xref: /linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3 
4 #include <linux/types.h>
5 #include <linux/module.h>
6 #include <net/ipv6.h>
7 #include <net/ip.h>
8 #include <net/tcp.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
11 
12 #include "fm10k.h"
13 
14 #define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
15 char fm10k_driver_name[] = "fm10k";
16 static const char fm10k_driver_string[] = DRV_SUMMARY;
17 static const char fm10k_copyright[] =
18 	"Copyright(c) 2013 - 2019 Intel Corporation.";
19 
20 MODULE_DESCRIPTION(DRV_SUMMARY);
21 MODULE_LICENSE("GPL v2");
22 
23 /* single workqueue for entire fm10k driver */
24 struct workqueue_struct *fm10k_workqueue;
25 
26 /**
27  * fm10k_init_module - Driver Registration Routine
28  *
29  * fm10k_init_module is the first routine called when the driver is
30  * loaded.  All it does is register with the PCI subsystem.
31  **/
32 static int __init fm10k_init_module(void)
33 {
34 	int ret;
35 
36 	pr_info("%s\n", fm10k_driver_string);
37 	pr_info("%s\n", fm10k_copyright);
38 
39 	/* create driver workqueue */
40 	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
41 					  fm10k_driver_name);
42 	if (!fm10k_workqueue)
43 		return -ENOMEM;
44 
45 	fm10k_dbg_init();
46 
47 	ret = fm10k_register_pci_driver();
48 	if (ret) {
49 		fm10k_dbg_exit();
50 		destroy_workqueue(fm10k_workqueue);
51 	}
52 
53 	return ret;
54 }
55 module_init(fm10k_init_module);
56 
57 /**
58  * fm10k_exit_module - Driver Exit Cleanup Routine
59  *
60  * fm10k_exit_module is called just before the driver is removed
61  * from memory.
62  **/
63 static void __exit fm10k_exit_module(void)
64 {
65 	fm10k_unregister_pci_driver();
66 
67 	fm10k_dbg_exit();
68 
69 	/* destroy driver workqueue */
70 	destroy_workqueue(fm10k_workqueue);
71 }
72 module_exit(fm10k_exit_module);
73 
74 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
75 				    struct fm10k_rx_buffer *bi)
76 {
77 	struct page *page = bi->page;
78 	dma_addr_t dma;
79 
80 	/* Only page will be NULL if buffer was consumed */
81 	if (likely(page))
82 		return true;
83 
84 	/* alloc new page for storage */
85 	page = dev_alloc_page();
86 	if (unlikely(!page)) {
87 		rx_ring->rx_stats.alloc_failed++;
88 		return false;
89 	}
90 
91 	/* map page for use */
92 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
93 
94 	/* if mapping failed free memory back to system since
95 	 * there isn't much point in holding memory we can't use
96 	 */
97 	if (dma_mapping_error(rx_ring->dev, dma)) {
98 		__free_page(page);
99 
100 		rx_ring->rx_stats.alloc_failed++;
101 		return false;
102 	}
103 
104 	bi->dma = dma;
105 	bi->page = page;
106 	bi->page_offset = 0;
107 
108 	return true;
109 }
110 
111 /**
112  * fm10k_alloc_rx_buffers - Replace used receive buffers
113  * @rx_ring: ring to place buffers on
114  * @cleaned_count: number of buffers to replace
115  **/
116 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
117 {
118 	union fm10k_rx_desc *rx_desc;
119 	struct fm10k_rx_buffer *bi;
120 	u16 i = rx_ring->next_to_use;
121 
122 	/* nothing to do */
123 	if (!cleaned_count)
124 		return;
125 
126 	rx_desc = FM10K_RX_DESC(rx_ring, i);
127 	bi = &rx_ring->rx_buffer[i];
128 	i -= rx_ring->count;
129 
130 	do {
131 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
132 			break;
133 
134 		/* Refresh the desc even if buffer_addrs didn't change
135 		 * because each write-back erases this info.
136 		 */
137 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
138 
139 		rx_desc++;
140 		bi++;
141 		i++;
142 		if (unlikely(!i)) {
143 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
144 			bi = rx_ring->rx_buffer;
145 			i -= rx_ring->count;
146 		}
147 
148 		/* clear the status bits for the next_to_use descriptor */
149 		rx_desc->d.staterr = 0;
150 
151 		cleaned_count--;
152 	} while (cleaned_count);
153 
154 	i += rx_ring->count;
155 
156 	if (rx_ring->next_to_use != i) {
157 		/* record the next descriptor to use */
158 		rx_ring->next_to_use = i;
159 
160 		/* update next to alloc since we have filled the ring */
161 		rx_ring->next_to_alloc = i;
162 
163 		/* Force memory writes to complete before letting h/w
164 		 * know there are new descriptors to fetch.  (Only
165 		 * applicable for weak-ordered memory model archs,
166 		 * such as IA-64).
167 		 */
168 		wmb();
169 
170 		/* notify hardware of new descriptors */
171 		writel(i, rx_ring->tail);
172 	}
173 }
174 
175 /**
176  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
177  * @rx_ring: rx descriptor ring to store buffers on
178  * @old_buff: donor buffer to have page reused
179  *
180  * Synchronizes page for reuse by the interface
181  **/
182 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
183 				struct fm10k_rx_buffer *old_buff)
184 {
185 	struct fm10k_rx_buffer *new_buff;
186 	u16 nta = rx_ring->next_to_alloc;
187 
188 	new_buff = &rx_ring->rx_buffer[nta];
189 
190 	/* update, and store next to alloc */
191 	nta++;
192 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
193 
194 	/* transfer page from old buffer to new buffer */
195 	*new_buff = *old_buff;
196 
197 	/* sync the buffer for use by the device */
198 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
199 					 old_buff->page_offset,
200 					 FM10K_RX_BUFSZ,
201 					 DMA_FROM_DEVICE);
202 }
203 
204 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
205 				    struct page *page,
206 				    unsigned int __maybe_unused truesize)
207 {
208 	/* avoid re-using remote and pfmemalloc pages */
209 	if (!dev_page_is_reusable(page))
210 		return false;
211 
212 #if (PAGE_SIZE < 8192)
213 	/* if we are only owner of page we can reuse it */
214 	if (unlikely(page_count(page) != 1))
215 		return false;
216 
217 	/* flip page offset to other buffer */
218 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
219 #else
220 	/* move offset up to the next cache line */
221 	rx_buffer->page_offset += truesize;
222 
223 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
224 		return false;
225 #endif
226 
227 	/* Even if we own the page, we are not allowed to use atomic_set()
228 	 * This would break get_page_unless_zero() users.
229 	 */
230 	page_ref_inc(page);
231 
232 	return true;
233 }
234 
235 /**
236  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
237  * @rx_buffer: buffer containing page to add
238  * @size: packet size from rx_desc
239  * @rx_desc: descriptor containing length of buffer written by hardware
240  * @skb: sk_buff to place the data into
241  *
242  * This function will add the data contained in rx_buffer->page to the skb.
243  * This is done either through a direct copy if the data in the buffer is
244  * less than the skb header size, otherwise it will just attach the page as
245  * a frag to the skb.
246  *
247  * The function will then update the page offset if necessary and return
248  * true if the buffer can be reused by the interface.
