xref: /linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28 
29 #include "fm10k.h"
30 
31 #define DRV_VERSION	"0.15.2-k"
32 const char fm10k_driver_version[] = DRV_VERSION;
33 char fm10k_driver_name[] = "fm10k";
34 static const char fm10k_driver_string[] =
35 	"Intel(R) Ethernet Switch Host Interface Driver";
36 static const char fm10k_copyright[] =
37 	"Copyright (c) 2013 Intel Corporation.";
38 
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43 
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue = NULL;
46 
47 /**
48  * fm10k_init_module - Driver Registration Routine
49  *
50  * fm10k_init_module is the first routine called when the driver is
51  * loaded.  All it does is register with the PCI subsystem.
52  **/
53 static int __init fm10k_init_module(void)
54 {
55 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 	pr_info("%s\n", fm10k_copyright);
57 
58 	/* create driver workqueue */
59 	if (!fm10k_workqueue)
60 		fm10k_workqueue = create_workqueue("fm10k");
61 
62 	fm10k_dbg_init();
63 
64 	return fm10k_register_pci_driver();
65 }
66 module_init(fm10k_init_module);
67 
68 /**
69  * fm10k_exit_module - Driver Exit Cleanup Routine
70  *
71  * fm10k_exit_module is called just before the driver is removed
72  * from memory.
73  **/
74 static void __exit fm10k_exit_module(void)
75 {
76 	fm10k_unregister_pci_driver();
77 
78 	fm10k_dbg_exit();
79 
80 	/* destroy driver workqueue */
81 	flush_workqueue(fm10k_workqueue);
82 	destroy_workqueue(fm10k_workqueue);
83 	fm10k_workqueue = NULL;
84 }
85 module_exit(fm10k_exit_module);
86 
87 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
88 				    struct fm10k_rx_buffer *bi)
89 {
90 	struct page *page = bi->page;
91 	dma_addr_t dma;
92 
93 	/* Only page will be NULL if buffer was consumed */
94 	if (likely(page))
95 		return true;
96 
97 	/* alloc new page for storage */
98 	page = dev_alloc_page();
99 	if (unlikely(!page)) {
100 		rx_ring->rx_stats.alloc_failed++;
101 		return false;
102 	}
103 
104 	/* map page for use */
105 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
106 
107 	/* if mapping failed free memory back to system since
108 	 * there isn't much point in holding memory we can't use
109 	 */
110 	if (dma_mapping_error(rx_ring->dev, dma)) {
111 		__free_page(page);
112 
113 		rx_ring->rx_stats.alloc_failed++;
114 		return false;
115 	}
116 
117 	bi->dma = dma;
118 	bi->page = page;
119 	bi->page_offset = 0;
120 
121 	return true;
122 }
123 
124 /**
125  * fm10k_alloc_rx_buffers - Replace used receive buffers
126  * @rx_ring: ring to place buffers on
127  * @cleaned_count: number of buffers to replace
128  **/
129 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
130 {
131 	union fm10k_rx_desc *rx_desc;
132 	struct fm10k_rx_buffer *bi;
133 	u16 i = rx_ring->next_to_use;
134 
135 	/* nothing to do */
136 	if (!cleaned_count)
137 		return;
138 
139 	rx_desc = FM10K_RX_DESC(rx_ring, i);
140 	bi = &rx_ring->rx_buffer[i];
141 	i -= rx_ring->count;
142 
143 	do {
144 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
145 			break;
146 
147 		/* Refresh the desc even if buffer_addrs didn't change
148 		 * because each write-back erases this info.
149 		 */
150 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
151 
152 		rx_desc++;
153 		bi++;
154 		i++;
155 		if (unlikely(!i)) {
156 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
157 			bi = rx_ring->rx_buffer;
158 			i -= rx_ring->count;
159 		}
160 
161 		/* clear the status bits for the next_to_use descriptor */
162 		rx_desc->d.staterr = 0;
163 
164 		cleaned_count--;
165 	} while (cleaned_count);
166 
167 	i += rx_ring->count;
168 
169 	if (rx_ring->next_to_use != i) {
170 		/* record the next descriptor to use */
171 		rx_ring->next_to_use = i;
172 
173 		/* update next to alloc since we have filled the ring */
174 		rx_ring->next_to_alloc = i;
175 
176 		/* Force memory writes to complete before letting h/w
177 		 * know there are new descriptors to fetch.  (Only
178 		 * applicable for weak-ordered memory model archs,
179 		 * such as IA-64).
180 		 */
181 		wmb();
182 
183 		/* notify hardware of new descriptors */
184 		writel(i, rx_ring->tail);
185 	}
186 }
187 
188 /**
189  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
190  * @rx_ring: rx descriptor ring to store buffers on
191  * @old_buff: donor buffer to have page reused
192  *
193  * Synchronizes page for reuse by the interface
194  **/
195 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
196 				struct fm10k_rx_buffer *old_buff)
197 {
198 	struct fm10k_rx_buffer *new_buff;
199 	u16 nta = rx_ring->next_to_alloc;
200 
201 	new_buff = &rx_ring->rx_buffer[nta];
202 
203 	/* update, and store next to alloc */
204 	nta++;
205 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
206 
207 	/* transfer page from old buffer to new buffer */
208 	*new_buff = *old_buff;
209 
210 	/* sync the buffer for use by the device */
211 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
212 					 old_buff->page_offset,
213 					 FM10K_RX_BUFSZ,
214 					 DMA_FROM_DEVICE);
215 }
216 
217 static inline bool fm10k_page_is_reserved(struct page *page)
218 {
219 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
220 }
221 
222 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
223 				    struct page *page,
224 				    unsigned int __maybe_unused truesize)
225 {
226 	/* avoid re-using remote pages */
227 	if (unlikely(fm10k_page_is_reserved(page)))
228 		return false;
229 
230 #if (PAGE_SIZE < 8192)
231 	/* if we are only owner of page we can reuse it */
232 	if (unlikely(page_count(page) != 1))
233 		return false;
234 
235 	/* flip page offset to other buffer */
236 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
237 #else
238 	/* move offset up to the next cache line */
239 	rx_buffer->page_offset += truesize;
240 
241 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
242 		return false;
243 #endif
244 
245 	/* Even if we own the page, we are not allowed to use atomic_set()
246 	 * This would break get_page_unless_zero() users.
247 	 */
248 	atomic_inc(&page->_count);
249 
250 	return true;
251 }
252 
253 /**
254  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
255  * @rx_buffer: buffer containing page to add
256  * @rx_desc: descriptor containing length of buffer written by hardware
257  * @skb: sk_buff to place the data into
258  *
259  * This function will add the data contained in rx_buffer->page to the skb.
260  * This is done either through a direct copy if the data in the buffer is
261  * less than the skb header size, otherwise it will just attach the page as
262  * a frag to the skb.
263  *
264  * The function will then update the page offset if necessary and return
265  * true if the buffer can be reused by the interface.
