xref: /linux/drivers/net/ethernet/intel/fm10k/fm10k_pci.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3 
4 #include <linux/module.h>
5 #include <linux/interrupt.h>
6 
7 #include "fm10k.h"
8 
9 static const struct fm10k_info *fm10k_info_tbl[] = {
10 	[fm10k_device_pf] = &fm10k_pf_info,
11 	[fm10k_device_vf] = &fm10k_vf_info,
12 };
13 
14 /*
15  * fm10k_pci_tbl - PCI Device ID Table
16  *
17  * Wildcard entries (PCI_ANY_ID) should come last
18  * Last entry must be all 0s
19  *
20  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
21  *   Class, Class Mask, private data (not used) }
22  */
23 static const struct pci_device_id fm10k_pci_tbl[] = {
24 	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
25 	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf },
26 	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf },
27 	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
28 	/* required last entry */
29 	{ 0, }
30 };
31 MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
32 
33 u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
34 {
35 	struct fm10k_intfc *interface = hw->back;
36 	u16 value = 0;
37 
38 	if (FM10K_REMOVED(hw->hw_addr))
39 		return ~value;
40 
41 	pci_read_config_word(interface->pdev, reg, &value);
42 	if (value == 0xFFFF)
43 		fm10k_write_flush(hw);
44 
45 	return value;
46 }
47 
48 u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
49 {
50 	u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
51 	u32 value = 0;
52 
53 	if (FM10K_REMOVED(hw_addr))
54 		return ~value;
55 
56 	value = readl(&hw_addr[reg]);
57 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
58 		struct fm10k_intfc *interface = hw->back;
59 		struct net_device *netdev = interface->netdev;
60 
61 		hw->hw_addr = NULL;
62 		netif_device_detach(netdev);
63 		netdev_err(netdev, "PCIe link lost, device now detached\n");
64 	}
65 
66 	return value;
67 }
68 
69 static int fm10k_hw_ready(struct fm10k_intfc *interface)
70 {
71 	struct fm10k_hw *hw = &interface->hw;
72 
73 	fm10k_write_flush(hw);
74 
75 	return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
76 }
77 
78 /**
79  * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
80  * @interface: fm10k private interface structure
81  *
82  * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
83  * started immediately, request that it be restarted when possible.
84  */
85 void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
86 {
87 	/* Avoid processing the MAC/VLAN queue when the service task is
88 	 * disabled, or when we're resetting the device.
89 	 */
90 	if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
91 	    !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
92 		clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
93 		/* We delay the actual start of execution in order to allow
94 		 * multiple MAC/VLAN updates to accumulate before handling
95 		 * them, and to allow some time to let the mailbox drain
96 		 * between runs.
97 		 */
98 		queue_delayed_work(fm10k_workqueue,
99 				   &interface->macvlan_task, 10);
100 	} else {
101 		set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
102 	}
103 }
104 
105 /**
106  * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
107  * @interface: fm10k private interface structure
108  *
109  * Wait until the MAC/VLAN queue task has stopped, and cancel any future
110  * requests.
111  */
112 static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
113 {
114 	/* Disable the MAC/VLAN work item */
115 	set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
116 
117 	/* Make sure we waited until any current invocations have stopped */
118 	cancel_delayed_work_sync(&interface->macvlan_task);
119 
120 	/* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
121 	 * However, it may not be unset of the MAC/VLAN task never actually
122 	 * got a chance to run. Since we've canceled the task here, and it
123 	 * cannot be rescheuled right now, we need to ensure the scheduled bit
124 	 * gets unset.
125 	 */
126 	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
127 }
128 
129 /**
130  * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
131  * @interface: fm10k private interface structure
132  *
133  * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
134  * the MAC/VLAN work monitor.
135  */
136 static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
137 {
138 	/* Re-enable the MAC/VLAN work item */
139 	clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
140 
141 	/* We might have received a MAC/VLAN request while disabled. If so,
142 	 * kick off the queue now.
143 	 */
144 	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
145 		fm10k_macvlan_schedule(interface);
146 }
147 
148 void fm10k_service_event_schedule(struct fm10k_intfc *interface)
149 {
150 	if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
151 	    !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
152 		clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
153 		queue_work(fm10k_workqueue, &interface->service_task);
154 	} else {
155 		set_bit(__FM10K_SERVICE_REQUEST, interface->state);
156 	}
157 }
158 
159 static void fm10k_service_event_complete(struct fm10k_intfc *interface)
160 {
161 	WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
162 
163 	/* flush memory to make sure state is correct before next watchog */
164 	smp_mb__before_atomic();
165 	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
166 
167 	/* If a service event was requested since we started, immediately
168 	 * re-schedule now. This ensures we don't drop a request until the
169 	 * next timer event.
170 	 */
171 	if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
172 		fm10k_service_event_schedule(interface);
173 }
174 
175 static void fm10k_stop_service_event(struct fm10k_intfc *interface)
176 {
177 	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
178 	cancel_work_sync(&interface->service_task);
179 
180 	/* It's possible that cancel_work_sync stopped the service task from
181 	 * running before it could actually start. In this case the
182 	 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
183 	 * the service task cannot be running at this point, we need to clear
184 	 * the scheduled bit, as otherwise the service task may never be
185 	 * restarted.
186 	 */
187 	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
188 }
189 
190 static void fm10k_start_service_event(struct fm10k_intfc *interface)
191 {
192 	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
193 	fm10k_service_event_schedule(interface);
194 }
195 
196 /**
197  * fm10k_service_timer - Timer Call-back
198  * @t: pointer to timer data
199  **/
200 static void fm10k_service_timer(struct timer_list *t)
201 {
202 	struct fm10k_intfc *interface = from_timer(interface, t,
203 						   service_timer);
204 
205 	/* Reset the timer */
206 	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
207 
208 	fm10k_service_event_schedule(interface);
209 }
210 
211 /**
212  * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
213  * @interface: fm10k private data structure
214  *
215  * This function prepares for a device reset by shutting as much down as we
216  * can. It does nothing and returns false if __FM10K_RESETTING was already set
217  * prior to calling this function. It returns true if it actually did work.
218  */
219 static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
220 {
221 	struct net_device *netdev = interface->netdev;
222 
223 	/* put off any impending NetWatchDogTimeout */
224 	netif_trans_update(netdev);
225 
226 	/* Nothing to do if a reset is already in progress */
227 	if (test_and_set_bit(__FM10K_RESETTING, interface->state))
228 		return false;
229 
230 	/* As the MAC/VLAN task will be accessing registers it must not be
231 	 * running while we reset. Although the task will not be scheduled
232 	 * once we start resetting it may already be running
233 	 */
234 	fm10k_stop_macvlan_task(interface);
235 
236 	rtnl_lock();
237 
238 	fm10k_iov_suspend(interface->pdev);
239 
240 	if (netif_running(netdev))
241 		fm10k_close(netdev);
242 
243 	fm10k_mbx_free_irq(interface);
244 
245 	/* free interrupts */
246 	fm10k_clear_queueing_scheme(interface);
247 
248 	/* delay any future reset requests */
249 	interface->last_reset = jiffies + (10 * HZ);
250 
251 	rtnl_unlock();
252 
253 	return true;
254 }
255 
256 static int fm10k_handle_reset(struct fm10k_intfc *interface)
257 {
258 	struct net_device *netdev = interface->netdev;
259 	struct fm10k_hw *hw = &interface->hw;
260 	int err;
261 
262 	WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
263 
264 	rtnl_lock();
265 
266 	pci_set_master(interface->pdev);
267 
268 	/* reset and initialize the hardware so it is in a known state */
269 	err = hw->mac.ops.reset_hw(hw);
270 	if (err) {
271 		dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
272 		goto reinit_err;
273 	}
274 
275 	err = hw->mac.ops.init_hw(hw);
276 	if (err) {
277 		dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
278 		goto reinit_err;
279 	}
280 
281 	err = fm10k_init_queueing_scheme(interface);
282 	if (err) {
283 		dev_err(&interface->pdev->dev,
284 			"init_queueing_scheme failed: %d\n", err);
285 		goto reinit_err;
286 	}
287 
288 	/* re-associate interrupts */
289 	err = fm10k_mbx_request_irq(interface);
290 	if (err)
291 		goto err_mbx_irq;
292 
293 	err = fm10k_hw_ready(interface);
294 	if (err)
295 		goto err_open;
296 
297 	/* update hardware address for VFs if perm_addr has changed */
298 	if (hw->mac.type == fm10k_mac_vf) {
299 		if (is_valid_ether_addr(hw->mac.perm_addr)) {
300 			ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
301 			ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
302 			eth_hw_addr_set(netdev, hw->mac.perm_addr);
303 			netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
304 		}
305 
306 		if (hw->mac.vlan_override)
307 			netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
308 		else
309 			netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
310 	}
311 
312 	err = netif_running(netdev) ? fm10k_open(netdev) : 0;
313 	if (err)
314 		goto err_open;
315 
316 	fm10k_iov_resume(interface->pdev);
317 
318 	rtnl_unlock();
319 
320 	fm10k_resume_macvlan_task(interface);
321 
322 	clear_bit(__FM10K_RESETTING, interface->state);
323 
324 	return err;
325 err_open:
326 	fm10k_mbx_free_irq(interface);
327 err_mbx_irq:
328 	fm10k_clear_queueing_scheme(interface);
329 reinit_err:
330 	netif_device_detach(netdev);
331 
332 	rtnl_unlock();
333 
334 	clear_bit(__FM10K_RESETTING, interface->state);
335 
336 	return err;
337 }
338 
339 static void fm10k_detach_subtask(struct fm10k_intfc *interface)
340 {
341 	struct net_device *netdev = interface->netdev;
342 	u32 __iomem *hw_addr;
343 	u32 value;
344 
345 	/* do nothing if netdev is still present or hw_addr is set */
346 	if (netif_device_present(netdev) || interface->hw.hw_addr)
347 		return;
348 
349 	/* We've lost the PCIe register space, and can no longer access the
350 	 * device. Shut everything except the detach subtask down and prepare
351 	 * to reset the device in case we recover. If we actually prepare for
352 	 * reset, indicate that we're detached.
353 	 */
354 	if (fm10k_prepare_for_reset(interface))
355 		set_bit(__FM10K_RESET_DETACHED, interface->state);
356 
357 	/* check the real address space to see if we've recovered */
358 	hw_addr = READ_ONCE(interface->uc_addr);
359 	value = readl(hw_addr);
360 	if (~value) {
361 		int err;
362 
363 		/* Make sure the reset was initiated because we detached,
364 		 * otherwise we might race with a different reset flow.
