1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <linux/ethtool.h> 6 7 static s32 e1000_wait_autoneg(struct e1000_hw *hw); 8 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 9 u16 *data, bool read, bool page_set); 10 static u32 e1000_get_phy_addr_for_hv_page(u32 page); 11 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 12 u16 *data, bool read); 13 14 /* Cable length tables */ 15 static const u16 e1000_m88_cable_length_table[] = { 16 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED 17 }; 18 19 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ 20 ARRAY_SIZE(e1000_m88_cable_length_table) 21 22 static const u16 e1000_igp_2_cable_length_table[] = { 23 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, 24 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, 25 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, 26 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, 27 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, 28 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, 29 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, 30 124 31 }; 32 33 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ 34 ARRAY_SIZE(e1000_igp_2_cable_length_table) 35 36 /** 37 * e1000e_check_reset_block_generic - Check if PHY reset is blocked 38 * @hw: pointer to the HW structure 39 * 40 * Read the PHY management control register and check whether a PHY reset 41 * is blocked. If a reset is not blocked return 0, otherwise 42 * return E1000_BLK_PHY_RESET (12). 43 **/ 44 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) 45 { 46 u32 manc; 47 48 manc = er32(MANC); 49 50 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 51 } 52 53 /** 54 * e1000e_get_phy_id - Retrieve the PHY ID and revision 55 * @hw: pointer to the HW structure 56 * 57 * Reads the PHY registers and stores the PHY ID and possibly the PHY 58 * revision in the hardware structure. 59 **/ 60 s32 e1000e_get_phy_id(struct e1000_hw *hw) 61 { 62 struct e1000_phy_info *phy = &hw->phy; 63 s32 ret_val = 0; 64 u16 phy_id; 65 u16 retry_count = 0; 66 67 if (!phy->ops.read_reg) 68 return 0; 69 70 while (retry_count < 2) { 71 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); 72 if (ret_val) 73 return ret_val; 74 75 phy->id = (u32)(phy_id << 16); 76 usleep_range(20, 40); 77 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); 78 if (ret_val) 79 return ret_val; 80 81 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 82 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 83 84 if (phy->id != 0 && phy->id != PHY_REVISION_MASK) 85 return 0; 86 87 retry_count++; 88 } 89 90 return 0; 91 } 92 93 /** 94 * e1000e_phy_reset_dsp - Reset PHY DSP 95 * @hw: pointer to the HW structure 96 * 97 * Reset the digital signal processor. 98 **/ 99 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) 100 { 101 s32 ret_val; 102 103 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 104 if (ret_val) 105 return ret_val; 106 107 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); 108 } 109 110 /** 111 * e1000e_read_phy_reg_mdic - Read MDI control register 112 * @hw: pointer to the HW structure 113 * @offset: register offset to be read 114 * @data: pointer to the read data 115 * 116 * Reads the MDI control register in the PHY at offset and stores the 117 * information read to data. 118 **/ 119 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 120 { 121 struct e1000_phy_info *phy = &hw->phy; 122 u32 i, mdic = 0; 123 124 if (offset > MAX_PHY_REG_ADDRESS) { 125 e_dbg("PHY Address %d is out of range\n", offset); 126 return -E1000_ERR_PARAM; 127 } 128 129 /* Set up Op-code, Phy Address, and register offset in the MDI 130 * Control register. The MAC will take care of interfacing with the 131 * PHY to retrieve the desired data. 132 */ 133 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 134 (phy->addr << E1000_MDIC_PHY_SHIFT) | 135 (E1000_MDIC_OP_READ)); 136 137 ew32(MDIC, mdic); 138 139 /* Poll the ready bit to see if the MDI read completed 140 * Increasing the time out as testing showed failures with 141 * the lower time out 142 */ 143 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 144 udelay(50); 145 mdic = er32(MDIC); 146 if (mdic & E1000_MDIC_READY) 147 break; 148 } 149 if (!(mdic & E1000_MDIC_READY)) { 150 e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset); 151 return -E1000_ERR_PHY; 152 } 153 if (mdic & E1000_MDIC_ERROR) { 154 e_dbg("MDI Read PHY Reg Address %d Error\n", offset); 155 return -E1000_ERR_PHY; 156 } 157 if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) { 158 e_dbg("MDI Read offset error - requested %d, returned %d\n", 159 offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic)); 160 return -E1000_ERR_PHY; 161 } 162 *data = (u16)mdic; 163 164 /* Allow some time after each MDIC transaction to avoid 165 * reading duplicate data in the next MDIC transaction. 166 */ 167 if (hw->mac.type == e1000_pch2lan) 168 udelay(100); 169 return 0; 170 } 171 172 /** 173 * e1000e_write_phy_reg_mdic - Write MDI control register 174 * @hw: pointer to the HW structure 175 * @offset: register offset to write to 176 * @data: data to write to register at offset 177 * 178 * Writes data to MDI control register in the PHY at offset. 179 **/ 180 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 181 { 182 struct e1000_phy_info *phy = &hw->phy; 183 u32 i, mdic = 0; 184 185 if (offset > MAX_PHY_REG_ADDRESS) { 186 e_dbg("PHY Address %d is out of range\n", offset); 187 return -E1000_ERR_PARAM; 188 } 189 190 /* Set up Op-code, Phy Address, and register offset in the MDI 191 * Control register. The MAC will take care of interfacing with the 192 * PHY to retrieve the desired data. 193 */ 194 mdic = (((u32)data) | 195 (offset << E1000_MDIC_REG_SHIFT) | 196 (phy->addr << E1000_MDIC_PHY_SHIFT) | 197 (E1000_MDIC_OP_WRITE)); 198 199 ew32(MDIC, mdic); 200 201 /* Poll the ready bit to see if the MDI read completed 202 * Increasing the time out as testing showed failures with 203 * the lower time out 204 */ 205 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 206 udelay(50); 207 mdic = er32(MDIC); 208 if (mdic & E1000_MDIC_READY) 209 break; 210 } 211 if (!(mdic & E1000_MDIC_READY)) { 212 e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset); 213 return -E1000_ERR_PHY; 214 } 215 if (mdic & E1000_MDIC_ERROR) { 216 e_dbg("MDI Write PHY Red Address %d Error\n", offset); 217 return -E1000_ERR_PHY; 218 } 219 if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) { 220 e_dbg("MDI Write offset error - requested %d, returned %d\n", 221 offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic)); 222 return -E1000_ERR_PHY; 223 } 224 225 /* Allow some time after each MDIC transaction to avoid 226 * reading duplicate data in the next MDIC transaction. 227 */ 228 if (hw->mac.type == e1000_pch2lan) 229 udelay(100); 230 231 return 0; 232 } 233 234 /** 235 * e1000e_read_phy_reg_m88 - Read m88 PHY register 236 * @hw: pointer to the HW structure 237 * @offset: register offset to be read 238 * @data: pointer to the read data 239 * 240 * Acquires semaphore, if necessary, then reads the PHY register at offset 241 * and storing the retrieved information in data. Release any acquired 242 * semaphores before exiting. 243 **/ 244 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) 245 { 246 s32 ret_val; 247 248 ret_val = hw->phy.ops.acquire(hw); 249 if (ret_val) 250 return ret_val; 251 252 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 253 data); 254 255 hw->phy.ops.release(hw); 256 257 return ret_val; 258 } 259 260 /** 261 * e1000e_write_phy_reg_m88 - Write m88 PHY register 262 * @hw: pointer to the HW structure 263 * @offset: register offset to write to 264 * @data: data to write at register offset 265 * 266 * Acquires semaphore, if necessary, then writes the data to PHY register 267 * at the offset. Release any acquired semaphores before exiting. 268 **/ 269 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) 270 { 271 s32 ret_val; 272 273 ret_val = hw->phy.ops.acquire(hw); 274 if (ret_val) 275 return ret_val; 276 277 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 278 data); 279 280 hw->phy.ops.release(hw); 281 282 return ret_val; 283 } 284 285 /** 286 * e1000_set_page_igp - Set page as on IGP-like PHY(s) 287 * @hw: pointer to the HW structure 288 * @page: page to set (shifted left when necessary) 289 * 290 * Sets PHY page required for PHY register access. Assumes semaphore is 291 * already acquired. Note, this function sets phy.addr to 1 so the caller 292 * must set it appropriately (if necessary) after this function returns. 293 **/ 294 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) 295 { 296 e_dbg("Setting page 0x%x\n", page); 297 298 hw->phy.addr = 1; 299 300 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); 301 } 302 303 /** 304 * __e1000e_read_phy_reg_igp - Read igp PHY register 305 * @hw: pointer to the HW structure 306 * @offset: register offset to be read 307 * @data: pointer to the read data 308 * @locked: semaphore has already been acquired or not 309 * 310 * Acquires semaphore, if necessary, then reads the PHY register at offset 311 * and stores the retrieved information in data. Release any acquired 312 * semaphores before exiting. 313 **/ 314 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, 315 bool locked) 316 { 317 s32 ret_val = 0; 318 319 if (!locked) { 320 if (!hw->phy.ops.acquire) 321 return 0; 322 323 ret_val = hw->phy.ops.acquire(hw); 324 if (ret_val) 325 return ret_val; 326 } 327 328 if (offset > MAX_PHY_MULTI_PAGE_REG) 329 ret_val = e1000e_write_phy_reg_mdic(hw, 330 IGP01E1000_PHY_PAGE_SELECT, 331 (u16)offset); 332 if (!ret_val) 333 ret_val = e1000e_read_phy_reg_mdic(hw, 334 MAX_PHY_REG_ADDRESS & offset, 335 data); 336 if (!locked) 337 hw->phy.ops.release(hw); 338 339 return ret_val; 340 } 341 342 /** 343 * e1000e_read_phy_reg_igp - Read igp PHY register 344 * @hw: pointer to the HW structure 345 * @offset: register offset to be read 346 * @data: pointer to the read data 347 * 348 * Acquires semaphore then reads the PHY register at offset and stores the 349 * retrieved information in data. 350 * Release the acquired semaphore before exiting. 351 **/ 352 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 353 { 354 return __e1000e_read_phy_reg_igp(hw, offset, data, false); 355 } 356 357 /** 358 * e1000e_read_phy_reg_igp_locked - Read igp PHY register 359 * @hw: pointer to the HW structure 360 * @offset: register offset to be read 361 * @data: pointer to the read data 362 * 363 * Reads the PHY register at offset and stores the retrieved information 364 * in data. Assumes semaphore already acquired. 365 **/ 366 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) 367 { 368 return __e1000e_read_phy_reg_igp(hw, offset, data, true); 369 } 370 371 /** 372 * __e1000e_write_phy_reg_igp - Write igp PHY register 373 * @hw: pointer to the HW structure 374 * @offset: register offset to write to 375 * @data: data to write at register offset 376 * @locked: semaphore has already been acquired or not 377 * 378 * Acquires semaphore, if necessary, then writes the data to PHY register 379 * at the offset. Release any acquired semaphores before exiting. 380 **/ 381 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, 382 bool locked) 383 { 384 s32 ret_val = 0; 385 386 if (!locked) { 387 if (!hw->phy.ops.acquire) 388 return 0; 389 390 ret_val = hw->phy.ops.acquire(hw); 391 if (ret_val) 392 return ret_val; 393 } 394 395 if (offset > MAX_PHY_MULTI_PAGE_REG) 396 ret_val = e1000e_write_phy_reg_mdic(hw, 397 IGP01E1000_PHY_PAGE_SELECT, 398 (u16)offset); 399 if (!ret_val) 400 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & 401 offset, data); 402 if (!locked) 403 hw->phy.ops.release(hw); 404 405 return ret_val; 406 } 407 408 /** 409 * e1000e_write_phy_reg_igp - Write igp PHY register 410 * @hw: pointer to the HW structure 411 * @offset: register offset to write to 412 * @data: data to write at register offset 413 * 414 * Acquires semaphore then writes the data to PHY register 415 * at the offset. Release any acquired semaphores before exiting. 