266  **/
267 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
268 			      union fm10k_rx_desc *rx_desc,
269 			      struct sk_buff *skb)
270 {
271 	struct page *page = rx_buffer->page;
272 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
273 	unsigned int size = le16_to_cpu(rx_desc->w.length);
274 #if (PAGE_SIZE < 8192)
275 	unsigned int truesize = FM10K_RX_BUFSZ;
276 #else
277 	unsigned int truesize = SKB_DATA_ALIGN(size);
278 #endif
279 	unsigned int pull_len;
280 
281 	if (unlikely(skb_is_nonlinear(skb)))
282 		goto add_tail_frag;
283 
284 	if (likely(size <= FM10K_RX_HDR_LEN)) {
285 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
286 
287 		/* page is not reserved, we can reuse buffer as-is */
288 		if (likely(!fm10k_page_is_reserved(page)))
289 			return true;
290 
291 		/* this page cannot be reused so discard it */
292 		__free_page(page);
293 		return false;
294 	}
295 
296 	/* we need the header to contain the greater of either ETH_HLEN or
297 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
298 	 */
299 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
300 
301 	/* align pull length to size of long to optimize memcpy performance */
302 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
303 
304 	/* update all of the pointers */
305 	va += pull_len;
306 	size -= pull_len;
307 
308 add_tail_frag:
309 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
310 			(unsigned long)va & ~PAGE_MASK, size, truesize);
311 
312 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
313 }
314 
315 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
316 					     union fm10k_rx_desc *rx_desc,
317 					     struct sk_buff *skb)
318 {
319 	struct fm10k_rx_buffer *rx_buffer;
320 	struct page *page;
321 
322 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
323 	page = rx_buffer->page;
324 	prefetchw(page);
325 
326 	if (likely(!skb)) {
327 		void *page_addr = page_address(page) +
328 				  rx_buffer->page_offset;
329 
330 		/* prefetch first cache line of first page */
331 		prefetch(page_addr);
332 #if L1_CACHE_BYTES < 128
333 		prefetch(page_addr + L1_CACHE_BYTES);
334 #endif
335 
336 		/* allocate a skb to store the frags */
337 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
338 				     FM10K_RX_HDR_LEN);
339 		if (unlikely(!skb)) {
340 			rx_ring->rx_stats.alloc_failed++;
341 			return NULL;
342 		}
343 
344 		/* we will be copying header into skb->data in
345 		 * pskb_may_pull so it is in our interest to prefetch
346 		 * it now to avoid a possible cache miss
347 		 */
348 		prefetchw(skb->data);
349 	}
350 
351 	/* we are reusing so sync this buffer for CPU use */
352 	dma_sync_single_range_for_cpu(rx_ring->dev,
353 				      rx_buffer->dma,
354 				      rx_buffer->page_offset,
355 				      FM10K_RX_BUFSZ,
356 				      DMA_FROM_DEVICE);
357 
358 	/* pull page into skb */
359 	if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
360 		/* hand second half of page back to the ring */
361 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
362 	} else {
363 		/* we are not reusing the buffer so unmap it */
364 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
365 			       PAGE_SIZE, DMA_FROM_DEVICE);
366 	}
367 
368 	/* clear contents of rx_buffer */
369 	rx_buffer->page = NULL;
370 
371 	return skb;
372 }
373 
374 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
375 				     union fm10k_rx_desc *rx_desc,
376 				     struct sk_buff *skb)
377 {
378 	skb_checksum_none_assert(skb);
379 
380 	/* Rx checksum disabled via ethtool */
381 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
382 		return;
383 
384 	/* TCP/UDP checksum error bit is set */
385 	if (fm10k_test_staterr(rx_desc,
386 			       FM10K_RXD_STATUS_L4E |
387 			       FM10K_RXD_STATUS_L4E2 |
388 			       FM10K_RXD_STATUS_IPE |
389 			       FM10K_RXD_STATUS_IPE2)) {
390 		ring->rx_stats.csum_err++;
391 		return;
392 	}
393 
394 	/* It must be a TCP or UDP packet with a valid checksum */
395 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
396 		skb->encapsulation = true;
397 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
398 		return;
399 
400 	skb->ip_summed = CHECKSUM_UNNECESSARY;
401 }
402 
403 #define FM10K_RSS_L4_TYPES_MASK \
404 	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
405 	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
406 	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
407 	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
408 
409 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
410 				 union fm10k_rx_desc *rx_desc,
411 				 struct sk_buff *skb)
412 {
413 	u16 rss_type;
414 
415 	if (!(ring->netdev->features & NETIF_F_RXHASH))
416 		return;
417 
418 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
419 	if (!rss_type)
420 		return;
421 
422 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
423 		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
424 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
425 }
426 
427 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
428 			      union fm10k_rx_desc *rx_desc,
429 			      struct sk_buff *skb)
430 {
431 	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
432 
433 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
434 
435 	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
436 		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
437 					  le64_to_cpu(rx_desc->q.timestamp));
438 }
439 
440 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
441 			     union fm10k_rx_desc __maybe_unused *rx_desc,
442 			     struct sk_buff *skb)
443 {
444 	struct net_device *dev = rx_ring->netdev;
445 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
446 
447 	/* check to see if DGLORT belongs to a MACVLAN */
448 	if (l2_accel) {
449 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
450 
451 		idx -= l2_accel->dglort;
452 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
453 			dev = l2_accel->macvlan[idx];
454 		else
455 			l2_accel = NULL;
456 	}
457 
458 	skb->protocol = eth_type_trans(skb, dev);
459 
460 	if (!l2_accel)
461 		return;
462 
463 	/* update MACVLAN statistics */
464 	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
465 			 !!(rx_desc->w.hdr_info &
466 			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
467 }
468 
469 /**
470  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
471  * @rx_ring: rx descriptor ring packet is being transacted on
472  * @rx_desc: pointer to the EOP Rx descriptor
473  * @skb: pointer to current skb being populated
474  *
475  * This function checks the ring, descriptor, and packet information in
476  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
477  * other fields within the skb.
478  **/
479 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
480 					     union fm10k_rx_desc *rx_desc,
481 					     struct sk_buff *skb)
482 {
483 	unsigned int len = skb->len;
484 
485 	fm10k_rx_hash(rx_ring, rx_desc, skb);
486 
487 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
488 
489 	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
490 
491 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
492 
493 	skb_record_rx_queue(skb, rx_ring->queue_index);
494 
495 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
496 
497 	if (rx_desc->w.vlan) {
498 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
499 
500 		if (vid != rx_ring->vid)
501 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
502 	}
503 
504 	fm10k_type_trans(rx_ring, rx_desc, skb);
505 
506 	return len;
507 }
508 
509 /**
510  * fm10k_is_non_eop - process handling of non-EOP buffers
511  * @rx_ring: Rx ring being processed
512  * @rx_desc: Rx descriptor for current buffer
513  *
514  * This function updates next to clean.  If the buffer is an EOP buffer
515  * this function exits returning false, otherwise it will place the
516  * sk_buff in the next buffer to be chained and return true indicating
517  * that this is in fact a non-EOP buffer.
518  **/
519 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
520 			     union fm10k_rx_desc *rx_desc)
521 {
522 	u32 ntc = rx_ring->next_to_clean + 1;
523 
524 	/* fetch, update, and store next to clean */
525 	ntc = (ntc < rx_ring->count) ? ntc : 0;
526 	rx_ring->next_to_clean = ntc;
527 
528 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
529 
530 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
531 		return false;
532 
533 	return true;
534 }
535 
536 /**
537  * fm10k_cleanup_headers - Correct corrupted or empty headers
538  * @rx_ring: rx descriptor ring packet is being transacted on
539  * @rx_desc: pointer to the EOP Rx descriptor
540  * @skb: pointer to current skb being fixed
541  *
542  * Address the case where we are pulling data in on pages only
543  * and as such no data is present in the skb header.
544  *
545  * In addition if skb is not at least 60 bytes we need to pad it so that
546  * it is large enough to qualify as a valid Ethernet frame.
547  *
548  * Returns true if an error was encountered and skb was freed.
