xref: /linux/drivers/net/ethernet/intel/fm10k/fm10k_pf.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /* Intel(R) Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2016 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include "fm10k_pf.h"
22 #include "fm10k_vf.h"
23 
24 /**
25  *  fm10k_reset_hw_pf - PF hardware reset
26  *  @hw: pointer to hardware structure
27  *
28  *  This function should return the hardware to a state similar to the
29  *  one it is in after being powered on.
30  **/
31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32 {
33 	s32 err;
34 	u32 reg;
35 	u16 i;
36 
37 	/* Disable interrupts */
38 	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39 
40 	/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43 
44 	/* We assume here Tx and Rx queue 0 are owned by the PF */
45 
46 	/* Shut off VF access to their queues forcing them to queue 0 */
47 	for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 	}
51 
52 	/* shut down all rings */
53 	err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 	if (err == FM10K_ERR_REQUESTS_PENDING) {
55 		hw->mac.reset_while_pending++;
56 		goto force_reset;
57 	} else if (err) {
58 		return err;
59 	}
60 
61 	/* Verify that DMA is no longer active */
62 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
63 	if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
64 		return FM10K_ERR_DMA_PENDING;
65 
66 force_reset:
67 	/* Inititate data path reset */
68 	reg = FM10K_DMA_CTRL_DATAPATH_RESET;
69 	fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70 
71 	/* Flush write and allow 100us for reset to complete */
72 	fm10k_write_flush(hw);
73 	udelay(FM10K_RESET_TIMEOUT);
74 
75 	/* Verify we made it out of reset */
76 	reg = fm10k_read_reg(hw, FM10K_IP);
77 	if (!(reg & FM10K_IP_NOTINRESET))
78 		return FM10K_ERR_RESET_FAILED;
79 
80 	return 0;
81 }
82 
83 /**
84  *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
85  *  @hw: pointer to hardware structure
86  *
87  *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
88  **/
89 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
90 {
91 	u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
92 
93 	return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
94 }
95 
96 /**
97  *  fm10k_init_hw_pf - PF hardware initialization
98  *  @hw: pointer to hardware structure
99  *
100  **/
101 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
102 {
103 	u32 dma_ctrl, txqctl;
104 	u16 i;
105 
106 	/* Establish default VSI as valid */
107 	fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
108 	fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
109 			FM10K_DGLORTMAP_ANY);
110 
111 	/* Invalidate all other GLORT entries */
112 	for (i = 1; i < FM10K_DGLORT_COUNT; i++)
113 		fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
114 
115 	/* reset ITR2(0) to point to itself */
116 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
117 
118 	/* reset VF ITR2(0) to point to 0 avoid PF registers */
119 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
120 
121 	/* loop through all PF ITR2 registers pointing them to the previous */
122 	for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
123 		fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
124 
125 	/* Enable interrupt moderator if not already enabled */
126 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
127 
128 	/* compute the default txqctl configuration */
129 	txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
130 		 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
131 
132 	for (i = 0; i < FM10K_MAX_QUEUES; i++) {
133 		/* configure rings for 256 Queue / 32 Descriptor cache mode */
134 		fm10k_write_reg(hw, FM10K_TQDLOC(i),
135 				(i * FM10K_TQDLOC_BASE_32_DESC) |
136 				FM10K_TQDLOC_SIZE_32_DESC);
137 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
138 
139 		/* configure rings to provide TPH processing hints */
140 		fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
141 				FM10K_TPH_TXCTRL_DESC_TPHEN |
142 				FM10K_TPH_TXCTRL_DESC_RROEN |
143 				FM10K_TPH_TXCTRL_DESC_WROEN |
144 				FM10K_TPH_TXCTRL_DATA_RROEN);
145 		fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
146 				FM10K_TPH_RXCTRL_DESC_TPHEN |
147 				FM10K_TPH_RXCTRL_DESC_RROEN |
148 				FM10K_TPH_RXCTRL_DATA_WROEN |
149 				FM10K_TPH_RXCTRL_HDR_WROEN);
150 	}
151 
152 	/* set max hold interval to align with 1.024 usec in all modes and
153 	 * store ITR scale
154 	 */
155 	switch (hw->bus.speed) {
156 	case fm10k_bus_speed_2500:
157 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
158 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
159 		break;
160 	case fm10k_bus_speed_5000:
161 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
162 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
163 		break;
164 	case fm10k_bus_speed_8000:
165 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
166 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
167 		break;
168 	default:
169 		dma_ctrl = 0;
170 		/* just in case, assume Gen3 ITR scale */
171 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
172 		break;
173 	}
174 
175 	/* Configure TSO flags */
176 	fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
177 	fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
178 
179 	/* Enable DMA engine
180 	 * Set Rx Descriptor size to 32
181 	 * Set Minimum MSS to 64
182 	 * Set Maximum number of Rx queues to 256 / 32 Descriptor
183 	 */
184 	dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
185 		    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
186 		    FM10K_DMA_CTRL_32_DESC;
187 
188 	fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
189 
190 	/* record maximum queue count, we limit ourselves to 128 */
191 	hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
192 
193 	/* We support either 64 VFs or 7 VFs depending on if we have ARI */
194 	hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
195 
196 	return 0;
197 }
198 
199 /**
200  *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
201  *  @hw: pointer to hardware structure
202  *  @vid: VLAN ID to add to table
203  *  @vsi: Index indicating VF ID or PF ID in table
204  *  @set: Indicates if this is a set or clear operation
205  *
206  *  This function adds or removes the corresponding VLAN ID from the VLAN
207  *  filter table for the corresponding function.  In addition to the
208  *  standard set/clear that supports one bit a multi-bit write is
209  *  supported to set 64 bits at a time.
210  **/
211 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
212 {
213 	u32 vlan_table, reg, mask, bit, len;
214 
215 	/* verify the VSI index is valid */
216 	if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
217 		return FM10K_ERR_PARAM;
218 
219 	/* VLAN multi-bit write:
220 	 * The multi-bit write has several parts to it.
221 	 *               24              16               8               0
222 	 *  7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
223 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
224 	 * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
225 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
226 	 *
227 	 * VLAN ID: Vlan Starting value
228 	 * RSVD0: Reserved section, must be 0
229 	 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
230 	 * Length: Number of times to repeat the bit being set
231 	 */
232 	len = vid >> 16;
233 	vid = (vid << 17) >> 17;
234 
235 	/* verify the reserved 0 fields are 0 */
236 	if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
237 		return FM10K_ERR_PARAM;
238 
239 	/* Loop through the table updating all required VLANs */
240 	for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
241 	     len < FM10K_VLAN_TABLE_VID_MAX;
242 	     len -= 32 - bit, reg++, bit = 0) {
243 		/* record the initial state of the register */
244 		vlan_table = fm10k_read_reg(hw, reg);
245 
246 		/* truncate mask if we are at the start or end of the run */
247 		mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
248 
249 		/* make necessary modifications to the register */
250 		mask &= set ? ~vlan_table : vlan_table;
251 		if (mask)
252 			fm10k_write_reg(hw, reg, vlan_table ^ mask);
253 	}
254 
255 	return 0;
256 }
257 
258 /**
259  *  fm10k_read_mac_addr_pf - Read device MAC address
260  *  @hw: pointer to the HW structure
261  *
262  *  Reads the device MAC address from the SM_AREA and stores the value.
