1 // SPDX-License-Identifier: GPL-2.0 2 /* Intel(R) Ethernet Switch Host Interface Driver 3 * Copyright(c) 2013 - 2018 Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in 15 * the file called "COPYING". 16 * 17 * Contact Information: 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 #include "fm10k.h" 23 #include <linux/vmalloc.h> 24 #include <net/udp_tunnel.h> 25 #include <linux/if_macvlan.h> 26 27 /** 28 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors) 29 * @tx_ring: tx descriptor ring (for a specific queue) to setup 30 * 31 * Return 0 on success, negative on failure 32 **/ 33 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring) 34 { 35 struct device *dev = tx_ring->dev; 36 int size; 37 38 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 39 40 tx_ring->tx_buffer = vzalloc(size); 41 if (!tx_ring->tx_buffer) 42 goto err; 43 44 u64_stats_init(&tx_ring->syncp); 45 46 /* round up to nearest 4K */ 47 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc); 48 tx_ring->size = ALIGN(tx_ring->size, 4096); 49 50 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 51 &tx_ring->dma, GFP_KERNEL); 52 if (!tx_ring->desc) 53 goto err; 54 55 return 0; 56 57 err: 58 vfree(tx_ring->tx_buffer); 59 tx_ring->tx_buffer = NULL; 60 return -ENOMEM; 61 } 62 63 /** 64 * fm10k_setup_all_tx_resources - allocate all queues Tx resources 65 * @interface: board private structure 66 * 67 * If this function returns with an error, then it's possible one or 68 * more of the rings is populated (while the rest are not). It is the 69 * callers duty to clean those orphaned rings. 70 * 71 * Return 0 on success, negative on failure 72 **/ 73 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface) 74 { 75 int i, err = 0; 76 77 for (i = 0; i < interface->num_tx_queues; i++) { 78 err = fm10k_setup_tx_resources(interface->tx_ring[i]); 79 if (!err) 80 continue; 81 82 netif_err(interface, probe, interface->netdev, 83 "Allocation for Tx Queue %u failed\n", i); 84 goto err_setup_tx; 85 } 86 87 return 0; 88 err_setup_tx: 89 /* rewind the index freeing the rings as we go */ 90 while (i--) 91 fm10k_free_tx_resources(interface->tx_ring[i]); 92 return err; 93 } 94 95 /** 96 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors) 97 * @rx_ring: rx descriptor ring (for a specific queue) to setup 98 * 99 * Returns 0 on success, negative on failure 100 **/ 101 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring) 102 { 103 struct device *dev = rx_ring->dev; 104 int size; 105 106 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 107 108 rx_ring->rx_buffer = vzalloc(size); 109 if (!rx_ring->rx_buffer) 110 goto err; 111 112 u64_stats_init(&rx_ring->syncp); 113 114 /* Round up to nearest 4K */ 115 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc); 116 rx_ring->size = ALIGN(rx_ring->size, 4096); 117 118 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 119 &rx_ring->dma, GFP_KERNEL); 120 if (!rx_ring->desc) 121 goto err; 122 123 return 0; 124 err: 125 vfree(rx_ring->rx_buffer); 126 rx_ring->rx_buffer = NULL; 127 return -ENOMEM; 128 } 129 130 /** 131 * fm10k_setup_all_rx_resources - allocate all queues Rx resources 132 * @interface: board private structure 133 * 134 * If this function returns with an error, then it's possible one or 135 * more of the rings is populated (while the rest are not). It is the 136 * callers duty to clean those orphaned rings. 137 * 138 * Return 0 on success, negative on failure 139 **/ 140 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface) 141 { 142 int i, err = 0; 143 144 for (i = 0; i < interface->num_rx_queues; i++) { 145 err = fm10k_setup_rx_resources(interface->rx_ring[i]); 146 if (!err) 147 continue; 148 149 netif_err(interface, probe, interface->netdev, 150 "Allocation for Rx Queue %u failed\n", i); 151 goto err_setup_rx; 152 } 153 154 return 0; 155 err_setup_rx: 156 /* rewind the index freeing the rings as we go */ 157 while (i--) 158 fm10k_free_rx_resources(interface->rx_ring[i]); 159 return err; 160 } 161 162 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring, 163 struct fm10k_tx_buffer *tx_buffer) 164 { 165 if (tx_buffer->skb) { 166 dev_kfree_skb_any(tx_buffer->skb); 167 if (dma_unmap_len(tx_buffer, len)) 168 dma_unmap_single(ring->dev, 169 dma_unmap_addr(tx_buffer, dma), 170 dma_unmap_len(tx_buffer, len), 171 DMA_TO_DEVICE); 172 } else if (dma_unmap_len(tx_buffer, len)) { 173 dma_unmap_page(ring->dev, 174 dma_unmap_addr(tx_buffer, dma), 175 dma_unmap_len(tx_buffer, len), 176 DMA_TO_DEVICE); 177 } 178 tx_buffer->next_to_watch = NULL; 179 tx_buffer->skb = NULL; 180 dma_unmap_len_set(tx_buffer, len, 0); 181 /* tx_buffer must be completely set up in the transmit path */ 182 } 183 184 /** 185 * fm10k_clean_tx_ring - Free Tx Buffers 186 * @tx_ring: ring to be cleaned 187 **/ 188 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring) 189 { 190 struct fm10k_tx_buffer *tx_buffer; 191 unsigned long size; 192 u16 i; 193 194 /* ring already cleared, nothing to do */ 195 if (!tx_ring->tx_buffer) 196 return; 197 198 /* Free all the Tx ring sk_buffs */ 199 for (i = 0; i < tx_ring->count; i++) { 200 tx_buffer = &tx_ring->tx_buffer[i]; 201 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 202 } 203 204 /* reset BQL values */ 205 netdev_tx_reset_queue(txring_txq(tx_ring)); 206 207 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 208 memset(tx_ring->tx_buffer, 0, size); 209 210 /* Zero out the descriptor ring */ 211 memset(tx_ring->desc, 0, tx_ring->size); 212 } 213 214 /** 215 * fm10k_free_tx_resources - Free Tx Resources per Queue 216 * @tx_ring: Tx descriptor ring for a specific queue 217 * 218 * Free all transmit software resources 219 **/ 220 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring) 221 { 222 fm10k_clean_tx_ring(tx_ring); 223 224 vfree(tx_ring->tx_buffer); 225 tx_ring->tx_buffer = NULL; 226 227 /* if not set, then don't free */ 228 if (!tx_ring->desc) 229 return; 230 231 dma_free_coherent(tx_ring->dev, tx_ring->size, 232 tx_ring->desc, tx_ring->dma); 233 tx_ring->desc = NULL; 234 } 235 236 /** 237 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues 238 * @interface: board private structure 239 **/ 240 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface) 241 { 242 int i; 243 244 for (i = 0; i < interface->num_tx_queues; i++) 245 fm10k_clean_tx_ring(interface->tx_ring[i]); 246 } 247 248 /** 249 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues 250 * @interface: board private structure 251 * 252 * Free all transmit software resources 253 **/ 254 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface) 255 { 256 int i = interface->num_tx_queues; 257 258 while (i--) 259 fm10k_free_tx_resources(interface->tx_ring[i]); 260 } 261 262 /** 263 * fm10k_clean_rx_ring - Free Rx Buffers per Queue 264 * @rx_ring: ring to free buffers from 265 **/ 266 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring) 267 { 268 unsigned long size; 269 u16 i; 270 271 if (!rx_ring->rx_buffer) 272 return; 273 274 if (rx_ring->skb) 275 dev_kfree_skb(rx_ring->skb); 276 rx_ring->skb = NULL; 277 278 /* Free all the Rx ring sk_buffs */ 279 for (i = 0; i < rx_ring->count; i++) { 280 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i]; 281 /* clean-up will only set page pointer to NULL */ 282 if (!buffer->page) 283 continue; 284 285 dma_unmap_page(rx_ring->dev, buffer->dma, 286 PAGE_SIZE, DMA_FROM_DEVICE); 287 __free_page(buffer->page); 288 289 buffer->page = NULL; 290 } 291 292 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 293 memset(rx_ring->rx_buffer, 0, size); 294 295 /* Zero out the descriptor ring */ 296 memset(rx_ring->desc, 0, rx_ring->size); 297 298 rx_ring->next_to_alloc = 0; 299 rx_ring->next_to_clean = 0; 300 rx_ring->next_to_use = 0; 301 } 302 303 /** 304 * fm10k_free_rx_resources - Free Rx Resources 305 * @rx_ring: ring to clean the resources from 306 * 307 * Free all receive software resources 308 **/ 309 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring) 310 { 311 fm10k_clean_rx_ring(rx_ring); 312 313 vfree(rx_ring->rx_buffer); 314 rx_ring->rx_buffer = NULL; 315 316 /* if not set, then don't free */ 317 if (!rx_ring->desc) 318 return; 319 320 dma_free_coherent(rx_ring->dev, rx_ring->size, 321 rx_ring->desc, rx_ring->dma); 322 323 rx_ring->desc = NULL; 324 } 325 326 /** 327 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues 328 * @interface: board private structure 329 **/ 330 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface) 331 { 332 int i; 333 334 for (i = 0; i < interface->num_rx_queues; i++) 335 fm10k_clean_rx_ring(interface->rx_ring[i]); 336 } 337 338 /** 339 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues 340 * @interface: board private structure 341 * 342 * Free all receive software resources 343 **/ 344 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface) 345 { 346 int i = interface->num_rx_queues; 347 348 while (i--) 349 fm10k_free_rx_resources(interface->rx_ring[i]); 350 } 351 352 /** 353 * fm10k_request_glort_range - Request GLORTs for use in configuring rules 354 * @interface: board private structure 355 * 356 * This function allocates a range of glorts for this interface to use. 357 **/ 358 static void fm10k_request_glort_range(struct fm10k_intfc *interface) 359 { 360 struct fm10k_hw *hw = &interface->hw; 361 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT; 362 363 /* establish GLORT base */ 364 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE; 365 interface->glort_count = 0; 366 367 /* nothing we can do until mask is allocated */ 368 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE) 369 return; 370 371 /* we support 3 possible GLORT configurations. 372 * 1: VFs consume all but the last 1 373 * 2: VFs and PF split glorts with possible gap between 374 * 3: VFs allocated first 64, all others belong to PF 375 */ 376 if (mask <= hw->iov.total_vfs) { 377 interface->glort_count = 1; 378 interface->glort += mask; 379 } else if (mask < 64) { 380 interface->glort_count = (mask + 1) / 2; 381 interface->glort += interface->glort_count; 382 } else { 383 interface->glort_count = mask - 63; 384 interface->glort += 64; 385 } 386 } 387 388 /** 389 * fm10k_free_udp_port_info 390 * @interface: board private structure 391 * 392 * This function frees both geneve_port and vxlan_port structures 393 **/ 394 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface) 395 { 396 struct fm10k_udp_port *port; 397 398 /* flush all entries from vxlan list */ 399 port = list_first_entry_or_null(&interface->vxlan_port, 400 struct fm10k_udp_port, list); 401 while (port) { 402 list_del(&port->list); 403 kfree(port); 404 port = list_first_entry_or_null(&interface->vxlan_port, 405 struct fm10k_udp_port, 406 list); 407 } 408 409 /* flush all entries from geneve list */ 410 port = list_first_entry_or_null(&interface->geneve_port, 411 struct fm10k_udp_port, list); 412 while (port) { 413 list_del(&port->list); 414 kfree(port); 415 port = list_first_entry_or_null(&interface->vxlan_port, 416 struct fm10k_udp_port, 417 list); 418 } 419 } 420 421 /** 422 * fm10k_restore_udp_port_info 423 * @interface: board private structure 424 * 425 * This function restores the value in the tunnel_cfg register(s) after reset 426 **/ 427 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface) 428 { 429 struct fm10k_hw *hw = &interface->hw; 430 struct fm10k_udp_port *port; 431 432 /* only the PF supports configuring tunnels */ 433 if (hw->mac.type != fm10k_mac_pf) 434 return; 435 436 port = list_first_entry_or_null(&interface->vxlan_port, 437 struct fm10k_udp_port, list); 438 439 /* restore tunnel configuration register */ 440 fm10k_write_reg(hw, FM10K_TUNNEL_CFG, 441 (port ? ntohs(port->port) : 0) | 442 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT)); 443 444 port = list_first_entry_or_null(&interface->geneve_port, 445 struct fm10k_udp_port, list); 446 447 /* restore Geneve tunnel configuration register */ 448 fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE, 449 (port ? ntohs(port->port) : 0)); 450 } 451 452 static struct fm10k_udp_port * 453 fm10k_remove_tunnel_port(struct list_head *ports, 454 struct udp_tunnel_info *ti) 455 { 456 struct fm10k_udp_port *port; 457 458 list_for_each_entry(port, ports, list) { 459 if ((port->port == ti->port) && 460 (port->sa_family == ti->sa_family)) { 461 list_del(&port->list); 462 return port; 463 } 464 } 465 466 return NULL; 467 } 468 469 static void fm10k_insert_tunnel_port(struct list_head *ports, 470 struct udp_tunnel_info *ti) 471 { 472 struct fm10k_udp_port *port; 473 474 /* remove existing port entry from the list so that the newest items 475 * are always at the tail of the list. 476 */ 477 port = fm10k_remove_tunnel_port(ports, ti); 478 if (!port) { 479 port = kmalloc(sizeof(*port), GFP_ATOMIC); 480 if (!port) 481 return; 482 port->port = ti->port; 483 port->sa_family = ti->sa_family; 484 } 485 486 list_add_tail(&port->list, ports); 487 } 488 489 /** 490 * fm10k_udp_tunnel_add 491 * @dev: network interface device structure 492 * @ti: Tunnel endpoint information 493 * 494 * This function is called when a new UDP tunnel port has been added. 