549  **/
550 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
551 				  union fm10k_rx_desc *rx_desc,
552 				  struct sk_buff *skb)
553 {
554 	if (unlikely((fm10k_test_staterr(rx_desc,
555 					 FM10K_RXD_STATUS_RXE)))) {
556 		dev_kfree_skb_any(skb);
557 		rx_ring->rx_stats.errors++;
558 		return true;
559 	}
560 
561 	/* if eth_skb_pad returns an error the skb was freed */
562 	if (eth_skb_pad(skb))
563 		return true;
564 
565 	return false;
566 }
567 
568 /**
569  * fm10k_receive_skb - helper function to handle rx indications
570  * @q_vector: structure containing interrupt and ring information
571  * @skb: packet to send up
572  **/
573 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
574 			      struct sk_buff *skb)
575 {
576 	napi_gro_receive(&q_vector->napi, skb);
577 }
578 
579 static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
580 			       struct fm10k_ring *rx_ring,
581 			       int budget)
582 {
583 	struct sk_buff *skb = rx_ring->skb;
584 	unsigned int total_bytes = 0, total_packets = 0;
585 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
586 
587 	while (likely(total_packets < budget)) {
588 		union fm10k_rx_desc *rx_desc;
589 
590 		/* return some buffers to hardware, one at a time is too slow */
591 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
592 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
593 			cleaned_count = 0;
594 		}
595 
596 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
597 
598 		if (!rx_desc->d.staterr)
599 			break;
600 
601 		/* This memory barrier is needed to keep us from reading
602 		 * any other fields out of the rx_desc until we know the
603 		 * descriptor has been written back
604 		 */
605 		dma_rmb();
606 
607 		/* retrieve a buffer from the ring */
608 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
609 
610 		/* exit if we failed to retrieve a buffer */
611 		if (!skb)
612 			break;
613 
614 		cleaned_count++;
615 
616 		/* fetch next buffer in frame if non-eop */
617 		if (fm10k_is_non_eop(rx_ring, rx_desc))
618 			continue;
619 
620 		/* verify the packet layout is correct */
621 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
622 			skb = NULL;
623 			continue;
624 		}
625 
626 		/* populate checksum, timestamp, VLAN, and protocol */
627 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
628 
629 		fm10k_receive_skb(q_vector, skb);
630 
631 		/* reset skb pointer */
632 		skb = NULL;
633 
634 		/* update budget accounting */
635 		total_packets++;
636 	}
637 
638 	/* place incomplete frames back on ring for completion */
639 	rx_ring->skb = skb;
640 
641 	u64_stats_update_begin(&rx_ring->syncp);
642 	rx_ring->stats.packets += total_packets;
643 	rx_ring->stats.bytes += total_bytes;
644 	u64_stats_update_end(&rx_ring->syncp);
645 	q_vector->rx.total_packets += total_packets;
646 	q_vector->rx.total_bytes += total_bytes;
647 
648 	return total_packets < budget;
649 }
650 
651 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
652 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
653 {
654 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
655 	struct fm10k_vxlan_port *vxlan_port;
656 
657 	/* we can only offload a vxlan if we recognize it as such */
658 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
659 					      struct fm10k_vxlan_port, list);
660 
661 	if (!vxlan_port)
662 		return NULL;
663 	if (vxlan_port->port != udp_hdr(skb)->dest)
664 		return NULL;
665 
666 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
667 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
668 }
669 
670 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
671 #define NVGRE_TNI htons(0x2000)
672 struct fm10k_nvgre_hdr {
673 	__be16 flags;
674 	__be16 proto;
675 	__be32 tni;
676 };
677 
678 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
679 {
680 	struct fm10k_nvgre_hdr *nvgre_hdr;
681 	int hlen = ip_hdrlen(skb);
682 
683 	/* currently only IPv4 is supported due to hlen above */
684 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
685 		return NULL;
686 
687 	/* our transport header should be NVGRE */
688 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
689 
690 	/* verify all reserved flags are 0 */
691 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
692 		return NULL;
693 
694 	/* report start of ethernet header */
695 	if (nvgre_hdr->flags & NVGRE_TNI)
696 		return (struct ethhdr *)(nvgre_hdr + 1);
697 
698 	return (struct ethhdr *)(&nvgre_hdr->tni);
699 }
700 
701 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
702 {
703 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
704 	struct ethhdr *eth_hdr;
705 
706 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
707 	    skb->inner_protocol != htons(ETH_P_TEB))
708 		return 0;
709 
710 	switch (vlan_get_protocol(skb)) {
711 	case htons(ETH_P_IP):
712 		l4_hdr = ip_hdr(skb)->protocol;
713 		break;
714 	case htons(ETH_P_IPV6):
715 		l4_hdr = ipv6_hdr(skb)->nexthdr;
716 		break;
717 	default:
718 		return 0;
719 	}
720 
721 	switch (l4_hdr) {
722 	case IPPROTO_UDP:
723 		eth_hdr = fm10k_port_is_vxlan(skb);
724 		break;
725 	case IPPROTO_GRE:
726 		eth_hdr = fm10k_gre_is_nvgre(skb);
727 		break;
728 	default:
729 		return 0;
730 	}
731 
732 	if (!eth_hdr)
733 		return 0;
734 
735 	switch (eth_hdr->h_proto) {
736 	case htons(ETH_P_IP):
737 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
738 		break;
739 	case htons(ETH_P_IPV6):
740 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
741 		break;
742 	default:
743 		return 0;
744 	}
745 
746 	switch (inner_l4_hdr) {
747 	case IPPROTO_TCP:
748 		inner_l4_hlen = inner_tcp_hdrlen(skb);
749 		break;
750 	case IPPROTO_UDP:
751 		inner_l4_hlen = 8;
752 		break;
753 	default:
754 		return 0;
755 	}
756 
757 	/* The hardware allows tunnel offloads only if the combined inner and
758 	 * outer header is 184 bytes or less
759 	 */
760 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
761 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
762 		return 0;
763 
764 	return eth_hdr->h_proto;
765 }
766 
767 static int fm10k_tso(struct fm10k_ring *tx_ring,
768 		     struct fm10k_tx_buffer *first)
769 {
770 	struct sk_buff *skb = first->skb;
771 	struct fm10k_tx_desc *tx_desc;
772 	unsigned char *th;
773 	u8 hdrlen;
774 
775 	if (skb->ip_summed != CHECKSUM_PARTIAL)
776 		return 0;
777 
778 	if (!skb_is_gso(skb))
779 		return 0;
780 
781 	/* compute header lengths */
782 	if (skb->encapsulation) {
783 		if (!fm10k_tx_encap_offload(skb))
784 			goto err_vxlan;
785 		th = skb_inner_transport_header(skb);
786 	} else {
787 		th = skb_transport_header(skb);
788 	}
789 
790 	/* compute offset from SOF to transport header and add header len */
791 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
792 
793 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
794 
795 	/* update gso size and bytecount with header size */
796 	first->gso_segs = skb_shinfo(skb)->gso_segs;
797 	first->bytecount += (first->gso_segs - 1) * hdrlen;
798 
799 	/* populate Tx descriptor header size and mss */
