1 /* Intel Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include "fm10k_pf.h" 22 #include "fm10k_vf.h" 23 24 /** 25 * fm10k_reset_hw_pf - PF hardware reset 26 * @hw: pointer to hardware structure 27 * 28 * This function should return the hardware to a state similar to the 29 * one it is in after being powered on. 30 **/ 31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw) 32 { 33 s32 err; 34 u32 reg; 35 u16 i; 36 37 /* Disable interrupts */ 38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL)); 39 40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */ 41 fm10k_write_reg(hw, FM10K_ITR2(0), 0); 42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0); 43 44 /* We assume here Tx and Rx queue 0 are owned by the PF */ 45 46 /* Shut off VF access to their queues forcing them to queue 0 */ 47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) { 48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0); 49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0); 50 } 51 52 /* shut down all rings */ 53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES); 54 if (err) 55 return err; 56 57 /* Verify that DMA is no longer active */ 58 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL); 59 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE)) 60 return FM10K_ERR_DMA_PENDING; 61 62 /* Inititate data path reset */ 63 reg |= FM10K_DMA_CTRL_DATAPATH_RESET; 64 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg); 65 66 /* Flush write and allow 100us for reset to complete */ 67 fm10k_write_flush(hw); 68 udelay(FM10K_RESET_TIMEOUT); 69 70 /* Verify we made it out of reset */ 71 reg = fm10k_read_reg(hw, FM10K_IP); 72 if (!(reg & FM10K_IP_NOTINRESET)) 73 err = FM10K_ERR_RESET_FAILED; 74 75 return err; 76 } 77 78 /** 79 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support 80 * @hw: pointer to hardware structure 81 * 82 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not. 83 **/ 84 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw) 85 { 86 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL); 87 88 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI); 89 } 90 91 /** 92 * fm10k_init_hw_pf - PF hardware initialization 93 * @hw: pointer to hardware structure 94 * 95 **/ 96 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw) 97 { 98 u32 dma_ctrl, txqctl; 99 u16 i; 100 101 /* Establish default VSI as valid */ 102 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0); 103 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default), 104 FM10K_DGLORTMAP_ANY); 105 106 /* Invalidate all other GLORT entries */ 107 for (i = 1; i < FM10K_DGLORT_COUNT; i++) 108 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE); 109 110 /* reset ITR2(0) to point to itself */ 111 fm10k_write_reg(hw, FM10K_ITR2(0), 0); 112 113 /* reset VF ITR2(0) to point to 0 avoid PF registers */ 114 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0); 115 116 /* loop through all PF ITR2 registers pointing them to the previous */ 117 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++) 118 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); 119 120 /* Enable interrupt moderator if not already enabled */ 121 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); 122 123 /* compute the default txqctl configuration */ 124 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW | 125 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT); 126 127 for (i = 0; i < FM10K_MAX_QUEUES; i++) { 128 /* configure rings for 256 Queue / 32 Descriptor cache mode */ 129 fm10k_write_reg(hw, FM10K_TQDLOC(i), 130 (i * FM10K_TQDLOC_BASE_32_DESC) | 131 FM10K_TQDLOC_SIZE_32_DESC); 132 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); 133 134 /* configure rings to provide TPH processing hints */ 135 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i), 136 FM10K_TPH_TXCTRL_DESC_TPHEN | 137 FM10K_TPH_TXCTRL_DESC_RROEN | 138 FM10K_TPH_TXCTRL_DESC_WROEN | 139 FM10K_TPH_TXCTRL_DATA_RROEN); 140 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i), 141 FM10K_TPH_RXCTRL_DESC_TPHEN | 142 FM10K_TPH_RXCTRL_DESC_RROEN | 143 FM10K_TPH_RXCTRL_DATA_WROEN | 144 FM10K_TPH_RXCTRL_HDR_WROEN); 145 } 146 147 /* set max hold interval to align with 1.024 usec in all modes */ 148 switch (hw->bus.speed) { 149 case fm10k_bus_speed_2500: 150 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1; 151 break; 152 case fm10k_bus_speed_5000: 153 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2; 154 break; 155 case fm10k_bus_speed_8000: 156 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3; 157 break; 158 default: 159 dma_ctrl = 0; 160 break; 161 } 162 163 /* Configure TSO flags */ 164 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW); 165 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI); 166 167 /* Enable DMA engine 168 * Set Rx Descriptor size to 32 169 * Set Minimum MSS to 64 170 * Set Maximum number of Rx queues to 256 / 32 Descriptor 171 */ 172 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE | 173 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 | 174 FM10K_DMA_CTRL_32_DESC; 175 176 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl); 177 178 /* record maximum queue count, we limit ourselves to 128 */ 179 hw->mac.max_queues = FM10K_MAX_QUEUES_PF; 180 181 /* We support either 64 VFs or 7 VFs depending on if we have ARI */ 182 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7; 183 184 return 0; 185 } 186 187 /** 188 * fm10k_is_slot_appropriate_pf - Indicate appropriate slot for this SKU 189 * @hw: pointer to hardware structure 190 * 191 * Looks at the PCIe bus info to confirm whether or not this slot can support 192 * the necessary bandwidth for this device. 193 **/ 194 static bool fm10k_is_slot_appropriate_pf(struct fm10k_hw *hw) 195 { 196 return (hw->bus.speed == hw->bus_caps.speed) && 197 (hw->bus.width == hw->bus_caps.width); 198 } 199 200 /** 201 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table 202 * @hw: pointer to hardware structure 203 * @vid: VLAN ID to add to table 204 * @vsi: Index indicating VF ID or PF ID in table 205 * @set: Indicates if this is a set or clear operation 206 * 207 * This function adds or removes the corresponding VLAN ID from the VLAN 208 * filter table for the corresponding function. In addition to the 209 * standard set/clear that supports one bit a multi-bit write is 210 * supported to set 64 bits at a time. 211 **/ 212 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set) 213 { 214 u32 vlan_table, reg, mask, bit, len; 215 216 /* verify the VSI index is valid */ 217 if (vsi > FM10K_VLAN_TABLE_VSI_MAX) 218 return FM10K_ERR_PARAM; 219 220 /* VLAN multi-bit write: 221 * The multi-bit write has several parts to it. 222 * 3 2 1 0 223 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 224 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 225 * | RSVD0 | Length |C|RSVD0| VLAN ID | 226 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 227 * 228 * VLAN ID: Vlan Starting value 229 * RSVD0: Reserved section, must be 0 230 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message) 231 * Length: Number of times to repeat the bit being set 232 */ 233 len = vid >> 16; 234 vid = (vid << 17) >> 17; 235 236 /* verify the reserved 0 fields are 0 */ 237 if (len >= FM10K_VLAN_TABLE_VID_MAX || 238 vid >= FM10K_VLAN_TABLE_VID_MAX) 239 return FM10K_ERR_PARAM; 240 241 /* Loop through the table updating all required VLANs */ 242 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32; 243 len < FM10K_VLAN_TABLE_VID_MAX; 244 len -= 32 - bit, reg++, bit = 0) { 245 /* record the initial state of the register */ 246 vlan_table = fm10k_read_reg(hw, reg); 247 248 /* truncate mask if we are at the start or end of the run */ 249 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit; 250 251 /* make necessary modifications to the register */ 252 mask &= set ? ~vlan_table : vlan_table; 253 if (mask) 254 fm10k_write_reg(hw, reg, vlan_table ^ mask); 255 } 256 257 return 0; 258 } 259 260 /** 261 * fm10k_read_mac_addr_pf - Read device MAC address 262 * @hw: pointer to the HW structure 263 * 264 * Reads the device MAC address from the SM_AREA and stores the value. 