249  **/
250 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
251 			      unsigned int size,
252 			      union fm10k_rx_desc *rx_desc,
253 			      struct sk_buff *skb)
254 {
255 	struct page *page = rx_buffer->page;
256 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
257 #if (PAGE_SIZE < 8192)
258 	unsigned int truesize = FM10K_RX_BUFSZ;
259 #else
260 	unsigned int truesize = ALIGN(size, 512);
261 #endif
262 	unsigned int pull_len;
263 
264 	if (unlikely(skb_is_nonlinear(skb)))
265 		goto add_tail_frag;
266 
267 	if (likely(size <= FM10K_RX_HDR_LEN)) {
268 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
269 
270 		/* page is reusable, we can reuse buffer as-is */
271 		if (dev_page_is_reusable(page))
272 			return true;
273 
274 		/* this page cannot be reused so discard it */
275 		__free_page(page);
276 		return false;
277 	}
278 
279 	/* we need the header to contain the greater of either ETH_HLEN or
280 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
281 	 */
282 	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
283 
284 	/* align pull length to size of long to optimize memcpy performance */
285 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
286 
287 	/* update all of the pointers */
288 	va += pull_len;
289 	size -= pull_len;
290 
291 add_tail_frag:
292 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
293 			(unsigned long)va & ~PAGE_MASK, size, truesize);
294 
295 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
296 }
297 
298 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
299 					     union fm10k_rx_desc *rx_desc,
300 					     struct sk_buff *skb)
301 {
302 	unsigned int size = le16_to_cpu(rx_desc->w.length);
303 	struct fm10k_rx_buffer *rx_buffer;
304 	struct page *page;
305 
306 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
307 	page = rx_buffer->page;
308 	prefetchw(page);
309 
310 	if (likely(!skb)) {
311 		void *page_addr = page_address(page) +
312 				  rx_buffer->page_offset;
313 
314 		/* prefetch first cache line of first page */
315 		net_prefetch(page_addr);
316 
317 		/* allocate a skb to store the frags */
318 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
319 				     FM10K_RX_HDR_LEN);
320 		if (unlikely(!skb)) {
321 			rx_ring->rx_stats.alloc_failed++;
322 			return NULL;
323 		}
324 
325 		/* we will be copying header into skb->data in
326 		 * pskb_may_pull so it is in our interest to prefetch
327 		 * it now to avoid a possible cache miss
328 		 */
329 		prefetchw(skb->data);
330 	}
331 
332 	/* we are reusing so sync this buffer for CPU use */
333 	dma_sync_single_range_for_cpu(rx_ring->dev,
334 				      rx_buffer->dma,
335 				      rx_buffer->page_offset,
336 				      size,
337 				      DMA_FROM_DEVICE);
338 
339 	/* pull page into skb */
340 	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
341 		/* hand second half of page back to the ring */
342 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
343 	} else {
344 		/* we are not reusing the buffer so unmap it */
345 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
346 			       PAGE_SIZE, DMA_FROM_DEVICE);
347 	}
348 
349 	/* clear contents of rx_buffer */
350 	rx_buffer->page = NULL;
351 
352 	return skb;
353 }
354 
355 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
356 				     union fm10k_rx_desc *rx_desc,
357 				     struct sk_buff *skb)
358 {
359 	skb_checksum_none_assert(skb);
360 
361 	/* Rx checksum disabled via ethtool */
362 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
363 		return;
364 
365 	/* TCP/UDP checksum error bit is set */
366 	if (fm10k_test_staterr(rx_desc,
367 			       FM10K_RXD_STATUS_L4E |
368 			       FM10K_RXD_STATUS_L4E2 |
369 			       FM10K_RXD_STATUS_IPE |
370 			       FM10K_RXD_STATUS_IPE2)) {
371 		ring->rx_stats.csum_err++;
372 		return;
373 	}
374 
375 	/* It must be a TCP or UDP packet with a valid checksum */
376 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
377 		skb->encapsulation = true;
378 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
379 		return;
380 
381 	skb->ip_summed = CHECKSUM_UNNECESSARY;
382 
383 	ring->rx_stats.csum_good++;
384 }
385 
386 #define FM10K_RSS_L4_TYPES_MASK \
387 	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
388 	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
389 	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
390 	 BIT(FM10K_RSSTYPE_IPV6_UDP))
391 
392 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
393 				 union fm10k_rx_desc *rx_desc,
394 				 struct sk_buff *skb)
395 {
396 	u16 rss_type;
397 
398 	if (!(ring->netdev->features & NETIF_F_RXHASH))
399 		return;
400 
401 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
402 	if (!rss_type)
403 		return;
404 
405 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
406 		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
407 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
408 }
409 
410 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
411 			     union fm10k_rx_desc __maybe_unused *rx_desc,
412 			     struct sk_buff *skb)
413 {
414 	struct net_device *dev = rx_ring->netdev;
415 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
416 
417 	/* check to see if DGLORT belongs to a MACVLAN */
418 	if (l2_accel) {
419 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
420 
421 		idx -= l2_accel->dglort;
422 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
423 			dev = l2_accel->macvlan[idx];
424 		else
425 			l2_accel = NULL;
426 	}
427 
428 	/* Record Rx queue, or update macvlan statistics */
429 	if (!l2_accel)
430 		skb_record_rx_queue(skb, rx_ring->queue_index);
431 	else
432 		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
433 				 false);
434 
435 	skb->protocol = eth_type_trans(skb, dev);
436 }
437 
438 /**
439  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
440  * @rx_ring: rx descriptor ring packet is being transacted on
441  * @rx_desc: pointer to the EOP Rx descriptor
442  * @skb: pointer to current skb being populated
443  *
444  * This function checks the ring, descriptor, and packet information in
445  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
446  * other fields within the skb.
447  **/
448 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
449 					     union fm10k_rx_desc *rx_desc,
450 					     struct sk_buff *skb)
451 {
452 	unsigned int len = skb->len;
453 
454 	fm10k_rx_hash(rx_ring, rx_desc, skb);
455 
456 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
457 
458 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
459 
460 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
461 
462 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
463 
464 	if (rx_desc->w.vlan) {
465 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
466 
467 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
468 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
469 		else if (vid & VLAN_PRIO_MASK)
470 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
471 					       vid & VLAN_PRIO_MASK);
472 	}
473 
474 	fm10k_type_trans(rx_ring, rx_desc, skb);
475 
476 	return len;
477 }
478 
479 /**
480  * fm10k_is_non_eop - process handling of non-EOP buffers
481  * @rx_ring: Rx ring being processed
482  * @rx_desc: Rx descriptor for current buffer
483  *
484  * This function updates next to clean.  If the buffer is an EOP buffer
485  * this function exits returning false, otherwise it will place the
486  * sk_buff in the next buffer to be chained and return true indicating
487  * that this is in fact a non-EOP buffer.
488  **/
489 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
490 			     union fm10k_rx_desc *rx_desc)
491 {
492 	u32 ntc = rx_ring->next_to_clean + 1;
493 
494 	/* fetch, update, and store next to clean */
495 	ntc = (ntc < rx_ring->count) ? ntc : 0;
496 	rx_ring->next_to_clean = ntc;
497 
498 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
499 
500 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
501 		return false;
502 
503 	return true;
504 }
505 
506 /**
507  * fm10k_cleanup_headers - Correct corrupted or empty headers
508  * @rx_ring: rx descriptor ring packet is being transacted on
509  * @rx_desc: pointer to the EOP Rx descriptor
510  * @skb: pointer to current skb being fixed
511  *
512  * Address the case where we are pulling data in on pages only
513  * and as such no data is present in the skb header.
514  *
515  * In addition if skb is not at least 60 bytes we need to pad it so that
516  * it is large enough to qualify as a valid Ethernet frame.
517  *
518  * Returns true if an error was encountered and skb was freed.