263  **/
264 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
265 {
266 	u8 perm_addr[ETH_ALEN];
267 	u32 serial_num;
268 
269 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
270 
271 	/* last byte should be all 1's */
272 	if ((~serial_num) << 24)
273 		return  FM10K_ERR_INVALID_MAC_ADDR;
274 
275 	perm_addr[0] = (u8)(serial_num >> 24);
276 	perm_addr[1] = (u8)(serial_num >> 16);
277 	perm_addr[2] = (u8)(serial_num >> 8);
278 
279 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
280 
281 	/* first byte should be all 1's */
282 	if ((~serial_num) >> 24)
283 		return  FM10K_ERR_INVALID_MAC_ADDR;
284 
285 	perm_addr[3] = (u8)(serial_num >> 16);
286 	perm_addr[4] = (u8)(serial_num >> 8);
287 	perm_addr[5] = (u8)(serial_num);
288 
289 	ether_addr_copy(hw->mac.perm_addr, perm_addr);
290 	ether_addr_copy(hw->mac.addr, perm_addr);
291 
292 	return 0;
293 }
294 
295 /**
296  *  fm10k_glort_valid_pf - Validate that the provided glort is valid
297  *  @hw: pointer to the HW structure
298  *  @glort: base glort to be validated
299  *
300  *  This function will return an error if the provided glort is invalid
301  **/
302 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
303 {
304 	glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
305 
306 	return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
307 }
308 
309 /**
310  *  fm10k_update_xc_addr_pf - Update device addresses
311  *  @hw: pointer to the HW structure
312  *  @glort: base resource tag for this request
313  *  @mac: MAC address to add/remove from table
314  *  @vid: VLAN ID to add/remove from table
315  *  @add: Indicates if this is an add or remove operation
316  *  @flags: flags field to indicate add and secure
317  *
318  *  This function generates a message to the Switch API requesting
319  *  that the given logical port add/remove the given L2 MAC/VLAN address.
320  **/
321 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
322 				   const u8 *mac, u16 vid, bool add, u8 flags)
323 {
324 	struct fm10k_mbx_info *mbx = &hw->mbx;
325 	struct fm10k_mac_update mac_update;
326 	u32 msg[5];
327 
328 	/* clear set bit from VLAN ID */
329 	vid &= ~FM10K_VLAN_CLEAR;
330 
331 	/* if glort or VLAN are not valid return error */
332 	if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
333 		return FM10K_ERR_PARAM;
334 
335 	/* record fields */
336 	mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
337 						 ((u32)mac[3] << 16) |
338 						 ((u32)mac[4] << 8) |
339 						 ((u32)mac[5]));
340 	mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
341 					   ((u16)mac[1]));
342 	mac_update.vlan = cpu_to_le16(vid);
343 	mac_update.glort = cpu_to_le16(glort);
344 	mac_update.action = add ? 0 : 1;
345 	mac_update.flags = flags;
346 
347 	/* populate mac_update fields */
348 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
349 	fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
350 				     &mac_update, sizeof(mac_update));
351 
352 	/* load onto outgoing mailbox */
353 	return mbx->ops.enqueue_tx(hw, mbx, msg);
354 }
355 
356 /**
357  *  fm10k_update_uc_addr_pf - Update device unicast addresses
358  *  @hw: pointer to the HW structure
359  *  @glort: base resource tag for this request
360  *  @mac: MAC address to add/remove from table
361  *  @vid: VLAN ID to add/remove from table
362  *  @add: Indicates if this is an add or remove operation
363  *  @flags: flags field to indicate add and secure
364  *
365  *  This function is used to add or remove unicast addresses for
366  *  the PF.
367  **/
368 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
369 				   const u8 *mac, u16 vid, bool add, u8 flags)
370 {
371 	/* verify MAC address is valid */
372 	if (!is_valid_ether_addr(mac))
373 		return FM10K_ERR_PARAM;
374 
375 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
376 }
377 
378 /**
379  *  fm10k_update_mc_addr_pf - Update device multicast addresses
380  *  @hw: pointer to the HW structure
381  *  @glort: base resource tag for this request
382  *  @mac: MAC address to add/remove from table
383  *  @vid: VLAN ID to add/remove from table
384  *  @add: Indicates if this is an add or remove operation
385  *
386  *  This function is used to add or remove multicast MAC addresses for
387  *  the PF.
388  **/
389 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
390 				   const u8 *mac, u16 vid, bool add)
391 {
392 	/* verify multicast address is valid */
393 	if (!is_multicast_ether_addr(mac))
394 		return FM10K_ERR_PARAM;
395 
396 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
397 }
398 
399 /**
400  *  fm10k_update_xcast_mode_pf - Request update of multicast mode
401  *  @hw: pointer to hardware structure
402  *  @glort: base resource tag for this request
403  *  @mode: integer value indicating mode being requested
404  *
405  *  This function will attempt to request a higher mode for the port
406  *  so that it can enable either multicast, multicast promiscuous, or
407  *  promiscuous mode of operation.
408  **/
409 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
410 {
411 	struct fm10k_mbx_info *mbx = &hw->mbx;
412 	u32 msg[3], xcast_mode;
413 
414 	if (mode > FM10K_XCAST_MODE_NONE)
415 		return FM10K_ERR_PARAM;
416 
417 	/* if glort is not valid return error */
418 	if (!fm10k_glort_valid_pf(hw, glort))
419 		return FM10K_ERR_PARAM;
420 
421 	/* write xcast mode as a single u32 value,
422 	 * lower 16 bits: glort
423 	 * upper 16 bits: mode
424 	 */
425 	xcast_mode = ((u32)mode << 16) | glort;
426 
427 	/* generate message requesting to change xcast mode */
428 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
429 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
430 
431 	/* load onto outgoing mailbox */
432 	return mbx->ops.enqueue_tx(hw, mbx, msg);
433 }
434 
435 /**
436  *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
437  *  @hw: pointer to hardware structure
438  *
439  *  This function walks through the MSI-X vector table to determine the
440  *  number of active interrupts and based on that information updates the
441  *  interrupt moderator linked list.
442  **/
443 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
444 {
445 	u32 i;
446 
447 	/* Disable interrupt moderator */
448 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
449 
450 	/* loop through PF from last to first looking enabled vectors */
451 	for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
452 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
453 			break;
454 	}
455 
456 	/* always reset VFITR2[0] to point to last enabled PF vector */
457 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
458 
459 	/* reset ITR2[0] to point to last enabled PF vector */
460 	if (!hw->iov.num_vfs)
461 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
462 
463 	/* Enable interrupt moderator */
464 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
465 }
466 
467 /**
468  *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
469  *  @hw: pointer to the HW structure
470  *  @glort: base resource tag for this request
471  *  @count: number of logical ports being updated
472  *  @enable: boolean value indicating enable or disable
473  *
474  *  This function is used to add/remove a logical port from the switch.
