xref: /linux/drivers/net/ethernet/intel/fm10k/fm10k_netdev.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3 
4 #include "fm10k.h"
5 #include <linux/vmalloc.h>
6 #include <net/udp_tunnel.h>
7 #include <linux/if_macvlan.h>
8 
9 /**
10  * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
11  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
12  *
13  * Return 0 on success, negative on failure
14  **/
15 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
16 {
17 	struct device *dev = tx_ring->dev;
18 	int size;
19 
20 	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
21 
22 	tx_ring->tx_buffer = vzalloc(size);
23 	if (!tx_ring->tx_buffer)
24 		goto err;
25 
26 	u64_stats_init(&tx_ring->syncp);
27 
28 	/* round up to nearest 4K */
29 	tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
30 	tx_ring->size = ALIGN(tx_ring->size, 4096);
31 
32 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
33 					   &tx_ring->dma, GFP_KERNEL);
34 	if (!tx_ring->desc)
35 		goto err;
36 
37 	return 0;
38 
39 err:
40 	vfree(tx_ring->tx_buffer);
41 	tx_ring->tx_buffer = NULL;
42 	return -ENOMEM;
43 }
44 
45 /**
46  * fm10k_setup_all_tx_resources - allocate all queues Tx resources
47  * @interface: board private structure
48  *
49  * If this function returns with an error, then it's possible one or
50  * more of the rings is populated (while the rest are not).  It is the
51  * callers duty to clean those orphaned rings.
52  *
53  * Return 0 on success, negative on failure
54  **/
55 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
56 {
57 	int i, err;
58 
59 	for (i = 0; i < interface->num_tx_queues; i++) {
60 		err = fm10k_setup_tx_resources(interface->tx_ring[i]);
61 		if (!err)
62 			continue;
63 
64 		netif_err(interface, probe, interface->netdev,
65 			  "Allocation for Tx Queue %u failed\n", i);
66 		goto err_setup_tx;
67 	}
68 
69 	return 0;
70 err_setup_tx:
71 	/* rewind the index freeing the rings as we go */
72 	while (i--)
73 		fm10k_free_tx_resources(interface->tx_ring[i]);
74 	return err;
75 }
76 
77 /**
78  * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
79  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
80  *
81  * Returns 0 on success, negative on failure
82  **/
83 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
84 {
85 	struct device *dev = rx_ring->dev;
86 	int size;
87 
88 	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
89 
90 	rx_ring->rx_buffer = vzalloc(size);
91 	if (!rx_ring->rx_buffer)
92 		goto err;
93 
94 	u64_stats_init(&rx_ring->syncp);
95 
96 	/* Round up to nearest 4K */
97 	rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
98 	rx_ring->size = ALIGN(rx_ring->size, 4096);
99 
100 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
101 					   &rx_ring->dma, GFP_KERNEL);
102 	if (!rx_ring->desc)
103 		goto err;
104 
105 	return 0;
106 err:
107 	vfree(rx_ring->rx_buffer);
108 	rx_ring->rx_buffer = NULL;
109 	return -ENOMEM;
110 }
111 
112 /**
113  * fm10k_setup_all_rx_resources - allocate all queues Rx resources
114  * @interface: board private structure
115  *
116  * If this function returns with an error, then it's possible one or
117  * more of the rings is populated (while the rest are not).  It is the
118  * callers duty to clean those orphaned rings.
119  *
120  * Return 0 on success, negative on failure
121  **/
122 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
123 {
124 	int i, err;
125 
126 	for (i = 0; i < interface->num_rx_queues; i++) {
127 		err = fm10k_setup_rx_resources(interface->rx_ring[i]);
128 		if (!err)
129 			continue;
130 
131 		netif_err(interface, probe, interface->netdev,
132 			  "Allocation for Rx Queue %u failed\n", i);
133 		goto err_setup_rx;
134 	}
135 
136 	return 0;
137 err_setup_rx:
138 	/* rewind the index freeing the rings as we go */
139 	while (i--)
140 		fm10k_free_rx_resources(interface->rx_ring[i]);
141 	return err;
142 }
143 
144 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
145 				      struct fm10k_tx_buffer *tx_buffer)
146 {
147 	if (tx_buffer->skb) {
148 		dev_kfree_skb_any(tx_buffer->skb);
149 		if (dma_unmap_len(tx_buffer, len))
150 			dma_unmap_single(ring->dev,
151 					 dma_unmap_addr(tx_buffer, dma),
152 					 dma_unmap_len(tx_buffer, len),
153 					 DMA_TO_DEVICE);
154 	} else if (dma_unmap_len(tx_buffer, len)) {
155 		dma_unmap_page(ring->dev,
156 			       dma_unmap_addr(tx_buffer, dma),
157 			       dma_unmap_len(tx_buffer, len),
158 			       DMA_TO_DEVICE);
159 	}
160 	tx_buffer->next_to_watch = NULL;
161 	tx_buffer->skb = NULL;
162 	dma_unmap_len_set(tx_buffer, len, 0);
163 	/* tx_buffer must be completely set up in the transmit path */
164 }
165 
166 /**
167  * fm10k_clean_tx_ring - Free Tx Buffers
168  * @tx_ring: ring to be cleaned
169  **/
170 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
171 {
172 	unsigned long size;
173 	u16 i;
174 
175 	/* ring already cleared, nothing to do */
176 	if (!tx_ring->tx_buffer)
177 		return;
178 
179 	/* Free all the Tx ring sk_buffs */
180 	for (i = 0; i < tx_ring->count; i++) {
181 		struct fm10k_tx_buffer *tx_buffer = &tx_ring->tx_buffer[i];
182 
183 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
184 	}
185 
186 	/* reset BQL values */
187 	netdev_tx_reset_queue(txring_txq(tx_ring));
188 
189 	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
190 	memset(tx_ring->tx_buffer, 0, size);
191 
192 	/* Zero out the descriptor ring */
193 	memset(tx_ring->desc, 0, tx_ring->size);
194 }
195 
196 /**
197  * fm10k_free_tx_resources - Free Tx Resources per Queue
198  * @tx_ring: Tx descriptor ring for a specific queue
199  *
200  * Free all transmit software resources
201  **/
202 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
203 {
204 	fm10k_clean_tx_ring(tx_ring);
205 
206 	vfree(tx_ring->tx_buffer);
207 	tx_ring->tx_buffer = NULL;
208 
209 	/* if not set, then don't free */
210 	if (!tx_ring->desc)
211 		return;
212 
213 	dma_free_coherent(tx_ring->dev, tx_ring->size,
214 			  tx_ring->desc, tx_ring->dma);
215 	tx_ring->desc = NULL;
216 }
217 
218 /**
219  * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
220  * @interface: board private structure
221  **/
222 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
223 {
224 	int i;
225 
226 	for (i = 0; i < interface->num_tx_queues; i++)
227 		fm10k_clean_tx_ring(interface->tx_ring[i]);
228 }
229 
230 /**
231  * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
232  * @interface: board private structure
233  *
234  * Free all transmit software resources
235  **/
236 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
237 {
238 	int i = interface->num_tx_queues;
239 
240 	while (i--)
241 		fm10k_free_tx_resources(interface->tx_ring[i]);
242 }
243 
244 /**