519  **/
520 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
521 				  union fm10k_rx_desc *rx_desc,
522 				  struct sk_buff *skb)
523 {
524 	if (unlikely((fm10k_test_staterr(rx_desc,
525 					 FM10K_RXD_STATUS_RXE)))) {
526 #define FM10K_TEST_RXD_BIT(rxd, bit) \
527 	((rxd)->w.csum_err & cpu_to_le16(bit))
528 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
529 			rx_ring->rx_stats.switch_errors++;
530 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
531 			rx_ring->rx_stats.drops++;
532 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
533 			rx_ring->rx_stats.pp_errors++;
534 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
535 			rx_ring->rx_stats.link_errors++;
536 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
537 			rx_ring->rx_stats.length_errors++;
538 		dev_kfree_skb_any(skb);
539 		rx_ring->rx_stats.errors++;
540 		return true;
541 	}
542 
543 	/* if eth_skb_pad returns an error the skb was freed */
544 	if (eth_skb_pad(skb))
545 		return true;
546 
547 	return false;
548 }
549 
550 /**
551  * fm10k_receive_skb - helper function to handle rx indications
552  * @q_vector: structure containing interrupt and ring information
553  * @skb: packet to send up
554  **/
555 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
556 			      struct sk_buff *skb)
557 {
558 	napi_gro_receive(&q_vector->napi, skb);
559 }
560 
561 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
562 			      struct fm10k_ring *rx_ring,
563 			      int budget)
564 {
565 	struct sk_buff *skb = rx_ring->skb;
566 	unsigned int total_bytes = 0, total_packets = 0;
567 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
568 
569 	while (likely(total_packets < budget)) {
570 		union fm10k_rx_desc *rx_desc;
571 
572 		/* return some buffers to hardware, one at a time is too slow */
573 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
574 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
575 			cleaned_count = 0;
576 		}
577 
578 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
579 
580 		if (!rx_desc->d.staterr)
581 			break;
582 
583 		/* This memory barrier is needed to keep us from reading
584 		 * any other fields out of the rx_desc until we know the
585 		 * descriptor has been written back
586 		 */
587 		dma_rmb();
588 
589 		/* retrieve a buffer from the ring */
590 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
591 
592 		/* exit if we failed to retrieve a buffer */
593 		if (!skb)
594 			break;
595 
596 		cleaned_count++;
597 
598 		/* fetch next buffer in frame if non-eop */
599 		if (fm10k_is_non_eop(rx_ring, rx_desc))
600 			continue;
601 
602 		/* verify the packet layout is correct */
603 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
604 			skb = NULL;
605 			continue;
606 		}
607 
608 		/* populate checksum, timestamp, VLAN, and protocol */
609 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
610 
611 		fm10k_receive_skb(q_vector, skb);
612 
613 		/* reset skb pointer */
614 		skb = NULL;
615 
616 		/* update budget accounting */
617 		total_packets++;
618 	}
619 
620 	/* place incomplete frames back on ring for completion */
621 	rx_ring->skb = skb;
622 
623 	u64_stats_update_begin(&rx_ring->syncp);
624 	rx_ring->stats.packets += total_packets;
625 	rx_ring->stats.bytes += total_bytes;
626 	u64_stats_update_end(&rx_ring->syncp);
627 	q_vector->rx.total_packets += total_packets;
628 	q_vector->rx.total_bytes += total_bytes;
629 
630 	return total_packets;
631 }
632 
633 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
634 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
635 {
636 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
637 
638 	if (interface->vxlan_port != udp_hdr(skb)->dest)
639 		return NULL;
640 
641 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
642 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
643 }
644 
645 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
646 #define NVGRE_TNI htons(0x2000)
647 struct fm10k_nvgre_hdr {
648 	__be16 flags;
649 	__be16 proto;
650 	__be32 tni;
651 };
652 
653 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
654 {
655 	struct fm10k_nvgre_hdr *nvgre_hdr;
656 	int hlen = ip_hdrlen(skb);
657 
658 	/* currently only IPv4 is supported due to hlen above */
659 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
660 		return NULL;
661 
662 	/* our transport header should be NVGRE */
663 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
664 
665 	/* verify all reserved flags are 0 */
666 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
667 		return NULL;
668 
669 	/* report start of ethernet header */
670 	if (nvgre_hdr->flags & NVGRE_TNI)
671 		return (struct ethhdr *)(nvgre_hdr + 1);
672 
673 	return (struct ethhdr *)(&nvgre_hdr->tni);
674 }
675 
676 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
677 {
678 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
679 	struct ethhdr *eth_hdr;
680 
681 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
682 	    skb->inner_protocol != htons(ETH_P_TEB))
683 		return 0;
684 
685 	switch (vlan_get_protocol(skb)) {
686 	case htons(ETH_P_IP):
687 		l4_hdr = ip_hdr(skb)->protocol;
688 		break;
689 	case htons(ETH_P_IPV6):
690 		l4_hdr = ipv6_hdr(skb)->nexthdr;
691 		break;
692 	default:
693 		return 0;
694 	}
695 
696 	switch (l4_hdr) {
697 	case IPPROTO_UDP:
698 		eth_hdr = fm10k_port_is_vxlan(skb);
699 		break;
700 	case IPPROTO_GRE:
701 		eth_hdr = fm10k_gre_is_nvgre(skb);
702 		break;
703 	default:
704 		return 0;
705 	}
706 
707 	if (!eth_hdr)
708 		return 0;
709 
710 	switch (eth_hdr->h_proto) {
711 	case htons(ETH_P_IP):
712 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
713 		break;
714 	case htons(ETH_P_IPV6):
715 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
716 		break;
717 	default:
718 		return 0;
719 	}
720 
721 	switch (inner_l4_hdr) {
722 	case IPPROTO_TCP:
723 		inner_l4_hlen = inner_tcp_hdrlen(skb);
724 		break;
725 	case IPPROTO_UDP:
726 		inner_l4_hlen = 8;
727 		break;
728 	default:
729 		return 0;
730 	}
731 
732 	/* The hardware allows tunnel offloads only if the combined inner and
733 	 * outer header is 184 bytes or less
734 	 */
735 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
736 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
737 		return 0;
738 
739 	return eth_hdr->h_proto;
740 }
741 
742 static int fm10k_tso(struct fm10k_ring *tx_ring,
743 		     struct fm10k_tx_buffer *first)
744 {
745 	struct sk_buff *skb = first->skb;
746 	struct fm10k_tx_desc *tx_desc;
747 	unsigned char *th;
748 	u8 hdrlen;
749 
750 	if (skb->ip_summed != CHECKSUM_PARTIAL)
751 		return 0;
752 
753 	if (!skb_is_gso(skb))
754 		return 0;
755 
756 	/* compute header lengths */
757 	if (skb->encapsulation) {
758 		if (!fm10k_tx_encap_offload(skb))
759 			goto err_vxlan;
760 		th = skb_inner_transport_header(skb);
761 	} else {
762 		th = skb_transport_header(skb);
763 	}
764 
765 	/* compute offset from SOF to transport header and add header len */
766 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
767 
768 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
769 
770 	/* update gso size and bytecount with header size */
771 	first->gso_segs = skb_shinfo(skb)->gso_segs;
772 	first->bytecount += (first->gso_segs - 1) * hdrlen;
