1 /* Intel(R) Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2016 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include <linux/types.h> 22 #include <linux/module.h> 23 #include <net/ipv6.h> 24 #include <net/ip.h> 25 #include <net/tcp.h> 26 #include <linux/if_macvlan.h> 27 #include <linux/prefetch.h> 28 29 #include "fm10k.h" 30 31 #define DRV_VERSION "0.19.3-k" 32 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" 33 const char fm10k_driver_version[] = DRV_VERSION; 34 char fm10k_driver_name[] = "fm10k"; 35 static const char fm10k_driver_string[] = DRV_SUMMARY; 36 static const char fm10k_copyright[] = 37 "Copyright (c) 2013 - 2016 Intel Corporation."; 38 39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 40 MODULE_DESCRIPTION(DRV_SUMMARY); 41 MODULE_LICENSE("GPL"); 42 MODULE_VERSION(DRV_VERSION); 43 44 /* single workqueue for entire fm10k driver */ 45 struct workqueue_struct *fm10k_workqueue; 46 47 /** 48 * fm10k_init_module - Driver Registration Routine 49 * 50 * fm10k_init_module is the first routine called when the driver is 51 * loaded. All it does is register with the PCI subsystem. 52 **/ 53 static int __init fm10k_init_module(void) 54 { 55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); 56 pr_info("%s\n", fm10k_copyright); 57 58 /* create driver workqueue */ 59 fm10k_workqueue = create_workqueue("fm10k"); 60 61 fm10k_dbg_init(); 62 63 return fm10k_register_pci_driver(); 64 } 65 module_init(fm10k_init_module); 66 67 /** 68 * fm10k_exit_module - Driver Exit Cleanup Routine 69 * 70 * fm10k_exit_module is called just before the driver is removed 71 * from memory. 72 **/ 73 static void __exit fm10k_exit_module(void) 74 { 75 fm10k_unregister_pci_driver(); 76 77 fm10k_dbg_exit(); 78 79 /* destroy driver workqueue */ 80 flush_workqueue(fm10k_workqueue); 81 destroy_workqueue(fm10k_workqueue); 82 } 83 module_exit(fm10k_exit_module); 84 85 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 86 struct fm10k_rx_buffer *bi) 87 { 88 struct page *page = bi->page; 89 dma_addr_t dma; 90 91 /* Only page will be NULL if buffer was consumed */ 92 if (likely(page)) 93 return true; 94 95 /* alloc new page for storage */ 96 page = dev_alloc_page(); 97 if (unlikely(!page)) { 98 rx_ring->rx_stats.alloc_failed++; 99 return false; 100 } 101 102 /* map page for use */ 103 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 104 105 /* if mapping failed free memory back to system since 106 * there isn't much point in holding memory we can't use 107 */ 108 if (dma_mapping_error(rx_ring->dev, dma)) { 109 __free_page(page); 110 111 rx_ring->rx_stats.alloc_failed++; 112 return false; 113 } 114 115 bi->dma = dma; 116 bi->page = page; 117 bi->page_offset = 0; 118 119 return true; 120 } 121 122 /** 123 * fm10k_alloc_rx_buffers - Replace used receive buffers 124 * @rx_ring: ring to place buffers on 125 * @cleaned_count: number of buffers to replace 126 **/ 127 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 128 { 129 union fm10k_rx_desc *rx_desc; 130 struct fm10k_rx_buffer *bi; 131 u16 i = rx_ring->next_to_use; 132 133 /* nothing to do */ 134 if (!cleaned_count) 135 return; 136 137 rx_desc = FM10K_RX_DESC(rx_ring, i); 138 bi = &rx_ring->rx_buffer[i]; 139 i -= rx_ring->count; 140 141 do { 142 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 143 break; 144 145 /* Refresh the desc even if buffer_addrs didn't change 146 * because each write-back erases this info. 147 */ 148 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 149 150 rx_desc++; 151 bi++; 152 i++; 153 if (unlikely(!i)) { 154 rx_desc = FM10K_RX_DESC(rx_ring, 0); 155 bi = rx_ring->rx_buffer; 156 i -= rx_ring->count; 157 } 158 159 /* clear the status bits for the next_to_use descriptor */ 160 rx_desc->d.staterr = 0; 161 162 cleaned_count--; 163 } while (cleaned_count); 164 165 i += rx_ring->count; 166 167 if (rx_ring->next_to_use != i) { 168 /* record the next descriptor to use */ 169 rx_ring->next_to_use = i; 170 171 /* update next to alloc since we have filled the ring */ 172 rx_ring->next_to_alloc = i; 173 174 /* Force memory writes to complete before letting h/w 175 * know there are new descriptors to fetch. (Only 176 * applicable for weak-ordered memory model archs, 177 * such as IA-64). 178 */ 179 wmb(); 180 181 /* notify hardware of new descriptors */ 182 writel(i, rx_ring->tail); 183 } 184 } 185 186 /** 187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 188 * @rx_ring: rx descriptor ring to store buffers on 189 * @old_buff: donor buffer to have page reused 190 * 191 * Synchronizes page for reuse by the interface 192 **/ 193 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 194 struct fm10k_rx_buffer *old_buff) 195 { 196 struct fm10k_rx_buffer *new_buff; 197 u16 nta = rx_ring->next_to_alloc; 198 199 new_buff = &rx_ring->rx_buffer[nta]; 200 201 /* update, and store next to alloc */ 202 nta++; 203 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 204 205 /* transfer page from old buffer to new buffer */ 206 *new_buff = *old_buff; 207 208 /* sync the buffer for use by the device */ 209 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 210 old_buff->page_offset, 211 FM10K_RX_BUFSZ, 212 DMA_FROM_DEVICE); 213 } 214 215 static inline bool fm10k_page_is_reserved(struct page *page) 216 { 217 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 218 } 219 220 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 221 struct page *page, 222 unsigned int __maybe_unused truesize) 223 { 224 /* avoid re-using remote pages */ 225 if (unlikely(fm10k_page_is_reserved(page))) 226 return false; 227 228 #if (PAGE_SIZE < 8192) 229 /* if we are only owner of page we can reuse it */ 230 if (unlikely(page_count(page) != 1)) 231 return false; 232 233 /* flip page offset to other buffer */ 234 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 235 #else 236 /* move offset up to the next cache line */ 237 rx_buffer->page_offset += truesize; 238 239 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 240 return false; 241 #endif 242 243 /* Even if we own the page, we are not allowed to use atomic_set() 244 * This would break get_page_unless_zero() users. 245 */ 246 page_ref_inc(page); 247 248 return true; 249 } 250 251 /** 252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 253 * @rx_buffer: buffer containing page to add 254 * @rx_desc: descriptor containing length of buffer written by hardware 255 * @skb: sk_buff to place the data into 256 * 257 * This function will add the data contained in rx_buffer->page to the skb. 258 * This is done either through a direct copy if the data in the buffer is 259 * less than the skb header size, otherwise it will just attach the page as 260 * a frag to the skb. 261 * 262 * The function will then update the page offset if necessary and return 263 * true if the buffer can be reused by the interface. 