800 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
801 	tx_desc->hdrlen = hdrlen;
802 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
803 
804 	return 1;
805 err_vxlan:
806 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
807 	if (!net_ratelimit())
808 		netdev_err(tx_ring->netdev,
809 			   "TSO requested for unsupported tunnel, disabling offload\n");
810 	return -1;
811 }
812 
813 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
814 			  struct fm10k_tx_buffer *first)
815 {
816 	struct sk_buff *skb = first->skb;
817 	struct fm10k_tx_desc *tx_desc;
818 	union {
819 		struct iphdr *ipv4;
820 		struct ipv6hdr *ipv6;
821 		u8 *raw;
822 	} network_hdr;
823 	__be16 protocol;
824 	u8 l4_hdr = 0;
825 
826 	if (skb->ip_summed != CHECKSUM_PARTIAL)
827 		goto no_csum;
828 
829 	if (skb->encapsulation) {
830 		protocol = fm10k_tx_encap_offload(skb);
831 		if (!protocol) {
832 			if (skb_checksum_help(skb)) {
833 				dev_warn(tx_ring->dev,
834 					 "failed to offload encap csum!\n");
835 				tx_ring->tx_stats.csum_err++;
836 			}
837 			goto no_csum;
838 		}
839 		network_hdr.raw = skb_inner_network_header(skb);
840 	} else {
841 		protocol = vlan_get_protocol(skb);
842 		network_hdr.raw = skb_network_header(skb);
843 	}
844 
845 	switch (protocol) {
846 	case htons(ETH_P_IP):
847 		l4_hdr = network_hdr.ipv4->protocol;
848 		break;
849 	case htons(ETH_P_IPV6):
850 		l4_hdr = network_hdr.ipv6->nexthdr;
851 		break;
852 	default:
853 		if (unlikely(net_ratelimit())) {
854 			dev_warn(tx_ring->dev,
855 				 "partial checksum but ip version=%x!\n",
856 				 protocol);
857 		}
858 		tx_ring->tx_stats.csum_err++;
859 		goto no_csum;
860 	}
861 
862 	switch (l4_hdr) {
863 	case IPPROTO_TCP:
864 	case IPPROTO_UDP:
865 		break;
866 	case IPPROTO_GRE:
867 		if (skb->encapsulation)
868 			break;
869 	default:
870 		if (unlikely(net_ratelimit())) {
871 			dev_warn(tx_ring->dev,
872 				 "partial checksum but l4 proto=%x!\n",
873 				 l4_hdr);
874 		}
875 		tx_ring->tx_stats.csum_err++;
876 		goto no_csum;
877 	}
878 
879 	/* update TX checksum flag */
880 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
881 
882 no_csum:
883 	/* populate Tx descriptor header size and mss */
884 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
885 	tx_desc->hdrlen = 0;
886 	tx_desc->mss = 0;
887 }
888 
889 #define FM10K_SET_FLAG(_input, _flag, _result) \
890 	((_flag <= _result) ? \
891 	 ((u32)(_input & _flag) * (_result / _flag)) : \
892 	 ((u32)(_input & _flag) / (_flag / _result)))
893 
894 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
895 {
896 	/* set type for advanced descriptor with frame checksum insertion */
897 	u32 desc_flags = 0;
898 
899 	/* set timestamping bits */
900 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
901 	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
902 			desc_flags |= FM10K_TXD_FLAG_TIME;
903 
904 	/* set checksum offload bits */
905 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
906 				     FM10K_TXD_FLAG_CSUM);
907 
908 	return desc_flags;
909 }
910 
911 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
912 			       struct fm10k_tx_desc *tx_desc, u16 i,
913 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
914 {
915 	/* set RS and INT for last frame in a cache line */
916 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
917 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
918 
919 	/* record values to descriptor */
920 	tx_desc->buffer_addr = cpu_to_le64(dma);
921 	tx_desc->flags = desc_flags;
922 	tx_desc->buflen = cpu_to_le16(size);
923 
924 	/* return true if we just wrapped the ring */
925 	return i == tx_ring->count;
926 }
927 
928 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
929 {
930 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
931 
932 	/* Memory barrier before checking head and tail */
933 	smp_mb();
934 
935 	/* Check again in a case another CPU has just made room available */
936 	if (likely(fm10k_desc_unused(tx_ring) < size))
937 		return -EBUSY;
938 
939 	/* A reprieve! - use start_queue because it doesn't call schedule */
940 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
941 	++tx_ring->tx_stats.restart_queue;
942 	return 0;
943 }
944 
945 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
946 {
947 	if (likely(fm10k_desc_unused(tx_ring) >= size))
948 		return 0;
949 	return __fm10k_maybe_stop_tx(tx_ring, size);
950 }
951 
952 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
953 			 struct fm10k_tx_buffer *first)
954 {
955 	struct sk_buff *skb = first->skb;
956 	struct fm10k_tx_buffer *tx_buffer;
957 	struct fm10k_tx_desc *tx_desc;
958 	struct skb_frag_struct *frag;
959 	unsigned char *data;
960 	dma_addr_t dma;
961 	unsigned int data_len, size;
962 	u32 tx_flags = first->tx_flags;
963 	u16 i = tx_ring->next_to_use;
964 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
965 
966 	tx_desc = FM10K_TX_DESC(tx_ring, i);
967 
968 	/* add HW VLAN tag */
969 	if (skb_vlan_tag_present(skb))
970 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
971 	else
972 		tx_desc->vlan = 0;
973 
974 	size = skb_headlen(skb);
975 	data = skb->data;
976 
977 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
978 
979 	data_len = skb->data_len;
980 	tx_buffer = first;
981 
982 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
983 		if (dma_mapping_error(tx_ring->dev, dma))
984 			goto dma_error;
985 
986 		/* record length, and DMA address */
987 		dma_unmap_len_set(tx_buffer, len, size);
988 		dma_unmap_addr_set(tx_buffer, dma, dma);
989 
990 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
991 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
992 					       FM10K_MAX_DATA_PER_TXD, flags)) {
993 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
994 				i = 0;
995 			}
996 
997 			dma += FM10K_MAX_DATA_PER_TXD;
998 			size -= FM10K_MAX_DATA_PER_TXD;
999 		}
1000 
1001 		if (likely(!data_len))
1002 			break;
1003 
1004 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1005 				       dma, size, flags)) {
1006 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1007 			i = 0;
1008 		}
1009 
1010 		size = skb_frag_size(frag);
1011 		data_len -= size;
1012 
1013 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1014 				       DMA_TO_DEVICE);
1015 
1016 		tx_buffer = &tx_ring->tx_buffer[i];
1017 	}
1018 
1019 	/* write last descriptor with LAST bit set */
1020 	flags |= FM10K_TXD_FLAG_LAST;
1021 
1022 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1023 		i = 0;
1024 
1025 	/* record bytecount for BQL */
1026 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1027 
1028 	/* record SW timestamp if HW timestamp is not available */
1029 	skb_tx_timestamp(first->skb);
1030 
1031 	/* Force memory writes to complete before letting h/w know there
1032 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1033 	 * memory model archs, such as IA-64).
1034 	 *
1035 	 * We also need this memory barrier to make certain all of the
1036 	 * status bits have been updated before next_to_watch is written.