265 **/ 266 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw) 267 { 268 u8 perm_addr[ETH_ALEN]; 269 u32 serial_num; 270 int i; 271 272 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1)); 273 274 /* last byte should be all 1's */ 275 if ((~serial_num) << 24) 276 return FM10K_ERR_INVALID_MAC_ADDR; 277 278 perm_addr[0] = (u8)(serial_num >> 24); 279 perm_addr[1] = (u8)(serial_num >> 16); 280 perm_addr[2] = (u8)(serial_num >> 8); 281 282 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0)); 283 284 /* first byte should be all 1's */ 285 if ((~serial_num) >> 24) 286 return FM10K_ERR_INVALID_MAC_ADDR; 287 288 perm_addr[3] = (u8)(serial_num >> 16); 289 perm_addr[4] = (u8)(serial_num >> 8); 290 perm_addr[5] = (u8)(serial_num); 291 292 for (i = 0; i < ETH_ALEN; i++) { 293 hw->mac.perm_addr[i] = perm_addr[i]; 294 hw->mac.addr[i] = perm_addr[i]; 295 } 296 297 return 0; 298 } 299 300 /** 301 * fm10k_glort_valid_pf - Validate that the provided glort is valid 302 * @hw: pointer to the HW structure 303 * @glort: base glort to be validated 304 * 305 * This function will return an error if the provided glort is invalid 306 **/ 307 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort) 308 { 309 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT; 310 311 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE); 312 } 313 314 /** 315 * fm10k_update_uc_addr_pf - Update device unicast addresss 316 * @hw: pointer to the HW structure 317 * @glort: base resource tag for this request 318 * @mac: MAC address to add/remove from table 319 * @vid: VLAN ID to add/remove from table 320 * @add: Indicates if this is an add or remove operation 321 * @flags: flags field to indicate add and secure 322 * 323 * This function generates a message to the Switch API requesting 324 * that the given logical port add/remove the given L2 MAC/VLAN address. 325 **/ 326 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort, 327 const u8 *mac, u16 vid, bool add, u8 flags) 328 { 329 struct fm10k_mbx_info *mbx = &hw->mbx; 330 struct fm10k_mac_update mac_update; 331 u32 msg[5]; 332 333 /* if glort is not valid return error */ 334 if (!fm10k_glort_valid_pf(hw, glort)) 335 return FM10K_ERR_PARAM; 336 337 /* drop upper 4 bits of VLAN ID */ 338 vid = (vid << 4) >> 4; 339 340 /* record fields */ 341 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) | 342 ((u32)mac[3] << 16) | 343 ((u32)mac[4] << 8) | 344 ((u32)mac[5])); 345 mac_update.mac_upper = cpu_to_le16(((u32)mac[0] << 8) | 346 ((u32)mac[1])); 347 mac_update.vlan = cpu_to_le16(vid); 348 mac_update.glort = cpu_to_le16(glort); 349 mac_update.action = add ? 0 : 1; 350 mac_update.flags = flags; 351 352 /* populate mac_update fields */ 353 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE); 354 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE, 355 &mac_update, sizeof(mac_update)); 356 357 /* load onto outgoing mailbox */ 358 return mbx->ops.enqueue_tx(hw, mbx, msg); 359 } 360 361 /** 362 * fm10k_update_uc_addr_pf - Update device unicast addresss 363 * @hw: pointer to the HW structure 364 * @glort: base resource tag for this request 365 * @mac: MAC address to add/remove from table 366 * @vid: VLAN ID to add/remove from table 367 * @add: Indicates if this is an add or remove operation 368 * @flags: flags field to indicate add and secure 369 * 370 * This function is used to add or remove unicast addresses for 371 * the PF. 372 **/ 373 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort, 374 const u8 *mac, u16 vid, bool add, u8 flags) 375 { 376 /* verify MAC address is valid */ 377 if (!is_valid_ether_addr(mac)) 378 return FM10K_ERR_PARAM; 379 380 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags); 381 } 382 383 /** 384 * fm10k_update_mc_addr_pf - Update device multicast addresses 385 * @hw: pointer to the HW structure 386 * @glort: base resource tag for this request 387 * @mac: MAC address to add/remove from table 388 * @vid: VLAN ID to add/remove from table 389 * @add: Indicates if this is an add or remove operation 390 * 391 * This function is used to add or remove multicast MAC addresses for 392 * the PF. 393 **/ 394 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort, 395 const u8 *mac, u16 vid, bool add) 396 { 397 /* verify multicast address is valid */ 398 if (!is_multicast_ether_addr(mac)) 399 return FM10K_ERR_PARAM; 400 401 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0); 402 } 403 404 /** 405 * fm10k_update_xcast_mode_pf - Request update of multicast mode 406 * @hw: pointer to hardware structure 407 * @glort: base resource tag for this request 408 * @mode: integer value indicating mode being requested 409 * 410 * This function will attempt to request a higher mode for the port 411 * so that it can enable either multicast, multicast promiscuous, or 412 * promiscuous mode of operation. 413 **/ 414 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode) 415 { 416 struct fm10k_mbx_info *mbx = &hw->mbx; 417 u32 msg[3], xcast_mode; 418 419 if (mode > FM10K_XCAST_MODE_NONE) 420 return FM10K_ERR_PARAM; 421 /* if glort is not valid return error */ 422 if (!fm10k_glort_valid_pf(hw, glort)) 423 return FM10K_ERR_PARAM; 424 425 /* write xcast mode as a single u32 value, 426 * lower 16 bits: glort 427 * upper 16 bits: mode 428 */ 429 xcast_mode = ((u32)mode << 16) | glort; 430 431 /* generate message requesting to change xcast mode */ 432 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES); 433 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode); 434 435 /* load onto outgoing mailbox */ 436 return mbx->ops.enqueue_tx(hw, mbx, msg); 437 } 438 439 /** 440 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list 441 * @hw: pointer to hardware structure 442 * 443 * This function walks through the MSI-X vector table to determine the 444 * number of active interrupts and based on that information updates the 445 * interrupt moderator linked list. 446 **/ 447 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw) 448 { 449 u32 i; 450 451 /* Disable interrupt moderator */ 452 fm10k_write_reg(hw, FM10K_INT_CTRL, 0); 453 454 /* loop through PF from last to first looking enabled vectors */ 455 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) { 456 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) 457 break; 458 } 459 460 /* always reset VFITR2[0] to point to last enabled PF vector*/ 461 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i); 462 463 /* reset ITR2[0] to point to last enabled PF vector */ 464 if (!hw->iov.num_vfs) 465 fm10k_write_reg(hw, FM10K_ITR2(0), i); 466 467 /* Enable interrupt moderator */ 468 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); 469 } 470 471 /** 472 * fm10k_update_lport_state_pf - Notify the switch of a change in port state 473 * @hw: pointer to the HW structure 474 * @glort: base resource tag for this request 475 * @count: number of logical ports being updated 476 * @enable: boolean value indicating enable or disable 477 * 478 * This function is used to add/remove a logical port from the switch. 479 **/ 480 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort, 481 u16 count, bool enable) 482 { 483 struct fm10k_mbx_info *mbx = &hw->mbx; 484 u32 msg[3], lport_msg; 485 486 /* do nothing if we are being asked to create or destroy 0 ports */ 487 if (!count) 488 return 0; 489 490 /* if glort is not valid return error */ 491 if (!fm10k_glort_valid_pf(hw, glort)) 492 return FM10K_ERR_PARAM; 493 494 /* construct the lport message from the 2 pieces of data we have */ 495 lport_msg = ((u32)count << 16) | glort; 496 497 /* generate lport create/delete message */ 498 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE : 499 FM10K_PF_MSG_ID_LPORT_DELETE); 500 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg); 501 502 /* load onto outgoing mailbox */ 503 return mbx->ops.enqueue_tx(hw, mbx, msg); 504 } 505 506 /** 507 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues 508 * @hw: pointer to hardware structure 509 * @dglort: pointer to dglort configuration structure 510 * 511 * Reads the configuration structure contained in dglort_cfg and uses 512 * that information to then populate a DGLORTMAP/DEC entry and the queues 513 * to which it has been assigned. 