416 **/ 417 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 418 { 419 return __e1000e_write_phy_reg_igp(hw, offset, data, false); 420 } 421 422 /** 423 * e1000e_write_phy_reg_igp_locked - Write igp PHY register 424 * @hw: pointer to the HW structure 425 * @offset: register offset to write to 426 * @data: data to write at register offset 427 * 428 * Writes the data to PHY register at the offset. 429 * Assumes semaphore already acquired. 430 **/ 431 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) 432 { 433 return __e1000e_write_phy_reg_igp(hw, offset, data, true); 434 } 435 436 /** 437 * __e1000_read_kmrn_reg - Read kumeran register 438 * @hw: pointer to the HW structure 439 * @offset: register offset to be read 440 * @data: pointer to the read data 441 * @locked: semaphore has already been acquired or not 442 * 443 * Acquires semaphore, if necessary. Then reads the PHY register at offset 444 * using the kumeran interface. The information retrieved is stored in data. 445 * Release any acquired semaphores before exiting. 446 **/ 447 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, 448 bool locked) 449 { 450 u32 kmrnctrlsta; 451 452 if (!locked) { 453 s32 ret_val = 0; 454 455 if (!hw->phy.ops.acquire) 456 return 0; 457 458 ret_val = hw->phy.ops.acquire(hw); 459 if (ret_val) 460 return ret_val; 461 } 462 463 kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | 464 E1000_KMRNCTRLSTA_REN; 465 ew32(KMRNCTRLSTA, kmrnctrlsta); 466 e1e_flush(); 467 468 udelay(2); 469 470 kmrnctrlsta = er32(KMRNCTRLSTA); 471 *data = (u16)kmrnctrlsta; 472 473 if (!locked) 474 hw->phy.ops.release(hw); 475 476 return 0; 477 } 478 479 /** 480 * e1000e_read_kmrn_reg - Read kumeran register 481 * @hw: pointer to the HW structure 482 * @offset: register offset to be read 483 * @data: pointer to the read data 484 * 485 * Acquires semaphore then reads the PHY register at offset using the 486 * kumeran interface. The information retrieved is stored in data. 487 * Release the acquired semaphore before exiting. 488 **/ 489 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 490 { 491 return __e1000_read_kmrn_reg(hw, offset, data, false); 492 } 493 494 /** 495 * e1000e_read_kmrn_reg_locked - Read kumeran register 496 * @hw: pointer to the HW structure 497 * @offset: register offset to be read 498 * @data: pointer to the read data 499 * 500 * Reads the PHY register at offset using the kumeran interface. The 501 * information retrieved is stored in data. 502 * Assumes semaphore already acquired. 503 **/ 504 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) 505 { 506 return __e1000_read_kmrn_reg(hw, offset, data, true); 507 } 508 509 /** 510 * __e1000_write_kmrn_reg - Write kumeran register 511 * @hw: pointer to the HW structure 512 * @offset: register offset to write to 513 * @data: data to write at register offset 514 * @locked: semaphore has already been acquired or not 515 * 516 * Acquires semaphore, if necessary. Then write the data to PHY register 517 * at the offset using the kumeran interface. Release any acquired semaphores 518 * before exiting. 519 **/ 520 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, 521 bool locked) 522 { 523 u32 kmrnctrlsta; 524 525 if (!locked) { 526 s32 ret_val = 0; 527 528 if (!hw->phy.ops.acquire) 529 return 0; 530 531 ret_val = hw->phy.ops.acquire(hw); 532 if (ret_val) 533 return ret_val; 534 } 535 536 kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data; 537 ew32(KMRNCTRLSTA, kmrnctrlsta); 538 e1e_flush(); 539 540 udelay(2); 541 542 if (!locked) 543 hw->phy.ops.release(hw); 544 545 return 0; 546 } 547 548 /** 549 * e1000e_write_kmrn_reg - Write kumeran register 550 * @hw: pointer to the HW structure 551 * @offset: register offset to write to 552 * @data: data to write at register offset 553 * 554 * Acquires semaphore then writes the data to the PHY register at the offset 555 * using the kumeran interface. Release the acquired semaphore before exiting. 556 **/ 557 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 558 { 559 return __e1000_write_kmrn_reg(hw, offset, data, false); 560 } 561 562 /** 563 * e1000e_write_kmrn_reg_locked - Write kumeran register 564 * @hw: pointer to the HW structure 565 * @offset: register offset to write to 566 * @data: data to write at register offset 567 * 568 * Write the data to PHY register at the offset using the kumeran interface. 569 * Assumes semaphore already acquired. 570 **/ 571 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) 572 { 573 return __e1000_write_kmrn_reg(hw, offset, data, true); 574 } 575 576 /** 577 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode 578 * @hw: pointer to the HW structure 579 * 580 * Sets up Master/slave mode 581 **/ 582 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) 583 { 584 s32 ret_val; 585 u16 phy_data; 586 587 /* Resolve Master/Slave mode */ 588 ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data); 589 if (ret_val) 590 return ret_val; 591 592 /* load defaults for future use */ 593 hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ? 594 ((phy_data & CTL1000_AS_MASTER) ? 595 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; 596 597 switch (hw->phy.ms_type) { 598 case e1000_ms_force_master: 599 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 600 break; 601 case e1000_ms_force_slave: 602 phy_data |= CTL1000_ENABLE_MASTER; 603 phy_data &= ~(CTL1000_AS_MASTER); 604 break; 605 case e1000_ms_auto: 606 phy_data &= ~CTL1000_ENABLE_MASTER; 607 fallthrough; 608 default: 609 break; 610 } 611 612 return e1e_wphy(hw, MII_CTRL1000, phy_data); 613 } 614 615 /** 616 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link 617 * @hw: pointer to the HW structure 618 * 619 * Sets up Carrier-sense on Transmit and downshift values. 620 **/ 621 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) 622 { 623 s32 ret_val; 624 u16 phy_data; 625 626 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 627 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); 628 if (ret_val) 629 return ret_val; 630 631 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; 632 633 /* Enable downshift */ 634 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; 635 636 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); 637 if (ret_val) 638 return ret_val; 639 640 /* Set MDI/MDIX mode */ 641 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data); 642 if (ret_val) 643 return ret_val; 644 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; 645 /* Options: 646 * 0 - Auto (default) 647 * 1 - MDI mode 648 * 2 - MDI-X mode 649 */ 650 switch (hw->phy.mdix) { 651 case 1: 652 break; 653 case 2: 654 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; 655 break; 656 case 0: 657 default: 658 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; 659 break; 660 } 661 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data); 662 if (ret_val) 663 return ret_val; 664 665 return e1000_set_master_slave_mode(hw); 666 } 667 668 /** 669 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link 670 * @hw: pointer to the HW structure 671 * 672 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 673 * and downshift values are set also. 674 **/ 675 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) 676 { 677 struct e1000_phy_info *phy = &hw->phy; 678 s32 ret_val; 679 u16 phy_data; 680 681 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 682 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 683 if (ret_val) 684 return ret_val; 685 686 /* For BM PHY this bit is downshift enable */ 687 if (phy->type != e1000_phy_bm) 688 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 689 690 /* Options: 691 * MDI/MDI-X = 0 (default) 692 * 0 - Auto for all speeds 693 * 1 - MDI mode 694 * 2 - MDI-X mode 695 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 696 */ 697 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 698 699 switch (phy->mdix) { 700 case 1: 701 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 702 break; 703 case 2: 704 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 705 break; 706 case 3: 707 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 708 break; 709 case 0: 710 default: 711 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 712 break; 713 } 714 715 /* Options: 716 * disable_polarity_correction = 0 (default) 717 * Automatic Correction for Reversed Cable Polarity 718 * 0 - Disabled 719 * 1 - Enabled 720 */ 721 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 722 if (phy->disable_polarity_correction) 723 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 724 725 /* Enable downshift on BM (disabled by default) */ 726 if (phy->type == e1000_phy_bm) { 727 /* For 82574/82583, first disable then enable downshift */ 728 if (phy->id == BME1000_E_PHY_ID_R2) { 729 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; 730 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 731 phy_data); 732 if (ret_val) 733 return ret_val; 734 /* Commit the changes. */ 735 ret_val = phy->ops.commit(hw); 736 if (ret_val) { 737 e_dbg("Error committing the PHY changes\n"); 738 return ret_val; 739 } 740 } 741 742 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; 743 } 744 745 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 746 if (ret_val) 747 return ret_val; 748 749 if ((phy->type == e1000_phy_m88) && 750 (phy->revision < E1000_REVISION_4) && 751 (phy->id != BME1000_E_PHY_ID_R2)) { 752 /* Force TX_CLK in the Extended PHY Specific Control Register 753 * to 25MHz clock. 754 */ 755 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 756 if (ret_val) 757 return ret_val; 758 759 phy_data |= M88E1000_EPSCR_TX_CLK_25; 760 761 if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) { 762 /* 82573L PHY - set the downshift counter to 5x. */ 763 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 764 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 765 } else { 766 /* Configure Master and Slave downshift values */ 767 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 768 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 769 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 770 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 771 } 772 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 773 if (ret_val) 774 return ret_val; 775 } 776 777 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { 778 /* Set PHY page 0, register 29 to 0x0003 */ 779 ret_val = e1e_wphy(hw, 29, 0x0003); 780 if (ret_val) 781 return ret_val; 782 783 /* Set PHY page 0, register 30 to 0x0000 */ 784 ret_val = e1e_wphy(hw, 30, 0x0000); 785 if (ret_val) 786 return ret_val; 787 } 788 789 /* Commit the changes. */ 790 if (phy->ops.commit) { 791 ret_val = phy->ops.commit(hw); 792 if (ret_val) { 793 e_dbg("Error committing the PHY changes\n"); 794 return ret_val; 795 } 796 } 797 798 if (phy->type == e1000_phy_82578) { 799 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 800 if (ret_val) 801 return ret_val; 802 803 /* 82578 PHY - set the downshift count to 1x. */ 804 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; 805 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; 806 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 807 if (ret_val) 808 return ret_val; 809 } 810 811 return 0; 812 } 813 814 /** 815 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link 816 * @hw: pointer to the HW structure 817 * 818 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 819 * igp PHY's. 820 **/ 821 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) 822 { 823 struct e1000_phy_info *phy = &hw->phy; 824 s32 ret_val; 825 u16 data; 826 827 ret_val = e1000_phy_hw_reset(hw); 828 if (ret_val) { 829 e_dbg("Error resetting the PHY.\n"); 830 return ret_val; 831 } 832 833 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 834 * timeout issues when LFS is enabled. 