1 /* Intel Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include <linux/types.h> 22 #include <linux/module.h> 23 #include <net/ipv6.h> 24 #include <net/ip.h> 25 #include <net/tcp.h> 26 #include <linux/if_macvlan.h> 27 #include <linux/prefetch.h> 28 29 #include "fm10k.h" 30 31 #define DRV_VERSION "0.15.2-k" 32 const char fm10k_driver_version[] = DRV_VERSION; 33 char fm10k_driver_name[] = "fm10k"; 34 static const char fm10k_driver_string[] = 35 "Intel(R) Ethernet Switch Host Interface Driver"; 36 static const char fm10k_copyright[] = 37 "Copyright (c) 2013 Intel Corporation."; 38 39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver"); 41 MODULE_LICENSE("GPL"); 42 MODULE_VERSION(DRV_VERSION); 43 44 /* single workqueue for entire fm10k driver */ 45 struct workqueue_struct *fm10k_workqueue = NULL; 46 47 /** 48 * fm10k_init_module - Driver Registration Routine 49 * 50 * fm10k_init_module is the first routine called when the driver is 51 * loaded. All it does is register with the PCI subsystem. 52 **/ 53 static int __init fm10k_init_module(void) 54 { 55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); 56 pr_info("%s\n", fm10k_copyright); 57 58 /* create driver workqueue */ 59 if (!fm10k_workqueue) 60 fm10k_workqueue = create_workqueue("fm10k"); 61 62 fm10k_dbg_init(); 63 64 return fm10k_register_pci_driver(); 65 } 66 module_init(fm10k_init_module); 67 68 /** 69 * fm10k_exit_module - Driver Exit Cleanup Routine 70 * 71 * fm10k_exit_module is called just before the driver is removed 72 * from memory. 73 **/ 74 static void __exit fm10k_exit_module(void) 75 { 76 fm10k_unregister_pci_driver(); 77 78 fm10k_dbg_exit(); 79 80 /* destroy driver workqueue */ 81 flush_workqueue(fm10k_workqueue); 82 destroy_workqueue(fm10k_workqueue); 83 fm10k_workqueue = NULL; 84 } 85 module_exit(fm10k_exit_module); 86 87 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 88 struct fm10k_rx_buffer *bi) 89 { 90 struct page *page = bi->page; 91 dma_addr_t dma; 92 93 /* Only page will be NULL if buffer was consumed */ 94 if (likely(page)) 95 return true; 96 97 /* alloc new page for storage */ 98 page = dev_alloc_page(); 99 if (unlikely(!page)) { 100 rx_ring->rx_stats.alloc_failed++; 101 return false; 102 } 103 104 /* map page for use */ 105 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 106 107 /* if mapping failed free memory back to system since 108 * there isn't much point in holding memory we can't use 109 */ 110 if (dma_mapping_error(rx_ring->dev, dma)) { 111 __free_page(page); 112 113 rx_ring->rx_stats.alloc_failed++; 114 return false; 115 } 116 117 bi->dma = dma; 118 bi->page = page; 119 bi->page_offset = 0; 120 121 return true; 122 } 123 124 /** 125 * fm10k_alloc_rx_buffers - Replace used receive buffers 126 * @rx_ring: ring to place buffers on 127 * @cleaned_count: number of buffers to replace 128 **/ 129 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 130 { 131 union fm10k_rx_desc *rx_desc; 132 struct fm10k_rx_buffer *bi; 133 u16 i = rx_ring->next_to_use; 134 135 /* nothing to do */ 136 if (!cleaned_count) 137 return; 138 139 rx_desc = FM10K_RX_DESC(rx_ring, i); 140 bi = &rx_ring->rx_buffer[i]; 141 i -= rx_ring->count; 142 143 do { 144 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 145 break; 146 147 /* Refresh the desc even if buffer_addrs didn't change 148 * because each write-back erases this info. 149 */ 150 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 151 152 rx_desc++; 153 bi++; 154 i++; 155 if (unlikely(!i)) { 156 rx_desc = FM10K_RX_DESC(rx_ring, 0); 157 bi = rx_ring->rx_buffer; 158 i -= rx_ring->count; 159 } 160 161 /* clear the status bits for the next_to_use descriptor */ 162 rx_desc->d.staterr = 0; 163 164 cleaned_count--; 165 } while (cleaned_count); 166 167 i += rx_ring->count; 168 169 if (rx_ring->next_to_use != i) { 170 /* record the next descriptor to use */ 171 rx_ring->next_to_use = i; 172 173 /* update next to alloc since we have filled the ring */ 174 rx_ring->next_to_alloc = i; 175 176 /* Force memory writes to complete before letting h/w 177 * know there are new descriptors to fetch. (Only 178 * applicable for weak-ordered memory model archs, 179 * such as IA-64). 180 */ 181 wmb(); 182 183 /* notify hardware of new descriptors */ 184 writel(i, rx_ring->tail); 185 } 186 } 187 188 /** 189 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 190 * @rx_ring: rx descriptor ring to store buffers on 191 * @old_buff: donor buffer to have page reused 192 * 193 * Synchronizes page for reuse by the interface 194 **/ 195 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 196 struct fm10k_rx_buffer *old_buff) 197 { 198 struct fm10k_rx_buffer *new_buff; 199 u16 nta = rx_ring->next_to_alloc; 200 201 new_buff = &rx_ring->rx_buffer[nta]; 202 203 /* update, and store next to alloc */ 204 nta++; 205 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 206 207 /* transfer page from old buffer to new buffer */ 208 *new_buff = *old_buff; 209 210 /* sync the buffer for use by the device */ 211 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 212 old_buff->page_offset, 213 FM10K_RX_BUFSZ, 214 DMA_FROM_DEVICE); 215 } 216 217 static inline bool fm10k_page_is_reserved(struct page *page) 218 { 219 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 220 } 221 222 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 223 struct page *page, 224 unsigned int __maybe_unused truesize) 225 { 226 /* avoid re-using remote pages */ 227 if (unlikely(fm10k_page_is_reserved(page))) 228 return false; 229 230 #if (PAGE_SIZE < 8192) 231 /* if we are only owner of page we can reuse it */ 232 if (unlikely(page_count(page) != 1)) 233 return false; 234 235 /* flip page offset to other buffer */ 236 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 237 #else 238 /* move offset up to the next cache line */ 239 rx_buffer->page_offset += truesize; 240 241 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 242 return false; 243 #endif 244 245 /* Even if we own the page, we are not allowed to use atomic_set() 246 * This would break get_page_unless_zero() users. 247 */ 248 atomic_inc(&page->_count); 249 250 return true; 251 } 252 253 /** 254 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 255 * @rx_buffer: buffer containing page to add 256 * @rx_desc: descriptor containing length of buffer written by hardware 257 * @skb: sk_buff to place the data into 258 * 259 * This function will add the data contained in rx_buffer->page to the skb. 260 * This is done either through a direct copy if the data in the buffer is 261 * less than the skb header size, otherwise it will just attach the page as 262 * a frag to the skb. 263 * 264 * The function will then update the page offset if necessary and return 265 * true if the buffer can be reused by the interface. 