xref: /linux/drivers/net/ethernet/intel/e1000e/phy.c (revision d0b73b488c55df905ea8faaad079f8535629ed26)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
31 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
32 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
33 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
34 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
35 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
36 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
37 					  u16 *data, bool read, bool page_set);
38 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
39 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
40                                           u16 *data, bool read);
41 
42 /* Cable length tables */
43 static const u16 e1000_m88_cable_length_table[] = {
44 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
45 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
46 		ARRAY_SIZE(e1000_m88_cable_length_table)
47 
48 static const u16 e1000_igp_2_cable_length_table[] = {
49 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
50 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
51 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
52 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
53 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
54 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
55 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
56 	124};
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
59 
60 #define BM_PHY_REG_PAGE(offset) \
61 	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
62 #define BM_PHY_REG_NUM(offset) \
63 	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
64 	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
65 		~MAX_PHY_REG_ADDRESS)))
66 
67 #define HV_INTC_FC_PAGE_START             768
68 #define I82578_ADDR_REG                   29
69 #define I82577_ADDR_REG                   16
70 #define I82577_CFG_REG                    22
71 #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
72 #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
73 #define I82577_CTRL_REG                   23
74 
75 /* 82577 specific PHY registers */
76 #define I82577_PHY_CTRL_2            18
77 #define I82577_PHY_STATUS_2          26
78 #define I82577_PHY_DIAG_STATUS       31
79 
80 /* I82577 PHY Status 2 */
81 #define I82577_PHY_STATUS2_REV_POLARITY   0x0400
82 #define I82577_PHY_STATUS2_MDIX           0x0800
83 #define I82577_PHY_STATUS2_SPEED_MASK     0x0300
84 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
85 
86 /* I82577 PHY Control 2 */
87 #define I82577_PHY_CTRL2_MANUAL_MDIX      0x0200
88 #define I82577_PHY_CTRL2_AUTO_MDI_MDIX    0x0400
89 #define I82577_PHY_CTRL2_MDIX_CFG_MASK    0x0600
90 
91 /* I82577 PHY Diagnostics Status */
92 #define I82577_DSTATUS_CABLE_LENGTH       0x03FC
93 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
94 
95 /* BM PHY Copper Specific Control 1 */
96 #define BM_CS_CTRL1                       16
97 
98 #define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
99 #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
100 #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
101 
102 /**
103  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
104  *  @hw: pointer to the HW structure
105  *
106  *  Read the PHY management control register and check whether a PHY reset
107  *  is blocked.  If a reset is not blocked return 0, otherwise
108  *  return E1000_BLK_PHY_RESET (12).
109  **/
110 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
111 {
112 	u32 manc;
113 
114 	manc = er32(MANC);
115 
116 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
117 	       E1000_BLK_PHY_RESET : 0;
118 }
119 
120 /**
121  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
122  *  @hw: pointer to the HW structure
123  *
124  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
125  *  revision in the hardware structure.
126  **/
127 s32 e1000e_get_phy_id(struct e1000_hw *hw)
128 {
129 	struct e1000_phy_info *phy = &hw->phy;
130 	s32 ret_val = 0;
131 	u16 phy_id;
132 	u16 retry_count = 0;
133 
134 	if (!phy->ops.read_reg)
135 		return 0;
136 
137 	while (retry_count < 2) {
138 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
139 		if (ret_val)
140 			return ret_val;
141 
142 		phy->id = (u32)(phy_id << 16);
143 		udelay(20);
144 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
145 		if (ret_val)
146 			return ret_val;
147 
148 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
149 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
150 
151 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
152 			return 0;
153 
154 		retry_count++;
155 	}
156 
157 	return 0;
158 }
159 
160 /**
161  *  e1000e_phy_reset_dsp - Reset PHY DSP
162  *  @hw: pointer to the HW structure
163  *
164  *  Reset the digital signal processor.
165  **/
166 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
167 {
168 	s32 ret_val;
169 
170 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
171 	if (ret_val)
172 		return ret_val;
173 
174 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
175 }
176 
177 /**
178  *  e1000e_read_phy_reg_mdic - Read MDI control register
179  *  @hw: pointer to the HW structure
180  *  @offset: register offset to be read
181  *  @data: pointer to the read data
182  *
183  *  Reads the MDI control register in the PHY at offset and stores the
184  *  information read to data.
185  **/
186 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
187 {
188 	struct e1000_phy_info *phy = &hw->phy;
189 	u32 i, mdic = 0;
190 
191 	if (offset > MAX_PHY_REG_ADDRESS) {
192 		e_dbg("PHY Address %d is out of range\n", offset);
193 		return -E1000_ERR_PARAM;
194 	}
195 
196 	/* Set up Op-code, Phy Address, and register offset in the MDI
197 	 * Control register.  The MAC will take care of interfacing with the
198 	 * PHY to retrieve the desired data.
199 	 */
200 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
201 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
202 		(E1000_MDIC_OP_READ));
203 
204 	ew32(MDIC, mdic);
205 
206 	/* Poll the ready bit to see if the MDI read completed
207 	 * Increasing the time out as testing showed failures with
208 	 * the lower time out
209 	 */
210 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
211 		udelay(50);
212 		mdic = er32(MDIC);
213 		if (mdic & E1000_MDIC_READY)
214 			break;
215 	}
216 	if (!(mdic & E1000_MDIC_READY)) {
217 		e_dbg("MDI Read did not complete\n");
218 		return -E1000_ERR_PHY;
219 	}
220 	if (mdic & E1000_MDIC_ERROR) {
221 		e_dbg("MDI Error\n");
222 		return -E1000_ERR_PHY;
223 	}
224 	*data = (u16) mdic;
225 
226 	/* Allow some time after each MDIC transaction to avoid
227 	 * reading duplicate data in the next MDIC transaction.
228 	 */
229 	if (hw->mac.type == e1000_pch2lan)
230 		udelay(100);
231 
232 	return 0;
233 }
234 
235 /**
236  *  e1000e_write_phy_reg_mdic - Write MDI control register
237  *  @hw: pointer to the HW structure
238  *  @offset: register offset to write to
239  *  @data: data to write to register at offset
240  *
241  *  Writes data to MDI control register in the PHY at offset.
242  **/
243 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
244 {
245 	struct e1000_phy_info *phy = &hw->phy;
246 	u32 i, mdic = 0;
247 
248 	if (offset > MAX_PHY_REG_ADDRESS) {
249 		e_dbg("PHY Address %d is out of range\n", offset);
250 		return -E1000_ERR_PARAM;
251 	}
252 
253 	/* Set up Op-code, Phy Address, and register offset in the MDI
254 	 * Control register.  The MAC will take care of interfacing with the
255 	 * PHY to retrieve the desired data.
256 	 */
257 	mdic = (((u32)data) |
258 		(offset << E1000_MDIC_REG_SHIFT) |
259 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
260 		(E1000_MDIC_OP_WRITE));
261 
262 	ew32(MDIC, mdic);
263 
264 	/* Poll the ready bit to see if the MDI read completed
265 	 * Increasing the time out as testing showed failures with
266 	 * the lower time out
267 	 */
268 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
269 		udelay(50);
270 		mdic = er32(MDIC);
271 		if (mdic & E1000_MDIC_READY)
272 			break;
273 	}
274 	if (!(mdic & E1000_MDIC_READY)) {
275 		e_dbg("MDI Write did not complete\n");
276 		return -E1000_ERR_PHY;
277 	}
278 	if (mdic & E1000_MDIC_ERROR) {
279 		e_dbg("MDI Error\n");
280 		return -E1000_ERR_PHY;
281 	}
282 
283 	/* Allow some time after each MDIC transaction to avoid
284 	 * reading duplicate data in the next MDIC transaction.
285 	 */
286 	if (hw->mac.type == e1000_pch2lan)
287 		udelay(100);
288 
289 	return 0;
290 }
291 
292 /**
293  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
294  *  @hw: pointer to the HW structure
295  *  @offset: register offset to be read
296  *  @data: pointer to the read data
297  *
298  *  Acquires semaphore, if necessary, then reads the PHY register at offset
299  *  and storing the retrieved information in data.  Release any acquired
300  *  semaphores before exiting.
301  **/
302 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
303 {
304 	s32 ret_val;
305 
306 	ret_val = hw->phy.ops.acquire(hw);
307 	if (ret_val)
308 		return ret_val;
309 
310 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
311 					   data);
312 
313 	hw->phy.ops.release(hw);
314 
315 	return ret_val;
316 }
317 
318 /**
319  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
320  *  @hw: pointer to the HW structure
321  *  @offset: register offset to write to
322  *  @data: data to write at register offset
323  *
324  *  Acquires semaphore, if necessary, then writes the data to PHY register
325  *  at the offset.  Release any acquired semaphores before exiting.
326  **/
327 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
328 {
329 	s32 ret_val;
330 
331 	ret_val = hw->phy.ops.acquire(hw);
332 	if (ret_val)
333 		return ret_val;
334 
335 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
336 					    data);
337 
338 	hw->phy.ops.release(hw);
339 
340 	return ret_val;
341 }
342 
343 /**
344  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
345  *  @hw: pointer to the HW structure
346  *  @page: page to set (shifted left when necessary)
347  *
348  *  Sets PHY page required for PHY register access.  Assumes semaphore is
349  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
350  *  must set it appropriately (if necessary) after this function returns.
351  **/
352 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
353 {
354 	e_dbg("Setting page 0x%x\n", page);
355 
356 	hw->phy.addr = 1;
357 
358 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
359 }
360 
361 /**
362  *  __e1000e_read_phy_reg_igp - Read igp PHY register
363  *  @hw: pointer to the HW structure
364  *  @offset: register offset to be read
365  *  @data: pointer to the read data
366  *  @locked: semaphore has already been acquired or not
367  *
368  *  Acquires semaphore, if necessary, then reads the PHY register at offset
369  *  and stores the retrieved information in data.  Release any acquired
370  *  semaphores before exiting.
371  **/
372 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
373                                     bool locked)
374 {
375 	s32 ret_val = 0;
376 
377 	if (!locked) {
378 		if (!hw->phy.ops.acquire)
379 			return 0;
380 
381 		ret_val = hw->phy.ops.acquire(hw);
382 		if (ret_val)
383 			return ret_val;
384 	}
385 
386 	if (offset > MAX_PHY_MULTI_PAGE_REG)
387 		ret_val = e1000e_write_phy_reg_mdic(hw,
388 						    IGP01E1000_PHY_PAGE_SELECT,
389 						    (u16)offset);
390 	if (!ret_val)
391 		ret_val = e1000e_read_phy_reg_mdic(hw,
392 						   MAX_PHY_REG_ADDRESS & offset,
393 						   data);
394 	if (!locked)
395 		hw->phy.ops.release(hw);
396 
397 	return ret_val;
398 }
399 
400 /**
401  *  e1000e_read_phy_reg_igp - Read igp PHY register
402  *  @hw: pointer to the HW structure
403  *  @offset: register offset to be read
404  *  @data: pointer to the read data
405  *
406  *  Acquires semaphore then reads the PHY register at offset and stores the
407  *  retrieved information in data.
408  *  Release the acquired semaphore before exiting.
409  **/
410 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
411 {
412 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
413 }
414 
415 /**
416  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
417  *  @hw: pointer to the HW structure
418  *  @offset: register offset to be read
419  *  @data: pointer to the read data
420  *
421  *  Reads the PHY register at offset and stores the retrieved information
422  *  in data.  Assumes semaphore already acquired.
423  **/
424 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
425 {
426 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
427 }
428 
429 /**
430  *  e1000e_write_phy_reg_igp - Write igp PHY register
431  *  @hw: pointer to the HW structure
432  *  @offset: register offset to write to
433  *  @data: data to write at register offset
434  *  @locked: semaphore has already been acquired or not
435  *
436  *  Acquires semaphore, if necessary, then writes the data to PHY register
437  *  at the offset.  Release any acquired semaphores before exiting.