835 */ 836 msleep(100); 837 838 /* disable lplu d0 during driver init */ 839 if (hw->phy.ops.set_d0_lplu_state) { 840 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); 841 if (ret_val) { 842 e_dbg("Error Disabling LPLU D0\n"); 843 return ret_val; 844 } 845 } 846 /* Configure mdi-mdix settings */ 847 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); 848 if (ret_val) 849 return ret_val; 850 851 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 852 853 switch (phy->mdix) { 854 case 1: 855 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 856 break; 857 case 2: 858 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 859 break; 860 case 0: 861 default: 862 data |= IGP01E1000_PSCR_AUTO_MDIX; 863 break; 864 } 865 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); 866 if (ret_val) 867 return ret_val; 868 869 /* set auto-master slave resolution settings */ 870 if (hw->mac.autoneg) { 871 /* when autonegotiation advertisement is only 1000Mbps then we 872 * should disable SmartSpeed and enable Auto MasterSlave 873 * resolution as hardware default. 874 */ 875 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 876 /* Disable SmartSpeed */ 877 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 878 &data); 879 if (ret_val) 880 return ret_val; 881 882 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 883 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 884 data); 885 if (ret_val) 886 return ret_val; 887 888 /* Set auto Master/Slave resolution process */ 889 ret_val = e1e_rphy(hw, MII_CTRL1000, &data); 890 if (ret_val) 891 return ret_val; 892 893 data &= ~CTL1000_ENABLE_MASTER; 894 ret_val = e1e_wphy(hw, MII_CTRL1000, data); 895 if (ret_val) 896 return ret_val; 897 } 898 899 ret_val = e1000_set_master_slave_mode(hw); 900 } 901 902 return ret_val; 903 } 904 905 /** 906 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation 907 * @hw: pointer to the HW structure 908 * 909 * Reads the MII auto-neg advertisement register and/or the 1000T control 910 * register and if the PHY is already setup for auto-negotiation, then 911 * return successful. Otherwise, setup advertisement and flow control to 912 * the appropriate values for the wanted auto-negotiation. 913 **/ 914 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) 915 { 916 struct e1000_phy_info *phy = &hw->phy; 917 s32 ret_val; 918 u16 mii_autoneg_adv_reg; 919 u16 mii_1000t_ctrl_reg = 0; 920 921 phy->autoneg_advertised &= phy->autoneg_mask; 922 923 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 924 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg); 925 if (ret_val) 926 return ret_val; 927 928 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 929 /* Read the MII 1000Base-T Control Register (Address 9). */ 930 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg); 931 if (ret_val) 932 return ret_val; 933 } 934 935 /* Need to parse both autoneg_advertised and fc and set up 936 * the appropriate PHY registers. First we will parse for 937 * autoneg_advertised software override. Since we can advertise 938 * a plethora of combinations, we need to check each bit 939 * individually. 940 */ 941 942 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 943 * Advertisement Register (Address 4) and the 1000 mb speed bits in 944 * the 1000Base-T Control Register (Address 9). 945 */ 946 mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL | 947 ADVERTISE_100HALF | 948 ADVERTISE_10FULL | ADVERTISE_10HALF); 949 mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); 950 951 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 952 953 /* Do we want to advertise 10 Mb Half Duplex? */ 954 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 955 e_dbg("Advertise 10mb Half duplex\n"); 956 mii_autoneg_adv_reg |= ADVERTISE_10HALF; 957 } 958 959 /* Do we want to advertise 10 Mb Full Duplex? */ 960 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 961 e_dbg("Advertise 10mb Full duplex\n"); 962 mii_autoneg_adv_reg |= ADVERTISE_10FULL; 963 } 964 965 /* Do we want to advertise 100 Mb Half Duplex? */ 966 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 967 e_dbg("Advertise 100mb Half duplex\n"); 968 mii_autoneg_adv_reg |= ADVERTISE_100HALF; 969 } 970 971 /* Do we want to advertise 100 Mb Full Duplex? */ 972 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 973 e_dbg("Advertise 100mb Full duplex\n"); 974 mii_autoneg_adv_reg |= ADVERTISE_100FULL; 975 } 976 977 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 978 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 979 e_dbg("Advertise 1000mb Half duplex request denied!\n"); 980 981 /* Do we want to advertise 1000 Mb Full Duplex? */ 982 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 983 e_dbg("Advertise 1000mb Full duplex\n"); 984 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL; 985 } 986 987 /* Check for a software override of the flow control settings, and 988 * setup the PHY advertisement registers accordingly. If 989 * auto-negotiation is enabled, then software will have to set the 990 * "PAUSE" bits to the correct value in the Auto-Negotiation 991 * Advertisement Register (MII_ADVERTISE) and re-start auto- 992 * negotiation. 993 * 994 * The possible values of the "fc" parameter are: 995 * 0: Flow control is completely disabled 996 * 1: Rx flow control is enabled (we can receive pause frames 997 * but not send pause frames). 998 * 2: Tx flow control is enabled (we can send pause frames 999 * but we do not support receiving pause frames). 1000 * 3: Both Rx and Tx flow control (symmetric) are enabled. 1001 * other: No software override. The flow control configuration 1002 * in the EEPROM is used. 1003 */ 1004 switch (hw->fc.current_mode) { 1005 case e1000_fc_none: 1006 /* Flow control (Rx & Tx) is completely disabled by a 1007 * software over-ride. 1008 */ 1009 mii_autoneg_adv_reg &= 1010 ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1011 phy->autoneg_advertised &= 1012 ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); 1013 break; 1014 case e1000_fc_rx_pause: 1015 /* Rx Flow control is enabled, and Tx Flow control is 1016 * disabled, by a software over-ride. 1017 * 1018 * Since there really isn't a way to advertise that we are 1019 * capable of Rx Pause ONLY, we will advertise that we 1020 * support both symmetric and asymmetric Rx PAUSE. Later 1021 * (in e1000e_config_fc_after_link_up) we will disable the 1022 * hw's ability to send PAUSE frames. 1023 */ 1024 mii_autoneg_adv_reg |= 1025 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1026 phy->autoneg_advertised |= 1027 (ADVERTISED_Pause | ADVERTISED_Asym_Pause); 1028 break; 1029 case e1000_fc_tx_pause: 1030 /* Tx Flow control is enabled, and Rx Flow control is 1031 * disabled, by a software over-ride. 1032 */ 1033 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM; 1034 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP; 1035 phy->autoneg_advertised |= ADVERTISED_Asym_Pause; 1036 phy->autoneg_advertised &= ~ADVERTISED_Pause; 1037 break; 1038 case e1000_fc_full: 1039 /* Flow control (both Rx and Tx) is enabled by a software 1040 * over-ride. 1041 */ 1042 mii_autoneg_adv_reg |= 1043 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1044 phy->autoneg_advertised |= 1045 (ADVERTISED_Pause | ADVERTISED_Asym_Pause); 1046 break; 1047 default: 1048 e_dbg("Flow control param set incorrectly\n"); 1049 return -E1000_ERR_CONFIG; 1050 } 1051 1052 ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 1053 if (ret_val) 1054 return ret_val; 1055 1056 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1057 1058 if (phy->autoneg_mask & ADVERTISE_1000_FULL) 1059 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg); 1060 1061 return ret_val; 1062 } 1063 1064 /** 1065 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link 1066 * @hw: pointer to the HW structure 1067 * 1068 * Performs initial bounds checking on autoneg advertisement parameter, then 1069 * configure to advertise the full capability. Setup the PHY to autoneg 1070 * and restart the negotiation process between the link partner. If 1071 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 1072 **/ 1073 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) 1074 { 1075 struct e1000_phy_info *phy = &hw->phy; 1076 s32 ret_val; 1077 u16 phy_ctrl; 1078 1079 /* Perform some bounds checking on the autoneg advertisement 1080 * parameter. 1081 */ 1082 phy->autoneg_advertised &= phy->autoneg_mask; 1083 1084 /* If autoneg_advertised is zero, we assume it was not defaulted 1085 * by the calling code so we set to advertise full capability. 1086 */ 1087 if (!phy->autoneg_advertised) 1088 phy->autoneg_advertised = phy->autoneg_mask; 1089 1090 e_dbg("Reconfiguring auto-neg advertisement params\n"); 1091 ret_val = e1000_phy_setup_autoneg(hw); 1092 if (ret_val) { 1093 e_dbg("Error Setting up Auto-Negotiation\n"); 1094 return ret_val; 1095 } 1096 e_dbg("Restarting Auto-Neg\n"); 1097 1098 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 1099 * the Auto Neg Restart bit in the PHY control register. 1100 */ 1101 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 1102 if (ret_val) 1103 return ret_val; 1104 1105 phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART); 1106 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 1107 if (ret_val) 1108 return ret_val; 1109 1110 /* Does the user want to wait for Auto-Neg to complete here, or 1111 * check at a later time (for example, callback routine). 1112 */ 1113 if (phy->autoneg_wait_to_complete) { 1114 ret_val = e1000_wait_autoneg(hw); 1115 if (ret_val) { 1116 e_dbg("Error while waiting for autoneg to complete\n"); 1117 return ret_val; 1118 } 1119 } 1120 1121 hw->mac.get_link_status = true; 1122 1123 return ret_val; 1124 } 1125 1126 /** 1127 * e1000e_setup_copper_link - Configure copper link settings 1128 * @hw: pointer to the HW structure 1129 * 1130 * Calls the appropriate function to configure the link for auto-neg or forced 1131 * speed and duplex. Then we check for link, once link is established calls 1132 * to configure collision distance and flow control are called. If link is 1133 * not established, we return -E1000_ERR_PHY (-2). 1134 **/ 1135 s32 e1000e_setup_copper_link(struct e1000_hw *hw) 1136 { 1137 s32 ret_val; 1138 bool link; 1139 1140 if (hw->mac.autoneg) { 1141 /* Setup autoneg and flow control advertisement and perform 1142 * autonegotiation. 1143 */ 1144 ret_val = e1000_copper_link_autoneg(hw); 1145 if (ret_val) 1146 return ret_val; 1147 } else { 1148 /* PHY will be set to 10H, 10F, 100H or 100F 1149 * depending on user settings. 1150 */ 1151 e_dbg("Forcing Speed and Duplex\n"); 1152 ret_val = hw->phy.ops.force_speed_duplex(hw); 1153 if (ret_val) { 1154 e_dbg("Error Forcing Speed and Duplex\n"); 1155 return ret_val; 1156 } 1157 } 1158 1159 /* Check link status. Wait up to 100 microseconds for link to become 1160 * valid. 1161 */ 1162 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, 1163 &link); 1164 if (ret_val) 1165 return ret_val; 1166 1167 if (link) { 1168 e_dbg("Valid link established!!!\n"); 1169 hw->mac.ops.config_collision_dist(hw); 1170 ret_val = e1000e_config_fc_after_link_up(hw); 1171 } else { 1172 e_dbg("Unable to establish link!!!\n"); 1173 } 1174 1175 return ret_val; 1176 } 1177 1178 /** 1179 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1180 * @hw: pointer to the HW structure 1181 * 1182 * Calls the PHY setup function to force speed and duplex. Clears the 1183 * auto-crossover to force MDI manually. Waits for link and returns 1184 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1185 **/ 1186 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1187 { 1188 struct e1000_phy_info *phy = &hw->phy; 1189 s32 ret_val; 1190 u16 phy_data; 1191 bool link; 1192 1193 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1194 if (ret_val) 1195 return ret_val; 1196 1197 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1198 1199 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1200 if (ret_val) 1201 return ret_val; 1202 1203 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1204 * forced whenever speed and duplex are forced. 1205 */ 1206 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1207 if (ret_val) 1208 return ret_val; 1209 1210 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1211 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1212 1213 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1214 if (ret_val) 1215 return ret_val; 1216 1217 e_dbg("IGP PSCR: %X\n", phy_data); 1218 1219 udelay(1); 1220 1221 if (phy->autoneg_wait_to_complete) { 1222 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1223 1224 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1225 100000, &link); 1226 if (ret_val) 1227 return ret_val; 1228 1229 if (!link) 1230 e_dbg("Link taking longer than expected.