365 		 */
366 		if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
367 					interface->state))
368 			return;
369 
370 		/* Restore the hardware address */
371 		interface->hw.hw_addr = interface->uc_addr;
372 
373 		/* PCIe link has been restored, and the device is active
374 		 * again. Restore everything and reset the device.
375 		 */
376 		err = fm10k_handle_reset(interface);
377 		if (err) {
378 			netdev_err(netdev, "Unable to reset device: %d\n", err);
379 			interface->hw.hw_addr = NULL;
380 			return;
381 		}
382 
383 		/* Re-attach the netdev */
384 		netif_device_attach(netdev);
385 		netdev_warn(netdev, "PCIe link restored, device now attached\n");
386 		return;
387 	}
388 }
389 
390 static void fm10k_reset_subtask(struct fm10k_intfc *interface)
391 {
392 	int err;
393 
394 	if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
395 				interface->flags))
396 		return;
397 
398 	/* If another thread has already prepared to reset the device, we
399 	 * should not attempt to handle a reset here, since we'd race with
400 	 * that thread. This may happen if we suspend the device or if the
401 	 * PCIe link is lost. In this case, we'll just ignore the RESET
402 	 * request, as it will (eventually) be taken care of when the thread
403 	 * which actually started the reset is finished.
404 	 */
405 	if (!fm10k_prepare_for_reset(interface))
406 		return;
407 
408 	netdev_err(interface->netdev, "Reset interface\n");
409 
410 	err = fm10k_handle_reset(interface);
411 	if (err)
412 		dev_err(&interface->pdev->dev,
413 			"fm10k_handle_reset failed: %d\n", err);
414 }
415 
416 /**
417  * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
418  * @interface: board private structure
419  *
420  * Configure the SWPRI to PC mapping for the port.
421  **/
422 static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
423 {
424 	struct net_device *netdev = interface->netdev;
425 	struct fm10k_hw *hw = &interface->hw;
426 	int i;
427 
428 	/* clear flag indicating update is needed */
429 	clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
430 
431 	/* these registers are only available on the PF */
432 	if (hw->mac.type != fm10k_mac_pf)
433 		return;
434 
435 	/* configure SWPRI to PC map */
436 	for (i = 0; i < FM10K_SWPRI_MAX; i++)
437 		fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
438 				netdev_get_prio_tc_map(netdev, i));
439 }
440 
441 /**
442  * fm10k_watchdog_update_host_state - Update the link status based on host.
443  * @interface: board private structure
444  **/
445 static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
446 {
447 	struct fm10k_hw *hw = &interface->hw;
448 	s32 err;
449 
450 	if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
451 		interface->host_ready = false;
452 		if (time_is_after_jiffies(interface->link_down_event))
453 			return;
454 		clear_bit(__FM10K_LINK_DOWN, interface->state);
455 	}
456 
457 	if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
458 		if (rtnl_trylock()) {
459 			fm10k_configure_swpri_map(interface);
460 			rtnl_unlock();
461 		}
462 	}
463 
464 	/* lock the mailbox for transmit and receive */
465 	fm10k_mbx_lock(interface);
466 
467 	err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
468 	if (err && time_is_before_jiffies(interface->last_reset))
469 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
470 
471 	/* free the lock */
472 	fm10k_mbx_unlock(interface);
473 }
474 
475 /**
476  * fm10k_mbx_subtask - Process upstream and downstream mailboxes
477  * @interface: board private structure
478  *
479  * This function will process both the upstream and downstream mailboxes.
480  **/
481 static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
482 {
483 	/* If we're resetting, bail out */
484 	if (test_bit(__FM10K_RESETTING, interface->state))
485 		return;
486 
487 	/* process upstream mailbox and update device state */
488 	fm10k_watchdog_update_host_state(interface);
489 
490 	/* process downstream mailboxes */
491 	fm10k_iov_mbx(interface);
492 }
493 
494 /**
495  * fm10k_watchdog_host_is_ready - Update netdev status based on host ready
496  * @interface: board private structure
497  **/
498 static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
499 {
500 	struct net_device *netdev = interface->netdev;
501 
502 	/* only continue if link state is currently down */
503 	if (netif_carrier_ok(netdev))
504 		return;
505 
506 	netif_info(interface, drv, netdev, "NIC Link is up\n");
507 
508 	netif_carrier_on(netdev);
509 	netif_tx_wake_all_queues(netdev);
510 }
511 
512 /**
513  * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
514  * @interface: board private structure
515  **/
516 static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
517 {
518 	struct net_device *netdev = interface->netdev;
519 
520 	/* only continue if link state is currently up */
521 	if (!netif_carrier_ok(netdev))
522 		return;
523 
524 	netif_info(interface, drv, netdev, "NIC Link is down\n");
525 
526 	netif_carrier_off(netdev);
527 	netif_tx_stop_all_queues(netdev);
528 }
529 
530 /**
531  * fm10k_update_stats - Update the board statistics counters.
532  * @interface: board private structure
533  **/
534 void fm10k_update_stats(struct fm10k_intfc *interface)
535 {
536 	struct net_device_stats *net_stats = &interface->netdev->stats;
537 	struct fm10k_hw *hw = &interface->hw;
538 	u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
539 	u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
540 	u64 rx_link_errors = 0;
541 	u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
542 	u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
543 	u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
544 	u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
545 	u64 bytes, pkts;
546 	int i;
547 
548 	/* ensure only one thread updates stats at a time */
549 	if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
550 		return;
551 
552 	/* do not allow stats update via service task for next second */
553 	interface->next_stats_update = jiffies + HZ;
554 
555 	/* gather some stats to the interface struct that are per queue */
556 	for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
557 		struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
558 
559 		if (!tx_ring)
560 			continue;
561 
562 		restart_queue += tx_ring->tx_stats.restart_queue;
563 		tx_busy += tx_ring->tx_stats.tx_busy;
564 		tx_csum_errors += tx_ring->tx_stats.csum_err;
565 		bytes += tx_ring->stats.bytes;
566 		pkts += tx_ring->stats.packets;
567 		hw_csum_tx_good += tx_ring->tx_stats.csum_good;
568 	}
569 
570 	interface->restart_queue = restart_queue;
571 	interface->tx_busy = tx_busy;
572 	net_stats->tx_bytes = bytes;
573 	net_stats->tx_packets = pkts;
574 	interface->tx_csum_errors = tx_csum_errors;
575 	interface->hw_csum_tx_good = hw_csum_tx_good;
576 
577 	/* gather some stats to the interface struct that are per queue */
578 	for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
579 		struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
580 
581 		if (!rx_ring)
582 			continue;
583 
584 		bytes += rx_ring->stats.bytes;
585 		pkts += rx_ring->stats.packets;
586 		alloc_failed += rx_ring->rx_stats.alloc_failed;
587 		rx_csum_errors += rx_ring->rx_stats.csum_err;
588 		rx_errors += rx_ring->rx_stats.errors;
589 		hw_csum_rx_good += rx_ring->rx_stats.csum_good;
590 		rx_switch_errors += rx_ring->rx_stats.switch_errors;
591 		rx_drops += rx_ring->rx_stats.drops;
592 		rx_pp_errors += rx_ring->rx_stats.pp_errors;
593 		rx_link_errors += rx_ring->rx_stats.link_errors;
594 		rx_length_errors += rx_ring->rx_stats.length_errors;
595 	}
596 
597 	net_stats->rx_bytes = bytes;
598 	net_stats->rx_packets = pkts;
599 	interface->alloc_failed = alloc_failed;
600 	interface->rx_csum_errors = rx_csum_errors;
601 	interface->hw_csum_rx_good = hw_csum_rx_good;
602 	interface->rx_switch_errors = rx_switch_errors;
603 	interface->rx_drops = rx_drops;
604 	interface->rx_pp_errors = rx_pp_errors;
605 	interface->rx_link_errors = rx_link_errors;
606 	interface->rx_length_errors = rx_length_errors;
607 
608 	hw->mac.ops.update_hw_stats(hw, &interface->stats);
609 
610 	for (i = 0; i < hw->mac.max_queues; i++) {
611 		struct fm10k_hw_stats_q *q = &interface->stats.q[i];
612 
613 		tx_bytes_nic += q->tx_bytes.count;
614 		tx_pkts_nic += q->tx_packets.count;
615 		rx_bytes_nic += q->rx_bytes.count;
616 		rx_pkts_nic += q->rx_packets.count;
617 		rx_drops_nic += q->rx_drops.count;
618 	}
619 
620 	interface->tx_bytes_nic = tx_bytes_nic;
621 	interface->tx_packets_nic = tx_pkts_nic;
622 	interface->rx_bytes_nic = rx_bytes_nic;
623 	interface->rx_packets_nic = rx_pkts_nic;
624 	interface->rx_drops_nic = rx_drops_nic;
625 
626 	/* Fill out the OS statistics structure */
627 	net_stats->rx_errors = rx_errors;
628 	net_stats->rx_dropped = interface->stats.nodesc_drop.count;
629 
630 	/* Update VF statistics */
631 	fm10k_iov_update_stats(interface);
632 
633 	clear_bit(__FM10K_UPDATING_STATS, interface->state);
634 }
635 
636 /**
637  * fm10k_watchdog_flush_tx - flush queues on host not ready
638  * @interface: pointer to the device interface structure
639  **/
640 static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
641 {
642 	int some_tx_pending = 0;
643 	int i;
644 
645 	/* nothing to do if carrier is up */
646 	if (netif_carrier_ok(interface->netdev))
647 		return;
648 
649 	for (i = 0; i < interface->num_tx_queues; i++) {
650 		struct fm10k_ring *tx_ring = interface->tx_ring[i];
651 
652 		if (tx_ring->next_to_use != tx_ring->next_to_clean) {
653 			some_tx_pending = 1;
654 			break;
655 		}
656 	}
657 
658 	/* We've lost link, so the controller stops DMA, but we've got
659 	 * queued Tx work that's never going to get done, so reset
660 	 * controller to flush Tx.