438  **/
439 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
440                                      bool locked)
441 {
442 	s32 ret_val = 0;
443 
444 	if (!locked) {
445 		if (!hw->phy.ops.acquire)
446 			return 0;
447 
448 		ret_val = hw->phy.ops.acquire(hw);
449 		if (ret_val)
450 			return ret_val;
451 	}
452 
453 	if (offset > MAX_PHY_MULTI_PAGE_REG)
454 		ret_val = e1000e_write_phy_reg_mdic(hw,
455 						    IGP01E1000_PHY_PAGE_SELECT,
456 						    (u16)offset);
457 	if (!ret_val)
458 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
459 							offset,
460 						    data);
461 	if (!locked)
462 		hw->phy.ops.release(hw);
463 
464 	return ret_val;
465 }
466 
467 /**
468  *  e1000e_write_phy_reg_igp - Write igp PHY register
469  *  @hw: pointer to the HW structure
470  *  @offset: register offset to write to
471  *  @data: data to write at register offset
472  *
473  *  Acquires semaphore then writes the data to PHY register
474  *  at the offset.  Release any acquired semaphores before exiting.
475  **/
476 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
477 {
478 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
479 }
480 
481 /**
482  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
483  *  @hw: pointer to the HW structure
484  *  @offset: register offset to write to
485  *  @data: data to write at register offset
486  *
487  *  Writes the data to PHY register at the offset.
488  *  Assumes semaphore already acquired.
489  **/
490 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
491 {
492 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
493 }
494 
495 /**
496  *  __e1000_read_kmrn_reg - Read kumeran register
497  *  @hw: pointer to the HW structure
498  *  @offset: register offset to be read
499  *  @data: pointer to the read data
500  *  @locked: semaphore has already been acquired or not
501  *
502  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
503  *  using the kumeran interface.  The information retrieved is stored in data.
504  *  Release any acquired semaphores before exiting.
505  **/
506 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
507                                  bool locked)
508 {
509 	u32 kmrnctrlsta;
510 
511 	if (!locked) {
512 		s32 ret_val = 0;
513 
514 		if (!hw->phy.ops.acquire)
515 			return 0;
516 
517 		ret_val = hw->phy.ops.acquire(hw);
518 		if (ret_val)
519 			return ret_val;
520 	}
521 
522 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
523 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
524 	ew32(KMRNCTRLSTA, kmrnctrlsta);
525 	e1e_flush();
526 
527 	udelay(2);
528 
529 	kmrnctrlsta = er32(KMRNCTRLSTA);
530 	*data = (u16)kmrnctrlsta;
531 
532 	if (!locked)
533 		hw->phy.ops.release(hw);
534 
535 	return 0;
536 }
537 
538 /**
539  *  e1000e_read_kmrn_reg -  Read kumeran register
540  *  @hw: pointer to the HW structure
541  *  @offset: register offset to be read
542  *  @data: pointer to the read data
543  *
544  *  Acquires semaphore then reads the PHY register at offset using the
545  *  kumeran interface.  The information retrieved is stored in data.
546  *  Release the acquired semaphore before exiting.
547  **/
548 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
549 {
550 	return __e1000_read_kmrn_reg(hw, offset, data, false);
551 }
552 
553 /**
554  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
555  *  @hw: pointer to the HW structure
556  *  @offset: register offset to be read
557  *  @data: pointer to the read data
558  *
559  *  Reads the PHY register at offset using the kumeran interface.  The
560  *  information retrieved is stored in data.
561  *  Assumes semaphore already acquired.
562  **/
563 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
564 {
565 	return __e1000_read_kmrn_reg(hw, offset, data, true);
566 }
567 
568 /**
569  *  __e1000_write_kmrn_reg - Write kumeran register
570  *  @hw: pointer to the HW structure
571  *  @offset: register offset to write to
572  *  @data: data to write at register offset
573  *  @locked: semaphore has already been acquired or not
574  *
575  *  Acquires semaphore, if necessary.  Then write the data to PHY register
576  *  at the offset using the kumeran interface.  Release any acquired semaphores
577  *  before exiting.
578  **/
579 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
580                                   bool locked)
581 {
582 	u32 kmrnctrlsta;
583 
584 	if (!locked) {
585 		s32 ret_val = 0;
586 
587 		if (!hw->phy.ops.acquire)
588 			return 0;
589 
590 		ret_val = hw->phy.ops.acquire(hw);
591 		if (ret_val)
592 			return ret_val;
593 	}
594 
595 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
596 		       E1000_KMRNCTRLSTA_OFFSET) | data;
597 	ew32(KMRNCTRLSTA, kmrnctrlsta);
598 	e1e_flush();
599 
600 	udelay(2);
601 
602 	if (!locked)
603 		hw->phy.ops.release(hw);
604 
605 	return 0;
606 }
607 
608 /**
609  *  e1000e_write_kmrn_reg -  Write kumeran register
610  *  @hw: pointer to the HW structure
611  *  @offset: register offset to write to
612  *  @data: data to write at register offset
613  *
614  *  Acquires semaphore then writes the data to the PHY register at the offset
615  *  using the kumeran interface.  Release the acquired semaphore before exiting.
616  **/
617 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
618 {
619 	return __e1000_write_kmrn_reg(hw, offset, data, false);
620 }
621 
622 /**
623  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
624  *  @hw: pointer to the HW structure
625  *  @offset: register offset to write to
626  *  @data: data to write at register offset
627  *
628  *  Write the data to PHY register at the offset using the kumeran interface.
629  *  Assumes semaphore already acquired.
630  **/
631 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
632 {
633 	return __e1000_write_kmrn_reg(hw, offset, data, true);
634 }
635 
636 /**
637  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
638  *  @hw: pointer to the HW structure
639  *
640  *  Sets up Master/slave mode
641  **/
642 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
643 {
644 	s32 ret_val;
645 	u16 phy_data;
646 
647 	/* Resolve Master/Slave mode */
648 	ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
649 	if (ret_val)
650 		return ret_val;
651 
652 	/* load defaults for future use */
653 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
654 	    ((phy_data & CR_1000T_MS_VALUE) ?
655 	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
656 
657 	switch (hw->phy.ms_type) {
658 	case e1000_ms_force_master:
659 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
660 		break;
661 	case e1000_ms_force_slave:
662 		phy_data |= CR_1000T_MS_ENABLE;
663 		phy_data &= ~(CR_1000T_MS_VALUE);
664 		break;
665 	case e1000_ms_auto:
666 		phy_data &= ~CR_1000T_MS_ENABLE;
667 		/* fall-through */
668 	default:
669 		break;
670 	}
671 
672 	return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
673 }
674 
675 /**
676  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
677  *  @hw: pointer to the HW structure
678  *
679  *  Sets up Carrier-sense on Transmit and downshift values.
680  **/
681 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
682 {
683 	s32 ret_val;
684 	u16 phy_data;
685 
686 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
687 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
688 	if (ret_val)
689 		return ret_val;
690 
691 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
692 
693 	/* Enable downshift */
694 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
695 
696 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
697 	if (ret_val)
698 		return ret_val;
699 
700 	/* Set MDI/MDIX mode */
701 	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
702 	if (ret_val)
703 		return ret_val;
704 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
705 	/* Options:
706 	 *   0 - Auto (default)
707 	 *   1 - MDI mode
708 	 *   2 - MDI-X mode
709 	 */
710 	switch (hw->phy.mdix) {
711 	case 1:
712 		break;
713 	case 2:
714 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
715 		break;
716 	case 0:
717 	default:
718 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
719 		break;
720 	}
721 	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
722 	if (ret_val)
723 		return ret_val;
724 
725 	return e1000_set_master_slave_mode(hw);
726 }
727 
728 /**
729  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
730  *  @hw: pointer to the HW structure
731  *
732  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
733  *  and downshift values are set also.
734  **/
735 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
736 {
737 	struct e1000_phy_info *phy = &hw->phy;
738 	s32 ret_val;
739 	u16 phy_data;
740 
741 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
742 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
743 	if (ret_val)
744 		return ret_val;
745 
746 	/* For BM PHY this bit is downshift enable */
747 	if (phy->type != e1000_phy_bm)
748 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
749 
750 	/* Options:
751 	 *   MDI/MDI-X = 0 (default)
752 	 *   0 - Auto for all speeds
753 	 *   1 - MDI mode
754 	 *   2 - MDI-X mode
755 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
756 	 */
757 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
758 
759 	switch (phy->mdix) {
760 	case 1:
761 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
762 		break;
763 	case 2:
764 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
765 		break;
766 	case 3:
767 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
768 		break;
769 	case 0:
770 	default:
771 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
772 		break;
773 	}
774 
775 	/* Options:
776 	 *   disable_polarity_correction = 0 (default)
777 	 *       Automatic Correction for Reversed Cable Polarity
778 	 *   0 - Disabled
779 	 *   1 - Enabled
780 	 */
781 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
782 	if (phy->disable_polarity_correction)
783 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
784 
785 	/* Enable downshift on BM (disabled by default) */
786 	if (phy->type == e1000_phy_bm) {
787 		/* For 82574/82583, first disable then enable downshift */
788 		if (phy->id == BME1000_E_PHY_ID_R2) {
789 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
790 			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
791 					   phy_data);
792 			if (ret_val)
793 				return ret_val;
794 			/* Commit the changes. */
795 			ret_val = e1000e_commit_phy(hw);
796 			if (ret_val) {
797 				e_dbg("Error committing the PHY changes\n");
798 				return ret_val;
799 			}
800 		}
801 
802 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
803 	}
804 
805 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
806 	if (ret_val)
807 		return ret_val;
808 
809 	if ((phy->type == e1000_phy_m88) &&
810 	    (phy->revision < E1000_REVISION_4) &&
811 	    (phy->id != BME1000_E_PHY_ID_R2)) {
812 		/* Force TX_CLK in the Extended PHY Specific Control Register
813 		 * to 25MHz clock.
814 		 */
815 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
816 		if (ret_val)
817 			return ret_val;
818 
819 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
820 
821 		if ((phy->revision == 2) &&
822 		    (phy->id == M88E1111_I_PHY_ID)) {
823 			/* 82573L PHY - set the downshift counter to 5x. */
824 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
825 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
826 		} else {
827 			/* Configure Master and Slave downshift values */
828 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
829 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
830 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
831 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
832 		}
833 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
834 		if (ret_val)
835 			return ret_val;
836 	}
837 
838 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
839 		/* Set PHY page 0, register 29 to 0x0003 */
840 		ret_val = e1e_wphy(hw, 29, 0x0003);
841 		if (ret_val)
842 			return ret_val;
843 
844 		/* Set PHY page 0, register 30 to 0x0000 */
845 		ret_val = e1e_wphy(hw, 30, 0x0000);
846 		if (ret_val)
847 			return ret_val;
848 	}
849 
850 	/* Commit the changes. */
851 	ret_val = e1000e_commit_phy(hw);
852 	if (ret_val) {
853 		e_dbg("Error committing the PHY changes\n");
854 		return ret_val;
855 	}
856 
857 	if (phy->type == e1000_phy_82578) {
858 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
859 		if (ret_val)
860 			return ret_val;
861 
862 		/* 82578 PHY - set the downshift count to 1x. */
863 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
864 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
865 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
866 		if (ret_val)
867 			return ret_val;
868 	}
869 
870 	return 0;
871 }
872 
873 /**
874  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
875  *  @hw: pointer to the HW structure
876  *
877  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
878  *  igp PHY's.
879  **/
880 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
881 {
882 	struct e1000_phy_info *phy = &hw->phy;
883 	s32 ret_val;
884 	u16 data;
885 
886 	ret_val = e1000_phy_hw_reset(hw);
887 	if (ret_val) {
888 		e_dbg("Error resetting the PHY.\n");
889 		return ret_val;
890 	}
891 
892 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
893 	 * timeout issues when LFS is enabled.