266 **/ 267 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 268 union fm10k_rx_desc *rx_desc, 269 struct sk_buff *skb) 270 { 271 struct page *page = rx_buffer->page; 272 unsigned char *va = page_address(page) + rx_buffer->page_offset; 273 unsigned int size = le16_to_cpu(rx_desc->w.length); 274 #if (PAGE_SIZE < 8192) 275 unsigned int truesize = FM10K_RX_BUFSZ; 276 #else 277 unsigned int truesize = SKB_DATA_ALIGN(size); 278 #endif 279 unsigned int pull_len; 280 281 if (unlikely(skb_is_nonlinear(skb))) 282 goto add_tail_frag; 283 284 if (likely(size <= FM10K_RX_HDR_LEN)) { 285 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 286 287 /* page is not reserved, we can reuse buffer as-is */ 288 if (likely(!fm10k_page_is_reserved(page))) 289 return true; 290 291 /* this page cannot be reused so discard it */ 292 __free_page(page); 293 return false; 294 } 295 296 /* we need the header to contain the greater of either ETH_HLEN or 297 * 60 bytes if the skb->len is less than 60 for skb_pad. 298 */ 299 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN); 300 301 /* align pull length to size of long to optimize memcpy performance */ 302 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 303 304 /* update all of the pointers */ 305 va += pull_len; 306 size -= pull_len; 307 308 add_tail_frag: 309 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 310 (unsigned long)va & ~PAGE_MASK, size, truesize); 311 312 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 313 } 314 315 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 316 union fm10k_rx_desc *rx_desc, 317 struct sk_buff *skb) 318 { 319 struct fm10k_rx_buffer *rx_buffer; 320 struct page *page; 321 322 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 323 page = rx_buffer->page; 324 prefetchw(page); 325 326 if (likely(!skb)) { 327 void *page_addr = page_address(page) + 328 rx_buffer->page_offset; 329 330 /* prefetch first cache line of first page */ 331 prefetch(page_addr); 332 #if L1_CACHE_BYTES < 128 333 prefetch(page_addr + L1_CACHE_BYTES); 334 #endif 335 336 /* allocate a skb to store the frags */ 337 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 338 FM10K_RX_HDR_LEN); 339 if (unlikely(!skb)) { 340 rx_ring->rx_stats.alloc_failed++; 341 return NULL; 342 } 343 344 /* we will be copying header into skb->data in 345 * pskb_may_pull so it is in our interest to prefetch 346 * it now to avoid a possible cache miss 347 */ 348 prefetchw(skb->data); 349 } 350 351 /* we are reusing so sync this buffer for CPU use */ 352 dma_sync_single_range_for_cpu(rx_ring->dev, 353 rx_buffer->dma, 354 rx_buffer->page_offset, 355 FM10K_RX_BUFSZ, 356 DMA_FROM_DEVICE); 357 358 /* pull page into skb */ 359 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) { 360 /* hand second half of page back to the ring */ 361 fm10k_reuse_rx_page(rx_ring, rx_buffer); 362 } else { 363 /* we are not reusing the buffer so unmap it */ 364 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 365 PAGE_SIZE, DMA_FROM_DEVICE); 366 } 367 368 /* clear contents of rx_buffer */ 369 rx_buffer->page = NULL; 370 371 return skb; 372 } 373 374 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 375 union fm10k_rx_desc *rx_desc, 376 struct sk_buff *skb) 377 { 378 skb_checksum_none_assert(skb); 379 380 /* Rx checksum disabled via ethtool */ 381 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 382 return; 383 384 /* TCP/UDP checksum error bit is set */ 385 if (fm10k_test_staterr(rx_desc, 386 FM10K_RXD_STATUS_L4E | 387 FM10K_RXD_STATUS_L4E2 | 388 FM10K_RXD_STATUS_IPE | 389 FM10K_RXD_STATUS_IPE2)) { 390 ring->rx_stats.csum_err++; 391 return; 392 } 393 394 /* It must be a TCP or UDP packet with a valid checksum */ 395 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 396 skb->encapsulation = true; 397 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 398 return; 399 400 skb->ip_summed = CHECKSUM_UNNECESSARY; 401 } 402 403 #define FM10K_RSS_L4_TYPES_MASK \ 404 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \ 405 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \ 406 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \ 407 (1ul << FM10K_RSSTYPE_IPV6_UDP)) 408 409 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 410 union fm10k_rx_desc *rx_desc, 411 struct sk_buff *skb) 412 { 413 u16 rss_type; 414 415 if (!(ring->netdev->features & NETIF_F_RXHASH)) 416 return; 417 418 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 419 if (!rss_type) 420 return; 421 422 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 423 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 424 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 425 } 426 427 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring, 428 union fm10k_rx_desc *rx_desc, 429 struct sk_buff *skb) 430 { 431 struct fm10k_intfc *interface = rx_ring->q_vector->interface; 432 433 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 434 435 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED)) 436 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb), 437 le64_to_cpu(rx_desc->q.timestamp)); 438 } 439 440 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 441 union fm10k_rx_desc __maybe_unused *rx_desc, 442 struct sk_buff *skb) 443 { 444 struct net_device *dev = rx_ring->netdev; 445 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 446 447 /* check to see if DGLORT belongs to a MACVLAN */ 448 if (l2_accel) { 449 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 450 451 idx -= l2_accel->dglort; 452 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 453 dev = l2_accel->macvlan[idx]; 454 else 455 l2_accel = NULL; 456 } 457 458 skb->protocol = eth_type_trans(skb, dev); 459 460 if (!l2_accel) 461 return; 462 463 /* update MACVLAN statistics */ 464 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1, 465 !!(rx_desc->w.hdr_info & 466 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK))); 467 } 468 469 /** 470 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 471 * @rx_ring: rx descriptor ring packet is being transacted on 472 * @rx_desc: pointer to the EOP Rx descriptor 473 * @skb: pointer to current skb being populated 474 * 475 * This function checks the ring, descriptor, and packet information in 476 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 477 * other fields within the skb. 478 **/ 479 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 480 union fm10k_rx_desc *rx_desc, 481 struct sk_buff *skb) 482 { 483 unsigned int len = skb->len; 484 485 fm10k_rx_hash(rx_ring, rx_desc, skb); 486 487 fm10k_rx_checksum(rx_ring, rx_desc, skb); 488 489 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb); 490 491 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 492 493 skb_record_rx_queue(skb, rx_ring->queue_index); 494 495 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 496 497 if (rx_desc->w.vlan) { 498 u16 vid = le16_to_cpu(rx_desc->w.vlan); 499 500 if (vid != rx_ring->vid) 501 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 502 } 503 504 fm10k_type_trans(rx_ring, rx_desc, skb); 505 506 return len; 507 } 508 509 /** 510 * fm10k_is_non_eop - process handling of non-EOP buffers 511 * @rx_ring: Rx ring being processed 512 * @rx_desc: Rx descriptor for current buffer 513 * 514 * This function updates next to clean. If the buffer is an EOP buffer 515 * this function exits returning false, otherwise it will place the 516 * sk_buff in the next buffer to be chained and return true indicating 517 * that this is in fact a non-EOP buffer. 