661 	 */
662 	if (some_tx_pending)
663 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
664 }
665 
666 /**
667  * fm10k_watchdog_subtask - check and bring link up
668  * @interface: pointer to the device interface structure
669  **/
670 static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
671 {
672 	/* if interface is down do nothing */
673 	if (test_bit(__FM10K_DOWN, interface->state) ||
674 	    test_bit(__FM10K_RESETTING, interface->state))
675 		return;
676 
677 	if (interface->host_ready)
678 		fm10k_watchdog_host_is_ready(interface);
679 	else
680 		fm10k_watchdog_host_not_ready(interface);
681 
682 	/* update stats only once every second */
683 	if (time_is_before_jiffies(interface->next_stats_update))
684 		fm10k_update_stats(interface);
685 
686 	/* flush any uncompleted work */
687 	fm10k_watchdog_flush_tx(interface);
688 }
689 
690 /**
691  * fm10k_check_hang_subtask - check for hung queues and dropped interrupts
692  * @interface: pointer to the device interface structure
693  *
694  * This function serves two purposes.  First it strobes the interrupt lines
695  * in order to make certain interrupts are occurring.  Secondly it sets the
696  * bits needed to check for TX hangs.  As a result we should immediately
697  * determine if a hang has occurred.
698  */
699 static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
700 {
701 	/* If we're down or resetting, just bail */
702 	if (test_bit(__FM10K_DOWN, interface->state) ||
703 	    test_bit(__FM10K_RESETTING, interface->state))
704 		return;
705 
706 	/* rate limit tx hang checks to only once every 2 seconds */
707 	if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
708 		return;
709 	interface->next_tx_hang_check = jiffies + (2 * HZ);
710 
711 	if (netif_carrier_ok(interface->netdev)) {
712 		int i;
713 
714 		/* Force detection of hung controller */
715 		for (i = 0; i < interface->num_tx_queues; i++)
716 			set_check_for_tx_hang(interface->tx_ring[i]);
717 
718 		/* Rearm all in-use q_vectors for immediate firing */
719 		for (i = 0; i < interface->num_q_vectors; i++) {
720 			struct fm10k_q_vector *qv = interface->q_vector[i];
721 
722 			if (!qv->tx.count && !qv->rx.count)
723 				continue;
724 			writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
725 		}
726 	}
727 }
728 
729 /**
730  * fm10k_service_task - manages and runs subtasks
731  * @work: pointer to work_struct containing our data
732  **/
733 static void fm10k_service_task(struct work_struct *work)
734 {
735 	struct fm10k_intfc *interface;
736 
737 	interface = container_of(work, struct fm10k_intfc, service_task);
738 
739 	/* Check whether we're detached first */
740 	fm10k_detach_subtask(interface);
741 
742 	/* tasks run even when interface is down */
743 	fm10k_mbx_subtask(interface);
744 	fm10k_reset_subtask(interface);
745 
746 	/* tasks only run when interface is up */
747 	fm10k_watchdog_subtask(interface);
748 	fm10k_check_hang_subtask(interface);
749 
750 	/* release lock on service events to allow scheduling next event */
751 	fm10k_service_event_complete(interface);
752 }
753 
754 /**
755  * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
756  * @work: pointer to work_struct containing our data
757  *
758  * This work item handles sending MAC/VLAN updates to the switch manager. When
759  * the interface is up, it will attempt to queue mailbox messages to the
760  * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
761  * mailbox is full, it will reschedule itself to try again in a short while.
762  * This ensures that the driver does not overload the switch mailbox with too
763  * many simultaneous requests, causing an unnecessary reset.
764  **/
765 static void fm10k_macvlan_task(struct work_struct *work)
766 {
767 	struct fm10k_macvlan_request *item;
768 	struct fm10k_intfc *interface;
769 	struct delayed_work *dwork;
770 	struct list_head *requests;
771 	struct fm10k_hw *hw;
772 	unsigned long flags;
773 
774 	dwork = to_delayed_work(work);
775 	interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
776 	hw = &interface->hw;
777 	requests = &interface->macvlan_requests;
778 
779 	do {
780 		/* Pop the first item off the list */
781 		spin_lock_irqsave(&interface->macvlan_lock, flags);
782 		item = list_first_entry_or_null(requests,
783 						struct fm10k_macvlan_request,
784 						list);
785 		if (item)
786 			list_del_init(&item->list);
787 
788 		spin_unlock_irqrestore(&interface->macvlan_lock, flags);
789 
790 		/* We have no more items to process */
791 		if (!item)
792 			goto done;
793 
794 		fm10k_mbx_lock(interface);
795 
796 		/* Check that we have plenty of space to send the message. We
797 		 * want to ensure that the mailbox stays low enough to avoid a
798 		 * change in the host state, otherwise we may see spurious
799 		 * link up / link down notifications.
800 		 */
801 		if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
802 			hw->mbx.ops.process(hw, &hw->mbx);
803 			set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
804 			fm10k_mbx_unlock(interface);
805 
806 			/* Put the request back on the list */
807 			spin_lock_irqsave(&interface->macvlan_lock, flags);
808 			list_add(&item->list, requests);
809 			spin_unlock_irqrestore(&interface->macvlan_lock, flags);
810 			break;
811 		}
812 
813 		switch (item->type) {
814 		case FM10K_MC_MAC_REQUEST:
815 			hw->mac.ops.update_mc_addr(hw,
816 						   item->mac.glort,
817 						   item->mac.addr,
818 						   item->mac.vid,
819 						   item->set);
820 			break;
821 		case FM10K_UC_MAC_REQUEST:
822 			hw->mac.ops.update_uc_addr(hw,
823 						   item->mac.glort,
824 						   item->mac.addr,
825 						   item->mac.vid,
826 						   item->set,
827 						   0);
828 			break;
829 		case FM10K_VLAN_REQUEST:
830 			hw->mac.ops.update_vlan(hw,
831 						item->vlan.vid,
832 						item->vlan.vsi,
833 						item->set);
834 			break;
835 		default:
836 			break;
837 		}
838 
839 		fm10k_mbx_unlock(interface);
840 
841 		/* Free the item now that we've sent the update */
842 		kfree(item);
843 	} while (true);
844 
845 done:
846 	WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
847 
848 	/* flush memory to make sure state is correct */
849 	smp_mb__before_atomic();
850 	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
851 
852 	/* If a MAC/VLAN request was scheduled since we started, we should
853 	 * re-schedule. However, there is no reason to re-schedule if there is
854 	 * no work to do.
855 	 */
856 	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
857 		fm10k_macvlan_schedule(interface);
858 }
859 
860 /**
861  * fm10k_configure_tx_ring - Configure Tx ring after Reset
862  * @interface: board private structure
863  * @ring: structure containing ring specific data
864  *
865  * Configure the Tx descriptor ring after a reset.
866  **/
867 static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
868 				    struct fm10k_ring *ring)
869 {
870 	struct fm10k_hw *hw = &interface->hw;
871 	u64 tdba = ring->dma;
872 	u32 size = ring->count * sizeof(struct fm10k_tx_desc);
873 	u32 txint = FM10K_INT_MAP_DISABLE;
874 	u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
875 	u8 reg_idx = ring->reg_idx;
876 
877 	/* disable queue to avoid issues while updating state */
878 	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
879 	fm10k_write_flush(hw);
880 
881 	/* possible poll here to verify ring resources have been cleaned */
882 
883 	/* set location and size for descriptor ring */
884 	fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
885 	fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
886 	fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
887 
888 	/* reset head and tail pointers */
889 	fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
890 	fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
891 
892 	/* store tail pointer */
893 	ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
894 
895 	/* reset ntu and ntc to place SW in sync with hardware */
896 	ring->next_to_clean = 0;
897 	ring->next_to_use = 0;
898 
899 	/* Map interrupt */
900 	if (ring->q_vector) {
901 		txint = ring->q_vector->v_idx + NON_Q_VECTORS;
902 		txint |= FM10K_INT_MAP_TIMER0;
903 	}
904 
905 	fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
906 
907 	/* enable use of FTAG bit in Tx descriptor, register is RO for VF */
908 	fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
909 			FM10K_PFVTCTL_FTAG_DESC_ENABLE);
910 
911 	/* Initialize XPS */
912 	if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
913 	    ring->q_vector)
914 		netif_set_xps_queue(ring->netdev,
915 				    &ring->q_vector->affinity_mask,
916 				    ring->queue_index);
917 
918 	/* enable queue */
919 	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
920 }
921 
922 /**
923  * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
924  * @interface: board private structure
925  * @ring: structure containing ring specific data
926  *
927  * Verify the Tx descriptor ring is ready for transmit.
928  **/
929 static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
930 				 struct fm10k_ring *ring)
931 {
932 	struct fm10k_hw *hw = &interface->hw;
933 	int wait_loop = 10;
934 	u32 txdctl;
935 	u8 reg_idx = ring->reg_idx;
936 
937 	/* if we are already enabled just exit */
938 	if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
939 		return;
940 
941 	/* poll to verify queue is enabled */
942 	do {
943 		usleep_range(1000, 2000);
944 		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
945 	} while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
946 	if (!wait_loop)
947 		netif_err(interface, drv, interface->netdev,
948 			  "Could not enable Tx Queue %d\n", reg_idx);
949 }
950 
951 /**
952  * fm10k_configure_tx - Configure Transmit Unit after Reset
953  * @interface: board private structure
954  *
955  * Configure the Tx unit of the MAC after a reset.
956  **/
957 static void fm10k_configure_tx(struct fm10k_intfc *interface)
958 {
959 	int i;
960 
961 	/* Setup the HW Tx Head and Tail descriptor pointers */
962 	for (i = 0; i < interface->num_tx_queues; i++)
963 		fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
964 
965 	/* poll here to verify that Tx rings are now enabled */
966 	for (i = 0; i < interface->num_tx_queues; i++)
967 		fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
968 }
969 
970 /**
971  * fm10k_configure_rx_ring - Configure Rx ring after Reset
972  * @interface: board private structure
973  * @ring: structure containing ring specific data
974  *
975  * Configure the Rx descriptor ring after a reset.
