3267 			p->fd_filters_guaranteed = number;
3268 			p->fd_filters_best_effort = logical_id;
3269 			break;
3270 		case I40E_AQ_CAP_ID_WSR_PROT:
3271 			p->wr_csr_prot = (u64)number;
3272 			p->wr_csr_prot |= (u64)logical_id << 32;
3273 			break;
3274 		case I40E_AQ_CAP_ID_NVM_MGMT:
3275 			if (number & I40E_NVM_MGMT_SEC_REV_DISABLED)
3276 				p->sec_rev_disabled = true;
3277 			if (number & I40E_NVM_MGMT_UPDATE_DISABLED)
3278 				p->update_disabled = true;
3279 			break;
3280 		default:
3281 			break;
3282 		}
3283 	}
3284 
3285 	if (p->fcoe)
3286 		i40e_debug(hw, I40E_DEBUG_ALL, "device is FCoE capable\n");
3287 
3288 	/* Software override ensuring FCoE is disabled if npar or mfp
3289 	 * mode because it is not supported in these modes.
3290 	 */
3291 	if (p->npar_enable || p->flex10_enable)
3292 		p->fcoe = false;
3293 
3294 	/* count the enabled ports (aka the "not disabled" ports) */
3295 	hw->num_ports = 0;
3296 	for (i = 0; i < 4; i++) {
3297 		u32 port_cfg_reg = I40E_PRTGEN_CNF + (4 * i);
3298 		u64 port_cfg = 0;
3299 
3300 		/* use AQ read to get the physical register offset instead
3301 		 * of the port relative offset
3302 		 */
3303 		i40e_aq_debug_read_register(hw, port_cfg_reg, &port_cfg, NULL);
3304 		if (!(port_cfg & I40E_PRTGEN_CNF_PORT_DIS_MASK))
3305 			hw->num_ports++;
3306 	}
3307 
3308 	/* OCP cards case: if a mezz is removed the Ethernet port is at
3309 	 * disabled state in PRTGEN_CNF register. Additional NVM read is
3310 	 * needed in order to check if we are dealing with OCP card.
3311 	 * Those cards have 4 PFs at minimum, so using PRTGEN_CNF for counting
3312 	 * physical ports results in wrong partition id calculation and thus
3313 	 * not supporting WoL.
3314 	 */
3315 	if (hw->mac.type == I40E_MAC_X722) {
3316 		if (!i40e_acquire_nvm(hw, I40E_RESOURCE_READ)) {
3317 			status = i40e_aq_read_nvm(hw, I40E_SR_EMP_MODULE_PTR,
3318 						  2 * I40E_SR_OCP_CFG_WORD0,
3319 						  sizeof(ocp_cfg_word0),
3320 						  &ocp_cfg_word0, true, NULL);
3321 			if (!status &&
3322 			    (ocp_cfg_word0 & I40E_SR_OCP_ENABLED))
3323 				hw->num_ports = 4;
3324 			i40e_release_nvm(hw);
3325 		}
3326 	}
3327 
3328 	valid_functions = p->valid_functions;
3329 	num_functions = 0;
3330 	while (valid_functions) {
3331 		if (valid_functions & 1)
3332 			num_functions++;
3333 		valid_functions >>= 1;
3334 	}
3335 
3336 	/* partition id is 1-based, and functions are evenly spread
3337 	 * across the ports as partitions
3338 	 */
3339 	if (hw->num_ports != 0) {
3340 		hw->partition_id = (hw->pf_id / hw->num_ports) + 1;
3341 		hw->num_partitions = num_functions / hw->num_ports;
3342 	}
3343 
3344 	/* additional HW specific goodies that might
3345 	 * someday be HW version specific
3346 	 */
3347 	p->rx_buf_chain_len = I40E_MAX_CHAINED_RX_BUFFERS;
3348 }
3349 
3350 /**
3351  * i40e_aq_discover_capabilities
3352  * @hw: pointer to the hw struct
3353  * @buff: a virtual buffer to hold the capabilities
3354  * @buff_size: Size of the virtual buffer
3355  * @data_size: Size of the returned data, or buff size needed if AQ err==ENOMEM
3356  * @list_type_opc: capabilities type to discover - pass in the command opcode
3357  * @cmd_details: pointer to command details structure or NULL
3358  *
3359  * Get the device capabilities descriptions from the firmware
3360  **/
3361 int i40e_aq_discover_capabilities(struct i40e_hw *hw,
3362 				  void *buff, u16 buff_size, u16 *data_size,
3363 				  enum i40e_admin_queue_opc list_type_opc,
3364 				  struct i40e_asq_cmd_details *cmd_details)
3365 {
3366 	struct i40e_aqc_list_capabilites *cmd;
3367 	struct i40e_aq_desc desc;
3368 	int status = 0;
3369 
3370 	cmd = (struct i40e_aqc_list_capabilites *)&desc.params.raw;
3371 
3372 	if (list_type_opc != i40e_aqc_opc_list_func_capabilities &&
3373 		list_type_opc != i40e_aqc_opc_list_dev_capabilities) {
3374 		status = -EINVAL;
3375 		goto exit;
3376 	}
3377 
3378 	i40e_fill_default_direct_cmd_desc(&desc, list_type_opc);
3379 
3380 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3381 	if (buff_size > I40E_AQ_LARGE_BUF)
3382 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3383 
3384 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3385 	*data_size = le16_to_cpu(desc.datalen);
3386 
3387 	if (status)
3388 		goto exit;
3389 
3390 	i40e_parse_discover_capabilities(hw, buff, le32_to_cpu(cmd->count),
3391 					 list_type_opc);
3392 
3393 exit:
3394 	return status;
3395 }
3396 
3397 /**
3398  * i40e_aq_update_nvm
3399  * @hw: pointer to the hw struct
3400  * @module_pointer: module pointer location in words from the NVM beginning
3401  * @offset: byte offset from the module beginning
3402  * @length: length of the section to be written (in bytes from the offset)
3403  * @data: command buffer (size [bytes] = length)
3404  * @last_command: tells if this is the last command in a series
3405  * @preservation_flags: Preservation mode flags
3406  * @cmd_details: pointer to command details structure or NULL
3407  *
3408  * Update the NVM using the admin queue commands
3409  **/
3410 int i40e_aq_update_nvm(struct i40e_hw *hw, u8 module_pointer,
3411 		       u32 offset, u16 length, void *data,
3412 		       bool last_command, u8 preservation_flags,
3413 		       struct i40e_asq_cmd_details *cmd_details)
3414 {
3415 	struct i40e_aq_desc desc;
3416 	struct i40e_aqc_nvm_update *cmd =
3417 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3418 	int status;
3419 
3420 	/* In offset the highest byte must be zeroed. */
3421 	if (offset & 0xFF000000) {
3422 		status = -EINVAL;
3423 		goto i40e_aq_update_nvm_exit;
3424 	}
3425 
3426 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update);
3427 
3428 	/* If this is the last command in a series, set the proper flag. */
3429 	if (last_command)
3430 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3431 	if (hw->mac.type == I40E_MAC_X722) {
3432 		if (preservation_flags == I40E_NVM_PRESERVATION_FLAGS_SELECTED)
3433 			cmd->command_flags |=
3434 				(I40E_AQ_NVM_PRESERVATION_FLAGS_SELECTED <<
3435 				 I40E_AQ_NVM_PRESERVATION_FLAGS_SHIFT);
3436 		else if (preservation_flags == I40E_NVM_PRESERVATION_FLAGS_ALL)
3437 			cmd->command_flags |=
3438 				(I40E_AQ_NVM_PRESERVATION_FLAGS_ALL <<
3439 				 I40E_AQ_NVM_PRESERVATION_FLAGS_SHIFT);
3440 	}
3441 	cmd->module_pointer = module_pointer;
3442 	cmd->offset = cpu_to_le32(offset);
3443 	cmd->length = cpu_to_le16(length);
3444 
3445 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
3446 	if (length > I40E_AQ_LARGE_BUF)
3447 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3448 
3449 	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
3450 
3451 i40e_aq_update_nvm_exit:
3452 	return status;
3453 }
3454 
3455 /**
3456  * i40e_aq_rearrange_nvm
3457  * @hw: pointer to the hw struct
3458  * @rearrange_nvm: defines direction of rearrangement
3459  * @cmd_details: pointer to command details structure or NULL
3460  *
3461  * Rearrange NVM structure, available only for transition FW
3462  **/
3463 int i40e_aq_rearrange_nvm(struct i40e_hw *hw,
3464 			  u8 rearrange_nvm,
3465 			  struct i40e_asq_cmd_details *cmd_details)
3466 {
3467 	struct i40e_aqc_nvm_update *cmd;
3468 	struct i40e_aq_desc desc;
3469 	int status;
3470 
3471 	cmd = (struct i40e_aqc_nvm_update *)&desc.params.raw;
3472 
3473 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update);
3474 
3475 	rearrange_nvm &= (I40E_AQ_NVM_REARRANGE_TO_FLAT |
3476 			 I40E_AQ_NVM_REARRANGE_TO_STRUCT);
3477 
3478 	if (!rearrange_nvm) {
3479 		status = -EINVAL;
3480 		goto i40e_aq_rearrange_nvm_exit;
3481 	}
3482 
3483 	cmd->command_flags |= rearrange_nvm;
3484 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3485 
3486 i40e_aq_rearrange_nvm_exit:
3487 	return status;
3488 }
3489 
3490 /**
3491  * i40e_aq_get_lldp_mib
3492  * @hw: pointer to the hw struct
3493  * @bridge_type: type of bridge requested
3494  * @mib_type: Local, Remote or both Local and Remote MIBs
3495  * @buff: pointer to a user supplied buffer to store the MIB block
3496  * @buff_size: size of the buffer (in bytes)
3497  * @local_len : length of the returned Local LLDP MIB
3498  * @remote_len: length of the returned Remote LLDP MIB
3499  * @cmd_details: pointer to command details structure or NULL
3500  *
3501  * Requests the complete LLDP MIB (entire packet).
3502  **/
3503 int i40e_aq_get_lldp_mib(struct i40e_hw *hw, u8 bridge_type,
3504 			 u8 mib_type, void *buff, u16 buff_size,
3505 			 u16 *local_len, u16 *remote_len,
3506 			 struct i40e_asq_cmd_details *cmd_details)
3507 {
3508 	struct i40e_aq_desc desc;
3509 	struct i40e_aqc_lldp_get_mib *cmd =
3510 		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3511 	struct i40e_aqc_lldp_get_mib *resp =
3512 		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3513 	int status;
3514 
3515 	if (buff_size == 0 || !buff)
3516 		return -EINVAL;
3517 
3518 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_get_mib);
3519 	/* Indirect Command */
3520 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3521 
3522 	cmd->type = mib_type & I40E_AQ_LLDP_MIB_TYPE_MASK;
3523 	cmd->type |= ((bridge_type << I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) &
3524 		       I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
3525 
3526 	desc.datalen = cpu_to_le16(buff_size);
3527 
3528 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3529 	if (buff_size > I40E_AQ_LARGE_BUF)
3530 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3531 
3532 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3533 	if (!status) {
3534 		if (local_len != NULL)
3535 			*local_len = le16_to_cpu(resp->local_len);
3536 		if (remote_len != NULL)
3537 			*remote_len = le16_to_cpu(resp->remote_len);
3538 	}
3539 
3540 	return status;
3541 }
3542 
3543 /**
3544  * i40e_aq_set_lldp_mib - Set the LLDP MIB
3545  * @hw: pointer to the hw struct
3546  * @mib_type: Local, Remote or both Local and Remote MIBs
3547  * @buff: pointer to a user supplied buffer to store the MIB block
3548  * @buff_size: size of the buffer (in bytes)
3549  * @cmd_details: pointer to command details structure or NULL
3550  *
3551  * Set the LLDP MIB.
3552  **/
3553 int
3554 i40e_aq_set_lldp_mib(struct i40e_hw *hw,
3555 		     u8 mib_type, void *buff, u16 buff_size,
3556 		     struct i40e_asq_cmd_details *cmd_details)
3557 {
3558 	struct i40e_aqc_lldp_set_local_mib *cmd;
3559 	struct i40e_aq_desc desc;
3560 	int status;
3561 
3562 	cmd = (struct i40e_aqc_lldp_set_local_mib *)&desc.params.raw;
3563 	if (buff_size == 0 || !buff)
3564 		return -EINVAL;
3565 
3566 	i40e_fill_default_direct_cmd_desc(&desc,
3567 					  i40e_aqc_opc_lldp_set_local_mib);
3568 	/* Indirect Command */
3569 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
3570 	if (buff_size > I40E_AQ_LARGE_BUF)
3571 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3572 	desc.datalen = cpu_to_le16(buff_size);
3573 
3574 	cmd->type = mib_type;
3575 	cmd->length = cpu_to_le16(buff_size);
3576 	cmd->address_high = cpu_to_le32(upper_32_bits((uintptr_t)buff));
3577 	cmd->address_low = cpu_to_le32(lower_32_bits((uintptr_t)buff));
3578 
3579 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3580 	return status;
3581 }
3582 
3583 /**
3584  * i40e_aq_cfg_lldp_mib_change_event
3585  * @hw: pointer to the hw struct
3586  * @enable_update: Enable or Disable event posting
3587  * @cmd_details: pointer to command details structure or NULL
3588  *
3589  * Enable or Disable posting of an event on ARQ when LLDP MIB
3590  * associated with the interface changes
3591  **/
3592 int i40e_aq_cfg_lldp_mib_change_event(struct i40e_hw *hw,
3593 				      bool enable_update,
3594 				      struct i40e_asq_cmd_details *cmd_details)
3595 {
3596 	struct i40e_aq_desc desc;
3597 	struct i40e_aqc_lldp_update_mib *cmd =
3598 		(struct i40e_aqc_lldp_update_mib *)&desc.params.raw;
3599 	int status;
3600 
3601 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_update_mib);
3602 
3603 	if (!enable_update)
3604 		cmd->command |= I40E_AQ_LLDP_MIB_UPDATE_DISABLE;
3605 
3606 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3607 
3608 	return status;
3609 }
3610 
3611 /**
3612  * i40e_aq_restore_lldp
3613  * @hw: pointer to the hw struct
3614  * @setting: pointer to factory setting variable or NULL
3615  * @restore: True if factory settings should be restored
3616  * @cmd_details: pointer to command details structure or NULL
3617  *
3618  * Restore LLDP Agent factory settings if @restore set to True. In other case
3619  * only returns factory setting in AQ response.