245  * fm10k_clean_rx_ring - Free Rx Buffers per Queue
246  * @rx_ring: ring to free buffers from
247  **/
248 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
249 {
250 	unsigned long size;
251 	u16 i;
252 
253 	if (!rx_ring->rx_buffer)
254 		return;
255 
256 	dev_kfree_skb(rx_ring->skb);
257 	rx_ring->skb = NULL;
258 
259 	/* Free all the Rx ring sk_buffs */
260 	for (i = 0; i < rx_ring->count; i++) {
261 		struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
262 		/* clean-up will only set page pointer to NULL */
263 		if (!buffer->page)
264 			continue;
265 
266 		dma_unmap_page(rx_ring->dev, buffer->dma,
267 			       PAGE_SIZE, DMA_FROM_DEVICE);
268 		__free_page(buffer->page);
269 
270 		buffer->page = NULL;
271 	}
272 
273 	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
274 	memset(rx_ring->rx_buffer, 0, size);
275 
276 	/* Zero out the descriptor ring */
277 	memset(rx_ring->desc, 0, rx_ring->size);
278 
279 	rx_ring->next_to_alloc = 0;
280 	rx_ring->next_to_clean = 0;
281 	rx_ring->next_to_use = 0;
282 }
283 
284 /**
285  * fm10k_free_rx_resources - Free Rx Resources
286  * @rx_ring: ring to clean the resources from
287  *
288  * Free all receive software resources
289  **/
290 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
291 {
292 	fm10k_clean_rx_ring(rx_ring);
293 
294 	vfree(rx_ring->rx_buffer);
295 	rx_ring->rx_buffer = NULL;
296 
297 	/* if not set, then don't free */
298 	if (!rx_ring->desc)
299 		return;
300 
301 	dma_free_coherent(rx_ring->dev, rx_ring->size,
302 			  rx_ring->desc, rx_ring->dma);
303 
304 	rx_ring->desc = NULL;
305 }
306 
307 /**
308  * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
309  * @interface: board private structure
310  **/
311 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
312 {
313 	int i;
314 
315 	for (i = 0; i < interface->num_rx_queues; i++)
316 		fm10k_clean_rx_ring(interface->rx_ring[i]);
317 }
318 
319 /**
320  * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
321  * @interface: board private structure
322  *
323  * Free all receive software resources
324  **/
325 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
326 {
327 	int i = interface->num_rx_queues;
328 
329 	while (i--)
330 		fm10k_free_rx_resources(interface->rx_ring[i]);
331 }
332 
333 /**
334  * fm10k_request_glort_range - Request GLORTs for use in configuring rules
335  * @interface: board private structure
336  *
337  * This function allocates a range of glorts for this interface to use.
338  **/
339 static void fm10k_request_glort_range(struct fm10k_intfc *interface)
340 {
341 	struct fm10k_hw *hw = &interface->hw;
342 	u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
343 
344 	/* establish GLORT base */
345 	interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
346 	interface->glort_count = 0;
347 
348 	/* nothing we can do until mask is allocated */
349 	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
350 		return;
351 
352 	/* we support 3 possible GLORT configurations.
353 	 * 1: VFs consume all but the last 1
354 	 * 2: VFs and PF split glorts with possible gap between
355 	 * 3: VFs allocated first 64, all others belong to PF
356 	 */
357 	if (mask <= hw->iov.total_vfs) {
358 		interface->glort_count = 1;
359 		interface->glort += mask;
360 	} else if (mask < 64) {
361 		interface->glort_count = (mask + 1) / 2;
362 		interface->glort += interface->glort_count;
363 	} else {
364 		interface->glort_count = mask - 63;
365 		interface->glort += 64;
366 	}
367 }
368 
369 /**
370  * fm10k_free_udp_port_info
371  * @interface: board private structure
372  *
373  * This function frees both geneve_port and vxlan_port structures
374  **/
375 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface)
376 {
377 	struct fm10k_udp_port *port;
378 
379 	/* flush all entries from vxlan list */
380 	port = list_first_entry_or_null(&interface->vxlan_port,
381 					struct fm10k_udp_port, list);
382 	while (port) {
383 		list_del(&port->list);
384 		kfree(port);
385 		port = list_first_entry_or_null(&interface->vxlan_port,
386 						struct fm10k_udp_port,
387 						list);
388 	}
389 
390 	/* flush all entries from geneve list */
391 	port = list_first_entry_or_null(&interface->geneve_port,
392 					struct fm10k_udp_port, list);
393 	while (port) {
394 		list_del(&port->list);
395 		kfree(port);
396 		port = list_first_entry_or_null(&interface->vxlan_port,
397 						struct fm10k_udp_port,
398 						list);
399 	}
400 }
401 
402 /**
403  * fm10k_restore_udp_port_info
404  * @interface: board private structure
405  *
406  * This function restores the value in the tunnel_cfg register(s) after reset
407  **/
408 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface)
409 {
410 	struct fm10k_hw *hw = &interface->hw;
411 	struct fm10k_udp_port *port;
412 
413 	/* only the PF supports configuring tunnels */
414 	if (hw->mac.type != fm10k_mac_pf)
415 		return;
416 
417 	port = list_first_entry_or_null(&interface->vxlan_port,
418 					struct fm10k_udp_port, list);
419 
420 	/* restore tunnel configuration register */
421 	fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
422 			(port ? ntohs(port->port) : 0) |
423 			(ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
424 
425 	port = list_first_entry_or_null(&interface->geneve_port,
426 					struct fm10k_udp_port, list);
427 
428 	/* restore Geneve tunnel configuration register */
429 	fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE,
430 			(port ? ntohs(port->port) : 0));
431 }
432 
433 static struct fm10k_udp_port *
434 fm10k_remove_tunnel_port(struct list_head *ports,
435 			 struct udp_tunnel_info *ti)
436 {
437 	struct fm10k_udp_port *port;
438 
439 	list_for_each_entry(port, ports, list) {
440 		if ((port->port == ti->port) &&
441 		    (port->sa_family == ti->sa_family)) {
442 			list_del(&port->list);
443 			return port;
444 		}
445 	}
446 
447 	return NULL;
448 }
449 
450 static void fm10k_insert_tunnel_port(struct list_head *ports,
451 				     struct udp_tunnel_info *ti)
452 {
453 	struct fm10k_udp_port *port;
454 
455 	/* remove existing port entry from the list so that the newest items
456 	 * are always at the tail of the list.
457 	 */
458 	port = fm10k_remove_tunnel_port(ports, ti);
459 	if (!port) {
460 		port = kmalloc(sizeof(*port), GFP_ATOMIC);
461 		if  (!port)
462 			return;
463 		port->port = ti->port;
464 		port->sa_family = ti->sa_family;
465 	}
466 
467 	list_add_tail(&port->list, ports);
468 }
469 
470 /**
471  * fm10k_udp_tunnel_add
472  * @dev: network interface device structure
473  * @ti: Tunnel endpoint information
474  *
475  * This function is called when a new UDP tunnel port has been added.
476  * Due to hardware restrictions, only one port per type can be offloaded at
477  * once.