475  **/
476 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
477 				       u16 count, bool enable)
478 {
479 	struct fm10k_mbx_info *mbx = &hw->mbx;
480 	u32 msg[3], lport_msg;
481 
482 	/* do nothing if we are being asked to create or destroy 0 ports */
483 	if (!count)
484 		return 0;
485 
486 	/* if glort is not valid return error */
487 	if (!fm10k_glort_valid_pf(hw, glort))
488 		return FM10K_ERR_PARAM;
489 
490 	/* reset multicast mode if deleting lport */
491 	if (!enable)
492 		fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
493 
494 	/* construct the lport message from the 2 pieces of data we have */
495 	lport_msg = ((u32)count << 16) | glort;
496 
497 	/* generate lport create/delete message */
498 	fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
499 					 FM10K_PF_MSG_ID_LPORT_DELETE);
500 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
501 
502 	/* load onto outgoing mailbox */
503 	return mbx->ops.enqueue_tx(hw, mbx, msg);
504 }
505 
506 /**
507  *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
508  *  @hw: pointer to hardware structure
509  *  @dglort: pointer to dglort configuration structure
510  *
511  *  Reads the configuration structure contained in dglort_cfg and uses
512  *  that information to then populate a DGLORTMAP/DEC entry and the queues
513  *  to which it has been assigned.
514  **/
515 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
516 					 struct fm10k_dglort_cfg *dglort)
517 {
518 	u16 glort, queue_count, vsi_count, pc_count;
519 	u16 vsi, queue, pc, q_idx;
520 	u32 txqctl, dglortdec, dglortmap;
521 
522 	/* verify the dglort pointer */
523 	if (!dglort)
524 		return FM10K_ERR_PARAM;
525 
526 	/* verify the dglort values */
527 	if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
528 	    (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
529 	    (dglort->queue_l > 8) || (dglort->queue_b >= 256))
530 		return FM10K_ERR_PARAM;
531 
532 	/* determine count of VSIs and queues */
533 	queue_count = BIT(dglort->rss_l + dglort->pc_l);
534 	vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
535 	glort = dglort->glort;
536 	q_idx = dglort->queue_b;
537 
538 	/* configure SGLORT for queues */
539 	for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
540 		for (queue = 0; queue < queue_count; queue++, q_idx++) {
541 			if (q_idx >= FM10K_MAX_QUEUES)
542 				break;
543 
544 			fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
545 			fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
546 		}
547 	}
548 
549 	/* determine count of PCs and queues */
550 	queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
551 	pc_count = BIT(dglort->pc_l);
552 
553 	/* configure PC for Tx queues */
554 	for (pc = 0; pc < pc_count; pc++) {
555 		q_idx = pc + dglort->queue_b;
556 		for (queue = 0; queue < queue_count; queue++) {
557 			if (q_idx >= FM10K_MAX_QUEUES)
558 				break;
559 
560 			txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
561 			txqctl &= ~FM10K_TXQCTL_PC_MASK;
562 			txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
563 			fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
564 
565 			q_idx += pc_count;
566 		}
567 	}
568 
569 	/* configure DGLORTDEC */
570 	dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
571 		    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
572 		    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
573 		    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
574 		    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
575 		    ((u32)(dglort->queue_l));
576 	if (dglort->inner_rss)
577 		dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
578 
579 	/* configure DGLORTMAP */
580 	dglortmap = (dglort->idx == fm10k_dglort_default) ?
581 			FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
582 	dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
583 	dglortmap |= dglort->glort;
584 
585 	/* write values to hardware */
586 	fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
587 	fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
588 
589 	return 0;
590 }
591 
592 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
593 {
594 	u16 num_pools = hw->iov.num_pools;
595 
596 	return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
597 	       8 : FM10K_MAX_QUEUES_POOL;
598 }
599 
600 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
601 {
602 	u16 num_vfs = hw->iov.num_vfs;
603 	u16 vf_q_idx = FM10K_MAX_QUEUES;
604 
605 	vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
606 
607 	return vf_q_idx;
608 }
609 
610 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
611 {
612 	u16 num_pools = hw->iov.num_pools;
613 
614 	return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
615 	       FM10K_MAX_VECTORS_POOL;
616 }
617 
618 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
619 {
620 	u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
621 
622 	vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
623 
624 	return vf_v_idx;
625 }
626 
627 /**
628  *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
629  *  @hw: pointer to the HW structure
630  *  @num_vfs: number of VFs to be allocated
631  *  @num_pools: number of virtualization pools to be allocated
632  *
633  *  Allocates queues and traffic classes to virtualization entities to prepare
634  *  the PF for SR-IOV and VMDq
635  **/
636 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
637 					 u16 num_pools)
638 {
639 	u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
640 	u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
641 	int i, j;
642 
643 	/* hardware only supports up to 64 pools */
644 	if (num_pools > 64)
645 		return FM10K_ERR_PARAM;
646 
647 	/* the number of VFs cannot exceed the number of pools */
648 	if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
649 		return FM10K_ERR_PARAM;
650 
651 	/* record number of virtualization entities */
652 	hw->iov.num_vfs = num_vfs;
653 	hw->iov.num_pools = num_pools;
654 
655 	/* determine qmap offsets and counts */
656 	qmap_stride = (num_vfs > 8) ? 32 : 256;
657 	qpp = fm10k_queues_per_pool(hw);
658 	vpp = fm10k_vectors_per_pool(hw);
659 
660 	/* calculate starting index for queues */
661 	vf_q_idx = fm10k_vf_queue_index(hw, 0);
662 	qmap_idx = 0;
663 
664 	/* establish TCs with -1 credits and no quanta to prevent transmit */
665 	for (i = 0; i < num_vfs; i++) {
666 		fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
667 		fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
668 		fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
669 				FM10K_TC_CREDIT_CREDIT_MASK);
670 	}
671 
672 	/* zero out all mbmem registers */
673 	for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
674 		fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
675 
676 	/* clear event notification of VF FLR */
677 	fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
678 	fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
679 
680 	/* loop through unallocated rings assigning them back to PF */
681 	for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
682 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
683 		fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
684 				FM10K_TXQCTL_UNLIMITED_BW | vid);
685 		fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
686 	}
687 
688 	/* PF should have already updated VFITR2[0] */
689 
690 	/* update all ITR registers to flow to VFITR2[0] */
691 	for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
692 		if (!(i & (vpp - 1)))
693 			fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
694 		else
695 			fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
696 	}
697 
698 	/* update PF ITR2[0] to reference the last vector */
699 	fm10k_write_reg(hw, FM10K_ITR2(0),
700 			fm10k_vf_vector_index(hw, num_vfs - 1));
701 
702 	/* loop through rings populating rings and TCs */
703 	for (i = 0; i < num_vfs; i++) {
704 		/* record index for VF queue 0 for use in end of loop */
705 		vf_q_idx0 = vf_q_idx;
706 
707 		for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
708 			/* assign VF and locked TC to queues */
709 			fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
710 			fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
711 					(i << FM10K_TXQCTL_TC_SHIFT) | i |
712 					FM10K_TXQCTL_VF | vid);
713 			fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
714 					FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
715 					FM10K_RXDCTL_DROP_ON_EMPTY);
716 			fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
717 					(i << FM10K_RXQCTL_VF_SHIFT) |
718 					FM10K_RXQCTL_VF);
719 
720 			/* map queue pair to VF */
721 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
722 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
723 		}
724 
725 		/* repeat the first ring for all of the remaining VF rings */
726 		for (; j < qmap_stride; j++, qmap_idx++) {
727 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
728 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
729 		}
730 	}
731 
732 	/* loop through remaining indexes assigning all to queue 0 */
733 	while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
734 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
735 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
736 		qmap_idx++;
737 	}
738 
739 	return 0;
740 }
741 
742 /**
743  *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
744  *  @hw: pointer to the HW structure
745  *  @vf_idx: index of VF receiving GLORT
746  *  @rate: Rate indicated in Mb/s
747  *
748  *  Configured the TC for a given VF to allow only up to a given number
749  *  of Mb/s of outgoing Tx throughput.