976  **/
977 static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
978 				    struct fm10k_ring *ring)
979 {
980 	u64 rdba = ring->dma;
981 	struct fm10k_hw *hw = &interface->hw;
982 	u32 size = ring->count * sizeof(union fm10k_rx_desc);
983 	u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
984 	u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
985 	u32 rxint = FM10K_INT_MAP_DISABLE;
986 	u8 rx_pause = interface->rx_pause;
987 	u8 reg_idx = ring->reg_idx;
988 
989 	/* disable queue to avoid issues while updating state */
990 	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
991 	rxqctl &= ~FM10K_RXQCTL_ENABLE;
992 	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
993 	fm10k_write_flush(hw);
994 
995 	/* possible poll here to verify ring resources have been cleaned */
996 
997 	/* set location and size for descriptor ring */
998 	fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
999 	fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
1000 	fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
1001 
1002 	/* reset head and tail pointers */
1003 	fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
1004 	fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
1005 
1006 	/* store tail pointer */
1007 	ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
1008 
1009 	/* reset ntu and ntc to place SW in sync with hardware */
1010 	ring->next_to_clean = 0;
1011 	ring->next_to_use = 0;
1012 	ring->next_to_alloc = 0;
1013 
1014 	/* Configure the Rx buffer size for one buff without split */
1015 	srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
1016 
1017 	/* Configure the Rx ring to suppress loopback packets */
1018 	srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
1019 	fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
1020 
1021 	/* Enable drop on empty */
1022 #ifdef CONFIG_DCB
1023 	if (interface->pfc_en)
1024 		rx_pause = interface->pfc_en;
1025 #endif
1026 	if (!(rx_pause & BIT(ring->qos_pc)))
1027 		rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1028 
1029 	fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1030 
1031 	/* assign default VLAN to queue */
1032 	ring->vid = hw->mac.default_vid;
1033 
1034 	/* if we have an active VLAN, disable default VLAN ID */
1035 	if (test_bit(hw->mac.default_vid, interface->active_vlans))
1036 		ring->vid |= FM10K_VLAN_CLEAR;
1037 
1038 	/* Map interrupt */
1039 	if (ring->q_vector) {
1040 		rxint = ring->q_vector->v_idx + NON_Q_VECTORS;
1041 		rxint |= FM10K_INT_MAP_TIMER1;
1042 	}
1043 
1044 	fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
1045 
1046 	/* enable queue */
1047 	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1048 	rxqctl |= FM10K_RXQCTL_ENABLE;
1049 	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1050 
1051 	/* place buffers on ring for receive data */
1052 	fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
1053 }
1054 
1055 /**
1056  * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
1057  * @interface: board private structure
1058  *
1059  * Configure the drop enable bits for the Rx rings.
1060  **/
1061 void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
1062 {
1063 	struct fm10k_hw *hw = &interface->hw;
1064 	u8 rx_pause = interface->rx_pause;
1065 	int i;
1066 
1067 #ifdef CONFIG_DCB
1068 	if (interface->pfc_en)
1069 		rx_pause = interface->pfc_en;
1070 
1071 #endif
1072 	for (i = 0; i < interface->num_rx_queues; i++) {
1073 		struct fm10k_ring *ring = interface->rx_ring[i];
1074 		u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1075 		u8 reg_idx = ring->reg_idx;
1076 
1077 		if (!(rx_pause & BIT(ring->qos_pc)))
1078 			rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1079 
1080 		fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1081 	}
1082 }
1083 
1084 /**
1085  * fm10k_configure_dglort - Configure Receive DGLORT after reset
1086  * @interface: board private structure
1087  *
1088  * Configure the DGLORT description and RSS tables.
1089  **/
1090 static void fm10k_configure_dglort(struct fm10k_intfc *interface)
1091 {
1092 	struct fm10k_dglort_cfg dglort = { 0 };
1093 	struct fm10k_hw *hw = &interface->hw;
1094 	int i;
1095 	u32 mrqc;
1096 
1097 	/* Fill out hash function seeds */
1098 	for (i = 0; i < FM10K_RSSRK_SIZE; i++)
1099 		fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
1100 
1101 	/* Write RETA table to hardware */
1102 	for (i = 0; i < FM10K_RETA_SIZE; i++)
1103 		fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
1104 
1105 	/* Generate RSS hash based on packet types, TCP/UDP
1106 	 * port numbers and/or IPv4/v6 src and dst addresses
1107 	 */
1108 	mrqc = FM10K_MRQC_IPV4 |
1109 	       FM10K_MRQC_TCP_IPV4 |
1110 	       FM10K_MRQC_IPV6 |
1111 	       FM10K_MRQC_TCP_IPV6;
1112 
1113 	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
1114 		mrqc |= FM10K_MRQC_UDP_IPV4;
1115 	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
1116 		mrqc |= FM10K_MRQC_UDP_IPV6;
1117 
1118 	fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
1119 
1120 	/* configure default DGLORT mapping for RSS/DCB */
1121 	dglort.inner_rss = 1;
1122 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1123 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1124 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1125 
1126 	/* assign GLORT per queue for queue mapped testing */
1127 	if (interface->glort_count > 64) {
1128 		memset(&dglort, 0, sizeof(dglort));
1129 		dglort.inner_rss = 1;
1130 		dglort.glort = interface->glort + 64;
1131 		dglort.idx = fm10k_dglort_pf_queue;
1132 		dglort.queue_l = fls(interface->num_rx_queues - 1);
1133 		hw->mac.ops.configure_dglort_map(hw, &dglort);
1134 	}
1135 
1136 	/* assign glort value for RSS/DCB specific to this interface */
1137 	memset(&dglort, 0, sizeof(dglort));
1138 	dglort.inner_rss = 1;
1139 	dglort.glort = interface->glort;
1140 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1141 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1142 	/* configure DGLORT mapping for RSS/DCB */
1143 	dglort.idx = fm10k_dglort_pf_rss;
1144 	if (interface->l2_accel)
1145 		dglort.shared_l = fls(interface->l2_accel->size);
1146 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1147 }
1148 
1149 /**
1150  * fm10k_configure_rx - Configure Receive Unit after Reset
1151  * @interface: board private structure
1152  *
1153  * Configure the Rx unit of the MAC after a reset.
1154  **/
1155 static void fm10k_configure_rx(struct fm10k_intfc *interface)
1156 {
1157 	int i;
1158 
1159 	/* Configure SWPRI to PC map */
1160 	fm10k_configure_swpri_map(interface);
1161 
1162 	/* Configure RSS and DGLORT map */
1163 	fm10k_configure_dglort(interface);
1164 
1165 	/* Setup the HW Rx Head and Tail descriptor pointers */
1166 	for (i = 0; i < interface->num_rx_queues; i++)
1167 		fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
1168 
1169 	/* possible poll here to verify that Rx rings are now enabled */
1170 }
1171 
1172 static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
1173 {
1174 	struct fm10k_q_vector *q_vector;
1175 	int q_idx;
1176 
1177 	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1178 		q_vector = interface->q_vector[q_idx];
1179 		napi_enable(&q_vector->napi);
1180 	}
1181 }
1182 
1183 static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
1184 {
1185 	struct fm10k_q_vector *q_vector = data;
1186 
1187 	if (q_vector->rx.count || q_vector->tx.count)
1188 		napi_schedule_irqoff(&q_vector->napi);
1189 
1190 	return IRQ_HANDLED;
1191 }
1192 
1193 static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
1194 {
1195 	struct fm10k_intfc *interface = data;
1196 	struct fm10k_hw *hw = &interface->hw;
1197 	struct fm10k_mbx_info *mbx = &hw->mbx;
1198 
1199 	/* re-enable mailbox interrupt and indicate 20us delay */
1200 	fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
1201 			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1202 			FM10K_ITR_ENABLE);
1203 
1204 	/* service upstream mailbox */
1205 	if (fm10k_mbx_trylock(interface)) {
1206 		mbx->ops.process(hw, mbx);
1207 		fm10k_mbx_unlock(interface);
1208 	}
1209 
1210 	hw->mac.get_host_state = true;
1211 	fm10k_service_event_schedule(interface);
1212 
1213 	return IRQ_HANDLED;
1214 }
1215 
1216 #define FM10K_ERR_MSG(type) case (type): error = #type; break
1217 static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
1218 			       struct fm10k_fault *fault)
1219 {
1220 	struct pci_dev *pdev = interface->pdev;
1221 	struct fm10k_hw *hw = &interface->hw;
1222 	struct fm10k_iov_data *iov_data = interface->iov_data;
1223 	char *error;
1224 
1225 	switch (type) {
1226 	case FM10K_PCA_FAULT:
1227 		switch (fault->type) {
1228 		default:
1229 			error = "Unknown PCA error";
1230 			break;
1231 		FM10K_ERR_MSG(PCA_NO_FAULT);
1232 		FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
1233 		FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
1234 		FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
1235 		FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
1236 		FM10K_ERR_MSG(PCA_POISONED_TLP);
1237 		FM10K_ERR_MSG(PCA_TLP_ABORT);
1238 		}
1239 		break;
1240 	case FM10K_THI_FAULT:
1241 		switch (fault->type) {
1242 		default:
1243 			error = "Unknown THI error";
1244 			break;
1245 		FM10K_ERR_MSG(THI_NO_FAULT);
1246 		FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
1247 		}
1248 		break;
1249 	case FM10K_FUM_FAULT:
1250 		switch (fault->type) {
1251 		default:
1252 			error = "Unknown FUM error";
1253 			break;
1254 		FM10K_ERR_MSG(FUM_NO_FAULT);
1255 		FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
1256 		FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
1257 		FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
1258 		FM10K_ERR_MSG(FUM_RO_ERROR);
1259 		FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
1260 		FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
1261 		FM10K_ERR_MSG(FUM_INVALID_TYPE);
1262 		FM10K_ERR_MSG(FUM_INVALID_LENGTH);
1263 		FM10K_ERR_MSG(FUM_INVALID_BE);
1264 		FM10K_ERR_MSG(FUM_INVALID_ALIGN);
1265 		}
1266 		break;
1267 	default:
1268 		error = "Undocumented fault";
1269 		break;
1270 	}
1271 
1272 	dev_warn(&pdev->dev,
1273 		 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
1274 		 error, fault->address, fault->specinfo,
1275 		 PCI_SLOT(fault->func), PCI_FUNC(fault->func));
1276 
1277 	/* For VF faults, clear out the respective LPORT, reset the queue
1278 	 * resources, and then reconnect to the mailbox. This allows the
1279 	 * VF in question to resume behavior. For transient faults that are
1280 	 * the result of non-malicious behavior this will log the fault and
1281 	 * allow the VF to resume functionality. Obviously for malicious VFs
1282 	 * they will be able to attempt malicious behavior again. In this
1283 	 * case, the system administrator will need to step in and manually
1284 	 * remove or disable the VF in question.