\n"); 1231 1232 /* Try once more */ 1233 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1234 100000, &link); 1235 } 1236 1237 return ret_val; 1238 } 1239 1240 /** 1241 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1242 * @hw: pointer to the HW structure 1243 * 1244 * Calls the PHY setup function to force speed and duplex. Clears the 1245 * auto-crossover to force MDI manually. Resets the PHY to commit the 1246 * changes. If time expires while waiting for link up, we reset the DSP. 1247 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon 1248 * successful completion, else return corresponding error code. 1249 **/ 1250 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1251 { 1252 struct e1000_phy_info *phy = &hw->phy; 1253 s32 ret_val; 1254 u16 phy_data; 1255 bool link; 1256 1257 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI 1258 * forced whenever speed and duplex are forced. 1259 */ 1260 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1261 if (ret_val) 1262 return ret_val; 1263 1264 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1265 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1266 if (ret_val) 1267 return ret_val; 1268 1269 e_dbg("M88E1000 PSCR: %X\n", phy_data); 1270 1271 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1272 if (ret_val) 1273 return ret_val; 1274 1275 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1276 1277 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1278 if (ret_val) 1279 return ret_val; 1280 1281 /* Reset the phy to commit changes. */ 1282 if (hw->phy.ops.commit) { 1283 ret_val = hw->phy.ops.commit(hw); 1284 if (ret_val) 1285 return ret_val; 1286 } 1287 1288 if (phy->autoneg_wait_to_complete) { 1289 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1290 1291 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1292 100000, &link); 1293 if (ret_val) 1294 return ret_val; 1295 1296 if (!link) { 1297 if (hw->phy.type != e1000_phy_m88) { 1298 e_dbg("Link taking longer than expected.\n"); 1299 } else { 1300 /* We didn't get link. 1301 * Reset the DSP and cross our fingers. 1302 */ 1303 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 1304 0x001d); 1305 if (ret_val) 1306 return ret_val; 1307 ret_val = e1000e_phy_reset_dsp(hw); 1308 if (ret_val) 1309 return ret_val; 1310 } 1311 } 1312 1313 /* Try once more */ 1314 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1315 100000, &link); 1316 if (ret_val) 1317 return ret_val; 1318 } 1319 1320 if (hw->phy.type != e1000_phy_m88) 1321 return 0; 1322 1323 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1324 if (ret_val) 1325 return ret_val; 1326 1327 /* Resetting the phy means we need to re-force TX_CLK in the 1328 * Extended PHY Specific Control Register to 25MHz clock from 1329 * the reset value of 2.5MHz. 1330 */ 1331 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1332 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1333 if (ret_val) 1334 return ret_val; 1335 1336 /* In addition, we must re-enable CRS on Tx for both half and full 1337 * duplex. 1338 */ 1339 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1340 if (ret_val) 1341 return ret_val; 1342 1343 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1344 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1345 1346 return ret_val; 1347 } 1348 1349 /** 1350 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex 1351 * @hw: pointer to the HW structure 1352 * 1353 * Forces the speed and duplex settings of the PHY. 1354 * This is a function pointer entry point only called by 1355 * PHY setup routines. 1356 **/ 1357 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) 1358 { 1359 struct e1000_phy_info *phy = &hw->phy; 1360 s32 ret_val; 1361 u16 data; 1362 bool link; 1363 1364 ret_val = e1e_rphy(hw, MII_BMCR, &data); 1365 if (ret_val) 1366 return ret_val; 1367 1368 e1000e_phy_force_speed_duplex_setup(hw, &data); 1369 1370 ret_val = e1e_wphy(hw, MII_BMCR, data); 1371 if (ret_val) 1372 return ret_val; 1373 1374 /* Disable MDI-X support for 10/100 */ 1375 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 1376 if (ret_val) 1377 return ret_val; 1378 1379 data &= ~IFE_PMC_AUTO_MDIX; 1380 data &= ~IFE_PMC_FORCE_MDIX; 1381 1382 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); 1383 if (ret_val) 1384 return ret_val; 1385 1386 e_dbg("IFE PMC: %X\n", data); 1387 1388 udelay(1); 1389 1390 if (phy->autoneg_wait_to_complete) { 1391 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); 1392 1393 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1394 100000, &link); 1395 if (ret_val) 1396 return ret_val; 1397 1398 if (!link) 1399 e_dbg("Link taking longer than expected.\n"); 1400 1401 /* Try once more */ 1402 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1403 100000, &link); 1404 if (ret_val) 1405 return ret_val; 1406 } 1407 1408 return 0; 1409 } 1410 1411 /** 1412 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1413 * @hw: pointer to the HW structure 1414 * @phy_ctrl: pointer to current value of MII_BMCR 1415 * 1416 * Forces speed and duplex on the PHY by doing the following: disable flow 1417 * control, force speed/duplex on the MAC, disable auto speed detection, 1418 * disable auto-negotiation, configure duplex, configure speed, configure 1419 * the collision distance, write configuration to CTRL register. The 1420 * caller must write to the MII_BMCR register for these settings to 1421 * take affect. 1422 **/ 1423 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) 1424 { 1425 struct e1000_mac_info *mac = &hw->mac; 1426 u32 ctrl; 1427 1428 /* Turn off flow control when forcing speed/duplex */ 1429 hw->fc.current_mode = e1000_fc_none; 1430 1431 /* Force speed/duplex on the mac */ 1432 ctrl = er32(CTRL); 1433 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1434 ctrl &= ~E1000_CTRL_SPD_SEL; 1435 1436 /* Disable Auto Speed Detection */ 1437 ctrl &= ~E1000_CTRL_ASDE; 1438 1439 /* Disable autoneg on the phy */ 1440 *phy_ctrl &= ~BMCR_ANENABLE; 1441 1442 /* Forcing Full or Half Duplex? */ 1443 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1444 ctrl &= ~E1000_CTRL_FD; 1445 *phy_ctrl &= ~BMCR_FULLDPLX; 1446 e_dbg("Half Duplex\n"); 1447 } else { 1448 ctrl |= E1000_CTRL_FD; 1449 *phy_ctrl |= BMCR_FULLDPLX; 1450 e_dbg("Full Duplex\n"); 1451 } 1452 1453 /* Forcing 10mb or 100mb? */ 1454 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1455 ctrl |= E1000_CTRL_SPD_100; 1456 *phy_ctrl |= BMCR_SPEED100; 1457 *phy_ctrl &= ~BMCR_SPEED1000; 1458 e_dbg("Forcing 100mb\n"); 1459 } else { 1460 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1461 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100); 1462 e_dbg("Forcing 10mb\n"); 1463 } 1464 1465 hw->mac.ops.config_collision_dist(hw); 1466 1467 ew32(CTRL, ctrl); 1468 } 1469 1470 /** 1471 * e1000e_set_d3_lplu_state - Sets low power link up state for D3 1472 * @hw: pointer to the HW structure 1473 * @active: boolean used to enable/disable lplu 1474 * 1475 * Success returns 0, Failure returns 1 1476 * 1477 * The low power link up (lplu) state is set to the power management level D3 1478 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1479 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1480 * is used during Dx states where the power conservation is most important. 1481 * During driver activity, SmartSpeed should be enabled so performance is 1482 * maintained. 1483 **/ 1484 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1485 { 1486 struct e1000_phy_info *phy = &hw->phy; 1487 s32 ret_val; 1488 u16 data; 1489 1490 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1491 if (ret_val) 1492 return ret_val; 1493 1494 if (!active) { 1495 data &= ~IGP02E1000_PM_D3_LPLU; 1496 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1497 if (ret_val) 1498 return ret_val; 1499 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1500 * during Dx states where the power conservation is most 1501 * important. During driver activity we should enable 1502 * SmartSpeed, so performance is maintained. 1503 */ 1504 if (phy->smart_speed == e1000_smart_speed_on) { 1505 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1506 &data); 1507 if (ret_val) 1508 return ret_val; 1509 1510 data |= IGP01E1000_PSCFR_SMART_SPEED; 1511 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1512 data); 1513 if (ret_val) 1514 return ret_val; 1515 } else if (phy->smart_speed == e1000_smart_speed_off) { 1516 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1517 &data); 1518 if (ret_val) 1519 return ret_val; 1520 1521 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1522 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1523 data); 1524 if (ret_val) 1525 return ret_val; 1526 } 1527 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1528 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1529 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1530 data |= IGP02E1000_PM_D3_LPLU; 1531 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1532 if (ret_val) 1533 return ret_val; 1534 1535 /* When LPLU is enabled, we should disable SmartSpeed */ 1536 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 1537 if (ret_val) 1538 return ret_val; 1539 1540 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1541 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 1542 } 1543 1544 return ret_val; 1545 } 1546 1547 /** 1548 * e1000e_check_downshift - Checks whether a downshift in speed occurred 1549 * @hw: pointer to the HW structure 1550 * 1551 * Success returns 0, Failure returns 1 1552 * 1553 * A downshift is detected by querying the PHY link health. 1554 **/ 1555 s32 e1000e_check_downshift(struct e1000_hw *hw) 1556 { 1557 struct e1000_phy_info *phy = &hw->phy; 1558 s32 ret_val; 1559 u16 phy_data, offset, mask; 1560 1561 switch (phy->type) { 1562 case e1000_phy_m88: 1563 case e1000_phy_gg82563: 1564 case e1000_phy_bm: 1565 case e1000_phy_82578: 1566 offset = M88E1000_PHY_SPEC_STATUS; 1567 mask = M88E1000_PSSR_DOWNSHIFT; 1568 break; 1569 case e1000_phy_igp_2: 1570 case e1000_phy_igp_3: 1571 offset = IGP01E1000_PHY_LINK_HEALTH; 1572 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1573 break; 1574 default: 1575 /* speed downshift not supported */ 1576 phy->speed_downgraded = false; 1577 return 0; 1578 } 1579 1580 ret_val = e1e_rphy(hw, offset, &phy_data); 1581 1582 if (!ret_val) 1583 phy->speed_downgraded = !!(phy_data & mask); 1584 1585 return ret_val; 1586 } 1587 1588 /** 1589 * e1000_check_polarity_m88 - Checks the polarity. 1590 * @hw: pointer to the HW structure 1591 * 1592 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1593 * 1594 * Polarity is determined based on the PHY specific status register. 1595 **/ 1596 s32 e1000_check_polarity_m88(struct e1000_hw *hw) 1597 { 1598 struct e1000_phy_info *phy = &hw->phy; 1599 s32 ret_val; 1600 u16 data; 1601 1602 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); 1603 1604 if (!ret_val) 1605 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) 1606 ? e1000_rev_polarity_reversed 1607 : e1000_rev_polarity_normal); 1608 1609 return ret_val; 1610 } 1611 1612 /** 1613 * e1000_check_polarity_igp - Checks the polarity. 1614 * @hw: pointer to the HW structure 1615 * 1616 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1617 * 1618 * Polarity is determined based on the PHY port status register, and the 1619 * current speed (since there is no polarity at 100Mbps). 1620 **/ 1621 s32 e1000_check_polarity_igp(struct e1000_hw *hw) 1622 { 1623 struct e1000_phy_info *phy = &hw->phy; 1624 s32 ret_val; 1625 u16 data, offset, mask; 1626 1627 /* Polarity is determined based on the speed of 1628 * our connection. 