1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2019 Intel Corporation. */ 3 4 #include <linux/types.h> 5 #include <linux/module.h> 6 #include <net/ipv6.h> 7 #include <net/ip.h> 8 #include <net/tcp.h> 9 #include <linux/if_macvlan.h> 10 #include <linux/prefetch.h> 11 12 #include "fm10k.h" 13 14 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" 15 char fm10k_driver_name[] = "fm10k"; 16 static const char fm10k_driver_string[] = DRV_SUMMARY; 17 static const char fm10k_copyright[] = 18 "Copyright(c) 2013 - 2019 Intel Corporation."; 19 20 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 21 MODULE_DESCRIPTION(DRV_SUMMARY); 22 MODULE_LICENSE("GPL v2"); 23 24 /* single workqueue for entire fm10k driver */ 25 struct workqueue_struct *fm10k_workqueue; 26 27 /** 28 * fm10k_init_module - Driver Registration Routine 29 * 30 * fm10k_init_module is the first routine called when the driver is 31 * loaded. All it does is register with the PCI subsystem. 32 **/ 33 static int __init fm10k_init_module(void) 34 { 35 int ret; 36 37 pr_info("%s\n", fm10k_driver_string); 38 pr_info("%s\n", fm10k_copyright); 39 40 /* create driver workqueue */ 41 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, 42 fm10k_driver_name); 43 if (!fm10k_workqueue) 44 return -ENOMEM; 45 46 fm10k_dbg_init(); 47 48 ret = fm10k_register_pci_driver(); 49 if (ret) { 50 fm10k_dbg_exit(); 51 destroy_workqueue(fm10k_workqueue); 52 } 53 54 return ret; 55 } 56 module_init(fm10k_init_module); 57 58 /** 59 * fm10k_exit_module - Driver Exit Cleanup Routine 60 * 61 * fm10k_exit_module is called just before the driver is removed 62 * from memory. 63 **/ 64 static void __exit fm10k_exit_module(void) 65 { 66 fm10k_unregister_pci_driver(); 67 68 fm10k_dbg_exit(); 69 70 /* destroy driver workqueue */ 71 destroy_workqueue(fm10k_workqueue); 72 } 73 module_exit(fm10k_exit_module); 74 75 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 76 struct fm10k_rx_buffer *bi) 77 { 78 struct page *page = bi->page; 79 dma_addr_t dma; 80 81 /* Only page will be NULL if buffer was consumed */ 82 if (likely(page)) 83 return true; 84 85 /* alloc new page for storage */ 86 page = dev_alloc_page(); 87 if (unlikely(!page)) { 88 rx_ring->rx_stats.alloc_failed++; 89 return false; 90 } 91 92 /* map page for use */ 93 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 94 95 /* if mapping failed free memory back to system since 96 * there isn't much point in holding memory we can't use 97 */ 98 if (dma_mapping_error(rx_ring->dev, dma)) { 99 __free_page(page); 100 101 rx_ring->rx_stats.alloc_failed++; 102 return false; 103 } 104 105 bi->dma = dma; 106 bi->page = page; 107 bi->page_offset = 0; 108 109 return true; 110 } 111 112 /** 113 * fm10k_alloc_rx_buffers - Replace used receive buffers 114 * @rx_ring: ring to place buffers on 115 * @cleaned_count: number of buffers to replace 116 **/ 117 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 118 { 119 union fm10k_rx_desc *rx_desc; 120 struct fm10k_rx_buffer *bi; 121 u16 i = rx_ring->next_to_use; 122 123 /* nothing to do */ 124 if (!cleaned_count) 125 return; 126 127 rx_desc = FM10K_RX_DESC(rx_ring, i); 128 bi = &rx_ring->rx_buffer[i]; 129 i -= rx_ring->count; 130 131 do { 132 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 133 break; 134 135 /* Refresh the desc even if buffer_addrs didn't change 136 * because each write-back erases this info. 137 */ 138 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 139 140 rx_desc++; 141 bi++; 142 i++; 143 if (unlikely(!i)) { 144 rx_desc = FM10K_RX_DESC(rx_ring, 0); 145 bi = rx_ring->rx_buffer; 146 i -= rx_ring->count; 147 } 148 149 /* clear the status bits for the next_to_use descriptor */ 150 rx_desc->d.staterr = 0; 151 152 cleaned_count--; 153 } while (cleaned_count); 154 155 i += rx_ring->count; 156 157 if (rx_ring->next_to_use != i) { 158 /* record the next descriptor to use */ 159 rx_ring->next_to_use = i; 160 161 /* update next to alloc since we have filled the ring */ 162 rx_ring->next_to_alloc = i; 163 164 /* Force memory writes to complete before letting h/w 165 * know there are new descriptors to fetch. (Only 166 * applicable for weak-ordered memory model archs, 167 * such as IA-64). 168 */ 169 wmb(); 170 171 /* notify hardware of new descriptors */ 172 writel(i, rx_ring->tail); 173 } 174 } 175 176 /** 177 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 178 * @rx_ring: rx descriptor ring to store buffers on 179 * @old_buff: donor buffer to have page reused 180 * 181 * Synchronizes page for reuse by the interface 182 **/ 183 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 184 struct fm10k_rx_buffer *old_buff) 185 { 186 struct fm10k_rx_buffer *new_buff; 187 u16 nta = rx_ring->next_to_alloc; 188 189 new_buff = &rx_ring->rx_buffer[nta]; 190 191 /* update, and store next to alloc */ 192 nta++; 193 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 194 195 /* transfer page from old buffer to new buffer */ 196 *new_buff = *old_buff; 197 198 /* sync the buffer for use by the device */ 199 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 200 old_buff->page_offset, 201 FM10K_RX_BUFSZ, 202 DMA_FROM_DEVICE); 203 } 204 205 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 206 struct page *page, 207 unsigned int __maybe_unused truesize) 208 { 209 /* avoid re-using remote and pfmemalloc pages */ 210 if (!dev_page_is_reusable(page)) 211 return false; 212 213 #if (PAGE_SIZE < 8192) 214 /* if we are only owner of page we can reuse it */ 215 if (unlikely(page_count(page) != 1)) 216 return false; 217 218 /* flip page offset to other buffer */ 219 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 220 #else 221 /* move offset up to the next cache line */ 222 rx_buffer->page_offset += truesize; 223 224 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 225 return false; 226 #endif 227 228 /* Even if we own the page, we are not allowed to use atomic_set() 229 * This would break get_page_unless_zero() users. 230 */ 231 page_ref_inc(page); 232 233 return true; 234 } 235 236 /** 237 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 238 * @rx_buffer: buffer containing page to add 239 * @size: packet size from rx_desc 240 * @rx_desc: descriptor containing length of buffer written by hardware 241 * @skb: sk_buff to place the data into 242 * 243 * This function will add the data contained in rx_buffer->page to the skb. 244 * This is done either through a direct copy if the data in the buffer is 245 * less than the skb header size, otherwise it will just attach the page as 246 * a frag to the skb. 247 * 248 * The function will then update the page offset if necessary and return 249 * true if the buffer can be reused by the interface. 