xref: /linux/drivers/net/ethernet/intel/e1000e/phy.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <linux/ethtool.h>
6 
7 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
8 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
9 					  u16 *data, bool read, bool page_set);
10 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
11 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
12 					  u16 *data, bool read);
13 
14 /* Cable length tables */
15 static const u16 e1000_m88_cable_length_table[] = {
16 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
17 };
18 
19 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
20 		ARRAY_SIZE(e1000_m88_cable_length_table)
21 
22 static const u16 e1000_igp_2_cable_length_table[] = {
23 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
24 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
25 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
26 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
27 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
28 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
29 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
30 	124
31 };
32 
33 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
34 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
35 
36 /**
37  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
38  *  @hw: pointer to the HW structure
39  *
40  *  Read the PHY management control register and check whether a PHY reset
41  *  is blocked.  If a reset is not blocked return 0, otherwise
42  *  return E1000_BLK_PHY_RESET (12).
43  **/
44 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
45 {
46 	u32 manc;
47 
48 	manc = er32(MANC);
49 
50 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
51 }
52 
53 /**
54  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
55  *  @hw: pointer to the HW structure
56  *
57  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
58  *  revision in the hardware structure.
59  **/
60 s32 e1000e_get_phy_id(struct e1000_hw *hw)
61 {
62 	struct e1000_phy_info *phy = &hw->phy;
63 	s32 ret_val = 0;
64 	u16 phy_id;
65 	u16 retry_count = 0;
66 
67 	if (!phy->ops.read_reg)
68 		return 0;
69 
70 	while (retry_count < 2) {
71 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
72 		if (ret_val)
73 			return ret_val;
74 
75 		phy->id = (u32)(phy_id << 16);
76 		usleep_range(20, 40);
77 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
78 		if (ret_val)
79 			return ret_val;
80 
81 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
82 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
83 
84 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
85 			return 0;
86 
87 		retry_count++;
88 	}
89 
90 	return 0;
91 }
92 
93 /**
94  *  e1000e_phy_reset_dsp - Reset PHY DSP
95  *  @hw: pointer to the HW structure
96  *
97  *  Reset the digital signal processor.
98  **/
99 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
100 {
101 	s32 ret_val;
102 
103 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
104 	if (ret_val)
105 		return ret_val;
106 
107 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
108 }
109 
110 void e1000e_disable_phy_retry(struct e1000_hw *hw)
111 {
112 	hw->phy.retry_enabled = false;
113 }
114 
115 void e1000e_enable_phy_retry(struct e1000_hw *hw)
116 {
117 	hw->phy.retry_enabled = true;
118 }
119 
120 /**
121  *  e1000e_read_phy_reg_mdic - Read MDI control register
122  *  @hw: pointer to the HW structure
123  *  @offset: register offset to be read
124  *  @data: pointer to the read data
125  *
126  *  Reads the MDI control register in the PHY at offset and stores the
127  *  information read to data.
128  **/
129 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
130 {
131 	u32 i, mdic = 0, retry_counter, retry_max;
132 	struct e1000_phy_info *phy = &hw->phy;
133 	bool success;
134 
135 	if (offset > MAX_PHY_REG_ADDRESS) {
136 		e_dbg("PHY Address %d is out of range\n", offset);
137 		return -E1000_ERR_PARAM;
138 	}
139 
140 	retry_max = phy->retry_enabled ? phy->retry_count : 0;
141 
142 	/* Set up Op-code, Phy Address, and register offset in the MDI
143 	 * Control register.  The MAC will take care of interfacing with the
144 	 * PHY to retrieve the desired data.
145 	 */
146 	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
147 		success = true;
148 
149 		mdic = ((offset << E1000_MDIC_REG_SHIFT) |
150 			(phy->addr << E1000_MDIC_PHY_SHIFT) |
151 			(E1000_MDIC_OP_READ));
152 
153 		ew32(MDIC, mdic);
154 
155 		/* Poll the ready bit to see if the MDI read completed
156 		 * Increasing the time out as testing showed failures with
157 		 * the lower time out
158 		 */
159 		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
160 			udelay(50);
161 			mdic = er32(MDIC);
162 			if (mdic & E1000_MDIC_READY)
163 				break;
164 		}
165 		if (!(mdic & E1000_MDIC_READY)) {
166 			e_dbg("MDI Read PHY Reg Address %d did not complete\n",
167 			      offset);
168 			success = false;
169 		}
170 		if (mdic & E1000_MDIC_ERROR) {
171 			e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
172 			success = false;
173 		}
174 		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
175 			e_dbg("MDI Read offset error - requested %d, returned %d\n",
176 			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
177 			success = false;
178 		}
179 
180 		/* Allow some time after each MDIC transaction to avoid
181 		 * reading duplicate data in the next MDIC transaction.
182 		 */
183 		if (hw->mac.type == e1000_pch2lan)
184 			udelay(100);
185 
186 		if (success) {
187 			*data = (u16)mdic;
188 			return 0;
189 		}
190 
191 		if (retry_counter != retry_max) {
192 			e_dbg("Perform retry on PHY transaction...\n");
193 			mdelay(10);
194 		}
195 	}
196 
197 	return -E1000_ERR_PHY;
198 }
199 
200 /**
201  *  e1000e_write_phy_reg_mdic - Write MDI control register
202  *  @hw: pointer to the HW structure
203  *  @offset: register offset to write to
204  *  @data: data to write to register at offset
205  *
206  *  Writes data to MDI control register in the PHY at offset.
207  **/
208 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
209 {
210 	u32 i, mdic = 0, retry_counter, retry_max;
211 	struct e1000_phy_info *phy = &hw->phy;
212 	bool success;
213 
214 	if (offset > MAX_PHY_REG_ADDRESS) {
215 		e_dbg("PHY Address %d is out of range\n", offset);
216 		return -E1000_ERR_PARAM;
217 	}
218 
219 	retry_max = phy->retry_enabled ? phy->retry_count : 0;
220 
221 	/* Set up Op-code, Phy Address, and register offset in the MDI
222 	 * Control register.  The MAC will take care of interfacing with the
223 	 * PHY to retrieve the desired data.
224 	 */
225 	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
226 		success = true;
227 
228 		mdic = (((u32)data) |
229 			(offset << E1000_MDIC_REG_SHIFT) |
230 			(phy->addr << E1000_MDIC_PHY_SHIFT) |
231 			(E1000_MDIC_OP_WRITE));
232 
233 		ew32(MDIC, mdic);
234 
235 		/* Poll the ready bit to see if the MDI read completed
236 		 * Increasing the time out as testing showed failures with
237 		 * the lower time out
238 		 */
239 		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
240 			udelay(50);
241 			mdic = er32(MDIC);
242 			if (mdic & E1000_MDIC_READY)
243 				break;
244 		}
245 		if (!(mdic & E1000_MDIC_READY)) {
246 			e_dbg("MDI Write PHY Reg Address %d did not complete\n",
247 			      offset);
248 			success = false;
249 		}
250 		if (mdic & E1000_MDIC_ERROR) {
251 			e_dbg("MDI Write PHY Reg Address %d Error\n", offset);
252 			success = false;
253 		}
254 		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
255 			e_dbg("MDI Write offset error - requested %d, returned %d\n",
256 			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
257 			success = false;
258 		}
259 
260 		/* Allow some time after each MDIC transaction to avoid
261 		 * reading duplicate data in the next MDIC transaction.
262 		 */
263 		if (hw->mac.type == e1000_pch2lan)
264 			udelay(100);
265 
266 		if (success)
267 			return 0;
268 
269 		if (retry_counter != retry_max) {
270 			e_dbg("Perform retry on PHY transaction...\n");
271 			mdelay(10);
272 		}
273 	}
274 
275 	return -E1000_ERR_PHY;
276 }
277 
278 /**
279  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
280  *  @hw: pointer to the HW structure
281  *  @offset: register offset to be read
282  *  @data: pointer to the read data
283  *
284  *  Acquires semaphore, if necessary, then reads the PHY register at offset
285  *  and storing the retrieved information in data.  Release any acquired
286  *  semaphores before exiting.
287  **/
288 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
289 {
290 	s32 ret_val;
291 
292 	ret_val = hw->phy.ops.acquire(hw);
293 	if (ret_val)
294 		return ret_val;
295 
296 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
297 					   data);
298 
299 	hw->phy.ops.release(hw);
300 
301 	return ret_val;
302 }
303 
304 /**
305  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
306  *  @hw: pointer to the HW structure
307  *  @offset: register offset to write to
308  *  @data: data to write at register offset
309  *
310  *  Acquires semaphore, if necessary, then writes the data to PHY register
311  *  at the offset.  Release any acquired semaphores before exiting.
312  **/
313 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
314 {
315 	s32 ret_val;
316 
317 	ret_val = hw->phy.ops.acquire(hw);
318 	if (ret_val)
319 		return ret_val;
320 
321 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
322 					    data);
323 
324 	hw->phy.ops.release(hw);
325 
326 	return ret_val;
327 }
328 
329 /**
330  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
331  *  @hw: pointer to the HW structure
332  *  @page: page to set (shifted left when necessary)
333  *
334  *  Sets PHY page required for PHY register access.  Assumes semaphore is
335  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
336  *  must set it appropriately (if necessary) after this function returns.
337  **/
338 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
339 {
340 	e_dbg("Setting page 0x%x\n", page);
341 
342 	hw->phy.addr = 1;
343 
344 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
345 }
346 
347 /**
348  *  __e1000e_read_phy_reg_igp - Read igp PHY register
349  *  @hw: pointer to the HW structure
350  *  @offset: register offset to be read
351  *  @data: pointer to the read data
352  *  @locked: semaphore has already been acquired or not
353  *
354  *  Acquires semaphore, if necessary, then reads the PHY register at offset
355  *  and stores the retrieved information in data.  Release any acquired
356  *  semaphores before exiting.
357  **/
358 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
359 				     bool locked)
360 {
361 	s32 ret_val = 0;
362 
363 	if (!locked) {
364 		if (!hw->phy.ops.acquire)
365 			return 0;
366 
367 		ret_val = hw->phy.ops.acquire(hw);
368 		if (ret_val)
369 			return ret_val;
370 	}
371 
372 	if (offset > MAX_PHY_MULTI_PAGE_REG)
373 		ret_val = e1000e_write_phy_reg_mdic(hw,
374 						    IGP01E1000_PHY_PAGE_SELECT,
375 						    (u16)offset);
376 	if (!ret_val)
377 		ret_val = e1000e_read_phy_reg_mdic(hw,
378 						   MAX_PHY_REG_ADDRESS & offset,
379 						   data);
380 	if (!locked)
381 		hw->phy.ops.release(hw);
382 
383 	return ret_val;
384 }
385 
386 /**
387  *  e1000e_read_phy_reg_igp - Read igp PHY register
388  *  @hw: pointer to the HW structure
389  *  @offset: register offset to be read
390  *  @data: pointer to the read data
391  *
392  *  Acquires semaphore then reads the PHY register at offset and stores the
393  *  retrieved information in data.
394  *  Release the acquired semaphore before exiting.
395  **/
396 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
397 {
398 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
399 }
400 
401 /**
402  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
403  *  @hw: pointer to the HW structure
404  *  @offset: register offset to be read
405  *  @data: pointer to the read data
406  *
407  *  Reads the PHY register at offset and stores the retrieved information
408  *  in data.  Assumes semaphore already acquired.
409  **/
410 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
411 {
412 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
413 }
414 
415 /**
416  *  __e1000e_write_phy_reg_igp - Write igp PHY register
417  *  @hw: pointer to the HW structure
418  *  @offset: register offset to write to
419  *  @data: data to write at register offset
420  *  @locked: semaphore has already been acquired or not
421  *
422  *  Acquires semaphore, if necessary, then writes the data to PHY register
423  *  at the offset.  Release any acquired semaphores before exiting.
