xref: /linux/drivers/net/ethernet/intel/e1000e/phy.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
31 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
32 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
33 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
34 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
35 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
36 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
37 					  u16 *data, bool read, bool page_set);
38 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
39 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
40                                           u16 *data, bool read);
41 
42 /* Cable length tables */
43 static const u16 e1000_m88_cable_length_table[] = {
44 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
45 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
46 		ARRAY_SIZE(e1000_m88_cable_length_table)
47 
48 static const u16 e1000_igp_2_cable_length_table[] = {
49 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
50 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
51 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
52 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
53 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
54 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
55 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
56 	124};
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
59 
60 #define BM_PHY_REG_PAGE(offset) \
61 	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
62 #define BM_PHY_REG_NUM(offset) \
63 	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
64 	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
65 		~MAX_PHY_REG_ADDRESS)))
66 
67 #define HV_INTC_FC_PAGE_START             768
68 #define I82578_ADDR_REG                   29
69 #define I82577_ADDR_REG                   16
70 #define I82577_CFG_REG                    22
71 #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
72 #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
73 #define I82577_CTRL_REG                   23
74 
75 /* 82577 specific PHY registers */
76 #define I82577_PHY_CTRL_2            18
77 #define I82577_PHY_STATUS_2          26
78 #define I82577_PHY_DIAG_STATUS       31
79 
80 /* I82577 PHY Status 2 */
81 #define I82577_PHY_STATUS2_REV_POLARITY   0x0400
82 #define I82577_PHY_STATUS2_MDIX           0x0800
83 #define I82577_PHY_STATUS2_SPEED_MASK     0x0300
84 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
85 
86 /* I82577 PHY Control 2 */
87 #define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
88 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
89 
90 /* I82577 PHY Diagnostics Status */
91 #define I82577_DSTATUS_CABLE_LENGTH       0x03FC
92 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
93 
94 /* BM PHY Copper Specific Control 1 */
95 #define BM_CS_CTRL1                       16
96 
97 #define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
98 #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
99 #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
100 
101 /**
102  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
103  *  @hw: pointer to the HW structure
104  *
105  *  Read the PHY management control register and check whether a PHY reset
106  *  is blocked.  If a reset is not blocked return 0, otherwise
107  *  return E1000_BLK_PHY_RESET (12).
108  **/
109 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
110 {
111 	u32 manc;
112 
113 	manc = er32(MANC);
114 
115 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
116 	       E1000_BLK_PHY_RESET : 0;
117 }
118 
119 /**
120  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
121  *  @hw: pointer to the HW structure
122  *
123  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
124  *  revision in the hardware structure.
125  **/
126 s32 e1000e_get_phy_id(struct e1000_hw *hw)
127 {
128 	struct e1000_phy_info *phy = &hw->phy;
129 	s32 ret_val = 0;
130 	u16 phy_id;
131 	u16 retry_count = 0;
132 
133 	if (!phy->ops.read_reg)
134 		return 0;
135 
136 	while (retry_count < 2) {
137 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
138 		if (ret_val)
139 			return ret_val;
140 
141 		phy->id = (u32)(phy_id << 16);
142 		udelay(20);
143 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
144 		if (ret_val)
145 			return ret_val;
146 
147 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
148 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
149 
150 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
151 			return 0;
152 
153 		retry_count++;
154 	}
155 
156 	return 0;
157 }
158 
159 /**
160  *  e1000e_phy_reset_dsp - Reset PHY DSP
161  *  @hw: pointer to the HW structure
162  *
163  *  Reset the digital signal processor.
164  **/
165 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
166 {
167 	s32 ret_val;
168 
169 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
170 	if (ret_val)
171 		return ret_val;
172 
173 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
174 }
175 
176 /**
177  *  e1000e_read_phy_reg_mdic - Read MDI control register
178  *  @hw: pointer to the HW structure
179  *  @offset: register offset to be read
180  *  @data: pointer to the read data
181  *
182  *  Reads the MDI control register in the PHY at offset and stores the
183  *  information read to data.
184  **/
185 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
186 {
187 	struct e1000_phy_info *phy = &hw->phy;
188 	u32 i, mdic = 0;
189 
190 	if (offset > MAX_PHY_REG_ADDRESS) {
191 		e_dbg("PHY Address %d is out of range\n", offset);
192 		return -E1000_ERR_PARAM;
193 	}
194 
195 	/*
196 	 * Set up Op-code, Phy Address, and register offset in the MDI
197 	 * Control register.  The MAC will take care of interfacing with the
198 	 * PHY to retrieve the desired data.
199 	 */
200 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
201 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
202 		(E1000_MDIC_OP_READ));
203 
204 	ew32(MDIC, mdic);
205 
206 	/*
207 	 * Poll the ready bit to see if the MDI read completed
208 	 * Increasing the time out as testing showed failures with
209 	 * the lower time out
210 	 */
211 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
212 		udelay(50);
213 		mdic = er32(MDIC);
214 		if (mdic & E1000_MDIC_READY)
215 			break;
216 	}
217 	if (!(mdic & E1000_MDIC_READY)) {
218 		e_dbg("MDI Read did not complete\n");
219 		return -E1000_ERR_PHY;
220 	}
221 	if (mdic & E1000_MDIC_ERROR) {
222 		e_dbg("MDI Error\n");
223 		return -E1000_ERR_PHY;
224 	}
225 	*data = (u16) mdic;
226 
227 	/*
228 	 * Allow some time after each MDIC transaction to avoid
229 	 * reading duplicate data in the next MDIC transaction.
230 	 */
231 	if (hw->mac.type == e1000_pch2lan)
232 		udelay(100);
233 
234 	return 0;
235 }
236 
237 /**
238  *  e1000e_write_phy_reg_mdic - Write MDI control register
239  *  @hw: pointer to the HW structure
240  *  @offset: register offset to write to
241  *  @data: data to write to register at offset
242  *
243  *  Writes data to MDI control register in the PHY at offset.
244  **/
245 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
246 {
247 	struct e1000_phy_info *phy = &hw->phy;
248 	u32 i, mdic = 0;
249 
250 	if (offset > MAX_PHY_REG_ADDRESS) {
251 		e_dbg("PHY Address %d is out of range\n", offset);
252 		return -E1000_ERR_PARAM;
253 	}
254 
255 	/*
256 	 * Set up Op-code, Phy Address, and register offset in the MDI
257 	 * Control register.  The MAC will take care of interfacing with the
258 	 * PHY to retrieve the desired data.
259 	 */
260 	mdic = (((u32)data) |
261 		(offset << E1000_MDIC_REG_SHIFT) |
262 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
263 		(E1000_MDIC_OP_WRITE));
264 
265 	ew32(MDIC, mdic);
266 
267 	/*
268 	 * Poll the ready bit to see if the MDI read completed
269 	 * Increasing the time out as testing showed failures with
270 	 * the lower time out
271 	 */
272 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
273 		udelay(50);
274 		mdic = er32(MDIC);
275 		if (mdic & E1000_MDIC_READY)
276 			break;
277 	}
278 	if (!(mdic & E1000_MDIC_READY)) {
279 		e_dbg("MDI Write did not complete\n");
280 		return -E1000_ERR_PHY;
281 	}
282 	if (mdic & E1000_MDIC_ERROR) {
283 		e_dbg("MDI Error\n");
284 		return -E1000_ERR_PHY;
285 	}
286 
287 	/*
288 	 * Allow some time after each MDIC transaction to avoid
289 	 * reading duplicate data in the next MDIC transaction.
290 	 */
291 	if (hw->mac.type == e1000_pch2lan)
292 		udelay(100);
293 
294 	return 0;
295 }
296 
297 /**
298  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
299  *  @hw: pointer to the HW structure
300  *  @offset: register offset to be read
301  *  @data: pointer to the read data
302  *
303  *  Acquires semaphore, if necessary, then reads the PHY register at offset
304  *  and storing the retrieved information in data.  Release any acquired
305  *  semaphores before exiting.
306  **/
307 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
308 {
309 	s32 ret_val;
310 
311 	ret_val = hw->phy.ops.acquire(hw);
312 	if (ret_val)
313 		return ret_val;
314 
315 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
316 					   data);
317 
318 	hw->phy.ops.release(hw);
319 
320 	return ret_val;
321 }
322 
323 /**
324  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
325  *  @hw: pointer to the HW structure
326  *  @offset: register offset to write to
327  *  @data: data to write at register offset
328  *
329  *  Acquires semaphore, if necessary, then writes the data to PHY register
330  *  at the offset.  Release any acquired semaphores before exiting.
331  **/
332 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
333 {
334 	s32 ret_val;
335 
336 	ret_val = hw->phy.ops.acquire(hw);
337 	if (ret_val)
338 		return ret_val;
339 
340 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
341 					    data);
342 
343 	hw->phy.ops.release(hw);
344 
345 	return ret_val;
346 }
347 
348 /**
349  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
350  *  @hw: pointer to the HW structure
351  *  @page: page to set (shifted left when necessary)
352  *
353  *  Sets PHY page required for PHY register access.  Assumes semaphore is
354  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
355  *  must set it appropriately (if necessary) after this function returns.
356  **/
357 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
358 {
359 	e_dbg("Setting page 0x%x\n", page);
360 
361 	hw->phy.addr = 1;
362 
363 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
364 }
365 
366 /**
367  *  __e1000e_read_phy_reg_igp - Read igp PHY register
368  *  @hw: pointer to the HW structure
369  *  @offset: register offset to be read
370  *  @data: pointer to the read data
371  *  @locked: semaphore has already been acquired or not
372  *
373  *  Acquires semaphore, if necessary, then reads the PHY register at offset
374  *  and stores the retrieved information in data.  Release any acquired
375  *  semaphores before exiting.
376  **/
377 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
378                                     bool locked)
379 {
380 	s32 ret_val = 0;
381 
382 	if (!locked) {
383 		if (!hw->phy.ops.acquire)
384 			return 0;
385 
386 		ret_val = hw->phy.ops.acquire(hw);
387 		if (ret_val)
388 			return ret_val;
389 	}
390 
391 	if (offset > MAX_PHY_MULTI_PAGE_REG)
392 		ret_val = e1000e_write_phy_reg_mdic(hw,
393 						    IGP01E1000_PHY_PAGE_SELECT,
394 						    (u16)offset);
395 	if (!ret_val)
396 		ret_val = e1000e_read_phy_reg_mdic(hw,
397 						   MAX_PHY_REG_ADDRESS & offset,
398 						   data);
399 	if (!locked)
400 		hw->phy.ops.release(hw);
401 
402 	return ret_val;
403 }
404 
405 /**
406  *  e1000e_read_phy_reg_igp - Read igp PHY register
407  *  @hw: pointer to the HW structure
408  *  @offset: register offset to be read
409  *  @data: pointer to the read data
410  *
411  *  Acquires semaphore then reads the PHY register at offset and stores the
412  *  retrieved information in data.
413  *  Release the acquired semaphore before exiting.
414  **/
415 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
416 {
417 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
418 }
419 
420 /**
421  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
422  *  @hw: pointer to the HW structure
423  *  @offset: register offset to be read
424  *  @data: pointer to the read data
425  *
426  *  Reads the PHY register at offset and stores the retrieved information
427  *  in data.  Assumes semaphore already acquired.
428  **/
429 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
430 {
431 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
432 }
433 
434 /**
435  *  e1000e_write_phy_reg_igp - Write igp PHY register
436  *  @hw: pointer to the HW structure
437  *  @offset: register offset to write to
438  *  @data: data to write at register offset
439  *  @locked: semaphore has already been acquired or not
440  *
441  *  Acquires semaphore, if necessary, then writes the data to PHY register
442  *  at the offset.  Release any acquired semaphores before exiting.