3620  **/
3621 int
3622 i40e_aq_restore_lldp(struct i40e_hw *hw, u8 *setting, bool restore,
3623 		     struct i40e_asq_cmd_details *cmd_details)
3624 {
3625 	struct i40e_aq_desc desc;
3626 	struct i40e_aqc_lldp_restore *cmd =
3627 		(struct i40e_aqc_lldp_restore *)&desc.params.raw;
3628 	int status;
3629 
3630 	if (!(hw->flags & I40E_HW_FLAG_FW_LLDP_PERSISTENT)) {
3631 		i40e_debug(hw, I40E_DEBUG_ALL,
3632 			   "Restore LLDP not supported by current FW version.\n");
3633 		return -ENODEV;
3634 	}
3635 
3636 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_restore);
3637 
3638 	if (restore)
3639 		cmd->command |= I40E_AQ_LLDP_AGENT_RESTORE;
3640 
3641 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3642 
3643 	if (setting)
3644 		*setting = cmd->command & 1;
3645 
3646 	return status;
3647 }
3648 
3649 /**
3650  * i40e_aq_stop_lldp
3651  * @hw: pointer to the hw struct
3652  * @shutdown_agent: True if LLDP Agent needs to be Shutdown
3653  * @persist: True if stop of LLDP should be persistent across power cycles
3654  * @cmd_details: pointer to command details structure or NULL
3655  *
3656  * Stop or Shutdown the embedded LLDP Agent
3657  **/
3658 int i40e_aq_stop_lldp(struct i40e_hw *hw, bool shutdown_agent,
3659 		      bool persist,
3660 		      struct i40e_asq_cmd_details *cmd_details)
3661 {
3662 	struct i40e_aq_desc desc;
3663 	struct i40e_aqc_lldp_stop *cmd =
3664 		(struct i40e_aqc_lldp_stop *)&desc.params.raw;
3665 	int status;
3666 
3667 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_stop);
3668 
3669 	if (shutdown_agent)
3670 		cmd->command |= I40E_AQ_LLDP_AGENT_SHUTDOWN;
3671 
3672 	if (persist) {
3673 		if (hw->flags & I40E_HW_FLAG_FW_LLDP_PERSISTENT)
3674 			cmd->command |= I40E_AQ_LLDP_AGENT_STOP_PERSIST;
3675 		else
3676 			i40e_debug(hw, I40E_DEBUG_ALL,
3677 				   "Persistent Stop LLDP not supported by current FW version.\n");
3678 	}
3679 
3680 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3681 
3682 	return status;
3683 }
3684 
3685 /**
3686  * i40e_aq_start_lldp
3687  * @hw: pointer to the hw struct
3688  * @persist: True if start of LLDP should be persistent across power cycles
3689  * @cmd_details: pointer to command details structure or NULL
3690  *
3691  * Start the embedded LLDP Agent on all ports.
3692  **/
3693 int i40e_aq_start_lldp(struct i40e_hw *hw, bool persist,
3694 		       struct i40e_asq_cmd_details *cmd_details)
3695 {
3696 	struct i40e_aq_desc desc;
3697 	struct i40e_aqc_lldp_start *cmd =
3698 		(struct i40e_aqc_lldp_start *)&desc.params.raw;
3699 	int status;
3700 
3701 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_start);
3702 
3703 	cmd->command = I40E_AQ_LLDP_AGENT_START;
3704 
3705 	if (persist) {
3706 		if (hw->flags & I40E_HW_FLAG_FW_LLDP_PERSISTENT)
3707 			cmd->command |= I40E_AQ_LLDP_AGENT_START_PERSIST;
3708 		else
3709 			i40e_debug(hw, I40E_DEBUG_ALL,
3710 				   "Persistent Start LLDP not supported by current FW version.\n");
3711 	}
3712 
3713 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3714 
3715 	return status;
3716 }
3717 
3718 /**
3719  * i40e_aq_set_dcb_parameters
3720  * @hw: pointer to the hw struct
3721  * @cmd_details: pointer to command details structure or NULL
3722  * @dcb_enable: True if DCB configuration needs to be applied
3723  *
3724  **/
3725 int
3726 i40e_aq_set_dcb_parameters(struct i40e_hw *hw, bool dcb_enable,
3727 			   struct i40e_asq_cmd_details *cmd_details)
3728 {
3729 	struct i40e_aq_desc desc;
3730 	struct i40e_aqc_set_dcb_parameters *cmd =
3731 		(struct i40e_aqc_set_dcb_parameters *)&desc.params.raw;
3732 	int status;
3733 
3734 	if (!(hw->flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE))
3735 		return -ENODEV;
3736 
3737 	i40e_fill_default_direct_cmd_desc(&desc,
3738 					  i40e_aqc_opc_set_dcb_parameters);
3739 
3740 	if (dcb_enable) {
3741 		cmd->valid_flags = I40E_DCB_VALID;
3742 		cmd->command = I40E_AQ_DCB_SET_AGENT;
3743 	}
3744 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3745 
3746 	return status;
3747 }
3748 
3749 /**
3750  * i40e_aq_get_cee_dcb_config
3751  * @hw: pointer to the hw struct
3752  * @buff: response buffer that stores CEE operational configuration
3753  * @buff_size: size of the buffer passed
3754  * @cmd_details: pointer to command details structure or NULL
3755  *
3756  * Get CEE DCBX mode operational configuration from firmware
3757  **/
3758 int i40e_aq_get_cee_dcb_config(struct i40e_hw *hw,
3759 			       void *buff, u16 buff_size,
3760 			       struct i40e_asq_cmd_details *cmd_details)
3761 {
3762 	struct i40e_aq_desc desc;
3763 	int status;
3764 
3765 	if (buff_size == 0 || !buff)
3766 		return -EINVAL;
3767 
3768 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_cee_dcb_cfg);
3769 
3770 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3771 	status = i40e_asq_send_command(hw, &desc, (void *)buff, buff_size,
3772 				       cmd_details);
3773 
3774 	return status;
3775 }
3776 
3777 /**
3778  * i40e_aq_add_udp_tunnel
3779  * @hw: pointer to the hw struct
3780  * @udp_port: the UDP port to add in Host byte order
3781  * @protocol_index: protocol index type
3782  * @filter_index: pointer to filter index
3783  * @cmd_details: pointer to command details structure or NULL
3784  *
3785  * Note: Firmware expects the udp_port value to be in Little Endian format,
3786  * and this function will call cpu_to_le16 to convert from Host byte order to
3787  * Little Endian order.
3788  **/
3789 int i40e_aq_add_udp_tunnel(struct i40e_hw *hw,
3790 			   u16 udp_port, u8 protocol_index,
3791 			   u8 *filter_index,
3792 			   struct i40e_asq_cmd_details *cmd_details)
3793 {
3794 	struct i40e_aq_desc desc;
3795 	struct i40e_aqc_add_udp_tunnel *cmd =
3796 		(struct i40e_aqc_add_udp_tunnel *)&desc.params.raw;
3797 	struct i40e_aqc_del_udp_tunnel_completion *resp =
3798 		(struct i40e_aqc_del_udp_tunnel_completion *)&desc.params.raw;
3799 	int status;
3800 
3801 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_udp_tunnel);
3802 
3803 	cmd->udp_port = cpu_to_le16(udp_port);
3804 	cmd->protocol_type = protocol_index;
3805 
3806 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3807 
3808 	if (!status && filter_index)
3809 		*filter_index = resp->index;
3810 
3811 	return status;
3812 }
3813 
3814 /**
3815  * i40e_aq_del_udp_tunnel
3816  * @hw: pointer to the hw struct
3817  * @index: filter index
3818  * @cmd_details: pointer to command details structure or NULL
3819  **/
3820 int i40e_aq_del_udp_tunnel(struct i40e_hw *hw, u8 index,
3821 			   struct i40e_asq_cmd_details *cmd_details)
3822 {
3823 	struct i40e_aq_desc desc;
3824 	struct i40e_aqc_remove_udp_tunnel *cmd =
3825 		(struct i40e_aqc_remove_udp_tunnel *)&desc.params.raw;
3826 	int status;
3827 
3828 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_del_udp_tunnel);
3829 
3830 	cmd->index = index;
3831 
3832 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3833 
3834 	return status;
3835 }
3836 
3837 /**
3838  * i40e_aq_delete_element - Delete switch element
3839  * @hw: pointer to the hw struct
3840  * @seid: the SEID to delete from the switch
3841  * @cmd_details: pointer to command details structure or NULL
3842  *
3843  * This deletes a switch element from the switch.
3844  **/
3845 int i40e_aq_delete_element(struct i40e_hw *hw, u16 seid,
3846 			   struct i40e_asq_cmd_details *cmd_details)
3847 {
3848 	struct i40e_aq_desc desc;
3849 	struct i40e_aqc_switch_seid *cmd =
3850 		(struct i40e_aqc_switch_seid *)&desc.params.raw;
3851 	int status;
3852 
3853 	if (seid == 0)
3854 		return -EINVAL;
3855 
3856 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_delete_element);
3857 
3858 	cmd->seid = cpu_to_le16(seid);
3859 
3860 	status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0,
3861 					      cmd_details, true);
3862 
3863 	return status;
3864 }
3865 
3866 /**
3867  * i40e_aq_dcb_updated - DCB Updated Command
3868  * @hw: pointer to the hw struct
3869  * @cmd_details: pointer to command details structure or NULL
3870  *
3871  * EMP will return when the shared RPB settings have been
3872  * recomputed and modified. The retval field in the descriptor
3873  * will be set to 0 when RPB is modified.