424  **/
425 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
426 				      bool locked)
427 {
428 	s32 ret_val = 0;
429 
430 	if (!locked) {
431 		if (!hw->phy.ops.acquire)
432 			return 0;
433 
434 		ret_val = hw->phy.ops.acquire(hw);
435 		if (ret_val)
436 			return ret_val;
437 	}
438 
439 	if (offset > MAX_PHY_MULTI_PAGE_REG)
440 		ret_val = e1000e_write_phy_reg_mdic(hw,
441 						    IGP01E1000_PHY_PAGE_SELECT,
442 						    (u16)offset);
443 	if (!ret_val)
444 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
445 						    offset, data);
446 	if (!locked)
447 		hw->phy.ops.release(hw);
448 
449 	return ret_val;
450 }
451 
452 /**
453  *  e1000e_write_phy_reg_igp - Write igp PHY register
454  *  @hw: pointer to the HW structure
455  *  @offset: register offset to write to
456  *  @data: data to write at register offset
457  *
458  *  Acquires semaphore then writes the data to PHY register
459  *  at the offset.  Release any acquired semaphores before exiting.
460  **/
461 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
462 {
463 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
464 }
465 
466 /**
467  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
468  *  @hw: pointer to the HW structure
469  *  @offset: register offset to write to
470  *  @data: data to write at register offset
471  *
472  *  Writes the data to PHY register at the offset.
473  *  Assumes semaphore already acquired.
474  **/
475 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
476 {
477 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
478 }
479 
480 /**
481  *  __e1000_read_kmrn_reg - Read kumeran register
482  *  @hw: pointer to the HW structure
483  *  @offset: register offset to be read
484  *  @data: pointer to the read data
485  *  @locked: semaphore has already been acquired or not
486  *
487  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
488  *  using the kumeran interface.  The information retrieved is stored in data.
489  *  Release any acquired semaphores before exiting.
490  **/
491 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
492 				 bool locked)
493 {
494 	u32 kmrnctrlsta;
495 
496 	if (!locked) {
497 		s32 ret_val = 0;
498 
499 		if (!hw->phy.ops.acquire)
500 			return 0;
501 
502 		ret_val = hw->phy.ops.acquire(hw);
503 		if (ret_val)
504 			return ret_val;
505 	}
506 
507 	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
508 		      E1000_KMRNCTRLSTA_REN;
509 	ew32(KMRNCTRLSTA, kmrnctrlsta);
510 	e1e_flush();
511 
512 	udelay(2);
513 
514 	kmrnctrlsta = er32(KMRNCTRLSTA);
515 	*data = (u16)kmrnctrlsta;
516 
517 	if (!locked)
518 		hw->phy.ops.release(hw);
519 
520 	return 0;
521 }
522 
523 /**
524  *  e1000e_read_kmrn_reg -  Read kumeran register
525  *  @hw: pointer to the HW structure
526  *  @offset: register offset to be read
527  *  @data: pointer to the read data
528  *
529  *  Acquires semaphore then reads the PHY register at offset using the
530  *  kumeran interface.  The information retrieved is stored in data.
531  *  Release the acquired semaphore before exiting.
532  **/
533 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
534 {
535 	return __e1000_read_kmrn_reg(hw, offset, data, false);
536 }
537 
538 /**
539  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
540  *  @hw: pointer to the HW structure
541  *  @offset: register offset to be read
542  *  @data: pointer to the read data
543  *
544  *  Reads the PHY register at offset using the kumeran interface.  The
545  *  information retrieved is stored in data.
546  *  Assumes semaphore already acquired.
547  **/
548 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
549 {
550 	return __e1000_read_kmrn_reg(hw, offset, data, true);
551 }
552 
553 /**
554  *  __e1000_write_kmrn_reg - Write kumeran register
555  *  @hw: pointer to the HW structure
556  *  @offset: register offset to write to
557  *  @data: data to write at register offset
558  *  @locked: semaphore has already been acquired or not
559  *
560  *  Acquires semaphore, if necessary.  Then write the data to PHY register
561  *  at the offset using the kumeran interface.  Release any acquired semaphores
562  *  before exiting.
563  **/
564 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
565 				  bool locked)
566 {
567 	u32 kmrnctrlsta;
568 
569 	if (!locked) {
570 		s32 ret_val = 0;
571 
572 		if (!hw->phy.ops.acquire)
573 			return 0;
574 
575 		ret_val = hw->phy.ops.acquire(hw);
576 		if (ret_val)
577 			return ret_val;
578 	}
579 
580 	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
581 	ew32(KMRNCTRLSTA, kmrnctrlsta);
582 	e1e_flush();
583 
584 	udelay(2);
585 
586 	if (!locked)
587 		hw->phy.ops.release(hw);
588 
589 	return 0;
590 }
591 
592 /**
593  *  e1000e_write_kmrn_reg -  Write kumeran register
594  *  @hw: pointer to the HW structure
595  *  @offset: register offset to write to
596  *  @data: data to write at register offset
597  *
598  *  Acquires semaphore then writes the data to the PHY register at the offset
599  *  using the kumeran interface.  Release the acquired semaphore before exiting.
600  **/
601 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
602 {
603 	return __e1000_write_kmrn_reg(hw, offset, data, false);
604 }
605 
606 /**
607  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
608  *  @hw: pointer to the HW structure
609  *  @offset: register offset to write to
610  *  @data: data to write at register offset
611  *
612  *  Write the data to PHY register at the offset using the kumeran interface.
613  *  Assumes semaphore already acquired.
614  **/
615 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
616 {
617 	return __e1000_write_kmrn_reg(hw, offset, data, true);
618 }
619 
620 /**
621  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
622  *  @hw: pointer to the HW structure
623  *
624  *  Sets up Master/slave mode
625  **/
626 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
627 {
628 	s32 ret_val;
629 	u16 phy_data;
630 
631 	/* Resolve Master/Slave mode */
632 	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
633 	if (ret_val)
634 		return ret_val;
635 
636 	/* load defaults for future use */
637 	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
638 	    ((phy_data & CTL1000_AS_MASTER) ?
639 	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
640 
641 	switch (hw->phy.ms_type) {
642 	case e1000_ms_force_master:
643 		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
644 		break;
645 	case e1000_ms_force_slave:
646 		phy_data |= CTL1000_ENABLE_MASTER;
647 		phy_data &= ~(CTL1000_AS_MASTER);
648 		break;
649 	case e1000_ms_auto:
650 		phy_data &= ~CTL1000_ENABLE_MASTER;
651 		fallthrough;
652 	default:
653 		break;
654 	}
655 
656 	return e1e_wphy(hw, MII_CTRL1000, phy_data);
657 }
658 
659 /**
660  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
661  *  @hw: pointer to the HW structure
662  *
663  *  Sets up Carrier-sense on Transmit and downshift values.
664  **/
665 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
666 {
667 	s32 ret_val;
668 	u16 phy_data;
669 
670 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
671 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
672 	if (ret_val)
673 		return ret_val;
674 
675 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
676 
677 	/* Enable downshift */
678 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
679 
680 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
681 	if (ret_val)
682 		return ret_val;
683 
684 	/* Set MDI/MDIX mode */
685 	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
686 	if (ret_val)
687 		return ret_val;
688 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
689 	/* Options:
690 	 *   0 - Auto (default)
691 	 *   1 - MDI mode
692 	 *   2 - MDI-X mode
693 	 */
694 	switch (hw->phy.mdix) {
695 	case 1:
696 		break;
697 	case 2:
698 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
699 		break;
700 	case 0:
701 	default:
702 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
703 		break;
704 	}
705 	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
706 	if (ret_val)
707 		return ret_val;
708 
709 	return e1000_set_master_slave_mode(hw);
710 }
711 
712 /**
713  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
714  *  @hw: pointer to the HW structure
715  *
716  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
717  *  and downshift values are set also.
718  **/
719 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
720 {
721 	struct e1000_phy_info *phy = &hw->phy;
722 	s32 ret_val;
723 	u16 phy_data;
724 
725 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
726 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
727 	if (ret_val)
728 		return ret_val;
729 
730 	/* For BM PHY this bit is downshift enable */
731 	if (phy->type != e1000_phy_bm)
732 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
733 
734 	/* Options:
735 	 *   MDI/MDI-X = 0 (default)
736 	 *   0 - Auto for all speeds
737 	 *   1 - MDI mode
738 	 *   2 - MDI-X mode
739 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
740 	 */
741 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
742 
743 	switch (phy->mdix) {
744 	case 1:
745 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
746 		break;
747 	case 2:
748 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
749 		break;
750 	case 3:
751 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
752 		break;
753 	case 0:
754 	default:
755 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
756 		break;
757 	}
758 
759 	/* Options:
760 	 *   disable_polarity_correction = 0 (default)
761 	 *       Automatic Correction for Reversed Cable Polarity
762 	 *   0 - Disabled
763 	 *   1 - Enabled
764 	 */
765 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
766 	if (phy->disable_polarity_correction)
767 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
768 
769 	/* Enable downshift on BM (disabled by default) */
770 	if (phy->type == e1000_phy_bm) {
771 		/* For 82574/82583, first disable then enable downshift */
772 		if (phy->id == BME1000_E_PHY_ID_R2) {
773 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
774 			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
775 					   phy_data);
776 			if (ret_val)
777 				return ret_val;
778 			/* Commit the changes. */
779 			ret_val = phy->ops.commit(hw);
780 			if (ret_val) {
781 				e_dbg("Error committing the PHY changes\n");
782 				return ret_val;
783 			}
784 		}
785 
786 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
787 	}
788 
789 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
790 	if (ret_val)
791 		return ret_val;
792 
793 	if ((phy->type == e1000_phy_m88) &&
794 	    (phy->revision < E1000_REVISION_4) &&
795 	    (phy->id != BME1000_E_PHY_ID_R2)) {
796 		/* Force TX_CLK in the Extended PHY Specific Control Register
797 		 * to 25MHz clock.
798 		 */
799 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
800 		if (ret_val)
801 			return ret_val;
802 
803 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
804 
805 		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
806 			/* 82573L PHY - set the downshift counter to 5x. */
807 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
808 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
809 		} else {
810 			/* Configure Master and Slave downshift values */
811 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
812 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
813 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
814 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
815 		}
816 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
817 		if (ret_val)
818 			return ret_val;
819 	}
820 
821 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
822 		/* Set PHY page 0, register 29 to 0x0003 */
823 		ret_val = e1e_wphy(hw, 29, 0x0003);
824 		if (ret_val)
825 			return ret_val;
826 
827 		/* Set PHY page 0, register 30 to 0x0000 */
828 		ret_val = e1e_wphy(hw, 30, 0x0000);
829 		if (ret_val)
830 			return ret_val;
831 	}
832 
833 	/* Commit the changes. */
834 	if (phy->ops.commit) {
835 		ret_val = phy->ops.commit(hw);
836 		if (ret_val) {
837 			e_dbg("Error committing the PHY changes\n");
838 			return ret_val;
839 		}
840 	}
841 
842 	if (phy->type == e1000_phy_82578) {
843 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
844 		if (ret_val)
845 			return ret_val;
846 
847 		/* 82578 PHY - set the downshift count to 1x. */
848 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
849 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
850 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
851 		if (ret_val)
852 			return ret_val;
853 	}
854 
855 	return 0;
856 }
857 
858 /**
859  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
860  *  @hw: pointer to the HW structure
861  *
862  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
863  *  igp PHY's.
864  **/
865 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
866 {
867 	struct e1000_phy_info *phy = &hw->phy;
868 	s32 ret_val;
869 	u16 data;
870 
871 	ret_val = e1000_phy_hw_reset(hw);
872 	if (ret_val) {
873 		e_dbg("Error resetting the PHY.\n");
874 		return ret_val;
875 	}
876 
877 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
878 	 * timeout issues when LFS is enabled.