264 **/ 265 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 266 union fm10k_rx_desc *rx_desc, 267 struct sk_buff *skb) 268 { 269 struct page *page = rx_buffer->page; 270 unsigned char *va = page_address(page) + rx_buffer->page_offset; 271 unsigned int size = le16_to_cpu(rx_desc->w.length); 272 #if (PAGE_SIZE < 8192) 273 unsigned int truesize = FM10K_RX_BUFSZ; 274 #else 275 unsigned int truesize = SKB_DATA_ALIGN(size); 276 #endif 277 unsigned int pull_len; 278 279 if (unlikely(skb_is_nonlinear(skb))) 280 goto add_tail_frag; 281 282 if (likely(size <= FM10K_RX_HDR_LEN)) { 283 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 284 285 /* page is not reserved, we can reuse buffer as-is */ 286 if (likely(!fm10k_page_is_reserved(page))) 287 return true; 288 289 /* this page cannot be reused so discard it */ 290 __free_page(page); 291 return false; 292 } 293 294 /* we need the header to contain the greater of either ETH_HLEN or 295 * 60 bytes if the skb->len is less than 60 for skb_pad. 296 */ 297 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN); 298 299 /* align pull length to size of long to optimize memcpy performance */ 300 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 301 302 /* update all of the pointers */ 303 va += pull_len; 304 size -= pull_len; 305 306 add_tail_frag: 307 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 308 (unsigned long)va & ~PAGE_MASK, size, truesize); 309 310 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 311 } 312 313 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 314 union fm10k_rx_desc *rx_desc, 315 struct sk_buff *skb) 316 { 317 struct fm10k_rx_buffer *rx_buffer; 318 struct page *page; 319 320 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 321 page = rx_buffer->page; 322 prefetchw(page); 323 324 if (likely(!skb)) { 325 void *page_addr = page_address(page) + 326 rx_buffer->page_offset; 327 328 /* prefetch first cache line of first page */ 329 prefetch(page_addr); 330 #if L1_CACHE_BYTES < 128 331 prefetch(page_addr + L1_CACHE_BYTES); 332 #endif 333 334 /* allocate a skb to store the frags */ 335 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 336 FM10K_RX_HDR_LEN); 337 if (unlikely(!skb)) { 338 rx_ring->rx_stats.alloc_failed++; 339 return NULL; 340 } 341 342 /* we will be copying header into skb->data in 343 * pskb_may_pull so it is in our interest to prefetch 344 * it now to avoid a possible cache miss 345 */ 346 prefetchw(skb->data); 347 } 348 349 /* we are reusing so sync this buffer for CPU use */ 350 dma_sync_single_range_for_cpu(rx_ring->dev, 351 rx_buffer->dma, 352 rx_buffer->page_offset, 353 FM10K_RX_BUFSZ, 354 DMA_FROM_DEVICE); 355 356 /* pull page into skb */ 357 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) { 358 /* hand second half of page back to the ring */ 359 fm10k_reuse_rx_page(rx_ring, rx_buffer); 360 } else { 361 /* we are not reusing the buffer so unmap it */ 362 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 363 PAGE_SIZE, DMA_FROM_DEVICE); 364 } 365 366 /* clear contents of rx_buffer */ 367 rx_buffer->page = NULL; 368 369 return skb; 370 } 371 372 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 373 union fm10k_rx_desc *rx_desc, 374 struct sk_buff *skb) 375 { 376 skb_checksum_none_assert(skb); 377 378 /* Rx checksum disabled via ethtool */ 379 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 380 return; 381 382 /* TCP/UDP checksum error bit is set */ 383 if (fm10k_test_staterr(rx_desc, 384 FM10K_RXD_STATUS_L4E | 385 FM10K_RXD_STATUS_L4E2 | 386 FM10K_RXD_STATUS_IPE | 387 FM10K_RXD_STATUS_IPE2)) { 388 ring->rx_stats.csum_err++; 389 return; 390 } 391 392 /* It must be a TCP or UDP packet with a valid checksum */ 393 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 394 skb->encapsulation = true; 395 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 396 return; 397 398 skb->ip_summed = CHECKSUM_UNNECESSARY; 399 400 ring->rx_stats.csum_good++; 401 } 402 403 #define FM10K_RSS_L4_TYPES_MASK \ 404 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ 405 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ 406 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ 407 BIT(FM10K_RSSTYPE_IPV6_UDP)) 408 409 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 410 union fm10k_rx_desc *rx_desc, 411 struct sk_buff *skb) 412 { 413 u16 rss_type; 414 415 if (!(ring->netdev->features & NETIF_F_RXHASH)) 416 return; 417 418 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 419 if (!rss_type) 420 return; 421 422 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 423 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? 424 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 425 } 426 427 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 428 union fm10k_rx_desc __maybe_unused *rx_desc, 429 struct sk_buff *skb) 430 { 431 struct net_device *dev = rx_ring->netdev; 432 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 433 434 /* check to see if DGLORT belongs to a MACVLAN */ 435 if (l2_accel) { 436 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 437 438 idx -= l2_accel->dglort; 439 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 440 dev = l2_accel->macvlan[idx]; 441 else 442 l2_accel = NULL; 443 } 444 445 skb->protocol = eth_type_trans(skb, dev); 446 447 if (!l2_accel) 448 return; 449 450 /* update MACVLAN statistics */ 451 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1, 452 !!(rx_desc->w.hdr_info & 453 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK))); 454 } 455 456 /** 457 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 458 * @rx_ring: rx descriptor ring packet is being transacted on 459 * @rx_desc: pointer to the EOP Rx descriptor 460 * @skb: pointer to current skb being populated 461 * 462 * This function checks the ring, descriptor, and packet information in 463 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 464 * other fields within the skb. 465 **/ 466 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 467 union fm10k_rx_desc *rx_desc, 468 struct sk_buff *skb) 469 { 470 unsigned int len = skb->len; 471 472 fm10k_rx_hash(rx_ring, rx_desc, skb); 473 474 fm10k_rx_checksum(rx_ring, rx_desc, skb); 475 476 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 477 478 skb_record_rx_queue(skb, rx_ring->queue_index); 479 480 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 481 482 if (rx_desc->w.vlan) { 483 u16 vid = le16_to_cpu(rx_desc->w.vlan); 484 485 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 486 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 487 else if (vid & VLAN_PRIO_MASK) 488 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 489 vid & VLAN_PRIO_MASK); 490 } 491 492 fm10k_type_trans(rx_ring, rx_desc, skb); 493 494 return len; 495 } 496 497 /** 498 * fm10k_is_non_eop - process handling of non-EOP buffers 499 * @rx_ring: Rx ring being processed 500 * @rx_desc: Rx descriptor for current buffer 501 * 502 * This function updates next to clean. If the buffer is an EOP buffer 503 * this function exits returning false, otherwise it will place the 504 * sk_buff in the next buffer to be chained and return true indicating 505 * that this is in fact a non-EOP buffer. 506 **/ 507 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 508 union fm10k_rx_desc *rx_desc) 509 { 510 u32 ntc = rx_ring->next_to_clean + 1; 511 512 /* fetch, update, and store next to clean */ 513 ntc = (ntc < rx_ring->count) ? ntc : 0; 514 rx_ring->next_to_clean = ntc; 515 516 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 517 518 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 519 return false; 520 521 return true; 522 } 523 524 /** 525 * fm10k_cleanup_headers - Correct corrupted or empty headers 526 * @rx_ring: rx descriptor ring packet is being transacted on 527 * @rx_desc: pointer to the EOP Rx descriptor 528 * @skb: pointer to current skb being fixed 529 * 530 * Address the case where we are pulling data in on pages only 531 * and as such no data is present in the skb header. 