xref: /linux/drivers/net/ethernet/intel/fm10k/fm10k_pf.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* Intel(R) Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2016 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include "fm10k_pf.h"
22 #include "fm10k_vf.h"
23 
24 /**
25  *  fm10k_reset_hw_pf - PF hardware reset
26  *  @hw: pointer to hardware structure
27  *
28  *  This function should return the hardware to a state similar to the
29  *  one it is in after being powered on.
30  **/
31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32 {
33 	s32 err;
34 	u32 reg;
35 	u16 i;
36 
37 	/* Disable interrupts */
38 	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39 
40 	/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43 
44 	/* We assume here Tx and Rx queue 0 are owned by the PF */
45 
46 	/* Shut off VF access to their queues forcing them to queue 0 */
47 	for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 	}
51 
52 	/* shut down all rings */
53 	err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 	if (err)
55 		return err;
56 
57 	/* Verify that DMA is no longer active */
58 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
59 	if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
60 		return FM10K_ERR_DMA_PENDING;
61 
62 	/* verify the switch is ready for reset */
63 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
64 	if (!(reg & FM10K_DMA_CTRL2_SWITCH_READY))
65 		goto out;
66 
67 	/* Inititate data path reset */
68 	reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
69 	fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70 
71 	/* Flush write and allow 100us for reset to complete */
72 	fm10k_write_flush(hw);
73 	udelay(FM10K_RESET_TIMEOUT);
74 
75 	/* Verify we made it out of reset */
76 	reg = fm10k_read_reg(hw, FM10K_IP);
77 	if (!(reg & FM10K_IP_NOTINRESET))
78 		err = FM10K_ERR_RESET_FAILED;
79 
80 out:
81 	return err;
82 }
83 
84 /**
85  *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
86  *  @hw: pointer to hardware structure
87  *
88  *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
89  **/
90 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
91 {
92 	u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
93 
94 	return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
95 }
96 
97 /**
98  *  fm10k_init_hw_pf - PF hardware initialization
99  *  @hw: pointer to hardware structure
100  *
101  **/
102 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
103 {
104 	u32 dma_ctrl, txqctl;
105 	u16 i;
106 
107 	/* Establish default VSI as valid */
108 	fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
109 	fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
110 			FM10K_DGLORTMAP_ANY);
111 
112 	/* Invalidate all other GLORT entries */
113 	for (i = 1; i < FM10K_DGLORT_COUNT; i++)
114 		fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
115 
116 	/* reset ITR2(0) to point to itself */
117 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
118 
119 	/* reset VF ITR2(0) to point to 0 avoid PF registers */
120 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
121 
122 	/* loop through all PF ITR2 registers pointing them to the previous */
123 	for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
124 		fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
125 
126 	/* Enable interrupt moderator if not already enabled */
127 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
128 
129 	/* compute the default txqctl configuration */
130 	txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
131 		 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
132 
133 	for (i = 0; i < FM10K_MAX_QUEUES; i++) {
134 		/* configure rings for 256 Queue / 32 Descriptor cache mode */
135 		fm10k_write_reg(hw, FM10K_TQDLOC(i),
136 				(i * FM10K_TQDLOC_BASE_32_DESC) |
137 				FM10K_TQDLOC_SIZE_32_DESC);
138 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
139 
140 		/* configure rings to provide TPH processing hints */
141 		fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
142 				FM10K_TPH_TXCTRL_DESC_TPHEN |
143 				FM10K_TPH_TXCTRL_DESC_RROEN |
144 				FM10K_TPH_TXCTRL_DESC_WROEN |
145 				FM10K_TPH_TXCTRL_DATA_RROEN);
146 		fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
147 				FM10K_TPH_RXCTRL_DESC_TPHEN |
148 				FM10K_TPH_RXCTRL_DESC_RROEN |
149 				FM10K_TPH_RXCTRL_DATA_WROEN |
150 				FM10K_TPH_RXCTRL_HDR_WROEN);
151 	}
152 
153 	/* set max hold interval to align with 1.024 usec in all modes and
154 	 * store ITR scale
155 	 */
156 	switch (hw->bus.speed) {
157 	case fm10k_bus_speed_2500:
158 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
159 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
160 		break;
161 	case fm10k_bus_speed_5000:
162 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
163 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
164 		break;
165 	case fm10k_bus_speed_8000:
166 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
167 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
168 		break;
169 	default:
170 		dma_ctrl = 0;
171 		/* just in case, assume Gen3 ITR scale */
172 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
173 		break;
174 	}
175 
176 	/* Configure TSO flags */
177 	fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
178 	fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
179 
180 	/* Enable DMA engine
181 	 * Set Rx Descriptor size to 32
182 	 * Set Minimum MSS to 64
183 	 * Set Maximum number of Rx queues to 256 / 32 Descriptor
184 	 */
185 	dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
186 		    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
187 		    FM10K_DMA_CTRL_32_DESC;
188 
189 	fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
190 
191 	/* record maximum queue count, we limit ourselves to 128 */
192 	hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
193 
194 	/* We support either 64 VFs or 7 VFs depending on if we have ARI */
195 	hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
196 
197 	return 0;
198 }
199 
200 /**
201  *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202  *  @hw: pointer to hardware structure
203  *  @vid: VLAN ID to add to table
204  *  @vsi: Index indicating VF ID or PF ID in table
205  *  @set: Indicates if this is a set or clear operation
206  *
207  *  This function adds or removes the corresponding VLAN ID from the VLAN
208  *  filter table for the corresponding function.  In addition to the
209  *  standard set/clear that supports one bit a multi-bit write is
210  *  supported to set 64 bits at a time.
211  **/
212 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
213 {
214 	u32 vlan_table, reg, mask, bit, len;
215 
216 	/* verify the VSI index is valid */
217 	if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218 		return FM10K_ERR_PARAM;
219 
220 	/* VLAN multi-bit write:
221 	 * The multi-bit write has several parts to it.
222 	 *               24              16               8               0
223 	 *  7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
224 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225 	 * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
226 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
227 	 *
228 	 * VLAN ID: Vlan Starting value
229 	 * RSVD0: Reserved section, must be 0
230 	 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231 	 * Length: Number of times to repeat the bit being set
232 	 */
233 	len = vid >> 16;
234 	vid = (vid << 17) >> 17;
235 
236 	/* verify the reserved 0 fields are 0 */
237 	if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
238 		return FM10K_ERR_PARAM;
239 
240 	/* Loop through the table updating all required VLANs */
241 	for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
242 	     len < FM10K_VLAN_TABLE_VID_MAX;
243 	     len -= 32 - bit, reg++, bit = 0) {
244 		/* record the initial state of the register */
245 		vlan_table = fm10k_read_reg(hw, reg);
246 
247 		/* truncate mask if we are at the start or end of the run */
248 		mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
249 
250 		/* make necessary modifications to the register */
251 		mask &= set ? ~vlan_table : vlan_table;
252 		if (mask)
253 			fm10k_write_reg(hw, reg, vlan_table ^ mask);
254 	}
255 
256 	return 0;
257 }
258 
259 /**
260  *  fm10k_read_mac_addr_pf - Read device MAC address
261  *  @hw: pointer to the HW structure
262  *
263  *  Reads the device MAC address from the SM_AREA and stores the value.