250 **/ 251 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 252 unsigned int size, 253 union fm10k_rx_desc *rx_desc, 254 struct sk_buff *skb) 255 { 256 struct page *page = rx_buffer->page; 257 unsigned char *va = page_address(page) + rx_buffer->page_offset; 258 #if (PAGE_SIZE < 8192) 259 unsigned int truesize = FM10K_RX_BUFSZ; 260 #else 261 unsigned int truesize = ALIGN(size, 512); 262 #endif 263 unsigned int pull_len; 264 265 if (unlikely(skb_is_nonlinear(skb))) 266 goto add_tail_frag; 267 268 if (likely(size <= FM10K_RX_HDR_LEN)) { 269 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 270 271 /* page is reusable, we can reuse buffer as-is */ 272 if (dev_page_is_reusable(page)) 273 return true; 274 275 /* this page cannot be reused so discard it */ 276 __free_page(page); 277 return false; 278 } 279 280 /* we need the header to contain the greater of either ETH_HLEN or 281 * 60 bytes if the skb->len is less than 60 for skb_pad. 282 */ 283 pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN); 284 285 /* align pull length to size of long to optimize memcpy performance */ 286 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 287 288 /* update all of the pointers */ 289 va += pull_len; 290 size -= pull_len; 291 292 add_tail_frag: 293 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 294 (unsigned long)va & ~PAGE_MASK, size, truesize); 295 296 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 297 } 298 299 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 300 union fm10k_rx_desc *rx_desc, 301 struct sk_buff *skb) 302 { 303 unsigned int size = le16_to_cpu(rx_desc->w.length); 304 struct fm10k_rx_buffer *rx_buffer; 305 struct page *page; 306 307 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 308 page = rx_buffer->page; 309 prefetchw(page); 310 311 if (likely(!skb)) { 312 void *page_addr = page_address(page) + 313 rx_buffer->page_offset; 314 315 /* prefetch first cache line of first page */ 316 net_prefetch(page_addr); 317 318 /* allocate a skb to store the frags */ 319 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 320 FM10K_RX_HDR_LEN); 321 if (unlikely(!skb)) { 322 rx_ring->rx_stats.alloc_failed++; 323 return NULL; 324 } 325 326 /* we will be copying header into skb->data in 327 * pskb_may_pull so it is in our interest to prefetch 328 * it now to avoid a possible cache miss 329 */ 330 prefetchw(skb->data); 331 } 332 333 /* we are reusing so sync this buffer for CPU use */ 334 dma_sync_single_range_for_cpu(rx_ring->dev, 335 rx_buffer->dma, 336 rx_buffer->page_offset, 337 size, 338 DMA_FROM_DEVICE); 339 340 /* pull page into skb */ 341 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { 342 /* hand second half of page back to the ring */ 343 fm10k_reuse_rx_page(rx_ring, rx_buffer); 344 } else { 345 /* we are not reusing the buffer so unmap it */ 346 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 347 PAGE_SIZE, DMA_FROM_DEVICE); 348 } 349 350 /* clear contents of rx_buffer */ 351 rx_buffer->page = NULL; 352 353 return skb; 354 } 355 356 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 357 union fm10k_rx_desc *rx_desc, 358 struct sk_buff *skb) 359 { 360 skb_checksum_none_assert(skb); 361 362 /* Rx checksum disabled via ethtool */ 363 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 364 return; 365 366 /* TCP/UDP checksum error bit is set */ 367 if (fm10k_test_staterr(rx_desc, 368 FM10K_RXD_STATUS_L4E | 369 FM10K_RXD_STATUS_L4E2 | 370 FM10K_RXD_STATUS_IPE | 371 FM10K_RXD_STATUS_IPE2)) { 372 ring->rx_stats.csum_err++; 373 return; 374 } 375 376 /* It must be a TCP or UDP packet with a valid checksum */ 377 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 378 skb->encapsulation = true; 379 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 380 return; 381 382 skb->ip_summed = CHECKSUM_UNNECESSARY; 383 384 ring->rx_stats.csum_good++; 385 } 386 387 #define FM10K_RSS_L4_TYPES_MASK \ 388 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ 389 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ 390 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ 391 BIT(FM10K_RSSTYPE_IPV6_UDP)) 392 393 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 394 union fm10k_rx_desc *rx_desc, 395 struct sk_buff *skb) 396 { 397 u16 rss_type; 398 399 if (!(ring->netdev->features & NETIF_F_RXHASH)) 400 return; 401 402 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 403 if (!rss_type) 404 return; 405 406 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 407 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? 408 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 409 } 410 411 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 412 union fm10k_rx_desc __maybe_unused *rx_desc, 413 struct sk_buff *skb) 414 { 415 struct net_device *dev = rx_ring->netdev; 416 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 417 418 /* check to see if DGLORT belongs to a MACVLAN */ 419 if (l2_accel) { 420 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 421 422 idx -= l2_accel->dglort; 423 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 424 dev = l2_accel->macvlan[idx]; 425 else 426 l2_accel = NULL; 427 } 428 429 /* Record Rx queue, or update macvlan statistics */ 430 if (!l2_accel) 431 skb_record_rx_queue(skb, rx_ring->queue_index); 432 else 433 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, 434 false); 435 436 skb->protocol = eth_type_trans(skb, dev); 437 } 438 439 /** 440 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 441 * @rx_ring: rx descriptor ring packet is being transacted on 442 * @rx_desc: pointer to the EOP Rx descriptor 443 * @skb: pointer to current skb being populated 444 * 445 * This function checks the ring, descriptor, and packet information in 446 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 447 * other fields within the skb. 448 **/ 449 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 450 union fm10k_rx_desc *rx_desc, 451 struct sk_buff *skb) 452 { 453 unsigned int len = skb->len; 454 455 fm10k_rx_hash(rx_ring, rx_desc, skb); 456 457 fm10k_rx_checksum(rx_ring, rx_desc, skb); 458 459 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 460 461 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 462 463 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 464 465 if (rx_desc->w.vlan) { 466 u16 vid = le16_to_cpu(rx_desc->w.vlan); 467 468 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 469 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 470 else if (vid & VLAN_PRIO_MASK) 471 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 472 vid & VLAN_PRIO_MASK); 473 } 474 475 fm10k_type_trans(rx_ring, rx_desc, skb); 476 477 return len; 478 } 479 480 /** 481 * fm10k_is_non_eop - process handling of non-EOP buffers 482 * @rx_ring: Rx ring being processed 483 * @rx_desc: Rx descriptor for current buffer 484 * 485 * This function updates next to clean. If the buffer is an EOP buffer 486 * this function exits returning false, otherwise it will place the 487 * sk_buff in the next buffer to be chained and return true indicating 488 * that this is in fact a non-EOP buffer. 489 **/ 490 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 491 union fm10k_rx_desc *rx_desc) 492 { 493 u32 ntc = rx_ring->next_to_clean + 1; 494 495 /* fetch, update, and store next to clean */ 496 ntc = (ntc < rx_ring->count) ? ntc : 0; 497 rx_ring->next_to_clean = ntc; 498 499 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 500 501 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 502 return false; 503 504 return true; 505 } 506 507 /** 508 * fm10k_cleanup_headers - Correct corrupted or empty headers 509 * @rx_ring: rx descriptor ring packet is being transacted on 510 * @rx_desc: pointer to the EOP Rx descriptor 511 * @skb: pointer to current skb being fixed 512 * 513 * Address the case where we are pulling data in on pages only 514 * and as such no data is present in the skb header. 515 * 516 * In addition if skb is not at least 60 bytes we need to pad it so that 517 * it is large enough to qualify as a valid Ethernet frame. 518 * 519 * Returns true if an error was encountered and skb was freed. 