1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2019 Intel Corporation. */ 3 4 #include <linux/types.h> 5 #include <linux/module.h> 6 #include <net/ipv6.h> 7 #include <net/ip.h> 8 #include <net/tcp.h> 9 #include <linux/if_macvlan.h> 10 #include <linux/prefetch.h> 11 12 #include "fm10k.h" 13 14 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" 15 char fm10k_driver_name[] = "fm10k"; 16 static const char fm10k_driver_string[] = DRV_SUMMARY; 17 static const char fm10k_copyright[] = 18 "Copyright(c) 2013 - 2019 Intel Corporation."; 19 20 MODULE_DESCRIPTION(DRV_SUMMARY); 21 MODULE_LICENSE("GPL v2"); 22 23 /* single workqueue for entire fm10k driver */ 24 struct workqueue_struct *fm10k_workqueue; 25 26 /** 27 * fm10k_init_module - Driver Registration Routine 28 * 29 * fm10k_init_module is the first routine called when the driver is 30 * loaded. All it does is register with the PCI subsystem. 31 **/ 32 static int __init fm10k_init_module(void) 33 { 34 int ret; 35 36 pr_info("%s\n", fm10k_driver_string); 37 pr_info("%s\n", fm10k_copyright); 38 39 /* create driver workqueue */ 40 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, 41 fm10k_driver_name); 42 if (!fm10k_workqueue) 43 return -ENOMEM; 44 45 fm10k_dbg_init(); 46 47 ret = fm10k_register_pci_driver(); 48 if (ret) { 49 fm10k_dbg_exit(); 50 destroy_workqueue(fm10k_workqueue); 51 } 52 53 return ret; 54 } 55 module_init(fm10k_init_module); 56 57 /** 58 * fm10k_exit_module - Driver Exit Cleanup Routine 59 * 60 * fm10k_exit_module is called just before the driver is removed 61 * from memory. 62 **/ 63 static void __exit fm10k_exit_module(void) 64 { 65 fm10k_unregister_pci_driver(); 66 67 fm10k_dbg_exit(); 68 69 /* destroy driver workqueue */ 70 destroy_workqueue(fm10k_workqueue); 71 } 72 module_exit(fm10k_exit_module); 73 74 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 75 struct fm10k_rx_buffer *bi) 76 { 77 struct page *page = bi->page; 78 dma_addr_t dma; 79 80 /* Only page will be NULL if buffer was consumed */ 81 if (likely(page)) 82 return true; 83 84 /* alloc new page for storage */ 85 page = dev_alloc_page(); 86 if (unlikely(!page)) { 87 rx_ring->rx_stats.alloc_failed++; 88 return false; 89 } 90 91 /* map page for use */ 92 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 93 94 /* if mapping failed free memory back to system since 95 * there isn't much point in holding memory we can't use 96 */ 97 if (dma_mapping_error(rx_ring->dev, dma)) { 98 __free_page(page); 99 100 rx_ring->rx_stats.alloc_failed++; 101 return false; 102 } 103 104 bi->dma = dma; 105 bi->page = page; 106 bi->page_offset = 0; 107 108 return true; 109 } 110 111 /** 112 * fm10k_alloc_rx_buffers - Replace used receive buffers 113 * @rx_ring: ring to place buffers on 114 * @cleaned_count: number of buffers to replace 115 **/ 116 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 117 { 118 union fm10k_rx_desc *rx_desc; 119 struct fm10k_rx_buffer *bi; 120 u16 i = rx_ring->next_to_use; 121 122 /* nothing to do */ 123 if (!cleaned_count) 124 return; 125 126 rx_desc = FM10K_RX_DESC(rx_ring, i); 127 bi = &rx_ring->rx_buffer[i]; 128 i -= rx_ring->count; 129 130 do { 131 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 132 break; 133 134 /* Refresh the desc even if buffer_addrs didn't change 135 * because each write-back erases this info. 136 */ 137 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 138 139 rx_desc++; 140 bi++; 141 i++; 142 if (unlikely(!i)) { 143 rx_desc = FM10K_RX_DESC(rx_ring, 0); 144 bi = rx_ring->rx_buffer; 145 i -= rx_ring->count; 146 } 147 148 /* clear the status bits for the next_to_use descriptor */ 149 rx_desc->d.staterr = 0; 150 151 cleaned_count--; 152 } while (cleaned_count); 153 154 i += rx_ring->count; 155 156 if (rx_ring->next_to_use != i) { 157 /* record the next descriptor to use */ 158 rx_ring->next_to_use = i; 159 160 /* update next to alloc since we have filled the ring */ 161 rx_ring->next_to_alloc = i; 162 163 /* Force memory writes to complete before letting h/w 164 * know there are new descriptors to fetch. (Only 165 * applicable for weak-ordered memory model archs, 166 * such as IA-64). 167 */ 168 wmb(); 169 170 /* notify hardware of new descriptors */ 171 writel(i, rx_ring->tail); 172 } 173 } 174 175 /** 176 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 177 * @rx_ring: rx descriptor ring to store buffers on 178 * @old_buff: donor buffer to have page reused 179 * 180 * Synchronizes page for reuse by the interface 181 **/ 182 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 183 struct fm10k_rx_buffer *old_buff) 184 { 185 struct fm10k_rx_buffer *new_buff; 186 u16 nta = rx_ring->next_to_alloc; 187 188 new_buff = &rx_ring->rx_buffer[nta]; 189 190 /* update, and store next to alloc */ 191 nta++; 192 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 193 194 /* transfer page from old buffer to new buffer */ 195 *new_buff = *old_buff; 196 197 /* sync the buffer for use by the device */ 198 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 199 old_buff->page_offset, 200 FM10K_RX_BUFSZ, 201 DMA_FROM_DEVICE); 202 } 203 204 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 205 struct page *page, 206 unsigned int __maybe_unused truesize) 207 { 208 /* avoid re-using remote and pfmemalloc pages */ 209 if (!dev_page_is_reusable(page)) 210 return false; 211 212 #if (PAGE_SIZE < 8192) 213 /* if we are only owner of page we can reuse it */ 214 if (unlikely(page_count(page) != 1)) 215 return false; 216 217 /* flip page offset to other buffer */ 218 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 219 #else 220 /* move offset up to the next cache line */ 221 rx_buffer->page_offset += truesize; 222 223 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 224 return false; 225 #endif 226 227 /* Even if we own the page, we are not allowed to use atomic_set() 228 * This would break get_page_unless_zero() users. 229 */ 230 page_ref_inc(page); 231 232 return true; 233 } 234 235 /** 236 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 237 * @rx_buffer: buffer containing page to add 238 * @size: packet size from rx_desc 239 * @rx_desc: descriptor containing length of buffer written by hardware 240 * @skb: sk_buff to place the data into 241 * 242 * This function will add the data contained in rx_buffer->page to the skb. 243 * This is done either through a direct copy if the data in the buffer is 244 * less than the skb header size, otherwise it will just attach the page as 245 * a frag to the skb. 246 * 247 * The function will then update the page offset if necessary and return 248 * true if the buffer can be reused by the interface. 