1037 	 */
1038 	wmb();
1039 
1040 	/* set next_to_watch value indicating a packet is present */
1041 	first->next_to_watch = tx_desc;
1042 
1043 	tx_ring->next_to_use = i;
1044 
1045 	/* Make sure there is space in the ring for the next send. */
1046 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1047 
1048 	/* notify HW of packet */
1049 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1050 		writel(i, tx_ring->tail);
1051 
1052 		/* we need this if more than one processor can write to our tail
1053 		 * at a time, it synchronizes IO on IA64/Altix systems
1054 		 */
1055 		mmiowb();
1056 	}
1057 
1058 	return;
1059 dma_error:
1060 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1061 
1062 	/* clear dma mappings for failed tx_buffer map */
1063 	for (;;) {
1064 		tx_buffer = &tx_ring->tx_buffer[i];
1065 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1066 		if (tx_buffer == first)
1067 			break;
1068 		if (i == 0)
1069 			i = tx_ring->count;
1070 		i--;
1071 	}
1072 
1073 	tx_ring->next_to_use = i;
1074 }
1075 
1076 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1077 				  struct fm10k_ring *tx_ring)
1078 {
1079 	struct fm10k_tx_buffer *first;
1080 	int tso;
1081 	u32 tx_flags = 0;
1082 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1083 	unsigned short f;
1084 #endif
1085 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1086 
1087 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1088 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1089 	 *       + 2 desc gap to keep tail from touching head
1090 	 * otherwise try next time
1091 	 */
1092 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1093 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1094 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1095 #else
1096 	count += skb_shinfo(skb)->nr_frags;
1097 #endif
1098 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1099 		tx_ring->tx_stats.tx_busy++;
1100 		return NETDEV_TX_BUSY;
1101 	}
1102 
1103 	/* record the location of the first descriptor for this packet */
1104 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1105 	first->skb = skb;
1106 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1107 	first->gso_segs = 1;
1108 
1109 	/* record initial flags and protocol */
1110 	first->tx_flags = tx_flags;
1111 
1112 	tso = fm10k_tso(tx_ring, first);
1113 	if (tso < 0)
1114 		goto out_drop;
1115 	else if (!tso)
1116 		fm10k_tx_csum(tx_ring, first);
1117 
1118 	fm10k_tx_map(tx_ring, first);
1119 
1120 	return NETDEV_TX_OK;
1121 
1122 out_drop:
1123 	dev_kfree_skb_any(first->skb);
1124 	first->skb = NULL;
1125 
1126 	return NETDEV_TX_OK;
1127 }
1128 
1129 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1130 {
1131 	return ring->stats.packets;
1132 }
1133 
1134 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1135 {
1136 	/* use SW head and tail until we have real hardware */
1137 	u32 head = ring->next_to_clean;
1138 	u32 tail = ring->next_to_use;
1139 
1140 	return ((head <= tail) ? tail : tail + ring->count) - head;
1141 }
1142 
1143 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1144 {
1145 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1146 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1147 	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1148 
1149 	clear_check_for_tx_hang(tx_ring);
1150 
1151 	/* Check for a hung queue, but be thorough. This verifies
1152 	 * that a transmit has been completed since the previous
1153 	 * check AND there is at least one packet pending. By
1154 	 * requiring this to fail twice we avoid races with
1155 	 * clearing the ARMED bit and conditions where we
1156 	 * run the check_tx_hang logic with a transmit completion
1157 	 * pending but without time to complete it yet.
1158 	 */
1159 	if (!tx_pending || (tx_done_old != tx_done)) {
1160 		/* update completed stats and continue */
1161 		tx_ring->tx_stats.tx_done_old = tx_done;
1162 		/* reset the countdown */
1163 		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1164 
1165 		return false;
1166 	}
1167 
1168 	/* make sure it is true for two checks in a row */
1169 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1170 }
1171 
1172 /**
1173  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1174  * @interface: driver private struct
1175  **/
1176 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1177 {
1178 	/* Do the reset outside of interrupt context */
1179 	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1180 		interface->tx_timeout_count++;
1181 		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1182 		fm10k_service_event_schedule(interface);
1183 	}
1184 }
1185 
1186 /**
1187  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1188  * @q_vector: structure containing interrupt and ring information
1189  * @tx_ring: tx ring to clean
1190  **/
1191 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1192 			       struct fm10k_ring *tx_ring)
1193 {
1194 	struct fm10k_intfc *interface = q_vector->interface;
1195 	struct fm10k_tx_buffer *tx_buffer;
1196 	struct fm10k_tx_desc *tx_desc;
1197 	unsigned int total_bytes = 0, total_packets = 0;
1198 	unsigned int budget = q_vector->tx.work_limit;
1199 	unsigned int i = tx_ring->next_to_clean;
1200 
1201 	if (test_bit(__FM10K_DOWN, &interface->state))
1202 		return true;
1203 
1204 	tx_buffer = &tx_ring->tx_buffer[i];
1205 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1206 	i -= tx_ring->count;
1207 
1208 	do {
1209 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1210 
1211 		/* if next_to_watch is not set then there is no work pending */
1212 		if (!eop_desc)
1213 			break;
1214 
1215 		/* prevent any other reads prior to eop_desc */
1216 		read_barrier_depends();
1217 
1218 		/* if DD is not set pending work has not been completed */
1219 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1220 			break;
1221 
1222 		/* clear next_to_watch to prevent false hangs */
1223 		tx_buffer->next_to_watch = NULL;
1224 
1225 		/* update the statistics for this packet */
1226 		total_bytes += tx_buffer->bytecount;
1227 		total_packets += tx_buffer->gso_segs;
1228 
1229 		/* free the skb */
1230 		dev_consume_skb_any(tx_buffer->skb);
1231 
1232 		/* unmap skb header data */
1233 		dma_unmap_single(tx_ring->dev,
1234 				 dma_unmap_addr(tx_buffer, dma),
1235 				 dma_unmap_len(tx_buffer, len),
1236 				 DMA_TO_DEVICE);
1237 
1238 		/* clear tx_buffer data */
1239 		tx_buffer->skb = NULL;
1240 		dma_unmap_len_set(tx_buffer, len, 0);
1241 
1242 		/* unmap remaining buffers */
1243 		while (tx_desc != eop_desc) {
1244 			tx_buffer++;
1245 			tx_desc++;
1246 			i++;
1247 			if (unlikely(!i)) {
1248 				i -= tx_ring->count;
1249 				tx_buffer = tx_ring->tx_buffer;
1250 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1251 			}
1252 
1253 			/* unmap any remaining paged data */
1254 			if (dma_unmap_len(tx_buffer, len)) {
1255 				dma_unmap_page(tx_ring->dev,
1256 					       dma_unmap_addr(tx_buffer, dma),
1257 					       dma_unmap_len(tx_buffer, len),
1258 					       DMA_TO_DEVICE);
1259 				dma_unmap_len_set(tx_buffer, len, 0);
1260 			}
1261 		}
1262 
1263 		/* move us one more past the eop_desc for start of next pkt */
1264 		tx_buffer++;
1265 		tx_desc++;
1266 		i++;
1267 		if (unlikely(!i)) {
1268 			i -= tx_ring->count;
1269 			tx_buffer = tx_ring->tx_buffer;
1270 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1271 		}
1272 
1273 		/* issue prefetch for next Tx descriptor */
1274 		prefetch(tx_desc);
1275 
1276 		/* update budget accounting */
1277 		budget--;
1278 	} while (likely(budget));
1279 
1280 	i += tx_ring->count;
1281 	tx_ring->next_to_clean = i;
1282 	u64_stats_update_begin(&tx_ring->syncp);
1283 	tx_ring->stats.bytes += total_bytes;
1284 	tx_ring->stats.packets += total_packets;
1285 	u64_stats_update_end(&tx_ring->syncp);
1286 	q_vector->tx.total_bytes += total_bytes;
1287 	q_vector->tx.total_packets += total_packets;
1288 
1289 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1290 		/* schedule immediate reset if we believe we hung */
1291 		struct fm10k_hw *hw = &interface->hw;
1292 
1293 		netif_err(interface, drv, tx_ring->netdev,
1294 			  "Detected Tx Unit Hang\n"
1295 			  "  Tx Queue             <%d>\n"
1296 			  "  TDH, TDT             <%x>, <%x>\n"
1297 			  "  next_to_use          <%x>\n"
1298 			  "  next_to_clean        <%x>\n",
1299 			  tx_ring->queue_index,
1300 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1301 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1302 			  tx_ring->next_to_use, i);
1303 
1304 		netif_stop_subqueue(tx_ring->netdev,
1305 				    tx_ring->queue_index);
1306 
1307 		netif_info(interface, probe, tx_ring->netdev,
1308 			   "tx hang %d detected on queue %d, resetting interface\n",
1309 			   interface->tx_timeout_count + 1,
1310 			   tx_ring->queue_index);
1311 
1312 		fm10k_tx_timeout_reset(interface);
1313 
1314 		/* the netdev is about to reset, no point in enabling stuff */
1315 		return true;
1316 	}
1317 
1318 	/* notify netdev of completed buffers */
1319 	netdev_tx_completed_queue(txring_txq(tx_ring),
1320 				  total_packets, total_bytes);
1321 
1322 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1323 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1324 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1325 		/* Make sure that anybody stopping the queue after this
1326 		 * sees the new next_to_clean.
