1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2019 Intel Corporation. */ 3 4 #include "fm10k_pf.h" 5 #include "fm10k_vf.h" 6 7 /** 8 * fm10k_reset_hw_pf - PF hardware reset 9 * @hw: pointer to hardware structure 10 * 11 * This function should return the hardware to a state similar to the 12 * one it is in after being powered on. 13 **/ 14 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw) 15 { 16 s32 err; 17 u32 reg; 18 u16 i; 19 20 /* Disable interrupts */ 21 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL)); 22 23 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */ 24 fm10k_write_reg(hw, FM10K_ITR2(0), 0); 25 fm10k_write_reg(hw, FM10K_INT_CTRL, 0); 26 27 /* We assume here Tx and Rx queue 0 are owned by the PF */ 28 29 /* Shut off VF access to their queues forcing them to queue 0 */ 30 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) { 31 fm10k_write_reg(hw, FM10K_TQMAP(i), 0); 32 fm10k_write_reg(hw, FM10K_RQMAP(i), 0); 33 } 34 35 /* shut down all rings */ 36 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES); 37 if (err == FM10K_ERR_REQUESTS_PENDING) { 38 hw->mac.reset_while_pending++; 39 goto force_reset; 40 } else if (err) { 41 return err; 42 } 43 44 /* Verify that DMA is no longer active */ 45 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL); 46 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE)) 47 return FM10K_ERR_DMA_PENDING; 48 49 force_reset: 50 /* Inititate data path reset */ 51 reg = FM10K_DMA_CTRL_DATAPATH_RESET; 52 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg); 53 54 /* Flush write and allow 100us for reset to complete */ 55 fm10k_write_flush(hw); 56 udelay(FM10K_RESET_TIMEOUT); 57 58 /* Verify we made it out of reset */ 59 reg = fm10k_read_reg(hw, FM10K_IP); 60 if (!(reg & FM10K_IP_NOTINRESET)) 61 return FM10K_ERR_RESET_FAILED; 62 63 return 0; 64 } 65 66 /** 67 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support 68 * @hw: pointer to hardware structure 69 * 70 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not. 71 **/ 72 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw) 73 { 74 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL); 75 76 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI); 77 } 78 79 /** 80 * fm10k_init_hw_pf - PF hardware initialization 81 * @hw: pointer to hardware structure 82 * 83 **/ 84 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw) 85 { 86 u32 dma_ctrl, txqctl; 87 u16 i; 88 89 /* Establish default VSI as valid */ 90 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0); 91 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default), 92 FM10K_DGLORTMAP_ANY); 93 94 /* Invalidate all other GLORT entries */ 95 for (i = 1; i < FM10K_DGLORT_COUNT; i++) 96 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE); 97 98 /* reset ITR2(0) to point to itself */ 99 fm10k_write_reg(hw, FM10K_ITR2(0), 0); 100 101 /* reset VF ITR2(0) to point to 0 avoid PF registers */ 102 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0); 103 104 /* loop through all PF ITR2 registers pointing them to the previous */ 105 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++) 106 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); 107 108 /* Enable interrupt moderator if not already enabled */ 109 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); 110 111 /* compute the default txqctl configuration */ 112 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW | 113 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT); 114 115 for (i = 0; i < FM10K_MAX_QUEUES; i++) { 116 /* configure rings for 256 Queue / 32 Descriptor cache mode */ 117 fm10k_write_reg(hw, FM10K_TQDLOC(i), 118 (i * FM10K_TQDLOC_BASE_32_DESC) | 119 FM10K_TQDLOC_SIZE_32_DESC); 120 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); 121 122 /* configure rings to provide TPH processing hints */ 123 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i), 124 FM10K_TPH_TXCTRL_DESC_TPHEN | 125 FM10K_TPH_TXCTRL_DESC_RROEN | 126 FM10K_TPH_TXCTRL_DESC_WROEN | 127 FM10K_TPH_TXCTRL_DATA_RROEN); 128 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i), 129 FM10K_TPH_RXCTRL_DESC_TPHEN | 130 FM10K_TPH_RXCTRL_DESC_RROEN | 131 FM10K_TPH_RXCTRL_DATA_WROEN | 132 FM10K_TPH_RXCTRL_HDR_WROEN); 133 } 134 135 /* set max hold interval to align with 1.024 usec in all modes and 136 * store ITR scale 137 */ 138 switch (hw->bus.speed) { 139 case fm10k_bus_speed_2500: 140 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1; 141 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1; 142 break; 143 case fm10k_bus_speed_5000: 144 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2; 145 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2; 146 break; 147 case fm10k_bus_speed_8000: 148 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3; 149 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3; 150 break; 151 default: 152 dma_ctrl = 0; 153 /* just in case, assume Gen3 ITR scale */ 154 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3; 155 break; 156 } 157 158 /* Configure TSO flags */ 159 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW); 160 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI); 161 162 /* Enable DMA engine 163 * Set Rx Descriptor size to 32 164 * Set Minimum MSS to 64 165 * Set Maximum number of Rx queues to 256 / 32 Descriptor 166 */ 167 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE | 168 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 | 169 FM10K_DMA_CTRL_32_DESC; 170 171 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl); 172 173 /* record maximum queue count, we limit ourselves to 128 */ 174 hw->mac.max_queues = FM10K_MAX_QUEUES_PF; 175 176 /* We support either 64 VFs or 7 VFs depending on if we have ARI */ 177 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7; 178 179 return 0; 180 } 181 182 /** 183 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table 184 * @hw: pointer to hardware structure 185 * @vid: VLAN ID to add to table 186 * @vsi: Index indicating VF ID or PF ID in table 187 * @set: Indicates if this is a set or clear operation 188 * 189 * This function adds or removes the corresponding VLAN ID from the VLAN 190 * filter table for the corresponding function. In addition to the 191 * standard set/clear that supports one bit a multi-bit write is 192 * supported to set 64 bits at a time. 193 **/ 194 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set) 195 { 196 u32 vlan_table, reg, mask, bit, len; 197 198 /* verify the VSI index is valid */ 199 if (vsi > FM10K_VLAN_TABLE_VSI_MAX) 200 return FM10K_ERR_PARAM; 201 202 /* VLAN multi-bit write: 203 * The multi-bit write has several parts to it. 204 * 24 16 8 0 205 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 206 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 207 * | RSVD0 | Length |C|RSVD0| VLAN ID | 208 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 209 * 210 * VLAN ID: Vlan Starting value 211 * RSVD0: Reserved section, must be 0 212 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message) 213 * Length: Number of times to repeat the bit being set 214 */ 215 len = vid >> 16; 216 vid = (vid << 17) >> 17; 217 218 /* verify the reserved 0 fields are 0 */ 219 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX) 220 return FM10K_ERR_PARAM; 221 222 /* Loop through the table updating all required VLANs */ 223 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32; 224 len < FM10K_VLAN_TABLE_VID_MAX; 225 len -= 32 - bit, reg++, bit = 0) { 226 /* record the initial state of the register */ 227 vlan_table = fm10k_read_reg(hw, reg); 228 229 /* truncate mask if we are at the start or end of the run */ 230 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit; 231 232 /* make necessary modifications to the register */ 233 mask &= set ? ~vlan_table : vlan_table; 234 if (mask) 235 fm10k_write_reg(hw, reg, vlan_table ^ mask); 236 } 237 238 return 0; 239 } 240 241 /** 242 * fm10k_read_mac_addr_pf - Read device MAC address 243 * @hw: pointer to the HW structure 244 * 245 * Reads the device MAC address from the SM_AREA and stores the value. 