495 * Due to hardware restrictions, only one port per type can be offloaded at 496 * once. 497 **/ 498 static void fm10k_udp_tunnel_add(struct net_device *dev, 499 struct udp_tunnel_info *ti) 500 { 501 struct fm10k_intfc *interface = netdev_priv(dev); 502 503 /* only the PF supports configuring tunnels */ 504 if (interface->hw.mac.type != fm10k_mac_pf) 505 return; 506 507 switch (ti->type) { 508 case UDP_TUNNEL_TYPE_VXLAN: 509 fm10k_insert_tunnel_port(&interface->vxlan_port, ti); 510 break; 511 case UDP_TUNNEL_TYPE_GENEVE: 512 fm10k_insert_tunnel_port(&interface->geneve_port, ti); 513 break; 514 default: 515 return; 516 } 517 518 fm10k_restore_udp_port_info(interface); 519 } 520 521 /** 522 * fm10k_udp_tunnel_del 523 * @dev: network interface device structure 524 * @ti: Tunnel end point information 525 * 526 * This function is called when a new UDP tunnel port is deleted. The freed 527 * port will be removed from the list, then we reprogram the offloaded port 528 * based on the head of the list. 529 **/ 530 static void fm10k_udp_tunnel_del(struct net_device *dev, 531 struct udp_tunnel_info *ti) 532 { 533 struct fm10k_intfc *interface = netdev_priv(dev); 534 struct fm10k_udp_port *port = NULL; 535 536 if (interface->hw.mac.type != fm10k_mac_pf) 537 return; 538 539 switch (ti->type) { 540 case UDP_TUNNEL_TYPE_VXLAN: 541 port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti); 542 break; 543 case UDP_TUNNEL_TYPE_GENEVE: 544 port = fm10k_remove_tunnel_port(&interface->geneve_port, ti); 545 break; 546 default: 547 return; 548 } 549 550 /* if we did remove a port we need to free its memory */ 551 kfree(port); 552 553 fm10k_restore_udp_port_info(interface); 554 } 555 556 /** 557 * fm10k_open - Called when a network interface is made active 558 * @netdev: network interface device structure 559 * 560 * Returns 0 on success, negative value on failure 561 * 562 * The open entry point is called when a network interface is made 563 * active by the system (IFF_UP). At this point all resources needed 564 * for transmit and receive operations are allocated, the interrupt 565 * handler is registered with the OS, the watchdog timer is started, 566 * and the stack is notified that the interface is ready. 567 **/ 568 int fm10k_open(struct net_device *netdev) 569 { 570 struct fm10k_intfc *interface = netdev_priv(netdev); 571 int err; 572 573 /* allocate transmit descriptors */ 574 err = fm10k_setup_all_tx_resources(interface); 575 if (err) 576 goto err_setup_tx; 577 578 /* allocate receive descriptors */ 579 err = fm10k_setup_all_rx_resources(interface); 580 if (err) 581 goto err_setup_rx; 582 583 /* allocate interrupt resources */ 584 err = fm10k_qv_request_irq(interface); 585 if (err) 586 goto err_req_irq; 587 588 /* setup GLORT assignment for this port */ 589 fm10k_request_glort_range(interface); 590 591 /* Notify the stack of the actual queue counts */ 592 err = netif_set_real_num_tx_queues(netdev, 593 interface->num_tx_queues); 594 if (err) 595 goto err_set_queues; 596 597 err = netif_set_real_num_rx_queues(netdev, 598 interface->num_rx_queues); 599 if (err) 600 goto err_set_queues; 601 602 udp_tunnel_get_rx_info(netdev); 603 604 fm10k_up(interface); 605 606 return 0; 607 608 err_set_queues: 609 fm10k_qv_free_irq(interface); 610 err_req_irq: 611 fm10k_free_all_rx_resources(interface); 612 err_setup_rx: 613 fm10k_free_all_tx_resources(interface); 614 err_setup_tx: 615 return err; 616 } 617 618 /** 619 * fm10k_close - Disables a network interface 620 * @netdev: network interface device structure 621 * 622 * Returns 0, this is not allowed to fail 623 * 624 * The close entry point is called when an interface is de-activated 625 * by the OS. The hardware is still under the drivers control, but 626 * needs to be disabled. A global MAC reset is issued to stop the 627 * hardware, and all transmit and receive resources are freed. 628 **/ 629 int fm10k_close(struct net_device *netdev) 630 { 631 struct fm10k_intfc *interface = netdev_priv(netdev); 632 633 fm10k_down(interface); 634 635 fm10k_qv_free_irq(interface); 636 637 fm10k_free_udp_port_info(interface); 638 639 fm10k_free_all_tx_resources(interface); 640 fm10k_free_all_rx_resources(interface); 641 642 return 0; 643 } 644 645 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev) 646 { 647 struct fm10k_intfc *interface = netdev_priv(dev); 648 int num_tx_queues = READ_ONCE(interface->num_tx_queues); 649 unsigned int r_idx = skb->queue_mapping; 650 int err; 651 652 if (!num_tx_queues) 653 return NETDEV_TX_BUSY; 654 655 if ((skb->protocol == htons(ETH_P_8021Q)) && 656 !skb_vlan_tag_present(skb)) { 657 /* FM10K only supports hardware tagging, any tags in frame 658 * are considered 2nd level or "outer" tags 659 */ 660 struct vlan_hdr *vhdr; 661 __be16 proto; 662 663 /* make sure skb is not shared */ 664 skb = skb_share_check(skb, GFP_ATOMIC); 665 if (!skb) 666 return NETDEV_TX_OK; 667 668 /* make sure there is enough room to move the ethernet header */ 669 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) 670 return NETDEV_TX_OK; 671 672 /* verify the skb head is not shared */ 673 err = skb_cow_head(skb, 0); 674 if (err) { 675 dev_kfree_skb(skb); 676 return NETDEV_TX_OK; 677 } 678 679 /* locate VLAN header */ 680 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 681 682 /* pull the 2 key pieces of data out of it */ 683 __vlan_hwaccel_put_tag(skb, 684 htons(ETH_P_8021Q), 685 ntohs(vhdr->h_vlan_TCI)); 686 proto = vhdr->h_vlan_encapsulated_proto; 687 skb->protocol = (ntohs(proto) >= 1536) ? proto : 688 htons(ETH_P_802_2); 689 690 /* squash it by moving the ethernet addresses up 4 bytes */ 691 memmove(skb->data + VLAN_HLEN, skb->data, 12); 692 __skb_pull(skb, VLAN_HLEN); 693 skb_reset_mac_header(skb); 694 } 695 696 /* The minimum packet size for a single buffer is 17B so pad the skb 697 * in order to meet this minimum size requirement. 