879 	 */
880 	msleep(100);
881 
882 	/* disable lplu d0 during driver init */
883 	if (hw->phy.ops.set_d0_lplu_state) {
884 		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
885 		if (ret_val) {
886 			e_dbg("Error Disabling LPLU D0\n");
887 			return ret_val;
888 		}
889 	}
890 	/* Configure mdi-mdix settings */
891 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
892 	if (ret_val)
893 		return ret_val;
894 
895 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
896 
897 	switch (phy->mdix) {
898 	case 1:
899 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
900 		break;
901 	case 2:
902 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
903 		break;
904 	case 0:
905 	default:
906 		data |= IGP01E1000_PSCR_AUTO_MDIX;
907 		break;
908 	}
909 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
910 	if (ret_val)
911 		return ret_val;
912 
913 	/* set auto-master slave resolution settings */
914 	if (hw->mac.autoneg) {
915 		/* when autonegotiation advertisement is only 1000Mbps then we
916 		 * should disable SmartSpeed and enable Auto MasterSlave
917 		 * resolution as hardware default.
918 		 */
919 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
920 			/* Disable SmartSpeed */
921 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
922 					   &data);
923 			if (ret_val)
924 				return ret_val;
925 
926 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
927 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
928 					   data);
929 			if (ret_val)
930 				return ret_val;
931 
932 			/* Set auto Master/Slave resolution process */
933 			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
934 			if (ret_val)
935 				return ret_val;
936 
937 			data &= ~CTL1000_ENABLE_MASTER;
938 			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
939 			if (ret_val)
940 				return ret_val;
941 		}
942 
943 		ret_val = e1000_set_master_slave_mode(hw);
944 	}
945 
946 	return ret_val;
947 }
948 
949 /**
950  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
951  *  @hw: pointer to the HW structure
952  *
953  *  Reads the MII auto-neg advertisement register and/or the 1000T control
954  *  register and if the PHY is already setup for auto-negotiation, then
955  *  return successful.  Otherwise, setup advertisement and flow control to
956  *  the appropriate values for the wanted auto-negotiation.
957  **/
958 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
959 {
960 	struct e1000_phy_info *phy = &hw->phy;
961 	s32 ret_val;
962 	u16 mii_autoneg_adv_reg;
963 	u16 mii_1000t_ctrl_reg = 0;
964 
965 	phy->autoneg_advertised &= phy->autoneg_mask;
966 
967 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
968 	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
969 	if (ret_val)
970 		return ret_val;
971 
972 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
973 		/* Read the MII 1000Base-T Control Register (Address 9). */
974 		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
975 		if (ret_val)
976 			return ret_val;
977 	}
978 
979 	/* Need to parse both autoneg_advertised and fc and set up
980 	 * the appropriate PHY registers.  First we will parse for
981 	 * autoneg_advertised software override.  Since we can advertise
982 	 * a plethora of combinations, we need to check each bit
983 	 * individually.
984 	 */
985 
986 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
987 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
988 	 * the  1000Base-T Control Register (Address 9).
989 	 */
990 	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
991 				 ADVERTISE_100HALF |
992 				 ADVERTISE_10FULL | ADVERTISE_10HALF);
993 	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
994 
995 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
996 
997 	/* Do we want to advertise 10 Mb Half Duplex? */
998 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
999 		e_dbg("Advertise 10mb Half duplex\n");
1000 		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
1001 	}
1002 
1003 	/* Do we want to advertise 10 Mb Full Duplex? */
1004 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1005 		e_dbg("Advertise 10mb Full duplex\n");
1006 		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
1007 	}
1008 
1009 	/* Do we want to advertise 100 Mb Half Duplex? */
1010 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1011 		e_dbg("Advertise 100mb Half duplex\n");
1012 		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
1013 	}
1014 
1015 	/* Do we want to advertise 100 Mb Full Duplex? */
1016 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1017 		e_dbg("Advertise 100mb Full duplex\n");
1018 		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
1019 	}
1020 
1021 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1022 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1023 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1024 
1025 	/* Do we want to advertise 1000 Mb Full Duplex? */
1026 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1027 		e_dbg("Advertise 1000mb Full duplex\n");
1028 		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1029 	}
1030 
1031 	/* Check for a software override of the flow control settings, and
1032 	 * setup the PHY advertisement registers accordingly.  If
1033 	 * auto-negotiation is enabled, then software will have to set the
1034 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1035 	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1036 	 * negotiation.
1037 	 *
1038 	 * The possible values of the "fc" parameter are:
1039 	 *      0:  Flow control is completely disabled
1040 	 *      1:  Rx flow control is enabled (we can receive pause frames
1041 	 *          but not send pause frames).
1042 	 *      2:  Tx flow control is enabled (we can send pause frames
1043 	 *          but we do not support receiving pause frames).
1044 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1045 	 *  other:  No software override.  The flow control configuration
1046 	 *          in the EEPROM is used.
1047 	 */
1048 	switch (hw->fc.current_mode) {
1049 	case e1000_fc_none:
1050 		/* Flow control (Rx & Tx) is completely disabled by a
1051 		 * software over-ride.
1052 		 */
1053 		mii_autoneg_adv_reg &=
1054 		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1055 		phy->autoneg_advertised &=
1056 		    ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1057 		break;
1058 	case e1000_fc_rx_pause:
1059 		/* Rx Flow control is enabled, and Tx Flow control is
1060 		 * disabled, by a software over-ride.
1061 		 *
1062 		 * Since there really isn't a way to advertise that we are
1063 		 * capable of Rx Pause ONLY, we will advertise that we
1064 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1065 		 * (in e1000e_config_fc_after_link_up) we will disable the
1066 		 * hw's ability to send PAUSE frames.
1067 		 */
1068 		mii_autoneg_adv_reg |=
1069 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1070 		phy->autoneg_advertised |=
1071 		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1072 		break;
1073 	case e1000_fc_tx_pause:
1074 		/* Tx Flow control is enabled, and Rx Flow control is
1075 		 * disabled, by a software over-ride.
1076 		 */
1077 		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1078 		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1079 		phy->autoneg_advertised |= ADVERTISED_Asym_Pause;
1080 		phy->autoneg_advertised &= ~ADVERTISED_Pause;
1081 		break;
1082 	case e1000_fc_full:
1083 		/* Flow control (both Rx and Tx) is enabled by a software
1084 		 * over-ride.
1085 		 */
1086 		mii_autoneg_adv_reg |=
1087 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1088 		phy->autoneg_advertised |=
1089 		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1090 		break;
1091 	default:
1092 		e_dbg("Flow control param set incorrectly\n");
1093 		return -E1000_ERR_CONFIG;
1094 	}
1095 
1096 	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1097 	if (ret_val)
1098 		return ret_val;
1099 
1100 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1101 
1102 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1103 		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1104 
1105 	return ret_val;
1106 }
1107 
1108 /**
1109  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1110  *  @hw: pointer to the HW structure
1111  *
1112  *  Performs initial bounds checking on autoneg advertisement parameter, then
1113  *  configure to advertise the full capability.  Setup the PHY to autoneg
1114  *  and restart the negotiation process between the link partner.  If
1115  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1116  **/
1117 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1118 {
1119 	struct e1000_phy_info *phy = &hw->phy;
1120 	s32 ret_val;
1121 	u16 phy_ctrl;
1122 
1123 	/* Perform some bounds checking on the autoneg advertisement
1124 	 * parameter.
1125 	 */
1126 	phy->autoneg_advertised &= phy->autoneg_mask;
1127 
1128 	/* If autoneg_advertised is zero, we assume it was not defaulted
1129 	 * by the calling code so we set to advertise full capability.
1130 	 */
1131 	if (!phy->autoneg_advertised)
1132 		phy->autoneg_advertised = phy->autoneg_mask;
1133 
1134 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1135 	ret_val = e1000_phy_setup_autoneg(hw);
1136 	if (ret_val) {
1137 		e_dbg("Error Setting up Auto-Negotiation\n");
1138 		return ret_val;
1139 	}
1140 	e_dbg("Restarting Auto-Neg\n");
1141 
1142 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1143 	 * the Auto Neg Restart bit in the PHY control register.
1144 	 */
1145 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1146 	if (ret_val)
1147 		return ret_val;
1148 
1149 	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1150 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1151 	if (ret_val)
1152 		return ret_val;
1153 
1154 	/* Does the user want to wait for Auto-Neg to complete here, or
1155 	 * check at a later time (for example, callback routine).
1156 	 */
1157 	if (phy->autoneg_wait_to_complete) {
1158 		ret_val = e1000_wait_autoneg(hw);
1159 		if (ret_val) {
1160 			e_dbg("Error while waiting for autoneg to complete\n");
1161 			return ret_val;
1162 		}
1163 	}
1164 
1165 	hw->mac.get_link_status = true;
1166 
1167 	return ret_val;
1168 }
1169 
1170 /**
1171  *  e1000e_setup_copper_link - Configure copper link settings
1172  *  @hw: pointer to the HW structure
1173  *
1174  *  Calls the appropriate function to configure the link for auto-neg or forced
1175  *  speed and duplex.  Then we check for link, once link is established calls
1176  *  to configure collision distance and flow control are called.  If link is
1177  *  not established, we return -E1000_ERR_PHY (-2).
1178  **/
1179 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1180 {
1181 	s32 ret_val;
1182 	bool link;
1183 
1184 	if (hw->mac.autoneg) {
1185 		/* Setup autoneg and flow control advertisement and perform
1186 		 * autonegotiation.
1187 		 */
1188 		ret_val = e1000_copper_link_autoneg(hw);
1189 		if (ret_val)
1190 			return ret_val;
1191 	} else {
1192 		/* PHY will be set to 10H, 10F, 100H or 100F
1193 		 * depending on user settings.
1194 		 */
1195 		e_dbg("Forcing Speed and Duplex\n");
1196 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1197 		if (ret_val) {
1198 			e_dbg("Error Forcing Speed and Duplex\n");
1199 			return ret_val;
1200 		}
1201 	}
1202 
1203 	/* Check link status. Wait up to 100 microseconds for link to become
1204 	 * valid.
1205 	 */
1206 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1207 					      &link);
1208 	if (ret_val)
1209 		return ret_val;
1210 
1211 	if (link) {
1212 		e_dbg("Valid link established!!!\n");
1213 		hw->mac.ops.config_collision_dist(hw);
1214 		ret_val = e1000e_config_fc_after_link_up(hw);
1215 	} else {
1216 		e_dbg("Unable to establish link!!!\n");
1217 	}
1218 
1219 	return ret_val;
1220 }
1221 
1222 /**
1223  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1224  *  @hw: pointer to the HW structure
1225  *
1226  *  Calls the PHY setup function to force speed and duplex.  Clears the
1227  *  auto-crossover to force MDI manually.  Waits for link and returns
1228  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1229  **/
1230 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1231 {
1232 	struct e1000_phy_info *phy = &hw->phy;
1233 	s32 ret_val;
1234 	u16 phy_data;
1235 	bool link;
1236 
1237 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1238 	if (ret_val)
1239 		return ret_val;
1240 
1241 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1242 
1243 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1244 	if (ret_val)
1245 		return ret_val;
1246 
1247 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1248 	 * forced whenever speed and duplex are forced.