1629 */ 1630 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1631 if (ret_val) 1632 return ret_val; 1633 1634 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1635 IGP01E1000_PSSR_SPEED_1000MBPS) { 1636 offset = IGP01E1000_PHY_PCS_INIT_REG; 1637 mask = IGP01E1000_PHY_POLARITY_MASK; 1638 } else { 1639 /* This really only applies to 10Mbps since 1640 * there is no polarity for 100Mbps (always 0). 1641 */ 1642 offset = IGP01E1000_PHY_PORT_STATUS; 1643 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1644 } 1645 1646 ret_val = e1e_rphy(hw, offset, &data); 1647 1648 if (!ret_val) 1649 phy->cable_polarity = ((data & mask) 1650 ? e1000_rev_polarity_reversed 1651 : e1000_rev_polarity_normal); 1652 1653 return ret_val; 1654 } 1655 1656 /** 1657 * e1000_check_polarity_ife - Check cable polarity for IFE PHY 1658 * @hw: pointer to the HW structure 1659 * 1660 * Polarity is determined on the polarity reversal feature being enabled. 1661 **/ 1662 s32 e1000_check_polarity_ife(struct e1000_hw *hw) 1663 { 1664 struct e1000_phy_info *phy = &hw->phy; 1665 s32 ret_val; 1666 u16 phy_data, offset, mask; 1667 1668 /* Polarity is determined based on the reversal feature being enabled. 1669 */ 1670 if (phy->polarity_correction) { 1671 offset = IFE_PHY_EXTENDED_STATUS_CONTROL; 1672 mask = IFE_PESC_POLARITY_REVERSED; 1673 } else { 1674 offset = IFE_PHY_SPECIAL_CONTROL; 1675 mask = IFE_PSC_FORCE_POLARITY; 1676 } 1677 1678 ret_val = e1e_rphy(hw, offset, &phy_data); 1679 1680 if (!ret_val) 1681 phy->cable_polarity = ((phy_data & mask) 1682 ? e1000_rev_polarity_reversed 1683 : e1000_rev_polarity_normal); 1684 1685 return ret_val; 1686 } 1687 1688 /** 1689 * e1000_wait_autoneg - Wait for auto-neg completion 1690 * @hw: pointer to the HW structure 1691 * 1692 * Waits for auto-negotiation to complete or for the auto-negotiation time 1693 * limit to expire, which ever happens first. 1694 **/ 1695 static s32 e1000_wait_autoneg(struct e1000_hw *hw) 1696 { 1697 s32 ret_val = 0; 1698 u16 i, phy_status; 1699 1700 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1701 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1702 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1703 if (ret_val) 1704 break; 1705 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1706 if (ret_val) 1707 break; 1708 if (phy_status & BMSR_ANEGCOMPLETE) 1709 break; 1710 msleep(100); 1711 } 1712 1713 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1714 * has completed. 1715 */ 1716 return ret_val; 1717 } 1718 1719 /** 1720 * e1000e_phy_has_link_generic - Polls PHY for link 1721 * @hw: pointer to the HW structure 1722 * @iterations: number of times to poll for link 1723 * @usec_interval: delay between polling attempts 1724 * @success: pointer to whether polling was successful or not 1725 * 1726 * Polls the PHY status register for link, 'iterations' number of times. 1727 **/ 1728 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, 1729 u32 usec_interval, bool *success) 1730 { 1731 s32 ret_val = 0; 1732 u16 i, phy_status; 1733 1734 *success = false; 1735 for (i = 0; i < iterations; i++) { 1736 /* Some PHYs require the MII_BMSR register to be read 1737 * twice due to the link bit being sticky. No harm doing 1738 * it across the board. 1739 */ 1740 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1741 if (ret_val) { 1742 /* If the first read fails, another entity may have 1743 * ownership of the resources, wait and try again to 1744 * see if they have relinquished the resources yet. 1745 */ 1746 if (usec_interval >= 1000) 1747 msleep(usec_interval / 1000); 1748 else 1749 udelay(usec_interval); 1750 } 1751 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1752 if (ret_val) 1753 break; 1754 if (phy_status & BMSR_LSTATUS) { 1755 *success = true; 1756 break; 1757 } 1758 if (usec_interval >= 1000) 1759 msleep(usec_interval / 1000); 1760 else 1761 udelay(usec_interval); 1762 } 1763 1764 return ret_val; 1765 } 1766 1767 /** 1768 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY 1769 * @hw: pointer to the HW structure 1770 * 1771 * Reads the PHY specific status register to retrieve the cable length 1772 * information. The cable length is determined by averaging the minimum and 1773 * maximum values to get the "average" cable length. The m88 PHY has four 1774 * possible cable length values, which are: 1775 * Register Value Cable Length 1776 * 0 < 50 meters 1777 * 1 50 - 80 meters 1778 * 2 80 - 110 meters 1779 * 3 110 - 140 meters 1780 * 4 > 140 meters 1781 **/ 1782 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) 1783 { 1784 struct e1000_phy_info *phy = &hw->phy; 1785 s32 ret_val; 1786 u16 phy_data, index; 1787 1788 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1789 if (ret_val) 1790 return ret_val; 1791 1792 index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data); 1793 1794 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) 1795 return -E1000_ERR_PHY; 1796 1797 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1798 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1799 1800 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1801 1802 return 0; 1803 } 1804 1805 /** 1806 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1807 * @hw: pointer to the HW structure 1808 * 1809 * The automatic gain control (agc) normalizes the amplitude of the 1810 * received signal, adjusting for the attenuation produced by the 1811 * cable. By reading the AGC registers, which represent the 1812 * combination of coarse and fine gain value, the value can be put 1813 * into a lookup table to obtain the approximate cable length 1814 * for each channel. 1815 **/ 1816 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) 1817 { 1818 struct e1000_phy_info *phy = &hw->phy; 1819 s32 ret_val; 1820 u16 phy_data, i, agc_value = 0; 1821 u16 cur_agc_index, max_agc_index = 0; 1822 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; 1823 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1824 IGP02E1000_PHY_AGC_A, 1825 IGP02E1000_PHY_AGC_B, 1826 IGP02E1000_PHY_AGC_C, 1827 IGP02E1000_PHY_AGC_D 1828 }; 1829 1830 /* Read the AGC registers for all channels */ 1831 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1832 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); 1833 if (ret_val) 1834 return ret_val; 1835 1836 /* Getting bits 15:9, which represent the combination of 1837 * coarse and fine gain values. The result is a number 1838 * that can be put into the lookup table to obtain the 1839 * approximate cable length. 1840 */ 1841 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1842 IGP02E1000_AGC_LENGTH_MASK); 1843 1844 /* Array index bound check. */ 1845 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || 1846 (cur_agc_index == 0)) 1847 return -E1000_ERR_PHY; 1848 1849 /* Remove min & max AGC values from calculation. */ 1850 if (e1000_igp_2_cable_length_table[min_agc_index] > 1851 e1000_igp_2_cable_length_table[cur_agc_index]) 1852 min_agc_index = cur_agc_index; 1853 if (e1000_igp_2_cable_length_table[max_agc_index] < 1854 e1000_igp_2_cable_length_table[cur_agc_index]) 1855 max_agc_index = cur_agc_index; 1856 1857 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1858 } 1859 1860 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1861 e1000_igp_2_cable_length_table[max_agc_index]); 1862 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1863 1864 /* Calculate cable length with the error range of +/- 10 meters. */ 1865 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1866 (agc_value - IGP02E1000_AGC_RANGE) : 0); 1867 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1868 1869 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1870 1871 return 0; 1872 } 1873 1874 /** 1875 * e1000e_get_phy_info_m88 - Retrieve PHY information 1876 * @hw: pointer to the HW structure 1877 * 1878 * Valid for only copper links. Read the PHY status register (sticky read) 1879 * to verify that link is up. Read the PHY special control register to 1880 * determine the polarity and 10base-T extended distance. Read the PHY 1881 * special status register to determine MDI/MDIx and current speed. If 1882 * speed is 1000, then determine cable length, local and remote receiver. 1883 **/ 1884 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) 1885 { 1886 struct e1000_phy_info *phy = &hw->phy; 1887 s32 ret_val; 1888 u16 phy_data; 1889 bool link; 1890 1891 if (phy->media_type != e1000_media_type_copper) { 1892 e_dbg("Phy info is only valid for copper media\n"); 1893 return -E1000_ERR_CONFIG; 1894 } 1895 1896 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1897 if (ret_val) 1898 return ret_val; 1899 1900 if (!link) { 1901 e_dbg("Phy info is only valid if link is up\n"); 1902 return -E1000_ERR_CONFIG; 1903 } 1904 1905 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1906 if (ret_val) 1907 return ret_val; 1908 1909 phy->polarity_correction = !!(phy_data & 1910 M88E1000_PSCR_POLARITY_REVERSAL); 1911 1912 ret_val = e1000_check_polarity_m88(hw); 1913 if (ret_val) 1914 return ret_val; 1915 1916 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1917 if (ret_val) 1918 return ret_val; 1919 1920 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); 1921 1922 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 1923 ret_val = hw->phy.ops.get_cable_length(hw); 1924 if (ret_val) 1925 return ret_val; 1926 1927 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data); 1928 if (ret_val) 1929 return ret_val; 1930 1931 phy->local_rx = (phy_data & LPA_1000LOCALRXOK) 1932 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1933 1934 phy->remote_rx = (phy_data & LPA_1000REMRXOK) 1935 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1936 } else { 1937 /* Set values to "undefined" */ 1938 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1939 phy->local_rx = e1000_1000t_rx_status_undefined; 1940 phy->remote_rx = e1000_1000t_rx_status_undefined; 1941 } 1942 1943 return ret_val; 1944 } 1945 1946 /** 1947 * e1000e_get_phy_info_igp - Retrieve igp PHY information 1948 * @hw: pointer to the HW structure 1949 * 1950 * Read PHY status to determine if link is up. If link is up, then 1951 * set/determine 10base-T extended distance and polarity correction. Read 1952 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 1953 * determine on the cable length, local and remote receiver. 1954 **/ 1955 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) 1956 { 1957 struct e1000_phy_info *phy = &hw->phy; 1958 s32 ret_val; 1959 u16 data; 1960 bool link; 1961 1962 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1963 if (ret_val) 1964 return ret_val; 1965 1966 if (!link) { 1967 e_dbg("Phy info is only valid if link is up\n"); 1968 return -E1000_ERR_CONFIG; 1969 } 1970 1971 phy->polarity_correction = true; 1972 1973 ret_val = e1000_check_polarity_igp(hw); 1974 if (ret_val) 1975 return ret_val; 1976 1977 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1978 if (ret_val) 1979 return ret_val; 1980 1981 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); 1982 1983 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1984 IGP01E1000_PSSR_SPEED_1000MBPS) { 1985 ret_val = phy->ops.get_cable_length(hw); 1986 if (ret_val) 1987 return ret_val; 1988 1989 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 1990 if (ret_val) 1991 return ret_val; 1992 1993 phy->local_rx = (data & LPA_1000LOCALRXOK) 1994 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1995 1996 phy->remote_rx = (data & LPA_1000REMRXOK) 1997 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1998 } else { 1999 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2000 phy->local_rx = e1000_1000t_rx_status_undefined; 2001 phy->remote_rx = e1000_1000t_rx_status_undefined; 2002 } 2003 2004 return ret_val; 2005 } 2006 2007 /** 2008 * e1000_get_phy_info_ife - Retrieves various IFE PHY states 2009 * @hw: pointer to the HW structure 2010 * 2011 * Populates "phy" structure with various feature states. 