478  **/
479 static void fm10k_udp_tunnel_add(struct net_device *dev,
480 				 struct udp_tunnel_info *ti)
481 {
482 	struct fm10k_intfc *interface = netdev_priv(dev);
483 
484 	/* only the PF supports configuring tunnels */
485 	if (interface->hw.mac.type != fm10k_mac_pf)
486 		return;
487 
488 	switch (ti->type) {
489 	case UDP_TUNNEL_TYPE_VXLAN:
490 		fm10k_insert_tunnel_port(&interface->vxlan_port, ti);
491 		break;
492 	case UDP_TUNNEL_TYPE_GENEVE:
493 		fm10k_insert_tunnel_port(&interface->geneve_port, ti);
494 		break;
495 	default:
496 		return;
497 	}
498 
499 	fm10k_restore_udp_port_info(interface);
500 }
501 
502 /**
503  * fm10k_udp_tunnel_del
504  * @dev: network interface device structure
505  * @ti: Tunnel end point information
506  *
507  * This function is called when a new UDP tunnel port is deleted. The freed
508  * port will be removed from the list, then we reprogram the offloaded port
509  * based on the head of the list.
510  **/
511 static void fm10k_udp_tunnel_del(struct net_device *dev,
512 				 struct udp_tunnel_info *ti)
513 {
514 	struct fm10k_intfc *interface = netdev_priv(dev);
515 	struct fm10k_udp_port *port = NULL;
516 
517 	if (interface->hw.mac.type != fm10k_mac_pf)
518 		return;
519 
520 	switch (ti->type) {
521 	case UDP_TUNNEL_TYPE_VXLAN:
522 		port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti);
523 		break;
524 	case UDP_TUNNEL_TYPE_GENEVE:
525 		port = fm10k_remove_tunnel_port(&interface->geneve_port, ti);
526 		break;
527 	default:
528 		return;
529 	}
530 
531 	/* if we did remove a port we need to free its memory */
532 	kfree(port);
533 
534 	fm10k_restore_udp_port_info(interface);
535 }
536 
537 /**
538  * fm10k_open - Called when a network interface is made active
539  * @netdev: network interface device structure
540  *
541  * Returns 0 on success, negative value on failure
542  *
543  * The open entry point is called when a network interface is made
544  * active by the system (IFF_UP).  At this point all resources needed
545  * for transmit and receive operations are allocated, the interrupt
546  * handler is registered with the OS, the watchdog timer is started,
547  * and the stack is notified that the interface is ready.
548  **/
549 int fm10k_open(struct net_device *netdev)
550 {
551 	struct fm10k_intfc *interface = netdev_priv(netdev);
552 	int err;
553 
554 	/* allocate transmit descriptors */
555 	err = fm10k_setup_all_tx_resources(interface);
556 	if (err)
557 		goto err_setup_tx;
558 
559 	/* allocate receive descriptors */
560 	err = fm10k_setup_all_rx_resources(interface);
561 	if (err)
562 		goto err_setup_rx;
563 
564 	/* allocate interrupt resources */
565 	err = fm10k_qv_request_irq(interface);
566 	if (err)
567 		goto err_req_irq;
568 
569 	/* setup GLORT assignment for this port */
570 	fm10k_request_glort_range(interface);
571 
572 	/* Notify the stack of the actual queue counts */
573 	err = netif_set_real_num_tx_queues(netdev,
574 					   interface->num_tx_queues);
575 	if (err)
576 		goto err_set_queues;
577 
578 	err = netif_set_real_num_rx_queues(netdev,
579 					   interface->num_rx_queues);
580 	if (err)
581 		goto err_set_queues;
582 
583 	udp_tunnel_get_rx_info(netdev);
584 
585 	fm10k_up(interface);
586 
587 	return 0;
588 
589 err_set_queues:
590 	fm10k_qv_free_irq(interface);
591 err_req_irq:
592 	fm10k_free_all_rx_resources(interface);
593 err_setup_rx:
594 	fm10k_free_all_tx_resources(interface);
595 err_setup_tx:
596 	return err;
597 }
598 
599 /**
600  * fm10k_close - Disables a network interface
601  * @netdev: network interface device structure
602  *
603  * Returns 0, this is not allowed to fail
604  *
605  * The close entry point is called when an interface is de-activated
606  * by the OS.  The hardware is still under the drivers control, but
607  * needs to be disabled.  A global MAC reset is issued to stop the
608  * hardware, and all transmit and receive resources are freed.
609  **/
610 int fm10k_close(struct net_device *netdev)
611 {
612 	struct fm10k_intfc *interface = netdev_priv(netdev);
613 
614 	fm10k_down(interface);
615 
616 	fm10k_qv_free_irq(interface);
617 
618 	fm10k_free_udp_port_info(interface);
619 
620 	fm10k_free_all_tx_resources(interface);
621 	fm10k_free_all_rx_resources(interface);
622 
623 	return 0;
624 }
625 
626 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
627 {
628 	struct fm10k_intfc *interface = netdev_priv(dev);
629 	int num_tx_queues = READ_ONCE(interface->num_tx_queues);
630 	unsigned int r_idx = skb->queue_mapping;
631 	int err;
632 
633 	if (!num_tx_queues)
634 		return NETDEV_TX_BUSY;
635 
636 	if ((skb->protocol == htons(ETH_P_8021Q)) &&
637 	    !skb_vlan_tag_present(skb)) {
638 		/* FM10K only supports hardware tagging, any tags in frame
639 		 * are considered 2nd level or "outer" tags
640 		 */
641 		struct vlan_hdr *vhdr;
642 		__be16 proto;
643 
644 		/* make sure skb is not shared */
645 		skb = skb_share_check(skb, GFP_ATOMIC);
646 		if (!skb)
647 			return NETDEV_TX_OK;
648 
649 		/* make sure there is enough room to move the ethernet header */
650 		if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
651 			return NETDEV_TX_OK;
652 
653 		/* verify the skb head is not shared */
654 		err = skb_cow_head(skb, 0);
655 		if (err) {
656 			dev_kfree_skb(skb);
657 			return NETDEV_TX_OK;
658 		}
659 
660 		/* locate VLAN header */
661 		vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
662 
663 		/* pull the 2 key pieces of data out of it */
664 		__vlan_hwaccel_put_tag(skb,
665 				       htons(ETH_P_8021Q),
666 				       ntohs(vhdr->h_vlan_TCI));
667 		proto = vhdr->h_vlan_encapsulated_proto;
668 		skb->protocol = (ntohs(proto) >= 1536) ? proto :
669 							 htons(ETH_P_802_2);
670 
671 		/* squash it by moving the ethernet addresses up 4 bytes */
672 		memmove(skb->data + VLAN_HLEN, skb->data, 12);
673 		__skb_pull(skb, VLAN_HLEN);
674 		skb_reset_mac_header(skb);
675 	}
676 
677 	/* The minimum packet size for a single buffer is 17B so pad the skb
678 	 * in order to meet this minimum size requirement.