249 **/ 250 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 251 unsigned int size, 252 union fm10k_rx_desc *rx_desc, 253 struct sk_buff *skb) 254 { 255 struct page *page = rx_buffer->page; 256 unsigned char *va = page_address(page) + rx_buffer->page_offset; 257 #if (PAGE_SIZE < 8192) 258 unsigned int truesize = FM10K_RX_BUFSZ; 259 #else 260 unsigned int truesize = ALIGN(size, 512); 261 #endif 262 unsigned int pull_len; 263 264 if (unlikely(skb_is_nonlinear(skb))) 265 goto add_tail_frag; 266 267 if (likely(size <= FM10K_RX_HDR_LEN)) { 268 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 269 270 /* page is reusable, we can reuse buffer as-is */ 271 if (dev_page_is_reusable(page)) 272 return true; 273 274 /* this page cannot be reused so discard it */ 275 __free_page(page); 276 return false; 277 } 278 279 /* we need the header to contain the greater of either ETH_HLEN or 280 * 60 bytes if the skb->len is less than 60 for skb_pad. 281 */ 282 pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN); 283 284 /* align pull length to size of long to optimize memcpy performance */ 285 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 286 287 /* update all of the pointers */ 288 va += pull_len; 289 size -= pull_len; 290 291 add_tail_frag: 292 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 293 (unsigned long)va & ~PAGE_MASK, size, truesize); 294 295 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 296 } 297 298 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 299 union fm10k_rx_desc *rx_desc, 300 struct sk_buff *skb) 301 { 302 unsigned int size = le16_to_cpu(rx_desc->w.length); 303 struct fm10k_rx_buffer *rx_buffer; 304 struct page *page; 305 306 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 307 page = rx_buffer->page; 308 prefetchw(page); 309 310 if (likely(!skb)) { 311 void *page_addr = page_address(page) + 312 rx_buffer->page_offset; 313 314 /* prefetch first cache line of first page */ 315 net_prefetch(page_addr); 316 317 /* allocate a skb to store the frags */ 318 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 319 FM10K_RX_HDR_LEN); 320 if (unlikely(!skb)) { 321 rx_ring->rx_stats.alloc_failed++; 322 return NULL; 323 } 324 325 /* we will be copying header into skb->data in 326 * pskb_may_pull so it is in our interest to prefetch 327 * it now to avoid a possible cache miss 328 */ 329 prefetchw(skb->data); 330 } 331 332 /* we are reusing so sync this buffer for CPU use */ 333 dma_sync_single_range_for_cpu(rx_ring->dev, 334 rx_buffer->dma, 335 rx_buffer->page_offset, 336 size, 337 DMA_FROM_DEVICE); 338 339 /* pull page into skb */ 340 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { 341 /* hand second half of page back to the ring */ 342 fm10k_reuse_rx_page(rx_ring, rx_buffer); 343 } else { 344 /* we are not reusing the buffer so unmap it */ 345 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 346 PAGE_SIZE, DMA_FROM_DEVICE); 347 } 348 349 /* clear contents of rx_buffer */ 350 rx_buffer->page = NULL; 351 352 return skb; 353 } 354 355 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 356 union fm10k_rx_desc *rx_desc, 357 struct sk_buff *skb) 358 { 359 skb_checksum_none_assert(skb); 360 361 /* Rx checksum disabled via ethtool */ 362 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 363 return; 364 365 /* TCP/UDP checksum error bit is set */ 366 if (fm10k_test_staterr(rx_desc, 367 FM10K_RXD_STATUS_L4E | 368 FM10K_RXD_STATUS_L4E2 | 369 FM10K_RXD_STATUS_IPE | 370 FM10K_RXD_STATUS_IPE2)) { 371 ring->rx_stats.csum_err++; 372 return; 373 } 374 375 /* It must be a TCP or UDP packet with a valid checksum */ 376 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 377 skb->encapsulation = true; 378 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 379 return; 380 381 skb->ip_summed = CHECKSUM_UNNECESSARY; 382 383 ring->rx_stats.csum_good++; 384 } 385 386 #define FM10K_RSS_L4_TYPES_MASK \ 387 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ 388 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ 389 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ 390 BIT(FM10K_RSSTYPE_IPV6_UDP)) 391 392 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 393 union fm10k_rx_desc *rx_desc, 394 struct sk_buff *skb) 395 { 396 u16 rss_type; 397 398 if (!(ring->netdev->features & NETIF_F_RXHASH)) 399 return; 400 401 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 402 if (!rss_type) 403 return; 404 405 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 406 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? 407 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 408 } 409 410 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 411 union fm10k_rx_desc __maybe_unused *rx_desc, 412 struct sk_buff *skb) 413 { 414 struct net_device *dev = rx_ring->netdev; 415 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 416 417 /* check to see if DGLORT belongs to a MACVLAN */ 418 if (l2_accel) { 419 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 420 421 idx -= l2_accel->dglort; 422 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 423 dev = l2_accel->macvlan[idx]; 424 else 425 l2_accel = NULL; 426 } 427 428 /* Record Rx queue, or update macvlan statistics */ 429 if (!l2_accel) 430 skb_record_rx_queue(skb, rx_ring->queue_index); 431 else 432 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, 433 false); 434 435 skb->protocol = eth_type_trans(skb, dev); 436 } 437 438 /** 439 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 440 * @rx_ring: rx descriptor ring packet is being transacted on 441 * @rx_desc: pointer to the EOP Rx descriptor 442 * @skb: pointer to current skb being populated 443 * 444 * This function checks the ring, descriptor, and packet information in 445 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 446 * other fields within the skb. 447 **/ 448 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 449 union fm10k_rx_desc *rx_desc, 450 struct sk_buff *skb) 451 { 452 unsigned int len = skb->len; 453 454 fm10k_rx_hash(rx_ring, rx_desc, skb); 455 456 fm10k_rx_checksum(rx_ring, rx_desc, skb); 457 458 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 459 460 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 461 462 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 463 464 if (rx_desc->w.vlan) { 465 u16 vid = le16_to_cpu(rx_desc->w.vlan); 466 467 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 468 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 469 else if (vid & VLAN_PRIO_MASK) 470 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 471 vid & VLAN_PRIO_MASK); 472 } 473 474 fm10k_type_trans(rx_ring, rx_desc, skb); 475 476 return len; 477 } 478 479 /** 480 * fm10k_is_non_eop - process handling of non-EOP buffers 481 * @rx_ring: Rx ring being processed 482 * @rx_desc: Rx descriptor for current buffer 483 * 484 * This function updates next to clean. If the buffer is an EOP buffer 485 * this function exits returning false, otherwise it will place the 486 * sk_buff in the next buffer to be chained and return true indicating 487 * that this is in fact a non-EOP buffer. 488 **/ 489 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 490 union fm10k_rx_desc *rx_desc) 491 { 492 u32 ntc = rx_ring->next_to_clean + 1; 493 494 /* fetch, update, and store next to clean */ 495 ntc = (ntc < rx_ring->count) ? ntc : 0; 496 rx_ring->next_to_clean = ntc; 497 498 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 499 500 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 501 return false; 502 503 return true; 504 } 505 506 /** 507 * fm10k_cleanup_headers - Correct corrupted or empty headers 508 * @rx_ring: rx descriptor ring packet is being transacted on 509 * @rx_desc: pointer to the EOP Rx descriptor 510 * @skb: pointer to current skb being fixed 511 * 512 * Address the case where we are pulling data in on pages only 513 * and as such no data is present in the skb header. 514 * 515 * In addition if skb is not at least 60 bytes we need to pad it so that 516 * it is large enough to qualify as a valid Ethernet frame. 517 * 518 * Returns true if an error was encountered and skb was freed. 