773 
774 	/* populate Tx descriptor header size and mss */
775 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
776 	tx_desc->hdrlen = hdrlen;
777 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
778 
779 	return 1;
780 
781 err_vxlan:
782 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
783 	if (net_ratelimit())
784 		netdev_err(tx_ring->netdev,
785 			   "TSO requested for unsupported tunnel, disabling offload\n");
786 	return -1;
787 }
788 
789 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
790 			  struct fm10k_tx_buffer *first)
791 {
792 	struct sk_buff *skb = first->skb;
793 	struct fm10k_tx_desc *tx_desc;
794 	union {
795 		struct iphdr *ipv4;
796 		struct ipv6hdr *ipv6;
797 		u8 *raw;
798 	} network_hdr;
799 	u8 *transport_hdr;
800 	__be16 frag_off;
801 	__be16 protocol;
802 	u8 l4_hdr = 0;
803 
804 	if (skb->ip_summed != CHECKSUM_PARTIAL)
805 		goto no_csum;
806 
807 	if (skb->encapsulation) {
808 		protocol = fm10k_tx_encap_offload(skb);
809 		if (!protocol) {
810 			if (skb_checksum_help(skb)) {
811 				dev_warn(tx_ring->dev,
812 					 "failed to offload encap csum!\n");
813 				tx_ring->tx_stats.csum_err++;
814 			}
815 			goto no_csum;
816 		}
817 		network_hdr.raw = skb_inner_network_header(skb);
818 		transport_hdr = skb_inner_transport_header(skb);
819 	} else {
820 		protocol = vlan_get_protocol(skb);
821 		network_hdr.raw = skb_network_header(skb);
822 		transport_hdr = skb_transport_header(skb);
823 	}
824 
825 	switch (protocol) {
826 	case htons(ETH_P_IP):
827 		l4_hdr = network_hdr.ipv4->protocol;
828 		break;
829 	case htons(ETH_P_IPV6):
830 		l4_hdr = network_hdr.ipv6->nexthdr;
831 		if (likely((transport_hdr - network_hdr.raw) ==
832 			   sizeof(struct ipv6hdr)))
833 			break;
834 		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
835 				      sizeof(struct ipv6hdr),
836 				 &l4_hdr, &frag_off);
837 		if (unlikely(frag_off))
838 			l4_hdr = NEXTHDR_FRAGMENT;
839 		break;
840 	default:
841 		break;
842 	}
843 
844 	switch (l4_hdr) {
845 	case IPPROTO_TCP:
846 	case IPPROTO_UDP:
847 		break;
848 	case IPPROTO_GRE:
849 		if (skb->encapsulation)
850 			break;
851 		fallthrough;
852 	default:
853 		if (unlikely(net_ratelimit())) {
854 			dev_warn(tx_ring->dev,
855 				 "partial checksum, version=%d l4 proto=%x\n",
856 				 protocol, l4_hdr);
857 		}
858 		skb_checksum_help(skb);
859 		tx_ring->tx_stats.csum_err++;
860 		goto no_csum;
861 	}
862 
863 	/* update TX checksum flag */
864 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
865 	tx_ring->tx_stats.csum_good++;
866 
867 no_csum:
868 	/* populate Tx descriptor header size and mss */
869 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
870 	tx_desc->hdrlen = 0;
871 	tx_desc->mss = 0;
872 }
873 
874 #define FM10K_SET_FLAG(_input, _flag, _result) \
875 	((_flag <= _result) ? \
876 	 ((u32)(_input & _flag) * (_result / _flag)) : \
877 	 ((u32)(_input & _flag) / (_flag / _result)))
878 
879 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
880 {
881 	/* set type for advanced descriptor with frame checksum insertion */
882 	u32 desc_flags = 0;
883 
884 	/* set checksum offload bits */
885 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
886 				     FM10K_TXD_FLAG_CSUM);
887 
888 	return desc_flags;
889 }
890 
891 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
892 			       struct fm10k_tx_desc *tx_desc, u16 i,
893 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
894 {
895 	/* set RS and INT for last frame in a cache line */
896 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
897 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
898 
899 	/* record values to descriptor */
900 	tx_desc->buffer_addr = cpu_to_le64(dma);
901 	tx_desc->flags = desc_flags;
902 	tx_desc->buflen = cpu_to_le16(size);
903 
904 	/* return true if we just wrapped the ring */
905 	return i == tx_ring->count;
906 }
907 
908 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
909 {
910 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
911 
912 	/* Memory barrier before checking head and tail */
913 	smp_mb();
914 
915 	/* Check again in a case another CPU has just made room available */
916 	if (likely(fm10k_desc_unused(tx_ring) < size))
917 		return -EBUSY;
918 
919 	/* A reprieve! - use start_queue because it doesn't call schedule */
920 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
921 	++tx_ring->tx_stats.restart_queue;
922 	return 0;
923 }
924 
925 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
926 {
927 	if (likely(fm10k_desc_unused(tx_ring) >= size))
928 		return 0;
929 	return __fm10k_maybe_stop_tx(tx_ring, size);
930 }
931 
932 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
933 			 struct fm10k_tx_buffer *first)
934 {
935 	struct sk_buff *skb = first->skb;
936 	struct fm10k_tx_buffer *tx_buffer;
937 	struct fm10k_tx_desc *tx_desc;
938 	skb_frag_t *frag;
939 	unsigned char *data;
940 	dma_addr_t dma;
941 	unsigned int data_len, size;
942 	u32 tx_flags = first->tx_flags;
943 	u16 i = tx_ring->next_to_use;
944 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
945 
946 	tx_desc = FM10K_TX_DESC(tx_ring, i);
947 
948 	/* add HW VLAN tag */
949 	if (skb_vlan_tag_present(skb))
950 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
951 	else
952 		tx_desc->vlan = 0;
953 
954 	size = skb_headlen(skb);
955 	data = skb->data;
956 
957 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
958 
959 	data_len = skb->data_len;
960 	tx_buffer = first;
961 
962 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
963 		if (dma_mapping_error(tx_ring->dev, dma))
964 			goto dma_error;
965 
966 		/* record length, and DMA address */
967 		dma_unmap_len_set(tx_buffer, len, size);
968 		dma_unmap_addr_set(tx_buffer, dma, dma);
969 
970 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
971 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
972 					       FM10K_MAX_DATA_PER_TXD, flags)) {
973 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
974 				i = 0;
975 			}
976 
977 			dma += FM10K_MAX_DATA_PER_TXD;
978 			size -= FM10K_MAX_DATA_PER_TXD;
979 		}
980 
981 		if (likely(!data_len))
982 			break;
983 
984 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
985 				       dma, size, flags)) {
986 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
987 			i = 0;
988 		}
989 
990 		size = skb_frag_size(frag);
991 		data_len -= size;
992 
993 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
994 				       DMA_TO_DEVICE);
995 
996 		tx_buffer = &tx_ring->tx_buffer[i];
997 	}
998 
999 	/* write last descriptor with LAST bit set */
1000 	flags |= FM10K_TXD_FLAG_LAST;
1001 
1002 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1003 		i = 0;
1004 
1005 	/* record bytecount for BQL */
1006 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1007 
1008 	/* record SW timestamp if HW timestamp is not available */
1009 	skb_tx_timestamp(first->skb);
1010 
1011 	/* Force memory writes to complete before letting h/w know there
1012 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1013 	 * memory model archs, such as IA-64).
1014 	 *
1015 	 * We also need this memory barrier to make certain all of the
1016 	 * status bits have been updated before next_to_watch is written.