679 	 */
680 	if (unlikely(skb->len < 17)) {
681 		int pad_len = 17 - skb->len;
682 
683 		if (skb_pad(skb, pad_len))
684 			return NETDEV_TX_OK;
685 		__skb_put(skb, pad_len);
686 	}
687 
688 	if (r_idx >= num_tx_queues)
689 		r_idx %= num_tx_queues;
690 
691 	err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
692 
693 	return err;
694 }
695 
696 /**
697  * fm10k_tx_timeout - Respond to a Tx Hang
698  * @netdev: network interface device structure
699  **/
700 static void fm10k_tx_timeout(struct net_device *netdev)
701 {
702 	struct fm10k_intfc *interface = netdev_priv(netdev);
703 	bool real_tx_hang = false;
704 	int i;
705 
706 #define TX_TIMEO_LIMIT 16000
707 	for (i = 0; i < interface->num_tx_queues; i++) {
708 		struct fm10k_ring *tx_ring = interface->tx_ring[i];
709 
710 		if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
711 			real_tx_hang = true;
712 	}
713 
714 	if (real_tx_hang) {
715 		fm10k_tx_timeout_reset(interface);
716 	} else {
717 		netif_info(interface, drv, netdev,
718 			   "Fake Tx hang detected with timeout of %d seconds\n",
719 			   netdev->watchdog_timeo / HZ);
720 
721 		/* fake Tx hang - increase the kernel timeout */
722 		if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
723 			netdev->watchdog_timeo *= 2;
724 	}
725 }
726 
727 /**
728  * fm10k_host_mbx_ready - Check PF interface's mailbox readiness
729  * @interface: board private structure
730  *
731  * This function checks if the PF interface's mailbox is ready before queueing
732  * mailbox messages for transmission. This will prevent filling the TX mailbox
733  * queue when the receiver is not ready. VF interfaces are exempt from this
734  * check since it will block all PF-VF mailbox messages from being sent from
735  * the VF to the PF at initialization.
736  **/
737 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface)
738 {
739 	struct fm10k_hw *hw = &interface->hw;
740 
741 	return (hw->mac.type == fm10k_mac_vf || interface->host_ready);
742 }
743 
744 /**
745  * fm10k_queue_vlan_request - Queue a VLAN update request
746  * @interface: the fm10k interface structure
747  * @vid: the VLAN vid
748  * @vsi: VSI index number
749  * @set: whether to set or clear
750  *
751  * This function queues up a VLAN update. For VFs, this must be sent to the
752  * managing PF over the mailbox. For PFs, we'll use the same handling so that
753  * it's similar to the VF. This avoids storming the PF<->VF mailbox with too
754  * many VLAN updates during reset.
755  */
756 int fm10k_queue_vlan_request(struct fm10k_intfc *interface,
757 			     u32 vid, u8 vsi, bool set)
758 {
759 	struct fm10k_macvlan_request *request;
760 	unsigned long flags;
761 
762 	/* This must be atomic since we may be called while the netdev
763 	 * addr_list_lock is held
764 	 */
765 	request = kzalloc(sizeof(*request), GFP_ATOMIC);
766 	if (!request)
767 		return -ENOMEM;
768 
769 	request->type = FM10K_VLAN_REQUEST;
770 	request->vlan.vid = vid;
771 	request->vlan.vsi = vsi;
772 	request->set = set;
773 
774 	spin_lock_irqsave(&interface->macvlan_lock, flags);
775 	list_add_tail(&request->list, &interface->macvlan_requests);
776 	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
777 
778 	fm10k_macvlan_schedule(interface);
779 
780 	return 0;
781 }
782 
783 /**
784  * fm10k_queue_mac_request - Queue a MAC update request
785  * @interface: the fm10k interface structure
786  * @glort: the target glort for this update
787  * @addr: the address to update
788  * @vid: the vid to update
789  * @set: whether to add or remove
790  *
791  * This function queues up a MAC request for sending to the switch manager.
792  * A separate thread monitors the queue and sends updates to the switch
793  * manager. Return 0 on success, and negative error code on failure.
794  **/
795 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort,
796 			    const unsigned char *addr, u16 vid, bool set)
797 {
798 	struct fm10k_macvlan_request *request;
799 	unsigned long flags;
800 
801 	/* This must be atomic since we may be called while the netdev
802 	 * addr_list_lock is held
803 	 */
804 	request = kzalloc(sizeof(*request), GFP_ATOMIC);
805 	if (!request)
806 		return -ENOMEM;
807 
808 	if (is_multicast_ether_addr(addr))
809 		request->type = FM10K_MC_MAC_REQUEST;
810 	else
811 		request->type = FM10K_UC_MAC_REQUEST;
812 
813 	ether_addr_copy(request->mac.addr, addr);
814 	request->mac.glort = glort;
815 	request->mac.vid = vid;
816 	request->set = set;
817 
818 	spin_lock_irqsave(&interface->macvlan_lock, flags);
819 	list_add_tail(&request->list, &interface->macvlan_requests);
820 	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
821 
822 	fm10k_macvlan_schedule(interface);
823 
824 	return 0;
825 }
826 
827 /**
828  * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort
829  * @interface: the fm10k interface structure
830  * @glort: the target glort to clear
831  * @vlans: true to clear VLAN messages, false to ignore them
832  *
833  * Cancel any outstanding MAC/VLAN requests for a given glort. This is
834  * expected to be called when a logical port goes down.
835  **/
836 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface,
837 			       u16 glort, bool vlans)
838 
839 {
840 	struct fm10k_macvlan_request *r, *tmp;
841 	unsigned long flags;
842 
843 	spin_lock_irqsave(&interface->macvlan_lock, flags);
844 
845 	/* Free any outstanding MAC/VLAN requests for this interface */
846 	list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) {
847 		switch (r->type) {
848 		case FM10K_MC_MAC_REQUEST:
849 		case FM10K_UC_MAC_REQUEST:
850 			/* Don't free requests for other interfaces */
851 			if (r->mac.glort != glort)
852 				break;
853 			/* fall through */
854 		case FM10K_VLAN_REQUEST:
855 			if (vlans) {
856 				list_del(&r->list);
857 				kfree(r);
858 			}
859 			break;
860 		}
861 	}
862 
863 	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
864 }
865 
866 static int fm10k_uc_vlan_unsync(struct net_device *netdev,
867 				const unsigned char *uc_addr)
868 {
869 	struct fm10k_intfc *interface = netdev_priv(netdev);
870 	u16 glort = interface->glort;
871 	u16 vid = interface->vid;
872 	bool set = !!(vid / VLAN_N_VID);
873 	int err;
874 
875 	/* drop any leading bits on the VLAN ID */
876 	vid &= VLAN_N_VID - 1;
877 
878 	err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set);
879 	if (err)
880 		return err;
881 
882 	/* return non-zero value as we are only doing a partial sync/unsync */
883 	return 1;
884 }
885 
886 static int fm10k_mc_vlan_unsync(struct net_device *netdev,
887 				const unsigned char *mc_addr)
888 {
889 	struct fm10k_intfc *interface = netdev_priv(netdev);
890 	u16 glort = interface->glort;
891 	u16 vid = interface->vid;
892 	bool set = !!(vid / VLAN_N_VID);
893 	int err;
894 
895 	/* drop any leading bits on the VLAN ID */
896 	vid &= VLAN_N_VID - 1;
897 
898 	err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set);
899 	if (err)
900 		return err;
901 
902 	/* return non-zero value as we are only doing a partial sync/unsync */
903 	return 1;
904 }
905 
906 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
907 {
908 	struct fm10k_intfc *interface = netdev_priv(netdev);
909 	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
910 	struct fm10k_hw *hw = &interface->hw;
911 	u16 glort;
912 	s32 err;
913 	int i;
914 
915 	/* updates do not apply to VLAN 0 */
916 	if (!vid)
917 		return 0;
918 
919 	if (vid >= VLAN_N_VID)
920 		return -EINVAL;
921 
922 	/* Verify that we have permission to add VLANs. If this is a request
923 	 * to remove a VLAN, we still want to allow the user to remove the
924 	 * VLAN device. In that case, we need to clear the bit in the
925 	 * active_vlans bitmask.