519 **/ 520 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 521 union fm10k_rx_desc *rx_desc, 522 struct sk_buff *skb) 523 { 524 if (unlikely((fm10k_test_staterr(rx_desc, 525 FM10K_RXD_STATUS_RXE)))) { 526 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 527 ((rxd)->w.csum_err & cpu_to_le16(bit)) 528 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 529 rx_ring->rx_stats.switch_errors++; 530 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 531 rx_ring->rx_stats.drops++; 532 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 533 rx_ring->rx_stats.pp_errors++; 534 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 535 rx_ring->rx_stats.link_errors++; 536 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 537 rx_ring->rx_stats.length_errors++; 538 dev_kfree_skb_any(skb); 539 rx_ring->rx_stats.errors++; 540 return true; 541 } 542 543 /* if eth_skb_pad returns an error the skb was freed */ 544 if (eth_skb_pad(skb)) 545 return true; 546 547 return false; 548 } 549 550 /** 551 * fm10k_receive_skb - helper function to handle rx indications 552 * @q_vector: structure containing interrupt and ring information 553 * @skb: packet to send up 554 **/ 555 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 556 struct sk_buff *skb) 557 { 558 napi_gro_receive(&q_vector->napi, skb); 559 } 560 561 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 562 struct fm10k_ring *rx_ring, 563 int budget) 564 { 565 struct sk_buff *skb = rx_ring->skb; 566 unsigned int total_bytes = 0, total_packets = 0; 567 u16 cleaned_count = fm10k_desc_unused(rx_ring); 568 569 while (likely(total_packets < budget)) { 570 union fm10k_rx_desc *rx_desc; 571 572 /* return some buffers to hardware, one at a time is too slow */ 573 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 574 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 575 cleaned_count = 0; 576 } 577 578 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 579 580 if (!rx_desc->d.staterr) 581 break; 582 583 /* This memory barrier is needed to keep us from reading 584 * any other fields out of the rx_desc until we know the 585 * descriptor has been written back 586 */ 587 dma_rmb(); 588 589 /* retrieve a buffer from the ring */ 590 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 591 592 /* exit if we failed to retrieve a buffer */ 593 if (!skb) 594 break; 595 596 cleaned_count++; 597 598 /* fetch next buffer in frame if non-eop */ 599 if (fm10k_is_non_eop(rx_ring, rx_desc)) 600 continue; 601 602 /* verify the packet layout is correct */ 603 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 604 skb = NULL; 605 continue; 606 } 607 608 /* populate checksum, timestamp, VLAN, and protocol */ 609 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 610 611 fm10k_receive_skb(q_vector, skb); 612 613 /* reset skb pointer */ 614 skb = NULL; 615 616 /* update budget accounting */ 617 total_packets++; 618 } 619 620 /* place incomplete frames back on ring for completion */ 621 rx_ring->skb = skb; 622 623 u64_stats_update_begin(&rx_ring->syncp); 624 rx_ring->stats.packets += total_packets; 625 rx_ring->stats.bytes += total_bytes; 626 u64_stats_update_end(&rx_ring->syncp); 627 q_vector->rx.total_packets += total_packets; 628 q_vector->rx.total_bytes += total_bytes; 629 630 return total_packets; 631 } 632 633 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 634 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 635 { 636 struct fm10k_intfc *interface = netdev_priv(skb->dev); 637 638 if (interface->vxlan_port != udp_hdr(skb)->dest) 639 return NULL; 640 641 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 642 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 643 } 644 645 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 646 #define NVGRE_TNI htons(0x2000) 647 struct fm10k_nvgre_hdr { 648 __be16 flags; 649 __be16 proto; 650 __be32 tni; 651 }; 652 653 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 654 { 655 struct fm10k_nvgre_hdr *nvgre_hdr; 656 int hlen = ip_hdrlen(skb); 657 658 /* currently only IPv4 is supported due to hlen above */ 659 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 660 return NULL; 661 662 /* our transport header should be NVGRE */ 663 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 664 665 /* verify all reserved flags are 0 */ 666 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 667 return NULL; 668 669 /* report start of ethernet header */ 670 if (nvgre_hdr->flags & NVGRE_TNI) 671 return (struct ethhdr *)(nvgre_hdr + 1); 672 673 return (struct ethhdr *)(&nvgre_hdr->tni); 674 } 675 676 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 677 { 678 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 679 struct ethhdr *eth_hdr; 680 681 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 682 skb->inner_protocol != htons(ETH_P_TEB)) 683 return 0; 684 685 switch (vlan_get_protocol(skb)) { 686 case htons(ETH_P_IP): 687 l4_hdr = ip_hdr(skb)->protocol; 688 break; 689 case htons(ETH_P_IPV6): 690 l4_hdr = ipv6_hdr(skb)->nexthdr; 691 break; 692 default: 693 return 0; 694 } 695 696 switch (l4_hdr) { 697 case IPPROTO_UDP: 698 eth_hdr = fm10k_port_is_vxlan(skb); 699 break; 700 case IPPROTO_GRE: 701 eth_hdr = fm10k_gre_is_nvgre(skb); 702 break; 703 default: 704 return 0; 705 } 706 707 if (!eth_hdr) 708 return 0; 709 710 switch (eth_hdr->h_proto) { 711 case htons(ETH_P_IP): 712 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 713 break; 714 case htons(ETH_P_IPV6): 715 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 716 break; 717 default: 718 return 0; 719 } 720 721 switch (inner_l4_hdr) { 722 case IPPROTO_TCP: 723 inner_l4_hlen = inner_tcp_hdrlen(skb); 724 break; 725 case IPPROTO_UDP: 726 inner_l4_hlen = 8; 727 break; 728 default: 729 return 0; 730 } 731 732 /* The hardware allows tunnel offloads only if the combined inner and 733 * outer header is 184 bytes or less 734 */ 735 if (skb_inner_transport_header(skb) + inner_l4_hlen - 736 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 737 return 0; 738 739 return eth_hdr->h_proto; 740 } 741 742 static int fm10k_tso(struct fm10k_ring *tx_ring, 743 struct fm10k_tx_buffer *first) 744 { 745 struct sk_buff *skb = first->skb; 746 struct fm10k_tx_desc *tx_desc; 747 unsigned char *th; 748 u8 hdrlen; 749 750 if (skb->ip_summed != CHECKSUM_PARTIAL) 751 return 0; 752 753 if (!skb_is_gso(skb)) 754 return 0; 755 756 /* compute header lengths */ 757 if (skb->encapsulation) { 758 if (!fm10k_tx_encap_offload(skb)) 759 goto err_vxlan; 760 th = skb_inner_transport_header(skb); 761 } else { 762 th = skb_transport_header(skb); 763 } 764 765 /* compute offset from SOF to transport header and add header len */ 766 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 767 768 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 769 770 /* update gso size and bytecount with header size */ 771 first->gso_segs = skb_shinfo(skb)->gso_segs; 772 first->bytecount += (first->gso_segs - 1) * hdrlen; 773 774 /* populate Tx descriptor header size and mss */ 775 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 776 tx_desc->hdrlen = hdrlen; 777 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 778 779 return 1; 780 781 err_vxlan: 782 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 783 if (net_ratelimit()) 784 netdev_err(tx_ring->netdev, 785 "TSO requested for unsupported tunnel, disabling offload\n"); 786 return -1; 787 } 788 789 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 790 struct fm10k_tx_buffer *first) 791 { 792 struct sk_buff *skb = first->skb; 793 struct fm10k_tx_desc *tx_desc; 794 union { 795 struct iphdr *ipv4; 796 struct ipv6hdr *ipv6; 797 u8 *raw; 798 } network_hdr; 799 u8 *transport_hdr; 800 __be16 frag_off; 801 __be16 protocol; 802 u8 l4_hdr = 0; 803 804 if (skb->ip_summed != CHECKSUM_PARTIAL) 805 goto no_csum; 806 807 if (skb->encapsulation) { 808 protocol = fm10k_tx_encap_offload(skb); 809 if (!protocol) { 810 if (skb_checksum_help(skb)) { 811 dev_warn(tx_ring->dev, 812 "failed to offload encap csum!