xref: /linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c (revision c19b05b84ddece7708ed0537a92d1dfabdfd98fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3 
4 #include <linux/types.h>
5 #include <linux/module.h>
6 #include <net/ipv6.h>
7 #include <net/ip.h>
8 #include <net/tcp.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
11 
12 #include "fm10k.h"
13 
14 #define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
15 char fm10k_driver_name[] = "fm10k";
16 static const char fm10k_driver_string[] = DRV_SUMMARY;
17 static const char fm10k_copyright[] =
18 	"Copyright(c) 2013 - 2019 Intel Corporation.";
19 
20 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
21 MODULE_DESCRIPTION(DRV_SUMMARY);
22 MODULE_LICENSE("GPL v2");
23 
24 /* single workqueue for entire fm10k driver */
25 struct workqueue_struct *fm10k_workqueue;
26 
27 /**
28  * fm10k_init_module - Driver Registration Routine
29  *
30  * fm10k_init_module is the first routine called when the driver is
31  * loaded.  All it does is register with the PCI subsystem.
32  **/
33 static int __init fm10k_init_module(void)
34 {
35 	pr_info("%s\n", fm10k_driver_string);
36 	pr_info("%s\n", fm10k_copyright);
37 
38 	/* create driver workqueue */
39 	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
40 					  fm10k_driver_name);
41 	if (!fm10k_workqueue)
42 		return -ENOMEM;
43 
44 	fm10k_dbg_init();
45 
46 	return fm10k_register_pci_driver();
47 }
48 module_init(fm10k_init_module);
49 
50 /**
51  * fm10k_exit_module - Driver Exit Cleanup Routine
52  *
53  * fm10k_exit_module is called just before the driver is removed
54  * from memory.
55  **/
56 static void __exit fm10k_exit_module(void)
57 {
58 	fm10k_unregister_pci_driver();
59 
60 	fm10k_dbg_exit();
61 
62 	/* destroy driver workqueue */
63 	destroy_workqueue(fm10k_workqueue);
64 }
65 module_exit(fm10k_exit_module);
66 
67 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
68 				    struct fm10k_rx_buffer *bi)
69 {
70 	struct page *page = bi->page;
71 	dma_addr_t dma;
72 
73 	/* Only page will be NULL if buffer was consumed */
74 	if (likely(page))
75 		return true;
76 
77 	/* alloc new page for storage */
78 	page = dev_alloc_page();
79 	if (unlikely(!page)) {
80 		rx_ring->rx_stats.alloc_failed++;
81 		return false;
82 	}
83 
84 	/* map page for use */
85 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
86 
87 	/* if mapping failed free memory back to system since
88 	 * there isn't much point in holding memory we can't use
89 	 */
90 	if (dma_mapping_error(rx_ring->dev, dma)) {
91 		__free_page(page);
92 
93 		rx_ring->rx_stats.alloc_failed++;
94 		return false;
95 	}
96 
97 	bi->dma = dma;
98 	bi->page = page;
99 	bi->page_offset = 0;
100 
101 	return true;
102 }
103 
104 /**
105  * fm10k_alloc_rx_buffers - Replace used receive buffers
106  * @rx_ring: ring to place buffers on
107  * @cleaned_count: number of buffers to replace
108  **/
109 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
110 {
111 	union fm10k_rx_desc *rx_desc;
112 	struct fm10k_rx_buffer *bi;
113 	u16 i = rx_ring->next_to_use;
114 
115 	/* nothing to do */
116 	if (!cleaned_count)
117 		return;
118 
119 	rx_desc = FM10K_RX_DESC(rx_ring, i);
120 	bi = &rx_ring->rx_buffer[i];
121 	i -= rx_ring->count;
122 
123 	do {
124 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
125 			break;
126 
127 		/* Refresh the desc even if buffer_addrs didn't change
128 		 * because each write-back erases this info.
129 		 */
130 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
131 
132 		rx_desc++;
133 		bi++;
134 		i++;
135 		if (unlikely(!i)) {
136 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
137 			bi = rx_ring->rx_buffer;
138 			i -= rx_ring->count;
139 		}
140 
141 		/* clear the status bits for the next_to_use descriptor */
142 		rx_desc->d.staterr = 0;
143 
144 		cleaned_count--;
145 	} while (cleaned_count);
146 
147 	i += rx_ring->count;
148 
149 	if (rx_ring->next_to_use != i) {
150 		/* record the next descriptor to use */
151 		rx_ring->next_to_use = i;
152 
153 		/* update next to alloc since we have filled the ring */
154 		rx_ring->next_to_alloc = i;
155 
156 		/* Force memory writes to complete before letting h/w
157 		 * know there are new descriptors to fetch.  (Only
158 		 * applicable for weak-ordered memory model archs,
159 		 * such as IA-64).
160 		 */
161 		wmb();
162 
163 		/* notify hardware of new descriptors */
164 		writel(i, rx_ring->tail);
165 	}
166 }
167 
168 /**
169  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
170  * @rx_ring: rx descriptor ring to store buffers on
171  * @old_buff: donor buffer to have page reused
172  *
173  * Synchronizes page for reuse by the interface
174  **/
175 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
176 				struct fm10k_rx_buffer *old_buff)
177 {
178 	struct fm10k_rx_buffer *new_buff;
179 	u16 nta = rx_ring->next_to_alloc;
180 
181 	new_buff = &rx_ring->rx_buffer[nta];
182 
183 	/* update, and store next to alloc */
184 	nta++;
185 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
186 
187 	/* transfer page from old buffer to new buffer */
188 	*new_buff = *old_buff;
189 
190 	/* sync the buffer for use by the device */
191 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
192 					 old_buff->page_offset,
193 					 FM10K_RX_BUFSZ,
194 					 DMA_FROM_DEVICE);
195 }
196 
197 static inline bool fm10k_page_is_reserved(struct page *page)
198 {
199 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
200 }
201 
202 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
203 				    struct page *page,
204 				    unsigned int __maybe_unused truesize)
205 {
206 	/* avoid re-using remote pages */
207 	if (unlikely(fm10k_page_is_reserved(page)))
208 		return false;
209 
210 #if (PAGE_SIZE < 8192)
211 	/* if we are only owner of page we can reuse it */
212 	if (unlikely(page_count(page) != 1))
213 		return false;
214 
215 	/* flip page offset to other buffer */
216 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
217 #else
218 	/* move offset up to the next cache line */
219 	rx_buffer->page_offset += truesize;
220 
221 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
222 		return false;
223 #endif
224 
225 	/* Even if we own the page, we are not allowed to use atomic_set()
226 	 * This would break get_page_unless_zero() users.
227 	 */
228 	page_ref_inc(page);
229 
230 	return true;
231 }
232 
233 /**
234  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
235  * @rx_buffer: buffer containing page to add
236  * @size: packet size from rx_desc
237  * @rx_desc: descriptor containing length of buffer written by hardware
238  * @skb: sk_buff to place the data into
239  *
240  * This function will add the data contained in rx_buffer->page to the skb.
241  * This is done either through a direct copy if the data in the buffer is
242  * less than the skb header size, otherwise it will just attach the page as
243  * a frag to the skb.
244  *
245  * The function will then update the page offset if necessary and return
246  * true if the buffer can be reused by the interface.
