1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <linux/ethtool.h> 6 7 static s32 e1000_wait_autoneg(struct e1000_hw *hw); 8 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 9 u16 *data, bool read, bool page_set); 10 static u32 e1000_get_phy_addr_for_hv_page(u32 page); 11 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 12 u16 *data, bool read); 13 14 /* Cable length tables */ 15 static const u16 e1000_m88_cable_length_table[] = { 16 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED 17 }; 18 19 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ 20 ARRAY_SIZE(e1000_m88_cable_length_table) 21 22 static const u16 e1000_igp_2_cable_length_table[] = { 23 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, 24 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, 25 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, 26 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, 27 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, 28 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, 29 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, 30 124 31 }; 32 33 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ 34 ARRAY_SIZE(e1000_igp_2_cable_length_table) 35 36 /** 37 * e1000e_check_reset_block_generic - Check if PHY reset is blocked 38 * @hw: pointer to the HW structure 39 * 40 * Read the PHY management control register and check whether a PHY reset 41 * is blocked. If a reset is not blocked return 0, otherwise 42 * return E1000_BLK_PHY_RESET (12). 43 **/ 44 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) 45 { 46 u32 manc; 47 48 manc = er32(MANC); 49 50 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 51 } 52 53 /** 54 * e1000e_get_phy_id - Retrieve the PHY ID and revision 55 * @hw: pointer to the HW structure 56 * 57 * Reads the PHY registers and stores the PHY ID and possibly the PHY 58 * revision in the hardware structure. 59 **/ 60 s32 e1000e_get_phy_id(struct e1000_hw *hw) 61 { 62 struct e1000_phy_info *phy = &hw->phy; 63 s32 ret_val = 0; 64 u16 phy_id; 65 u16 retry_count = 0; 66 67 if (!phy->ops.read_reg) 68 return 0; 69 70 while (retry_count < 2) { 71 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); 72 if (ret_val) 73 return ret_val; 74 75 phy->id = (u32)(phy_id << 16); 76 usleep_range(20, 40); 77 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); 78 if (ret_val) 79 return ret_val; 80 81 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 82 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 83 84 if (phy->id != 0 && phy->id != PHY_REVISION_MASK) 85 return 0; 86 87 retry_count++; 88 } 89 90 return 0; 91 } 92 93 /** 94 * e1000e_phy_reset_dsp - Reset PHY DSP 95 * @hw: pointer to the HW structure 96 * 97 * Reset the digital signal processor. 98 **/ 99 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) 100 { 101 s32 ret_val; 102 103 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 104 if (ret_val) 105 return ret_val; 106 107 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); 108 } 109 110 void e1000e_disable_phy_retry(struct e1000_hw *hw) 111 { 112 hw->phy.retry_enabled = false; 113 } 114 115 void e1000e_enable_phy_retry(struct e1000_hw *hw) 116 { 117 hw->phy.retry_enabled = true; 118 } 119 120 /** 121 * e1000e_read_phy_reg_mdic - Read MDI control register 122 * @hw: pointer to the HW structure 123 * @offset: register offset to be read 124 * @data: pointer to the read data 125 * 126 * Reads the MDI control register in the PHY at offset and stores the 127 * information read to data. 128 **/ 129 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 130 { 131 u32 i, mdic = 0, retry_counter, retry_max; 132 struct e1000_phy_info *phy = &hw->phy; 133 bool success; 134 135 if (offset > MAX_PHY_REG_ADDRESS) { 136 e_dbg("PHY Address %d is out of range\n", offset); 137 return -E1000_ERR_PARAM; 138 } 139 140 retry_max = phy->retry_enabled ? phy->retry_count : 0; 141 142 /* Set up Op-code, Phy Address, and register offset in the MDI 143 * Control register. The MAC will take care of interfacing with the 144 * PHY to retrieve the desired data. 145 */ 146 for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) { 147 success = true; 148 149 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 150 (phy->addr << E1000_MDIC_PHY_SHIFT) | 151 (E1000_MDIC_OP_READ)); 152 153 ew32(MDIC, mdic); 154 155 /* Poll the ready bit to see if the MDI read completed 156 * Increasing the time out as testing showed failures with 157 * the lower time out 158 */ 159 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 160 usleep_range(50, 60); 161 mdic = er32(MDIC); 162 if (mdic & E1000_MDIC_READY) 163 break; 164 } 165 if (!(mdic & E1000_MDIC_READY)) { 166 e_dbg("MDI Read PHY Reg Address %d did not complete\n", 167 offset); 168 success = false; 169 } 170 if (mdic & E1000_MDIC_ERROR) { 171 e_dbg("MDI Read PHY Reg Address %d Error\n", offset); 172 success = false; 173 } 174 if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) { 175 e_dbg("MDI Read offset error - requested %d, returned %d\n", 176 offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic)); 177 success = false; 178 } 179 180 /* Allow some time after each MDIC transaction to avoid 181 * reading duplicate data in the next MDIC transaction. 182 */ 183 if (hw->mac.type == e1000_pch2lan) 184 usleep_range(100, 150); 185 186 if (success) { 187 *data = (u16)mdic; 188 return 0; 189 } 190 191 if (retry_counter != retry_max) { 192 e_dbg("Perform retry on PHY transaction...\n"); 193 mdelay(10); 194 } 195 } 196 197 return -E1000_ERR_PHY; 198 } 199 200 /** 201 * e1000e_write_phy_reg_mdic - Write MDI control register 202 * @hw: pointer to the HW structure 203 * @offset: register offset to write to 204 * @data: data to write to register at offset 205 * 206 * Writes data to MDI control register in the PHY at offset. 207 **/ 208 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 209 { 210 u32 i, mdic = 0, retry_counter, retry_max; 211 struct e1000_phy_info *phy = &hw->phy; 212 bool success; 213 214 if (offset > MAX_PHY_REG_ADDRESS) { 215 e_dbg("PHY Address %d is out of range\n", offset); 216 return -E1000_ERR_PARAM; 217 } 218 219 retry_max = phy->retry_enabled ? phy->retry_count : 0; 220 221 /* Set up Op-code, Phy Address, and register offset in the MDI 222 * Control register. The MAC will take care of interfacing with the 223 * PHY to retrieve the desired data. 224 */ 225 for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) { 226 success = true; 227 228 mdic = (((u32)data) | 229 (offset << E1000_MDIC_REG_SHIFT) | 230 (phy->addr << E1000_MDIC_PHY_SHIFT) | 231 (E1000_MDIC_OP_WRITE)); 232 233 ew32(MDIC, mdic); 234 235 /* Poll the ready bit to see if the MDI read completed 236 * Increasing the time out as testing showed failures with 237 * the lower time out 238 */ 239 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 240 usleep_range(50, 60); 241 mdic = er32(MDIC); 242 if (mdic & E1000_MDIC_READY) 243 break; 244 } 245 if (!(mdic & E1000_MDIC_READY)) { 246 e_dbg("MDI Write PHY Reg Address %d did not complete\n", 247 offset); 248 success = false; 249 } 250 if (mdic & E1000_MDIC_ERROR) { 251 e_dbg("MDI Write PHY Reg Address %d Error\n", offset); 252 success = false; 253 } 254 if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) { 255 e_dbg("MDI Write offset error - requested %d, returned %d\n", 256 offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic)); 257 success = false; 258 } 259 260 /* Allow some time after each MDIC transaction to avoid 261 * reading duplicate data in the next MDIC transaction. 262 */ 263 if (hw->mac.type == e1000_pch2lan) 264 usleep_range(100, 150); 265 266 if (success) 267 return 0; 268 269 if (retry_counter != retry_max) { 270 e_dbg("Perform retry on PHY transaction...\n"); 271 mdelay(10); 272 } 273 } 274 275 return -E1000_ERR_PHY; 276 } 277 278 /** 279 * e1000e_read_phy_reg_m88 - Read m88 PHY register 280 * @hw: pointer to the HW structure 281 * @offset: register offset to be read 282 * @data: pointer to the read data 283 * 284 * Acquires semaphore, if necessary, then reads the PHY register at offset 285 * and storing the retrieved information in data. Release any acquired 286 * semaphores before exiting. 287 **/ 288 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) 289 { 290 s32 ret_val; 291 292 ret_val = hw->phy.ops.acquire(hw); 293 if (ret_val) 294 return ret_val; 295 296 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 297 data); 298 299 hw->phy.ops.release(hw); 300 301 return ret_val; 302 } 303 304 /** 305 * e1000e_write_phy_reg_m88 - Write m88 PHY register 306 * @hw: pointer to the HW structure 307 * @offset: register offset to write to 308 * @data: data to write at register offset 309 * 310 * Acquires semaphore, if necessary, then writes the data to PHY register 311 * at the offset. Release any acquired semaphores before exiting. 312 **/ 313 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) 314 { 315 s32 ret_val; 316 317 ret_val = hw->phy.ops.acquire(hw); 318 if (ret_val) 319 return ret_val; 320 321 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 322 data); 323 324 hw->phy.ops.release(hw); 325 326 return ret_val; 327 } 328 329 /** 330 * e1000_set_page_igp - Set page as on IGP-like PHY(s) 331 * @hw: pointer to the HW structure 332 * @page: page to set (shifted left when necessary) 333 * 334 * Sets PHY page required for PHY register access. Assumes semaphore is 335 * already acquired. Note, this function sets phy.addr to 1 so the caller 336 * must set it appropriately (if necessary) after this function returns. 337 **/ 338 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) 339 { 340 e_dbg("Setting page 0x%x\n", page); 341 342 hw->phy.addr = 1; 343 344 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); 345 } 346 347 /** 348 * __e1000e_read_phy_reg_igp - Read igp PHY register 349 * @hw: pointer to the HW structure 350 * @offset: register offset to be read 351 * @data: pointer to the read data 352 * @locked: semaphore has already been acquired or not 353 * 354 * Acquires semaphore, if necessary, then reads the PHY register at offset 355 * and stores the retrieved information in data. Release any acquired 356 * semaphores before exiting. 357 **/ 358 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, 359 bool locked) 360 { 361 s32 ret_val = 0; 362 363 if (!locked) { 364 if (!hw->phy.ops.acquire) 365 return 0; 366 367 ret_val = hw->phy.ops.acquire(hw); 368 if (ret_val) 369 return ret_val; 370 } 371 372 if (offset > MAX_PHY_MULTI_PAGE_REG) 373 ret_val = e1000e_write_phy_reg_mdic(hw, 374 IGP01E1000_PHY_PAGE_SELECT, 375 (u16)offset); 376 if (!ret_val) 377 ret_val = e1000e_read_phy_reg_mdic(hw, 378 MAX_PHY_REG_ADDRESS & offset, 379 data); 380 if (!locked) 381 hw->phy.ops.release(hw); 382 383 return ret_val; 384 } 385 386 /** 387 * e1000e_read_phy_reg_igp - Read igp PHY register 388 * @hw: pointer to the HW structure 389 * @offset: register offset to be read 390 * @data: pointer to the read data 391 * 392 * Acquires semaphore then reads the PHY register at offset and stores the 393 * retrieved information in data. 394 * Release the acquired semaphore before exiting. 395 **/ 396 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 397 { 398 return __e1000e_read_phy_reg_igp(hw, offset, data, false); 399 } 400 401 /** 402 * e1000e_read_phy_reg_igp_locked - Read igp PHY register 403 * @hw: pointer to the HW structure 404 * @offset: register offset to be read 405 * @data: pointer to the read data 406 * 407 * Reads the PHY register at offset and stores the retrieved information 408 * in data. Assumes semaphore already acquired. 409 **/ 410 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) 411 { 412 return __e1000e_read_phy_reg_igp(hw, offset, data, true); 413 } 414 415 /** 416 * __e1000e_write_phy_reg_igp - Write igp PHY register 417 * @hw: pointer to the HW structure 418 * @offset: register offset to write to 419 * @data: data to write at register offset 420 * @locked: semaphore has already been acquired or not 421 * 422 * Acquires semaphore, if necessary, then writes the data to PHY register 423 * at the offset. Release any acquired semaphores before exiting. 