1327 		 */
1328 		smp_mb();
1329 		if (__netif_subqueue_stopped(tx_ring->netdev,
1330 					     tx_ring->queue_index) &&
1331 		    !test_bit(__FM10K_DOWN, &interface->state)) {
1332 			netif_wake_subqueue(tx_ring->netdev,
1333 					    tx_ring->queue_index);
1334 			++tx_ring->tx_stats.restart_queue;
1335 		}
1336 	}
1337 
1338 	return !!budget;
1339 }
1340 
1341 /**
1342  * fm10k_update_itr - update the dynamic ITR value based on packet size
1343  *
1344  *      Stores a new ITR value based on strictly on packet size.  The
1345  *      divisors and thresholds used by this function were determined based
1346  *      on theoretical maximum wire speed and testing data, in order to
1347  *      minimize response time while increasing bulk throughput.
1348  *
1349  * @ring_container: Container for rings to have ITR updated
1350  **/
1351 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1352 {
1353 	unsigned int avg_wire_size, packets;
1354 
1355 	/* Only update ITR if we are using adaptive setting */
1356 	if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1357 		goto clear_counts;
1358 
1359 	packets = ring_container->total_packets;
1360 	if (!packets)
1361 		goto clear_counts;
1362 
1363 	avg_wire_size = ring_container->total_bytes / packets;
1364 
1365 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
1366 	avg_wire_size += 24;
1367 
1368 	/* Don't starve jumbo frames */
1369 	if (avg_wire_size > 3000)
1370 		avg_wire_size = 3000;
1371 
1372 	/* Give a little boost to mid-size frames */
1373 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1374 		avg_wire_size /= 3;
1375 	else
1376 		avg_wire_size /= 2;
1377 
1378 	/* write back value and retain adaptive flag */
1379 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1380 
1381 clear_counts:
1382 	ring_container->total_bytes = 0;
1383 	ring_container->total_packets = 0;
1384 }
1385 
1386 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1387 {
1388 	/* Enable auto-mask and clear the current mask */
1389 	u32 itr = FM10K_ITR_ENABLE;
1390 
1391 	/* Update Tx ITR */
1392 	fm10k_update_itr(&q_vector->tx);
1393 
1394 	/* Update Rx ITR */
1395 	fm10k_update_itr(&q_vector->rx);
1396 
1397 	/* Store Tx itr in timer slot 0 */
1398 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1399 
1400 	/* Shift Rx itr to timer slot 1 */
1401 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1402 
1403 	/* Write the final value to the ITR register */
1404 	writel(itr, q_vector->itr);
1405 }
1406 
1407 static int fm10k_poll(struct napi_struct *napi, int budget)
1408 {
1409 	struct fm10k_q_vector *q_vector =
1410 			       container_of(napi, struct fm10k_q_vector, napi);
1411 	struct fm10k_ring *ring;
1412 	int per_ring_budget;
1413 	bool clean_complete = true;
1414 
1415 	fm10k_for_each_ring(ring, q_vector->tx)
1416 		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1417 
1418 	/* attempt to distribute budget to each queue fairly, but don't
1419 	 * allow the budget to go below 1 because we'll exit polling
1420 	 */
1421 	if (q_vector->rx.count > 1)
1422 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1423 	else
1424 		per_ring_budget = budget;
1425 
1426 	fm10k_for_each_ring(ring, q_vector->rx)
1427 		clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1428 						     per_ring_budget);
1429 
1430 	/* If all work not completed, return budget and keep polling */
1431 	if (!clean_complete)
1432 		return budget;
1433 
1434 	/* all work done, exit the polling mode */
1435 	napi_complete(napi);
1436 
1437 	/* re-enable the q_vector */
1438 	fm10k_qv_enable(q_vector);
1439 
1440 	return 0;
1441 }
1442 
1443 /**
1444  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1445  * @interface: board private structure to initialize
1446  *
1447  * When QoS (Quality of Service) is enabled, allocate queues for
1448  * each traffic class.  If multiqueue isn't available,then abort QoS
1449  * initialization.
1450  *
1451  * This function handles all combinations of Qos and RSS.
1452  *
1453  **/
1454 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1455 {
1456 	struct net_device *dev = interface->netdev;
1457 	struct fm10k_ring_feature *f;
1458 	int rss_i, i;
1459 	int pcs;
1460 
1461 	/* Map queue offset and counts onto allocated tx queues */
1462 	pcs = netdev_get_num_tc(dev);
1463 
1464 	if (pcs <= 1)
1465 		return false;
1466 
1467 	/* set QoS mask and indices */
1468 	f = &interface->ring_feature[RING_F_QOS];
1469 	f->indices = pcs;
1470 	f->mask = (1 << fls(pcs - 1)) - 1;
1471 
1472 	/* determine the upper limit for our current DCB mode */
1473 	rss_i = interface->hw.mac.max_queues / pcs;
1474 	rss_i = 1 << (fls(rss_i) - 1);
1475 
1476 	/* set RSS mask and indices */
1477 	f = &interface->ring_feature[RING_F_RSS];
1478 	rss_i = min_t(u16, rss_i, f->limit);
1479 	f->indices = rss_i;
1480 	f->mask = (1 << fls(rss_i - 1)) - 1;
1481 
1482 	/* configure pause class to queue mapping */
1483 	for (i = 0; i < pcs; i++)
1484 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1485 
1486 	interface->num_rx_queues = rss_i * pcs;
1487 	interface->num_tx_queues = rss_i * pcs;
1488 
1489 	return true;
1490 }
1491 
1492 /**
1493  * fm10k_set_rss_queues: Allocate queues for RSS
1494  * @interface: board private structure to initialize
1495  *
1496  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1497  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1498  *
1499  **/
1500 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1501 {
1502 	struct fm10k_ring_feature *f;
1503 	u16 rss_i;
1504 
1505 	f = &interface->ring_feature[RING_F_RSS];
1506 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1507 
1508 	/* record indices and power of 2 mask for RSS */
1509 	f->indices = rss_i;
1510 	f->mask = (1 << fls(rss_i - 1)) - 1;
1511 
1512 	interface->num_rx_queues = rss_i;
1513 	interface->num_tx_queues = rss_i;
1514 
1515 	return true;
1516 }
1517 
1518 /**
1519  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1520  * @interface: board private structure to initialize
1521  *
1522  * This is the top level queue allocation routine.  The order here is very
1523  * important, starting with the "most" number of features turned on at once,
1524  * and ending with the smallest set of features.  This way large combinations
1525  * can be allocated if they're turned on, and smaller combinations are the
1526  * fallthrough conditions.