1285 	 */
1286 	if (fault->func && iov_data) {
1287 		int vf = fault->func - 1;
1288 		struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
1289 
1290 		hw->iov.ops.reset_lport(hw, vf_info);
1291 		hw->iov.ops.reset_resources(hw, vf_info);
1292 
1293 		/* reset_lport disables the VF, so re-enable it */
1294 		hw->iov.ops.set_lport(hw, vf_info, vf,
1295 				      FM10K_VF_FLAG_MULTI_CAPABLE);
1296 
1297 		/* reset_resources will disconnect from the mbx  */
1298 		vf_info->mbx.ops.connect(hw, &vf_info->mbx);
1299 	}
1300 }
1301 
1302 static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
1303 {
1304 	struct fm10k_hw *hw = &interface->hw;
1305 	struct fm10k_fault fault = { 0 };
1306 	int type, err;
1307 
1308 	for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
1309 	     eicr;
1310 	     eicr >>= 1, type += FM10K_FAULT_SIZE) {
1311 		/* only check if there is an error reported */
1312 		if (!(eicr & 0x1))
1313 			continue;
1314 
1315 		/* retrieve fault info */
1316 		err = hw->mac.ops.get_fault(hw, type, &fault);
1317 		if (err) {
1318 			dev_err(&interface->pdev->dev,
1319 				"error reading fault\n");
1320 			continue;
1321 		}
1322 
1323 		fm10k_handle_fault(interface, type, &fault);
1324 	}
1325 }
1326 
1327 static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
1328 {
1329 	struct fm10k_hw *hw = &interface->hw;
1330 	const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1331 	u32 maxholdq;
1332 	int q;
1333 
1334 	if (!(eicr & FM10K_EICR_MAXHOLDTIME))
1335 		return;
1336 
1337 	maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
1338 	if (maxholdq)
1339 		fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
1340 	for (q = 255;;) {
1341 		if (maxholdq & BIT(31)) {
1342 			if (q < FM10K_MAX_QUEUES_PF) {
1343 				interface->rx_overrun_pf++;
1344 				fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
1345 			} else {
1346 				interface->rx_overrun_vf++;
1347 			}
1348 		}
1349 
1350 		maxholdq *= 2;
1351 		if (!maxholdq)
1352 			q &= ~(32 - 1);
1353 
1354 		if (!q)
1355 			break;
1356 
1357 		if (q-- % 32)
1358 			continue;
1359 
1360 		maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
1361 		if (maxholdq)
1362 			fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
1363 	}
1364 }
1365 
1366 static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
1367 {
1368 	struct fm10k_intfc *interface = data;
1369 	struct fm10k_hw *hw = &interface->hw;
1370 	struct fm10k_mbx_info *mbx = &hw->mbx;
1371 	u32 eicr;
1372 
1373 	/* unmask any set bits related to this interrupt */
1374 	eicr = fm10k_read_reg(hw, FM10K_EICR);
1375 	fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
1376 						FM10K_EICR_SWITCHREADY |
1377 						FM10K_EICR_SWITCHNOTREADY));
1378 
1379 	/* report any faults found to the message log */
1380 	fm10k_report_fault(interface, eicr);
1381 
1382 	/* reset any queues disabled due to receiver overrun */
1383 	fm10k_reset_drop_on_empty(interface, eicr);
1384 
1385 	/* service mailboxes */
1386 	if (fm10k_mbx_trylock(interface)) {
1387 		s32 err = mbx->ops.process(hw, mbx);
1388 
1389 		if (err == FM10K_ERR_RESET_REQUESTED)
1390 			set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1391 
1392 		/* handle VFLRE events */
1393 		fm10k_iov_event(interface);
1394 		fm10k_mbx_unlock(interface);
1395 	}
1396 
1397 	/* if switch toggled state we should reset GLORTs */
1398 	if (eicr & FM10K_EICR_SWITCHNOTREADY) {
1399 		/* force link down for at least 4 seconds */
1400 		interface->link_down_event = jiffies + (4 * HZ);
1401 		set_bit(__FM10K_LINK_DOWN, interface->state);
1402 
1403 		/* reset dglort_map back to no config */
1404 		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1405 	}
1406 
1407 	/* we should validate host state after interrupt event */
1408 	hw->mac.get_host_state = true;
1409 
1410 	/* validate host state, and handle VF mailboxes in the service task */
1411 	fm10k_service_event_schedule(interface);
1412 
1413 	/* re-enable mailbox interrupt and indicate 20us delay */
1414 	fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
1415 			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1416 			FM10K_ITR_ENABLE);
1417 
1418 	return IRQ_HANDLED;
1419 }
1420 
1421 void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
1422 {
1423 	struct fm10k_hw *hw = &interface->hw;
1424 	struct msix_entry *entry;
1425 	int itr_reg;
1426 
1427 	/* no mailbox IRQ to free if MSI-X is not enabled */
1428 	if (!interface->msix_entries)
1429 		return;
1430 
1431 	entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1432 
1433 	/* disconnect the mailbox */
1434 	hw->mbx.ops.disconnect(hw, &hw->mbx);
1435 
1436 	/* disable Mailbox cause */
1437 	if (hw->mac.type == fm10k_mac_pf) {
1438 		fm10k_write_reg(hw, FM10K_EIMR,
1439 				FM10K_EIMR_DISABLE(PCA_FAULT) |
1440 				FM10K_EIMR_DISABLE(FUM_FAULT) |
1441 				FM10K_EIMR_DISABLE(MAILBOX) |
1442 				FM10K_EIMR_DISABLE(SWITCHREADY) |
1443 				FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1444 				FM10K_EIMR_DISABLE(SRAMERROR) |
1445 				FM10K_EIMR_DISABLE(VFLR) |
1446 				FM10K_EIMR_DISABLE(MAXHOLDTIME));
1447 		itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
1448 	} else {
1449 		itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
1450 	}
1451 
1452 	fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
1453 
1454 	free_irq(entry->vector, interface);
1455 }
1456 
1457 static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
1458 			      struct fm10k_mbx_info *mbx)
1459 {
1460 	bool vlan_override = hw->mac.vlan_override;
1461 	u16 default_vid = hw->mac.default_vid;
1462 	struct fm10k_intfc *interface;
1463 	s32 err;
1464 
1465 	err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
1466 	if (err)
1467 		return err;
1468 
1469 	interface = container_of(hw, struct fm10k_intfc, hw);
1470 
1471 	/* MAC was changed so we need reset */
1472 	if (is_valid_ether_addr(hw->mac.perm_addr) &&
1473 	    !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
1474 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1475 
1476 	/* VLAN override was changed, or default VLAN changed */
1477 	if ((vlan_override != hw->mac.vlan_override) ||
1478 	    (default_vid != hw->mac.default_vid))
1479 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1480 
1481 	return 0;
1482 }
1483 
1484 /* generic error handler for mailbox issues */
1485 static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
1486 			   struct fm10k_mbx_info __always_unused *mbx)
1487 {
1488 	struct fm10k_intfc *interface;
1489 	struct pci_dev *pdev;
1490 
1491 	interface = container_of(hw, struct fm10k_intfc, hw);
1492 	pdev = interface->pdev;
1493 
1494 	dev_err(&pdev->dev, "Unknown message ID %u\n",
1495 		**results & FM10K_TLV_ID_MASK);
1496 
1497 	return 0;
1498 }
1499 
1500 static const struct fm10k_msg_data vf_mbx_data[] = {
1501 	FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1502 	FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
1503 	FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1504 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1505 };
1506 
1507 static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
1508 {
1509 	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1510 	struct net_device *dev = interface->netdev;
1511 	struct fm10k_hw *hw = &interface->hw;
1512 	int err;
1513 
1514 	/* Use timer0 for interrupt moderation on the mailbox */
1515 	u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
1516 
1517 	/* register mailbox handlers */
1518 	err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
1519 	if (err)
1520 		return err;
1521 
1522 	/* request the IRQ */
1523 	err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
1524 			  dev->name, interface);
1525 	if (err) {
1526 		netif_err(interface, probe, dev,
1527 			  "request_irq for msix_mbx failed: %d\n", err);
1528 		return err;
1529 	}
1530 
1531 	/* map all of the interrupt sources */
1532 	fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
1533 
1534 	/* enable interrupt */
1535 	fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
1536 
1537 	return 0;
1538 }
1539 
1540 static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
1541 			   struct fm10k_mbx_info *mbx)
1542 {
1543 	struct fm10k_intfc *interface;
1544 	u32 dglort_map = hw->mac.dglort_map;
1545 	s32 err;
1546 
1547 	interface = container_of(hw, struct fm10k_intfc, hw);
1548 
1549 	err = fm10k_msg_err_pf(hw, results, mbx);
1550 	if (!err && hw->swapi.status) {
1551 		/* force link down for a reasonable delay */
1552 		interface->link_down_event = jiffies + (2 * HZ);
1553 		set_bit(__FM10K_LINK_DOWN, interface->state);
1554 
1555 		/* reset dglort_map back to no config */
1556 		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1557 
1558 		fm10k_service_event_schedule(interface);
1559 
1560 		/* prevent overloading kernel message buffer */
1561 		if (interface->lport_map_failed)
1562 			return 0;
1563 
1564 		interface->lport_map_failed = true;
1565 
1566 		if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
1567 			dev_warn(&interface->pdev->dev,
1568 				 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
1569 		dev_warn(&interface->pdev->dev,
1570 			 "request logical port map failed: %d\n",
1571 			 hw->swapi.status);
1572 
1573 		return 0;
1574 	}
1575 
1576 	err = fm10k_msg_lport_map_pf(hw, results, mbx);
1577 	if (err)
1578 		return err;
1579 
1580 	interface->lport_map_failed = false;
1581 
1582 	/* we need to reset if port count was just updated */
1583 	if (dglort_map != hw->mac.dglort_map)
1584 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1585 
1586 	return 0;
1587 }
1588 
1589 static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
1590 			     struct fm10k_mbx_info __always_unused *mbx)
1591 {
1592 	struct fm10k_intfc *interface;
1593 	u16 glort, pvid;
1594 	u32 pvid_update;
1595 	s32 err;
1596 
1597 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1598 				     &pvid_update);
1599 	if (err)
1600 		return err;
1601 
1602 	/* extract values from the pvid update */
1603 	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1604 	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1605 
1606 	/* if glort is not valid return error */