514 **/ 515 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw, 516 struct fm10k_dglort_cfg *dglort) 517 { 518 u16 glort, queue_count, vsi_count, pc_count; 519 u16 vsi, queue, pc, q_idx; 520 u32 txqctl, dglortdec, dglortmap; 521 522 /* verify the dglort pointer */ 523 if (!dglort) 524 return FM10K_ERR_PARAM; 525 526 /* verify the dglort values */ 527 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) || 528 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) || 529 (dglort->queue_l > 8) || (dglort->queue_b >= 256)) 530 return FM10K_ERR_PARAM; 531 532 /* determine count of VSIs and queues */ 533 queue_count = 1 << (dglort->rss_l + dglort->pc_l); 534 vsi_count = 1 << (dglort->vsi_l + dglort->queue_l); 535 glort = dglort->glort; 536 q_idx = dglort->queue_b; 537 538 /* configure SGLORT for queues */ 539 for (vsi = 0; vsi < vsi_count; vsi++, glort++) { 540 for (queue = 0; queue < queue_count; queue++, q_idx++) { 541 if (q_idx >= FM10K_MAX_QUEUES) 542 break; 543 544 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort); 545 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort); 546 } 547 } 548 549 /* determine count of PCs and queues */ 550 queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l); 551 pc_count = 1 << dglort->pc_l; 552 553 /* configure PC for Tx queues */ 554 for (pc = 0; pc < pc_count; pc++) { 555 q_idx = pc + dglort->queue_b; 556 for (queue = 0; queue < queue_count; queue++) { 557 if (q_idx >= FM10K_MAX_QUEUES) 558 break; 559 560 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx)); 561 txqctl &= ~FM10K_TXQCTL_PC_MASK; 562 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT; 563 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl); 564 565 q_idx += pc_count; 566 } 567 } 568 569 /* configure DGLORTDEC */ 570 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) | 571 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) | 572 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) | 573 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) | 574 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) | 575 ((u32)(dglort->queue_l)); 576 if (dglort->inner_rss) 577 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE; 578 579 /* configure DGLORTMAP */ 580 dglortmap = (dglort->idx == fm10k_dglort_default) ? 581 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO; 582 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l; 583 dglortmap |= dglort->glort; 584 585 /* write values to hardware */ 586 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec); 587 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap); 588 589 return 0; 590 } 591 592 u16 fm10k_queues_per_pool(struct fm10k_hw *hw) 593 { 594 u16 num_pools = hw->iov.num_pools; 595 596 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ? 597 8 : FM10K_MAX_QUEUES_POOL; 598 } 599 600 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx) 601 { 602 u16 num_vfs = hw->iov.num_vfs; 603 u16 vf_q_idx = FM10K_MAX_QUEUES; 604 605 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx); 606 607 return vf_q_idx; 608 } 609 610 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw) 611 { 612 u16 num_pools = hw->iov.num_pools; 613 614 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 : 615 FM10K_MAX_VECTORS_POOL; 616 } 617 618 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx) 619 { 620 u16 vf_v_idx = FM10K_MAX_VECTORS_PF; 621 622 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx; 623 624 return vf_v_idx; 625 } 626 627 /** 628 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization 629 * @hw: pointer to the HW structure 630 * @num_vfs: number of VFs to be allocated 631 * @num_pools: number of virtualization pools to be allocated 632 * 633 * Allocates queues and traffic classes to virtualization entities to prepare 634 * the PF for SR-IOV and VMDq 635 **/ 636 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs, 637 u16 num_pools) 638 { 639 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx; 640 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT; 641 int i, j; 642 643 /* hardware only supports up to 64 pools */ 644 if (num_pools > 64) 645 return FM10K_ERR_PARAM; 646 647 /* the number of VFs cannot exceed the number of pools */ 648 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs)) 649 return FM10K_ERR_PARAM; 650 651 /* record number of virtualization entities */ 652 hw->iov.num_vfs = num_vfs; 653 hw->iov.num_pools = num_pools; 654 655 /* determine qmap offsets and counts */ 656 qmap_stride = (num_vfs > 8) ? 32 : 256; 657 qpp = fm10k_queues_per_pool(hw); 658 vpp = fm10k_vectors_per_pool(hw); 659 660 /* calculate starting index for queues */ 661 vf_q_idx = fm10k_vf_queue_index(hw, 0); 662 qmap_idx = 0; 663 664 /* establish TCs with -1 credits and no quanta to prevent transmit */ 665 for (i = 0; i < num_vfs; i++) { 666 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0); 667 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0); 668 fm10k_write_reg(hw, FM10K_TC_CREDIT(i), 669 FM10K_TC_CREDIT_CREDIT_MASK); 670 } 671 672 /* zero out all mbmem registers */ 673 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;) 674 fm10k_write_reg(hw, FM10K_MBMEM(i), 0); 675 676 /* clear event notification of VF FLR */ 677 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0); 678 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0); 679 680 /* loop through unallocated rings assigning them back to PF */ 681 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) { 682 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); 683 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF | vid); 684 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF); 685 } 686 687 /* PF should have already updated VFITR2[0] */ 688 689 /* update all ITR registers to flow to VFITR2[0] */ 690 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) { 691 if (!(i & (vpp - 1))) 692 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp); 693 else 694 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); 695 } 696 697 /* update PF ITR2[0] to reference the last vector */ 698 fm10k_write_reg(hw, FM10K_ITR2(0), 699 fm10k_vf_vector_index(hw, num_vfs - 1)); 700 701 /* loop through rings populating rings and TCs */ 702 for (i = 0; i < num_vfs; i++) { 703 /* record index for VF queue 0 for use in end of loop */ 704 vf_q_idx0 = vf_q_idx; 705 706 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) { 707 /* assign VF and locked TC to queues */ 708 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); 709 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx), 710 (i << FM10K_TXQCTL_TC_SHIFT) | i | 711 FM10K_TXQCTL_VF | vid); 712 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx), 713 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | 714 FM10K_RXDCTL_DROP_ON_EMPTY); 715 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx), 716 FM10K_RXQCTL_VF | 717 (i << FM10K_RXQCTL_VF_SHIFT)); 718 719 /* map queue pair to VF */ 720 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); 721 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx); 722 } 723 724 /* repeat the first ring for all of the remaining VF rings */ 725 for (; j < qmap_stride; j++, qmap_idx++) { 726 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0); 727 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0); 728 } 729 } 730 731 /* loop through remaining indexes assigning all to queue 0 */ 732 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) { 733 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); 734 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0); 735 qmap_idx++; 736 } 737 738 return 0; 739 } 740 741 /** 742 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF 743 * @hw: pointer to the HW structure 744 * @vf_idx: index of VF receiving GLORT 745 * @rate: Rate indicated in Mb/s 746 * 747 * Configured the TC for a given VF to allow only up to a given number 748 * of Mb/s of outgoing Tx throughput. 