750  **/
751 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
752 {
753 	/* configure defaults */
754 	u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
755 	u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
756 
757 	/* verify vf is in range */
758 	if (vf_idx >= hw->iov.num_vfs)
759 		return FM10K_ERR_PARAM;
760 
761 	/* set interval to align with 4.096 usec in all modes */
762 	switch (hw->bus.speed) {
763 	case fm10k_bus_speed_2500:
764 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
765 		break;
766 	case fm10k_bus_speed_5000:
767 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
768 		break;
769 	default:
770 		break;
771 	}
772 
773 	if (rate) {
774 		if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
775 			return FM10K_ERR_PARAM;
776 
777 		/* The quanta is measured in Bytes per 4.096 or 8.192 usec
778 		 * The rate is provided in Mbits per second
779 		 * To tralslate from rate to quanta we need to multiply the
780 		 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
781 		 * dealing with floating point we can round the values up
782 		 * to the nearest whole number ratio which gives us 128 / 125.
783 		 */
784 		tc_rate = (rate * 128) / 125;
785 
786 		/* try to keep the rate limiting accurate by increasing
787 		 * the number of credits and interval for rates less than 4Gb/s
788 		 */
789 		if (rate < 4000)
790 			interval <<= 1;
791 		else
792 			tc_rate >>= 1;
793 	}
794 
795 	/* update rate limiter with new values */
796 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
797 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
798 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
799 
800 	return 0;
801 }
802 
803 /**
804  *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
805  *  @hw: pointer to the HW structure
806  *  @vf_idx: index of VF receiving GLORT
807  *
808  *  Update the interrupt moderator linked list to include any MSI-X
809  *  interrupts which the VF has enabled in the MSI-X vector table.
810  **/
811 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
812 {
813 	u16 vf_v_idx, vf_v_limit, i;
814 
815 	/* verify vf is in range */
816 	if (vf_idx >= hw->iov.num_vfs)
817 		return FM10K_ERR_PARAM;
818 
819 	/* determine vector offset and count */
820 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
821 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
822 
823 	/* search for first vector that is not masked */
824 	for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
825 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
826 			break;
827 	}
828 
829 	/* reset linked list so it now includes our active vectors */
830 	if (vf_idx == (hw->iov.num_vfs - 1))
831 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
832 	else
833 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
834 
835 	return 0;
836 }
837 
838 /**
839  *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
840  *  @hw: pointer to the HW structure
841  *  @vf_info: pointer to VF information structure
842  *
843  *  Assign a MAC address and default VLAN to a VF and notify it of the update
844  **/
845 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
846 						struct fm10k_vf_info *vf_info)
847 {
848 	u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
849 	u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
850 	s32 err = 0;
851 	u16 vf_idx, vf_vid;
852 
853 	/* verify vf is in range */
854 	if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
855 		return FM10K_ERR_PARAM;
856 
857 	/* determine qmap offsets and counts */
858 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
859 	queues_per_pool = fm10k_queues_per_pool(hw);
860 
861 	/* calculate starting index for queues */
862 	vf_idx = vf_info->vf_idx;
863 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
864 	qmap_idx = qmap_stride * vf_idx;
865 
866 	/* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
867 	 * used here to indicate to the VF that it will not have privilege to
868 	 * write VLAN_TABLE. All policy is enforced on the PF but this allows
869 	 * the VF to correctly report errors to userspace rqeuests.
870 	 */
871 	if (vf_info->pf_vid)
872 		vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
873 	else
874 		vf_vid = vf_info->sw_vid;
875 
876 	/* generate MAC_ADDR request */
877 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
878 	fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
879 				    vf_info->mac, vf_vid);
880 
881 	/* Configure Queue control register with new VLAN ID. The TXQCTL
882 	 * register is RO from the VF, so the PF must do this even in the
883 	 * case of notifying the VF of a new VID via the mailbox.
884 	 */
885 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
886 		 FM10K_TXQCTL_VID_MASK;
887 	txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
888 		  FM10K_TXQCTL_VF | vf_idx;
889 
890 	for (i = 0; i < queues_per_pool; i++)
891 		fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
892 
893 	/* try loading a message onto outgoing mailbox first */
894 	if (vf_info->mbx.ops.enqueue_tx) {
895 		err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
896 		if (err != FM10K_MBX_ERR_NO_MBX)
897 			return err;
898 		err = 0;
899 	}
900 
901 	/* If we aren't connected to a mailbox, this is most likely because
902 	 * the VF driver is not running. It should thus be safe to re-map
903 	 * queues and use the registers to pass the MAC address so that the VF
904 	 * driver gets correct information during its initialization.