2012 **/ 2013 s32 e1000_get_phy_info_ife(struct e1000_hw *hw) 2014 { 2015 struct e1000_phy_info *phy = &hw->phy; 2016 s32 ret_val; 2017 u16 data; 2018 bool link; 2019 2020 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 2021 if (ret_val) 2022 return ret_val; 2023 2024 if (!link) { 2025 e_dbg("Phy info is only valid if link is up\n"); 2026 return -E1000_ERR_CONFIG; 2027 } 2028 2029 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); 2030 if (ret_val) 2031 return ret_val; 2032 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); 2033 2034 if (phy->polarity_correction) { 2035 ret_val = e1000_check_polarity_ife(hw); 2036 if (ret_val) 2037 return ret_val; 2038 } else { 2039 /* Polarity is forced */ 2040 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) 2041 ? e1000_rev_polarity_reversed 2042 : e1000_rev_polarity_normal); 2043 } 2044 2045 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 2046 if (ret_val) 2047 return ret_val; 2048 2049 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); 2050 2051 /* The following parameters are undefined for 10/100 operation. */ 2052 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2053 phy->local_rx = e1000_1000t_rx_status_undefined; 2054 phy->remote_rx = e1000_1000t_rx_status_undefined; 2055 2056 return 0; 2057 } 2058 2059 /** 2060 * e1000e_phy_sw_reset - PHY software reset 2061 * @hw: pointer to the HW structure 2062 * 2063 * Does a software reset of the PHY by reading the PHY control register and 2064 * setting/write the control register reset bit to the PHY. 2065 **/ 2066 s32 e1000e_phy_sw_reset(struct e1000_hw *hw) 2067 { 2068 s32 ret_val; 2069 u16 phy_ctrl; 2070 2071 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 2072 if (ret_val) 2073 return ret_val; 2074 2075 phy_ctrl |= BMCR_RESET; 2076 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 2077 if (ret_val) 2078 return ret_val; 2079 2080 udelay(1); 2081 2082 return ret_val; 2083 } 2084 2085 /** 2086 * e1000e_phy_hw_reset_generic - PHY hardware reset 2087 * @hw: pointer to the HW structure 2088 * 2089 * Verify the reset block is not blocking us from resetting. Acquire 2090 * semaphore (if necessary) and read/set/write the device control reset 2091 * bit in the PHY. Wait the appropriate delay time for the device to 2092 * reset and release the semaphore (if necessary). 2093 **/ 2094 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) 2095 { 2096 struct e1000_phy_info *phy = &hw->phy; 2097 s32 ret_val; 2098 u32 ctrl; 2099 2100 if (phy->ops.check_reset_block) { 2101 ret_val = phy->ops.check_reset_block(hw); 2102 if (ret_val) 2103 return 0; 2104 } 2105 2106 ret_val = phy->ops.acquire(hw); 2107 if (ret_val) 2108 return ret_val; 2109 2110 ctrl = er32(CTRL); 2111 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); 2112 e1e_flush(); 2113 2114 udelay(phy->reset_delay_us); 2115 2116 ew32(CTRL, ctrl); 2117 e1e_flush(); 2118 2119 usleep_range(150, 300); 2120 2121 phy->ops.release(hw); 2122 2123 return phy->ops.get_cfg_done(hw); 2124 } 2125 2126 /** 2127 * e1000e_get_cfg_done_generic - Generic configuration done 2128 * @hw: pointer to the HW structure 2129 * 2130 * Generic function to wait 10 milli-seconds for configuration to complete 2131 * and return success. 2132 **/ 2133 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw) 2134 { 2135 mdelay(10); 2136 2137 return 0; 2138 } 2139 2140 /** 2141 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY 2142 * @hw: pointer to the HW structure 2143 * 2144 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2145 **/ 2146 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) 2147 { 2148 e_dbg("Running IGP 3 PHY init script\n"); 2149 2150 /* PHY init IGP 3 */ 2151 /* Enable rise/fall, 10-mode work in class-A */ 2152 e1e_wphy(hw, 0x2F5B, 0x9018); 2153 /* Remove all caps from Replica path filter */ 2154 e1e_wphy(hw, 0x2F52, 0x0000); 2155 /* Bias trimming for ADC, AFE and Driver (Default) */ 2156 e1e_wphy(hw, 0x2FB1, 0x8B24); 2157 /* Increase Hybrid poly bias */ 2158 e1e_wphy(hw, 0x2FB2, 0xF8F0); 2159 /* Add 4% to Tx amplitude in Gig mode */ 2160 e1e_wphy(hw, 0x2010, 0x10B0); 2161 /* Disable trimming (TTT) */ 2162 e1e_wphy(hw, 0x2011, 0x0000); 2163 /* Poly DC correction to 94.6% + 2% for all channels */ 2164 e1e_wphy(hw, 0x20DD, 0x249A); 2165 /* ABS DC correction to 95.9% */ 2166 e1e_wphy(hw, 0x20DE, 0x00D3); 2167 /* BG temp curve trim */ 2168 e1e_wphy(hw, 0x28B4, 0x04CE); 2169 /* Increasing ADC OPAMP stage 1 currents to max */ 2170 e1e_wphy(hw, 0x2F70, 0x29E4); 2171 /* Force 1000 ( required for enabling PHY regs configuration) */ 2172 e1e_wphy(hw, 0x0000, 0x0140); 2173 /* Set upd_freq to 6 */ 2174 e1e_wphy(hw, 0x1F30, 0x1606); 2175 /* Disable NPDFE */ 2176 e1e_wphy(hw, 0x1F31, 0xB814); 2177 /* Disable adaptive fixed FFE (Default) */ 2178 e1e_wphy(hw, 0x1F35, 0x002A); 2179 /* Enable FFE hysteresis */ 2180 e1e_wphy(hw, 0x1F3E, 0x0067); 2181 /* Fixed FFE for short cable lengths */ 2182 e1e_wphy(hw, 0x1F54, 0x0065); 2183 /* Fixed FFE for medium cable lengths */ 2184 e1e_wphy(hw, 0x1F55, 0x002A); 2185 /* Fixed FFE for long cable lengths */ 2186 e1e_wphy(hw, 0x1F56, 0x002A); 2187 /* Enable Adaptive Clip Threshold */ 2188 e1e_wphy(hw, 0x1F72, 0x3FB0); 2189 /* AHT reset limit to 1 */ 2190 e1e_wphy(hw, 0x1F76, 0xC0FF); 2191 /* Set AHT master delay to 127 msec */ 2192 e1e_wphy(hw, 0x1F77, 0x1DEC); 2193 /* Set scan bits for AHT */ 2194 e1e_wphy(hw, 0x1F78, 0xF9EF); 2195 /* Set AHT Preset bits */ 2196 e1e_wphy(hw, 0x1F79, 0x0210); 2197 /* Change integ_factor of channel A to 3 */ 2198 e1e_wphy(hw, 0x1895, 0x0003); 2199 /* Change prop_factor of channels BCD to 8 */ 2200 e1e_wphy(hw, 0x1796, 0x0008); 2201 /* Change cg_icount + enable integbp for channels BCD */ 2202 e1e_wphy(hw, 0x1798, 0xD008); 2203 /* Change cg_icount + enable integbp + change prop_factor_master 2204 * to 8 for channel A 2205 */ 2206 e1e_wphy(hw, 0x1898, 0xD918); 2207 /* Disable AHT in Slave mode on channel A */ 2208 e1e_wphy(hw, 0x187A, 0x0800); 2209 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2210 * Enable SPD+B2B 2211 */ 2212 e1e_wphy(hw, 0x0019, 0x008D); 2213 /* Enable restart AN on an1000_dis change */ 2214 e1e_wphy(hw, 0x001B, 0x2080); 2215 /* Enable wh_fifo read clock in 10/100 modes */ 2216 e1e_wphy(hw, 0x0014, 0x0045); 2217 /* Restart AN, Speed selection is 1000 */ 2218 e1e_wphy(hw, 0x0000, 0x1340); 2219 2220 return 0; 2221 } 2222 2223 /** 2224 * e1000e_get_phy_type_from_id - Get PHY type from id 2225 * @phy_id: phy_id read from the phy 2226 * 2227 * Returns the phy type from the id. 2228 **/ 2229 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) 2230 { 2231 enum e1000_phy_type phy_type = e1000_phy_unknown; 2232 2233 switch (phy_id) { 2234 case M88E1000_I_PHY_ID: 2235 case M88E1000_E_PHY_ID: 2236 case M88E1111_I_PHY_ID: 2237 case M88E1011_I_PHY_ID: 2238 phy_type = e1000_phy_m88; 2239 break; 2240 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ 2241 phy_type = e1000_phy_igp_2; 2242 break; 2243 case GG82563_E_PHY_ID: 2244 phy_type = e1000_phy_gg82563; 2245 break; 2246 case IGP03E1000_E_PHY_ID: 2247 phy_type = e1000_phy_igp_3; 2248 break; 2249 case IFE_E_PHY_ID: 2250 case IFE_PLUS_E_PHY_ID: 2251 case IFE_C_E_PHY_ID: 2252 phy_type = e1000_phy_ife; 2253 break; 2254 case BME1000_E_PHY_ID: 2255 case BME1000_E_PHY_ID_R2: 2256 phy_type = e1000_phy_bm; 2257 break; 2258 case I82578_E_PHY_ID: 2259 phy_type = e1000_phy_82578; 2260 break; 2261 case I82577_E_PHY_ID: 2262 phy_type = e1000_phy_82577; 2263 break; 2264 case I82579_E_PHY_ID: 2265 phy_type = e1000_phy_82579; 2266 break; 2267 case I217_E_PHY_ID: 2268 phy_type = e1000_phy_i217; 2269 break; 2270 default: 2271 phy_type = e1000_phy_unknown; 2272 break; 2273 } 2274 return phy_type; 2275 } 2276 2277 /** 2278 * e1000e_determine_phy_address - Determines PHY address. 2279 * @hw: pointer to the HW structure 2280 * 2281 * This uses a trial and error method to loop through possible PHY 2282 * addresses. It tests each by reading the PHY ID registers and 2283 * checking for a match. 2284 **/ 2285 s32 e1000e_determine_phy_address(struct e1000_hw *hw) 2286 { 2287 u32 phy_addr = 0; 2288 u32 i; 2289 enum e1000_phy_type phy_type = e1000_phy_unknown; 2290 2291 hw->phy.id = phy_type; 2292 2293 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { 2294 hw->phy.addr = phy_addr; 2295 i = 0; 2296 2297 do { 2298 e1000e_get_phy_id(hw); 2299 phy_type = e1000e_get_phy_type_from_id(hw->phy.id); 2300 2301 /* If phy_type is valid, break - we found our 2302 * PHY address 2303 */ 2304 if (phy_type != e1000_phy_unknown) 2305 return 0; 2306 2307 usleep_range(1000, 2000); 2308 i++; 2309 } while (i < 10); 2310 } 2311 2312 return -E1000_ERR_PHY_TYPE; 2313 } 2314 2315 /** 2316 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address 2317 * @page: page to access 2318 * @reg: register to check 2319 * 2320 * Returns the phy address for the page requested. 2321 **/ 2322 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) 2323 { 2324 u32 phy_addr = 2; 2325 2326 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) 2327 phy_addr = 1; 2328 2329 return phy_addr; 2330 } 2331 2332 /** 2333 * e1000e_write_phy_reg_bm - Write BM PHY register 2334 * @hw: pointer to the HW structure 2335 * @offset: register offset to write to 2336 * @data: data to write at register offset 2337 * 2338 * Acquires semaphore, if necessary, then writes the data to PHY register 2339 * at the offset. Release any acquired semaphores before exiting. 2340 **/ 2341 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) 2342 { 2343 s32 ret_val; 2344 u32 page = offset >> IGP_PAGE_SHIFT; 2345 2346 ret_val = hw->phy.ops.acquire(hw); 2347 if (ret_val) 2348 return ret_val; 2349 2350 /* Page 800 works differently than the rest so it has its own func */ 2351 if (page == BM_WUC_PAGE) { 2352 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2353 false, false); 2354 goto release; 2355 } 2356 2357 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2358 2359 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2360 u32 page_shift, page_select; 2361 2362 /* Page select is register 31 for phy address 1 and 22 for 2363 * phy address 2 and 3. Page select is shifted only for 2364 * phy address 1. 2365 */ 2366 if (hw->phy.addr == 1) { 2367 page_shift = IGP_PAGE_SHIFT; 2368 page_select = IGP01E1000_PHY_PAGE_SELECT; 2369 } else { 2370 page_shift = 0; 2371 page_select = BM_PHY_PAGE_SELECT; 2372 } 2373 2374 /* Page is shifted left, PHY expects (page x 32) */ 2375 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2376 (page << page_shift)); 2377 if (ret_val) 2378 goto release; 2379 } 2380 2381 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2382 data); 2383 2384 release: 2385 hw->phy.ops.release(hw); 2386 return ret_val; 2387 } 2388 2389 /** 2390 * e1000e_read_phy_reg_bm - Read BM PHY register 2391 * @hw: pointer to the HW structure 2392 * @offset: register offset to be read 2393 * @data: pointer to the read data 2394 * 2395 * Acquires semaphore, if necessary, then reads the PHY register at offset 2396 * and storing the retrieved information in data. Release any acquired 2397 * semaphores before exiting. 2398 **/ 2399 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) 2400 { 2401 s32 ret_val; 2402 u32 page = offset >> IGP_PAGE_SHIFT; 2403 2404 ret_val = hw->phy.ops.acquire(hw); 2405 if (ret_val) 2406 return ret_val; 2407 2408 /* Page 800 works differently than the rest so it has its own func */ 2409 if (page == BM_WUC_PAGE) { 2410 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2411 true, false); 2412 goto release; 2413 } 2414 2415 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2416 2417 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2418 u32 page_shift, page_select; 2419 2420 /* Page select is register 31 for phy address 1 and 22 for 2421 * phy address 2 and 3. Page select is shifted only for 2422 * phy address 1. 2423 */ 2424 if (hw->phy.addr == 1) { 2425 page_shift = IGP_PAGE_SHIFT; 2426 page_select = IGP01E1000_PHY_PAGE_SELECT; 2427 } else { 2428 page_shift = 0; 2429 page_select = BM_PHY_PAGE_SELECT; 2430 } 2431 2432 /* Page is shifted left, PHY expects (page x 32) */ 2433 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2434 (page << page_shift)); 2435 if (ret_val) 2436 goto release; 2437 } 2438 2439 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2440 data); 2441 release: 2442 hw->phy.ops.release(hw); 2443 return ret_val; 2444 } 2445 2446 /** 2447 * e1000e_read_phy_reg_bm2 - Read BM PHY register 2448 * @hw: pointer to the HW structure 2449 * @offset: register offset to be read 2450 * @data: pointer to the read data 2451 * 2452 * Acquires semaphore, if necessary, then reads the PHY register at offset 2453 * and storing the retrieved information in data. Release any acquired 2454 * semaphores before exiting. 