698 */ 699 if (unlikely(skb->len < 17)) { 700 int pad_len = 17 - skb->len; 701 702 if (skb_pad(skb, pad_len)) 703 return NETDEV_TX_OK; 704 __skb_put(skb, pad_len); 705 } 706 707 if (r_idx >= num_tx_queues) 708 r_idx %= num_tx_queues; 709 710 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]); 711 712 return err; 713 } 714 715 /** 716 * fm10k_tx_timeout - Respond to a Tx Hang 717 * @netdev: network interface device structure 718 **/ 719 static void fm10k_tx_timeout(struct net_device *netdev) 720 { 721 struct fm10k_intfc *interface = netdev_priv(netdev); 722 bool real_tx_hang = false; 723 int i; 724 725 #define TX_TIMEO_LIMIT 16000 726 for (i = 0; i < interface->num_tx_queues; i++) { 727 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 728 729 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) 730 real_tx_hang = true; 731 } 732 733 if (real_tx_hang) { 734 fm10k_tx_timeout_reset(interface); 735 } else { 736 netif_info(interface, drv, netdev, 737 "Fake Tx hang detected with timeout of %d seconds\n", 738 netdev->watchdog_timeo / HZ); 739 740 /* fake Tx hang - increase the kernel timeout */ 741 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT) 742 netdev->watchdog_timeo *= 2; 743 } 744 } 745 746 /** 747 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness 748 * @interface: board private structure 749 * 750 * This function checks if the PF interface's mailbox is ready before queueing 751 * mailbox messages for transmission. This will prevent filling the TX mailbox 752 * queue when the receiver is not ready. VF interfaces are exempt from this 753 * check since it will block all PF-VF mailbox messages from being sent from 754 * the VF to the PF at initialization. 755 **/ 756 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface) 757 { 758 struct fm10k_hw *hw = &interface->hw; 759 760 return (hw->mac.type == fm10k_mac_vf || interface->host_ready); 761 } 762 763 /** 764 * fm10k_queue_vlan_request - Queue a VLAN update request 765 * @interface: the fm10k interface structure 766 * @vid: the VLAN vid 767 * @vsi: VSI index number 768 * @set: whether to set or clear 769 * 770 * This function queues up a VLAN update. For VFs, this must be sent to the 771 * managing PF over the mailbox. For PFs, we'll use the same handling so that 772 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too 773 * many VLAN updates during reset. 774 */ 775 int fm10k_queue_vlan_request(struct fm10k_intfc *interface, 776 u32 vid, u8 vsi, bool set) 777 { 778 struct fm10k_macvlan_request *request; 779 unsigned long flags; 780 781 /* This must be atomic since we may be called while the netdev 782 * addr_list_lock is held 783 */ 784 request = kzalloc(sizeof(*request), GFP_ATOMIC); 785 if (!request) 786 return -ENOMEM; 787 788 request->type = FM10K_VLAN_REQUEST; 789 request->vlan.vid = vid; 790 request->vlan.vsi = vsi; 791 request->set = set; 792 793 spin_lock_irqsave(&interface->macvlan_lock, flags); 794 list_add_tail(&request->list, &interface->macvlan_requests); 795 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 796 797 fm10k_macvlan_schedule(interface); 798 799 return 0; 800 } 801 802 /** 803 * fm10k_queue_mac_request - Queue a MAC update request 804 * @interface: the fm10k interface structure 805 * @glort: the target glort for this update 806 * @addr: the address to update 807 * @vid: the vid to update 808 * @set: whether to add or remove 809 * 810 * This function queues up a MAC request for sending to the switch manager. 811 * A separate thread monitors the queue and sends updates to the switch 812 * manager. Return 0 on success, and negative error code on failure. 813 **/ 814 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort, 815 const unsigned char *addr, u16 vid, bool set) 816 { 817 struct fm10k_macvlan_request *request; 818 unsigned long flags; 819 820 /* This must be atomic since we may be called while the netdev 821 * addr_list_lock is held 822 */ 823 request = kzalloc(sizeof(*request), GFP_ATOMIC); 824 if (!request) 825 return -ENOMEM; 826 827 if (is_multicast_ether_addr(addr)) 828 request->type = FM10K_MC_MAC_REQUEST; 829 else 830 request->type = FM10K_UC_MAC_REQUEST; 831 832 ether_addr_copy(request->mac.addr, addr); 833 request->mac.glort = glort; 834 request->mac.vid = vid; 835 request->set = set; 836 837 spin_lock_irqsave(&interface->macvlan_lock, flags); 838 list_add_tail(&request->list, &interface->macvlan_requests); 839 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 840 841 fm10k_macvlan_schedule(interface); 842 843 return 0; 844 } 845 846 /** 847 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort 848 * @interface: the fm10k interface structure 849 * @glort: the target glort to clear 850 * @vlans: true to clear VLAN messages, false to ignore them 851 * 852 * Cancel any outstanding MAC/VLAN requests for a given glort. This is 853 * expected to be called when a logical port goes down. 854 **/ 855 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface, 856 u16 glort, bool vlans) 857 858 { 859 struct fm10k_macvlan_request *r, *tmp; 860 unsigned long flags; 861 862 spin_lock_irqsave(&interface->macvlan_lock, flags); 863 864 /* Free any outstanding MAC/VLAN requests for this interface */ 865 list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) { 866 switch (r->type) { 867 case FM10K_MC_MAC_REQUEST: 868 case FM10K_UC_MAC_REQUEST: 869 /* Don't free requests for other interfaces */ 870 if (r->mac.glort != glort) 871 break; 872 /* fall through */ 873 case FM10K_VLAN_REQUEST: 874 if (vlans) { 875 list_del(&r->list); 876 kfree(r); 877 } 878 break; 879 } 880 } 881 882 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 883 } 884 885 static int fm10k_uc_vlan_unsync(struct net_device *netdev, 886 const unsigned char *uc_addr) 887 { 888 struct fm10k_intfc *interface = netdev_priv(netdev); 889 u16 glort = interface->glort; 890 u16 vid = interface->vid; 891 bool set = !!