1249 	 */
1250 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1251 	if (ret_val)
1252 		return ret_val;
1253 
1254 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1255 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1256 
1257 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1258 	if (ret_val)
1259 		return ret_val;
1260 
1261 	e_dbg("IGP PSCR: %X\n", phy_data);
1262 
1263 	udelay(1);
1264 
1265 	if (phy->autoneg_wait_to_complete) {
1266 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1267 
1268 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1269 						      100000, &link);
1270 		if (ret_val)
1271 			return ret_val;
1272 
1273 		if (!link)
1274 			e_dbg("Link taking longer than expected.\n");
1275 
1276 		/* Try once more */
1277 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1278 						      100000, &link);
1279 	}
1280 
1281 	return ret_val;
1282 }
1283 
1284 /**
1285  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1286  *  @hw: pointer to the HW structure
1287  *
1288  *  Calls the PHY setup function to force speed and duplex.  Clears the
1289  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1290  *  changes.  If time expires while waiting for link up, we reset the DSP.
1291  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1292  *  successful completion, else return corresponding error code.
1293  **/
1294 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1295 {
1296 	struct e1000_phy_info *phy = &hw->phy;
1297 	s32 ret_val;
1298 	u16 phy_data;
1299 	bool link;
1300 
1301 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1302 	 * forced whenever speed and duplex are forced.
1303 	 */
1304 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1305 	if (ret_val)
1306 		return ret_val;
1307 
1308 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1309 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1310 	if (ret_val)
1311 		return ret_val;
1312 
1313 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1314 
1315 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1316 	if (ret_val)
1317 		return ret_val;
1318 
1319 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1320 
1321 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1322 	if (ret_val)
1323 		return ret_val;
1324 
1325 	/* Reset the phy to commit changes. */
1326 	if (hw->phy.ops.commit) {
1327 		ret_val = hw->phy.ops.commit(hw);
1328 		if (ret_val)
1329 			return ret_val;
1330 	}
1331 
1332 	if (phy->autoneg_wait_to_complete) {
1333 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1334 
1335 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1336 						      100000, &link);
1337 		if (ret_val)
1338 			return ret_val;
1339 
1340 		if (!link) {
1341 			if (hw->phy.type != e1000_phy_m88) {
1342 				e_dbg("Link taking longer than expected.\n");
1343 			} else {
1344 				/* We didn't get link.
1345 				 * Reset the DSP and cross our fingers.
1346 				 */
1347 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1348 						   0x001d);
1349 				if (ret_val)
1350 					return ret_val;
1351 				ret_val = e1000e_phy_reset_dsp(hw);
1352 				if (ret_val)
1353 					return ret_val;
1354 			}
1355 		}
1356 
1357 		/* Try once more */
1358 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1359 						      100000, &link);
1360 		if (ret_val)
1361 			return ret_val;
1362 	}
1363 
1364 	if (hw->phy.type != e1000_phy_m88)
1365 		return 0;
1366 
1367 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1368 	if (ret_val)
1369 		return ret_val;
1370 
1371 	/* Resetting the phy means we need to re-force TX_CLK in the
1372 	 * Extended PHY Specific Control Register to 25MHz clock from
1373 	 * the reset value of 2.5MHz.
1374 	 */
1375 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1376 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1377 	if (ret_val)
1378 		return ret_val;
1379 
1380 	/* In addition, we must re-enable CRS on Tx for both half and full
1381 	 * duplex.
1382 	 */
1383 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1384 	if (ret_val)
1385 		return ret_val;
1386 
1387 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1388 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1389 
1390 	return ret_val;
1391 }
1392 
1393 /**
1394  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1395  *  @hw: pointer to the HW structure
1396  *
1397  *  Forces the speed and duplex settings of the PHY.
1398  *  This is a function pointer entry point only called by
1399  *  PHY setup routines.
1400  **/
1401 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1402 {
1403 	struct e1000_phy_info *phy = &hw->phy;
1404 	s32 ret_val;
1405 	u16 data;
1406 	bool link;
1407 
1408 	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1409 	if (ret_val)
1410 		return ret_val;
1411 
1412 	e1000e_phy_force_speed_duplex_setup(hw, &data);
1413 
1414 	ret_val = e1e_wphy(hw, MII_BMCR, data);
1415 	if (ret_val)
1416 		return ret_val;
1417 
1418 	/* Disable MDI-X support for 10/100 */
1419 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1420 	if (ret_val)
1421 		return ret_val;
1422 
1423 	data &= ~IFE_PMC_AUTO_MDIX;
1424 	data &= ~IFE_PMC_FORCE_MDIX;
1425 
1426 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1427 	if (ret_val)
1428 		return ret_val;
1429 
1430 	e_dbg("IFE PMC: %X\n", data);
1431 
1432 	udelay(1);
1433 
1434 	if (phy->autoneg_wait_to_complete) {
1435 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1436 
1437 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1438 						      100000, &link);
1439 		if (ret_val)
1440 			return ret_val;
1441 
1442 		if (!link)
1443 			e_dbg("Link taking longer than expected.\n");
1444 
1445 		/* Try once more */
1446 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1447 						      100000, &link);
1448 		if (ret_val)
1449 			return ret_val;
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 /**
1456  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1457  *  @hw: pointer to the HW structure
1458  *  @phy_ctrl: pointer to current value of MII_BMCR
1459  *
1460  *  Forces speed and duplex on the PHY by doing the following: disable flow
1461  *  control, force speed/duplex on the MAC, disable auto speed detection,
1462  *  disable auto-negotiation, configure duplex, configure speed, configure
1463  *  the collision distance, write configuration to CTRL register.  The
1464  *  caller must write to the MII_BMCR register for these settings to
1465  *  take affect.
1466  **/
1467 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1468 {
1469 	struct e1000_mac_info *mac = &hw->mac;
1470 	u32 ctrl;
1471 
1472 	/* Turn off flow control when forcing speed/duplex */
1473 	hw->fc.current_mode = e1000_fc_none;
1474 
1475 	/* Force speed/duplex on the mac */
1476 	ctrl = er32(CTRL);
1477 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1478 	ctrl &= ~E1000_CTRL_SPD_SEL;
1479 
1480 	/* Disable Auto Speed Detection */
1481 	ctrl &= ~E1000_CTRL_ASDE;
1482 
1483 	/* Disable autoneg on the phy */
1484 	*phy_ctrl &= ~BMCR_ANENABLE;
1485 
1486 	/* Forcing Full or Half Duplex? */
1487 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1488 		ctrl &= ~E1000_CTRL_FD;
1489 		*phy_ctrl &= ~BMCR_FULLDPLX;
1490 		e_dbg("Half Duplex\n");
1491 	} else {
1492 		ctrl |= E1000_CTRL_FD;
1493 		*phy_ctrl |= BMCR_FULLDPLX;
1494 		e_dbg("Full Duplex\n");
1495 	}
1496 
1497 	/* Forcing 10mb or 100mb? */
1498 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1499 		ctrl |= E1000_CTRL_SPD_100;
1500 		*phy_ctrl |= BMCR_SPEED100;
1501 		*phy_ctrl &= ~BMCR_SPEED1000;
1502 		e_dbg("Forcing 100mb\n");
1503 	} else {
1504 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505 		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1506 		e_dbg("Forcing 10mb\n");
1507 	}
1508 
1509 	hw->mac.ops.config_collision_dist(hw);
1510 
1511 	ew32(CTRL, ctrl);
1512 }
1513 
1514 /**
1515  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516  *  @hw: pointer to the HW structure
1517  *  @active: boolean used to enable/disable lplu
1518  *
1519  *  Success returns 0, Failure returns 1
1520  *
1521  *  The low power link up (lplu) state is set to the power management level D3
1522  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1523  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1524  *  is used during Dx states where the power conservation is most important.
1525  *  During driver activity, SmartSpeed should be enabled so performance is
1526  *  maintained.
1527  **/
1528 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1529 {
1530 	struct e1000_phy_info *phy = &hw->phy;
1531 	s32 ret_val;
1532 	u16 data;
1533 
1534 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1535 	if (ret_val)
1536 		return ret_val;
1537 
1538 	if (!active) {
1539 		data &= ~IGP02E1000_PM_D3_LPLU;
1540 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1541 		if (ret_val)
1542 			return ret_val;
1543 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1544 		 * during Dx states where the power conservation is most
1545 		 * important.  During driver activity we should enable
1546 		 * SmartSpeed, so performance is maintained.
1547 		 */
1548 		if (phy->smart_speed == e1000_smart_speed_on) {
1549 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1550 					   &data);
1551 			if (ret_val)
1552 				return ret_val;
1553 
1554 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1555 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1556 					   data);
1557 			if (ret_val)
1558 				return ret_val;
1559 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1560 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1561 					   &data);
1562 			if (ret_val)
1563 				return ret_val;
1564 
1565 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1566 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1567 					   data);
1568 			if (ret_val)
1569 				return ret_val;
1570 		}
1571 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1572 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1573 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1574 		data |= IGP02E1000_PM_D3_LPLU;
1575 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1576 		if (ret_val)
1577 			return ret_val;
1578 
1579 		/* When LPLU is enabled, we should disable SmartSpeed */
1580 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1581 		if (ret_val)
1582 			return ret_val;
1583 
1584 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1585 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1586 	}
1587 
1588 	return ret_val;
1589 }
1590 
1591 /**
1592  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1593  *  @hw: pointer to the HW structure
1594  *
1595  *  Success returns 0, Failure returns 1
1596  *
1597  *  A downshift is detected by querying the PHY link health.
1598  **/
1599 s32 e1000e_check_downshift(struct e1000_hw *hw)
1600 {
1601 	struct e1000_phy_info *phy = &hw->phy;
1602 	s32 ret_val;
1603 	u16 phy_data, offset, mask;
1604 
1605 	switch (phy->type) {
1606 	case e1000_phy_m88:
1607 	case e1000_phy_gg82563:
1608 	case e1000_phy_bm:
1609 	case e1000_phy_82578:
1610 		offset = M88E1000_PHY_SPEC_STATUS;
1611 		mask = M88E1000_PSSR_DOWNSHIFT;
1612 		break;
1613 	case e1000_phy_igp_2:
1614 	case e1000_phy_igp_3:
1615 		offset = IGP01E1000_PHY_LINK_HEALTH;
1616 		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1617 		break;
1618 	default:
1619 		/* speed downshift not supported */
1620 		phy->speed_downgraded = false;
1621 		return 0;
1622 	}
1623 
1624 	ret_val = e1e_rphy(hw, offset, &phy_data);
1625 
1626 	if (!ret_val)
1627 		phy->speed_downgraded = !!(phy_data & mask);
1628 
1629 	return ret_val;
1630 }
1631 
1632 /**
1633  *  e1000_check_polarity_m88 - Checks the polarity.
1634  *  @hw: pointer to the HW structure
1635  *
1636  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1637  *
1638  *  Polarity is determined based on the PHY specific status register.
1639  **/
1640 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1641 {
1642 	struct e1000_phy_info *phy = &hw->phy;
1643 	s32 ret_val;
1644 	u16 data;
1645 
1646 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1647 
1648 	if (!ret_val)
1649 		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1650 				       ? e1000_rev_polarity_reversed
1651 				       : e1000_rev_polarity_normal);
1652 
1653 	return ret_val;
1654 }
1655 
1656 /**
1657  *  e1000_check_polarity_igp - Checks the polarity.
1658  *  @hw: pointer to the HW structure
1659  *
1660  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1661  *
1662  *  Polarity is determined based on the PHY port status register, and the
1663  *  current speed (since there is no polarity at 100Mbps).
1664  **/
1665 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1666 {
1667 	struct e1000_phy_info *phy = &hw->phy;
1668 	s32 ret_val;
1669 	u16 data, offset, mask;
1670 
1671 	/* Polarity is determined based on the speed of
1672 	 * our connection.
1673 	 */
1674 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1675 	if (ret_val)
1676 		return ret_val;
1677 
1678 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1679 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1680 		offset = IGP01E1000_PHY_PCS_INIT_REG;
1681 		mask = IGP01E1000_PHY_POLARITY_MASK;
1682 	} else {
1683 		/* This really only applies to 10Mbps since
1684 		 * there is no polarity for 100Mbps (always 0).