532 * 533 * In addition if skb is not at least 60 bytes we need to pad it so that 534 * it is large enough to qualify as a valid Ethernet frame. 535 * 536 * Returns true if an error was encountered and skb was freed. 537 **/ 538 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 539 union fm10k_rx_desc *rx_desc, 540 struct sk_buff *skb) 541 { 542 if (unlikely((fm10k_test_staterr(rx_desc, 543 FM10K_RXD_STATUS_RXE)))) { 544 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 545 ((rxd)->w.csum_err & cpu_to_le16(bit)) 546 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 547 rx_ring->rx_stats.switch_errors++; 548 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 549 rx_ring->rx_stats.drops++; 550 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 551 rx_ring->rx_stats.pp_errors++; 552 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 553 rx_ring->rx_stats.link_errors++; 554 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 555 rx_ring->rx_stats.length_errors++; 556 dev_kfree_skb_any(skb); 557 rx_ring->rx_stats.errors++; 558 return true; 559 } 560 561 /* if eth_skb_pad returns an error the skb was freed */ 562 if (eth_skb_pad(skb)) 563 return true; 564 565 return false; 566 } 567 568 /** 569 * fm10k_receive_skb - helper function to handle rx indications 570 * @q_vector: structure containing interrupt and ring information 571 * @skb: packet to send up 572 **/ 573 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 574 struct sk_buff *skb) 575 { 576 napi_gro_receive(&q_vector->napi, skb); 577 } 578 579 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 580 struct fm10k_ring *rx_ring, 581 int budget) 582 { 583 struct sk_buff *skb = rx_ring->skb; 584 unsigned int total_bytes = 0, total_packets = 0; 585 u16 cleaned_count = fm10k_desc_unused(rx_ring); 586 587 while (likely(total_packets < budget)) { 588 union fm10k_rx_desc *rx_desc; 589 590 /* return some buffers to hardware, one at a time is too slow */ 591 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 592 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 593 cleaned_count = 0; 594 } 595 596 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 597 598 if (!rx_desc->d.staterr) 599 break; 600 601 /* This memory barrier is needed to keep us from reading 602 * any other fields out of the rx_desc until we know the 603 * descriptor has been written back 604 */ 605 dma_rmb(); 606 607 /* retrieve a buffer from the ring */ 608 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 609 610 /* exit if we failed to retrieve a buffer */ 611 if (!skb) 612 break; 613 614 cleaned_count++; 615 616 /* fetch next buffer in frame if non-eop */ 617 if (fm10k_is_non_eop(rx_ring, rx_desc)) 618 continue; 619 620 /* verify the packet layout is correct */ 621 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 622 skb = NULL; 623 continue; 624 } 625 626 /* populate checksum, timestamp, VLAN, and protocol */ 627 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 628 629 fm10k_receive_skb(q_vector, skb); 630 631 /* reset skb pointer */ 632 skb = NULL; 633 634 /* update budget accounting */ 635 total_packets++; 636 } 637 638 /* place incomplete frames back on ring for completion */ 639 rx_ring->skb = skb; 640 641 u64_stats_update_begin(&rx_ring->syncp); 642 rx_ring->stats.packets += total_packets; 643 rx_ring->stats.bytes += total_bytes; 644 u64_stats_update_end(&rx_ring->syncp); 645 q_vector->rx.total_packets += total_packets; 646 q_vector->rx.total_bytes += total_bytes; 647 648 return total_packets; 649 } 650 651 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 652 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 653 { 654 struct fm10k_intfc *interface = netdev_priv(skb->dev); 655 struct fm10k_vxlan_port *vxlan_port; 656 657 /* we can only offload a vxlan if we recognize it as such */ 658 vxlan_port = list_first_entry_or_null(&interface->vxlan_port, 659 struct fm10k_vxlan_port, list); 660 661 if (!vxlan_port) 662 return NULL; 663 if (vxlan_port->port != udp_hdr(skb)->dest) 664 return NULL; 665 666 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 667 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 668 } 669 670 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 671 #define NVGRE_TNI htons(0x2000) 672 struct fm10k_nvgre_hdr { 673 __be16 flags; 674 __be16 proto; 675 __be32 tni; 676 }; 677 678 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 679 { 680 struct fm10k_nvgre_hdr *nvgre_hdr; 681 int hlen = ip_hdrlen(skb); 682 683 /* currently only IPv4 is supported due to hlen above */ 684 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 685 return NULL; 686 687 /* our transport header should be NVGRE */ 688 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 689 690 /* verify all reserved flags are 0 */ 691 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 692 return NULL; 693 694 /* report start of ethernet header */ 695 if (nvgre_hdr->flags & NVGRE_TNI) 696 return (struct ethhdr *)(nvgre_hdr + 1); 697 698 return (struct ethhdr *)(&nvgre_hdr->tni); 699 } 700 701 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 702 { 703 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 704 struct ethhdr *eth_hdr; 705 706 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 707 skb->inner_protocol != htons(ETH_P_TEB)) 708 return 0; 709 710 switch (vlan_get_protocol(skb)) { 711 case htons(ETH_P_IP): 712 l4_hdr = ip_hdr(skb)->protocol; 713 break; 714 case htons(ETH_P_IPV6): 715 l4_hdr = ipv6_hdr(skb)->nexthdr; 716 break; 717 default: 718 return 0; 719 } 720 721 switch (l4_hdr) { 722 case IPPROTO_UDP: 723 eth_hdr = fm10k_port_is_vxlan(skb); 724 break; 725 case IPPROTO_GRE: 726 eth_hdr = fm10k_gre_is_nvgre(skb); 727 break; 728 default: 729 return 0; 730 } 731 732 if (!eth_hdr) 733 return 0; 734 735 switch (eth_hdr->h_proto) { 736 case htons(ETH_P_IP): 737 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 738 break; 739 case htons(ETH_P_IPV6): 740 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 741 break; 742 default: 743 return 0; 744 } 745 746 switch (inner_l4_hdr) { 747 case IPPROTO_TCP: 748 inner_l4_hlen = inner_tcp_hdrlen(skb); 749 break; 750 case IPPROTO_UDP: 751 inner_l4_hlen = 8; 752 break; 753 default: 754 return 0; 755 } 756 757 /* The hardware allows tunnel offloads only if the combined inner and 758 * outer header is 184 bytes or less 759 */ 760 if (skb_inner_transport_header(skb) + inner_l4_hlen - 761 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 762 return 0; 763 764 return eth_hdr->h_proto; 765 } 766 767 static int fm10k_tso(struct fm10k_ring *tx_ring, 768 struct fm10k_tx_buffer *first) 769 { 770 struct sk_buff *skb = first->skb; 771 struct fm10k_tx_desc *tx_desc; 772 unsigned char *th; 773 u8 hdrlen; 774 775 if (skb->ip_summed != CHECKSUM_PARTIAL) 776 return 0; 777 778 if (!skb_is_gso(skb)) 779 return 0; 780 781 /* compute header lengths */ 782 if (skb->encapsulation) { 783 if (!fm10k_tx_encap_offload(skb)) 784 goto err_vxlan; 785 th = skb_inner_transport_header(skb); 786 } else { 787 th = skb_transport_header(skb); 788 } 789 790 /* compute offset from SOF to transport header and add header len */ 791 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 792 793 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 794 795 /* update gso size and bytecount with header size */ 796 first->gso_segs = skb_shinfo(skb)->gso_segs; 797 first->bytecount += (first->gso_segs - 1) * hdrlen; 798 799 /* populate Tx descriptor header size and mss */ 800 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 801 tx_desc->hdrlen = hdrlen; 802 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 803 804 return 1; 805 err_vxlan: 806 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 807 if (!net_ratelimit()) 808 netdev_err(tx_ring->netdev, 809 "TSO requested for unsupported tunnel, disabling offload\n"); 810 return -1; 811 } 812 813 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 814 struct fm10k_tx_buffer *first) 815 { 816 struct sk_buff *skb = first->skb; 817 struct fm10k_tx_desc *tx_desc; 818 union { 819 struct iphdr *ipv4; 820 struct ipv6hdr *ipv6; 821 u8 *raw; 822 } network_hdr; 823 u8 *transport_hdr; 824 __be16 frag_off; 825 __be16 protocol; 826 u8 l4_hdr = 0; 827 828 if (skb->ip_summed != CHECKSUM_PARTIAL) 829 goto no_csum; 830 831 if (skb->encapsulation) { 832 protocol = fm10k_tx_encap_offload(skb); 833 if (!protocol) { 834 if (skb_checksum_help(skb)) { 835 dev_warn(tx_ring->dev, 836 "failed to offload encap csum!