247  **/
248 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
249 			      unsigned int size,
250 			      union fm10k_rx_desc *rx_desc,
251 			      struct sk_buff *skb)
252 {
253 	struct page *page = rx_buffer->page;
254 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
255 #if (PAGE_SIZE < 8192)
256 	unsigned int truesize = FM10K_RX_BUFSZ;
257 #else
258 	unsigned int truesize = ALIGN(size, 512);
259 #endif
260 	unsigned int pull_len;
261 
262 	if (unlikely(skb_is_nonlinear(skb)))
263 		goto add_tail_frag;
264 
265 	if (likely(size <= FM10K_RX_HDR_LEN)) {
266 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
267 
268 		/* page is not reserved, we can reuse buffer as-is */
269 		if (likely(!fm10k_page_is_reserved(page)))
270 			return true;
271 
272 		/* this page cannot be reused so discard it */
273 		__free_page(page);
274 		return false;
275 	}
276 
277 	/* we need the header to contain the greater of either ETH_HLEN or
278 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
279 	 */
280 	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
281 
282 	/* align pull length to size of long to optimize memcpy performance */
283 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
284 
285 	/* update all of the pointers */
286 	va += pull_len;
287 	size -= pull_len;
288 
289 add_tail_frag:
290 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
291 			(unsigned long)va & ~PAGE_MASK, size, truesize);
292 
293 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
294 }
295 
296 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
297 					     union fm10k_rx_desc *rx_desc,
298 					     struct sk_buff *skb)
299 {
300 	unsigned int size = le16_to_cpu(rx_desc->w.length);
301 	struct fm10k_rx_buffer *rx_buffer;
302 	struct page *page;
303 
304 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
305 	page = rx_buffer->page;
306 	prefetchw(page);
307 
308 	if (likely(!skb)) {
309 		void *page_addr = page_address(page) +
310 				  rx_buffer->page_offset;
311 
312 		/* prefetch first cache line of first page */
313 		prefetch(page_addr);
314 #if L1_CACHE_BYTES < 128
315 		prefetch((void *)((u8 *)page_addr + L1_CACHE_BYTES));
316 #endif
317 
318 		/* allocate a skb to store the frags */
319 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
320 				     FM10K_RX_HDR_LEN);
321 		if (unlikely(!skb)) {
322 			rx_ring->rx_stats.alloc_failed++;
323 			return NULL;
324 		}
325 
326 		/* we will be copying header into skb->data in
327 		 * pskb_may_pull so it is in our interest to prefetch
328 		 * it now to avoid a possible cache miss
329 		 */
330 		prefetchw(skb->data);
331 	}
332 
333 	/* we are reusing so sync this buffer for CPU use */
334 	dma_sync_single_range_for_cpu(rx_ring->dev,
335 				      rx_buffer->dma,
336 				      rx_buffer->page_offset,
337 				      size,
338 				      DMA_FROM_DEVICE);
339 
340 	/* pull page into skb */
341 	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
342 		/* hand second half of page back to the ring */
343 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
344 	} else {
345 		/* we are not reusing the buffer so unmap it */
346 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
347 			       PAGE_SIZE, DMA_FROM_DEVICE);
348 	}
349 
350 	/* clear contents of rx_buffer */
351 	rx_buffer->page = NULL;
352 
353 	return skb;
354 }
355 
356 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
357 				     union fm10k_rx_desc *rx_desc,
358 				     struct sk_buff *skb)
359 {
360 	skb_checksum_none_assert(skb);
361 
362 	/* Rx checksum disabled via ethtool */
363 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
364 		return;
365 
366 	/* TCP/UDP checksum error bit is set */
367 	if (fm10k_test_staterr(rx_desc,
368 			       FM10K_RXD_STATUS_L4E |
369 			       FM10K_RXD_STATUS_L4E2 |
370 			       FM10K_RXD_STATUS_IPE |
371 			       FM10K_RXD_STATUS_IPE2)) {
372 		ring->rx_stats.csum_err++;
373 		return;
374 	}
375 
376 	/* It must be a TCP or UDP packet with a valid checksum */
377 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
378 		skb->encapsulation = true;
379 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
380 		return;
381 
382 	skb->ip_summed = CHECKSUM_UNNECESSARY;
383 
384 	ring->rx_stats.csum_good++;
385 }
386 
387 #define FM10K_RSS_L4_TYPES_MASK \
388 	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
389 	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
390 	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
391 	 BIT(FM10K_RSSTYPE_IPV6_UDP))
392 
393 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
394 				 union fm10k_rx_desc *rx_desc,
395 				 struct sk_buff *skb)
396 {
397 	u16 rss_type;
398 
399 	if (!(ring->netdev->features & NETIF_F_RXHASH))
400 		return;
401 
402 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
403 	if (!rss_type)
404 		return;
405 
406 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
407 		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
408 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
409 }
410 
411 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
412 			     union fm10k_rx_desc __maybe_unused *rx_desc,
413 			     struct sk_buff *skb)
414 {
415 	struct net_device *dev = rx_ring->netdev;
416 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
417 
418 	/* check to see if DGLORT belongs to a MACVLAN */
419 	if (l2_accel) {
420 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
421 
422 		idx -= l2_accel->dglort;
423 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
424 			dev = l2_accel->macvlan[idx];
425 		else
426 			l2_accel = NULL;
427 	}
428 
429 	/* Record Rx queue, or update macvlan statistics */
430 	if (!l2_accel)
431 		skb_record_rx_queue(skb, rx_ring->queue_index);
432 	else
433 		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
434 				 false);
435 
436 	skb->protocol = eth_type_trans(skb, dev);
437 }
438 
439 /**
440  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
441  * @rx_ring: rx descriptor ring packet is being transacted on
442  * @rx_desc: pointer to the EOP Rx descriptor
443  * @skb: pointer to current skb being populated
444  *
445  * This function checks the ring, descriptor, and packet information in
446  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
447  * other fields within the skb.
448  **/
449 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
450 					     union fm10k_rx_desc *rx_desc,
451 					     struct sk_buff *skb)
452 {
453 	unsigned int len = skb->len;
454 
455 	fm10k_rx_hash(rx_ring, rx_desc, skb);
456 
457 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
458 
459 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
460 
461 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
462 
463 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
464 
465 	if (rx_desc->w.vlan) {
466 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
467 
468 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
469 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
470 		else if (vid & VLAN_PRIO_MASK)
471 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
472 					       vid & VLAN_PRIO_MASK);
473 	}
474 
475 	fm10k_type_trans(rx_ring, rx_desc, skb);
476 
477 	return len;
478 }
479 
480 /**
481  * fm10k_is_non_eop - process handling of non-EOP buffers
482  * @rx_ring: Rx ring being processed
483  * @rx_desc: Rx descriptor for current buffer
484  *
485  * This function updates next to clean.  If the buffer is an EOP buffer
486  * this function exits returning false, otherwise it will place the
487  * sk_buff in the next buffer to be chained and return true indicating
488  * that this is in fact a non-EOP buffer.
489  **/
490 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
491 			     union fm10k_rx_desc *rx_desc)
492 {
493 	u32 ntc = rx_ring->next_to_clean + 1;
494 
495 	/* fetch, update, and store next to clean */
496 	ntc = (ntc < rx_ring->count) ? ntc : 0;
497 	rx_ring->next_to_clean = ntc;
498 
499 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
500 
501 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
502 		return false;
503 
504 	return true;
505 }
506 
507 /**
508  * fm10k_cleanup_headers - Correct corrupted or empty headers
509  * @rx_ring: rx descriptor ring packet is being transacted on
510  * @rx_desc: pointer to the EOP Rx descriptor
511  * @skb: pointer to current skb being fixed
512  *
513  * Address the case where we are pulling data in on pages only
514  * and as such no data is present in the skb header.
515  *
516  * In addition if skb is not at least 60 bytes we need to pad it so that
517  * it is large enough to qualify as a valid Ethernet frame.
518  *
519  * Returns true if an error was encountered and skb was freed.