(vid / VLAN_N_VID); 892 int err = -EHOSTDOWN; 893 894 /* drop any leading bits on the VLAN ID */ 895 vid &= VLAN_N_VID - 1; 896 897 err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set); 898 if (err) 899 return err; 900 901 /* return non-zero value as we are only doing a partial sync/unsync */ 902 return 1; 903 } 904 905 static int fm10k_mc_vlan_unsync(struct net_device *netdev, 906 const unsigned char *mc_addr) 907 { 908 struct fm10k_intfc *interface = netdev_priv(netdev); 909 u16 glort = interface->glort; 910 u16 vid = interface->vid; 911 bool set = !!(vid / VLAN_N_VID); 912 int err = -EHOSTDOWN; 913 914 /* drop any leading bits on the VLAN ID */ 915 vid &= VLAN_N_VID - 1; 916 917 err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set); 918 if (err) 919 return err; 920 921 /* return non-zero value as we are only doing a partial sync/unsync */ 922 return 1; 923 } 924 925 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set) 926 { 927 struct fm10k_intfc *interface = netdev_priv(netdev); 928 struct fm10k_hw *hw = &interface->hw; 929 s32 err; 930 int i; 931 932 /* updates do not apply to VLAN 0 */ 933 if (!vid) 934 return 0; 935 936 if (vid >= VLAN_N_VID) 937 return -EINVAL; 938 939 /* Verify that we have permission to add VLANs. If this is a request 940 * to remove a VLAN, we still want to allow the user to remove the 941 * VLAN device. In that case, we need to clear the bit in the 942 * active_vlans bitmask. 943 */ 944 if (set && hw->mac.vlan_override) 945 return -EACCES; 946 947 /* update active_vlans bitmask */ 948 set_bit(vid, interface->active_vlans); 949 if (!set) 950 clear_bit(vid, interface->active_vlans); 951 952 /* disable the default VLAN ID on ring if we have an active VLAN */ 953 for (i = 0; i < interface->num_rx_queues; i++) { 954 struct fm10k_ring *rx_ring = interface->rx_ring[i]; 955 u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1); 956 957 if (test_bit(rx_vid, interface->active_vlans)) 958 rx_ring->vid |= FM10K_VLAN_CLEAR; 959 else 960 rx_ring->vid &= ~FM10K_VLAN_CLEAR; 961 } 962 963 /* If our VLAN has been overridden, there is no reason to send VLAN 964 * removal requests as they will be silently ignored. 965 */ 966 if (hw->mac.vlan_override) 967 return 0; 968 969 /* Do not remove default VLAN ID related entries from VLAN and MAC 970 * tables 971 */ 972 if (!set && vid == hw->mac.default_vid) 973 return 0; 974 975 /* Do not throw an error if the interface is down. We will sync once 976 * we come up 977 */ 978 if (test_bit(__FM10K_DOWN, interface->state)) 979 return 0; 980 981 fm10k_mbx_lock(interface); 982 983 /* only need to update the VLAN if not in promiscuous mode */ 984 if (!(netdev->flags & IFF_PROMISC)) { 985 err = fm10k_queue_vlan_request(interface, vid, 0, set); 986 if (err) 987 goto err_out; 988 } 989 990 /* Update our base MAC address */ 991 err = fm10k_queue_mac_request(interface, interface->glort, 992 hw->mac.addr, vid, set); 993 if (err) 994 goto err_out; 995 996 /* set VLAN ID prior to syncing/unsyncing the VLAN */ 997 interface->vid = vid + (set ? VLAN_N_VID : 0); 998 999 /* Update the unicast and multicast address list to add/drop VLAN */ 1000 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync); 1001 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync); 1002 1003 err_out: 1004 fm10k_mbx_unlock(interface); 1005 1006 return err; 1007 } 1008 1009 static int fm10k_vlan_rx_add_vid(struct net_device *netdev, 1010 __always_unused __be16 proto, u16 vid) 1011 { 1012 /* update VLAN and address table based on changes */ 1013 return fm10k_update_vid(netdev, vid, true); 1014 } 1015 1016 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev, 1017 __always_unused __be16 proto, u16 vid) 1018 { 1019 /* update VLAN and address table based on changes */ 1020 return fm10k_update_vid(netdev, vid, false); 1021 } 1022 1023 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid) 1024 { 1025 struct fm10k_hw *hw = &interface->hw; 1026 u16 default_vid = hw->mac.default_vid; 1027 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID; 1028 1029 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid); 1030 1031 return vid; 1032 } 1033 1034 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface) 1035 { 1036 u32 vid, prev_vid; 1037 1038 /* loop through and find any gaps in the table */ 1039 for (vid = 0, prev_vid = 0; 1040 prev_vid < VLAN_N_VID; 1041 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) { 1042 if (prev_vid == vid) 1043 continue; 1044 1045 /* send request to clear multiple bits at a time */ 1046 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT; 1047 fm10k_queue_vlan_request(interface, prev_vid, 0, false); 1048 } 1049 } 1050 1051 static int __fm10k_uc_sync(struct net_device *dev, 1052 const unsigned char *addr, bool sync) 1053 { 1054 struct fm10k_intfc *interface = netdev_priv(dev); 1055 u16 vid, glort = interface->glort; 1056 s32 err; 1057 1058 if (!is_valid_ether_addr(addr)) 1059 return -EADDRNOTAVAIL; 1060 1061 for (vid = fm10k_find_next_vlan(interface, 0); 1062 vid < VLAN_N_VID; 1063 vid = fm10k_find_next_vlan(interface, vid)) { 1064 err = fm10k_queue_mac_request(interface, glort, 1065 addr, vid, sync); 1066 if (err) 1067 return err; 1068 } 1069 1070 return 0; 1071 } 1072 1073 static int fm10k_uc_sync(struct net_device *dev, 1074 const unsigned char *addr) 1075 { 1076 return __fm10k_uc_sync(dev, addr, true); 1077 } 1078 1079 static int fm10k_uc_unsync(struct net_device *dev, 1080 const unsigned char *addr) 1081 { 1082 return __fm10k_uc_sync(dev, addr, false); 1083 } 1084 1085 static int fm10k_set_mac(struct net_device *dev, void *p) 1086 { 1087 struct fm10k_intfc *interface = netdev_priv(dev); 1088 struct fm10k_hw *hw = &interface->hw; 1089 struct sockaddr *addr = p; 1090 s32 err = 0; 1091 1092 if (!is_valid_ether_addr(addr->sa_data)) 1093 return -EADDRNOTAVAIL; 1094 1095 if (dev->flags & IFF_UP) { 1096 /* setting MAC address requires mailbox */ 1097 fm10k_mbx_lock(interface); 1098 1099 err = fm10k_uc_sync(dev, addr->sa_data); 1100 if (!err) 1101 fm10k_uc_unsync(dev, hw->mac.addr); 1102 1103 fm10k_mbx_unlock(interface); 1104 } 1105 1106 if (!err) { 1107 ether_addr_copy(dev->dev_addr, addr->sa_data); 1108 ether_addr_copy(hw->mac.addr, addr->sa_data); 1109 dev->addr_assign_type &= ~NET_ADDR_RANDOM; 1110 } 1111 1112 /* if we had a mailbox error suggest trying again */ 1113 return err ? -EAGAIN : 0; 1114 } 1115 1116 static int __fm10k_mc_sync(struct net_device *dev, 1117 const unsigned char *addr, bool sync) 1118 { 1119 struct fm10k_intfc *interface = netdev_priv(dev); 1120 u16 vid, glort = interface->glort; 1121 s32 err; 1122 1123 if (!is_multicast_ether_addr(addr)) 1124 return -EADDRNOTAVAIL; 1125 1126 for (vid = fm10k_find_next_vlan(interface, 0); 1127 vid < VLAN_N_VID; 1128 vid = fm10k_find_next_vlan(interface, vid)) { 1129 err = fm10k_queue_mac_request(interface, glort, 1130 addr, vid, sync); 1131 if (err) 1132 return err; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int fm10k_mc_sync(struct net_device *dev, 1139 const unsigned char *addr) 1140 { 1141 return __fm10k_mc_sync(dev, addr, true); 1142 } 1143 1144 static int fm10k_mc_unsync(struct net_device *dev, 1145 const unsigned char *addr) 1146 { 1147 return __fm10k_mc_sync(dev, addr, false); 1148 } 1149 1150 static void fm10k_set_rx_mode(struct net_device *dev) 1151 { 1152 struct fm10k_intfc *interface = netdev_priv(dev); 1153 struct fm10k_hw *hw = &interface->hw; 1154 int xcast_mode; 1155 1156 /* no need to update the harwdare if we are not running */ 1157 if (!(dev->flags & IFF_UP)) 1158 return; 1159 1160 /* determine new mode based on flags */ 1161 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC : 1162 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI : 1163 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1164 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE; 1165 1166 fm10k_mbx_lock(interface); 1167 1168 /* update xcast mode first, but only if it changed */ 1169 if (interface->xcast_mode != xcast_mode) { 1170 /* update VLAN table when entering promiscuous mode */ 1171 if (xcast_mode == FM10K_XCAST_MODE_PROMISC) 1172 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 1173 0, true); 1174 1175 /* clear VLAN table when exiting promiscuous mode */ 1176 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC) 1177 fm10k_clear_unused_vlans(interface); 1178 1179 /* update xcast mode if host's mailbox is ready */ 1180 if (fm10k_host_mbx_ready(interface)) 1181 hw->mac.ops.update_xcast_mode(hw, interface->glort, 1182 xcast_mode); 1183 1184 /* record updated xcast mode state */ 1185 interface->xcast_mode = xcast_mode; 1186 } 1187 1188 /* synchronize all of the addresses */ 1189 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync); 1190 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync); 1191 1192 fm10k_mbx_unlock(interface); 1193 } 1194 1195 void fm10k_restore_rx_state(struct fm10k_intfc *interface) 1196 { 1197 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1198 struct net_device *netdev = interface->netdev; 1199 struct fm10k_hw *hw = &interface->hw; 1200 int xcast_mode, i; 1201 u16 vid, glort; 1202 1203 /* record glort for this interface */ 1204 glort = interface->glort; 1205 1206 /* convert interface flags to xcast mode */ 1207 if (netdev->flags & IFF_PROMISC) 1208 xcast_mode = FM10K_XCAST_MODE_PROMISC; 1209 else if (netdev->flags & IFF_ALLMULTI) 1210 xcast_mode = FM10K_XCAST_MODE_ALLMULTI; 1211 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST)) 1212 xcast_mode = FM10K_XCAST_MODE_MULTI; 1213 else 1214 xcast_mode = FM10K_XCAST_MODE_NONE; 1215 1216 fm10k_mbx_lock(interface); 1217 1218 /* Enable logical port if host's mailbox is ready */ 1219 if (fm10k_host_mbx_ready(interface)) 1220 hw->mac.ops.update_lport_state(hw, glort, 1221 interface->glort_count, true); 1222 1223 /* update VLAN table */ 1224 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0, 1225 xcast_mode == FM10K_XCAST_MODE_PROMISC); 1226 1227 /* update table with current entries */ 1228 for (vid = fm10k_find_next_vlan(interface, 0); 1229 vid < VLAN_N_VID; 1230 vid = fm10k_find_next_vlan(interface, vid)) { 1231 fm10k_queue_vlan_request(interface, vid, 0, true); 1232 1233 fm10k_queue_mac_request(interface, glort, 1234 hw->mac.addr, vid, true); 1235 } 1236 1237 /* update xcast mode before synchronizing addresses if host's mailbox 1238 * is ready 1239 */ 1240 if (fm10k_host_mbx_ready(interface)) 1241 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode); 1242 1243 /* synchronize all of the addresses */ 1244 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync); 1245 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync); 1246 1247 /* synchronize macvlan addresses */ 1248 if (l2_accel) { 1249 for (i = 0; i < l2_accel->size; i++) { 1250 struct net_device *sdev = l2_accel->macvlan[i]; 1251 1252 if (!sdev) 1253 continue; 1254 1255 glort = l2_accel->dglort + 1 + i; 1256 1257 hw->mac.ops.update_xcast_mode(hw, glort, 1258 FM10K_XCAST_MODE_NONE); 1259 fm10k_queue_mac_request(interface, glort, 1260 sdev->dev_addr, 1261 hw->mac.default_vid, true); 1262 } 1263 } 1264 1265 fm10k_mbx_unlock(interface); 1266 1267 /* record updated xcast mode state */ 1268 interface->xcast_mode = xcast_mode; 1269 1270 /* Restore tunnel configuration */ 1271 fm10k_restore_udp_port_info(interface); 1272 } 1273 1274 void fm10k_reset_rx_state(struct fm10k_intfc *interface) 1275 { 1276 struct net_device *netdev = interface->netdev; 1277 struct fm10k_hw *hw = &interface->hw; 1278 1279 /* Wait for MAC/VLAN work to finish */ 1280 while (test_bit(__FM10K_MACVLAN_SCHED, interface->state)) 1281 usleep_range(1000, 2000); 1282 1283 /* Cancel pending MAC/VLAN requests */ 1284 fm10k_clear_macvlan_queue(interface, interface->glort, true); 1285 1286 fm10k_mbx_lock(interface); 1287 1288 /* clear the logical port state on lower device if host's mailbox is 1289 * ready 1290 */ 1291 if (fm10k_host_mbx_ready(interface)) 1292 hw->mac.ops.update_lport_state(hw, interface->glort, 1293 interface->glort_count, false); 1294 1295 fm10k_mbx_unlock(interface); 1296 1297 /* reset flags to default state */ 1298 interface->xcast_mode = FM10K_XCAST_MODE_NONE; 1299 1300 /* clear the sync flag since the lport has been dropped */ 1301 __dev_uc_unsync(netdev, NULL); 1302 __dev_mc_unsync(netdev, NULL); 1303 } 1304 1305 /** 1306 * fm10k_get_stats64 - Get System Network Statistics 1307 * @netdev: network interface device structure 1308 * @stats: storage space for 64bit statistics 1309 * 1310 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit 1311 * architectures. 