1527  *
1528  **/
1529 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1530 {
1531 	/* Start with base case */
1532 	interface->num_rx_queues = 1;
1533 	interface->num_tx_queues = 1;
1534 
1535 	if (fm10k_set_qos_queues(interface))
1536 		return;
1537 
1538 	fm10k_set_rss_queues(interface);
1539 }
1540 
1541 /**
1542  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1543  * @interface: board private structure to initialize
1544  * @v_count: q_vectors allocated on interface, used for ring interleaving
1545  * @v_idx: index of vector in interface struct
1546  * @txr_count: total number of Tx rings to allocate
1547  * @txr_idx: index of first Tx ring to allocate
1548  * @rxr_count: total number of Rx rings to allocate
1549  * @rxr_idx: index of first Rx ring to allocate
1550  *
1551  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1552  **/
1553 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1554 				unsigned int v_count, unsigned int v_idx,
1555 				unsigned int txr_count, unsigned int txr_idx,
1556 				unsigned int rxr_count, unsigned int rxr_idx)
1557 {
1558 	struct fm10k_q_vector *q_vector;
1559 	struct fm10k_ring *ring;
1560 	int ring_count, size;
1561 
1562 	ring_count = txr_count + rxr_count;
1563 	size = sizeof(struct fm10k_q_vector) +
1564 	       (sizeof(struct fm10k_ring) * ring_count);
1565 
1566 	/* allocate q_vector and rings */
1567 	q_vector = kzalloc(size, GFP_KERNEL);
1568 	if (!q_vector)
1569 		return -ENOMEM;
1570 
1571 	/* initialize NAPI */
1572 	netif_napi_add(interface->netdev, &q_vector->napi,
1573 		       fm10k_poll, NAPI_POLL_WEIGHT);
1574 
1575 	/* tie q_vector and interface together */
1576 	interface->q_vector[v_idx] = q_vector;
1577 	q_vector->interface = interface;
1578 	q_vector->v_idx = v_idx;
1579 
1580 	/* initialize pointer to rings */
1581 	ring = q_vector->ring;
1582 
1583 	/* save Tx ring container info */
1584 	q_vector->tx.ring = ring;
1585 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1586 	q_vector->tx.itr = interface->tx_itr;
1587 	q_vector->tx.count = txr_count;
1588 
1589 	while (txr_count) {
1590 		/* assign generic ring traits */
1591 		ring->dev = &interface->pdev->dev;
1592 		ring->netdev = interface->netdev;
1593 
1594 		/* configure backlink on ring */
1595 		ring->q_vector = q_vector;
1596 
1597 		/* apply Tx specific ring traits */
1598 		ring->count = interface->tx_ring_count;
1599 		ring->queue_index = txr_idx;
1600 
1601 		/* assign ring to interface */
1602 		interface->tx_ring[txr_idx] = ring;
1603 
1604 		/* update count and index */
1605 		txr_count--;
1606 		txr_idx += v_count;
1607 
1608 		/* push pointer to next ring */
1609 		ring++;
1610 	}
1611 
1612 	/* save Rx ring container info */
1613 	q_vector->rx.ring = ring;
1614 	q_vector->rx.itr = interface->rx_itr;
1615 	q_vector->rx.count = rxr_count;
1616 
1617 	while (rxr_count) {
1618 		/* assign generic ring traits */
1619 		ring->dev = &interface->pdev->dev;
1620 		ring->netdev = interface->netdev;
1621 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1622 
1623 		/* configure backlink on ring */
1624 		ring->q_vector = q_vector;
1625 
1626 		/* apply Rx specific ring traits */
1627 		ring->count = interface->rx_ring_count;
1628 		ring->queue_index = rxr_idx;
1629 
1630 		/* assign ring to interface */
1631 		interface->rx_ring[rxr_idx] = ring;
1632 
1633 		/* update count and index */
1634 		rxr_count--;
1635 		rxr_idx += v_count;
1636 
1637 		/* push pointer to next ring */
1638 		ring++;
1639 	}
1640 
1641 	fm10k_dbg_q_vector_init(q_vector);
1642 
1643 	return 0;
1644 }
1645 
1646 /**
1647  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1648  * @interface: board private structure to initialize
1649  * @v_idx: Index of vector to be freed
1650  *
1651  * This function frees the memory allocated to the q_vector.  In addition if
1652  * NAPI is enabled it will delete any references to the NAPI struct prior
1653  * to freeing the q_vector.
1654  **/
1655 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1656 {
1657 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1658 	struct fm10k_ring *ring;
1659 
1660 	fm10k_dbg_q_vector_exit(q_vector);
1661 
1662 	fm10k_for_each_ring(ring, q_vector->tx)
1663 		interface->tx_ring[ring->queue_index] = NULL;
1664 
1665 	fm10k_for_each_ring(ring, q_vector->rx)
1666 		interface->rx_ring[ring->queue_index] = NULL;
1667 
1668 	interface->q_vector[v_idx] = NULL;
1669 	netif_napi_del(&q_vector->napi);
1670 	kfree_rcu(q_vector, rcu);
1671 }
1672 
1673 /**
1674  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1675  * @interface: board private structure to initialize
1676  *
1677  * We allocate one q_vector per queue interrupt.  If allocation fails we
1678  * return -ENOMEM.
1679  **/
1680 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1681 {
1682 	unsigned int q_vectors = interface->num_q_vectors;
1683 	unsigned int rxr_remaining = interface->num_rx_queues;
1684 	unsigned int txr_remaining = interface->num_tx_queues;
1685 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1686 	int err;
1687 
1688 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1689 		for (; rxr_remaining; v_idx++) {
1690 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1691 						   0, 0, 1, rxr_idx);
1692 			if (err)
1693 				goto err_out;
1694 
1695 			/* update counts and index */
1696 			rxr_remaining--;
1697 			rxr_idx++;
1698 		}
1699 	}
1700 
1701 	for (; v_idx < q_vectors; v_idx++) {
1702 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1703 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1704 
1705 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1706 					   tqpv, txr_idx,
1707 					   rqpv, rxr_idx);
1708 
1709 		if (err)
1710 			goto err_out;
1711 
1712 		/* update counts and index */
1713 		rxr_remaining -= rqpv;
1714 		txr_remaining -= tqpv;
1715 		rxr_idx++;
1716 		txr_idx++;
1717 	}
1718 
1719 	return 0;
1720 
1721 err_out:
1722 	interface->num_tx_queues = 0;
1723 	interface->num_rx_queues = 0;
1724 	interface->num_q_vectors = 0;
1725 
1726 	while (v_idx--)
1727 		fm10k_free_q_vector(interface, v_idx);
1728 
1729 	return -ENOMEM;
1730 }
1731 
1732 /**
1733  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1734  * @interface: board private structure to initialize
1735  *
1736  * This function frees the memory allocated to the q_vectors.  In addition if
1737  * NAPI is enabled it will delete any references to the NAPI struct prior
1738  * to freeing the q_vector.