905 	 */
906 
907 	/* MAP Tx queue back to 0 temporarily, and disable it */
908 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
909 	fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
910 
911 	/* verify ring has disabled before modifying base address registers */
912 	txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
913 	for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
914 		/* limit ourselves to a 1ms timeout */
915 		if (timeout == 10) {
916 			err = FM10K_ERR_DMA_PENDING;
917 			goto err_out;
918 		}
919 
920 		usleep_range(100, 200);
921 		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
922 	}
923 
924 	/* Update base address registers to contain MAC address */
925 	if (is_valid_ether_addr(vf_info->mac)) {
926 		tdbal = (((u32)vf_info->mac[3]) << 24) |
927 			(((u32)vf_info->mac[4]) << 16) |
928 			(((u32)vf_info->mac[5]) << 8);
929 
930 		tdbah = (((u32)0xFF)	        << 24) |
931 			(((u32)vf_info->mac[0]) << 16) |
932 			(((u32)vf_info->mac[1]) << 8) |
933 			((u32)vf_info->mac[2]);
934 	}
935 
936 	/* Record the base address into queue 0 */
937 	fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
938 	fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
939 
940 	/* Provide the VF the ITR scale, using software-defined fields in TDLEN
941 	 * to pass the information during VF initialization. See definition of
942 	 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
943 	 */
944 	fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
945 						   FM10K_TDLEN_ITR_SCALE_SHIFT);
946 
947 err_out:
948 	/* restore the queue back to VF ownership */
949 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
950 	return err;
951 }
952 
953 /**
954  *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
955  *  @hw: pointer to the HW structure
956  *  @vf_info: pointer to VF information structure
957  *
958  *  Reassign the interrupts and queues to a VF following an FLR
959  **/
960 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
961 					struct fm10k_vf_info *vf_info)
962 {
963 	u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
964 	u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
965 	u16 vf_v_idx, vf_v_limit, vf_vid;
966 	u8 vf_idx = vf_info->vf_idx;
967 	int i;
968 
969 	/* verify vf is in range */
970 	if (vf_idx >= hw->iov.num_vfs)
971 		return FM10K_ERR_PARAM;
972 
973 	/* clear event notification of VF FLR */
974 	fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
975 
976 	/* force timeout and then disconnect the mailbox */
977 	vf_info->mbx.timeout = 0;
978 	if (vf_info->mbx.ops.disconnect)
979 		vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
980 
981 	/* determine vector offset and count */
982 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
983 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
984 
985 	/* determine qmap offsets and counts */
986 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
987 	queues_per_pool = fm10k_queues_per_pool(hw);
988 	qmap_idx = qmap_stride * vf_idx;
989 
990 	/* make all the queues inaccessible to the VF */
991 	for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
992 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
993 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
994 	}
995 
996 	/* calculate starting index for queues */
997 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
998 
999 	/* determine correct default VLAN ID */
1000 	if (vf_info->pf_vid)
1001 		vf_vid = vf_info->pf_vid;
1002 	else
1003 		vf_vid = vf_info->sw_vid;
1004 
1005 	/* configure Queue control register */
1006 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
1007 		 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1008 		 FM10K_TXQCTL_VF | vf_idx;
1009 	rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
1010 
1011 	/* stop further DMA and reset queue ownership back to VF */
1012 	for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1013 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1014 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1015 		fm10k_write_reg(hw, FM10K_RXDCTL(i),
1016 				FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1017 				FM10K_RXDCTL_DROP_ON_EMPTY);
1018 		fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1019 	}
1020 
1021 	/* reset TC with -1 credits and no quanta to prevent transmit */
1022 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1023 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1024 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1025 			FM10K_TC_CREDIT_CREDIT_MASK);
1026 
1027 	/* update our first entry in the table based on previous VF */
1028 	if (!vf_idx)
1029 		hw->mac.ops.update_int_moderator(hw);
1030 	else
1031 		hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1032 
1033 	/* reset linked list so it now includes our active vectors */
1034 	if (vf_idx == (hw->iov.num_vfs - 1))
1035 		fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1036 	else
1037 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1038 
1039 	/* link remaining vectors so that next points to previous */
1040 	for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1041 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1042 
1043 	/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1044 	for (i = FM10K_VFMBMEM_LEN; i--;)
1045 		fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1046 	for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1047 		fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1048 	for (i = FM10K_RETA_SIZE; i--;)
1049 		fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1050 	for (i = FM10K_RSSRK_SIZE; i--;)
1051 		fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1052 	fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1053 
1054 	/* Update base address registers to contain MAC address */
1055 	if (is_valid_ether_addr(vf_info->mac)) {
1056 		tdbal = (((u32)vf_info->mac[3]) << 24) |
1057 			(((u32)vf_info->mac[4]) << 16) |
1058 			(((u32)vf_info->mac[5]) << 8);
1059 		tdbah = (((u32)0xFF)	   << 24) |
1060 			(((u32)vf_info->mac[0]) << 16) |
1061 			(((u32)vf_info->mac[1]) << 8) |
1062 			((u32)vf_info->mac[2]);
1063 	}
1064 
1065 	/* map queue pairs back to VF from last to first */
1066 	for (i = queues_per_pool; i--;) {
1067 		fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1068 		fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1069 		/* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1070 		 * explanation of how TDLEN is used.
1071 		 */
1072 		fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1073 				hw->mac.itr_scale <<
1074 				FM10K_TDLEN_ITR_SCALE_SHIFT);
1075 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1076 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1077 	}
1078 
1079 	/* repeat the first ring for all the remaining VF rings */
1080 	for (i = queues_per_pool; i < qmap_stride; i++) {
1081 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1082 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 /**
1089  *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1090  *  @hw: pointer to hardware structure
1091  *  @vf_info: pointer to VF information structure
1092  *  @lport_idx: Logical port offset from the hardware glort
1093  *  @flags: Set of capability flags to extend port beyond basic functionality
1094  *
1095  *  This function allows enabling a VF port by assigning it a GLORT and
1096  *  setting the flags so that it can enable an Rx mode.
1097  **/
1098 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1099 				  struct fm10k_vf_info *vf_info,
1100 				  u16 lport_idx, u8 flags)
1101 {
1102 	u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1103 
1104 	/* if glort is not valid return error */
1105 	if (!fm10k_glort_valid_pf(hw, glort))
1106 		return FM10K_ERR_PARAM;
1107 
1108 	vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1109 	vf_info->glort = glort;
1110 
1111 	return 0;
1112 }
1113 
1114 /**
1115  *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1116  *  @hw: pointer to hardware structure
1117  *  @vf_info: pointer to VF information structure
1118  *
1119  *  This function disables a VF port by stripping it of a GLORT and
1120  *  setting the flags so that it cannot enable any Rx mode.
1121  **/
1122 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1123 				     struct fm10k_vf_info *vf_info)
1124 {
1125 	u32 msg[1];
1126 
1127 	/* need to disable the port if it is already enabled */
1128 	if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1129 		/* notify switch that this port has been disabled */
1130 		fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1131 
1132 		/* generate port state response to notify VF it is not ready */
1133 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1134 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1135 	}
1136 
1137 	/* clear flags and glort if it exists */
1138 	vf_info->vf_flags = 0;
1139 	vf_info->glort = 0;
1140 }
1141 
1142 /**
1143  *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1144  *  @hw: pointer to hardware structure
1145  *  @q: stats for all queues of a VF
1146  *  @vf_idx: index of VF
1147  *
1148  *  This function collects queue stats for VFs.
1149  **/
1150 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1151 				      struct fm10k_hw_stats_q *q,
1152 				      u16 vf_idx)
1153 {
1154 	u32 idx, qpp;
1155 
1156 	/* get stats for all of the queues */
1157 	qpp = fm10k_queues_per_pool(hw);
1158 	idx = fm10k_vf_queue_index(hw, vf_idx);
1159 	fm10k_update_hw_stats_q(hw, q, idx, qpp);
1160 }
1161 
1162 /**
1163  *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1164  *  @hw: Pointer to hardware structure
1165  *  @results: Pointer array to message, results[0] is pointer to message
1166  *  @mbx: Pointer to mailbox information structure
1167  *
1168  *  This function is a default handler for MSI-X requests from the VF.  The
1169  *  assumption is that in this case it is acceptable to just directly
1170  *  hand off the message from the VF to the underlying shared code.
1171  **/
1172 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1173 			  struct fm10k_mbx_info *mbx)
1174 {
1175 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1176 	u8 vf_idx = vf_info->vf_idx;
1177 
1178 	return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1179 }
1180 
1181 /**
1182  * fm10k_iov_select_vid - Select correct default VLAN ID
1183  * @hw: Pointer to hardware structure
1184  * @vid: VLAN ID to correct
1185  *
1186  * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1187  * return either the pf_vid or sw_vid depending on which one is set.