443  **/
444 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
445                                      bool locked)
446 {
447 	s32 ret_val = 0;
448 
449 	if (!locked) {
450 		if (!hw->phy.ops.acquire)
451 			return 0;
452 
453 		ret_val = hw->phy.ops.acquire(hw);
454 		if (ret_val)
455 			return ret_val;
456 	}
457 
458 	if (offset > MAX_PHY_MULTI_PAGE_REG)
459 		ret_val = e1000e_write_phy_reg_mdic(hw,
460 						    IGP01E1000_PHY_PAGE_SELECT,
461 						    (u16)offset);
462 	if (!ret_val)
463 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
464 							offset,
465 						    data);
466 	if (!locked)
467 		hw->phy.ops.release(hw);
468 
469 	return ret_val;
470 }
471 
472 /**
473  *  e1000e_write_phy_reg_igp - Write igp PHY register
474  *  @hw: pointer to the HW structure
475  *  @offset: register offset to write to
476  *  @data: data to write at register offset
477  *
478  *  Acquires semaphore then writes the data to PHY register
479  *  at the offset.  Release any acquired semaphores before exiting.
480  **/
481 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
482 {
483 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
484 }
485 
486 /**
487  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
488  *  @hw: pointer to the HW structure
489  *  @offset: register offset to write to
490  *  @data: data to write at register offset
491  *
492  *  Writes the data to PHY register at the offset.
493  *  Assumes semaphore already acquired.
494  **/
495 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
496 {
497 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
498 }
499 
500 /**
501  *  __e1000_read_kmrn_reg - Read kumeran register
502  *  @hw: pointer to the HW structure
503  *  @offset: register offset to be read
504  *  @data: pointer to the read data
505  *  @locked: semaphore has already been acquired or not
506  *
507  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
508  *  using the kumeran interface.  The information retrieved is stored in data.
509  *  Release any acquired semaphores before exiting.
510  **/
511 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
512                                  bool locked)
513 {
514 	u32 kmrnctrlsta;
515 
516 	if (!locked) {
517 		s32 ret_val = 0;
518 
519 		if (!hw->phy.ops.acquire)
520 			return 0;
521 
522 		ret_val = hw->phy.ops.acquire(hw);
523 		if (ret_val)
524 			return ret_val;
525 	}
526 
527 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
528 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
529 	ew32(KMRNCTRLSTA, kmrnctrlsta);
530 	e1e_flush();
531 
532 	udelay(2);
533 
534 	kmrnctrlsta = er32(KMRNCTRLSTA);
535 	*data = (u16)kmrnctrlsta;
536 
537 	if (!locked)
538 		hw->phy.ops.release(hw);
539 
540 	return 0;
541 }
542 
543 /**
544  *  e1000e_read_kmrn_reg -  Read kumeran register
545  *  @hw: pointer to the HW structure
546  *  @offset: register offset to be read
547  *  @data: pointer to the read data
548  *
549  *  Acquires semaphore then reads the PHY register at offset using the
550  *  kumeran interface.  The information retrieved is stored in data.
551  *  Release the acquired semaphore before exiting.
552  **/
553 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
554 {
555 	return __e1000_read_kmrn_reg(hw, offset, data, false);
556 }
557 
558 /**
559  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
560  *  @hw: pointer to the HW structure
561  *  @offset: register offset to be read
562  *  @data: pointer to the read data
563  *
564  *  Reads the PHY register at offset using the kumeran interface.  The
565  *  information retrieved is stored in data.
566  *  Assumes semaphore already acquired.
567  **/
568 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
569 {
570 	return __e1000_read_kmrn_reg(hw, offset, data, true);
571 }
572 
573 /**
574  *  __e1000_write_kmrn_reg - Write kumeran register
575  *  @hw: pointer to the HW structure
576  *  @offset: register offset to write to
577  *  @data: data to write at register offset
578  *  @locked: semaphore has already been acquired or not
579  *
580  *  Acquires semaphore, if necessary.  Then write the data to PHY register
581  *  at the offset using the kumeran interface.  Release any acquired semaphores
582  *  before exiting.
583  **/
584 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
585                                   bool locked)
586 {
587 	u32 kmrnctrlsta;
588 
589 	if (!locked) {
590 		s32 ret_val = 0;
591 
592 		if (!hw->phy.ops.acquire)
593 			return 0;
594 
595 		ret_val = hw->phy.ops.acquire(hw);
596 		if (ret_val)
597 			return ret_val;
598 	}
599 
600 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
601 		       E1000_KMRNCTRLSTA_OFFSET) | data;
602 	ew32(KMRNCTRLSTA, kmrnctrlsta);
603 	e1e_flush();
604 
605 	udelay(2);
606 
607 	if (!locked)
608 		hw->phy.ops.release(hw);
609 
610 	return 0;
611 }
612 
613 /**
614  *  e1000e_write_kmrn_reg -  Write kumeran register
615  *  @hw: pointer to the HW structure
616  *  @offset: register offset to write to
617  *  @data: data to write at register offset
618  *
619  *  Acquires semaphore then writes the data to the PHY register at the offset
620  *  using the kumeran interface.  Release the acquired semaphore before exiting.
621  **/
622 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
623 {
624 	return __e1000_write_kmrn_reg(hw, offset, data, false);
625 }
626 
627 /**
628  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
629  *  @hw: pointer to the HW structure
630  *  @offset: register offset to write to
631  *  @data: data to write at register offset
632  *
633  *  Write the data to PHY register at the offset using the kumeran interface.
634  *  Assumes semaphore already acquired.
635  **/
636 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
637 {
638 	return __e1000_write_kmrn_reg(hw, offset, data, true);
639 }
640 
641 /**
642  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
643  *  @hw: pointer to the HW structure
644  *
645  *  Sets up Master/slave mode
646  **/
647 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
648 {
649 	s32 ret_val;
650 	u16 phy_data;
651 
652 	/* Resolve Master/Slave mode */
653 	ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
654 	if (ret_val)
655 		return ret_val;
656 
657 	/* load defaults for future use */
658 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
659 	    ((phy_data & CR_1000T_MS_VALUE) ?
660 	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
661 
662 	switch (hw->phy.ms_type) {
663 	case e1000_ms_force_master:
664 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
665 		break;
666 	case e1000_ms_force_slave:
667 		phy_data |= CR_1000T_MS_ENABLE;
668 		phy_data &= ~(CR_1000T_MS_VALUE);
669 		break;
670 	case e1000_ms_auto:
671 		phy_data &= ~CR_1000T_MS_ENABLE;
672 		/* fall-through */
673 	default:
674 		break;
675 	}
676 
677 	return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
678 }
679 
680 /**
681  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
682  *  @hw: pointer to the HW structure
683  *
684  *  Sets up Carrier-sense on Transmit and downshift values.
685  **/
686 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
687 {
688 	s32 ret_val;
689 	u16 phy_data;
690 
691 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
692 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
693 	if (ret_val)
694 		return ret_val;
695 
696 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
697 
698 	/* Enable downshift */
699 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
700 
701 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
702 	if (ret_val)
703 		return ret_val;
704 
705 	return e1000_set_master_slave_mode(hw);
706 }
707 
708 /**
709  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
710  *  @hw: pointer to the HW structure
711  *
712  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
713  *  and downshift values are set also.
714  **/
715 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
716 {
717 	struct e1000_phy_info *phy = &hw->phy;
718 	s32 ret_val;
719 	u16 phy_data;
720 
721 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
722 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
723 	if (ret_val)
724 		return ret_val;
725 
726 	/* For BM PHY this bit is downshift enable */
727 	if (phy->type != e1000_phy_bm)
728 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
729 
730 	/*
731 	 * Options:
732 	 *   MDI/MDI-X = 0 (default)
733 	 *   0 - Auto for all speeds
734 	 *   1 - MDI mode
735 	 *   2 - MDI-X mode
736 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
737 	 */
738 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
739 
740 	switch (phy->mdix) {
741 	case 1:
742 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
743 		break;
744 	case 2:
745 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
746 		break;
747 	case 3:
748 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
749 		break;
750 	case 0:
751 	default:
752 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
753 		break;
754 	}
755 
756 	/*
757 	 * Options:
758 	 *   disable_polarity_correction = 0 (default)
759 	 *       Automatic Correction for Reversed Cable Polarity
760 	 *   0 - Disabled
761 	 *   1 - Enabled
762 	 */
763 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
764 	if (phy->disable_polarity_correction)
765 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
766 
767 	/* Enable downshift on BM (disabled by default) */
768 	if (phy->type == e1000_phy_bm) {
769 		/* For 82574/82583, first disable then enable downshift */
770 		if (phy->id == BME1000_E_PHY_ID_R2) {
771 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
772 			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
773 					   phy_data);
774 			if (ret_val)
775 				return ret_val;
776 			/* Commit the changes. */
777 			ret_val = e1000e_commit_phy(hw);
778 			if (ret_val) {
779 				e_dbg("Error committing the PHY changes\n");
780 				return ret_val;
781 			}
782 		}
783 
784 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
785 	}
786 
787 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
788 	if (ret_val)
789 		return ret_val;
790 
791 	if ((phy->type == e1000_phy_m88) &&
792 	    (phy->revision < E1000_REVISION_4) &&
793 	    (phy->id != BME1000_E_PHY_ID_R2)) {
794 		/*
795 		 * Force TX_CLK in the Extended PHY Specific Control Register
796 		 * to 25MHz clock.
797 		 */
798 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
799 		if (ret_val)
800 			return ret_val;
801 
802 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
803 
804 		if ((phy->revision == 2) &&
805 		    (phy->id == M88E1111_I_PHY_ID)) {
806 			/* 82573L PHY - set the downshift counter to 5x. */
807 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
808 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
809 		} else {
810 			/* Configure Master and Slave downshift values */
811 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
812 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
813 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
814 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
815 		}
816 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
817 		if (ret_val)
818 			return ret_val;
819 	}
820 
821 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
822 		/* Set PHY page 0, register 29 to 0x0003 */
823 		ret_val = e1e_wphy(hw, 29, 0x0003);
824 		if (ret_val)
825 			return ret_val;
826 
827 		/* Set PHY page 0, register 30 to 0x0000 */
828 		ret_val = e1e_wphy(hw, 30, 0x0000);
829 		if (ret_val)
830 			return ret_val;
831 	}
832 
833 	/* Commit the changes. */
834 	ret_val = e1000e_commit_phy(hw);
835 	if (ret_val) {
836 		e_dbg("Error committing the PHY changes\n");
837 		return ret_val;
838 	}
839 
840 	if (phy->type == e1000_phy_82578) {
841 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
842 		if (ret_val)
843 			return ret_val;
844 
845 		/* 82578 PHY - set the downshift count to 1x. */
846 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
847 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
848 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
849 		if (ret_val)
850 			return ret_val;
851 	}
852 
853 	return 0;
854 }
855 
856 /**
857  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
858  *  @hw: pointer to the HW structure
859  *
860  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
861  *  igp PHY's.
862  **/
863 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
864 {
865 	struct e1000_phy_info *phy = &hw->phy;
866 	s32 ret_val;
867 	u16 data;
868 
869 	ret_val = e1000_phy_hw_reset(hw);
870 	if (ret_val) {
871 		e_dbg("Error resetting the PHY.\n");
872 		return ret_val;
873 	}
874 
875 	/*
876 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
877 	 * timeout issues when LFS is enabled.
878 	 */
879 	msleep(100);
880 
881 	/* disable lplu d0 during driver init */
882 	ret_val = e1000_set_d0_lplu_state(hw, false);
883 	if (ret_val) {
884 		e_dbg("Error Disabling LPLU D0\n");
885 		return ret_val;
886 	}
887 	/* Configure mdi-mdix settings */
888 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
889 	if (ret_val)
890 		return ret_val;
891 
892 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
893 
894 	switch (phy->mdix) {
895 	case 1:
896 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
897 		break;
898 	case 2:
899 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
900 		break;
901 	case 0:
902 	default:
903 		data |= IGP01E1000_PSCR_AUTO_MDIX;
904 		break;
905 	}
906 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
907 	if (ret_val)
908 		return ret_val;
909 
910 	/* set auto-master slave resolution settings */
911 	if (hw->mac.autoneg) {
912 		/*
913 		 * when autonegotiation advertisement is only 1000Mbps then we
914 		 * should disable SmartSpeed and enable Auto MasterSlave
915 		 * resolution as hardware default.