2455 **/ 2456 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) 2457 { 2458 s32 ret_val; 2459 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2460 2461 ret_val = hw->phy.ops.acquire(hw); 2462 if (ret_val) 2463 return ret_val; 2464 2465 /* Page 800 works differently than the rest so it has its own func */ 2466 if (page == BM_WUC_PAGE) { 2467 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2468 true, false); 2469 goto release; 2470 } 2471 2472 hw->phy.addr = 1; 2473 2474 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2475 /* Page is shifted left, PHY expects (page x 32) */ 2476 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2477 page); 2478 2479 if (ret_val) 2480 goto release; 2481 } 2482 2483 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2484 data); 2485 release: 2486 hw->phy.ops.release(hw); 2487 return ret_val; 2488 } 2489 2490 /** 2491 * e1000e_write_phy_reg_bm2 - Write BM PHY register 2492 * @hw: pointer to the HW structure 2493 * @offset: register offset to write to 2494 * @data: data to write at register offset 2495 * 2496 * Acquires semaphore, if necessary, then writes the data to PHY register 2497 * at the offset. Release any acquired semaphores before exiting. 2498 **/ 2499 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) 2500 { 2501 s32 ret_val; 2502 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2503 2504 ret_val = hw->phy.ops.acquire(hw); 2505 if (ret_val) 2506 return ret_val; 2507 2508 /* Page 800 works differently than the rest so it has its own func */ 2509 if (page == BM_WUC_PAGE) { 2510 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2511 false, false); 2512 goto release; 2513 } 2514 2515 hw->phy.addr = 1; 2516 2517 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2518 /* Page is shifted left, PHY expects (page x 32) */ 2519 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2520 page); 2521 2522 if (ret_val) 2523 goto release; 2524 } 2525 2526 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2527 data); 2528 2529 release: 2530 hw->phy.ops.release(hw); 2531 return ret_val; 2532 } 2533 2534 /** 2535 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers 2536 * @hw: pointer to the HW structure 2537 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG 2538 * 2539 * Assumes semaphore already acquired and phy_reg points to a valid memory 2540 * address to store contents of the BM_WUC_ENABLE_REG register. 2541 **/ 2542 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2543 { 2544 s32 ret_val; 2545 u16 temp; 2546 2547 /* All page select, port ctrl and wakeup registers use phy address 1 */ 2548 hw->phy.addr = 1; 2549 2550 /* Select Port Control Registers page */ 2551 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2552 if (ret_val) { 2553 e_dbg("Could not set Port Control page\n"); 2554 return ret_val; 2555 } 2556 2557 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); 2558 if (ret_val) { 2559 e_dbg("Could not read PHY register %d.%d\n", 2560 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2561 return ret_val; 2562 } 2563 2564 /* Enable both PHY wakeup mode and Wakeup register page writes. 2565 * Prevent a power state change by disabling ME and Host PHY wakeup. 2566 */ 2567 temp = *phy_reg; 2568 temp |= BM_WUC_ENABLE_BIT; 2569 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); 2570 2571 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); 2572 if (ret_val) { 2573 e_dbg("Could not write PHY register %d.%d\n", 2574 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2575 return ret_val; 2576 } 2577 2578 /* Select Host Wakeup Registers page - caller now able to write 2579 * registers on the Wakeup registers page 2580 */ 2581 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); 2582 } 2583 2584 /** 2585 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs 2586 * @hw: pointer to the HW structure 2587 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG 2588 * 2589 * Restore BM_WUC_ENABLE_REG to its original value. 2590 * 2591 * Assumes semaphore already acquired and *phy_reg is the contents of the 2592 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by 2593 * caller. 2594 **/ 2595 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2596 { 2597 s32 ret_val; 2598 2599 /* Select Port Control Registers page */ 2600 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2601 if (ret_val) { 2602 e_dbg("Could not set Port Control page\n"); 2603 return ret_val; 2604 } 2605 2606 /* Restore 769.17 to its original value */ 2607 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); 2608 if (ret_val) 2609 e_dbg("Could not restore PHY register %d.%d\n", 2610 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2611 2612 return ret_val; 2613 } 2614 2615 /** 2616 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register 2617 * @hw: pointer to the HW structure 2618 * @offset: register offset to be read or written 2619 * @data: pointer to the data to read or write 2620 * @read: determines if operation is read or write 2621 * @page_set: BM_WUC_PAGE already set and access enabled 2622 * 2623 * Read the PHY register at offset and store the retrieved information in 2624 * data, or write data to PHY register at offset. Note the procedure to 2625 * access the PHY wakeup registers is different than reading the other PHY 2626 * registers. It works as such: 2627 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 2628 * 2) Set page to 800 for host (801 if we were manageability) 2629 * 3) Write the address using the address opcode (0x11) 2630 * 4) Read or write the data using the data opcode (0x12) 2631 * 5) Restore 769.17.2 to its original value 2632 * 2633 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and 2634 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). 2635 * 2636 * Assumes semaphore is already acquired. When page_set==true, assumes 2637 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack 2638 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). 2639 **/ 2640 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 2641 u16 *data, bool read, bool page_set) 2642 { 2643 s32 ret_val; 2644 u16 reg = BM_PHY_REG_NUM(offset); 2645 u16 page = BM_PHY_REG_PAGE(offset); 2646 u16 phy_reg = 0; 2647 2648 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ 2649 if ((hw->mac.type == e1000_pchlan) && 2650 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) 2651 e_dbg("Attempting to access page %d while gig enabled.\n", 2652 page); 2653 2654 if (!page_set) { 2655 /* Enable access to PHY wakeup registers */ 2656 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2657 if (ret_val) { 2658 e_dbg("Could not enable PHY wakeup reg access\n"); 2659 return ret_val; 2660 } 2661 } 2662 2663 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); 2664 2665 /* Write the Wakeup register page offset value using opcode 0x11 */ 2666 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); 2667 if (ret_val) { 2668 e_dbg("Could not write address opcode to page %d\n", page); 2669 return ret_val; 2670 } 2671 2672 if (read) { 2673 /* Read the Wakeup register page value using opcode 0x12 */ 2674 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2675 data); 2676 } else { 2677 /* Write the Wakeup register page value using opcode 0x12 */ 2678 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2679 *data); 2680 } 2681 2682 if (ret_val) { 2683 e_dbg("Could not access PHY reg %d.%d\n", page, reg); 2684 return ret_val; 2685 } 2686 2687 if (!page_set) 2688 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2689 2690 return ret_val; 2691 } 2692 2693 /** 2694 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down 2695 * @hw: pointer to the HW structure 2696 * 2697 * In the case of a PHY power down to save power, or to turn off link during a 2698 * driver unload, or wake on lan is not enabled, restore the link to previous 2699 * settings. 2700 **/ 2701 void e1000_power_up_phy_copper(struct e1000_hw *hw) 2702 { 2703 u16 mii_reg = 0; 2704 int ret; 2705 2706 /* The PHY will retain its settings across a power down/up cycle */ 2707 ret = e1e_rphy(hw, MII_BMCR, &mii_reg); 2708 if (ret) { 2709 e_dbg("Error reading PHY register\n"); 2710 return; 2711 } 2712 mii_reg &= ~BMCR_PDOWN; 2713 e1e_wphy(hw, MII_BMCR, mii_reg); 2714 } 2715 2716 /** 2717 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down 2718 * @hw: pointer to the HW structure 2719 * 2720 * In the case of a PHY power down to save power, or to turn off link during a 2721 * driver unload, or wake on lan is not enabled, restore the link to previous 2722 * settings. 2723 **/ 2724 void e1000_power_down_phy_copper(struct e1000_hw *hw) 2725 { 2726 u16 mii_reg = 0; 2727 int ret; 2728 2729 /* The PHY will retain its settings across a power down/up cycle */ 2730 ret = e1e_rphy(hw, MII_BMCR, &mii_reg); 2731 if (ret) { 2732 e_dbg("Error reading PHY register\n"); 2733 return; 2734 } 2735 mii_reg |= BMCR_PDOWN; 2736 e1e_wphy(hw, MII_BMCR, mii_reg); 2737 usleep_range(1000, 2000); 2738 } 2739 2740 /** 2741 * __e1000_read_phy_reg_hv - Read HV PHY register 2742 * @hw: pointer to the HW structure 2743 * @offset: register offset to be read 2744 * @data: pointer to the read data 2745 * @locked: semaphore has already been acquired or not 2746 * @page_set: BM_WUC_PAGE already set and access enabled 2747 * 2748 * Acquires semaphore, if necessary, then reads the PHY register at offset 2749 * and stores the retrieved information in data. Release any acquired 2750 * semaphore before exiting. 2751 **/ 2752 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, 2753 bool locked, bool page_set) 2754 { 2755 s32 ret_val; 2756 u16 page = BM_PHY_REG_PAGE(offset); 2757 u16 reg = BM_PHY_REG_NUM(offset); 2758 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2759 2760 if (!locked) { 2761 ret_val = hw->phy.ops.acquire(hw); 2762 if (ret_val) 2763 return ret_val; 2764 } 2765 2766 /* Page 800 works differently than the rest so it has its own func */ 2767 if (page == BM_WUC_PAGE) { 2768 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2769 true, page_set); 2770 goto out; 2771 } 2772 2773 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2774 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2775 data, true); 2776 goto out; 2777 } 2778 2779 if (!page_set) { 2780 if (page == HV_INTC_FC_PAGE_START) 2781 page = 0; 2782 2783 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2784 /* Page is shifted left, PHY expects (page x 32) */ 2785 ret_val = e1000_set_page_igp(hw, 2786 (page << IGP_PAGE_SHIFT)); 2787 2788 hw->phy.addr = phy_addr; 2789 2790 if (ret_val) 2791 goto out; 2792 } 2793 } 2794 2795 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2796 page << IGP_PAGE_SHIFT, reg); 2797 2798 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); 2799 out: 2800 if (!locked) 2801 hw->phy.ops.release(hw); 2802 2803 return ret_val; 2804 } 2805 2806 /** 2807 * e1000_read_phy_reg_hv - Read HV PHY register 2808 * @hw: pointer to the HW structure 2809 * @offset: register offset to be read 2810 * @data: pointer to the read data 2811 * 2812 * Acquires semaphore then reads the PHY register at offset and stores 2813 * the retrieved information in data. Release the acquired semaphore 2814 * before exiting. 2815 **/ 2816 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2817 { 2818 return __e1000_read_phy_reg_hv(hw, offset, data, false, false); 2819 } 2820 2821 /** 2822 * e1000_read_phy_reg_hv_locked - Read HV PHY register 2823 * @hw: pointer to the HW structure 2824 * @offset: register offset to be read 2825 * @data: pointer to the read data 2826 * 2827 * Reads the PHY register at offset and stores the retrieved information 2828 * in data. Assumes semaphore already acquired. 