520  **/
521 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
522 				  union fm10k_rx_desc *rx_desc,
523 				  struct sk_buff *skb)
524 {
525 	if (unlikely((fm10k_test_staterr(rx_desc,
526 					 FM10K_RXD_STATUS_RXE)))) {
527 #define FM10K_TEST_RXD_BIT(rxd, bit) \
528 	((rxd)->w.csum_err & cpu_to_le16(bit))
529 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
530 			rx_ring->rx_stats.switch_errors++;
531 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
532 			rx_ring->rx_stats.drops++;
533 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
534 			rx_ring->rx_stats.pp_errors++;
535 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
536 			rx_ring->rx_stats.link_errors++;
537 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
538 			rx_ring->rx_stats.length_errors++;
539 		dev_kfree_skb_any(skb);
540 		rx_ring->rx_stats.errors++;
541 		return true;
542 	}
543 
544 	/* if eth_skb_pad returns an error the skb was freed */
545 	if (eth_skb_pad(skb))
546 		return true;
547 
548 	return false;
549 }
550 
551 /**
552  * fm10k_receive_skb - helper function to handle rx indications
553  * @q_vector: structure containing interrupt and ring information
554  * @skb: packet to send up
555  **/
556 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
557 			      struct sk_buff *skb)
558 {
559 	napi_gro_receive(&q_vector->napi, skb);
560 }
561 
562 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
563 			      struct fm10k_ring *rx_ring,
564 			      int budget)
565 {
566 	struct sk_buff *skb = rx_ring->skb;
567 	unsigned int total_bytes = 0, total_packets = 0;
568 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
569 
570 	while (likely(total_packets < budget)) {
571 		union fm10k_rx_desc *rx_desc;
572 
573 		/* return some buffers to hardware, one at a time is too slow */
574 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
575 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
576 			cleaned_count = 0;
577 		}
578 
579 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
580 
581 		if (!rx_desc->d.staterr)
582 			break;
583 
584 		/* This memory barrier is needed to keep us from reading
585 		 * any other fields out of the rx_desc until we know the
586 		 * descriptor has been written back
587 		 */
588 		dma_rmb();
589 
590 		/* retrieve a buffer from the ring */
591 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
592 
593 		/* exit if we failed to retrieve a buffer */
594 		if (!skb)
595 			break;
596 
597 		cleaned_count++;
598 
599 		/* fetch next buffer in frame if non-eop */
600 		if (fm10k_is_non_eop(rx_ring, rx_desc))
601 			continue;
602 
603 		/* verify the packet layout is correct */
604 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
605 			skb = NULL;
606 			continue;
607 		}
608 
609 		/* populate checksum, timestamp, VLAN, and protocol */
610 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
611 
612 		fm10k_receive_skb(q_vector, skb);
613 
614 		/* reset skb pointer */
615 		skb = NULL;
616 
617 		/* update budget accounting */
618 		total_packets++;
619 	}
620 
621 	/* place incomplete frames back on ring for completion */
622 	rx_ring->skb = skb;
623 
624 	u64_stats_update_begin(&rx_ring->syncp);
625 	rx_ring->stats.packets += total_packets;
626 	rx_ring->stats.bytes += total_bytes;
627 	u64_stats_update_end(&rx_ring->syncp);
628 	q_vector->rx.total_packets += total_packets;
629 	q_vector->rx.total_bytes += total_bytes;
630 
631 	return total_packets;
632 }
633 
634 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
635 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
636 {
637 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
638 	struct fm10k_udp_port *vxlan_port;
639 
640 	/* we can only offload a vxlan if we recognize it as such */
641 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
642 					      struct fm10k_udp_port, list);
643 
644 	if (!vxlan_port)
645 		return NULL;
646 	if (vxlan_port->port != udp_hdr(skb)->dest)
647 		return NULL;
648 
649 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
650 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
651 }
652 
653 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
654 #define NVGRE_TNI htons(0x2000)
655 struct fm10k_nvgre_hdr {
656 	__be16 flags;
657 	__be16 proto;
658 	__be32 tni;
659 };
660 
661 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
662 {
663 	struct fm10k_nvgre_hdr *nvgre_hdr;
664 	int hlen = ip_hdrlen(skb);
665 
666 	/* currently only IPv4 is supported due to hlen above */
667 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
668 		return NULL;
669 
670 	/* our transport header should be NVGRE */
671 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
672 
673 	/* verify all reserved flags are 0 */
674 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
675 		return NULL;
676 
677 	/* report start of ethernet header */
678 	if (nvgre_hdr->flags & NVGRE_TNI)
679 		return (struct ethhdr *)(nvgre_hdr + 1);
680 
681 	return (struct ethhdr *)(&nvgre_hdr->tni);
682 }
683 
684 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
685 {
686 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
687 	struct ethhdr *eth_hdr;
688 
689 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
690 	    skb->inner_protocol != htons(ETH_P_TEB))
691 		return 0;
692 
693 	switch (vlan_get_protocol(skb)) {
694 	case htons(ETH_P_IP):
695 		l4_hdr = ip_hdr(skb)->protocol;
696 		break;
697 	case htons(ETH_P_IPV6):
698 		l4_hdr = ipv6_hdr(skb)->nexthdr;
699 		break;
700 	default:
701 		return 0;
702 	}
703 
704 	switch (l4_hdr) {
705 	case IPPROTO_UDP:
706 		eth_hdr = fm10k_port_is_vxlan(skb);
707 		break;
708 	case IPPROTO_GRE:
709 		eth_hdr = fm10k_gre_is_nvgre(skb);
710 		break;
711 	default:
712 		return 0;
713 	}
714 
715 	if (!eth_hdr)
716 		return 0;
717 
718 	switch (eth_hdr->h_proto) {
719 	case htons(ETH_P_IP):
720 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
721 		break;
722 	case htons(ETH_P_IPV6):
723 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
724 		break;
725 	default:
726 		return 0;
727 	}
728 
729 	switch (inner_l4_hdr) {
730 	case IPPROTO_TCP:
731 		inner_l4_hlen = inner_tcp_hdrlen(skb);
732 		break;
733 	case IPPROTO_UDP:
734 		inner_l4_hlen = 8;
735 		break;
736 	default:
737 		return 0;
738 	}
739 
740 	/* The hardware allows tunnel offloads only if the combined inner and
741 	 * outer header is 184 bytes or less
742 	 */
743 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
744 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
745 		return 0;
746 
747 	return eth_hdr->h_proto;
748 }
749 
750 static int fm10k_tso(struct fm10k_ring *tx_ring,
751 		     struct fm10k_tx_buffer *first)
752 {
753 	struct sk_buff *skb = first->skb;
754 	struct fm10k_tx_desc *tx_desc;
755 	unsigned char *th;
756 	u8 hdrlen;
757 
758 	if (skb->ip_summed != CHECKSUM_PARTIAL)
759 		return 0;
760 
761 	if (!skb_is_gso(skb))
762 		return 0;
763 
764 	/* compute header lengths */
765 	if (skb->encapsulation) {
766 		if (!fm10k_tx_encap_offload(skb))
767 			goto err_vxlan;
768 		th = skb_inner_transport_header(skb);
769 	} else {
770 		th = skb_transport_header(skb);
771 	}
772 
773 	/* compute offset from SOF to transport header and add header len */
774 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
775 
776 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
777 