246 **/ 247 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw) 248 { 249 u8 perm_addr[ETH_ALEN]; 250 u32 serial_num; 251 252 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1)); 253 254 /* last byte should be all 1's */ 255 if ((~serial_num) << 24) 256 return FM10K_ERR_INVALID_MAC_ADDR; 257 258 perm_addr[0] = (u8)(serial_num >> 24); 259 perm_addr[1] = (u8)(serial_num >> 16); 260 perm_addr[2] = (u8)(serial_num >> 8); 261 262 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0)); 263 264 /* first byte should be all 1's */ 265 if ((~serial_num) >> 24) 266 return FM10K_ERR_INVALID_MAC_ADDR; 267 268 perm_addr[3] = (u8)(serial_num >> 16); 269 perm_addr[4] = (u8)(serial_num >> 8); 270 perm_addr[5] = (u8)(serial_num); 271 272 ether_addr_copy(hw->mac.perm_addr, perm_addr); 273 ether_addr_copy(hw->mac.addr, perm_addr); 274 275 return 0; 276 } 277 278 /** 279 * fm10k_glort_valid_pf - Validate that the provided glort is valid 280 * @hw: pointer to the HW structure 281 * @glort: base glort to be validated 282 * 283 * This function will return an error if the provided glort is invalid 284 **/ 285 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort) 286 { 287 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT; 288 289 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE); 290 } 291 292 /** 293 * fm10k_update_xc_addr_pf - Update device addresses 294 * @hw: pointer to the HW structure 295 * @glort: base resource tag for this request 296 * @mac: MAC address to add/remove from table 297 * @vid: VLAN ID to add/remove from table 298 * @add: Indicates if this is an add or remove operation 299 * @flags: flags field to indicate add and secure 300 * 301 * This function generates a message to the Switch API requesting 302 * that the given logical port add/remove the given L2 MAC/VLAN address. 303 **/ 304 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort, 305 const u8 *mac, u16 vid, bool add, u8 flags) 306 { 307 struct fm10k_mbx_info *mbx = &hw->mbx; 308 struct fm10k_mac_update mac_update; 309 u32 msg[5]; 310 311 /* clear set bit from VLAN ID */ 312 vid &= ~FM10K_VLAN_CLEAR; 313 314 /* if glort or VLAN are not valid return error */ 315 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX) 316 return FM10K_ERR_PARAM; 317 318 /* record fields */ 319 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) | 320 ((u32)mac[3] << 16) | 321 ((u32)mac[4] << 8) | 322 ((u32)mac[5])); 323 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) | 324 ((u16)mac[1])); 325 mac_update.vlan = cpu_to_le16(vid); 326 mac_update.glort = cpu_to_le16(glort); 327 mac_update.action = add ? 0 : 1; 328 mac_update.flags = flags; 329 330 /* populate mac_update fields */ 331 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE); 332 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE, 333 &mac_update, sizeof(mac_update)); 334 335 /* load onto outgoing mailbox */ 336 return mbx->ops.enqueue_tx(hw, mbx, msg); 337 } 338 339 /** 340 * fm10k_update_uc_addr_pf - Update device unicast addresses 341 * @hw: pointer to the HW structure 342 * @glort: base resource tag for this request 343 * @mac: MAC address to add/remove from table 344 * @vid: VLAN ID to add/remove from table 345 * @add: Indicates if this is an add or remove operation 346 * @flags: flags field to indicate add and secure 347 * 348 * This function is used to add or remove unicast addresses for 349 * the PF. 350 **/ 351 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort, 352 const u8 *mac, u16 vid, bool add, u8 flags) 353 { 354 /* verify MAC address is valid */ 355 if (!is_valid_ether_addr(mac)) 356 return FM10K_ERR_PARAM; 357 358 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags); 359 } 360 361 /** 362 * fm10k_update_mc_addr_pf - Update device multicast addresses 363 * @hw: pointer to the HW structure 364 * @glort: base resource tag for this request 365 * @mac: MAC address to add/remove from table 366 * @vid: VLAN ID to add/remove from table 367 * @add: Indicates if this is an add or remove operation 368 * 369 * This function is used to add or remove multicast MAC addresses for 370 * the PF. 371 **/ 372 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort, 373 const u8 *mac, u16 vid, bool add) 374 { 375 /* verify multicast address is valid */ 376 if (!is_multicast_ether_addr(mac)) 377 return FM10K_ERR_PARAM; 378 379 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0); 380 } 381 382 /** 383 * fm10k_update_xcast_mode_pf - Request update of multicast mode 384 * @hw: pointer to hardware structure 385 * @glort: base resource tag for this request 386 * @mode: integer value indicating mode being requested 387 * 388 * This function will attempt to request a higher mode for the port 389 * so that it can enable either multicast, multicast promiscuous, or 390 * promiscuous mode of operation. 391 **/ 392 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode) 393 { 394 struct fm10k_mbx_info *mbx = &hw->mbx; 395 u32 msg[3], xcast_mode; 396 397 if (mode > FM10K_XCAST_MODE_NONE) 398 return FM10K_ERR_PARAM; 399 400 /* if glort is not valid return error */ 401 if (!fm10k_glort_valid_pf(hw, glort)) 402 return FM10K_ERR_PARAM; 403 404 /* write xcast mode as a single u32 value, 405 * lower 16 bits: glort 406 * upper 16 bits: mode 407 */ 408 xcast_mode = ((u32)mode << 16) | glort; 409 410 /* generate message requesting to change xcast mode */ 411 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES); 412 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode); 413 414 /* load onto outgoing mailbox */ 415 return mbx->ops.enqueue_tx(hw, mbx, msg); 416 } 417 418 /** 419 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list 420 * @hw: pointer to hardware structure 421 * 422 * This function walks through the MSI-X vector table to determine the 423 * number of active interrupts and based on that information updates the 424 * interrupt moderator linked list. 425 **/ 426 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw) 427 { 428 u32 i; 429 430 /* Disable interrupt moderator */ 431 fm10k_write_reg(hw, FM10K_INT_CTRL, 0); 432 433 /* loop through PF from last to first looking enabled vectors */ 434 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) { 435 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) 436 break; 437 } 438 439 /* always reset VFITR2[0] to point to last enabled PF vector */ 440 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i); 441 442 /* reset ITR2[0] to point to last enabled PF vector */ 443 if (!hw->iov.num_vfs) 444 fm10k_write_reg(hw, FM10K_ITR2(0), i); 445 446 /* Enable interrupt moderator */ 447 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); 448 } 449 450 /** 451 * fm10k_update_lport_state_pf - Notify the switch of a change in port state 452 * @hw: pointer to the HW structure 453 * @glort: base resource tag for this request 454 * @count: number of logical ports being updated 455 * @enable: boolean value indicating enable or disable 456 * 457 * This function is used to add/remove a logical port from the switch. 