518 **/ 519 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 520 union fm10k_rx_desc *rx_desc) 521 { 522 u32 ntc = rx_ring->next_to_clean + 1; 523 524 /* fetch, update, and store next to clean */ 525 ntc = (ntc < rx_ring->count) ? ntc : 0; 526 rx_ring->next_to_clean = ntc; 527 528 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 529 530 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 531 return false; 532 533 return true; 534 } 535 536 /** 537 * fm10k_cleanup_headers - Correct corrupted or empty headers 538 * @rx_ring: rx descriptor ring packet is being transacted on 539 * @rx_desc: pointer to the EOP Rx descriptor 540 * @skb: pointer to current skb being fixed 541 * 542 * Address the case where we are pulling data in on pages only 543 * and as such no data is present in the skb header. 544 * 545 * In addition if skb is not at least 60 bytes we need to pad it so that 546 * it is large enough to qualify as a valid Ethernet frame. 547 * 548 * Returns true if an error was encountered and skb was freed. 549 **/ 550 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 551 union fm10k_rx_desc *rx_desc, 552 struct sk_buff *skb) 553 { 554 if (unlikely((fm10k_test_staterr(rx_desc, 555 FM10K_RXD_STATUS_RXE)))) { 556 dev_kfree_skb_any(skb); 557 rx_ring->rx_stats.errors++; 558 return true; 559 } 560 561 /* if eth_skb_pad returns an error the skb was freed */ 562 if (eth_skb_pad(skb)) 563 return true; 564 565 return false; 566 } 567 568 /** 569 * fm10k_receive_skb - helper function to handle rx indications 570 * @q_vector: structure containing interrupt and ring information 571 * @skb: packet to send up 572 **/ 573 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 574 struct sk_buff *skb) 575 { 576 napi_gro_receive(&q_vector->napi, skb); 577 } 578 579 static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 580 struct fm10k_ring *rx_ring, 581 int budget) 582 { 583 struct sk_buff *skb = rx_ring->skb; 584 unsigned int total_bytes = 0, total_packets = 0; 585 u16 cleaned_count = fm10k_desc_unused(rx_ring); 586 587 while (likely(total_packets < budget)) { 588 union fm10k_rx_desc *rx_desc; 589 590 /* return some buffers to hardware, one at a time is too slow */ 591 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 592 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 593 cleaned_count = 0; 594 } 595 596 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 597 598 if (!rx_desc->d.staterr) 599 break; 600 601 /* This memory barrier is needed to keep us from reading 602 * any other fields out of the rx_desc until we know the 603 * descriptor has been written back 604 */ 605 dma_rmb(); 606 607 /* retrieve a buffer from the ring */ 608 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 609 610 /* exit if we failed to retrieve a buffer */ 611 if (!skb) 612 break; 613 614 cleaned_count++; 615 616 /* fetch next buffer in frame if non-eop */ 617 if (fm10k_is_non_eop(rx_ring, rx_desc)) 618 continue; 619 620 /* verify the packet layout is correct */ 621 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 622 skb = NULL; 623 continue; 624 } 625 626 /* populate checksum, timestamp, VLAN, and protocol */ 627 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 628 629 fm10k_receive_skb(q_vector, skb); 630 631 /* reset skb pointer */ 632 skb = NULL; 633 634 /* update budget accounting */ 635 total_packets++; 636 } 637 638 /* place incomplete frames back on ring for completion */ 639 rx_ring->skb = skb; 640 641 u64_stats_update_begin(&rx_ring->syncp); 642 rx_ring->stats.packets += total_packets; 643 rx_ring->stats.bytes += total_bytes; 644 u64_stats_update_end(&rx_ring->syncp); 645 q_vector->rx.total_packets += total_packets; 646 q_vector->rx.total_bytes += total_bytes; 647 648 return total_packets < budget; 649 } 650 651 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 652 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 653 { 654 struct fm10k_intfc *interface = netdev_priv(skb->dev); 655 struct fm10k_vxlan_port *vxlan_port; 656 657 /* we can only offload a vxlan if we recognize it as such */ 658 vxlan_port = list_first_entry_or_null(&interface->vxlan_port, 659 struct fm10k_vxlan_port, list); 660 661 if (!vxlan_port) 662 return NULL; 663 if (vxlan_port->port != udp_hdr(skb)->dest) 664 return NULL; 665 666 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 667 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 668 } 669 670 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 671 #define NVGRE_TNI htons(0x2000) 672 struct fm10k_nvgre_hdr { 673 __be16 flags; 674 __be16 proto; 675 __be32 tni; 676 }; 677 678 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 679 { 680 struct fm10k_nvgre_hdr *nvgre_hdr; 681 int hlen = ip_hdrlen(skb); 682 683 /* currently only IPv4 is supported due to hlen above */ 684 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 685 return NULL; 686 687 /* our transport header should be NVGRE */ 688 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 689 690 /* verify all reserved flags are 0 */ 691 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 692 return NULL; 693 694 /* report start of ethernet header */ 695 if (nvgre_hdr->flags & NVGRE_TNI) 696 return (struct ethhdr *)(nvgre_hdr + 1); 697 698 return (struct ethhdr *)(&nvgre_hdr->tni); 699 } 700 701 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 702 { 703 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 704 struct ethhdr *eth_hdr; 705 706 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 707 skb->inner_protocol != htons(ETH_P_TEB)) 708 return 0; 709 710 switch (vlan_get_protocol(skb)) { 711 case htons(ETH_P_IP): 712 l4_hdr = ip_hdr(skb)->protocol; 713 break; 714 case htons(ETH_P_IPV6): 715 l4_hdr = ipv6_hdr(skb)->nexthdr; 716 break; 717 default: 718 return 0; 719 } 720 721 switch (l4_hdr) { 722 case IPPROTO_UDP: 723 eth_hdr = fm10k_port_is_vxlan(skb); 724 break; 725 case IPPROTO_GRE: 726 eth_hdr = fm10k_gre_is_nvgre(skb); 727 break; 728 default: 729 return 0; 730 } 731 732 if (!eth_hdr) 733 return 0; 734 735 switch (eth_hdr->h_proto) { 736 case htons(ETH_P_IP): 737 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 738 break; 739 case htons(ETH_P_IPV6): 740 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 741 break; 742 default: 743 return 0; 744 } 745 746 switch (inner_l4_hdr) { 747 case IPPROTO_TCP: 748 inner_l4_hlen = inner_tcp_hdrlen(skb); 749 break; 750 case IPPROTO_UDP: 751 inner_l4_hlen = 8; 752 break; 753 default: 754 return 0; 755 } 756 757 /* The hardware allows tunnel offloads only if the combined inner and 758 * outer header is 184 bytes or less 759 */ 760 if (skb_inner_transport_header(skb) + inner_l4_hlen - 761 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 762 return 0; 763 764 return eth_hdr->h_proto; 765 } 766 767 static int fm10k_tso(struct fm10k_ring *tx_ring, 768 struct fm10k_tx_buffer *first) 769 { 770 struct sk_buff *skb = first->skb; 771 struct fm10k_tx_desc *tx_desc; 772 unsigned char *th; 773 u8 hdrlen; 774 775 if (skb->ip_summed != CHECKSUM_PARTIAL) 776 return 0; 777 778 if (!skb_is_gso(skb)) 779 return 0; 780 781 /* compute header lengths */ 782 if (skb->encapsulation) { 783 if (!fm10k_tx_encap_offload(skb)) 784 goto err_vxlan; 785 th = skb_inner_transport_header(skb); 786 } else { 787 th = skb_transport_header(skb); 788 } 789 790 /* compute offset from SOF to transport header and add header len */ 791 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 792 793 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 794 795 /* update gso size and bytecount with header size */ 796 first->gso_segs = skb_shinfo(skb)->gso_segs; 797 first->bytecount += (first->gso_segs - 1) * hdrlen; 798 799 /* populate Tx descriptor header size and mss */ 800 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 801 tx_desc->hdrlen = hdrlen; 802 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 803 804 return 1; 805 err_vxlan: 806 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 807 if (!net_ratelimit()) 808 netdev_err(tx_ring->netdev, 809 "TSO requested for unsupported tunnel, disabling offload\n"); 810 return -1; 811 } 812 813 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 814 struct fm10k_tx_buffer *first) 815 { 816 struct sk_buff *skb = first->skb; 817 struct fm10k_tx_desc *tx_desc; 818 union { 819 struct iphdr *ipv4; 820 struct ipv6hdr *ipv6; 821 u8 *raw; 822 } network_hdr; 823 __be16 protocol; 824 u8 l4_hdr = 0; 825 826 if (skb->ip_summed != CHECKSUM_PARTIAL) 827 goto no_csum; 828 829 if (skb->encapsulation) { 830 protocol = fm10k_tx_encap_offload(skb); 831 if (!protocol) { 832 if (skb_checksum_help(skb)) { 833 dev_warn(tx_ring->dev, 834 "failed to offload encap csum!\n"); 835 tx_ring->tx_stats.csum_err++; 836 } 837 goto no_csum; 838 } 839 network_hdr.raw = skb_inner_network_header(skb); 840 } else { 841 protocol = vlan_get_protocol(skb); 842 network_hdr.raw = skb_network_header(skb); 843 } 844 845 switch (protocol) { 846 case htons(ETH_P_IP): 847 l4_hdr = network_hdr.ipv4->protocol; 848 break; 849 case htons(ETH_P_IPV6): 850 l4_hdr = network_hdr.ipv6->nexthdr; 851 break; 852 default: 853 if (unlikely(net_ratelimit())) { 854 dev_warn(tx_ring->dev, 855 "partial checksum but ip version=%x!\n", 856 protocol); 857 } 858 tx_ring->tx_stats.csum_err++; 859 goto no_csum; 860 } 861 862 switch (l4_hdr) { 863 case IPPROTO_TCP: 864 case IPPROTO_UDP: 865 break; 866 case IPPROTO_GRE: 867 if (skb->encapsulation) 868 break; 869 default: 870 if (unlikely(net_ratelimit())) { 871 dev_warn(tx_ring->dev, 872 "partial checksum but l4 proto=%x!\n", 873 l4_hdr); 874 } 875 tx_ring->tx_stats.csum_err++; 876 goto no_csum; 877 } 878 879 /* update TX checksum flag */ 880 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 881 882 no_csum: 883 /* populate Tx descriptor header size and mss */ 884 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 885 tx_desc->hdrlen = 0; 886 tx_desc->mss = 0; 887 } 888 889 #define FM10K_SET_FLAG(_input, _flag, _result) \ 890 ((_flag <= _result) ? \ 891 ((u32)(_input & _flag) * (_result / _flag)) : \ 892 ((u32)(_input & _flag) / (_flag / _result))) 893 894 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 895 { 896 /* set type for advanced descriptor with frame checksum insertion */ 897 u32 desc_flags = 0; 898 899 /* set timestamping bits */ 900 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 901 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 902 desc_flags |= FM10K_TXD_FLAG_TIME; 903 904 /* set checksum offload bits */ 905 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 906 FM10K_TXD_FLAG_CSUM); 907 908 return desc_flags; 909 } 910 911 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 912 struct fm10k_tx_desc *tx_desc, u16 i, 913 dma_addr_t dma, unsigned int size, u8 desc_flags) 914 { 915 /* set RS and INT for last frame in a cache line */ 916 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 917 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 918 919 /* record values to descriptor */ 920 tx_desc->buffer_addr = cpu_to_le64(dma); 921 tx_desc->flags = desc_flags; 922 tx_desc->buflen = cpu_to_le16(size); 923 924 /* return true if we just wrapped the ring */ 925 return i == tx_ring->count; 926 } 927 928 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 929 { 930 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 931 932 /* Memory barrier before checking head and tail */ 933 smp_mb(); 934 935 /* Check again in a case another CPU has just made room available */ 936 if (likely(fm10k_desc_unused(tx_ring) < size)) 937 return -EBUSY; 938 939 /* A reprieve! - use start_queue because it doesn't call schedule */ 940 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 941 ++tx_ring->tx_stats.restart_queue; 942 return 0; 943 } 944 945 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 946 { 947 if (likely(fm10k_desc_unused(tx_ring) >= size)) 948 return 0; 949 return __fm10k_maybe_stop_tx(tx_ring, size); 950 } 951 952 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 953 struct fm10k_tx_buffer *first) 954 { 955 struct sk_buff *skb = first->skb; 956 struct fm10k_tx_buffer *tx_buffer; 957 struct fm10k_tx_desc *tx_desc; 958 struct skb_frag_struct *frag; 959 unsigned char *data; 960 dma_addr_t dma; 961 unsigned int data_len, size; 962 u32 tx_flags = first->tx_flags; 963 u16 i = tx_ring->next_to_use; 964 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 965 966 tx_desc = FM10K_TX_DESC(tx_ring, i); 967 968 /* add HW VLAN tag */ 969 if (skb_vlan_tag_present(skb)) 970 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 971 else 972 tx_desc->vlan = 0; 973 974 size = skb_headlen(skb); 975 data = skb->data; 976 977 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 978 979 data_len = skb->data_len; 980 tx_buffer = first; 981 982 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 983 if (dma_mapping_error(tx_ring->dev, dma)) 984 goto dma_error; 985 986 /* record length, and DMA address */ 987 dma_unmap_len_set(tx_buffer, len, size); 988 dma_unmap_addr_set(tx_buffer, dma, dma); 989 990 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 991 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 992 FM10K_MAX_DATA_PER_TXD, flags)) { 993 tx_desc = FM10K_TX_DESC(tx_ring, 0); 994 i = 0; 995 } 996 997 dma += FM10K_MAX_DATA_PER_TXD; 998 size -= FM10K_MAX_DATA_PER_TXD; 999 } 1000 1001 if (likely(!data_len)) 1002 break; 1003 1004 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 1005 dma, size, flags)) { 1006 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1007 i = 0; 1008 } 1009 1010 size = skb_frag_size(frag); 1011 data_len -= size; 1012 1013 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1014 DMA_TO_DEVICE); 1015 1016 tx_buffer = &tx_ring->tx_buffer[i]; 1017 } 1018 1019 /* write last descriptor with LAST bit set */ 1020 flags |= FM10K_TXD_FLAG_LAST; 1021 1022 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1023 i = 0; 1024 1025 /* record bytecount for BQL */ 1026 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1027 1028 /* record SW timestamp if HW timestamp is not available */ 1029 skb_tx_timestamp(first->skb); 1030 1031 /* Force memory writes to complete before letting h/w know there 1032 * are new descriptors to fetch. (Only applicable for weak-ordered 1033 * memory model archs, such as IA-64). 1034 * 1035 * We also need this memory barrier to make certain all of the 1036 * status bits have been updated before next_to_watch is written. 