424 **/ 425 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, 426 bool locked) 427 { 428 s32 ret_val = 0; 429 430 if (!locked) { 431 if (!hw->phy.ops.acquire) 432 return 0; 433 434 ret_val = hw->phy.ops.acquire(hw); 435 if (ret_val) 436 return ret_val; 437 } 438 439 if (offset > MAX_PHY_MULTI_PAGE_REG) 440 ret_val = e1000e_write_phy_reg_mdic(hw, 441 IGP01E1000_PHY_PAGE_SELECT, 442 (u16)offset); 443 if (!ret_val) 444 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & 445 offset, data); 446 if (!locked) 447 hw->phy.ops.release(hw); 448 449 return ret_val; 450 } 451 452 /** 453 * e1000e_write_phy_reg_igp - Write igp PHY register 454 * @hw: pointer to the HW structure 455 * @offset: register offset to write to 456 * @data: data to write at register offset 457 * 458 * Acquires semaphore then writes the data to PHY register 459 * at the offset. Release any acquired semaphores before exiting. 460 **/ 461 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 462 { 463 return __e1000e_write_phy_reg_igp(hw, offset, data, false); 464 } 465 466 /** 467 * e1000e_write_phy_reg_igp_locked - Write igp PHY register 468 * @hw: pointer to the HW structure 469 * @offset: register offset to write to 470 * @data: data to write at register offset 471 * 472 * Writes the data to PHY register at the offset. 473 * Assumes semaphore already acquired. 474 **/ 475 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) 476 { 477 return __e1000e_write_phy_reg_igp(hw, offset, data, true); 478 } 479 480 /** 481 * __e1000_read_kmrn_reg - Read kumeran register 482 * @hw: pointer to the HW structure 483 * @offset: register offset to be read 484 * @data: pointer to the read data 485 * @locked: semaphore has already been acquired or not 486 * 487 * Acquires semaphore, if necessary. Then reads the PHY register at offset 488 * using the kumeran interface. The information retrieved is stored in data. 489 * Release any acquired semaphores before exiting. 490 **/ 491 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, 492 bool locked) 493 { 494 u32 kmrnctrlsta; 495 496 if (!locked) { 497 s32 ret_val = 0; 498 499 if (!hw->phy.ops.acquire) 500 return 0; 501 502 ret_val = hw->phy.ops.acquire(hw); 503 if (ret_val) 504 return ret_val; 505 } 506 507 kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | 508 E1000_KMRNCTRLSTA_REN; 509 ew32(KMRNCTRLSTA, kmrnctrlsta); 510 e1e_flush(); 511 512 udelay(2); 513 514 kmrnctrlsta = er32(KMRNCTRLSTA); 515 *data = (u16)kmrnctrlsta; 516 517 if (!locked) 518 hw->phy.ops.release(hw); 519 520 return 0; 521 } 522 523 /** 524 * e1000e_read_kmrn_reg - Read kumeran register 525 * @hw: pointer to the HW structure 526 * @offset: register offset to be read 527 * @data: pointer to the read data 528 * 529 * Acquires semaphore then reads the PHY register at offset using the 530 * kumeran interface. The information retrieved is stored in data. 531 * Release the acquired semaphore before exiting. 532 **/ 533 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 534 { 535 return __e1000_read_kmrn_reg(hw, offset, data, false); 536 } 537 538 /** 539 * e1000e_read_kmrn_reg_locked - Read kumeran register 540 * @hw: pointer to the HW structure 541 * @offset: register offset to be read 542 * @data: pointer to the read data 543 * 544 * Reads the PHY register at offset using the kumeran interface. The 545 * information retrieved is stored in data. 546 * Assumes semaphore already acquired. 547 **/ 548 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) 549 { 550 return __e1000_read_kmrn_reg(hw, offset, data, true); 551 } 552 553 /** 554 * __e1000_write_kmrn_reg - Write kumeran register 555 * @hw: pointer to the HW structure 556 * @offset: register offset to write to 557 * @data: data to write at register offset 558 * @locked: semaphore has already been acquired or not 559 * 560 * Acquires semaphore, if necessary. Then write the data to PHY register 561 * at the offset using the kumeran interface. Release any acquired semaphores 562 * before exiting. 563 **/ 564 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, 565 bool locked) 566 { 567 u32 kmrnctrlsta; 568 569 if (!locked) { 570 s32 ret_val = 0; 571 572 if (!hw->phy.ops.acquire) 573 return 0; 574 575 ret_val = hw->phy.ops.acquire(hw); 576 if (ret_val) 577 return ret_val; 578 } 579 580 kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data; 581 ew32(KMRNCTRLSTA, kmrnctrlsta); 582 e1e_flush(); 583 584 udelay(2); 585 586 if (!locked) 587 hw->phy.ops.release(hw); 588 589 return 0; 590 } 591 592 /** 593 * e1000e_write_kmrn_reg - Write kumeran register 594 * @hw: pointer to the HW structure 595 * @offset: register offset to write to 596 * @data: data to write at register offset 597 * 598 * Acquires semaphore then writes the data to the PHY register at the offset 599 * using the kumeran interface. Release the acquired semaphore before exiting. 600 **/ 601 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 602 { 603 return __e1000_write_kmrn_reg(hw, offset, data, false); 604 } 605 606 /** 607 * e1000e_write_kmrn_reg_locked - Write kumeran register 608 * @hw: pointer to the HW structure 609 * @offset: register offset to write to 610 * @data: data to write at register offset 611 * 612 * Write the data to PHY register at the offset using the kumeran interface. 613 * Assumes semaphore already acquired. 614 **/ 615 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) 616 { 617 return __e1000_write_kmrn_reg(hw, offset, data, true); 618 } 619 620 /** 621 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode 622 * @hw: pointer to the HW structure 623 * 624 * Sets up Master/slave mode 625 **/ 626 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) 627 { 628 s32 ret_val; 629 u16 phy_data; 630 631 /* Resolve Master/Slave mode */ 632 ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data); 633 if (ret_val) 634 return ret_val; 635 636 /* load defaults for future use */ 637 hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ? 638 ((phy_data & CTL1000_AS_MASTER) ? 639 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; 640 641 switch (hw->phy.ms_type) { 642 case e1000_ms_force_master: 643 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 644 break; 645 case e1000_ms_force_slave: 646 phy_data |= CTL1000_ENABLE_MASTER; 647 phy_data &= ~(CTL1000_AS_MASTER); 648 break; 649 case e1000_ms_auto: 650 phy_data &= ~CTL1000_ENABLE_MASTER; 651 fallthrough; 652 default: 653 break; 654 } 655 656 return e1e_wphy(hw, MII_CTRL1000, phy_data); 657 } 658 659 /** 660 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link 661 * @hw: pointer to the HW structure 662 * 663 * Sets up Carrier-sense on Transmit and downshift values. 664 **/ 665 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) 666 { 667 s32 ret_val; 668 u16 phy_data; 669 670 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 671 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); 672 if (ret_val) 673 return ret_val; 674 675 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; 676 677 /* Enable downshift */ 678 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; 679 680 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); 681 if (ret_val) 682 return ret_val; 683 684 /* Set MDI/MDIX mode */ 685 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data); 686 if (ret_val) 687 return ret_val; 688 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; 689 /* Options: 690 * 0 - Auto (default) 691 * 1 - MDI mode 692 * 2 - MDI-X mode 693 */ 694 switch (hw->phy.mdix) { 695 case 1: 696 break; 697 case 2: 698 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; 699 break; 700 case 0: 701 default: 702 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; 703 break; 704 } 705 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data); 706 if (ret_val) 707 return ret_val; 708 709 return e1000_set_master_slave_mode(hw); 710 } 711 712 /** 713 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link 714 * @hw: pointer to the HW structure 715 * 716 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 717 * and downshift values are set also. 718 **/ 719 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) 720 { 721 struct e1000_phy_info *phy = &hw->phy; 722 s32 ret_val; 723 u16 phy_data; 724 725 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 726 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 727 if (ret_val) 728 return ret_val; 729 730 /* For BM PHY this bit is downshift enable */ 731 if (phy->type != e1000_phy_bm) 732 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 733 734 /* Options: 735 * MDI/MDI-X = 0 (default) 736 * 0 - Auto for all speeds 737 * 1 - MDI mode 738 * 2 - MDI-X mode 739 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 740 */ 741 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 742 743 switch (phy->mdix) { 744 case 1: 745 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 746 break; 747 case 2: 748 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 749 break; 750 case 3: 751 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 752 break; 753 case 0: 754 default: 755 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 756 break; 757 } 758 759 /* Options: 760 * disable_polarity_correction = 0 (default) 761 * Automatic Correction for Reversed Cable Polarity 762 * 0 - Disabled 763 * 1 - Enabled 764 */ 765 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 766 if (phy->disable_polarity_correction) 767 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 768 769 /* Enable downshift on BM (disabled by default) */ 770 if (phy->type == e1000_phy_bm) { 771 /* For 82574/82583, first disable then enable downshift */ 772 if (phy->id == BME1000_E_PHY_ID_R2) { 773 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; 774 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 775 phy_data); 776 if (ret_val) 777 return ret_val; 778 /* Commit the changes. */ 779 ret_val = phy->ops.commit(hw); 780 if (ret_val) { 781 e_dbg("Error committing the PHY changes\n"); 782 return ret_val; 783 } 784 } 785 786 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; 787 } 788 789 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 790 if (ret_val) 791 return ret_val; 792 793 if ((phy->type == e1000_phy_m88) && 794 (phy->revision < E1000_REVISION_4) && 795 (phy->id != BME1000_E_PHY_ID_R2)) { 796 /* Force TX_CLK in the Extended PHY Specific Control Register 797 * to 25MHz clock. 798 */ 799 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 800 if (ret_val) 801 return ret_val; 802 803 phy_data |= M88E1000_EPSCR_TX_CLK_25; 804 805 if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) { 806 /* 82573L PHY - set the downshift counter to 5x. */ 807 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 808 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 809 } else { 810 /* Configure Master and Slave downshift values */ 811 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 812 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 813 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 814 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 815 } 816 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 817 if (ret_val) 818 return ret_val; 819 } 820 821 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { 822 /* Set PHY page 0, register 29 to 0x0003 */ 823 ret_val = e1e_wphy(hw, 29, 0x0003); 824 if (ret_val) 825 return ret_val; 826 827 /* Set PHY page 0, register 30 to 0x0000 */ 828 ret_val = e1e_wphy(hw, 30, 0x0000); 829 if (ret_val) 830 return ret_val; 831 } 832 833 /* Commit the changes. */ 834 if (phy->ops.commit) { 835 ret_val = phy->ops.commit(hw); 836 if (ret_val) { 837 e_dbg("Error committing the PHY changes\n"); 838 return ret_val; 839 } 840 } 841 842 if (phy->type == e1000_phy_82578) { 843 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 844 if (ret_val) 845 return ret_val; 846 847 /* 82578 PHY - set the downshift count to 1x. */ 848 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; 849 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; 850 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 851 if (ret_val) 852 return ret_val; 853 } 854 855 return 0; 856 } 857 858 /** 859 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link 860 * @hw: pointer to the HW structure 861 * 862 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 863 * igp PHY's. 864 **/ 865 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) 866 { 867 struct e1000_phy_info *phy = &hw->phy; 868 s32 ret_val; 869 u16 data; 870 871 ret_val = e1000_phy_hw_reset(hw); 872 if (ret_val) { 873 e_dbg("Error resetting the PHY.