1607 	if (!fm10k_glort_valid_pf(hw, glort))
1608 		return FM10K_ERR_PARAM;
1609 
1610 	/* verify VLAN ID is valid */
1611 	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1612 		return FM10K_ERR_PARAM;
1613 
1614 	interface = container_of(hw, struct fm10k_intfc, hw);
1615 
1616 	/* check to see if this belongs to one of the VFs */
1617 	err = fm10k_iov_update_pvid(interface, glort, pvid);
1618 	if (!err)
1619 		return 0;
1620 
1621 	/* we need to reset if default VLAN was just updated */
1622 	if (pvid != hw->mac.default_vid)
1623 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1624 
1625 	hw->mac.default_vid = pvid;
1626 
1627 	return 0;
1628 }
1629 
1630 static const struct fm10k_msg_data pf_mbx_data[] = {
1631 	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1632 	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1633 	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
1634 	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1635 	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1636 	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
1637 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1638 };
1639 
1640 static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
1641 {
1642 	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1643 	struct net_device *dev = interface->netdev;
1644 	struct fm10k_hw *hw = &interface->hw;
1645 	int err;
1646 
1647 	/* Use timer0 for interrupt moderation on the mailbox */
1648 	u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
1649 	u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
1650 
1651 	/* register mailbox handlers */
1652 	err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
1653 	if (err)
1654 		return err;
1655 
1656 	/* request the IRQ */
1657 	err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
1658 			  dev->name, interface);
1659 	if (err) {
1660 		netif_err(interface, probe, dev,
1661 			  "request_irq for msix_mbx failed: %d\n", err);
1662 		return err;
1663 	}
1664 
1665 	/* Enable interrupts w/ no moderation for "other" interrupts */
1666 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
1667 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
1668 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
1669 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
1670 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
1671 
1672 	/* Enable interrupts w/ moderation for mailbox */
1673 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
1674 
1675 	/* Enable individual interrupt causes */
1676 	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1677 					FM10K_EIMR_ENABLE(FUM_FAULT) |
1678 					FM10K_EIMR_ENABLE(MAILBOX) |
1679 					FM10K_EIMR_ENABLE(SWITCHREADY) |
1680 					FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1681 					FM10K_EIMR_ENABLE(SRAMERROR) |
1682 					FM10K_EIMR_ENABLE(VFLR) |
1683 					FM10K_EIMR_ENABLE(MAXHOLDTIME));
1684 
1685 	/* enable interrupt */
1686 	fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
1687 
1688 	return 0;
1689 }
1690 
1691 int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
1692 {
1693 	struct fm10k_hw *hw = &interface->hw;
1694 	int err;
1695 
1696 	/* enable Mailbox cause */
1697 	if (hw->mac.type == fm10k_mac_pf)
1698 		err = fm10k_mbx_request_irq_pf(interface);
1699 	else
1700 		err = fm10k_mbx_request_irq_vf(interface);
1701 	if (err)
1702 		return err;
1703 
1704 	/* connect mailbox */
1705 	err = hw->mbx.ops.connect(hw, &hw->mbx);
1706 
1707 	/* if the mailbox failed to connect, then free IRQ */
1708 	if (err)
1709 		fm10k_mbx_free_irq(interface);
1710 
1711 	return err;
1712 }
1713 
1714 /**
1715  * fm10k_qv_free_irq - release interrupts associated with queue vectors
1716  * @interface: board private structure
1717  *
1718  * Release all interrupts associated with this interface
1719  **/
1720 void fm10k_qv_free_irq(struct fm10k_intfc *interface)
1721 {
1722 	int vector = interface->num_q_vectors;
1723 	struct msix_entry *entry;
1724 
1725 	entry = &interface->msix_entries[NON_Q_VECTORS + vector];
1726 
1727 	while (vector) {
1728 		struct fm10k_q_vector *q_vector;
1729 
1730 		vector--;
1731 		entry--;
1732 		q_vector = interface->q_vector[vector];
1733 
1734 		if (!q_vector->tx.count && !q_vector->rx.count)
1735 			continue;
1736 
1737 		/* clear the affinity_mask in the IRQ descriptor */
1738 		irq_set_affinity_hint(entry->vector, NULL);
1739 
1740 		/* disable interrupts */
1741 		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1742 
1743 		free_irq(entry->vector, q_vector);
1744 	}
1745 }
1746 
1747 /**
1748  * fm10k_qv_request_irq - initialize interrupts for queue vectors
1749  * @interface: board private structure
1750  *
1751  * Attempts to configure interrupts using the best available
1752  * capabilities of the hardware and kernel.
1753  **/
1754 int fm10k_qv_request_irq(struct fm10k_intfc *interface)
1755 {
1756 	struct net_device *dev = interface->netdev;
1757 	struct fm10k_hw *hw = &interface->hw;
1758 	struct msix_entry *entry;
1759 	unsigned int ri = 0, ti = 0;
1760 	int vector, err;
1761 
1762 	entry = &interface->msix_entries[NON_Q_VECTORS];
1763 
1764 	for (vector = 0; vector < interface->num_q_vectors; vector++) {
1765 		struct fm10k_q_vector *q_vector = interface->q_vector[vector];
1766 
1767 		/* name the vector */
1768 		if (q_vector->tx.count && q_vector->rx.count) {
1769 			snprintf(q_vector->name, sizeof(q_vector->name),
1770 				 "%s-TxRx-%u", dev->name, ri++);
1771 			ti++;
1772 		} else if (q_vector->rx.count) {
1773 			snprintf(q_vector->name, sizeof(q_vector->name),
1774 				 "%s-rx-%u", dev->name, ri++);
1775 		} else if (q_vector->tx.count) {
1776 			snprintf(q_vector->name, sizeof(q_vector->name),
1777 				 "%s-tx-%u", dev->name, ti++);
1778 		} else {
1779 			/* skip this unused q_vector */
1780 			continue;
1781 		}
1782 
1783 		/* Assign ITR register to q_vector */
1784 		q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
1785 				&interface->uc_addr[FM10K_ITR(entry->entry)] :
1786 				&interface->uc_addr[FM10K_VFITR(entry->entry)];
1787 
1788 		/* request the IRQ */
1789 		err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
1790 				  q_vector->name, q_vector);
1791 		if (err) {
1792 			netif_err(interface, probe, dev,
1793 				  "request_irq failed for MSIX interrupt Error: %d\n",
1794 				  err);
1795 			goto err_out;
1796 		}
1797 
1798 		/* assign the mask for this irq */
1799 		irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
1800 
1801 		/* Enable q_vector */
1802 		writel(FM10K_ITR_ENABLE, q_vector->itr);
1803 
1804 		entry++;
1805 	}
1806 
1807 	return 0;
1808 
1809 err_out:
1810 	/* wind through the ring freeing all entries and vectors */
1811 	while (vector) {
1812 		struct fm10k_q_vector *q_vector;
1813 
1814 		entry--;
1815 		vector--;
1816 		q_vector = interface->q_vector[vector];
1817 
1818 		if (!q_vector->tx.count && !q_vector->rx.count)
1819 			continue;
1820 
1821 		/* clear the affinity_mask in the IRQ descriptor */
1822 		irq_set_affinity_hint(entry->vector, NULL);
1823 
1824 		/* disable interrupts */
1825 		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1826 
1827 		free_irq(entry->vector, q_vector);
1828 	}
1829 
1830 	return err;
1831 }
1832 
1833 void fm10k_up(struct fm10k_intfc *interface)
1834 {
1835 	struct fm10k_hw *hw = &interface->hw;
1836 
1837 	/* Enable Tx/Rx DMA */
1838 	hw->mac.ops.start_hw(hw);
1839 
1840 	/* configure Tx descriptor rings */
1841 	fm10k_configure_tx(interface);
1842 
1843 	/* configure Rx descriptor rings */
1844 	fm10k_configure_rx(interface);
1845 
1846 	/* configure interrupts */
1847 	hw->mac.ops.update_int_moderator(hw);
1848 
1849 	/* enable statistics capture again */
1850 	clear_bit(__FM10K_UPDATING_STATS, interface->state);
1851 
1852 	/* clear down bit to indicate we are ready to go */
1853 	clear_bit(__FM10K_DOWN, interface->state);
1854 
1855 	/* enable polling cleanups */
1856 	fm10k_napi_enable_all(interface);
1857 
1858 	/* re-establish Rx filters */
1859 	fm10k_restore_rx_state(interface);
1860 
1861 	/* enable transmits */
1862 	netif_tx_start_all_queues(interface->netdev);
1863 
1864 	/* kick off the service timer now */
1865 	hw->mac.get_host_state = true;
1866 	mod_timer(&interface->service_timer, jiffies);
1867 }
1868 
1869 static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
1870 {
1871 	struct fm10k_q_vector *q_vector;
1872 	int q_idx;
1873 
1874 	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1875 		q_vector = interface->q_vector[q_idx];
1876 		napi_disable(&q_vector->napi);
1877 	}
1878 }
1879 
1880 void fm10k_down(struct fm10k_intfc *interface)
1881 {
1882 	struct net_device *netdev = interface->netdev;
1883 	struct fm10k_hw *hw = &interface->hw;
1884 	int err, i = 0, count = 0;
1885 
1886 	/* signal that we are down to the interrupt handler and service task */
1887 	if (test_and_set_bit(__FM10K_DOWN, interface->state))
1888 		return;
1889 
1890 	/* call carrier off first to avoid false dev_watchdog timeouts */
1891 	netif_carrier_off(netdev);
1892 
1893 	/* disable transmits */
1894 	netif_tx_stop_all_queues(netdev);
1895 	netif_tx_disable(netdev);
1896 
1897 	/* reset Rx filters */
1898 	fm10k_reset_rx_state(interface);
1899 
1900 	/* disable polling routines */
1901 	fm10k_napi_disable_all(interface);
1902 
1903 	/* capture stats one last time before stopping interface */
1904 	fm10k_update_stats(interface);
1905 
1906 	/* prevent updating statistics while we're down */
1907 	while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
1908 		usleep_range(1000, 2000);
1909 
1910 	/* skip waiting for TX DMA if we lost PCIe link */
1911 	if (FM10K_REMOVED(hw->hw_addr))
1912 		goto skip_tx_dma_drain;
1913 
1914 	/* In some rare circumstances it can take a while for Tx queues to
1915 	 * quiesce and be fully disabled. Attempt to .stop_hw() first, and
1916 	 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
1917 	 * until the Tx queues have emptied, or until a number of retries. If
1918 	 * we fail to clear within the retry loop, we will issue a warning
1919 	 * indicating that Tx DMA is probably hung. Note this means we call
1920 	 * .stop_hw() twice but this shouldn't cause any problems.