1037 */ 1038 wmb(); 1039 1040 /* set next_to_watch value indicating a packet is present */ 1041 first->next_to_watch = tx_desc; 1042 1043 tx_ring->next_to_use = i; 1044 1045 /* Make sure there is space in the ring for the next send. */ 1046 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1047 1048 /* notify HW of packet */ 1049 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 1050 writel(i, tx_ring->tail); 1051 1052 /* we need this if more than one processor can write to our tail 1053 * at a time, it synchronizes IO on IA64/Altix systems 1054 */ 1055 mmiowb(); 1056 } 1057 1058 return; 1059 dma_error: 1060 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1061 1062 /* clear dma mappings for failed tx_buffer map */ 1063 for (;;) { 1064 tx_buffer = &tx_ring->tx_buffer[i]; 1065 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1066 if (tx_buffer == first) 1067 break; 1068 if (i == 0) 1069 i = tx_ring->count; 1070 i--; 1071 } 1072 1073 tx_ring->next_to_use = i; 1074 } 1075 1076 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1077 struct fm10k_ring *tx_ring) 1078 { 1079 struct fm10k_tx_buffer *first; 1080 int tso; 1081 u32 tx_flags = 0; 1082 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD 1083 unsigned short f; 1084 #endif 1085 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1086 1087 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1088 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1089 * + 2 desc gap to keep tail from touching head 1090 * otherwise try next time 1091 */ 1092 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD 1093 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1094 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1095 #else 1096 count += skb_shinfo(skb)->nr_frags; 1097 #endif 1098 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1099 tx_ring->tx_stats.tx_busy++; 1100 return NETDEV_TX_BUSY; 1101 } 1102 1103 /* record the location of the first descriptor for this packet */ 1104 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1105 first->skb = skb; 1106 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1107 first->gso_segs = 1; 1108 1109 /* record initial flags and protocol */ 1110 first->tx_flags = tx_flags; 1111 1112 tso = fm10k_tso(tx_ring, first); 1113 if (tso < 0) 1114 goto out_drop; 1115 else if (!tso) 1116 fm10k_tx_csum(tx_ring, first); 1117 1118 fm10k_tx_map(tx_ring, first); 1119 1120 return NETDEV_TX_OK; 1121 1122 out_drop: 1123 dev_kfree_skb_any(first->skb); 1124 first->skb = NULL; 1125 1126 return NETDEV_TX_OK; 1127 } 1128 1129 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1130 { 1131 return ring->stats.packets; 1132 } 1133 1134 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring) 1135 { 1136 /* use SW head and tail until we have real hardware */ 1137 u32 head = ring->next_to_clean; 1138 u32 tail = ring->next_to_use; 1139 1140 return ((head <= tail) ? tail : tail + ring->count) - head; 1141 } 1142 1143 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1144 { 1145 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1146 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1147 u32 tx_pending = fm10k_get_tx_pending(tx_ring); 1148 1149 clear_check_for_tx_hang(tx_ring); 1150 1151 /* Check for a hung queue, but be thorough. This verifies 1152 * that a transmit has been completed since the previous 1153 * check AND there is at least one packet pending. By 1154 * requiring this to fail twice we avoid races with 1155 * clearing the ARMED bit and conditions where we 1156 * run the check_tx_hang logic with a transmit completion 1157 * pending but without time to complete it yet. 1158 */ 1159 if (!tx_pending || (tx_done_old != tx_done)) { 1160 /* update completed stats and continue */ 1161 tx_ring->tx_stats.tx_done_old = tx_done; 1162 /* reset the countdown */ 1163 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1164 1165 return false; 1166 } 1167 1168 /* make sure it is true for two checks in a row */ 1169 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1170 } 1171 1172 /** 1173 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1174 * @interface: driver private struct 1175 **/ 1176 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1177 { 1178 /* Do the reset outside of interrupt context */ 1179 if (!test_bit(__FM10K_DOWN, &interface->state)) { 1180 interface->tx_timeout_count++; 1181 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1182 fm10k_service_event_schedule(interface); 1183 } 1184 } 1185 1186 /** 1187 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1188 * @q_vector: structure containing interrupt and ring information 1189 * @tx_ring: tx ring to clean 1190 **/ 1191 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1192 struct fm10k_ring *tx_ring) 1193 { 1194 struct fm10k_intfc *interface = q_vector->interface; 1195 struct fm10k_tx_buffer *tx_buffer; 1196 struct fm10k_tx_desc *tx_desc; 1197 unsigned int total_bytes = 0, total_packets = 0; 1198 unsigned int budget = q_vector->tx.work_limit; 1199 unsigned int i = tx_ring->next_to_clean; 1200 1201 if (test_bit(__FM10K_DOWN, &interface->state)) 1202 return true; 1203 1204 tx_buffer = &tx_ring->tx_buffer[i]; 1205 tx_desc = FM10K_TX_DESC(tx_ring, i); 1206 i -= tx_ring->count; 1207 1208 do { 1209 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1210 1211 /* if next_to_watch is not set then there is no work pending */ 1212 if (!eop_desc) 1213 break; 1214 1215 /* prevent any other reads prior to eop_desc */ 1216 read_barrier_depends(); 1217 1218 /* if DD is not set pending work has not been completed */ 1219 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1220 break; 1221 1222 /* clear next_to_watch to prevent false hangs */ 1223 tx_buffer->next_to_watch = NULL; 1224 1225 /* update the statistics for this packet */ 1226 total_bytes += tx_buffer->bytecount; 1227 total_packets += tx_buffer->gso_segs; 1228 1229 /* free the skb */ 1230 dev_consume_skb_any(tx_buffer->skb); 1231 1232 /* unmap skb header data */ 1233 dma_unmap_single(tx_ring->dev, 1234 dma_unmap_addr(tx_buffer, dma), 1235 dma_unmap_len(tx_buffer, len), 1236 DMA_TO_DEVICE); 1237 1238 /* clear tx_buffer data */ 1239 tx_buffer->skb = NULL; 1240 dma_unmap_len_set(tx_buffer, len, 0); 1241 1242 /* unmap remaining buffers */ 1243 while (tx_desc != eop_desc) { 1244 tx_buffer++; 1245 tx_desc++; 1246 i++; 1247 if (unlikely(!i)) { 1248 i -= tx_ring->count; 1249 tx_buffer = tx_ring->tx_buffer; 1250 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1251 } 1252 1253 /* unmap any remaining paged data */ 1254 if (dma_unmap_len(tx_buffer, len)) { 1255 dma_unmap_page(tx_ring->dev, 1256 dma_unmap_addr(tx_buffer, dma), 1257 dma_unmap_len(tx_buffer, len), 1258 DMA_TO_DEVICE); 1259 dma_unmap_len_set(tx_buffer, len, 0); 1260 } 1261 } 1262 1263 /* move us one more past the eop_desc for start of next pkt */ 1264 tx_buffer++; 1265 tx_desc++; 1266 i++; 1267 if (unlikely(!i)) { 1268 i -= tx_ring->count; 1269 tx_buffer = tx_ring->tx_buffer; 1270 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1271 } 1272 1273 /* issue prefetch for next Tx descriptor */ 1274 prefetch(tx_desc); 1275 1276 /* update budget accounting */ 1277 budget--; 1278 } while (likely(budget)); 1279 1280 i += tx_ring->count; 1281 tx_ring->next_to_clean = i; 1282 u64_stats_update_begin(&tx_ring->syncp); 1283 tx_ring->stats.bytes += total_bytes; 1284 tx_ring->stats.packets += total_packets; 1285 u64_stats_update_end(&tx_ring->syncp); 1286 q_vector->tx.total_bytes += total_bytes; 1287 q_vector->tx.total_packets += total_packets; 1288 1289 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1290 /* schedule immediate reset if we believe we hung */ 1291 struct fm10k_hw *hw = &interface->hw; 1292 1293 netif_err(interface, drv, tx_ring->netdev, 1294 "Detected Tx Unit Hang\n" 1295 " Tx Queue <%d>\n" 1296 " TDH, TDT <%x>, <%x>\n" 1297 " next_to_use <%x>\n" 1298 " next_to_clean <%x>\n", 1299 tx_ring->queue_index, 1300 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1301 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1302 tx_ring->next_to_use, i); 1303 1304 netif_stop_subqueue(tx_ring->netdev, 1305 tx_ring->queue_index); 1306 1307 netif_info(interface, probe, tx_ring->netdev, 1308 "tx hang %d detected on queue %d, resetting interface\n", 1309 interface->tx_timeout_count + 1, 1310 tx_ring->queue_index); 1311 1312 fm10k_tx_timeout_reset(interface); 1313 1314 /* the netdev is about to reset, no point in enabling stuff */ 1315 return true; 1316 } 1317 1318 /* notify netdev of completed buffers */ 1319 netdev_tx_completed_queue(txring_txq(tx_ring), 1320 total_packets, total_bytes); 1321 1322 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1323 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1324 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1325 /* Make sure that anybody stopping the queue after this 1326 * sees the new next_to_clean. 1327 */ 1328 smp_mb(); 1329 if (__netif_subqueue_stopped(tx_ring->netdev, 1330 tx_ring->queue_index) && 1331 !test_bit(__FM10K_DOWN, &interface->state)) { 1332 netif_wake_subqueue(tx_ring->netdev, 1333 tx_ring->queue_index); 1334 ++tx_ring->tx_stats.restart_queue; 1335 } 1336 } 1337 1338 return !!budget; 1339 } 1340 1341 /** 1342 * fm10k_update_itr - update the dynamic ITR value based on packet size 1343 * 1344 * Stores a new ITR value based on strictly on packet size. The 1345 * divisors and thresholds used by this function were determined based 1346 * on theoretical maximum wire speed and testing data, in order to 1347 * minimize response time while increasing bulk throughput. 1348 * 1349 * @ring_container: Container for rings to have ITR updated 1350 **/ 1351 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1352 { 1353 unsigned int avg_wire_size, packets; 1354 1355 /* Only update ITR if we are using adaptive setting */ 1356 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE)) 1357 goto clear_counts; 1358 1359 packets = ring_container->total_packets; 1360 if (!packets) 1361 goto clear_counts; 1362 1363 avg_wire_size = ring_container->total_bytes / packets; 1364 1365 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 1366 avg_wire_size += 24; 1367 1368 /* Don't starve jumbo frames */ 1369 if (avg_wire_size > 3000) 1370 avg_wire_size = 3000; 1371 1372 /* Give a little boost to mid-size frames */ 1373 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 1374 avg_wire_size /= 3; 1375 else 1376 avg_wire_size /= 2; 1377 1378 /* write back value and retain adaptive flag */ 1379 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1380 1381 clear_counts: 1382 ring_container->total_bytes = 0; 1383 ring_container->total_packets = 0; 1384 } 1385 1386 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1387 { 1388 /* Enable auto-mask and clear the current mask */ 1389 u32 itr = FM10K_ITR_ENABLE; 1390 1391 /* Update Tx ITR */ 1392 fm10k_update_itr(&q_vector->tx); 1393 1394 /* Update Rx ITR */ 1395 fm10k_update_itr(&q_vector->rx); 1396 1397 /* Store Tx itr in timer slot 0 */ 1398 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1399 1400 /* Shift Rx itr to timer slot 1 */ 1401 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1402 1403 /* Write the final value to the ITR register */ 1404 writel(itr, q_vector->itr); 1405 } 1406 1407 static int fm10k_poll(struct napi_struct *napi, int budget) 1408 { 1409 struct fm10k_q_vector *q_vector = 1410 container_of(napi, struct fm10k_q_vector, napi); 1411 struct fm10k_ring *ring; 1412 int per_ring_budget; 1413 bool clean_complete = true; 1414 1415 fm10k_for_each_ring(ring, q_vector->tx) 1416 clean_complete &= fm10k_clean_tx_irq(q_vector, ring); 1417 1418 /* attempt to distribute budget to each queue fairly, but don't 1419 * allow the budget to go below 1 because we'll exit polling 1420 */ 1421 if (q_vector->rx.count > 1) 1422 per_ring_budget = max(budget/q_vector->rx.count, 1); 1423 else 1424 per_ring_budget = budget; 1425 1426 fm10k_for_each_ring(ring, q_vector->rx) 1427 clean_complete &= fm10k_clean_rx_irq(q_vector, ring, 1428 per_ring_budget); 1429 1430 /* If all work not completed, return budget and keep polling */ 1431 if (!clean_complete) 1432 return budget; 1433 1434 /* all work done, exit the polling mode */ 1435 napi_complete(napi); 1436 1437 /* re-enable the q_vector */ 1438 fm10k_qv_enable(q_vector); 1439 1440 return 0; 1441 } 1442 1443 /** 1444 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1445 * @interface: board private structure to initialize 1446 * 1447 * When QoS (Quality of Service) is enabled, allocate queues for 1448 * each traffic class. If multiqueue isn't available,then abort QoS 1449 * initialization. 1450 * 1451 * This function handles all combinations of Qos and RSS. 1452 * 1453 **/ 1454 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1455 { 1456 struct net_device *dev = interface->netdev; 1457 struct fm10k_ring_feature *f; 1458 int rss_i, i; 1459 int pcs; 1460 1461 /* Map queue offset and counts onto allocated tx queues */ 1462 pcs = netdev_get_num_tc(dev); 1463 1464 if (pcs <= 1) 1465 return false; 1466 1467 /* set QoS mask and indices */ 1468 f = &interface->ring_feature[RING_F_QOS]; 1469 f->indices = pcs; 1470 f->mask = (1 << fls(pcs - 1)) - 1; 1471 1472 /* determine the upper limit for our current DCB mode */ 1473 rss_i = interface->hw.mac.max_queues / pcs; 1474 rss_i = 1 << (fls(rss_i) - 1); 1475 1476 /* set RSS mask and indices */ 1477 f = &interface->ring_feature[RING_F_RSS]; 1478 rss_i = min_t(u16, rss_i, f->limit); 1479 f->indices = rss_i; 1480 f->mask = (1 << fls(rss_i - 1)) - 1; 1481 1482 /* configure pause class to queue mapping */ 1483 for (i = 0; i < pcs; i++) 1484 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1485 1486 interface->num_rx_queues = rss_i * pcs; 1487 interface->num_tx_queues = rss_i * pcs; 1488 1489 return true; 1490 } 1491 1492 /** 1493 * fm10k_set_rss_queues: Allocate queues for RSS 1494 * @interface: board private structure to initialize 1495 * 1496 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1497 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1498 * 1499 **/ 1500 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1501 { 1502 struct fm10k_ring_feature *f; 1503 u16 rss_i; 1504 1505 f = &interface->ring_feature[RING_F_RSS]; 1506 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1507 1508 /* record indices and power of 2 mask for RSS */ 1509 f->indices = rss_i; 1510 f->mask = (1 << fls(rss_i - 1)) - 1; 1511 1512 interface->num_rx_queues = rss_i; 1513 interface->num_tx_queues = rss_i; 1514 1515 return true; 1516 } 1517 1518 /** 1519 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1520 * @interface: board private structure to initialize 1521 * 1522 * This is the top level queue allocation routine. The order here is very 1523 * important, starting with the "most" number of features turned on at once, 1524 * and ending with the smallest set of features. This way large combinations 1525 * can be allocated if they're turned on, and smaller combinations are the 1526 * fallthrough conditions. 