264  **/
265 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
266 {
267 	u8 perm_addr[ETH_ALEN];
268 	u32 serial_num;
269 
270 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
271 
272 	/* last byte should be all 1's */
273 	if ((~serial_num) << 24)
274 		return  FM10K_ERR_INVALID_MAC_ADDR;
275 
276 	perm_addr[0] = (u8)(serial_num >> 24);
277 	perm_addr[1] = (u8)(serial_num >> 16);
278 	perm_addr[2] = (u8)(serial_num >> 8);
279 
280 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
281 
282 	/* first byte should be all 1's */
283 	if ((~serial_num) >> 24)
284 		return  FM10K_ERR_INVALID_MAC_ADDR;
285 
286 	perm_addr[3] = (u8)(serial_num >> 16);
287 	perm_addr[4] = (u8)(serial_num >> 8);
288 	perm_addr[5] = (u8)(serial_num);
289 
290 	ether_addr_copy(hw->mac.perm_addr, perm_addr);
291 	ether_addr_copy(hw->mac.addr, perm_addr);
292 
293 	return 0;
294 }
295 
296 /**
297  *  fm10k_glort_valid_pf - Validate that the provided glort is valid
298  *  @hw: pointer to the HW structure
299  *  @glort: base glort to be validated
300  *
301  *  This function will return an error if the provided glort is invalid
302  **/
303 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
304 {
305 	glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
306 
307 	return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
308 }
309 
310 /**
311  *  fm10k_update_xc_addr_pf - Update device addresses
312  *  @hw: pointer to the HW structure
313  *  @glort: base resource tag for this request
314  *  @mac: MAC address to add/remove from table
315  *  @vid: VLAN ID to add/remove from table
316  *  @add: Indicates if this is an add or remove operation
317  *  @flags: flags field to indicate add and secure
318  *
319  *  This function generates a message to the Switch API requesting
320  *  that the given logical port add/remove the given L2 MAC/VLAN address.
321  **/
322 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
323 				   const u8 *mac, u16 vid, bool add, u8 flags)
324 {
325 	struct fm10k_mbx_info *mbx = &hw->mbx;
326 	struct fm10k_mac_update mac_update;
327 	u32 msg[5];
328 
329 	/* clear set bit from VLAN ID */
330 	vid &= ~FM10K_VLAN_CLEAR;
331 
332 	/* if glort or VLAN are not valid return error */
333 	if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
334 		return FM10K_ERR_PARAM;
335 
336 	/* record fields */
337 	mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
338 						 ((u32)mac[3] << 16) |
339 						 ((u32)mac[4] << 8) |
340 						 ((u32)mac[5]));
341 	mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
342 					   ((u16)mac[1]));
343 	mac_update.vlan = cpu_to_le16(vid);
344 	mac_update.glort = cpu_to_le16(glort);
345 	mac_update.action = add ? 0 : 1;
346 	mac_update.flags = flags;
347 
348 	/* populate mac_update fields */
349 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
350 	fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
351 				     &mac_update, sizeof(mac_update));
352 
353 	/* load onto outgoing mailbox */
354 	return mbx->ops.enqueue_tx(hw, mbx, msg);
355 }
356 
357 /**
358  *  fm10k_update_uc_addr_pf - Update device unicast addresses
359  *  @hw: pointer to the HW structure
360  *  @glort: base resource tag for this request
361  *  @mac: MAC address to add/remove from table
362  *  @vid: VLAN ID to add/remove from table
363  *  @add: Indicates if this is an add or remove operation
364  *  @flags: flags field to indicate add and secure
365  *
366  *  This function is used to add or remove unicast addresses for
367  *  the PF.
368  **/
369 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
370 				   const u8 *mac, u16 vid, bool add, u8 flags)
371 {
372 	/* verify MAC address is valid */
373 	if (!is_valid_ether_addr(mac))
374 		return FM10K_ERR_PARAM;
375 
376 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
377 }
378 
379 /**
380  *  fm10k_update_mc_addr_pf - Update device multicast addresses
381  *  @hw: pointer to the HW structure
382  *  @glort: base resource tag for this request
383  *  @mac: MAC address to add/remove from table
384  *  @vid: VLAN ID to add/remove from table
385  *  @add: Indicates if this is an add or remove operation
386  *
387  *  This function is used to add or remove multicast MAC addresses for
388  *  the PF.
389  **/
390 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
391 				   const u8 *mac, u16 vid, bool add)
392 {
393 	/* verify multicast address is valid */
394 	if (!is_multicast_ether_addr(mac))
395 		return FM10K_ERR_PARAM;
396 
397 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
398 }
399 
400 /**
401  *  fm10k_update_xcast_mode_pf - Request update of multicast mode
402  *  @hw: pointer to hardware structure
403  *  @glort: base resource tag for this request
404  *  @mode: integer value indicating mode being requested
405  *
406  *  This function will attempt to request a higher mode for the port
407  *  so that it can enable either multicast, multicast promiscuous, or
408  *  promiscuous mode of operation.
409  **/
410 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
411 {
412 	struct fm10k_mbx_info *mbx = &hw->mbx;
413 	u32 msg[3], xcast_mode;
414 
415 	if (mode > FM10K_XCAST_MODE_NONE)
416 		return FM10K_ERR_PARAM;
417 
418 	/* if glort is not valid return error */
419 	if (!fm10k_glort_valid_pf(hw, glort))
420 		return FM10K_ERR_PARAM;
421 
422 	/* write xcast mode as a single u32 value,
423 	 * lower 16 bits: glort
424 	 * upper 16 bits: mode
425 	 */
426 	xcast_mode = ((u32)mode << 16) | glort;
427 
428 	/* generate message requesting to change xcast mode */
429 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
430 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
431 
432 	/* load onto outgoing mailbox */
433 	return mbx->ops.enqueue_tx(hw, mbx, msg);
434 }
435 
436 /**
437  *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
438  *  @hw: pointer to hardware structure
439  *
440  *  This function walks through the MSI-X vector table to determine the
441  *  number of active interrupts and based on that information updates the
442  *  interrupt moderator linked list.
443  **/
444 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
445 {
446 	u32 i;
447 
448 	/* Disable interrupt moderator */
449 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
450 
451 	/* loop through PF from last to first looking enabled vectors */
452 	for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
453 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
454 			break;
455 	}
456 
457 	/* always reset VFITR2[0] to point to last enabled PF vector */
458 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
459 
460 	/* reset ITR2[0] to point to last enabled PF vector */
461 	if (!hw->iov.num_vfs)
462 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
463 
464 	/* Enable interrupt moderator */
465 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
466 }
467 
468 /**
469  *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
470  *  @hw: pointer to the HW structure
471  *  @glort: base resource tag for this request
472  *  @count: number of logical ports being updated
473  *  @enable: boolean value indicating enable or disable
474  *
475  *  This function is used to add/remove a logical port from the switch.