458 **/ 459 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort, 460 u16 count, bool enable) 461 { 462 struct fm10k_mbx_info *mbx = &hw->mbx; 463 u32 msg[3], lport_msg; 464 465 /* do nothing if we are being asked to create or destroy 0 ports */ 466 if (!count) 467 return 0; 468 469 /* if glort is not valid return error */ 470 if (!fm10k_glort_valid_pf(hw, glort)) 471 return FM10K_ERR_PARAM; 472 473 /* reset multicast mode if deleting lport */ 474 if (!enable) 475 fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE); 476 477 /* construct the lport message from the 2 pieces of data we have */ 478 lport_msg = ((u32)count << 16) | glort; 479 480 /* generate lport create/delete message */ 481 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE : 482 FM10K_PF_MSG_ID_LPORT_DELETE); 483 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg); 484 485 /* load onto outgoing mailbox */ 486 return mbx->ops.enqueue_tx(hw, mbx, msg); 487 } 488 489 /** 490 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues 491 * @hw: pointer to hardware structure 492 * @dglort: pointer to dglort configuration structure 493 * 494 * Reads the configuration structure contained in dglort_cfg and uses 495 * that information to then populate a DGLORTMAP/DEC entry and the queues 496 * to which it has been assigned. 497 **/ 498 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw, 499 struct fm10k_dglort_cfg *dglort) 500 { 501 u16 glort, queue_count, vsi_count, pc_count; 502 u16 vsi, queue, pc, q_idx; 503 u32 txqctl, dglortdec, dglortmap; 504 505 /* verify the dglort pointer */ 506 if (!dglort) 507 return FM10K_ERR_PARAM; 508 509 /* verify the dglort values */ 510 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) || 511 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) || 512 (dglort->queue_l > 8) || (dglort->queue_b >= 256)) 513 return FM10K_ERR_PARAM; 514 515 /* determine count of VSIs and queues */ 516 queue_count = BIT(dglort->rss_l + dglort->pc_l); 517 vsi_count = BIT(dglort->vsi_l + dglort->queue_l); 518 glort = dglort->glort; 519 q_idx = dglort->queue_b; 520 521 /* configure SGLORT for queues */ 522 for (vsi = 0; vsi < vsi_count; vsi++, glort++) { 523 for (queue = 0; queue < queue_count; queue++, q_idx++) { 524 if (q_idx >= FM10K_MAX_QUEUES) 525 break; 526 527 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort); 528 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort); 529 } 530 } 531 532 /* determine count of PCs and queues */ 533 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l); 534 pc_count = BIT(dglort->pc_l); 535 536 /* configure PC for Tx queues */ 537 for (pc = 0; pc < pc_count; pc++) { 538 q_idx = pc + dglort->queue_b; 539 for (queue = 0; queue < queue_count; queue++) { 540 if (q_idx >= FM10K_MAX_QUEUES) 541 break; 542 543 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx)); 544 txqctl &= ~FM10K_TXQCTL_PC_MASK; 545 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT; 546 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl); 547 548 q_idx += pc_count; 549 } 550 } 551 552 /* configure DGLORTDEC */ 553 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) | 554 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) | 555 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) | 556 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) | 557 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) | 558 ((u32)(dglort->queue_l)); 559 if (dglort->inner_rss) 560 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE; 561 562 /* configure DGLORTMAP */ 563 dglortmap = (dglort->idx == fm10k_dglort_default) ? 564 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO; 565 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l; 566 dglortmap |= dglort->glort; 567 568 /* write values to hardware */ 569 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec); 570 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap); 571 572 return 0; 573 } 574 575 u16 fm10k_queues_per_pool(struct fm10k_hw *hw) 576 { 577 u16 num_pools = hw->iov.num_pools; 578 579 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ? 580 8 : FM10K_MAX_QUEUES_POOL; 581 } 582 583 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx) 584 { 585 u16 num_vfs = hw->iov.num_vfs; 586 u16 vf_q_idx = FM10K_MAX_QUEUES; 587 588 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx); 589 590 return vf_q_idx; 591 } 592 593 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw) 594 { 595 u16 num_pools = hw->iov.num_pools; 596 597 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 : 598 FM10K_MAX_VECTORS_POOL; 599 } 600 601 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx) 602 { 603 u16 vf_v_idx = FM10K_MAX_VECTORS_PF; 604 605 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx; 606 607 return vf_v_idx; 608 } 609 610 /** 611 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization 612 * @hw: pointer to the HW structure 613 * @num_vfs: number of VFs to be allocated 614 * @num_pools: number of virtualization pools to be allocated 615 * 616 * Allocates queues and traffic classes to virtualization entities to prepare 617 * the PF for SR-IOV and VMDq 618 **/ 619 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs, 620 u16 num_pools) 621 { 622 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx; 623 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT; 624 int i, j; 625 626 /* hardware only supports up to 64 pools */ 627 if (num_pools > 64) 628 return FM10K_ERR_PARAM; 629 630 /* the number of VFs cannot exceed the number of pools */ 631 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs)) 632 return FM10K_ERR_PARAM; 633 634 /* record number of virtualization entities */ 635 hw->iov.num_vfs = num_vfs; 636 hw->iov.num_pools = num_pools; 637 638 /* determine qmap offsets and counts */ 639 qmap_stride = (num_vfs > 8) ? 32 : 256; 640 qpp = fm10k_queues_per_pool(hw); 641 vpp = fm10k_vectors_per_pool(hw); 642 643 /* calculate starting index for queues */ 644 vf_q_idx = fm10k_vf_queue_index(hw, 0); 645 qmap_idx = 0; 646 647 /* establish TCs with -1 credits and no quanta to prevent transmit */ 648 for (i = 0; i < num_vfs; i++) { 649 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0); 650 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0); 651 fm10k_write_reg(hw, FM10K_TC_CREDIT(i), 652 FM10K_TC_CREDIT_CREDIT_MASK); 653 } 654 655 /* zero out all mbmem registers */ 656 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;) 657 fm10k_write_reg(hw, FM10K_MBMEM(i), 0); 658 659 /* clear event notification of VF FLR */ 660 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0); 661 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0); 662 663 /* loop through unallocated rings assigning them back to PF */ 664 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) { 665 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); 666 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF | 667 FM10K_TXQCTL_UNLIMITED_BW | vid); 668 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF); 669 } 670 671 /* PF should have already updated VFITR2[0] */ 672 673 /* update all ITR registers to flow to VFITR2[0] */ 674 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) { 675 if (!(i & (vpp - 1))) 676 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp); 677 else 678 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); 679 } 680 681 /* update PF ITR2[0] to reference the last vector */ 682 fm10k_write_reg(hw, FM10K_ITR2(0), 683 fm10k_vf_vector_index(hw, num_vfs - 1)); 684 685 /* loop through rings populating rings and TCs */ 686 for (i = 0; i < num_vfs; i++) { 687 /* record index for VF queue 0 for use in end of loop */ 688 vf_q_idx0 = vf_q_idx; 689 690 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) { 691 /* assign VF and locked TC to queues */ 692 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); 693 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx), 694 (i << FM10K_TXQCTL_TC_SHIFT) | i | 695 FM10K_TXQCTL_VF | vid); 696 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx), 697 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | 698 FM10K_RXDCTL_DROP_ON_EMPTY); 699 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx), 700 (i << FM10K_RXQCTL_VF_SHIFT) | 701 FM10K_RXQCTL_VF); 702 703 /* map queue pair to VF */ 704 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); 705 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx); 706 } 707 708 /* repeat the first ring for all of the remaining VF rings */ 709 for (; j < qmap_stride; j++, qmap_idx++) { 710 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0); 711 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0); 712 } 713 } 714 715 /* loop through remaining indexes assigning all to queue 0 */ 716 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) { 717 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); 718 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0); 719 qmap_idx++; 720 } 721 722 return 0; 723 } 724 725 /** 726 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF 727 * @hw: pointer to the HW structure 728 * @vf_idx: index of VF receiving GLORT 729 * @rate: Rate indicated in Mb/s 730 * 731 * Configured the TC for a given VF to allow only up to a given number 732 * of Mb/s of outgoing Tx throughput. 