916 		 */
917 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
918 			/* Disable SmartSpeed */
919 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
920 					   &data);
921 			if (ret_val)
922 				return ret_val;
923 
924 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
925 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
926 					   data);
927 			if (ret_val)
928 				return ret_val;
929 
930 			/* Set auto Master/Slave resolution process */
931 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
932 			if (ret_val)
933 				return ret_val;
934 
935 			data &= ~CR_1000T_MS_ENABLE;
936 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
937 			if (ret_val)
938 				return ret_val;
939 		}
940 
941 		ret_val = e1000_set_master_slave_mode(hw);
942 	}
943 
944 	return ret_val;
945 }
946 
947 /**
948  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
949  *  @hw: pointer to the HW structure
950  *
951  *  Reads the MII auto-neg advertisement register and/or the 1000T control
952  *  register and if the PHY is already setup for auto-negotiation, then
953  *  return successful.  Otherwise, setup advertisement and flow control to
954  *  the appropriate values for the wanted auto-negotiation.
955  **/
956 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
957 {
958 	struct e1000_phy_info *phy = &hw->phy;
959 	s32 ret_val;
960 	u16 mii_autoneg_adv_reg;
961 	u16 mii_1000t_ctrl_reg = 0;
962 
963 	phy->autoneg_advertised &= phy->autoneg_mask;
964 
965 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
966 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
967 	if (ret_val)
968 		return ret_val;
969 
970 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
971 		/* Read the MII 1000Base-T Control Register (Address 9). */
972 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
973 		if (ret_val)
974 			return ret_val;
975 	}
976 
977 	/*
978 	 * Need to parse both autoneg_advertised and fc and set up
979 	 * the appropriate PHY registers.  First we will parse for
980 	 * autoneg_advertised software override.  Since we can advertise
981 	 * a plethora of combinations, we need to check each bit
982 	 * individually.
983 	 */
984 
985 	/*
986 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
987 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
988 	 * the  1000Base-T Control Register (Address 9).
989 	 */
990 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
991 				 NWAY_AR_100TX_HD_CAPS |
992 				 NWAY_AR_10T_FD_CAPS   |
993 				 NWAY_AR_10T_HD_CAPS);
994 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
995 
996 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
997 
998 	/* Do we want to advertise 10 Mb Half Duplex? */
999 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1000 		e_dbg("Advertise 10mb Half duplex\n");
1001 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1002 	}
1003 
1004 	/* Do we want to advertise 10 Mb Full Duplex? */
1005 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1006 		e_dbg("Advertise 10mb Full duplex\n");
1007 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1008 	}
1009 
1010 	/* Do we want to advertise 100 Mb Half Duplex? */
1011 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1012 		e_dbg("Advertise 100mb Half duplex\n");
1013 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1014 	}
1015 
1016 	/* Do we want to advertise 100 Mb Full Duplex? */
1017 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1018 		e_dbg("Advertise 100mb Full duplex\n");
1019 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1020 	}
1021 
1022 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1023 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1024 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1025 
1026 	/* Do we want to advertise 1000 Mb Full Duplex? */
1027 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1028 		e_dbg("Advertise 1000mb Full duplex\n");
1029 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1030 	}
1031 
1032 	/*
1033 	 * Check for a software override of the flow control settings, and
1034 	 * setup the PHY advertisement registers accordingly.  If
1035 	 * auto-negotiation is enabled, then software will have to set the
1036 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1037 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1038 	 * negotiation.
1039 	 *
1040 	 * The possible values of the "fc" parameter are:
1041 	 *      0:  Flow control is completely disabled
1042 	 *      1:  Rx flow control is enabled (we can receive pause frames
1043 	 *          but not send pause frames).
1044 	 *      2:  Tx flow control is enabled (we can send pause frames
1045 	 *          but we do not support receiving pause frames).
1046 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1047 	 *  other:  No software override.  The flow control configuration
1048 	 *          in the EEPROM is used.
1049 	 */
1050 	switch (hw->fc.current_mode) {
1051 	case e1000_fc_none:
1052 		/*
1053 		 * Flow control (Rx & Tx) is completely disabled by a
1054 		 * software over-ride.
1055 		 */
1056 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1057 		break;
1058 	case e1000_fc_rx_pause:
1059 		/*
1060 		 * Rx Flow control is enabled, and Tx Flow control is
1061 		 * disabled, by a software over-ride.
1062 		 *
1063 		 * Since there really isn't a way to advertise that we are
1064 		 * capable of Rx Pause ONLY, we will advertise that we
1065 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1066 		 * (in e1000e_config_fc_after_link_up) we will disable the
1067 		 * hw's ability to send PAUSE frames.
1068 		 */
1069 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1070 		break;
1071 	case e1000_fc_tx_pause:
1072 		/*
1073 		 * Tx Flow control is enabled, and Rx Flow control is
1074 		 * disabled, by a software over-ride.
1075 		 */
1076 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1077 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1078 		break;
1079 	case e1000_fc_full:
1080 		/*
1081 		 * Flow control (both Rx and Tx) is enabled by a software
1082 		 * over-ride.
1083 		 */
1084 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1085 		break;
1086 	default:
1087 		e_dbg("Flow control param set incorrectly\n");
1088 		return -E1000_ERR_CONFIG;
1089 	}
1090 
1091 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1092 	if (ret_val)
1093 		return ret_val;
1094 
1095 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1096 
1097 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1098 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1099 
1100 	return ret_val;
1101 }
1102 
1103 /**
1104  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1105  *  @hw: pointer to the HW structure
1106  *
1107  *  Performs initial bounds checking on autoneg advertisement parameter, then
1108  *  configure to advertise the full capability.  Setup the PHY to autoneg
1109  *  and restart the negotiation process between the link partner.  If
1110  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1111  **/
1112 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1113 {
1114 	struct e1000_phy_info *phy = &hw->phy;
1115 	s32 ret_val;
1116 	u16 phy_ctrl;
1117 
1118 	/*
1119 	 * Perform some bounds checking on the autoneg advertisement
1120 	 * parameter.
1121 	 */
1122 	phy->autoneg_advertised &= phy->autoneg_mask;
1123 
1124 	/*
1125 	 * If autoneg_advertised is zero, we assume it was not defaulted
1126 	 * by the calling code so we set to advertise full capability.
1127 	 */
1128 	if (!phy->autoneg_advertised)
1129 		phy->autoneg_advertised = phy->autoneg_mask;
1130 
1131 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1132 	ret_val = e1000_phy_setup_autoneg(hw);
1133 	if (ret_val) {
1134 		e_dbg("Error Setting up Auto-Negotiation\n");
1135 		return ret_val;
1136 	}
1137 	e_dbg("Restarting Auto-Neg\n");
1138 
1139 	/*
1140 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1141 	 * the Auto Neg Restart bit in the PHY control register.
1142 	 */
1143 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1144 	if (ret_val)
1145 		return ret_val;
1146 
1147 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1148 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1149 	if (ret_val)
1150 		return ret_val;
1151 
1152 	/*
1153 	 * Does the user want to wait for Auto-Neg to complete here, or
1154 	 * check at a later time (for example, callback routine).
1155 	 */
1156 	if (phy->autoneg_wait_to_complete) {
1157 		ret_val = e1000_wait_autoneg(hw);
1158 		if (ret_val) {
1159 			e_dbg("Error while waiting for autoneg to complete\n");
1160 			return ret_val;
1161 		}
1162 	}
1163 
1164 	hw->mac.get_link_status = true;
1165 
1166 	return ret_val;
1167 }
1168 
1169 /**
1170  *  e1000e_setup_copper_link - Configure copper link settings
1171  *  @hw: pointer to the HW structure
1172  *
1173  *  Calls the appropriate function to configure the link for auto-neg or forced
1174  *  speed and duplex.  Then we check for link, once link is established calls
1175  *  to configure collision distance and flow control are called.  If link is
1176  *  not established, we return -E1000_ERR_PHY (-2).
1177  **/
1178 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1179 {
1180 	s32 ret_val;
1181 	bool link;
1182 
1183 	if (hw->mac.autoneg) {
1184 		/*
1185 		 * Setup autoneg and flow control advertisement and perform
1186 		 * autonegotiation.
1187 		 */
1188 		ret_val = e1000_copper_link_autoneg(hw);
1189 		if (ret_val)
1190 			return ret_val;
1191 	} else {
1192 		/*
1193 		 * PHY will be set to 10H, 10F, 100H or 100F
1194 		 * depending on user settings.
1195 		 */
1196 		e_dbg("Forcing Speed and Duplex\n");
1197 		ret_val = e1000_phy_force_speed_duplex(hw);
1198 		if (ret_val) {
1199 			e_dbg("Error Forcing Speed and Duplex\n");
1200 			return ret_val;
1201 		}
1202 	}
1203 
1204 	/*
1205 	 * Check link status. Wait up to 100 microseconds for link to become
1206 	 * valid.
1207 	 */
1208 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1209 					      &link);
1210 	if (ret_val)
1211 		return ret_val;
1212 
1213 	if (link) {
1214 		e_dbg("Valid link established!!!\n");
1215 		hw->mac.ops.config_collision_dist(hw);
1216 		ret_val = e1000e_config_fc_after_link_up(hw);
1217 	} else {
1218 		e_dbg("Unable to establish link!!!\n");
1219 	}
1220 
1221 	return ret_val;
1222 }
1223 
1224 /**
1225  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1226  *  @hw: pointer to the HW structure
1227  *
1228  *  Calls the PHY setup function to force speed and duplex.  Clears the
1229  *  auto-crossover to force MDI manually.  Waits for link and returns
1230  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1231  **/
1232 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1233 {
1234 	struct e1000_phy_info *phy = &hw->phy;
1235 	s32 ret_val;
1236 	u16 phy_data;
1237 	bool link;
1238 
1239 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1240 	if (ret_val)
1241 		return ret_val;
1242 
1243 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1244 
1245 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1246 	if (ret_val)
1247 		return ret_val;
1248 
1249 	/*
1250 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1251 	 * forced whenever speed and duplex are forced.
1252 	 */
1253 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1254 	if (ret_val)
1255 		return ret_val;
1256 
1257 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1258 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1259 
1260 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1261 	if (ret_val)
1262 		return ret_val;
1263 
1264 	e_dbg("IGP PSCR: %X\n", phy_data);
1265 
1266 	udelay(1);
1267 
1268 	if (phy->autoneg_wait_to_complete) {
1269 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1270 
1271 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1272 						      100000, &link);
1273 		if (ret_val)
1274 			return ret_val;
1275 
1276 		if (!link)
1277 			e_dbg("Link taking longer than expected.\n");
1278 
1279 		/* Try once more */
1280 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1281 						      100000, &link);
1282 	}
1283 
1284 	return ret_val;
1285 }
1286 
1287 /**
1288  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1289  *  @hw: pointer to the HW structure
1290  *
1291  *  Calls the PHY setup function to force speed and duplex.  Clears the
1292  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1293  *  changes.  If time expires while waiting for link up, we reset the DSP.
1294  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1295  *  successful completion, else return corresponding error code.
1296  **/
1297 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1298 {
1299 	struct e1000_phy_info *phy = &hw->phy;
1300 	s32 ret_val;
1301 	u16 phy_data;
1302 	bool link;
1303 
1304 	/*
1305 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1306 	 * forced whenever speed and duplex are forced.