476  **/
477 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
478 				       u16 count, bool enable)
479 {
480 	struct fm10k_mbx_info *mbx = &hw->mbx;
481 	u32 msg[3], lport_msg;
482 
483 	/* do nothing if we are being asked to create or destroy 0 ports */
484 	if (!count)
485 		return 0;
486 
487 	/* if glort is not valid return error */
488 	if (!fm10k_glort_valid_pf(hw, glort))
489 		return FM10K_ERR_PARAM;
490 
491 	/* reset multicast mode if deleting lport */
492 	if (!enable)
493 		fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
494 
495 	/* construct the lport message from the 2 pieces of data we have */
496 	lport_msg = ((u32)count << 16) | glort;
497 
498 	/* generate lport create/delete message */
499 	fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
500 					 FM10K_PF_MSG_ID_LPORT_DELETE);
501 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
502 
503 	/* load onto outgoing mailbox */
504 	return mbx->ops.enqueue_tx(hw, mbx, msg);
505 }
506 
507 /**
508  *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
509  *  @hw: pointer to hardware structure
510  *  @dglort: pointer to dglort configuration structure
511  *
512  *  Reads the configuration structure contained in dglort_cfg and uses
513  *  that information to then populate a DGLORTMAP/DEC entry and the queues
514  *  to which it has been assigned.
515  **/
516 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
517 					 struct fm10k_dglort_cfg *dglort)
518 {
519 	u16 glort, queue_count, vsi_count, pc_count;
520 	u16 vsi, queue, pc, q_idx;
521 	u32 txqctl, dglortdec, dglortmap;
522 
523 	/* verify the dglort pointer */
524 	if (!dglort)
525 		return FM10K_ERR_PARAM;
526 
527 	/* verify the dglort values */
528 	if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
529 	    (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
530 	    (dglort->queue_l > 8) || (dglort->queue_b >= 256))
531 		return FM10K_ERR_PARAM;
532 
533 	/* determine count of VSIs and queues */
534 	queue_count = BIT(dglort->rss_l + dglort->pc_l);
535 	vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
536 	glort = dglort->glort;
537 	q_idx = dglort->queue_b;
538 
539 	/* configure SGLORT for queues */
540 	for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
541 		for (queue = 0; queue < queue_count; queue++, q_idx++) {
542 			if (q_idx >= FM10K_MAX_QUEUES)
543 				break;
544 
545 			fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
546 			fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
547 		}
548 	}
549 
550 	/* determine count of PCs and queues */
551 	queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
552 	pc_count = BIT(dglort->pc_l);
553 
554 	/* configure PC for Tx queues */
555 	for (pc = 0; pc < pc_count; pc++) {
556 		q_idx = pc + dglort->queue_b;
557 		for (queue = 0; queue < queue_count; queue++) {
558 			if (q_idx >= FM10K_MAX_QUEUES)
559 				break;
560 
561 			txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
562 			txqctl &= ~FM10K_TXQCTL_PC_MASK;
563 			txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
564 			fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
565 
566 			q_idx += pc_count;
567 		}
568 	}
569 
570 	/* configure DGLORTDEC */
571 	dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
572 		    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
573 		    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
574 		    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
575 		    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
576 		    ((u32)(dglort->queue_l));
577 	if (dglort->inner_rss)
578 		dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
579 
580 	/* configure DGLORTMAP */
581 	dglortmap = (dglort->idx == fm10k_dglort_default) ?
582 			FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
583 	dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
584 	dglortmap |= dglort->glort;
585 
586 	/* write values to hardware */
587 	fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
588 	fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
589 
590 	return 0;
591 }
592 
593 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
594 {
595 	u16 num_pools = hw->iov.num_pools;
596 
597 	return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
598 	       8 : FM10K_MAX_QUEUES_POOL;
599 }
600 
601 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
602 {
603 	u16 num_vfs = hw->iov.num_vfs;
604 	u16 vf_q_idx = FM10K_MAX_QUEUES;
605 
606 	vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
607 
608 	return vf_q_idx;
609 }
610 
611 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
612 {
613 	u16 num_pools = hw->iov.num_pools;
614 
615 	return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
616 	       FM10K_MAX_VECTORS_POOL;
617 }
618 
619 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
620 {
621 	u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
622 
623 	vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
624 
625 	return vf_v_idx;
626 }
627 
628 /**
629  *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
630  *  @hw: pointer to the HW structure
631  *  @num_vfs: number of VFs to be allocated
632  *  @num_pools: number of virtualization pools to be allocated
633  *
634  *  Allocates queues and traffic classes to virtualization entities to prepare
635  *  the PF for SR-IOV and VMDq
636  **/
637 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
638 					 u16 num_pools)
639 {
640 	u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
641 	u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
642 	int i, j;
643 
644 	/* hardware only supports up to 64 pools */
645 	if (num_pools > 64)
646 		return FM10K_ERR_PARAM;
647 
648 	/* the number of VFs cannot exceed the number of pools */
649 	if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
650 		return FM10K_ERR_PARAM;
651 
652 	/* record number of virtualization entities */
653 	hw->iov.num_vfs = num_vfs;
654 	hw->iov.num_pools = num_pools;
655 
656 	/* determine qmap offsets and counts */
657 	qmap_stride = (num_vfs > 8) ? 32 : 256;
658 	qpp = fm10k_queues_per_pool(hw);
659 	vpp = fm10k_vectors_per_pool(hw);
660 
661 	/* calculate starting index for queues */
662 	vf_q_idx = fm10k_vf_queue_index(hw, 0);
663 	qmap_idx = 0;
664 
665 	/* establish TCs with -1 credits and no quanta to prevent transmit */
666 	for (i = 0; i < num_vfs; i++) {
667 		fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
668 		fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
669 		fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
670 				FM10K_TC_CREDIT_CREDIT_MASK);
671 	}
672 
673 	/* zero out all mbmem registers */
674 	for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
675 		fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
676 
677 	/* clear event notification of VF FLR */
678 	fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
679 	fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
680 
681 	/* loop through unallocated rings assigning them back to PF */
682 	for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
683 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
684 		fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
685 				FM10K_TXQCTL_UNLIMITED_BW | vid);
686 		fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
687 	}
688 
689 	/* PF should have already updated VFITR2[0] */
690 
691 	/* update all ITR registers to flow to VFITR2[0] */
692 	for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
693 		if (!(i & (vpp - 1)))
694 			fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
695 		else
696 			fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
697 	}
698 
699 	/* update PF ITR2[0] to reference the last vector */
700 	fm10k_write_reg(hw, FM10K_ITR2(0),
701 			fm10k_vf_vector_index(hw, num_vfs - 1));
702 
703 	/* loop through rings populating rings and TCs */
704 	for (i = 0; i < num_vfs; i++) {
705 		/* record index for VF queue 0 for use in end of loop */
706 		vf_q_idx0 = vf_q_idx;
707 
708 		for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
709 			/* assign VF and locked TC to queues */
710 			fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
711 			fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
712 					(i << FM10K_TXQCTL_TC_SHIFT) | i |
713 					FM10K_TXQCTL_VF | vid);
714 			fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
715 					FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
716 					FM10K_RXDCTL_DROP_ON_EMPTY);
717 			fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
718 					(i << FM10K_RXQCTL_VF_SHIFT) |
719 					FM10K_RXQCTL_VF);
720 
721 			/* map queue pair to VF */
722 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
723 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
724 		}
725 
726 		/* repeat the first ring for all of the remaining VF rings */
727 		for (; j < qmap_stride; j++, qmap_idx++) {
728 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
729 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
730 		}
731 	}
732 
733 	/* loop through remaining indexes assigning all to queue 0 */
734 	while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
735 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
736 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
737 		qmap_idx++;
738 	}
739 
740 	return 0;
741 }
742 
743 /**
744  *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
745  *  @hw: pointer to the HW structure
746  *  @vf_idx: index of VF receiving GLORT
747  *  @rate: Rate indicated in Mb/s
748  *
749  *  Configured the TC for a given VF to allow only up to a given number
750  *  of Mb/s of outgoing Tx throughput.