733 **/ 734 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate) 735 { 736 /* configure defaults */ 737 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3; 738 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK; 739 740 /* verify vf is in range */ 741 if (vf_idx >= hw->iov.num_vfs) 742 return FM10K_ERR_PARAM; 743 744 /* set interval to align with 4.096 usec in all modes */ 745 switch (hw->bus.speed) { 746 case fm10k_bus_speed_2500: 747 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1; 748 break; 749 case fm10k_bus_speed_5000: 750 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2; 751 break; 752 default: 753 break; 754 } 755 756 if (rate) { 757 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN) 758 return FM10K_ERR_PARAM; 759 760 /* The quanta is measured in Bytes per 4.096 or 8.192 usec 761 * The rate is provided in Mbits per second 762 * To tralslate from rate to quanta we need to multiply the 763 * rate by 8.192 usec and divide by 8 bits/byte. To avoid 764 * dealing with floating point we can round the values up 765 * to the nearest whole number ratio which gives us 128 / 125. 766 */ 767 tc_rate = (rate * 128) / 125; 768 769 /* try to keep the rate limiting accurate by increasing 770 * the number of credits and interval for rates less than 4Gb/s 771 */ 772 if (rate < 4000) 773 interval <<= 1; 774 else 775 tc_rate >>= 1; 776 } 777 778 /* update rate limiter with new values */ 779 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval); 780 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); 781 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); 782 783 return 0; 784 } 785 786 /** 787 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list 788 * @hw: pointer to the HW structure 789 * @vf_idx: index of VF receiving GLORT 790 * 791 * Update the interrupt moderator linked list to include any MSI-X 792 * interrupts which the VF has enabled in the MSI-X vector table. 793 **/ 794 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx) 795 { 796 u16 vf_v_idx, vf_v_limit, i; 797 798 /* verify vf is in range */ 799 if (vf_idx >= hw->iov.num_vfs) 800 return FM10K_ERR_PARAM; 801 802 /* determine vector offset and count */ 803 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); 804 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); 805 806 /* search for first vector that is not masked */ 807 for (i = vf_v_limit - 1; i > vf_v_idx; i--) { 808 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) 809 break; 810 } 811 812 /* reset linked list so it now includes our active vectors */ 813 if (vf_idx == (hw->iov.num_vfs - 1)) 814 fm10k_write_reg(hw, FM10K_ITR2(0), i); 815 else 816 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i); 817 818 return 0; 819 } 820 821 /** 822 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF 823 * @hw: pointer to the HW structure 824 * @vf_info: pointer to VF information structure 825 * 826 * Assign a MAC address and default VLAN to a VF and notify it of the update 827 **/ 828 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw, 829 struct fm10k_vf_info *vf_info) 830 { 831 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i; 832 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0; 833 s32 err = 0; 834 u16 vf_idx, vf_vid; 835 836 /* verify vf is in range */ 837 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs) 838 return FM10K_ERR_PARAM; 839 840 /* determine qmap offsets and counts */ 841 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; 842 queues_per_pool = fm10k_queues_per_pool(hw); 843 844 /* calculate starting index for queues */ 845 vf_idx = vf_info->vf_idx; 846 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); 847 qmap_idx = qmap_stride * vf_idx; 848 849 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is 850 * used here to indicate to the VF that it will not have privilege to 851 * write VLAN_TABLE. All policy is enforced on the PF but this allows 852 * the VF to correctly report errors to userspace requests. 853 */ 854 if (vf_info->pf_vid) 855 vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE; 856 else 857 vf_vid = vf_info->sw_vid; 858 859 /* generate MAC_ADDR request */ 860 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN); 861 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC, 862 vf_info->mac, vf_vid); 863 864 /* Configure Queue control register with new VLAN ID. The TXQCTL 865 * register is RO from the VF, so the PF must do this even in the 866 * case of notifying the VF of a new VID via the mailbox. 867 */ 868 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) & 869 FM10K_TXQCTL_VID_MASK; 870 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) | 871 FM10K_TXQCTL_VF | vf_idx; 872 873 for (i = 0; i < queues_per_pool; i++) 874 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl); 875 876 /* try loading a message onto outgoing mailbox first */ 877 if (vf_info->mbx.ops.enqueue_tx) { 878 err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 879 if (err != FM10K_MBX_ERR_NO_MBX) 880 return err; 881 err = 0; 882 } 883 884 /* If we aren't connected to a mailbox, this is most likely because 885 * the VF driver is not running. It should thus be safe to re-map 886 * queues and use the registers to pass the MAC address so that the VF 887 * driver gets correct information during its initialization. 888 */ 889 890 /* MAP Tx queue back to 0 temporarily, and disable it */ 891 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); 892 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); 893 894 /* verify ring has disabled before modifying base address registers */ 895 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); 896 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) { 897 /* limit ourselves to a 1ms timeout */ 898 if (timeout == 10) { 899 err = FM10K_ERR_DMA_PENDING; 900 goto err_out; 901 } 902 903 usleep_range(100, 200); 904 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); 905 } 906 907 /* Update base address registers to contain MAC address */ 908 if (is_valid_ether_addr(vf_info->mac)) { 909 tdbal = (((u32)vf_info->mac[3]) << 24) | 910 (((u32)vf_info->mac[4]) << 16) | 911 (((u32)vf_info->mac[5]) << 8); 912 913 tdbah = (((u32)0xFF) << 24) | 914 (((u32)vf_info->mac[0]) << 16) | 915 (((u32)vf_info->mac[1]) << 8) | 916 ((u32)vf_info->mac[2]); 917 } 918 919 /* Record the base address into queue 0 */ 920 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal); 921 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah); 922 923 /* Provide the VF the ITR scale, using software-defined fields in TDLEN 924 * to pass the information during VF initialization. See definition of 925 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details. 