1307 	 */
1308 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1309 	if (ret_val)
1310 		return ret_val;
1311 
1312 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1313 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1314 	if (ret_val)
1315 		return ret_val;
1316 
1317 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1318 
1319 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1320 	if (ret_val)
1321 		return ret_val;
1322 
1323 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1324 
1325 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1326 	if (ret_val)
1327 		return ret_val;
1328 
1329 	/* Reset the phy to commit changes. */
1330 	ret_val = e1000e_commit_phy(hw);
1331 	if (ret_val)
1332 		return ret_val;
1333 
1334 	if (phy->autoneg_wait_to_complete) {
1335 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1336 
1337 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1338 						     100000, &link);
1339 		if (ret_val)
1340 			return ret_val;
1341 
1342 		if (!link) {
1343 			if (hw->phy.type != e1000_phy_m88) {
1344 				e_dbg("Link taking longer than expected.\n");
1345 			} else {
1346 				/*
1347 				 * We didn't get link.
1348 				 * Reset the DSP and cross our fingers.
1349 				 */
1350 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1351 						   0x001d);
1352 				if (ret_val)
1353 					return ret_val;
1354 				ret_val = e1000e_phy_reset_dsp(hw);
1355 				if (ret_val)
1356 					return ret_val;
1357 			}
1358 		}
1359 
1360 		/* Try once more */
1361 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1362 						     100000, &link);
1363 		if (ret_val)
1364 			return ret_val;
1365 	}
1366 
1367 	if (hw->phy.type != e1000_phy_m88)
1368 		return 0;
1369 
1370 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1371 	if (ret_val)
1372 		return ret_val;
1373 
1374 	/*
1375 	 * Resetting the phy means we need to re-force TX_CLK in the
1376 	 * Extended PHY Specific Control Register to 25MHz clock from
1377 	 * the reset value of 2.5MHz.
1378 	 */
1379 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1380 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1381 	if (ret_val)
1382 		return ret_val;
1383 
1384 	/*
1385 	 * In addition, we must re-enable CRS on Tx for both half and full
1386 	 * duplex.
1387 	 */
1388 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1389 	if (ret_val)
1390 		return ret_val;
1391 
1392 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1393 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1394 
1395 	return ret_val;
1396 }
1397 
1398 /**
1399  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1400  *  @hw: pointer to the HW structure
1401  *
1402  *  Forces the speed and duplex settings of the PHY.
1403  *  This is a function pointer entry point only called by
1404  *  PHY setup routines.
1405  **/
1406 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1407 {
1408 	struct e1000_phy_info *phy = &hw->phy;
1409 	s32 ret_val;
1410 	u16 data;
1411 	bool link;
1412 
1413 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1414 	if (ret_val)
1415 		return ret_val;
1416 
1417 	e1000e_phy_force_speed_duplex_setup(hw, &data);
1418 
1419 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1420 	if (ret_val)
1421 		return ret_val;
1422 
1423 	/* Disable MDI-X support for 10/100 */
1424 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1425 	if (ret_val)
1426 		return ret_val;
1427 
1428 	data &= ~IFE_PMC_AUTO_MDIX;
1429 	data &= ~IFE_PMC_FORCE_MDIX;
1430 
1431 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1432 	if (ret_val)
1433 		return ret_val;
1434 
1435 	e_dbg("IFE PMC: %X\n", data);
1436 
1437 	udelay(1);
1438 
1439 	if (phy->autoneg_wait_to_complete) {
1440 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1441 
1442 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1443 						      100000, &link);
1444 		if (ret_val)
1445 			return ret_val;
1446 
1447 		if (!link)
1448 			e_dbg("Link taking longer than expected.\n");
1449 
1450 		/* Try once more */
1451 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1452 						      100000, &link);
1453 		if (ret_val)
1454 			return ret_val;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 /**
1461  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1462  *  @hw: pointer to the HW structure
1463  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1464  *
1465  *  Forces speed and duplex on the PHY by doing the following: disable flow
1466  *  control, force speed/duplex on the MAC, disable auto speed detection,
1467  *  disable auto-negotiation, configure duplex, configure speed, configure
1468  *  the collision distance, write configuration to CTRL register.  The
1469  *  caller must write to the PHY_CONTROL register for these settings to
1470  *  take affect.
1471  **/
1472 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1473 {
1474 	struct e1000_mac_info *mac = &hw->mac;
1475 	u32 ctrl;
1476 
1477 	/* Turn off flow control when forcing speed/duplex */
1478 	hw->fc.current_mode = e1000_fc_none;
1479 
1480 	/* Force speed/duplex on the mac */
1481 	ctrl = er32(CTRL);
1482 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1483 	ctrl &= ~E1000_CTRL_SPD_SEL;
1484 
1485 	/* Disable Auto Speed Detection */
1486 	ctrl &= ~E1000_CTRL_ASDE;
1487 
1488 	/* Disable autoneg on the phy */
1489 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1490 
1491 	/* Forcing Full or Half Duplex? */
1492 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1493 		ctrl &= ~E1000_CTRL_FD;
1494 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1495 		e_dbg("Half Duplex\n");
1496 	} else {
1497 		ctrl |= E1000_CTRL_FD;
1498 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1499 		e_dbg("Full Duplex\n");
1500 	}
1501 
1502 	/* Forcing 10mb or 100mb? */
1503 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1504 		ctrl |= E1000_CTRL_SPD_100;
1505 		*phy_ctrl |= MII_CR_SPEED_100;
1506 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1507 		e_dbg("Forcing 100mb\n");
1508 	} else {
1509 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1510 		*phy_ctrl |= MII_CR_SPEED_10;
1511 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1512 		e_dbg("Forcing 10mb\n");
1513 	}
1514 
1515 	hw->mac.ops.config_collision_dist(hw);
1516 
1517 	ew32(CTRL, ctrl);
1518 }
1519 
1520 /**
1521  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1522  *  @hw: pointer to the HW structure
1523  *  @active: boolean used to enable/disable lplu
1524  *
1525  *  Success returns 0, Failure returns 1
1526  *
1527  *  The low power link up (lplu) state is set to the power management level D3
1528  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1529  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1530  *  is used during Dx states where the power conservation is most important.
1531  *  During driver activity, SmartSpeed should be enabled so performance is
1532  *  maintained.
1533  **/
1534 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1535 {
1536 	struct e1000_phy_info *phy = &hw->phy;
1537 	s32 ret_val;
1538 	u16 data;
1539 
1540 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1541 	if (ret_val)
1542 		return ret_val;
1543 
1544 	if (!active) {
1545 		data &= ~IGP02E1000_PM_D3_LPLU;
1546 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1547 		if (ret_val)
1548 			return ret_val;
1549 		/*
1550 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1551 		 * during Dx states where the power conservation is most
1552 		 * important.  During driver activity we should enable
1553 		 * SmartSpeed, so performance is maintained.
1554 		 */
1555 		if (phy->smart_speed == e1000_smart_speed_on) {
1556 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1557 					   &data);
1558 			if (ret_val)
1559 				return ret_val;
1560 
1561 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1562 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1563 					   data);
1564 			if (ret_val)
1565 				return ret_val;
1566 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1567 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1568 					   &data);
1569 			if (ret_val)
1570 				return ret_val;
1571 
1572 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1573 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1574 					   data);
1575 			if (ret_val)
1576 				return ret_val;
1577 		}
1578 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1579 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1580 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1581 		data |= IGP02E1000_PM_D3_LPLU;
1582 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1583 		if (ret_val)
1584 			return ret_val;
1585 
1586 		/* When LPLU is enabled, we should disable SmartSpeed */
1587 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1588 		if (ret_val)
1589 			return ret_val;
1590 
1591 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1592 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1593 	}
1594 
1595 	return ret_val;
1596 }
1597 
1598 /**
1599  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1600  *  @hw: pointer to the HW structure
1601  *
1602  *  Success returns 0, Failure returns 1
1603  *
1604  *  A downshift is detected by querying the PHY link health.
1605  **/
1606 s32 e1000e_check_downshift(struct e1000_hw *hw)
1607 {
1608 	struct e1000_phy_info *phy = &hw->phy;
1609 	s32 ret_val;
1610 	u16 phy_data, offset, mask;
1611 
1612 	switch (phy->type) {
1613 	case e1000_phy_m88:
1614 	case e1000_phy_gg82563:
1615 	case e1000_phy_bm:
1616 	case e1000_phy_82578:
1617 		offset	= M88E1000_PHY_SPEC_STATUS;
1618 		mask	= M88E1000_PSSR_DOWNSHIFT;
1619 		break;
1620 	case e1000_phy_igp_2:
1621 	case e1000_phy_igp_3:
1622 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1623 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1624 		break;
1625 	default:
1626 		/* speed downshift not supported */
1627 		phy->speed_downgraded = false;
1628 		return 0;
1629 	}
1630 
1631 	ret_val = e1e_rphy(hw, offset, &phy_data);
1632 
1633 	if (!ret_val)
1634 		phy->speed_downgraded = !!(phy_data & mask);
1635 
1636 	return ret_val;
1637 }
1638 
1639 /**
1640  *  e1000_check_polarity_m88 - Checks the polarity.
1641  *  @hw: pointer to the HW structure
1642  *
1643  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1644  *
1645  *  Polarity is determined based on the PHY specific status register.
1646  **/
1647 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1648 {
1649 	struct e1000_phy_info *phy = &hw->phy;
1650 	s32 ret_val;
1651 	u16 data;
1652 
1653 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1654 
1655 	if (!ret_val)
1656 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1657 				      ? e1000_rev_polarity_reversed
1658 				      : e1000_rev_polarity_normal;
1659 
1660 	return ret_val;
1661 }
1662 
1663 /**
1664  *  e1000_check_polarity_igp - Checks the polarity.
1665  *  @hw: pointer to the HW structure
1666  *
1667  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1668  *
1669  *  Polarity is determined based on the PHY port status register, and the
1670  *  current speed (since there is no polarity at 100Mbps).
1671  **/
1672 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1673 {
1674 	struct e1000_phy_info *phy = &hw->phy;
1675 	s32 ret_val;
1676 	u16 data, offset, mask;
1677 
1678 	/*
1679 	 * Polarity is determined based on the speed of
1680 	 * our connection.
1681 	 */
1682 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1683 	if (ret_val)
1684 		return ret_val;
1685 
1686 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1687 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1688 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1689 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1690 	} else {
1691 		/*
1692 		 * This really only applies to 10Mbps since
1693 		 * there is no polarity for 100Mbps (always 0).
1694 		 */
1695 		offset	= IGP01E1000_PHY_PORT_STATUS;
1696 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1697 	}
1698 
1699 	ret_val = e1e_rphy(hw, offset, &data);
1700 
1701 	if (!ret_val)
1702 		phy->cable_polarity = (data & mask)
1703 				      ? e1000_rev_polarity_reversed
1704 				      : e1000_rev_polarity_normal;
1705 
1706 	return ret_val;
1707 }
1708 
1709 /**
1710  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1711  *  @hw: pointer to the HW structure
1712  *
1713  *  Polarity is determined on the polarity reversal feature being enabled.
1714  **/
1715 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1716 {
1717 	struct e1000_phy_info *phy = &hw->phy;
1718 	s32 ret_val;
1719 	u16 phy_data, offset, mask;
1720 
1721 	/*
1722 	 * Polarity is determined based on the reversal feature being enabled.
1723 	 */
1724 	if (phy->polarity_correction) {
1725 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1726 		mask = IFE_PESC_POLARITY_REVERSED;
1727 	} else {
1728 		offset = IFE_PHY_SPECIAL_CONTROL;
1729 		mask = IFE_PSC_FORCE_POLARITY;
1730 	}
1731 
1732 	ret_val = e1e_rphy(hw, offset, &phy_data);
1733 
1734 	if (!ret_val)
1735 		phy->cable_polarity = (phy_data & mask)
1736 		                       ? e1000_rev_polarity_reversed
1737 		                       : e1000_rev_polarity_normal;
1738 
1739 	return ret_val;
1740 }
1741 
1742 /**
1743  *  e1000_wait_autoneg - Wait for auto-neg completion
1744  *  @hw: pointer to the HW structure
1745  *
1746  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1747  *  limit to expire, which ever happens first.