751  **/
752 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
753 {
754 	/* configure defaults */
755 	u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
756 	u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
757 
758 	/* verify vf is in range */
759 	if (vf_idx >= hw->iov.num_vfs)
760 		return FM10K_ERR_PARAM;
761 
762 	/* set interval to align with 4.096 usec in all modes */
763 	switch (hw->bus.speed) {
764 	case fm10k_bus_speed_2500:
765 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
766 		break;
767 	case fm10k_bus_speed_5000:
768 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
769 		break;
770 	default:
771 		break;
772 	}
773 
774 	if (rate) {
775 		if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
776 			return FM10K_ERR_PARAM;
777 
778 		/* The quanta is measured in Bytes per 4.096 or 8.192 usec
779 		 * The rate is provided in Mbits per second
780 		 * To tralslate from rate to quanta we need to multiply the
781 		 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
782 		 * dealing with floating point we can round the values up
783 		 * to the nearest whole number ratio which gives us 128 / 125.
784 		 */
785 		tc_rate = (rate * 128) / 125;
786 
787 		/* try to keep the rate limiting accurate by increasing
788 		 * the number of credits and interval for rates less than 4Gb/s
789 		 */
790 		if (rate < 4000)
791 			interval <<= 1;
792 		else
793 			tc_rate >>= 1;
794 	}
795 
796 	/* update rate limiter with new values */
797 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
798 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
799 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
800 
801 	return 0;
802 }
803 
804 /**
805  *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
806  *  @hw: pointer to the HW structure
807  *  @vf_idx: index of VF receiving GLORT
808  *
809  *  Update the interrupt moderator linked list to include any MSI-X
810  *  interrupts which the VF has enabled in the MSI-X vector table.
811  **/
812 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
813 {
814 	u16 vf_v_idx, vf_v_limit, i;
815 
816 	/* verify vf is in range */
817 	if (vf_idx >= hw->iov.num_vfs)
818 		return FM10K_ERR_PARAM;
819 
820 	/* determine vector offset and count */
821 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
822 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
823 
824 	/* search for first vector that is not masked */
825 	for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
826 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
827 			break;
828 	}
829 
830 	/* reset linked list so it now includes our active vectors */
831 	if (vf_idx == (hw->iov.num_vfs - 1))
832 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
833 	else
834 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
835 
836 	return 0;
837 }
838 
839 /**
840  *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
841  *  @hw: pointer to the HW structure
842  *  @vf_info: pointer to VF information structure
843  *
844  *  Assign a MAC address and default VLAN to a VF and notify it of the update
845  **/
846 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
847 						struct fm10k_vf_info *vf_info)
848 {
849 	u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
850 	u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
851 	s32 err = 0;
852 	u16 vf_idx, vf_vid;
853 
854 	/* verify vf is in range */
855 	if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
856 		return FM10K_ERR_PARAM;
857 
858 	/* determine qmap offsets and counts */
859 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
860 	queues_per_pool = fm10k_queues_per_pool(hw);
861 
862 	/* calculate starting index for queues */
863 	vf_idx = vf_info->vf_idx;
864 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
865 	qmap_idx = qmap_stride * vf_idx;
866 
867 	/* MAP Tx queue back to 0 temporarily, and disable it */
868 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
869 	fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
870 
871 	/* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
872 	 * used here to indicate to the VF that it will not have privilege to
873 	 * write VLAN_TABLE. All policy is enforced on the PF but this allows
874 	 * the VF to correctly report errors to userspace rqeuests.
875 	 */
876 	if (vf_info->pf_vid)
877 		vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
878 	else
879 		vf_vid = vf_info->sw_vid;
880 
881 	/* generate MAC_ADDR request */
882 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
883 	fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
884 				    vf_info->mac, vf_vid);
885 
886 	/* load onto outgoing mailbox, ignore any errors on enqueue */
887 	if (vf_info->mbx.ops.enqueue_tx)
888 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
889 
890 	/* verify ring has disabled before modifying base address registers */
891 	txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
892 	for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
893 		/* limit ourselves to a 1ms timeout */
894 		if (timeout == 10) {
895 			err = FM10K_ERR_DMA_PENDING;
896 			goto err_out;
897 		}
898 
899 		usleep_range(100, 200);
900 		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
901 	}
902 
903 	/* Update base address registers to contain MAC address */
904 	if (is_valid_ether_addr(vf_info->mac)) {
905 		tdbal = (((u32)vf_info->mac[3]) << 24) |
906 			(((u32)vf_info->mac[4]) << 16) |
907 			(((u32)vf_info->mac[5]) << 8);
908 
909 		tdbah = (((u32)0xFF)	        << 24) |
910 			(((u32)vf_info->mac[0]) << 16) |
911 			(((u32)vf_info->mac[1]) << 8) |
912 			((u32)vf_info->mac[2]);
913 	}
914 
915 	/* Record the base address into queue 0 */
916 	fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
917 	fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
918 
919 	/* Provide the VF the ITR scale, using software-defined fields in TDLEN
920 	 * to pass the information during VF initialization. See definition of
921 	 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
922 	 */
923 	fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
924 						   FM10K_TDLEN_ITR_SCALE_SHIFT);
925 
926 err_out:
927 	/* configure Queue control register */
928 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
929 		 FM10K_TXQCTL_VID_MASK;
930 	txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
931 		  FM10K_TXQCTL_VF | vf_idx;
932 
933 	/* assign VLAN ID */
934 	for (i = 0; i < queues_per_pool; i++)
935 		fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
936 
937 	/* restore the queue back to VF ownership */
938 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
939 	return err;
940 }
941 
942 /**
943  *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
944  *  @hw: pointer to the HW structure
945  *  @vf_info: pointer to VF information structure
946  *
947  *  Reassign the interrupts and queues to a VF following an FLR
948  **/
949 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
950 					struct fm10k_vf_info *vf_info)
951 {
952 	u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
953 	u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
954 	u16 vf_v_idx, vf_v_limit, vf_vid;
955 	u8 vf_idx = vf_info->vf_idx;
956 	int i;
957 
958 	/* verify vf is in range */
959 	if (vf_idx >= hw->iov.num_vfs)
960 		return FM10K_ERR_PARAM;
961 
962 	/* clear event notification of VF FLR */
963 	fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
964 
965 	/* force timeout and then disconnect the mailbox */
966 	vf_info->mbx.timeout = 0;
967 	if (vf_info->mbx.ops.disconnect)
968 		vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
969 
970 	/* determine vector offset and count */
971 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
972 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
973 
974 	/* determine qmap offsets and counts */
975 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
976 	queues_per_pool = fm10k_queues_per_pool(hw);
977 	qmap_idx = qmap_stride * vf_idx;
978 
979 	/* make all the queues inaccessible to the VF */
980 	for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
981 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