926 	 */
927 	if (set && hw->mac.vlan_override)
928 		return -EACCES;
929 
930 	/* update active_vlans bitmask */
931 	set_bit(vid, interface->active_vlans);
932 	if (!set)
933 		clear_bit(vid, interface->active_vlans);
934 
935 	/* disable the default VLAN ID on ring if we have an active VLAN */
936 	for (i = 0; i < interface->num_rx_queues; i++) {
937 		struct fm10k_ring *rx_ring = interface->rx_ring[i];
938 		u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);
939 
940 		if (test_bit(rx_vid, interface->active_vlans))
941 			rx_ring->vid |= FM10K_VLAN_CLEAR;
942 		else
943 			rx_ring->vid &= ~FM10K_VLAN_CLEAR;
944 	}
945 
946 	/* If our VLAN has been overridden, there is no reason to send VLAN
947 	 * removal requests as they will be silently ignored.
948 	 */
949 	if (hw->mac.vlan_override)
950 		return 0;
951 
952 	/* Do not remove default VLAN ID related entries from VLAN and MAC
953 	 * tables
954 	 */
955 	if (!set && vid == hw->mac.default_vid)
956 		return 0;
957 
958 	/* Do not throw an error if the interface is down. We will sync once
959 	 * we come up
960 	 */
961 	if (test_bit(__FM10K_DOWN, interface->state))
962 		return 0;
963 
964 	fm10k_mbx_lock(interface);
965 
966 	/* only need to update the VLAN if not in promiscuous mode */
967 	if (!(netdev->flags & IFF_PROMISC)) {
968 		err = fm10k_queue_vlan_request(interface, vid, 0, set);
969 		if (err)
970 			goto err_out;
971 	}
972 
973 	/* Update our base MAC address */
974 	err = fm10k_queue_mac_request(interface, interface->glort,
975 				      hw->mac.addr, vid, set);
976 	if (err)
977 		goto err_out;
978 
979 	/* Update L2 accelerated macvlan addresses */
980 	if (l2_accel) {
981 		for (i = 0; i < l2_accel->size; i++) {
982 			struct net_device *sdev = l2_accel->macvlan[i];
983 
984 			if (!sdev)
985 				continue;
986 
987 			glort = l2_accel->dglort + 1 + i;
988 
989 			fm10k_queue_mac_request(interface, glort,
990 						sdev->dev_addr,
991 						vid, set);
992 		}
993 	}
994 
995 	/* set VLAN ID prior to syncing/unsyncing the VLAN */
996 	interface->vid = vid + (set ? VLAN_N_VID : 0);
997 
998 	/* Update the unicast and multicast address list to add/drop VLAN */
999 	__dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
1000 	__dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
1001 
1002 err_out:
1003 	fm10k_mbx_unlock(interface);
1004 
1005 	return err;
1006 }
1007 
1008 static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
1009 				 __always_unused __be16 proto, u16 vid)
1010 {
1011 	/* update VLAN and address table based on changes */
1012 	return fm10k_update_vid(netdev, vid, true);
1013 }
1014 
1015 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
1016 				  __always_unused __be16 proto, u16 vid)
1017 {
1018 	/* update VLAN and address table based on changes */
1019 	return fm10k_update_vid(netdev, vid, false);
1020 }
1021 
1022 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
1023 {
1024 	struct fm10k_hw *hw = &interface->hw;
1025 	u16 default_vid = hw->mac.default_vid;
1026 	u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
1027 
1028 	vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
1029 
1030 	return vid;
1031 }
1032 
1033 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
1034 {
1035 	u32 vid, prev_vid;
1036 
1037 	/* loop through and find any gaps in the table */
1038 	for (vid = 0, prev_vid = 0;
1039 	     prev_vid < VLAN_N_VID;
1040 	     prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
1041 		if (prev_vid == vid)
1042 			continue;
1043 
1044 		/* send request to clear multiple bits at a time */
1045 		prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
1046 		fm10k_queue_vlan_request(interface, prev_vid, 0, false);
1047 	}
1048 }
1049 
1050 static int __fm10k_uc_sync(struct net_device *dev,
1051 			   const unsigned char *addr, bool sync)
1052 {
1053 	struct fm10k_intfc *interface = netdev_priv(dev);
1054 	u16 vid, glort = interface->glort;
1055 	s32 err;
1056 
1057 	if (!is_valid_ether_addr(addr))
1058 		return -EADDRNOTAVAIL;
1059 
1060 	for (vid = fm10k_find_next_vlan(interface, 0);
1061 	     vid < VLAN_N_VID;
1062 	     vid = fm10k_find_next_vlan(interface, vid)) {
1063 		err = fm10k_queue_mac_request(interface, glort,
1064 					      addr, vid, sync);
1065 		if (err)
1066 			return err;
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 static int fm10k_uc_sync(struct net_device *dev,
1073 			 const unsigned char *addr)
1074 {
1075 	return __fm10k_uc_sync(dev, addr, true);
1076 }
1077 
1078 static int fm10k_uc_unsync(struct net_device *dev,
1079 			   const unsigned char *addr)
1080 {
1081 	return __fm10k_uc_sync(dev, addr, false);
1082 }
1083 
1084 static int fm10k_set_mac(struct net_device *dev, void *p)
1085 {
1086 	struct fm10k_intfc *interface = netdev_priv(dev);
1087 	struct fm10k_hw *hw = &interface->hw;
1088 	struct sockaddr *addr = p;
1089 	s32 err = 0;
1090 
1091 	if (!is_valid_ether_addr(addr->sa_data))
1092 		return -EADDRNOTAVAIL;
1093 
1094 	if (dev->flags & IFF_UP) {
1095 		/* setting MAC address requires mailbox */
1096 		fm10k_mbx_lock(interface);
1097 
1098 		err = fm10k_uc_sync(dev, addr->sa_data);
1099 		if (!err)
1100 			fm10k_uc_unsync(dev, hw->mac.addr);
1101 
1102 		fm10k_mbx_unlock(interface);
1103 	}
1104 
1105 	if (!err) {
1106 		ether_addr_copy(dev->dev_addr, addr->sa_data);
1107 		ether_addr_copy(hw->mac.addr, addr->sa_data);
1108 		dev->addr_assign_type &= ~NET_ADDR_RANDOM;
1109 	}
1110 
1111 	/* if we had a mailbox error suggest trying again */
1112 	return err ? -EAGAIN : 0;
1113 }
1114 
1115 static int __fm10k_mc_sync(struct net_device *dev,
1116 			   const unsigned char *addr, bool sync)
1117 {
1118 	struct fm10k_intfc *interface = netdev_priv(dev);
1119 	u16 vid, glort = interface->glort;
1120 	s32 err;
1121 
1122 	if (!is_multicast_ether_addr(addr))
1123 		return -EADDRNOTAVAIL;
1124 
1125 	for (vid = fm10k_find_next_vlan(interface, 0);
1126 	     vid < VLAN_N_VID;
1127 	     vid = fm10k_find_next_vlan(interface, vid)) {
1128 		err = fm10k_queue_mac_request(interface, glort,
1129 					      addr, vid, sync);
1130 		if (err)
1131 			return err;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int fm10k_mc_sync(struct net_device *dev,
1138 			 const unsigned char *addr)