\n"); 874 return ret_val; 875 } 876 877 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 878 * timeout issues when LFS is enabled. 879 */ 880 msleep(100); 881 882 /* disable lplu d0 during driver init */ 883 if (hw->phy.ops.set_d0_lplu_state) { 884 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); 885 if (ret_val) { 886 e_dbg("Error Disabling LPLU D0\n"); 887 return ret_val; 888 } 889 } 890 /* Configure mdi-mdix settings */ 891 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); 892 if (ret_val) 893 return ret_val; 894 895 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 896 897 switch (phy->mdix) { 898 case 1: 899 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 900 break; 901 case 2: 902 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 903 break; 904 case 0: 905 default: 906 data |= IGP01E1000_PSCR_AUTO_MDIX; 907 break; 908 } 909 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); 910 if (ret_val) 911 return ret_val; 912 913 /* set auto-master slave resolution settings */ 914 if (hw->mac.autoneg) { 915 /* when autonegotiation advertisement is only 1000Mbps then we 916 * should disable SmartSpeed and enable Auto MasterSlave 917 * resolution as hardware default. 918 */ 919 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 920 /* Disable SmartSpeed */ 921 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 922 &data); 923 if (ret_val) 924 return ret_val; 925 926 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 927 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 928 data); 929 if (ret_val) 930 return ret_val; 931 932 /* Set auto Master/Slave resolution process */ 933 ret_val = e1e_rphy(hw, MII_CTRL1000, &data); 934 if (ret_val) 935 return ret_val; 936 937 data &= ~CTL1000_ENABLE_MASTER; 938 ret_val = e1e_wphy(hw, MII_CTRL1000, data); 939 if (ret_val) 940 return ret_val; 941 } 942 943 ret_val = e1000_set_master_slave_mode(hw); 944 } 945 946 return ret_val; 947 } 948 949 /** 950 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation 951 * @hw: pointer to the HW structure 952 * 953 * Reads the MII auto-neg advertisement register and/or the 1000T control 954 * register and if the PHY is already setup for auto-negotiation, then 955 * return successful. Otherwise, setup advertisement and flow control to 956 * the appropriate values for the wanted auto-negotiation. 957 **/ 958 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) 959 { 960 struct e1000_phy_info *phy = &hw->phy; 961 s32 ret_val; 962 u16 mii_autoneg_adv_reg; 963 u16 mii_1000t_ctrl_reg = 0; 964 965 phy->autoneg_advertised &= phy->autoneg_mask; 966 967 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 968 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg); 969 if (ret_val) 970 return ret_val; 971 972 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 973 /* Read the MII 1000Base-T Control Register (Address 9). */ 974 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg); 975 if (ret_val) 976 return ret_val; 977 } 978 979 /* Need to parse both autoneg_advertised and fc and set up 980 * the appropriate PHY registers. First we will parse for 981 * autoneg_advertised software override. Since we can advertise 982 * a plethora of combinations, we need to check each bit 983 * individually. 984 */ 985 986 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 987 * Advertisement Register (Address 4) and the 1000 mb speed bits in 988 * the 1000Base-T Control Register (Address 9). 989 */ 990 mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL | 991 ADVERTISE_100HALF | 992 ADVERTISE_10FULL | ADVERTISE_10HALF); 993 mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); 994 995 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 996 997 /* Do we want to advertise 10 Mb Half Duplex? */ 998 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 999 e_dbg("Advertise 10mb Half duplex\n"); 1000 mii_autoneg_adv_reg |= ADVERTISE_10HALF; 1001 } 1002 1003 /* Do we want to advertise 10 Mb Full Duplex? */ 1004 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 1005 e_dbg("Advertise 10mb Full duplex\n"); 1006 mii_autoneg_adv_reg |= ADVERTISE_10FULL; 1007 } 1008 1009 /* Do we want to advertise 100 Mb Half Duplex? */ 1010 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 1011 e_dbg("Advertise 100mb Half duplex\n"); 1012 mii_autoneg_adv_reg |= ADVERTISE_100HALF; 1013 } 1014 1015 /* Do we want to advertise 100 Mb Full Duplex? */ 1016 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 1017 e_dbg("Advertise 100mb Full duplex\n"); 1018 mii_autoneg_adv_reg |= ADVERTISE_100FULL; 1019 } 1020 1021 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 1022 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 1023 e_dbg("Advertise 1000mb Half duplex request denied!\n"); 1024 1025 /* Do we want to advertise 1000 Mb Full Duplex? */ 1026 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 1027 e_dbg("Advertise 1000mb Full duplex\n"); 1028 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL; 1029 } 1030 1031 /* Check for a software override of the flow control settings, and 1032 * setup the PHY advertisement registers accordingly. If 1033 * auto-negotiation is enabled, then software will have to set the 1034 * "PAUSE" bits to the correct value in the Auto-Negotiation 1035 * Advertisement Register (MII_ADVERTISE) and re-start auto- 1036 * negotiation. 1037 * 1038 * The possible values of the "fc" parameter are: 1039 * 0: Flow control is completely disabled 1040 * 1: Rx flow control is enabled (we can receive pause frames 1041 * but not send pause frames). 1042 * 2: Tx flow control is enabled (we can send pause frames 1043 * but we do not support receiving pause frames). 1044 * 3: Both Rx and Tx flow control (symmetric) are enabled. 1045 * other: No software override. The flow control configuration 1046 * in the EEPROM is used. 1047 */ 1048 switch (hw->fc.current_mode) { 1049 case e1000_fc_none: 1050 /* Flow control (Rx & Tx) is completely disabled by a 1051 * software over-ride. 1052 */ 1053 mii_autoneg_adv_reg &= 1054 ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1055 phy->autoneg_advertised &= 1056 ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); 1057 break; 1058 case e1000_fc_rx_pause: 1059 /* Rx Flow control is enabled, and Tx Flow control is 1060 * disabled, by a software over-ride. 1061 * 1062 * Since there really isn't a way to advertise that we are 1063 * capable of Rx Pause ONLY, we will advertise that we 1064 * support both symmetric and asymmetric Rx PAUSE. Later 1065 * (in e1000e_config_fc_after_link_up) we will disable the 1066 * hw's ability to send PAUSE frames. 1067 */ 1068 mii_autoneg_adv_reg |= 1069 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1070 phy->autoneg_advertised |= 1071 (ADVERTISED_Pause | ADVERTISED_Asym_Pause); 1072 break; 1073 case e1000_fc_tx_pause: 1074 /* Tx Flow control is enabled, and Rx Flow control is 1075 * disabled, by a software over-ride. 1076 */ 1077 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM; 1078 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP; 1079 phy->autoneg_advertised |= ADVERTISED_Asym_Pause; 1080 phy->autoneg_advertised &= ~ADVERTISED_Pause; 1081 break; 1082 case e1000_fc_full: 1083 /* Flow control (both Rx and Tx) is enabled by a software 1084 * over-ride. 1085 */ 1086 mii_autoneg_adv_reg |= 1087 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1088 phy->autoneg_advertised |= 1089 (ADVERTISED_Pause | ADVERTISED_Asym_Pause); 1090 break; 1091 default: 1092 e_dbg("Flow control param set incorrectly\n"); 1093 return -E1000_ERR_CONFIG; 1094 } 1095 1096 ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 1097 if (ret_val) 1098 return ret_val; 1099 1100 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1101 1102 if (phy->autoneg_mask & ADVERTISE_1000_FULL) 1103 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg); 1104 1105 return ret_val; 1106 } 1107 1108 /** 1109 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link 1110 * @hw: pointer to the HW structure 1111 * 1112 * Performs initial bounds checking on autoneg advertisement parameter, then 1113 * configure to advertise the full capability. Setup the PHY to autoneg 1114 * and restart the negotiation process between the link partner. If 1115 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 1116 **/ 1117 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) 1118 { 1119 struct e1000_phy_info *phy = &hw->phy; 1120 s32 ret_val; 1121 u16 phy_ctrl; 1122 1123 /* Perform some bounds checking on the autoneg advertisement 1124 * parameter. 1125 */ 1126 phy->autoneg_advertised &= phy->autoneg_mask; 1127 1128 /* If autoneg_advertised is zero, we assume it was not defaulted 1129 * by the calling code so we set to advertise full capability. 1130 */ 1131 if (!phy->autoneg_advertised) 1132 phy->autoneg_advertised = phy->autoneg_mask; 1133 1134 e_dbg("Reconfiguring auto-neg advertisement params\n"); 1135 ret_val = e1000_phy_setup_autoneg(hw); 1136 if (ret_val) { 1137 e_dbg("Error Setting up Auto-Negotiation\n"); 1138 return ret_val; 1139 } 1140 e_dbg("Restarting Auto-Neg\n"); 1141 1142 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 1143 * the Auto Neg Restart bit in the PHY control register. 1144 */ 1145 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 1146 if (ret_val) 1147 return ret_val; 1148 1149 phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART); 1150 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 1151 if (ret_val) 1152 return ret_val; 1153 1154 /* Does the user want to wait for Auto-Neg to complete here, or 1155 * check at a later time (for example, callback routine). 1156 */ 1157 if (phy->autoneg_wait_to_complete) { 1158 ret_val = e1000_wait_autoneg(hw); 1159 if (ret_val) { 1160 e_dbg("Error while waiting for autoneg to complete\n"); 1161 return ret_val; 1162 } 1163 } 1164 1165 hw->mac.get_link_status = true; 1166 1167 return ret_val; 1168 } 1169 1170 /** 1171 * e1000e_setup_copper_link - Configure copper link settings 1172 * @hw: pointer to the HW structure 1173 * 1174 * Calls the appropriate function to configure the link for auto-neg or forced 1175 * speed and duplex. Then we check for link, once link is established calls 1176 * to configure collision distance and flow control are called. If link is 1177 * not established, we return -E1000_ERR_PHY (-2). 1178 **/ 1179 s32 e1000e_setup_copper_link(struct e1000_hw *hw) 1180 { 1181 s32 ret_val; 1182 bool link; 1183 1184 if (hw->mac.autoneg) { 1185 /* Setup autoneg and flow control advertisement and perform 1186 * autonegotiation. 1187 */ 1188 ret_val = e1000_copper_link_autoneg(hw); 1189 if (ret_val) 1190 return ret_val; 1191 } else { 1192 /* PHY will be set to 10H, 10F, 100H or 100F 1193 * depending on user settings. 1194 */ 1195 e_dbg("Forcing Speed and Duplex\n"); 1196 ret_val = hw->phy.ops.force_speed_duplex(hw); 1197 if (ret_val) { 1198 e_dbg("Error Forcing Speed and Duplex\n"); 1199 return ret_val; 1200 } 1201 } 1202 1203 /* Check link status. Wait up to 100 microseconds for link to become 1204 * valid. 1205 */ 1206 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, 1207 &link); 1208 if (ret_val) 1209 return ret_val; 1210 1211 if (link) { 1212 e_dbg("Valid link established!!!\n"); 1213 hw->mac.ops.config_collision_dist(hw); 1214 ret_val = e1000e_config_fc_after_link_up(hw); 1215 } else { 1216 e_dbg("Unable to establish link!!!\n"); 1217 } 1218 1219 return ret_val; 1220 } 1221 1222 /** 1223 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1224 * @hw: pointer to the HW structure 1225 * 1226 * Calls the PHY setup function to force speed and duplex. Clears the 1227 * auto-crossover to force MDI manually. Waits for link and returns 1228 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1229 **/ 1230 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1231 { 1232 struct e1000_phy_info *phy = &hw->phy; 1233 s32 ret_val; 1234 u16 phy_data; 1235 bool link; 1236 1237 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1238 if (ret_val) 1239 return ret_val; 1240 1241 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1242 1243 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1244 if (ret_val) 1245 return ret_val; 1246 1247 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1248 * forced whenever speed and duplex are forced. 