1685 		 */
1686 		offset = IGP01E1000_PHY_PORT_STATUS;
1687 		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1688 	}
1689 
1690 	ret_val = e1e_rphy(hw, offset, &data);
1691 
1692 	if (!ret_val)
1693 		phy->cable_polarity = ((data & mask)
1694 				       ? e1000_rev_polarity_reversed
1695 				       : e1000_rev_polarity_normal);
1696 
1697 	return ret_val;
1698 }
1699 
1700 /**
1701  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1702  *  @hw: pointer to the HW structure
1703  *
1704  *  Polarity is determined on the polarity reversal feature being enabled.
1705  **/
1706 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1707 {
1708 	struct e1000_phy_info *phy = &hw->phy;
1709 	s32 ret_val;
1710 	u16 phy_data, offset, mask;
1711 
1712 	/* Polarity is determined based on the reversal feature being enabled.
1713 	 */
1714 	if (phy->polarity_correction) {
1715 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1716 		mask = IFE_PESC_POLARITY_REVERSED;
1717 	} else {
1718 		offset = IFE_PHY_SPECIAL_CONTROL;
1719 		mask = IFE_PSC_FORCE_POLARITY;
1720 	}
1721 
1722 	ret_val = e1e_rphy(hw, offset, &phy_data);
1723 
1724 	if (!ret_val)
1725 		phy->cable_polarity = ((phy_data & mask)
1726 				       ? e1000_rev_polarity_reversed
1727 				       : e1000_rev_polarity_normal);
1728 
1729 	return ret_val;
1730 }
1731 
1732 /**
1733  *  e1000_wait_autoneg - Wait for auto-neg completion
1734  *  @hw: pointer to the HW structure
1735  *
1736  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1737  *  limit to expire, which ever happens first.
1738  **/
1739 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1740 {
1741 	s32 ret_val = 0;
1742 	u16 i, phy_status;
1743 
1744 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1745 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1746 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747 		if (ret_val)
1748 			break;
1749 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1750 		if (ret_val)
1751 			break;
1752 		if (phy_status & BMSR_ANEGCOMPLETE)
1753 			break;
1754 		msleep(100);
1755 	}
1756 
1757 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1758 	 * has completed.
1759 	 */
1760 	return ret_val;
1761 }
1762 
1763 /**
1764  *  e1000e_phy_has_link_generic - Polls PHY for link
1765  *  @hw: pointer to the HW structure
1766  *  @iterations: number of times to poll for link
1767  *  @usec_interval: delay between polling attempts
1768  *  @success: pointer to whether polling was successful or not
1769  *
1770  *  Polls the PHY status register for link, 'iterations' number of times.
1771  **/
1772 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1773 				u32 usec_interval, bool *success)
1774 {
1775 	s32 ret_val = 0;
1776 	u16 i, phy_status;
1777 
1778 	*success = false;
1779 	for (i = 0; i < iterations; i++) {
1780 		/* Some PHYs require the MII_BMSR register to be read
1781 		 * twice due to the link bit being sticky.  No harm doing
1782 		 * it across the board.
1783 		 */
1784 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1785 		if (ret_val) {
1786 			/* If the first read fails, another entity may have
1787 			 * ownership of the resources, wait and try again to
1788 			 * see if they have relinquished the resources yet.
1789 			 */
1790 			if (usec_interval >= 1000)
1791 				msleep(usec_interval / 1000);
1792 			else
1793 				udelay(usec_interval);
1794 		}
1795 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1796 		if (ret_val)
1797 			break;
1798 		if (phy_status & BMSR_LSTATUS) {
1799 			*success = true;
1800 			break;
1801 		}
1802 		if (usec_interval >= 1000)
1803 			msleep(usec_interval / 1000);
1804 		else
1805 			udelay(usec_interval);
1806 	}
1807 
1808 	return ret_val;
1809 }
1810 
1811 /**
1812  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1813  *  @hw: pointer to the HW structure
1814  *
1815  *  Reads the PHY specific status register to retrieve the cable length
1816  *  information.  The cable length is determined by averaging the minimum and
1817  *  maximum values to get the "average" cable length.  The m88 PHY has four
1818  *  possible cable length values, which are:
1819  *	Register Value		Cable Length
1820  *	0			< 50 meters
1821  *	1			50 - 80 meters
1822  *	2			80 - 110 meters
1823  *	3			110 - 140 meters
1824  *	4			> 140 meters
1825  **/
1826 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1827 {
1828 	struct e1000_phy_info *phy = &hw->phy;
1829 	s32 ret_val;
1830 	u16 phy_data, index;
1831 
1832 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1833 	if (ret_val)
1834 		return ret_val;
1835 
1836 	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1837 
1838 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1839 		return -E1000_ERR_PHY;
1840 
1841 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1842 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1843 
1844 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1845 
1846 	return 0;
1847 }
1848 
1849 /**
1850  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1851  *  @hw: pointer to the HW structure
1852  *
1853  *  The automatic gain control (agc) normalizes the amplitude of the
1854  *  received signal, adjusting for the attenuation produced by the
1855  *  cable.  By reading the AGC registers, which represent the
1856  *  combination of coarse and fine gain value, the value can be put
1857  *  into a lookup table to obtain the approximate cable length
1858  *  for each channel.
1859  **/
1860 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1861 {
1862 	struct e1000_phy_info *phy = &hw->phy;
1863 	s32 ret_val;
1864 	u16 phy_data, i, agc_value = 0;
1865 	u16 cur_agc_index, max_agc_index = 0;
1866 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1867 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1868 		IGP02E1000_PHY_AGC_A,
1869 		IGP02E1000_PHY_AGC_B,
1870 		IGP02E1000_PHY_AGC_C,
1871 		IGP02E1000_PHY_AGC_D
1872 	};
1873 
1874 	/* Read the AGC registers for all channels */
1875 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1876 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1877 		if (ret_val)
1878 			return ret_val;
1879 
1880 		/* Getting bits 15:9, which represent the combination of
1881 		 * coarse and fine gain values.  The result is a number
1882 		 * that can be put into the lookup table to obtain the
1883 		 * approximate cable length.
1884 		 */
1885 		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1886 				 IGP02E1000_AGC_LENGTH_MASK);
1887 
1888 		/* Array index bound check. */
1889 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1890 		    (cur_agc_index == 0))
1891 			return -E1000_ERR_PHY;
1892 
1893 		/* Remove min & max AGC values from calculation. */
1894 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1895 		    e1000_igp_2_cable_length_table[cur_agc_index])
1896 			min_agc_index = cur_agc_index;
1897 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1898 		    e1000_igp_2_cable_length_table[cur_agc_index])
1899 			max_agc_index = cur_agc_index;
1900 
1901 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1902 	}
1903 
1904 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1905 		      e1000_igp_2_cable_length_table[max_agc_index]);
1906 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1907 
1908 	/* Calculate cable length with the error range of +/- 10 meters. */
1909 	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1910 				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1911 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1912 
1913 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1914 
1915 	return 0;
1916 }
1917 
1918 /**
1919  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1920  *  @hw: pointer to the HW structure
1921  *
1922  *  Valid for only copper links.  Read the PHY status register (sticky read)
1923  *  to verify that link is up.  Read the PHY special control register to
1924  *  determine the polarity and 10base-T extended distance.  Read the PHY
1925  *  special status register to determine MDI/MDIx and current speed.  If
1926  *  speed is 1000, then determine cable length, local and remote receiver.
1927  **/
1928 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1929 {
1930 	struct e1000_phy_info *phy = &hw->phy;
1931 	s32 ret_val;
1932 	u16 phy_data;
1933 	bool link;
1934 
1935 	if (phy->media_type != e1000_media_type_copper) {
1936 		e_dbg("Phy info is only valid for copper media\n");
1937 		return -E1000_ERR_CONFIG;
1938 	}
1939 
1940 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1941 	if (ret_val)
1942 		return ret_val;
1943 
1944 	if (!link) {
1945 		e_dbg("Phy info is only valid if link is up\n");
1946 		return -E1000_ERR_CONFIG;
1947 	}
1948 
1949 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1950 	if (ret_val)
1951 		return ret_val;
1952 
1953 	phy->polarity_correction = !!(phy_data &
1954 				      M88E1000_PSCR_POLARITY_REVERSAL);
1955 
1956 	ret_val = e1000_check_polarity_m88(hw);
1957 	if (ret_val)
1958 		return ret_val;
1959 
1960 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1961 	if (ret_val)
1962 		return ret_val;
1963 
1964 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1965 
1966 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1967 		ret_val = hw->phy.ops.get_cable_length(hw);
1968 		if (ret_val)
1969 			return ret_val;
1970 
1971 		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1972 		if (ret_val)
1973 			return ret_val;
1974 
1975 		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1976 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1977 
1978 		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1979 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1980 	} else {
1981 		/* Set values to "undefined" */
1982 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1983 		phy->local_rx = e1000_1000t_rx_status_undefined;
1984 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1985 	}
1986 
1987 	return ret_val;
1988 }
1989 
1990 /**
1991  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1992  *  @hw: pointer to the HW structure
1993  *
1994  *  Read PHY status to determine if link is up.  If link is up, then
1995  *  set/determine 10base-T extended distance and polarity correction.  Read
1996  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1997  *  determine on the cable length, local and remote receiver.
1998  **/
1999 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2000 {
2001 	struct e1000_phy_info *phy = &hw->phy;
2002 	s32 ret_val;
2003 	u16 data;
2004 	bool link;
2005 
2006 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2007 	if (ret_val)
2008 		return ret_val;
2009 
2010 	if (!link) {
2011 		e_dbg("Phy info is only valid if link is up\n");
2012 		return -E1000_ERR_CONFIG;
2013 	}
2014 
2015 	phy->polarity_correction = true;
2016 
2017 	ret_val = e1000_check_polarity_igp(hw);
2018 	if (ret_val)
2019 		return ret_val;
2020 
2021 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2022 	if (ret_val)
2023 		return ret_val;
2024 
2025 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2026 
2027 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2028 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2029 		ret_val = phy->ops.get_cable_length(hw);
2030 		if (ret_val)
2031 			return ret_val;
2032 
2033 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2034 		if (ret_val)
2035 			return ret_val;
2036 
2037 		phy->local_rx = (data & LPA_1000LOCALRXOK)
2038 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2039 
2040 		phy->remote_rx = (data & LPA_1000REMRXOK)
2041 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2042 	} else {
2043 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2044 		phy->local_rx = e1000_1000t_rx_status_undefined;
2045 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2046 	}
2047 
2048 	return ret_val;
2049 }
2050 
2051 /**
2052  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2053  *  @hw: pointer to the HW structure
2054  *
2055  *  Populates "phy" structure with various feature states.
2056  **/
2057 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2058 {
2059 	struct e1000_phy_info *phy = &hw->phy;
2060 	s32 ret_val;
2061 	u16 data;
2062 	bool link;
2063 
2064 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2065 	if (ret_val)
2066 		return ret_val;
2067 
2068 	if (!link) {
2069 		e_dbg("Phy info is only valid if link is up\n");
2070 		return -E1000_ERR_CONFIG;
2071 	}
2072 
2073 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2074 	if (ret_val)
2075 		return ret_val;
2076 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2077 
2078 	if (phy->polarity_correction) {
2079 		ret_val = e1000_check_polarity_ife(hw);
2080 		if (ret_val)
2081 			return ret_val;
2082 	} else {
2083 		/* Polarity is forced */
2084 		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2085 				       ? e1000_rev_polarity_reversed
2086 				       : e1000_rev_polarity_normal);
2087 	}
2088 
2089 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2090 	if (ret_val)
2091 		return ret_val;
2092 
2093 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2094 
2095 	/* The following parameters are undefined for 10/100 operation. */
2096 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2097 	phy->local_rx = e1000_1000t_rx_status_undefined;
2098 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2099 
2100 	return 0;
2101 }
2102 
2103 /**
2104  *  e1000e_phy_sw_reset - PHY software reset
2105  *  @hw: pointer to the HW structure
2106  *
2107  *  Does a software reset of the PHY by reading the PHY control register and
2108  *  setting/write the control register reset bit to the PHY.