778 	/* update gso size and bytecount with header size */
779 	first->gso_segs = skb_shinfo(skb)->gso_segs;
780 	first->bytecount += (first->gso_segs - 1) * hdrlen;
781 
782 	/* populate Tx descriptor header size and mss */
783 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
784 	tx_desc->hdrlen = hdrlen;
785 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
786 
787 	return 1;
788 
789 err_vxlan:
790 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
791 	if (net_ratelimit())
792 		netdev_err(tx_ring->netdev,
793 			   "TSO requested for unsupported tunnel, disabling offload\n");
794 	return -1;
795 }
796 
797 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
798 			  struct fm10k_tx_buffer *first)
799 {
800 	struct sk_buff *skb = first->skb;
801 	struct fm10k_tx_desc *tx_desc;
802 	union {
803 		struct iphdr *ipv4;
804 		struct ipv6hdr *ipv6;
805 		u8 *raw;
806 	} network_hdr;
807 	u8 *transport_hdr;
808 	__be16 frag_off;
809 	__be16 protocol;
810 	u8 l4_hdr = 0;
811 
812 	if (skb->ip_summed != CHECKSUM_PARTIAL)
813 		goto no_csum;
814 
815 	if (skb->encapsulation) {
816 		protocol = fm10k_tx_encap_offload(skb);
817 		if (!protocol) {
818 			if (skb_checksum_help(skb)) {
819 				dev_warn(tx_ring->dev,
820 					 "failed to offload encap csum!\n");
821 				tx_ring->tx_stats.csum_err++;
822 			}
823 			goto no_csum;
824 		}
825 		network_hdr.raw = skb_inner_network_header(skb);
826 		transport_hdr = skb_inner_transport_header(skb);
827 	} else {
828 		protocol = vlan_get_protocol(skb);
829 		network_hdr.raw = skb_network_header(skb);
830 		transport_hdr = skb_transport_header(skb);
831 	}
832 
833 	switch (protocol) {
834 	case htons(ETH_P_IP):
835 		l4_hdr = network_hdr.ipv4->protocol;
836 		break;
837 	case htons(ETH_P_IPV6):
838 		l4_hdr = network_hdr.ipv6->nexthdr;
839 		if (likely((transport_hdr - network_hdr.raw) ==
840 			   sizeof(struct ipv6hdr)))
841 			break;
842 		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
843 				      sizeof(struct ipv6hdr),
844 				 &l4_hdr, &frag_off);
845 		if (unlikely(frag_off))
846 			l4_hdr = NEXTHDR_FRAGMENT;
847 		break;
848 	default:
849 		break;
850 	}
851 
852 	switch (l4_hdr) {
853 	case IPPROTO_TCP:
854 	case IPPROTO_UDP:
855 		break;
856 	case IPPROTO_GRE:
857 		if (skb->encapsulation)
858 			break;
859 		fallthrough;
860 	default:
861 		if (unlikely(net_ratelimit())) {
862 			dev_warn(tx_ring->dev,
863 				 "partial checksum, version=%d l4 proto=%x\n",
864 				 protocol, l4_hdr);
865 		}
866 		skb_checksum_help(skb);
867 		tx_ring->tx_stats.csum_err++;
868 		goto no_csum;
869 	}
870 
871 	/* update TX checksum flag */
872 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
873 	tx_ring->tx_stats.csum_good++;
874 
875 no_csum:
876 	/* populate Tx descriptor header size and mss */
877 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
878 	tx_desc->hdrlen = 0;
879 	tx_desc->mss = 0;
880 }
881 
882 #define FM10K_SET_FLAG(_input, _flag, _result) \
883 	((_flag <= _result) ? \
884 	 ((u32)(_input & _flag) * (_result / _flag)) : \
885 	 ((u32)(_input & _flag) / (_flag / _result)))
886 
887 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
888 {
889 	/* set type for advanced descriptor with frame checksum insertion */
890 	u32 desc_flags = 0;
891 
892 	/* set checksum offload bits */
893 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
894 				     FM10K_TXD_FLAG_CSUM);
895 
896 	return desc_flags;
897 }
898 
899 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
900 			       struct fm10k_tx_desc *tx_desc, u16 i,
901 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
902 {
903 	/* set RS and INT for last frame in a cache line */
904 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
905 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
906 
907 	/* record values to descriptor */
908 	tx_desc->buffer_addr = cpu_to_le64(dma);
909 	tx_desc->flags = desc_flags;
910 	tx_desc->buflen = cpu_to_le16(size);
911 
912 	/* return true if we just wrapped the ring */
913 	return i == tx_ring->count;
914 }
915 
916 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
917 {
918 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
919 
920 	/* Memory barrier before checking head and tail */
921 	smp_mb();
922 
923 	/* Check again in a case another CPU has just made room available */
924 	if (likely(fm10k_desc_unused(tx_ring) < size))
925 		return -EBUSY;
926 
927 	/* A reprieve! - use start_queue because it doesn't call schedule */
928 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
929 	++tx_ring->tx_stats.restart_queue;
930 	return 0;
931 }
932 
933 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
934 {
935 	if (likely(fm10k_desc_unused(tx_ring) >= size))
936 		return 0;
937 	return __fm10k_maybe_stop_tx(tx_ring, size);
938 }
939 
940 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
941 			 struct fm10k_tx_buffer *first)
942 {
943 	struct sk_buff *skb = first->skb;
944 	struct fm10k_tx_buffer *tx_buffer;
945 	struct fm10k_tx_desc *tx_desc;
946 	skb_frag_t *frag;
947 	unsigned char *data;
948 	dma_addr_t dma;
949 	unsigned int data_len, size;
950 	u32 tx_flags = first->tx_flags;
951 	u16 i = tx_ring->next_to_use;
952 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
953 
954 	tx_desc = FM10K_TX_DESC(tx_ring, i);
955 
956 	/* add HW VLAN tag */
957 	if (skb_vlan_tag_present(skb))
958 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
959 	else
960 		tx_desc->vlan = 0;
961 
962 	size = skb_headlen(skb);
963 	data = skb->data;
964 
965 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
966 
967 	data_len = skb->data_len;
968 	tx_buffer = first;
969 
970 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
971 		if (dma_mapping_error(tx_ring->dev, dma))
972 			goto dma_error;
973 
974 		/* record length, and DMA address */
975 		dma_unmap_len_set(tx_buffer, len, size);
976 		dma_unmap_addr_set(tx_buffer, dma, dma);
977 
978 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
979 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
980 					       FM10K_MAX_DATA_PER_TXD, flags)) {
981 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
982 				i = 0;
983 			}
984 
985 			dma += FM10K_MAX_DATA_PER_TXD;
986 			size -= FM10K_MAX_DATA_PER_TXD;
987 		}
988 
989 		if (likely(!data_len))
990 			break;
991 
992 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
993 				       dma, size, flags)) {
994 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
995 			i = 0;
996 		}
997 
998 		size = skb_frag_size(frag);
999 		data_len -= size;
1000 
1001 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1002 				       DMA_TO_DEVICE);
1003 
1004 		tx_buffer = &tx_ring->tx_buffer[i];
1005 	}
1006 
1007 	/* write last descriptor with LAST bit set */
1008 	flags |= FM10K_TXD_FLAG_LAST;
1009 
1010 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1011 		i = 0;
1012 
1013 	/* record bytecount for BQL */
1014 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1015 
1016 	/* record SW timestamp if HW timestamp is not available */
1017 	skb_tx_timestamp(first->skb);
1018 
1019 	/* Force memory writes to complete before letting h/w know there
1020 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1021 	 * memory model archs, such as IA-64).
1022 	 *
1023 	 * We also need this memory barrier to make certain all of the
1024 	 * status bits have been updated before next_to_watch is written.