1748  **/
1749 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1750 {
1751 	s32 ret_val = 0;
1752 	u16 i, phy_status;
1753 
1754 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1755 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1756 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1757 		if (ret_val)
1758 			break;
1759 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1760 		if (ret_val)
1761 			break;
1762 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1763 			break;
1764 		msleep(100);
1765 	}
1766 
1767 	/*
1768 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1769 	 * has completed.
1770 	 */
1771 	return ret_val;
1772 }
1773 
1774 /**
1775  *  e1000e_phy_has_link_generic - Polls PHY for link
1776  *  @hw: pointer to the HW structure
1777  *  @iterations: number of times to poll for link
1778  *  @usec_interval: delay between polling attempts
1779  *  @success: pointer to whether polling was successful or not
1780  *
1781  *  Polls the PHY status register for link, 'iterations' number of times.
1782  **/
1783 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1784 			       u32 usec_interval, bool *success)
1785 {
1786 	s32 ret_val = 0;
1787 	u16 i, phy_status;
1788 
1789 	for (i = 0; i < iterations; i++) {
1790 		/*
1791 		 * Some PHYs require the PHY_STATUS register to be read
1792 		 * twice due to the link bit being sticky.  No harm doing
1793 		 * it across the board.
1794 		 */
1795 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1796 		if (ret_val)
1797 			/*
1798 			 * If the first read fails, another entity may have
1799 			 * ownership of the resources, wait and try again to
1800 			 * see if they have relinquished the resources yet.
1801 			 */
1802 			udelay(usec_interval);
1803 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1804 		if (ret_val)
1805 			break;
1806 		if (phy_status & MII_SR_LINK_STATUS)
1807 			break;
1808 		if (usec_interval >= 1000)
1809 			mdelay(usec_interval/1000);
1810 		else
1811 			udelay(usec_interval);
1812 	}
1813 
1814 	*success = (i < iterations);
1815 
1816 	return ret_val;
1817 }
1818 
1819 /**
1820  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1821  *  @hw: pointer to the HW structure
1822  *
1823  *  Reads the PHY specific status register to retrieve the cable length
1824  *  information.  The cable length is determined by averaging the minimum and
1825  *  maximum values to get the "average" cable length.  The m88 PHY has four
1826  *  possible cable length values, which are:
1827  *	Register Value		Cable Length
1828  *	0			< 50 meters
1829  *	1			50 - 80 meters
1830  *	2			80 - 110 meters
1831  *	3			110 - 140 meters
1832  *	4			> 140 meters
1833  **/
1834 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1835 {
1836 	struct e1000_phy_info *phy = &hw->phy;
1837 	s32 ret_val;
1838 	u16 phy_data, index;
1839 
1840 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1841 	if (ret_val)
1842 		return ret_val;
1843 
1844 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1845 	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1846 
1847 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1848 		return -E1000_ERR_PHY;
1849 
1850 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1851 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1852 
1853 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1854 
1855 	return 0;
1856 }
1857 
1858 /**
1859  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1860  *  @hw: pointer to the HW structure
1861  *
1862  *  The automatic gain control (agc) normalizes the amplitude of the
1863  *  received signal, adjusting for the attenuation produced by the
1864  *  cable.  By reading the AGC registers, which represent the
1865  *  combination of coarse and fine gain value, the value can be put
1866  *  into a lookup table to obtain the approximate cable length
1867  *  for each channel.
1868  **/
1869 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1870 {
1871 	struct e1000_phy_info *phy = &hw->phy;
1872 	s32 ret_val;
1873 	u16 phy_data, i, agc_value = 0;
1874 	u16 cur_agc_index, max_agc_index = 0;
1875 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1876 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1877 	       IGP02E1000_PHY_AGC_A,
1878 	       IGP02E1000_PHY_AGC_B,
1879 	       IGP02E1000_PHY_AGC_C,
1880 	       IGP02E1000_PHY_AGC_D
1881 	};
1882 
1883 	/* Read the AGC registers for all channels */
1884 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1885 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1886 		if (ret_val)
1887 			return ret_val;
1888 
1889 		/*
1890 		 * Getting bits 15:9, which represent the combination of
1891 		 * coarse and fine gain values.  The result is a number
1892 		 * that can be put into the lookup table to obtain the
1893 		 * approximate cable length.
1894 		 */
1895 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1896 				IGP02E1000_AGC_LENGTH_MASK;
1897 
1898 		/* Array index bound check. */
1899 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1900 		    (cur_agc_index == 0))
1901 			return -E1000_ERR_PHY;
1902 
1903 		/* Remove min & max AGC values from calculation. */
1904 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1905 		    e1000_igp_2_cable_length_table[cur_agc_index])
1906 			min_agc_index = cur_agc_index;
1907 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1908 		    e1000_igp_2_cable_length_table[cur_agc_index])
1909 			max_agc_index = cur_agc_index;
1910 
1911 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1912 	}
1913 
1914 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1915 		      e1000_igp_2_cable_length_table[max_agc_index]);
1916 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1917 
1918 	/* Calculate cable length with the error range of +/- 10 meters. */
1919 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1920 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1921 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1922 
1923 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1924 
1925 	return 0;
1926 }
1927 
1928 /**
1929  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1930  *  @hw: pointer to the HW structure
1931  *
1932  *  Valid for only copper links.  Read the PHY status register (sticky read)
1933  *  to verify that link is up.  Read the PHY special control register to
1934  *  determine the polarity and 10base-T extended distance.  Read the PHY
1935  *  special status register to determine MDI/MDIx and current speed.  If
1936  *  speed is 1000, then determine cable length, local and remote receiver.
1937  **/
1938 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1939 {
1940 	struct e1000_phy_info *phy = &hw->phy;
1941 	s32  ret_val;
1942 	u16 phy_data;
1943 	bool link;
1944 
1945 	if (phy->media_type != e1000_media_type_copper) {
1946 		e_dbg("Phy info is only valid for copper media\n");
1947 		return -E1000_ERR_CONFIG;
1948 	}
1949 
1950 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1951 	if (ret_val)
1952 		return ret_val;
1953 
1954 	if (!link) {
1955 		e_dbg("Phy info is only valid if link is up\n");
1956 		return -E1000_ERR_CONFIG;
1957 	}
1958 
1959 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1960 	if (ret_val)
1961 		return ret_val;
1962 
1963 	phy->polarity_correction = !!(phy_data &
1964 				      M88E1000_PSCR_POLARITY_REVERSAL);
1965 
1966 	ret_val = e1000_check_polarity_m88(hw);
1967 	if (ret_val)
1968 		return ret_val;
1969 
1970 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1971 	if (ret_val)
1972 		return ret_val;
1973 
1974 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1975 
1976 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1977 		ret_val = e1000_get_cable_length(hw);
1978 		if (ret_val)
1979 			return ret_val;
1980 
1981 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1982 		if (ret_val)
1983 			return ret_val;
1984 
1985 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1986 				? e1000_1000t_rx_status_ok
1987 				: e1000_1000t_rx_status_not_ok;
1988 
1989 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1990 				 ? e1000_1000t_rx_status_ok
1991 				 : e1000_1000t_rx_status_not_ok;
1992 	} else {
1993 		/* Set values to "undefined" */
1994 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1995 		phy->local_rx = e1000_1000t_rx_status_undefined;
1996 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1997 	}
1998 
1999 	return ret_val;
2000 }
2001 
2002 /**
2003  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
2004  *  @hw: pointer to the HW structure
2005  *
2006  *  Read PHY status to determine if link is up.  If link is up, then
2007  *  set/determine 10base-T extended distance and polarity correction.  Read
2008  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2009  *  determine on the cable length, local and remote receiver.
2010  **/
2011 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2012 {
2013 	struct e1000_phy_info *phy = &hw->phy;
2014 	s32 ret_val;
2015 	u16 data;
2016 	bool link;
2017 
2018 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2019 	if (ret_val)
2020 		return ret_val;
2021 
2022 	if (!link) {
2023 		e_dbg("Phy info is only valid if link is up\n");
2024 		return -E1000_ERR_CONFIG;
2025 	}
2026 
2027 	phy->polarity_correction = true;
2028 
2029 	ret_val = e1000_check_polarity_igp(hw);
2030 	if (ret_val)
2031 		return ret_val;
2032 
2033 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2034 	if (ret_val)
2035 		return ret_val;
2036 
2037 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2038 
2039 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2040 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2041 		ret_val = e1000_get_cable_length(hw);
2042 		if (ret_val)
2043 			return ret_val;
2044 
2045 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2046 		if (ret_val)
2047 			return ret_val;
2048 
2049 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2050 				? e1000_1000t_rx_status_ok
2051 				: e1000_1000t_rx_status_not_ok;
2052 
2053 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2054 				 ? e1000_1000t_rx_status_ok
2055 				 : e1000_1000t_rx_status_not_ok;
2056 	} else {
2057 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2058 		phy->local_rx = e1000_1000t_rx_status_undefined;
2059 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2060 	}
2061 
2062 	return ret_val;
2063 }
2064 
2065 /**
2066  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2067  *  @hw: pointer to the HW structure
2068  *
2069  *  Populates "phy" structure with various feature states.
2070  **/
2071 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2072 {
2073 	struct e1000_phy_info *phy = &hw->phy;
2074 	s32 ret_val;
2075 	u16 data;
2076 	bool link;
2077 
2078 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2079 	if (ret_val)
2080 		return ret_val;
2081 
2082 	if (!link) {
2083 		e_dbg("Phy info is only valid if link is up\n");
2084 		return -E1000_ERR_CONFIG;
2085 	}
2086 
2087 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2088 	if (ret_val)
2089 		return ret_val;
2090 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2091 
2092 	if (phy->polarity_correction) {
2093 		ret_val = e1000_check_polarity_ife(hw);
2094 		if (ret_val)
2095 			return ret_val;
2096 	} else {
2097 		/* Polarity is forced */
2098 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2099 		                      ? e1000_rev_polarity_reversed
2100 		                      : e1000_rev_polarity_normal;
2101 	}
2102 
2103 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2104 	if (ret_val)
2105 		return ret_val;
2106 
2107 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2108 
2109 	/* The following parameters are undefined for 10/100 operation. */
2110 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2111 	phy->local_rx = e1000_1000t_rx_status_undefined;
2112 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2113 
2114 	return 0;
2115 }
2116 
2117 /**
2118  *  e1000e_phy_sw_reset - PHY software reset
2119  *  @hw: pointer to the HW structure
2120  *
2121  *  Does a software reset of the PHY by reading the PHY control register and
2122  *  setting/write the control register reset bit to the PHY.
2123  **/
2124 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2125 {
2126 	s32 ret_val;
2127 	u16 phy_ctrl;
2128 
2129 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2130 	if (ret_val)
2131 		return ret_val;
2132 
2133 	phy_ctrl |= MII_CR_RESET;
2134 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2135 	if (ret_val)
2136 		return ret_val;
2137 
2138 	udelay(1);
2139 
2140 	return ret_val;
2141 }
2142 
2143 /**
2144  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2145  *  @hw: pointer to the HW structure
2146  *
2147  *  Verify the reset block is not blocking us from resetting.  Acquire
2148  *  semaphore (if necessary) and read/set/write the device control reset
2149  *  bit in the PHY.  Wait the appropriate delay time for the device to
2150  *  reset and release the semaphore (if necessary).