894 	 */
895 	msleep(100);
896 
897 	/* disable lplu d0 during driver init */
898 	ret_val = e1000_set_d0_lplu_state(hw, false);
899 	if (ret_val) {
900 		e_dbg("Error Disabling LPLU D0\n");
901 		return ret_val;
902 	}
903 	/* Configure mdi-mdix settings */
904 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
905 	if (ret_val)
906 		return ret_val;
907 
908 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
909 
910 	switch (phy->mdix) {
911 	case 1:
912 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
913 		break;
914 	case 2:
915 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
916 		break;
917 	case 0:
918 	default:
919 		data |= IGP01E1000_PSCR_AUTO_MDIX;
920 		break;
921 	}
922 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
923 	if (ret_val)
924 		return ret_val;
925 
926 	/* set auto-master slave resolution settings */
927 	if (hw->mac.autoneg) {
928 		/* when autonegotiation advertisement is only 1000Mbps then we
929 		 * should disable SmartSpeed and enable Auto MasterSlave
930 		 * resolution as hardware default.
931 		 */
932 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
933 			/* Disable SmartSpeed */
934 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
935 					   &data);
936 			if (ret_val)
937 				return ret_val;
938 
939 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
940 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
941 					   data);
942 			if (ret_val)
943 				return ret_val;
944 
945 			/* Set auto Master/Slave resolution process */
946 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
947 			if (ret_val)
948 				return ret_val;
949 
950 			data &= ~CR_1000T_MS_ENABLE;
951 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
952 			if (ret_val)
953 				return ret_val;
954 		}
955 
956 		ret_val = e1000_set_master_slave_mode(hw);
957 	}
958 
959 	return ret_val;
960 }
961 
962 /**
963  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
964  *  @hw: pointer to the HW structure
965  *
966  *  Reads the MII auto-neg advertisement register and/or the 1000T control
967  *  register and if the PHY is already setup for auto-negotiation, then
968  *  return successful.  Otherwise, setup advertisement and flow control to
969  *  the appropriate values for the wanted auto-negotiation.
970  **/
971 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
972 {
973 	struct e1000_phy_info *phy = &hw->phy;
974 	s32 ret_val;
975 	u16 mii_autoneg_adv_reg;
976 	u16 mii_1000t_ctrl_reg = 0;
977 
978 	phy->autoneg_advertised &= phy->autoneg_mask;
979 
980 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
981 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
982 	if (ret_val)
983 		return ret_val;
984 
985 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
986 		/* Read the MII 1000Base-T Control Register (Address 9). */
987 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
988 		if (ret_val)
989 			return ret_val;
990 	}
991 
992 	/* Need to parse both autoneg_advertised and fc and set up
993 	 * the appropriate PHY registers.  First we will parse for
994 	 * autoneg_advertised software override.  Since we can advertise
995 	 * a plethora of combinations, we need to check each bit
996 	 * individually.
997 	 */
998 
999 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1000 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1001 	 * the  1000Base-T Control Register (Address 9).
1002 	 */
1003 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1004 				 NWAY_AR_100TX_HD_CAPS |
1005 				 NWAY_AR_10T_FD_CAPS   |
1006 				 NWAY_AR_10T_HD_CAPS);
1007 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1008 
1009 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
1010 
1011 	/* Do we want to advertise 10 Mb Half Duplex? */
1012 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1013 		e_dbg("Advertise 10mb Half duplex\n");
1014 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1015 	}
1016 
1017 	/* Do we want to advertise 10 Mb Full Duplex? */
1018 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1019 		e_dbg("Advertise 10mb Full duplex\n");
1020 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1021 	}
1022 
1023 	/* Do we want to advertise 100 Mb Half Duplex? */
1024 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1025 		e_dbg("Advertise 100mb Half duplex\n");
1026 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1027 	}
1028 
1029 	/* Do we want to advertise 100 Mb Full Duplex? */
1030 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1031 		e_dbg("Advertise 100mb Full duplex\n");
1032 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1033 	}
1034 
1035 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1036 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1037 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1038 
1039 	/* Do we want to advertise 1000 Mb Full Duplex? */
1040 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1041 		e_dbg("Advertise 1000mb Full duplex\n");
1042 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1043 	}
1044 
1045 	/* Check for a software override of the flow control settings, and
1046 	 * setup the PHY advertisement registers accordingly.  If
1047 	 * auto-negotiation is enabled, then software will have to set the
1048 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1049 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1050 	 * negotiation.
1051 	 *
1052 	 * The possible values of the "fc" parameter are:
1053 	 *      0:  Flow control is completely disabled
1054 	 *      1:  Rx flow control is enabled (we can receive pause frames
1055 	 *          but not send pause frames).
1056 	 *      2:  Tx flow control is enabled (we can send pause frames
1057 	 *          but we do not support receiving pause frames).
1058 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1059 	 *  other:  No software override.  The flow control configuration
1060 	 *          in the EEPROM is used.
1061 	 */
1062 	switch (hw->fc.current_mode) {
1063 	case e1000_fc_none:
1064 		/* Flow control (Rx & Tx) is completely disabled by a
1065 		 * software over-ride.
1066 		 */
1067 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1068 		break;
1069 	case e1000_fc_rx_pause:
1070 		/* Rx Flow control is enabled, and Tx Flow control is
1071 		 * disabled, by a software over-ride.
1072 		 *
1073 		 * Since there really isn't a way to advertise that we are
1074 		 * capable of Rx Pause ONLY, we will advertise that we
1075 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1076 		 * (in e1000e_config_fc_after_link_up) we will disable the
1077 		 * hw's ability to send PAUSE frames.
1078 		 */
1079 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1080 		break;
1081 	case e1000_fc_tx_pause:
1082 		/* Tx Flow control is enabled, and Rx Flow control is
1083 		 * disabled, by a software over-ride.
1084 		 */
1085 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1086 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1087 		break;
1088 	case e1000_fc_full:
1089 		/* Flow control (both Rx and Tx) is enabled by a software
1090 		 * over-ride.
1091 		 */
1092 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1093 		break;
1094 	default:
1095 		e_dbg("Flow control param set incorrectly\n");
1096 		return -E1000_ERR_CONFIG;
1097 	}
1098 
1099 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1100 	if (ret_val)
1101 		return ret_val;
1102 
1103 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1104 
1105 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1106 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1107 
1108 	return ret_val;
1109 }
1110 
1111 /**
1112  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1113  *  @hw: pointer to the HW structure
1114  *
1115  *  Performs initial bounds checking on autoneg advertisement parameter, then
1116  *  configure to advertise the full capability.  Setup the PHY to autoneg
1117  *  and restart the negotiation process between the link partner.  If
1118  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1119  **/
1120 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1121 {
1122 	struct e1000_phy_info *phy = &hw->phy;
1123 	s32 ret_val;
1124 	u16 phy_ctrl;
1125 
1126 	/* Perform some bounds checking on the autoneg advertisement
1127 	 * parameter.
1128 	 */
1129 	phy->autoneg_advertised &= phy->autoneg_mask;
1130 
1131 	/* If autoneg_advertised is zero, we assume it was not defaulted
1132 	 * by the calling code so we set to advertise full capability.
1133 	 */
1134 	if (!phy->autoneg_advertised)
1135 		phy->autoneg_advertised = phy->autoneg_mask;
1136 
1137 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1138 	ret_val = e1000_phy_setup_autoneg(hw);
1139 	if (ret_val) {
1140 		e_dbg("Error Setting up Auto-Negotiation\n");
1141 		return ret_val;
1142 	}
1143 	e_dbg("Restarting Auto-Neg\n");
1144 
1145 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1146 	 * the Auto Neg Restart bit in the PHY control register.
1147 	 */
1148 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1149 	if (ret_val)
1150 		return ret_val;
1151 
1152 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1153 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1154 	if (ret_val)
1155 		return ret_val;
1156 
1157 	/* Does the user want to wait for Auto-Neg to complete here, or
1158 	 * check at a later time (for example, callback routine).
1159 	 */
1160 	if (phy->autoneg_wait_to_complete) {
1161 		ret_val = e1000_wait_autoneg(hw);
1162 		if (ret_val) {
1163 			e_dbg("Error while waiting for autoneg to complete\n");
1164 			return ret_val;
1165 		}
1166 	}
1167 
1168 	hw->mac.get_link_status = true;
1169 
1170 	return ret_val;
1171 }
1172 
1173 /**
1174  *  e1000e_setup_copper_link - Configure copper link settings
1175  *  @hw: pointer to the HW structure
1176  *
1177  *  Calls the appropriate function to configure the link for auto-neg or forced
1178  *  speed and duplex.  Then we check for link, once link is established calls
1179  *  to configure collision distance and flow control are called.  If link is
1180  *  not established, we return -E1000_ERR_PHY (-2).
1181  **/
1182 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1183 {
1184 	s32 ret_val;
1185 	bool link;
1186 
1187 	if (hw->mac.autoneg) {
1188 		/* Setup autoneg and flow control advertisement and perform
1189 		 * autonegotiation.
1190 		 */
1191 		ret_val = e1000_copper_link_autoneg(hw);
1192 		if (ret_val)
1193 			return ret_val;
1194 	} else {
1195 		/* PHY will be set to 10H, 10F, 100H or 100F
1196 		 * depending on user settings.
1197 		 */
1198 		e_dbg("Forcing Speed and Duplex\n");
1199 		ret_val = e1000_phy_force_speed_duplex(hw);
1200 		if (ret_val) {
1201 			e_dbg("Error Forcing Speed and Duplex\n");
1202 			return ret_val;
1203 		}
1204 	}
1205 
1206 	/* Check link status. Wait up to 100 microseconds for link to become
1207 	 * valid.
1208 	 */
1209 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1210 					      &link);
1211 	if (ret_val)
1212 		return ret_val;
1213 
1214 	if (link) {
1215 		e_dbg("Valid link established!!!\n");
1216 		hw->mac.ops.config_collision_dist(hw);
1217 		ret_val = e1000e_config_fc_after_link_up(hw);
1218 	} else {
1219 		e_dbg("Unable to establish link!!!\n");
1220 	}
1221 
1222 	return ret_val;
1223 }
1224 
1225 /**
1226  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1227  *  @hw: pointer to the HW structure
1228  *
1229  *  Calls the PHY setup function to force speed and duplex.  Clears the
1230  *  auto-crossover to force MDI manually.  Waits for link and returns
1231  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1232  **/
1233 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1234 {
1235 	struct e1000_phy_info *phy = &hw->phy;
1236 	s32 ret_val;
1237 	u16 phy_data;
1238 	bool link;
1239 
1240 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1241 	if (ret_val)
1242 		return ret_val;
1243 
1244 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1245 
1246 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1247 	if (ret_val)
1248 		return ret_val;
1249 
1250 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1251 	 * forced whenever speed and duplex are forced.
1252 	 */
1253 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1254 	if (ret_val)
1255 		return ret_val;
1256 
1257 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1258 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1259 
1260 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1261 	if (ret_val)
1262 		return ret_val;
1263 
1264 	e_dbg("IGP PSCR: %X\n", phy_data);
1265 
1266 	udelay(1);
1267 
1268 	if (phy->autoneg_wait_to_complete) {
1269 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1270 
1271 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1272 						      100000, &link);
1273 		if (ret_val)
1274 			return ret_val;
1275 
1276 		if (!link)
1277 			e_dbg("Link taking longer than expected.\n");
1278 
1279 		/* Try once more */
1280 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1281 						      100000, &link);
1282 	}
1283 
1284 	return ret_val;
1285 }
1286 
1287 /**
1288  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1289  *  @hw: pointer to the HW structure
1290  *
1291  *  Calls the PHY setup function to force speed and duplex.  Clears the
1292  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1293  *  changes.  If time expires while waiting for link up, we reset the DSP.
1294  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1295  *  successful completion, else return corresponding error code.