520 **/ 521 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 522 union fm10k_rx_desc *rx_desc, 523 struct sk_buff *skb) 524 { 525 if (unlikely((fm10k_test_staterr(rx_desc, 526 FM10K_RXD_STATUS_RXE)))) { 527 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 528 ((rxd)->w.csum_err & cpu_to_le16(bit)) 529 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 530 rx_ring->rx_stats.switch_errors++; 531 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 532 rx_ring->rx_stats.drops++; 533 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 534 rx_ring->rx_stats.pp_errors++; 535 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 536 rx_ring->rx_stats.link_errors++; 537 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 538 rx_ring->rx_stats.length_errors++; 539 dev_kfree_skb_any(skb); 540 rx_ring->rx_stats.errors++; 541 return true; 542 } 543 544 /* if eth_skb_pad returns an error the skb was freed */ 545 if (eth_skb_pad(skb)) 546 return true; 547 548 return false; 549 } 550 551 /** 552 * fm10k_receive_skb - helper function to handle rx indications 553 * @q_vector: structure containing interrupt and ring information 554 * @skb: packet to send up 555 **/ 556 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 557 struct sk_buff *skb) 558 { 559 napi_gro_receive(&q_vector->napi, skb); 560 } 561 562 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 563 struct fm10k_ring *rx_ring, 564 int budget) 565 { 566 struct sk_buff *skb = rx_ring->skb; 567 unsigned int total_bytes = 0, total_packets = 0; 568 u16 cleaned_count = fm10k_desc_unused(rx_ring); 569 570 while (likely(total_packets < budget)) { 571 union fm10k_rx_desc *rx_desc; 572 573 /* return some buffers to hardware, one at a time is too slow */ 574 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 575 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 576 cleaned_count = 0; 577 } 578 579 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 580 581 if (!rx_desc->d.staterr) 582 break; 583 584 /* This memory barrier is needed to keep us from reading 585 * any other fields out of the rx_desc until we know the 586 * descriptor has been written back 587 */ 588 dma_rmb(); 589 590 /* retrieve a buffer from the ring */ 591 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 592 593 /* exit if we failed to retrieve a buffer */ 594 if (!skb) 595 break; 596 597 cleaned_count++; 598 599 /* fetch next buffer in frame if non-eop */ 600 if (fm10k_is_non_eop(rx_ring, rx_desc)) 601 continue; 602 603 /* verify the packet layout is correct */ 604 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 605 skb = NULL; 606 continue; 607 } 608 609 /* populate checksum, timestamp, VLAN, and protocol */ 610 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 611 612 fm10k_receive_skb(q_vector, skb); 613 614 /* reset skb pointer */ 615 skb = NULL; 616 617 /* update budget accounting */ 618 total_packets++; 619 } 620 621 /* place incomplete frames back on ring for completion */ 622 rx_ring->skb = skb; 623 624 u64_stats_update_begin(&rx_ring->syncp); 625 rx_ring->stats.packets += total_packets; 626 rx_ring->stats.bytes += total_bytes; 627 u64_stats_update_end(&rx_ring->syncp); 628 q_vector->rx.total_packets += total_packets; 629 q_vector->rx.total_bytes += total_bytes; 630 631 return total_packets; 632 } 633 634 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 635 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 636 { 637 struct fm10k_intfc *interface = netdev_priv(skb->dev); 638 639 if (interface->vxlan_port != udp_hdr(skb)->dest) 640 return NULL; 641 642 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 643 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 644 } 645 646 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 647 #define NVGRE_TNI htons(0x2000) 648 struct fm10k_nvgre_hdr { 649 __be16 flags; 650 __be16 proto; 651 __be32 tni; 652 }; 653 654 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 655 { 656 struct fm10k_nvgre_hdr *nvgre_hdr; 657 int hlen = ip_hdrlen(skb); 658 659 /* currently only IPv4 is supported due to hlen above */ 660 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 661 return NULL; 662 663 /* our transport header should be NVGRE */ 664 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 665 666 /* verify all reserved flags are 0 */ 667 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 668 return NULL; 669 670 /* report start of ethernet header */ 671 if (nvgre_hdr->flags & NVGRE_TNI) 672 return (struct ethhdr *)(nvgre_hdr + 1); 673 674 return (struct ethhdr *)(&nvgre_hdr->tni); 675 } 676 677 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 678 { 679 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 680 struct ethhdr *eth_hdr; 681 682 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 683 skb->inner_protocol != htons(ETH_P_TEB)) 684 return 0; 685 686 switch (vlan_get_protocol(skb)) { 687 case htons(ETH_P_IP): 688 l4_hdr = ip_hdr(skb)->protocol; 689 break; 690 case htons(ETH_P_IPV6): 691 l4_hdr = ipv6_hdr(skb)->nexthdr; 692 break; 693 default: 694 return 0; 695 } 696 697 switch (l4_hdr) { 698 case IPPROTO_UDP: 699 eth_hdr = fm10k_port_is_vxlan(skb); 700 break; 701 case IPPROTO_GRE: 702 eth_hdr = fm10k_gre_is_nvgre(skb); 703 break; 704 default: 705 return 0; 706 } 707 708 if (!eth_hdr) 709 return 0; 710 711 switch (eth_hdr->h_proto) { 712 case htons(ETH_P_IP): 713 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 714 break; 715 case htons(ETH_P_IPV6): 716 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 717 break; 718 default: 719 return 0; 720 } 721 722 switch (inner_l4_hdr) { 723 case IPPROTO_TCP: 724 inner_l4_hlen = inner_tcp_hdrlen(skb); 725 break; 726 case IPPROTO_UDP: 727 inner_l4_hlen = 8; 728 break; 729 default: 730 return 0; 731 } 732 733 /* The hardware allows tunnel offloads only if the combined inner and 734 * outer header is 184 bytes or less 735 */ 736 if (skb_inner_transport_header(skb) + inner_l4_hlen - 737 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 738 return 0; 739 740 return eth_hdr->h_proto; 741 } 742 743 static int fm10k_tso(struct fm10k_ring *tx_ring, 744 struct fm10k_tx_buffer *first) 745 { 746 struct sk_buff *skb = first->skb; 747 struct fm10k_tx_desc *tx_desc; 748 unsigned char *th; 749 u8 hdrlen; 750 751 if (skb->ip_summed != CHECKSUM_PARTIAL) 752 return 0; 753 754 if (!skb_is_gso(skb)) 755 return 0; 756 757 /* compute header lengths */ 758 if (skb->encapsulation) { 759 if (!fm10k_tx_encap_offload(skb)) 760 goto err_vxlan; 761 th = skb_inner_transport_header(skb); 762 } else { 763 th = skb_transport_header(skb); 764 } 765 766 /* compute offset from SOF to transport header and add header len */ 767 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 768 769 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 770 771 /* update gso size and bytecount with header size */ 772 first->gso_segs = skb_shinfo(skb)->gso_segs; 773 first->bytecount += (first->gso_segs - 1) * hdrlen; 774 775 /* populate Tx descriptor header size and mss */ 776 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 777 tx_desc->hdrlen = hdrlen; 778 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 779 780 return 1; 781 782 err_vxlan: 783 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 784 if (net_ratelimit()) 785 netdev_err(tx_ring->netdev, 786 "TSO requested for unsupported tunnel, disabling offload\n"); 787 return -1; 788 } 789 790 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 791 struct fm10k_tx_buffer *first) 792 { 793 struct sk_buff *skb = first->skb; 794 struct fm10k_tx_desc *tx_desc; 795 union { 796 struct iphdr *ipv4; 797 struct ipv6hdr *ipv6; 798 u8 *raw; 799 } network_hdr; 800 u8 *transport_hdr; 801 __be16 frag_off; 802 __be16 protocol; 803 u8 l4_hdr = 0; 804 805 if (skb->ip_summed != CHECKSUM_PARTIAL) 806 goto no_csum; 807 808 if (skb->encapsulation) { 809 protocol = fm10k_tx_encap_offload(skb); 810 if (!protocol) { 811 if (skb_checksum_help(skb)) { 812 dev_warn(tx_ring->dev, 813 "failed to offload encap csum!