1739  **/
1740 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1741 {
1742 	int v_idx = interface->num_q_vectors;
1743 
1744 	interface->num_tx_queues = 0;
1745 	interface->num_rx_queues = 0;
1746 	interface->num_q_vectors = 0;
1747 
1748 	while (v_idx--)
1749 		fm10k_free_q_vector(interface, v_idx);
1750 }
1751 
1752 /**
1753  * f10k_reset_msix_capability - reset MSI-X capability
1754  * @interface: board private structure to initialize
1755  *
1756  * Reset the MSI-X capability back to its starting state
1757  **/
1758 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1759 {
1760 	pci_disable_msix(interface->pdev);
1761 	kfree(interface->msix_entries);
1762 	interface->msix_entries = NULL;
1763 }
1764 
1765 /**
1766  * f10k_init_msix_capability - configure MSI-X capability
1767  * @interface: board private structure to initialize
1768  *
1769  * Attempt to configure the interrupts using the best available
1770  * capabilities of the hardware and the kernel.
1771  **/
1772 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1773 {
1774 	struct fm10k_hw *hw = &interface->hw;
1775 	int v_budget, vector;
1776 
1777 	/* It's easy to be greedy for MSI-X vectors, but it really
1778 	 * doesn't do us much good if we have a lot more vectors
1779 	 * than CPU's.  So let's be conservative and only ask for
1780 	 * (roughly) the same number of vectors as there are CPU's.
1781 	 * the default is to use pairs of vectors
1782 	 */
1783 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1784 	v_budget = min_t(u16, v_budget, num_online_cpus());
1785 
1786 	/* account for vectors not related to queues */
1787 	v_budget += NON_Q_VECTORS(hw);
1788 
1789 	/* At the same time, hardware can only support a maximum of
1790 	 * hw.mac->max_msix_vectors vectors.  With features
1791 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1792 	 * descriptor queues supported by our device.  Thus, we cap it off in
1793 	 * those rare cases where the cpu count also exceeds our vector limit.
1794 	 */
1795 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1796 
1797 	/* A failure in MSI-X entry allocation is fatal. */
1798 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1799 					  GFP_KERNEL);
1800 	if (!interface->msix_entries)
1801 		return -ENOMEM;
1802 
1803 	/* populate entry values */
1804 	for (vector = 0; vector < v_budget; vector++)
1805 		interface->msix_entries[vector].entry = vector;
1806 
1807 	/* Attempt to enable MSI-X with requested value */
1808 	v_budget = pci_enable_msix_range(interface->pdev,
1809 					 interface->msix_entries,
1810 					 MIN_MSIX_COUNT(hw),
1811 					 v_budget);
1812 	if (v_budget < 0) {
1813 		kfree(interface->msix_entries);
1814 		interface->msix_entries = NULL;
1815 		return -ENOMEM;
1816 	}
1817 
1818 	/* record the number of queues available for q_vectors */
1819 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1820 
1821 	return 0;
1822 }
1823 
1824 /**
1825  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1826  * @interface: Interface structure continaining rings and devices
1827  *
1828  * Cache the descriptor ring offsets for Qos
1829  **/
1830 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1831 {
1832 	struct net_device *dev = interface->netdev;
1833 	int pc, offset, rss_i, i, q_idx;
1834 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1835 	u8 num_pcs = netdev_get_num_tc(dev);
1836 
1837 	if (num_pcs <= 1)
1838 		return false;
1839 
1840 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1841 
1842 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1843 		q_idx = pc;
1844 		for (i = 0; i < rss_i; i++) {
1845 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1846 			interface->tx_ring[offset + i]->qos_pc = pc;
1847 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1848 			interface->rx_ring[offset + i]->qos_pc = pc;
1849 			q_idx += pc_stride;
1850 		}
1851 	}
1852 
1853 	return true;
1854 }
1855 
1856 /**
1857  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1858  * @interface: Interface structure continaining rings and devices
1859  *
1860  * Cache the descriptor ring offsets for RSS
1861  **/
1862 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1863 {
1864 	int i;
1865 
1866 	for (i = 0; i < interface->num_rx_queues; i++)
1867 		interface->rx_ring[i]->reg_idx = i;
1868 
1869 	for (i = 0; i < interface->num_tx_queues; i++)
1870 		interface->tx_ring[i]->reg_idx = i;
1871 }
1872 
1873 /**
1874  * fm10k_assign_rings - Map rings to network devices
1875  * @interface: Interface structure containing rings and devices
1876  *
1877  * This function is meant to go though and configure both the network
1878  * devices so that they contain rings, and configure the rings so that
1879  * they function with their network devices.
1880  **/
1881 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1882 {
1883 	if (fm10k_cache_ring_qos(interface))
1884 		return;
1885 
1886 	fm10k_cache_ring_rss(interface);
1887 }
1888 
1889 static void fm10k_init_reta(struct fm10k_intfc *interface)
1890 {
1891 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1892 	u32 reta, base;
1893 
1894 	/* If the netdev is initialized we have to maintain table if possible */
1895 	if (interface->netdev->reg_state) {
1896 		for (i = FM10K_RETA_SIZE; i--;) {
1897 			reta = interface->reta[i];
1898 			if ((((reta << 24) >> 24) < rss_i) &&
1899 			    (((reta << 16) >> 24) < rss_i) &&
1900 			    (((reta <<  8) >> 24) < rss_i) &&
1901 			    (((reta)       >> 24) < rss_i))
1902 				continue;
1903 			goto repopulate_reta;
1904 		}
1905 
1906 		/* do nothing if all of the elements are in bounds */
1907 		return;
1908 	}
1909 
1910 repopulate_reta:
1911 	/* Populate the redirection table 4 entries at a time.  To do this
1912 	 * we are generating the results for n and n+2 and then interleaving
1913 	 * those with the results with n+1 and n+3.
1914 	 */
1915 	for (i = FM10K_RETA_SIZE; i--;) {
1916 		/* first pass generates n and n+2 */
1917 		base = ((i * 0x00040004) + 0x00020000) * rss_i;
1918 		reta = (base & 0x3F803F80) >> 7;
1919 
1920 		/* second pass generates n+1 and n+3 */
1921 		base += 0x00010001 * rss_i;
1922 		reta |= (base & 0x3F803F80) << 1;
1923 
1924 		interface->reta[i] = reta;
1925 	}
1926 }
1927 
1928 /**
1929  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1930  * @interface: board private structure to initialize
1931  *
1932  * We determine which queueing scheme to use based on...
1933  * - Hardware queue count (num_*_queues)
1934  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1935  **/
1936 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1937 {
1938 	int err;
1939 
1940 	/* Number of supported queues */
1941 	fm10k_set_num_queues(interface);
1942 
1943 	/* Configure MSI-X capability */
1944 	err = fm10k_init_msix_capability(interface);
1945 	if (err) {
1946 		dev_err(&interface->pdev->dev,
1947 			"Unable to initialize MSI-X capability\n");
1948 		return err;
1949 	}
1950 
1951 	/* Allocate memory for queues */
1952 	err = fm10k_alloc_q_vectors(interface);
1953 	if (err)
1954 		return err;
1955 
1956 	/* Map rings to devices, and map devices to physical queues */
1957 	fm10k_assign_rings(interface);
1958 
1959 	/* Initialize RSS redirection table */
1960 	fm10k_init_reta(interface);
1961 
1962 	return 0;
1963 }
1964 
1965 /**
1966  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1967  * @interface: board private structure to clear queueing scheme on
1968  *
1969  * We go through and clear queueing specific resources and reset the structure
1970  * to pre-load conditions
1971  **/
1972 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1973 {
1974 	fm10k_free_q_vectors(interface);
1975 	fm10k_reset_msix_capability(interface);
1976 }
1977