749 **/ 750 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate) 751 { 752 /* configure defaults */ 753 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3; 754 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK; 755 756 /* verify vf is in range */ 757 if (vf_idx >= hw->iov.num_vfs) 758 return FM10K_ERR_PARAM; 759 760 /* set interval to align with 4.096 usec in all modes */ 761 switch (hw->bus.speed) { 762 case fm10k_bus_speed_2500: 763 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1; 764 break; 765 case fm10k_bus_speed_5000: 766 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2; 767 break; 768 default: 769 break; 770 } 771 772 if (rate) { 773 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN) 774 return FM10K_ERR_PARAM; 775 776 /* The quanta is measured in Bytes per 4.096 or 8.192 usec 777 * The rate is provided in Mbits per second 778 * To tralslate from rate to quanta we need to multiply the 779 * rate by 8.192 usec and divide by 8 bits/byte. To avoid 780 * dealing with floating point we can round the values up 781 * to the nearest whole number ratio which gives us 128 / 125. 782 */ 783 tc_rate = (rate * 128) / 125; 784 785 /* try to keep the rate limiting accurate by increasing 786 * the number of credits and interval for rates less than 4Gb/s 787 */ 788 if (rate < 4000) 789 interval <<= 1; 790 else 791 tc_rate >>= 1; 792 } 793 794 /* update rate limiter with new values */ 795 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval); 796 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); 797 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); 798 799 return 0; 800 } 801 802 /** 803 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list 804 * @hw: pointer to the HW structure 805 * @vf_idx: index of VF receiving GLORT 806 * 807 * Update the interrupt moderator linked list to include any MSI-X 808 * interrupts which the VF has enabled in the MSI-X vector table. 809 **/ 810 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx) 811 { 812 u16 vf_v_idx, vf_v_limit, i; 813 814 /* verify vf is in range */ 815 if (vf_idx >= hw->iov.num_vfs) 816 return FM10K_ERR_PARAM; 817 818 /* determine vector offset and count*/ 819 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); 820 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); 821 822 /* search for first vector that is not masked */ 823 for (i = vf_v_limit - 1; i > vf_v_idx; i--) { 824 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) 825 break; 826 } 827 828 /* reset linked list so it now includes our active vectors */ 829 if (vf_idx == (hw->iov.num_vfs - 1)) 830 fm10k_write_reg(hw, FM10K_ITR2(0), i); 831 else 832 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i); 833 834 return 0; 835 } 836 837 /** 838 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF 839 * @hw: pointer to the HW structure 840 * @vf_info: pointer to VF information structure 841 * 842 * Assign a MAC address and default VLAN to a VF and notify it of the update 843 **/ 844 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw, 845 struct fm10k_vf_info *vf_info) 846 { 847 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i; 848 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0; 849 s32 err = 0; 850 u16 vf_idx, vf_vid; 851 852 /* verify vf is in range */ 853 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs) 854 return FM10K_ERR_PARAM; 855 856 /* determine qmap offsets and counts */ 857 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; 858 queues_per_pool = fm10k_queues_per_pool(hw); 859 860 /* calculate starting index for queues */ 861 vf_idx = vf_info->vf_idx; 862 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); 863 qmap_idx = qmap_stride * vf_idx; 864 865 /* MAP Tx queue back to 0 temporarily, and disable it */ 866 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); 867 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); 868 869 /* determine correct default VLAN ID */ 870 if (vf_info->pf_vid) 871 vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR; 872 else 873 vf_vid = vf_info->sw_vid; 874 875 /* generate MAC_ADDR request */ 876 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN); 877 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC, 878 vf_info->mac, vf_vid); 879 880 /* load onto outgoing mailbox, ignore any errors on enqueue */ 881 if (vf_info->mbx.ops.enqueue_tx) 882 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 883 884 /* verify ring has disabled before modifying base address registers */ 885 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); 886 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) { 887 /* limit ourselves to a 1ms timeout */ 888 if (timeout == 10) { 889 err = FM10K_ERR_DMA_PENDING; 890 goto err_out; 891 } 892 893 usleep_range(100, 200); 894 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); 895 } 896 897 /* Update base address registers to contain MAC address */ 898 if (is_valid_ether_addr(vf_info->mac)) { 899 tdbal = (((u32)vf_info->mac[3]) << 24) | 900 (((u32)vf_info->mac[4]) << 16) | 901 (((u32)vf_info->mac[5]) << 8); 902 903 tdbah = (((u32)0xFF) << 24) | 904 (((u32)vf_info->mac[0]) << 16) | 905 (((u32)vf_info->mac[1]) << 8) | 906 ((u32)vf_info->mac[2]); 907 } 908 909 /* Record the base address into queue 0 */ 910 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal); 911 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah); 912 913 err_out: 914 /* configure Queue control register */ 915 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) & 916 FM10K_TXQCTL_VID_MASK; 917 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) | 918 FM10K_TXQCTL_VF | vf_idx; 919 920 /* assign VID */ 921 for (i = 0; i < queues_per_pool; i++) 922 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl); 923 924 /* restore the queue back to VF ownership */ 925 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); 926 return err; 927 } 928 929 /** 930 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF 931 * @hw: pointer to the HW structure 932 * @vf_info: pointer to VF information structure 933 * 934 * Reassign the interrupts and queues to a VF following an FLR 935 **/ 936 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw, 937 struct fm10k_vf_info *vf_info) 938 { 939 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx; 940 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl; 941 u16 vf_v_idx, vf_v_limit, vf_vid; 942 u8 vf_idx = vf_info->vf_idx; 943 int i; 944 945 /* verify vf is in range */ 946 if (vf_idx >= hw->iov.num_vfs) 947 return FM10K_ERR_PARAM; 948 949 /* clear event notification of VF FLR */ 950 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32)); 951 952 /* force timeout and then disconnect the mailbox */ 953 vf_info->mbx.timeout = 0; 954 if (vf_info->mbx.ops.disconnect) 955 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx); 956 957 /* determine vector offset and count*/ 958 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); 959 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); 960 961 /* determine qmap offsets and counts */ 962 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; 963 queues_per_pool = fm10k_queues_per_pool(hw); 964 qmap_idx = qmap_stride * vf_idx; 965 966 /* make all the queues inaccessible to the VF */ 967 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) { 968 fm10k_write_reg(hw, FM10K_TQMAP(i), 0); 969 fm10k_write_reg(hw, FM10K_RQMAP(i), 0); 970 } 971 972 /* calculate starting index for queues */ 973 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); 974 975 /* determine correct default VLAN ID */ 976 if (vf_info->pf_vid) 977 vf_vid = vf_info->pf_vid; 978 else 979 vf_vid = vf_info->sw_vid; 980 981 /* configure