1017 	 */
1018 	wmb();
1019 
1020 	/* set next_to_watch value indicating a packet is present */
1021 	first->next_to_watch = tx_desc;
1022 
1023 	tx_ring->next_to_use = i;
1024 
1025 	/* Make sure there is space in the ring for the next send. */
1026 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1027 
1028 	/* notify HW of packet */
1029 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1030 		writel(i, tx_ring->tail);
1031 	}
1032 
1033 	return;
1034 dma_error:
1035 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1036 
1037 	/* clear dma mappings for failed tx_buffer map */
1038 	for (;;) {
1039 		tx_buffer = &tx_ring->tx_buffer[i];
1040 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1041 		if (tx_buffer == first)
1042 			break;
1043 		if (i == 0)
1044 			i = tx_ring->count;
1045 		i--;
1046 	}
1047 
1048 	tx_ring->next_to_use = i;
1049 }
1050 
1051 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1052 				  struct fm10k_ring *tx_ring)
1053 {
1054 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1055 	struct fm10k_tx_buffer *first;
1056 	unsigned short f;
1057 	u32 tx_flags = 0;
1058 	int tso;
1059 
1060 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1061 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1062 	 *       + 2 desc gap to keep tail from touching head
1063 	 * otherwise try next time
1064 	 */
1065 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1066 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1067 
1068 		count += TXD_USE_COUNT(skb_frag_size(frag));
1069 	}
1070 
1071 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1072 		tx_ring->tx_stats.tx_busy++;
1073 		return NETDEV_TX_BUSY;
1074 	}
1075 
1076 	/* record the location of the first descriptor for this packet */
1077 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1078 	first->skb = skb;
1079 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1080 	first->gso_segs = 1;
1081 
1082 	/* record initial flags and protocol */
1083 	first->tx_flags = tx_flags;
1084 
1085 	tso = fm10k_tso(tx_ring, first);
1086 	if (tso < 0)
1087 		goto out_drop;
1088 	else if (!tso)
1089 		fm10k_tx_csum(tx_ring, first);
1090 
1091 	fm10k_tx_map(tx_ring, first);
1092 
1093 	return NETDEV_TX_OK;
1094 
1095 out_drop:
1096 	dev_kfree_skb_any(first->skb);
1097 	first->skb = NULL;
1098 
1099 	return NETDEV_TX_OK;
1100 }
1101 
1102 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1103 {
1104 	return ring->stats.packets;
1105 }
1106 
1107 /**
1108  * fm10k_get_tx_pending - how many Tx descriptors not processed
1109  * @ring: the ring structure
1110  * @in_sw: is tx_pending being checked in SW or in HW?
1111  */
1112 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1113 {
1114 	struct fm10k_intfc *interface = ring->q_vector->interface;
1115 	struct fm10k_hw *hw = &interface->hw;
1116 	u32 head, tail;
1117 
1118 	if (likely(in_sw)) {
1119 		head = ring->next_to_clean;
1120 		tail = ring->next_to_use;
1121 	} else {
1122 		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1123 		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1124 	}
1125 
1126 	return ((head <= tail) ? tail : tail + ring->count) - head;
1127 }
1128 
1129 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1130 {
1131 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1132 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1133 	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1134 
1135 	clear_check_for_tx_hang(tx_ring);
1136 
1137 	/* Check for a hung queue, but be thorough. This verifies
1138 	 * that a transmit has been completed since the previous
1139 	 * check AND there is at least one packet pending. By
1140 	 * requiring this to fail twice we avoid races with
1141 	 * clearing the ARMED bit and conditions where we
1142 	 * run the check_tx_hang logic with a transmit completion
1143 	 * pending but without time to complete it yet.
1144 	 */
1145 	if (!tx_pending || (tx_done_old != tx_done)) {
1146 		/* update completed stats and continue */
1147 		tx_ring->tx_stats.tx_done_old = tx_done;
1148 		/* reset the countdown */
1149 		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1150 
1151 		return false;
1152 	}
1153 
1154 	/* make sure it is true for two checks in a row */
1155 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1156 }
1157 
1158 /**
1159  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1160  * @interface: driver private struct
1161  **/
1162 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1163 {
1164 	/* Do the reset outside of interrupt context */
1165 	if (!test_bit(__FM10K_DOWN, interface->state)) {
1166 		interface->tx_timeout_count++;
1167 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1168 		fm10k_service_event_schedule(interface);
1169 	}
1170 }
1171 
1172 /**
1173  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1174  * @q_vector: structure containing interrupt and ring information
1175  * @tx_ring: tx ring to clean
1176  * @napi_budget: Used to determine if we are in netpoll
1177  **/
1178 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1179 			       struct fm10k_ring *tx_ring, int napi_budget)
1180 {
1181 	struct fm10k_intfc *interface = q_vector->interface;
1182 	struct fm10k_tx_buffer *tx_buffer;
1183 	struct fm10k_tx_desc *tx_desc;
1184 	unsigned int total_bytes = 0, total_packets = 0;
1185 	unsigned int budget = q_vector->tx.work_limit;
1186 	unsigned int i = tx_ring->next_to_clean;
1187 
1188 	if (test_bit(__FM10K_DOWN, interface->state))
1189 		return true;
1190 
1191 	tx_buffer = &tx_ring->tx_buffer[i];
1192 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1193 	i -= tx_ring->count;
1194 
1195 	do {
1196 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1197 
1198 		/* if next_to_watch is not set then there is no work pending */
1199 		if (!eop_desc)
1200 			break;
1201 
1202 		/* prevent any other reads prior to eop_desc */
1203 		smp_rmb();
1204 
1205 		/* if DD is not set pending work has not been completed */
1206 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1207 			break;
1208 
1209 		/* clear next_to_watch to prevent false hangs */
1210 		tx_buffer->next_to_watch = NULL;
1211 
1212 		/* update the statistics for this packet */
1213 		total_bytes += tx_buffer->bytecount;
1214 		total_packets += tx_buffer->gso_segs;
1215 
1216 		/* free the skb */
1217 		napi_consume_skb(tx_buffer->skb, napi_budget);
1218 
1219 		/* unmap skb header data */
1220 		dma_unmap_single(tx_ring->dev,
1221 				 dma_unmap_addr(tx_buffer, dma),
1222 				 dma_unmap_len(tx_buffer, len),
1223 				 DMA_TO_DEVICE);
1224 
1225 		/* clear tx_buffer data */
1226 		tx_buffer->skb = NULL;
1227 		dma_unmap_len_set(tx_buffer, len, 0);
1228 
1229 		/* unmap remaining buffers */
1230 		while (tx_desc != eop_desc) {
1231 			tx_buffer++;
1232 			tx_desc++;
1233 			i++;
1234 			if (unlikely(!i)) {
1235 				i -= tx_ring->count;
1236 				tx_buffer = tx_ring->tx_buffer;
1237 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1238 			}
1239 
1240 			/* unmap any remaining paged data */
1241 			if (dma_unmap_len(tx_buffer, len)) {
1242 				dma_unmap_page(tx_ring->dev,
1243 					       dma_unmap_addr(tx_buffer, dma),
1244 					       dma_unmap_len(tx_buffer, len),
1245 					       DMA_TO_DEVICE);
1246 				dma_unmap_len_set(tx_buffer, len, 0);
1247 			}
1248 		}
1249 
1250 		/* move us one more past the eop_desc for start of next pkt */
1251 		tx_buffer++;
1252 		tx_desc++;
1253 		i++;
1254 		if (unlikely(!i)) {
1255 			i -= tx_ring->count;
1256 			tx_buffer = tx_ring->tx_buffer;
1257 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1258 		}
1259 
1260 		/* issue prefetch for next Tx descriptor */
1261 		prefetch(tx_desc);
1262 
1263 		/* update budget accounting */
1264 		budget--;
1265 	} while (likely(budget));
1266 
1267 	i += tx_ring->count;
1268 	tx_ring->next_to_clean = i;
1269 	u64_stats_update_begin(&tx_ring->syncp);
1270 	tx_ring->stats.bytes += total_bytes;
1271 	tx_ring->stats.packets += total_packets;
1272 	u64_stats_update_end(&tx_ring->syncp);
1273 	q_vector->tx.total_bytes += total_bytes;
1274 	q_vector->tx.total_packets += total_packets;
1275 
1276 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1277 		/* schedule immediate reset if we believe we hung */
1278 		struct fm10k_hw *hw = &interface->hw;
1279 
1280 		netif_err(interface, drv, tx_ring->netdev,
1281 			  "Detected Tx Unit Hang\n"
1282 			  "  Tx Queue             <%d>\n"
1283 			  "  TDH, TDT             <%x>, <%x>\n"
1284 			  "  next_to_use          <%x>\n"
1285 			  "  next_to_clean        <%x>\n",
1286 			  tx_ring->queue_index,
1287 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1288 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1289 			  tx_ring->next_to_use, i);
1290 
1291 		netif_stop_subqueue(tx_ring->netdev,
1292 				    tx_ring->queue_index);
1293 
1294 		netif_info(interface, probe, tx_ring->netdev,
1295 			   "tx hang %d detected on queue %d, resetting interface\n",
1296 			   interface->tx_timeout_count + 1,
1297 			   tx_ring->queue_index);
1298 
1299 		fm10k_tx_timeout_reset(interface);
1300 
1301 		/* the netdev is about to reset, no point in enabling stuff */
1302 		return true;
1303 	}
1304 
1305 	/* notify netdev of completed buffers */
1306 	netdev_tx_completed_queue(txring_txq(tx_ring),
1307 				  total_packets, total_bytes);
1308 
1309 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1310 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1311 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1312 		/* Make sure that anybody stopping the queue after this
1313 		 * sees the new next_to_clean.