982 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
983 	}
984 
985 	/* calculate starting index for queues */
986 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
987 
988 	/* determine correct default VLAN ID */
989 	if (vf_info->pf_vid)
990 		vf_vid = vf_info->pf_vid;
991 	else
992 		vf_vid = vf_info->sw_vid;
993 
994 	/* configure Queue control register */
995 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
996 		 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
997 		 FM10K_TXQCTL_VF | vf_idx;
998 	rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
999 
1000 	/* stop further DMA and reset queue ownership back to VF */
1001 	for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1002 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1003 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1004 		fm10k_write_reg(hw, FM10K_RXDCTL(i),
1005 				FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1006 				FM10K_RXDCTL_DROP_ON_EMPTY);
1007 		fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1008 	}
1009 
1010 	/* reset TC with -1 credits and no quanta to prevent transmit */
1011 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1012 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1013 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1014 			FM10K_TC_CREDIT_CREDIT_MASK);
1015 
1016 	/* update our first entry in the table based on previous VF */
1017 	if (!vf_idx)
1018 		hw->mac.ops.update_int_moderator(hw);
1019 	else
1020 		hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1021 
1022 	/* reset linked list so it now includes our active vectors */
1023 	if (vf_idx == (hw->iov.num_vfs - 1))
1024 		fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1025 	else
1026 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1027 
1028 	/* link remaining vectors so that next points to previous */
1029 	for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1030 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1031 
1032 	/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1033 	for (i = FM10K_VFMBMEM_LEN; i--;)
1034 		fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1035 	for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1036 		fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1037 	for (i = FM10K_RETA_SIZE; i--;)
1038 		fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1039 	for (i = FM10K_RSSRK_SIZE; i--;)
1040 		fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1041 	fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1042 
1043 	/* Update base address registers to contain MAC address */
1044 	if (is_valid_ether_addr(vf_info->mac)) {
1045 		tdbal = (((u32)vf_info->mac[3]) << 24) |
1046 			(((u32)vf_info->mac[4]) << 16) |
1047 			(((u32)vf_info->mac[5]) << 8);
1048 		tdbah = (((u32)0xFF)	   << 24) |
1049 			(((u32)vf_info->mac[0]) << 16) |
1050 			(((u32)vf_info->mac[1]) << 8) |
1051 			((u32)vf_info->mac[2]);
1052 	}
1053 
1054 	/* map queue pairs back to VF from last to first */
1055 	for (i = queues_per_pool; i--;) {
1056 		fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1057 		fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1058 		/* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1059 		 * explanation of how TDLEN is used.
1060 		 */
1061 		fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1062 				hw->mac.itr_scale <<
1063 				FM10K_TDLEN_ITR_SCALE_SHIFT);
1064 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1065 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1066 	}
1067 
1068 	/* repeat the first ring for all the remaining VF rings */
1069 	for (i = queues_per_pool; i < qmap_stride; i++) {
1070 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1071 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /**
1078  *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1079  *  @hw: pointer to hardware structure
1080  *  @vf_info: pointer to VF information structure
1081  *  @lport_idx: Logical port offset from the hardware glort
1082  *  @flags: Set of capability flags to extend port beyond basic functionality
1083  *
1084  *  This function allows enabling a VF port by assigning it a GLORT and
1085  *  setting the flags so that it can enable an Rx mode.
1086  **/
1087 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1088 				  struct fm10k_vf_info *vf_info,
1089 				  u16 lport_idx, u8 flags)
1090 {
1091 	u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1092 
1093 	/* if glort is not valid return error */
1094 	if (!fm10k_glort_valid_pf(hw, glort))
1095 		return FM10K_ERR_PARAM;
1096 
1097 	vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1098 	vf_info->glort = glort;
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1105  *  @hw: pointer to hardware structure
1106  *  @vf_info: pointer to VF information structure
1107  *
1108  *  This function disables a VF port by stripping it of a GLORT and
1109  *  setting the flags so that it cannot enable any Rx mode.
1110  **/
1111 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1112 				     struct fm10k_vf_info *vf_info)
1113 {
1114 	u32 msg[1];
1115 
1116 	/* need to disable the port if it is already enabled */
1117 	if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1118 		/* notify switch that this port has been disabled */
1119 		fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1120 
1121 		/* generate port state response to notify VF it is not ready */
1122 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1123 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1124 	}
1125 
1126 	/* clear flags and glort if it exists */
1127 	vf_info->vf_flags = 0;
1128 	vf_info->glort = 0;
1129 }
1130 
1131 /**
1132  *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1133  *  @hw: pointer to hardware structure
1134  *  @q: stats for all queues of a VF
1135  *  @vf_idx: index of VF
1136  *
1137  *  This function collects queue stats for VFs.
1138  **/
1139 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1140 				      struct fm10k_hw_stats_q *q,
1141 				      u16 vf_idx)
1142 {
1143 	u32 idx, qpp;
1144 
1145 	/* get stats for all of the queues */
1146 	qpp = fm10k_queues_per_pool(hw);
1147 	idx = fm10k_vf_queue_index(hw, vf_idx);
1148 	fm10k_update_hw_stats_q(hw, q, idx, qpp);
1149 }
1150 
1151 /**
1152  *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1153  *  @hw: Pointer to hardware structure
1154  *  @results: Pointer array to message, results[0] is pointer to message
1155  *  @mbx: Pointer to mailbox information structure
1156  *
1157  *  This function is a default handler for MSI-X requests from the VF.  The
1158  *  assumption is that in this case it is acceptable to just directly
1159  *  hand off the message from the VF to the underlying shared code.
1160  **/
1161 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1162 			  struct fm10k_mbx_info *mbx)
1163 {
1164 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1165 	u8 vf_idx = vf_info->vf_idx;
1166 
1167 	return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1168 }
1169 
1170 /**
1171  * fm10k_iov_select_vid - Select correct default VLAN ID
1172  * @hw: Pointer to hardware structure
1173  * @vid: VLAN ID to correct
1174  *
1175  * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1176  * return either the pf_vid or sw_vid depending on which one is set.
1177  */
1178 static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1179 {
1180 	if (!vid)
1181 		return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1182 	else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1183 		return FM10K_ERR_PARAM;
1184 	else
1185 		return vid;
1186 }
1187 
1188 /**
1189  *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1190  *  @hw: Pointer to hardware structure
1191  *  @results: Pointer array to message, results[0] is pointer to message
1192  *  @mbx: Pointer to mailbox information structure
1193  *
1194  *  This function is a default handler for MAC/VLAN requests from the VF.
1195  *  The assumption is that in this case it is acceptable to just directly
1196  *  hand off the message from the VF to the underlying shared code.