1025 	 */
1026 	wmb();
1027 
1028 	/* set next_to_watch value indicating a packet is present */
1029 	first->next_to_watch = tx_desc;
1030 
1031 	tx_ring->next_to_use = i;
1032 
1033 	/* Make sure there is space in the ring for the next send. */
1034 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1035 
1036 	/* notify HW of packet */
1037 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1038 		writel(i, tx_ring->tail);
1039 	}
1040 
1041 	return;
1042 dma_error:
1043 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1044 
1045 	/* clear dma mappings for failed tx_buffer map */
1046 	for (;;) {
1047 		tx_buffer = &tx_ring->tx_buffer[i];
1048 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1049 		if (tx_buffer == first)
1050 			break;
1051 		if (i == 0)
1052 			i = tx_ring->count;
1053 		i--;
1054 	}
1055 
1056 	tx_ring->next_to_use = i;
1057 }
1058 
1059 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1060 				  struct fm10k_ring *tx_ring)
1061 {
1062 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1063 	struct fm10k_tx_buffer *first;
1064 	unsigned short f;
1065 	u32 tx_flags = 0;
1066 	int tso;
1067 
1068 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1069 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1070 	 *       + 2 desc gap to keep tail from touching head
1071 	 * otherwise try next time
1072 	 */
1073 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1074 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1075 
1076 		count += TXD_USE_COUNT(skb_frag_size(frag));
1077 	}
1078 
1079 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1080 		tx_ring->tx_stats.tx_busy++;
1081 		return NETDEV_TX_BUSY;
1082 	}
1083 
1084 	/* record the location of the first descriptor for this packet */
1085 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1086 	first->skb = skb;
1087 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1088 	first->gso_segs = 1;
1089 
1090 	/* record initial flags and protocol */
1091 	first->tx_flags = tx_flags;
1092 
1093 	tso = fm10k_tso(tx_ring, first);
1094 	if (tso < 0)
1095 		goto out_drop;
1096 	else if (!tso)
1097 		fm10k_tx_csum(tx_ring, first);
1098 
1099 	fm10k_tx_map(tx_ring, first);
1100 
1101 	return NETDEV_TX_OK;
1102 
1103 out_drop:
1104 	dev_kfree_skb_any(first->skb);
1105 	first->skb = NULL;
1106 
1107 	return NETDEV_TX_OK;
1108 }
1109 
1110 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1111 {
1112 	return ring->stats.packets;
1113 }
1114 
1115 /**
1116  * fm10k_get_tx_pending - how many Tx descriptors not processed
1117  * @ring: the ring structure
1118  * @in_sw: is tx_pending being checked in SW or in HW?
1119  */
1120 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1121 {
1122 	struct fm10k_intfc *interface = ring->q_vector->interface;
1123 	struct fm10k_hw *hw = &interface->hw;
1124 	u32 head, tail;
1125 
1126 	if (likely(in_sw)) {
1127 		head = ring->next_to_clean;
1128 		tail = ring->next_to_use;
1129 	} else {
1130 		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1131 		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1132 	}
1133 
1134 	return ((head <= tail) ? tail : tail + ring->count) - head;
1135 }
1136 
1137 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1138 {
1139 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1140 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1141 	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1142 
1143 	clear_check_for_tx_hang(tx_ring);
1144 
1145 	/* Check for a hung queue, but be thorough. This verifies
1146 	 * that a transmit has been completed since the previous
1147 	 * check AND there is at least one packet pending. By
1148 	 * requiring this to fail twice we avoid races with
1149 	 * clearing the ARMED bit and conditions where we
1150 	 * run the check_tx_hang logic with a transmit completion
1151 	 * pending but without time to complete it yet.
1152 	 */
1153 	if (!tx_pending || (tx_done_old != tx_done)) {
1154 		/* update completed stats and continue */
1155 		tx_ring->tx_stats.tx_done_old = tx_done;
1156 		/* reset the countdown */
1157 		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1158 
1159 		return false;
1160 	}
1161 
1162 	/* make sure it is true for two checks in a row */
1163 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1164 }
1165 
1166 /**
1167  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1168  * @interface: driver private struct
1169  **/
1170 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1171 {
1172 	/* Do the reset outside of interrupt context */
1173 	if (!test_bit(__FM10K_DOWN, interface->state)) {
1174 		interface->tx_timeout_count++;
1175 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1176 		fm10k_service_event_schedule(interface);
1177 	}
1178 }
1179 
1180 /**
1181  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1182  * @q_vector: structure containing interrupt and ring information
1183  * @tx_ring: tx ring to clean
1184  * @napi_budget: Used to determine if we are in netpoll
1185  **/
1186 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1187 			       struct fm10k_ring *tx_ring, int napi_budget)
1188 {
1189 	struct fm10k_intfc *interface = q_vector->interface;
1190 	struct fm10k_tx_buffer *tx_buffer;
1191 	struct fm10k_tx_desc *tx_desc;
1192 	unsigned int total_bytes = 0, total_packets = 0;
1193 	unsigned int budget = q_vector->tx.work_limit;
1194 	unsigned int i = tx_ring->next_to_clean;
1195 
1196 	if (test_bit(__FM10K_DOWN, interface->state))
1197 		return true;
1198 
1199 	tx_buffer = &tx_ring->tx_buffer[i];
1200 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1201 	i -= tx_ring->count;
1202 
1203 	do {
1204 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1205 
1206 		/* if next_to_watch is not set then there is no work pending */
1207 		if (!eop_desc)
1208 			break;
1209 
1210 		/* prevent any other reads prior to eop_desc */
1211 		smp_rmb();
1212 
1213 		/* if DD is not set pending work has not been completed */
1214 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1215 			break;
1216 
1217 		/* clear next_to_watch to prevent false hangs */
1218 		tx_buffer->next_to_watch = NULL;
1219 
1220 		/* update the statistics for this packet */
1221 		total_bytes += tx_buffer->bytecount;
1222 		total_packets += tx_buffer->gso_segs;
1223 
1224 		/* free the skb */
1225 		napi_consume_skb(tx_buffer->skb, napi_budget);
1226 
1227 		/* unmap skb header data */
1228 		dma_unmap_single(tx_ring->dev,
1229 				 dma_unmap_addr(tx_buffer, dma),
1230 				 dma_unmap_len(tx_buffer, len),
1231 				 DMA_TO_DEVICE);
1232 
1233 		/* clear tx_buffer data */
1234 		tx_buffer->skb = NULL;
1235 		dma_unmap_len_set(tx_buffer, len, 0);
1236 
1237 		/* unmap remaining buffers */
1238 		while (tx_desc != eop_desc) {
1239 			tx_buffer++;
1240 			tx_desc++;
1241 			i++;
1242 			if (unlikely(!i)) {
1243 				i -= tx_ring->count;
1244 				tx_buffer = tx_ring->tx_buffer;
1245 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1246 			}
1247 
1248 			/* unmap any remaining paged data */
1249 			if (dma_unmap_len(tx_buffer, len)) {
1250 				dma_unmap_page(tx_ring->dev,
1251 					       dma_unmap_addr(tx_buffer, dma),
1252 					       dma_unmap_len(tx_buffer, len),
1253 					       DMA_TO_DEVICE);
1254 				dma_unmap_len_set(tx_buffer, len, 0);
1255 			}
1256 		}
1257 
1258 		/* move us one more past the eop_desc for start of next pkt */
1259 		tx_buffer++;
1260 		tx_desc++;
1261 		i++;
1262 		if (unlikely(!i)) {
1263 			i -= tx_ring->count;
1264 			tx_buffer = tx_ring->tx_buffer;
1265 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1266 		}
1267 
1268 		/* issue prefetch for next Tx descriptor */
1269 		prefetch(tx_desc);
1270 
1271 		/* update budget accounting */
1272 		budget--;
1273 	} while (likely(budget));
1274 
1275 	i += tx_ring->count;
1276 	tx_ring->next_to_clean = i;
1277 	u64_stats_update_begin(&tx_ring->syncp);
1278 	tx_ring->stats.bytes += total_bytes;
1279 	tx_ring->stats.packets += total_packets;
1280 	u64_stats_update_end(&tx_ring->syncp);
1281 	q_vector->tx.total_bytes += total_bytes;
1282 	q_vector->tx.total_packets += total_packets;
1283 
1284 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1285 		/* schedule immediate reset if we believe we hung */
1286 		struct fm10k_hw *hw = &interface->hw;
1287 
1288 		netif_err(interface, drv, tx_ring->netdev,
1289 			  "Detected Tx Unit Hang\n"
1290 			  "  Tx Queue             <%d>\n"
1291 			  "  TDH, TDT             <%x>, <%x>\n"
1292 			  "  next_to_use          <%x>\n"
1293 			  "  next_to_clean        <%x>\n",
1294 			  tx_ring->queue_index,
1295 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1296 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1297 			  tx_ring->next_to_use, i);
1298 
1299 		netif_stop_subqueue(tx_ring->netdev,
1300 				    tx_ring->queue_index);
1301 
1302 		netif_info(interface, probe, tx_ring->netdev,
1303 			   "tx hang %d detected on queue %d, resetting interface\n",
1304 			   interface->tx_timeout_count + 1,
1305 			   tx_ring->queue_index);
1306 
1307 		fm10k_tx_timeout_reset(interface);
1308 
1309 		/* the netdev is about to reset, no point in enabling stuff */
1310 		return true;
1311 	}
1312 
1313 	/* notify netdev of completed buffers */
1314 	netdev_tx_completed_queue(txring_txq(tx_ring),
1315 				  total_packets, total_bytes);
1316 
1317 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1318 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1319 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1320 		/* Make sure that anybody stopping the queue after this
1321 		 * sees the new next_to_clean.