1188  */
1189 static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1190 {
1191 	if (!vid)
1192 		return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1193 	else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1194 		return FM10K_ERR_PARAM;
1195 	else
1196 		return vid;
1197 }
1198 
1199 /**
1200  *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1201  *  @hw: Pointer to hardware structure
1202  *  @results: Pointer array to message, results[0] is pointer to message
1203  *  @mbx: Pointer to mailbox information structure
1204  *
1205  *  This function is a default handler for MAC/VLAN requests from the VF.
1206  *  The assumption is that in this case it is acceptable to just directly
1207  *  hand off the message from the VF to the underlying shared code.
1208  **/
1209 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1210 			      struct fm10k_mbx_info *mbx)
1211 {
1212 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1213 	u8 mac[ETH_ALEN];
1214 	u32 *result;
1215 	int err = 0;
1216 	bool set;
1217 	u16 vlan;
1218 	u32 vid;
1219 
1220 	/* we shouldn't be updating rules on a disabled interface */
1221 	if (!FM10K_VF_FLAG_ENABLED(vf_info))
1222 		err = FM10K_ERR_PARAM;
1223 
1224 	if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1225 		result = results[FM10K_MAC_VLAN_MSG_VLAN];
1226 
1227 		/* record VLAN id requested */
1228 		err = fm10k_tlv_attr_get_u32(result, &vid);
1229 		if (err)
1230 			return err;
1231 
1232 		set = !(vid & FM10K_VLAN_CLEAR);
1233 		vid &= ~FM10K_VLAN_CLEAR;
1234 
1235 		/* if the length field has been set, this is a multi-bit
1236 		 * update request. For multi-bit requests, simply disallow
1237 		 * them when the pf_vid has been set. In this case, the PF
1238 		 * should have already cleared the VLAN_TABLE, and if we
1239 		 * allowed them, it could allow a rogue VF to receive traffic
1240 		 * on a VLAN it was not assigned. In the single-bit case, we
1241 		 * need to modify requests for VLAN 0 to use the default PF or
1242 		 * SW vid when assigned.
1243 		 */
1244 
1245 		if (vid >> 16) {
1246 			/* prevent multi-bit requests when PF has
1247 			 * administratively set the VLAN for this VF
1248 			 */
1249 			if (vf_info->pf_vid)
1250 				return FM10K_ERR_PARAM;
1251 		} else {
1252 			err = fm10k_iov_select_vid(vf_info, (u16)vid);
1253 			if (err < 0)
1254 				return err;
1255 
1256 			vid = err;
1257 		}
1258 
1259 		/* update VSI info for VF in regards to VLAN table */
1260 		err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1261 	}
1262 
1263 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1264 		result = results[FM10K_MAC_VLAN_MSG_MAC];
1265 
1266 		/* record unicast MAC address requested */
1267 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1268 		if (err)
1269 			return err;
1270 
1271 		/* block attempts to set MAC for a locked device */
1272 		if (is_valid_ether_addr(vf_info->mac) &&
1273 		    !ether_addr_equal(mac, vf_info->mac))
1274 			return FM10K_ERR_PARAM;
1275 
1276 		set = !(vlan & FM10K_VLAN_CLEAR);
1277 		vlan &= ~FM10K_VLAN_CLEAR;
1278 
1279 		err = fm10k_iov_select_vid(vf_info, vlan);
1280 		if (err < 0)
1281 			return err;
1282 
1283 		vlan = (u16)err;
1284 
1285 		/* notify switch of request for new unicast address */
1286 		err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1287 						 mac, vlan, set, 0);
1288 	}
1289 
1290 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1291 		result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1292 
1293 		/* record multicast MAC address requested */
1294 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1295 		if (err)
1296 			return err;
1297 
1298 		/* verify that the VF is allowed to request multicast */
1299 		if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1300 			return FM10K_ERR_PARAM;
1301 
1302 		set = !(vlan & FM10K_VLAN_CLEAR);
1303 		vlan &= ~FM10K_VLAN_CLEAR;
1304 
1305 		err = fm10k_iov_select_vid(vf_info, vlan);
1306 		if (err < 0)
1307 			return err;
1308 
1309 		vlan = (u16)err;
1310 
1311 		/* notify switch of request for new multicast address */
1312 		err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1313 						 mac, vlan, set);
1314 	}
1315 
1316 	return err;
1317 }
1318 
1319 /**
1320  *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1321  *  @vf_info: VF info structure containing capability flags
1322  *  @mode: Requested xcast mode
1323  *
1324  *  This function outputs the mode that most closely matches the requested
1325  *  mode.  If not modes match it will request we disable the port
1326  **/
1327 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1328 					    u8 mode)
1329 {
1330 	u8 vf_flags = vf_info->vf_flags;
1331 
1332 	/* match up mode to capabilities as best as possible */
1333 	switch (mode) {
1334 	case FM10K_XCAST_MODE_PROMISC:
1335 		if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1336 			return FM10K_XCAST_MODE_PROMISC;
1337 		/* fallthough */
1338 	case FM10K_XCAST_MODE_ALLMULTI:
1339 		if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1340 			return FM10K_XCAST_MODE_ALLMULTI;
1341 		/* fallthough */
1342 	case FM10K_XCAST_MODE_MULTI:
1343 		if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1344 			return FM10K_XCAST_MODE_MULTI;
1345 		/* fallthough */
1346 	case FM10K_XCAST_MODE_NONE:
1347 		if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1348 			return FM10K_XCAST_MODE_NONE;
1349 		/* fallthough */
1350 	default:
1351 		break;
1352 	}
1353 
1354 	/* disable interface as it should not be able to request any */
1355 	return FM10K_XCAST_MODE_DISABLE;
1356 }
1357 
1358 /**
1359  *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1360  *  @hw: Pointer to hardware structure
1361  *  @results: Pointer array to message, results[0] is pointer to message
1362  *  @mbx: Pointer to mailbox information structure
1363  *
1364  *  This function is a default handler for port state requests.  The port
1365  *  state requests for now are basic and consist of enabling or disabling
1366  *  the port.
1367  **/
1368 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1369 				 struct fm10k_mbx_info *mbx)
1370 {
1371 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1372 	u32 *result;
1373 	s32 err = 0;
1374 	u32 msg[2];
1375 	u8 mode = 0;
1376 
1377 	/* verify VF is allowed to enable even minimal mode */
1378 	if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1379 		return FM10K_ERR_PARAM;
1380 
1381 	if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1382 		result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1383 
1384 		/* XCAST mode update requested */
1385 		err = fm10k_tlv_attr_get_u8(result, &mode);
1386 		if (err)
1387 			return FM10K_ERR_PARAM;
1388 
1389 		/* prep for possible demotion depending on capabilities */
1390 		mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1391 
1392 		/* if mode is not currently enabled, enable it */
1393 		if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1394 			fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1395 
1396 		/* swap mode back to a bit flag */
1397 		mode = FM10K_VF_FLAG_SET_MODE(mode);
1398 	} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1399 		/* need to disable the port if it is already enabled */
1400 		if (FM10K_VF_FLAG_ENABLED(vf_info))
1401 			err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1402 							  1, false);
1403 
1404 		/* we need to clear VF_FLAG_ENABLED flags in order to ensure
1405 		 * that we actually re-enable the LPORT state below. Note that
1406 		 * this has no impact if the VF is already disabled, as the
1407 		 * flags are already cleared.