1921 	 */
1922 	err = hw->mac.ops.stop_hw(hw);
1923 	if (err != FM10K_ERR_REQUESTS_PENDING)
1924 		goto skip_tx_dma_drain;
1925 
1926 #define TX_DMA_DRAIN_RETRIES 25
1927 	for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
1928 		usleep_range(10000, 20000);
1929 
1930 		/* start checking at the last ring to have pending Tx */
1931 		for (; i < interface->num_tx_queues; i++)
1932 			if (fm10k_get_tx_pending(interface->tx_ring[i], false))
1933 				break;
1934 
1935 		/* if all the queues are drained, we can break now */
1936 		if (i == interface->num_tx_queues)
1937 			break;
1938 	}
1939 
1940 	if (count >= TX_DMA_DRAIN_RETRIES)
1941 		dev_err(&interface->pdev->dev,
1942 			"Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
1943 			count);
1944 skip_tx_dma_drain:
1945 	/* Disable DMA engine for Tx/Rx */
1946 	err = hw->mac.ops.stop_hw(hw);
1947 	if (err == FM10K_ERR_REQUESTS_PENDING)
1948 		dev_err(&interface->pdev->dev,
1949 			"due to pending requests hw was not shut down gracefully\n");
1950 	else if (err)
1951 		dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
1952 
1953 	/* free any buffers still on the rings */
1954 	fm10k_clean_all_tx_rings(interface);
1955 	fm10k_clean_all_rx_rings(interface);
1956 }
1957 
1958 /**
1959  * fm10k_sw_init - Initialize general software structures
1960  * @interface: host interface private structure to initialize
1961  * @ent: PCI device ID entry
1962  *
1963  * fm10k_sw_init initializes the interface private data structure.
1964  * Fields are initialized based on PCI device information and
1965  * OS network device settings (MTU size).
1966  **/
1967 static int fm10k_sw_init(struct fm10k_intfc *interface,
1968 			 const struct pci_device_id *ent)
1969 {
1970 	const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
1971 	struct fm10k_hw *hw = &interface->hw;
1972 	struct pci_dev *pdev = interface->pdev;
1973 	struct net_device *netdev = interface->netdev;
1974 	u32 rss_key[FM10K_RSSRK_SIZE];
1975 	unsigned int rss;
1976 	int err;
1977 
1978 	/* initialize back pointer */
1979 	hw->back = interface;
1980 	hw->hw_addr = interface->uc_addr;
1981 
1982 	/* PCI config space info */
1983 	hw->vendor_id = pdev->vendor;
1984 	hw->device_id = pdev->device;
1985 	hw->revision_id = pdev->revision;
1986 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1987 	hw->subsystem_device_id = pdev->subsystem_device;
1988 
1989 	/* Setup hw api */
1990 	memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
1991 	hw->mac.type = fi->mac;
1992 
1993 	/* Setup IOV handlers */
1994 	if (fi->iov_ops)
1995 		memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
1996 
1997 	/* Set common capability flags and settings */
1998 	rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
1999 	interface->ring_feature[RING_F_RSS].limit = rss;
2000 	fi->get_invariants(hw);
2001 
2002 	/* pick up the PCIe bus settings for reporting later */
2003 	if (hw->mac.ops.get_bus_info)
2004 		hw->mac.ops.get_bus_info(hw);
2005 
2006 	/* limit the usable DMA range */
2007 	if (hw->mac.ops.set_dma_mask)
2008 		hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
2009 
2010 	/* update netdev with DMA restrictions */
2011 	if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
2012 		netdev->features |= NETIF_F_HIGHDMA;
2013 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2014 	}
2015 
2016 	/* reset and initialize the hardware so it is in a known state */
2017 	err = hw->mac.ops.reset_hw(hw);
2018 	if (err) {
2019 		dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
2020 		return err;
2021 	}
2022 
2023 	err = hw->mac.ops.init_hw(hw);
2024 	if (err) {
2025 		dev_err(&pdev->dev, "init_hw failed: %d\n", err);
2026 		return err;
2027 	}
2028 
2029 	/* initialize hardware statistics */
2030 	hw->mac.ops.update_hw_stats(hw, &interface->stats);
2031 
2032 	/* Set upper limit on IOV VFs that can be allocated */
2033 	pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
2034 
2035 	/* Start with random Ethernet address */
2036 	eth_random_addr(hw->mac.addr);
2037 
2038 	/* Initialize MAC address from hardware */
2039 	err = hw->mac.ops.read_mac_addr(hw);
2040 	if (err) {
2041 		dev_warn(&pdev->dev,
2042 			 "Failed to obtain MAC address defaulting to random\n");
2043 		/* tag address assignment as random */
2044 		netdev->addr_assign_type |= NET_ADDR_RANDOM;
2045 	}
2046 
2047 	eth_hw_addr_set(netdev, hw->mac.addr);
2048 	ether_addr_copy(netdev->perm_addr, hw->mac.addr);
2049 
2050 	if (!is_valid_ether_addr(netdev->perm_addr)) {
2051 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2052 		return -EIO;
2053 	}
2054 
2055 	/* initialize DCBNL interface */
2056 	fm10k_dcbnl_set_ops(netdev);
2057 
2058 	/* set default ring sizes */
2059 	interface->tx_ring_count = FM10K_DEFAULT_TXD;
2060 	interface->rx_ring_count = FM10K_DEFAULT_RXD;
2061 
2062 	/* set default interrupt moderation */
2063 	interface->tx_itr = FM10K_TX_ITR_DEFAULT;
2064 	interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
2065 
2066 	/* Initialize the MAC/VLAN queue */
2067 	INIT_LIST_HEAD(&interface->macvlan_requests);
2068 
2069 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
2070 	memcpy(interface->rssrk, rss_key, sizeof(rss_key));
2071 
2072 	/* Initialize the mailbox lock */
2073 	spin_lock_init(&interface->mbx_lock);
2074 	spin_lock_init(&interface->macvlan_lock);
2075 
2076 	/* Start off interface as being down */
2077 	set_bit(__FM10K_DOWN, interface->state);
2078 	set_bit(__FM10K_UPDATING_STATS, interface->state);
2079 
2080 	return 0;
2081 }
2082 
2083 /**
2084  * fm10k_probe - Device Initialization Routine
2085  * @pdev: PCI device information struct
2086  * @ent: entry in fm10k_pci_tbl
2087  *
2088  * Returns 0 on success, negative on failure
2089  *
2090  * fm10k_probe initializes an interface identified by a pci_dev structure.
2091  * The OS initialization, configuring of the interface private structure,
2092  * and a hardware reset occur.
2093  **/
2094 static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2095 {
2096 	struct net_device *netdev;
2097 	struct fm10k_intfc *interface;
2098 	int err;
2099 
2100 	if (pdev->error_state != pci_channel_io_normal) {
2101 		dev_err(&pdev->dev,
2102 			"PCI device still in an error state. Unable to load...\n");
2103 		return -EIO;
2104 	}
2105 
2106 	err = pci_enable_device_mem(pdev);
2107 	if (err) {
2108 		dev_err(&pdev->dev,
2109 			"PCI enable device failed: %d\n", err);
2110 		return err;
2111 	}
2112 
2113 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2114 	if (err)
2115 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2116 	if (err) {
2117 		dev_err(&pdev->dev,
2118 			"DMA configuration failed: %d\n", err);
2119 		goto err_dma;
2120 	}
2121 
2122 	err = pci_request_mem_regions(pdev, fm10k_driver_name);
2123 	if (err) {
2124 		dev_err(&pdev->dev,
2125 			"pci_request_selected_regions failed: %d\n", err);
2126 		goto err_pci_reg;
2127 	}
2128 
2129 	pci_set_master(pdev);
2130 	pci_save_state(pdev);
2131 
2132 	netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
2133 	if (!netdev) {
2134 		err = -ENOMEM;
2135 		goto err_alloc_netdev;
2136 	}
2137 
2138 	SET_NETDEV_DEV(netdev, &pdev->dev);
2139 
2140 	interface = netdev_priv(netdev);
2141 	pci_set_drvdata(pdev, interface);
2142 
2143 	interface->netdev = netdev;
2144 	interface->pdev = pdev;
2145 
2146 	interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
2147 				     FM10K_UC_ADDR_SIZE);
2148 	if (!interface->uc_addr) {
2149 		err = -EIO;
2150 		goto err_ioremap;
2151 	}
2152 
2153 	err = fm10k_sw_init(interface, ent);
2154 	if (err)
2155 		goto err_sw_init;
2156 
2157 	/* enable debugfs support */
2158 	fm10k_dbg_intfc_init(interface);
2159 
2160 	err = fm10k_init_queueing_scheme(interface);
2161 	if (err)
2162 		goto err_sw_init;
2163 
2164 	/* the mbx interrupt might attempt to schedule the service task, so we
2165 	 * must ensure it is disabled since we haven't yet requested the timer
2166 	 * or work item.
2167 	 */
2168 	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
2169 
2170 	err = fm10k_mbx_request_irq(interface);
2171 	if (err)
2172 		goto err_mbx_interrupt;
2173 
2174 	/* final check of hardware state before registering the interface */
2175 	err = fm10k_hw_ready(interface);
2176 	if (err)
2177 		goto err_register;
2178 
2179 	err = register_netdev(netdev);
2180 	if (err)
2181 		goto err_register;
2182 
2183 	/* carrier off reporting is important to ethtool even BEFORE open */
2184 	netif_carrier_off(netdev);
2185 
2186 	/* stop all the transmit queues from transmitting until link is up */
2187 	netif_tx_stop_all_queues(netdev);
2188 
2189 	/* Initialize service timer and service task late in order to avoid
2190 	 * cleanup issues.
2191 	 */
2192 	timer_setup(&interface->service_timer, fm10k_service_timer, 0);
2193 	INIT_WORK(&interface->service_task, fm10k_service_task);
2194 
2195 	/* Setup the MAC/VLAN queue */
2196 	INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
2197 
2198 	/* kick off service timer now, even when interface is down */
2199 	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
2200 
2201 	/* print warning for non-optimal configurations */
2202 	pcie_print_link_status(interface->pdev);
2203 
2204 	/* report MAC address for logging */
2205 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
2206 
2207 	/* enable SR-IOV after registering netdev to enforce PF/VF ordering */
2208 	fm10k_iov_configure(pdev, 0);
2209 
2210 	/* clear the service task disable bit and kick off service task */
2211 	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
2212 	fm10k_service_event_schedule(interface);
2213 
2214 	return 0;
2215 
2216 err_register:
2217 	fm10k_mbx_free_irq(interface);
2218 err_mbx_interrupt:
2219 	fm10k_clear_queueing_scheme(interface);
2220 err_sw_init:
2221 	if (interface->sw_addr)
2222 		iounmap(interface->sw_addr);
2223 	iounmap(interface->uc_addr);
2224 err_ioremap:
2225 	free_netdev(netdev);
2226 err_alloc_netdev:
2227 	pci_release_mem_regions(pdev);
2228 err_pci_reg:
2229 err_dma:
2230 	pci_disable_device(pdev);
2231 	return err;
2232 }
2233 
2234 /**
2235  * fm10k_remove - Device Removal Routine
2236  * @pdev: PCI device information struct
2237  *
2238  * fm10k_remove is called by the PCI subsystem to alert the driver
2239  * that it should release a PCI device.  The could be caused by a
2240  * Hot-Plug event, or because the driver is going to be removed from
2241  * memory.