1296  **/
1297 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1298 {
1299 	struct e1000_phy_info *phy = &hw->phy;
1300 	s32 ret_val;
1301 	u16 phy_data;
1302 	bool link;
1303 
1304 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1305 	 * forced whenever speed and duplex are forced.
1306 	 */
1307 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1308 	if (ret_val)
1309 		return ret_val;
1310 
1311 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1312 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1313 	if (ret_val)
1314 		return ret_val;
1315 
1316 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1317 
1318 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1319 	if (ret_val)
1320 		return ret_val;
1321 
1322 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1323 
1324 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1325 	if (ret_val)
1326 		return ret_val;
1327 
1328 	/* Reset the phy to commit changes. */
1329 	ret_val = e1000e_commit_phy(hw);
1330 	if (ret_val)
1331 		return ret_val;
1332 
1333 	if (phy->autoneg_wait_to_complete) {
1334 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1335 
1336 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1337 						     100000, &link);
1338 		if (ret_val)
1339 			return ret_val;
1340 
1341 		if (!link) {
1342 			if (hw->phy.type != e1000_phy_m88) {
1343 				e_dbg("Link taking longer than expected.\n");
1344 			} else {
1345 				/* We didn't get link.
1346 				 * Reset the DSP and cross our fingers.
1347 				 */
1348 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1349 						   0x001d);
1350 				if (ret_val)
1351 					return ret_val;
1352 				ret_val = e1000e_phy_reset_dsp(hw);
1353 				if (ret_val)
1354 					return ret_val;
1355 			}
1356 		}
1357 
1358 		/* Try once more */
1359 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1360 						     100000, &link);
1361 		if (ret_val)
1362 			return ret_val;
1363 	}
1364 
1365 	if (hw->phy.type != e1000_phy_m88)
1366 		return 0;
1367 
1368 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1369 	if (ret_val)
1370 		return ret_val;
1371 
1372 	/* Resetting the phy means we need to re-force TX_CLK in the
1373 	 * Extended PHY Specific Control Register to 25MHz clock from
1374 	 * the reset value of 2.5MHz.
1375 	 */
1376 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1377 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1378 	if (ret_val)
1379 		return ret_val;
1380 
1381 	/* In addition, we must re-enable CRS on Tx for both half and full
1382 	 * duplex.
1383 	 */
1384 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1385 	if (ret_val)
1386 		return ret_val;
1387 
1388 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1389 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1390 
1391 	return ret_val;
1392 }
1393 
1394 /**
1395  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1396  *  @hw: pointer to the HW structure
1397  *
1398  *  Forces the speed and duplex settings of the PHY.
1399  *  This is a function pointer entry point only called by
1400  *  PHY setup routines.
1401  **/
1402 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1403 {
1404 	struct e1000_phy_info *phy = &hw->phy;
1405 	s32 ret_val;
1406 	u16 data;
1407 	bool link;
1408 
1409 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1410 	if (ret_val)
1411 		return ret_val;
1412 
1413 	e1000e_phy_force_speed_duplex_setup(hw, &data);
1414 
1415 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1416 	if (ret_val)
1417 		return ret_val;
1418 
1419 	/* Disable MDI-X support for 10/100 */
1420 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1421 	if (ret_val)
1422 		return ret_val;
1423 
1424 	data &= ~IFE_PMC_AUTO_MDIX;
1425 	data &= ~IFE_PMC_FORCE_MDIX;
1426 
1427 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1428 	if (ret_val)
1429 		return ret_val;
1430 
1431 	e_dbg("IFE PMC: %X\n", data);
1432 
1433 	udelay(1);
1434 
1435 	if (phy->autoneg_wait_to_complete) {
1436 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1437 
1438 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1439 						      100000, &link);
1440 		if (ret_val)
1441 			return ret_val;
1442 
1443 		if (!link)
1444 			e_dbg("Link taking longer than expected.\n");
1445 
1446 		/* Try once more */
1447 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1448 						      100000, &link);
1449 		if (ret_val)
1450 			return ret_val;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1458  *  @hw: pointer to the HW structure
1459  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1460  *
1461  *  Forces speed and duplex on the PHY by doing the following: disable flow
1462  *  control, force speed/duplex on the MAC, disable auto speed detection,
1463  *  disable auto-negotiation, configure duplex, configure speed, configure
1464  *  the collision distance, write configuration to CTRL register.  The
1465  *  caller must write to the PHY_CONTROL register for these settings to
1466  *  take affect.
1467  **/
1468 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1469 {
1470 	struct e1000_mac_info *mac = &hw->mac;
1471 	u32 ctrl;
1472 
1473 	/* Turn off flow control when forcing speed/duplex */
1474 	hw->fc.current_mode = e1000_fc_none;
1475 
1476 	/* Force speed/duplex on the mac */
1477 	ctrl = er32(CTRL);
1478 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1479 	ctrl &= ~E1000_CTRL_SPD_SEL;
1480 
1481 	/* Disable Auto Speed Detection */
1482 	ctrl &= ~E1000_CTRL_ASDE;
1483 
1484 	/* Disable autoneg on the phy */
1485 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1486 
1487 	/* Forcing Full or Half Duplex? */
1488 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1489 		ctrl &= ~E1000_CTRL_FD;
1490 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1491 		e_dbg("Half Duplex\n");
1492 	} else {
1493 		ctrl |= E1000_CTRL_FD;
1494 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1495 		e_dbg("Full Duplex\n");
1496 	}
1497 
1498 	/* Forcing 10mb or 100mb? */
1499 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1500 		ctrl |= E1000_CTRL_SPD_100;
1501 		*phy_ctrl |= MII_CR_SPEED_100;
1502 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1503 		e_dbg("Forcing 100mb\n");
1504 	} else {
1505 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1506 		*phy_ctrl |= MII_CR_SPEED_10;
1507 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1508 		e_dbg("Forcing 10mb\n");
1509 	}
1510 
1511 	hw->mac.ops.config_collision_dist(hw);
1512 
1513 	ew32(CTRL, ctrl);
1514 }
1515 
1516 /**
1517  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1518  *  @hw: pointer to the HW structure
1519  *  @active: boolean used to enable/disable lplu
1520  *
1521  *  Success returns 0, Failure returns 1
1522  *
1523  *  The low power link up (lplu) state is set to the power management level D3
1524  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1525  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1526  *  is used during Dx states where the power conservation is most important.
1527  *  During driver activity, SmartSpeed should be enabled so performance is
1528  *  maintained.
1529  **/
1530 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1531 {
1532 	struct e1000_phy_info *phy = &hw->phy;
1533 	s32 ret_val;
1534 	u16 data;
1535 
1536 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1537 	if (ret_val)
1538 		return ret_val;
1539 
1540 	if (!active) {
1541 		data &= ~IGP02E1000_PM_D3_LPLU;
1542 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1543 		if (ret_val)
1544 			return ret_val;
1545 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1546 		 * during Dx states where the power conservation is most
1547 		 * important.  During driver activity we should enable
1548 		 * SmartSpeed, so performance is maintained.
1549 		 */
1550 		if (phy->smart_speed == e1000_smart_speed_on) {
1551 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1552 					   &data);
1553 			if (ret_val)
1554 				return ret_val;
1555 
1556 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1557 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1558 					   data);
1559 			if (ret_val)
1560 				return ret_val;
1561 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1562 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1563 					   &data);
1564 			if (ret_val)
1565 				return ret_val;
1566 
1567 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1568 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1569 					   data);
1570 			if (ret_val)
1571 				return ret_val;
1572 		}
1573 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1574 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1575 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1576 		data |= IGP02E1000_PM_D3_LPLU;
1577 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1578 		if (ret_val)
1579 			return ret_val;
1580 
1581 		/* When LPLU is enabled, we should disable SmartSpeed */
1582 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1583 		if (ret_val)
1584 			return ret_val;
1585 
1586 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1587 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1588 	}
1589 
1590 	return ret_val;
1591 }
1592 
1593 /**
1594  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1595  *  @hw: pointer to the HW structure
1596  *
1597  *  Success returns 0, Failure returns 1
1598  *
1599  *  A downshift is detected by querying the PHY link health.
1600  **/
1601 s32 e1000e_check_downshift(struct e1000_hw *hw)
1602 {
1603 	struct e1000_phy_info *phy = &hw->phy;
1604 	s32 ret_val;
1605 	u16 phy_data, offset, mask;
1606 
1607 	switch (phy->type) {
1608 	case e1000_phy_m88:
1609 	case e1000_phy_gg82563:
1610 	case e1000_phy_bm:
1611 	case e1000_phy_82578:
1612 		offset	= M88E1000_PHY_SPEC_STATUS;
1613 		mask	= M88E1000_PSSR_DOWNSHIFT;
1614 		break;
1615 	case e1000_phy_igp_2:
1616 	case e1000_phy_igp_3:
1617 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1618 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1619 		break;
1620 	default:
1621 		/* speed downshift not supported */
1622 		phy->speed_downgraded = false;
1623 		return 0;
1624 	}
1625 
1626 	ret_val = e1e_rphy(hw, offset, &phy_data);
1627 
1628 	if (!ret_val)
1629 		phy->speed_downgraded = !!(phy_data & mask);
1630 
1631 	return ret_val;
1632 }
1633 
1634 /**
1635  *  e1000_check_polarity_m88 - Checks the polarity.
1636  *  @hw: pointer to the HW structure
1637  *
1638  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1639  *
1640  *  Polarity is determined based on the PHY specific status register.
1641  **/
1642 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1643 {
1644 	struct e1000_phy_info *phy = &hw->phy;
1645 	s32 ret_val;
1646 	u16 data;
1647 
1648 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1649 
1650 	if (!ret_val)
1651 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1652 				      ? e1000_rev_polarity_reversed
1653 				      : e1000_rev_polarity_normal;
1654 
1655 	return ret_val;
1656 }
1657 
1658 /**
1659  *  e1000_check_polarity_igp - Checks the polarity.
1660  *  @hw: pointer to the HW structure
1661  *
1662  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1663  *
1664  *  Polarity is determined based on the PHY port status register, and the
1665  *  current speed (since there is no polarity at 100Mbps).
1666  **/
1667 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1668 {
1669 	struct e1000_phy_info *phy = &hw->phy;
1670 	s32 ret_val;
1671 	u16 data, offset, mask;
1672 
1673 	/* Polarity is determined based on the speed of
1674 	 * our connection.
1675 	 */
1676 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1677 	if (ret_val)
1678 		return ret_val;
1679 
1680 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1681 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1682 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1683 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1684 	} else {
1685 		/* This really only applies to 10Mbps since
1686 		 * there is no polarity for 100Mbps (always 0).
1687 		 */
1688 		offset	= IGP01E1000_PHY_PORT_STATUS;
1689 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1690 	}
1691 
1692 	ret_val = e1e_rphy(hw, offset, &data);
1693 
1694 	if (!ret_val)
1695 		phy->cable_polarity = (data & mask)
1696 				      ? e1000_rev_polarity_reversed
1697 				      : e1000_rev_polarity_normal;
1698 
1699 	return ret_val;
1700 }
1701 
1702 /**
1703  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1704  *  @hw: pointer to the HW structure
1705  *
1706  *  Polarity is determined on the polarity reversal feature being enabled.
1707  **/
1708 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1709 {
1710 	struct e1000_phy_info *phy = &hw->phy;
1711 	s32 ret_val;
1712 	u16 phy_data, offset, mask;
1713 
1714 	/* Polarity is determined based on the reversal feature being enabled.
1715 	 */
1716 	if (phy->polarity_correction) {
1717 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1718 		mask = IFE_PESC_POLARITY_REVERSED;
1719 	} else {
1720 		offset = IFE_PHY_SPECIAL_CONTROL;
1721 		mask = IFE_PSC_FORCE_POLARITY;
1722 	}
1723 
1724 	ret_val = e1e_rphy(hw, offset, &phy_data);
1725 
1726 	if (!ret_val)
1727 		phy->cable_polarity = (phy_data & mask)
1728 		                       ? e1000_rev_polarity_reversed
1729 		                       : e1000_rev_polarity_normal;
1730 
1731 	return ret_val;
1732 }
1733 
1734 /**
1735  *  e1000_wait_autoneg - Wait for auto-neg completion
1736  *  @hw: pointer to the HW structure
1737  *
1738  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1739  *  limit to expire, which ever happens first.