\n"); 814 tx_ring->tx_stats.csum_err++; 815 } 816 goto no_csum; 817 } 818 network_hdr.raw = skb_inner_network_header(skb); 819 transport_hdr = skb_inner_transport_header(skb); 820 } else { 821 protocol = vlan_get_protocol(skb); 822 network_hdr.raw = skb_network_header(skb); 823 transport_hdr = skb_transport_header(skb); 824 } 825 826 switch (protocol) { 827 case htons(ETH_P_IP): 828 l4_hdr = network_hdr.ipv4->protocol; 829 break; 830 case htons(ETH_P_IPV6): 831 l4_hdr = network_hdr.ipv6->nexthdr; 832 if (likely((transport_hdr - network_hdr.raw) == 833 sizeof(struct ipv6hdr))) 834 break; 835 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + 836 sizeof(struct ipv6hdr), 837 &l4_hdr, &frag_off); 838 if (unlikely(frag_off)) 839 l4_hdr = NEXTHDR_FRAGMENT; 840 break; 841 default: 842 break; 843 } 844 845 switch (l4_hdr) { 846 case IPPROTO_TCP: 847 case IPPROTO_UDP: 848 break; 849 case IPPROTO_GRE: 850 if (skb->encapsulation) 851 break; 852 fallthrough; 853 default: 854 if (unlikely(net_ratelimit())) { 855 dev_warn(tx_ring->dev, 856 "partial checksum, version=%d l4 proto=%x\n", 857 protocol, l4_hdr); 858 } 859 skb_checksum_help(skb); 860 tx_ring->tx_stats.csum_err++; 861 goto no_csum; 862 } 863 864 /* update TX checksum flag */ 865 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 866 tx_ring->tx_stats.csum_good++; 867 868 no_csum: 869 /* populate Tx descriptor header size and mss */ 870 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 871 tx_desc->hdrlen = 0; 872 tx_desc->mss = 0; 873 } 874 875 #define FM10K_SET_FLAG(_input, _flag, _result) \ 876 ((_flag <= _result) ? \ 877 ((u32)(_input & _flag) * (_result / _flag)) : \ 878 ((u32)(_input & _flag) / (_flag / _result))) 879 880 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 881 { 882 /* set type for advanced descriptor with frame checksum insertion */ 883 u32 desc_flags = 0; 884 885 /* set checksum offload bits */ 886 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 887 FM10K_TXD_FLAG_CSUM); 888 889 return desc_flags; 890 } 891 892 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 893 struct fm10k_tx_desc *tx_desc, u16 i, 894 dma_addr_t dma, unsigned int size, u8 desc_flags) 895 { 896 /* set RS and INT for last frame in a cache line */ 897 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 898 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 899 900 /* record values to descriptor */ 901 tx_desc->buffer_addr = cpu_to_le64(dma); 902 tx_desc->flags = desc_flags; 903 tx_desc->buflen = cpu_to_le16(size); 904 905 /* return true if we just wrapped the ring */ 906 return i == tx_ring->count; 907 } 908 909 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 910 { 911 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 912 913 /* Memory barrier before checking head and tail */ 914 smp_mb(); 915 916 /* Check again in a case another CPU has just made room available */ 917 if (likely(fm10k_desc_unused(tx_ring) < size)) 918 return -EBUSY; 919 920 /* A reprieve! - use start_queue because it doesn't call schedule */ 921 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 922 ++tx_ring->tx_stats.restart_queue; 923 return 0; 924 } 925 926 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 927 { 928 if (likely(fm10k_desc_unused(tx_ring) >= size)) 929 return 0; 930 return __fm10k_maybe_stop_tx(tx_ring, size); 931 } 932 933 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 934 struct fm10k_tx_buffer *first) 935 { 936 struct sk_buff *skb = first->skb; 937 struct fm10k_tx_buffer *tx_buffer; 938 struct fm10k_tx_desc *tx_desc; 939 skb_frag_t *frag; 940 unsigned char *data; 941 dma_addr_t dma; 942 unsigned int data_len, size; 943 u32 tx_flags = first->tx_flags; 944 u16 i = tx_ring->next_to_use; 945 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 946 947 tx_desc = FM10K_TX_DESC(tx_ring, i); 948 949 /* add HW VLAN tag */ 950 if (skb_vlan_tag_present(skb)) 951 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 952 else 953 tx_desc->vlan = 0; 954 955 size = skb_headlen(skb); 956 data = skb->data; 957 958 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 959 960 data_len = skb->data_len; 961 tx_buffer = first; 962 963 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 964 if (dma_mapping_error(tx_ring->dev, dma)) 965 goto dma_error; 966 967 /* record length, and DMA address */ 968 dma_unmap_len_set(tx_buffer, len, size); 969 dma_unmap_addr_set(tx_buffer, dma, dma); 970 971 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 972 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 973 FM10K_MAX_DATA_PER_TXD, flags)) { 974 tx_desc = FM10K_TX_DESC(tx_ring, 0); 975 i = 0; 976 } 977 978 dma += FM10K_MAX_DATA_PER_TXD; 979 size -= FM10K_MAX_DATA_PER_TXD; 980 } 981 982 if (likely(!data_len)) 983 break; 984 985 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 986 dma, size, flags)) { 987 tx_desc = FM10K_TX_DESC(tx_ring, 0); 988 i = 0; 989 } 990 991 size = skb_frag_size(frag); 992 data_len -= size; 993 994 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 995 DMA_TO_DEVICE); 996 997 tx_buffer = &tx_ring->tx_buffer[i]; 998 } 999 1000 /* write last descriptor with LAST bit set */ 1001 flags |= FM10K_TXD_FLAG_LAST; 1002 1003 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1004 i = 0; 1005 1006 /* record bytecount for BQL */ 1007 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1008 1009 /* record SW timestamp if HW timestamp is not available */ 1010 skb_tx_timestamp(first->skb); 1011 1012 /* Force memory writes to complete before letting h/w know there 1013 * are new descriptors to fetch. (Only applicable for weak-ordered 1014 * memory model archs, such as IA-64). 1015 * 1016 * We also need this memory barrier to make certain all of the 1017 * status bits have been updated before next_to_watch is written. 