1249 */ 1250 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1251 if (ret_val) 1252 return ret_val; 1253 1254 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1255 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1256 1257 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1258 if (ret_val) 1259 return ret_val; 1260 1261 e_dbg("IGP PSCR: %X\n", phy_data); 1262 1263 udelay(1); 1264 1265 if (phy->autoneg_wait_to_complete) { 1266 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1267 1268 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1269 100000, &link); 1270 if (ret_val) 1271 return ret_val; 1272 1273 if (!link) 1274 e_dbg("Link taking longer than expected.\n"); 1275 1276 /* Try once more */ 1277 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1278 100000, &link); 1279 } 1280 1281 return ret_val; 1282 } 1283 1284 /** 1285 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1286 * @hw: pointer to the HW structure 1287 * 1288 * Calls the PHY setup function to force speed and duplex. Clears the 1289 * auto-crossover to force MDI manually. Resets the PHY to commit the 1290 * changes. If time expires while waiting for link up, we reset the DSP. 1291 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon 1292 * successful completion, else return corresponding error code. 1293 **/ 1294 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1295 { 1296 struct e1000_phy_info *phy = &hw->phy; 1297 s32 ret_val; 1298 u16 phy_data; 1299 bool link; 1300 1301 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI 1302 * forced whenever speed and duplex are forced. 1303 */ 1304 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1305 if (ret_val) 1306 return ret_val; 1307 1308 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1309 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1310 if (ret_val) 1311 return ret_val; 1312 1313 e_dbg("M88E1000 PSCR: %X\n", phy_data); 1314 1315 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1316 if (ret_val) 1317 return ret_val; 1318 1319 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1320 1321 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1322 if (ret_val) 1323 return ret_val; 1324 1325 /* Reset the phy to commit changes. */ 1326 if (hw->phy.ops.commit) { 1327 ret_val = hw->phy.ops.commit(hw); 1328 if (ret_val) 1329 return ret_val; 1330 } 1331 1332 if (phy->autoneg_wait_to_complete) { 1333 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1334 1335 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1336 100000, &link); 1337 if (ret_val) 1338 return ret_val; 1339 1340 if (!link) { 1341 if (hw->phy.type != e1000_phy_m88) { 1342 e_dbg("Link taking longer than expected.\n"); 1343 } else { 1344 /* We didn't get link. 1345 * Reset the DSP and cross our fingers. 1346 */ 1347 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 1348 0x001d); 1349 if (ret_val) 1350 return ret_val; 1351 ret_val = e1000e_phy_reset_dsp(hw); 1352 if (ret_val) 1353 return ret_val; 1354 } 1355 } 1356 1357 /* Try once more */ 1358 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1359 100000, &link); 1360 if (ret_val) 1361 return ret_val; 1362 } 1363 1364 if (hw->phy.type != e1000_phy_m88) 1365 return 0; 1366 1367 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1368 if (ret_val) 1369 return ret_val; 1370 1371 /* Resetting the phy means we need to re-force TX_CLK in the 1372 * Extended PHY Specific Control Register to 25MHz clock from 1373 * the reset value of 2.5MHz. 1374 */ 1375 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1376 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1377 if (ret_val) 1378 return ret_val; 1379 1380 /* In addition, we must re-enable CRS on Tx for both half and full 1381 * duplex. 1382 */ 1383 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1384 if (ret_val) 1385 return ret_val; 1386 1387 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1388 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1389 1390 return ret_val; 1391 } 1392 1393 /** 1394 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex 1395 * @hw: pointer to the HW structure 1396 * 1397 * Forces the speed and duplex settings of the PHY. 1398 * This is a function pointer entry point only called by 1399 * PHY setup routines. 1400 **/ 1401 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) 1402 { 1403 struct e1000_phy_info *phy = &hw->phy; 1404 s32 ret_val; 1405 u16 data; 1406 bool link; 1407 1408 ret_val = e1e_rphy(hw, MII_BMCR, &data); 1409 if (ret_val) 1410 return ret_val; 1411 1412 e1000e_phy_force_speed_duplex_setup(hw, &data); 1413 1414 ret_val = e1e_wphy(hw, MII_BMCR, data); 1415 if (ret_val) 1416 return ret_val; 1417 1418 /* Disable MDI-X support for 10/100 */ 1419 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 1420 if (ret_val) 1421 return ret_val; 1422 1423 data &= ~IFE_PMC_AUTO_MDIX; 1424 data &= ~IFE_PMC_FORCE_MDIX; 1425 1426 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); 1427 if (ret_val) 1428 return ret_val; 1429 1430 e_dbg("IFE PMC: %X\n", data); 1431 1432 udelay(1); 1433 1434 if (phy->autoneg_wait_to_complete) { 1435 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); 1436 1437 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1438 100000, &link); 1439 if (ret_val) 1440 return ret_val; 1441 1442 if (!link) 1443 e_dbg("Link taking longer than expected.\n"); 1444 1445 /* Try once more */ 1446 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1447 100000, &link); 1448 if (ret_val) 1449 return ret_val; 1450 } 1451 1452 return 0; 1453 } 1454 1455 /** 1456 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1457 * @hw: pointer to the HW structure 1458 * @phy_ctrl: pointer to current value of MII_BMCR 1459 * 1460 * Forces speed and duplex on the PHY by doing the following: disable flow 1461 * control, force speed/duplex on the MAC, disable auto speed detection, 1462 * disable auto-negotiation, configure duplex, configure speed, configure 1463 * the collision distance, write configuration to CTRL register. The 1464 * caller must write to the MII_BMCR register for these settings to 1465 * take affect. 1466 **/ 1467 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) 1468 { 1469 struct e1000_mac_info *mac = &hw->mac; 1470 u32 ctrl; 1471 1472 /* Turn off flow control when forcing speed/duplex */ 1473 hw->fc.current_mode = e1000_fc_none; 1474 1475 /* Force speed/duplex on the mac */ 1476 ctrl = er32(CTRL); 1477 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1478 ctrl &= ~E1000_CTRL_SPD_SEL; 1479 1480 /* Disable Auto Speed Detection */ 1481 ctrl &= ~E1000_CTRL_ASDE; 1482 1483 /* Disable autoneg on the phy */ 1484 *phy_ctrl &= ~BMCR_ANENABLE; 1485 1486 /* Forcing Full or Half Duplex? */ 1487 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1488 ctrl &= ~E1000_CTRL_FD; 1489 *phy_ctrl &= ~BMCR_FULLDPLX; 1490 e_dbg("Half Duplex\n"); 1491 } else { 1492 ctrl |= E1000_CTRL_FD; 1493 *phy_ctrl |= BMCR_FULLDPLX; 1494 e_dbg("Full Duplex\n"); 1495 } 1496 1497 /* Forcing 10mb or 100mb? */ 1498 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1499 ctrl |= E1000_CTRL_SPD_100; 1500 *phy_ctrl |= BMCR_SPEED100; 1501 *phy_ctrl &= ~BMCR_SPEED1000; 1502 e_dbg("Forcing 100mb\n"); 1503 } else { 1504 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1505 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100); 1506 e_dbg("Forcing 10mb\n"); 1507 } 1508 1509 hw->mac.ops.config_collision_dist(hw); 1510 1511 ew32(CTRL, ctrl); 1512 } 1513 1514 /** 1515 * e1000e_set_d3_lplu_state - Sets low power link up state for D3 1516 * @hw: pointer to the HW structure 1517 * @active: boolean used to enable/disable lplu 1518 * 1519 * Success returns 0, Failure returns 1 1520 * 1521 * The low power link up (lplu) state is set to the power management level D3 1522 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1523 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1524 * is used during Dx states where the power conservation is most important. 1525 * During driver activity, SmartSpeed should be enabled so performance is 1526 * maintained. 1527 **/ 1528 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1529 { 1530 struct e1000_phy_info *phy = &hw->phy; 1531 s32 ret_val; 1532 u16 data; 1533 1534 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1535 if (ret_val) 1536 return ret_val; 1537 1538 if (!active) { 1539 data &= ~IGP02E1000_PM_D3_LPLU; 1540 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1541 if (ret_val) 1542 return ret_val; 1543 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1544 * during Dx states where the power conservation is most 1545 * important. During driver activity we should enable 1546 * SmartSpeed, so performance is maintained. 1547 */ 1548 if (phy->smart_speed == e1000_smart_speed_on) { 1549 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1550 &data); 1551 if (ret_val) 1552 return ret_val; 1553 1554 data |= IGP01E1000_PSCFR_SMART_SPEED; 1555 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1556 data); 1557 if (ret_val) 1558 return ret_val; 1559 } else if (phy->smart_speed == e1000_smart_speed_off) { 1560 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1561 &data); 1562 if (ret_val) 1563 return ret_val; 1564 1565 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1566 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1567 data); 1568 if (ret_val) 1569 return ret_val; 1570 } 1571 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1572 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1573 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1574 data |= IGP02E1000_PM_D3_LPLU; 1575 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1576 if (ret_val) 1577 return ret_val; 1578 1579 /* When LPLU is enabled, we should disable SmartSpeed */ 1580 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 1581 if (ret_val) 1582 return ret_val; 1583 1584 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1585 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 1586 } 1587 1588 return ret_val; 1589 } 1590 1591 /** 1592 * e1000e_check_downshift - Checks whether a downshift in speed occurred 1593 * @hw: pointer to the HW structure 1594 * 1595 * Success returns 0, Failure returns 1 1596 * 1597 * A downshift is detected by querying the PHY link health. 1598 **/ 1599 s32 e1000e_check_downshift(struct e1000_hw *hw) 1600 { 1601 struct e1000_phy_info *phy = &hw->phy; 1602 s32 ret_val; 1603 u16 phy_data, offset, mask; 1604 1605 switch (phy->type) { 1606 case e1000_phy_m88: 1607 case e1000_phy_gg82563: 1608 case e1000_phy_bm: 1609 case e1000_phy_82578: 1610 offset = M88E1000_PHY_SPEC_STATUS; 1611 mask = M88E1000_PSSR_DOWNSHIFT; 1612 break; 1613 case e1000_phy_igp_2: 1614 case e1000_phy_igp_3: 1615 offset = IGP01E1000_PHY_LINK_HEALTH; 1616 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1617 break; 1618 default: 1619 /* speed downshift not supported */ 1620 phy->speed_downgraded = false; 1621 return 0; 1622 } 1623 1624 ret_val = e1e_rphy(hw, offset, &phy_data); 1625 1626 if (!ret_val) 1627 phy->speed_downgraded = !!(phy_data & mask); 1628 1629 return ret_val; 1630 } 1631 1632 /** 1633 * e1000_check_polarity_m88 - Checks the polarity. 1634 * @hw: pointer to the HW structure 1635 * 1636 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1637 * 1638 * Polarity is determined based on the PHY specific status register. 1639 **/ 1640 s32 e1000_check_polarity_m88(struct e1000_hw *hw) 1641 { 1642 struct e1000_phy_info *phy = &hw->phy; 1643 s32 ret_val; 1644 u16 data; 1645 1646 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); 1647 1648 if (!ret_val) 1649 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) 1650 ? e1000_rev_polarity_reversed 1651 : e1000_rev_polarity_normal); 1652 1653 return ret_val; 1654 } 1655 1656 /** 1657 * e1000_check_polarity_igp - Checks the polarity. 1658 * @hw: pointer to the HW structure 1659 * 1660 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1661 * 1662 * Polarity is determined based on the PHY port status register, and the 1663 * current speed (since there is no polarity at 100Mbps). 