2109  **/
2110 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2111 {
2112 	s32 ret_val;
2113 	u16 phy_ctrl;
2114 
2115 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2116 	if (ret_val)
2117 		return ret_val;
2118 
2119 	phy_ctrl |= BMCR_RESET;
2120 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2121 	if (ret_val)
2122 		return ret_val;
2123 
2124 	udelay(1);
2125 
2126 	return ret_val;
2127 }
2128 
2129 /**
2130  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2131  *  @hw: pointer to the HW structure
2132  *
2133  *  Verify the reset block is not blocking us from resetting.  Acquire
2134  *  semaphore (if necessary) and read/set/write the device control reset
2135  *  bit in the PHY.  Wait the appropriate delay time for the device to
2136  *  reset and release the semaphore (if necessary).
2137  **/
2138 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2139 {
2140 	struct e1000_phy_info *phy = &hw->phy;
2141 	s32 ret_val;
2142 	u32 ctrl;
2143 
2144 	if (phy->ops.check_reset_block) {
2145 		ret_val = phy->ops.check_reset_block(hw);
2146 		if (ret_val)
2147 			return 0;
2148 	}
2149 
2150 	ret_val = phy->ops.acquire(hw);
2151 	if (ret_val)
2152 		return ret_val;
2153 
2154 	ctrl = er32(CTRL);
2155 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2156 	e1e_flush();
2157 
2158 	udelay(phy->reset_delay_us);
2159 
2160 	ew32(CTRL, ctrl);
2161 	e1e_flush();
2162 
2163 	usleep_range(150, 300);
2164 
2165 	phy->ops.release(hw);
2166 
2167 	return phy->ops.get_cfg_done(hw);
2168 }
2169 
2170 /**
2171  *  e1000e_get_cfg_done_generic - Generic configuration done
2172  *  @hw: pointer to the HW structure
2173  *
2174  *  Generic function to wait 10 milli-seconds for configuration to complete
2175  *  and return success.
2176  **/
2177 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2178 {
2179 	mdelay(10);
2180 
2181 	return 0;
2182 }
2183 
2184 /**
2185  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2186  *  @hw: pointer to the HW structure
2187  *
2188  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2189  **/
2190 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2191 {
2192 	e_dbg("Running IGP 3 PHY init script\n");
2193 
2194 	/* PHY init IGP 3 */
2195 	/* Enable rise/fall, 10-mode work in class-A */
2196 	e1e_wphy(hw, 0x2F5B, 0x9018);
2197 	/* Remove all caps from Replica path filter */
2198 	e1e_wphy(hw, 0x2F52, 0x0000);
2199 	/* Bias trimming for ADC, AFE and Driver (Default) */
2200 	e1e_wphy(hw, 0x2FB1, 0x8B24);
2201 	/* Increase Hybrid poly bias */
2202 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2203 	/* Add 4% to Tx amplitude in Gig mode */
2204 	e1e_wphy(hw, 0x2010, 0x10B0);
2205 	/* Disable trimming (TTT) */
2206 	e1e_wphy(hw, 0x2011, 0x0000);
2207 	/* Poly DC correction to 94.6% + 2% for all channels */
2208 	e1e_wphy(hw, 0x20DD, 0x249A);
2209 	/* ABS DC correction to 95.9% */
2210 	e1e_wphy(hw, 0x20DE, 0x00D3);
2211 	/* BG temp curve trim */
2212 	e1e_wphy(hw, 0x28B4, 0x04CE);
2213 	/* Increasing ADC OPAMP stage 1 currents to max */
2214 	e1e_wphy(hw, 0x2F70, 0x29E4);
2215 	/* Force 1000 ( required for enabling PHY regs configuration) */
2216 	e1e_wphy(hw, 0x0000, 0x0140);
2217 	/* Set upd_freq to 6 */
2218 	e1e_wphy(hw, 0x1F30, 0x1606);
2219 	/* Disable NPDFE */
2220 	e1e_wphy(hw, 0x1F31, 0xB814);
2221 	/* Disable adaptive fixed FFE (Default) */
2222 	e1e_wphy(hw, 0x1F35, 0x002A);
2223 	/* Enable FFE hysteresis */
2224 	e1e_wphy(hw, 0x1F3E, 0x0067);
2225 	/* Fixed FFE for short cable lengths */
2226 	e1e_wphy(hw, 0x1F54, 0x0065);
2227 	/* Fixed FFE for medium cable lengths */
2228 	e1e_wphy(hw, 0x1F55, 0x002A);
2229 	/* Fixed FFE for long cable lengths */
2230 	e1e_wphy(hw, 0x1F56, 0x002A);
2231 	/* Enable Adaptive Clip Threshold */
2232 	e1e_wphy(hw, 0x1F72, 0x3FB0);
2233 	/* AHT reset limit to 1 */
2234 	e1e_wphy(hw, 0x1F76, 0xC0FF);
2235 	/* Set AHT master delay to 127 msec */
2236 	e1e_wphy(hw, 0x1F77, 0x1DEC);
2237 	/* Set scan bits for AHT */
2238 	e1e_wphy(hw, 0x1F78, 0xF9EF);
2239 	/* Set AHT Preset bits */
2240 	e1e_wphy(hw, 0x1F79, 0x0210);
2241 	/* Change integ_factor of channel A to 3 */
2242 	e1e_wphy(hw, 0x1895, 0x0003);
2243 	/* Change prop_factor of channels BCD to 8 */
2244 	e1e_wphy(hw, 0x1796, 0x0008);
2245 	/* Change cg_icount + enable integbp for channels BCD */
2246 	e1e_wphy(hw, 0x1798, 0xD008);
2247 	/* Change cg_icount + enable integbp + change prop_factor_master
2248 	 * to 8 for channel A
2249 	 */
2250 	e1e_wphy(hw, 0x1898, 0xD918);
2251 	/* Disable AHT in Slave mode on channel A */
2252 	e1e_wphy(hw, 0x187A, 0x0800);
2253 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2254 	 * Enable SPD+B2B
2255 	 */
2256 	e1e_wphy(hw, 0x0019, 0x008D);
2257 	/* Enable restart AN on an1000_dis change */
2258 	e1e_wphy(hw, 0x001B, 0x2080);
2259 	/* Enable wh_fifo read clock in 10/100 modes */
2260 	e1e_wphy(hw, 0x0014, 0x0045);
2261 	/* Restart AN, Speed selection is 1000 */
2262 	e1e_wphy(hw, 0x0000, 0x1340);
2263 
2264 	return 0;
2265 }
2266 
2267 /**
2268  *  e1000e_get_phy_type_from_id - Get PHY type from id
2269  *  @phy_id: phy_id read from the phy
2270  *
2271  *  Returns the phy type from the id.
2272  **/
2273 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2274 {
2275 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2276 
2277 	switch (phy_id) {
2278 	case M88E1000_I_PHY_ID:
2279 	case M88E1000_E_PHY_ID:
2280 	case M88E1111_I_PHY_ID:
2281 	case M88E1011_I_PHY_ID:
2282 		phy_type = e1000_phy_m88;
2283 		break;
2284 	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2285 		phy_type = e1000_phy_igp_2;
2286 		break;
2287 	case GG82563_E_PHY_ID:
2288 		phy_type = e1000_phy_gg82563;
2289 		break;
2290 	case IGP03E1000_E_PHY_ID:
2291 		phy_type = e1000_phy_igp_3;
2292 		break;
2293 	case IFE_E_PHY_ID:
2294 	case IFE_PLUS_E_PHY_ID:
2295 	case IFE_C_E_PHY_ID:
2296 		phy_type = e1000_phy_ife;
2297 		break;
2298 	case BME1000_E_PHY_ID:
2299 	case BME1000_E_PHY_ID_R2:
2300 		phy_type = e1000_phy_bm;
2301 		break;
2302 	case I82578_E_PHY_ID:
2303 		phy_type = e1000_phy_82578;
2304 		break;
2305 	case I82577_E_PHY_ID:
2306 		phy_type = e1000_phy_82577;
2307 		break;
2308 	case I82579_E_PHY_ID:
2309 		phy_type = e1000_phy_82579;
2310 		break;
2311 	case I217_E_PHY_ID:
2312 		phy_type = e1000_phy_i217;
2313 		break;
2314 	default:
2315 		phy_type = e1000_phy_unknown;
2316 		break;
2317 	}
2318 	return phy_type;
2319 }
2320 
2321 /**
2322  *  e1000e_determine_phy_address - Determines PHY address.
2323  *  @hw: pointer to the HW structure
2324  *
2325  *  This uses a trial and error method to loop through possible PHY
2326  *  addresses. It tests each by reading the PHY ID registers and
2327  *  checking for a match.
2328  **/
2329 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2330 {
2331 	u32 phy_addr = 0;
2332 	u32 i;
2333 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2334 
2335 	hw->phy.id = phy_type;
2336 
2337 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2338 		hw->phy.addr = phy_addr;
2339 		i = 0;
2340 
2341 		do {
2342 			e1000e_get_phy_id(hw);
2343 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2344 
2345 			/* If phy_type is valid, break - we found our
2346 			 * PHY address
2347 			 */
2348 			if (phy_type != e1000_phy_unknown)
2349 				return 0;
2350 
2351 			usleep_range(1000, 2000);
2352 			i++;
2353 		} while (i < 10);
2354 	}
2355 
2356 	return -E1000_ERR_PHY_TYPE;
2357 }
2358 
2359 /**
2360  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2361  *  @page: page to access
2362  *  @reg: register to check
2363  *
2364  *  Returns the phy address for the page requested.
2365  **/
2366 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2367 {
2368 	u32 phy_addr = 2;
2369 
2370 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2371 		phy_addr = 1;
2372 
2373 	return phy_addr;
2374 }
2375 
2376 /**
2377  *  e1000e_write_phy_reg_bm - Write BM PHY register
2378  *  @hw: pointer to the HW structure
2379  *  @offset: register offset to write to
2380  *  @data: data to write at register offset
2381  *
2382  *  Acquires semaphore, if necessary, then writes the data to PHY register
2383  *  at the offset.  Release any acquired semaphores before exiting.
2384  **/
2385 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2386 {
2387 	s32 ret_val;
2388 	u32 page = offset >> IGP_PAGE_SHIFT;
2389 
2390 	ret_val = hw->phy.ops.acquire(hw);
2391 	if (ret_val)
2392 		return ret_val;
2393 
2394 	/* Page 800 works differently than the rest so it has its own func */
2395 	if (page == BM_WUC_PAGE) {
2396 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2397 							 false, false);
2398 		goto release;
2399 	}
2400 
2401 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2402 
2403 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2404 		u32 page_shift, page_select;
2405 
2406 		/* Page select is register 31 for phy address 1 and 22 for
2407 		 * phy address 2 and 3. Page select is shifted only for
2408 		 * phy address 1.
2409 		 */
2410 		if (hw->phy.addr == 1) {
2411 			page_shift = IGP_PAGE_SHIFT;
2412 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2413 		} else {
2414 			page_shift = 0;
2415 			page_select = BM_PHY_PAGE_SELECT;
2416 		}
2417 
2418 		/* Page is shifted left, PHY expects (page x 32) */
2419 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2420 						    (page << page_shift));
2421 		if (ret_val)
2422 			goto release;
2423 	}
2424 
2425 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2426 					    data);
2427 
2428 release:
2429 	hw->phy.ops.release(hw);
2430 	return ret_val;
2431 }
2432 
2433 /**
2434  *  e1000e_read_phy_reg_bm - Read BM PHY register
2435  *  @hw: pointer to the HW structure
2436  *  @offset: register offset to be read
2437  *  @data: pointer to the read data
2438  *
2439  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2440  *  and storing the retrieved information in data.  Release any acquired
2441  *  semaphores before exiting.