1018 */ 1019 wmb(); 1020 1021 /* set next_to_watch value indicating a packet is present */ 1022 first->next_to_watch = tx_desc; 1023 1024 tx_ring->next_to_use = i; 1025 1026 /* Make sure there is space in the ring for the next send. */ 1027 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1028 1029 /* notify HW of packet */ 1030 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1031 writel(i, tx_ring->tail); 1032 } 1033 1034 return; 1035 dma_error: 1036 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1037 1038 /* clear dma mappings for failed tx_buffer map */ 1039 for (;;) { 1040 tx_buffer = &tx_ring->tx_buffer[i]; 1041 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1042 if (tx_buffer == first) 1043 break; 1044 if (i == 0) 1045 i = tx_ring->count; 1046 i--; 1047 } 1048 1049 tx_ring->next_to_use = i; 1050 } 1051 1052 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1053 struct fm10k_ring *tx_ring) 1054 { 1055 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1056 struct fm10k_tx_buffer *first; 1057 unsigned short f; 1058 u32 tx_flags = 0; 1059 int tso; 1060 1061 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1062 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1063 * + 2 desc gap to keep tail from touching head 1064 * otherwise try next time 1065 */ 1066 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 1067 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 1068 1069 count += TXD_USE_COUNT(skb_frag_size(frag)); 1070 } 1071 1072 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1073 tx_ring->tx_stats.tx_busy++; 1074 return NETDEV_TX_BUSY; 1075 } 1076 1077 /* record the location of the first descriptor for this packet */ 1078 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1079 first->skb = skb; 1080 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1081 first->gso_segs = 1; 1082 1083 /* record initial flags and protocol */ 1084 first->tx_flags = tx_flags; 1085 1086 tso = fm10k_tso(tx_ring, first); 1087 if (tso < 0) 1088 goto out_drop; 1089 else if (!tso) 1090 fm10k_tx_csum(tx_ring, first); 1091 1092 fm10k_tx_map(tx_ring, first); 1093 1094 return NETDEV_TX_OK; 1095 1096 out_drop: 1097 dev_kfree_skb_any(first->skb); 1098 first->skb = NULL; 1099 1100 return NETDEV_TX_OK; 1101 } 1102 1103 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1104 { 1105 return ring->stats.packets; 1106 } 1107 1108 /** 1109 * fm10k_get_tx_pending - how many Tx descriptors not processed 1110 * @ring: the ring structure 1111 * @in_sw: is tx_pending being checked in SW or in HW? 1112 */ 1113 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) 1114 { 1115 struct fm10k_intfc *interface = ring->q_vector->interface; 1116 struct fm10k_hw *hw = &interface->hw; 1117 u32 head, tail; 1118 1119 if (likely(in_sw)) { 1120 head = ring->next_to_clean; 1121 tail = ring->next_to_use; 1122 } else { 1123 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); 1124 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); 1125 } 1126 1127 return ((head <= tail) ? tail : tail + ring->count) - head; 1128 } 1129 1130 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1131 { 1132 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1133 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1134 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); 1135 1136 clear_check_for_tx_hang(tx_ring); 1137 1138 /* Check for a hung queue, but be thorough. This verifies 1139 * that a transmit has been completed since the previous 1140 * check AND there is at least one packet pending. By 1141 * requiring this to fail twice we avoid races with 1142 * clearing the ARMED bit and conditions where we 1143 * run the check_tx_hang logic with a transmit completion 1144 * pending but without time to complete it yet. 1145 */ 1146 if (!tx_pending || (tx_done_old != tx_done)) { 1147 /* update completed stats and continue */ 1148 tx_ring->tx_stats.tx_done_old = tx_done; 1149 /* reset the countdown */ 1150 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1151 1152 return false; 1153 } 1154 1155 /* make sure it is true for two checks in a row */ 1156 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1157 } 1158 1159 /** 1160 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1161 * @interface: driver private struct 1162 **/ 1163 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1164 { 1165 /* Do the reset outside of interrupt context */ 1166 if (!test_bit(__FM10K_DOWN, interface->state)) { 1167 interface->tx_timeout_count++; 1168 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1169 fm10k_service_event_schedule(interface); 1170 } 1171 } 1172 1173 /** 1174 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1175 * @q_vector: structure containing interrupt and ring information 1176 * @tx_ring: tx ring to clean 1177 * @napi_budget: Used to determine if we are in netpoll 1178 **/ 1179 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1180 struct fm10k_ring *tx_ring, int napi_budget) 1181 { 1182 struct fm10k_intfc *interface = q_vector->interface; 1183 struct fm10k_tx_buffer *tx_buffer; 1184 struct fm10k_tx_desc *tx_desc; 1185 unsigned int total_bytes = 0, total_packets = 0; 1186 unsigned int budget = q_vector->tx.work_limit; 1187 unsigned int i = tx_ring->next_to_clean; 1188 1189 if (test_bit(__FM10K_DOWN, interface->state)) 1190 return true; 1191 1192 tx_buffer = &tx_ring->tx_buffer[i]; 1193 tx_desc = FM10K_TX_DESC(tx_ring, i); 1194 i -= tx_ring->count; 1195 1196 do { 1197 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1198 1199 /* if next_to_watch is not set then there is no work pending */ 1200 if (!eop_desc) 1201 break; 1202 1203 /* prevent any other reads prior to eop_desc */ 1204 smp_rmb(); 1205 1206 /* if DD is not set pending work has not been completed */ 1207 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1208 break; 1209 1210 /* clear next_to_watch to prevent false hangs */ 1211 tx_buffer->next_to_watch = NULL; 1212 1213 /* update the statistics for this packet */ 1214 total_bytes += tx_buffer->bytecount; 1215 total_packets += tx_buffer->gso_segs; 1216 1217 /* free the skb */ 1218 napi_consume_skb(tx_buffer->skb, napi_budget); 1219 1220 /* unmap skb header data */ 1221 dma_unmap_single(tx_ring->dev, 1222 dma_unmap_addr(tx_buffer, dma), 1223 dma_unmap_len(tx_buffer, len), 1224 DMA_TO_DEVICE); 1225 1226 /* clear tx_buffer data */ 1227 tx_buffer->skb = NULL; 1228 dma_unmap_len_set(tx_buffer, len, 0); 1229 1230 /* unmap remaining buffers */ 1231 while (tx_desc != eop_desc) { 1232 tx_buffer++; 1233 tx_desc++; 1234 i++; 1235 if (unlikely(!i)) { 1236 i -= tx_ring->count; 1237 tx_buffer = tx_ring->tx_buffer; 1238 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1239 } 1240 1241 /* unmap any remaining paged data */ 1242 if (dma_unmap_len(tx_buffer, len)) { 1243 dma_unmap_page(tx_ring->dev, 1244 dma_unmap_addr(tx_buffer, dma), 1245 dma_unmap_len(tx_buffer, len), 1246 DMA_TO_DEVICE); 1247 dma_unmap_len_set(tx_buffer, len, 0); 1248 } 1249 } 1250 1251 /* move us one more past the eop_desc for start of next pkt */ 1252 tx_buffer++; 1253 tx_desc++; 1254 i++; 1255 if (unlikely(!i)) { 1256 i -= tx_ring->count; 1257 tx_buffer = tx_ring->tx_buffer; 1258 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1259 } 1260 1261 /* issue prefetch for next Tx descriptor */ 1262 prefetch(tx_desc); 1263 1264 /* update budget accounting */ 1265 budget--; 1266 } while (likely(budget)); 1267 1268 i += tx_ring->count; 1269 tx_ring->next_to_clean = i; 1270 u64_stats_update_begin(&tx_ring->syncp); 1271 tx_ring->stats.bytes += total_bytes; 1272 tx_ring->stats.packets += total_packets; 1273 u64_stats_update_end(&tx_ring->syncp); 1274 q_vector->tx.total_bytes += total_bytes; 1275 q_vector->tx.total_packets += total_packets; 1276 1277 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1278 /* schedule immediate reset if we believe we hung */ 1279 struct fm10k_hw *hw = &interface->hw; 1280 1281 netif_err(interface, drv, tx_ring->netdev, 1282 "Detected Tx Unit Hang\n" 1283 " Tx Queue <%d>\n" 1284 " TDH, TDT <%x>, <%x>\n" 1285 " next_to_use <%x>\n" 1286 " next_to_clean <%x>\n", 1287 tx_ring->queue_index, 1288 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1289 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1290 tx_ring->next_to_use, i); 1291 1292 netif_stop_subqueue(tx_ring->netdev, 1293 tx_ring->queue_index); 1294 1295 netif_info(interface, probe, tx_ring->netdev, 1296 "tx hang %d detected on queue %d, resetting interface\n", 1297 interface->tx_timeout_count + 1, 1298 tx_ring->queue_index); 1299 1300 fm10k_tx_timeout_reset(interface); 1301 1302 /* the netdev is about to reset, no point in enabling stuff */ 1303 return true; 1304 } 1305 1306 /* notify netdev of completed buffers */ 1307 netdev_tx_completed_queue(txring_txq(tx_ring), 1308 total_packets, total_bytes); 1309 1310 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1311 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1312 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1313 /* Make sure that anybody stopping the queue after this 1314 * sees the new next_to_clean. 