\n"); 813 tx_ring->tx_stats.csum_err++; 814 } 815 goto no_csum; 816 } 817 network_hdr.raw = skb_inner_network_header(skb); 818 transport_hdr = skb_inner_transport_header(skb); 819 } else { 820 protocol = vlan_get_protocol(skb); 821 network_hdr.raw = skb_network_header(skb); 822 transport_hdr = skb_transport_header(skb); 823 } 824 825 switch (protocol) { 826 case htons(ETH_P_IP): 827 l4_hdr = network_hdr.ipv4->protocol; 828 break; 829 case htons(ETH_P_IPV6): 830 l4_hdr = network_hdr.ipv6->nexthdr; 831 if (likely((transport_hdr - network_hdr.raw) == 832 sizeof(struct ipv6hdr))) 833 break; 834 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + 835 sizeof(struct ipv6hdr), 836 &l4_hdr, &frag_off); 837 if (unlikely(frag_off)) 838 l4_hdr = NEXTHDR_FRAGMENT; 839 break; 840 default: 841 break; 842 } 843 844 switch (l4_hdr) { 845 case IPPROTO_TCP: 846 case IPPROTO_UDP: 847 break; 848 case IPPROTO_GRE: 849 if (skb->encapsulation) 850 break; 851 fallthrough; 852 default: 853 if (unlikely(net_ratelimit())) { 854 dev_warn(tx_ring->dev, 855 "partial checksum, version=%d l4 proto=%x\n", 856 protocol, l4_hdr); 857 } 858 skb_checksum_help(skb); 859 tx_ring->tx_stats.csum_err++; 860 goto no_csum; 861 } 862 863 /* update TX checksum flag */ 864 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 865 tx_ring->tx_stats.csum_good++; 866 867 no_csum: 868 /* populate Tx descriptor header size and mss */ 869 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 870 tx_desc->hdrlen = 0; 871 tx_desc->mss = 0; 872 } 873 874 #define FM10K_SET_FLAG(_input, _flag, _result) \ 875 ((_flag <= _result) ? \ 876 ((u32)(_input & _flag) * (_result / _flag)) : \ 877 ((u32)(_input & _flag) / (_flag / _result))) 878 879 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 880 { 881 /* set type for advanced descriptor with frame checksum insertion */ 882 u32 desc_flags = 0; 883 884 /* set checksum offload bits */ 885 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 886 FM10K_TXD_FLAG_CSUM); 887 888 return desc_flags; 889 } 890 891 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 892 struct fm10k_tx_desc *tx_desc, u16 i, 893 dma_addr_t dma, unsigned int size, u8 desc_flags) 894 { 895 /* set RS and INT for last frame in a cache line */ 896 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 897 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 898 899 /* record values to descriptor */ 900 tx_desc->buffer_addr = cpu_to_le64(dma); 901 tx_desc->flags = desc_flags; 902 tx_desc->buflen = cpu_to_le16(size); 903 904 /* return true if we just wrapped the ring */ 905 return i == tx_ring->count; 906 } 907 908 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 909 { 910 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 911 912 /* Memory barrier before checking head and tail */ 913 smp_mb(); 914 915 /* Check again in a case another CPU has just made room available */ 916 if (likely(fm10k_desc_unused(tx_ring) < size)) 917 return -EBUSY; 918 919 /* A reprieve! - use start_queue because it doesn't call schedule */ 920 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 921 ++tx_ring->tx_stats.restart_queue; 922 return 0; 923 } 924 925 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 926 { 927 if (likely(fm10k_desc_unused(tx_ring) >= size)) 928 return 0; 929 return __fm10k_maybe_stop_tx(tx_ring, size); 930 } 931 932 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 933 struct fm10k_tx_buffer *first) 934 { 935 struct sk_buff *skb = first->skb; 936 struct fm10k_tx_buffer *tx_buffer; 937 struct fm10k_tx_desc *tx_desc; 938 skb_frag_t *frag; 939 unsigned char *data; 940 dma_addr_t dma; 941 unsigned int data_len, size; 942 u32 tx_flags = first->tx_flags; 943 u16 i = tx_ring->next_to_use; 944 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 945 946 tx_desc = FM10K_TX_DESC(tx_ring, i); 947 948 /* add HW VLAN tag */ 949 if (skb_vlan_tag_present(skb)) 950 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 951 else 952 tx_desc->vlan = 0; 953 954 size = skb_headlen(skb); 955 data = skb->data; 956 957 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 958 959 data_len = skb->data_len; 960 tx_buffer = first; 961 962 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 963 if (dma_mapping_error(tx_ring->dev, dma)) 964 goto dma_error; 965 966 /* record length, and DMA address */ 967 dma_unmap_len_set(tx_buffer, len, size); 968 dma_unmap_addr_set(tx_buffer, dma, dma); 969 970 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 971 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 972 FM10K_MAX_DATA_PER_TXD, flags)) { 973 tx_desc = FM10K_TX_DESC(tx_ring, 0); 974 i = 0; 975 } 976 977 dma += FM10K_MAX_DATA_PER_TXD; 978 size -= FM10K_MAX_DATA_PER_TXD; 979 } 980 981 if (likely(!data_len)) 982 break; 983 984 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 985 dma, size, flags)) { 986 tx_desc = FM10K_TX_DESC(tx_ring, 0); 987 i = 0; 988 } 989 990 size = skb_frag_size(frag); 991 data_len -= size; 992 993 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 994 DMA_TO_DEVICE); 995 996 tx_buffer = &tx_ring->tx_buffer[i]; 997 } 998 999 /* write last descriptor with LAST bit set */ 1000 flags |= FM10K_TXD_FLAG_LAST; 1001 1002 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1003 i = 0; 1004 1005 /* record bytecount for BQL */ 1006 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1007 1008 /* record SW timestamp if HW timestamp is not available */ 1009 skb_tx_timestamp(first->skb); 1010 1011 /* Force memory writes to complete before letting h/w know there 1012 * are new descriptors to fetch. (Only applicable for weak-ordered 1013 * memory model archs, such as IA-64). 1014 * 1015 * We also need this memory barrier to make certain all of the 1016 * status bits have been updated before next_to_watch is written. 