1322 		 */
1323 		smp_mb();
1324 		if (__netif_subqueue_stopped(tx_ring->netdev,
1325 					     tx_ring->queue_index) &&
1326 		    !test_bit(__FM10K_DOWN, interface->state)) {
1327 			netif_wake_subqueue(tx_ring->netdev,
1328 					    tx_ring->queue_index);
1329 			++tx_ring->tx_stats.restart_queue;
1330 		}
1331 	}
1332 
1333 	return !!budget;
1334 }
1335 
1336 /**
1337  * fm10k_update_itr - update the dynamic ITR value based on packet size
1338  *
1339  *      Stores a new ITR value based on strictly on packet size.  The
1340  *      divisors and thresholds used by this function were determined based
1341  *      on theoretical maximum wire speed and testing data, in order to
1342  *      minimize response time while increasing bulk throughput.
1343  *
1344  * @ring_container: Container for rings to have ITR updated
1345  **/
1346 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1347 {
1348 	unsigned int avg_wire_size, packets, itr_round;
1349 
1350 	/* Only update ITR if we are using adaptive setting */
1351 	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1352 		goto clear_counts;
1353 
1354 	packets = ring_container->total_packets;
1355 	if (!packets)
1356 		goto clear_counts;
1357 
1358 	avg_wire_size = ring_container->total_bytes / packets;
1359 
1360 	/* The following is a crude approximation of:
1361 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1362 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1363 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1364 	 *
1365 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1366 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1367 	 * formula down to
1368 	 *
1369 	 *  (34 * (size + 24)) / (size + 640) = ITR
1370 	 *
1371 	 * We first do some math on the packet size and then finally bitshift
1372 	 * by 8 after rounding up. We also have to account for PCIe link speed
1373 	 * difference as ITR scales based on this.
1374 	 */
1375 	if (avg_wire_size <= 360) {
1376 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1377 		avg_wire_size *= 8;
1378 		avg_wire_size += 376;
1379 	} else if (avg_wire_size <= 1152) {
1380 		/* 77K ints/sec to 45K ints/sec */
1381 		avg_wire_size *= 3;
1382 		avg_wire_size += 2176;
1383 	} else if (avg_wire_size <= 1920) {
1384 		/* 45K ints/sec to 38K ints/sec */
1385 		avg_wire_size += 4480;
1386 	} else {
1387 		/* plateau at a limit of 38K ints/sec */
1388 		avg_wire_size = 6656;
1389 	}
1390 
1391 	/* Perform final bitshift for division after rounding up to ensure
1392 	 * that the calculation will never get below a 1. The bit shift
1393 	 * accounts for changes in the ITR due to PCIe link speed.
1394 	 */
1395 	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1396 	avg_wire_size += BIT(itr_round) - 1;
1397 	avg_wire_size >>= itr_round;
1398 
1399 	/* write back value and retain adaptive flag */
1400 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1401 
1402 clear_counts:
1403 	ring_container->total_bytes = 0;
1404 	ring_container->total_packets = 0;
1405 }
1406 
1407 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1408 {
1409 	/* Enable auto-mask and clear the current mask */
1410 	u32 itr = FM10K_ITR_ENABLE;
1411 
1412 	/* Update Tx ITR */
1413 	fm10k_update_itr(&q_vector->tx);
1414 
1415 	/* Update Rx ITR */
1416 	fm10k_update_itr(&q_vector->rx);
1417 
1418 	/* Store Tx itr in timer slot 0 */
1419 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1420 
1421 	/* Shift Rx itr to timer slot 1 */
1422 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1423 
1424 	/* Write the final value to the ITR register */
1425 	writel(itr, q_vector->itr);
1426 }
1427 
1428 static int fm10k_poll(struct napi_struct *napi, int budget)
1429 {
1430 	struct fm10k_q_vector *q_vector =
1431 			       container_of(napi, struct fm10k_q_vector, napi);
1432 	struct fm10k_ring *ring;
1433 	int per_ring_budget, work_done = 0;
1434 	bool clean_complete = true;
1435 
1436 	fm10k_for_each_ring(ring, q_vector->tx) {
1437 		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1438 			clean_complete = false;
1439 	}
1440 
1441 	/* Handle case where we are called by netpoll with a budget of 0 */
1442 	if (budget <= 0)
1443 		return budget;
1444 
1445 	/* attempt to distribute budget to each queue fairly, but don't
1446 	 * allow the budget to go below 1 because we'll exit polling
1447 	 */
1448 	if (q_vector->rx.count > 1)
1449 		per_ring_budget = max(budget / q_vector->rx.count, 1);
1450 	else
1451 		per_ring_budget = budget;
1452 
1453 	fm10k_for_each_ring(ring, q_vector->rx) {
1454 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1455 
1456 		work_done += work;
1457 		if (work >= per_ring_budget)
1458 			clean_complete = false;
1459 	}
1460 
1461 	/* If all work not completed, return budget and keep polling */
1462 	if (!clean_complete)
1463 		return budget;
1464 
1465 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1466 	 * poll us due to busy-polling
1467 	 */
1468 	if (likely(napi_complete_done(napi, work_done)))
1469 		fm10k_qv_enable(q_vector);
1470 
1471 	return min(work_done, budget - 1);
1472 }
1473 
1474 /**
1475  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1476  * @interface: board private structure to initialize
1477  *
1478  * When QoS (Quality of Service) is enabled, allocate queues for
1479  * each traffic class.  If multiqueue isn't available,then abort QoS
1480  * initialization.
1481  *
1482  * This function handles all combinations of Qos and RSS.
1483  *
1484  **/
1485 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1486 {
1487 	struct net_device *dev = interface->netdev;
1488 	struct fm10k_ring_feature *f;
1489 	int rss_i, i;
1490 	int pcs;
1491 
1492 	/* Map queue offset and counts onto allocated tx queues */
1493 	pcs = netdev_get_num_tc(dev);
1494 
1495 	if (pcs <= 1)
1496 		return false;
1497 
1498 	/* set QoS mask and indices */
1499 	f = &interface->ring_feature[RING_F_QOS];
1500 	f->indices = pcs;
1501 	f->mask = BIT(fls(pcs - 1)) - 1;
1502 
1503 	/* determine the upper limit for our current DCB mode */
1504 	rss_i = interface->hw.mac.max_queues / pcs;
1505 	rss_i = BIT(fls(rss_i) - 1);
1506 
1507 	/* set RSS mask and indices */
1508 	f = &interface->ring_feature[RING_F_RSS];
1509 	rss_i = min_t(u16, rss_i, f->limit);
1510 	f->indices = rss_i;
1511 	f->mask = BIT(fls(rss_i - 1)) - 1;
1512 
1513 	/* configure pause class to queue mapping */
1514 	for (i = 0; i < pcs; i++)
1515 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1516 
1517 	interface->num_rx_queues = rss_i * pcs;
1518 	interface->num_tx_queues = rss_i * pcs;
1519 
1520 	return true;
1521 }
1522 
1523 /**
1524  * fm10k_set_rss_queues: Allocate queues for RSS
1525  * @interface: board private structure to initialize
1526  *
1527  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1528  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1529  *
1530  **/
1531 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1532 {
1533 	struct fm10k_ring_feature *f;
1534 	u16 rss_i;
1535 
1536 	f = &interface->ring_feature[RING_F_RSS];
1537 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1538 
1539 	/* record indices and power of 2 mask for RSS */
1540 	f->indices = rss_i;
1541 	f->mask = BIT(fls(rss_i - 1)) - 1;
1542 
1543 	interface->num_rx_queues = rss_i;
1544 	interface->num_tx_queues = rss_i;
1545 
1546 	return true;
1547 }
1548 
1549 /**
1550  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1551  * @interface: board private structure to initialize
1552  *
1553  * This is the top level queue allocation routine.  The order here is very
1554  * important, starting with the "most" number of features turned on at once,
1555  * and ending with the smallest set of features.  This way large combinations
1556  * can be allocated if they're turned on, and smaller combinations are the
1557  * fall through conditions.