926 */ 927 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale << 928 FM10K_TDLEN_ITR_SCALE_SHIFT); 929 930 err_out: 931 /* restore the queue back to VF ownership */ 932 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); 933 return err; 934 } 935 936 /** 937 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF 938 * @hw: pointer to the HW structure 939 * @vf_info: pointer to VF information structure 940 * 941 * Reassign the interrupts and queues to a VF following an FLR 942 **/ 943 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw, 944 struct fm10k_vf_info *vf_info) 945 { 946 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx; 947 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl; 948 u16 vf_v_idx, vf_v_limit, vf_vid; 949 u8 vf_idx = vf_info->vf_idx; 950 int i; 951 952 /* verify vf is in range */ 953 if (vf_idx >= hw->iov.num_vfs) 954 return FM10K_ERR_PARAM; 955 956 /* clear event notification of VF FLR */ 957 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32)); 958 959 /* force timeout and then disconnect the mailbox */ 960 vf_info->mbx.timeout = 0; 961 if (vf_info->mbx.ops.disconnect) 962 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx); 963 964 /* determine vector offset and count */ 965 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); 966 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); 967 968 /* determine qmap offsets and counts */ 969 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; 970 queues_per_pool = fm10k_queues_per_pool(hw); 971 qmap_idx = qmap_stride * vf_idx; 972 973 /* make all the queues inaccessible to the VF */ 974 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) { 975 fm10k_write_reg(hw, FM10K_TQMAP(i), 0); 976 fm10k_write_reg(hw, FM10K_RQMAP(i), 0); 977 } 978 979 /* calculate starting index for queues */ 980 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); 981 982 /* determine correct default VLAN ID */ 983 if (vf_info->pf_vid) 984 vf_vid = vf_info->pf_vid; 985 else 986 vf_vid = vf_info->sw_vid; 987 988 /* configure Queue control register */ 989 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) | 990 (vf_idx << FM10K_TXQCTL_TC_SHIFT) | 991 FM10K_TXQCTL_VF | vf_idx; 992 rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF; 993 994 /* stop further DMA and reset queue ownership back to VF */ 995 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) { 996 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); 997 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); 998 fm10k_write_reg(hw, FM10K_RXDCTL(i), 999 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | 1000 FM10K_RXDCTL_DROP_ON_EMPTY); 1001 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl); 1002 } 1003 1004 /* reset TC with -1 credits and no quanta to prevent transmit */ 1005 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0); 1006 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0); 1007 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), 1008 FM10K_TC_CREDIT_CREDIT_MASK); 1009 1010 /* update our first entry in the table based on previous VF */ 1011 if (!vf_idx) 1012 hw->mac.ops.update_int_moderator(hw); 1013 else 1014 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1); 1015 1016 /* reset linked list so it now includes our active vectors */ 1017 if (vf_idx == (hw->iov.num_vfs - 1)) 1018 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx); 1019 else 1020 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx); 1021 1022 /* link remaining vectors so that next points to previous */ 1023 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++) 1024 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1); 1025 1026 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */ 1027 for (i = FM10K_VFMBMEM_LEN; i--;) 1028 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0); 1029 for (i = FM10K_VLAN_TABLE_SIZE; i--;) 1030 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0); 1031 for (i = FM10K_RETA_SIZE; i--;) 1032 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0); 1033 for (i = FM10K_RSSRK_SIZE; i--;) 1034 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0); 1035 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0); 1036 1037 /* Update base address registers to contain MAC address */ 1038 if (is_valid_ether_addr(vf_info->mac)) { 1039 tdbal = (((u32)vf_info->mac[3]) << 24) | 1040 (((u32)vf_info->mac[4]) << 16) | 1041 (((u32)vf_info->mac[5]) << 8); 1042 tdbah = (((u32)0xFF) << 24) | 1043 (((u32)vf_info->mac[0]) << 16) | 1044 (((u32)vf_info->mac[1]) << 8) | 1045 ((u32)vf_info->mac[2]); 1046 } 1047 1048 /* map queue pairs back to VF from last to first */ 1049 for (i = queues_per_pool; i--;) { 1050 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal); 1051 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah); 1052 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an 1053 * explanation of how TDLEN is used. 1054 */ 1055 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i), 1056 hw->mac.itr_scale << 1057 FM10K_TDLEN_ITR_SCALE_SHIFT); 1058 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i); 1059 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i); 1060 } 1061 1062 /* repeat the first ring for all the remaining VF rings */ 1063 for (i = queues_per_pool; i < qmap_stride; i++) { 1064 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx); 1065 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx); 1066 } 1067 1068 return 0; 1069 } 1070 1071 /** 1072 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF 1073 * @hw: pointer to hardware structure 1074 * @vf_info: pointer to VF information structure 1075 * @lport_idx: Logical port offset from the hardware glort 1076 * @flags: Set of capability flags to extend port beyond basic functionality 1077 * 1078 * This function allows enabling a VF port by assigning it a GLORT and 1079 * setting the flags so that it can enable an Rx mode. 1080 **/ 1081 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw, 1082 struct fm10k_vf_info *vf_info, 1083 u16 lport_idx, u8 flags) 1084 { 1085 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE; 1086 1087 /* if glort is not valid return error */ 1088 if (!fm10k_glort_valid_pf(hw, glort)) 1089 return FM10K_ERR_PARAM; 1090 1091 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE; 1092 vf_info->glort = glort; 1093 1094 return 0; 1095 } 1096 1097 /** 1098 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF 1099 * @hw: pointer to hardware structure 1100 * @vf_info: pointer to VF information structure 1101 * 1102 * This function disables a VF port by stripping it of a GLORT and 1103 * setting the flags so that it cannot enable any Rx mode. 1104 **/ 1105 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw, 1106 struct fm10k_vf_info *vf_info) 1107 { 1108 u32 msg[1]; 1109 1110 /* need to disable the port if it is already enabled */ 1111 if (FM10K_VF_FLAG_ENABLED(vf_info)) { 1112 /* notify switch that this port has been disabled */ 1113 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false); 1114 1115 /* generate port state response to notify VF it is not ready */ 1116 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); 1117 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 1118 } 1119 1120 /* clear flags and glort if it exists */ 1121 vf_info->vf_flags = 0; 1122 vf_info->glort = 0; 1123 } 1124 1125 /** 1126 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs 1127 * @hw: pointer to hardware structure 1128 * @q: stats for all queues of a VF 1129 * @vf_idx: index of VF 1130 * 1131 * This function collects queue stats for VFs. 1132 **/ 1133 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw, 1134 struct fm10k_hw_stats_q *q, 1135 u16 vf_idx) 1136 { 1137 u32 idx, qpp; 1138 1139 /* get stats for all of the queues */ 1140 qpp = fm10k_queues_per_pool(hw); 1141 idx = fm10k_vf_queue_index(hw, vf_idx); 1142 fm10k_update_hw_stats_q(hw, q, idx, qpp); 1143 } 1144 1145 /** 1146 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF 1147 * @hw: Pointer to hardware structure 1148 * @results: Pointer array to message, results[0] is pointer to message 1149 * @mbx: Pointer to mailbox information structure 1150 * 1151 * This function is a default handler for MSI-X requests from the VF. The 1152 * assumption is that in this case it is acceptable to just directly 1153 * hand off the message from the VF to the underlying shared code. 1154 **/ 1155 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 __always_unused **results, 1156 struct fm10k_mbx_info *mbx) 1157 { 1158 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1159 u8 vf_idx = vf_info->vf_idx; 1160 1161 return hw->iov.ops.assign_int_moderator(hw, vf_idx); 1162 } 1163 1164 /** 1165 * fm10k_iov_select_vid - Select correct default VLAN ID 1166 * @vf_info: pointer to VF information structure 1167 * @vid: VLAN ID to correct 1168 * 1169 * Will report an error if the VLAN ID is out of range. For VID = 0, it will 1170 * return either the pf_vid or sw_vid depending on which one is set. 1171 */ 1172 s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid) 1173 { 1174 if (!vid) 1175 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid; 1176 else if (vf_info->pf_vid && vid != vf_info->pf_vid) 1177 return FM10K_ERR_PARAM; 1178 else 1179 return vid; 1180 } 1181 1182 /** 1183 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF 1184 * @hw: Pointer to hardware structure 1185 * @results: Pointer array to message, results[0] is pointer to message 1186 * @mbx: Pointer to mailbox information structure 1187 * 1188 * This function is a default handler for MAC/VLAN requests from the VF. 1189 * The assumption is that in this case it is acceptable to just directly 1190 * hand off the message from the VF to the underlying shared code. 1191 **/ 1192 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results, 1193 struct fm10k_mbx_info *mbx) 1194 { 1195 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1196 u8 mac[ETH_ALEN]; 1197 u32 *result; 1198 int err = 0; 1199 bool set; 1200 u16 vlan; 1201 u32 vid; 1202 1203 /* we shouldn't be updating rules on a disabled interface */ 1204 if (!FM10K_VF_FLAG_ENABLED(vf_info)) 1205 err = FM10K_ERR_PARAM; 1206 1207 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) { 1208 result = results[FM10K_MAC_VLAN_MSG_VLAN]; 1209 1210 /* record VLAN id requested */ 1211 err = fm10k_tlv_attr_get_u32(result, &vid); 1212 if (err) 1213 return err; 1214 1215 set = !(vid & FM10K_VLAN_CLEAR); 1216 vid &= ~FM10K_VLAN_CLEAR; 1217 1218 /* if the length field has been set, this is a multi-bit 1219 * update request. For multi-bit requests, simply disallow 1220 * them when the pf_vid has been set. In this case, the PF 1221 * should have already cleared the VLAN_TABLE, and if we 1222 * allowed them, it could allow a rogue VF to receive traffic 1223 * on a VLAN it was not assigned. In the single-bit case, we 1224 * need to modify requests for VLAN 0 to use the default PF or 1225 * SW vid when assigned. 1226 */ 1227 1228 if (vid >> 16) { 1229 /* prevent multi-bit requests when PF has 1230 * administratively set the VLAN for this VF 1231 */ 1232 if (vf_info->pf_vid) 1233 return FM10K_ERR_PARAM; 1234 } else { 1235 err = fm10k_iov_select_vid(vf_info, (u16)vid); 1236 if (err < 0) 1237 return err; 1238 1239 vid = err; 1240 } 1241 1242 /* update VSI info for VF in regards to VLAN table */ 1243 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set); 1244 } 1245 1246 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) { 1247 result = results[FM10K_MAC_VLAN_MSG_MAC]; 1248 1249 /* record unicast MAC address requested */ 1250 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); 1251 if (err) 1252 return err; 1253 1254 /* block attempts to set MAC for a locked device */ 1255 if (is_valid_ether_addr(vf_info->mac) && 1256 !ether_addr_equal(mac, vf_info->mac)) 1257 return FM10K_ERR_PARAM; 1258 1259 set = !(vlan & FM10K_VLAN_CLEAR); 1260 vlan &= ~FM10K_VLAN_CLEAR; 1261 1262 err = fm10k_iov_select_vid(vf_info, vlan); 1263 if (err < 0) 1264 return err; 1265 1266 vlan = (u16)err; 1267 1268 /* notify switch of request for new unicast address */ 1269 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, 1270 mac, vlan, set, 0); 1271 } 1272 1273 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) { 1274 result = results[FM10K_MAC_VLAN_MSG_MULTICAST]; 1275 1276 /* record multicast MAC address requested */ 1277 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); 1278 if (err) 1279 return err; 1280 1281 /* verify that the VF is allowed to request multicast */ 1282 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED)) 1283 return FM10K_ERR_PARAM; 1284 1285 set = !(vlan & FM10K_VLAN_CLEAR); 1286 vlan &= ~FM10K_VLAN_CLEAR; 1287 1288 err = fm10k_iov_select_vid(vf_info, vlan); 1289 if (err < 0) 1290 return err; 1291 1292 vlan = (u16)err; 1293 1294 /* notify switch of request for new multicast address */ 1295 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, 1296 mac, vlan, set); 1297 } 1298 1299 return err; 1300 } 1301 1302 /** 1303 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode 1304 * @vf_info: VF info structure containing capability flags 1305 * @mode: Requested xcast mode 1306 * 1307 * This function outputs the mode that most closely matches the requested 1308 * mode. If not modes match it will request we disable the port 1309 **/ 1310 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info, 1311 u8 mode) 1312 { 1313 u8 vf_flags = vf_info->vf_flags; 1314 1315 /* match up mode to capabilities as best as possible */ 1316 switch (mode) { 1317 case FM10K_XCAST_MODE_PROMISC: 1318 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE) 1319 return FM10K_XCAST_MODE_PROMISC; 1320 fallthrough; 1321 case FM10K_XCAST_MODE_ALLMULTI: 1322 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE) 1323 return FM10K_XCAST_MODE_ALLMULTI; 1324 fallthrough; 1325 case FM10K_XCAST_MODE_MULTI: 1326 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE) 1327 return FM10K_XCAST_MODE_MULTI; 1328 fallthrough; 1329 case FM10K_XCAST_MODE_NONE: 1330 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE) 1331 return FM10K_XCAST_MODE_NONE; 1332 fallthrough; 1333 default: 1334 break; 1335 } 1336 1337 /* disable interface as it should not be able to request any */ 1338 return FM10K_XCAST_MODE_DISABLE; 1339 } 1340 1341 /** 1342 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests 1343 * @hw: Pointer to hardware structure 1344 * @results: Pointer array to message, results[0] is pointer to message 1345 * @mbx: Pointer to mailbox information structure 1346 * 1347 * This function is a default handler for port state requests. The port 1348 * state requests for now are basic and consist of enabling or disabling 1349 * the port. 1350 **/ 1351 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results, 1352 struct fm10k_mbx_info *mbx) 1353 { 1354 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1355 s32 err = 0; 1356 u32 msg[2]; 1357 u8 mode = 0; 1358 1359 /* verify VF is allowed to enable even minimal mode */ 1360 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)) 1361 return FM10K_ERR_PARAM; 1362 1363 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) { 1364 u32 *result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE]; 1365 1366 /* XCAST mode update requested */ 1367 err = fm10k_tlv_attr_get_u8(result, &mode); 1368 if (err) 1369 return FM10K_ERR_PARAM; 1370 1371 /* prep for possible demotion depending on capabilities */ 1372 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode); 1373 1374 /* if mode is not currently enabled, enable it */ 1375 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode))) 1376 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode); 1377 1378 /* swap mode back to a bit flag */ 1379 mode = FM10K_VF_FLAG_SET_MODE(mode); 1380 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) { 1381 /* need to disable the port if it is already enabled */ 1382 if (FM10K_VF_FLAG_ENABLED(vf_info)) 1383 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1384 1, false); 1385 1386 /* we need to clear VF_FLAG_ENABLED flags in order to ensure 1387 * that we actually re-enable the LPORT state below. Note that 1388 * this has no impact if the VF is already disabled, as the 1389 * flags are already cleared. 