1017 */ 1018 wmb(); 1019 1020 /* set next_to_watch value indicating a packet is present */ 1021 first->next_to_watch = tx_desc; 1022 1023 tx_ring->next_to_use = i; 1024 1025 /* Make sure there is space in the ring for the next send. */ 1026 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1027 1028 /* notify HW of packet */ 1029 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1030 writel(i, tx_ring->tail); 1031 } 1032 1033 return; 1034 dma_error: 1035 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1036 1037 /* clear dma mappings for failed tx_buffer map */ 1038 for (;;) { 1039 tx_buffer = &tx_ring->tx_buffer[i]; 1040 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1041 if (tx_buffer == first) 1042 break; 1043 if (i == 0) 1044 i = tx_ring->count; 1045 i--; 1046 } 1047 1048 tx_ring->next_to_use = i; 1049 } 1050 1051 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1052 struct fm10k_ring *tx_ring) 1053 { 1054 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1055 struct fm10k_tx_buffer *first; 1056 unsigned short f; 1057 u32 tx_flags = 0; 1058 int tso; 1059 1060 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1061 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1062 * + 2 desc gap to keep tail from touching head 1063 * otherwise try next time 1064 */ 1065 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 1066 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 1067 1068 count += TXD_USE_COUNT(skb_frag_size(frag)); 1069 } 1070 1071 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1072 tx_ring->tx_stats.tx_busy++; 1073 return NETDEV_TX_BUSY; 1074 } 1075 1076 /* record the location of the first descriptor for this packet */ 1077 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1078 first->skb = skb; 1079 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1080 first->gso_segs = 1; 1081 1082 /* record initial flags and protocol */ 1083 first->tx_flags = tx_flags; 1084 1085 tso = fm10k_tso(tx_ring, first); 1086 if (tso < 0) 1087 goto out_drop; 1088 else if (!tso) 1089 fm10k_tx_csum(tx_ring, first); 1090 1091 fm10k_tx_map(tx_ring, first); 1092 1093 return NETDEV_TX_OK; 1094 1095 out_drop: 1096 dev_kfree_skb_any(first->skb); 1097 first->skb = NULL; 1098 1099 return NETDEV_TX_OK; 1100 } 1101 1102 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1103 { 1104 return ring->stats.packets; 1105 } 1106 1107 /** 1108 * fm10k_get_tx_pending - how many Tx descriptors not processed 1109 * @ring: the ring structure 1110 * @in_sw: is tx_pending being checked in SW or in HW? 1111 */ 1112 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) 1113 { 1114 struct fm10k_intfc *interface = ring->q_vector->interface; 1115 struct fm10k_hw *hw = &interface->hw; 1116 u32 head, tail; 1117 1118 if (likely(in_sw)) { 1119 head = ring->next_to_clean; 1120 tail = ring->next_to_use; 1121 } else { 1122 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); 1123 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); 1124 } 1125 1126 return ((head <= tail) ? tail : tail + ring->count) - head; 1127 } 1128 1129 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1130 { 1131 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1132 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1133 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); 1134 1135 clear_check_for_tx_hang(tx_ring); 1136 1137 /* Check for a hung queue, but be thorough. This verifies 1138 * that a transmit has been completed since the previous 1139 * check AND there is at least one packet pending. By 1140 * requiring this to fail twice we avoid races with 1141 * clearing the ARMED bit and conditions where we 1142 * run the check_tx_hang logic with a transmit completion 1143 * pending but without time to complete it yet. 1144 */ 1145 if (!tx_pending || (tx_done_old != tx_done)) { 1146 /* update completed stats and continue */ 1147 tx_ring->tx_stats.tx_done_old = tx_done; 1148 /* reset the countdown */ 1149 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1150 1151 return false; 1152 } 1153 1154 /* make sure it is true for two checks in a row */ 1155 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1156 } 1157 1158 /** 1159 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1160 * @interface: driver private struct 1161 **/ 1162 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1163 { 1164 /* Do the reset outside of interrupt context */ 1165 if (!test_bit(__FM10K_DOWN, interface->state)) { 1166 interface->tx_timeout_count++; 1167 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1168 fm10k_service_event_schedule(interface); 1169 } 1170 } 1171 1172 /** 1173 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1174 * @q_vector: structure containing interrupt and ring information 1175 * @tx_ring: tx ring to clean 1176 * @napi_budget: Used to determine if we are in netpoll 1177 **/ 1178 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1179 struct fm10k_ring *tx_ring, int napi_budget) 1180 { 1181 struct fm10k_intfc *interface = q_vector->interface; 1182 struct fm10k_tx_buffer *tx_buffer; 1183 struct fm10k_tx_desc *tx_desc; 1184 unsigned int total_bytes = 0, total_packets = 0; 1185 unsigned int budget = q_vector->tx.work_limit; 1186 unsigned int i = tx_ring->next_to_clean; 1187 1188 if (test_bit(__FM10K_DOWN, interface->state)) 1189 return true; 1190 1191 tx_buffer = &tx_ring->tx_buffer[i]; 1192 tx_desc = FM10K_TX_DESC(tx_ring, i); 1193 i -= tx_ring->count; 1194 1195 do { 1196 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1197 1198 /* if next_to_watch is not set then there is no work pending */ 1199 if (!eop_desc) 1200 break; 1201 1202 /* prevent any other reads prior to eop_desc */ 1203 smp_rmb(); 1204 1205 /* if DD is not set pending work has not been completed */ 1206 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1207 break; 1208 1209 /* clear next_to_watch to prevent false hangs */ 1210 tx_buffer->next_to_watch = NULL; 1211 1212 /* update the statistics for this packet */ 1213 total_bytes += tx_buffer->bytecount; 1214 total_packets += tx_buffer->gso_segs; 1215 1216 /* free the skb */ 1217 napi_consume_skb(tx_buffer->skb, napi_budget); 1218 1219 /* unmap skb header data */ 1220 dma_unmap_single(tx_ring->dev, 1221 dma_unmap_addr(tx_buffer, dma), 1222 dma_unmap_len(tx_buffer, len), 1223 DMA_TO_DEVICE); 1224 1225 /* clear tx_buffer data */ 1226 tx_buffer->skb = NULL; 1227 dma_unmap_len_set(tx_buffer, len, 0); 1228 1229 /* unmap remaining buffers */ 1230 while (tx_desc != eop_desc) { 1231 tx_buffer++; 1232 tx_desc++; 1233 i++; 1234 if (unlikely(!i)) { 1235 i -= tx_ring->count; 1236 tx_buffer = tx_ring->tx_buffer; 1237 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1238 } 1239 1240 /* unmap any remaining paged data */ 1241 if (dma_unmap_len(tx_buffer, len)) { 1242 dma_unmap_page(tx_ring->dev, 1243 dma_unmap_addr(tx_buffer, dma), 1244 dma_unmap_len(tx_buffer, len), 1245 DMA_TO_DEVICE); 1246 dma_unmap_len_set(tx_buffer, len, 0); 1247 } 1248 } 1249 1250 /* move us one more past the eop_desc for start of next pkt */ 1251 tx_buffer++; 1252 tx_desc++; 1253 i++; 1254 if (unlikely(!i)) { 1255 i -= tx_ring->count; 1256 tx_buffer = tx_ring->tx_buffer; 1257 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1258 } 1259 1260 /* issue prefetch for next Tx descriptor */ 1261 prefetch(tx_desc); 1262 1263 /* update budget accounting */ 1264 budget--; 1265 } while (likely(budget)); 1266 1267 i += tx_ring->count; 1268 tx_ring->next_to_clean = i; 1269 u64_stats_update_begin(&tx_ring->syncp); 1270 tx_ring->stats.bytes += total_bytes; 1271 tx_ring->stats.packets += total_packets; 1272 u64_stats_update_end(&tx_ring->syncp); 1273 q_vector->tx.total_bytes += total_bytes; 1274 q_vector->tx.total_packets += total_packets; 1275 1276 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1277 /* schedule immediate reset if we believe we hung */ 1278 struct fm10k_hw *hw = &interface->hw; 1279 1280 netif_err(interface, drv, tx_ring->netdev, 1281 "Detected Tx Unit Hang\n" 1282 " Tx Queue <%d>\n" 1283 " TDH, TDT <%x>, <%x>\n" 1284 " next_to_use <%x>\n" 1285 " next_to_clean <%x>\n", 1286 tx_ring->queue_index, 1287 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1288 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1289 tx_ring->next_to_use, i); 1290 1291 netif_stop_subqueue(tx_ring->netdev, 1292 tx_ring->queue_index); 1293 1294 netif_info(interface, probe, tx_ring->netdev, 1295 "tx hang %d detected on queue %d, resetting interface\n", 1296 interface->tx_timeout_count + 1, 1297 tx_ring->queue_index); 1298 1299 fm10k_tx_timeout_reset(interface); 1300 1301 /* the netdev is about to reset, no point in enabling stuff */ 1302 return true; 1303 } 1304 1305 /* notify netdev of completed buffers */ 1306 netdev_tx_completed_queue(txring_txq(tx_ring), 1307 total_packets, total_bytes); 1308 1309 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1310 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1311 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1312 /* Make sure that anybody stopping the queue after this 1313 * sees the new next_to_clean. 