1197  **/
1198 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1199 			      struct fm10k_mbx_info *mbx)
1200 {
1201 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1202 	u8 mac[ETH_ALEN];
1203 	u32 *result;
1204 	int err = 0;
1205 	bool set;
1206 	u16 vlan;
1207 	u32 vid;
1208 
1209 	/* we shouldn't be updating rules on a disabled interface */
1210 	if (!FM10K_VF_FLAG_ENABLED(vf_info))
1211 		err = FM10K_ERR_PARAM;
1212 
1213 	if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1214 		result = results[FM10K_MAC_VLAN_MSG_VLAN];
1215 
1216 		/* record VLAN id requested */
1217 		err = fm10k_tlv_attr_get_u32(result, &vid);
1218 		if (err)
1219 			return err;
1220 
1221 		set = !(vid & FM10K_VLAN_CLEAR);
1222 		vid &= ~FM10K_VLAN_CLEAR;
1223 
1224 		/* if the length field has been set, this is a multi-bit
1225 		 * update request. For multi-bit requests, simply disallow
1226 		 * them when the pf_vid has been set. In this case, the PF
1227 		 * should have already cleared the VLAN_TABLE, and if we
1228 		 * allowed them, it could allow a rogue VF to receive traffic
1229 		 * on a VLAN it was not assigned. In the single-bit case, we
1230 		 * need to modify requests for VLAN 0 to use the default PF or
1231 		 * SW vid when assigned.
1232 		 */
1233 
1234 		if (vid >> 16) {
1235 			/* prevent multi-bit requests when PF has
1236 			 * administratively set the VLAN for this VF
1237 			 */
1238 			if (vf_info->pf_vid)
1239 				return FM10K_ERR_PARAM;
1240 		} else {
1241 			err = fm10k_iov_select_vid(vf_info, (u16)vid);
1242 			if (err < 0)
1243 				return err;
1244 
1245 			vid = err;
1246 		}
1247 
1248 		/* update VSI info for VF in regards to VLAN table */
1249 		err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1250 	}
1251 
1252 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1253 		result = results[FM10K_MAC_VLAN_MSG_MAC];
1254 
1255 		/* record unicast MAC address requested */
1256 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1257 		if (err)
1258 			return err;
1259 
1260 		/* block attempts to set MAC for a locked device */
1261 		if (is_valid_ether_addr(vf_info->mac) &&
1262 		    !ether_addr_equal(mac, vf_info->mac))
1263 			return FM10K_ERR_PARAM;
1264 
1265 		set = !(vlan & FM10K_VLAN_CLEAR);
1266 		vlan &= ~FM10K_VLAN_CLEAR;
1267 
1268 		err = fm10k_iov_select_vid(vf_info, vlan);
1269 		if (err < 0)
1270 			return err;
1271 
1272 		vlan = (u16)err;
1273 
1274 		/* notify switch of request for new unicast address */
1275 		err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1276 						 mac, vlan, set, 0);
1277 	}
1278 
1279 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1280 		result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1281 
1282 		/* record multicast MAC address requested */
1283 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1284 		if (err)
1285 			return err;
1286 
1287 		/* verify that the VF is allowed to request multicast */
1288 		if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1289 			return FM10K_ERR_PARAM;
1290 
1291 		set = !(vlan & FM10K_VLAN_CLEAR);
1292 		vlan &= ~FM10K_VLAN_CLEAR;
1293 
1294 		err = fm10k_iov_select_vid(vf_info, vlan);
1295 		if (err < 0)
1296 			return err;
1297 
1298 		vlan = (u16)err;
1299 
1300 		/* notify switch of request for new multicast address */
1301 		err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1302 						 mac, vlan, set);
1303 	}
1304 
1305 	return err;
1306 }
1307 
1308 /**
1309  *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1310  *  @vf_info: VF info structure containing capability flags
1311  *  @mode: Requested xcast mode
1312  *
1313  *  This function outputs the mode that most closely matches the requested
1314  *  mode.  If not modes match it will request we disable the port
1315  **/
1316 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1317 					    u8 mode)
1318 {
1319 	u8 vf_flags = vf_info->vf_flags;
1320 
1321 	/* match up mode to capabilities as best as possible */
1322 	switch (mode) {
1323 	case FM10K_XCAST_MODE_PROMISC:
1324 		if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1325 			return FM10K_XCAST_MODE_PROMISC;
1326 		/* fallthough */
1327 	case FM10K_XCAST_MODE_ALLMULTI:
1328 		if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1329 			return FM10K_XCAST_MODE_ALLMULTI;
1330 		/* fallthough */
1331 	case FM10K_XCAST_MODE_MULTI:
1332 		if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1333 			return FM10K_XCAST_MODE_MULTI;
1334 		/* fallthough */
1335 	case FM10K_XCAST_MODE_NONE:
1336 		if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1337 			return FM10K_XCAST_MODE_NONE;
1338 		/* fallthough */
1339 	default:
1340 		break;
1341 	}
1342 
1343 	/* disable interface as it should not be able to request any */
1344 	return FM10K_XCAST_MODE_DISABLE;
1345 }
1346 
1347 /**
1348  *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1349  *  @hw: Pointer to hardware structure
1350  *  @results: Pointer array to message, results[0] is pointer to message
1351  *  @mbx: Pointer to mailbox information structure
1352  *
1353  *  This function is a default handler for port state requests.  The port
1354  *  state requests for now are basic and consist of enabling or disabling
1355  *  the port.
1356  **/
1357 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1358 				 struct fm10k_mbx_info *mbx)
1359 {
1360 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1361 	u32 *result;
1362 	s32 err = 0;
1363 	u32 msg[2];
1364 	u8 mode = 0;
1365 
1366 	/* verify VF is allowed to enable even minimal mode */
1367 	if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1368 		return FM10K_ERR_PARAM;
1369 
1370 	if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1371 		result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1372 
1373 		/* XCAST mode update requested */
1374 		err = fm10k_tlv_attr_get_u8(result, &mode);
1375 		if (err)
1376 			return FM10K_ERR_PARAM;
1377 
1378 		/* prep for possible demotion depending on capabilities */
1379 		mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1380 
1381 		/* if mode is not currently enabled, enable it */
1382 		if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1383 			fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1384 
1385 		/* swap mode back to a bit flag */
1386 		mode = FM10K_VF_FLAG_SET_MODE(mode);
1387 	} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1388 		/* need to disable the port if it is already enabled */
1389 		if (FM10K_VF_FLAG_ENABLED(vf_info))
1390 			err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1391 							  1, false);
1392 
1393 		/* we need to clear VF_FLAG_ENABLED flags in order to ensure
1394 		 * that we actually re-enable the LPORT state below. Note that
1395 		 * this has no impact if the VF is already disabled, as the
1396 		 * flags are already cleared.