1740  **/
1741 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1742 {
1743 	s32 ret_val = 0;
1744 	u16 i, phy_status;
1745 
1746 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1747 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1748 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1749 		if (ret_val)
1750 			break;
1751 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1752 		if (ret_val)
1753 			break;
1754 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1755 			break;
1756 		msleep(100);
1757 	}
1758 
1759 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1760 	 * has completed.
1761 	 */
1762 	return ret_val;
1763 }
1764 
1765 /**
1766  *  e1000e_phy_has_link_generic - Polls PHY for link
1767  *  @hw: pointer to the HW structure
1768  *  @iterations: number of times to poll for link
1769  *  @usec_interval: delay between polling attempts
1770  *  @success: pointer to whether polling was successful or not
1771  *
1772  *  Polls the PHY status register for link, 'iterations' number of times.
1773  **/
1774 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1775 			       u32 usec_interval, bool *success)
1776 {
1777 	s32 ret_val = 0;
1778 	u16 i, phy_status;
1779 
1780 	for (i = 0; i < iterations; i++) {
1781 		/* Some PHYs require the PHY_STATUS register to be read
1782 		 * twice due to the link bit being sticky.  No harm doing
1783 		 * it across the board.
1784 		 */
1785 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1786 		if (ret_val)
1787 			/* If the first read fails, another entity may have
1788 			 * ownership of the resources, wait and try again to
1789 			 * see if they have relinquished the resources yet.
1790 			 */
1791 			udelay(usec_interval);
1792 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1793 		if (ret_val)
1794 			break;
1795 		if (phy_status & MII_SR_LINK_STATUS)
1796 			break;
1797 		if (usec_interval >= 1000)
1798 			mdelay(usec_interval/1000);
1799 		else
1800 			udelay(usec_interval);
1801 	}
1802 
1803 	*success = (i < iterations);
1804 
1805 	return ret_val;
1806 }
1807 
1808 /**
1809  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1810  *  @hw: pointer to the HW structure
1811  *
1812  *  Reads the PHY specific status register to retrieve the cable length
1813  *  information.  The cable length is determined by averaging the minimum and
1814  *  maximum values to get the "average" cable length.  The m88 PHY has four
1815  *  possible cable length values, which are:
1816  *	Register Value		Cable Length
1817  *	0			< 50 meters
1818  *	1			50 - 80 meters
1819  *	2			80 - 110 meters
1820  *	3			110 - 140 meters
1821  *	4			> 140 meters
1822  **/
1823 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1824 {
1825 	struct e1000_phy_info *phy = &hw->phy;
1826 	s32 ret_val;
1827 	u16 phy_data, index;
1828 
1829 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1830 	if (ret_val)
1831 		return ret_val;
1832 
1833 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1834 	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1835 
1836 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1837 		return -E1000_ERR_PHY;
1838 
1839 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1840 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1841 
1842 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1843 
1844 	return 0;
1845 }
1846 
1847 /**
1848  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1849  *  @hw: pointer to the HW structure
1850  *
1851  *  The automatic gain control (agc) normalizes the amplitude of the
1852  *  received signal, adjusting for the attenuation produced by the
1853  *  cable.  By reading the AGC registers, which represent the
1854  *  combination of coarse and fine gain value, the value can be put
1855  *  into a lookup table to obtain the approximate cable length
1856  *  for each channel.
1857  **/
1858 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1859 {
1860 	struct e1000_phy_info *phy = &hw->phy;
1861 	s32 ret_val;
1862 	u16 phy_data, i, agc_value = 0;
1863 	u16 cur_agc_index, max_agc_index = 0;
1864 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1865 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1866 	       IGP02E1000_PHY_AGC_A,
1867 	       IGP02E1000_PHY_AGC_B,
1868 	       IGP02E1000_PHY_AGC_C,
1869 	       IGP02E1000_PHY_AGC_D
1870 	};
1871 
1872 	/* Read the AGC registers for all channels */
1873 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1874 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1875 		if (ret_val)
1876 			return ret_val;
1877 
1878 		/* Getting bits 15:9, which represent the combination of
1879 		 * coarse and fine gain values.  The result is a number
1880 		 * that can be put into the lookup table to obtain the
1881 		 * approximate cable length.
1882 		 */
1883 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1884 				IGP02E1000_AGC_LENGTH_MASK;
1885 
1886 		/* Array index bound check. */
1887 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1888 		    (cur_agc_index == 0))
1889 			return -E1000_ERR_PHY;
1890 
1891 		/* Remove min & max AGC values from calculation. */
1892 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1893 		    e1000_igp_2_cable_length_table[cur_agc_index])
1894 			min_agc_index = cur_agc_index;
1895 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1896 		    e1000_igp_2_cable_length_table[cur_agc_index])
1897 			max_agc_index = cur_agc_index;
1898 
1899 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1900 	}
1901 
1902 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1903 		      e1000_igp_2_cable_length_table[max_agc_index]);
1904 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1905 
1906 	/* Calculate cable length with the error range of +/- 10 meters. */
1907 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1908 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1909 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1910 
1911 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1912 
1913 	return 0;
1914 }
1915 
1916 /**
1917  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1918  *  @hw: pointer to the HW structure
1919  *
1920  *  Valid for only copper links.  Read the PHY status register (sticky read)
1921  *  to verify that link is up.  Read the PHY special control register to
1922  *  determine the polarity and 10base-T extended distance.  Read the PHY
1923  *  special status register to determine MDI/MDIx and current speed.  If
1924  *  speed is 1000, then determine cable length, local and remote receiver.
1925  **/
1926 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1927 {
1928 	struct e1000_phy_info *phy = &hw->phy;
1929 	s32  ret_val;
1930 	u16 phy_data;
1931 	bool link;
1932 
1933 	if (phy->media_type != e1000_media_type_copper) {
1934 		e_dbg("Phy info is only valid for copper media\n");
1935 		return -E1000_ERR_CONFIG;
1936 	}
1937 
1938 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1939 	if (ret_val)
1940 		return ret_val;
1941 
1942 	if (!link) {
1943 		e_dbg("Phy info is only valid if link is up\n");
1944 		return -E1000_ERR_CONFIG;
1945 	}
1946 
1947 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1948 	if (ret_val)
1949 		return ret_val;
1950 
1951 	phy->polarity_correction = !!(phy_data &
1952 				      M88E1000_PSCR_POLARITY_REVERSAL);
1953 
1954 	ret_val = e1000_check_polarity_m88(hw);
1955 	if (ret_val)
1956 		return ret_val;
1957 
1958 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1959 	if (ret_val)
1960 		return ret_val;
1961 
1962 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1963 
1964 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1965 		ret_val = e1000_get_cable_length(hw);
1966 		if (ret_val)
1967 			return ret_val;
1968 
1969 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1970 		if (ret_val)
1971 			return ret_val;
1972 
1973 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1974 				? e1000_1000t_rx_status_ok
1975 				: e1000_1000t_rx_status_not_ok;
1976 
1977 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1978 				 ? e1000_1000t_rx_status_ok
1979 				 : e1000_1000t_rx_status_not_ok;
1980 	} else {
1981 		/* Set values to "undefined" */
1982 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1983 		phy->local_rx = e1000_1000t_rx_status_undefined;
1984 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1985 	}
1986 
1987 	return ret_val;
1988 }
1989 
1990 /**
1991  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1992  *  @hw: pointer to the HW structure
1993  *
1994  *  Read PHY status to determine if link is up.  If link is up, then
1995  *  set/determine 10base-T extended distance and polarity correction.  Read
1996  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1997  *  determine on the cable length, local and remote receiver.
1998  **/
1999 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2000 {
2001 	struct e1000_phy_info *phy = &hw->phy;
2002 	s32 ret_val;
2003 	u16 data;
2004 	bool link;
2005 
2006 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2007 	if (ret_val)
2008 		return ret_val;
2009 
2010 	if (!link) {
2011 		e_dbg("Phy info is only valid if link is up\n");
2012 		return -E1000_ERR_CONFIG;
2013 	}
2014 
2015 	phy->polarity_correction = true;
2016 
2017 	ret_val = e1000_check_polarity_igp(hw);
2018 	if (ret_val)
2019 		return ret_val;
2020 
2021 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2022 	if (ret_val)
2023 		return ret_val;
2024 
2025 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2026 
2027 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2028 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2029 		ret_val = e1000_get_cable_length(hw);
2030 		if (ret_val)
2031 			return ret_val;
2032 
2033 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2034 		if (ret_val)
2035 			return ret_val;
2036 
2037 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2038 				? e1000_1000t_rx_status_ok
2039 				: e1000_1000t_rx_status_not_ok;
2040 
2041 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2042 				 ? e1000_1000t_rx_status_ok
2043 				 : e1000_1000t_rx_status_not_ok;
2044 	} else {
2045 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2046 		phy->local_rx = e1000_1000t_rx_status_undefined;
2047 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2048 	}
2049 
2050 	return ret_val;
2051 }
2052 
2053 /**
2054  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2055  *  @hw: pointer to the HW structure
2056  *
2057  *  Populates "phy" structure with various feature states.
2058  **/
2059 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2060 {
2061 	struct e1000_phy_info *phy = &hw->phy;
2062 	s32 ret_val;
2063 	u16 data;
2064 	bool link;
2065 
2066 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2067 	if (ret_val)
2068 		return ret_val;
2069 
2070 	if (!link) {
2071 		e_dbg("Phy info is only valid if link is up\n");
2072 		return -E1000_ERR_CONFIG;
2073 	}
2074 
2075 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2076 	if (ret_val)
2077 		return ret_val;
2078 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2079 
2080 	if (phy->polarity_correction) {
2081 		ret_val = e1000_check_polarity_ife(hw);
2082 		if (ret_val)
2083 			return ret_val;
2084 	} else {
2085 		/* Polarity is forced */
2086 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2087 		                      ? e1000_rev_polarity_reversed
2088 		                      : e1000_rev_polarity_normal;
2089 	}
2090 
2091 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2092 	if (ret_val)
2093 		return ret_val;
2094 
2095 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2096 
2097 	/* The following parameters are undefined for 10/100 operation. */
2098 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2099 	phy->local_rx = e1000_1000t_rx_status_undefined;
2100 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2101 
2102 	return 0;
2103 }
2104 
2105 /**
2106  *  e1000e_phy_sw_reset - PHY software reset
2107  *  @hw: pointer to the HW structure
2108  *
2109  *  Does a software reset of the PHY by reading the PHY control register and
2110  *  setting/write the control register reset bit to the PHY.
2111  **/
2112 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2113 {
2114 	s32 ret_val;
2115 	u16 phy_ctrl;
2116 
2117 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2118 	if (ret_val)
2119 		return ret_val;
2120 
2121 	phy_ctrl |= MII_CR_RESET;
2122 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2123 	if (ret_val)
2124 		return ret_val;
2125 
2126 	udelay(1);
2127 
2128 	return ret_val;
2129 }
2130 
2131 /**
2132  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2133  *  @hw: pointer to the HW structure
2134  *
2135  *  Verify the reset block is not blocking us from resetting.  Acquire
2136  *  semaphore (if necessary) and read/set/write the device control reset
2137  *  bit in the PHY.  Wait the appropriate delay time for the device to
2138  *  reset and release the semaphore (if necessary).