1314 		 */
1315 		smp_mb();
1316 		if (__netif_subqueue_stopped(tx_ring->netdev,
1317 					     tx_ring->queue_index) &&
1318 		    !test_bit(__FM10K_DOWN, interface->state)) {
1319 			netif_wake_subqueue(tx_ring->netdev,
1320 					    tx_ring->queue_index);
1321 			++tx_ring->tx_stats.restart_queue;
1322 		}
1323 	}
1324 
1325 	return !!budget;
1326 }
1327 
1328 /**
1329  * fm10k_update_itr - update the dynamic ITR value based on packet size
1330  *
1331  *      Stores a new ITR value based on strictly on packet size.  The
1332  *      divisors and thresholds used by this function were determined based
1333  *      on theoretical maximum wire speed and testing data, in order to
1334  *      minimize response time while increasing bulk throughput.
1335  *
1336  * @ring_container: Container for rings to have ITR updated
1337  **/
1338 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1339 {
1340 	unsigned int avg_wire_size, packets, itr_round;
1341 
1342 	/* Only update ITR if we are using adaptive setting */
1343 	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1344 		goto clear_counts;
1345 
1346 	packets = ring_container->total_packets;
1347 	if (!packets)
1348 		goto clear_counts;
1349 
1350 	avg_wire_size = ring_container->total_bytes / packets;
1351 
1352 	/* The following is a crude approximation of:
1353 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1354 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1355 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1356 	 *
1357 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1358 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1359 	 * formula down to
1360 	 *
1361 	 *  (34 * (size + 24)) / (size + 640) = ITR
1362 	 *
1363 	 * We first do some math on the packet size and then finally bitshift
1364 	 * by 8 after rounding up. We also have to account for PCIe link speed
1365 	 * difference as ITR scales based on this.
1366 	 */
1367 	if (avg_wire_size <= 360) {
1368 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1369 		avg_wire_size *= 8;
1370 		avg_wire_size += 376;
1371 	} else if (avg_wire_size <= 1152) {
1372 		/* 77K ints/sec to 45K ints/sec */
1373 		avg_wire_size *= 3;
1374 		avg_wire_size += 2176;
1375 	} else if (avg_wire_size <= 1920) {
1376 		/* 45K ints/sec to 38K ints/sec */
1377 		avg_wire_size += 4480;
1378 	} else {
1379 		/* plateau at a limit of 38K ints/sec */
1380 		avg_wire_size = 6656;
1381 	}
1382 
1383 	/* Perform final bitshift for division after rounding up to ensure
1384 	 * that the calculation will never get below a 1. The bit shift
1385 	 * accounts for changes in the ITR due to PCIe link speed.
1386 	 */
1387 	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1388 	avg_wire_size += BIT(itr_round) - 1;
1389 	avg_wire_size >>= itr_round;
1390 
1391 	/* write back value and retain adaptive flag */
1392 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1393 
1394 clear_counts:
1395 	ring_container->total_bytes = 0;
1396 	ring_container->total_packets = 0;
1397 }
1398 
1399 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1400 {
1401 	/* Enable auto-mask and clear the current mask */
1402 	u32 itr = FM10K_ITR_ENABLE;
1403 
1404 	/* Update Tx ITR */
1405 	fm10k_update_itr(&q_vector->tx);
1406 
1407 	/* Update Rx ITR */
1408 	fm10k_update_itr(&q_vector->rx);
1409 
1410 	/* Store Tx itr in timer slot 0 */
1411 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1412 
1413 	/* Shift Rx itr to timer slot 1 */
1414 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1415 
1416 	/* Write the final value to the ITR register */
1417 	writel(itr, q_vector->itr);
1418 }
1419 
1420 static int fm10k_poll(struct napi_struct *napi, int budget)
1421 {
1422 	struct fm10k_q_vector *q_vector =
1423 			       container_of(napi, struct fm10k_q_vector, napi);
1424 	struct fm10k_ring *ring;
1425 	int per_ring_budget, work_done = 0;
1426 	bool clean_complete = true;
1427 
1428 	fm10k_for_each_ring(ring, q_vector->tx) {
1429 		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1430 			clean_complete = false;
1431 	}
1432 
1433 	/* Handle case where we are called by netpoll with a budget of 0 */
1434 	if (budget <= 0)
1435 		return budget;
1436 
1437 	/* attempt to distribute budget to each queue fairly, but don't
1438 	 * allow the budget to go below 1 because we'll exit polling
1439 	 */
1440 	if (q_vector->rx.count > 1)
1441 		per_ring_budget = max(budget / q_vector->rx.count, 1);
1442 	else
1443 		per_ring_budget = budget;
1444 
1445 	fm10k_for_each_ring(ring, q_vector->rx) {
1446 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1447 
1448 		work_done += work;
1449 		if (work >= per_ring_budget)
1450 			clean_complete = false;
1451 	}
1452 
1453 	/* If all work not completed, return budget and keep polling */
1454 	if (!clean_complete)
1455 		return budget;
1456 
1457 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1458 	 * poll us due to busy-polling
1459 	 */
1460 	if (likely(napi_complete_done(napi, work_done)))
1461 		fm10k_qv_enable(q_vector);
1462 
1463 	return min(work_done, budget - 1);
1464 }
1465 
1466 /**
1467  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1468  * @interface: board private structure to initialize
1469  *
1470  * When QoS (Quality of Service) is enabled, allocate queues for
1471  * each traffic class.  If multiqueue isn't available,then abort QoS
1472  * initialization.
1473  *
1474  * This function handles all combinations of Qos and RSS.
1475  *
1476  **/
1477 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1478 {
1479 	struct net_device *dev = interface->netdev;
1480 	struct fm10k_ring_feature *f;
1481 	int rss_i, i;
1482 	int pcs;
1483 
1484 	/* Map queue offset and counts onto allocated tx queues */
1485 	pcs = netdev_get_num_tc(dev);
1486 
1487 	if (pcs <= 1)
1488 		return false;
1489 
1490 	/* set QoS mask and indices */
1491 	f = &interface->ring_feature[RING_F_QOS];
1492 	f->indices = pcs;
1493 	f->mask = BIT(fls(pcs - 1)) - 1;
1494 
1495 	/* determine the upper limit for our current DCB mode */
1496 	rss_i = interface->hw.mac.max_queues / pcs;
1497 	rss_i = BIT(fls(rss_i) - 1);
1498 
1499 	/* set RSS mask and indices */
1500 	f = &interface->ring_feature[RING_F_RSS];
1501 	rss_i = min_t(u16, rss_i, f->limit);
1502 	f->indices = rss_i;
1503 	f->mask = BIT(fls(rss_i - 1)) - 1;
1504 
1505 	/* configure pause class to queue mapping */
1506 	for (i = 0; i < pcs; i++)
1507 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1508 
1509 	interface->num_rx_queues = rss_i * pcs;
1510 	interface->num_tx_queues = rss_i * pcs;
1511 
1512 	return true;
1513 }
1514 
1515 /**
1516  * fm10k_set_rss_queues: Allocate queues for RSS
1517  * @interface: board private structure to initialize
1518  *
1519  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1520  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1521  *
1522  **/
1523 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1524 {
1525 	struct fm10k_ring_feature *f;
1526 	u16 rss_i;
1527 
1528 	f = &interface->ring_feature[RING_F_RSS];
1529 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1530 
1531 	/* record indices and power of 2 mask for RSS */
1532 	f->indices = rss_i;
1533 	f->mask = BIT(fls(rss_i - 1)) - 1;
1534 
1535 	interface->num_rx_queues = rss_i;
1536 	interface->num_tx_queues = rss_i;
1537 
1538 	return true;
1539 }
1540 
1541 /**
1542  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1543  * @interface: board private structure to initialize
1544  *
1545  * This is the top level queue allocation routine.  The order here is very
1546  * important, starting with the "most" number of features turned on at once,
1547  * and ending with the smallest set of features.  This way large combinations
1548  * can be allocated if they're turned on, and smaller combinations are the
1549  * fall through conditions.