3874  **/
3875 int i40e_aq_dcb_updated(struct i40e_hw *hw,
3876 			struct i40e_asq_cmd_details *cmd_details)
3877 {
3878 	struct i40e_aq_desc desc;
3879 	int status;
3880 
3881 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_dcb_updated);
3882 
3883 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3884 
3885 	return status;
3886 }
3887 
3888 /**
3889  * i40e_aq_tx_sched_cmd - generic Tx scheduler AQ command handler
3890  * @hw: pointer to the hw struct
3891  * @seid: seid for the physical port/switching component/vsi
3892  * @buff: Indirect buffer to hold data parameters and response
3893  * @buff_size: Indirect buffer size
3894  * @opcode: Tx scheduler AQ command opcode
3895  * @cmd_details: pointer to command details structure or NULL
3896  *
3897  * Generic command handler for Tx scheduler AQ commands
3898  **/
3899 static int i40e_aq_tx_sched_cmd(struct i40e_hw *hw, u16 seid,
3900 				void *buff, u16 buff_size,
3901 				enum i40e_admin_queue_opc opcode,
3902 				struct i40e_asq_cmd_details *cmd_details)
3903 {
3904 	struct i40e_aq_desc desc;
3905 	struct i40e_aqc_tx_sched_ind *cmd =
3906 		(struct i40e_aqc_tx_sched_ind *)&desc.params.raw;
3907 	int status;
3908 	bool cmd_param_flag = false;
3909 
3910 	switch (opcode) {
3911 	case i40e_aqc_opc_configure_vsi_ets_sla_bw_limit:
3912 	case i40e_aqc_opc_configure_vsi_tc_bw:
3913 	case i40e_aqc_opc_enable_switching_comp_ets:
3914 	case i40e_aqc_opc_modify_switching_comp_ets:
3915 	case i40e_aqc_opc_disable_switching_comp_ets:
3916 	case i40e_aqc_opc_configure_switching_comp_ets_bw_limit:
3917 	case i40e_aqc_opc_configure_switching_comp_bw_config:
3918 		cmd_param_flag = true;
3919 		break;
3920 	case i40e_aqc_opc_query_vsi_bw_config:
3921 	case i40e_aqc_opc_query_vsi_ets_sla_config:
3922 	case i40e_aqc_opc_query_switching_comp_ets_config:
3923 	case i40e_aqc_opc_query_port_ets_config:
3924 	case i40e_aqc_opc_query_switching_comp_bw_config:
3925 		cmd_param_flag = false;
3926 		break;
3927 	default:
3928 		return -EINVAL;
3929 	}
3930 
3931 	i40e_fill_default_direct_cmd_desc(&desc, opcode);
3932 
3933 	/* Indirect command */
3934 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3935 	if (cmd_param_flag)
3936 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
3937 	if (buff_size > I40E_AQ_LARGE_BUF)
3938 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3939 
3940 	desc.datalen = cpu_to_le16(buff_size);
3941 
3942 	cmd->vsi_seid = cpu_to_le16(seid);
3943 
3944 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3945 
3946 	return status;
3947 }
3948 
3949 /**
3950  * i40e_aq_config_vsi_bw_limit - Configure VSI BW Limit
3951  * @hw: pointer to the hw struct
3952  * @seid: VSI seid
3953  * @credit: BW limit credits (0 = disabled)
3954  * @max_credit: Max BW limit credits
3955  * @cmd_details: pointer to command details structure or NULL
3956  **/
3957 int i40e_aq_config_vsi_bw_limit(struct i40e_hw *hw,
3958 				u16 seid, u16 credit, u8 max_credit,
3959 				struct i40e_asq_cmd_details *cmd_details)
3960 {
3961 	struct i40e_aq_desc desc;
3962 	struct i40e_aqc_configure_vsi_bw_limit *cmd =
3963 		(struct i40e_aqc_configure_vsi_bw_limit *)&desc.params.raw;
3964 	int status;
3965 
3966 	i40e_fill_default_direct_cmd_desc(&desc,
3967 					  i40e_aqc_opc_configure_vsi_bw_limit);
3968 
3969 	cmd->vsi_seid = cpu_to_le16(seid);
3970 	cmd->credit = cpu_to_le16(credit);
3971 	cmd->max_credit = max_credit;
3972 
3973 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3974 
3975 	return status;
3976 }
3977 
3978 /**
3979  * i40e_aq_config_vsi_tc_bw - Config VSI BW Allocation per TC
3980  * @hw: pointer to the hw struct
3981  * @seid: VSI seid
3982  * @bw_data: Buffer holding enabled TCs, relative TC BW limit/credits
3983  * @cmd_details: pointer to command details structure or NULL
3984  **/
3985 int i40e_aq_config_vsi_tc_bw(struct i40e_hw *hw,
3986 			     u16 seid,
3987 			     struct i40e_aqc_configure_vsi_tc_bw_data *bw_data,
3988 			     struct i40e_asq_cmd_details *cmd_details)
3989 {
3990 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3991 				    i40e_aqc_opc_configure_vsi_tc_bw,
3992 				    cmd_details);
3993 }
3994 
3995 /**
3996  * i40e_aq_config_switch_comp_ets - Enable/Disable/Modify ETS on the port
3997  * @hw: pointer to the hw struct
3998  * @seid: seid of the switching component connected to Physical Port
3999  * @ets_data: Buffer holding ETS parameters
4000  * @opcode: Tx scheduler AQ command opcode
4001  * @cmd_details: pointer to command details structure or NULL
4002  **/
4003 int
4004 i40e_aq_config_switch_comp_ets(struct i40e_hw *hw,
4005 			       u16 seid,
4006 			       struct i40e_aqc_configure_switching_comp_ets_data *ets_data,
4007 			       enum i40e_admin_queue_opc opcode,
4008 			       struct i40e_asq_cmd_details *cmd_details)
4009 {
4010 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)ets_data,
4011 				    sizeof(*ets_data), opcode, cmd_details);
4012 }
4013 
4014 /**
4015  * i40e_aq_config_switch_comp_bw_config - Config Switch comp BW Alloc per TC
4016  * @hw: pointer to the hw struct
4017  * @seid: seid of the switching component
4018  * @bw_data: Buffer holding enabled TCs, relative/absolute TC BW limit/credits
4019  * @cmd_details: pointer to command details structure or NULL
4020  **/
4021 int
4022 i40e_aq_config_switch_comp_bw_config(struct i40e_hw *hw,
4023 	u16 seid,
4024 	struct i40e_aqc_configure_switching_comp_bw_config_data *bw_data,
4025 	struct i40e_asq_cmd_details *cmd_details)
4026 {
4027 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4028 			    i40e_aqc_opc_configure_switching_comp_bw_config,
4029 			    cmd_details);
4030 }
4031 
4032 /**
4033  * i40e_aq_query_vsi_bw_config - Query VSI BW configuration
4034  * @hw: pointer to the hw struct
4035  * @seid: seid of the VSI
4036  * @bw_data: Buffer to hold VSI BW configuration
4037  * @cmd_details: pointer to command details structure or NULL
4038  **/
4039 int
4040 i40e_aq_query_vsi_bw_config(struct i40e_hw *hw,
4041 			    u16 seid,
4042 			    struct i40e_aqc_query_vsi_bw_config_resp *bw_data,
4043 			    struct i40e_asq_cmd_details *cmd_details)
4044 {
4045 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4046 				    i40e_aqc_opc_query_vsi_bw_config,
4047 				    cmd_details);
4048 }
4049 
4050 /**
4051  * i40e_aq_query_vsi_ets_sla_config - Query VSI BW configuration per TC
4052  * @hw: pointer to the hw struct
4053  * @seid: seid of the VSI
4054  * @bw_data: Buffer to hold VSI BW configuration per TC
4055  * @cmd_details: pointer to command details structure or NULL
4056  **/
4057 int
4058 i40e_aq_query_vsi_ets_sla_config(struct i40e_hw *hw,
4059 				 u16 seid,
4060 				 struct i40e_aqc_query_vsi_ets_sla_config_resp *bw_data,
4061 				 struct i40e_asq_cmd_details *cmd_details)
4062 {
4063 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4064 				    i40e_aqc_opc_query_vsi_ets_sla_config,
4065 				    cmd_details);
4066 }
4067 
4068 /**
4069  * i40e_aq_query_switch_comp_ets_config - Query Switch comp BW config per TC
4070  * @hw: pointer to the hw struct
4071  * @seid: seid of the switching component
4072  * @bw_data: Buffer to hold switching component's per TC BW config
4073  * @cmd_details: pointer to command details structure or NULL
4074  **/
4075 int
4076 i40e_aq_query_switch_comp_ets_config(struct i40e_hw *hw,
4077 				     u16 seid,
4078 				     struct i40e_aqc_query_switching_comp_ets_config_resp *bw_data,
4079 				     struct i40e_asq_cmd_details *cmd_details)
4080 {
4081 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4082 				   i40e_aqc_opc_query_switching_comp_ets_config,
4083 				   cmd_details);
4084 }
4085 
4086 /**
4087  * i40e_aq_query_port_ets_config - Query Physical Port ETS configuration
4088  * @hw: pointer to the hw struct
4089  * @seid: seid of the VSI or switching component connected to Physical Port
4090  * @bw_data: Buffer to hold current ETS configuration for the Physical Port
4091  * @cmd_details: pointer to command details structure or NULL
4092  **/
4093 int
4094 i40e_aq_query_port_ets_config(struct i40e_hw *hw,
4095 			      u16 seid,
4096 			      struct i40e_aqc_query_port_ets_config_resp *bw_data,
4097 			      struct i40e_asq_cmd_details *cmd_details)
4098 {
4099 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4100 				    i40e_aqc_opc_query_port_ets_config,
4101 				    cmd_details);
4102 }
4103 
4104 /**
4105  * i40e_aq_query_switch_comp_bw_config - Query Switch comp BW configuration
4106  * @hw: pointer to the hw struct
4107  * @seid: seid of the switching component
4108  * @bw_data: Buffer to hold switching component's BW configuration
4109  * @cmd_details: pointer to command details structure or NULL
4110  **/
4111 int
4112 i40e_aq_query_switch_comp_bw_config(struct i40e_hw *hw,
4113 				    u16 seid,
4114 				    struct i40e_aqc_query_switching_comp_bw_config_resp *bw_data,
4115 				    struct i40e_asq_cmd_details *cmd_details)
4116 {
4117 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4118 				    i40e_aqc_opc_query_switching_comp_bw_config,
4119 				    cmd_details);
4120 }
4121 
4122 /**
4123  * i40e_validate_filter_settings
4124  * @hw: pointer to the hardware structure
4125  * @settings: Filter control settings
4126  *
4127  * Check and validate the filter control settings passed.
4128  * The function checks for the valid filter/context sizes being
4129  * passed for FCoE and PE.
4130  *
4131  * Returns 0 if the values passed are valid and within
4132  * range else returns an error.
4133  **/
4134 static int
4135 i40e_validate_filter_settings(struct i40e_hw *hw,
4136 			      struct i40e_filter_control_settings *settings)
4137 {
4138 	u32 fcoe_cntx_size, fcoe_filt_size;
4139 	u32 fcoe_fmax;
4140 	u32 val;
4141 
4142 	/* Validate FCoE settings passed */
4143 	switch (settings->fcoe_filt_num) {
4144 	case I40E_HASH_FILTER_SIZE_1K:
4145 	case I40E_HASH_FILTER_SIZE_2K:
4146 	case I40E_HASH_FILTER_SIZE_4K:
4147 	case I40E_HASH_FILTER_SIZE_8K:
4148 	case I40E_HASH_FILTER_SIZE_16K:
4149 	case I40E_HASH_FILTER_SIZE_32K:
4150 		fcoe_filt_size = I40E_HASH_FILTER_BASE_SIZE;
4151 		fcoe_filt_size <<= (u32)settings->fcoe_filt_num;
4152 		break;
4153 	default:
4154 		return -EINVAL;
4155 	}
4156 
4157 	switch (settings->fcoe_cntx_num) {
4158 	case I40E_DMA_CNTX_SIZE_512:
4159 	case I40E_DMA_CNTX_SIZE_1K:
4160 	case I40E_DMA_CNTX_SIZE_2K:
4161 	case I40E_DMA_CNTX_SIZE_4K:
4162 		fcoe_cntx_size = I40E_DMA_CNTX_BASE_SIZE;
4163 		fcoe_cntx_size <<= (u32)settings->fcoe_cntx_num;
4164 		break;
4165 	default:
4166 		return -EINVAL;
4167 	}
4168 
4169 	/* Validate PE settings passed */
4170 	switch (settings->pe_filt_num) {
4171 	case I40E_HASH_FILTER_SIZE_1K:
4172 	case I40E_HASH_FILTER_SIZE_2K:
4173 	case I40E_HASH_FILTER_SIZE_4K:
4174 	case I40E_HASH_FILTER_SIZE_8K:
4175 	case I40E_HASH_FILTER_SIZE_16K:
4176 	case I40E_HASH_FILTER_SIZE_32K:
4177 	case I40E_HASH_FILTER_SIZE_64K:
4178 	case I40E_HASH_FILTER_SIZE_128K:
4179 	case I40E_HASH_FILTER_SIZE_256K:
4180 	case I40E_HASH_FILTER_SIZE_512K:
4181 	case I40E_HASH_FILTER_SIZE_1M:
4182 		break;
4183 	default:
4184 		return -EINVAL;
4185 	}
4186 
4187 	switch (settings->pe_cntx_num) {
4188 	case I40E_DMA_CNTX_SIZE_512:
4189 	case I40E_DMA_CNTX_SIZE_1K:
4190 	case I40E_DMA_CNTX_SIZE_2K:
4191 	case I40E_DMA_CNTX_SIZE_4K:
4192 	case I40E_DMA_CNTX_SIZE_8K:
4193 	case I40E_DMA_CNTX_SIZE_16K:
4194 	case I40E_DMA_CNTX_SIZE_32K:
4195 	case I40E_DMA_CNTX_SIZE_64K:
4196 	case I40E_DMA_CNTX_SIZE_128K:
4197 	case I40E_DMA_CNTX_SIZE_256K:
4198 		break;
4199 	default:
4200 		return -EINVAL;
4201 	}
4202 
4203 	/* FCHSIZE + FCDSIZE should not be greater than PMFCOEFMAX */
4204 	val = rd32(hw, I40E_GLHMC_FCOEFMAX);
4205 	fcoe_fmax = (val & I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_MASK)
4206 		     >> I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_SHIFT;
4207 	if (fcoe_filt_size + fcoe_cntx_size >  fcoe_fmax)
4208 		return -EINVAL;
4209 
4210 	return 0;
4211 }
4212 
4213 /**
4214  * i40e_set_filter_control
4215  * @hw: pointer to the hardware structure
4216  * @settings: Filter control settings
4217  *
4218  * Set the Queue Filters for PE/FCoE and enable filters required
4219  * for a single PF. It is expected that these settings are programmed
4220  * at the driver initialization time.