1312 */ 1313 static void fm10k_get_stats64(struct net_device *netdev, 1314 struct rtnl_link_stats64 *stats) 1315 { 1316 struct fm10k_intfc *interface = netdev_priv(netdev); 1317 struct fm10k_ring *ring; 1318 unsigned int start, i; 1319 u64 bytes, packets; 1320 1321 rcu_read_lock(); 1322 1323 for (i = 0; i < interface->num_rx_queues; i++) { 1324 ring = READ_ONCE(interface->rx_ring[i]); 1325 1326 if (!ring) 1327 continue; 1328 1329 do { 1330 start = u64_stats_fetch_begin_irq(&ring->syncp); 1331 packets = ring->stats.packets; 1332 bytes = ring->stats.bytes; 1333 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1334 1335 stats->rx_packets += packets; 1336 stats->rx_bytes += bytes; 1337 } 1338 1339 for (i = 0; i < interface->num_tx_queues; i++) { 1340 ring = READ_ONCE(interface->tx_ring[i]); 1341 1342 if (!ring) 1343 continue; 1344 1345 do { 1346 start = u64_stats_fetch_begin_irq(&ring->syncp); 1347 packets = ring->stats.packets; 1348 bytes = ring->stats.bytes; 1349 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1350 1351 stats->tx_packets += packets; 1352 stats->tx_bytes += bytes; 1353 } 1354 1355 rcu_read_unlock(); 1356 1357 /* following stats updated by fm10k_service_task() */ 1358 stats->rx_missed_errors = netdev->stats.rx_missed_errors; 1359 } 1360 1361 int fm10k_setup_tc(struct net_device *dev, u8 tc) 1362 { 1363 struct fm10k_intfc *interface = netdev_priv(dev); 1364 int err; 1365 1366 /* Currently only the PF supports priority classes */ 1367 if (tc && (interface->hw.mac.type != fm10k_mac_pf)) 1368 return -EINVAL; 1369 1370 /* Hardware supports up to 8 traffic classes */ 1371 if (tc > 8) 1372 return -EINVAL; 1373 1374 /* Hardware has to reinitialize queues to match packet 1375 * buffer alignment. Unfortunately, the hardware is not 1376 * flexible enough to do this dynamically. 1377 */ 1378 if (netif_running(dev)) 1379 fm10k_close(dev); 1380 1381 fm10k_mbx_free_irq(interface); 1382 1383 fm10k_clear_queueing_scheme(interface); 1384 1385 /* we expect the prio_tc map to be repopulated later */ 1386 netdev_reset_tc(dev); 1387 netdev_set_num_tc(dev, tc); 1388 1389 err = fm10k_init_queueing_scheme(interface); 1390 if (err) 1391 goto err_queueing_scheme; 1392 1393 err = fm10k_mbx_request_irq(interface); 1394 if (err) 1395 goto err_mbx_irq; 1396 1397 err = netif_running(dev) ? fm10k_open(dev) : 0; 1398 if (err) 1399 goto err_open; 1400 1401 /* flag to indicate SWPRI has yet to be updated */ 1402 set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 1403 1404 return 0; 1405 err_open: 1406 fm10k_mbx_free_irq(interface); 1407 err_mbx_irq: 1408 fm10k_clear_queueing_scheme(interface); 1409 err_queueing_scheme: 1410 netif_device_detach(dev); 1411 1412 return err; 1413 } 1414 1415 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type, 1416 void *type_data) 1417 { 1418 struct tc_mqprio_qopt *mqprio = type_data; 1419 1420 if (type != TC_SETUP_QDISC_MQPRIO) 1421 return -EOPNOTSUPP; 1422 1423 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 1424 1425 return fm10k_setup_tc(dev, mqprio->num_tc); 1426 } 1427 1428 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface, 1429 struct fm10k_l2_accel *l2_accel) 1430 { 1431 struct fm10k_ring *ring; 1432 int i; 1433 1434 for (i = 0; i < interface->num_rx_queues; i++) { 1435 ring = interface->rx_ring[i]; 1436 rcu_assign_pointer(ring->l2_accel, l2_accel); 1437 } 1438 1439 interface->l2_accel = l2_accel; 1440 } 1441 1442 static void *fm10k_dfwd_add_station(struct net_device *dev, 1443 struct net_device *sdev) 1444 { 1445 struct fm10k_intfc *interface = netdev_priv(dev); 1446 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1447 struct fm10k_l2_accel *old_l2_accel = NULL; 1448 struct fm10k_dglort_cfg dglort = { 0 }; 1449 struct fm10k_hw *hw = &interface->hw; 1450 int size = 0, i; 1451 u16 glort; 1452 1453 /* The hardware supported by fm10k only filters on the destination MAC 1454 * address. In order to avoid issues we only support offloading modes 1455 * where the hardware can actually provide the functionality. 1456 */ 1457 if (!macvlan_supports_dest_filter(sdev)) 1458 return ERR_PTR(-EMEDIUMTYPE); 1459 1460 /* allocate l2 accel structure if it is not available */ 1461 if (!l2_accel) { 1462 /* verify there is enough free GLORTs to support l2_accel */ 1463 if (interface->glort_count < 7) 1464 return ERR_PTR(-EBUSY); 1465 1466 size = offsetof(struct fm10k_l2_accel, macvlan[7]); 1467 l2_accel = kzalloc(size, GFP_KERNEL); 1468 if (!l2_accel) 1469 return ERR_PTR(-ENOMEM); 1470 1471 l2_accel->size = 7; 1472 l2_accel->dglort = interface->glort; 1473 1474 /* update pointers */ 1475 fm10k_assign_l2_accel(interface, l2_accel); 1476 /* do not expand if we are at our limit */ 1477 } else if ((l2_accel->count == FM10K_MAX_STATIONS) || 1478 (l2_accel->count == (interface->glort_count - 1))) { 1479 return ERR_PTR(-EBUSY); 1480 /* expand if we have hit the size limit */ 1481 } else if (l2_accel->count == l2_accel->size) { 1482 old_l2_accel = l2_accel; 1483 size = offsetof(struct fm10k_l2_accel, 1484 macvlan[(l2_accel->size * 2) + 1]); 1485 l2_accel = kzalloc(size, GFP_KERNEL); 1486 if (!l2_accel) 1487 return ERR_PTR(-ENOMEM); 1488 1489 memcpy(l2_accel, old_l2_accel, 1490 offsetof(struct fm10k_l2_accel, 1491 macvlan[old_l2_accel->size])); 1492 1493 l2_accel->size = (old_l2_accel->size * 2) + 1; 1494 1495 /* update pointers */ 1496 fm10k_assign_l2_accel(interface, l2_accel); 1497 kfree_rcu(old_l2_accel, rcu); 1498 } 1499 1500 /* add macvlan to accel