2242  **/
2243 static void fm10k_remove(struct pci_dev *pdev)
2244 {
2245 	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2246 	struct net_device *netdev = interface->netdev;
2247 
2248 	del_timer_sync(&interface->service_timer);
2249 
2250 	fm10k_stop_service_event(interface);
2251 	fm10k_stop_macvlan_task(interface);
2252 
2253 	/* Remove all pending MAC/VLAN requests */
2254 	fm10k_clear_macvlan_queue(interface, interface->glort, true);
2255 
2256 	/* free netdev, this may bounce the interrupts due to setup_tc */
2257 	if (netdev->reg_state == NETREG_REGISTERED)
2258 		unregister_netdev(netdev);
2259 
2260 	/* release VFs */
2261 	fm10k_iov_disable(pdev);
2262 
2263 	/* disable mailbox interrupt */
2264 	fm10k_mbx_free_irq(interface);
2265 
2266 	/* free interrupts */
2267 	fm10k_clear_queueing_scheme(interface);
2268 
2269 	/* remove any debugfs interfaces */
2270 	fm10k_dbg_intfc_exit(interface);
2271 
2272 	if (interface->sw_addr)
2273 		iounmap(interface->sw_addr);
2274 	iounmap(interface->uc_addr);
2275 
2276 	free_netdev(netdev);
2277 
2278 	pci_release_mem_regions(pdev);
2279 
2280 	pci_disable_device(pdev);
2281 }
2282 
2283 static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
2284 {
2285 	/* the watchdog task reads from registers, which might appear like
2286 	 * a surprise remove if the PCIe device is disabled while we're
2287 	 * stopped. We stop the watchdog task until after we resume software
2288 	 * activity.
2289 	 *
2290 	 * Note that the MAC/VLAN task will be stopped as part of preparing
2291 	 * for reset so we don't need to handle it here.
2292 	 */
2293 	fm10k_stop_service_event(interface);
2294 
2295 	if (fm10k_prepare_for_reset(interface))
2296 		set_bit(__FM10K_RESET_SUSPENDED, interface->state);
2297 }
2298 
2299 static int fm10k_handle_resume(struct fm10k_intfc *interface)
2300 {
2301 	struct fm10k_hw *hw = &interface->hw;
2302 	int err;
2303 
2304 	/* Even if we didn't properly prepare for reset in
2305 	 * fm10k_prepare_suspend, we'll attempt to resume anyways.
2306 	 */
2307 	if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
2308 		dev_warn(&interface->pdev->dev,
2309 			 "Device was shut down as part of suspend... Attempting to recover\n");
2310 
2311 	/* reset statistics starting values */
2312 	hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
2313 
2314 	err = fm10k_handle_reset(interface);
2315 	if (err)
2316 		return err;
2317 
2318 	/* assume host is not ready, to prevent race with watchdog in case we
2319 	 * actually don't have connection to the switch
2320 	 */
2321 	interface->host_ready = false;
2322 	fm10k_watchdog_host_not_ready(interface);
2323 
2324 	/* force link to stay down for a second to prevent link flutter */
2325 	interface->link_down_event = jiffies + (HZ);
2326 	set_bit(__FM10K_LINK_DOWN, interface->state);
2327 
2328 	/* restart the service task */
2329 	fm10k_start_service_event(interface);
2330 
2331 	/* Restart the MAC/VLAN request queue in-case of outstanding events */
2332 	fm10k_macvlan_schedule(interface);
2333 
2334 	return 0;
2335 }
2336 
2337 /**
2338  * fm10k_resume - Generic PM resume hook
2339  * @dev: generic device structure
2340  *
2341  * Generic PM hook used when waking the device from a low power state after
2342  * suspend or hibernation. This function does not need to handle lower PCIe
2343  * device state as the stack takes care of that for us.
2344  **/
2345 static int fm10k_resume(struct device *dev)
2346 {
2347 	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2348 	struct net_device *netdev = interface->netdev;
2349 	struct fm10k_hw *hw = &interface->hw;
2350 	int err;
2351 
2352 	/* refresh hw_addr in case it was dropped */
2353 	hw->hw_addr = interface->uc_addr;
2354 
2355 	err = fm10k_handle_resume(interface);
2356 	if (err)
2357 		return err;
2358 
2359 	netif_device_attach(netdev);
2360 
2361 	return 0;
2362 }
2363 
2364 /**
2365  * fm10k_suspend - Generic PM suspend hook
2366  * @dev: generic device structure
2367  *
2368  * Generic PM hook used when setting the device into a low power state for
2369  * system suspend or hibernation. This function does not need to handle lower
2370  * PCIe device state as the stack takes care of that for us.
2371  **/
2372 static int fm10k_suspend(struct device *dev)
2373 {
2374 	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2375 	struct net_device *netdev = interface->netdev;
2376 
2377 	netif_device_detach(netdev);
2378 
2379 	fm10k_prepare_suspend(interface);
2380 
2381 	return 0;
2382 }
2383 
2384 /**
2385  * fm10k_io_error_detected - called when PCI error is detected
2386  * @pdev: Pointer to PCI device
2387  * @state: The current pci connection state
2388  *
2389  * This function is called after a PCI bus error affecting
2390  * this device has been detected.
2391  */
2392 static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
2393 						pci_channel_state_t state)
2394 {
2395 	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2396 	struct net_device *netdev = interface->netdev;
2397 
2398 	netif_device_detach(netdev);
2399 
2400 	if (state == pci_channel_io_perm_failure)
2401 		return PCI_ERS_RESULT_DISCONNECT;
2402 
2403 	fm10k_prepare_suspend(interface);
2404 
2405 	/* Request a slot reset. */
2406 	return PCI_ERS_RESULT_NEED_RESET;
2407 }
2408 
2409 /**
2410  * fm10k_io_slot_reset - called after the pci bus has been reset.
2411  * @pdev: Pointer to PCI device
2412  *
2413  * Restart the card from scratch, as if from a cold-boot.
2414  */
2415 static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
2416 {
2417 	pci_ers_result_t result;
2418 
2419 	if (pci_reenable_device(pdev)) {
2420 		dev_err(&pdev->dev,
2421 			"Cannot re-enable PCI device after reset.\n");
2422 		result = PCI_ERS_RESULT_DISCONNECT;
2423 	} else {
2424 		pci_set_master(pdev);
2425 		pci_restore_state(pdev);
2426 
2427 		/* After second error pci->state_saved is false, this
2428 		 * resets it so EEH doesn't break.
2429 		 */
2430 		pci_save_state(pdev);
2431 
2432 		pci_wake_from_d3(pdev, false);
2433 
2434 		result = PCI_ERS_RESULT_RECOVERED;
2435 	}
2436 
2437 	return result;
2438 }
2439 
2440 /**
2441  * fm10k_io_resume - called when traffic can start flowing again.
2442  * @pdev: Pointer to PCI device
2443  *
2444  * This callback is called when the error recovery driver tells us that
2445  * its OK to resume normal operation.
2446  */
2447 static void fm10k_io_resume(struct pci_dev *pdev)
2448 {
2449 	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2450 	struct net_device *netdev = interface->netdev;
2451 	int err;
2452 
2453 	err = fm10k_handle_resume(interface);
2454 
2455 	if (err)
2456 		dev_warn(&pdev->dev,
2457 			 "%s failed: %d\n", __func__, err);
2458 	else
2459 		netif_device_attach(netdev);
2460 }
2461 
2462 /**
2463  * fm10k_io_reset_prepare - called when PCI function is about to be reset
2464  * @pdev: Pointer to PCI device
2465  *
2466  * This callback is called when the PCI function is about to be reset,
2467  * allowing the device driver to prepare for it.
2468  */
2469 static void fm10k_io_reset_prepare(struct pci_dev *pdev)
2470 {
2471 	/* warn incase we have any active VF devices */
2472 	if (pci_num_vf(pdev))
2473 		dev_warn(&pdev->dev,
2474 			 "PCIe FLR may cause issues for any active VF devices\n");
2475 	fm10k_prepare_suspend(pci_get_drvdata(pdev));
2476 }
2477 
2478 /**
2479  * fm10k_io_reset_done - called when PCI function has finished resetting
2480  * @pdev: Pointer to PCI device
2481  *
2482  * This callback is called just after the PCI function is reset, such as via
2483  * /sys/class/net/<enpX>/device/reset or similar.
2484  */
2485 static void fm10k_io_reset_done(struct pci_dev *pdev)
2486 {
2487 	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2488 	int err = fm10k_handle_resume(interface);
2489 
2490 	if (err) {
2491 		dev_warn(&pdev->dev,
2492 			 "%s failed: %d\n", __func__, err);
2493 		netif_device_detach(interface->netdev);
2494 	}
2495 }
2496 
2497 static const struct pci_error_handlers fm10k_err_handler = {
2498 	.error_detected = fm10k_io_error_detected,
2499 	.slot_reset = fm10k_io_slot_reset,
2500 	.resume = fm10k_io_resume,
2501 	.reset_prepare = fm10k_io_reset_prepare,
2502 	.reset_done = fm10k_io_reset_done,
2503 };
2504 
2505 static DEFINE_SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
2506 
2507 static struct pci_driver fm10k_driver = {
2508 	.name			= fm10k_driver_name,
2509 	.id_table		= fm10k_pci_tbl,
2510 	.probe			= fm10k_probe,
2511 	.remove			= fm10k_remove,
2512 	.driver.pm		= pm_sleep_ptr(&fm10k_pm_ops),
2513 	.sriov_configure	= fm10k_iov_configure,
2514 	.err_handler		= &fm10k_err_handler
2515 };
2516 
2517 /**
2518  * fm10k_register_pci_driver - register driver interface
2519  *
2520  * This function is called on module load in order to register the driver.
2521  **/
2522 int fm10k_register_pci_driver(void)
2523 {
2524 	return pci_register_driver(&fm10k_driver);
2525 }
2526 
2527 /**
2528  * fm10k_unregister_pci_driver - unregister driver interface
2529  *
2530  * This function is called on module unload in order to remove the driver.
2531  **/
2532 void fm10k_unregister_pci_driver(void)
2533 {
2534 	pci_unregister_driver(&fm10k_driver);
2535 }
2536