1315 */ 1316 smp_mb(); 1317 if (__netif_subqueue_stopped(tx_ring->netdev, 1318 tx_ring->queue_index) && 1319 !test_bit(__FM10K_DOWN, interface->state)) { 1320 netif_wake_subqueue(tx_ring->netdev, 1321 tx_ring->queue_index); 1322 ++tx_ring->tx_stats.restart_queue; 1323 } 1324 } 1325 1326 return !!budget; 1327 } 1328 1329 /** 1330 * fm10k_update_itr - update the dynamic ITR value based on packet size 1331 * 1332 * Stores a new ITR value based on strictly on packet size. The 1333 * divisors and thresholds used by this function were determined based 1334 * on theoretical maximum wire speed and testing data, in order to 1335 * minimize response time while increasing bulk throughput. 1336 * 1337 * @ring_container: Container for rings to have ITR updated 1338 **/ 1339 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1340 { 1341 unsigned int avg_wire_size, packets, itr_round; 1342 1343 /* Only update ITR if we are using adaptive setting */ 1344 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1345 goto clear_counts; 1346 1347 packets = ring_container->total_packets; 1348 if (!packets) 1349 goto clear_counts; 1350 1351 avg_wire_size = ring_container->total_bytes / packets; 1352 1353 /* The following is a crude approximation of: 1354 * wmem_default / (size + overhead) = desired_pkts_per_int 1355 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1356 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1357 * 1358 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1359 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1360 * formula down to 1361 * 1362 * (34 * (size + 24)) / (size + 640) = ITR 1363 * 1364 * We first do some math on the packet size and then finally bitshift 1365 * by 8 after rounding up. We also have to account for PCIe link speed 1366 * difference as ITR scales based on this. 1367 */ 1368 if (avg_wire_size <= 360) { 1369 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1370 avg_wire_size *= 8; 1371 avg_wire_size += 376; 1372 } else if (avg_wire_size <= 1152) { 1373 /* 77K ints/sec to 45K ints/sec */ 1374 avg_wire_size *= 3; 1375 avg_wire_size += 2176; 1376 } else if (avg_wire_size <= 1920) { 1377 /* 45K ints/sec to 38K ints/sec */ 1378 avg_wire_size += 4480; 1379 } else { 1380 /* plateau at a limit of 38K ints/sec */ 1381 avg_wire_size = 6656; 1382 } 1383 1384 /* Perform final bitshift for division after rounding up to ensure 1385 * that the calculation will never get below a 1. The bit shift 1386 * accounts for changes in the ITR due to PCIe link speed. 1387 */ 1388 itr_round = READ_ONCE(ring_container->itr_scale) + 8; 1389 avg_wire_size += BIT(itr_round) - 1; 1390 avg_wire_size >>= itr_round; 1391 1392 /* write back value and retain adaptive flag */ 1393 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1394 1395 clear_counts: 1396 ring_container->total_bytes = 0; 1397 ring_container->total_packets = 0; 1398 } 1399 1400 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1401 { 1402 /* Enable auto-mask and clear the current mask */ 1403 u32 itr = FM10K_ITR_ENABLE; 1404 1405 /* Update Tx ITR */ 1406 fm10k_update_itr(&q_vector->tx); 1407 1408 /* Update Rx ITR */ 1409 fm10k_update_itr(&q_vector->rx); 1410 1411 /* Store Tx itr in timer slot 0 */ 1412 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1413 1414 /* Shift Rx itr to timer slot 1 */ 1415 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1416 1417 /* Write the final value to the ITR register */ 1418 writel(itr, q_vector->itr); 1419 } 1420 1421 static int fm10k_poll(struct napi_struct *napi, int budget) 1422 { 1423 struct fm10k_q_vector *q_vector = 1424 container_of(napi, struct fm10k_q_vector, napi); 1425 struct fm10k_ring *ring; 1426 int per_ring_budget, work_done = 0; 1427 bool clean_complete = true; 1428 1429 fm10k_for_each_ring(ring, q_vector->tx) { 1430 if (!fm10k_clean_tx_irq(q_vector, ring, budget)) 1431 clean_complete = false; 1432 } 1433 1434 /* Handle case where we are called by netpoll with a budget of 0 */ 1435 if (budget <= 0) 1436 return budget; 1437 1438 /* attempt to distribute budget to each queue fairly, but don't 1439 * allow the budget to go below 1 because we'll exit polling 1440 */ 1441 if (q_vector->rx.count > 1) 1442 per_ring_budget = max(budget / q_vector->rx.count, 1); 1443 else 1444 per_ring_budget = budget; 1445 1446 fm10k_for_each_ring(ring, q_vector->rx) { 1447 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1448 1449 work_done += work; 1450 if (work >= per_ring_budget) 1451 clean_complete = false; 1452 } 1453 1454 /* If all work not completed, return budget and keep polling */ 1455 if (!clean_complete) 1456 return budget; 1457 1458 /* Exit the polling mode, but don't re-enable interrupts if stack might 1459 * poll us due to busy-polling 1460 */ 1461 if (likely(napi_complete_done(napi, work_done))) 1462 fm10k_qv_enable(q_vector); 1463 1464 return min(work_done, budget - 1); 1465 } 1466 1467 /** 1468 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1469 * @interface: board private structure to initialize 1470 * 1471 * When QoS (Quality of Service) is enabled, allocate queues for 1472 * each traffic class. If multiqueue isn't available,then abort QoS 1473 * initialization. 1474 * 1475 * This function handles all combinations of Qos and RSS. 1476 * 1477 **/ 1478 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1479 { 1480 struct net_device *dev = interface->netdev; 1481 struct fm10k_ring_feature *f; 1482 int rss_i, i; 1483 int pcs; 1484 1485 /* Map queue offset and counts onto allocated tx queues */ 1486 pcs = netdev_get_num_tc(dev); 1487 1488 if (pcs <= 1) 1489 return false; 1490 1491 /* set QoS mask and indices */ 1492 f = &interface->ring_feature[RING_F_QOS]; 1493 f->indices = pcs; 1494 f->mask = BIT(fls(pcs - 1)) - 1; 1495 1496 /* determine the upper limit for our current DCB mode */ 1497 rss_i = interface->hw.mac.max_queues / pcs; 1498 rss_i = BIT(fls(rss_i) - 1); 1499 1500 /* set RSS mask and indices */ 1501 f = &interface->ring_feature[RING_F_RSS]; 1502 rss_i = min_t(u16, rss_i, f->limit); 1503 f->indices = rss_i; 1504 f->mask = BIT(fls(rss_i - 1)) - 1; 1505 1506 /* configure pause class to queue mapping */ 1507 for (i = 0; i < pcs; i++) 1508 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1509 1510 interface->num_rx_queues = rss_i * pcs; 1511 interface->num_tx_queues = rss_i * pcs; 1512 1513 return true; 1514 } 1515 1516 /** 1517 * fm10k_set_rss_queues: Allocate queues for RSS 1518 * @interface: board private structure to initialize 1519 * 1520 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1521 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1522 * 1523 **/ 1524 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1525 { 1526 struct fm10k_ring_feature *f; 1527 u16 rss_i; 1528 1529 f = &interface->ring_feature[RING_F_RSS]; 1530 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1531 1532 /* record indices and power of 2 mask for RSS */ 1533 f->indices = rss_i; 1534 f->mask = BIT(fls(rss_i - 1)) - 1; 1535 1536 interface->num_rx_queues = rss_i; 1537 interface->num_tx_queues = rss_i; 1538 1539 return true; 1540 } 1541 1542 /** 1543 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1544 * @interface: board private structure to initialize 1545 * 1546 * This is the top level queue allocation routine. The order here is very 1547 * important, starting with the "most" number of features turned on at once, 1548 * and ending with the smallest set of features. This way large combinations 1549 * can be allocated if they're turned on, and smaller combinations are the 1550 * fall through conditions. 