4221  **/
4222 int i40e_set_filter_control(struct i40e_hw *hw,
4223 			    struct i40e_filter_control_settings *settings)
4224 {
4225 	u32 hash_lut_size = 0;
4226 	int ret = 0;
4227 	u32 val;
4228 
4229 	if (!settings)
4230 		return -EINVAL;
4231 
4232 	/* Validate the input settings */
4233 	ret = i40e_validate_filter_settings(hw, settings);
4234 	if (ret)
4235 		return ret;
4236 
4237 	/* Read the PF Queue Filter control register */
4238 	val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
4239 
4240 	/* Program required PE hash buckets for the PF */
4241 	val &= ~I40E_PFQF_CTL_0_PEHSIZE_MASK;
4242 	val |= ((u32)settings->pe_filt_num << I40E_PFQF_CTL_0_PEHSIZE_SHIFT) &
4243 		I40E_PFQF_CTL_0_PEHSIZE_MASK;
4244 	/* Program required PE contexts for the PF */
4245 	val &= ~I40E_PFQF_CTL_0_PEDSIZE_MASK;
4246 	val |= ((u32)settings->pe_cntx_num << I40E_PFQF_CTL_0_PEDSIZE_SHIFT) &
4247 		I40E_PFQF_CTL_0_PEDSIZE_MASK;
4248 
4249 	/* Program required FCoE hash buckets for the PF */
4250 	val &= ~I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
4251 	val |= ((u32)settings->fcoe_filt_num <<
4252 			I40E_PFQF_CTL_0_PFFCHSIZE_SHIFT) &
4253 		I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
4254 	/* Program required FCoE DDP contexts for the PF */
4255 	val &= ~I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
4256 	val |= ((u32)settings->fcoe_cntx_num <<
4257 			I40E_PFQF_CTL_0_PFFCDSIZE_SHIFT) &
4258 		I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
4259 
4260 	/* Program Hash LUT size for the PF */
4261 	val &= ~I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
4262 	if (settings->hash_lut_size == I40E_HASH_LUT_SIZE_512)
4263 		hash_lut_size = 1;
4264 	val |= (hash_lut_size << I40E_PFQF_CTL_0_HASHLUTSIZE_SHIFT) &
4265 		I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
4266 
4267 	/* Enable FDIR, Ethertype and MACVLAN filters for PF and VFs */
4268 	if (settings->enable_fdir)
4269 		val |= I40E_PFQF_CTL_0_FD_ENA_MASK;
4270 	if (settings->enable_ethtype)
4271 		val |= I40E_PFQF_CTL_0_ETYPE_ENA_MASK;
4272 	if (settings->enable_macvlan)
4273 		val |= I40E_PFQF_CTL_0_MACVLAN_ENA_MASK;
4274 
4275 	i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, val);
4276 
4277 	return 0;
4278 }
4279 
4280 /**
4281  * i40e_aq_add_rem_control_packet_filter - Add or Remove Control Packet Filter
4282  * @hw: pointer to the hw struct
4283  * @mac_addr: MAC address to use in the filter
4284  * @ethtype: Ethertype to use in the filter
4285  * @flags: Flags that needs to be applied to the filter
4286  * @vsi_seid: seid of the control VSI
4287  * @queue: VSI queue number to send the packet to
4288  * @is_add: Add control packet filter if True else remove
4289  * @stats: Structure to hold information on control filter counts
4290  * @cmd_details: pointer to command details structure or NULL
4291  *
4292  * This command will Add or Remove control packet filter for a control VSI.
4293  * In return it will update the total number of perfect filter count in
4294  * the stats member.
4295  **/
4296 int i40e_aq_add_rem_control_packet_filter(struct i40e_hw *hw,
4297 					  u8 *mac_addr, u16 ethtype, u16 flags,
4298 					  u16 vsi_seid, u16 queue, bool is_add,
4299 					  struct i40e_control_filter_stats *stats,
4300 					  struct i40e_asq_cmd_details *cmd_details)
4301 {
4302 	struct i40e_aq_desc desc;
4303 	struct i40e_aqc_add_remove_control_packet_filter *cmd =
4304 		(struct i40e_aqc_add_remove_control_packet_filter *)
4305 		&desc.params.raw;
4306 	struct i40e_aqc_add_remove_control_packet_filter_completion *resp =
4307 		(struct i40e_aqc_add_remove_control_packet_filter_completion *)
4308 		&desc.params.raw;
4309 	int status;
4310 
4311 	if (vsi_seid == 0)
4312 		return -EINVAL;
4313 
4314 	if (is_add) {
4315 		i40e_fill_default_direct_cmd_desc(&desc,
4316 				i40e_aqc_opc_add_control_packet_filter);
4317 		cmd->queue = cpu_to_le16(queue);
4318 	} else {
4319 		i40e_fill_default_direct_cmd_desc(&desc,
4320 				i40e_aqc_opc_remove_control_packet_filter);
4321 	}
4322 
4323 	if (mac_addr)
4324 		ether_addr_copy(cmd->mac, mac_addr);
4325 
4326 	cmd->etype = cpu_to_le16(ethtype);
4327 	cmd->flags = cpu_to_le16(flags);
4328 	cmd->seid = cpu_to_le16(vsi_seid);
4329 
4330 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4331 
4332 	if (!status && stats) {
4333 		stats->mac_etype_used = le16_to_cpu(resp->mac_etype_used);
4334 		stats->etype_used = le16_to_cpu(resp->etype_used);
4335 		stats->mac_etype_free = le16_to_cpu(resp->mac_etype_free);
4336 		stats->etype_free = le16_to_cpu(resp->etype_free);
4337 	}
4338 
4339 	return status;
4340 }
4341 
4342 /**
4343  * i40e_add_filter_to_drop_tx_flow_control_frames- filter to drop flow control
4344  * @hw: pointer to the hw struct
4345  * @seid: VSI seid to add ethertype filter from
4346  **/
4347 void i40e_add_filter_to_drop_tx_flow_control_frames(struct i40e_hw *hw,
4348 						    u16 seid)
4349 {
4350 #define I40E_FLOW_CONTROL_ETHTYPE 0x8808
4351 	u16 flag = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC |
4352 		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP |
4353 		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX;
4354 	u16 ethtype = I40E_FLOW_CONTROL_ETHTYPE;
4355 	int status;
4356 
4357 	status = i40e_aq_add_rem_control_packet_filter(hw, NULL, ethtype, flag,
4358 						       seid, 0, true, NULL,
4359 						       NULL);
4360 	if (status)
4361 		hw_dbg(hw, "Ethtype Filter Add failed: Error pruning Tx flow control frames\n");
4362 }
4363 
4364 /**
4365  * i40e_aq_alternate_read
4366  * @hw: pointer to the hardware structure
4367  * @reg_addr0: address of first dword to be read
4368  * @reg_val0: pointer for data read from 'reg_addr0'
4369  * @reg_addr1: address of second dword to be read
4370  * @reg_val1: pointer for data read from 'reg_addr1'
4371  *
4372  * Read one or two dwords from alternate structure. Fields are indicated
4373  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
4374  * is not passed then only register at 'reg_addr0' is read.
4375  *
4376  **/
4377 static int i40e_aq_alternate_read(struct i40e_hw *hw,
4378 				  u32 reg_addr0, u32 *reg_val0,
4379 				  u32 reg_addr1, u32 *reg_val1)
4380 {
4381 	struct i40e_aq_desc desc;
4382 	struct i40e_aqc_alternate_write *cmd_resp =
4383 		(struct i40e_aqc_alternate_write *)&desc.params.raw;
4384 	int status;
4385 
4386 	if (!reg_val0)
4387 		return -EINVAL;
4388 
4389 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_alternate_read);
4390 	cmd_resp->address0 = cpu_to_le32(reg_addr0);
4391 	cmd_resp->address1 = cpu_to_le32(reg_addr1);
4392 
4393 	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
4394 
4395 	if (!status) {
4396 		*reg_val0 = le32_to_cpu(cmd_resp->data0);
4397 
4398 		if (reg_val1)
4399 			*reg_val1 = le32_to_cpu(cmd_resp->data1);
4400 	}
4401 
4402 	return status;
4403 }
4404 
4405 /**
4406  * i40e_aq_suspend_port_tx
4407  * @hw: pointer to the hardware structure
4408  * @seid: port seid
4409  * @cmd_details: pointer to command details structure or NULL
4410  *
4411  * Suspend port's Tx traffic
4412  **/
4413 int i40e_aq_suspend_port_tx(struct i40e_hw *hw, u16 seid,
4414 			    struct i40e_asq_cmd_details *cmd_details)
4415 {
4416 	struct i40e_aqc_tx_sched_ind *cmd;
4417 	struct i40e_aq_desc desc;
4418 	int status;
4419 
4420 	cmd = (struct i40e_aqc_tx_sched_ind *)&desc.params.raw;
4421 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_suspend_port_tx);
4422 	cmd->vsi_seid = cpu_to_le16(seid);
4423 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4424 
4425 	return status;
4426 }
4427 
4428 /**
4429  * i40e_aq_resume_port_tx
4430  * @hw: pointer to the hardware structure
4431  * @cmd_details: pointer to command details structure or NULL
4432  *
4433  * Resume port's Tx traffic
4434  **/
4435 int i40e_aq_resume_port_tx(struct i40e_hw *hw,
4436 			   struct i40e_asq_cmd_details *cmd_details)
4437 {
4438 	struct i40e_aq_desc desc;
4439 	int status;
4440 
4441 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_resume_port_tx);
4442 
4443 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4444 
4445 	return status;
4446 }
4447 
4448 /**
4449  * i40e_set_pci_config_data - store PCI bus info
4450  * @hw: pointer to hardware structure
4451  * @link_status: the link status word from PCI config space
4452  *
4453  * Stores the PCI bus info (speed, width, type) within the i40e_hw structure
4454  **/
4455 void i40e_set_pci_config_data(struct i40e_hw *hw, u16 link_status)
4456 {
4457 	hw->bus.type = i40e_bus_type_pci_express;
4458 
4459 	switch (link_status & PCI_EXP_LNKSTA_NLW) {
4460 	case PCI_EXP_LNKSTA_NLW_X1:
4461 		hw->bus.width = i40e_bus_width_pcie_x1;
4462 		break;
4463 	case PCI_EXP_LNKSTA_NLW_X2:
4464 		hw->bus.width = i40e_bus_width_pcie_x2;
4465 		break;
4466 	case PCI_EXP_LNKSTA_NLW_X4:
4467 		hw->bus.width = i40e_bus_width_pcie_x4;
4468 		break;
4469 	case PCI_EXP_LNKSTA_NLW_X8:
4470 		hw->bus.width = i40e_bus_width_pcie_x8;
4471 		break;
4472 	default:
4473 		hw->bus.width = i40e_bus_width_unknown;
4474 		break;
4475 	}
4476 
4477 	switch (link_status & PCI_EXP_LNKSTA_CLS) {
4478 	case PCI_EXP_LNKSTA_CLS_2_5GB:
4479 		hw->bus.speed = i40e_bus_speed_2500;
4480 		break;
4481 	case PCI_EXP_LNKSTA_CLS_5_0GB:
4482 		hw->bus.speed = i40e_bus_speed_5000;
4483 		break;
4484 	case PCI_EXP_LNKSTA_CLS_8_0GB:
4485 		hw->bus.speed = i40e_bus_speed_8000;
4486 		break;
4487 	default:
4488 		hw->bus.speed = i40e_bus_speed_unknown;
4489 		break;
4490 	}
4491 }
4492 
4493 /**
4494  * i40e_aq_debug_dump
4495  * @hw: pointer to the hardware structure
4496  * @cluster_id: specific cluster to dump
4497  * @table_id: table id within cluster
4498  * @start_index: index of line in the block to read
4499  * @buff_size: dump buffer size
4500  * @buff: dump buffer
4501  * @ret_buff_size: actual buffer size returned
4502  * @ret_next_table: next block to read
4503  * @ret_next_index: next index to read
4504  * @cmd_details: pointer to command details structure or NULL
4505  *
4506  * Dump internal FW/HW data for debug purposes.