Queue control register */ 982 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) | 983 (vf_idx << FM10K_TXQCTL_TC_SHIFT) | 984 FM10K_TXQCTL_VF | vf_idx; 985 rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT); 986 987 /* stop further DMA and reset queue ownership back to VF */ 988 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) { 989 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); 990 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); 991 fm10k_write_reg(hw, FM10K_RXDCTL(i), 992 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | 993 FM10K_RXDCTL_DROP_ON_EMPTY); 994 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl); 995 } 996 997 /* reset TC with -1 credits and no quanta to prevent transmit */ 998 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0); 999 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0); 1000 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), 1001 FM10K_TC_CREDIT_CREDIT_MASK); 1002 1003 /* update our first entry in the table based on previous VF */ 1004 if (!vf_idx) 1005 hw->mac.ops.update_int_moderator(hw); 1006 else 1007 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1); 1008 1009 /* reset linked list so it now includes our active vectors */ 1010 if (vf_idx == (hw->iov.num_vfs - 1)) 1011 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx); 1012 else 1013 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx); 1014 1015 /* link remaining vectors so that next points to previous */ 1016 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++) 1017 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1); 1018 1019 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */ 1020 for (i = FM10K_VFMBMEM_LEN; i--;) 1021 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0); 1022 for (i = FM10K_VLAN_TABLE_SIZE; i--;) 1023 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0); 1024 for (i = FM10K_RETA_SIZE; i--;) 1025 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0); 1026 for (i = FM10K_RSSRK_SIZE; i--;) 1027 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0); 1028 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0); 1029 1030 /* Update base address registers to contain MAC address */ 1031 if (is_valid_ether_addr(vf_info->mac)) { 1032 tdbal = (((u32)vf_info->mac[3]) << 24) | 1033 (((u32)vf_info->mac[4]) << 16) | 1034 (((u32)vf_info->mac[5]) << 8); 1035 tdbah = (((u32)0xFF) << 24) | 1036 (((u32)vf_info->mac[0]) << 16) | 1037 (((u32)vf_info->mac[1]) << 8) | 1038 ((u32)vf_info->mac[2]); 1039 } 1040 1041 /* map queue pairs back to VF from last to first*/ 1042 for (i = queues_per_pool; i--;) { 1043 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal); 1044 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah); 1045 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i); 1046 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i); 1047 } 1048 1049 return 0; 1050 } 1051 1052 /** 1053 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF 1054 * @hw: pointer to hardware structure 1055 * @vf_info: pointer to VF information structure 1056 * @lport_idx: Logical port offset from the hardware glort 1057 * @flags: Set of capability flags to extend port beyond basic functionality 1058 * 1059 * This function allows enabling a VF port by assigning it a GLORT and 1060 * setting the flags so that it can enable an Rx mode. 1061 **/ 1062 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw, 1063 struct fm10k_vf_info *vf_info, 1064 u16 lport_idx, u8 flags) 1065 { 1066 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE; 1067 1068 /* if glort is not valid return error */ 1069 if (!fm10k_glort_valid_pf(hw, glort)) 1070 return FM10K_ERR_PARAM; 1071 1072 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE; 1073 vf_info->glort = glort; 1074 1075 return 0; 1076 } 1077 1078 /** 1079 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF 1080 * @hw: pointer to hardware structure 1081 * @vf_info: pointer to VF information structure 1082 * 1083 * This function disables a VF port by stripping it of a GLORT and 1084 * setting the flags so that it cannot enable any Rx mode. 1085 **/ 1086 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw, 1087 struct fm10k_vf_info *vf_info) 1088 { 1089 u32 msg[1]; 1090 1091 /* need to disable the port if it is already enabled */ 1092 if (FM10K_VF_FLAG_ENABLED(vf_info)) { 1093 /* notify switch that this port has been disabled */ 1094 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false); 1095 1096 /* generate port state response to notify VF it is not ready */ 1097 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); 1098 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 1099 } 1100 1101 /* clear flags and glort if it exists */ 1102 vf_info->vf_flags = 0; 1103 vf_info->glort = 0; 1104 } 1105 1106 /** 1107 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs 1108 * @hw: pointer to hardware structure 1109 * @q: stats for all queues of a VF 1110 * @vf_idx: index of VF 1111 * 1112 * This function collects queue stats for VFs. 1113 **/ 1114 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw, 1115 struct fm10k_hw_stats_q *q, 1116 u16 vf_idx) 1117 { 1118 u32 idx, qpp; 1119 1120 /* get stats for all of the queues */ 1121 qpp = fm10k_queues_per_pool(hw); 1122 idx = fm10k_vf_queue_index(hw, vf_idx); 1123 fm10k_update_hw_stats_q(hw, q, idx, qpp); 1124 } 1125 1126 static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw, 1127 struct fm10k_vf_info *vf_info, 1128 u64 timestamp) 1129 { 1130 u32 msg[4]; 1131 1132 /* generate port state response to notify VF it is not ready */ 1133 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588); 1134 fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp); 1135 1136 return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 1137 } 1138 1139 /** 1140 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF 1141 * @hw: Pointer to hardware structure 1142 * @results: Pointer array to message, results[0] is pointer to message 1143 * @mbx: Pointer to mailbox information structure 1144 * 1145 * This function is a default handler for MSI-X requests from the VF. The 1146 * assumption is that in this case it is acceptable to just directly 1147 * hand off the message form the VF to the underlying shared code. 1148 **/ 1149 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results, 1150 struct fm10k_mbx_info *mbx) 1151 { 1152 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1153 u8 vf_idx = vf_info->vf_idx; 1154 1155 return hw->iov.ops.assign_int_moderator(hw, vf_idx); 1156 } 1157 1158 /** 1159 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF 1160 * @hw: Pointer to hardware structure 1161 * @results: Pointer array to message, results[0] is pointer to message 1162 * @mbx: Pointer to mailbox information structure 1163 * 1164 * This function is a default handler for MAC/VLAN requests from the VF. 1165 * The assumption is that in this case it is acceptable to just directly 1166 * hand off the message form the VF to the underlying shared code. 1167 **/ 1168 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results, 1169 struct fm10k_mbx_info *mbx) 1170 { 1171 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1172 int err = 0; 1173 u8 mac[ETH_ALEN]; 1174 u32 *result; 1175 u16 vlan; 1176 u32 vid; 1177 1178 /* we shouldn't be updating rules on a disabled interface */ 1179 if (!FM10K_VF_FLAG_ENABLED(vf_info)) 1180 err = FM10K_ERR_PARAM; 1181 1182 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) { 1183 result = results[FM10K_MAC_VLAN_MSG_VLAN]; 1184 1185 /* record VLAN id requested */ 1186 err = fm10k_tlv_attr_get_u32(result, &vid); 1187 if (err) 1188 return err; 1189 1190 /* if VLAN ID is 0, set the default VLAN ID instead of 0 */ 1191 if (!vid || (vid == FM10K_VLAN_CLEAR)) { 1192 if (vf_info->pf_vid) 1193 vid |= vf_info->pf_vid; 1194 else 1195 vid |= vf_info->sw_vid; 1196 } else if (vid != vf_info->pf_vid) { 1197 return FM10K_ERR_PARAM; 1198 } 1199 1200 /* update VSI info for VF in regards to VLAN table */ 1201 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, 1202 !