1664 **/ 1665 s32 e1000_check_polarity_igp(struct e1000_hw *hw) 1666 { 1667 struct e1000_phy_info *phy = &hw->phy; 1668 s32 ret_val; 1669 u16 data, offset, mask; 1670 1671 /* Polarity is determined based on the speed of 1672 * our connection. 1673 */ 1674 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1675 if (ret_val) 1676 return ret_val; 1677 1678 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1679 IGP01E1000_PSSR_SPEED_1000MBPS) { 1680 offset = IGP01E1000_PHY_PCS_INIT_REG; 1681 mask = IGP01E1000_PHY_POLARITY_MASK; 1682 } else { 1683 /* This really only applies to 10Mbps since 1684 * there is no polarity for 100Mbps (always 0). 1685 */ 1686 offset = IGP01E1000_PHY_PORT_STATUS; 1687 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1688 } 1689 1690 ret_val = e1e_rphy(hw, offset, &data); 1691 1692 if (!ret_val) 1693 phy->cable_polarity = ((data & mask) 1694 ? e1000_rev_polarity_reversed 1695 : e1000_rev_polarity_normal); 1696 1697 return ret_val; 1698 } 1699 1700 /** 1701 * e1000_check_polarity_ife - Check cable polarity for IFE PHY 1702 * @hw: pointer to the HW structure 1703 * 1704 * Polarity is determined on the polarity reversal feature being enabled. 1705 **/ 1706 s32 e1000_check_polarity_ife(struct e1000_hw *hw) 1707 { 1708 struct e1000_phy_info *phy = &hw->phy; 1709 s32 ret_val; 1710 u16 phy_data, offset, mask; 1711 1712 /* Polarity is determined based on the reversal feature being enabled. 1713 */ 1714 if (phy->polarity_correction) { 1715 offset = IFE_PHY_EXTENDED_STATUS_CONTROL; 1716 mask = IFE_PESC_POLARITY_REVERSED; 1717 } else { 1718 offset = IFE_PHY_SPECIAL_CONTROL; 1719 mask = IFE_PSC_FORCE_POLARITY; 1720 } 1721 1722 ret_val = e1e_rphy(hw, offset, &phy_data); 1723 1724 if (!ret_val) 1725 phy->cable_polarity = ((phy_data & mask) 1726 ? e1000_rev_polarity_reversed 1727 : e1000_rev_polarity_normal); 1728 1729 return ret_val; 1730 } 1731 1732 /** 1733 * e1000_wait_autoneg - Wait for auto-neg completion 1734 * @hw: pointer to the HW structure 1735 * 1736 * Waits for auto-negotiation to complete or for the auto-negotiation time 1737 * limit to expire, which ever happens first. 1738 **/ 1739 static s32 e1000_wait_autoneg(struct e1000_hw *hw) 1740 { 1741 s32 ret_val = 0; 1742 u16 i, phy_status; 1743 1744 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1745 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1746 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1747 if (ret_val) 1748 break; 1749 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1750 if (ret_val) 1751 break; 1752 if (phy_status & BMSR_ANEGCOMPLETE) 1753 break; 1754 msleep(100); 1755 } 1756 1757 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1758 * has completed. 1759 */ 1760 return ret_val; 1761 } 1762 1763 /** 1764 * e1000e_phy_has_link_generic - Polls PHY for link 1765 * @hw: pointer to the HW structure 1766 * @iterations: number of times to poll for link 1767 * @usec_interval: delay between polling attempts 1768 * @success: pointer to whether polling was successful or not 1769 * 1770 * Polls the PHY status register for link, 'iterations' number of times. 1771 **/ 1772 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, 1773 u32 usec_interval, bool *success) 1774 { 1775 s32 ret_val = 0; 1776 u16 i, phy_status; 1777 1778 *success = false; 1779 for (i = 0; i < iterations; i++) { 1780 /* Some PHYs require the MII_BMSR register to be read 1781 * twice due to the link bit being sticky. No harm doing 1782 * it across the board. 1783 */ 1784 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1785 if (ret_val) { 1786 /* If the first read fails, another entity may have 1787 * ownership of the resources, wait and try again to 1788 * see if they have relinquished the resources yet. 1789 */ 1790 if (usec_interval >= 1000) 1791 msleep(usec_interval / 1000); 1792 else 1793 udelay(usec_interval); 1794 } 1795 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1796 if (ret_val) 1797 break; 1798 if (phy_status & BMSR_LSTATUS) { 1799 *success = true; 1800 break; 1801 } 1802 if (usec_interval >= 1000) 1803 msleep(usec_interval / 1000); 1804 else 1805 udelay(usec_interval); 1806 } 1807 1808 return ret_val; 1809 } 1810 1811 /** 1812 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY 1813 * @hw: pointer to the HW structure 1814 * 1815 * Reads the PHY specific status register to retrieve the cable length 1816 * information. The cable length is determined by averaging the minimum and 1817 * maximum values to get the "average" cable length. The m88 PHY has four 1818 * possible cable length values, which are: 1819 * Register Value Cable Length 1820 * 0 < 50 meters 1821 * 1 50 - 80 meters 1822 * 2 80 - 110 meters 1823 * 3 110 - 140 meters 1824 * 4 > 140 meters 1825 **/ 1826 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) 1827 { 1828 struct e1000_phy_info *phy = &hw->phy; 1829 s32 ret_val; 1830 u16 phy_data, index; 1831 1832 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1833 if (ret_val) 1834 return ret_val; 1835 1836 index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data); 1837 1838 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) 1839 return -E1000_ERR_PHY; 1840 1841 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1842 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1843 1844 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1845 1846 return 0; 1847 } 1848 1849 /** 1850 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1851 * @hw: pointer to the HW structure 1852 * 1853 * The automatic gain control (agc) normalizes the amplitude of the 1854 * received signal, adjusting for the attenuation produced by the 1855 * cable. By reading the AGC registers, which represent the 1856 * combination of coarse and fine gain value, the value can be put 1857 * into a lookup table to obtain the approximate cable length 1858 * for each channel. 1859 **/ 1860 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) 1861 { 1862 struct e1000_phy_info *phy = &hw->phy; 1863 s32 ret_val; 1864 u16 phy_data, i, agc_value = 0; 1865 u16 cur_agc_index, max_agc_index = 0; 1866 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; 1867 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1868 IGP02E1000_PHY_AGC_A, 1869 IGP02E1000_PHY_AGC_B, 1870 IGP02E1000_PHY_AGC_C, 1871 IGP02E1000_PHY_AGC_D 1872 }; 1873 1874 /* Read the AGC registers for all channels */ 1875 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1876 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); 1877 if (ret_val) 1878 return ret_val; 1879 1880 /* Getting bits 15:9, which represent the combination of 1881 * coarse and fine gain values. The result is a number 1882 * that can be put into the lookup table to obtain the 1883 * approximate cable length. 1884 */ 1885 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1886 IGP02E1000_AGC_LENGTH_MASK); 1887 1888 /* Array index bound check. */ 1889 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || 1890 (cur_agc_index == 0)) 1891 return -E1000_ERR_PHY; 1892 1893 /* Remove min & max AGC values from calculation. */ 1894 if (e1000_igp_2_cable_length_table[min_agc_index] > 1895 e1000_igp_2_cable_length_table[cur_agc_index]) 1896 min_agc_index = cur_agc_index; 1897 if (e1000_igp_2_cable_length_table[max_agc_index] < 1898 e1000_igp_2_cable_length_table[cur_agc_index]) 1899 max_agc_index = cur_agc_index; 1900 1901 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1902 } 1903 1904 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1905 e1000_igp_2_cable_length_table[max_agc_index]); 1906 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1907 1908 /* Calculate cable length with the error range of +/- 10 meters. */ 1909 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1910 (agc_value - IGP02E1000_AGC_RANGE) : 0); 1911 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1912 1913 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1914 1915 return 0; 1916 } 1917 1918 /** 1919 * e1000e_get_phy_info_m88 - Retrieve PHY information 1920 * @hw: pointer to the HW structure 1921 * 1922 * Valid for only copper links. Read the PHY status register (sticky read) 1923 * to verify that link is up. Read the PHY special control register to 1924 * determine the polarity and 10base-T extended distance. Read the PHY 1925 * special status register to determine MDI/MDIx and current speed. If 1926 * speed is 1000, then determine cable length, local and remote receiver. 1927 **/ 1928 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) 1929 { 1930 struct e1000_phy_info *phy = &hw->phy; 1931 s32 ret_val; 1932 u16 phy_data; 1933 bool link; 1934 1935 if (phy->media_type != e1000_media_type_copper) { 1936 e_dbg("Phy info is only valid for copper media\n"); 1937 return -E1000_ERR_CONFIG; 1938 } 1939 1940 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1941 if (ret_val) 1942 return ret_val; 1943 1944 if (!link) { 1945 e_dbg("Phy info is only valid if link is up\n"); 1946 return -E1000_ERR_CONFIG; 1947 } 1948 1949 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1950 if (ret_val) 1951 return ret_val; 1952 1953 phy->polarity_correction = !!(phy_data & 1954 M88E1000_PSCR_POLARITY_REVERSAL); 1955 1956 ret_val = e1000_check_polarity_m88(hw); 1957 if (ret_val) 1958 return ret_val; 1959 1960 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1961 if (ret_val) 1962 return ret_val; 1963 1964 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); 1965 1966 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 1967 ret_val = hw->phy.ops.get_cable_length(hw); 1968 if (ret_val) 1969 return ret_val; 1970 1971 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data); 1972 if (ret_val) 1973 return ret_val; 1974 1975 phy->local_rx = (phy_data & LPA_1000LOCALRXOK) 1976 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1977 1978 phy->remote_rx = (phy_data & LPA_1000REMRXOK) 1979 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1980 } else { 1981 /* Set values to "undefined" */ 1982 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1983 phy->local_rx = e1000_1000t_rx_status_undefined; 1984 phy->remote_rx = e1000_1000t_rx_status_undefined; 1985 } 1986 1987 return ret_val; 1988 } 1989 1990 /** 1991 * e1000e_get_phy_info_igp - Retrieve igp PHY information 1992 * @hw: pointer to the HW structure 1993 * 1994 * Read PHY status to determine if link is up. If link is up, then 1995 * set/determine 10base-T extended distance and polarity correction. Read 1996 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 1997 * determine on the cable length, local and remote receiver. 1998 **/ 1999 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) 2000 { 2001 struct e1000_phy_info *phy = &hw->phy; 2002 s32 ret_val; 2003 u16 data; 2004 bool link; 2005 2006 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 2007 if (ret_val) 2008 return ret_val; 2009 2010 if (!link) { 2011 e_dbg("Phy info is only valid if link is up\n"); 2012 return -E1000_ERR_CONFIG; 2013 } 2014 2015 phy->polarity_correction = true; 2016 2017 ret_val = e1000_check_polarity_igp(hw); 2018 if (ret_val) 2019 return ret_val; 2020 2021 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 2022 if (ret_val) 2023 return ret_val; 2024 2025 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); 2026 2027 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 2028 IGP01E1000_PSSR_SPEED_1000MBPS) { 2029 ret_val = phy->ops.get_cable_length(hw); 2030 if (ret_val) 2031 return ret_val; 2032 2033 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 2034 if (ret_val) 2035 return ret_val; 2036 2037 phy->local_rx = (data & LPA_1000LOCALRXOK) 2038 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 2039 2040 phy->remote_rx = (data & LPA_1000REMRXOK) 2041 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 2042 } else { 2043 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2044 phy->local_rx = e1000_1000t_rx_status_undefined; 2045 phy->remote_rx = e1000_1000t_rx_status_undefined; 2046 } 2047 2048 return ret_val; 2049 } 2050 2051 /** 2052 * e1000_get_phy_info_ife - Retrieves various IFE PHY states 2053 * @hw: pointer to the HW structure 2054 * 2055 * Populates "phy" structure with various feature states. 