1550  *
1551  **/
1552 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1553 {
1554 	/* Attempt to setup QoS and RSS first */
1555 	if (fm10k_set_qos_queues(interface))
1556 		return;
1557 
1558 	/* If we don't have QoS, just fallback to only RSS. */
1559 	fm10k_set_rss_queues(interface);
1560 }
1561 
1562 /**
1563  * fm10k_reset_num_queues - Reset the number of queues to zero
1564  * @interface: board private structure
1565  *
1566  * This function should be called whenever we need to reset the number of
1567  * queues after an error condition.
1568  */
1569 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1570 {
1571 	interface->num_tx_queues = 0;
1572 	interface->num_rx_queues = 0;
1573 	interface->num_q_vectors = 0;
1574 }
1575 
1576 /**
1577  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1578  * @interface: board private structure to initialize
1579  * @v_count: q_vectors allocated on interface, used for ring interleaving
1580  * @v_idx: index of vector in interface struct
1581  * @txr_count: total number of Tx rings to allocate
1582  * @txr_idx: index of first Tx ring to allocate
1583  * @rxr_count: total number of Rx rings to allocate
1584  * @rxr_idx: index of first Rx ring to allocate
1585  *
1586  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1587  **/
1588 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1589 				unsigned int v_count, unsigned int v_idx,
1590 				unsigned int txr_count, unsigned int txr_idx,
1591 				unsigned int rxr_count, unsigned int rxr_idx)
1592 {
1593 	struct fm10k_q_vector *q_vector;
1594 	struct fm10k_ring *ring;
1595 	int ring_count;
1596 
1597 	ring_count = txr_count + rxr_count;
1598 
1599 	/* allocate q_vector and rings */
1600 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1601 	if (!q_vector)
1602 		return -ENOMEM;
1603 
1604 	/* initialize NAPI */
1605 	netif_napi_add(interface->netdev, &q_vector->napi, fm10k_poll);
1606 
1607 	/* tie q_vector and interface together */
1608 	interface->q_vector[v_idx] = q_vector;
1609 	q_vector->interface = interface;
1610 	q_vector->v_idx = v_idx;
1611 
1612 	/* initialize pointer to rings */
1613 	ring = q_vector->ring;
1614 
1615 	/* save Tx ring container info */
1616 	q_vector->tx.ring = ring;
1617 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1618 	q_vector->tx.itr = interface->tx_itr;
1619 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1620 	q_vector->tx.count = txr_count;
1621 
1622 	while (txr_count) {
1623 		/* assign generic ring traits */
1624 		ring->dev = &interface->pdev->dev;
1625 		ring->netdev = interface->netdev;
1626 
1627 		/* configure backlink on ring */
1628 		ring->q_vector = q_vector;
1629 
1630 		/* apply Tx specific ring traits */
1631 		ring->count = interface->tx_ring_count;
1632 		ring->queue_index = txr_idx;
1633 
1634 		/* assign ring to interface */
1635 		interface->tx_ring[txr_idx] = ring;
1636 
1637 		/* update count and index */
1638 		txr_count--;
1639 		txr_idx += v_count;
1640 
1641 		/* push pointer to next ring */
1642 		ring++;
1643 	}
1644 
1645 	/* save Rx ring container info */
1646 	q_vector->rx.ring = ring;
1647 	q_vector->rx.itr = interface->rx_itr;
1648 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1649 	q_vector->rx.count = rxr_count;
1650 
1651 	while (rxr_count) {
1652 		/* assign generic ring traits */
1653 		ring->dev = &interface->pdev->dev;
1654 		ring->netdev = interface->netdev;
1655 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1656 
1657 		/* configure backlink on ring */
1658 		ring->q_vector = q_vector;
1659 
1660 		/* apply Rx specific ring traits */
1661 		ring->count = interface->rx_ring_count;
1662 		ring->queue_index = rxr_idx;
1663 
1664 		/* assign ring to interface */
1665 		interface->rx_ring[rxr_idx] = ring;
1666 
1667 		/* update count and index */
1668 		rxr_count--;
1669 		rxr_idx += v_count;
1670 
1671 		/* push pointer to next ring */
1672 		ring++;
1673 	}
1674 
1675 	fm10k_dbg_q_vector_init(q_vector);
1676 
1677 	return 0;
1678 }
1679 
1680 /**
1681  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1682  * @interface: board private structure to initialize
1683  * @v_idx: Index of vector to be freed
1684  *
1685  * This function frees the memory allocated to the q_vector.  In addition if
1686  * NAPI is enabled it will delete any references to the NAPI struct prior
1687  * to freeing the q_vector.
1688  **/
1689 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1690 {
1691 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1692 	struct fm10k_ring *ring;
1693 
1694 	fm10k_dbg_q_vector_exit(q_vector);
1695 
1696 	fm10k_for_each_ring(ring, q_vector->tx)
1697 		interface->tx_ring[ring->queue_index] = NULL;
1698 
1699 	fm10k_for_each_ring(ring, q_vector->rx)
1700 		interface->rx_ring[ring->queue_index] = NULL;
1701 
1702 	interface->q_vector[v_idx] = NULL;
1703 	netif_napi_del(&q_vector->napi);
1704 	kfree_rcu(q_vector, rcu);
1705 }
1706 
1707 /**
1708  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1709  * @interface: board private structure to initialize
1710  *
1711  * We allocate one q_vector per queue interrupt.  If allocation fails we
1712  * return -ENOMEM.
1713  **/
1714 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1715 {
1716 	unsigned int q_vectors = interface->num_q_vectors;
1717 	unsigned int rxr_remaining = interface->num_rx_queues;
1718 	unsigned int txr_remaining = interface->num_tx_queues;
1719 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1720 	int err;
1721 
1722 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1723 		for (; rxr_remaining; v_idx++) {
1724 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1725 						   0, 0, 1, rxr_idx);
1726 			if (err)
1727 				goto err_out;
1728 
1729 			/* update counts and index */
1730 			rxr_remaining--;
1731 			rxr_idx++;
1732 		}
1733 	}
1734 
1735 	for (; v_idx < q_vectors; v_idx++) {
1736 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1737 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1738 
1739 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1740 					   tqpv, txr_idx,
1741 					   rqpv, rxr_idx);
1742 
1743 		if (err)
1744 			goto err_out;
1745 
1746 		/* update counts and index */
1747 		rxr_remaining -= rqpv;
1748 		txr_remaining -= tqpv;
1749 		rxr_idx++;
1750 		txr_idx++;
1751 	}
1752 
1753 	return 0;
1754 
1755 err_out:
1756 	fm10k_reset_num_queues(interface);
1757 
1758 	while (v_idx--)
1759 		fm10k_free_q_vector(interface, v_idx);
1760 
1761 	return -ENOMEM;
1762 }
1763 
1764 /**
1765  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1766  * @interface: board private structure to initialize
1767  *
1768  * This function frees the memory allocated to the q_vectors.  In addition if
1769  * NAPI is enabled it will delete any references to the NAPI struct prior
1770  * to freeing the q_vector.