2442  **/
2443 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2444 {
2445 	s32 ret_val;
2446 	u32 page = offset >> IGP_PAGE_SHIFT;
2447 
2448 	ret_val = hw->phy.ops.acquire(hw);
2449 	if (ret_val)
2450 		return ret_val;
2451 
2452 	/* Page 800 works differently than the rest so it has its own func */
2453 	if (page == BM_WUC_PAGE) {
2454 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2455 							 true, false);
2456 		goto release;
2457 	}
2458 
2459 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2460 
2461 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2462 		u32 page_shift, page_select;
2463 
2464 		/* Page select is register 31 for phy address 1 and 22 for
2465 		 * phy address 2 and 3. Page select is shifted only for
2466 		 * phy address 1.
2467 		 */
2468 		if (hw->phy.addr == 1) {
2469 			page_shift = IGP_PAGE_SHIFT;
2470 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2471 		} else {
2472 			page_shift = 0;
2473 			page_select = BM_PHY_PAGE_SELECT;
2474 		}
2475 
2476 		/* Page is shifted left, PHY expects (page x 32) */
2477 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2478 						    (page << page_shift));
2479 		if (ret_val)
2480 			goto release;
2481 	}
2482 
2483 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2484 					   data);
2485 release:
2486 	hw->phy.ops.release(hw);
2487 	return ret_val;
2488 }
2489 
2490 /**
2491  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2492  *  @hw: pointer to the HW structure
2493  *  @offset: register offset to be read
2494  *  @data: pointer to the read data
2495  *
2496  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2497  *  and storing the retrieved information in data.  Release any acquired
2498  *  semaphores before exiting.
2499  **/
2500 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2501 {
2502 	s32 ret_val;
2503 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2504 
2505 	ret_val = hw->phy.ops.acquire(hw);
2506 	if (ret_val)
2507 		return ret_val;
2508 
2509 	/* Page 800 works differently than the rest so it has its own func */
2510 	if (page == BM_WUC_PAGE) {
2511 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2512 							 true, false);
2513 		goto release;
2514 	}
2515 
2516 	hw->phy.addr = 1;
2517 
2518 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2519 		/* Page is shifted left, PHY expects (page x 32) */
2520 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2521 						    page);
2522 
2523 		if (ret_val)
2524 			goto release;
2525 	}
2526 
2527 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2528 					   data);
2529 release:
2530 	hw->phy.ops.release(hw);
2531 	return ret_val;
2532 }
2533 
2534 /**
2535  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2536  *  @hw: pointer to the HW structure
2537  *  @offset: register offset to write to
2538  *  @data: data to write at register offset
2539  *
2540  *  Acquires semaphore, if necessary, then writes the data to PHY register
2541  *  at the offset.  Release any acquired semaphores before exiting.
2542  **/
2543 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2544 {
2545 	s32 ret_val;
2546 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2547 
2548 	ret_val = hw->phy.ops.acquire(hw);
2549 	if (ret_val)
2550 		return ret_val;
2551 
2552 	/* Page 800 works differently than the rest so it has its own func */
2553 	if (page == BM_WUC_PAGE) {
2554 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2555 							 false, false);
2556 		goto release;
2557 	}
2558 
2559 	hw->phy.addr = 1;
2560 
2561 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2562 		/* Page is shifted left, PHY expects (page x 32) */
2563 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2564 						    page);
2565 
2566 		if (ret_val)
2567 			goto release;
2568 	}
2569 
2570 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2571 					    data);
2572 
2573 release:
2574 	hw->phy.ops.release(hw);
2575 	return ret_val;
2576 }
2577 
2578 /**
2579  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2580  *  @hw: pointer to the HW structure
2581  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2582  *
2583  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2584  *  address to store contents of the BM_WUC_ENABLE_REG register.
2585  **/
2586 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2587 {
2588 	s32 ret_val;
2589 	u16 temp;
2590 
2591 	/* All page select, port ctrl and wakeup registers use phy address 1 */
2592 	hw->phy.addr = 1;
2593 
2594 	/* Select Port Control Registers page */
2595 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2596 	if (ret_val) {
2597 		e_dbg("Could not set Port Control page\n");
2598 		return ret_val;
2599 	}
2600 
2601 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2602 	if (ret_val) {
2603 		e_dbg("Could not read PHY register %d.%d\n",
2604 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2605 		return ret_val;
2606 	}
2607 
2608 	/* Enable both PHY wakeup mode and Wakeup register page writes.
2609 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2610 	 */
2611 	temp = *phy_reg;
2612 	temp |= BM_WUC_ENABLE_BIT;
2613 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2614 
2615 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2616 	if (ret_val) {
2617 		e_dbg("Could not write PHY register %d.%d\n",
2618 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2619 		return ret_val;
2620 	}
2621 
2622 	/* Select Host Wakeup Registers page - caller now able to write
2623 	 * registers on the Wakeup registers page
2624 	 */
2625 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2626 }
2627 
2628 /**
2629  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2630  *  @hw: pointer to the HW structure
2631  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2632  *
2633  *  Restore BM_WUC_ENABLE_REG to its original value.
2634  *
2635  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2636  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2637  *  caller.
2638  **/
2639 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2640 {
2641 	s32 ret_val;
2642 
2643 	/* Select Port Control Registers page */
2644 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2645 	if (ret_val) {
2646 		e_dbg("Could not set Port Control page\n");
2647 		return ret_val;
2648 	}
2649 
2650 	/* Restore 769.17 to its original value */
2651 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2652 	if (ret_val)
2653 		e_dbg("Could not restore PHY register %d.%d\n",
2654 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2655 
2656 	return ret_val;
2657 }
2658 
2659 /**
2660  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2661  *  @hw: pointer to the HW structure
2662  *  @offset: register offset to be read or written
2663  *  @data: pointer to the data to read or write
2664  *  @read: determines if operation is read or write
2665  *  @page_set: BM_WUC_PAGE already set and access enabled
2666  *
2667  *  Read the PHY register at offset and store the retrieved information in
2668  *  data, or write data to PHY register at offset.  Note the procedure to
2669  *  access the PHY wakeup registers is different than reading the other PHY
2670  *  registers. It works as such:
2671  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2672  *  2) Set page to 800 for host (801 if we were manageability)
2673  *  3) Write the address using the address opcode (0x11)
2674  *  4) Read or write the data using the data opcode (0x12)
2675  *  5) Restore 769.17.2 to its original value
2676  *
2677  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2678  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2679  *
2680  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2681  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2682  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2683  **/
2684 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2685 					  u16 *data, bool read, bool page_set)
2686 {
2687 	s32 ret_val;
2688 	u16 reg = BM_PHY_REG_NUM(offset);
2689 	u16 page = BM_PHY_REG_PAGE(offset);
2690 	u16 phy_reg = 0;
2691 
2692 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2693 	if ((hw->mac.type == e1000_pchlan) &&
2694 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2695 		e_dbg("Attempting to access page %d while gig enabled.\n",
2696 		      page);
2697 
2698 	if (!page_set) {
2699 		/* Enable access to PHY wakeup registers */
2700 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701 		if (ret_val) {
2702 			e_dbg("Could not enable PHY wakeup reg access\n");
2703 			return ret_val;
2704 		}
2705 	}
2706 
2707 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2708 
2709 	/* Write the Wakeup register page offset value using opcode 0x11 */
2710 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2711 	if (ret_val) {
2712 		e_dbg("Could not write address opcode to page %d\n", page);
2713 		return ret_val;
2714 	}
2715 
2716 	if (read) {
2717 		/* Read the Wakeup register page value using opcode 0x12 */
2718 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2719 						   data);
2720 	} else {
2721 		/* Write the Wakeup register page value using opcode 0x12 */
2722 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2723 						    *data);
2724 	}
2725 
2726 	if (ret_val) {
2727 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2728 		return ret_val;
2729 	}
2730 
2731 	if (!page_set)
2732 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2733 
2734 	return ret_val;
2735 }
2736 
2737 /**
2738  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2739  * @hw: pointer to the HW structure
2740  *
2741  * In the case of a PHY power down to save power, or to turn off link during a
2742  * driver unload, or wake on lan is not enabled, restore the link to previous
2743  * settings.
2744  **/
2745 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2746 {
2747 	u16 mii_reg = 0;
2748 	int ret;
2749 
2750 	/* The PHY will retain its settings across a power down/up cycle */
2751 	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2752 	if (ret) {
2753 		e_dbg("Error reading PHY register\n");
2754 		return;
2755 	}
2756 	mii_reg &= ~BMCR_PDOWN;
2757 	e1e_wphy(hw, MII_BMCR, mii_reg);
2758 }
2759 
2760 /**
2761  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2762  * @hw: pointer to the HW structure
2763  *
2764  * In the case of a PHY power down to save power, or to turn off link during a
2765  * driver unload, or wake on lan is not enabled, restore the link to previous
2766  * settings.
2767  **/
2768 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2769 {
2770 	u16 mii_reg = 0;
2771 	int ret;
2772 
2773 	/* The PHY will retain its settings across a power down/up cycle */
2774 	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2775 	if (ret) {
2776 		e_dbg("Error reading PHY register\n");
2777 		return;
2778 	}
2779 	mii_reg |= BMCR_PDOWN;
2780 	e1e_wphy(hw, MII_BMCR, mii_reg);
2781 	usleep_range(1000, 2000);
2782 }
2783 
2784 /**
2785  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2786  *  @hw: pointer to the HW structure
2787  *  @offset: register offset to be read
2788  *  @data: pointer to the read data
2789  *  @locked: semaphore has already been acquired or not
2790  *  @page_set: BM_WUC_PAGE already set and access enabled
2791  *
2792  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2793  *  and stores the retrieved information in data.  Release any acquired
2794  *  semaphore before exiting.
2795  **/
2796 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2797 				   bool locked, bool page_set)
2798 {
2799 	s32 ret_val;
2800 	u16 page = BM_PHY_REG_PAGE(offset);
2801 	u16 reg = BM_PHY_REG_NUM(offset);
2802 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2803 
2804 	if (!locked) {
2805 		ret_val = hw->phy.ops.acquire(hw);
2806 		if (ret_val)
2807 			return ret_val;
2808 	}
2809 
2810 	/* Page 800 works differently than the rest so it has its own func */
2811 	if (page == BM_WUC_PAGE) {
2812 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2813 							 true, page_set);
2814 		goto out;
2815 	}
2816 
2817 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2818 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2819 							 data, true);
2820 		goto out;
2821 	}
2822 
2823 	if (!page_set) {
2824 		if (page == HV_INTC_FC_PAGE_START)
2825 			page = 0;
2826 
2827 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2828 			/* Page is shifted left, PHY expects (page x 32) */
2829 			ret_val = e1000_set_page_igp(hw,
2830 						     (page << IGP_PAGE_SHIFT));
2831 
2832 			hw->phy.addr = phy_addr;
2833 
2834 			if (ret_val)
2835 				goto out;
2836 		}
2837 	}
2838 
2839 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2840 	      page << IGP_PAGE_SHIFT, reg);
2841 
2842 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2843 out:
2844 	if (!locked)
2845 		hw->phy.ops.release(hw);
2846 
2847 	return ret_val;
2848 }
2849 
2850 /**
2851  *  e1000_read_phy_reg_hv -  Read HV PHY register
2852  *  @hw: pointer to the HW structure
2853  *  @offset: register offset to be read
2854  *  @data: pointer to the read data
2855  *
2856  *  Acquires semaphore then reads the PHY register at offset and stores
2857  *  the retrieved information in data.  Release the acquired semaphore
2858  *  before exiting.