1397 		 */
1398 		if (!err)
1399 			vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1400 
1401 		/* when enabling the port we should reset the rate limiters */
1402 		hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1403 
1404 		/* set mode for minimal functionality */
1405 		mode = FM10K_VF_FLAG_SET_MODE_NONE;
1406 
1407 		/* generate port state response to notify VF it is ready */
1408 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1409 		fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1410 		mbx->ops.enqueue_tx(hw, mbx, msg);
1411 	}
1412 
1413 	/* if enable state toggled note the update */
1414 	if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1415 		err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1416 						  !!mode);
1417 
1418 	/* if state change succeeded, then update our stored state */
1419 	mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1420 	if (!err)
1421 		vf_info->vf_flags = mode;
1422 
1423 	return err;
1424 }
1425 
1426 /**
1427  *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1428  *  @hw: pointer to hardware structure
1429  *  @stats: pointer to the stats structure to update
1430  *
1431  *  This function collects and aggregates global and per queue hardware
1432  *  statistics.
1433  **/
1434 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1435 				     struct fm10k_hw_stats *stats)
1436 {
1437 	u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1438 	u32 id, id_prev;
1439 
1440 	/* Use Tx queue 0 as a canary to detect a reset */
1441 	id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1442 
1443 	/* Read Global Statistics */
1444 	do {
1445 		timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1446 						  &stats->timeout);
1447 		ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1448 		ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1449 		um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1450 		xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1451 		vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1452 						    &stats->vlan_drop);
1453 		loopback_drop =
1454 			fm10k_read_hw_stats_32b(hw,
1455 						FM10K_STATS_LOOPBACK_DROP,
1456 						&stats->loopback_drop);
1457 		nodesc_drop = fm10k_read_hw_stats_32b(hw,
1458 						      FM10K_STATS_NODESC_DROP,
1459 						      &stats->nodesc_drop);
1460 
1461 		/* if value has not changed then we have consistent data */
1462 		id_prev = id;
1463 		id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1464 	} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1465 
1466 	/* drop non-ID bits and set VALID ID bit */
1467 	id &= FM10K_TXQCTL_ID_MASK;
1468 	id |= FM10K_STAT_VALID;
1469 
1470 	/* Update Global Statistics */
1471 	if (stats->stats_idx == id) {
1472 		stats->timeout.count += timeout;
1473 		stats->ur.count += ur;
1474 		stats->ca.count += ca;
1475 		stats->um.count += um;
1476 		stats->xec.count += xec;
1477 		stats->vlan_drop.count += vlan_drop;
1478 		stats->loopback_drop.count += loopback_drop;
1479 		stats->nodesc_drop.count += nodesc_drop;
1480 	}
1481 
1482 	/* Update bases and record current PF id */
1483 	fm10k_update_hw_base_32b(&stats->timeout, timeout);
1484 	fm10k_update_hw_base_32b(&stats->ur, ur);
1485 	fm10k_update_hw_base_32b(&stats->ca, ca);
1486 	fm10k_update_hw_base_32b(&stats->um, um);
1487 	fm10k_update_hw_base_32b(&stats->xec, xec);
1488 	fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1489 	fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1490 	fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1491 	stats->stats_idx = id;
1492 
1493 	/* Update Queue Statistics */
1494 	fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1495 }
1496 
1497 /**
1498  *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1499  *  @hw: pointer to hardware structure
1500  *  @stats: pointer to the stats structure to update
1501  *
1502  *  This function resets the base for global and per queue hardware
1503  *  statistics.
1504  **/
1505 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1506 				     struct fm10k_hw_stats *stats)
1507 {
1508 	/* Unbind Global Statistics */
1509 	fm10k_unbind_hw_stats_32b(&stats->timeout);
1510 	fm10k_unbind_hw_stats_32b(&stats->ur);
1511 	fm10k_unbind_hw_stats_32b(&stats->ca);
1512 	fm10k_unbind_hw_stats_32b(&stats->um);
1513 	fm10k_unbind_hw_stats_32b(&stats->xec);
1514 	fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1515 	fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1516 	fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1517 
1518 	/* Unbind Queue Statistics */
1519 	fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1520 
1521 	/* Reinitialize bases for all stats */
1522 	fm10k_update_hw_stats_pf(hw, stats);
1523 }
1524 
1525 /**
1526  *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1527  *  @hw: pointer to hardware structure
1528  *  @dma_mask: 64 bit DMA mask required for platform
1529  *
1530  *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1531  *  to limit the access to memory beyond what is physically in the system.
1532  **/
1533 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1534 {
1535 	/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1536 	u32 phyaddr = (u32)(dma_mask >> 32);
1537 
1538 	fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1539 }
1540 
1541 /**
1542  *  fm10k_get_fault_pf - Record a fault in one of the interface units
1543  *  @hw: pointer to hardware structure
1544  *  @type: pointer to fault type register offset
1545  *  @fault: pointer to memory location to record the fault
1546  *
1547  *  Record the fault register contents to the fault data structure and
1548  *  clear the entry from the register.
1549  *
1550  *  Returns ERR_PARAM if invalid register is specified or no error is present.
1551  **/
1552 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1553 			      struct fm10k_fault *fault)
1554 {
1555 	u32 func;
1556 
1557 	/* verify the fault register is in range and is aligned */
1558 	switch (type) {
1559 	case FM10K_PCA_FAULT:
1560 	case FM10K_THI_FAULT:
1561 	case FM10K_FUM_FAULT:
1562 		break;
1563 	default:
1564 		return FM10K_ERR_PARAM;
1565 	}
1566 
1567 	/* only service faults that are valid */
1568 	func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1569 	if (!(func & FM10K_FAULT_FUNC_VALID))
1570 		return FM10K_ERR_PARAM;
1571 
1572 	/* read remaining fields */
1573 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1574 	fault->address <<= 32;
1575 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1576 	fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1577 
1578 	/* clear valid bit to allow for next error */
1579 	fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1580 
1581 	/* Record which function triggered the error */
1582 	if (func & FM10K_FAULT_FUNC_PF)
1583 		fault->func = 0;
1584 	else
1585 		fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1586 				   FM10K_FAULT_FUNC_VF_SHIFT);
1587 
1588 	/* record fault type */
1589 	fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1590 
1591 	return 0;
1592 }
1593 
1594 /**
1595  *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1596  *  @hw: pointer to hardware structure
1597  *
1598  **/
1599 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1600 {
1601 	struct fm10k_mbx_info *mbx = &hw->mbx;
1602 	u32 msg[1];
1603 
1604 	/* issue request asking for LPORT map */
1605 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1606 
1607 	/* load onto outgoing mailbox */
1608 	return mbx->ops.enqueue_tx(hw, mbx, msg);
1609 }
1610 
1611 /**
1612  *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1613  *  @hw: pointer to hardware structure
1614  *  @switch_ready: pointer to boolean value that will record switch state
1615  *
1616  *  This function will check the DMA_CTRL2 register and mailbox in order
1617  *  to determine if the switch is ready for the PF to begin requesting
1618  *  addresses and mapping traffic to the local interface.