1771  **/
1772 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1773 {
1774 	int v_idx = interface->num_q_vectors;
1775 
1776 	fm10k_reset_num_queues(interface);
1777 
1778 	while (v_idx--)
1779 		fm10k_free_q_vector(interface, v_idx);
1780 }
1781 
1782 /**
1783  * fm10k_reset_msix_capability - reset MSI-X capability
1784  * @interface: board private structure to initialize
1785  *
1786  * Reset the MSI-X capability back to its starting state
1787  **/
1788 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1789 {
1790 	pci_disable_msix(interface->pdev);
1791 	kfree(interface->msix_entries);
1792 	interface->msix_entries = NULL;
1793 }
1794 
1795 /**
1796  * fm10k_init_msix_capability - configure MSI-X capability
1797  * @interface: board private structure to initialize
1798  *
1799  * Attempt to configure the interrupts using the best available
1800  * capabilities of the hardware and the kernel.
1801  **/
1802 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1803 {
1804 	struct fm10k_hw *hw = &interface->hw;
1805 	int v_budget, vector;
1806 
1807 	/* It's easy to be greedy for MSI-X vectors, but it really
1808 	 * doesn't do us much good if we have a lot more vectors
1809 	 * than CPU's.  So let's be conservative and only ask for
1810 	 * (roughly) the same number of vectors as there are CPU's.
1811 	 * the default is to use pairs of vectors
1812 	 */
1813 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1814 	v_budget = min_t(u16, v_budget, num_online_cpus());
1815 
1816 	/* account for vectors not related to queues */
1817 	v_budget += NON_Q_VECTORS;
1818 
1819 	/* At the same time, hardware can only support a maximum of
1820 	 * hw.mac->max_msix_vectors vectors.  With features
1821 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1822 	 * descriptor queues supported by our device.  Thus, we cap it off in
1823 	 * those rare cases where the cpu count also exceeds our vector limit.
1824 	 */
1825 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1826 
1827 	/* A failure in MSI-X entry allocation is fatal. */
1828 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1829 					  GFP_KERNEL);
1830 	if (!interface->msix_entries)
1831 		return -ENOMEM;
1832 
1833 	/* populate entry values */
1834 	for (vector = 0; vector < v_budget; vector++)
1835 		interface->msix_entries[vector].entry = vector;
1836 
1837 	/* Attempt to enable MSI-X with requested value */
1838 	v_budget = pci_enable_msix_range(interface->pdev,
1839 					 interface->msix_entries,
1840 					 MIN_MSIX_COUNT(hw),
1841 					 v_budget);
1842 	if (v_budget < 0) {
1843 		kfree(interface->msix_entries);
1844 		interface->msix_entries = NULL;
1845 		return v_budget;
1846 	}
1847 
1848 	/* record the number of queues available for q_vectors */
1849 	interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1856  * @interface: Interface structure continaining rings and devices
1857  *
1858  * Cache the descriptor ring offsets for Qos
1859  **/
1860 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1861 {
1862 	struct net_device *dev = interface->netdev;
1863 	int pc, offset, rss_i, i;
1864 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1865 	u8 num_pcs = netdev_get_num_tc(dev);
1866 
1867 	if (num_pcs <= 1)
1868 		return false;
1869 
1870 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1871 
1872 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1873 		int q_idx = pc;
1874 
1875 		for (i = 0; i < rss_i; i++) {
1876 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1877 			interface->tx_ring[offset + i]->qos_pc = pc;
1878 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1879 			interface->rx_ring[offset + i]->qos_pc = pc;
1880 			q_idx += pc_stride;
1881 		}
1882 	}
1883 
1884 	return true;
1885 }
1886 
1887 /**
1888  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1889  * @interface: Interface structure continaining rings and devices
1890  *
1891  * Cache the descriptor ring offsets for RSS
1892  **/
1893 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1894 {
1895 	int i;
1896 
1897 	for (i = 0; i < interface->num_rx_queues; i++)
1898 		interface->rx_ring[i]->reg_idx = i;
1899 
1900 	for (i = 0; i < interface->num_tx_queues; i++)
1901 		interface->tx_ring[i]->reg_idx = i;
1902 }
1903 
1904 /**
1905  * fm10k_assign_rings - Map rings to network devices
1906  * @interface: Interface structure containing rings and devices
1907  *
1908  * This function is meant to go though and configure both the network
1909  * devices so that they contain rings, and configure the rings so that
1910  * they function with their network devices.
1911  **/
1912 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1913 {
1914 	if (fm10k_cache_ring_qos(interface))
1915 		return;
1916 
1917 	fm10k_cache_ring_rss(interface);
1918 }
1919 
1920 static void fm10k_init_reta(struct fm10k_intfc *interface)
1921 {
1922 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1923 	u32 reta;
1924 
1925 	/* If the Rx flow indirection table has been configured manually, we
1926 	 * need to maintain it when possible.
1927 	 */
1928 	if (netif_is_rxfh_configured(interface->netdev)) {
1929 		for (i = FM10K_RETA_SIZE; i--;) {
1930 			reta = interface->reta[i];
1931 			if ((((reta << 24) >> 24) < rss_i) &&
1932 			    (((reta << 16) >> 24) < rss_i) &&
1933 			    (((reta <<  8) >> 24) < rss_i) &&
1934 			    (((reta)       >> 24) < rss_i))
1935 				continue;
1936 
1937 			/* this should never happen */
1938 			dev_err(&interface->pdev->dev,
1939 				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1940 			goto repopulate_reta;
1941 		}
1942 
1943 		/* do nothing if all of the elements are in bounds */
1944 		return;
1945 	}
1946 
1947 repopulate_reta:
1948 	fm10k_write_reta(interface, NULL);
1949 }
1950 
1951 /**
1952  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1953  * @interface: board private structure to initialize
1954  *
1955  * We determine which queueing scheme to use based on...
1956  * - Hardware queue count (num_*_queues)
1957  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1958  **/
1959 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1960 {
1961 	int err;
1962 
1963 	/* Number of supported queues */
1964 	fm10k_set_num_queues(interface);
1965 
1966 	/* Configure MSI-X capability */
1967 	err = fm10k_init_msix_capability(interface);
1968 	if (err) {
1969 		dev_err(&interface->pdev->dev,
1970 			"Unable to initialize MSI-X capability\n");
1971 		goto err_init_msix;
1972 	}
1973 
1974 	/* Allocate memory for queues */
1975 	err = fm10k_alloc_q_vectors(interface);
1976 	if (err) {
1977 		dev_err(&interface->pdev->dev,
1978 			"Unable to allocate queue vectors\n");
1979 		goto err_alloc_q_vectors;
1980 	}
1981 
1982 	/* Map rings to devices, and map devices to physical queues */
1983 	fm10k_assign_rings(interface);
1984 
1985 	/* Initialize RSS redirection table */
1986 	fm10k_init_reta(interface);
1987 
1988 	return 0;
1989 
1990 err_alloc_q_vectors:
1991 	fm10k_reset_msix_capability(interface);
1992 err_init_msix:
1993 	fm10k_reset_num_queues(interface);
1994 	return err;
1995 }
1996 
1997 /**
1998  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1999  * @interface: board private structure to clear queueing scheme on
2000  *
2001  * We go through and clear queueing specific resources and reset the structure
2002  * to pre-load conditions
2003  **/
2004 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2005 {
2006 	fm10k_free_q_vectors(interface);
2007 	fm10k_reset_msix_capability(interface);
2008 }
2009