\n"); 837 tx_ring->tx_stats.csum_err++; 838 } 839 goto no_csum; 840 } 841 network_hdr.raw = skb_inner_network_header(skb); 842 transport_hdr = skb_inner_transport_header(skb); 843 } else { 844 protocol = vlan_get_protocol(skb); 845 network_hdr.raw = skb_network_header(skb); 846 transport_hdr = skb_transport_header(skb); 847 } 848 849 switch (protocol) { 850 case htons(ETH_P_IP): 851 l4_hdr = network_hdr.ipv4->protocol; 852 break; 853 case htons(ETH_P_IPV6): 854 l4_hdr = network_hdr.ipv6->nexthdr; 855 if (likely((transport_hdr - network_hdr.raw) == 856 sizeof(struct ipv6hdr))) 857 break; 858 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + 859 sizeof(struct ipv6hdr), 860 &l4_hdr, &frag_off); 861 if (unlikely(frag_off)) 862 l4_hdr = NEXTHDR_FRAGMENT; 863 break; 864 default: 865 break; 866 } 867 868 switch (l4_hdr) { 869 case IPPROTO_TCP: 870 case IPPROTO_UDP: 871 break; 872 case IPPROTO_GRE: 873 if (skb->encapsulation) 874 break; 875 default: 876 if (unlikely(net_ratelimit())) { 877 dev_warn(tx_ring->dev, 878 "partial checksum, version=%d l4 proto=%x\n", 879 protocol, l4_hdr); 880 } 881 skb_checksum_help(skb); 882 tx_ring->tx_stats.csum_err++; 883 goto no_csum; 884 } 885 886 /* update TX checksum flag */ 887 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 888 tx_ring->tx_stats.csum_good++; 889 890 no_csum: 891 /* populate Tx descriptor header size and mss */ 892 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 893 tx_desc->hdrlen = 0; 894 tx_desc->mss = 0; 895 } 896 897 #define FM10K_SET_FLAG(_input, _flag, _result) \ 898 ((_flag <= _result) ? \ 899 ((u32)(_input & _flag) * (_result / _flag)) : \ 900 ((u32)(_input & _flag) / (_flag / _result))) 901 902 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 903 { 904 /* set type for advanced descriptor with frame checksum insertion */ 905 u32 desc_flags = 0; 906 907 /* set checksum offload bits */ 908 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 909 FM10K_TXD_FLAG_CSUM); 910 911 return desc_flags; 912 } 913 914 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 915 struct fm10k_tx_desc *tx_desc, u16 i, 916 dma_addr_t dma, unsigned int size, u8 desc_flags) 917 { 918 /* set RS and INT for last frame in a cache line */ 919 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 920 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 921 922 /* record values to descriptor */ 923 tx_desc->buffer_addr = cpu_to_le64(dma); 924 tx_desc->flags = desc_flags; 925 tx_desc->buflen = cpu_to_le16(size); 926 927 /* return true if we just wrapped the ring */ 928 return i == tx_ring->count; 929 } 930 931 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 932 { 933 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 934 935 /* Memory barrier before checking head and tail */ 936 smp_mb(); 937 938 /* Check again in a case another CPU has just made room available */ 939 if (likely(fm10k_desc_unused(tx_ring) < size)) 940 return -EBUSY; 941 942 /* A reprieve! - use start_queue because it doesn't call schedule */ 943 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 944 ++tx_ring->tx_stats.restart_queue; 945 return 0; 946 } 947 948 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 949 { 950 if (likely(fm10k_desc_unused(tx_ring) >= size)) 951 return 0; 952 return __fm10k_maybe_stop_tx(tx_ring, size); 953 } 954 955 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 956 struct fm10k_tx_buffer *first) 957 { 958 struct sk_buff *skb = first->skb; 959 struct fm10k_tx_buffer *tx_buffer; 960 struct fm10k_tx_desc *tx_desc; 961 struct skb_frag_struct *frag; 962 unsigned char *data; 963 dma_addr_t dma; 964 unsigned int data_len, size; 965 u32 tx_flags = first->tx_flags; 966 u16 i = tx_ring->next_to_use; 967 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 968 969 tx_desc = FM10K_TX_DESC(tx_ring, i); 970 971 /* add HW VLAN tag */ 972 if (skb_vlan_tag_present(skb)) 973 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 974 else 975 tx_desc->vlan = 0; 976 977 size = skb_headlen(skb); 978 data = skb->data; 979 980 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 981 982 data_len = skb->data_len; 983 tx_buffer = first; 984 985 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 986 if (dma_mapping_error(tx_ring->dev, dma)) 987 goto dma_error; 988 989 /* record length, and DMA address */ 990 dma_unmap_len_set(tx_buffer, len, size); 991 dma_unmap_addr_set(tx_buffer, dma, dma); 992 993 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 994 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 995 FM10K_MAX_DATA_PER_TXD, flags)) { 996 tx_desc = FM10K_TX_DESC(tx_ring, 0); 997 i = 0; 998 } 999 1000 dma += FM10K_MAX_DATA_PER_TXD; 1001 size -= FM10K_MAX_DATA_PER_TXD; 1002 } 1003 1004 if (likely(!data_len)) 1005 break; 1006 1007 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 1008 dma, size, flags)) { 1009 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1010 i = 0; 1011 } 1012 1013 size = skb_frag_size(frag); 1014 data_len -= size; 1015 1016 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1017 DMA_TO_DEVICE); 1018 1019 tx_buffer = &tx_ring->tx_buffer[i]; 1020 } 1021 1022 /* write last descriptor with LAST bit set */ 1023 flags |= FM10K_TXD_FLAG_LAST; 1024 1025 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1026 i = 0; 1027 1028 /* record bytecount for BQL */ 1029 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1030 1031 /* record SW timestamp if HW timestamp is not available */ 1032 skb_tx_timestamp(first->skb); 1033 1034 /* Force memory writes to complete before letting h/w know there 1035 * are new descriptors to fetch. (Only applicable for weak-ordered 1036 * memory model archs, such as IA-64). 1037 * 1038 * We also need this memory barrier to make certain all of the 1039 * status bits have been updated before next_to_watch is written. 