4507  *
4508  **/
4509 int i40e_aq_debug_dump(struct i40e_hw *hw, u8 cluster_id,
4510 		       u8 table_id, u32 start_index, u16 buff_size,
4511 		       void *buff, u16 *ret_buff_size,
4512 		       u8 *ret_next_table, u32 *ret_next_index,
4513 		       struct i40e_asq_cmd_details *cmd_details)
4514 {
4515 	struct i40e_aq_desc desc;
4516 	struct i40e_aqc_debug_dump_internals *cmd =
4517 		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4518 	struct i40e_aqc_debug_dump_internals *resp =
4519 		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4520 	int status;
4521 
4522 	if (buff_size == 0 || !buff)
4523 		return -EINVAL;
4524 
4525 	i40e_fill_default_direct_cmd_desc(&desc,
4526 					  i40e_aqc_opc_debug_dump_internals);
4527 	/* Indirect Command */
4528 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4529 	if (buff_size > I40E_AQ_LARGE_BUF)
4530 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4531 
4532 	cmd->cluster_id = cluster_id;
4533 	cmd->table_id = table_id;
4534 	cmd->idx = cpu_to_le32(start_index);
4535 
4536 	desc.datalen = cpu_to_le16(buff_size);
4537 
4538 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
4539 	if (!status) {
4540 		if (ret_buff_size)
4541 			*ret_buff_size = le16_to_cpu(desc.datalen);
4542 		if (ret_next_table)
4543 			*ret_next_table = resp->table_id;
4544 		if (ret_next_index)
4545 			*ret_next_index = le32_to_cpu(resp->idx);
4546 	}
4547 
4548 	return status;
4549 }
4550 
4551 /**
4552  * i40e_read_bw_from_alt_ram
4553  * @hw: pointer to the hardware structure
4554  * @max_bw: pointer for max_bw read
4555  * @min_bw: pointer for min_bw read
4556  * @min_valid: pointer for bool that is true if min_bw is a valid value
4557  * @max_valid: pointer for bool that is true if max_bw is a valid value
4558  *
4559  * Read bw from the alternate ram for the given pf
4560  **/
4561 int i40e_read_bw_from_alt_ram(struct i40e_hw *hw,
4562 			      u32 *max_bw, u32 *min_bw,
4563 			      bool *min_valid, bool *max_valid)
4564 {
4565 	u32 max_bw_addr, min_bw_addr;
4566 	int status;
4567 
4568 	/* Calculate the address of the min/max bw registers */
4569 	max_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4570 		      I40E_ALT_STRUCT_MAX_BW_OFFSET +
4571 		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4572 	min_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4573 		      I40E_ALT_STRUCT_MIN_BW_OFFSET +
4574 		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4575 
4576 	/* Read the bandwidths from alt ram */
4577 	status = i40e_aq_alternate_read(hw, max_bw_addr, max_bw,
4578 					min_bw_addr, min_bw);
4579 
4580 	if (*min_bw & I40E_ALT_BW_VALID_MASK)
4581 		*min_valid = true;
4582 	else
4583 		*min_valid = false;
4584 
4585 	if (*max_bw & I40E_ALT_BW_VALID_MASK)
4586 		*max_valid = true;
4587 	else
4588 		*max_valid = false;
4589 
4590 	return status;
4591 }
4592 
4593 /**
4594  * i40e_aq_configure_partition_bw
4595  * @hw: pointer to the hardware structure
4596  * @bw_data: Buffer holding valid pfs and bw limits
4597  * @cmd_details: pointer to command details
4598  *
4599  * Configure partitions guaranteed/max bw
4600  **/
4601 int
4602 i40e_aq_configure_partition_bw(struct i40e_hw *hw,
4603 			       struct i40e_aqc_configure_partition_bw_data *bw_data,
4604 			       struct i40e_asq_cmd_details *cmd_details)
4605 {
4606 	u16 bwd_size = sizeof(*bw_data);
4607 	struct i40e_aq_desc desc;
4608 	int status;
4609 
4610 	i40e_fill_default_direct_cmd_desc(&desc,
4611 					  i40e_aqc_opc_configure_partition_bw);
4612 
4613 	/* Indirect command */
4614 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4615 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
4616 
4617 	if (bwd_size > I40E_AQ_LARGE_BUF)
4618 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4619 
4620 	desc.datalen = cpu_to_le16(bwd_size);
4621 
4622 	status = i40e_asq_send_command(hw, &desc, bw_data, bwd_size,
4623 				       cmd_details);
4624 
4625 	return status;
4626 }
4627 
4628 /**
4629  * i40e_read_phy_register_clause22
4630  * @hw: pointer to the HW structure
4631  * @reg: register address in the page
4632  * @phy_addr: PHY address on MDIO interface
4633  * @value: PHY register value
4634  *
4635  * Reads specified PHY register value
4636  **/
4637 int i40e_read_phy_register_clause22(struct i40e_hw *hw,
4638 				    u16 reg, u8 phy_addr, u16 *value)
4639 {
4640 	u8 port_num = (u8)hw->func_caps.mdio_port_num;
4641 	int status = -EIO;
4642 	u32 command = 0;
4643 	u16 retry = 1000;
4644 
4645 	command = (reg << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4646 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4647 		  (I40E_MDIO_CLAUSE22_OPCODE_READ_MASK) |
4648 		  (I40E_MDIO_CLAUSE22_STCODE_MASK) |
4649 		  (I40E_GLGEN_MSCA_MDICMD_MASK);
4650 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4651 	do {
4652 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4653 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4654 			status = 0;
4655 			break;
4656 		}
4657 		udelay(10);
4658 		retry--;
4659 	} while (retry);
4660 
4661 	if (status) {
4662 		i40e_debug(hw, I40E_DEBUG_PHY,
4663 			   "PHY: Can't write command to external PHY.\n");
4664 	} else {
4665 		command = rd32(hw, I40E_GLGEN_MSRWD(port_num));
4666 		*value = (command & I40E_GLGEN_MSRWD_MDIRDDATA_MASK) >>
4667 			 I40E_GLGEN_MSRWD_MDIRDDATA_SHIFT;
4668 	}
4669 
4670 	return status;
4671 }
4672 
4673 /**
4674  * i40e_write_phy_register_clause22
4675  * @hw: pointer to the HW structure
4676  * @reg: register address in the page
4677  * @phy_addr: PHY address on MDIO interface
4678  * @value: PHY register value
4679  *
4680  * Writes specified PHY register value
4681  **/
4682 int i40e_write_phy_register_clause22(struct i40e_hw *hw,
4683 				     u16 reg, u8 phy_addr, u16 value)
4684 {
4685 	u8 port_num = (u8)hw->func_caps.mdio_port_num;
4686 	int status = -EIO;
4687 	u32 command  = 0;
4688 	u16 retry = 1000;
4689 
4690 	command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT;
4691 	wr32(hw, I40E_GLGEN_MSRWD(port_num), command);
4692 
4693 	command = (reg << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4694 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4695 		  (I40E_MDIO_CLAUSE22_OPCODE_WRITE_MASK) |
4696 		  (I40E_MDIO_CLAUSE22_STCODE_MASK) |
4697 		  (I40E_GLGEN_MSCA_MDICMD_MASK);
4698 
4699 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4700 	do {
4701 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4702 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4703 			status = 0;
4704 			break;
4705 		}
4706 		udelay(10);
4707 		retry--;
4708 	} while (retry);
4709 
4710 	return status;
4711 }
4712 
4713 /**
4714  * i40e_read_phy_register_clause45
4715  * @hw: pointer to the HW structure
4716  * @page: registers page number
4717  * @reg: register address in the page
4718  * @phy_addr: PHY address on MDIO interface
4719  * @value: PHY register value
4720  *
4721  * Reads specified PHY register value
4722  **/
4723 int i40e_read_phy_register_clause45(struct i40e_hw *hw,
4724 				    u8 page, u16 reg, u8 phy_addr, u16 *value)
4725 {
4726 	u8 port_num = hw->func_caps.mdio_port_num;
4727 	int status = -EIO;
4728 	u32 command = 0;
4729 	u16 retry = 1000;
4730 
4731 	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4732 		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4733 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4734 		  (I40E_MDIO_CLAUSE45_OPCODE_ADDRESS_MASK) |
4735 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4736 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4737 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4738 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4739 	do {
4740 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4741 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4742 			status = 0;
4743 			break;
4744 		}
4745 		usleep_range(10, 20);
4746 		retry--;
4747 	} while (retry);
4748 
4749 	if (status) {
4750 		i40e_debug(hw, I40E_DEBUG_PHY,
4751 			   "PHY: Can't write command to external PHY.\n");
4752 		goto phy_read_end;
4753 	}
4754 
4755 	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4756 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4757 		  (I40E_MDIO_CLAUSE45_OPCODE_READ_MASK) |
4758 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4759 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4760 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4761 	status = -EIO;
4762 	retry = 1000;
4763 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4764 	do {
4765 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4766 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4767 			status = 0;
4768 			break;
4769 		}
4770 		usleep_range(10, 20);
4771 		retry--;
4772 	} while (retry);
4773 
4774 	if (!status) {
4775 		command = rd32(hw, I40E_GLGEN_MSRWD(port_num));
4776 		*value = (command & I40E_GLGEN_MSRWD_MDIRDDATA_MASK) >>
4777 			 I40E_GLGEN_MSRWD_MDIRDDATA_SHIFT;
4778 	} else {
4779 		i40e_debug(hw, I40E_DEBUG_PHY,
4780 			   "PHY: Can't read register value from external PHY.\n");
4781 	}
4782 
4783 phy_read_end:
4784 	return status;
4785 }
4786 
4787 /**
4788  * i40e_write_phy_register_clause45
4789  * @hw: pointer to the HW structure
4790  * @page: registers page number
4791  * @reg: register address in the page
4792  * @phy_addr: PHY address on MDIO interface
4793  * @value: PHY register value
4794  *
4795  * Writes value to specified PHY register
4796  **/
4797 int i40e_write_phy_register_clause45(struct i40e_hw *hw,
4798 				     u8 page, u16 reg, u8 phy_addr, u16 value)
4799 {
4800 	u8 port_num = hw->func_caps.mdio_port_num;
4801 	int status = -EIO;
4802 	u16 retry = 1000;
4803 	u32 command = 0;
4804 
4805 	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4806 		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4807 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4808 		  (I40E_MDIO_CLAUSE45_OPCODE_ADDRESS_MASK) |
4809 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4810 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4811 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4812 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4813 	do {
4814 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4815 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4816 			status = 0;
4817 			break;
4818 		}
4819 		usleep_range(10, 20);
4820 		retry--;
4821 	} while (retry);
4822 	if (status) {
4823 		i40e_debug(hw, I40E_DEBUG_PHY,
4824 			   "PHY: Can't write command to external PHY.\n");
4825 		goto phy_write_end;
4826 	}
4827 
4828 	command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT;
4829 	wr32(hw, I40E_GLGEN_MSRWD(port_num), command);
4830 
4831 	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4832 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4833 		  (I40E_MDIO_CLAUSE45_OPCODE_WRITE_MASK) |
4834 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4835 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4836 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4837 	status = -EIO;
4838 	retry = 1000;
4839 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4840 	do {
4841 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4842 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4843 			status = 0;
4844 			break;
4845 		}
4846 		usleep_range(10, 20);
4847 		retry--;
4848 	} while (retry);
4849 
4850 phy_write_end:
4851 	return status;
4852 }
4853 
4854 /**
4855  * i40e_write_phy_register
4856  * @hw: pointer to the HW structure
4857  * @page: registers page number
4858  * @reg: register address in the page
4859  * @phy_addr: PHY address on MDIO interface
4860  * @value: PHY register value
4861  *
4862  * Writes value to specified PHY register
4863  **/
4864 int i40e_write_phy_register(struct i40e_hw *hw,
4865 			    u8 page, u16 reg, u8 phy_addr, u16 value)
4866 {
4867 	int status;
4868 
4869 	switch (hw->device_id) {
4870 	case I40E_DEV_ID_1G_BASE_T_X722:
4871 		status = i40e_write_phy_register_clause22(hw, reg, phy_addr,
4872 							  value);
4873 		break;
4874 	case I40E_DEV_ID_1G_BASE_T_BC:
4875 	case I40E_DEV_ID_5G_BASE_T_BC:
4876 	case I40E_DEV_ID_10G_BASE_T:
4877 	case I40E_DEV_ID_10G_BASE_T4:
4878 	case I40E_DEV_ID_10G_BASE_T_BC:
4879 	case I40E_DEV_ID_10G_BASE_T_X722:
4880 	case I40E_DEV_ID_25G_B:
4881 	case I40E_DEV_ID_25G_SFP28:
4882 		status = i40e_write_phy_register_clause45(hw, page, reg,
4883 							  phy_addr, value);
4884 		break;
4885 	default:
4886 		status = -EIO;
4887 		break;
4888 	}
4889 
4890 	return status;
4891 }
4892 
4893 /**
4894  * i40e_read_phy_register
4895  * @hw: pointer to the HW structure
4896  * @page: registers page number
4897  * @reg: register address in the page
4898  * @phy_addr: PHY address on MDIO interface
4899  * @value: PHY register value
4900  *
4901  * Reads specified PHY register value
4902  **/
4903 int i40e_read_phy_register(struct i40e_hw *hw,
4904 			   u8 page, u16 reg, u8 phy_addr, u16 *value)
4905 {
4906 	int status;
4907 
4908 	switch (hw->device_id) {
4909 	case I40E_DEV_ID_1G_BASE_T_X722:
4910 		status = i40e_read_phy_register_clause22(hw, reg, phy_addr,
4911 							 value);
4912 		break;
4913 	case I40E_DEV_ID_1G_BASE_T_BC:
4914 	case I40E_DEV_ID_5G_BASE_T_BC:
4915 	case I40E_DEV_ID_10G_BASE_T:
4916 	case I40E_DEV_ID_10G_BASE_T4:
4917 	case I40E_DEV_ID_10G_BASE_T_BC:
4918 	case I40E_DEV_ID_10G_BASE_T_X722:
4919 	case I40E_DEV_ID_25G_B:
4920 	case I40E_DEV_ID_25G_SFP28:
4921 		status = i40e_read_phy_register_clause45(hw, page, reg,
4922 							 phy_addr, value);
4923 		break;
4924 	default:
4925 		status = -EIO;
4926 		break;
4927 	}
4928 
4929 	return status;
4930 }
4931 
4932 /**
4933  * i40e_get_phy_address
4934  * @hw: pointer to the HW structure
4935  * @dev_num: PHY port num that address we want
4936  *
4937  * Gets PHY address for current port
4938  **/
4939 u8 i40e_get_phy_address(struct i40e_hw *hw, u8 dev_num)
4940 {
4941 	u8 port_num = hw->func_caps.mdio_port_num;
4942 	u32 reg_val = rd32(hw, I40E_GLGEN_MDIO_I2C_SEL(port_num));
4943 
4944 	return (u8)(reg_val >> ((dev_num + 1) * 5)) & 0x1f;
4945 }
4946 
4947 /**
4948  * i40e_blink_phy_link_led
4949  * @hw: pointer to the HW structure
4950  * @time: time how long led will blinks in secs
4951  * @interval: gap between LED on and off in msecs
4952  *
4953  * Blinks PHY link LED
4954  **/
4955 int i40e_blink_phy_link_led(struct i40e_hw *hw,
4956 			    u32 time, u32 interval)
4957 {
4958 	u16 led_addr = I40E_PHY_LED_PROV_REG_1;
4959 	u16 gpio_led_port;
4960 	u8 phy_addr = 0;
4961 	int status = 0;
4962 	u16 led_ctl;
4963 	u8 port_num;
4964 	u16 led_reg;
4965 	u32 i;
4966 
4967 	i = rd32(hw, I40E_PFGEN_PORTNUM);
4968 	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
4969 	phy_addr = i40e_get_phy_address(hw, port_num);
4970 
4971 	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
4972 	     led_addr++) {
4973 		status = i40e_read_phy_register_clause45(hw,
4974 							 I40E_PHY_COM_REG_PAGE,
4975 							 led_addr, phy_addr,
4976 							 &led_reg);
4977 		if (status)
4978 			goto phy_blinking_end;
4979 		led_ctl = led_reg;
4980 		if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
4981 			led_reg = 0;
4982 			status = i40e_write_phy_register_clause45(hw,
4983 							 I40E_PHY_COM_REG_PAGE,
4984 							 led_addr, phy_addr,
4985 							 led_reg);
4986 			if (status)
4987 				goto phy_blinking_end;
4988 			break;
4989 		}
4990 	}
4991 
4992 	if (time > 0 && interval > 0) {
4993 		for (i = 0; i < time * 1000; i += interval) {
4994 			status = i40e_read_phy_register_clause45(hw,
4995 						I40E_PHY_COM_REG_PAGE,
4996 						led_addr, phy_addr, &led_reg);
4997 			if (status)
4998 				goto restore_config;
4999 			if (led_reg & I40E_PHY_LED_MANUAL_ON)
5000 				led_reg = 0;
5001 			else
5002 				led_reg = I40E_PHY_LED_MANUAL_ON;
5003 			status = i40e_write_phy_register_clause45(hw,
5004 						I40E_PHY_COM_REG_PAGE,
5005 						led_addr, phy_addr, led_reg);
5006 			if (status)
5007 				goto restore_config;
5008 			msleep(interval);
5009 		}
5010 	}
5011 
5012 restore_config:
5013 	status = i40e_write_phy_register_clause45(hw,
5014 						  I40E_PHY_COM_REG_PAGE,
5015 						  led_addr, phy_addr, led_ctl);
5016 
5017 phy_blinking_end:
5018 	return status;
5019 }
5020 
5021 /**
5022  * i40e_led_get_reg - read LED register
5023  * @hw: pointer to the HW structure
5024  * @led_addr: LED register address
5025  * @reg_val: read register value
5026  **/
5027 static int i40e_led_get_reg(struct i40e_hw *hw, u16 led_addr,
5028 			    u32 *reg_val)
5029 {
5030 	u8 phy_addr = 0;
5031 	u8 port_num;
5032 	int status;
5033 	u32 i;
5034 
5035 	*reg_val = 0;
5036 	if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE) {
5037 		status =
5038 		       i40e_aq_get_phy_register(hw,
5039 						I40E_AQ_PHY_REG_ACCESS_EXTERNAL,
5040 						I40E_PHY_COM_REG_PAGE, true,
5041 						I40E_PHY_LED_PROV_REG_1,
5042 						reg_val, NULL);
5043 	} else {
5044 		i = rd32(hw, I40E_PFGEN_PORTNUM);
5045 		port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
5046 		phy_addr = i40e_get_phy_address(hw, port_num);
5047 		status = i40e_read_phy_register_clause45(hw,
5048 							 I40E_PHY_COM_REG_PAGE,
5049 							 led_addr, phy_addr,
5050 							 (u16 *)reg_val);
5051 	}
5052 	return status;
5053 }
5054 
5055 /**
5056  * i40e_led_set_reg - write LED register
5057  * @hw: pointer to the HW structure
5058  * @led_addr: LED register address
5059  * @reg_val: register value to write
5060  **/
5061 static int i40e_led_set_reg(struct i40e_hw *hw, u16 led_addr,
5062 			    u32 reg_val)
5063 {
5064 	u8 phy_addr = 0;
5065 	u8 port_num;
5066 	int status;
5067 	u32 i;
5068 
5069 	if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE) {
5070 		status =
5071 		       i40e_aq_set_phy_register(hw,
5072 						I40E_AQ_PHY_REG_ACCESS_EXTERNAL,
5073 						I40E_PHY_COM_REG_PAGE, true,
5074 						I40E_PHY_LED_PROV_REG_1,
5075 						reg_val, NULL);
5076 	} else {
5077 		i = rd32(hw, I40E_PFGEN_PORTNUM);
5078 		port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
5079 		phy_addr = i40e_get_phy_address(hw, port_num);
5080 		status = i40e_write_phy_register_clause45(hw,
5081 							  I40E_PHY_COM_REG_PAGE,
5082 							  led_addr, phy_addr,
5083 							  (u16)reg_val);
5084 	}
5085 
5086 	return status;
5087 }
5088 
5089 /**
5090  * i40e_led_get_phy - return current on/off mode
5091  * @hw: pointer to the hw struct
5092  * @led_addr: address of led register to use
5093  * @val: original value of register to use
5094  *
5095  **/
5096 int i40e_led_get_phy(struct i40e_hw *hw, u16 *led_addr,
5097 		     u16 *val)
5098 {
5099 	u16 gpio_led_port;
5100 	u8 phy_addr = 0;
5101 	u32 reg_val_aq;
5102 	int status = 0;
5103 	u16 temp_addr;
5104 	u16 reg_val;
5105 	u8 port_num;
5106 	u32 i;
5107 
5108 	if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE) {
5109 		status =
5110 		      i40e_aq_get_phy_register(hw,
5111 					       I40E_AQ_PHY_REG_ACCESS_EXTERNAL,
5112 					       I40E_PHY_COM_REG_PAGE, true,
5113 					       I40E_PHY_LED_PROV_REG_1,
5114 					       &reg_val_aq, NULL);
5115 		if (status == 0)
5116 			*val = (u16)reg_val_aq;
5117 		return status;
5118 	}
5119 	temp_addr = I40E_PHY_LED_PROV_REG_1;
5120 	i = rd32(hw, I40E_PFGEN_PORTNUM);
5121 	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
5122 	phy_addr = i40e_get_phy_address(hw, port_num);
5123 
5124 	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
5125 	     temp_addr++) {
5126 		status = i40e_read_phy_register_clause45(hw,
5127 							 I40E_PHY_COM_REG_PAGE,
5128 							 temp_addr, phy_addr,
5129 							 &reg_val);
5130 		if (status)
5131 			return status;
5132 		*val = reg_val;
5133 		if (reg_val & I40E_PHY_LED_LINK_MODE_MASK) {
5134 			*led_addr = temp_addr;
5135 			break;
5136 		}
5137 	}
5138 	return status;
5139 }
5140 
5141 /**
5142  * i40e_led_set_phy
5143  * @hw: pointer to the HW structure
5144  * @on: true or false
5145  * @led_addr: address of led register to use
5146  * @mode: original val plus bit for set or ignore
5147  *
5148  * Set led's on or off when controlled by the PHY
5149  *
5150  **/
5151 int i40e_led_set_phy(struct i40e_hw *hw, bool on,
5152 		     u16 led_addr, u32 mode)
5153 {
5154 	u32 led_ctl = 0;
5155 	u32 led_reg = 0;
5156 	int status = 0;
5157 
5158 	status = i40e_led_get_reg(hw, led_addr, &led_reg);
5159 	if (status)
5160 		return status;
5161 	led_ctl = led_reg;
5162 	if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
5163 		led_reg = 0;
5164 		status = i40e_led_set_reg(hw, led_addr, led_reg);
5165 		if (status)
5166 			return status;
5167 	}
5168 	status = i40e_led_get_reg(hw, led_addr, &led_reg);
5169 	if (status)
5170 		goto restore_config;
5171 	if (on)
5172 		led_reg = I40E_PHY_LED_MANUAL_ON;
5173 	else
5174 		led_reg = 0;
5175 
5176 	status = i40e_led_set_reg(hw, led_addr, led_reg);
5177 	if (status)
5178 		goto restore_config;
5179 	if (mode & I40E_PHY_LED_MODE_ORIG) {
5180 		led_ctl = (mode & I40E_PHY_LED_MODE_MASK);
5181 		status = i40e_led_set_reg(hw, led_addr, led_ctl);
5182 	}
5183 	return status;
5184 
5185 restore_config:
5186 	status = i40e_led_set_reg(hw, led_addr, led_ctl);
5187 	return status;
5188 }
5189 
5190 /**
5191  * i40e_aq_rx_ctl_read_register - use FW to read from an Rx control register
5192  * @hw: pointer to the hw struct
5193  * @reg_addr: register address
5194  * @reg_val: ptr to register value
5195  * @cmd_details: pointer to command details structure or NULL
5196  *
5197  * Use the firmware to read the Rx control register,
5198  * especially useful if the Rx unit is under heavy pressure
5199  **/
5200 int i40e_aq_rx_ctl_read_register(struct i40e_hw *hw,
5201 				 u32 reg_addr, u32 *reg_val,
5202 				 struct i40e_asq_cmd_details *cmd_details)
5203 {
5204 	struct i40e_aq_desc desc;
5205 	struct i40e_aqc_rx_ctl_reg_read_write *cmd_resp =
5206 		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
5207 	int status;
5208 
5209 	if (!reg_val)
5210 		return -EINVAL;
5211 
5212 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_read);
5213 
5214 	cmd_resp->address = cpu_to_le32(reg_addr);
5215 
5216 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5217 
5218 	if (status == 0)
5219 		*reg_val = le32_to_cpu(cmd_resp->value);
5220 
5221 	return status;
5222 }
5223 
5224 /**
5225  * i40e_read_rx_ctl - read from an Rx control register
5226  * @hw: pointer to the hw struct
5227  * @reg_addr: register address
5228  **/
5229 u32 i40e_read_rx_ctl(struct i40e_hw *hw, u32 reg_addr)
5230 {
5231 	bool use_register;
5232 	int status = 0;
5233 	int retry = 5;
5234 	u32 val = 0;
5235 
5236 	use_register = (((hw->aq.api_maj_ver == 1) &&
5237 			(hw->aq.api_min_ver < 5)) ||
5238 			(hw->mac.type == I40E_MAC_X722));
5239 	if (!use_register) {
5240 do_retry:
5241 		status = i40e_aq_rx_ctl_read_register(hw, reg_addr, &val, NULL);
5242 		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
5243 			usleep_range(1000, 2000);
5244 			retry--;
5245 			goto do_retry;
5246 		}
5247 	}
5248 
5249 	/* if the AQ access failed, try the old-fashioned way */
5250 	if (status || use_register)
5251 		val = rd32(hw, reg_addr);
5252 
5253 	return val;
5254 }
5255 
5256 /**
5257  * i40e_aq_rx_ctl_write_register
5258  * @hw: pointer to the hw struct
5259  * @reg_addr: register address
5260  * @reg_val: register value
5261  * @cmd_details: pointer to command details structure or NULL
5262  *
5263  * Use the firmware to write to an Rx control register,
5264  * especially useful if the Rx unit is under heavy pressure
5265  **/
5266 int i40e_aq_rx_ctl_write_register(struct i40e_hw *hw,
5267 				  u32 reg_addr, u32 reg_val,
5268 				  struct i40e_asq_cmd_details *cmd_details)
5269 {
5270 	struct i40e_aq_desc desc;
5271 	struct i40e_aqc_rx_ctl_reg_read_write *cmd =
5272 		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
5273 	int status;
5274 
5275 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_write);
5276 
5277 	cmd->address = cpu_to_le32(reg_addr);
5278 	cmd->value = cpu_to_le32(reg_val);
5279 
5280 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5281 
5282 	return status;
5283 }
5284 
5285 /**
5286  * i40e_write_rx_ctl - write to an Rx control register
5287  * @hw: pointer to the hw struct
5288  * @reg_addr: register address
5289  * @reg_val: register value
5290  **/
5291 void i40e_write_rx_ctl(struct i40e_hw *hw, u32 reg_addr, u32 reg_val)
5292 {
5293 	bool use_register;
5294 	int status = 0;
5295 	int retry = 5;
5296 
5297 	use_register = (((hw->aq.api_maj_ver == 1) &&
5298 			(hw->aq.api_min_ver < 5)) ||
5299 			(hw->mac.type == I40E_MAC_X722));
5300 	if (!use_register) {
5301 do_retry:
5302 		status = i40e_aq_rx_ctl_write_register(hw, reg_addr,
5303 						       reg_val, NULL);
5304 		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
5305 			usleep_range(1000, 2000);
5306 			retry--;
5307 			goto do_retry;
5308 		}
5309 	}
5310 
5311 	/* if the AQ access failed, try the old-fashioned way */
5312 	if (status || use_register)
5313 		wr32(hw, reg_addr, reg_val);
5314 }
5315 
5316 /**
5317  * i40e_mdio_if_number_selection - MDIO I/F number selection
5318  * @hw: pointer to the hw struct
5319  * @set_mdio: use MDIO I/F number specified by mdio_num
5320  * @mdio_num: MDIO I/F number
5321  * @cmd: pointer to PHY Register command structure
5322  **/
5323 static void i40e_mdio_if_number_selection(struct i40e_hw *hw, bool set_mdio,
5324 					  u8 mdio_num,
5325 					  struct i40e_aqc_phy_register_access *cmd)
5326 {
5327 	if (set_mdio && cmd->phy_interface == I40E_AQ_PHY_REG_ACCESS_EXTERNAL) {
5328 		if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_EXTENDED)
5329 			cmd->cmd_flags |=
5330 				I40E_AQ_PHY_REG_ACCESS_SET_MDIO_IF_NUMBER |
5331 				((mdio_num <<
5332 				I40E_AQ_PHY_REG_ACCESS_MDIO_IF_NUMBER_SHIFT) &
5333 				I40E_AQ_PHY_REG_ACCESS_MDIO_IF_NUMBER_MASK);
5334 		else
5335 			i40e_debug(hw, I40E_DEBUG_PHY,
5336 				   "MDIO I/F number selection not supported by current FW version.\n");
5337 	}
5338 }
5339 
5340 /**
5341  * i40e_aq_set_phy_register_ext
5342  * @hw: pointer to the hw struct
5343  * @phy_select: select which phy should be accessed
5344  * @dev_addr: PHY device address
5345  * @page_change: flag to indicate if phy page should be updated
5346  * @set_mdio: use MDIO I/F number specified by mdio_num
5347  * @mdio_num: MDIO I/F number
5348  * @reg_addr: PHY register address
5349  * @reg_val: new register value
5350  * @cmd_details: pointer to command details structure or NULL
5351  *
5352  * Write the external PHY register.
5353  * NOTE: In common cases MDIO I/F number should not be changed, thats why you
5354  * may use simple wrapper i40e_aq_set_phy_register.