1139 {
1140 	return __fm10k_mc_sync(dev, addr, true);
1141 }
1142 
1143 static int fm10k_mc_unsync(struct net_device *dev,
1144 			   const unsigned char *addr)
1145 {
1146 	return __fm10k_mc_sync(dev, addr, false);
1147 }
1148 
1149 static void fm10k_set_rx_mode(struct net_device *dev)
1150 {
1151 	struct fm10k_intfc *interface = netdev_priv(dev);
1152 	struct fm10k_hw *hw = &interface->hw;
1153 	int xcast_mode;
1154 
1155 	/* no need to update the harwdare if we are not running */
1156 	if (!(dev->flags & IFF_UP))
1157 		return;
1158 
1159 	/* determine new mode based on flags */
1160 	xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
1161 		     (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
1162 		     (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1163 		     FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
1164 
1165 	fm10k_mbx_lock(interface);
1166 
1167 	/* update xcast mode first, but only if it changed */
1168 	if (interface->xcast_mode != xcast_mode) {
1169 		/* update VLAN table when entering promiscuous mode */
1170 		if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
1171 			fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL,
1172 						 0, true);
1173 
1174 		/* clear VLAN table when exiting promiscuous mode */
1175 		if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
1176 			fm10k_clear_unused_vlans(interface);
1177 
1178 		/* update xcast mode if host's mailbox is ready */
1179 		if (fm10k_host_mbx_ready(interface))
1180 			hw->mac.ops.update_xcast_mode(hw, interface->glort,
1181 						      xcast_mode);
1182 
1183 		/* record updated xcast mode state */
1184 		interface->xcast_mode = xcast_mode;
1185 	}
1186 
1187 	/* synchronize all of the addresses */
1188 	__dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
1189 	__dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
1190 
1191 	fm10k_mbx_unlock(interface);
1192 }
1193 
1194 void fm10k_restore_rx_state(struct fm10k_intfc *interface)
1195 {
1196 	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1197 	struct net_device *netdev = interface->netdev;
1198 	struct fm10k_hw *hw = &interface->hw;
1199 	int xcast_mode, i;
1200 	u16 vid, glort;
1201 
1202 	/* record glort for this interface */
1203 	glort = interface->glort;
1204 
1205 	/* convert interface flags to xcast mode */
1206 	if (netdev->flags & IFF_PROMISC)
1207 		xcast_mode = FM10K_XCAST_MODE_PROMISC;
1208 	else if (netdev->flags & IFF_ALLMULTI)
1209 		xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
1210 	else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
1211 		xcast_mode = FM10K_XCAST_MODE_MULTI;
1212 	else
1213 		xcast_mode = FM10K_XCAST_MODE_NONE;
1214 
1215 	fm10k_mbx_lock(interface);
1216 
1217 	/* Enable logical port if host's mailbox is ready */
1218 	if (fm10k_host_mbx_ready(interface))
1219 		hw->mac.ops.update_lport_state(hw, glort,
1220 					       interface->glort_count, true);
1221 
1222 	/* update VLAN table */
1223 	fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0,
1224 				 xcast_mode == FM10K_XCAST_MODE_PROMISC);
1225 
1226 	/* update table with current entries */
1227 	for (vid = fm10k_find_next_vlan(interface, 0);
1228 	     vid < VLAN_N_VID;
1229 	     vid = fm10k_find_next_vlan(interface, vid)) {
1230 		fm10k_queue_vlan_request(interface, vid, 0, true);
1231 
1232 		fm10k_queue_mac_request(interface, glort,
1233 					hw->mac.addr, vid, true);
1234 
1235 		/* synchronize macvlan addresses */
1236 		if (l2_accel) {
1237 			for (i = 0; i < l2_accel->size; i++) {
1238 				struct net_device *sdev = l2_accel->macvlan[i];
1239 
1240 				if (!sdev)
1241 					continue;
1242 
1243 				glort = l2_accel->dglort + 1 + i;
1244 
1245 				fm10k_queue_mac_request(interface, glort,
1246 							sdev->dev_addr,
1247 							vid, true);
1248 			}
1249 		}
1250 	}
1251 
1252 	/* update xcast mode before synchronizing addresses if host's mailbox
1253 	 * is ready
1254 	 */
1255 	if (fm10k_host_mbx_ready(interface))
1256 		hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
1257 
1258 	/* synchronize all of the addresses */
1259 	__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1260 	__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1261 
1262 	/* synchronize macvlan addresses */
1263 	if (l2_accel) {
1264 		for (i = 0; i < l2_accel->size; i++) {
1265 			struct net_device *sdev = l2_accel->macvlan[i];
1266 
1267 			if (!sdev)
1268 				continue;
1269 
1270 			glort = l2_accel->dglort + 1 + i;
1271 
1272 			hw->mac.ops.update_xcast_mode(hw, glort,
1273 						      FM10K_XCAST_MODE_NONE);
1274 			fm10k_queue_mac_request(interface, glort,
1275 						sdev->dev_addr,
1276 						hw->mac.default_vid, true);
1277 		}
1278 	}
1279 
1280 	fm10k_mbx_unlock(interface);
1281 
1282 	/* record updated xcast mode state */
1283 	interface->xcast_mode = xcast_mode;
1284 
1285 	/* Restore tunnel configuration */
1286 	fm10k_restore_udp_port_info(interface);
1287 }
1288 
1289 void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1290 {
1291 	struct net_device *netdev = interface->netdev;
1292 	struct fm10k_hw *hw = &interface->hw;
1293 
1294 	/* Wait for MAC/VLAN work to finish */
1295 	while (test_bit(__FM10K_MACVLAN_SCHED, interface->state))
1296 		usleep_range(1000, 2000);
1297 
1298 	/* Cancel pending MAC/VLAN requests */
1299 	fm10k_clear_macvlan_queue(interface, interface->glort, true);
1300 
1301 	fm10k_mbx_lock(interface);
1302 
1303 	/* clear the logical port state on lower device if host's mailbox is
1304 	 * ready
1305 	 */
1306 	if (fm10k_host_mbx_ready(interface))
1307 		hw->mac.ops.update_lport_state(hw, interface->glort,
1308 					       interface->glort_count, false);
1309 
1310 	fm10k_mbx_unlock(interface);
1311 
1312 	/* reset flags to default state */
1313 	interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1314 
1315 	/* clear the sync flag since the lport has been dropped */
1316 	__dev_uc_unsync(netdev, NULL);
1317 	__dev_mc_unsync(netdev, NULL);
1318 }
1319 
1320 /**
1321  * fm10k_get_stats64 - Get System Network Statistics
1322  * @netdev: network interface device structure
1323  * @stats: storage space for 64bit statistics
1324  *
1325  * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit
1326  * architectures.