2151  **/
2152 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2153 {
2154 	struct e1000_phy_info *phy = &hw->phy;
2155 	s32 ret_val;
2156 	u32 ctrl;
2157 
2158 	if (phy->ops.check_reset_block) {
2159 		ret_val = phy->ops.check_reset_block(hw);
2160 		if (ret_val)
2161 			return 0;
2162 	}
2163 
2164 	ret_val = phy->ops.acquire(hw);
2165 	if (ret_val)
2166 		return ret_val;
2167 
2168 	ctrl = er32(CTRL);
2169 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2170 	e1e_flush();
2171 
2172 	udelay(phy->reset_delay_us);
2173 
2174 	ew32(CTRL, ctrl);
2175 	e1e_flush();
2176 
2177 	udelay(150);
2178 
2179 	phy->ops.release(hw);
2180 
2181 	return e1000_get_phy_cfg_done(hw);
2182 }
2183 
2184 /**
2185  *  e1000e_get_cfg_done - Generic configuration done
2186  *  @hw: pointer to the HW structure
2187  *
2188  *  Generic function to wait 10 milli-seconds for configuration to complete
2189  *  and return success.
2190  **/
2191 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2192 {
2193 	mdelay(10);
2194 
2195 	return 0;
2196 }
2197 
2198 /**
2199  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2200  *  @hw: pointer to the HW structure
2201  *
2202  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2203  **/
2204 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2205 {
2206 	e_dbg("Running IGP 3 PHY init script\n");
2207 
2208 	/* PHY init IGP 3 */
2209 	/* Enable rise/fall, 10-mode work in class-A */
2210 	e1e_wphy(hw, 0x2F5B, 0x9018);
2211 	/* Remove all caps from Replica path filter */
2212 	e1e_wphy(hw, 0x2F52, 0x0000);
2213 	/* Bias trimming for ADC, AFE and Driver (Default) */
2214 	e1e_wphy(hw, 0x2FB1, 0x8B24);
2215 	/* Increase Hybrid poly bias */
2216 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2217 	/* Add 4% to Tx amplitude in Gig mode */
2218 	e1e_wphy(hw, 0x2010, 0x10B0);
2219 	/* Disable trimming (TTT) */
2220 	e1e_wphy(hw, 0x2011, 0x0000);
2221 	/* Poly DC correction to 94.6% + 2% for all channels */
2222 	e1e_wphy(hw, 0x20DD, 0x249A);
2223 	/* ABS DC correction to 95.9% */
2224 	e1e_wphy(hw, 0x20DE, 0x00D3);
2225 	/* BG temp curve trim */
2226 	e1e_wphy(hw, 0x28B4, 0x04CE);
2227 	/* Increasing ADC OPAMP stage 1 currents to max */
2228 	e1e_wphy(hw, 0x2F70, 0x29E4);
2229 	/* Force 1000 ( required for enabling PHY regs configuration) */
2230 	e1e_wphy(hw, 0x0000, 0x0140);
2231 	/* Set upd_freq to 6 */
2232 	e1e_wphy(hw, 0x1F30, 0x1606);
2233 	/* Disable NPDFE */
2234 	e1e_wphy(hw, 0x1F31, 0xB814);
2235 	/* Disable adaptive fixed FFE (Default) */
2236 	e1e_wphy(hw, 0x1F35, 0x002A);
2237 	/* Enable FFE hysteresis */
2238 	e1e_wphy(hw, 0x1F3E, 0x0067);
2239 	/* Fixed FFE for short cable lengths */
2240 	e1e_wphy(hw, 0x1F54, 0x0065);
2241 	/* Fixed FFE for medium cable lengths */
2242 	e1e_wphy(hw, 0x1F55, 0x002A);
2243 	/* Fixed FFE for long cable lengths */
2244 	e1e_wphy(hw, 0x1F56, 0x002A);
2245 	/* Enable Adaptive Clip Threshold */
2246 	e1e_wphy(hw, 0x1F72, 0x3FB0);
2247 	/* AHT reset limit to 1 */
2248 	e1e_wphy(hw, 0x1F76, 0xC0FF);
2249 	/* Set AHT master delay to 127 msec */
2250 	e1e_wphy(hw, 0x1F77, 0x1DEC);
2251 	/* Set scan bits for AHT */
2252 	e1e_wphy(hw, 0x1F78, 0xF9EF);
2253 	/* Set AHT Preset bits */
2254 	e1e_wphy(hw, 0x1F79, 0x0210);
2255 	/* Change integ_factor of channel A to 3 */
2256 	e1e_wphy(hw, 0x1895, 0x0003);
2257 	/* Change prop_factor of channels BCD to 8 */
2258 	e1e_wphy(hw, 0x1796, 0x0008);
2259 	/* Change cg_icount + enable integbp for channels BCD */
2260 	e1e_wphy(hw, 0x1798, 0xD008);
2261 	/*
2262 	 * Change cg_icount + enable integbp + change prop_factor_master
2263 	 * to 8 for channel A
2264 	 */
2265 	e1e_wphy(hw, 0x1898, 0xD918);
2266 	/* Disable AHT in Slave mode on channel A */
2267 	e1e_wphy(hw, 0x187A, 0x0800);
2268 	/*
2269 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2270 	 * Enable SPD+B2B
2271 	 */
2272 	e1e_wphy(hw, 0x0019, 0x008D);
2273 	/* Enable restart AN on an1000_dis change */
2274 	e1e_wphy(hw, 0x001B, 0x2080);
2275 	/* Enable wh_fifo read clock in 10/100 modes */
2276 	e1e_wphy(hw, 0x0014, 0x0045);
2277 	/* Restart AN, Speed selection is 1000 */
2278 	e1e_wphy(hw, 0x0000, 0x1340);
2279 
2280 	return 0;
2281 }
2282 
2283 /* Internal function pointers */
2284 
2285 /**
2286  *  e1000_get_phy_cfg_done - Generic PHY configuration done
2287  *  @hw: pointer to the HW structure
2288  *
2289  *  Return success if silicon family did not implement a family specific
2290  *  get_cfg_done function.
2291  **/
2292 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2293 {
2294 	if (hw->phy.ops.get_cfg_done)
2295 		return hw->phy.ops.get_cfg_done(hw);
2296 
2297 	return 0;
2298 }
2299 
2300 /**
2301  *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2302  *  @hw: pointer to the HW structure
2303  *
2304  *  When the silicon family has not implemented a forced speed/duplex
2305  *  function for the PHY, simply return 0.
2306  **/
2307 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2308 {
2309 	if (hw->phy.ops.force_speed_duplex)
2310 		return hw->phy.ops.force_speed_duplex(hw);
2311 
2312 	return 0;
2313 }
2314 
2315 /**
2316  *  e1000e_get_phy_type_from_id - Get PHY type from id
2317  *  @phy_id: phy_id read from the phy
2318  *
2319  *  Returns the phy type from the id.
2320  **/
2321 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2322 {
2323 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2324 
2325 	switch (phy_id) {
2326 	case M88E1000_I_PHY_ID:
2327 	case M88E1000_E_PHY_ID:
2328 	case M88E1111_I_PHY_ID:
2329 	case M88E1011_I_PHY_ID:
2330 		phy_type = e1000_phy_m88;
2331 		break;
2332 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2333 		phy_type = e1000_phy_igp_2;
2334 		break;
2335 	case GG82563_E_PHY_ID:
2336 		phy_type = e1000_phy_gg82563;
2337 		break;
2338 	case IGP03E1000_E_PHY_ID:
2339 		phy_type = e1000_phy_igp_3;
2340 		break;
2341 	case IFE_E_PHY_ID:
2342 	case IFE_PLUS_E_PHY_ID:
2343 	case IFE_C_E_PHY_ID:
2344 		phy_type = e1000_phy_ife;
2345 		break;
2346 	case BME1000_E_PHY_ID:
2347 	case BME1000_E_PHY_ID_R2:
2348 		phy_type = e1000_phy_bm;
2349 		break;
2350 	case I82578_E_PHY_ID:
2351 		phy_type = e1000_phy_82578;
2352 		break;
2353 	case I82577_E_PHY_ID:
2354 		phy_type = e1000_phy_82577;
2355 		break;
2356 	case I82579_E_PHY_ID:
2357 		phy_type = e1000_phy_82579;
2358 		break;
2359 	case I217_E_PHY_ID:
2360 		phy_type = e1000_phy_i217;
2361 		break;
2362 	default:
2363 		phy_type = e1000_phy_unknown;
2364 		break;
2365 	}
2366 	return phy_type;
2367 }
2368 
2369 /**
2370  *  e1000e_determine_phy_address - Determines PHY address.
2371  *  @hw: pointer to the HW structure
2372  *
2373  *  This uses a trial and error method to loop through possible PHY
2374  *  addresses. It tests each by reading the PHY ID registers and
2375  *  checking for a match.
2376  **/
2377 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2378 {
2379 	u32 phy_addr = 0;
2380 	u32 i;
2381 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2382 
2383 	hw->phy.id = phy_type;
2384 
2385 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2386 		hw->phy.addr = phy_addr;
2387 		i = 0;
2388 
2389 		do {
2390 			e1000e_get_phy_id(hw);
2391 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2392 
2393 			/*
2394 			 * If phy_type is valid, break - we found our
2395 			 * PHY address
2396 			 */
2397 			if (phy_type  != e1000_phy_unknown)
2398 				return 0;
2399 
2400 			usleep_range(1000, 2000);
2401 			i++;
2402 		} while (i < 10);
2403 	}
2404 
2405 	return -E1000_ERR_PHY_TYPE;
2406 }
2407 
2408 /**
2409  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2410  *  @page: page to access
2411  *
2412  *  Returns the phy address for the page requested.
2413  **/
2414 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2415 {
2416 	u32 phy_addr = 2;
2417 
2418 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2419 		phy_addr = 1;
2420 
2421 	return phy_addr;
2422 }
2423 
2424 /**
2425  *  e1000e_write_phy_reg_bm - Write BM PHY register
2426  *  @hw: pointer to the HW structure
2427  *  @offset: register offset to write to
2428  *  @data: data to write at register offset
2429  *
2430  *  Acquires semaphore, if necessary, then writes the data to PHY register
2431  *  at the offset.  Release any acquired semaphores before exiting.
2432  **/
2433 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2434 {
2435 	s32 ret_val;
2436 	u32 page = offset >> IGP_PAGE_SHIFT;
2437 
2438 	ret_val = hw->phy.ops.acquire(hw);
2439 	if (ret_val)
2440 		return ret_val;
2441 
2442 	/* Page 800 works differently than the rest so it has its own func */
2443 	if (page == BM_WUC_PAGE) {
2444 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2445 							 false, false);
2446 		goto release;
2447 	}
2448 
2449 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2450 
2451 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2452 		u32 page_shift, page_select;
2453 
2454 		/*
2455 		 * Page select is register 31 for phy address 1 and 22 for
2456 		 * phy address 2 and 3. Page select is shifted only for
2457 		 * phy address 1.
2458 		 */
2459 		if (hw->phy.addr == 1) {
2460 			page_shift = IGP_PAGE_SHIFT;
2461 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2462 		} else {
2463 			page_shift = 0;
2464 			page_select = BM_PHY_PAGE_SELECT;
2465 		}
2466 
2467 		/* Page is shifted left, PHY expects (page x 32) */
2468 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2469 		                                    (page << page_shift));
2470 		if (ret_val)
2471 			goto release;
2472 	}
2473 
2474 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2475 	                                    data);
2476 
2477 release:
2478 	hw->phy.ops.release(hw);
2479 	return ret_val;
2480 }
2481 
2482 /**
2483  *  e1000e_read_phy_reg_bm - Read BM PHY register
2484  *  @hw: pointer to the HW structure
2485  *  @offset: register offset to be read
2486  *  @data: pointer to the read data
2487  *
2488  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2489  *  and storing the retrieved information in data.  Release any acquired
2490  *  semaphores before exiting.
2491  **/
2492 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2493 {
2494 	s32 ret_val;
2495 	u32 page = offset >> IGP_PAGE_SHIFT;
2496 
2497 	ret_val = hw->phy.ops.acquire(hw);
2498 	if (ret_val)
2499 		return ret_val;
2500 
2501 	/* Page 800 works differently than the rest so it has its own func */
2502 	if (page == BM_WUC_PAGE) {
2503 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2504 							 true, false);
2505 		goto release;
2506 	}
2507 
2508 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2509 
2510 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2511 		u32 page_shift, page_select;
2512 
2513 		/*
2514 		 * Page select is register 31 for phy address 1 and 22 for
2515 		 * phy address 2 and 3. Page select is shifted only for
2516 		 * phy address 1.