2859  **/
2860 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2861 {
2862 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2863 }
2864 
2865 /**
2866  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2867  *  @hw: pointer to the HW structure
2868  *  @offset: register offset to be read
2869  *  @data: pointer to the read data
2870  *
2871  *  Reads the PHY register at offset and stores the retrieved information
2872  *  in data.  Assumes semaphore already acquired.
2873  **/
2874 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2875 {
2876 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2877 }
2878 
2879 /**
2880  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2881  *  @hw: pointer to the HW structure
2882  *  @offset: register offset to write to
2883  *  @data: data to write at register offset
2884  *
2885  *  Reads the PHY register at offset and stores the retrieved information
2886  *  in data.  Assumes semaphore already acquired and page already set.
2887  **/
2888 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2889 {
2890 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2891 }
2892 
2893 /**
2894  *  __e1000_write_phy_reg_hv - Write HV PHY register
2895  *  @hw: pointer to the HW structure
2896  *  @offset: register offset to write to
2897  *  @data: data to write at register offset
2898  *  @locked: semaphore has already been acquired or not
2899  *  @page_set: BM_WUC_PAGE already set and access enabled
2900  *
2901  *  Acquires semaphore, if necessary, then writes the data to PHY register
2902  *  at the offset.  Release any acquired semaphores before exiting.
2903  **/
2904 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2905 				    bool locked, bool page_set)
2906 {
2907 	s32 ret_val;
2908 	u16 page = BM_PHY_REG_PAGE(offset);
2909 	u16 reg = BM_PHY_REG_NUM(offset);
2910 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2911 
2912 	if (!locked) {
2913 		ret_val = hw->phy.ops.acquire(hw);
2914 		if (ret_val)
2915 			return ret_val;
2916 	}
2917 
2918 	/* Page 800 works differently than the rest so it has its own func */
2919 	if (page == BM_WUC_PAGE) {
2920 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2921 							 false, page_set);
2922 		goto out;
2923 	}
2924 
2925 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2926 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2927 							 &data, false);
2928 		goto out;
2929 	}
2930 
2931 	if (!page_set) {
2932 		if (page == HV_INTC_FC_PAGE_START)
2933 			page = 0;
2934 
2935 		/* Workaround MDIO accesses being disabled after entering IEEE
2936 		 * Power Down (when bit 11 of the PHY Control register is set)
2937 		 */
2938 		if ((hw->phy.type == e1000_phy_82578) &&
2939 		    (hw->phy.revision >= 1) &&
2940 		    (hw->phy.addr == 2) &&
2941 		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2942 			u16 data2 = 0x7EFF;
2943 
2944 			ret_val = e1000_access_phy_debug_regs_hv(hw,
2945 								 BIT(6) | 0x3,
2946 								 &data2, false);
2947 			if (ret_val)
2948 				goto out;
2949 		}
2950 
2951 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2952 			/* Page is shifted left, PHY expects (page x 32) */
2953 			ret_val = e1000_set_page_igp(hw,
2954 						     (page << IGP_PAGE_SHIFT));
2955 
2956 			hw->phy.addr = phy_addr;
2957 
2958 			if (ret_val)
2959 				goto out;
2960 		}
2961 	}
2962 
2963 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2964 	      page << IGP_PAGE_SHIFT, reg);
2965 
2966 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2967 					    data);
2968 
2969 out:
2970 	if (!locked)
2971 		hw->phy.ops.release(hw);
2972 
2973 	return ret_val;
2974 }
2975 
2976 /**
2977  *  e1000_write_phy_reg_hv - Write HV PHY register
2978  *  @hw: pointer to the HW structure
2979  *  @offset: register offset to write to
2980  *  @data: data to write at register offset
2981  *
2982  *  Acquires semaphore then writes the data to PHY register at the offset.
2983  *  Release the acquired semaphores before exiting.
2984  **/
2985 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2986 {
2987 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2988 }
2989 
2990 /**
2991  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2992  *  @hw: pointer to the HW structure
2993  *  @offset: register offset to write to
2994  *  @data: data to write at register offset
2995  *
2996  *  Writes the data to PHY register at the offset.  Assumes semaphore
2997  *  already acquired.
2998  **/
2999 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3000 {
3001 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3002 }
3003 
3004 /**
3005  *  e1000_write_phy_reg_page_hv - Write HV PHY register
3006  *  @hw: pointer to the HW structure
3007  *  @offset: register offset to write to
3008  *  @data: data to write at register offset
3009  *
3010  *  Writes the data to PHY register at the offset.  Assumes semaphore
3011  *  already acquired and page already set.
3012  **/
3013 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3014 {
3015 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3016 }
3017 
3018 /**
3019  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3020  *  @page: page to be accessed
3021  **/
3022 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3023 {
3024 	u32 phy_addr = 2;
3025 
3026 	if (page >= HV_INTC_FC_PAGE_START)
3027 		phy_addr = 1;
3028 
3029 	return phy_addr;
3030 }
3031 
3032 /**
3033  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3034  *  @hw: pointer to the HW structure
3035  *  @offset: register offset to be read or written
3036  *  @data: pointer to the data to be read or written
3037  *  @read: determines if operation is read or write
3038  *
3039  *  Reads the PHY register at offset and stores the retrieved information
3040  *  in data.  Assumes semaphore already acquired.  Note that the procedure
3041  *  to access these regs uses the address port and data port to read/write.
3042  *  These accesses done with PHY address 2 and without using pages.
3043  **/
3044 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3045 					  u16 *data, bool read)
3046 {
3047 	s32 ret_val;
3048 	u32 addr_reg;
3049 	u32 data_reg;
3050 
3051 	/* This takes care of the difference with desktop vs mobile phy */
3052 	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3053 		    I82578_ADDR_REG : I82577_ADDR_REG);
3054 	data_reg = addr_reg + 1;
3055 
3056 	/* All operations in this function are phy address 2 */
3057 	hw->phy.addr = 2;
3058 
3059 	/* masking with 0x3F to remove the page from offset */
3060 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3061 	if (ret_val) {
3062 		e_dbg("Could not write the Address Offset port register\n");
3063 		return ret_val;
3064 	}
3065 
3066 	/* Read or write the data value next */
3067 	if (read)
3068 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3069 	else
3070 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3071 
3072 	if (ret_val)
3073 		e_dbg("Could not access the Data port register\n");
3074 
3075 	return ret_val;
3076 }
3077 
3078 /**
3079  *  e1000_link_stall_workaround_hv - Si workaround
3080  *  @hw: pointer to the HW structure
3081  *
3082  *  This function works around a Si bug where the link partner can get
3083  *  a link up indication before the PHY does.  If small packets are sent
3084  *  by the link partner they can be placed in the packet buffer without
3085  *  being properly accounted for by the PHY and will stall preventing
3086  *  further packets from being received.  The workaround is to clear the
3087  *  packet buffer after the PHY detects link up.
3088  **/
3089 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3090 {
3091 	s32 ret_val = 0;
3092 	u16 data;
3093 
3094 	if (hw->phy.type != e1000_phy_82578)
3095 		return 0;
3096 
3097 	/* Do not apply workaround if in PHY loopback bit 14 set */
3098 	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3099 	if (ret_val) {
3100 		e_dbg("Error reading PHY register\n");
3101 		return ret_val;
3102 	}
3103 	if (data & BMCR_LOOPBACK)
3104 		return 0;
3105 
3106 	/* check if link is up and at 1Gbps */
3107 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3108 	if (ret_val)
3109 		return ret_val;
3110 
3111 	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3112 		 BM_CS_STATUS_SPEED_MASK);
3113 
3114 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3115 		     BM_CS_STATUS_SPEED_1000))
3116 		return 0;
3117 
3118 	msleep(200);
3119 
3120 	/* flush the packets in the fifo buffer */
3121 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3122 			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3123 			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3124 	if (ret_val)
3125 		return ret_val;
3126 
3127 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3128 }
3129 
3130 /**
3131  *  e1000_check_polarity_82577 - Checks the polarity.
3132  *  @hw: pointer to the HW structure
3133  *
3134  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3135  *
3136  *  Polarity is determined based on the PHY specific status register.
3137  **/
3138 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3139 {
3140 	struct e1000_phy_info *phy = &hw->phy;
3141 	s32 ret_val;
3142 	u16 data;
3143 
3144 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3145 
3146 	if (!ret_val)
3147 		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3148 				       ? e1000_rev_polarity_reversed
3149 				       : e1000_rev_polarity_normal);
3150 
3151 	return ret_val;
3152 }
3153 
3154 /**
3155  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3156  *  @hw: pointer to the HW structure
3157  *
3158  *  Calls the PHY setup function to force speed and duplex.
3159  **/
3160 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3161 {
3162 	struct e1000_phy_info *phy = &hw->phy;
3163 	s32 ret_val;
3164 	u16 phy_data;
3165 	bool link;
3166 
3167 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3168 	if (ret_val)
3169 		return ret_val;
3170 
3171 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3172 
3173 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3174 	if (ret_val)
3175 		return ret_val;
3176 
3177 	udelay(1);
3178 
3179 	if (phy->autoneg_wait_to_complete) {
3180 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3181 
3182 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3183 						      100000, &link);
3184 		if (ret_val)
3185 			return ret_val;
3186 
3187 		if (!link)
3188 			e_dbg("Link taking longer than expected.\n");
3189 
3190 		/* Try once more */
3191 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3192 						      100000, &link);
3193 	}
3194 
3195 	return ret_val;
3196 }
3197 
3198 /**
3199  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3200  *  @hw: pointer to the HW structure
3201  *
3202  *  Read PHY status to determine if link is up.  If link is up, then
3203  *  set/determine 10base-T extended distance and polarity correction.  Read
3204  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3205  *  determine on the cable length, local and remote receiver.
3206  **/
3207 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3208 {
3209 	struct e1000_phy_info *phy = &hw->phy;
3210 	s32 ret_val;
3211 	u16 data;
3212 	bool link;
3213 
3214 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3215 	if (ret_val)
3216 		return ret_val;
3217 
3218 	if (!link) {
3219 		e_dbg("Phy info is only valid if link is up\n");
3220 		return -E1000_ERR_CONFIG;
3221 	}
3222 
3223 	phy->polarity_correction = true;
3224 
3225 	ret_val = e1000_check_polarity_82577(hw);
3226 	if (ret_val)
3227 		return ret_val;
3228 
3229 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3230 	if (ret_val)
3231 		return ret_val;
3232 
3233 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3234 
3235 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3236 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3237 		ret_val = hw->phy.ops.get_cable_length(hw);
3238 		if (ret_val)
3239 			return ret_val;
3240 
3241 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3242 		if (ret_val)
3243 			return ret_val;
3244 
3245 		phy->local_rx = (data & LPA_1000LOCALRXOK)
3246 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3247 
3248 		phy->remote_rx = (data & LPA_1000REMRXOK)
3249 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3250 	} else {
3251 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3252 		phy->local_rx = e1000_1000t_rx_status_undefined;
3253 		phy->remote_rx = e1000_1000t_rx_status_undefined;
3254 	}
3255 
3256 	return 0;
3257 }
3258 
3259 /**
3260  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3261  *  @hw: pointer to the HW structure
3262  *
3263  * Reads the diagnostic status register and verifies result is valid before
3264  * placing it in the phy_cable_length field.
3265  **/
3266 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3267 {
3268 	struct e1000_phy_info *phy = &hw->phy;
3269 	s32 ret_val;
3270 	u16 phy_data, length;
3271 
3272 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3273 	if (ret_val)
3274 		return ret_val;
3275 
3276 	length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data);
3277 
3278 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3279 		return -E1000_ERR_PHY;
3280 
3281 	phy->cable_length = length;
3282 
3283 	return 0;
3284 }
3285