1390 */ 1391 if (!err) 1392 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info); 1393 1394 /* when enabling the port we should reset the rate limiters */ 1395 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate); 1396 1397 /* set mode for minimal functionality */ 1398 mode = FM10K_VF_FLAG_SET_MODE_NONE; 1399 1400 /* generate port state response to notify VF it is ready */ 1401 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); 1402 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY); 1403 mbx->ops.enqueue_tx(hw, mbx, msg); 1404 } 1405 1406 /* if enable state toggled note the update */ 1407 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode)) 1408 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1, 1409 !!mode); 1410 1411 /* if state change succeeded, then update our stored state */ 1412 mode |= FM10K_VF_FLAG_CAPABLE(vf_info); 1413 if (!err) 1414 vf_info->vf_flags = mode; 1415 1416 return err; 1417 } 1418 1419 /** 1420 * fm10k_update_hw_stats_pf - Updates hardware related statistics of PF 1421 * @hw: pointer to hardware structure 1422 * @stats: pointer to the stats structure to update 1423 * 1424 * This function collects and aggregates global and per queue hardware 1425 * statistics. 1426 **/ 1427 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw, 1428 struct fm10k_hw_stats *stats) 1429 { 1430 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop; 1431 u32 id, id_prev; 1432 1433 /* Use Tx queue 0 as a canary to detect a reset */ 1434 id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); 1435 1436 /* Read Global Statistics */ 1437 do { 1438 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT, 1439 &stats->timeout); 1440 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur); 1441 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca); 1442 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um); 1443 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec); 1444 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP, 1445 &stats->vlan_drop); 1446 loopback_drop = 1447 fm10k_read_hw_stats_32b(hw, 1448 FM10K_STATS_LOOPBACK_DROP, 1449 &stats->loopback_drop); 1450 nodesc_drop = fm10k_read_hw_stats_32b(hw, 1451 FM10K_STATS_NODESC_DROP, 1452 &stats->nodesc_drop); 1453 1454 /* if value has not changed then we have consistent data */ 1455 id_prev = id; 1456 id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); 1457 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK); 1458 1459 /* drop non-ID bits and set VALID ID bit */ 1460 id &= FM10K_TXQCTL_ID_MASK; 1461 id |= FM10K_STAT_VALID; 1462 1463 /* Update Global Statistics */ 1464 if (stats->stats_idx == id) { 1465 stats->timeout.count += timeout; 1466 stats->ur.count += ur; 1467 stats->ca.count += ca; 1468 stats->um.count += um; 1469 stats->xec.count += xec; 1470 stats->vlan_drop.count += vlan_drop; 1471 stats->loopback_drop.count += loopback_drop; 1472 stats->nodesc_drop.count += nodesc_drop; 1473 } 1474 1475 /* Update bases and record current PF id */ 1476 fm10k_update_hw_base_32b(&stats->timeout, timeout); 1477 fm10k_update_hw_base_32b(&stats->ur, ur); 1478 fm10k_update_hw_base_32b(&stats->ca, ca); 1479 fm10k_update_hw_base_32b(&stats->um, um); 1480 fm10k_update_hw_base_32b(&stats->xec, xec); 1481 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop); 1482 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop); 1483 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop); 1484 stats->stats_idx = id; 1485 1486 /* Update Queue Statistics */ 1487 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues); 1488 } 1489 1490 /** 1491 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF 1492 * @hw: pointer to hardware structure 1493 * @stats: pointer to the stats structure to update 1494 * 1495 * This function resets the base for global and per queue hardware 1496 * statistics. 1497 **/ 1498 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw, 1499 struct fm10k_hw_stats *stats) 1500 { 1501 /* Unbind Global Statistics */ 1502 fm10k_unbind_hw_stats_32b(&stats->timeout); 1503 fm10k_unbind_hw_stats_32b(&stats->ur); 1504 fm10k_unbind_hw_stats_32b(&stats->ca); 1505 fm10k_unbind_hw_stats_32b(&stats->um); 1506 fm10k_unbind_hw_stats_32b(&stats->xec); 1507 fm10k_unbind_hw_stats_32b(&stats->vlan_drop); 1508 fm10k_unbind_hw_stats_32b(&stats->loopback_drop); 1509 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop); 1510 1511 /* Unbind Queue Statistics */ 1512 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues); 1513 1514 /* Reinitialize bases for all stats */ 1515 fm10k_update_hw_stats_pf(hw, stats); 1516 } 1517 1518 /** 1519 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system 1520 * @hw: pointer to hardware structure 1521 * @dma_mask: 64 bit DMA mask required for platform 1522 * 1523 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order 1524 * to limit the access to memory beyond what is physically in the system. 1525 **/ 1526 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask) 1527 { 1528 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */ 1529 u32 phyaddr = (u32)(dma_mask >> 32); 1530 1531 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr); 1532 } 1533 1534 /** 1535 * fm10k_get_fault_pf - Record a fault in one of the interface units 1536 * @hw: pointer to hardware structure 1537 * @type: pointer to fault type register offset 1538 * @fault: pointer to memory location to record the fault 1539 * 1540 * Record the fault register contents to the fault data structure and 1541 * clear the entry from the register. 1542 * 1543 * Returns ERR_PARAM if invalid register is specified or no error is present. 1544 **/ 1545 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type, 1546 struct fm10k_fault *fault) 1547 { 1548 u32 func; 1549 1550 /* verify the fault register is in range and is aligned */ 1551 switch (type) { 1552 case FM10K_PCA_FAULT: 1553 case FM10K_THI_FAULT: 1554 case FM10K_FUM_FAULT: 1555 break; 1556 default: 1557 return FM10K_ERR_PARAM; 1558 } 1559 1560 /* only service faults that are valid */ 1561 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC); 1562 if (!(func & FM10K_FAULT_FUNC_VALID)) 1563 return FM10K_ERR_PARAM; 1564 1565 /* read remaining fields */ 1566 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI); 1567 fault->address <<= 32; 1568 fault->address |= fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO); 1569 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO); 1570 1571 /* clear valid bit to allow for next error */ 1572 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID); 1573 1574 /* Record which function triggered the error */ 1575 if (func & FM10K_FAULT_FUNC_PF) 1576 fault->func = 0; 1577 else 1578 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >> 1579 FM10K_FAULT_FUNC_VF_SHIFT); 1580 1581 /* record fault type */ 1582 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK; 1583 1584 return 0; 1585 } 1586 1587 /** 1588 * fm10k_request_lport_map_pf - Request LPORT map from the switch API 1589 * @hw: pointer to hardware structure 1590 * 1591 **/ 1592 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw) 1593 { 1594 struct fm10k_mbx_info *mbx = &hw->mbx; 1595 u32 msg[1]; 1596 1597 /* issue request asking for LPORT map */ 1598 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP); 1599 1600 /* load onto outgoing mailbox */ 1601 return mbx->ops.enqueue_tx(hw, mbx, msg); 1602 } 1603 1604 /** 1605 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox 1606 * @hw: pointer to hardware structure 1607 * @switch_ready: pointer to boolean value that will record switch state 1608 * 1609 * This function will check the DMA_CTRL2 register and mailbox in order 1610 * to determine if the switch is ready for the PF to begin requesting 1611 * addresses and mapping traffic to the local interface. 