2517 		 */
2518 		if (hw->phy.addr == 1) {
2519 			page_shift = IGP_PAGE_SHIFT;
2520 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2521 		} else {
2522 			page_shift = 0;
2523 			page_select = BM_PHY_PAGE_SELECT;
2524 		}
2525 
2526 		/* Page is shifted left, PHY expects (page x 32) */
2527 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2528 		                                    (page << page_shift));
2529 		if (ret_val)
2530 			goto release;
2531 	}
2532 
2533 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2534 	                                   data);
2535 release:
2536 	hw->phy.ops.release(hw);
2537 	return ret_val;
2538 }
2539 
2540 /**
2541  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2542  *  @hw: pointer to the HW structure
2543  *  @offset: register offset to be read
2544  *  @data: pointer to the read data
2545  *
2546  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2547  *  and storing the retrieved information in data.  Release any acquired
2548  *  semaphores before exiting.
2549  **/
2550 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2551 {
2552 	s32 ret_val;
2553 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2554 
2555 	ret_val = hw->phy.ops.acquire(hw);
2556 	if (ret_val)
2557 		return ret_val;
2558 
2559 	/* Page 800 works differently than the rest so it has its own func */
2560 	if (page == BM_WUC_PAGE) {
2561 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2562 							 true, false);
2563 		goto release;
2564 	}
2565 
2566 	hw->phy.addr = 1;
2567 
2568 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2569 
2570 		/* Page is shifted left, PHY expects (page x 32) */
2571 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2572 						    page);
2573 
2574 		if (ret_val)
2575 			goto release;
2576 	}
2577 
2578 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2579 					   data);
2580 release:
2581 	hw->phy.ops.release(hw);
2582 	return ret_val;
2583 }
2584 
2585 /**
2586  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2587  *  @hw: pointer to the HW structure
2588  *  @offset: register offset to write to
2589  *  @data: data to write at register offset
2590  *
2591  *  Acquires semaphore, if necessary, then writes the data to PHY register
2592  *  at the offset.  Release any acquired semaphores before exiting.
2593  **/
2594 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2595 {
2596 	s32 ret_val;
2597 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2598 
2599 	ret_val = hw->phy.ops.acquire(hw);
2600 	if (ret_val)
2601 		return ret_val;
2602 
2603 	/* Page 800 works differently than the rest so it has its own func */
2604 	if (page == BM_WUC_PAGE) {
2605 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2606 							 false, false);
2607 		goto release;
2608 	}
2609 
2610 	hw->phy.addr = 1;
2611 
2612 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2613 		/* Page is shifted left, PHY expects (page x 32) */
2614 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2615 						    page);
2616 
2617 		if (ret_val)
2618 			goto release;
2619 	}
2620 
2621 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2622 					    data);
2623 
2624 release:
2625 	hw->phy.ops.release(hw);
2626 	return ret_val;
2627 }
2628 
2629 /**
2630  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2631  *  @hw: pointer to the HW structure
2632  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2633  *
2634  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2635  *  address to store contents of the BM_WUC_ENABLE_REG register.
2636  **/
2637 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2638 {
2639 	s32 ret_val;
2640 	u16 temp;
2641 
2642 	/* All page select, port ctrl and wakeup registers use phy address 1 */
2643 	hw->phy.addr = 1;
2644 
2645 	/* Select Port Control Registers page */
2646 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2647 	if (ret_val) {
2648 		e_dbg("Could not set Port Control page\n");
2649 		return ret_val;
2650 	}
2651 
2652 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2653 	if (ret_val) {
2654 		e_dbg("Could not read PHY register %d.%d\n",
2655 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2656 		return ret_val;
2657 	}
2658 
2659 	/*
2660 	 * Enable both PHY wakeup mode and Wakeup register page writes.
2661 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2662 	 */
2663 	temp = *phy_reg;
2664 	temp |= BM_WUC_ENABLE_BIT;
2665 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2666 
2667 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2668 	if (ret_val) {
2669 		e_dbg("Could not write PHY register %d.%d\n",
2670 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2671 		return ret_val;
2672 	}
2673 
2674 	/*
2675 	 * Select Host Wakeup Registers page - caller now able to write
2676 	 * registers on the Wakeup registers page
2677 	 */
2678 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2679 }
2680 
2681 /**
2682  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2683  *  @hw: pointer to the HW structure
2684  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2685  *
2686  *  Restore BM_WUC_ENABLE_REG to its original value.
2687  *
2688  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2689  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2690  *  caller.
2691  **/
2692 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2693 {
2694 	s32 ret_val = 0;
2695 
2696 	/* Select Port Control Registers page */
2697 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2698 	if (ret_val) {
2699 		e_dbg("Could not set Port Control page\n");
2700 		return ret_val;
2701 	}
2702 
2703 	/* Restore 769.17 to its original value */
2704 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2705 	if (ret_val)
2706 		e_dbg("Could not restore PHY register %d.%d\n",
2707 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2708 
2709 	return ret_val;
2710 }
2711 
2712 /**
2713  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2714  *  @hw: pointer to the HW structure
2715  *  @offset: register offset to be read or written
2716  *  @data: pointer to the data to read or write
2717  *  @read: determines if operation is read or write
2718  *  @page_set: BM_WUC_PAGE already set and access enabled
2719  *
2720  *  Read the PHY register at offset and store the retrieved information in
2721  *  data, or write data to PHY register at offset.  Note the procedure to
2722  *  access the PHY wakeup registers is different than reading the other PHY
2723  *  registers. It works as such:
2724  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2725  *  2) Set page to 800 for host (801 if we were manageability)
2726  *  3) Write the address using the address opcode (0x11)
2727  *  4) Read or write the data using the data opcode (0x12)
2728  *  5) Restore 769.17.2 to its original value
2729  *
2730  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2731  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2732  *
2733  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2734  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2735  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2736  **/
2737 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2738 					  u16 *data, bool read, bool page_set)
2739 {
2740 	s32 ret_val;
2741 	u16 reg = BM_PHY_REG_NUM(offset);
2742 	u16 page = BM_PHY_REG_PAGE(offset);
2743 	u16 phy_reg = 0;
2744 
2745 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2746 	if ((hw->mac.type == e1000_pchlan) &&
2747 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2748 		e_dbg("Attempting to access page %d while gig enabled.\n",
2749 		      page);
2750 
2751 	if (!page_set) {
2752 		/* Enable access to PHY wakeup registers */
2753 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2754 		if (ret_val) {
2755 			e_dbg("Could not enable PHY wakeup reg access\n");
2756 			return ret_val;
2757 		}
2758 	}
2759 
2760 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2761 
2762 	/* Write the Wakeup register page offset value using opcode 0x11 */
2763 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2764 	if (ret_val) {
2765 		e_dbg("Could not write address opcode to page %d\n", page);
2766 		return ret_val;
2767 	}
2768 
2769 	if (read) {
2770 		/* Read the Wakeup register page value using opcode 0x12 */
2771 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2772 		                                   data);
2773 	} else {
2774 		/* Write the Wakeup register page value using opcode 0x12 */
2775 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2776 						    *data);
2777 	}
2778 
2779 	if (ret_val) {
2780 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2781 		return ret_val;
2782 	}
2783 
2784 	if (!page_set)
2785 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2786 
2787 	return ret_val;
2788 }
2789 
2790 /**
2791  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2792  * @hw: pointer to the HW structure
2793  *
2794  * In the case of a PHY power down to save power, or to turn off link during a
2795  * driver unload, or wake on lan is not enabled, restore the link to previous
2796  * settings.
2797  **/
2798 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2799 {
2800 	u16 mii_reg = 0;
2801 
2802 	/* The PHY will retain its settings across a power down/up cycle */
2803 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2804 	mii_reg &= ~MII_CR_POWER_DOWN;
2805 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2806 }
2807 
2808 /**
2809  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2810  * @hw: pointer to the HW structure
2811  *
2812  * In the case of a PHY power down to save power, or to turn off link during a
2813  * driver unload, or wake on lan is not enabled, restore the link to previous
2814  * settings.
2815  **/
2816 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2817 {
2818 	u16 mii_reg = 0;
2819 
2820 	/* The PHY will retain its settings across a power down/up cycle */
2821 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2822 	mii_reg |= MII_CR_POWER_DOWN;
2823 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2824 	usleep_range(1000, 2000);
2825 }
2826 
2827 /**
2828  *  e1000e_commit_phy - Soft PHY reset
2829  *  @hw: pointer to the HW structure
2830  *
2831  *  Performs a soft PHY reset on those that apply. This is a function pointer
2832  *  entry point called by drivers.
2833  **/
2834 s32 e1000e_commit_phy(struct e1000_hw *hw)
2835 {
2836 	if (hw->phy.ops.commit)
2837 		return hw->phy.ops.commit(hw);
2838 
2839 	return 0;
2840 }
2841 
2842 /**
2843  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2844  *  @hw: pointer to the HW structure
2845  *  @active: boolean used to enable/disable lplu
2846  *
2847  *  Success returns 0, Failure returns 1
2848  *
2849  *  The low power link up (lplu) state is set to the power management level D0
2850  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2851  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2852  *  is used during Dx states where the power conservation is most important.
2853  *  During driver activity, SmartSpeed should be enabled so performance is
2854  *  maintained.  This is a function pointer entry point called by drivers.
2855  **/
2856 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2857 {
2858 	if (hw->phy.ops.set_d0_lplu_state)
2859 		return hw->phy.ops.set_d0_lplu_state(hw, active);
2860 
2861 	return 0;
2862 }
2863 
2864 /**
2865  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2866  *  @hw: pointer to the HW structure
2867  *  @offset: register offset to be read
2868  *  @data: pointer to the read data
2869  *  @locked: semaphore has already been acquired or not
2870  *
2871  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2872  *  and stores the retrieved information in data.  Release any acquired
2873  *  semaphore before exiting.
2874  **/
2875 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2876 				   bool locked, bool page_set)
2877 {
2878 	s32 ret_val;
2879 	u16 page = BM_PHY_REG_PAGE(offset);
2880 	u16 reg = BM_PHY_REG_NUM(offset);
2881 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2882 
2883 	if (!locked) {
2884 		ret_val = hw->phy.ops.acquire(hw);
2885 		if (ret_val)
2886 			return ret_val;
2887 	}
2888 
2889 	/* Page 800 works differently than the rest so it has its own func */
2890 	if (page == BM_WUC_PAGE) {
2891 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2892 							 true, page_set);
2893 		goto out;
2894 	}
2895 
2896 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2897 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2898 		                                         data, true);
2899 		goto out;
2900 	}
2901 
2902 	if (!page_set) {
2903 		if (page == HV_INTC_FC_PAGE_START)
2904 			page = 0;
2905 
2906 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2907 			/* Page is shifted left, PHY expects (page x 32) */
2908 			ret_val = e1000_set_page_igp(hw,
2909 						     (page << IGP_PAGE_SHIFT));
2910 
2911 			hw->phy.addr = phy_addr;
2912 
2913 			if (ret_val)
2914 				goto out;
2915 		}
2916 	}
2917 
2918 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2919 	      page << IGP_PAGE_SHIFT, reg);
2920 
2921 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2922 	                                  data);
2923 out:
2924 	if (!locked)
2925 		hw->phy.ops.release(hw);
2926 
2927 	return ret_val;
2928 }
2929 
2930 /**
2931  *  e1000_read_phy_reg_hv -  Read HV PHY register
2932  *  @hw: pointer to the HW structure
2933  *  @offset: register offset to be read
2934  *  @data: pointer to the read data
2935  *
2936  *  Acquires semaphore then reads the PHY register at offset and stores
2937  *  the retrieved information in data.  Release the acquired semaphore
2938  *  before exiting.