(vid & FM10K_VLAN_CLEAR)); 1203 } 1204 1205 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) { 1206 result = results[FM10K_MAC_VLAN_MSG_MAC]; 1207 1208 /* record unicast MAC address requested */ 1209 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); 1210 if (err) 1211 return err; 1212 1213 /* block attempts to set MAC for a locked device */ 1214 if (is_valid_ether_addr(vf_info->mac) && 1215 memcmp(mac, vf_info->mac, ETH_ALEN)) 1216 return FM10K_ERR_PARAM; 1217 1218 /* if VLAN ID is 0, set the default VLAN ID instead of 0 */ 1219 if (!vlan || (vlan == FM10K_VLAN_CLEAR)) { 1220 if (vf_info->pf_vid) 1221 vlan |= vf_info->pf_vid; 1222 else 1223 vlan |= vf_info->sw_vid; 1224 } else if (vf_info->pf_vid) { 1225 return FM10K_ERR_PARAM; 1226 } 1227 1228 /* notify switch of request for new unicast address */ 1229 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, mac, vlan, 1230 !(vlan & FM10K_VLAN_CLEAR), 0); 1231 } 1232 1233 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) { 1234 result = results[FM10K_MAC_VLAN_MSG_MULTICAST]; 1235 1236 /* record multicast MAC address requested */ 1237 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); 1238 if (err) 1239 return err; 1240 1241 /* verify that the VF is allowed to request multicast */ 1242 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED)) 1243 return FM10K_ERR_PARAM; 1244 1245 /* if VLAN ID is 0, set the default VLAN ID instead of 0 */ 1246 if (!vlan || (vlan == FM10K_VLAN_CLEAR)) { 1247 if (vf_info->pf_vid) 1248 vlan |= vf_info->pf_vid; 1249 else 1250 vlan |= vf_info->sw_vid; 1251 } else if (vf_info->pf_vid) { 1252 return FM10K_ERR_PARAM; 1253 } 1254 1255 /* notify switch of request for new multicast address */ 1256 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, mac, 1257 !(vlan & FM10K_VLAN_CLEAR), 0); 1258 } 1259 1260 return err; 1261 } 1262 1263 /** 1264 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode 1265 * @vf_info: VF info structure containing capability flags 1266 * @mode: Requested xcast mode 1267 * 1268 * This function outputs the mode that most closely matches the requested 1269 * mode. If not modes match it will request we disable the port 1270 **/ 1271 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info, 1272 u8 mode) 1273 { 1274 u8 vf_flags = vf_info->vf_flags; 1275 1276 /* match up mode to capabilities as best as possible */ 1277 switch (mode) { 1278 case FM10K_XCAST_MODE_PROMISC: 1279 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE) 1280 return FM10K_XCAST_MODE_PROMISC; 1281 /* fallthough */ 1282 case FM10K_XCAST_MODE_ALLMULTI: 1283 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE) 1284 return FM10K_XCAST_MODE_ALLMULTI; 1285 /* fallthough */ 1286 case FM10K_XCAST_MODE_MULTI: 1287 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE) 1288 return FM10K_XCAST_MODE_MULTI; 1289 /* fallthough */ 1290 case FM10K_XCAST_MODE_NONE: 1291 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE) 1292 return FM10K_XCAST_MODE_NONE; 1293 /* fallthough */ 1294 default: 1295 break; 1296 } 1297 1298 /* disable interface as it should not be able to request any */ 1299 return FM10K_XCAST_MODE_DISABLE; 1300 } 1301 1302 /** 1303 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests 1304 * @hw: Pointer to hardware structure 1305 * @results: Pointer array to message, results[0] is pointer to message 1306 * @mbx: Pointer to mailbox information structure 1307 * 1308 * This function is a default handler for port state requests. The port 1309 * state requests for now are basic and consist of enabling or disabling 1310 * the port. 1311 **/ 1312 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results, 1313 struct fm10k_mbx_info *mbx) 1314 { 1315 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1316 u32 *result; 1317 s32 err = 0; 1318 u32 msg[2]; 1319 u8 mode = 0; 1320 1321 /* verify VF is allowed to enable even minimal mode */ 1322 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)) 1323 return FM10K_ERR_PARAM; 1324 1325 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) { 1326 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE]; 1327 1328 /* XCAST mode update requested */ 1329 err = fm10k_tlv_attr_get_u8(result, &mode); 1330 if (err) 1331 return FM10K_ERR_PARAM; 1332 1333 /* prep for possible demotion depending on capabilities */ 1334 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode); 1335 1336 /* if mode is not currently enabled, enable it */ 1337 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode))) 1338 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode); 1339 1340 /* swap mode back to a bit flag */ 1341 mode = FM10K_VF_FLAG_SET_MODE(mode); 1342 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) { 1343 /* need to disable the port if it is already enabled */ 1344 if (FM10K_VF_FLAG_ENABLED(vf_info)) 1345 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1346 1, false); 1347 1348 /* when enabling the port we should reset the rate limiters */ 1349 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate); 1350 1351 /* set mode for minimal functionality */ 1352 mode = FM10K_VF_FLAG_SET_MODE_NONE; 1353 1354 /* generate port state response to notify VF it is ready */ 1355 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); 1356 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY); 1357 mbx->ops.enqueue_tx(hw, mbx, msg); 1358 } 1359 1360 /* if enable state toggled note the update */ 1361 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode)) 1362 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1, 1363 !!mode); 1364 1365 /* if state change succeeded, then update our stored state */ 1366 mode |= FM10K_VF_FLAG_CAPABLE(vf_info); 1367 if (!err) 1368 vf_info->vf_flags = mode; 1369 1370 return err; 1371 } 1372 1373 const struct fm10k_msg_data fm10k_iov_msg_data_pf[] = { 1374 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test), 1375 FM10K_VF_MSG_MSIX_HANDLER(fm10k_iov_msg_msix_pf), 1376 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_iov_msg_mac_vlan_pf), 1377 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_iov_msg_lport_state_pf), 1378 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error), 1379 }; 1380 1381 /** 1382 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF 1383 * @hw: pointer to hardware structure 1384 * @stats: pointer to the stats structure to update 1385 * 1386 * This function collects and aggregates global and per queue hardware 1387 * statistics. 1388 **/ 1389 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw, 1390 struct fm10k_hw_stats *stats) 1391 { 1392 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop; 1393 u32 id, id_prev; 1394 1395 /* Use Tx queue 0 as a canary to detect a reset */ 1396 id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); 1397 1398 /* Read Global Statistics */ 1399 do { 1400 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT, 1401 &stats->timeout); 1402 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur); 1403 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca); 1404 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um); 1405 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec); 1406 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP, 1407 &stats->vlan_drop); 1408 loopback_drop = fm10k_read_hw_stats_32b(hw, 1409 FM10K_STATS_LOOPBACK_DROP, 1410 &stats->loopback_drop); 1411 nodesc_drop = fm10k_read_hw_stats_32b(hw, 1412 FM10K_STATS_NODESC_DROP, 1413 &stats->nodesc_drop); 1414 1415 /* if value has not changed then we have consistent data */ 1416 id_prev = id; 1417 id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); 1418 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK); 1419 1420 /* drop non-ID bits and set VALID ID bit */ 1421 id &= FM10K_TXQCTL_ID_MASK; 1422 id |= FM10K_STAT_VALID; 1423 1424 /* Update Global Statistics */ 1425 if (stats->stats_idx == id) { 1426 stats->timeout.count += timeout; 1427 stats->ur.count += ur; 1428 stats->ca.count += ca; 1429 stats->um.count += um; 1430 stats->xec.count += xec; 1431 stats->vlan_drop.count += vlan_drop; 1432 stats->loopback_drop.count += loopback_drop; 1433 stats->nodesc_drop.count += nodesc_drop; 1434 } 1435 1436 /* Update bases and record current PF id */ 1437 fm10k_update_hw_base_32b(&stats->timeout, timeout); 1438 fm10k_update_hw_base_32b(&stats->ur, ur); 1439 fm10k_update_hw_base_32b(&stats->ca, ca); 1440 fm10k_update_hw_base_32b(&stats->um, um); 1441 fm10k_update_hw_base_32b(&stats->xec, xec); 1442 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop); 1443 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop); 1444 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop); 1445 stats->stats_idx = id; 1446 1447 /* Update Queue Statistics */ 1448 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues); 1449 } 1450 1451 /** 1452 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF 1453 * @hw: pointer to hardware structure 1454 * @stats: pointer to the stats structure to update 1455 * 1456 * This function resets the base for global and per queue hardware 1457 * statistics. 