5355  **/
5356 int i40e_aq_set_phy_register_ext(struct i40e_hw *hw,
5357 				 u8 phy_select, u8 dev_addr, bool page_change,
5358 				 bool set_mdio, u8 mdio_num,
5359 				 u32 reg_addr, u32 reg_val,
5360 				 struct i40e_asq_cmd_details *cmd_details)
5361 {
5362 	struct i40e_aq_desc desc;
5363 	struct i40e_aqc_phy_register_access *cmd =
5364 		(struct i40e_aqc_phy_register_access *)&desc.params.raw;
5365 	int status;
5366 
5367 	i40e_fill_default_direct_cmd_desc(&desc,
5368 					  i40e_aqc_opc_set_phy_register);
5369 
5370 	cmd->phy_interface = phy_select;
5371 	cmd->dev_address = dev_addr;
5372 	cmd->reg_address = cpu_to_le32(reg_addr);
5373 	cmd->reg_value = cpu_to_le32(reg_val);
5374 
5375 	i40e_mdio_if_number_selection(hw, set_mdio, mdio_num, cmd);
5376 
5377 	if (!page_change)
5378 		cmd->cmd_flags = I40E_AQ_PHY_REG_ACCESS_DONT_CHANGE_QSFP_PAGE;
5379 
5380 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5381 
5382 	return status;
5383 }
5384 
5385 /**
5386  * i40e_aq_get_phy_register_ext
5387  * @hw: pointer to the hw struct
5388  * @phy_select: select which phy should be accessed
5389  * @dev_addr: PHY device address
5390  * @page_change: flag to indicate if phy page should be updated
5391  * @set_mdio: use MDIO I/F number specified by mdio_num
5392  * @mdio_num: MDIO I/F number
5393  * @reg_addr: PHY register address
5394  * @reg_val: read register value
5395  * @cmd_details: pointer to command details structure or NULL
5396  *
5397  * Read the external PHY register.
5398  * NOTE: In common cases MDIO I/F number should not be changed, thats why you
5399  * may use simple wrapper i40e_aq_get_phy_register.
5400  **/
5401 int i40e_aq_get_phy_register_ext(struct i40e_hw *hw,
5402 				 u8 phy_select, u8 dev_addr, bool page_change,
5403 				 bool set_mdio, u8 mdio_num,
5404 				 u32 reg_addr, u32 *reg_val,
5405 				 struct i40e_asq_cmd_details *cmd_details)
5406 {
5407 	struct i40e_aq_desc desc;
5408 	struct i40e_aqc_phy_register_access *cmd =
5409 		(struct i40e_aqc_phy_register_access *)&desc.params.raw;
5410 	int status;
5411 
5412 	i40e_fill_default_direct_cmd_desc(&desc,
5413 					  i40e_aqc_opc_get_phy_register);
5414 
5415 	cmd->phy_interface = phy_select;
5416 	cmd->dev_address = dev_addr;
5417 	cmd->reg_address = cpu_to_le32(reg_addr);
5418 
5419 	i40e_mdio_if_number_selection(hw, set_mdio, mdio_num, cmd);
5420 
5421 	if (!page_change)
5422 		cmd->cmd_flags = I40E_AQ_PHY_REG_ACCESS_DONT_CHANGE_QSFP_PAGE;
5423 
5424 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5425 	if (!status)
5426 		*reg_val = le32_to_cpu(cmd->reg_value);
5427 
5428 	return status;
5429 }
5430 
5431 /**
5432  * i40e_aq_write_ddp - Write dynamic device personalization (ddp)
5433  * @hw: pointer to the hw struct
5434  * @buff: command buffer (size in bytes = buff_size)
5435  * @buff_size: buffer size in bytes
5436  * @track_id: package tracking id
5437  * @error_offset: returns error offset
5438  * @error_info: returns error information
5439  * @cmd_details: pointer to command details structure or NULL
5440  **/
5441 int i40e_aq_write_ddp(struct i40e_hw *hw, void *buff,
5442 		      u16 buff_size, u32 track_id,
5443 		      u32 *error_offset, u32 *error_info,
5444 		      struct i40e_asq_cmd_details *cmd_details)
5445 {
5446 	struct i40e_aq_desc desc;
5447 	struct i40e_aqc_write_personalization_profile *cmd =
5448 		(struct i40e_aqc_write_personalization_profile *)
5449 		&desc.params.raw;
5450 	struct i40e_aqc_write_ddp_resp *resp;
5451 	int status;
5452 
5453 	i40e_fill_default_direct_cmd_desc(&desc,
5454 					  i40e_aqc_opc_write_personalization_profile);
5455 
5456 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD);
5457 	if (buff_size > I40E_AQ_LARGE_BUF)
5458 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
5459 
5460 	desc.datalen = cpu_to_le16(buff_size);
5461 
5462 	cmd->profile_track_id = cpu_to_le32(track_id);
5463 
5464 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
5465 	if (!status) {
5466 		resp = (struct i40e_aqc_write_ddp_resp *)&desc.params.raw;
5467 		if (error_offset)
5468 			*error_offset = le32_to_cpu(resp->error_offset);
5469 		if (error_info)
5470 			*error_info = le32_to_cpu(resp->error_info);
5471 	}
5472 
5473 	return status;
5474 }
5475 
5476 /**
5477  * i40e_aq_get_ddp_list - Read dynamic device personalization (ddp)
5478  * @hw: pointer to the hw struct
5479  * @buff: command buffer (size in bytes = buff_size)
5480  * @buff_size: buffer size in bytes
5481  * @flags: AdminQ command flags
5482  * @cmd_details: pointer to command details structure or NULL
5483  **/
5484 int i40e_aq_get_ddp_list(struct i40e_hw *hw, void *buff,
5485 			 u16 buff_size, u8 flags,
5486 			 struct i40e_asq_cmd_details *cmd_details)
5487 {
5488 	struct i40e_aq_desc desc;
5489 	struct i40e_aqc_get_applied_profiles *cmd =
5490 		(struct i40e_aqc_get_applied_profiles *)&desc.params.raw;
5491 	int status;
5492 
5493 	i40e_fill_default_direct_cmd_desc(&desc,
5494 					  i40e_aqc_opc_get_personalization_profile_list);
5495 
5496 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
5497 	if (buff_size > I40E_AQ_LARGE_BUF)
5498 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
5499 	desc.datalen = cpu_to_le16(buff_size);
5500 
5501 	cmd->flags = flags;
5502 
5503 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
5504 
5505 	return status;
5506 }
5507 
5508 /**
5509  * i40e_find_segment_in_package
5510  * @segment_type: the segment type to search for (i.e., SEGMENT_TYPE_I40E)
5511  * @pkg_hdr: pointer to the package header to be searched
5512  *
5513  * This function searches a package file for a particular segment type. On
5514  * success it returns a pointer to the segment header, otherwise it will
5515  * return NULL.
5516  **/
5517 struct i40e_generic_seg_header *
5518 i40e_find_segment_in_package(u32 segment_type,
5519 			     struct i40e_package_header *pkg_hdr)
5520 {
5521 	struct i40e_generic_seg_header *segment;
5522 	u32 i;
5523 
5524 	/* Search all package segments for the requested segment type */
5525 	for (i = 0; i < pkg_hdr->segment_count; i++) {
5526 		segment =
5527 			(struct i40e_generic_seg_header *)((u8 *)pkg_hdr +
5528 			 pkg_hdr->segment_offset[i]);
5529 
5530 		if (segment->type == segment_type)
5531 			return segment;
5532 	}
5533 
5534 	return NULL;
5535 }
5536 
5537 /* Get section table in profile */
5538 #define I40E_SECTION_TABLE(profile, sec_tbl)				\
5539 	do {								\
5540 		struct i40e_profile_segment *p = (profile);		\
5541 		u32 count;						\
5542 		u32 *nvm;						\
5543 		count = p->device_table_count;				\
5544 		nvm = (u32 *)&p->device_table[count];			\
5545 		sec_tbl = (struct i40e_section_table *)&nvm[nvm[0] + 1]; \
5546 	} while (0)
5547 
5548 /* Get section header in profile */
5549 #define I40E_SECTION_HEADER(profile, offset)				\
5550 	(struct i40e_profile_section_header *)((u8 *)(profile) + (offset))
5551 
5552 /**
5553  * i40e_find_section_in_profile
5554  * @section_type: the section type to search for (i.e., SECTION_TYPE_NOTE)
5555  * @profile: pointer to the i40e segment header to be searched
5556  *
5557  * This function searches i40e segment for a particular section type. On
5558  * success it returns a pointer to the section header, otherwise it will
5559  * return NULL.
5560  **/
5561 struct i40e_profile_section_header *
5562 i40e_find_section_in_profile(u32 section_type,
5563 			     struct i40e_profile_segment *profile)
5564 {
5565 	struct i40e_profile_section_header *sec;
5566 	struct i40e_section_table *sec_tbl;
5567 	u32 sec_off;
5568 	u32 i;
5569 
5570 	if (profile->header.type != SEGMENT_TYPE_I40E)
5571 		return NULL;
5572 
5573 	I40E_SECTION_TABLE(profile, sec_tbl);
5574 
5575 	for (i = 0; i < sec_tbl->section_count; i++) {
5576 		sec_off = sec_tbl->section_offset[i];
5577 		sec = I40E_SECTION_HEADER(profile, sec_off);
5578 		if (sec->section.type == section_type)
5579 			return sec;
5580 	}
5581 
5582 	return NULL;
5583 }
5584 
5585 /**
5586  * i40e_ddp_exec_aq_section - Execute generic AQ for DDP
5587  * @hw: pointer to the hw struct
5588  * @aq: command buffer containing all data to execute AQ
5589  **/
5590 static int i40e_ddp_exec_aq_section(struct i40e_hw *hw,
5591 				    struct i40e_profile_aq_section *aq)
5592 {
5593 	struct i40e_aq_desc desc;
5594 	u8 *msg = NULL;
5595 	u16 msglen;
5596 	int status;
5597 
5598 	i40e_fill_default_direct_cmd_desc(&desc, aq->opcode);
5599 	desc.flags |= cpu_to_le16(aq->flags);
5600 	memcpy(desc.params.raw, aq->param, sizeof(desc.params.raw));
5601 
5602 	msglen = aq->datalen;
5603 	if (msglen) {
5604 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
5605 						I40E_AQ_FLAG_RD));
5606 		if (msglen > I40E_AQ_LARGE_BUF)
5607 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
5608 		desc.datalen = cpu_to_le16(msglen);
5609 		msg = &aq->data[0];
5610 	}
5611 
5612 	status = i40e_asq_send_command(hw, &desc, msg, msglen, NULL);
5613 
5614 	if (status) {
5615 		i40e_debug(hw, I40E_DEBUG_PACKAGE,
5616 			   "unable to exec DDP AQ opcode %u, error %d\n",
5617 			   aq->opcode, status);
5618 		return status;
5619 	}
5620 
5621 	/* copy returned desc to aq_buf */
5622 	memcpy(aq->param, desc.params.raw, sizeof(desc.params.raw));
5623 
5624 	return 0;
5625 }
5626 
5627 /**
5628  * i40e_validate_profile
5629  * @hw: pointer to the hardware structure
5630  * @profile: pointer to the profile segment of the package to be validated
5631  * @track_id: package tracking id
5632  * @rollback: flag if the profile is for rollback.
5633  *
5634  * Validates supported devices and profile's sections.
5635  */
5636 static int
5637 i40e_validate_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile,
5638 		      u32 track_id, bool rollback)
5639 {
5640 	struct i40e_profile_section_header *sec = NULL;
5641 	struct i40e_section_table *sec_tbl;
5642 	u32 vendor_dev_id;
5643 	int status = 0;
5644 	u32 dev_cnt;
5645 	u32 sec_off;
5646 	u32 i;
5647 
5648 	if (track_id == I40E_DDP_TRACKID_INVALID) {
5649 		i40e_debug(hw, I40E_DEBUG_PACKAGE, "Invalid track_id\n");
5650 		return -EOPNOTSUPP;
5651 	}
5652 
5653 	dev_cnt = profile->device_table_count;
5654 	for (i = 0; i < dev_cnt; i++) {
5655 		vendor_dev_id = profile->device_table[i].vendor_dev_id;
5656 		if ((vendor_dev_id >> 16) == PCI_VENDOR_ID_INTEL &&
5657 		    hw->device_id == (vendor_dev_id & 0xFFFF))
5658 			break;
5659 	}
5660 	if (dev_cnt && i == dev_cnt) {
5661 		i40e_debug(hw, I40E_DEBUG_PACKAGE,
5662 			   "Device doesn't support DDP\n");
5663 		return -ENODEV;
5664 	}
5665 
5666 	I40E_SECTION_TABLE(profile, sec_tbl);
5667 
5668 	/* Validate sections types */
5669 	for (i = 0; i < sec_tbl->section_count; i++) {
5670 		sec_off = sec_tbl->section_offset[i];
5671 		sec = I40E_SECTION_HEADER(profile, sec_off);
5672 		if (rollback) {
5673 			if (sec->section.type == SECTION_TYPE_MMIO ||
5674 			    sec->section.type == SECTION_TYPE_AQ ||
5675 			    sec->section.type == SECTION_TYPE_RB_AQ) {
5676 				i40e_debug(hw, I40E_DEBUG_PACKAGE,
5677 					   "Not a roll-back package\n");
5678 				return -EOPNOTSUPP;
5679 			}
5680 		} else {
5681 			if (sec->section.type == SECTION_TYPE_RB_AQ ||
5682 			    sec->section.type == SECTION_TYPE_RB_MMIO) {
5683 				i40e_debug(hw, I40E_DEBUG_PACKAGE,
5684 					   "Not an original package\n");
5685 				return -EOPNOTSUPP;
5686 			}
5687 		}
5688 	}
5689 
5690 	return status;
5691 }
5692 
5693 /**
5694  * i40e_write_profile
5695  * @hw: pointer to the hardware structure
5696  * @profile: pointer to the profile segment of the package to be downloaded
5697  * @track_id: package tracking id
5698  *
5699  * Handles the download of a complete package.