2139  **/
2140 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2141 {
2142 	struct e1000_phy_info *phy = &hw->phy;
2143 	s32 ret_val;
2144 	u32 ctrl;
2145 
2146 	if (phy->ops.check_reset_block) {
2147 		ret_val = phy->ops.check_reset_block(hw);
2148 		if (ret_val)
2149 			return 0;
2150 	}
2151 
2152 	ret_val = phy->ops.acquire(hw);
2153 	if (ret_val)
2154 		return ret_val;
2155 
2156 	ctrl = er32(CTRL);
2157 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2158 	e1e_flush();
2159 
2160 	udelay(phy->reset_delay_us);
2161 
2162 	ew32(CTRL, ctrl);
2163 	e1e_flush();
2164 
2165 	udelay(150);
2166 
2167 	phy->ops.release(hw);
2168 
2169 	return e1000_get_phy_cfg_done(hw);
2170 }
2171 
2172 /**
2173  *  e1000e_get_cfg_done - Generic configuration done
2174  *  @hw: pointer to the HW structure
2175  *
2176  *  Generic function to wait 10 milli-seconds for configuration to complete
2177  *  and return success.
2178  **/
2179 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2180 {
2181 	mdelay(10);
2182 
2183 	return 0;
2184 }
2185 
2186 /**
2187  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2188  *  @hw: pointer to the HW structure
2189  *
2190  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2191  **/
2192 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2193 {
2194 	e_dbg("Running IGP 3 PHY init script\n");
2195 
2196 	/* PHY init IGP 3 */
2197 	/* Enable rise/fall, 10-mode work in class-A */
2198 	e1e_wphy(hw, 0x2F5B, 0x9018);
2199 	/* Remove all caps from Replica path filter */
2200 	e1e_wphy(hw, 0x2F52, 0x0000);
2201 	/* Bias trimming for ADC, AFE and Driver (Default) */
2202 	e1e_wphy(hw, 0x2FB1, 0x8B24);
2203 	/* Increase Hybrid poly bias */
2204 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2205 	/* Add 4% to Tx amplitude in Gig mode */
2206 	e1e_wphy(hw, 0x2010, 0x10B0);
2207 	/* Disable trimming (TTT) */
2208 	e1e_wphy(hw, 0x2011, 0x0000);
2209 	/* Poly DC correction to 94.6% + 2% for all channels */
2210 	e1e_wphy(hw, 0x20DD, 0x249A);
2211 	/* ABS DC correction to 95.9% */
2212 	e1e_wphy(hw, 0x20DE, 0x00D3);
2213 	/* BG temp curve trim */
2214 	e1e_wphy(hw, 0x28B4, 0x04CE);
2215 	/* Increasing ADC OPAMP stage 1 currents to max */
2216 	e1e_wphy(hw, 0x2F70, 0x29E4);
2217 	/* Force 1000 ( required for enabling PHY regs configuration) */
2218 	e1e_wphy(hw, 0x0000, 0x0140);
2219 	/* Set upd_freq to 6 */
2220 	e1e_wphy(hw, 0x1F30, 0x1606);
2221 	/* Disable NPDFE */
2222 	e1e_wphy(hw, 0x1F31, 0xB814);
2223 	/* Disable adaptive fixed FFE (Default) */
2224 	e1e_wphy(hw, 0x1F35, 0x002A);
2225 	/* Enable FFE hysteresis */
2226 	e1e_wphy(hw, 0x1F3E, 0x0067);
2227 	/* Fixed FFE for short cable lengths */
2228 	e1e_wphy(hw, 0x1F54, 0x0065);
2229 	/* Fixed FFE for medium cable lengths */
2230 	e1e_wphy(hw, 0x1F55, 0x002A);
2231 	/* Fixed FFE for long cable lengths */
2232 	e1e_wphy(hw, 0x1F56, 0x002A);
2233 	/* Enable Adaptive Clip Threshold */
2234 	e1e_wphy(hw, 0x1F72, 0x3FB0);
2235 	/* AHT reset limit to 1 */
2236 	e1e_wphy(hw, 0x1F76, 0xC0FF);
2237 	/* Set AHT master delay to 127 msec */
2238 	e1e_wphy(hw, 0x1F77, 0x1DEC);
2239 	/* Set scan bits for AHT */
2240 	e1e_wphy(hw, 0x1F78, 0xF9EF);
2241 	/* Set AHT Preset bits */
2242 	e1e_wphy(hw, 0x1F79, 0x0210);
2243 	/* Change integ_factor of channel A to 3 */
2244 	e1e_wphy(hw, 0x1895, 0x0003);
2245 	/* Change prop_factor of channels BCD to 8 */
2246 	e1e_wphy(hw, 0x1796, 0x0008);
2247 	/* Change cg_icount + enable integbp for channels BCD */
2248 	e1e_wphy(hw, 0x1798, 0xD008);
2249 	/* Change cg_icount + enable integbp + change prop_factor_master
2250 	 * to 8 for channel A
2251 	 */
2252 	e1e_wphy(hw, 0x1898, 0xD918);
2253 	/* Disable AHT in Slave mode on channel A */
2254 	e1e_wphy(hw, 0x187A, 0x0800);
2255 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2256 	 * Enable SPD+B2B
2257 	 */
2258 	e1e_wphy(hw, 0x0019, 0x008D);
2259 	/* Enable restart AN on an1000_dis change */
2260 	e1e_wphy(hw, 0x001B, 0x2080);
2261 	/* Enable wh_fifo read clock in 10/100 modes */
2262 	e1e_wphy(hw, 0x0014, 0x0045);
2263 	/* Restart AN, Speed selection is 1000 */
2264 	e1e_wphy(hw, 0x0000, 0x1340);
2265 
2266 	return 0;
2267 }
2268 
2269 /* Internal function pointers */
2270 
2271 /**
2272  *  e1000_get_phy_cfg_done - Generic PHY configuration done
2273  *  @hw: pointer to the HW structure
2274  *
2275  *  Return success if silicon family did not implement a family specific
2276  *  get_cfg_done function.
2277  **/
2278 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2279 {
2280 	if (hw->phy.ops.get_cfg_done)
2281 		return hw->phy.ops.get_cfg_done(hw);
2282 
2283 	return 0;
2284 }
2285 
2286 /**
2287  *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2288  *  @hw: pointer to the HW structure
2289  *
2290  *  When the silicon family has not implemented a forced speed/duplex
2291  *  function for the PHY, simply return 0.
2292  **/
2293 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2294 {
2295 	if (hw->phy.ops.force_speed_duplex)
2296 		return hw->phy.ops.force_speed_duplex(hw);
2297 
2298 	return 0;
2299 }
2300 
2301 /**
2302  *  e1000e_get_phy_type_from_id - Get PHY type from id
2303  *  @phy_id: phy_id read from the phy
2304  *
2305  *  Returns the phy type from the id.
2306  **/
2307 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2308 {
2309 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2310 
2311 	switch (phy_id) {
2312 	case M88E1000_I_PHY_ID:
2313 	case M88E1000_E_PHY_ID:
2314 	case M88E1111_I_PHY_ID:
2315 	case M88E1011_I_PHY_ID:
2316 		phy_type = e1000_phy_m88;
2317 		break;
2318 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2319 		phy_type = e1000_phy_igp_2;
2320 		break;
2321 	case GG82563_E_PHY_ID:
2322 		phy_type = e1000_phy_gg82563;
2323 		break;
2324 	case IGP03E1000_E_PHY_ID:
2325 		phy_type = e1000_phy_igp_3;
2326 		break;
2327 	case IFE_E_PHY_ID:
2328 	case IFE_PLUS_E_PHY_ID:
2329 	case IFE_C_E_PHY_ID:
2330 		phy_type = e1000_phy_ife;
2331 		break;
2332 	case BME1000_E_PHY_ID:
2333 	case BME1000_E_PHY_ID_R2:
2334 		phy_type = e1000_phy_bm;
2335 		break;
2336 	case I82578_E_PHY_ID:
2337 		phy_type = e1000_phy_82578;
2338 		break;
2339 	case I82577_E_PHY_ID:
2340 		phy_type = e1000_phy_82577;
2341 		break;
2342 	case I82579_E_PHY_ID:
2343 		phy_type = e1000_phy_82579;
2344 		break;
2345 	case I217_E_PHY_ID:
2346 		phy_type = e1000_phy_i217;
2347 		break;
2348 	default:
2349 		phy_type = e1000_phy_unknown;
2350 		break;
2351 	}
2352 	return phy_type;
2353 }
2354 
2355 /**
2356  *  e1000e_determine_phy_address - Determines PHY address.
2357  *  @hw: pointer to the HW structure
2358  *
2359  *  This uses a trial and error method to loop through possible PHY
2360  *  addresses. It tests each by reading the PHY ID registers and
2361  *  checking for a match.
2362  **/
2363 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2364 {
2365 	u32 phy_addr = 0;
2366 	u32 i;
2367 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2368 
2369 	hw->phy.id = phy_type;
2370 
2371 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2372 		hw->phy.addr = phy_addr;
2373 		i = 0;
2374 
2375 		do {
2376 			e1000e_get_phy_id(hw);
2377 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2378 
2379 			/* If phy_type is valid, break - we found our
2380 			 * PHY address
2381 			 */
2382 			if (phy_type  != e1000_phy_unknown)
2383 				return 0;
2384 
2385 			usleep_range(1000, 2000);
2386 			i++;
2387 		} while (i < 10);
2388 	}
2389 
2390 	return -E1000_ERR_PHY_TYPE;
2391 }
2392 
2393 /**
2394  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2395  *  @page: page to access
2396  *
2397  *  Returns the phy address for the page requested.
2398  **/
2399 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2400 {
2401 	u32 phy_addr = 2;
2402 
2403 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2404 		phy_addr = 1;
2405 
2406 	return phy_addr;
2407 }
2408 
2409 /**
2410  *  e1000e_write_phy_reg_bm - Write BM PHY register
2411  *  @hw: pointer to the HW structure
2412  *  @offset: register offset to write to
2413  *  @data: data to write at register offset
2414  *
2415  *  Acquires semaphore, if necessary, then writes the data to PHY register
2416  *  at the offset.  Release any acquired semaphores before exiting.
2417  **/
2418 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2419 {
2420 	s32 ret_val;
2421 	u32 page = offset >> IGP_PAGE_SHIFT;
2422 
2423 	ret_val = hw->phy.ops.acquire(hw);
2424 	if (ret_val)
2425 		return ret_val;
2426 
2427 	/* Page 800 works differently than the rest so it has its own func */
2428 	if (page == BM_WUC_PAGE) {
2429 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2430 							 false, false);
2431 		goto release;
2432 	}
2433 
2434 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2435 
2436 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2437 		u32 page_shift, page_select;
2438 
2439 		/* Page select is register 31 for phy address 1 and 22 for
2440 		 * phy address 2 and 3. Page select is shifted only for
2441 		 * phy address 1.
2442 		 */
2443 		if (hw->phy.addr == 1) {
2444 			page_shift = IGP_PAGE_SHIFT;
2445 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2446 		} else {
2447 			page_shift = 0;
2448 			page_select = BM_PHY_PAGE_SELECT;
2449 		}
2450 
2451 		/* Page is shifted left, PHY expects (page x 32) */
2452 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2453 		                                    (page << page_shift));
2454 		if (ret_val)
2455 			goto release;
2456 	}
2457 
2458 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2459 	                                    data);
2460 
2461 release:
2462 	hw->phy.ops.release(hw);
2463 	return ret_val;
2464 }
2465 
2466 /**
2467  *  e1000e_read_phy_reg_bm - Read BM PHY register
2468  *  @hw: pointer to the HW structure
2469  *  @offset: register offset to be read
2470  *  @data: pointer to the read data
2471  *
2472  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2473  *  and storing the retrieved information in data.  Release any acquired
2474  *  semaphores before exiting.