2829 **/ 2830 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) 2831 { 2832 return __e1000_read_phy_reg_hv(hw, offset, data, true, false); 2833 } 2834 2835 /** 2836 * e1000_read_phy_reg_page_hv - Read HV PHY register 2837 * @hw: pointer to the HW structure 2838 * @offset: register offset to write to 2839 * @data: data to write at register offset 2840 * 2841 * Reads the PHY register at offset and stores the retrieved information 2842 * in data. Assumes semaphore already acquired and page already set. 2843 **/ 2844 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2845 { 2846 return __e1000_read_phy_reg_hv(hw, offset, data, true, true); 2847 } 2848 2849 /** 2850 * __e1000_write_phy_reg_hv - Write HV PHY register 2851 * @hw: pointer to the HW structure 2852 * @offset: register offset to write to 2853 * @data: data to write at register offset 2854 * @locked: semaphore has already been acquired or not 2855 * @page_set: BM_WUC_PAGE already set and access enabled 2856 * 2857 * Acquires semaphore, if necessary, then writes the data to PHY register 2858 * at the offset. Release any acquired semaphores before exiting. 2859 **/ 2860 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, 2861 bool locked, bool page_set) 2862 { 2863 s32 ret_val; 2864 u16 page = BM_PHY_REG_PAGE(offset); 2865 u16 reg = BM_PHY_REG_NUM(offset); 2866 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2867 2868 if (!locked) { 2869 ret_val = hw->phy.ops.acquire(hw); 2870 if (ret_val) 2871 return ret_val; 2872 } 2873 2874 /* Page 800 works differently than the rest so it has its own func */ 2875 if (page == BM_WUC_PAGE) { 2876 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2877 false, page_set); 2878 goto out; 2879 } 2880 2881 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2882 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2883 &data, false); 2884 goto out; 2885 } 2886 2887 if (!page_set) { 2888 if (page == HV_INTC_FC_PAGE_START) 2889 page = 0; 2890 2891 /* Workaround MDIO accesses being disabled after entering IEEE 2892 * Power Down (when bit 11 of the PHY Control register is set) 2893 */ 2894 if ((hw->phy.type == e1000_phy_82578) && 2895 (hw->phy.revision >= 1) && 2896 (hw->phy.addr == 2) && 2897 !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) { 2898 u16 data2 = 0x7EFF; 2899 2900 ret_val = e1000_access_phy_debug_regs_hv(hw, 2901 BIT(6) | 0x3, 2902 &data2, false); 2903 if (ret_val) 2904 goto out; 2905 } 2906 2907 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2908 /* Page is shifted left, PHY expects (page x 32) */ 2909 ret_val = e1000_set_page_igp(hw, 2910 (page << IGP_PAGE_SHIFT)); 2911 2912 hw->phy.addr = phy_addr; 2913 2914 if (ret_val) 2915 goto out; 2916 } 2917 } 2918 2919 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2920 page << IGP_PAGE_SHIFT, reg); 2921 2922 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, 2923 data); 2924 2925 out: 2926 if (!locked) 2927 hw->phy.ops.release(hw); 2928 2929 return ret_val; 2930 } 2931 2932 /** 2933 * e1000_write_phy_reg_hv - Write HV PHY register 2934 * @hw: pointer to the HW structure 2935 * @offset: register offset to write to 2936 * @data: data to write at register offset 2937 * 2938 * Acquires semaphore then writes the data to PHY register at the offset. 2939 * Release the acquired semaphores before exiting. 2940 **/ 2941 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) 2942 { 2943 return __e1000_write_phy_reg_hv(hw, offset, data, false, false); 2944 } 2945 2946 /** 2947 * e1000_write_phy_reg_hv_locked - Write HV PHY register 2948 * @hw: pointer to the HW structure 2949 * @offset: register offset to write to 2950 * @data: data to write at register offset 2951 * 2952 * Writes the data to PHY register at the offset. Assumes semaphore 2953 * already acquired. 2954 **/ 2955 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) 2956 { 2957 return __e1000_write_phy_reg_hv(hw, offset, data, true, false); 2958 } 2959 2960 /** 2961 * e1000_write_phy_reg_page_hv - Write HV PHY register 2962 * @hw: pointer to the HW structure 2963 * @offset: register offset to write to 2964 * @data: data to write at register offset 2965 * 2966 * Writes the data to PHY register at the offset. Assumes semaphore 2967 * already acquired and page already set. 2968 **/ 2969 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) 2970 { 2971 return __e1000_write_phy_reg_hv(hw, offset, data, true, true); 2972 } 2973 2974 /** 2975 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page 2976 * @page: page to be accessed 2977 **/ 2978 static u32 e1000_get_phy_addr_for_hv_page(u32 page) 2979 { 2980 u32 phy_addr = 2; 2981 2982 if (page >= HV_INTC_FC_PAGE_START) 2983 phy_addr = 1; 2984 2985 return phy_addr; 2986 } 2987 2988 /** 2989 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers 2990 * @hw: pointer to the HW structure 2991 * @offset: register offset to be read or written 2992 * @data: pointer to the data to be read or written 2993 * @read: determines if operation is read or write 2994 * 2995 * Reads the PHY register at offset and stores the retrieved information 2996 * in data. Assumes semaphore already acquired. Note that the procedure 2997 * to access these regs uses the address port and data port to read/write. 2998 * These accesses done with PHY address 2 and without using pages. 2999 **/ 3000 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 3001 u16 *data, bool read) 3002 { 3003 s32 ret_val; 3004 u32 addr_reg; 3005 u32 data_reg; 3006 3007 /* This takes care of the difference with desktop vs mobile phy */ 3008 addr_reg = ((hw->phy.type == e1000_phy_82578) ? 3009 I82578_ADDR_REG : I82577_ADDR_REG); 3010 data_reg = addr_reg + 1; 3011 3012 /* All operations in this function are phy address 2 */ 3013 hw->phy.addr = 2; 3014 3015 /* masking with 0x3F to remove the page from offset */ 3016 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); 3017 if (ret_val) { 3018 e_dbg("Could not write the Address Offset port register\n"); 3019 return ret_val; 3020 } 3021 3022 /* Read or write the data value next */ 3023 if (read) 3024 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); 3025 else 3026 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); 3027 3028 if (ret_val) 3029 e_dbg("Could not access the Data port register\n"); 3030 3031 return ret_val; 3032 } 3033 3034 /** 3035 * e1000_link_stall_workaround_hv - Si workaround 3036 * @hw: pointer to the HW structure 3037 * 3038 * This function works around a Si bug where the link partner can get 3039 * a link up indication before the PHY does. If small packets are sent 3040 * by the link partner they can be placed in the packet buffer without 3041 * being properly accounted for by the PHY and will stall preventing 3042 * further packets from being received. The workaround is to clear the 3043 * packet buffer after the PHY detects link up. 3044 **/ 3045 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) 3046 { 3047 s32 ret_val = 0; 3048 u16 data; 3049 3050 if (hw->phy.type != e1000_phy_82578) 3051 return 0; 3052 3053 /* Do not apply workaround if in PHY loopback bit 14 set */ 3054 ret_val = e1e_rphy(hw, MII_BMCR, &data); 3055 if (ret_val) { 3056 e_dbg("Error reading PHY register\n"); 3057 return ret_val; 3058 } 3059 if (data & BMCR_LOOPBACK) 3060 return 0; 3061 3062 /* check if link is up and at 1Gbps */ 3063 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); 3064 if (ret_val) 3065 return ret_val; 3066 3067 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3068 BM_CS_STATUS_SPEED_MASK); 3069 3070 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3071 BM_CS_STATUS_SPEED_1000)) 3072 return 0; 3073 3074 msleep(200); 3075 3076 /* flush the packets in the fifo buffer */ 3077 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, 3078 (HV_MUX_DATA_CTRL_GEN_TO_MAC | 3079 HV_MUX_DATA_CTRL_FORCE_SPEED)); 3080 if (ret_val) 3081 return ret_val; 3082 3083 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); 3084 } 3085 3086 /** 3087 * e1000_check_polarity_82577 - Checks the polarity. 3088 * @hw: pointer to the HW structure 3089 * 3090 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 3091 * 3092 * Polarity is determined based on the PHY specific status register. 3093 **/ 3094 s32 e1000_check_polarity_82577(struct e1000_hw *hw) 3095 { 3096 struct e1000_phy_info *phy = &hw->phy; 3097 s32 ret_val; 3098 u16 data; 3099 3100 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3101 3102 if (!ret_val) 3103 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) 3104 ? e1000_rev_polarity_reversed 3105 : e1000_rev_polarity_normal); 3106 3107 return ret_val; 3108 } 3109 3110 /** 3111 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY 3112 * @hw: pointer to the HW structure 3113 * 3114 * Calls the PHY setup function to force speed and duplex. 3115 **/ 3116 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) 3117 { 3118 struct e1000_phy_info *phy = &hw->phy; 3119 s32 ret_val; 3120 u16 phy_data; 3121 bool link; 3122 3123 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 3124 if (ret_val) 3125 return ret_val; 3126 3127 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 3128 3129 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 3130 if (ret_val) 3131 return ret_val; 3132 3133 udelay(1); 3134 3135 if (phy->autoneg_wait_to_complete) { 3136 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); 3137 3138 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3139 100000, &link); 3140 if (ret_val) 3141 return ret_val; 3142 3143 if (!link) 3144 e_dbg("Link taking longer than expected.\n"); 3145 3146 /* Try once more */ 3147 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3148 100000, &link); 3149 } 3150 3151 return ret_val; 3152 } 3153 3154 /** 3155 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information 3156 * @hw: pointer to the HW structure 3157 * 3158 * Read PHY status to determine if link is up. If link is up, then 3159 * set/determine 10base-T extended distance and polarity correction. Read 3160 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 3161 * determine on the cable length, local and remote receiver. 3162 **/ 3163 s32 e1000_get_phy_info_82577(struct e1000_hw *hw) 3164 { 3165 struct e1000_phy_info *phy = &hw->phy; 3166 s32 ret_val; 3167 u16 data; 3168 bool link; 3169 3170 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 3171 if (ret_val) 3172 return ret_val; 3173 3174 if (!link) { 3175 e_dbg("Phy info is only valid if link is up\n"); 3176 return -E1000_ERR_CONFIG; 3177 } 3178 3179 phy->polarity_correction = true; 3180 3181 ret_val = e1000_check_polarity_82577(hw); 3182 if (ret_val) 3183 return ret_val; 3184 3185 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3186 if (ret_val) 3187 return ret_val; 3188 3189 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); 3190 3191 if ((data & I82577_PHY_STATUS2_SPEED_MASK) == 3192 I82577_PHY_STATUS2_SPEED_1000MBPS) { 3193 ret_val = hw->phy.ops.get_cable_length(hw); 3194 if (ret_val) 3195 return ret_val; 3196 3197 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 3198 if (ret_val) 3199 return ret_val; 3200 3201 phy->local_rx = (data & LPA_1000LOCALRXOK) 3202 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3203 3204 phy->remote_rx = (data & LPA_1000REMRXOK) 3205 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3206 } else { 3207 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 3208 phy->local_rx = e1000_1000t_rx_status_undefined; 3209 phy->remote_rx = e1000_1000t_rx_status_undefined; 3210 } 3211 3212 return 0; 3213 } 3214 3215 /** 3216 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY 3217 * @hw: pointer to the HW structure 3218 * 3219 * Reads the diagnostic status register and verifies result is valid before 3220 * placing it in the phy_cable_length field. 3221 **/ 3222 s32 e1000_get_cable_length_82577(struct e1000_hw *hw) 3223 { 3224 struct e1000_phy_info *phy = &hw->phy; 3225 s32 ret_val; 3226 u16 phy_data, length; 3227 3228 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); 3229 if (ret_val) 3230 return ret_val; 3231 3232 length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data); 3233 3234 if (length == E1000_CABLE_LENGTH_UNDEFINED) 3235 return -E1000_ERR_PHY; 3236 3237 phy->cable_length = length; 3238 3239 return 0; 3240 } 3241