5700  */
5701 int
5702 i40e_write_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile,
5703 		   u32 track_id)
5704 {
5705 	struct i40e_profile_section_header *sec = NULL;
5706 	struct i40e_profile_aq_section *ddp_aq;
5707 	struct i40e_section_table *sec_tbl;
5708 	u32 offset = 0, info = 0;
5709 	u32 section_size = 0;
5710 	int status = 0;
5711 	u32 sec_off;
5712 	u32 i;
5713 
5714 	status = i40e_validate_profile(hw, profile, track_id, false);
5715 	if (status)
5716 		return status;
5717 
5718 	I40E_SECTION_TABLE(profile, sec_tbl);
5719 
5720 	for (i = 0; i < sec_tbl->section_count; i++) {
5721 		sec_off = sec_tbl->section_offset[i];
5722 		sec = I40E_SECTION_HEADER(profile, sec_off);
5723 		/* Process generic admin command */
5724 		if (sec->section.type == SECTION_TYPE_AQ) {
5725 			ddp_aq = (struct i40e_profile_aq_section *)&sec[1];
5726 			status = i40e_ddp_exec_aq_section(hw, ddp_aq);
5727 			if (status) {
5728 				i40e_debug(hw, I40E_DEBUG_PACKAGE,
5729 					   "Failed to execute aq: section %d, opcode %u\n",
5730 					   i, ddp_aq->opcode);
5731 				break;
5732 			}
5733 			sec->section.type = SECTION_TYPE_RB_AQ;
5734 		}
5735 
5736 		/* Skip any non-mmio sections */
5737 		if (sec->section.type != SECTION_TYPE_MMIO)
5738 			continue;
5739 
5740 		section_size = sec->section.size +
5741 			sizeof(struct i40e_profile_section_header);
5742 
5743 		/* Write MMIO section */
5744 		status = i40e_aq_write_ddp(hw, (void *)sec, (u16)section_size,
5745 					   track_id, &offset, &info, NULL);
5746 		if (status) {
5747 			i40e_debug(hw, I40E_DEBUG_PACKAGE,
5748 				   "Failed to write profile: section %d, offset %d, info %d\n",
5749 				   i, offset, info);
5750 			break;
5751 		}
5752 	}
5753 	return status;
5754 }
5755 
5756 /**
5757  * i40e_rollback_profile
5758  * @hw: pointer to the hardware structure
5759  * @profile: pointer to the profile segment of the package to be removed
5760  * @track_id: package tracking id
5761  *
5762  * Rolls back previously loaded package.
5763  */
5764 int
5765 i40e_rollback_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile,
5766 		      u32 track_id)
5767 {
5768 	struct i40e_profile_section_header *sec = NULL;
5769 	struct i40e_section_table *sec_tbl;
5770 	u32 offset = 0, info = 0;
5771 	u32 section_size = 0;
5772 	int status = 0;
5773 	u32 sec_off;
5774 	int i;
5775 
5776 	status = i40e_validate_profile(hw, profile, track_id, true);
5777 	if (status)
5778 		return status;
5779 
5780 	I40E_SECTION_TABLE(profile, sec_tbl);
5781 
5782 	/* For rollback write sections in reverse */
5783 	for (i = sec_tbl->section_count - 1; i >= 0; i--) {
5784 		sec_off = sec_tbl->section_offset[i];
5785 		sec = I40E_SECTION_HEADER(profile, sec_off);
5786 
5787 		/* Skip any non-rollback sections */
5788 		if (sec->section.type != SECTION_TYPE_RB_MMIO)
5789 			continue;
5790 
5791 		section_size = sec->section.size +
5792 			sizeof(struct i40e_profile_section_header);
5793 
5794 		/* Write roll-back MMIO section */
5795 		status = i40e_aq_write_ddp(hw, (void *)sec, (u16)section_size,
5796 					   track_id, &offset, &info, NULL);
5797 		if (status) {
5798 			i40e_debug(hw, I40E_DEBUG_PACKAGE,
5799 				   "Failed to write profile: section %d, offset %d, info %d\n",
5800 				   i, offset, info);
5801 			break;
5802 		}
5803 	}
5804 	return status;
5805 }
5806 
5807 /**
5808  * i40e_add_pinfo_to_list
5809  * @hw: pointer to the hardware structure
5810  * @profile: pointer to the profile segment of the package
5811  * @profile_info_sec: buffer for information section
5812  * @track_id: package tracking id
5813  *
5814  * Register a profile to the list of loaded profiles.
5815  */
5816 int
5817 i40e_add_pinfo_to_list(struct i40e_hw *hw,
5818 		       struct i40e_profile_segment *profile,
5819 		       u8 *profile_info_sec, u32 track_id)
5820 {
5821 	struct i40e_profile_section_header *sec = NULL;
5822 	struct i40e_profile_info *pinfo;
5823 	u32 offset = 0, info = 0;
5824 	int status = 0;
5825 
5826 	sec = (struct i40e_profile_section_header *)profile_info_sec;
5827 	sec->tbl_size = 1;
5828 	sec->data_end = sizeof(struct i40e_profile_section_header) +
5829 			sizeof(struct i40e_profile_info);
5830 	sec->section.type = SECTION_TYPE_INFO;
5831 	sec->section.offset = sizeof(struct i40e_profile_section_header);
5832 	sec->section.size = sizeof(struct i40e_profile_info);
5833 	pinfo = (struct i40e_profile_info *)(profile_info_sec +
5834 					     sec->section.offset);
5835 	pinfo->track_id = track_id;
5836 	pinfo->version = profile->version;
5837 	pinfo->op = I40E_DDP_ADD_TRACKID;
5838 	memcpy(pinfo->name, profile->name, I40E_DDP_NAME_SIZE);
5839 
5840 	status = i40e_aq_write_ddp(hw, (void *)sec, sec->data_end,
5841 				   track_id, &offset, &info, NULL);
5842 
5843 	return status;
5844 }
5845 
5846 /**
5847  * i40e_aq_add_cloud_filters
5848  * @hw: pointer to the hardware structure
5849  * @seid: VSI seid to add cloud filters from
5850  * @filters: Buffer which contains the filters to be added
5851  * @filter_count: number of filters contained in the buffer
5852  *
5853  * Set the cloud filters for a given VSI.  The contents of the
5854  * i40e_aqc_cloud_filters_element_data are filled in by the caller
5855  * of the function.
5856  *
5857  **/
5858 int
5859 i40e_aq_add_cloud_filters(struct i40e_hw *hw, u16 seid,
5860 			  struct i40e_aqc_cloud_filters_element_data *filters,
5861 			  u8 filter_count)
5862 {
5863 	struct i40e_aq_desc desc;
5864 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5865 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5866 	u16 buff_len;
5867 	int status;
5868 
5869 	i40e_fill_default_direct_cmd_desc(&desc,
5870 					  i40e_aqc_opc_add_cloud_filters);
5871 
5872 	buff_len = filter_count * sizeof(*filters);
5873 	desc.datalen = cpu_to_le16(buff_len);
5874 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5875 	cmd->num_filters = filter_count;
5876 	cmd->seid = cpu_to_le16(seid);
5877 
5878 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
5879 
5880 	return status;
5881 }
5882 
5883 /**
5884  * i40e_aq_add_cloud_filters_bb
5885  * @hw: pointer to the hardware structure
5886  * @seid: VSI seid to add cloud filters from
5887  * @filters: Buffer which contains the filters in big buffer to be added
5888  * @filter_count: number of filters contained in the buffer
5889  *
5890  * Set the big buffer cloud filters for a given VSI.  The contents of the
5891  * i40e_aqc_cloud_filters_element_bb are filled in by the caller of the
5892  * function.
5893  *
5894  **/
5895 int
5896 i40e_aq_add_cloud_filters_bb(struct i40e_hw *hw, u16 seid,
5897 			     struct i40e_aqc_cloud_filters_element_bb *filters,
5898 			     u8 filter_count)
5899 {
5900 	struct i40e_aq_desc desc;
5901 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5902 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5903 	u16 buff_len;
5904 	int status;
5905 	int i;
5906 
5907 	i40e_fill_default_direct_cmd_desc(&desc,
5908 					  i40e_aqc_opc_add_cloud_filters);
5909 
5910 	buff_len = filter_count * sizeof(*filters);
5911 	desc.datalen = cpu_to_le16(buff_len);
5912 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5913 	cmd->num_filters = filter_count;
5914 	cmd->seid = cpu_to_le16(seid);
5915 	cmd->big_buffer_flag = I40E_AQC_ADD_CLOUD_CMD_BB;
5916 
5917 	for (i = 0; i < filter_count; i++) {
5918 		u16 tnl_type;
5919 		u32 ti;
5920 
5921 		tnl_type = (le16_to_cpu(filters[i].element.flags) &
5922 			   I40E_AQC_ADD_CLOUD_TNL_TYPE_MASK) >>
5923 			   I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT;
5924 
5925 		/* Due to hardware eccentricities, the VNI for Geneve is shifted
5926 		 * one more byte further than normally used for Tenant ID in
5927 		 * other tunnel types.
5928 		 */
5929 		if (tnl_type == I40E_AQC_ADD_CLOUD_TNL_TYPE_GENEVE) {
5930 			ti = le32_to_cpu(filters[i].element.tenant_id);
5931 			filters[i].element.tenant_id = cpu_to_le32(ti << 8);
5932 		}
5933 	}
5934 
5935 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
5936 
5937 	return status;
5938 }
5939 
5940 /**
5941  * i40e_aq_rem_cloud_filters
5942  * @hw: pointer to the hardware structure
5943  * @seid: VSI seid to remove cloud filters from
5944  * @filters: Buffer which contains the filters to be removed
5945  * @filter_count: number of filters contained in the buffer
5946  *
5947  * Remove the cloud filters for a given VSI.  The contents of the
5948  * i40e_aqc_cloud_filters_element_data are filled in by the caller
5949  * of the function.
5950  *
5951  **/
5952 int
5953 i40e_aq_rem_cloud_filters(struct i40e_hw *hw, u16 seid,
5954 			  struct i40e_aqc_cloud_filters_element_data *filters,
5955 			  u8 filter_count)
5956 {
5957 	struct i40e_aq_desc desc;
5958 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5959 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5960 	u16 buff_len;
5961 	int status;
5962 
5963 	i40e_fill_default_direct_cmd_desc(&desc,
5964 					  i40e_aqc_opc_remove_cloud_filters);
5965 
5966 	buff_len = filter_count * sizeof(*filters);
5967 	desc.datalen = cpu_to_le16(buff_len);
5968 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5969 	cmd->num_filters = filter_count;
5970 	cmd->seid = cpu_to_le16(seid);
5971 
5972 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
5973 
5974 	return status;
5975 }
5976 
5977 /**
5978  * i40e_aq_rem_cloud_filters_bb
5979  * @hw: pointer to the hardware structure
5980  * @seid: VSI seid to remove cloud filters from
5981  * @filters: Buffer which contains the filters in big buffer to be removed
5982  * @filter_count: number of filters contained in the buffer
5983  *
5984  * Remove the big buffer cloud filters for a given VSI.  The contents of the
5985  * i40e_aqc_cloud_filters_element_bb are filled in by the caller of the
5986  * function.
5987  *
5988  **/
5989 int
5990 i40e_aq_rem_cloud_filters_bb(struct i40e_hw *hw, u16 seid,
5991 			     struct i40e_aqc_cloud_filters_element_bb *filters,
5992 			     u8 filter_count)
5993 {
5994 	struct i40e_aq_desc desc;
5995 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5996 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5997 	u16 buff_len;
5998 	int status;
5999 	int i;
6000 
6001 	i40e_fill_default_direct_cmd_desc(&desc,
6002 					  i40e_aqc_opc_remove_cloud_filters);
6003 
6004 	buff_len = filter_count * sizeof(*filters);
6005 	desc.datalen = cpu_to_le16(buff_len);
6006 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
6007 	cmd->num_filters = filter_count;
6008 	cmd->seid = cpu_to_le16(seid);
6009 	cmd->big_buffer_flag = I40E_AQC_ADD_CLOUD_CMD_BB;
6010 
6011 	for (i = 0; i < filter_count; i++) {
6012 		u16 tnl_type;
6013 		u32 ti;
6014 
6015 		tnl_type = (le16_to_cpu(filters[i].element.flags) &
6016 			   I40E_AQC_ADD_CLOUD_TNL_TYPE_MASK) >>
6017 			   I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT;
6018 
6019 		/* Due to hardware eccentricities, the VNI for Geneve is shifted
6020 		 * one more byte further than normally used for Tenant ID in
6021 		 * other tunnel types.
6022 		 */
6023 		if (tnl_type == I40E_AQC_ADD_CLOUD_TNL_TYPE_GENEVE) {
6024 			ti = le32_to_cpu(filters[i].element.tenant_id);
6025 			filters[i].element.tenant_id = cpu_to_le32(ti << 8);
6026 		}
6027 	}
6028 
6029 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
6030 
6031 	return status;
6032 }
6033