1040 */ 1041 wmb(); 1042 1043 /* set next_to_watch value indicating a packet is present */ 1044 first->next_to_watch = tx_desc; 1045 1046 tx_ring->next_to_use = i; 1047 1048 /* Make sure there is space in the ring for the next send. */ 1049 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1050 1051 /* notify HW of packet */ 1052 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 1053 writel(i, tx_ring->tail); 1054 1055 /* we need this if more than one processor can write to our tail 1056 * at a time, it synchronizes IO on IA64/Altix systems 1057 */ 1058 mmiowb(); 1059 } 1060 1061 return; 1062 dma_error: 1063 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1064 1065 /* clear dma mappings for failed tx_buffer map */ 1066 for (;;) { 1067 tx_buffer = &tx_ring->tx_buffer[i]; 1068 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1069 if (tx_buffer == first) 1070 break; 1071 if (i == 0) 1072 i = tx_ring->count; 1073 i--; 1074 } 1075 1076 tx_ring->next_to_use = i; 1077 } 1078 1079 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1080 struct fm10k_ring *tx_ring) 1081 { 1082 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1083 struct fm10k_tx_buffer *first; 1084 unsigned short f; 1085 u32 tx_flags = 0; 1086 int tso; 1087 1088 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1089 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1090 * + 2 desc gap to keep tail from touching head 1091 * otherwise try next time 1092 */ 1093 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1094 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1095 1096 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1097 tx_ring->tx_stats.tx_busy++; 1098 return NETDEV_TX_BUSY; 1099 } 1100 1101 /* record the location of the first descriptor for this packet */ 1102 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1103 first->skb = skb; 1104 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1105 first->gso_segs = 1; 1106 1107 /* record initial flags and protocol */ 1108 first->tx_flags = tx_flags; 1109 1110 tso = fm10k_tso(tx_ring, first); 1111 if (tso < 0) 1112 goto out_drop; 1113 else if (!tso) 1114 fm10k_tx_csum(tx_ring, first); 1115 1116 fm10k_tx_map(tx_ring, first); 1117 1118 return NETDEV_TX_OK; 1119 1120 out_drop: 1121 dev_kfree_skb_any(first->skb); 1122 first->skb = NULL; 1123 1124 return NETDEV_TX_OK; 1125 } 1126 1127 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1128 { 1129 return ring->stats.packets; 1130 } 1131 1132 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring) 1133 { 1134 /* use SW head and tail until we have real hardware */ 1135 u32 head = ring->next_to_clean; 1136 u32 tail = ring->next_to_use; 1137 1138 return ((head <= tail) ? tail : tail + ring->count) - head; 1139 } 1140 1141 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1142 { 1143 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1144 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1145 u32 tx_pending = fm10k_get_tx_pending(tx_ring); 1146 1147 clear_check_for_tx_hang(tx_ring); 1148 1149 /* Check for a hung queue, but be thorough. This verifies 1150 * that a transmit has been completed since the previous 1151 * check AND there is at least one packet pending. By 1152 * requiring this to fail twice we avoid races with 1153 * clearing the ARMED bit and conditions where we 1154 * run the check_tx_hang logic with a transmit completion 1155 * pending but without time to complete it yet. 1156 */ 1157 if (!tx_pending || (tx_done_old != tx_done)) { 1158 /* update completed stats and continue */ 1159 tx_ring->tx_stats.tx_done_old = tx_done; 1160 /* reset the countdown */ 1161 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1162 1163 return false; 1164 } 1165 1166 /* make sure it is true for two checks in a row */ 1167 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1168 } 1169 1170 /** 1171 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1172 * @interface: driver private struct 1173 **/ 1174 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1175 { 1176 /* Do the reset outside of interrupt context */ 1177 if (!test_bit(__FM10K_DOWN, &interface->state)) { 1178 interface->tx_timeout_count++; 1179 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1180 fm10k_service_event_schedule(interface); 1181 } 1182 } 1183 1184 /** 1185 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1186 * @q_vector: structure containing interrupt and ring information 1187 * @tx_ring: tx ring to clean 1188 * @napi_budget: Used to determine if we are in netpoll 1189 **/ 1190 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1191 struct fm10k_ring *tx_ring, int napi_budget) 1192 { 1193 struct fm10k_intfc *interface = q_vector->interface; 1194 struct fm10k_tx_buffer *tx_buffer; 1195 struct fm10k_tx_desc *tx_desc; 1196 unsigned int total_bytes = 0, total_packets = 0; 1197 unsigned int budget = q_vector->tx.work_limit; 1198 unsigned int i = tx_ring->next_to_clean; 1199 1200 if (test_bit(__FM10K_DOWN, &interface->state)) 1201 return true; 1202 1203 tx_buffer = &tx_ring->tx_buffer[i]; 1204 tx_desc = FM10K_TX_DESC(tx_ring, i); 1205 i -= tx_ring->count; 1206 1207 do { 1208 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1209 1210 /* if next_to_watch is not set then there is no work pending */ 1211 if (!eop_desc) 1212 break; 1213 1214 /* prevent any other reads prior to eop_desc */ 1215 read_barrier_depends(); 1216 1217 /* if DD is not set pending work has not been completed */ 1218 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1219 break; 1220 1221 /* clear next_to_watch to prevent false hangs */ 1222 tx_buffer->next_to_watch = NULL; 1223 1224 /* update the statistics for this packet */ 1225 total_bytes += tx_buffer->bytecount; 1226 total_packets += tx_buffer->gso_segs; 1227 1228 /* free the skb */ 1229 napi_consume_skb(tx_buffer->skb, napi_budget); 1230 1231 /* unmap skb header data */ 1232 dma_unmap_single(tx_ring->dev, 1233 dma_unmap_addr(tx_buffer, dma), 1234 dma_unmap_len(tx_buffer, len), 1235 DMA_TO_DEVICE); 1236 1237 /* clear tx_buffer data */ 1238 tx_buffer->skb = NULL; 1239 dma_unmap_len_set(tx_buffer, len, 0); 1240 1241 /* unmap remaining buffers */ 1242 while (tx_desc != eop_desc) { 1243 tx_buffer++; 1244 tx_desc++; 1245 i++; 1246 if (unlikely(!i)) { 1247 i -= tx_ring->count; 1248 tx_buffer = tx_ring->tx_buffer; 1249 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1250 } 1251 1252 /* unmap any remaining paged data */ 1253 if (dma_unmap_len(tx_buffer, len)) { 1254 dma_unmap_page(tx_ring->dev, 1255 dma_unmap_addr(tx_buffer, dma), 1256 dma_unmap_len(tx_buffer, len), 1257 DMA_TO_DEVICE); 1258 dma_unmap_len_set(tx_buffer, len, 0); 1259 } 1260 } 1261 1262 /* move us one more past the eop_desc for start of next pkt */ 1263 tx_buffer++; 1264 tx_desc++; 1265 i++; 1266 if (unlikely(!i)) { 1267 i -= tx_ring->count; 1268 tx_buffer = tx_ring->tx_buffer; 1269 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1270 } 1271 1272 /* issue prefetch for next Tx descriptor */ 1273 prefetch(tx_desc); 1274 1275 /* update budget accounting */ 1276 budget--; 1277 } while (likely(budget)); 1278 1279 i += tx_ring->count; 1280 tx_ring->next_to_clean = i; 1281 u64_stats_update_begin(&tx_ring->syncp); 1282 tx_ring->stats.bytes += total_bytes; 1283 tx_ring->stats.packets += total_packets; 1284 u64_stats_update_end(&tx_ring->syncp); 1285 q_vector->tx.total_bytes += total_bytes; 1286 q_vector->tx.total_packets += total_packets; 1287 1288 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1289 /* schedule immediate reset if we believe we hung */ 1290 struct fm10k_hw *hw = &interface->hw; 1291 1292 netif_err(interface, drv, tx_ring->netdev, 1293 "Detected Tx Unit Hang\n" 1294 " Tx Queue <%d>\n" 1295 " TDH, TDT <%x>, <%x>\n" 1296 " next_to_use <%x>\n" 1297 " next_to_clean <%x>\n", 1298 tx_ring->queue_index, 1299 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1300 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1301 tx_ring->next_to_use, i); 1302 1303 netif_stop_subqueue(tx_ring->netdev, 1304 tx_ring->queue_index); 1305 1306 netif_info(interface, probe, tx_ring->netdev, 1307 "tx hang %d detected on queue %d, resetting interface\n", 1308 interface->tx_timeout_count + 1, 1309 tx_ring->queue_index); 1310 1311 fm10k_tx_timeout_reset(interface); 1312 1313 /* the netdev is about to reset, no point in enabling stuff */ 1314 return true; 1315 } 1316 1317 /* notify netdev of completed buffers */ 1318 netdev_tx_completed_queue(txring_txq(tx_ring), 1319 total_packets, total_bytes); 1320 1321 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1322 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1323 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1324 /* Make sure that anybody stopping the queue after this 1325 * sees the new next_to_clean. 