1527 * 1528 **/ 1529 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1530 { 1531 /* Start with base case */ 1532 interface->num_rx_queues = 1; 1533 interface->num_tx_queues = 1; 1534 1535 if (fm10k_set_qos_queues(interface)) 1536 return; 1537 1538 fm10k_set_rss_queues(interface); 1539 } 1540 1541 /** 1542 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1543 * @interface: board private structure to initialize 1544 * @v_count: q_vectors allocated on interface, used for ring interleaving 1545 * @v_idx: index of vector in interface struct 1546 * @txr_count: total number of Tx rings to allocate 1547 * @txr_idx: index of first Tx ring to allocate 1548 * @rxr_count: total number of Rx rings to allocate 1549 * @rxr_idx: index of first Rx ring to allocate 1550 * 1551 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1552 **/ 1553 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1554 unsigned int v_count, unsigned int v_idx, 1555 unsigned int txr_count, unsigned int txr_idx, 1556 unsigned int rxr_count, unsigned int rxr_idx) 1557 { 1558 struct fm10k_q_vector *q_vector; 1559 struct fm10k_ring *ring; 1560 int ring_count, size; 1561 1562 ring_count = txr_count + rxr_count; 1563 size = sizeof(struct fm10k_q_vector) + 1564 (sizeof(struct fm10k_ring) * ring_count); 1565 1566 /* allocate q_vector and rings */ 1567 q_vector = kzalloc(size, GFP_KERNEL); 1568 if (!q_vector) 1569 return -ENOMEM; 1570 1571 /* initialize NAPI */ 1572 netif_napi_add(interface->netdev, &q_vector->napi, 1573 fm10k_poll, NAPI_POLL_WEIGHT); 1574 1575 /* tie q_vector and interface together */ 1576 interface->q_vector[v_idx] = q_vector; 1577 q_vector->interface = interface; 1578 q_vector->v_idx = v_idx; 1579 1580 /* initialize pointer to rings */ 1581 ring = q_vector->ring; 1582 1583 /* save Tx ring container info */ 1584 q_vector->tx.ring = ring; 1585 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1586 q_vector->tx.itr = interface->tx_itr; 1587 q_vector->tx.count = txr_count; 1588 1589 while (txr_count) { 1590 /* assign generic ring traits */ 1591 ring->dev = &interface->pdev->dev; 1592 ring->netdev = interface->netdev; 1593 1594 /* configure backlink on ring */ 1595 ring->q_vector = q_vector; 1596 1597 /* apply Tx specific ring traits */ 1598 ring->count = interface->tx_ring_count; 1599 ring->queue_index = txr_idx; 1600 1601 /* assign ring to interface */ 1602 interface->tx_ring[txr_idx] = ring; 1603 1604 /* update count and index */ 1605 txr_count--; 1606 txr_idx += v_count; 1607 1608 /* push pointer to next ring */ 1609 ring++; 1610 } 1611 1612 /* save Rx ring container info */ 1613 q_vector->rx.ring = ring; 1614 q_vector->rx.itr = interface->rx_itr; 1615 q_vector->rx.count = rxr_count; 1616 1617 while (rxr_count) { 1618 /* assign generic ring traits */ 1619 ring->dev = &interface->pdev->dev; 1620 ring->netdev = interface->netdev; 1621 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1622 1623 /* configure backlink on ring */ 1624 ring->q_vector = q_vector; 1625 1626 /* apply Rx specific ring traits */ 1627 ring->count = interface->rx_ring_count; 1628 ring->queue_index = rxr_idx; 1629 1630 /* assign ring to interface */ 1631 interface->rx_ring[rxr_idx] = ring; 1632 1633 /* update count and index */ 1634 rxr_count--; 1635 rxr_idx += v_count; 1636 1637 /* push pointer to next ring */ 1638 ring++; 1639 } 1640 1641 fm10k_dbg_q_vector_init(q_vector); 1642 1643 return 0; 1644 } 1645 1646 /** 1647 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1648 * @interface: board private structure to initialize 1649 * @v_idx: Index of vector to be freed 1650 * 1651 * This function frees the memory allocated to the q_vector. In addition if 1652 * NAPI is enabled it will delete any references to the NAPI struct prior 1653 * to freeing the q_vector. 1654 **/ 1655 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1656 { 1657 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1658 struct fm10k_ring *ring; 1659 1660 fm10k_dbg_q_vector_exit(q_vector); 1661 1662 fm10k_for_each_ring(ring, q_vector->tx) 1663 interface->tx_ring[ring->queue_index] = NULL; 1664 1665 fm10k_for_each_ring(ring, q_vector->rx) 1666 interface->rx_ring[ring->queue_index] = NULL; 1667 1668 interface->q_vector[v_idx] = NULL; 1669 netif_napi_del(&q_vector->napi); 1670 kfree_rcu(q_vector, rcu); 1671 } 1672 1673 /** 1674 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1675 * @interface: board private structure to initialize 1676 * 1677 * We allocate one q_vector per queue interrupt. If allocation fails we 1678 * return -ENOMEM. 1679 **/ 1680 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1681 { 1682 unsigned int q_vectors = interface->num_q_vectors; 1683 unsigned int rxr_remaining = interface->num_rx_queues; 1684 unsigned int txr_remaining = interface->num_tx_queues; 1685 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1686 int err; 1687 1688 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1689 for (; rxr_remaining; v_idx++) { 1690 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1691 0, 0, 1, rxr_idx); 1692 if (err) 1693 goto err_out; 1694 1695 /* update counts and index */ 1696 rxr_remaining--; 1697 rxr_idx++; 1698 } 1699 } 1700 1701 for (; v_idx < q_vectors; v_idx++) { 1702 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1703 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1704 1705 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1706 tqpv, txr_idx, 1707 rqpv, rxr_idx); 1708 1709 if (err) 1710 goto err_out; 1711 1712 /* update counts and index */ 1713 rxr_remaining -= rqpv; 1714 txr_remaining -= tqpv; 1715 rxr_idx++; 1716 txr_idx++; 1717 } 1718 1719 return 0; 1720 1721 err_out: 1722 interface->num_tx_queues = 0; 1723 interface->num_rx_queues = 0; 1724 interface->num_q_vectors = 0; 1725 1726 while (v_idx--) 1727 fm10k_free_q_vector(interface, v_idx); 1728 1729 return -ENOMEM; 1730 } 1731 1732 /** 1733 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1734 * @interface: board private structure to initialize 1735 * 1736 * This function frees the memory allocated to the q_vectors. In addition if 1737 * NAPI is enabled it will delete any references to the NAPI struct prior 1738 * to freeing the q_vector. 