1314 */ 1315 smp_mb(); 1316 if (__netif_subqueue_stopped(tx_ring->netdev, 1317 tx_ring->queue_index) && 1318 !test_bit(__FM10K_DOWN, interface->state)) { 1319 netif_wake_subqueue(tx_ring->netdev, 1320 tx_ring->queue_index); 1321 ++tx_ring->tx_stats.restart_queue; 1322 } 1323 } 1324 1325 return !!budget; 1326 } 1327 1328 /** 1329 * fm10k_update_itr - update the dynamic ITR value based on packet size 1330 * 1331 * Stores a new ITR value based on strictly on packet size. The 1332 * divisors and thresholds used by this function were determined based 1333 * on theoretical maximum wire speed and testing data, in order to 1334 * minimize response time while increasing bulk throughput. 1335 * 1336 * @ring_container: Container for rings to have ITR updated 1337 **/ 1338 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1339 { 1340 unsigned int avg_wire_size, packets, itr_round; 1341 1342 /* Only update ITR if we are using adaptive setting */ 1343 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1344 goto clear_counts; 1345 1346 packets = ring_container->total_packets; 1347 if (!packets) 1348 goto clear_counts; 1349 1350 avg_wire_size = ring_container->total_bytes / packets; 1351 1352 /* The following is a crude approximation of: 1353 * wmem_default / (size + overhead) = desired_pkts_per_int 1354 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1355 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1356 * 1357 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1358 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1359 * formula down to 1360 * 1361 * (34 * (size + 24)) / (size + 640) = ITR 1362 * 1363 * We first do some math on the packet size and then finally bitshift 1364 * by 8 after rounding up. We also have to account for PCIe link speed 1365 * difference as ITR scales based on this. 1366 */ 1367 if (avg_wire_size <= 360) { 1368 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1369 avg_wire_size *= 8; 1370 avg_wire_size += 376; 1371 } else if (avg_wire_size <= 1152) { 1372 /* 77K ints/sec to 45K ints/sec */ 1373 avg_wire_size *= 3; 1374 avg_wire_size += 2176; 1375 } else if (avg_wire_size <= 1920) { 1376 /* 45K ints/sec to 38K ints/sec */ 1377 avg_wire_size += 4480; 1378 } else { 1379 /* plateau at a limit of 38K ints/sec */ 1380 avg_wire_size = 6656; 1381 } 1382 1383 /* Perform final bitshift for division after rounding up to ensure 1384 * that the calculation will never get below a 1. The bit shift 1385 * accounts for changes in the ITR due to PCIe link speed. 1386 */ 1387 itr_round = READ_ONCE(ring_container->itr_scale) + 8; 1388 avg_wire_size += BIT(itr_round) - 1; 1389 avg_wire_size >>= itr_round; 1390 1391 /* write back value and retain adaptive flag */ 1392 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1393 1394 clear_counts: 1395 ring_container->total_bytes = 0; 1396 ring_container->total_packets = 0; 1397 } 1398 1399 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1400 { 1401 /* Enable auto-mask and clear the current mask */ 1402 u32 itr = FM10K_ITR_ENABLE; 1403 1404 /* Update Tx ITR */ 1405 fm10k_update_itr(&q_vector->tx); 1406 1407 /* Update Rx ITR */ 1408 fm10k_update_itr(&q_vector->rx); 1409 1410 /* Store Tx itr in timer slot 0 */ 1411 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1412 1413 /* Shift Rx itr to timer slot 1 */ 1414 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1415 1416 /* Write the final value to the ITR register */ 1417 writel(itr, q_vector->itr); 1418 } 1419 1420 static int fm10k_poll(struct napi_struct *napi, int budget) 1421 { 1422 struct fm10k_q_vector *q_vector = 1423 container_of(napi, struct fm10k_q_vector, napi); 1424 struct fm10k_ring *ring; 1425 int per_ring_budget, work_done = 0; 1426 bool clean_complete = true; 1427 1428 fm10k_for_each_ring(ring, q_vector->tx) { 1429 if (!fm10k_clean_tx_irq(q_vector, ring, budget)) 1430 clean_complete = false; 1431 } 1432 1433 /* Handle case where we are called by netpoll with a budget of 0 */ 1434 if (budget <= 0) 1435 return budget; 1436 1437 /* attempt to distribute budget to each queue fairly, but don't 1438 * allow the budget to go below 1 because we'll exit polling 1439 */ 1440 if (q_vector->rx.count > 1) 1441 per_ring_budget = max(budget / q_vector->rx.count, 1); 1442 else 1443 per_ring_budget = budget; 1444 1445 fm10k_for_each_ring(ring, q_vector->rx) { 1446 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1447 1448 work_done += work; 1449 if (work >= per_ring_budget) 1450 clean_complete = false; 1451 } 1452 1453 /* If all work not completed, return budget and keep polling */ 1454 if (!clean_complete) 1455 return budget; 1456 1457 /* Exit the polling mode, but don't re-enable interrupts if stack might 1458 * poll us due to busy-polling 1459 */ 1460 if (likely(napi_complete_done(napi, work_done))) 1461 fm10k_qv_enable(q_vector); 1462 1463 return min(work_done, budget - 1); 1464 } 1465 1466 /** 1467 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1468 * @interface: board private structure to initialize 1469 * 1470 * When QoS (Quality of Service) is enabled, allocate queues for 1471 * each traffic class. If multiqueue isn't available,then abort QoS 1472 * initialization. 1473 * 1474 * This function handles all combinations of Qos and RSS. 1475 * 1476 **/ 1477 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1478 { 1479 struct net_device *dev = interface->netdev; 1480 struct fm10k_ring_feature *f; 1481 int rss_i, i; 1482 int pcs; 1483 1484 /* Map queue offset and counts onto allocated tx queues */ 1485 pcs = netdev_get_num_tc(dev); 1486 1487 if (pcs <= 1) 1488 return false; 1489 1490 /* set QoS mask and indices */ 1491 f = &interface->ring_feature[RING_F_QOS]; 1492 f->indices = pcs; 1493 f->mask = BIT(fls(pcs - 1)) - 1; 1494 1495 /* determine the upper limit for our current DCB mode */ 1496 rss_i = interface->hw.mac.max_queues / pcs; 1497 rss_i = BIT(fls(rss_i) - 1); 1498 1499 /* set RSS mask and indices */ 1500 f = &interface->ring_feature[RING_F_RSS]; 1501 rss_i = min_t(u16, rss_i, f->limit); 1502 f->indices = rss_i; 1503 f->mask = BIT(fls(rss_i - 1)) - 1; 1504 1505 /* configure pause class to queue mapping */ 1506 for (i = 0; i < pcs; i++) 1507 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1508 1509 interface->num_rx_queues = rss_i * pcs; 1510 interface->num_tx_queues = rss_i * pcs; 1511 1512 return true; 1513 } 1514 1515 /** 1516 * fm10k_set_rss_queues: Allocate queues for RSS 1517 * @interface: board private structure to initialize 1518 * 1519 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1520 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1521 * 1522 **/ 1523 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1524 { 1525 struct fm10k_ring_feature *f; 1526 u16 rss_i; 1527 1528 f = &interface->ring_feature[RING_F_RSS]; 1529 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1530 1531 /* record indices and power of 2 mask for RSS */ 1532 f->indices = rss_i; 1533 f->mask = BIT(fls(rss_i - 1)) - 1; 1534 1535 interface->num_rx_queues = rss_i; 1536 interface->num_tx_queues = rss_i; 1537 1538 return true; 1539 } 1540 1541 /** 1542 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1543 * @interface: board private structure to initialize 1544 * 1545 * This is the top level queue allocation routine. The order here is very 1546 * important, starting with the "most" number of features turned on at once, 1547 * and ending with the smallest set of features. This way large combinations 1548 * can be allocated if they're turned on, and smaller combinations are the 1549 * fall through conditions. 