2475  **/
2476 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2477 {
2478 	s32 ret_val;
2479 	u32 page = offset >> IGP_PAGE_SHIFT;
2480 
2481 	ret_val = hw->phy.ops.acquire(hw);
2482 	if (ret_val)
2483 		return ret_val;
2484 
2485 	/* Page 800 works differently than the rest so it has its own func */
2486 	if (page == BM_WUC_PAGE) {
2487 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2488 							 true, false);
2489 		goto release;
2490 	}
2491 
2492 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2493 
2494 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2495 		u32 page_shift, page_select;
2496 
2497 		/* Page select is register 31 for phy address 1 and 22 for
2498 		 * phy address 2 and 3. Page select is shifted only for
2499 		 * phy address 1.
2500 		 */
2501 		if (hw->phy.addr == 1) {
2502 			page_shift = IGP_PAGE_SHIFT;
2503 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2504 		} else {
2505 			page_shift = 0;
2506 			page_select = BM_PHY_PAGE_SELECT;
2507 		}
2508 
2509 		/* Page is shifted left, PHY expects (page x 32) */
2510 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2511 		                                    (page << page_shift));
2512 		if (ret_val)
2513 			goto release;
2514 	}
2515 
2516 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2517 	                                   data);
2518 release:
2519 	hw->phy.ops.release(hw);
2520 	return ret_val;
2521 }
2522 
2523 /**
2524  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2525  *  @hw: pointer to the HW structure
2526  *  @offset: register offset to be read
2527  *  @data: pointer to the read data
2528  *
2529  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2530  *  and storing the retrieved information in data.  Release any acquired
2531  *  semaphores before exiting.
2532  **/
2533 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2534 {
2535 	s32 ret_val;
2536 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2537 
2538 	ret_val = hw->phy.ops.acquire(hw);
2539 	if (ret_val)
2540 		return ret_val;
2541 
2542 	/* Page 800 works differently than the rest so it has its own func */
2543 	if (page == BM_WUC_PAGE) {
2544 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2545 							 true, false);
2546 		goto release;
2547 	}
2548 
2549 	hw->phy.addr = 1;
2550 
2551 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2552 
2553 		/* Page is shifted left, PHY expects (page x 32) */
2554 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2555 						    page);
2556 
2557 		if (ret_val)
2558 			goto release;
2559 	}
2560 
2561 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2562 					   data);
2563 release:
2564 	hw->phy.ops.release(hw);
2565 	return ret_val;
2566 }
2567 
2568 /**
2569  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2570  *  @hw: pointer to the HW structure
2571  *  @offset: register offset to write to
2572  *  @data: data to write at register offset
2573  *
2574  *  Acquires semaphore, if necessary, then writes the data to PHY register
2575  *  at the offset.  Release any acquired semaphores before exiting.
2576  **/
2577 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2578 {
2579 	s32 ret_val;
2580 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2581 
2582 	ret_val = hw->phy.ops.acquire(hw);
2583 	if (ret_val)
2584 		return ret_val;
2585 
2586 	/* Page 800 works differently than the rest so it has its own func */
2587 	if (page == BM_WUC_PAGE) {
2588 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2589 							 false, false);
2590 		goto release;
2591 	}
2592 
2593 	hw->phy.addr = 1;
2594 
2595 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2596 		/* Page is shifted left, PHY expects (page x 32) */
2597 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2598 						    page);
2599 
2600 		if (ret_val)
2601 			goto release;
2602 	}
2603 
2604 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2605 					    data);
2606 
2607 release:
2608 	hw->phy.ops.release(hw);
2609 	return ret_val;
2610 }
2611 
2612 /**
2613  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2614  *  @hw: pointer to the HW structure
2615  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2616  *
2617  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2618  *  address to store contents of the BM_WUC_ENABLE_REG register.
2619  **/
2620 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2621 {
2622 	s32 ret_val;
2623 	u16 temp;
2624 
2625 	/* All page select, port ctrl and wakeup registers use phy address 1 */
2626 	hw->phy.addr = 1;
2627 
2628 	/* Select Port Control Registers page */
2629 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2630 	if (ret_val) {
2631 		e_dbg("Could not set Port Control page\n");
2632 		return ret_val;
2633 	}
2634 
2635 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2636 	if (ret_val) {
2637 		e_dbg("Could not read PHY register %d.%d\n",
2638 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2639 		return ret_val;
2640 	}
2641 
2642 	/* Enable both PHY wakeup mode and Wakeup register page writes.
2643 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2644 	 */
2645 	temp = *phy_reg;
2646 	temp |= BM_WUC_ENABLE_BIT;
2647 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2648 
2649 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2650 	if (ret_val) {
2651 		e_dbg("Could not write PHY register %d.%d\n",
2652 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2653 		return ret_val;
2654 	}
2655 
2656 	/* Select Host Wakeup Registers page - caller now able to write
2657 	 * registers on the Wakeup registers page
2658 	 */
2659 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2660 }
2661 
2662 /**
2663  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2664  *  @hw: pointer to the HW structure
2665  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2666  *
2667  *  Restore BM_WUC_ENABLE_REG to its original value.
2668  *
2669  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2670  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2671  *  caller.
2672  **/
2673 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2674 {
2675 	s32 ret_val = 0;
2676 
2677 	/* Select Port Control Registers page */
2678 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2679 	if (ret_val) {
2680 		e_dbg("Could not set Port Control page\n");
2681 		return ret_val;
2682 	}
2683 
2684 	/* Restore 769.17 to its original value */
2685 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2686 	if (ret_val)
2687 		e_dbg("Could not restore PHY register %d.%d\n",
2688 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2689 
2690 	return ret_val;
2691 }
2692 
2693 /**
2694  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2695  *  @hw: pointer to the HW structure
2696  *  @offset: register offset to be read or written
2697  *  @data: pointer to the data to read or write
2698  *  @read: determines if operation is read or write
2699  *  @page_set: BM_WUC_PAGE already set and access enabled
2700  *
2701  *  Read the PHY register at offset and store the retrieved information in
2702  *  data, or write data to PHY register at offset.  Note the procedure to
2703  *  access the PHY wakeup registers is different than reading the other PHY
2704  *  registers. It works as such:
2705  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2706  *  2) Set page to 800 for host (801 if we were manageability)
2707  *  3) Write the address using the address opcode (0x11)
2708  *  4) Read or write the data using the data opcode (0x12)
2709  *  5) Restore 769.17.2 to its original value
2710  *
2711  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2712  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2713  *
2714  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2715  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2716  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2717  **/
2718 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2719 					  u16 *data, bool read, bool page_set)
2720 {
2721 	s32 ret_val;
2722 	u16 reg = BM_PHY_REG_NUM(offset);
2723 	u16 page = BM_PHY_REG_PAGE(offset);
2724 	u16 phy_reg = 0;
2725 
2726 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2727 	if ((hw->mac.type == e1000_pchlan) &&
2728 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2729 		e_dbg("Attempting to access page %d while gig enabled.\n",
2730 		      page);
2731 
2732 	if (!page_set) {
2733 		/* Enable access to PHY wakeup registers */
2734 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2735 		if (ret_val) {
2736 			e_dbg("Could not enable PHY wakeup reg access\n");
2737 			return ret_val;
2738 		}
2739 	}
2740 
2741 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2742 
2743 	/* Write the Wakeup register page offset value using opcode 0x11 */
2744 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2745 	if (ret_val) {
2746 		e_dbg("Could not write address opcode to page %d\n", page);
2747 		return ret_val;
2748 	}
2749 
2750 	if (read) {
2751 		/* Read the Wakeup register page value using opcode 0x12 */
2752 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2753 		                                   data);
2754 	} else {
2755 		/* Write the Wakeup register page value using opcode 0x12 */
2756 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2757 						    *data);
2758 	}
2759 
2760 	if (ret_val) {
2761 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2762 		return ret_val;
2763 	}
2764 
2765 	if (!page_set)
2766 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2767 
2768 	return ret_val;
2769 }
2770 
2771 /**
2772  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2773  * @hw: pointer to the HW structure
2774  *
2775  * In the case of a PHY power down to save power, or to turn off link during a
2776  * driver unload, or wake on lan is not enabled, restore the link to previous
2777  * settings.
2778  **/
2779 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2780 {
2781 	u16 mii_reg = 0;
2782 
2783 	/* The PHY will retain its settings across a power down/up cycle */
2784 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2785 	mii_reg &= ~MII_CR_POWER_DOWN;
2786 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2787 }
2788 
2789 /**
2790  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2791  * @hw: pointer to the HW structure
2792  *
2793  * In the case of a PHY power down to save power, or to turn off link during a
2794  * driver unload, or wake on lan is not enabled, restore the link to previous
2795  * settings.
2796  **/
2797 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2798 {
2799 	u16 mii_reg = 0;
2800 
2801 	/* The PHY will retain its settings across a power down/up cycle */
2802 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2803 	mii_reg |= MII_CR_POWER_DOWN;
2804 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2805 	usleep_range(1000, 2000);
2806 }
2807 
2808 /**
2809  *  e1000e_commit_phy - Soft PHY reset
2810  *  @hw: pointer to the HW structure
2811  *
2812  *  Performs a soft PHY reset on those that apply. This is a function pointer
2813  *  entry point called by drivers.
2814  **/
2815 s32 e1000e_commit_phy(struct e1000_hw *hw)
2816 {
2817 	if (hw->phy.ops.commit)
2818 		return hw->phy.ops.commit(hw);
2819 
2820 	return 0;
2821 }
2822 
2823 /**
2824  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2825  *  @hw: pointer to the HW structure
2826  *  @active: boolean used to enable/disable lplu
2827  *
2828  *  Success returns 0, Failure returns 1
2829  *
2830  *  The low power link up (lplu) state is set to the power management level D0
2831  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2832  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2833  *  is used during Dx states where the power conservation is most important.
2834  *  During driver activity, SmartSpeed should be enabled so performance is
2835  *  maintained.  This is a function pointer entry point called by drivers.
2836  **/
2837 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2838 {
2839 	if (hw->phy.ops.set_d0_lplu_state)
2840 		return hw->phy.ops.set_d0_lplu_state(hw, active);
2841 
2842 	return 0;
2843 }
2844 
2845 /**
2846  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2847  *  @hw: pointer to the HW structure
2848  *  @offset: register offset to be read
2849  *  @data: pointer to the read data
2850  *  @locked: semaphore has already been acquired or not
2851  *
2852  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2853  *  and stores the retrieved information in data.  Release any acquired
2854  *  semaphore before exiting.
2855  **/
2856 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2857 				   bool locked, bool page_set)
2858 {
2859 	s32 ret_val;
2860 	u16 page = BM_PHY_REG_PAGE(offset);
2861 	u16 reg = BM_PHY_REG_NUM(offset);
2862 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2863 
2864 	if (!locked) {
2865 		ret_val = hw->phy.ops.acquire(hw);
2866 		if (ret_val)
2867 			return ret_val;
2868 	}
2869 
2870 	/* Page 800 works differently than the rest so it has its own func */
2871 	if (page == BM_WUC_PAGE) {
2872 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2873 							 true, page_set);
2874 		goto out;
2875 	}
2876 
2877 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2878 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2879 		                                         data, true);
2880 		goto out;
2881 	}
2882 
2883 	if (!page_set) {
2884 		if (page == HV_INTC_FC_PAGE_START)
2885 			page = 0;
2886 
2887 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2888 			/* Page is shifted left, PHY expects (page x 32) */
2889 			ret_val = e1000_set_page_igp(hw,
2890 						     (page << IGP_PAGE_SHIFT));
2891 
2892 			hw->phy.addr = phy_addr;
2893 
2894 			if (ret_val)
2895 				goto out;
2896 		}
2897 	}
2898 
2899 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2900 	      page << IGP_PAGE_SHIFT, reg);
2901 
2902 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2903 	                                  data);
2904 out:
2905 	if (!locked)
2906 		hw->phy.ops.release(hw);
2907 
2908 	return ret_val;
2909 }
2910 
2911 /**
2912  *  e1000_read_phy_reg_hv -  Read HV PHY register
2913  *  @hw: pointer to the HW structure
2914  *  @offset: register offset to be read
2915  *  @data: pointer to the read data
2916  *
2917  *  Acquires semaphore then reads the PHY register at offset and stores
2918  *  the retrieved information in data.  Release the acquired semaphore
2919  *  before exiting.