1558  *
1559  **/
1560 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1561 {
1562 	/* Attempt to setup QoS and RSS first */
1563 	if (fm10k_set_qos_queues(interface))
1564 		return;
1565 
1566 	/* If we don't have QoS, just fallback to only RSS. */
1567 	fm10k_set_rss_queues(interface);
1568 }
1569 
1570 /**
1571  * fm10k_reset_num_queues - Reset the number of queues to zero
1572  * @interface: board private structure
1573  *
1574  * This function should be called whenever we need to reset the number of
1575  * queues after an error condition.
1576  */
1577 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1578 {
1579 	interface->num_tx_queues = 0;
1580 	interface->num_rx_queues = 0;
1581 	interface->num_q_vectors = 0;
1582 }
1583 
1584 /**
1585  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1586  * @interface: board private structure to initialize
1587  * @v_count: q_vectors allocated on interface, used for ring interleaving
1588  * @v_idx: index of vector in interface struct
1589  * @txr_count: total number of Tx rings to allocate
1590  * @txr_idx: index of first Tx ring to allocate
1591  * @rxr_count: total number of Rx rings to allocate
1592  * @rxr_idx: index of first Rx ring to allocate
1593  *
1594  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1595  **/
1596 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1597 				unsigned int v_count, unsigned int v_idx,
1598 				unsigned int txr_count, unsigned int txr_idx,
1599 				unsigned int rxr_count, unsigned int rxr_idx)
1600 {
1601 	struct fm10k_q_vector *q_vector;
1602 	struct fm10k_ring *ring;
1603 	int ring_count;
1604 
1605 	ring_count = txr_count + rxr_count;
1606 
1607 	/* allocate q_vector and rings */
1608 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1609 	if (!q_vector)
1610 		return -ENOMEM;
1611 
1612 	/* initialize NAPI */
1613 	netif_napi_add(interface->netdev, &q_vector->napi,
1614 		       fm10k_poll, NAPI_POLL_WEIGHT);
1615 
1616 	/* tie q_vector and interface together */
1617 	interface->q_vector[v_idx] = q_vector;
1618 	q_vector->interface = interface;
1619 	q_vector->v_idx = v_idx;
1620 
1621 	/* initialize pointer to rings */
1622 	ring = q_vector->ring;
1623 
1624 	/* save Tx ring container info */
1625 	q_vector->tx.ring = ring;
1626 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1627 	q_vector->tx.itr = interface->tx_itr;
1628 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1629 	q_vector->tx.count = txr_count;
1630 
1631 	while (txr_count) {
1632 		/* assign generic ring traits */
1633 		ring->dev = &interface->pdev->dev;
1634 		ring->netdev = interface->netdev;
1635 
1636 		/* configure backlink on ring */
1637 		ring->q_vector = q_vector;
1638 
1639 		/* apply Tx specific ring traits */
1640 		ring->count = interface->tx_ring_count;
1641 		ring->queue_index = txr_idx;
1642 
1643 		/* assign ring to interface */
1644 		interface->tx_ring[txr_idx] = ring;
1645 
1646 		/* update count and index */
1647 		txr_count--;
1648 		txr_idx += v_count;
1649 
1650 		/* push pointer to next ring */
1651 		ring++;
1652 	}
1653 
1654 	/* save Rx ring container info */
1655 	q_vector->rx.ring = ring;
1656 	q_vector->rx.itr = interface->rx_itr;
1657 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1658 	q_vector->rx.count = rxr_count;
1659 
1660 	while (rxr_count) {
1661 		/* assign generic ring traits */
1662 		ring->dev = &interface->pdev->dev;
1663 		ring->netdev = interface->netdev;
1664 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1665 
1666 		/* configure backlink on ring */
1667 		ring->q_vector = q_vector;
1668 
1669 		/* apply Rx specific ring traits */
1670 		ring->count = interface->rx_ring_count;
1671 		ring->queue_index = rxr_idx;
1672 
1673 		/* assign ring to interface */
1674 		interface->rx_ring[rxr_idx] = ring;
1675 
1676 		/* update count and index */
1677 		rxr_count--;
1678 		rxr_idx += v_count;
1679 
1680 		/* push pointer to next ring */
1681 		ring++;
1682 	}
1683 
1684 	fm10k_dbg_q_vector_init(q_vector);
1685 
1686 	return 0;
1687 }
1688 
1689 /**
1690  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1691  * @interface: board private structure to initialize
1692  * @v_idx: Index of vector to be freed
1693  *
1694  * This function frees the memory allocated to the q_vector.  In addition if
1695  * NAPI is enabled it will delete any references to the NAPI struct prior
1696  * to freeing the q_vector.
1697  **/
1698 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1699 {
1700 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1701 	struct fm10k_ring *ring;
1702 
1703 	fm10k_dbg_q_vector_exit(q_vector);
1704 
1705 	fm10k_for_each_ring(ring, q_vector->tx)
1706 		interface->tx_ring[ring->queue_index] = NULL;
1707 
1708 	fm10k_for_each_ring(ring, q_vector->rx)
1709 		interface->rx_ring[ring->queue_index] = NULL;
1710 
1711 	interface->q_vector[v_idx] = NULL;
1712 	netif_napi_del(&q_vector->napi);
1713 	kfree_rcu(q_vector, rcu);
1714 }
1715 
1716 /**
1717  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1718  * @interface: board private structure to initialize
1719  *
1720  * We allocate one q_vector per queue interrupt.  If allocation fails we
1721  * return -ENOMEM.
1722  **/
1723 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1724 {
1725 	unsigned int q_vectors = interface->num_q_vectors;
1726 	unsigned int rxr_remaining = interface->num_rx_queues;
1727 	unsigned int txr_remaining = interface->num_tx_queues;
1728 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1729 	int err;
1730 
1731 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1732 		for (; rxr_remaining; v_idx++) {
1733 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1734 						   0, 0, 1, rxr_idx);
1735 			if (err)
1736 				goto err_out;
1737 
1738 			/* update counts and index */
1739 			rxr_remaining--;
1740 			rxr_idx++;
1741 		}
1742 	}
1743 
1744 	for (; v_idx < q_vectors; v_idx++) {
1745 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1746 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1747 
1748 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1749 					   tqpv, txr_idx,
1750 					   rqpv, rxr_idx);
1751 
1752 		if (err)
1753 			goto err_out;
1754 
1755 		/* update counts and index */
1756 		rxr_remaining -= rqpv;
1757 		txr_remaining -= tqpv;
1758 		rxr_idx++;
1759 		txr_idx++;
1760 	}
1761 
1762 	return 0;
1763 
1764 err_out:
1765 	fm10k_reset_num_queues(interface);
1766 
1767 	while (v_idx--)
1768 		fm10k_free_q_vector(interface, v_idx);
1769 
1770 	return -ENOMEM;
1771 }
1772 
1773 /**
1774  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1775  * @interface: board private structure to initialize
1776  *
1777  * This function frees the memory allocated to the q_vectors.  In addition if
1778  * NAPI is enabled it will delete any references to the NAPI struct prior
1779  * to freeing the q_vector.