1458 **/ 1459 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw, 1460 struct fm10k_hw_stats *stats) 1461 { 1462 /* Unbind Global Statistics */ 1463 fm10k_unbind_hw_stats_32b(&stats->timeout); 1464 fm10k_unbind_hw_stats_32b(&stats->ur); 1465 fm10k_unbind_hw_stats_32b(&stats->ca); 1466 fm10k_unbind_hw_stats_32b(&stats->um); 1467 fm10k_unbind_hw_stats_32b(&stats->xec); 1468 fm10k_unbind_hw_stats_32b(&stats->vlan_drop); 1469 fm10k_unbind_hw_stats_32b(&stats->loopback_drop); 1470 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop); 1471 1472 /* Unbind Queue Statistics */ 1473 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues); 1474 1475 /* Reinitialize bases for all stats */ 1476 fm10k_update_hw_stats_pf(hw, stats); 1477 } 1478 1479 /** 1480 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system 1481 * @hw: pointer to hardware structure 1482 * @dma_mask: 64 bit DMA mask required for platform 1483 * 1484 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order 1485 * to limit the access to memory beyond what is physically in the system. 1486 **/ 1487 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask) 1488 { 1489 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */ 1490 u32 phyaddr = (u32)(dma_mask >> 32); 1491 1492 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr); 1493 } 1494 1495 /** 1496 * fm10k_get_fault_pf - Record a fault in one of the interface units 1497 * @hw: pointer to hardware structure 1498 * @type: pointer to fault type register offset 1499 * @fault: pointer to memory location to record the fault 1500 * 1501 * Record the fault register contents to the fault data structure and 1502 * clear the entry from the register. 1503 * 1504 * Returns ERR_PARAM if invalid register is specified or no error is present. 1505 **/ 1506 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type, 1507 struct fm10k_fault *fault) 1508 { 1509 u32 func; 1510 1511 /* verify the fault register is in range and is aligned */ 1512 switch (type) { 1513 case FM10K_PCA_FAULT: 1514 case FM10K_THI_FAULT: 1515 case FM10K_FUM_FAULT: 1516 break; 1517 default: 1518 return FM10K_ERR_PARAM; 1519 } 1520 1521 /* only service faults that are valid */ 1522 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC); 1523 if (!(func & FM10K_FAULT_FUNC_VALID)) 1524 return FM10K_ERR_PARAM; 1525 1526 /* read remaining fields */ 1527 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI); 1528 fault->address <<= 32; 1529 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO); 1530 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO); 1531 1532 /* clear valid bit to allow for next error */ 1533 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID); 1534 1535 /* Record which function triggered the error */ 1536 if (func & FM10K_FAULT_FUNC_PF) 1537 fault->func = 0; 1538 else 1539 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >> 1540 FM10K_FAULT_FUNC_VF_SHIFT); 1541 1542 /* record fault type */ 1543 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK; 1544 1545 return 0; 1546 } 1547 1548 /** 1549 * fm10k_request_lport_map_pf - Request LPORT map from the switch API 1550 * @hw: pointer to hardware structure 1551 * 1552 **/ 1553 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw) 1554 { 1555 struct fm10k_mbx_info *mbx = &hw->mbx; 1556 u32 msg[1]; 1557 1558 /* issue request asking for LPORT map */ 1559 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP); 1560 1561 /* load onto outgoing mailbox */ 1562 return mbx->ops.enqueue_tx(hw, mbx, msg); 1563 } 1564 1565 /** 1566 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox 1567 * @hw: pointer to hardware structure 1568 * @switch_ready: pointer to boolean value that will record switch state 1569 * 1570 * This funciton will check the DMA_CTRL2 register and mailbox in order 1571 * to determine if the switch is ready for the PF to begin requesting 1572 * addresses and mapping traffic to the local interface. 1573 **/ 1574 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready) 1575 { 1576 s32 ret_val = 0; 1577 u32 dma_ctrl2; 1578 1579 /* verify the switch is ready for interraction */ 1580 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2); 1581 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY)) 1582 goto out; 1583 1584 /* retrieve generic host state info */ 1585 ret_val = fm10k_get_host_state_generic(hw, switch_ready); 1586 if (ret_val) 1587 goto out; 1588 1589 /* interface cannot receive traffic without logical ports */ 1590 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE) 1591 ret_val = fm10k_request_lport_map_pf(hw); 1592 1593 out: 1594 return ret_val; 1595 } 1596 1597 /* This structure defines the attibutes to be parsed below */ 1598 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = { 1599 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP), 1600 FM10K_TLV_ATTR_LAST 1601 }; 1602 1603 /** 1604 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM 1605 * @hw: Pointer to hardware structure 1606 * @results: pointer array containing parsed data 1607 * @mbx: Pointer to mailbox information structure 1608 * 1609 * This handler configures the lport mapping based on the reply from the 1610 * switch API. 1611 **/ 1612 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results, 1613 struct fm10k_mbx_info *mbx) 1614 { 1615 u16 glort, mask; 1616 u32 dglort_map; 1617 s32 err; 1618 1619 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP], 1620 &dglort_map); 1621 if (err) 1622 return err; 1623 1624 /* extract values out of the header */ 1625 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT); 1626 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK); 1627 1628 /* verify mask is set and none of the masked bits in glort are set */ 1629 if (!mask || (glort & ~mask)) 1630 return FM10K_ERR_PARAM; 1631 1632 /* verify the mask is contiguous, and that it is 1's followed by 0's */ 1633 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE) 1634 return FM10K_ERR_PARAM; 1635 1636 /* record the glort, mask, and port count */ 1637 hw->mac.dglort_map = dglort_map; 1638 1639 return 0; 1640 } 1641 1642 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = { 1643 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID), 1644 FM10K_TLV_ATTR_LAST 1645 }; 1646 1647 /** 1648 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM 1649 * @hw: Pointer to hardware structure 1650 * @results: pointer array containing parsed data 1651 * @mbx: Pointer to mailbox information structure 1652 * 1653 * This handler configures the default VLAN for the PF 1654 **/ 1655 s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results, 1656 struct fm10k_mbx_info *mbx) 1657 { 1658 u16 glort, pvid; 1659 u32 pvid_update; 1660 s32 err; 1661 1662 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1663 &pvid_update); 1664 if (err) 1665 return err; 1666 1667 /* extract values from the pvid update */ 1668 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1669 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1670 1671 /* if glort is not valid return error */ 1672 if (!fm10k_glort_valid_pf(hw, glort)) 1673 return FM10K_ERR_PARAM; 1674 1675 /* verify VID is valid */ 1676 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1677 return FM10K_ERR_PARAM; 1678 1679 /* record the port VLAN ID value */ 1680 hw->mac.default_vid = pvid; 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * fm10k_record_global_table_data - Move global table data to swapi table info 1687 * @from: pointer to source table data structure 1688 * @to: pointer to destination table info structure 1689 * 1690 * This function is will copy table_data to the table_info contained in 1691 * the hw struct. 