1612 **/ 1613 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready) 1614 { 1615 u32 dma_ctrl2; 1616 1617 /* verify the switch is ready for interaction */ 1618 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2); 1619 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY)) 1620 return 0; 1621 1622 /* retrieve generic host state info */ 1623 return fm10k_get_host_state_generic(hw, switch_ready); 1624 } 1625 1626 /* This structure defines the attibutes to be parsed below */ 1627 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = { 1628 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR, 1629 sizeof(struct fm10k_swapi_error)), 1630 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP), 1631 FM10K_TLV_ATTR_LAST 1632 }; 1633 1634 /** 1635 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM 1636 * @hw: Pointer to hardware structure 1637 * @results: pointer array containing parsed data 1638 * @mbx: Pointer to mailbox information structure 1639 * 1640 * This handler configures the lport mapping based on the reply from the 1641 * switch API. 1642 **/ 1643 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results, 1644 struct fm10k_mbx_info __always_unused *mbx) 1645 { 1646 u16 glort, mask; 1647 u32 dglort_map; 1648 s32 err; 1649 1650 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP], 1651 &dglort_map); 1652 if (err) 1653 return err; 1654 1655 /* extract values out of the header */ 1656 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT); 1657 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK); 1658 1659 /* verify mask is set and none of the masked bits in glort are set */ 1660 if (!mask || (glort & ~mask)) 1661 return FM10K_ERR_PARAM; 1662 1663 /* verify the mask is contiguous, and that it is 1's followed by 0's */ 1664 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE) 1665 return FM10K_ERR_PARAM; 1666 1667 /* record the glort, mask, and port count */ 1668 hw->mac.dglort_map = dglort_map; 1669 1670 return 0; 1671 } 1672 1673 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = { 1674 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID), 1675 FM10K_TLV_ATTR_LAST 1676 }; 1677 1678 /** 1679 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM 1680 * @hw: Pointer to hardware structure 1681 * @results: pointer array containing parsed data 1682 * @mbx: Pointer to mailbox information structure 1683 * 1684 * This handler configures the default VLAN for the PF 1685 **/ 1686 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results, 1687 struct fm10k_mbx_info __always_unused *mbx) 1688 { 1689 u16 glort, pvid; 1690 u32 pvid_update; 1691 s32 err; 1692 1693 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1694 &pvid_update); 1695 if (err) 1696 return err; 1697 1698 /* extract values from the pvid update */ 1699 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1700 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1701 1702 /* if glort is not valid return error */ 1703 if (!fm10k_glort_valid_pf(hw, glort)) 1704 return FM10K_ERR_PARAM; 1705 1706 /* verify VLAN ID is valid */ 1707 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1708 return FM10K_ERR_PARAM; 1709 1710 /* record the port VLAN ID value */ 1711 hw->mac.default_vid = pvid; 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * fm10k_record_global_table_data - Move global table data to swapi table info 1718 * @from: pointer to source table data structure 1719 * @to: pointer to destination table info structure 1720 * 1721 * This function is will copy table_data to the table_info contained in 1722 * the hw struct. 1723 **/ 1724 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from, 1725 struct fm10k_swapi_table_info *to) 1726 { 1727 /* convert from le32 struct to CPU byte ordered values */ 1728 to->used = le32_to_cpu(from->used); 1729 to->avail = le32_to_cpu(from->avail); 1730 } 1731 1732 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = { 1733 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR, 1734 sizeof(struct fm10k_swapi_error)), 1735 FM10K_TLV_ATTR_LAST 1736 }; 1737 1738 /** 1739 * fm10k_msg_err_pf - Message handler for error reply 1740 * @hw: Pointer to hardware structure 1741 * @results: pointer array containing parsed data 1742 * @mbx: Pointer to mailbox information structure 1743 * 1744 * This handler will capture the data for any error replies to previous 1745 * messages that the PF has sent. 1746 **/ 1747 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results, 1748 struct fm10k_mbx_info __always_unused *mbx) 1749 { 1750 struct fm10k_swapi_error err_msg; 1751 s32 err; 1752 1753 /* extract structure from message */ 1754 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR], 1755 &err_msg, sizeof(err_msg)); 1756 if (err) 1757 return err; 1758 1759 /* record table status */ 1760 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac); 1761 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop); 1762 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu); 1763 1764 /* record SW API status value */ 1765 hw->swapi.status = le32_to_cpu(err_msg.status); 1766 1767 return 0; 1768 } 1769 1770 static const struct fm10k_msg_data fm10k_msg_data_pf[] = { 1771 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1772 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1773 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf), 1774 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1775 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1776 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf), 1777 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error), 1778 }; 1779 1780 static const struct fm10k_mac_ops mac_ops_pf = { 1781 .get_bus_info = fm10k_get_bus_info_generic, 1782 .reset_hw = fm10k_reset_hw_pf, 1783 .init_hw = fm10k_init_hw_pf, 1784 .start_hw = fm10k_start_hw_generic, 1785 .stop_hw = fm10k_stop_hw_generic, 1786 .update_vlan = fm10k_update_vlan_pf, 1787 .read_mac_addr = fm10k_read_mac_addr_pf, 1788 .update_uc_addr = fm10k_update_uc_addr_pf, 1789 .update_mc_addr = fm10k_update_mc_addr_pf, 1790 .update_xcast_mode = fm10k_update_xcast_mode_pf, 1791 .update_int_moderator = fm10k_update_int_moderator_pf, 1792 .update_lport_state = fm10k_update_lport_state_pf, 1793 .update_hw_stats = fm10k_update_hw_stats_pf, 1794 .rebind_hw_stats = fm10k_rebind_hw_stats_pf, 1795 .configure_dglort_map = fm10k_configure_dglort_map_pf, 1796 .set_dma_mask = fm10k_set_dma_mask_pf, 1797 .get_fault = fm10k_get_fault_pf, 1798 .get_host_state = fm10k_get_host_state_pf, 1799 .request_lport_map = fm10k_request_lport_map_pf, 1800 }; 1801 1802 static const struct fm10k_iov_ops iov_ops_pf = { 1803 .assign_resources = fm10k_iov_assign_resources_pf, 1804 .configure_tc = fm10k_iov_configure_tc_pf, 1805 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf, 1806 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf, 1807 .reset_resources = fm10k_iov_reset_resources_pf, 1808 .set_lport = fm10k_iov_set_lport_pf, 1809 .reset_lport = fm10k_iov_reset_lport_pf, 1810 .update_stats = fm10k_iov_update_stats_pf, 1811 }; 1812 1813 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw) 1814 { 1815 fm10k_get_invariants_generic(hw); 1816 1817 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf); 1818 } 1819 1820 const struct fm10k_info fm10k_pf_info = { 1821 .mac = fm10k_mac_pf, 1822 .get_invariants = fm10k_get_invariants_pf, 1823 .mac_ops = &mac_ops_pf, 1824 .iov_ops = &iov_ops_pf, 1825 }; 1826