1326 */ 1327 smp_mb(); 1328 if (__netif_subqueue_stopped(tx_ring->netdev, 1329 tx_ring->queue_index) && 1330 !test_bit(__FM10K_DOWN, &interface->state)) { 1331 netif_wake_subqueue(tx_ring->netdev, 1332 tx_ring->queue_index); 1333 ++tx_ring->tx_stats.restart_queue; 1334 } 1335 } 1336 1337 return !!budget; 1338 } 1339 1340 /** 1341 * fm10k_update_itr - update the dynamic ITR value based on packet size 1342 * 1343 * Stores a new ITR value based on strictly on packet size. The 1344 * divisors and thresholds used by this function were determined based 1345 * on theoretical maximum wire speed and testing data, in order to 1346 * minimize response time while increasing bulk throughput. 1347 * 1348 * @ring_container: Container for rings to have ITR updated 1349 **/ 1350 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1351 { 1352 unsigned int avg_wire_size, packets, itr_round; 1353 1354 /* Only update ITR if we are using adaptive setting */ 1355 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1356 goto clear_counts; 1357 1358 packets = ring_container->total_packets; 1359 if (!packets) 1360 goto clear_counts; 1361 1362 avg_wire_size = ring_container->total_bytes / packets; 1363 1364 /* The following is a crude approximation of: 1365 * wmem_default / (size + overhead) = desired_pkts_per_int 1366 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1367 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1368 * 1369 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1370 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1371 * formula down to 1372 * 1373 * (34 * (size + 24)) / (size + 640) = ITR 1374 * 1375 * We first do some math on the packet size and then finally bitshift 1376 * by 8 after rounding up. We also have to account for PCIe link speed 1377 * difference as ITR scales based on this. 1378 */ 1379 if (avg_wire_size <= 360) { 1380 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1381 avg_wire_size *= 8; 1382 avg_wire_size += 376; 1383 } else if (avg_wire_size <= 1152) { 1384 /* 77K ints/sec to 45K ints/sec */ 1385 avg_wire_size *= 3; 1386 avg_wire_size += 2176; 1387 } else if (avg_wire_size <= 1920) { 1388 /* 45K ints/sec to 38K ints/sec */ 1389 avg_wire_size += 4480; 1390 } else { 1391 /* plateau at a limit of 38K ints/sec */ 1392 avg_wire_size = 6656; 1393 } 1394 1395 /* Perform final bitshift for division after rounding up to ensure 1396 * that the calculation will never get below a 1. The bit shift 1397 * accounts for changes in the ITR due to PCIe link speed. 1398 */ 1399 itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8; 1400 avg_wire_size += BIT(itr_round) - 1; 1401 avg_wire_size >>= itr_round; 1402 1403 /* write back value and retain adaptive flag */ 1404 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1405 1406 clear_counts: 1407 ring_container->total_bytes = 0; 1408 ring_container->total_packets = 0; 1409 } 1410 1411 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1412 { 1413 /* Enable auto-mask and clear the current mask */ 1414 u32 itr = FM10K_ITR_ENABLE; 1415 1416 /* Update Tx ITR */ 1417 fm10k_update_itr(&q_vector->tx); 1418 1419 /* Update Rx ITR */ 1420 fm10k_update_itr(&q_vector->rx); 1421 1422 /* Store Tx itr in timer slot 0 */ 1423 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1424 1425 /* Shift Rx itr to timer slot 1 */ 1426 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1427 1428 /* Write the final value to the ITR register */ 1429 writel(itr, q_vector->itr); 1430 } 1431 1432 static int fm10k_poll(struct napi_struct *napi, int budget) 1433 { 1434 struct fm10k_q_vector *q_vector = 1435 container_of(napi, struct fm10k_q_vector, napi); 1436 struct fm10k_ring *ring; 1437 int per_ring_budget, work_done = 0; 1438 bool clean_complete = true; 1439 1440 fm10k_for_each_ring(ring, q_vector->tx) { 1441 if (!fm10k_clean_tx_irq(q_vector, ring, budget)) 1442 clean_complete = false; 1443 } 1444 1445 /* Handle case where we are called by netpoll with a budget of 0 */ 1446 if (budget <= 0) 1447 return budget; 1448 1449 /* attempt to distribute budget to each queue fairly, but don't 1450 * allow the budget to go below 1 because we'll exit polling 1451 */ 1452 if (q_vector->rx.count > 1) 1453 per_ring_budget = max(budget / q_vector->rx.count, 1); 1454 else 1455 per_ring_budget = budget; 1456 1457 fm10k_for_each_ring(ring, q_vector->rx) { 1458 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1459 1460 work_done += work; 1461 if (work >= per_ring_budget) 1462 clean_complete = false; 1463 } 1464 1465 /* If all work not completed, return budget and keep polling */ 1466 if (!clean_complete) 1467 return budget; 1468 1469 /* all work done, exit the polling mode */ 1470 napi_complete_done(napi, work_done); 1471 1472 /* re-enable the q_vector */ 1473 fm10k_qv_enable(q_vector); 1474 1475 return 0; 1476 } 1477 1478 /** 1479 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1480 * @interface: board private structure to initialize 1481 * 1482 * When QoS (Quality of Service) is enabled, allocate queues for 1483 * each traffic class. If multiqueue isn't available,then abort QoS 1484 * initialization. 1485 * 1486 * This function handles all combinations of Qos and RSS. 1487 * 1488 **/ 1489 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1490 { 1491 struct net_device *dev = interface->netdev; 1492 struct fm10k_ring_feature *f; 1493 int rss_i, i; 1494 int pcs; 1495 1496 /* Map queue offset and counts onto allocated tx queues */ 1497 pcs = netdev_get_num_tc(dev); 1498 1499 if (pcs <= 1) 1500 return false; 1501 1502 /* set QoS mask and indices */ 1503 f = &interface->ring_feature[RING_F_QOS]; 1504 f->indices = pcs; 1505 f->mask = BIT(fls(pcs - 1)) - 1; 1506 1507 /* determine the upper limit for our current DCB mode */ 1508 rss_i = interface->hw.mac.max_queues / pcs; 1509 rss_i = BIT(fls(rss_i) - 1); 1510 1511 /* set RSS mask and indices */ 1512 f = &interface->ring_feature[RING_F_RSS]; 1513 rss_i = min_t(u16, rss_i, f->limit); 1514 f->indices = rss_i; 1515 f->mask = BIT(fls(rss_i - 1)) - 1; 1516 1517 /* configure pause class to queue mapping */ 1518 for (i = 0; i < pcs; i++) 1519 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1520 1521 interface->num_rx_queues = rss_i * pcs; 1522 interface->num_tx_queues = rss_i * pcs; 1523 1524 return true; 1525 } 1526 1527 /** 1528 * fm10k_set_rss_queues: Allocate queues for RSS 1529 * @interface: board private structure to initialize 1530 * 1531 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1532 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1533 * 1534 **/ 1535 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1536 { 1537 struct fm10k_ring_feature *f; 1538 u16 rss_i; 1539 1540 f = &interface->ring_feature[RING_F_RSS]; 1541 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1542 1543 /* record indices and power of 2 mask for RSS */ 1544 f->indices = rss_i; 1545 f->mask = BIT(fls(rss_i - 1)) - 1; 1546 1547 interface->num_rx_queues = rss_i; 1548 interface->num_tx_queues = rss_i; 1549 1550 return true; 1551 } 1552 1553 /** 1554 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1555 * @interface: board private structure to initialize 1556 * 1557 * This is the top level queue allocation routine. The order here is very 1558 * important, starting with the "most" number of features turned on at once, 1559 * and ending with the smallest set of features. This way large combinations 1560 * can be allocated if they're turned on, and smaller combinations are the 1561 * fallthrough conditions. 