1327  */
1328 static void fm10k_get_stats64(struct net_device *netdev,
1329 			      struct rtnl_link_stats64 *stats)
1330 {
1331 	struct fm10k_intfc *interface = netdev_priv(netdev);
1332 	struct fm10k_ring *ring;
1333 	unsigned int start, i;
1334 	u64 bytes, packets;
1335 
1336 	rcu_read_lock();
1337 
1338 	for (i = 0; i < interface->num_rx_queues; i++) {
1339 		ring = READ_ONCE(interface->rx_ring[i]);
1340 
1341 		if (!ring)
1342 			continue;
1343 
1344 		do {
1345 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1346 			packets = ring->stats.packets;
1347 			bytes   = ring->stats.bytes;
1348 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1349 
1350 		stats->rx_packets += packets;
1351 		stats->rx_bytes   += bytes;
1352 	}
1353 
1354 	for (i = 0; i < interface->num_tx_queues; i++) {
1355 		ring = READ_ONCE(interface->tx_ring[i]);
1356 
1357 		if (!ring)
1358 			continue;
1359 
1360 		do {
1361 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1362 			packets = ring->stats.packets;
1363 			bytes   = ring->stats.bytes;
1364 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1365 
1366 		stats->tx_packets += packets;
1367 		stats->tx_bytes   += bytes;
1368 	}
1369 
1370 	rcu_read_unlock();
1371 
1372 	/* following stats updated by fm10k_service_task() */
1373 	stats->rx_missed_errors	= netdev->stats.rx_missed_errors;
1374 }
1375 
1376 int fm10k_setup_tc(struct net_device *dev, u8 tc)
1377 {
1378 	struct fm10k_intfc *interface = netdev_priv(dev);
1379 	int err;
1380 
1381 	/* Currently only the PF supports priority classes */
1382 	if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1383 		return -EINVAL;
1384 
1385 	/* Hardware supports up to 8 traffic classes */
1386 	if (tc > 8)
1387 		return -EINVAL;
1388 
1389 	/* Hardware has to reinitialize queues to match packet
1390 	 * buffer alignment. Unfortunately, the hardware is not
1391 	 * flexible enough to do this dynamically.
1392 	 */
1393 	if (netif_running(dev))
1394 		fm10k_close(dev);
1395 
1396 	fm10k_mbx_free_irq(interface);
1397 
1398 	fm10k_clear_queueing_scheme(interface);
1399 
1400 	/* we expect the prio_tc map to be repopulated later */
1401 	netdev_reset_tc(dev);
1402 	netdev_set_num_tc(dev, tc);
1403 
1404 	err = fm10k_init_queueing_scheme(interface);
1405 	if (err)
1406 		goto err_queueing_scheme;
1407 
1408 	err = fm10k_mbx_request_irq(interface);
1409 	if (err)
1410 		goto err_mbx_irq;
1411 
1412 	err = netif_running(dev) ? fm10k_open(dev) : 0;
1413 	if (err)
1414 		goto err_open;
1415 
1416 	/* flag to indicate SWPRI has yet to be updated */
1417 	set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
1418 
1419 	return 0;
1420 err_open:
1421 	fm10k_mbx_free_irq(interface);
1422 err_mbx_irq:
1423 	fm10k_clear_queueing_scheme(interface);
1424 err_queueing_scheme:
1425 	netif_device_detach(dev);
1426 
1427 	return err;
1428 }
1429 
1430 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type,
1431 			    void *type_data)
1432 {
1433 	struct tc_mqprio_qopt *mqprio = type_data;
1434 
1435 	if (type != TC_SETUP_QDISC_MQPRIO)
1436 		return -EOPNOTSUPP;
1437 
1438 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1439 
1440 	return fm10k_setup_tc(dev, mqprio->num_tc);
1441 }
1442 
1443 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1444 				  struct fm10k_l2_accel *l2_accel)
1445 {
1446 	int i;
1447 
1448 	for (i = 0; i < interface->num_rx_queues; i++) {
1449 		struct fm10k_ring *ring = interface->rx_ring[i];
1450 
1451 		rcu_assign_pointer(ring->l2_accel, l2_accel);
1452 	}
1453 
1454 	interface->l2_accel = l2_accel;
1455 }
1456 
1457 static void *fm10k_dfwd_add_station(struct net_device *dev,
1458 				    struct net_device *sdev)
1459 {
1460 	struct fm10k_intfc *interface = netdev_priv(dev);
1461 	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1462 	struct fm10k_l2_accel *old_l2_accel = NULL;
1463 	struct fm10k_dglort_cfg dglort = { 0 };
1464 	struct fm10k_hw *hw = &interface->hw;
1465 	int size, i;
1466 	u16 vid, glort;
1467 
1468 	/* The hardware supported by fm10k only filters on the destination MAC
1469 	 * address. In order to avoid issues we only support offloading modes
1470 	 * where the hardware can actually provide the functionality.
1471 	 */
1472 	if (!macvlan_supports_dest_filter(sdev))
1473 		return ERR_PTR(-EMEDIUMTYPE);
1474 
1475 	/* allocate l2 accel structure if it is not available */
1476 	if (!l2_accel) {
1477 		/* verify there is enough free GLORTs to support l2_accel */
1478 		if (interface->glort_count < 7)
1479 			return ERR_PTR(-EBUSY);
1480 
1481 		size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1482 		l2_accel = kzalloc(size, GFP_KERNEL);
1483 		if (!l2_accel)
1484 			return ERR_PTR(-ENOMEM);
1485 
1486 		l2_accel->size = 7;
1487 		l2_accel->dglort = interface->glort;
1488 
1489 		/* update pointers */
1490 		fm10k_assign_l2_accel(interface, l2_accel);
1491 	/* do not expand if we are at our limit */
1492 	} else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1493 		   (l2_accel->count == (interface->glort_count - 1))) {
1494 		return ERR_PTR(-EBUSY);
1495 	/* expand if we have hit the size limit */
1496 	} else if (l2_accel->count == l2_accel->size) {
1497 		old_l2_accel = l2_accel;
1498 		size = offsetof(struct fm10k_l2_accel,
1499 				macvlan[(l2_accel->size * 2) + 1]);
1500 		l2_accel = kzalloc(size, GFP_KERNEL);
1501 		if (!l2_accel)
1502 			return ERR_PTR(-ENOMEM);
1503 
1504 		memcpy(l2_accel, old_l2_accel,
1505 		       offsetof(struct fm10k_l2_accel,
1506 				macvlan[old_l2_accel->size]));
1507 
1508 		l2_accel->size = (old_l2_accel->size * 2) + 1;
1509 
1510 		/* update pointers */
1511 		fm10k_assign_l2_accel(interface, l2_accel);
1512 		kfree_rcu(old_l2_accel, rcu);
1513 	}
1514 
1515 	/* add macvlan to accel table, and record GLORT for position */
1516 	for (i = 0; i < l2_accel->size; i++) {
1517 		if (!l2_accel->macvlan[i])
1518 			break;
1519 	}
1520 
1521 	/* record station */
1522 	l2_accel->macvlan[i] = sdev;
1523 	l2_accel->count++;
1524 
1525 	/* configure default DGLORT mapping for RSS/DCB */
1526 	dglort.idx = fm10k_dglort_pf_rss;
1527 	dglort.inner_rss = 1;
1528 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1529 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1530 	dglort.glort = interface->glort;