1739 **/ 1740 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1741 { 1742 int v_idx = interface->num_q_vectors; 1743 1744 interface->num_tx_queues = 0; 1745 interface->num_rx_queues = 0; 1746 interface->num_q_vectors = 0; 1747 1748 while (v_idx--) 1749 fm10k_free_q_vector(interface, v_idx); 1750 } 1751 1752 /** 1753 * f10k_reset_msix_capability - reset MSI-X capability 1754 * @interface: board private structure to initialize 1755 * 1756 * Reset the MSI-X capability back to its starting state 1757 **/ 1758 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1759 { 1760 pci_disable_msix(interface->pdev); 1761 kfree(interface->msix_entries); 1762 interface->msix_entries = NULL; 1763 } 1764 1765 /** 1766 * f10k_init_msix_capability - configure MSI-X capability 1767 * @interface: board private structure to initialize 1768 * 1769 * Attempt to configure the interrupts using the best available 1770 * capabilities of the hardware and the kernel. 1771 **/ 1772 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1773 { 1774 struct fm10k_hw *hw = &interface->hw; 1775 int v_budget, vector; 1776 1777 /* It's easy to be greedy for MSI-X vectors, but it really 1778 * doesn't do us much good if we have a lot more vectors 1779 * than CPU's. So let's be conservative and only ask for 1780 * (roughly) the same number of vectors as there are CPU's. 1781 * the default is to use pairs of vectors 1782 */ 1783 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1784 v_budget = min_t(u16, v_budget, num_online_cpus()); 1785 1786 /* account for vectors not related to queues */ 1787 v_budget += NON_Q_VECTORS(hw); 1788 1789 /* At the same time, hardware can only support a maximum of 1790 * hw.mac->max_msix_vectors vectors. With features 1791 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1792 * descriptor queues supported by our device. Thus, we cap it off in 1793 * those rare cases where the cpu count also exceeds our vector limit. 1794 */ 1795 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1796 1797 /* A failure in MSI-X entry allocation is fatal. */ 1798 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1799 GFP_KERNEL); 1800 if (!interface->msix_entries) 1801 return -ENOMEM; 1802 1803 /* populate entry values */ 1804 for (vector = 0; vector < v_budget; vector++) 1805 interface->msix_entries[vector].entry = vector; 1806 1807 /* Attempt to enable MSI-X with requested value */ 1808 v_budget = pci_enable_msix_range(interface->pdev, 1809 interface->msix_entries, 1810 MIN_MSIX_COUNT(hw), 1811 v_budget); 1812 if (v_budget < 0) { 1813 kfree(interface->msix_entries); 1814 interface->msix_entries = NULL; 1815 return -ENOMEM; 1816 } 1817 1818 /* record the number of queues available for q_vectors */ 1819 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw); 1820 1821 return 0; 1822 } 1823 1824 /** 1825 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1826 * @interface: Interface structure continaining rings and devices 1827 * 1828 * Cache the descriptor ring offsets for Qos 1829 **/ 1830 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1831 { 1832 struct net_device *dev = interface->netdev; 1833 int pc, offset, rss_i, i, q_idx; 1834 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1835 u8 num_pcs = netdev_get_num_tc(dev); 1836 1837 if (num_pcs <= 1) 1838 return false; 1839 1840 rss_i = interface->ring_feature[RING_F_RSS].indices; 1841 1842 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1843 q_idx = pc; 1844 for (i = 0; i < rss_i; i++) { 1845 interface->tx_ring[offset + i]->reg_idx = q_idx; 1846 interface->tx_ring[offset + i]->qos_pc = pc; 1847 interface->rx_ring[offset + i]->reg_idx = q_idx; 1848 interface->rx_ring[offset + i]->qos_pc = pc; 1849 q_idx += pc_stride; 1850 } 1851 } 1852 1853 return true; 1854 } 1855 1856 /** 1857 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1858 * @interface: Interface structure continaining rings and devices 1859 * 1860 * Cache the descriptor ring offsets for RSS 1861 **/ 1862 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1863 { 1864 int i; 1865 1866 for (i = 0; i < interface->num_rx_queues; i++) 1867 interface->rx_ring[i]->reg_idx = i; 1868 1869 for (i = 0; i < interface->num_tx_queues; i++) 1870 interface->tx_ring[i]->reg_idx = i; 1871 } 1872 1873 /** 1874 * fm10k_assign_rings - Map rings to network devices 1875 * @interface: Interface structure containing rings and devices 1876 * 1877 * This function is meant to go though and configure both the network 1878 * devices so that they contain rings, and configure the rings so that 1879 * they function with their network devices. 1880 **/ 1881 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1882 { 1883 if (fm10k_cache_ring_qos(interface)) 1884 return; 1885 1886 fm10k_cache_ring_rss(interface); 1887 } 1888 1889 static void fm10k_init_reta(struct fm10k_intfc *interface) 1890 { 1891 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1892 u32 reta, base; 1893 1894 /* If the netdev is initialized we have to maintain table if possible */ 1895 if (interface->netdev->reg_state) { 1896 for (i = FM10K_RETA_SIZE; i--;) { 1897 reta = interface->reta[i]; 1898 if ((((reta << 24) >> 24) < rss_i) && 1899 (((reta << 16) >> 24) < rss_i) && 1900 (((reta << 8) >> 24) < rss_i) && 1901 (((reta) >> 24) < rss_i)) 1902 continue; 1903 goto repopulate_reta; 1904 } 1905 1906 /* do nothing if all of the elements are in bounds */ 1907 return; 1908 } 1909 1910 repopulate_reta: 1911 /* Populate the redirection table 4 entries at a time. To do this 1912 * we are generating the results for n and n+2 and then interleaving 1913 * those with the results with n+1 and n+3. 1914 */ 1915 for (i = FM10K_RETA_SIZE; i--;) { 1916 /* first pass generates n and n+2 */ 1917 base = ((i * 0x00040004) + 0x00020000) * rss_i; 1918 reta = (base & 0x3F803F80) >> 7; 1919 1920 /* second pass generates n+1 and n+3 */ 1921 base += 0x00010001 * rss_i; 1922 reta |= (base & 0x3F803F80) << 1; 1923 1924 interface->reta[i] = reta; 1925 } 1926 } 1927 1928 /** 1929 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1930 * @interface: board private structure to initialize 1931 * 1932 * We determine which queueing scheme to use based on... 1933 * - Hardware queue count (num_*_queues) 1934 * - defined by miscellaneous hardware support/features (RSS, etc.) 1935 **/ 1936 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1937 { 1938 int err; 1939 1940 /* Number of supported queues */ 1941 fm10k_set_num_queues(interface); 1942 1943 /* Configure MSI-X capability */ 1944 err = fm10k_init_msix_capability(interface); 1945 if (err) { 1946 dev_err(&interface->pdev->dev, 1947 "Unable to initialize MSI-X capability\n"); 1948 return err; 1949 } 1950 1951 /* Allocate memory for queues */ 1952 err = fm10k_alloc_q_vectors(interface); 1953 if (err) 1954 return err; 1955 1956 /* Map rings to devices, and map devices to physical queues */ 1957 fm10k_assign_rings(interface); 1958 1959 /* Initialize RSS redirection table */ 1960 fm10k_init_reta(interface); 1961 1962 return 0; 1963 } 1964 1965 /** 1966 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 1967 * @interface: board private structure to clear queueing scheme on 1968 * 1969 * We go through and clear queueing specific resources and reset the structure 1970 * to pre-load conditions 1971 **/ 1972 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 1973 { 1974 fm10k_free_q_vectors(interface); 1975 fm10k_reset_msix_capability(interface); 1976 } 1977