1562 * 1563 **/ 1564 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1565 { 1566 /* Attempt to setup QoS and RSS first */ 1567 if (fm10k_set_qos_queues(interface)) 1568 return; 1569 1570 /* If we don't have QoS, just fallback to only RSS. */ 1571 fm10k_set_rss_queues(interface); 1572 } 1573 1574 /** 1575 * fm10k_reset_num_queues - Reset the number of queues to zero 1576 * @interface: board private structure 1577 * 1578 * This function should be called whenever we need to reset the number of 1579 * queues after an error condition. 1580 */ 1581 static void fm10k_reset_num_queues(struct fm10k_intfc *interface) 1582 { 1583 interface->num_tx_queues = 0; 1584 interface->num_rx_queues = 0; 1585 interface->num_q_vectors = 0; 1586 } 1587 1588 /** 1589 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1590 * @interface: board private structure to initialize 1591 * @v_count: q_vectors allocated on interface, used for ring interleaving 1592 * @v_idx: index of vector in interface struct 1593 * @txr_count: total number of Tx rings to allocate 1594 * @txr_idx: index of first Tx ring to allocate 1595 * @rxr_count: total number of Rx rings to allocate 1596 * @rxr_idx: index of first Rx ring to allocate 1597 * 1598 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1599 **/ 1600 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1601 unsigned int v_count, unsigned int v_idx, 1602 unsigned int txr_count, unsigned int txr_idx, 1603 unsigned int rxr_count, unsigned int rxr_idx) 1604 { 1605 struct fm10k_q_vector *q_vector; 1606 struct fm10k_ring *ring; 1607 int ring_count, size; 1608 1609 ring_count = txr_count + rxr_count; 1610 size = sizeof(struct fm10k_q_vector) + 1611 (sizeof(struct fm10k_ring) * ring_count); 1612 1613 /* allocate q_vector and rings */ 1614 q_vector = kzalloc(size, GFP_KERNEL); 1615 if (!q_vector) 1616 return -ENOMEM; 1617 1618 /* initialize NAPI */ 1619 netif_napi_add(interface->netdev, &q_vector->napi, 1620 fm10k_poll, NAPI_POLL_WEIGHT); 1621 1622 /* tie q_vector and interface together */ 1623 interface->q_vector[v_idx] = q_vector; 1624 q_vector->interface = interface; 1625 q_vector->v_idx = v_idx; 1626 1627 /* initialize pointer to rings */ 1628 ring = q_vector->ring; 1629 1630 /* save Tx ring container info */ 1631 q_vector->tx.ring = ring; 1632 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1633 q_vector->tx.itr = interface->tx_itr; 1634 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1635 q_vector->tx.count = txr_count; 1636 1637 while (txr_count) { 1638 /* assign generic ring traits */ 1639 ring->dev = &interface->pdev->dev; 1640 ring->netdev = interface->netdev; 1641 1642 /* configure backlink on ring */ 1643 ring->q_vector = q_vector; 1644 1645 /* apply Tx specific ring traits */ 1646 ring->count = interface->tx_ring_count; 1647 ring->queue_index = txr_idx; 1648 1649 /* assign ring to interface */ 1650 interface->tx_ring[txr_idx] = ring; 1651 1652 /* update count and index */ 1653 txr_count--; 1654 txr_idx += v_count; 1655 1656 /* push pointer to next ring */ 1657 ring++; 1658 } 1659 1660 /* save Rx ring container info */ 1661 q_vector->rx.ring = ring; 1662 q_vector->rx.itr = interface->rx_itr; 1663 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1664 q_vector->rx.count = rxr_count; 1665 1666 while (rxr_count) { 1667 /* assign generic ring traits */ 1668 ring->dev = &interface->pdev->dev; 1669 ring->netdev = interface->netdev; 1670 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1671 1672 /* configure backlink on ring */ 1673 ring->q_vector = q_vector; 1674 1675 /* apply Rx specific ring traits */ 1676 ring->count = interface->rx_ring_count; 1677 ring->queue_index = rxr_idx; 1678 1679 /* assign ring to interface */ 1680 interface->rx_ring[rxr_idx] = ring; 1681 1682 /* update count and index */ 1683 rxr_count--; 1684 rxr_idx += v_count; 1685 1686 /* push pointer to next ring */ 1687 ring++; 1688 } 1689 1690 fm10k_dbg_q_vector_init(q_vector); 1691 1692 return 0; 1693 } 1694 1695 /** 1696 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1697 * @interface: board private structure to initialize 1698 * @v_idx: Index of vector to be freed 1699 * 1700 * This function frees the memory allocated to the q_vector. In addition if 1701 * NAPI is enabled it will delete any references to the NAPI struct prior 1702 * to freeing the q_vector. 1703 **/ 1704 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1705 { 1706 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1707 struct fm10k_ring *ring; 1708 1709 fm10k_dbg_q_vector_exit(q_vector); 1710 1711 fm10k_for_each_ring(ring, q_vector->tx) 1712 interface->tx_ring[ring->queue_index] = NULL; 1713 1714 fm10k_for_each_ring(ring, q_vector->rx) 1715 interface->rx_ring[ring->queue_index] = NULL; 1716 1717 interface->q_vector[v_idx] = NULL; 1718 netif_napi_del(&q_vector->napi); 1719 kfree_rcu(q_vector, rcu); 1720 } 1721 1722 /** 1723 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1724 * @interface: board private structure to initialize 1725 * 1726 * We allocate one q_vector per queue interrupt. If allocation fails we 1727 * return -ENOMEM. 1728 **/ 1729 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1730 { 1731 unsigned int q_vectors = interface->num_q_vectors; 1732 unsigned int rxr_remaining = interface->num_rx_queues; 1733 unsigned int txr_remaining = interface->num_tx_queues; 1734 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1735 int err; 1736 1737 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1738 for (; rxr_remaining; v_idx++) { 1739 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1740 0, 0, 1, rxr_idx); 1741 if (err) 1742 goto err_out; 1743 1744 /* update counts and index */ 1745 rxr_remaining--; 1746 rxr_idx++; 1747 } 1748 } 1749 1750 for (; v_idx < q_vectors; v_idx++) { 1751 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1752 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1753 1754 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1755 tqpv, txr_idx, 1756 rqpv, rxr_idx); 1757 1758 if (err) 1759 goto err_out; 1760 1761 /* update counts and index */ 1762 rxr_remaining -= rqpv; 1763 txr_remaining -= tqpv; 1764 rxr_idx++; 1765 txr_idx++; 1766 } 1767 1768 return 0; 1769 1770 err_out: 1771 fm10k_reset_num_queues(interface); 1772 1773 while (v_idx--) 1774 fm10k_free_q_vector(interface, v_idx); 1775 1776 return -ENOMEM; 1777 } 1778 1779 /** 1780 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1781 * @interface: board private structure to initialize 1782 * 1783 * This function frees the memory allocated to the q_vectors. In addition if 1784 * NAPI is enabled it will delete any references to the NAPI struct prior 1785 * to freeing the q_vector. 