1531 	dglort.shared_l = fls(l2_accel->size);
1532 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1533 
1534 	/* Add rules for this specific dglort to the switch */
1535 	fm10k_mbx_lock(interface);
1536 
1537 	glort = l2_accel->dglort + 1 + i;
1538 
1539 	if (fm10k_host_mbx_ready(interface))
1540 		hw->mac.ops.update_xcast_mode(hw, glort,
1541 					      FM10K_XCAST_MODE_NONE);
1542 
1543 	fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1544 				hw->mac.default_vid, true);
1545 
1546 	for (vid = fm10k_find_next_vlan(interface, 0);
1547 	     vid < VLAN_N_VID;
1548 	     vid = fm10k_find_next_vlan(interface, vid))
1549 		fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1550 					vid, true);
1551 
1552 	fm10k_mbx_unlock(interface);
1553 
1554 	return sdev;
1555 }
1556 
1557 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1558 {
1559 	struct fm10k_intfc *interface = netdev_priv(dev);
1560 	struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel);
1561 	struct fm10k_dglort_cfg dglort = { 0 };
1562 	struct fm10k_hw *hw = &interface->hw;
1563 	struct net_device *sdev = priv;
1564 	u16 vid, glort;
1565 	int i;
1566 
1567 	if (!l2_accel)
1568 		return;
1569 
1570 	/* search table for matching interface */
1571 	for (i = 0; i < l2_accel->size; i++) {
1572 		if (l2_accel->macvlan[i] == sdev)
1573 			break;
1574 	}
1575 
1576 	/* exit if macvlan not found */
1577 	if (i == l2_accel->size)
1578 		return;
1579 
1580 	/* Remove any rules specific to this dglort */
1581 	fm10k_mbx_lock(interface);
1582 
1583 	glort = l2_accel->dglort + 1 + i;
1584 
1585 	if (fm10k_host_mbx_ready(interface))
1586 		hw->mac.ops.update_xcast_mode(hw, glort,
1587 					      FM10K_XCAST_MODE_NONE);
1588 
1589 	fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1590 				hw->mac.default_vid, false);
1591 
1592 	for (vid = fm10k_find_next_vlan(interface, 0);
1593 	     vid < VLAN_N_VID;
1594 	     vid = fm10k_find_next_vlan(interface, vid))
1595 		fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1596 					vid, false);
1597 
1598 	fm10k_mbx_unlock(interface);
1599 
1600 	/* record removal */
1601 	l2_accel->macvlan[i] = NULL;
1602 	l2_accel->count--;
1603 
1604 	/* configure default DGLORT mapping for RSS/DCB */
1605 	dglort.idx = fm10k_dglort_pf_rss;
1606 	dglort.inner_rss = 1;
1607 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1608 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1609 	dglort.glort = interface->glort;
1610 	dglort.shared_l = fls(l2_accel->size);
1611 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1612 
1613 	/* If table is empty remove it */
1614 	if (l2_accel->count == 0) {
1615 		fm10k_assign_l2_accel(interface, NULL);
1616 		kfree_rcu(l2_accel, rcu);
1617 	}
1618 }
1619 
1620 static netdev_features_t fm10k_features_check(struct sk_buff *skb,
1621 					      struct net_device *dev,
1622 					      netdev_features_t features)
1623 {
1624 	if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
1625 		return features;
1626 
1627 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1628 }
1629 
1630 static const struct net_device_ops fm10k_netdev_ops = {
1631 	.ndo_open		= fm10k_open,
1632 	.ndo_stop		= fm10k_close,
1633 	.ndo_validate_addr	= eth_validate_addr,
1634 	.ndo_start_xmit		= fm10k_xmit_frame,
1635 	.ndo_set_mac_address	= fm10k_set_mac,
1636 	.ndo_tx_timeout		= fm10k_tx_timeout,
1637 	.ndo_vlan_rx_add_vid	= fm10k_vlan_rx_add_vid,
1638 	.ndo_vlan_rx_kill_vid	= fm10k_vlan_rx_kill_vid,
1639 	.ndo_set_rx_mode	= fm10k_set_rx_mode,
1640 	.ndo_get_stats64	= fm10k_get_stats64,
1641 	.ndo_setup_tc		= __fm10k_setup_tc,
1642 	.ndo_set_vf_mac		= fm10k_ndo_set_vf_mac,
1643 	.ndo_set_vf_vlan	= fm10k_ndo_set_vf_vlan,
1644 	.ndo_set_vf_rate	= fm10k_ndo_set_vf_bw,
1645 	.ndo_get_vf_config	= fm10k_ndo_get_vf_config,
1646 	.ndo_udp_tunnel_add	= fm10k_udp_tunnel_add,
1647 	.ndo_udp_tunnel_del	= fm10k_udp_tunnel_del,
1648 	.ndo_dfwd_add_station	= fm10k_dfwd_add_station,
1649 	.ndo_dfwd_del_station	= fm10k_dfwd_del_station,
1650 	.ndo_features_check	= fm10k_features_check,
1651 };
1652 
1653 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
1654 
1655 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
1656 {
1657 	netdev_features_t hw_features;
1658 	struct fm10k_intfc *interface;
1659 	struct net_device *dev;
1660 
1661 	dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1662 	if (!dev)
1663 		return NULL;
1664 
1665 	/* set net device and ethtool ops */
1666 	dev->netdev_ops = &fm10k_netdev_ops;
1667 	fm10k_set_ethtool_ops(dev);
1668 
1669 	/* configure default debug level */
1670 	interface = netdev_priv(dev);
1671 	interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1672 
1673 	/* configure default features */
1674 	dev->features |= NETIF_F_IP_CSUM |
1675 			 NETIF_F_IPV6_CSUM |
1676 			 NETIF_F_SG |
1677 			 NETIF_F_TSO |
1678 			 NETIF_F_TSO6 |
1679 			 NETIF_F_TSO_ECN |
1680 			 NETIF_F_RXHASH |
1681 			 NETIF_F_RXCSUM;
1682 
1683 	/* Only the PF can support VXLAN and NVGRE tunnel offloads */
1684 	if (info->mac == fm10k_mac_pf) {
1685 		dev->hw_enc_features = NETIF_F_IP_CSUM |
1686 				       NETIF_F_TSO |
1687 				       NETIF_F_TSO6 |
1688 				       NETIF_F_TSO_ECN |
1689 				       NETIF_F_GSO_UDP_TUNNEL |
1690 				       NETIF_F_IPV6_CSUM |
1691 				       NETIF_F_SG;
1692 
1693 		dev->features |= NETIF_F_GSO_UDP_TUNNEL;
1694 	}
1695 
1696 	/* all features defined to this point should be changeable */
1697 	hw_features = dev->features;
1698 
1699 	/* allow user to enable L2 forwarding acceleration */
1700 	hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1701 
1702 	/* configure VLAN features */
1703 	dev->vlan_features |= dev->features;
1704 
1705 	/* we want to leave these both on as we cannot disable VLAN tag
1706 	 * insertion or stripping on the hardware since it is contained
1707 	 * in the FTAG and not in the frame itself.
1708 	 */
1709 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1710 			 NETIF_F_HW_VLAN_CTAG_RX |
1711 			 NETIF_F_HW_VLAN_CTAG_FILTER;
1712 
1713 	dev->priv_flags |= IFF_UNICAST_FLT;
1714 
1715 	dev->hw_features |= hw_features;
1716 
1717 	/* MTU range: 68 - 15342 */
1718 	dev->min_mtu = ETH_MIN_MTU;
1719 	dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE;
1720 
1721 	return dev;
1722 }
1723