1408 		 */
1409 		if (!err)
1410 			vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1411 
1412 		/* when enabling the port we should reset the rate limiters */
1413 		hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1414 
1415 		/* set mode for minimal functionality */
1416 		mode = FM10K_VF_FLAG_SET_MODE_NONE;
1417 
1418 		/* generate port state response to notify VF it is ready */
1419 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1420 		fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1421 		mbx->ops.enqueue_tx(hw, mbx, msg);
1422 	}
1423 
1424 	/* if enable state toggled note the update */
1425 	if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1426 		err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1427 						  !!mode);
1428 
1429 	/* if state change succeeded, then update our stored state */
1430 	mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1431 	if (!err)
1432 		vf_info->vf_flags = mode;
1433 
1434 	return err;
1435 }
1436 
1437 /**
1438  *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1439  *  @hw: pointer to hardware structure
1440  *  @stats: pointer to the stats structure to update
1441  *
1442  *  This function collects and aggregates global and per queue hardware
1443  *  statistics.
1444  **/
1445 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1446 				     struct fm10k_hw_stats *stats)
1447 {
1448 	u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1449 	u32 id, id_prev;
1450 
1451 	/* Use Tx queue 0 as a canary to detect a reset */
1452 	id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1453 
1454 	/* Read Global Statistics */
1455 	do {
1456 		timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1457 						  &stats->timeout);
1458 		ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1459 		ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1460 		um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1461 		xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1462 		vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1463 						    &stats->vlan_drop);
1464 		loopback_drop =
1465 			fm10k_read_hw_stats_32b(hw,
1466 						FM10K_STATS_LOOPBACK_DROP,
1467 						&stats->loopback_drop);
1468 		nodesc_drop = fm10k_read_hw_stats_32b(hw,
1469 						      FM10K_STATS_NODESC_DROP,
1470 						      &stats->nodesc_drop);
1471 
1472 		/* if value has not changed then we have consistent data */
1473 		id_prev = id;
1474 		id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1475 	} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1476 
1477 	/* drop non-ID bits and set VALID ID bit */
1478 	id &= FM10K_TXQCTL_ID_MASK;
1479 	id |= FM10K_STAT_VALID;
1480 
1481 	/* Update Global Statistics */
1482 	if (stats->stats_idx == id) {
1483 		stats->timeout.count += timeout;
1484 		stats->ur.count += ur;
1485 		stats->ca.count += ca;
1486 		stats->um.count += um;
1487 		stats->xec.count += xec;
1488 		stats->vlan_drop.count += vlan_drop;
1489 		stats->loopback_drop.count += loopback_drop;
1490 		stats->nodesc_drop.count += nodesc_drop;
1491 	}
1492 
1493 	/* Update bases and record current PF id */
1494 	fm10k_update_hw_base_32b(&stats->timeout, timeout);
1495 	fm10k_update_hw_base_32b(&stats->ur, ur);
1496 	fm10k_update_hw_base_32b(&stats->ca, ca);
1497 	fm10k_update_hw_base_32b(&stats->um, um);
1498 	fm10k_update_hw_base_32b(&stats->xec, xec);
1499 	fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1500 	fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1501 	fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1502 	stats->stats_idx = id;
1503 
1504 	/* Update Queue Statistics */
1505 	fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1506 }
1507 
1508 /**
1509  *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1510  *  @hw: pointer to hardware structure
1511  *  @stats: pointer to the stats structure to update
1512  *
1513  *  This function resets the base for global and per queue hardware
1514  *  statistics.
1515  **/
1516 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1517 				     struct fm10k_hw_stats *stats)
1518 {
1519 	/* Unbind Global Statistics */
1520 	fm10k_unbind_hw_stats_32b(&stats->timeout);
1521 	fm10k_unbind_hw_stats_32b(&stats->ur);
1522 	fm10k_unbind_hw_stats_32b(&stats->ca);
1523 	fm10k_unbind_hw_stats_32b(&stats->um);
1524 	fm10k_unbind_hw_stats_32b(&stats->xec);
1525 	fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1526 	fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1527 	fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1528 
1529 	/* Unbind Queue Statistics */
1530 	fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1531 
1532 	/* Reinitialize bases for all stats */
1533 	fm10k_update_hw_stats_pf(hw, stats);
1534 }
1535 
1536 /**
1537  *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1538  *  @hw: pointer to hardware structure
1539  *  @dma_mask: 64 bit DMA mask required for platform
1540  *
1541  *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1542  *  to limit the access to memory beyond what is physically in the system.
1543  **/
1544 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1545 {
1546 	/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1547 	u32 phyaddr = (u32)(dma_mask >> 32);
1548 
1549 	fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1550 }
1551 
1552 /**
1553  *  fm10k_get_fault_pf - Record a fault in one of the interface units
1554  *  @hw: pointer to hardware structure
1555  *  @type: pointer to fault type register offset
1556  *  @fault: pointer to memory location to record the fault
1557  *
1558  *  Record the fault register contents to the fault data structure and
1559  *  clear the entry from the register.
1560  *
1561  *  Returns ERR_PARAM if invalid register is specified or no error is present.
1562  **/
1563 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1564 			      struct fm10k_fault *fault)
1565 {
1566 	u32 func;
1567 
1568 	/* verify the fault register is in range and is aligned */
1569 	switch (type) {
1570 	case FM10K_PCA_FAULT:
1571 	case FM10K_THI_FAULT:
1572 	case FM10K_FUM_FAULT:
1573 		break;
1574 	default:
1575 		return FM10K_ERR_PARAM;
1576 	}
1577 
1578 	/* only service faults that are valid */
1579 	func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1580 	if (!(func & FM10K_FAULT_FUNC_VALID))
1581 		return FM10K_ERR_PARAM;
1582 
1583 	/* read remaining fields */
1584 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1585 	fault->address <<= 32;
1586 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1587 	fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1588 
1589 	/* clear valid bit to allow for next error */
1590 	fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1591 
1592 	/* Record which function triggered the error */
1593 	if (func & FM10K_FAULT_FUNC_PF)
1594 		fault->func = 0;
1595 	else
1596 		fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1597 				   FM10K_FAULT_FUNC_VF_SHIFT);
1598 
1599 	/* record fault type */
1600 	fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1601 
1602 	return 0;
1603 }
1604 
1605 /**
1606  *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1607  *  @hw: pointer to hardware structure
1608  *
1609  **/
1610 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1611 {
1612 	struct fm10k_mbx_info *mbx = &hw->mbx;
1613 	u32 msg[1];
1614 
1615 	/* issue request asking for LPORT map */
1616 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1617 
1618 	/* load onto outgoing mailbox */
1619 	return mbx->ops.enqueue_tx(hw, mbx, msg);
1620 }
1621 
1622 /**
1623  *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1624  *  @hw: pointer to hardware structure
1625  *  @switch_ready: pointer to boolean value that will record switch state
1626  *
1627  *  This function will check the DMA_CTRL2 register and mailbox in order
1628  *  to determine if the switch is ready for the PF to begin requesting
1629  *  addresses and mapping traffic to the local interface.