1619  **/
1620 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1621 {
1622 	s32 ret_val = 0;
1623 	u32 dma_ctrl2;
1624 
1625 	/* verify the switch is ready for interaction */
1626 	dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1627 	if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1628 		goto out;
1629 
1630 	/* retrieve generic host state info */
1631 	ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1632 	if (ret_val)
1633 		goto out;
1634 
1635 	/* interface cannot receive traffic without logical ports */
1636 	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1637 		ret_val = fm10k_request_lport_map_pf(hw);
1638 
1639 out:
1640 	return ret_val;
1641 }
1642 
1643 /* This structure defines the attibutes to be parsed below */
1644 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1645 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1646 				 sizeof(struct fm10k_swapi_error)),
1647 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1648 	FM10K_TLV_ATTR_LAST
1649 };
1650 
1651 /**
1652  *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1653  *  @hw: Pointer to hardware structure
1654  *  @results: pointer array containing parsed data
1655  *  @mbx: Pointer to mailbox information structure
1656  *
1657  *  This handler configures the lport mapping based on the reply from the
1658  *  switch API.
1659  **/
1660 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1661 			   struct fm10k_mbx_info *mbx)
1662 {
1663 	u16 glort, mask;
1664 	u32 dglort_map;
1665 	s32 err;
1666 
1667 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1668 				     &dglort_map);
1669 	if (err)
1670 		return err;
1671 
1672 	/* extract values out of the header */
1673 	glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1674 	mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1675 
1676 	/* verify mask is set and none of the masked bits in glort are set */
1677 	if (!mask || (glort & ~mask))
1678 		return FM10K_ERR_PARAM;
1679 
1680 	/* verify the mask is contiguous, and that it is 1's followed by 0's */
1681 	if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1682 		return FM10K_ERR_PARAM;
1683 
1684 	/* record the glort, mask, and port count */
1685 	hw->mac.dglort_map = dglort_map;
1686 
1687 	return 0;
1688 }
1689 
1690 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1691 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1692 	FM10K_TLV_ATTR_LAST
1693 };
1694 
1695 /**
1696  *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1697  *  @hw: Pointer to hardware structure
1698  *  @results: pointer array containing parsed data
1699  *  @mbx: Pointer to mailbox information structure
1700  *
1701  *  This handler configures the default VLAN for the PF
1702  **/
1703 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1704 				    struct fm10k_mbx_info *mbx)
1705 {
1706 	u16 glort, pvid;
1707 	u32 pvid_update;
1708 	s32 err;
1709 
1710 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1711 				     &pvid_update);
1712 	if (err)
1713 		return err;
1714 
1715 	/* extract values from the pvid update */
1716 	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1717 	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1718 
1719 	/* if glort is not valid return error */
1720 	if (!fm10k_glort_valid_pf(hw, glort))
1721 		return FM10K_ERR_PARAM;
1722 
1723 	/* verify VLAN ID is valid */
1724 	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1725 		return FM10K_ERR_PARAM;
1726 
1727 	/* record the port VLAN ID value */
1728 	hw->mac.default_vid = pvid;
1729 
1730 	return 0;
1731 }
1732 
1733 /**
1734  *  fm10k_record_global_table_data - Move global table data to swapi table info
1735  *  @from: pointer to source table data structure
1736  *  @to: pointer to destination table info structure
1737  *
1738  *  This function is will copy table_data to the table_info contained in
1739  *  the hw struct.
1740  **/
1741 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1742 					   struct fm10k_swapi_table_info *to)
1743 {
1744 	/* convert from le32 struct to CPU byte ordered values */
1745 	to->used = le32_to_cpu(from->used);
1746 	to->avail = le32_to_cpu(from->avail);
1747 }
1748 
1749 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1750 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1751 				 sizeof(struct fm10k_swapi_error)),
1752 	FM10K_TLV_ATTR_LAST
1753 };
1754 
1755 /**
1756  *  fm10k_msg_err_pf - Message handler for error reply
1757  *  @hw: Pointer to hardware structure
1758  *  @results: pointer array containing parsed data
1759  *  @mbx: Pointer to mailbox information structure
1760  *
1761  *  This handler will capture the data for any error replies to previous
1762  *  messages that the PF has sent.
1763  **/
1764 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1765 		     struct fm10k_mbx_info *mbx)
1766 {
1767 	struct fm10k_swapi_error err_msg;
1768 	s32 err;
1769 
1770 	/* extract structure from message */
1771 	err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1772 					   &err_msg, sizeof(err_msg));
1773 	if (err)
1774 		return err;
1775 
1776 	/* record table status */
1777 	fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1778 	fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1779 	fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1780 
1781 	/* record SW API status value */
1782 	hw->swapi.status = le32_to_cpu(err_msg.status);
1783 
1784 	return 0;
1785 }
1786 
1787 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1788 	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1789 	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1790 	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1791 	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1792 	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1793 	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1794 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1795 };
1796 
1797 static const struct fm10k_mac_ops mac_ops_pf = {
1798 	.get_bus_info		= fm10k_get_bus_info_generic,
1799 	.reset_hw		= fm10k_reset_hw_pf,
1800 	.init_hw		= fm10k_init_hw_pf,
1801 	.start_hw		= fm10k_start_hw_generic,
1802 	.stop_hw		= fm10k_stop_hw_generic,
1803 	.update_vlan		= fm10k_update_vlan_pf,
1804 	.read_mac_addr		= fm10k_read_mac_addr_pf,
1805 	.update_uc_addr		= fm10k_update_uc_addr_pf,
1806 	.update_mc_addr		= fm10k_update_mc_addr_pf,
1807 	.update_xcast_mode	= fm10k_update_xcast_mode_pf,
1808 	.update_int_moderator	= fm10k_update_int_moderator_pf,
1809 	.update_lport_state	= fm10k_update_lport_state_pf,
1810 	.update_hw_stats	= fm10k_update_hw_stats_pf,
1811 	.rebind_hw_stats	= fm10k_rebind_hw_stats_pf,
1812 	.configure_dglort_map	= fm10k_configure_dglort_map_pf,
1813 	.set_dma_mask		= fm10k_set_dma_mask_pf,
1814 	.get_fault		= fm10k_get_fault_pf,
1815 	.get_host_state		= fm10k_get_host_state_pf,
1816 };
1817 
1818 static const struct fm10k_iov_ops iov_ops_pf = {
1819 	.assign_resources		= fm10k_iov_assign_resources_pf,
1820 	.configure_tc			= fm10k_iov_configure_tc_pf,
1821 	.assign_int_moderator		= fm10k_iov_assign_int_moderator_pf,
1822 	.assign_default_mac_vlan	= fm10k_iov_assign_default_mac_vlan_pf,
1823 	.reset_resources		= fm10k_iov_reset_resources_pf,
1824 	.set_lport			= fm10k_iov_set_lport_pf,
1825 	.reset_lport			= fm10k_iov_reset_lport_pf,
1826 	.update_stats			= fm10k_iov_update_stats_pf,
1827 };
1828 
1829 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1830 {
1831 	fm10k_get_invariants_generic(hw);
1832 
1833 	return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1834 }
1835 
1836 const struct fm10k_info fm10k_pf_info = {
1837 	.mac		= fm10k_mac_pf,
1838 	.get_invariants	= fm10k_get_invariants_pf,
1839 	.mac_ops	= &mac_ops_pf,
1840 	.iov_ops	= &iov_ops_pf,
1841 };
1842