1692 **/ 1693 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from, 1694 struct fm10k_swapi_table_info *to) 1695 { 1696 /* convert from le32 struct to CPU byte ordered values */ 1697 to->used = le32_to_cpu(from->used); 1698 to->avail = le32_to_cpu(from->avail); 1699 } 1700 1701 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = { 1702 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR, 1703 sizeof(struct fm10k_swapi_error)), 1704 FM10K_TLV_ATTR_LAST 1705 }; 1706 1707 /** 1708 * fm10k_msg_err_pf - Message handler for error reply 1709 * @hw: Pointer to hardware structure 1710 * @results: pointer array containing parsed data 1711 * @mbx: Pointer to mailbox information structure 1712 * 1713 * This handler will capture the data for any error replies to previous 1714 * messages that the PF has sent. 1715 **/ 1716 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results, 1717 struct fm10k_mbx_info *mbx) 1718 { 1719 struct fm10k_swapi_error err_msg; 1720 s32 err; 1721 1722 /* extract structure from message */ 1723 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR], 1724 &err_msg, sizeof(err_msg)); 1725 if (err) 1726 return err; 1727 1728 /* record table status */ 1729 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac); 1730 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop); 1731 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu); 1732 1733 /* record SW API status value */ 1734 hw->swapi.status = le32_to_cpu(err_msg.status); 1735 1736 return 0; 1737 } 1738 1739 const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = { 1740 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP, 1741 sizeof(struct fm10k_swapi_1588_timestamp)), 1742 FM10K_TLV_ATTR_LAST 1743 }; 1744 1745 /* currently there is no shared 1588 timestamp handler */ 1746 1747 /** 1748 * fm10k_adjust_systime_pf - Adjust systime frequency 1749 * @hw: pointer to hardware structure 1750 * @ppb: adjustment rate in parts per billion 1751 * 1752 * This function will adjust the SYSTIME_CFG register contained in BAR 4 1753 * if this function is supported for BAR 4 access. The adjustment amount 1754 * is based on the parts per billion value provided and adjusted to a 1755 * value based on parts per 2^48 clock cycles. 1756 * 1757 * If adjustment is not supported or the requested value is too large 1758 * we will return an error. 1759 **/ 1760 static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb) 1761 { 1762 u64 systime_adjust; 1763 1764 /* if sw_addr is not set we don't have switch register access */ 1765 if (!hw->sw_addr) 1766 return ppb ? FM10K_ERR_PARAM : 0; 1767 1768 /* we must convert the value from parts per billion to parts per 1769 * 2^48 cycles. In addition I have opted to only use the 30 most 1770 * significant bits of the adjustment value as the 8 least 1771 * significant bits are located in another register and represent 1772 * a value significantly less than a part per billion, the result 1773 * of dropping the 8 least significant bits is that the adjustment 1774 * value is effectively multiplied by 2^8 when we write it. 1775 * 1776 * As a result of all this the math for this breaks down as follows: 1777 * ppb / 10^9 == adjust * 2^8 / 2^48 1778 * If we solve this for adjust, and simplify it comes out as: 1779 * ppb * 2^31 / 5^9 == adjust 1780 */ 1781 systime_adjust = (ppb < 0) ? -ppb : ppb; 1782 systime_adjust <<= 31; 1783 do_div(systime_adjust, 1953125); 1784 1785 /* verify the requested adjustment value is in range */ 1786 if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK) 1787 return FM10K_ERR_PARAM; 1788 1789 if (ppb < 0) 1790 systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_NEGATIVE; 1791 1792 fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust); 1793 1794 return 0; 1795 } 1796 1797 /** 1798 * fm10k_read_systime_pf - Reads value of systime registers 1799 * @hw: pointer to the hardware structure 1800 * 1801 * Function reads the content of 2 registers, combined to represent a 64 bit 1802 * value measured in nanosecods. In order to guarantee the value is accurate 1803 * we check the 32 most significant bits both before and after reading the 1804 * 32 least significant bits to verify they didn't change as we were reading 1805 * the registers. 1806 **/ 1807 static u64 fm10k_read_systime_pf(struct fm10k_hw *hw) 1808 { 1809 u32 systime_l, systime_h, systime_tmp; 1810 1811 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1); 1812 1813 do { 1814 systime_tmp = systime_h; 1815 systime_l = fm10k_read_reg(hw, FM10K_SYSTIME); 1816 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1); 1817 } while (systime_tmp != systime_h); 1818 1819 return ((u64)systime_h << 32) | systime_l; 1820 } 1821 1822 static const struct fm10k_msg_data fm10k_msg_data_pf[] = { 1823 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1824 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1825 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf), 1826 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1827 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1828 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf), 1829 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error), 1830 }; 1831 1832 static struct fm10k_mac_ops mac_ops_pf = { 1833 .get_bus_info = &fm10k_get_bus_info_generic, 1834 .reset_hw = &fm10k_reset_hw_pf, 1835 .init_hw = &fm10k_init_hw_pf, 1836 .start_hw = &fm10k_start_hw_generic, 1837 .stop_hw = &fm10k_stop_hw_generic, 1838 .is_slot_appropriate = &fm10k_is_slot_appropriate_pf, 1839 .update_vlan = &fm10k_update_vlan_pf, 1840 .read_mac_addr = &fm10k_read_mac_addr_pf, 1841 .update_uc_addr = &fm10k_update_uc_addr_pf, 1842 .update_mc_addr = &fm10k_update_mc_addr_pf, 1843 .update_xcast_mode = &fm10k_update_xcast_mode_pf, 1844 .update_int_moderator = &fm10k_update_int_moderator_pf, 1845 .update_lport_state = &fm10k_update_lport_state_pf, 1846 .update_hw_stats = &fm10k_update_hw_stats_pf, 1847 .rebind_hw_stats = &fm10k_rebind_hw_stats_pf, 1848 .configure_dglort_map = &fm10k_configure_dglort_map_pf, 1849 .set_dma_mask = &fm10k_set_dma_mask_pf, 1850 .get_fault = &fm10k_get_fault_pf, 1851 .get_host_state = &fm10k_get_host_state_pf, 1852 .adjust_systime = &fm10k_adjust_systime_pf, 1853 .read_systime = &fm10k_read_systime_pf, 1854 }; 1855 1856 static struct fm10k_iov_ops iov_ops_pf = { 1857 .assign_resources = &fm10k_iov_assign_resources_pf, 1858 .configure_tc = &fm10k_iov_configure_tc_pf, 1859 .assign_int_moderator = &fm10k_iov_assign_int_moderator_pf, 1860 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf, 1861 .reset_resources = &fm10k_iov_reset_resources_pf, 1862 .set_lport = &fm10k_iov_set_lport_pf, 1863 .reset_lport = &fm10k_iov_reset_lport_pf, 1864 .update_stats = &fm10k_iov_update_stats_pf, 1865 .report_timestamp = &fm10k_iov_report_timestamp_pf, 1866 }; 1867 1868 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw) 1869 { 1870 fm10k_get_invariants_generic(hw); 1871 1872 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf); 1873 } 1874 1875 struct fm10k_info fm10k_pf_info = { 1876 .mac = fm10k_mac_pf, 1877 .get_invariants = &fm10k_get_invariants_pf, 1878 .mac_ops = &mac_ops_pf, 1879 .iov_ops = &iov_ops_pf, 1880 }; 1881