1550 * 1551 **/ 1552 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1553 { 1554 /* Attempt to setup QoS and RSS first */ 1555 if (fm10k_set_qos_queues(interface)) 1556 return; 1557 1558 /* If we don't have QoS, just fallback to only RSS. */ 1559 fm10k_set_rss_queues(interface); 1560 } 1561 1562 /** 1563 * fm10k_reset_num_queues - Reset the number of queues to zero 1564 * @interface: board private structure 1565 * 1566 * This function should be called whenever we need to reset the number of 1567 * queues after an error condition. 1568 */ 1569 static void fm10k_reset_num_queues(struct fm10k_intfc *interface) 1570 { 1571 interface->num_tx_queues = 0; 1572 interface->num_rx_queues = 0; 1573 interface->num_q_vectors = 0; 1574 } 1575 1576 /** 1577 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1578 * @interface: board private structure to initialize 1579 * @v_count: q_vectors allocated on interface, used for ring interleaving 1580 * @v_idx: index of vector in interface struct 1581 * @txr_count: total number of Tx rings to allocate 1582 * @txr_idx: index of first Tx ring to allocate 1583 * @rxr_count: total number of Rx rings to allocate 1584 * @rxr_idx: index of first Rx ring to allocate 1585 * 1586 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1587 **/ 1588 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1589 unsigned int v_count, unsigned int v_idx, 1590 unsigned int txr_count, unsigned int txr_idx, 1591 unsigned int rxr_count, unsigned int rxr_idx) 1592 { 1593 struct fm10k_q_vector *q_vector; 1594 struct fm10k_ring *ring; 1595 int ring_count; 1596 1597 ring_count = txr_count + rxr_count; 1598 1599 /* allocate q_vector and rings */ 1600 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); 1601 if (!q_vector) 1602 return -ENOMEM; 1603 1604 /* initialize NAPI */ 1605 netif_napi_add(interface->netdev, &q_vector->napi, fm10k_poll); 1606 1607 /* tie q_vector and interface together */ 1608 interface->q_vector[v_idx] = q_vector; 1609 q_vector->interface = interface; 1610 q_vector->v_idx = v_idx; 1611 1612 /* initialize pointer to rings */ 1613 ring = q_vector->ring; 1614 1615 /* save Tx ring container info */ 1616 q_vector->tx.ring = ring; 1617 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1618 q_vector->tx.itr = interface->tx_itr; 1619 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1620 q_vector->tx.count = txr_count; 1621 1622 while (txr_count) { 1623 /* assign generic ring traits */ 1624 ring->dev = &interface->pdev->dev; 1625 ring->netdev = interface->netdev; 1626 1627 /* configure backlink on ring */ 1628 ring->q_vector = q_vector; 1629 1630 /* apply Tx specific ring traits */ 1631 ring->count = interface->tx_ring_count; 1632 ring->queue_index = txr_idx; 1633 1634 /* assign ring to interface */ 1635 interface->tx_ring[txr_idx] = ring; 1636 1637 /* update count and index */ 1638 txr_count--; 1639 txr_idx += v_count; 1640 1641 /* push pointer to next ring */ 1642 ring++; 1643 } 1644 1645 /* save Rx ring container info */ 1646 q_vector->rx.ring = ring; 1647 q_vector->rx.itr = interface->rx_itr; 1648 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1649 q_vector->rx.count = rxr_count; 1650 1651 while (rxr_count) { 1652 /* assign generic ring traits */ 1653 ring->dev = &interface->pdev->dev; 1654 ring->netdev = interface->netdev; 1655 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1656 1657 /* configure backlink on ring */ 1658 ring->q_vector = q_vector; 1659 1660 /* apply Rx specific ring traits */ 1661 ring->count = interface->rx_ring_count; 1662 ring->queue_index = rxr_idx; 1663 1664 /* assign ring to interface */ 1665 interface->rx_ring[rxr_idx] = ring; 1666 1667 /* update count and index */ 1668 rxr_count--; 1669 rxr_idx += v_count; 1670 1671 /* push pointer to next ring */ 1672 ring++; 1673 } 1674 1675 fm10k_dbg_q_vector_init(q_vector); 1676 1677 return 0; 1678 } 1679 1680 /** 1681 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1682 * @interface: board private structure to initialize 1683 * @v_idx: Index of vector to be freed 1684 * 1685 * This function frees the memory allocated to the q_vector. In addition if 1686 * NAPI is enabled it will delete any references to the NAPI struct prior 1687 * to freeing the q_vector. 1688 **/ 1689 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1690 { 1691 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1692 struct fm10k_ring *ring; 1693 1694 fm10k_dbg_q_vector_exit(q_vector); 1695 1696 fm10k_for_each_ring(ring, q_vector->tx) 1697 interface->tx_ring[ring->queue_index] = NULL; 1698 1699 fm10k_for_each_ring(ring, q_vector->rx) 1700 interface->rx_ring[ring->queue_index] = NULL; 1701 1702 interface->q_vector[v_idx] = NULL; 1703 netif_napi_del(&q_vector->napi); 1704 kfree_rcu(q_vector, rcu); 1705 } 1706 1707 /** 1708 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1709 * @interface: board private structure to initialize 1710 * 1711 * We allocate one q_vector per queue interrupt. If allocation fails we 1712 * return -ENOMEM. 1713 **/ 1714 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1715 { 1716 unsigned int q_vectors = interface->num_q_vectors; 1717 unsigned int rxr_remaining = interface->num_rx_queues; 1718 unsigned int txr_remaining = interface->num_tx_queues; 1719 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1720 int err; 1721 1722 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1723 for (; rxr_remaining; v_idx++) { 1724 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1725 0, 0, 1, rxr_idx); 1726 if (err) 1727 goto err_out; 1728 1729 /* update counts and index */ 1730 rxr_remaining--; 1731 rxr_idx++; 1732 } 1733 } 1734 1735 for (; v_idx < q_vectors; v_idx++) { 1736 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1737 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1738 1739 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1740 tqpv, txr_idx, 1741 rqpv, rxr_idx); 1742 1743 if (err) 1744 goto err_out; 1745 1746 /* update counts and index */ 1747 rxr_remaining -= rqpv; 1748 txr_remaining -= tqpv; 1749 rxr_idx++; 1750 txr_idx++; 1751 } 1752 1753 return 0; 1754 1755 err_out: 1756 fm10k_reset_num_queues(interface); 1757 1758 while (v_idx--) 1759 fm10k_free_q_vector(interface, v_idx); 1760 1761 return -ENOMEM; 1762 } 1763 1764 /** 1765 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1766 * @interface: board private structure to initialize 1767 * 1768 * This function frees the memory allocated to the q_vectors. In addition if 1769 * NAPI is enabled it will delete any references to the NAPI struct prior 1770 * to freeing the q_vector. 