1551 * 1552 **/ 1553 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1554 { 1555 /* Attempt to setup QoS and RSS first */ 1556 if (fm10k_set_qos_queues(interface)) 1557 return; 1558 1559 /* If we don't have QoS, just fallback to only RSS. */ 1560 fm10k_set_rss_queues(interface); 1561 } 1562 1563 /** 1564 * fm10k_reset_num_queues - Reset the number of queues to zero 1565 * @interface: board private structure 1566 * 1567 * This function should be called whenever we need to reset the number of 1568 * queues after an error condition. 1569 */ 1570 static void fm10k_reset_num_queues(struct fm10k_intfc *interface) 1571 { 1572 interface->num_tx_queues = 0; 1573 interface->num_rx_queues = 0; 1574 interface->num_q_vectors = 0; 1575 } 1576 1577 /** 1578 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1579 * @interface: board private structure to initialize 1580 * @v_count: q_vectors allocated on interface, used for ring interleaving 1581 * @v_idx: index of vector in interface struct 1582 * @txr_count: total number of Tx rings to allocate 1583 * @txr_idx: index of first Tx ring to allocate 1584 * @rxr_count: total number of Rx rings to allocate 1585 * @rxr_idx: index of first Rx ring to allocate 1586 * 1587 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1588 **/ 1589 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1590 unsigned int v_count, unsigned int v_idx, 1591 unsigned int txr_count, unsigned int txr_idx, 1592 unsigned int rxr_count, unsigned int rxr_idx) 1593 { 1594 struct fm10k_q_vector *q_vector; 1595 struct fm10k_ring *ring; 1596 int ring_count; 1597 1598 ring_count = txr_count + rxr_count; 1599 1600 /* allocate q_vector and rings */ 1601 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); 1602 if (!q_vector) 1603 return -ENOMEM; 1604 1605 /* initialize NAPI */ 1606 netif_napi_add(interface->netdev, &q_vector->napi, fm10k_poll); 1607 1608 /* tie q_vector and interface together */ 1609 interface->q_vector[v_idx] = q_vector; 1610 q_vector->interface = interface; 1611 q_vector->v_idx = v_idx; 1612 1613 /* initialize pointer to rings */ 1614 ring = q_vector->ring; 1615 1616 /* save Tx ring container info */ 1617 q_vector->tx.ring = ring; 1618 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1619 q_vector->tx.itr = interface->tx_itr; 1620 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1621 q_vector->tx.count = txr_count; 1622 1623 while (txr_count) { 1624 /* assign generic ring traits */ 1625 ring->dev = &interface->pdev->dev; 1626 ring->netdev = interface->netdev; 1627 1628 /* configure backlink on ring */ 1629 ring->q_vector = q_vector; 1630 1631 /* apply Tx specific ring traits */ 1632 ring->count = interface->tx_ring_count; 1633 ring->queue_index = txr_idx; 1634 1635 /* assign ring to interface */ 1636 interface->tx_ring[txr_idx] = ring; 1637 1638 /* update count and index */ 1639 txr_count--; 1640 txr_idx += v_count; 1641 1642 /* push pointer to next ring */ 1643 ring++; 1644 } 1645 1646 /* save Rx ring container info */ 1647 q_vector->rx.ring = ring; 1648 q_vector->rx.itr = interface->rx_itr; 1649 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1650 q_vector->rx.count = rxr_count; 1651 1652 while (rxr_count) { 1653 /* assign generic ring traits */ 1654 ring->dev = &interface->pdev->dev; 1655 ring->netdev = interface->netdev; 1656 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1657 1658 /* configure backlink on ring */ 1659 ring->q_vector = q_vector; 1660 1661 /* apply Rx specific ring traits */ 1662 ring->count = interface->rx_ring_count; 1663 ring->queue_index = rxr_idx; 1664 1665 /* assign ring to interface */ 1666 interface->rx_ring[rxr_idx] = ring; 1667 1668 /* update count and index */ 1669 rxr_count--; 1670 rxr_idx += v_count; 1671 1672 /* push pointer to next ring */ 1673 ring++; 1674 } 1675 1676 fm10k_dbg_q_vector_init(q_vector); 1677 1678 return 0; 1679 } 1680 1681 /** 1682 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1683 * @interface: board private structure to initialize 1684 * @v_idx: Index of vector to be freed 1685 * 1686 * This function frees the memory allocated to the q_vector. In addition if 1687 * NAPI is enabled it will delete any references to the NAPI struct prior 1688 * to freeing the q_vector. 1689 **/ 1690 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1691 { 1692 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1693 struct fm10k_ring *ring; 1694 1695 fm10k_dbg_q_vector_exit(q_vector); 1696 1697 fm10k_for_each_ring(ring, q_vector->tx) 1698 interface->tx_ring[ring->queue_index] = NULL; 1699 1700 fm10k_for_each_ring(ring, q_vector->rx) 1701 interface->rx_ring[ring->queue_index] = NULL; 1702 1703 interface->q_vector[v_idx] = NULL; 1704 netif_napi_del(&q_vector->napi); 1705 kfree_rcu(q_vector, rcu); 1706 } 1707 1708 /** 1709 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1710 * @interface: board private structure to initialize 1711 * 1712 * We allocate one q_vector per queue interrupt. If allocation fails we 1713 * return -ENOMEM. 1714 **/ 1715 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1716 { 1717 unsigned int q_vectors = interface->num_q_vectors; 1718 unsigned int rxr_remaining = interface->num_rx_queues; 1719 unsigned int txr_remaining = interface->num_tx_queues; 1720 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1721 int err; 1722 1723 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1724 for (; rxr_remaining; v_idx++) { 1725 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1726 0, 0, 1, rxr_idx); 1727 if (err) 1728 goto err_out; 1729 1730 /* update counts and index */ 1731 rxr_remaining--; 1732 rxr_idx++; 1733 } 1734 } 1735 1736 for (; v_idx < q_vectors; v_idx++) { 1737 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1738 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1739 1740 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1741 tqpv, txr_idx, 1742 rqpv, rxr_idx); 1743 1744 if (err) 1745 goto err_out; 1746 1747 /* update counts and index */ 1748 rxr_remaining -= rqpv; 1749 txr_remaining -= tqpv; 1750 rxr_idx++; 1751 txr_idx++; 1752 } 1753 1754 return 0; 1755 1756 err_out: 1757 fm10k_reset_num_queues(interface); 1758 1759 while (v_idx--) 1760 fm10k_free_q_vector(interface, v_idx); 1761 1762 return -ENOMEM; 1763 } 1764 1765 /** 1766 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1767 * @interface: board private structure to initialize 1768 * 1769 * This function frees the memory allocated to the q_vectors. In addition if 1770 * NAPI is enabled it will delete any references to the NAPI struct prior 1771 * to freeing the q_vector. 