1780  **/
1781 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1782 {
1783 	int v_idx = interface->num_q_vectors;
1784 
1785 	fm10k_reset_num_queues(interface);
1786 
1787 	while (v_idx--)
1788 		fm10k_free_q_vector(interface, v_idx);
1789 }
1790 
1791 /**
1792  * f10k_reset_msix_capability - reset MSI-X capability
1793  * @interface: board private structure to initialize
1794  *
1795  * Reset the MSI-X capability back to its starting state
1796  **/
1797 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1798 {
1799 	pci_disable_msix(interface->pdev);
1800 	kfree(interface->msix_entries);
1801 	interface->msix_entries = NULL;
1802 }
1803 
1804 /**
1805  * f10k_init_msix_capability - configure MSI-X capability
1806  * @interface: board private structure to initialize
1807  *
1808  * Attempt to configure the interrupts using the best available
1809  * capabilities of the hardware and the kernel.
1810  **/
1811 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1812 {
1813 	struct fm10k_hw *hw = &interface->hw;
1814 	int v_budget, vector;
1815 
1816 	/* It's easy to be greedy for MSI-X vectors, but it really
1817 	 * doesn't do us much good if we have a lot more vectors
1818 	 * than CPU's.  So let's be conservative and only ask for
1819 	 * (roughly) the same number of vectors as there are CPU's.
1820 	 * the default is to use pairs of vectors
1821 	 */
1822 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1823 	v_budget = min_t(u16, v_budget, num_online_cpus());
1824 
1825 	/* account for vectors not related to queues */
1826 	v_budget += NON_Q_VECTORS;
1827 
1828 	/* At the same time, hardware can only support a maximum of
1829 	 * hw.mac->max_msix_vectors vectors.  With features
1830 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1831 	 * descriptor queues supported by our device.  Thus, we cap it off in
1832 	 * those rare cases where the cpu count also exceeds our vector limit.
1833 	 */
1834 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1835 
1836 	/* A failure in MSI-X entry allocation is fatal. */
1837 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1838 					  GFP_KERNEL);
1839 	if (!interface->msix_entries)
1840 		return -ENOMEM;
1841 
1842 	/* populate entry values */
1843 	for (vector = 0; vector < v_budget; vector++)
1844 		interface->msix_entries[vector].entry = vector;
1845 
1846 	/* Attempt to enable MSI-X with requested value */
1847 	v_budget = pci_enable_msix_range(interface->pdev,
1848 					 interface->msix_entries,
1849 					 MIN_MSIX_COUNT(hw),
1850 					 v_budget);
1851 	if (v_budget < 0) {
1852 		kfree(interface->msix_entries);
1853 		interface->msix_entries = NULL;
1854 		return v_budget;
1855 	}
1856 
1857 	/* record the number of queues available for q_vectors */
1858 	interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1859 
1860 	return 0;
1861 }
1862 
1863 /**
1864  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1865  * @interface: Interface structure continaining rings and devices
1866  *
1867  * Cache the descriptor ring offsets for Qos
1868  **/
1869 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1870 {
1871 	struct net_device *dev = interface->netdev;
1872 	int pc, offset, rss_i, i;
1873 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1874 	u8 num_pcs = netdev_get_num_tc(dev);
1875 
1876 	if (num_pcs <= 1)
1877 		return false;
1878 
1879 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1880 
1881 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1882 		int q_idx = pc;
1883 
1884 		for (i = 0; i < rss_i; i++) {
1885 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1886 			interface->tx_ring[offset + i]->qos_pc = pc;
1887 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1888 			interface->rx_ring[offset + i]->qos_pc = pc;
1889 			q_idx += pc_stride;
1890 		}
1891 	}
1892 
1893 	return true;
1894 }
1895 
1896 /**
1897  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1898  * @interface: Interface structure continaining rings and devices
1899  *
1900  * Cache the descriptor ring offsets for RSS
1901  **/
1902 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1903 {
1904 	int i;
1905 
1906 	for (i = 0; i < interface->num_rx_queues; i++)
1907 		interface->rx_ring[i]->reg_idx = i;
1908 
1909 	for (i = 0; i < interface->num_tx_queues; i++)
1910 		interface->tx_ring[i]->reg_idx = i;
1911 }
1912 
1913 /**
1914  * fm10k_assign_rings - Map rings to network devices
1915  * @interface: Interface structure containing rings and devices
1916  *
1917  * This function is meant to go though and configure both the network
1918  * devices so that they contain rings, and configure the rings so that
1919  * they function with their network devices.
1920  **/
1921 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1922 {
1923 	if (fm10k_cache_ring_qos(interface))
1924 		return;
1925 
1926 	fm10k_cache_ring_rss(interface);
1927 }
1928 
1929 static void fm10k_init_reta(struct fm10k_intfc *interface)
1930 {
1931 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1932 	u32 reta;
1933 
1934 	/* If the Rx flow indirection table has been configured manually, we
1935 	 * need to maintain it when possible.
1936 	 */
1937 	if (netif_is_rxfh_configured(interface->netdev)) {
1938 		for (i = FM10K_RETA_SIZE; i--;) {
1939 			reta = interface->reta[i];
1940 			if ((((reta << 24) >> 24) < rss_i) &&
1941 			    (((reta << 16) >> 24) < rss_i) &&
1942 			    (((reta <<  8) >> 24) < rss_i) &&
1943 			    (((reta)       >> 24) < rss_i))
1944 				continue;
1945 
1946 			/* this should never happen */
1947 			dev_err(&interface->pdev->dev,
1948 				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1949 			goto repopulate_reta;
1950 		}
1951 
1952 		/* do nothing if all of the elements are in bounds */
1953 		return;
1954 	}
1955 
1956 repopulate_reta:
1957 	fm10k_write_reta(interface, NULL);
1958 }
1959 
1960 /**
1961  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1962  * @interface: board private structure to initialize
1963  *
1964  * We determine which queueing scheme to use based on...
1965  * - Hardware queue count (num_*_queues)
1966  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1967  **/
1968 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1969 {
1970 	int err;
1971 
1972 	/* Number of supported queues */
1973 	fm10k_set_num_queues(interface);
1974 
1975 	/* Configure MSI-X capability */
1976 	err = fm10k_init_msix_capability(interface);
1977 	if (err) {
1978 		dev_err(&interface->pdev->dev,
1979 			"Unable to initialize MSI-X capability\n");
1980 		goto err_init_msix;
1981 	}
1982 
1983 	/* Allocate memory for queues */
1984 	err = fm10k_alloc_q_vectors(interface);
1985 	if (err) {
1986 		dev_err(&interface->pdev->dev,
1987 			"Unable to allocate queue vectors\n");
1988 		goto err_alloc_q_vectors;
1989 	}
1990 
1991 	/* Map rings to devices, and map devices to physical queues */
1992 	fm10k_assign_rings(interface);
1993 
1994 	/* Initialize RSS redirection table */
1995 	fm10k_init_reta(interface);
1996 
1997 	return 0;
1998 
1999 err_alloc_q_vectors:
2000 	fm10k_reset_msix_capability(interface);
2001 err_init_msix:
2002 	fm10k_reset_num_queues(interface);
2003 	return err;
2004 }
2005 
2006 /**
2007  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2008  * @interface: board private structure to clear queueing scheme on
2009  *
2010  * We go through and clear queueing specific resources and reset the structure
2011  * to pre-load conditions
2012  **/
2013 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2014 {
2015 	fm10k_free_q_vectors(interface);
2016 	fm10k_reset_msix_capability(interface);
2017 }
2018