1786 **/ 1787 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1788 { 1789 int v_idx = interface->num_q_vectors; 1790 1791 fm10k_reset_num_queues(interface); 1792 1793 while (v_idx--) 1794 fm10k_free_q_vector(interface, v_idx); 1795 } 1796 1797 /** 1798 * f10k_reset_msix_capability - reset MSI-X capability 1799 * @interface: board private structure to initialize 1800 * 1801 * Reset the MSI-X capability back to its starting state 1802 **/ 1803 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1804 { 1805 pci_disable_msix(interface->pdev); 1806 kfree(interface->msix_entries); 1807 interface->msix_entries = NULL; 1808 } 1809 1810 /** 1811 * f10k_init_msix_capability - configure MSI-X capability 1812 * @interface: board private structure to initialize 1813 * 1814 * Attempt to configure the interrupts using the best available 1815 * capabilities of the hardware and the kernel. 1816 **/ 1817 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1818 { 1819 struct fm10k_hw *hw = &interface->hw; 1820 int v_budget, vector; 1821 1822 /* It's easy to be greedy for MSI-X vectors, but it really 1823 * doesn't do us much good if we have a lot more vectors 1824 * than CPU's. So let's be conservative and only ask for 1825 * (roughly) the same number of vectors as there are CPU's. 1826 * the default is to use pairs of vectors 1827 */ 1828 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1829 v_budget = min_t(u16, v_budget, num_online_cpus()); 1830 1831 /* account for vectors not related to queues */ 1832 v_budget += NON_Q_VECTORS(hw); 1833 1834 /* At the same time, hardware can only support a maximum of 1835 * hw.mac->max_msix_vectors vectors. With features 1836 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1837 * descriptor queues supported by our device. Thus, we cap it off in 1838 * those rare cases where the cpu count also exceeds our vector limit. 1839 */ 1840 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1841 1842 /* A failure in MSI-X entry allocation is fatal. */ 1843 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1844 GFP_KERNEL); 1845 if (!interface->msix_entries) 1846 return -ENOMEM; 1847 1848 /* populate entry values */ 1849 for (vector = 0; vector < v_budget; vector++) 1850 interface->msix_entries[vector].entry = vector; 1851 1852 /* Attempt to enable MSI-X with requested value */ 1853 v_budget = pci_enable_msix_range(interface->pdev, 1854 interface->msix_entries, 1855 MIN_MSIX_COUNT(hw), 1856 v_budget); 1857 if (v_budget < 0) { 1858 kfree(interface->msix_entries); 1859 interface->msix_entries = NULL; 1860 return -ENOMEM; 1861 } 1862 1863 /* record the number of queues available for q_vectors */ 1864 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw); 1865 1866 return 0; 1867 } 1868 1869 /** 1870 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1871 * @interface: Interface structure continaining rings and devices 1872 * 1873 * Cache the descriptor ring offsets for Qos 1874 **/ 1875 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1876 { 1877 struct net_device *dev = interface->netdev; 1878 int pc, offset, rss_i, i, q_idx; 1879 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1880 u8 num_pcs = netdev_get_num_tc(dev); 1881 1882 if (num_pcs <= 1) 1883 return false; 1884 1885 rss_i = interface->ring_feature[RING_F_RSS].indices; 1886 1887 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1888 q_idx = pc; 1889 for (i = 0; i < rss_i; i++) { 1890 interface->tx_ring[offset + i]->reg_idx = q_idx; 1891 interface->tx_ring[offset + i]->qos_pc = pc; 1892 interface->rx_ring[offset + i]->reg_idx = q_idx; 1893 interface->rx_ring[offset + i]->qos_pc = pc; 1894 q_idx += pc_stride; 1895 } 1896 } 1897 1898 return true; 1899 } 1900 1901 /** 1902 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1903 * @interface: Interface structure continaining rings and devices 1904 * 1905 * Cache the descriptor ring offsets for RSS 1906 **/ 1907 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1908 { 1909 int i; 1910 1911 for (i = 0; i < interface->num_rx_queues; i++) 1912 interface->rx_ring[i]->reg_idx = i; 1913 1914 for (i = 0; i < interface->num_tx_queues; i++) 1915 interface->tx_ring[i]->reg_idx = i; 1916 } 1917 1918 /** 1919 * fm10k_assign_rings - Map rings to network devices 1920 * @interface: Interface structure containing rings and devices 1921 * 1922 * This function is meant to go though and configure both the network 1923 * devices so that they contain rings, and configure the rings so that 1924 * they function with their network devices. 1925 **/ 1926 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1927 { 1928 if (fm10k_cache_ring_qos(interface)) 1929 return; 1930 1931 fm10k_cache_ring_rss(interface); 1932 } 1933 1934 static void fm10k_init_reta(struct fm10k_intfc *interface) 1935 { 1936 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1937 u32 reta; 1938 1939 /* If the Rx flow indirection table has been configured manually, we 1940 * need to maintain it when possible. 1941 */ 1942 if (netif_is_rxfh_configured(interface->netdev)) { 1943 for (i = FM10K_RETA_SIZE; i--;) { 1944 reta = interface->reta[i]; 1945 if ((((reta << 24) >> 24) < rss_i) && 1946 (((reta << 16) >> 24) < rss_i) && 1947 (((reta << 8) >> 24) < rss_i) && 1948 (((reta) >> 24) < rss_i)) 1949 continue; 1950 1951 /* this should never happen */ 1952 dev_err(&interface->pdev->dev, 1953 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); 1954 goto repopulate_reta; 1955 } 1956 1957 /* do nothing if all of the elements are in bounds */ 1958 return; 1959 } 1960 1961 repopulate_reta: 1962 fm10k_write_reta(interface, NULL); 1963 } 1964 1965 /** 1966 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1967 * @interface: board private structure to initialize 1968 * 1969 * We determine which queueing scheme to use based on... 1970 * - Hardware queue count (num_*_queues) 1971 * - defined by miscellaneous hardware support/features (RSS, etc.) 1972 **/ 1973 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1974 { 1975 int err; 1976 1977 /* Number of supported queues */ 1978 fm10k_set_num_queues(interface); 1979 1980 /* Configure MSI-X capability */ 1981 err = fm10k_init_msix_capability(interface); 1982 if (err) { 1983 dev_err(&interface->pdev->dev, 1984 "Unable to initialize MSI-X capability\n"); 1985 goto err_init_msix; 1986 } 1987 1988 /* Allocate memory for queues */ 1989 err = fm10k_alloc_q_vectors(interface); 1990 if (err) { 1991 dev_err(&interface->pdev->dev, 1992 "Unable to allocate queue vectors\n"); 1993 goto err_alloc_q_vectors; 1994 } 1995 1996 /* Map rings to devices, and map devices to physical queues */ 1997 fm10k_assign_rings(interface); 1998 1999 /* Initialize RSS redirection table */ 2000 fm10k_init_reta(interface); 2001 2002 return 0; 2003 2004 err_alloc_q_vectors: 2005 fm10k_reset_msix_capability(interface); 2006 err_init_msix: 2007 fm10k_reset_num_queues(interface); 2008 return err; 2009 } 2010 2011 /** 2012 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 2013 * @interface: board private structure to clear queueing scheme on 2014 * 2015 * We go through and clear queueing specific resources and reset the structure 2016 * to pre-load conditions 2017 **/ 2018 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 2019 { 2020 fm10k_free_q_vectors(interface); 2021 fm10k_reset_msix_capability(interface); 2022 } 2023