1772 **/ 1773 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1774 { 1775 int v_idx = interface->num_q_vectors; 1776 1777 fm10k_reset_num_queues(interface); 1778 1779 while (v_idx--) 1780 fm10k_free_q_vector(interface, v_idx); 1781 } 1782 1783 /** 1784 * fm10k_reset_msix_capability - reset MSI-X capability 1785 * @interface: board private structure to initialize 1786 * 1787 * Reset the MSI-X capability back to its starting state 1788 **/ 1789 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1790 { 1791 pci_disable_msix(interface->pdev); 1792 kfree(interface->msix_entries); 1793 interface->msix_entries = NULL; 1794 } 1795 1796 /** 1797 * fm10k_init_msix_capability - configure MSI-X capability 1798 * @interface: board private structure to initialize 1799 * 1800 * Attempt to configure the interrupts using the best available 1801 * capabilities of the hardware and the kernel. 1802 **/ 1803 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1804 { 1805 struct fm10k_hw *hw = &interface->hw; 1806 int v_budget, vector; 1807 1808 /* It's easy to be greedy for MSI-X vectors, but it really 1809 * doesn't do us much good if we have a lot more vectors 1810 * than CPU's. So let's be conservative and only ask for 1811 * (roughly) the same number of vectors as there are CPU's. 1812 * the default is to use pairs of vectors 1813 */ 1814 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1815 v_budget = min_t(u16, v_budget, num_online_cpus()); 1816 1817 /* account for vectors not related to queues */ 1818 v_budget += NON_Q_VECTORS; 1819 1820 /* At the same time, hardware can only support a maximum of 1821 * hw.mac->max_msix_vectors vectors. With features 1822 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1823 * descriptor queues supported by our device. Thus, we cap it off in 1824 * those rare cases where the cpu count also exceeds our vector limit. 1825 */ 1826 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1827 1828 /* A failure in MSI-X entry allocation is fatal. */ 1829 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1830 GFP_KERNEL); 1831 if (!interface->msix_entries) 1832 return -ENOMEM; 1833 1834 /* populate entry values */ 1835 for (vector = 0; vector < v_budget; vector++) 1836 interface->msix_entries[vector].entry = vector; 1837 1838 /* Attempt to enable MSI-X with requested value */ 1839 v_budget = pci_enable_msix_range(interface->pdev, 1840 interface->msix_entries, 1841 MIN_MSIX_COUNT(hw), 1842 v_budget); 1843 if (v_budget < 0) { 1844 kfree(interface->msix_entries); 1845 interface->msix_entries = NULL; 1846 return v_budget; 1847 } 1848 1849 /* record the number of queues available for q_vectors */ 1850 interface->num_q_vectors = v_budget - NON_Q_VECTORS; 1851 1852 return 0; 1853 } 1854 1855 /** 1856 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1857 * @interface: Interface structure continaining rings and devices 1858 * 1859 * Cache the descriptor ring offsets for Qos 1860 **/ 1861 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1862 { 1863 struct net_device *dev = interface->netdev; 1864 int pc, offset, rss_i, i; 1865 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1866 u8 num_pcs = netdev_get_num_tc(dev); 1867 1868 if (num_pcs <= 1) 1869 return false; 1870 1871 rss_i = interface->ring_feature[RING_F_RSS].indices; 1872 1873 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1874 int q_idx = pc; 1875 1876 for (i = 0; i < rss_i; i++) { 1877 interface->tx_ring[offset + i]->reg_idx = q_idx; 1878 interface->tx_ring[offset + i]->qos_pc = pc; 1879 interface->rx_ring[offset + i]->reg_idx = q_idx; 1880 interface->rx_ring[offset + i]->qos_pc = pc; 1881 q_idx += pc_stride; 1882 } 1883 } 1884 1885 return true; 1886 } 1887 1888 /** 1889 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1890 * @interface: Interface structure continaining rings and devices 1891 * 1892 * Cache the descriptor ring offsets for RSS 1893 **/ 1894 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1895 { 1896 int i; 1897 1898 for (i = 0; i < interface->num_rx_queues; i++) 1899 interface->rx_ring[i]->reg_idx = i; 1900 1901 for (i = 0; i < interface->num_tx_queues; i++) 1902 interface->tx_ring[i]->reg_idx = i; 1903 } 1904 1905 /** 1906 * fm10k_assign_rings - Map rings to network devices 1907 * @interface: Interface structure containing rings and devices 1908 * 1909 * This function is meant to go though and configure both the network 1910 * devices so that they contain rings, and configure the rings so that 1911 * they function with their network devices. 1912 **/ 1913 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1914 { 1915 if (fm10k_cache_ring_qos(interface)) 1916 return; 1917 1918 fm10k_cache_ring_rss(interface); 1919 } 1920 1921 static void fm10k_init_reta(struct fm10k_intfc *interface) 1922 { 1923 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1924 u32 reta; 1925 1926 /* If the Rx flow indirection table has been configured manually, we 1927 * need to maintain it when possible. 1928 */ 1929 if (netif_is_rxfh_configured(interface->netdev)) { 1930 for (i = FM10K_RETA_SIZE; i--;) { 1931 reta = interface->reta[i]; 1932 if ((((reta << 24) >> 24) < rss_i) && 1933 (((reta << 16) >> 24) < rss_i) && 1934 (((reta << 8) >> 24) < rss_i) && 1935 (((reta) >> 24) < rss_i)) 1936 continue; 1937 1938 /* this should never happen */ 1939 dev_err(&interface->pdev->dev, 1940 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); 1941 goto repopulate_reta; 1942 } 1943 1944 /* do nothing if all of the elements are in bounds */ 1945 return; 1946 } 1947 1948 repopulate_reta: 1949 fm10k_write_reta(interface, NULL); 1950 } 1951 1952 /** 1953 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1954 * @interface: board private structure to initialize 1955 * 1956 * We determine which queueing scheme to use based on... 1957 * - Hardware queue count (num_*_queues) 1958 * - defined by miscellaneous hardware support/features (RSS, etc.) 1959 **/ 1960 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1961 { 1962 int err; 1963 1964 /* Number of supported queues */ 1965 fm10k_set_num_queues(interface); 1966 1967 /* Configure MSI-X capability */ 1968 err = fm10k_init_msix_capability(interface); 1969 if (err) { 1970 dev_err(&interface->pdev->dev, 1971 "Unable to initialize MSI-X capability\n"); 1972 goto err_init_msix; 1973 } 1974 1975 /* Allocate memory for queues */ 1976 err = fm10k_alloc_q_vectors(interface); 1977 if (err) { 1978 dev_err(&interface->pdev->dev, 1979 "Unable to allocate queue vectors\n"); 1980 goto err_alloc_q_vectors; 1981 } 1982 1983 /* Map rings to devices, and map devices to physical queues */ 1984 fm10k_assign_rings(interface); 1985 1986 /* Initialize RSS redirection table */ 1987 fm10k_init_reta(interface); 1988 1989 return 0; 1990 1991 err_alloc_q_vectors: 1992 fm10k_reset_msix_capability(interface); 1993 err_init_msix: 1994 fm10k_reset_num_queues(interface); 1995 return err; 1996 } 1997 1998 /** 1999 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 2000 * @interface: board private structure to clear queueing scheme on 2001 * 2002 * We go through and clear queueing specific resources and reset the structure 2003 * to pre-load conditions 2004 **/ 2005 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 2006 { 2007 fm10k_free_q_vectors(interface); 2008 fm10k_reset_msix_capability(interface); 2009 } 2010