2056 **/ 2057 s32 e1000_get_phy_info_ife(struct e1000_hw *hw) 2058 { 2059 struct e1000_phy_info *phy = &hw->phy; 2060 s32 ret_val; 2061 u16 data; 2062 bool link; 2063 2064 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 2065 if (ret_val) 2066 return ret_val; 2067 2068 if (!link) { 2069 e_dbg("Phy info is only valid if link is up\n"); 2070 return -E1000_ERR_CONFIG; 2071 } 2072 2073 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); 2074 if (ret_val) 2075 return ret_val; 2076 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); 2077 2078 if (phy->polarity_correction) { 2079 ret_val = e1000_check_polarity_ife(hw); 2080 if (ret_val) 2081 return ret_val; 2082 } else { 2083 /* Polarity is forced */ 2084 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) 2085 ? e1000_rev_polarity_reversed 2086 : e1000_rev_polarity_normal); 2087 } 2088 2089 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 2090 if (ret_val) 2091 return ret_val; 2092 2093 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); 2094 2095 /* The following parameters are undefined for 10/100 operation. */ 2096 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2097 phy->local_rx = e1000_1000t_rx_status_undefined; 2098 phy->remote_rx = e1000_1000t_rx_status_undefined; 2099 2100 return 0; 2101 } 2102 2103 /** 2104 * e1000e_phy_sw_reset - PHY software reset 2105 * @hw: pointer to the HW structure 2106 * 2107 * Does a software reset of the PHY by reading the PHY control register and 2108 * setting/write the control register reset bit to the PHY. 2109 **/ 2110 s32 e1000e_phy_sw_reset(struct e1000_hw *hw) 2111 { 2112 s32 ret_val; 2113 u16 phy_ctrl; 2114 2115 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 2116 if (ret_val) 2117 return ret_val; 2118 2119 phy_ctrl |= BMCR_RESET; 2120 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 2121 if (ret_val) 2122 return ret_val; 2123 2124 udelay(1); 2125 2126 return ret_val; 2127 } 2128 2129 /** 2130 * e1000e_phy_hw_reset_generic - PHY hardware reset 2131 * @hw: pointer to the HW structure 2132 * 2133 * Verify the reset block is not blocking us from resetting. Acquire 2134 * semaphore (if necessary) and read/set/write the device control reset 2135 * bit in the PHY. Wait the appropriate delay time for the device to 2136 * reset and release the semaphore (if necessary). 2137 **/ 2138 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) 2139 { 2140 struct e1000_phy_info *phy = &hw->phy; 2141 s32 ret_val; 2142 u32 ctrl; 2143 2144 if (phy->ops.check_reset_block) { 2145 ret_val = phy->ops.check_reset_block(hw); 2146 if (ret_val) 2147 return 0; 2148 } 2149 2150 ret_val = phy->ops.acquire(hw); 2151 if (ret_val) 2152 return ret_val; 2153 2154 ctrl = er32(CTRL); 2155 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); 2156 e1e_flush(); 2157 2158 udelay(phy->reset_delay_us); 2159 2160 ew32(CTRL, ctrl); 2161 e1e_flush(); 2162 2163 usleep_range(150, 300); 2164 2165 phy->ops.release(hw); 2166 2167 return phy->ops.get_cfg_done(hw); 2168 } 2169 2170 /** 2171 * e1000e_get_cfg_done_generic - Generic configuration done 2172 * @hw: pointer to the HW structure 2173 * 2174 * Generic function to wait 10 milli-seconds for configuration to complete 2175 * and return success. 2176 **/ 2177 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw) 2178 { 2179 mdelay(10); 2180 2181 return 0; 2182 } 2183 2184 /** 2185 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY 2186 * @hw: pointer to the HW structure 2187 * 2188 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2189 **/ 2190 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) 2191 { 2192 e_dbg("Running IGP 3 PHY init script\n"); 2193 2194 /* PHY init IGP 3 */ 2195 /* Enable rise/fall, 10-mode work in class-A */ 2196 e1e_wphy(hw, 0x2F5B, 0x9018); 2197 /* Remove all caps from Replica path filter */ 2198 e1e_wphy(hw, 0x2F52, 0x0000); 2199 /* Bias trimming for ADC, AFE and Driver (Default) */ 2200 e1e_wphy(hw, 0x2FB1, 0x8B24); 2201 /* Increase Hybrid poly bias */ 2202 e1e_wphy(hw, 0x2FB2, 0xF8F0); 2203 /* Add 4% to Tx amplitude in Gig mode */ 2204 e1e_wphy(hw, 0x2010, 0x10B0); 2205 /* Disable trimming (TTT) */ 2206 e1e_wphy(hw, 0x2011, 0x0000); 2207 /* Poly DC correction to 94.6% + 2% for all channels */ 2208 e1e_wphy(hw, 0x20DD, 0x249A); 2209 /* ABS DC correction to 95.9% */ 2210 e1e_wphy(hw, 0x20DE, 0x00D3); 2211 /* BG temp curve trim */ 2212 e1e_wphy(hw, 0x28B4, 0x04CE); 2213 /* Increasing ADC OPAMP stage 1 currents to max */ 2214 e1e_wphy(hw, 0x2F70, 0x29E4); 2215 /* Force 1000 ( required for enabling PHY regs configuration) */ 2216 e1e_wphy(hw, 0x0000, 0x0140); 2217 /* Set upd_freq to 6 */ 2218 e1e_wphy(hw, 0x1F30, 0x1606); 2219 /* Disable NPDFE */ 2220 e1e_wphy(hw, 0x1F31, 0xB814); 2221 /* Disable adaptive fixed FFE (Default) */ 2222 e1e_wphy(hw, 0x1F35, 0x002A); 2223 /* Enable FFE hysteresis */ 2224 e1e_wphy(hw, 0x1F3E, 0x0067); 2225 /* Fixed FFE for short cable lengths */ 2226 e1e_wphy(hw, 0x1F54, 0x0065); 2227 /* Fixed FFE for medium cable lengths */ 2228 e1e_wphy(hw, 0x1F55, 0x002A); 2229 /* Fixed FFE for long cable lengths */ 2230 e1e_wphy(hw, 0x1F56, 0x002A); 2231 /* Enable Adaptive Clip Threshold */ 2232 e1e_wphy(hw, 0x1F72, 0x3FB0); 2233 /* AHT reset limit to 1 */ 2234 e1e_wphy(hw, 0x1F76, 0xC0FF); 2235 /* Set AHT master delay to 127 msec */ 2236 e1e_wphy(hw, 0x1F77, 0x1DEC); 2237 /* Set scan bits for AHT */ 2238 e1e_wphy(hw, 0x1F78, 0xF9EF); 2239 /* Set AHT Preset bits */ 2240 e1e_wphy(hw, 0x1F79, 0x0210); 2241 /* Change integ_factor of channel A to 3 */ 2242 e1e_wphy(hw, 0x1895, 0x0003); 2243 /* Change prop_factor of channels BCD to 8 */ 2244 e1e_wphy(hw, 0x1796, 0x0008); 2245 /* Change cg_icount + enable integbp for channels BCD */ 2246 e1e_wphy(hw, 0x1798, 0xD008); 2247 /* Change cg_icount + enable integbp + change prop_factor_master 2248 * to 8 for channel A 2249 */ 2250 e1e_wphy(hw, 0x1898, 0xD918); 2251 /* Disable AHT in Slave mode on channel A */ 2252 e1e_wphy(hw, 0x187A, 0x0800); 2253 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2254 * Enable SPD+B2B 2255 */ 2256 e1e_wphy(hw, 0x0019, 0x008D); 2257 /* Enable restart AN on an1000_dis change */ 2258 e1e_wphy(hw, 0x001B, 0x2080); 2259 /* Enable wh_fifo read clock in 10/100 modes */ 2260 e1e_wphy(hw, 0x0014, 0x0045); 2261 /* Restart AN, Speed selection is 1000 */ 2262 e1e_wphy(hw, 0x0000, 0x1340); 2263 2264 return 0; 2265 } 2266 2267 /** 2268 * e1000e_get_phy_type_from_id - Get PHY type from id 2269 * @phy_id: phy_id read from the phy 2270 * 2271 * Returns the phy type from the id. 2272 **/ 2273 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) 2274 { 2275 enum e1000_phy_type phy_type = e1000_phy_unknown; 2276 2277 switch (phy_id) { 2278 case M88E1000_I_PHY_ID: 2279 case M88E1000_E_PHY_ID: 2280 case M88E1111_I_PHY_ID: 2281 case M88E1011_I_PHY_ID: 2282 phy_type = e1000_phy_m88; 2283 break; 2284 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ 2285 phy_type = e1000_phy_igp_2; 2286 break; 2287 case GG82563_E_PHY_ID: 2288 phy_type = e1000_phy_gg82563; 2289 break; 2290 case IGP03E1000_E_PHY_ID: 2291 phy_type = e1000_phy_igp_3; 2292 break; 2293 case IFE_E_PHY_ID: 2294 case IFE_PLUS_E_PHY_ID: 2295 case IFE_C_E_PHY_ID: 2296 phy_type = e1000_phy_ife; 2297 break; 2298 case BME1000_E_PHY_ID: 2299 case BME1000_E_PHY_ID_R2: 2300 phy_type = e1000_phy_bm; 2301 break; 2302 case I82578_E_PHY_ID: 2303 phy_type = e1000_phy_82578; 2304 break; 2305 case I82577_E_PHY_ID: 2306 phy_type = e1000_phy_82577; 2307 break; 2308 case I82579_E_PHY_ID: 2309 phy_type = e1000_phy_82579; 2310 break; 2311 case I217_E_PHY_ID: 2312 phy_type = e1000_phy_i217; 2313 break; 2314 default: 2315 phy_type = e1000_phy_unknown; 2316 break; 2317 } 2318 return phy_type; 2319 } 2320 2321 /** 2322 * e1000e_determine_phy_address - Determines PHY address. 2323 * @hw: pointer to the HW structure 2324 * 2325 * This uses a trial and error method to loop through possible PHY 2326 * addresses. It tests each by reading the PHY ID registers and 2327 * checking for a match. 2328 **/ 2329 s32 e1000e_determine_phy_address(struct e1000_hw *hw) 2330 { 2331 u32 phy_addr = 0; 2332 u32 i; 2333 enum e1000_phy_type phy_type = e1000_phy_unknown; 2334 2335 hw->phy.id = phy_type; 2336 2337 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { 2338 hw->phy.addr = phy_addr; 2339 i = 0; 2340 2341 do { 2342 e1000e_get_phy_id(hw); 2343 phy_type = e1000e_get_phy_type_from_id(hw->phy.id); 2344 2345 /* If phy_type is valid, break - we found our 2346 * PHY address 2347 */ 2348 if (phy_type != e1000_phy_unknown) 2349 return 0; 2350 2351 usleep_range(1000, 2000); 2352 i++; 2353 } while (i < 10); 2354 } 2355 2356 return -E1000_ERR_PHY_TYPE; 2357 } 2358 2359 /** 2360 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address 2361 * @page: page to access 2362 * @reg: register to check 2363 * 2364 * Returns the phy address for the page requested. 2365 **/ 2366 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) 2367 { 2368 u32 phy_addr = 2; 2369 2370 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) 2371 phy_addr = 1; 2372 2373 return phy_addr; 2374 } 2375 2376 /** 2377 * e1000e_write_phy_reg_bm - Write BM PHY register 2378 * @hw: pointer to the HW structure 2379 * @offset: register offset to write to 2380 * @data: data to write at register offset 2381 * 2382 * Acquires semaphore, if necessary, then writes the data to PHY register 2383 * at the offset. Release any acquired semaphores before exiting. 2384 **/ 2385 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) 2386 { 2387 s32 ret_val; 2388 u32 page = offset >> IGP_PAGE_SHIFT; 2389 2390 ret_val = hw->phy.ops.acquire(hw); 2391 if (ret_val) 2392 return ret_val; 2393 2394 /* Page 800 works differently than the rest so it has its own func */ 2395 if (page == BM_WUC_PAGE) { 2396 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2397 false, false); 2398 goto release; 2399 } 2400 2401 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2402 2403 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2404 u32 page_shift, page_select; 2405 2406 /* Page select is register 31 for phy address 1 and 22 for 2407 * phy address 2 and 3. Page select is shifted only for 2408 * phy address 1. 2409 */ 2410 if (hw->phy.addr == 1) { 2411 page_shift = IGP_PAGE_SHIFT; 2412 page_select = IGP01E1000_PHY_PAGE_SELECT; 2413 } else { 2414 page_shift = 0; 2415 page_select = BM_PHY_PAGE_SELECT; 2416 } 2417 2418 /* Page is shifted left, PHY expects (page x 32) */ 2419 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2420 (page << page_shift)); 2421 if (ret_val) 2422 goto release; 2423 } 2424 2425 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2426 data); 2427 2428 release: 2429 hw->phy.ops.release(hw); 2430 return ret_val; 2431 } 2432 2433 /** 2434 * e1000e_read_phy_reg_bm - Read BM PHY register 2435 * @hw: pointer to the HW structure 2436 * @offset: register offset to be read 2437 * @data: pointer to the read data 2438 * 2439 * Acquires semaphore, if necessary, then reads the PHY register at offset 2440 * and storing the retrieved information in data. Release any acquired 2441 * semaphores before exiting. 2442 **/ 2443 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) 2444 { 2445 s32 ret_val; 2446 u32 page = offset >> IGP_PAGE_SHIFT; 2447 2448 ret_val = hw->phy.ops.acquire(hw); 2449 if (ret_val) 2450 return ret_val; 2451 2452 /* Page 800 works differently than the rest so it has its own func */ 2453 if (page == BM_WUC_PAGE) { 2454 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2455 true, false); 2456 goto release; 2457 } 2458 2459 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2460 2461 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2462 u32 page_shift, page_select; 2463 2464 /* Page select is register 31 for phy address 1 and 22 for 2465 * phy address 2 and 3. Page select is shifted only for 2466 * phy address 1. 