1771 **/ 1772 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1773 { 1774 int v_idx = interface->num_q_vectors; 1775 1776 fm10k_reset_num_queues(interface); 1777 1778 while (v_idx--) 1779 fm10k_free_q_vector(interface, v_idx); 1780 } 1781 1782 /** 1783 * fm10k_reset_msix_capability - reset MSI-X capability 1784 * @interface: board private structure to initialize 1785 * 1786 * Reset the MSI-X capability back to its starting state 1787 **/ 1788 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1789 { 1790 pci_disable_msix(interface->pdev); 1791 kfree(interface->msix_entries); 1792 interface->msix_entries = NULL; 1793 } 1794 1795 /** 1796 * fm10k_init_msix_capability - configure MSI-X capability 1797 * @interface: board private structure to initialize 1798 * 1799 * Attempt to configure the interrupts using the best available 1800 * capabilities of the hardware and the kernel. 1801 **/ 1802 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1803 { 1804 struct fm10k_hw *hw = &interface->hw; 1805 int v_budget, vector; 1806 1807 /* It's easy to be greedy for MSI-X vectors, but it really 1808 * doesn't do us much good if we have a lot more vectors 1809 * than CPU's. So let's be conservative and only ask for 1810 * (roughly) the same number of vectors as there are CPU's. 1811 * the default is to use pairs of vectors 1812 */ 1813 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1814 v_budget = min_t(u16, v_budget, num_online_cpus()); 1815 1816 /* account for vectors not related to queues */ 1817 v_budget += NON_Q_VECTORS; 1818 1819 /* At the same time, hardware can only support a maximum of 1820 * hw.mac->max_msix_vectors vectors. With features 1821 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1822 * descriptor queues supported by our device. Thus, we cap it off in 1823 * those rare cases where the cpu count also exceeds our vector limit. 1824 */ 1825 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1826 1827 /* A failure in MSI-X entry allocation is fatal. */ 1828 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1829 GFP_KERNEL); 1830 if (!interface->msix_entries) 1831 return -ENOMEM; 1832 1833 /* populate entry values */ 1834 for (vector = 0; vector < v_budget; vector++) 1835 interface->msix_entries[vector].entry = vector; 1836 1837 /* Attempt to enable MSI-X with requested value */ 1838 v_budget = pci_enable_msix_range(interface->pdev, 1839 interface->msix_entries, 1840 MIN_MSIX_COUNT(hw), 1841 v_budget); 1842 if (v_budget < 0) { 1843 kfree(interface->msix_entries); 1844 interface->msix_entries = NULL; 1845 return v_budget; 1846 } 1847 1848 /* record the number of queues available for q_vectors */ 1849 interface->num_q_vectors = v_budget - NON_Q_VECTORS; 1850 1851 return 0; 1852 } 1853 1854 /** 1855 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1856 * @interface: Interface structure continaining rings and devices 1857 * 1858 * Cache the descriptor ring offsets for Qos 1859 **/ 1860 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1861 { 1862 struct net_device *dev = interface->netdev; 1863 int pc, offset, rss_i, i; 1864 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1865 u8 num_pcs = netdev_get_num_tc(dev); 1866 1867 if (num_pcs <= 1) 1868 return false; 1869 1870 rss_i = interface->ring_feature[RING_F_RSS].indices; 1871 1872 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1873 int q_idx = pc; 1874 1875 for (i = 0; i < rss_i; i++) { 1876 interface->tx_ring[offset + i]->reg_idx = q_idx; 1877 interface->tx_ring[offset + i]->qos_pc = pc; 1878 interface->rx_ring[offset + i]->reg_idx = q_idx; 1879 interface->rx_ring[offset + i]->qos_pc = pc; 1880 q_idx += pc_stride; 1881 } 1882 } 1883 1884 return true; 1885 } 1886 1887 /** 1888 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1889 * @interface: Interface structure continaining rings and devices 1890 * 1891 * Cache the descriptor ring offsets for RSS 1892 **/ 1893 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1894 { 1895 int i; 1896 1897 for (i = 0; i < interface->num_rx_queues; i++) 1898 interface->rx_ring[i]->reg_idx = i; 1899 1900 for (i = 0; i < interface->num_tx_queues; i++) 1901 interface->tx_ring[i]->reg_idx = i; 1902 } 1903 1904 /** 1905 * fm10k_assign_rings - Map rings to network devices 1906 * @interface: Interface structure containing rings and devices 1907 * 1908 * This function is meant to go though and configure both the network 1909 * devices so that they contain rings, and configure the rings so that 1910 * they function with their network devices. 1911 **/ 1912 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1913 { 1914 if (fm10k_cache_ring_qos(interface)) 1915 return; 1916 1917 fm10k_cache_ring_rss(interface); 1918 } 1919 1920 static void fm10k_init_reta(struct fm10k_intfc *interface) 1921 { 1922 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1923 u32 reta; 1924 1925 /* If the Rx flow indirection table has been configured manually, we 1926 * need to maintain it when possible. 1927 */ 1928 if (netif_is_rxfh_configured(interface->netdev)) { 1929 for (i = FM10K_RETA_SIZE; i--;) { 1930 reta = interface->reta[i]; 1931 if ((((reta << 24) >> 24) < rss_i) && 1932 (((reta << 16) >> 24) < rss_i) && 1933 (((reta << 8) >> 24) < rss_i) && 1934 (((reta) >> 24) < rss_i)) 1935 continue; 1936 1937 /* this should never happen */ 1938 dev_err(&interface->pdev->dev, 1939 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); 1940 goto repopulate_reta; 1941 } 1942 1943 /* do nothing if all of the elements are in bounds */ 1944 return; 1945 } 1946 1947 repopulate_reta: 1948 fm10k_write_reta(interface, NULL); 1949 } 1950 1951 /** 1952 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1953 * @interface: board private structure to initialize 1954 * 1955 * We determine which queueing scheme to use based on... 1956 * - Hardware queue count (num_*_queues) 1957 * - defined by miscellaneous hardware support/features (RSS, etc.) 1958 **/ 1959 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1960 { 1961 int err; 1962 1963 /* Number of supported queues */ 1964 fm10k_set_num_queues(interface); 1965 1966 /* Configure MSI-X capability */ 1967 err = fm10k_init_msix_capability(interface); 1968 if (err) { 1969 dev_err(&interface->pdev->dev, 1970 "Unable to initialize MSI-X capability\n"); 1971 goto err_init_msix; 1972 } 1973 1974 /* Allocate memory for queues */ 1975 err = fm10k_alloc_q_vectors(interface); 1976 if (err) { 1977 dev_err(&interface->pdev->dev, 1978 "Unable to allocate queue vectors\n"); 1979 goto err_alloc_q_vectors; 1980 } 1981 1982 /* Map rings to devices, and map devices to physical queues */ 1983 fm10k_assign_rings(interface); 1984 1985 /* Initialize RSS redirection table */ 1986 fm10k_init_reta(interface); 1987 1988 return 0; 1989 1990 err_alloc_q_vectors: 1991 fm10k_reset_msix_capability(interface); 1992 err_init_msix: 1993 fm10k_reset_num_queues(interface); 1994 return err; 1995 } 1996 1997 /** 1998 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 1999 * @interface: board private structure to clear queueing scheme on 2000 * 2001 * We go through and clear queueing specific resources and reset the structure 2002 * to pre-load conditions 2003 **/ 2004 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 2005 { 2006 fm10k_free_q_vectors(interface); 2007 fm10k_reset_msix_capability(interface); 2008 } 2009