table, and record GLORT for position */ 1501 for (i = 0; i < l2_accel->size; i++) { 1502 if (!l2_accel->macvlan[i]) 1503 break; 1504 } 1505 1506 /* record station */ 1507 l2_accel->macvlan[i] = sdev; 1508 l2_accel->count++; 1509 1510 /* configure default DGLORT mapping for RSS/DCB */ 1511 dglort.idx = fm10k_dglort_pf_rss; 1512 dglort.inner_rss = 1; 1513 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1514 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1515 dglort.glort = interface->glort; 1516 dglort.shared_l = fls(l2_accel->size); 1517 hw->mac.ops.configure_dglort_map(hw, &dglort); 1518 1519 /* Add rules for this specific dglort to the switch */ 1520 fm10k_mbx_lock(interface); 1521 1522 glort = l2_accel->dglort + 1 + i; 1523 1524 if (fm10k_host_mbx_ready(interface)) { 1525 hw->mac.ops.update_xcast_mode(hw, glort, 1526 FM10K_XCAST_MODE_NONE); 1527 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1528 hw->mac.default_vid, true); 1529 } 1530 1531 fm10k_mbx_unlock(interface); 1532 1533 return sdev; 1534 } 1535 1536 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv) 1537 { 1538 struct fm10k_intfc *interface = netdev_priv(dev); 1539 struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel); 1540 struct fm10k_dglort_cfg dglort = { 0 }; 1541 struct fm10k_hw *hw = &interface->hw; 1542 struct net_device *sdev = priv; 1543 int i; 1544 u16 glort; 1545 1546 if (!l2_accel) 1547 return; 1548 1549 /* search table for matching interface */ 1550 for (i = 0; i < l2_accel->size; i++) { 1551 if (l2_accel->macvlan[i] == sdev) 1552 break; 1553 } 1554 1555 /* exit if macvlan not found */ 1556 if (i == l2_accel->size) 1557 return; 1558 1559 /* Remove any rules specific to this dglort */ 1560 fm10k_mbx_lock(interface); 1561 1562 glort = l2_accel->dglort + 1 + i; 1563 1564 if (fm10k_host_mbx_ready(interface)) { 1565 hw->mac.ops.update_xcast_mode(hw, glort, 1566 FM10K_XCAST_MODE_NONE); 1567 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1568 hw->mac.default_vid, false); 1569 } 1570 1571 fm10k_mbx_unlock(interface); 1572 1573 /* record removal */ 1574 l2_accel->macvlan[i] = NULL; 1575 l2_accel->count--; 1576 1577 /* configure default DGLORT mapping for RSS/DCB */ 1578 dglort.idx = fm10k_dglort_pf_rss; 1579 dglort.inner_rss = 1; 1580 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1581 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1582 dglort.glort = interface->glort; 1583 dglort.shared_l = fls(l2_accel->size); 1584 hw->mac.ops.configure_dglort_map(hw, &dglort); 1585 1586 /* If table is empty remove it */ 1587 if (l2_accel->count == 0) { 1588 fm10k_assign_l2_accel(interface, NULL); 1589 kfree_rcu(l2_accel, rcu); 1590 } 1591 } 1592 1593 static netdev_features_t fm10k_features_check(struct sk_buff *skb, 1594 struct net_device *dev, 1595 netdev_features_t features) 1596 { 1597 if (!skb->encapsulation || fm10k_tx_encap_offload(skb)) 1598 return features; 1599 1600 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1601 } 1602 1603 static const struct net_device_ops fm10k_netdev_ops = { 1604 .ndo_open = fm10k_open, 1605 .ndo_stop = fm10k_close, 1606 .ndo_validate_addr = eth_validate_addr, 1607 .ndo_start_xmit = fm10k_xmit_frame, 1608 .ndo_set_mac_address = fm10k_set_mac, 1609 .ndo_tx_timeout = fm10k_tx_timeout, 1610 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid, 1611 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid, 1612 .ndo_set_rx_mode = fm10k_set_rx_mode, 1613 .ndo_get_stats64 = fm10k_get_stats64, 1614 .ndo_setup_tc = __fm10k_setup_tc, 1615 .ndo_set_vf_mac = fm10k_ndo_set_vf_mac, 1616 .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan, 1617 .ndo_set_vf_rate = fm10k_ndo_set_vf_bw, 1618 .ndo_get_vf_config = fm10k_ndo_get_vf_config, 1619 .ndo_udp_tunnel_add = fm10k_udp_tunnel_add, 1620 .ndo_udp_tunnel_del = fm10k_udp_tunnel_del, 1621 .ndo_dfwd_add_station = fm10k_dfwd_add_station, 1622 .ndo_dfwd_del_station = fm10k_dfwd_del_station, 1623 #ifdef CONFIG_NET_POLL_CONTROLLER 1624 .ndo_poll_controller = fm10k_netpoll, 1625 #endif 1626 .ndo_features_check = fm10k_features_check, 1627 }; 1628 1629 #define DEFAULT_DEBUG_LEVEL_SHIFT 3 1630 1631 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info) 1632 { 1633 netdev_features_t hw_features; 1634 struct fm10k_intfc *interface; 1635 struct net_device *dev; 1636 1637 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES); 1638 if (!dev) 1639 return NULL; 1640 1641 /* set net device and ethtool ops */ 1642 dev->netdev_ops = &fm10k_netdev_ops; 1643 fm10k_set_ethtool_ops(dev); 1644 1645 /* configure default debug level */ 1646 interface = netdev_priv(dev); 1647 interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 1648 1649 /* configure default features */ 1650 dev->features |= NETIF_F_IP_CSUM | 1651 NETIF_F_IPV6_CSUM | 1652 NETIF_F_SG | 1653 NETIF_F_TSO | 1654 NETIF_F_TSO6 | 1655 NETIF_F_TSO_ECN | 1656 NETIF_F_RXHASH | 1657 NETIF_F_RXCSUM; 1658 1659 /* Only the PF can support VXLAN and NVGRE tunnel offloads */ 1660 if (info->mac == fm10k_mac_pf) { 1661 dev->hw_enc_features = NETIF_F_IP_CSUM | 1662 NETIF_F_TSO | 1663 NETIF_F_TSO6 | 1664 NETIF_F_TSO_ECN | 1665 NETIF_F_GSO_UDP_TUNNEL | 1666 NETIF_F_IPV6_CSUM | 1667 NETIF_F_SG; 1668 1669 dev->features |= NETIF_F_GSO_UDP_TUNNEL; 1670 } 1671 1672 /* all features defined to this point should be changeable */ 1673 hw_features = dev->features; 1674 1675 /* allow user to enable L2 forwarding acceleration */ 1676 hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 1677 1678 /* configure VLAN features */ 1679 dev->vlan_features |= dev->features; 1680 1681 /* we want to leave these both on as we cannot disable VLAN tag 1682 * insertion or stripping on the hardware since it is contained 1683 * in the FTAG and not in the frame itself. 1684 */ 1685 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 1686 NETIF_F_HW_VLAN_CTAG_RX | 1687 NETIF_F_HW_VLAN_CTAG_FILTER; 1688 1689 dev->priv_flags |= IFF_UNICAST_FLT; 1690 1691 dev->hw_features |= hw_features; 1692 1693 /* MTU range: 68 - 15342 */ 1694 dev->min_mtu = ETH_MIN_MTU; 1695 dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE; 1696 1697 return dev; 1698 } 1699