2467 */ 2468 if (hw->phy.addr == 1) { 2469 page_shift = IGP_PAGE_SHIFT; 2470 page_select = IGP01E1000_PHY_PAGE_SELECT; 2471 } else { 2472 page_shift = 0; 2473 page_select = BM_PHY_PAGE_SELECT; 2474 } 2475 2476 /* Page is shifted left, PHY expects (page x 32) */ 2477 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2478 (page << page_shift)); 2479 if (ret_val) 2480 goto release; 2481 } 2482 2483 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2484 data); 2485 release: 2486 hw->phy.ops.release(hw); 2487 return ret_val; 2488 } 2489 2490 /** 2491 * e1000e_read_phy_reg_bm2 - Read BM PHY register 2492 * @hw: pointer to the HW structure 2493 * @offset: register offset to be read 2494 * @data: pointer to the read data 2495 * 2496 * Acquires semaphore, if necessary, then reads the PHY register at offset 2497 * and storing the retrieved information in data. Release any acquired 2498 * semaphores before exiting. 2499 **/ 2500 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) 2501 { 2502 s32 ret_val; 2503 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2504 2505 ret_val = hw->phy.ops.acquire(hw); 2506 if (ret_val) 2507 return ret_val; 2508 2509 /* Page 800 works differently than the rest so it has its own func */ 2510 if (page == BM_WUC_PAGE) { 2511 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2512 true, false); 2513 goto release; 2514 } 2515 2516 hw->phy.addr = 1; 2517 2518 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2519 /* Page is shifted left, PHY expects (page x 32) */ 2520 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2521 page); 2522 2523 if (ret_val) 2524 goto release; 2525 } 2526 2527 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2528 data); 2529 release: 2530 hw->phy.ops.release(hw); 2531 return ret_val; 2532 } 2533 2534 /** 2535 * e1000e_write_phy_reg_bm2 - Write BM PHY register 2536 * @hw: pointer to the HW structure 2537 * @offset: register offset to write to 2538 * @data: data to write at register offset 2539 * 2540 * Acquires semaphore, if necessary, then writes the data to PHY register 2541 * at the offset. Release any acquired semaphores before exiting. 2542 **/ 2543 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) 2544 { 2545 s32 ret_val; 2546 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2547 2548 ret_val = hw->phy.ops.acquire(hw); 2549 if (ret_val) 2550 return ret_val; 2551 2552 /* Page 800 works differently than the rest so it has its own func */ 2553 if (page == BM_WUC_PAGE) { 2554 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2555 false, false); 2556 goto release; 2557 } 2558 2559 hw->phy.addr = 1; 2560 2561 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2562 /* Page is shifted left, PHY expects (page x 32) */ 2563 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2564 page); 2565 2566 if (ret_val) 2567 goto release; 2568 } 2569 2570 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2571 data); 2572 2573 release: 2574 hw->phy.ops.release(hw); 2575 return ret_val; 2576 } 2577 2578 /** 2579 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers 2580 * @hw: pointer to the HW structure 2581 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG 2582 * 2583 * Assumes semaphore already acquired and phy_reg points to a valid memory 2584 * address to store contents of the BM_WUC_ENABLE_REG register. 2585 **/ 2586 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2587 { 2588 s32 ret_val; 2589 u16 temp; 2590 2591 /* All page select, port ctrl and wakeup registers use phy address 1 */ 2592 hw->phy.addr = 1; 2593 2594 /* Select Port Control Registers page */ 2595 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2596 if (ret_val) { 2597 e_dbg("Could not set Port Control page\n"); 2598 return ret_val; 2599 } 2600 2601 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); 2602 if (ret_val) { 2603 e_dbg("Could not read PHY register %d.%d\n", 2604 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2605 return ret_val; 2606 } 2607 2608 /* Enable both PHY wakeup mode and Wakeup register page writes. 2609 * Prevent a power state change by disabling ME and Host PHY wakeup. 2610 */ 2611 temp = *phy_reg; 2612 temp |= BM_WUC_ENABLE_BIT; 2613 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); 2614 2615 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); 2616 if (ret_val) { 2617 e_dbg("Could not write PHY register %d.%d\n", 2618 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2619 return ret_val; 2620 } 2621 2622 /* Select Host Wakeup Registers page - caller now able to write 2623 * registers on the Wakeup registers page 2624 */ 2625 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); 2626 } 2627 2628 /** 2629 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs 2630 * @hw: pointer to the HW structure 2631 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG 2632 * 2633 * Restore BM_WUC_ENABLE_REG to its original value. 2634 * 2635 * Assumes semaphore already acquired and *phy_reg is the contents of the 2636 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by 2637 * caller. 2638 **/ 2639 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2640 { 2641 s32 ret_val; 2642 2643 /* Select Port Control Registers page */ 2644 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2645 if (ret_val) { 2646 e_dbg("Could not set Port Control page\n"); 2647 return ret_val; 2648 } 2649 2650 /* Restore 769.17 to its original value */ 2651 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); 2652 if (ret_val) 2653 e_dbg("Could not restore PHY register %d.%d\n", 2654 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2655 2656 return ret_val; 2657 } 2658 2659 /** 2660 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register 2661 * @hw: pointer to the HW structure 2662 * @offset: register offset to be read or written 2663 * @data: pointer to the data to read or write 2664 * @read: determines if operation is read or write 2665 * @page_set: BM_WUC_PAGE already set and access enabled 2666 * 2667 * Read the PHY register at offset and store the retrieved information in 2668 * data, or write data to PHY register at offset. Note the procedure to 2669 * access the PHY wakeup registers is different than reading the other PHY 2670 * registers. It works as such: 2671 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 2672 * 2) Set page to 800 for host (801 if we were manageability) 2673 * 3) Write the address using the address opcode (0x11) 2674 * 4) Read or write the data using the data opcode (0x12) 2675 * 5) Restore 769.17.2 to its original value 2676 * 2677 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and 2678 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). 2679 * 2680 * Assumes semaphore is already acquired. When page_set==true, assumes 2681 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack 2682 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). 2683 **/ 2684 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 2685 u16 *data, bool read, bool page_set) 2686 { 2687 s32 ret_val; 2688 u16 reg = BM_PHY_REG_NUM(offset); 2689 u16 page = BM_PHY_REG_PAGE(offset); 2690 u16 phy_reg = 0; 2691 2692 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ 2693 if ((hw->mac.type == e1000_pchlan) && 2694 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) 2695 e_dbg("Attempting to access page %d while gig enabled.\n", 2696 page); 2697 2698 if (!page_set) { 2699 /* Enable access to PHY wakeup registers */ 2700 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2701 if (ret_val) { 2702 e_dbg("Could not enable PHY wakeup reg access\n"); 2703 return ret_val; 2704 } 2705 } 2706 2707 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); 2708 2709 /* Write the Wakeup register page offset value using opcode 0x11 */ 2710 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); 2711 if (ret_val) { 2712 e_dbg("Could not write address opcode to page %d\n", page); 2713 return ret_val; 2714 } 2715 2716 if (read) { 2717 /* Read the Wakeup register page value using opcode 0x12 */ 2718 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2719 data); 2720 } else { 2721 /* Write the Wakeup register page value using opcode 0x12 */ 2722 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2723 *data); 2724 } 2725 2726 if (ret_val) { 2727 e_dbg("Could not access PHY reg %d.%d\n", page, reg); 2728 return ret_val; 2729 } 2730 2731 if (!page_set) 2732 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2733 2734 return ret_val; 2735 } 2736 2737 /** 2738 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down 2739 * @hw: pointer to the HW structure 2740 * 2741 * In the case of a PHY power down to save power, or to turn off link during a 2742 * driver unload, or wake on lan is not enabled, restore the link to previous 2743 * settings. 2744 **/ 2745 void e1000_power_up_phy_copper(struct e1000_hw *hw) 2746 { 2747 u16 mii_reg = 0; 2748 int ret; 2749 2750 /* The PHY will retain its settings across a power down/up cycle */ 2751 ret = e1e_rphy(hw, MII_BMCR, &mii_reg); 2752 if (ret) { 2753 e_dbg("Error reading PHY register\n"); 2754 return; 2755 } 2756 mii_reg &= ~BMCR_PDOWN; 2757 e1e_wphy(hw, MII_BMCR, mii_reg); 2758 } 2759 2760 /** 2761 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down 2762 * @hw: pointer to the HW structure 2763 * 2764 * In the case of a PHY power down to save power, or to turn off link during a 2765 * driver unload, or wake on lan is not enabled, restore the link to previous 2766 * settings. 2767 **/ 2768 void e1000_power_down_phy_copper(struct e1000_hw *hw) 2769 { 2770 u16 mii_reg = 0; 2771 int ret; 2772 2773 /* The PHY will retain its settings across a power down/up cycle */ 2774 ret = e1e_rphy(hw, MII_BMCR, &mii_reg); 2775 if (ret) { 2776 e_dbg("Error reading PHY register\n"); 2777 return; 2778 } 2779 mii_reg |= BMCR_PDOWN; 2780 e1e_wphy(hw, MII_BMCR, mii_reg); 2781 usleep_range(1000, 2000); 2782 } 2783 2784 /** 2785 * __e1000_read_phy_reg_hv - Read HV PHY register 2786 * @hw: pointer to the HW structure 2787 * @offset: register offset to be read 2788 * @data: pointer to the read data 2789 * @locked: semaphore has already been acquired or not 2790 * @page_set: BM_WUC_PAGE already set and access enabled 2791 * 2792 * Acquires semaphore, if necessary, then reads the PHY register at offset 2793 * and stores the retrieved information in data. Release any acquired 2794 * semaphore before exiting. 2795 **/ 2796 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, 2797 bool locked, bool page_set) 2798 { 2799 s32 ret_val; 2800 u16 page = BM_PHY_REG_PAGE(offset); 2801 u16 reg = BM_PHY_REG_NUM(offset); 2802 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2803 2804 if (!locked) { 2805 ret_val = hw->phy.ops.acquire(hw); 2806 if (ret_val) 2807 return ret_val; 2808 } 2809 2810 /* Page 800 works differently than the rest so it has its own func */ 2811 if (page == BM_WUC_PAGE) { 2812 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2813 true, page_set); 2814 goto out; 2815 } 2816 2817 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2818 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2819 data, true); 2820 goto out; 2821 } 2822 2823 if (!page_set) { 2824 if (page == HV_INTC_FC_PAGE_START) 2825 page = 0; 2826 2827 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2828 /* Page is shifted left, PHY expects (page x 32) */ 2829 ret_val = e1000_set_page_igp(hw, 2830 (page << IGP_PAGE_SHIFT)); 2831 2832 hw->phy.addr = phy_addr; 2833 2834 if (ret_val) 2835 goto out; 2836 } 2837 } 2838 2839 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2840 page << IGP_PAGE_SHIFT, reg); 2841 2842 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); 2843 out: 2844 if (!locked) 2845 hw->phy.ops.release(hw); 2846 2847 return ret_val; 2848 } 2849 2850 /** 2851 * e1000_read_phy_reg_hv - Read HV PHY register 2852 * @hw: pointer to the HW structure 2853 * @offset: register offset to be read 2854 * @data: pointer to the read data 2855 * 2856 * Acquires semaphore then reads the PHY register at offset and stores 2857 * the retrieved information in data. Release the acquired semaphore 2858 * before exiting. 2859 **/ 2860 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2861 { 2862 return __e1000_read_phy_reg_hv(hw, offset, data, false, false); 2863 } 2864 2865 /** 2866 * e1000_read_phy_reg_hv_locked - Read HV PHY register 2867 * @hw: pointer to the HW structure 2868 * @offset: register offset to be read 2869 * @data: pointer to the read data 2870 * 2871 * Reads the PHY register at offset and stores the retrieved information 2872 * in data. Assumes semaphore already acquired. 