2920  **/
2921 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2922 {
2923 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2924 }
2925 
2926 /**
2927  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2928  *  @hw: pointer to the HW structure
2929  *  @offset: register offset to be read
2930  *  @data: pointer to the read data
2931  *
2932  *  Reads the PHY register at offset and stores the retrieved information
2933  *  in data.  Assumes semaphore already acquired.
2934  **/
2935 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2936 {
2937 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2938 }
2939 
2940 /**
2941  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2942  *  @hw: pointer to the HW structure
2943  *  @offset: register offset to write to
2944  *  @data: data to write at register offset
2945  *
2946  *  Reads the PHY register at offset and stores the retrieved information
2947  *  in data.  Assumes semaphore already acquired and page already set.
2948  **/
2949 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2950 {
2951 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2952 }
2953 
2954 /**
2955  *  __e1000_write_phy_reg_hv - Write HV PHY register
2956  *  @hw: pointer to the HW structure
2957  *  @offset: register offset to write to
2958  *  @data: data to write at register offset
2959  *  @locked: semaphore has already been acquired or not
2960  *
2961  *  Acquires semaphore, if necessary, then writes the data to PHY register
2962  *  at the offset.  Release any acquired semaphores before exiting.
2963  **/
2964 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2965 				    bool locked, bool page_set)
2966 {
2967 	s32 ret_val;
2968 	u16 page = BM_PHY_REG_PAGE(offset);
2969 	u16 reg = BM_PHY_REG_NUM(offset);
2970 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2971 
2972 	if (!locked) {
2973 		ret_val = hw->phy.ops.acquire(hw);
2974 		if (ret_val)
2975 			return ret_val;
2976 	}
2977 
2978 	/* Page 800 works differently than the rest so it has its own func */
2979 	if (page == BM_WUC_PAGE) {
2980 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2981 							 false, page_set);
2982 		goto out;
2983 	}
2984 
2985 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2986 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2987 		                                         &data, false);
2988 		goto out;
2989 	}
2990 
2991 	if (!page_set) {
2992 		if (page == HV_INTC_FC_PAGE_START)
2993 			page = 0;
2994 
2995 		/* Workaround MDIO accesses being disabled after entering IEEE
2996 		 * Power Down (when bit 11 of the PHY Control register is set)
2997 		 */
2998 		if ((hw->phy.type == e1000_phy_82578) &&
2999 		    (hw->phy.revision >= 1) &&
3000 		    (hw->phy.addr == 2) &&
3001 		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
3002 			u16 data2 = 0x7EFF;
3003 			ret_val = e1000_access_phy_debug_regs_hv(hw,
3004 								 (1 << 6) | 0x3,
3005 								 &data2, false);
3006 			if (ret_val)
3007 				goto out;
3008 		}
3009 
3010 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3011 			/* Page is shifted left, PHY expects (page x 32) */
3012 			ret_val = e1000_set_page_igp(hw,
3013 						     (page << IGP_PAGE_SHIFT));
3014 
3015 			hw->phy.addr = phy_addr;
3016 
3017 			if (ret_val)
3018 				goto out;
3019 		}
3020 	}
3021 
3022 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3023 	      page << IGP_PAGE_SHIFT, reg);
3024 
3025 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3026 	                                  data);
3027 
3028 out:
3029 	if (!locked)
3030 		hw->phy.ops.release(hw);
3031 
3032 	return ret_val;
3033 }
3034 
3035 /**
3036  *  e1000_write_phy_reg_hv - Write HV PHY register
3037  *  @hw: pointer to the HW structure
3038  *  @offset: register offset to write to
3039  *  @data: data to write at register offset
3040  *
3041  *  Acquires semaphore then writes the data to PHY register at the offset.
3042  *  Release the acquired semaphores before exiting.
3043  **/
3044 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3045 {
3046 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3047 }
3048 
3049 /**
3050  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3051  *  @hw: pointer to the HW structure
3052  *  @offset: register offset to write to
3053  *  @data: data to write at register offset
3054  *
3055  *  Writes the data to PHY register at the offset.  Assumes semaphore
3056  *  already acquired.
3057  **/
3058 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3059 {
3060 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3061 }
3062 
3063 /**
3064  *  e1000_write_phy_reg_page_hv - Write HV PHY register
3065  *  @hw: pointer to the HW structure
3066  *  @offset: register offset to write to
3067  *  @data: data to write at register offset
3068  *
3069  *  Writes the data to PHY register at the offset.  Assumes semaphore
3070  *  already acquired and page already set.
3071  **/
3072 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3073 {
3074 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3075 }
3076 
3077 /**
3078  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3079  *  @page: page to be accessed
3080  **/
3081 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3082 {
3083 	u32 phy_addr = 2;
3084 
3085 	if (page >= HV_INTC_FC_PAGE_START)
3086 		phy_addr = 1;
3087 
3088 	return phy_addr;
3089 }
3090 
3091 /**
3092  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3093  *  @hw: pointer to the HW structure
3094  *  @offset: register offset to be read or written
3095  *  @data: pointer to the data to be read or written
3096  *  @read: determines if operation is read or write
3097  *
3098  *  Reads the PHY register at offset and stores the retreived information
3099  *  in data.  Assumes semaphore already acquired.  Note that the procedure
3100  *  to access these regs uses the address port and data port to read/write.
3101  *  These accesses done with PHY address 2 and without using pages.
3102  **/
3103 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3104                                           u16 *data, bool read)
3105 {
3106 	s32 ret_val;
3107 	u32 addr_reg = 0;
3108 	u32 data_reg = 0;
3109 
3110 	/* This takes care of the difference with desktop vs mobile phy */
3111 	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3112 	           I82578_ADDR_REG : I82577_ADDR_REG;
3113 	data_reg = addr_reg + 1;
3114 
3115 	/* All operations in this function are phy address 2 */
3116 	hw->phy.addr = 2;
3117 
3118 	/* masking with 0x3F to remove the page from offset */
3119 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3120 	if (ret_val) {
3121 		e_dbg("Could not write the Address Offset port register\n");
3122 		return ret_val;
3123 	}
3124 
3125 	/* Read or write the data value next */
3126 	if (read)
3127 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3128 	else
3129 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3130 
3131 	if (ret_val)
3132 		e_dbg("Could not access the Data port register\n");
3133 
3134 	return ret_val;
3135 }
3136 
3137 /**
3138  *  e1000_link_stall_workaround_hv - Si workaround
3139  *  @hw: pointer to the HW structure
3140  *
3141  *  This function works around a Si bug where the link partner can get
3142  *  a link up indication before the PHY does.  If small packets are sent
3143  *  by the link partner they can be placed in the packet buffer without
3144  *  being properly accounted for by the PHY and will stall preventing
3145  *  further packets from being received.  The workaround is to clear the
3146  *  packet buffer after the PHY detects link up.
3147  **/
3148 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3149 {
3150 	s32 ret_val = 0;
3151 	u16 data;
3152 
3153 	if (hw->phy.type != e1000_phy_82578)
3154 		return 0;
3155 
3156 	/* Do not apply workaround if in PHY loopback bit 14 set */
3157 	e1e_rphy(hw, PHY_CONTROL, &data);
3158 	if (data & PHY_CONTROL_LB)
3159 		return 0;
3160 
3161 	/* check if link is up and at 1Gbps */
3162 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3163 	if (ret_val)
3164 		return ret_val;
3165 
3166 	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3167 		BM_CS_STATUS_SPEED_MASK;
3168 
3169 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3170 		     BM_CS_STATUS_SPEED_1000))
3171 		return 0;
3172 
3173 	msleep(200);
3174 
3175 	/* flush the packets in the fifo buffer */
3176 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3177 			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3178 	if (ret_val)
3179 		return ret_val;
3180 
3181 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3182 }
3183 
3184 /**
3185  *  e1000_check_polarity_82577 - Checks the polarity.
3186  *  @hw: pointer to the HW structure
3187  *
3188  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3189  *
3190  *  Polarity is determined based on the PHY specific status register.
3191  **/
3192 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3193 {
3194 	struct e1000_phy_info *phy = &hw->phy;
3195 	s32 ret_val;
3196 	u16 data;
3197 
3198 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3199 
3200 	if (!ret_val)
3201 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3202 		                      ? e1000_rev_polarity_reversed
3203 		                      : e1000_rev_polarity_normal;
3204 
3205 	return ret_val;
3206 }
3207 
3208 /**
3209  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3210  *  @hw: pointer to the HW structure
3211  *
3212  *  Calls the PHY setup function to force speed and duplex.
3213  **/
3214 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3215 {
3216 	struct e1000_phy_info *phy = &hw->phy;
3217 	s32 ret_val;
3218 	u16 phy_data;
3219 	bool link;
3220 
3221 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3222 	if (ret_val)
3223 		return ret_val;
3224 
3225 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3226 
3227 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3228 	if (ret_val)
3229 		return ret_val;
3230 
3231 	udelay(1);
3232 
3233 	if (phy->autoneg_wait_to_complete) {
3234 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3235 
3236 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3237 						      100000, &link);
3238 		if (ret_val)
3239 			return ret_val;
3240 
3241 		if (!link)
3242 			e_dbg("Link taking longer than expected.\n");
3243 
3244 		/* Try once more */
3245 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3246 						      100000, &link);
3247 	}
3248 
3249 	return ret_val;
3250 }
3251 
3252 /**
3253  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3254  *  @hw: pointer to the HW structure
3255  *
3256  *  Read PHY status to determine if link is up.  If link is up, then
3257  *  set/determine 10base-T extended distance and polarity correction.  Read
3258  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3259  *  determine on the cable length, local and remote receiver.
3260  **/
3261 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3262 {
3263 	struct e1000_phy_info *phy = &hw->phy;
3264 	s32 ret_val;
3265 	u16 data;
3266 	bool link;
3267 
3268 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3269 	if (ret_val)
3270 		return ret_val;
3271 
3272 	if (!link) {
3273 		e_dbg("Phy info is only valid if link is up\n");
3274 		return -E1000_ERR_CONFIG;
3275 	}
3276 
3277 	phy->polarity_correction = true;
3278 
3279 	ret_val = e1000_check_polarity_82577(hw);
3280 	if (ret_val)
3281 		return ret_val;
3282 
3283 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3284 	if (ret_val)
3285 		return ret_val;
3286 
3287 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3288 
3289 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3290 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3291 		ret_val = hw->phy.ops.get_cable_length(hw);
3292 		if (ret_val)
3293 			return ret_val;
3294 
3295 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3296 		if (ret_val)
3297 			return ret_val;
3298 
3299 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3300 		                ? e1000_1000t_rx_status_ok
3301 		                : e1000_1000t_rx_status_not_ok;
3302 
3303 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3304 		                 ? e1000_1000t_rx_status_ok
3305 		                 : e1000_1000t_rx_status_not_ok;
3306 	} else {
3307 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3308 		phy->local_rx = e1000_1000t_rx_status_undefined;
3309 		phy->remote_rx = e1000_1000t_rx_status_undefined;
3310 	}
3311 
3312 	return 0;
3313 }
3314 
3315 /**
3316  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3317  *  @hw: pointer to the HW structure
3318  *
3319  * Reads the diagnostic status register and verifies result is valid before
3320  * placing it in the phy_cable_length field.
3321  **/
3322 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3323 {
3324 	struct e1000_phy_info *phy = &hw->phy;
3325 	s32 ret_val;
3326 	u16 phy_data, length;
3327 
3328 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3329 	if (ret_val)
3330 		return ret_val;
3331 
3332 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3333 	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3334 
3335 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3336 		ret_val = -E1000_ERR_PHY;
3337 
3338 	phy->cable_length = length;
3339 
3340 	return 0;
3341 }
3342