2939  **/
2940 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2941 {
2942 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2943 }
2944 
2945 /**
2946  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2947  *  @hw: pointer to the HW structure
2948  *  @offset: register offset to be read
2949  *  @data: pointer to the read data
2950  *
2951  *  Reads the PHY register at offset and stores the retrieved information
2952  *  in data.  Assumes semaphore already acquired.
2953  **/
2954 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2955 {
2956 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2957 }
2958 
2959 /**
2960  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2961  *  @hw: pointer to the HW structure
2962  *  @offset: register offset to write to
2963  *  @data: data to write at register offset
2964  *
2965  *  Reads the PHY register at offset and stores the retrieved information
2966  *  in data.  Assumes semaphore already acquired and page already set.
2967  **/
2968 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2969 {
2970 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2971 }
2972 
2973 /**
2974  *  __e1000_write_phy_reg_hv - Write HV PHY register
2975  *  @hw: pointer to the HW structure
2976  *  @offset: register offset to write to
2977  *  @data: data to write at register offset
2978  *  @locked: semaphore has already been acquired or not
2979  *
2980  *  Acquires semaphore, if necessary, then writes the data to PHY register
2981  *  at the offset.  Release any acquired semaphores before exiting.
2982  **/
2983 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2984 				    bool locked, bool page_set)
2985 {
2986 	s32 ret_val;
2987 	u16 page = BM_PHY_REG_PAGE(offset);
2988 	u16 reg = BM_PHY_REG_NUM(offset);
2989 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2990 
2991 	if (!locked) {
2992 		ret_val = hw->phy.ops.acquire(hw);
2993 		if (ret_val)
2994 			return ret_val;
2995 	}
2996 
2997 	/* Page 800 works differently than the rest so it has its own func */
2998 	if (page == BM_WUC_PAGE) {
2999 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3000 							 false, page_set);
3001 		goto out;
3002 	}
3003 
3004 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3005 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3006 		                                         &data, false);
3007 		goto out;
3008 	}
3009 
3010 	if (!page_set) {
3011 		if (page == HV_INTC_FC_PAGE_START)
3012 			page = 0;
3013 
3014 		/*
3015 		 * Workaround MDIO accesses being disabled after entering IEEE
3016 		 * Power Down (when bit 11 of the PHY Control register is set)
3017 		 */
3018 		if ((hw->phy.type == e1000_phy_82578) &&
3019 		    (hw->phy.revision >= 1) &&
3020 		    (hw->phy.addr == 2) &&
3021 		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
3022 			u16 data2 = 0x7EFF;
3023 			ret_val = e1000_access_phy_debug_regs_hv(hw,
3024 								 (1 << 6) | 0x3,
3025 								 &data2, false);
3026 			if (ret_val)
3027 				goto out;
3028 		}
3029 
3030 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3031 			/* Page is shifted left, PHY expects (page x 32) */
3032 			ret_val = e1000_set_page_igp(hw,
3033 						     (page << IGP_PAGE_SHIFT));
3034 
3035 			hw->phy.addr = phy_addr;
3036 
3037 			if (ret_val)
3038 				goto out;
3039 		}
3040 	}
3041 
3042 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3043 	      page << IGP_PAGE_SHIFT, reg);
3044 
3045 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3046 	                                  data);
3047 
3048 out:
3049 	if (!locked)
3050 		hw->phy.ops.release(hw);
3051 
3052 	return ret_val;
3053 }
3054 
3055 /**
3056  *  e1000_write_phy_reg_hv - Write HV PHY register
3057  *  @hw: pointer to the HW structure
3058  *  @offset: register offset to write to
3059  *  @data: data to write at register offset
3060  *
3061  *  Acquires semaphore then writes the data to PHY register at the offset.
3062  *  Release the acquired semaphores before exiting.
3063  **/
3064 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3065 {
3066 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3067 }
3068 
3069 /**
3070  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3071  *  @hw: pointer to the HW structure
3072  *  @offset: register offset to write to
3073  *  @data: data to write at register offset
3074  *
3075  *  Writes the data to PHY register at the offset.  Assumes semaphore
3076  *  already acquired.
3077  **/
3078 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3079 {
3080 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3081 }
3082 
3083 /**
3084  *  e1000_write_phy_reg_page_hv - Write HV PHY register
3085  *  @hw: pointer to the HW structure
3086  *  @offset: register offset to write to
3087  *  @data: data to write at register offset
3088  *
3089  *  Writes the data to PHY register at the offset.  Assumes semaphore
3090  *  already acquired and page already set.
3091  **/
3092 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3093 {
3094 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3095 }
3096 
3097 /**
3098  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3099  *  @page: page to be accessed
3100  **/
3101 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3102 {
3103 	u32 phy_addr = 2;
3104 
3105 	if (page >= HV_INTC_FC_PAGE_START)
3106 		phy_addr = 1;
3107 
3108 	return phy_addr;
3109 }
3110 
3111 /**
3112  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3113  *  @hw: pointer to the HW structure
3114  *  @offset: register offset to be read or written
3115  *  @data: pointer to the data to be read or written
3116  *  @read: determines if operation is read or write
3117  *
3118  *  Reads the PHY register at offset and stores the retreived information
3119  *  in data.  Assumes semaphore already acquired.  Note that the procedure
3120  *  to access these regs uses the address port and data port to read/write.
3121  *  These accesses done with PHY address 2 and without using pages.
3122  **/
3123 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3124                                           u16 *data, bool read)
3125 {
3126 	s32 ret_val;
3127 	u32 addr_reg = 0;
3128 	u32 data_reg = 0;
3129 
3130 	/* This takes care of the difference with desktop vs mobile phy */
3131 	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3132 	           I82578_ADDR_REG : I82577_ADDR_REG;
3133 	data_reg = addr_reg + 1;
3134 
3135 	/* All operations in this function are phy address 2 */
3136 	hw->phy.addr = 2;
3137 
3138 	/* masking with 0x3F to remove the page from offset */
3139 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3140 	if (ret_val) {
3141 		e_dbg("Could not write the Address Offset port register\n");
3142 		return ret_val;
3143 	}
3144 
3145 	/* Read or write the data value next */
3146 	if (read)
3147 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3148 	else
3149 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3150 
3151 	if (ret_val)
3152 		e_dbg("Could not access the Data port register\n");
3153 
3154 	return ret_val;
3155 }
3156 
3157 /**
3158  *  e1000_link_stall_workaround_hv - Si workaround
3159  *  @hw: pointer to the HW structure
3160  *
3161  *  This function works around a Si bug where the link partner can get
3162  *  a link up indication before the PHY does.  If small packets are sent
3163  *  by the link partner they can be placed in the packet buffer without
3164  *  being properly accounted for by the PHY and will stall preventing
3165  *  further packets from being received.  The workaround is to clear the
3166  *  packet buffer after the PHY detects link up.
3167  **/
3168 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3169 {
3170 	s32 ret_val = 0;
3171 	u16 data;
3172 
3173 	if (hw->phy.type != e1000_phy_82578)
3174 		return 0;
3175 
3176 	/* Do not apply workaround if in PHY loopback bit 14 set */
3177 	e1e_rphy(hw, PHY_CONTROL, &data);
3178 	if (data & PHY_CONTROL_LB)
3179 		return 0;
3180 
3181 	/* check if link is up and at 1Gbps */
3182 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3183 	if (ret_val)
3184 		return ret_val;
3185 
3186 	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3187 		BM_CS_STATUS_SPEED_MASK;
3188 
3189 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3190 		     BM_CS_STATUS_SPEED_1000))
3191 		return 0;
3192 
3193 	msleep(200);
3194 
3195 	/* flush the packets in the fifo buffer */
3196 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3197 			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3198 	if (ret_val)
3199 		return ret_val;
3200 
3201 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3202 }
3203 
3204 /**
3205  *  e1000_check_polarity_82577 - Checks the polarity.
3206  *  @hw: pointer to the HW structure
3207  *
3208  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3209  *
3210  *  Polarity is determined based on the PHY specific status register.
3211  **/
3212 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3213 {
3214 	struct e1000_phy_info *phy = &hw->phy;
3215 	s32 ret_val;
3216 	u16 data;
3217 
3218 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3219 
3220 	if (!ret_val)
3221 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3222 		                      ? e1000_rev_polarity_reversed
3223 		                      : e1000_rev_polarity_normal;
3224 
3225 	return ret_val;
3226 }
3227 
3228 /**
3229  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3230  *  @hw: pointer to the HW structure
3231  *
3232  *  Calls the PHY setup function to force speed and duplex.
3233  **/
3234 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3235 {
3236 	struct e1000_phy_info *phy = &hw->phy;
3237 	s32 ret_val;
3238 	u16 phy_data;
3239 	bool link;
3240 
3241 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3242 	if (ret_val)
3243 		return ret_val;
3244 
3245 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3246 
3247 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3248 	if (ret_val)
3249 		return ret_val;
3250 
3251 	udelay(1);
3252 
3253 	if (phy->autoneg_wait_to_complete) {
3254 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3255 
3256 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3257 						      100000, &link);
3258 		if (ret_val)
3259 			return ret_val;
3260 
3261 		if (!link)
3262 			e_dbg("Link taking longer than expected.\n");
3263 
3264 		/* Try once more */
3265 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3266 						      100000, &link);
3267 	}
3268 
3269 	return ret_val;
3270 }
3271 
3272 /**
3273  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3274  *  @hw: pointer to the HW structure
3275  *
3276  *  Read PHY status to determine if link is up.  If link is up, then
3277  *  set/determine 10base-T extended distance and polarity correction.  Read
3278  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3279  *  determine on the cable length, local and remote receiver.
3280  **/
3281 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3282 {
3283 	struct e1000_phy_info *phy = &hw->phy;
3284 	s32 ret_val;
3285 	u16 data;
3286 	bool link;
3287 
3288 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3289 	if (ret_val)
3290 		return ret_val;
3291 
3292 	if (!link) {
3293 		e_dbg("Phy info is only valid if link is up\n");
3294 		return -E1000_ERR_CONFIG;
3295 	}
3296 
3297 	phy->polarity_correction = true;
3298 
3299 	ret_val = e1000_check_polarity_82577(hw);
3300 	if (ret_val)
3301 		return ret_val;
3302 
3303 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3304 	if (ret_val)
3305 		return ret_val;
3306 
3307 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3308 
3309 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3310 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3311 		ret_val = hw->phy.ops.get_cable_length(hw);
3312 		if (ret_val)
3313 			return ret_val;
3314 
3315 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3316 		if (ret_val)
3317 			return ret_val;
3318 
3319 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3320 		                ? e1000_1000t_rx_status_ok
3321 		                : e1000_1000t_rx_status_not_ok;
3322 
3323 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3324 		                 ? e1000_1000t_rx_status_ok
3325 		                 : e1000_1000t_rx_status_not_ok;
3326 	} else {
3327 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3328 		phy->local_rx = e1000_1000t_rx_status_undefined;
3329 		phy->remote_rx = e1000_1000t_rx_status_undefined;
3330 	}
3331 
3332 	return 0;
3333 }
3334 
3335 /**
3336  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3337  *  @hw: pointer to the HW structure
3338  *
3339  * Reads the diagnostic status register and verifies result is valid before
3340  * placing it in the phy_cable_length field.
3341  **/
3342 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3343 {
3344 	struct e1000_phy_info *phy = &hw->phy;
3345 	s32 ret_val;
3346 	u16 phy_data, length;
3347 
3348 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3349 	if (ret_val)
3350 		return ret_val;
3351 
3352 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3353 	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3354 
3355 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3356 		ret_val = -E1000_ERR_PHY;
3357 
3358 	phy->cable_length = length;
3359 
3360 	return 0;
3361 }
3362