2873 **/ 2874 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) 2875 { 2876 return __e1000_read_phy_reg_hv(hw, offset, data, true, false); 2877 } 2878 2879 /** 2880 * e1000_read_phy_reg_page_hv - Read HV PHY register 2881 * @hw: pointer to the HW structure 2882 * @offset: register offset to write to 2883 * @data: data to write at register offset 2884 * 2885 * Reads the PHY register at offset and stores the retrieved information 2886 * in data. Assumes semaphore already acquired and page already set. 2887 **/ 2888 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2889 { 2890 return __e1000_read_phy_reg_hv(hw, offset, data, true, true); 2891 } 2892 2893 /** 2894 * __e1000_write_phy_reg_hv - Write HV PHY register 2895 * @hw: pointer to the HW structure 2896 * @offset: register offset to write to 2897 * @data: data to write at register offset 2898 * @locked: semaphore has already been acquired or not 2899 * @page_set: BM_WUC_PAGE already set and access enabled 2900 * 2901 * Acquires semaphore, if necessary, then writes the data to PHY register 2902 * at the offset. Release any acquired semaphores before exiting. 2903 **/ 2904 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, 2905 bool locked, bool page_set) 2906 { 2907 s32 ret_val; 2908 u16 page = BM_PHY_REG_PAGE(offset); 2909 u16 reg = BM_PHY_REG_NUM(offset); 2910 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2911 2912 if (!locked) { 2913 ret_val = hw->phy.ops.acquire(hw); 2914 if (ret_val) 2915 return ret_val; 2916 } 2917 2918 /* Page 800 works differently than the rest so it has its own func */ 2919 if (page == BM_WUC_PAGE) { 2920 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2921 false, page_set); 2922 goto out; 2923 } 2924 2925 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2926 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2927 &data, false); 2928 goto out; 2929 } 2930 2931 if (!page_set) { 2932 if (page == HV_INTC_FC_PAGE_START) 2933 page = 0; 2934 2935 /* Workaround MDIO accesses being disabled after entering IEEE 2936 * Power Down (when bit 11 of the PHY Control register is set) 2937 */ 2938 if ((hw->phy.type == e1000_phy_82578) && 2939 (hw->phy.revision >= 1) && 2940 (hw->phy.addr == 2) && 2941 !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) { 2942 u16 data2 = 0x7EFF; 2943 2944 ret_val = e1000_access_phy_debug_regs_hv(hw, 2945 BIT(6) | 0x3, 2946 &data2, false); 2947 if (ret_val) 2948 goto out; 2949 } 2950 2951 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2952 /* Page is shifted left, PHY expects (page x 32) */ 2953 ret_val = e1000_set_page_igp(hw, 2954 (page << IGP_PAGE_SHIFT)); 2955 2956 hw->phy.addr = phy_addr; 2957 2958 if (ret_val) 2959 goto out; 2960 } 2961 } 2962 2963 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2964 page << IGP_PAGE_SHIFT, reg); 2965 2966 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, 2967 data); 2968 2969 out: 2970 if (!locked) 2971 hw->phy.ops.release(hw); 2972 2973 return ret_val; 2974 } 2975 2976 /** 2977 * e1000_write_phy_reg_hv - Write HV PHY register 2978 * @hw: pointer to the HW structure 2979 * @offset: register offset to write to 2980 * @data: data to write at register offset 2981 * 2982 * Acquires semaphore then writes the data to PHY register at the offset. 2983 * Release the acquired semaphores before exiting. 2984 **/ 2985 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) 2986 { 2987 return __e1000_write_phy_reg_hv(hw, offset, data, false, false); 2988 } 2989 2990 /** 2991 * e1000_write_phy_reg_hv_locked - Write HV PHY register 2992 * @hw: pointer to the HW structure 2993 * @offset: register offset to write to 2994 * @data: data to write at register offset 2995 * 2996 * Writes the data to PHY register at the offset. Assumes semaphore 2997 * already acquired. 2998 **/ 2999 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) 3000 { 3001 return __e1000_write_phy_reg_hv(hw, offset, data, true, false); 3002 } 3003 3004 /** 3005 * e1000_write_phy_reg_page_hv - Write HV PHY register 3006 * @hw: pointer to the HW structure 3007 * @offset: register offset to write to 3008 * @data: data to write at register offset 3009 * 3010 * Writes the data to PHY register at the offset. Assumes semaphore 3011 * already acquired and page already set. 3012 **/ 3013 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) 3014 { 3015 return __e1000_write_phy_reg_hv(hw, offset, data, true, true); 3016 } 3017 3018 /** 3019 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page 3020 * @page: page to be accessed 3021 **/ 3022 static u32 e1000_get_phy_addr_for_hv_page(u32 page) 3023 { 3024 u32 phy_addr = 2; 3025 3026 if (page >= HV_INTC_FC_PAGE_START) 3027 phy_addr = 1; 3028 3029 return phy_addr; 3030 } 3031 3032 /** 3033 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers 3034 * @hw: pointer to the HW structure 3035 * @offset: register offset to be read or written 3036 * @data: pointer to the data to be read or written 3037 * @read: determines if operation is read or write 3038 * 3039 * Reads the PHY register at offset and stores the retrieved information 3040 * in data. Assumes semaphore already acquired. Note that the procedure 3041 * to access these regs uses the address port and data port to read/write. 3042 * These accesses done with PHY address 2 and without using pages. 3043 **/ 3044 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 3045 u16 *data, bool read) 3046 { 3047 s32 ret_val; 3048 u32 addr_reg; 3049 u32 data_reg; 3050 3051 /* This takes care of the difference with desktop vs mobile phy */ 3052 addr_reg = ((hw->phy.type == e1000_phy_82578) ? 3053 I82578_ADDR_REG : I82577_ADDR_REG); 3054 data_reg = addr_reg + 1; 3055 3056 /* All operations in this function are phy address 2 */ 3057 hw->phy.addr = 2; 3058 3059 /* masking with 0x3F to remove the page from offset */ 3060 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); 3061 if (ret_val) { 3062 e_dbg("Could not write the Address Offset port register\n"); 3063 return ret_val; 3064 } 3065 3066 /* Read or write the data value next */ 3067 if (read) 3068 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); 3069 else 3070 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); 3071 3072 if (ret_val) 3073 e_dbg("Could not access the Data port register\n"); 3074 3075 return ret_val; 3076 } 3077 3078 /** 3079 * e1000_link_stall_workaround_hv - Si workaround 3080 * @hw: pointer to the HW structure 3081 * 3082 * This function works around a Si bug where the link partner can get 3083 * a link up indication before the PHY does. If small packets are sent 3084 * by the link partner they can be placed in the packet buffer without 3085 * being properly accounted for by the PHY and will stall preventing 3086 * further packets from being received. The workaround is to clear the 3087 * packet buffer after the PHY detects link up. 3088 **/ 3089 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) 3090 { 3091 s32 ret_val = 0; 3092 u16 data; 3093 3094 if (hw->phy.type != e1000_phy_82578) 3095 return 0; 3096 3097 /* Do not apply workaround if in PHY loopback bit 14 set */ 3098 ret_val = e1e_rphy(hw, MII_BMCR, &data); 3099 if (ret_val) { 3100 e_dbg("Error reading PHY register\n"); 3101 return ret_val; 3102 } 3103 if (data & BMCR_LOOPBACK) 3104 return 0; 3105 3106 /* check if link is up and at 1Gbps */ 3107 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); 3108 if (ret_val) 3109 return ret_val; 3110 3111 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3112 BM_CS_STATUS_SPEED_MASK); 3113 3114 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3115 BM_CS_STATUS_SPEED_1000)) 3116 return 0; 3117 3118 msleep(200); 3119 3120 /* flush the packets in the fifo buffer */ 3121 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, 3122 (HV_MUX_DATA_CTRL_GEN_TO_MAC | 3123 HV_MUX_DATA_CTRL_FORCE_SPEED)); 3124 if (ret_val) 3125 return ret_val; 3126 3127 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); 3128 } 3129 3130 /** 3131 * e1000_check_polarity_82577 - Checks the polarity. 3132 * @hw: pointer to the HW structure 3133 * 3134 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 3135 * 3136 * Polarity is determined based on the PHY specific status register. 3137 **/ 3138 s32 e1000_check_polarity_82577(struct e1000_hw *hw) 3139 { 3140 struct e1000_phy_info *phy = &hw->phy; 3141 s32 ret_val; 3142 u16 data; 3143 3144 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3145 3146 if (!ret_val) 3147 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) 3148 ? e1000_rev_polarity_reversed 3149 : e1000_rev_polarity_normal); 3150 3151 return ret_val; 3152 } 3153 3154 /** 3155 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY 3156 * @hw: pointer to the HW structure 3157 * 3158 * Calls the PHY setup function to force speed and duplex. 3159 **/ 3160 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) 3161 { 3162 struct e1000_phy_info *phy = &hw->phy; 3163 s32 ret_val; 3164 u16 phy_data; 3165 bool link; 3166 3167 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 3168 if (ret_val) 3169 return ret_val; 3170 3171 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 3172 3173 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 3174 if (ret_val) 3175 return ret_val; 3176 3177 udelay(1); 3178 3179 if (phy->autoneg_wait_to_complete) { 3180 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); 3181 3182 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3183 100000, &link); 3184 if (ret_val) 3185 return ret_val; 3186 3187 if (!link) 3188 e_dbg("Link taking longer than expected.\n"); 3189 3190 /* Try once more */ 3191 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3192 100000, &link); 3193 } 3194 3195 return ret_val; 3196 } 3197 3198 /** 3199 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information 3200 * @hw: pointer to the HW structure 3201 * 3202 * Read PHY status to determine if link is up. If link is up, then 3203 * set/determine 10base-T extended distance and polarity correction. Read 3204 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 3205 * determine on the cable length, local and remote receiver. 3206 **/ 3207 s32 e1000_get_phy_info_82577(struct e1000_hw *hw) 3208 { 3209 struct e1000_phy_info *phy = &hw->phy; 3210 s32 ret_val; 3211 u16 data; 3212 bool link; 3213 3214 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 3215 if (ret_val) 3216 return ret_val; 3217 3218 if (!link) { 3219 e_dbg("Phy info is only valid if link is up\n"); 3220 return -E1000_ERR_CONFIG; 3221 } 3222 3223 phy->polarity_correction = true; 3224 3225 ret_val = e1000_check_polarity_82577(hw); 3226 if (ret_val) 3227 return ret_val; 3228 3229 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3230 if (ret_val) 3231 return ret_val; 3232 3233 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); 3234 3235 if ((data & I82577_PHY_STATUS2_SPEED_MASK) == 3236 I82577_PHY_STATUS2_SPEED_1000MBPS) { 3237 ret_val = hw->phy.ops.get_cable_length(hw); 3238 if (ret_val) 3239 return ret_val; 3240 3241 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 3242 if (ret_val) 3243 return ret_val; 3244 3245 phy->local_rx = (data & LPA_1000LOCALRXOK) 3246 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3247 3248 phy->remote_rx = (data & LPA_1000REMRXOK) 3249 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3250 } else { 3251 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 3252 phy->local_rx = e1000_1000t_rx_status_undefined; 3253 phy->remote_rx = e1000_1000t_rx_status_undefined; 3254 } 3255 3256 return 0; 3257 } 3258 3259 /** 3260 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY 3261 * @hw: pointer to the HW structure 3262 * 3263 * Reads the diagnostic status register and verifies result is valid before 3264 * placing it in the phy_cable_length field. 3265 **/ 3266 s32 e1000_get_cable_length_82577(struct e1000_hw *hw) 3267 { 3268 struct e1000_phy_info *phy = &hw->phy; 3269 s32 ret_val; 3270 u16 phy_data, length; 3271 3272 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); 3273 if (ret_val) 3274 return ret_val; 3275 3276 length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data); 3277 3278 if (length == E1000_CABLE_LENGTH_UNDEFINED) 3279 return -E1000_ERR_PHY; 3280 3281 phy->cable_length = length; 3282 3283 return 0; 3284 } 3285