1630  **/
1631 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1632 {
1633 	u32 dma_ctrl2;
1634 
1635 	/* verify the switch is ready for interaction */
1636 	dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1637 	if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1638 		return 0;
1639 
1640 	/* retrieve generic host state info */
1641 	return fm10k_get_host_state_generic(hw, switch_ready);
1642 }
1643 
1644 /* This structure defines the attibutes to be parsed below */
1645 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1646 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1647 				 sizeof(struct fm10k_swapi_error)),
1648 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1649 	FM10K_TLV_ATTR_LAST
1650 };
1651 
1652 /**
1653  *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1654  *  @hw: Pointer to hardware structure
1655  *  @results: pointer array containing parsed data
1656  *  @mbx: Pointer to mailbox information structure
1657  *
1658  *  This handler configures the lport mapping based on the reply from the
1659  *  switch API.
1660  **/
1661 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1662 			   struct fm10k_mbx_info *mbx)
1663 {
1664 	u16 glort, mask;
1665 	u32 dglort_map;
1666 	s32 err;
1667 
1668 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1669 				     &dglort_map);
1670 	if (err)
1671 		return err;
1672 
1673 	/* extract values out of the header */
1674 	glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1675 	mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1676 
1677 	/* verify mask is set and none of the masked bits in glort are set */
1678 	if (!mask || (glort & ~mask))
1679 		return FM10K_ERR_PARAM;
1680 
1681 	/* verify the mask is contiguous, and that it is 1's followed by 0's */
1682 	if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1683 		return FM10K_ERR_PARAM;
1684 
1685 	/* record the glort, mask, and port count */
1686 	hw->mac.dglort_map = dglort_map;
1687 
1688 	return 0;
1689 }
1690 
1691 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1692 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1693 	FM10K_TLV_ATTR_LAST
1694 };
1695 
1696 /**
1697  *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1698  *  @hw: Pointer to hardware structure
1699  *  @results: pointer array containing parsed data
1700  *  @mbx: Pointer to mailbox information structure
1701  *
1702  *  This handler configures the default VLAN for the PF
1703  **/
1704 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1705 				    struct fm10k_mbx_info *mbx)
1706 {
1707 	u16 glort, pvid;
1708 	u32 pvid_update;
1709 	s32 err;
1710 
1711 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1712 				     &pvid_update);
1713 	if (err)
1714 		return err;
1715 
1716 	/* extract values from the pvid update */
1717 	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1718 	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1719 
1720 	/* if glort is not valid return error */
1721 	if (!fm10k_glort_valid_pf(hw, glort))
1722 		return FM10K_ERR_PARAM;
1723 
1724 	/* verify VLAN ID is valid */
1725 	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1726 		return FM10K_ERR_PARAM;
1727 
1728 	/* record the port VLAN ID value */
1729 	hw->mac.default_vid = pvid;
1730 
1731 	return 0;
1732 }
1733 
1734 /**
1735  *  fm10k_record_global_table_data - Move global table data to swapi table info
1736  *  @from: pointer to source table data structure
1737  *  @to: pointer to destination table info structure
1738  *
1739  *  This function is will copy table_data to the table_info contained in
1740  *  the hw struct.
1741  **/
1742 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1743 					   struct fm10k_swapi_table_info *to)
1744 {
1745 	/* convert from le32 struct to CPU byte ordered values */
1746 	to->used = le32_to_cpu(from->used);
1747 	to->avail = le32_to_cpu(from->avail);
1748 }
1749 
1750 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1751 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1752 				 sizeof(struct fm10k_swapi_error)),
1753 	FM10K_TLV_ATTR_LAST
1754 };
1755 
1756 /**
1757  *  fm10k_msg_err_pf - Message handler for error reply
1758  *  @hw: Pointer to hardware structure
1759  *  @results: pointer array containing parsed data
1760  *  @mbx: Pointer to mailbox information structure
1761  *
1762  *  This handler will capture the data for any error replies to previous
1763  *  messages that the PF has sent.
1764  **/
1765 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1766 		     struct fm10k_mbx_info *mbx)
1767 {
1768 	struct fm10k_swapi_error err_msg;
1769 	s32 err;
1770 
1771 	/* extract structure from message */
1772 	err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1773 					   &err_msg, sizeof(err_msg));
1774 	if (err)
1775 		return err;
1776 
1777 	/* record table status */
1778 	fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1779 	fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1780 	fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1781 
1782 	/* record SW API status value */
1783 	hw->swapi.status = le32_to_cpu(err_msg.status);
1784 
1785 	return 0;
1786 }
1787 
1788 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1789 	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1790 	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1791 	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1792 	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1793 	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1794 	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1795 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1796 };
1797 
1798 static const struct fm10k_mac_ops mac_ops_pf = {
1799 	.get_bus_info		= fm10k_get_bus_info_generic,
1800 	.reset_hw		= fm10k_reset_hw_pf,
1801 	.init_hw		= fm10k_init_hw_pf,
1802 	.start_hw		= fm10k_start_hw_generic,
1803 	.stop_hw		= fm10k_stop_hw_generic,
1804 	.update_vlan		= fm10k_update_vlan_pf,
1805 	.read_mac_addr		= fm10k_read_mac_addr_pf,
1806 	.update_uc_addr		= fm10k_update_uc_addr_pf,
1807 	.update_mc_addr		= fm10k_update_mc_addr_pf,
1808 	.update_xcast_mode	= fm10k_update_xcast_mode_pf,
1809 	.update_int_moderator	= fm10k_update_int_moderator_pf,
1810 	.update_lport_state	= fm10k_update_lport_state_pf,
1811 	.update_hw_stats	= fm10k_update_hw_stats_pf,
1812 	.rebind_hw_stats	= fm10k_rebind_hw_stats_pf,
1813 	.configure_dglort_map	= fm10k_configure_dglort_map_pf,
1814 	.set_dma_mask		= fm10k_set_dma_mask_pf,
1815 	.get_fault		= fm10k_get_fault_pf,
1816 	.get_host_state		= fm10k_get_host_state_pf,
1817 	.request_lport_map	= fm10k_request_lport_map_pf,
1818 };
1819 
1820 static const struct fm10k_iov_ops iov_ops_pf = {
1821 	.assign_resources		= fm10k_iov_assign_resources_pf,
1822 	.configure_tc			= fm10k_iov_configure_tc_pf,
1823 	.assign_int_moderator		= fm10k_iov_assign_int_moderator_pf,
1824 	.assign_default_mac_vlan	= fm10k_iov_assign_default_mac_vlan_pf,
1825 	.reset_resources		= fm10k_iov_reset_resources_pf,
1826 	.set_lport			= fm10k_iov_set_lport_pf,
1827 	.reset_lport			= fm10k_iov_reset_lport_pf,
1828 	.update_stats			= fm10k_iov_update_stats_pf,
1829 };
1830 
1831 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1832 {
1833 	fm10k_get_invariants_generic(hw);
1834 
1835 	return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1836 }
1837 
1838 const struct fm10k_info fm10k_pf_info = {
1839 	.mac		= fm10k_mac_pf,
1840 	.get_invariants	= fm10k_get_invariants_pf,
1841 	.mac_ops	= &mac_ops_pf,
1842 	.iov_ops	= &iov_ops_pf,
1843 };
1844